gt
stringclasses
1 value
context
stringlengths
2.49k
119k
""" ## Elements ### `<document>` ### `<line>` ### `<span>` attributes: - `width`: if not supplied, the span will be limited only by the width of the containing element. - `align`: one of `left`, `right`, `centerLeft`, `centerRight` or `center`. `center` is shorthand for `centerLeft`. Defaults to `left`. If width is not specified and cannot be determined from the context, the content width is used and this attribute has no effect. ### `<bold>` """ import re def _compress_whitespace(xml): """ Replace all sequences of whitespace characters in an xml etree with a single space. To add multiple spaces use a fixed width `span` or set the alignment of the containing element. """ for elem in xml.iter(): if elem.text is not None: elem.text = re.sub('\s+', ' ', elem.text) if elem.tail is not None: elem.tail = re.sub('\s+', ' ', elem.tail) def _strip_outer_whitespace(xml): """ Removes whitespace immediately after opening tags and immediately before closing tags. Intended to make it safer to do pretty printing without affecting the printers output. """ for elem in xml.iter(): if elem.text is not None: # if there are child tags, trailing whitespace will be attached to # the tail of the last child rather than `elem.text` so only strip # the leading whitespace from `elem.text`. if len(elem.getchildren()): elem.text = elem.text.lstrip() else: elem.text = elem.text.strip() if elem.text == '': elem.text = None if elem.tail is not None: if elem.getnext() is None: elem.tail = elem.tail.rstrip() if elem.text == '': elem.text = None class _XMLRenderer(object): def __init__(self, source, *, max_width=None, prelude=True): self._source = source self._max_width = max_width self._prelude = prelude self._bold_stack = 0 self._highlight_stack = 0 try: import lxml assert lxml except ImportError as e: raise ImportError( "lxml not installed. " "Please install python-linemode with the XMLRenderer flag." ) from e # TODO this seems funky self._generator = self._render() def _body_width(self, elem, *, max_width=None): width = len(elem.text or '') if max_width is not None: if width > max_width: return max_width for child in elem.getchildren(): width += self._element_width( child, max_width=max_width - width ) width += len(child.tail or '') if width > max_width: return max_width else: for child in elem.getchildren(): width += self._element_width(child) width += len(child.tail or '') return width def _span_width(self, elem, *, max_width=None): if 'width' in elem.attrib: width = int(elem.attrib['width']) if max_width is not None: width = min(width, max_width) return width # TODO right to left filling alignment = elem.attrib.get('align', 'left') if alignment in {'right', 'centerLeft', 'centerRight', 'center'}: if max_width is not None: return max_width return self._body_width(elem, max_width=max_width) def _element_width(self, elem, *, max_width=None): if elem.tag in {'span', 'bold', 'highlight'}: width = self._span_width(elem, max_width=max_width) else: raise Exception('unknown element', elem) if max_width is not None: assert width <= max_width return width def _render_bold(self, elem, *, max_width=None): self._bold_stack += 1 if self._bold_stack == 1: yield ('select-bold') yield from self._render_body(elem, max_width=max_width) self._bold_stack -= 1 if self._bold_stack == 0: yield ('cancel-bold') def _render_highlight(self, elem, *, max_width=None): self._highlight_stack += 1 if self._highlight_stack == 1: yield ('select-highlight') yield from self._render_body(elem, max_width=max_width) self._highlight_stack -= 1 if self._highlight_stack == 0: yield ('cancel-highlight') def _render_span(self, elem, *, max_width=None): width = self._span_width(elem, max_width=max_width) body_width = self._body_width(elem, max_width=width) if body_width >= width: # no point in trying to justify text that overflows. Just align # left and truncate rather than trying to truncate at the start alignment = 'left' else: alignment = elem.attrib.get('align', 'left') if alignment == 'left': left_padding = 0 elif alignment == 'right': left_padding = width - body_width elif alignment == 'centerLeft' or alignment == 'center': left_padding = (width - body_width) // 2 elif alignment == 'centerRight': left_padding = int(round((width - body_width) / 2)) if left_padding > 0: yield ('write', ' ' * left_padding) yield from self._render_body(elem, max_width=width) right_padding = width - body_width - left_padding if right_padding > 0: yield ('write', ' ' * right_padding) def _render_body(self, elem, *, max_width=None): if max_width is None: max_width = self._body_width(elem) children = elem.getchildren() if elem.text is not None and len(elem.text): yield ('write', elem.text[:max_width]) max_width -= len(elem.text) if max_width <= 0: return for child in children: yield from self._render_element(child, max_width=max_width) max_width -= self._element_width(child, max_width=max_width) assert max_width >= 0 if max_width == 0: return if child.tail is not None and len(child.tail): yield ('write', child.tail[:max_width]) max_width -= len(child.tail) if max_width <= 0: return def _render_element(self, elem, *, max_width=None): yield from { 'span': self._render_span, 'bold': self._render_bold, 'highlight': self._render_highlight, }[elem.tag](elem, max_width=max_width) def _render(self): # imported here as lxml is an `extras_require` dependency from lxml import etree xml = etree.fromstring(self._source) _strip_outer_whitespace(xml) _compress_whitespace(xml) if self._prelude: yield ('reset') for line in xml.getchildren(): height = int(line.attrib.get('height', '1')) if height != 1: yield { 2: ('fontsize-medium'), 3: ('fontsize-large'), }[height] yield from self._render_body(line, max_width=self._max_width) yield ('newline') if height != 1: yield ('fontsize-small') # TODO better name for flag if self._prelude: yield ('cut-through') def __iter__(self): return self def __next__(self): return next(self._generator) def render(source, *, max_width=None, prelude=True): return _XMLRenderer(source, max_width=max_width, prelude=prelude)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import netaddr from oslo_utils import uuidutils import six from neutron._i18n import _ from neutron.api.v2 import attributes from neutron.common import constants from neutron.common import ipv6_utils from neutron.common import utils as common_utils from neutron.ipam import exceptions as ipam_exc @six.add_metaclass(abc.ABCMeta) class SubnetPool(object): """Represents a pool of IPs available inside an address scope.""" @six.add_metaclass(abc.ABCMeta) class SubnetRequest(object): """Carries the data needed to make a subnet request The data validated and carried by an instance of this class is the data that is common to any type of request. This class shouldn't be instantiated on its own. Rather, a subclass of this class should be used. """ def __init__(self, tenant_id, subnet_id, gateway_ip=None, allocation_pools=None): """Initialize and validate :param tenant_id: The tenant id who will own the subnet :type tenant_id: str uuid :param subnet_id: Neutron's subnet ID :type subnet_id: str uuid :param gateway_ip: An IP to reserve for the subnet gateway. :type gateway_ip: None or convertible to netaddr.IPAddress :param allocation_pools: The pool from which IPAM should allocate addresses. The allocator *may* allow allocating addresses outside of this range if specifically requested. :type allocation_pools: A list of netaddr.IPRange. None if not specified. """ self._tenant_id = tenant_id self._subnet_id = subnet_id self._gateway_ip = None self._allocation_pools = None if gateway_ip is not None: self._gateway_ip = netaddr.IPAddress(gateway_ip) if allocation_pools is not None: allocation_pools = sorted(allocation_pools) previous = None for pool in allocation_pools: if not isinstance(pool, netaddr.ip.IPRange): raise TypeError(_("Ranges must be netaddr.IPRange")) if previous and pool.first <= previous.last: raise ValueError(_("Ranges must not overlap")) previous = pool if 1 < len(allocation_pools): # Checks that all the ranges are in the same IP version. # IPRange sorts first by ip version so we can get by with just # checking the first and the last range having sorted them # above. first_version = allocation_pools[0].version last_version = allocation_pools[-1].version if first_version != last_version: raise ValueError(_("Ranges must be in the same IP " "version")) self._allocation_pools = allocation_pools if self.gateway_ip and self.allocation_pools: if self.gateway_ip.version != self.allocation_pools[0].version: raise ValueError(_("Gateway IP version inconsistent with " "allocation pool version")) @property def tenant_id(self): return self._tenant_id @property def subnet_id(self): return self._subnet_id @property def gateway_ip(self): return self._gateway_ip @property def allocation_pools(self): return self._allocation_pools def _validate_with_subnet(self, subnet_cidr): if self.allocation_pools: if subnet_cidr.version != self.allocation_pools[0].version: raise ipam_exc.IpamValueInvalid(_( "allocation_pools use the wrong ip version")) for pool in self.allocation_pools: if pool not in subnet_cidr: raise ipam_exc.IpamValueInvalid(_( "allocation_pools are not in the subnet")) class AnySubnetRequest(SubnetRequest): """A template for allocating an unspecified subnet from IPAM Support for this type of request in a driver is optional. For example, the initial reference implementation will not support this. The API has no way of creating a subnet without a specific address until subnet-allocation is implemented. """ WILDCARDS = {constants.IPv4: '0.0.0.0', constants.IPv6: '::'} def __init__(self, tenant_id, subnet_id, version, prefixlen, gateway_ip=None, allocation_pools=None): """ :param version: Either constants.IPv4 or constants.IPv6 :param prefixlen: The prefix len requested. Must be within the min and max allowed. :type prefixlen: int """ super(AnySubnetRequest, self).__init__( tenant_id=tenant_id, subnet_id=subnet_id, gateway_ip=gateway_ip, allocation_pools=allocation_pools) net = netaddr.IPNetwork(self.WILDCARDS[version] + '/' + str(prefixlen)) self._validate_with_subnet(net) self._prefixlen = prefixlen @property def prefixlen(self): return self._prefixlen class SpecificSubnetRequest(SubnetRequest): """A template for allocating a specified subnet from IPAM The initial reference implementation will probably just allow any allocation, even overlapping ones. This can be expanded on by future blueprints. """ def __init__(self, tenant_id, subnet_id, subnet_cidr, gateway_ip=None, allocation_pools=None): """ :param subnet: The subnet requested. Can be IPv4 or IPv6. However, when IPAM tries to fulfill this request, the IP version must match the version of the address scope being used. :type subnet: netaddr.IPNetwork or convertible to one """ super(SpecificSubnetRequest, self).__init__( tenant_id=tenant_id, subnet_id=subnet_id, gateway_ip=gateway_ip, allocation_pools=allocation_pools) self._subnet_cidr = netaddr.IPNetwork(subnet_cidr) self._validate_with_subnet(self._subnet_cidr) @property def subnet_cidr(self): return self._subnet_cidr @property def prefixlen(self): return self._subnet_cidr.prefixlen @six.add_metaclass(abc.ABCMeta) class AddressRequest(object): """Abstract base class for address requests""" class SpecificAddressRequest(AddressRequest): """For requesting a specified address from IPAM""" def __init__(self, address): """ :param address: The address being requested :type address: A netaddr.IPAddress or convertible to one. """ super(SpecificAddressRequest, self).__init__() self._address = netaddr.IPAddress(address) @property def address(self): return self._address class AnyAddressRequest(AddressRequest): """Used to request any available address from the pool.""" class AutomaticAddressRequest(SpecificAddressRequest): """Used to create auto generated addresses, such as EUI64""" EUI64 = 'eui64' def _generate_eui64_address(self, **kwargs): if set(kwargs) != set(['prefix', 'mac']): raise ipam_exc.AddressCalculationFailure( address_type='eui-64', reason=_('must provide exactly 2 arguments - cidr and MAC')) prefix = kwargs['prefix'] mac_address = kwargs['mac'] return ipv6_utils.get_ipv6_addr_by_EUI64(prefix, mac_address) _address_generators = {EUI64: _generate_eui64_address} def __init__(self, address_type=EUI64, **kwargs): """ This constructor builds an automatic IP address. Parameter needed for generating it can be passed as optional keyword arguments. :param address_type: the type of address to generate. It could be an eui-64 address, a random IPv6 address, or an ipv4 link-local address. For the Kilo release only eui-64 addresses will be supported. """ address_generator = self._address_generators.get(address_type) if not address_generator: raise ipam_exc.InvalidAddressType(address_type=address_type) address = address_generator(self, **kwargs) super(AutomaticAddressRequest, self).__init__(address) class RouterGatewayAddressRequest(AddressRequest): """Used to request allocating the special router gateway address.""" class AddressRequestFactory(object): """Builds request using ip info Additional parameters(port and context) are not used in default implementation, but planned to be used in sub-classes provided by specific ipam driver, """ @classmethod def get_request(cls, context, port, ip_dict): """ :param context: context (not used here, but can be used in sub-classes) :param port: port dict (not used here, but can be used in sub-classes) :param ip_dict: dict that can contain 'ip_address', 'mac' and 'subnet_cidr' keys. Request to generate is selected depending on this ip_dict keys. :return: returns prepared AddressRequest (specific or any) """ if ip_dict.get('ip_address'): return SpecificAddressRequest(ip_dict['ip_address']) elif ip_dict.get('eui64_address'): return AutomaticAddressRequest(prefix=ip_dict['subnet_cidr'], mac=ip_dict['mac']) else: return AnyAddressRequest() class SubnetRequestFactory(object): """Builds request using subnet info""" @classmethod def get_request(cls, context, subnet, subnetpool): cidr = subnet.get('cidr') subnet_id = subnet.get('id', uuidutils.generate_uuid()) is_any_subnetpool_request = not attributes.is_attr_set(cidr) if is_any_subnetpool_request: prefixlen = subnet['prefixlen'] if not attributes.is_attr_set(prefixlen): prefixlen = int(subnetpool['default_prefixlen']) return AnySubnetRequest( subnet['tenant_id'], subnet_id, common_utils.ip_version_from_int(subnetpool['ip_version']), prefixlen) else: return SpecificSubnetRequest(subnet['tenant_id'], subnet_id, cidr, subnet.get('gateway_ip'), subnet.get('allocation_pools'))
from collections import OrderedDict def sorted_values_by_key(d): return [d[k] for k in sorted(d)] class OrderedSet: def __init__(self): self.d = OrderedDict() def add(self, x): if x not in self.d: self.d[x] = None def update(self, xs): for x in xs: if x not in self.d: self.d[x] = None def __len__(self): return len(self.d) def __iter__(self): for x in self.d.keys(): yield x def __contains__(self, item): return item in self.d class Scope: """A scope is used to help assign unique readable names to addressable objects. A scope keeps references to modules, hyperparameters, inputs, and outputs. """ def __init__(self): self.name_to_elem = OrderedDict() self.elem_to_name = OrderedDict() def register(self, name, elem): """Registers an addressable object with the desired name. The name cannot exist in the scope, otherwise asserts ``False``. Args: name (str): Unique name. elem (deep_architect.core.Addressable): Addressable object to register. """ assert name not in self.name_to_elem assert isinstance(elem, Addressable) self.name_to_elem[name] = elem self.elem_to_name[elem] = name def get_unused_name(self, prefix): """Creates a unique name by adding a numbered suffix to the prefix. Args: prefix (str): Prefix of the desired name. Returns: str: Unique name in the current scope. """ i = 0 while True: name = prefix + str(i) if name not in self.name_to_elem: break i += 1 return name def get_name(self, elem): """Get the name of the addressable object registered in the scope. The object must exist in the scope. Args: elem (deep_architect.core.Addressable): Addressable object registered in the scope. Returns: str: Name with which the object was registered in the scope. """ return self.elem_to_name[elem] def get_elem(self, name): """Get the object that is registered in the scope with the desired name. The name must exist in the scope. Args: name (str): Name of the addressable object registered in the scope. Returns: str: Addressable object with the corresponding name. """ return self.name_to_elem[name] @staticmethod def reset_default_scope(): """Replaces the current default scope with a new empty scope.""" Scope.default_scope = Scope() # NOTE: is this called once for each time core is imported? # TODO: check. Scope.default_scope = Scope() class Addressable: """Base class for classes whose objects have to be registered in a scope. Provides functionality to register objects in a scope. Args: scope (deep_architect.core.Scope): Scope object where the addressable object will be registered. name (str): Unique name used to register the addressable object. """ def __init__(self, scope, name): scope.register(name, self) self.scope = scope def __repr__(self): return self.get_name() def get_name(self): """Get the name with which the object was registered in the scope. Returns: str: Unique name used to register the object. """ return self.scope.get_name(self) def _get_base_name(self): """Get the class name. Useful to create unique names for an addressable object. Returns: str: Class name. """ return self.__class__.__name__ class Hyperparameter(Addressable): """Base hyperparameter class. Specific hyperparameter types are created by inheriting from this class. Hyperparameters keep references to the modules that are dependent on them. .. note:: Hyperparameters with easily serializable values are preferred due to the interaction with the search logging and multi-GPU functionalities. Typical valid serializable types are integers, floats, strings. Lists and dictionaries of serializable types are also valid. Args: scope (deep_architect.core.Scope, optional): Scope in which the hyperparameter will be registered. If none is given, uses the default scope. name (str, optional): Name used to derive an unique name for the hyperparameter. If none is given, uses the class name to derive the name. """ def __init__(self, scope=None, name=None): scope = scope if scope is not None else Scope.default_scope name = scope.get_unused_name('.'.join( ['H', (name if name is not None else self._get_base_name()) + '-'])) Addressable.__init__(self, scope, name) self.assign_done = False self.modules = OrderedSet() self.dependent_hyperps = OrderedSet() self.val = None def has_value_assigned(self): """Checks if the hyperparameter has been assigned a value. Returns: bool: ``True`` if the hyperparameter has been assigned a value. """ return self.assign_done def assign_value(self, val): """Assigns a value to the hyperparameter. The hyperparameter value must be valid for the hyperparameter in question. The hyperparameter becomes set if the call is successful. Args: val (object): Value to assign to the hyperparameter. """ assert not self.assign_done self._check_value(val) self.assign_done = True self.val = val # calls update on the dependent modules to signal that this hyperparameter # has been set, and trigger any relevant local changes. for m in self.modules: m._update() # calls updates on the dependent hyperparameters. for h in self.dependent_hyperps: if not h.assign_done: h._update() def get_value(self): """Get the value assigned to the hyperparameter. The hyperparameter must have already been assigned a value, otherwise asserts ``False``. Returns: object: Value assigned to the hyperparameter. """ assert self.assign_done return self.val def _register_module(self, module): """Registers a module as being dependent of this hyperparameter. Args: module (deep_architect.core.Module): Module dependent of this hyperparameter. """ self.modules.add(module) def _register_dependent_hyperparameter(self, hyperp): """Registers an hyperparameter as being dependent on this hyperparameter. Args: module (deep_architect.core.Hyperparameter): Hyperparameter dependent of this hyperparameter. """ # NOTE: for now, it is odd to register the same hyperparameter multiple times. assert hyperp not in self.dependent_hyperps assert isinstance(hyperp, DependentHyperparameter) self.dependent_hyperps.add(hyperp) def _check_value(self, val): """Checks if the value is valid for the hyperparameter. When ``set_val`` is called, this function is called to verify the validity of ``val``. This function is useful for error checking. """ raise NotImplementedError class DependentHyperparameter(Hyperparameter): """Hyperparameter that depends on other hyperparameters. The value of a dependent hyperparameter is set by a calling a function using the values of the dependent hyperparameters as arguments. This hyperparameter is convenient when we want to express search spaces where the values of some hyperparameters are computed as a function of the values of some other hyperparameters, rather than set independently. Args: fn (dict[str, object] -> object): Function used to compute the value of the hyperparameter based on the values of the dependent hyperparameters. hyperps (dict[str, deep_architect.core.Hyperparameter]): Dictionary mapping names to hyperparameters. The names used in the dictionary should correspond to the names of the arguments of ``fn``. scope (deep_architect.core.Scope, optional): The scope in which to register the hyperparameter in. name (str, optional): Name from which the name of the hyperparameter in the scope is derived. """ def __init__(self, fn, hyperps, scope=None, name=None): Hyperparameter.__init__(self, scope, name) # NOTE: this assert may or may not be necessary. # assert isinstance(hyperps, OrderedDict) self._hyperps = OrderedDict([(k, hyperps[k]) for k in sorted(hyperps)]) self._fn = fn # registering the dependencies. for h in self._hyperps.values(): h._register_dependent_hyperparameter(self) self._update() def _update(self): """Checks if the hyperparameter is ready to be set, and sets it if that is the case. """ # assert not self.has_value_assigned() if all(h.has_value_assigned() for h in self._hyperps.values()): dh = {name: h.get_value() for name, h in self._hyperps.items()} v = self._fn(dh) self.assign_value(v) def _check_value(self, val): pass class Input(Addressable): """Manages input connections. Inputs may be connected to a single output. Inputs and outputs are associated to a single module. See also: :class:`deep_architect.core.Output` and :class:`deep_architect.core.Module`. Args: module (deep_architect.core.Module): Module with which the input object is associated to. scope (deep_architect.core.Scope): Scope object where the input is going to be registered in. name (str): Unique name with which to register the input object. """ def __init__(self, module, scope, name): name = '.'.join([module.get_name(), 'I', name]) Addressable.__init__(self, scope, name) self.module = module self.from_output = None def is_connected(self): """Checks if the input is connected. Returns: bool: ``True`` if the input is connected. """ return self.from_output is not None def get_connected_output(self): """Get the output to which the input is connected to. Returns: deep_architect.core.Output: Output to which the input is connected to. """ return self.from_output def get_module(self): """Get the module with which the input is associated with. Returns: deep_architect.core.Module: Module with which the input is associated with. """ return self.module def connect(self, from_output): """Connect an output to this input. Changes the state of both the input and the output. Asserts ``False`` if the input is already connected. Args: from_output (deep_architect.core.Output): Output to connect to this input. """ assert isinstance(from_output, Output) assert self.from_output is None self.from_output = from_output from_output.to_inputs.append(self) def disconnect(self): """Disconnects the input from the output it is connected to. Changes the state of both the input and the output. Asserts ``False`` if the input is not connected. """ assert self.from_output is not None self.from_output.to_inputs.remove(self) self.from_output = None def reroute_connected_output(self, to_input): """Disconnects the input from the output it is connected to and connects the output to a new input, leaving this input in a disconnected state. Changes the state of both this input, the other input, and the output to which this input is connected to. .. note:: Rerouting operations are widely used in :class:`deep_architect.modules.SubstitutionModule`. See also: :meth:`deep_architect.core.Output.reroute_all_connected_inputs`. Args: to_input (deep_architect.core.Input): Input to which the output is going to be connected to. """ assert isinstance(to_input, Input) old_ox = self.from_output self.disconnect() old_ox.connect(to_input) class Output(Addressable): """Manages output connections. Outputs may be connected to multiple inputs. Inputs and outputs are associated to a single module. See also: :class:`deep_architect.core.Input` and :class:`deep_architect.core.Module`. Args: module (deep_architect.core.Module): Module with which the output object is associated to. scope (deep_architect.core.Scope): Scope object where the output is going to be registered in. name (str): Unique name with which to register the output object. """ def __init__(self, module, scope, name): name = '.'.join([module.get_name(), 'O', name]) Addressable.__init__(self, scope, name) self.module = module self.to_inputs = [] def is_connected(self): """Checks if the output is connected. Returns: bool: ``True`` if the output is connected. """ return len(self.to_inputs) > 0 def get_connected_inputs(self): """Get the list of inputs to which is the output is connected to. Returns: list[deep_architect.core.Input]: List of the inputs to which the output is connect to. """ return self.to_inputs def get_module(self): """Get the module object with which the output is associated with. Returns: deep_architect.core.Module: Module object with which the output is associated with. """ return self.module def connect(self, to_input): """Connect an additional input to this output. Changes the state of both the input and the output. Args: to_input (deep_architect.core.Input): Input to connect to this output. """ to_input.connect(self) def disconnect_all(self): """Disconnects all the inputs connected to this output. Changes the state of the output and all the inputs connected to it. """ to_inputs = list(self.to_inputs) for ix in to_inputs: ix.disconnect() def reroute_all_connected_inputs(self, from_output): """Reroutes all the inputs to which the output is connected to a different output. .. note:: Rerouting operations are widely used in :class:`deep_architect.modules.SubstitutionModule`. See also: :meth:`deep_architect.core.Input.reroute_connected_output`. Args: from_output (deep_architect.core.Output): Output to which the connected inputs are going to be rerouted to. """ to_inputs = list(self.to_inputs) for ix in to_inputs: ix.disconnect() ix.connect(from_output) class Module(Addressable): """Modules inputs and outputs, and depend on hyperparameters. Modules are some of the main components used to define search spaces. The inputs, outputs, and hyperparameters have names local to the module. These names are different than the ones used in the scope in which these objects are registered in. Search spaces based on modules are very general. They can be used across deep learning frameworks, and even for purposes that do not involve deep learning, e.g., searching over scikit-learn pipelines. The main operations to understand are compile and forward. Args: scope (deep_architect.core.Scope, optional): Scope object where the module is going to be registered in. name (str, optional): Unique name with which to register the module. """ def __init__(self, scope=None, name=None): scope = scope if scope is not None else Scope.default_scope name = scope.get_unused_name('.'.join( ['M', (name if name is not None else self._get_base_name()) + '-'])) Addressable.__init__(self, scope, name) self.inputs = OrderedDict() self.outputs = OrderedDict() self.hyperps = OrderedDict() self._is_compiled = False def _register_input(self, name): """Creates a new input with the chosen local name. Args: name (str): Local name given to the input. """ assert name not in self.inputs self.inputs[name] = Input(self, self.scope, name) def _register_output(self, name): """Creates a new output with the chosen local name. Args: name (str): Local name given to the output. """ assert name not in self.outputs self.outputs[name] = Output(self, self.scope, name) def _register_hyperparameter(self, name, h): """Registers an hyperparameter that the module depends on. Args: name (str): Local name to give to the hyperparameter. h (deep_architect.core.Hyperparameter): Hyperparameter that the module depends on. """ assert isinstance(h, Hyperparameter) and name not in self.hyperps self.hyperps[name] = h h._register_module(self) def _register(self, input_names, output_names, name_to_hyperp): """Registers inputs, outputs, and hyperparameters locally for the module. This function is convenient to avoid code repetition when registering multiple inputs, outputs, and hyperparameters. Args: input_names (list[str]): List of inputs names of the module. output_names (list[str]): List of the output names of the module. name_to_hyperp (dict[str, deep_architect.core.Hyperparameter]): Dictionary of names of hyperparameters to hyperparameters. """ for name in input_names: self._register_input(name) for name in output_names: self._register_output(name) for name in sorted(name_to_hyperp): self._register_hyperparameter(name, name_to_hyperp[name]) def _get_input_values(self): """Get the values associated to the inputs of the module. This function is used to implement forward. See also: :meth:`_set_output_values` and :func:`forward`. Returns: dict[str, object]: Dictionary of local input names to their corresponding values. """ return {name: ix.val for name, ix in self.inputs.items()} def _get_hyperp_values(self): """Get the values of the hyperparameters. Returns: dict[str, object]: Dictionary of local hyperparameter names to their corresponding values. """ return {name: h.get_value() for name, h in self.hyperps.items()} def _set_output_values(self, output_name_to_val): """Set the values of the outputs of the module. This function is used to implement forward. See also: :meth:`_get_input_values` and :func:`forward`. Args: output_name_to_val (dict[str, object]): Dictionary of local output names to the corresponding values to assign to those outputs. """ for name, val in output_name_to_val.items(): self.outputs[name].val = val def get_io(self): """ Returns: (dict[str,deep_architect.core.Input], dict[str,deep_architect.core.Output]): Pair with dictionaries mapping the local input and output names to their corresponding input and output objects. """ return self.inputs, self.outputs def get_hyperps(self): """ Returns: dict[str, deep_architect.core.Hyperparameter]: Dictionary of local hyperparameter names to the corresponding hyperparameter objects. """ return self.hyperps def _update(self): """Called when an hyperparameter that the module depends on is set.""" # raise NotImplementedError pass def _compile(self): """Compile operation for the module. Called once when all the hyperparameters that the module depends on, and the other hyperparameters of the search space are specified. See also: :meth:`_forward`. """ raise NotImplementedError def _forward(self): """Forward operation for the module. Called once the compile operation has been called. See also: :meth:`_compile`. """ raise NotImplementedError def forward(self): """The forward computation done by the module is decomposed into :meth:`_compile` and :meth:`_forward`. Compile can be thought as creating the parameters of the module (done once). Forward can be thought as using the parameters of the module to do the specific computation implemented by the module on some specific data (done multiple times). This function can only called after the module and the other modules in the search space are fully specified. See also: :func:`forward`. """ if not self._is_compiled: self._compile() self._is_compiled = True self._forward() def extract_unique_modules(input_or_output_lst): """Get the modules associated to the inputs and outputs in the list. Each module appears appear only once in the resulting list of modules. Args: input_or_output_lst (list[deep_architect.core.Input or deep_architect.core.Output]): List of inputs or outputs from which to extract the associated modules. Returns: list[deep_architect.core.Module]: Unique modules to which the inputs and outputs in the list belong to. """ ms = OrderedSet() for x in input_or_output_lst: assert isinstance(x, (Input, Output)) ms.add(x.get_module()) return list(ms) # assumes that the inputs provided are sufficient to evaluate all the network. # TODO: add the more general functionality that allows us to compute the sequence # of forward operations for a subgraph of the full computational graph. def determine_module_eval_seq(inputs): """Computes the module forward evaluation sequence necessary to evaluate the computational graph starting from the provided inputs. The computational graph is a directed acyclic graph. This function sorts the modules topologically based on their dependencies. It is assumed that the inputs in the dictionary provided are sufficient to compute forward for all modules in the graph. See also: :func:`forward`. Args: inputs (dict[str, deep_architect.core.Input]): dictionary of inputs sufficient to compute the forward computation of the whole graph through propagation. Returns: list[deep_architect.core.Module]: List of modules ordered in a way that allows to call forward on the modules in that order. """ module_seq = [] module_memo = set() input_memo = set(inputs.values()) ms = extract_unique_modules(list(inputs.values())) for m in ms: if m not in module_memo and all( ix in input_memo for ix in m.inputs.values()): module_seq.append(m) module_memo.add(m) for ox in m.outputs.values(): ix_lst = ox.get_connected_inputs() input_memo.update(ix_lst) m_lst = [ix.get_module() for ix in ix_lst] ms.extend(m_lst) return module_seq def traverse_backward(outputs, fn): """Backward traversal function through the graph. Traverses the graph going from outputs to inputs. The provided function is applied once to each module reached this way. This function is used to implement other functionality that requires traversing the graph. ``fn`` typically has side effects, e.g., see :func:`is_specified` and :func:`get_unassigned_hyperparameters`. See also: :func:`traverse_forward`. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named of outputs to start the traversal at. fn ((deep_architect.core.Module) -> (bool)): Function to apply to each module. Returns ``True`` if the traversal is to be stopped. """ memo = set() output_lst = sorted_values_by_key(outputs) ms = extract_unique_modules(output_lst) for m in ms: is_over = fn(m) if is_over: break else: for ix in m.inputs.values(): if ix.is_connected(): m_prev = ix.get_connected_output().get_module() if m_prev not in memo: memo.add(m_prev) ms.append(m_prev) def traverse_forward(inputs, fn): """Forward traversal function through the graph. Traverses the graph going from inputs to outputs. The provided function is applied once to each module reached this way. This function is used to implement other functionality that requires traversing the graph. ``fn`` typically has side effects, e.g., see :func:`get_unconnected_outputs`. See also: :func:`traverse_backward`. Args: inputs (dict[str, deep_architect.core.Input]): Dictionary of named inputs to start the traversal at. fn ((deep_architect.core.Module) -> (bool)): Function to apply to each module. Returns ``True`` if the traversal is to be stopped. """ memo = set() input_lst = sorted_values_by_key(inputs) ms = extract_unique_modules(input_lst) for m in ms: is_over = fn(m) if is_over: break else: for ox in m.outputs.values(): if ox.is_connected(): for ix in ox.get_connected_inputs(): m_next = ix.get_module() if m_next not in memo: memo.add(m_next) ms.append(m_next) def get_modules_with_cond(outputs, cond_fn): ms = [] def fn(m): if cond_fn(m): ms.append(m) traverse_backward(outputs, fn) return ms def is_specified(outputs): """Checks if all the hyperparameters reachable by traversing backward from the outputs have been set. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs to start the traversal at. Returns: bool: ``True`` if all the hyperparameters have been set. ``False`` otherwise. """ is_spec = [True] def fn(module): for h in module.hyperps.values(): if not h.has_value_assigned(): is_spec[0] = False return True return False traverse_backward(outputs, fn) return is_spec[0] def forward(input_to_val, _module_seq=None): """Forward pass through the graph starting with the provided inputs. The starting inputs are given the values in the dictionary. The values for the other inputs are obtained through propagation, i.e., through successive calls to :meth:`deep_architect.core.Module.forward` of the appropriate modules. .. note:: For efficiency, in dynamic frameworks, the module evaluation sequence is best computed once and reused in each forward call. The module evaluation sequence is computed with :func:`determine_module_eval_seq`. Args: input_to_val (dict[deep_architect.core.Input, object]): Dictionary of initial inputs to their corresponding values. _module_seq (list[deep_architect.core.Module], optional): List of modules ordered in a way that calling :meth:`deep_architect.core.Module.forward` on them starting from the values given for the inputs is valid. If it is not provided, the module sequence is computed. """ if _module_seq is None: inputs = {"in%d" % i: ix for (i, ix) in enumerate(input_to_val.keys())} _module_seq = determine_module_eval_seq(inputs) for ix, val in input_to_val.items(): ix.val = val for m in _module_seq: m.forward() for ox in m.outputs.values(): for ix in ox.get_connected_inputs(): ix.val = ox.val def get_unconnected_inputs(outputs): """Get the inputs that are reachable going backward from the provided outputs, but are not connected to any outputs. Often, these inputs have to be provided with a value when calling :func:`forward`. Args: outputs (list[deep_architect.core.Output]): Dictionary of named outputs to start the backward traversal at. Returns: list[deep_architect.core.Input]: Unconnected inputs reachable by traversing the graph backward starting from the provided outputs. """ ix_lst = [] def fn(x): for ix in x.inputs.values(): if not ix.is_connected(): ix_lst.append(ix) return False traverse_backward(outputs, fn) return ix_lst def get_unconnected_outputs(inputs): """Get the outputs that are reachable going forward from the provided inputs, but are not connected to outputs. Often, the final result of a forward pass through the network will be at these outputs. Args: inputs (dict[str, deep_architect.core.Input]): Dictionary of named inputs to start the forward traversal at. Returns: list[deep_architect.core.Output]: Unconnected outputs reachable by traversing the graph forward starting from the provided inputs. """ ox_lst = [] def fn(x): for ox in x.outputs.values(): if not ox.is_connected(): ox_lst.append(ox) return False traverse_forward(inputs, fn) return ox_lst def get_all_hyperparameters(outputs): """Going backward from the outputs provided, gets all hyperparameters. Hyperparameters that can be reached by traversing dependency links between hyperparameters are also included. Setting an hyperparameter may lead to the creation of additional hyperparameters, which will be most likely not set. Such behavior happens when dealing with, for example, hyperparameters associated with substitutition modules such as :func:`deep_architect.modules.siso_optional`, :func:`deep_architect.modules.siso_or`, and :func:`deep_architect.modules.siso_repeat`. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs to start the traversal at. Returns: OrderedSet[deep_architect.core.Hyperparameter]: Ordered set of hyperparameters that are currently present in the graph. """ visited_hs = OrderedSet() def _add_reachable_hs(h_dep): assert isinstance(h_dep, DependentHyperparameter) local_memo = set([h_dep]) h_dep_lst = [h_dep] idx = 0 while idx < len(h_dep_lst): for h in h_dep_lst[idx]._hyperps.values(): # cycle detection. # assert h not in local_memo if h not in visited_hs: if isinstance(h, DependentHyperparameter): h_dep_lst.append(h) local_memo.add(h) visited_hs.add(h) idx += 1 # this function is applied on each of the modules in the graph. def fn(module): for h in module.hyperps.values(): if h not in visited_hs: visited_hs.add(h) if isinstance(h, DependentHyperparameter): _add_reachable_hs(h) return False traverse_backward(outputs, fn) return visited_hs def get_unassigned_independent_hyperparameters(outputs): """Going backward from the outputs provided, gets all the independent hyperparameters that are not set yet. Setting an hyperparameter may lead to the creation of additional hyperparameters, which will be most likely not set. Such behavior happens when dealing with, for example, hyperparameters associated with substitutition modules such as :func:`deep_architect.modules.siso_optional`, :func:`deep_architect.modules.siso_or`, and :func:`deep_architect.modules.siso_repeat`. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs to start the traversal at. Returns: OrderedSet[deep_architect.core.Hyperparameter]: Ordered set of hyperparameters that are currently present in the graph and not have been assigned a value yet. """ assert not is_specified(outputs) unassigned_indep_hs = OrderedSet() for h in get_all_hyperparameters(outputs): if not isinstance( h, DependentHyperparameter) and not h.has_value_assigned(): unassigned_indep_hs.add(h) return unassigned_indep_hs # TODO: perhaps change to not have to work until everything is specified. # this can be done through a flag. def unassigned_independent_hyperparameter_iterator(outputs): """Returns an iterator over the hyperparameters that are not specified in the current search space. This iterator is used by the searchers to go over the unspecified hyperparameters. .. note:: It is assumed that all the hyperparameters that are touched by the iterator will be specified (most likely, right away). Otherwise, the iterator will never terminate. Args: outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs which by being traversed back will reach all the modules in the search space, and correspondingly all the current unspecified hyperparameters of the search space. Yields: (deep_architect.core.Hyperparameter): Next unspecified hyperparameter of the search space. """ while not is_specified(outputs): hs = get_unassigned_independent_hyperparameters(outputs) for h in hs: if not h.has_value_assigned(): yield h def determine_input_output_cleanup_seq(inputs): """Determines the order in which the outputs can be cleaned. This sequence is aligned with the module evaluation sequence. Positionally, after each module evaluation, the values stored in val for both inputs and outputs can be deleted. This is useful to remove intermediate results to save memory. .. note:: This function should be used only for fully-specified search spaces. Args: inputs (dict[str, deep_architect.core.Input]): Dictionary of named inputs which by being traversed forward will reach all the modules in the search space. Returns: (list[list[deep_architect.core.Input]], list[list[deep_architect.core.Output]]): List of lists with the inputs and outputs in the order they should be cleaned up after they are no longer needed. """ module_eval_seq = determine_module_eval_seq(inputs) input_cleanup_seq = [] for m in module_eval_seq: lst = list(m.inputs.values()) input_cleanup_seq.append(lst) # number of inputs dependent on each input. output_counters = {} for m in module_eval_seq: for ox in m.outputs.values(): output_counters[ox] = len(ox.get_connected_inputs()) output_cleanup_seq = [] for m in module_eval_seq: lst = [] for ix in m.inputs.values(): if ix.is_connected(): ox = ix.get_connected_output() output_counters[ox] -= 1 if output_counters[ox] == 0: lst.append(ox) output_cleanup_seq.append(lst) return input_cleanup_seq, output_cleanup_seq def jsonify(inputs, outputs): """Returns a JSON representation of the fully-specified search space. This function is useful to create a representation of model that does not rely on the graph representation involving :class:`deep_architect.core.Module`, :class:`deep_architect.core.Input`, and :class:`deep_architect.core.Output`. Args: inputs (dict[str, deep_architect.core.Input]): Dictionary of named inputs which by being traversed forward will reach all the modules in the search space. outputs (dict[str, deep_architect.core.Output]): Dictionary of named outputs which by being traversed back will reach all the modules in the search space. Returns: (dict): JSON representation of the fully specified model. """ modules = {} def add_module(m): module_name = m.get_name() input_names = {name: ix.get_name() for name, ix in m.inputs.items()} output_names = {name: ox.get_name() for name, ox in m.outputs.items()} hyperp_name_to_val = m._get_hyperp_values() in_connections = {} out_connections = {} in_modules = set() out_modules = set() for ix in m.inputs.values(): if ix.is_connected(): ox = ix.get_connected_output() ix_name = ix.get_name() in_connections[ix_name] = ox.get_name() in_module_name = ox.get_module().get_name() in_modules.add(in_module_name) for ox in m.outputs.values(): if ox.is_connected(): ox_name = ox.get_name() lst = [] for ix in ox.get_connected_inputs(): lst.append(ix.get_name()) out_module_name = ix.get_module().get_name() out_modules.add(out_module_name) out_connections[ox_name] = lst module_name = m.get_name() start_idx = module_name.index('.') + 1 end_idx = len(module_name) - module_name[::-1].index('-') - 1 module_type = module_name[start_idx:end_idx] modules[m.get_name()] = { "module_name": module_name, "module_type": module_type, "hyperp_name_to_val": hyperp_name_to_val, "input_names": input_names, "output_names": output_names, "in_connections": in_connections, "out_connections": out_connections, "in_modules": list(in_modules), "out_modules": list(out_modules), } traverse_backward(outputs, add_module) ms = determine_module_eval_seq(inputs) module_eval_seq = [m.get_name() for m in ms] ixs_lst, oxs_lst = determine_input_output_cleanup_seq(inputs) input_cleanup_seq = [[ix.get_name() for ix in ixs] for ixs in ixs_lst] output_cleanup_seq = [[ox.get_name() for ox in oxs] for oxs in oxs_lst] unconnected_inputs = {name: ix.get_name() for name, ix in inputs.items()} unconnected_outputs = {name: ox.get_name() for name, ox in outputs.items()} graph = { "modules": modules, "unconnected_inputs": unconnected_inputs, "unconnected_outputs": unconnected_outputs, "module_eval_seq": module_eval_seq, "input_cleanup_seq": input_cleanup_seq, "output_cleanup_seq": output_cleanup_seq, } return graph
import furl from urlparse import urlparse from nose.tools import * # flake8: noqa from api.base.settings.defaults import API_BASE from framework.guid.model import Guid from website.addons.wiki.model import NodeWikiPage from tests.base import ApiWikiTestCase from tests.factories import (ProjectFactory, RegistrationFactory, NodeWikiFactory, PrivateLinkFactory, CommentFactory) class TestWikiDetailView(ApiWikiTestCase): def _set_up_public_project_with_wiki_page(self, project_options=None): project_options = project_options or {} self.public_project = ProjectFactory(is_public=True, creator=self.user, **project_options) self.public_wiki = self._add_project_wiki_page(self.public_project, self.user) self.public_url = '/{}wikis/{}/'.format(API_BASE, self.public_wiki._id) def _set_up_private_project_with_wiki_page(self): self.private_project = ProjectFactory(creator=self.user) self.private_wiki = self._add_project_wiki_page(self.private_project, self.user) self.private_url = '/{}wikis/{}/'.format(API_BASE, self.private_wiki._id) def _set_up_public_registration_with_wiki_page(self): self._set_up_public_project_with_wiki_page() self.public_registration = RegistrationFactory(project=self.public_project, user=self.user, is_public=True) self.public_registration_wiki_id = self.public_registration.wiki_pages_versions['home'][0] self.public_registration.wiki_pages_current = {'home': self.public_registration_wiki_id} self.public_registration.save() self.public_registration_url = '/{}wikis/{}/'.format(API_BASE, self.public_registration_wiki_id) def _set_up_private_registration_with_wiki_page(self): self._set_up_private_project_with_wiki_page() self.private_registration = RegistrationFactory(project=self.private_project, user=self.user) self.private_registration_wiki_id = self.private_registration.wiki_pages_versions['home'][0] self.private_registration.wiki_pages_current = {'home': self.private_registration_wiki_id} self.private_registration.save() self.private_registration_url = '/{}wikis/{}/'.format(API_BASE, self.private_registration_wiki_id) def test_public_node_logged_out_user_can_view_wiki(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_wiki._id) def test_public_node_logged_in_non_contributor_can_view_wiki(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url, auth=self.non_contributor.auth) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_wiki._id) def test_public_node_logged_in_contributor_can_view_wiki(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url, auth=self.user.auth) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_wiki._id) def test_private_node_logged_out_user_cannot_view_wiki(self): self._set_up_private_project_with_wiki_page() res = self.app.get(self.private_url, expect_errors=True) assert_equal(res.status_code, 401) assert_equal(res.json['errors'][0]['detail'], 'Authentication credentials were not provided.') def test_private_node_logged_in_non_contributor_cannot_view_wiki(self): self._set_up_private_project_with_wiki_page() res = self.app.get(self.private_url, auth=self.non_contributor.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_equal(res.json['errors'][0]['detail'], 'You do not have permission to perform this action.') def test_private_node_logged_in_contributor_can_view_wiki(self): self._set_up_private_project_with_wiki_page() res = self.app.get(self.private_url, auth=self.user.auth) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.private_wiki._id) def test_private_node_user_with_anonymous_link_can_view_wiki(self): self._set_up_private_project_with_wiki_page() private_link = PrivateLinkFactory(anonymous=True) private_link.nodes.append(self.private_project) private_link.save() url = furl.furl(self.private_url).add(query_params={'view_only': private_link.key}).url res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.private_wiki._id) def test_private_node_user_with_view_only_link_can_view_wiki(self): self._set_up_private_project_with_wiki_page() private_link = PrivateLinkFactory(anonymous=False) private_link.nodes.append(self.private_project) private_link.save() url = furl.furl(self.private_url).add(query_params={'view_only': private_link.key}).url res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.private_wiki._id) def test_public_registration_logged_out_user_cannot_view_wiki(self): self._set_up_public_registration_with_wiki_page() res = self.app.get(self.public_registration_url, expect_errors=True) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_registration_wiki_id) def test_public_registration_logged_in_non_contributor_cannot_view_wiki(self): self._set_up_public_registration_with_wiki_page() res = self.app.get(self.public_registration_url, auth=self.non_contributor.auth, expect_errors=True) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_registration_wiki_id) def test_public_registration_contributor_can_view_wiki(self): self._set_up_public_registration_with_wiki_page() res = self.app.get(self.public_registration_url, auth=self.user.auth) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.public_registration_wiki_id) def test_user_cannot_view_withdrawn_registration_wikis(self): self._set_up_public_registration_with_wiki_page() withdrawal = self.public_registration.retract_registration(user=self.user, save=True) token = withdrawal.approval_state.values()[0]['approval_token'] withdrawal.approve_retraction(self.user, token) withdrawal.save() res = self.app.get(self.public_registration_url, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_equal(res.json['errors'][0]['detail'], 'You do not have permission to perform this action.') def test_private_registration_logged_out_user_cannot_view_wiki(self): self._set_up_private_registration_with_wiki_page() res = self.app.get(self.private_registration_url, expect_errors=True) assert_equal(res.status_code, 401) assert_equal(res.json['errors'][0]['detail'], 'Authentication credentials were not provided.') def test_private_registration_logged_in_non_contributor_cannot_view_wiki(self): self._set_up_private_registration_with_wiki_page() res = self.app.get(self.private_registration_url, auth=self.non_contributor.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_equal(res.json['errors'][0]['detail'], 'You do not have permission to perform this action.') def test_private_registration_contributor_can_view_wiki(self): self._set_up_private_registration_with_wiki_page() res = self.app.get(self.private_registration_url, auth=self.user.auth) assert_equal(res.status_code, 200) assert_equal(res.json['data']['id'], self.private_registration_wiki_id) def test_wiki_has_user_link(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) url = res.json['data']['relationships']['user']['links']['related']['href'] expected_url = '/{}users/{}/'.format(API_BASE, self.user._id) assert_equal(res.status_code, 200) assert_equal(urlparse(url).path, expected_url) def test_wiki_has_node_link(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) url = res.json['data']['relationships']['node']['links']['related']['href'] expected_url = '/{}nodes/{}/'.format(API_BASE, self.public_project._id) assert_equal(res.status_code, 200) assert_equal(urlparse(url).path, expected_url) def test_wiki_has_comments_link(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) assert_equal(res.status_code, 200) url = res.json['data']['relationships']['comments']['links']['related']['href'] CommentFactory(node=self.public_project, target=Guid.load(self.public_wiki._id), user=self.user) res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(res.json['data'][0]['type'], 'comments') def test_only_project_contrib_can_comment_on_closed_project(self): self._set_up_public_project_with_wiki_page(project_options={'comment_level': 'private'}) res = self.app.get(self.public_url, auth=self.user.auth) can_comment = res.json['data']['attributes']['current_user_can_comment'] assert_equal(res.status_code, 200) assert_equal(can_comment, True) res = self.app.get(self.public_url, auth=self.non_contributor.auth) can_comment = res.json['data']['attributes']['current_user_can_comment'] assert_equal(res.status_code, 200) assert_equal(can_comment, False) def test_any_loggedin_user_can_comment_on_open_project(self): self._set_up_public_project_with_wiki_page(project_options={'comment_level': 'public'}) res = self.app.get(self.public_url, auth=self.non_contributor.auth) can_comment = res.json['data']['attributes']['current_user_can_comment'] assert_equal(res.status_code, 200) assert_equal(can_comment, True) def test_non_logged_in_user_cant_comment(self): self._set_up_public_project_with_wiki_page(project_options={'comment_level': 'public'}) res = self.app.get(self.public_url) can_comment = res.json['data']['attributes']['current_user_can_comment'] assert_equal(res.status_code, 200) assert_equal(can_comment, False) def test_wiki_has_download_link(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) url = res.json['data']['links']['download'] expected_url = '/{}wikis/{}/content/'.format(API_BASE, self.public_wiki._id) assert_equal(res.status_code, 200) assert_in(expected_url, url) def test_wiki_invalid_id_not_found(self): url = '/{}wikis/{}/'.format(API_BASE, 'abcde') res = self.app.get(url, expect_errors=True) assert_equal(res.status_code, 404) def test_old_wiki_versions_not_returned(self): self._set_up_public_project_with_wiki_page() current_wiki = NodeWikiFactory(node=self.public_project, user=self.user) old_version_id = self.public_project.wiki_pages_versions[current_wiki.page_name][-2] old_version = NodeWikiPage.load(old_version_id) url = '/{}wikis/{}/'.format(API_BASE, old_version._id) res = self.app.get(url, expect_errors=True) assert_equal(res.status_code, 404) def test_public_node_wiki_relationship_links(self): self._set_up_public_project_with_wiki_page() res = self.app.get(self.public_url) expected_nodes_relationship_url = '{}nodes/{}/'.format(API_BASE, self.public_project._id) expected_comments_relationship_url = '{}nodes/{}/comments/'.format(API_BASE, self.public_project._id) assert_in(expected_nodes_relationship_url, res.json['data']['relationships']['node']['links']['related']['href']) assert_in(expected_comments_relationship_url, res.json['data']['relationships']['comments']['links']['related']['href']) def test_private_node_wiki_relationship_links(self): self._set_up_private_project_with_wiki_page() res = self.app.get(self.private_url, auth=self.user.auth) expected_nodes_relationship_url = '{}nodes/{}/'.format(API_BASE, self.private_project._id) expected_comments_relationship_url = '{}nodes/{}/comments/'.format(API_BASE, self.private_project._id) assert_in(expected_nodes_relationship_url, res.json['data']['relationships']['node']['links']['related']['href']) assert_in(expected_comments_relationship_url, res.json['data']['relationships']['comments']['links']['related']['href']) def test_public_registration_wiki_relationship_links(self): self._set_up_public_registration_with_wiki_page() res = self.app.get(self.public_registration_url) expected_nodes_relationship_url = '{}registrations/{}/'.format(API_BASE, self.public_registration._id) expected_comments_relationship_url = '{}registrations/{}/comments/'.format(API_BASE, self.public_registration._id) assert_in(expected_nodes_relationship_url, res.json['data']['relationships']['node']['links']['related']['href']) assert_in(expected_comments_relationship_url, res.json['data']['relationships']['comments']['links']['related']['href']) def test_private_registration_wiki_relationship_links(self): self._set_up_private_registration_with_wiki_page() res = self.app.get(self.private_registration_url, auth=self.user.auth) expected_nodes_relationship_url = '{}registrations/{}/'.format(API_BASE, self.private_registration._id) expected_comments_relationship_url = '{}registrations/{}/comments/'.format(API_BASE, self.private_registration._id) assert_in(expected_nodes_relationship_url, res.json['data']['relationships']['node']['links']['related']['href']) assert_in(expected_comments_relationship_url, res.json['data']['relationships']['comments']['links']['related']['href'])
from sympy.core.basic import Basic from sympy import (sympify, eye, sin, cos, rot_axis1, rot_axis2, rot_axis3, ImmutableMatrix as Matrix, Symbol) from sympy.core.cache import cacheit import sympy.vector class Orienter(Basic): """ Super-class for all orienter classes. """ def rotation_matrix(self): """ The rotation matrix corresponding to this orienter instance. """ return self._parent_orient class AxisOrienter(Orienter): """ Class to denote an axis orienter. """ def __new__(cls, angle, axis): if not isinstance(axis, sympy.vector.Vector): raise TypeError("axis should be a Vector") angle = sympify(angle) obj = super(AxisOrienter, cls).__new__(cls, angle, axis) obj._angle = angle obj._axis = axis return obj def __init__(self, angle, axis): """ Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector. Parameters ========== angle : Expr The angle by which the new system is to be rotated axis : Vector The axis around which the rotation has to be performed Examples ======== >>> from sympy.vector import CoordSysCartesian >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = CoordSysCartesian('N') >>> from sympy.vector import AxisOrienter >>> orienter = AxisOrienter(q1, N.i + 2 * N.j) >>> B = N.orient_new('B', (orienter, )) """ #Dummy initializer for docstrings pass @cacheit def rotation_matrix(self, system): """ The rotation matrix corresponding to this orienter instance. Parameters ========== system : CoordSysCartesian The coordinate system wrt which the rotation matrix is to be computed """ axis = sympy.vector.express(self.axis, system).normalize() axis = axis.to_matrix(system) theta = self.angle parent_orient = ((eye(3) - axis * axis.T) * cos(theta) + Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T) parent_orient = parent_orient.T return parent_orient @property def angle(self): return self._angle @property def axis(self): return self._axis class ThreeAngleOrienter(Orienter): """ Super-class for Body and Space orienters. """ def __new__(cls, angle1, angle2, angle3, rot_order): approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') original_rot_order = rot_order rot_order = str(rot_order).upper() if not (len(rot_order) == 3): raise TypeError('rot_order should be a str of length 3') rot_order = [i.replace('X', '1') for i in rot_order] rot_order = [i.replace('Y', '2') for i in rot_order] rot_order = [i.replace('Z', '3') for i in rot_order] rot_order = ''.join(rot_order) if not rot_order in approved_orders: raise TypeError('Invalid rot_type parameter') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) angle1 = sympify(angle1) angle2 = sympify(angle2) angle3 = sympify(angle3) if cls._in_order: parent_orient = (_rot(a1, angle1) * _rot(a2, angle2) * _rot(a3, angle3)) else: parent_orient = (_rot(a3, angle3) * _rot(a2, angle2) * _rot(a1, angle1)) parent_orient = parent_orient.T obj = super(ThreeAngleOrienter, cls).__new__( cls, angle1, angle2, angle3, Symbol(original_rot_order)) obj._angle1 = angle1 obj._angle2 = angle2 obj._angle3 = angle3 obj._rot_order = original_rot_order obj._parent_orient = parent_orient return obj @property def angle1(self): return self._angle1 @property def angle2(self): return self._angle2 @property def angle3(self): return self._angle3 @property def rot_order(self): return self._rot_order class BodyOrienter(ThreeAngleOrienter): """ Class to denote a body-orienter. """ _in_order = True def __new__(cls, angle1, angle2, angle3, rot_order): obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3, rot_order) return obj def __init__(self, angle1, angle2, angle3, rot_order): """ Body orientation takes this coordinate system through three successive simple rotations. Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see http://en.wikipedia.org/wiki/Euler_angles. Parameters ========== angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation Examples ======== >>> from sympy.vector import CoordSysCartesian, BodyOrienter >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSysCartesian('N') A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N, each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a '123' rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore, >>> body_orienter = BodyOrienter(q1, q2, q3, '123') >>> D = N.orient_new('D', (body_orienter, )) is same as >>> from sympy.vector import AxisOrienter >>> axis_orienter1 = AxisOrienter(q1, N.i) >>> D = N.orient_new('D', (axis_orienter1, )) >>> axis_orienter2 = AxisOrienter(q2, D.j) >>> D = D.orient_new('D', (axis_orienter2, )) >>> axis_orienter3 = AxisOrienter(q3, D.k) >>> D = D.orient_new('D', (axis_orienter3, )) Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row. >>> body_orienter1 = BodyOrienter(q1, q2, q3, '123') >>> body_orienter2 = BodyOrienter(q1, q2, 0, 'ZXZ') >>> body_orienter3 = BodyOrienter(0, 0, 0, 'XYX') """ #Dummy initializer for docstrings pass class SpaceOrienter(ThreeAngleOrienter): """ Class to denote a space-orienter. """ _in_order = False def __new__(cls, angle1, angle2, angle3, rot_order): obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3, rot_order) return obj def __init__(self, angle1, angle2, angle3, rot_order): """ Space rotation is similar to Body rotation, but the rotations are applied in the opposite order. Parameters ========== angle1, angle2, angle3 : Expr Three successive angles to rotate the coordinate system by rotation_order : string String defining the order of axes for rotation See Also ======== BodyOrienter : Orienter to orient systems wrt Euler angles. Examples ======== >>> from sympy.vector import CoordSysCartesian, SpaceOrienter >>> from sympy import symbols >>> q1, q2, q3 = symbols('q1 q2 q3') >>> N = CoordSysCartesian('N') To orient a coordinate system D with respect to N, each sequential rotation is always about N's orthogonal unit vectors. For example, a '123' rotation will specify rotations about N.i, then N.j, then N.k. Therefore, >>> space_orienter = SpaceOrienter(q1, q2, q3, '312') >>> D = N.orient_new('D', (space_orienter, )) is same as >>> from sympy.vector import AxisOrienter >>> axis_orienter1 = AxisOrienter(q1, N.i) >>> B = N.orient_new('B', (axis_orienter1, )) >>> axis_orienter2 = AxisOrienter(q2, N.j) >>> C = B.orient_new('C', (axis_orienter2, )) >>> axis_orienter3 = AxisOrienter(q3, N.k) >>> D = C.orient_new('C', (axis_orienter3, )) """ #Dummy initializer for docstrings pass class QuaternionOrienter(Orienter): """ Class to denote a quaternion-orienter. """ def __new__(cls, q0, q1, q2, q3): q0 = sympify(q0) q1 = sympify(q1) q2 = sympify(q2) q3 = sympify(q3) parent_orient = (Matrix([[q0 ** 2 + q1 ** 2 - q2 ** 2 - q3 ** 2, 2 * (q1 * q2 - q0 * q3), 2 * (q0 * q2 + q1 * q3)], [2 * (q1 * q2 + q0 * q3), q0 ** 2 - q1 ** 2 + q2 ** 2 - q3 ** 2, 2 * (q2 * q3 - q0 * q1)], [2 * (q1 * q3 - q0 * q2), 2 * (q0 * q1 + q2 * q3), q0 ** 2 - q1 ** 2 - q2 ** 2 + q3 ** 2]])) parent_orient = parent_orient.T obj = super(QuaternionOrienter, cls).__new__(cls, q0, q1, q2, q3) obj._q0 = q0 obj._q1 = q1 obj._q2 = q2 obj._q3 = q3 obj._parent_orient = parent_orient return obj def __init__(self, angle1, angle2, angle3, rot_order): """ Quaternion orientation orients the new CoordSysCartesian with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta. This orientation is described by four parameters: q0 = cos(theta/2) q1 = lambda_x sin(theta/2) q2 = lambda_y sin(theta/2) q3 = lambda_z sin(theta/2) Quaternion does not take in a rotation order. Parameters ========== q0, q1, q2, q3 : Expr The quaternions to rotate the coordinate system by Examples ======== >>> from sympy.vector import CoordSysCartesian >>> from sympy import symbols >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = CoordSysCartesian('N') >>> from sympy.vector import QuaternionOrienter >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3) >>> B = N.orient_new('B', (q_orienter, )) """ #Dummy initializer for docstrings pass @property def q0(self): return self._q0 @property def q1(self): return self._q1 @property def q2(self): return self._q2 @property def q3(self): return self._q3 def _rot(axis, angle): """DCM for simple axis 1, 2 or 3 rotations. """ if axis == 1: return Matrix(rot_axis1(angle).T) elif axis == 2: return Matrix(rot_axis2(angle).T) elif axis == 3: return Matrix(rot_axis3(angle).T)
# coding=utf-8 # Copyright 2022 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library functions for training with dopamine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools from absl import flags from dopamine.agents.dqn import dqn_agent from dopamine.discrete_domains import gym_lib from dopamine.discrete_domains import run_experiment import core from experiments import infectious_disease as infectious_disease_exp import numpy as np import tensorflow.compat.v1 as tf flags.DEFINE_string( 'output_dir', '/tmp/ml-fairness-gym/infection_rl', 'directory to write files.') FLAGS = flags.FLAGS class _DopamineWrapper(gym_lib.GymPreprocessing): """Wraps the infectious disease environment to be compatible with Dopamine.""" def format_observation(self, obs, padding=2): """Formats health state observations into a numpy array. The health-states are one-hot encoded as row vectors, and then stacked together vertically to create a |population| x |health states| array. The population is padded on top and bottom with "recovered" indivduals, which don't affect the disease spread but make convolutions simpler. Args: obs: An observation dictionary. padding: An integer indicating how many people to use for padding. Returns: A numpy array suitable for passing to a DQN agent. """ vecs = [] initial_params = self.environment.initial_params num_states = len(initial_params.state_names) recovered_state = initial_params.state_names.index('recovered') for state in obs['health_states']: vecs.append(np.zeros((num_states, 1), dtype=float)) vecs[-1][state] = 1.0 pad = np.zeros((num_states, padding)) pad[recovered_state, :] = 1.0 return np.hstack([pad] + vecs + [pad]).T @property def action_space(self): return self.environment.action_space @property def observation_shape(self): return self.format_observation( self.environment.observation_space.sample()).shape @property def initial_params(self): return self.environment.initial_params def reset(self): """Resets the environment and chooses an initial patient to infect.""" observation = self.environment.reset() self.environment.set_scalar_reward( NegativeDeltaPercentSick(_percent_sick(observation))) return self.format_observation(observation) def step(self, action): """Play the environment one step forward.""" action = np.array([action]) observation, reward, game_over, info = self.environment.step(action) self.game_over = game_over return self.format_observation(observation), reward, game_over, info def set_initial_health_state(self, initial_health_state): return self.environment.set_initial_health_state(initial_health_state) def _percent_sick(observation): return np.mean( [health_state == 1 for health_state in observation['health_states']]) class NegativeDeltaPercentSick(core.RewardFn): """Reward function that penalizes newly sick days.""" def __init__(self, base=0): super(NegativeDeltaPercentSick, self).__init__() self.base = base def __call__(self, observation): percent_sick = _percent_sick(observation) delta = percent_sick - self.base self.base = percent_sick return -delta def _create_environment(seed=100, network='chain'): """Returns a Dopamine-compatible version of the infectious disease env.""" experiment = infectious_disease_exp.Experiment(graph_name=network) env, _ = experiment.scenario_builder() env.seed(seed) env.reset() env.set_scalar_reward(NegativeDeltaPercentSick()) return _DopamineWrapper(env) DQNNetworkType = collections.namedtuple('dqn_network', ['q_values']) class _SimpleDQNNetwork(tf.keras.Model): """The convolutional network used to compute the agent's Q-values.""" def __init__(self, num_actions, hidden_layer_size=64, name=None): """Creates the layers used for calculating Q-values. Args: num_actions: int, number of actions. hidden_layer_size: int, number of hidden units. name: str, used to create scope for network parameters. """ super(_SimpleDQNNetwork, self).__init__(name=name) self.num_actions = num_actions activation_fn = tf.keras.activations.relu # Set names of the layers manually to make variable names more similar # with tf.slim variable names/checkpoints. self.conv1 = tf.keras.layers.Conv1D( 32, 5, strides=1, padding='valid', activation=activation_fn, name='Conv') self.flatten = tf.keras.layers.Flatten() self.dense1 = tf.keras.layers.Dense( hidden_layer_size, activation=activation_fn, name='fully_connected') self.dense2 = tf.keras.layers.Dense( num_actions, kernel_regularizer=tf.keras.regularizers.l2(0.01), name='fully_connected') def call(self, state): """Creates the output tensor/op given the state tensor as input. See https://www.tensorflow.org/api_docs/python/tf/keras/Model for more information on this. Note that tf.keras.Model implements `call` which is wrapped by `__call__` function by tf.keras.Model. Parameters created here will have scope according to the `name` argument given at `.__init__()` call. Args: state: Tensor, input tensor. Returns: collections.namedtuple, output ops (graph mode) or output tensors (eager). """ x = tf.cast(state, tf.float32) # Fully connected network. No convolutions or graph convolutions here. x = self.flatten(x) x = self.dense1(x) x = self.dense2(x) return DQNNetworkType(x) def _create_agent(sess, environment, summary_writer, gamma=0.95, hidden_layer_size=32, learning_rate=0.00025): """Returns a DQN agent.""" return dqn_agent.DQNAgent( sess, network=functools.partial( _SimpleDQNNetwork, hidden_layer_size=hidden_layer_size), num_actions=int(environment.action_space.nvec[0]), observation_shape=environment.observation_shape, observation_dtype=tf.int32, gamma=gamma, stack_size=1, epsilon_train=0.5, min_replay_history=1000, summary_writer=summary_writer, optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate)) def dopamine_train(base_dir, hidden_layer_size, gamma, learning_rate, num_train_steps, network='chain'): """Train an agent using dopamine.""" runner = run_experiment.Runner( base_dir, functools.partial( _create_agent, hidden_layer_size=hidden_layer_size, gamma=gamma, learning_rate=learning_rate), functools.partial(_create_environment, network=network), num_iterations=num_train_steps, training_steps=500, evaluation_steps=100, max_steps_per_episode=20) runner.run_experiment() return runner def dopamine_eval(runner, patient0, seed=100): """Evaluate an agent.""" base_env = runner._environment.environment # pylint: disable=protected-access initial_health_state = np.zeros_like( base_env.initial_params.initial_health_state) initial_health_state[patient0] = 1 base_env.set_initial_health_state(initial_health_state) base_env.seed(seed) base_env.reset() metrics = { 'state_tracker': infectious_disease_exp.StateTracker(base_env), 'sick-days': infectious_disease_exp.DayTracker(base_env, 1) } runner._agent.eval_mode = True # pylint: disable=protected-access runner._run_one_episode() # pylint: disable=protected-access retval = {name: metric.measure(base_env) for name, metric in metrics.items()} retval['actions'] = [step.action for step in base_env.history] return retval
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable-msg=too-many-arguments, too-many-locals, assignment-from-no-return """ Conv Int8 functional and performance testing""" import sys import logging import numpy as np import tvm from tvm import te from tvm import topi logging.basicConfig(stream=sys.stdout, level=logging.INFO) LOGGER = logging.getLogger("test_conv_int8_intel") LOGGER.disabled = False # All the WORKLOADS from Resnet except first layer # Workload is ['height', 'width', 'in_filter', 'out_filter', # 'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride']) WORKLOADS = [ (56, 56, 64, 64, 3, 3, 1, 1, 1, 1), (56, 56, 64, 64, 1, 1, 0, 0, 1, 1), (56, 56, 64, 128, 3, 3, 1, 1, 2, 2), (56, 56, 64, 128, 1, 1, 0, 0, 2, 2), (28, 28, 128, 128, 3, 3, 1, 1, 1, 1), (28, 28, 128, 256, 3, 3, 1, 1, 2, 2), (28, 28, 128, 256, 1, 1, 0, 0, 2, 2), (14, 14, 256, 256, 3, 3, 1, 1, 1, 1), (14, 14, 256, 512, 3, 3, 1, 1, 2, 2), (14, 14, 256, 512, 1, 1, 0, 0, 2, 2), (7, 7, 512, 512, 3, 3, 1, 1, 1, 1), (56, 56, 64, 256, 1, 1, 0, 0, 1, 1), (56, 56, 256, 64, 1, 1, 0, 0, 1, 1), (56, 56, 256, 128, 1, 1, 0, 0, 2, 2), (28, 28, 128, 512, 1, 1, 0, 0, 1, 1), (56, 56, 256, 512, 1, 1, 0, 0, 2, 2), (28, 28, 512, 128, 1, 1, 0, 0, 1, 1), (28, 28, 512, 256, 1, 1, 0, 0, 2, 2), (14, 14, 256, 1024, 1, 1, 0, 0, 1, 1), (28, 28, 512, 1024, 1, 1, 0, 0, 2, 2), (14, 14, 1024, 256, 1, 1, 0, 0, 1, 1), (14, 14, 1024, 512, 1, 1, 0, 0, 2, 2), (7, 7, 512, 2048, 1, 1, 0, 0, 1, 1), (14, 14, 1024, 2048, 1, 1, 0, 0, 2, 2), (7, 7, 2048, 512, 1, 1, 0, 0, 1, 1), ] TARGET_NAME = "llvm -mcpu=skylake-avx512" NUM_VEC_LANES = 16 CTX = tvm.context(TARGET_NAME, 0) def get_shape( im_height, im_width, in_filter, out_filter, k_h, k_w, hpad, wpad, hstride, wstride, out_dtype ): """ Finds out the shape of all data structures """ ## Find shapes data_shape = (1, in_filter // NUM_VEC_LANES, im_height, im_width, NUM_VEC_LANES) if out_dtype == "int32": kernel_shape = ( out_filter // NUM_VEC_LANES, in_filter // NUM_VEC_LANES, k_h, k_w, NUM_VEC_LANES // 4, NUM_VEC_LANES, 4, ) elif out_dtype == "float32": kernel_shape = ( out_filter // NUM_VEC_LANES, in_filter // NUM_VEC_LANES, k_h, k_w, NUM_VEC_LANES, NUM_VEC_LANES, ) out_height = (im_height + 2 * hpad - k_h) // hstride + 1 out_width = (im_width + 2 * wpad - k_w) // wstride + 1 o_shape = (1, out_filter // NUM_VEC_LANES, out_height, out_width, NUM_VEC_LANES) return (data_shape, kernel_shape, o_shape) def run_inference( data_dtype, kernel_dtype, out_dtype, im_height, im_width, in_filter, out_filter, k_h, k_w, hpad, wpad, hstride, wstride, ): """ Runs the inference and checks the functional correctness between compute and schedule outputs """ (data_shape, kernel_shape, o_shape) = get_shape( im_height, im_width, in_filter, out_filter, k_h, k_w, hpad, wpad, hstride, wstride, out_dtype, ) # Create TVM placeholders data = te.placeholder(data_shape, name="data", dtype=data_dtype) kernel = te.placeholder(kernel_shape, name="kernel", dtype=kernel_dtype) # Create the numpy arrays to be used for executing conv models if data_dtype == "float32": data_array = tvm.nd.array(np.random.rand(*data_shape).astype(dtype=data_dtype), CTX) kernel_array = tvm.nd.array(np.random.rand(*kernel_shape).astype(dtype=kernel_dtype), CTX) else: data_array = tvm.nd.array(np.random.randint(100, size=data_shape).astype(data_dtype)) kernel_array = tvm.nd.array(np.random.randint(100, size=kernel_shape).astype(kernel_dtype)) # c_orig will be used for declaration ouptut # c_sch will be used for scheduled computation output c_orig = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX) c_sch = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX) with tvm.target.Target(TARGET_NAME): conv = topi.nn.conv2d_NCHWc( data, kernel, stride=hstride, padding=hpad, dilation=(1, 1), layout="NCHWc", out_layout="NCHWc", out_dtype=out_dtype, ) out = topi.nn.relu(conv) sch = te.create_schedule(out.op) func = tvm.build(sch, [data, kernel, out], target=TARGET_NAME, name="out") func(data_array, kernel_array, c_orig) LOGGER.debug(tvm.lower(sch, [data, kernel], simple_mode=True)) # Generate and run the optimized schedule sconv = topi.generic.nn.schedule_conv2d_NCHWc(outs=[out]) func = tvm.build(sconv, [data, kernel, out], target=TARGET_NAME, name="conv") func(data_array, kernel_array, c_sch) # Functional check if data_dtype == "uint8": np.testing.assert_equal(c_orig.asnumpy(), c_sch.asnumpy()) else: assert np.allclose(c_orig.asnumpy(), c_sch.asnumpy()) evaluator = func.time_evaluator(func.entry_name, CTX, number=1000) LOGGER.debug(tvm.lower(sconv, [data, kernel], simple_mode=True)) return evaluator(data_array, kernel_array, c_sch).mean if __name__ == "__main__": LOGGER.info("Workload, Kernel_size, FP32_time, INT8_time, Speedup") SPEEDUP_ARRAY = [] for i, wkl in enumerate(WORKLOADS): fp32_time = run_inference("float32", "float32", "float32", *wkl) int8_time = run_inference("uint8", "int8", "int32", *wkl) kernel_h = wkl[4] kernel_w = wkl[5] LOGGER.info( "Workload#" + str(i) + ", " + str(kernel_h) + "x" + str(kernel_w) + ", " + str(fp32_time) + ", " + str(int8_time) + ", " + str(fp32_time / int8_time) ) SPEEDUP_ARRAY.append(fp32_time / int8_time) LOGGER.info("Average speedup --> %s" % str(sum(SPEEDUP_ARRAY) / float(len(SPEEDUP_ARRAY))))
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Curses-Based Command-Line Interface of TensorFlow Debugger (tfdbg).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import curses from curses import textpad import signal import sys from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import tensor_format class CursesUI(object): """Curses-based Command-line UI. In this class, the methods with the prefix "_screen_" are the methods that interact with the actual terminal using the curses library. """ CLI_PROMPT = "tfdbg> " CLI_EXIT_COMMANDS = ["exit", "quit"] CLI_TERMINATOR_KEY = 7 # Terminator key for input text box. CLI_TAB_KEY = ord("\t") REGEX_SEARCH_PREFIX = "/" TENSOR_INDICES_NAVIGATION_PREFIX = "@" ERROR_MESSAGE_PREFIX = "ERROR: " # Possible Enter keys. 343 is curses key code for the num-pad Enter key when # num lock is off. CLI_CR_KEYS = [ord("\n"), ord("\r"), 343] _SCROLL_REFRESH = "refresh" _SCROLL_UP = "up" _SCROLL_DOWN = "down" _SCROLL_HOME = "home" _SCROLL_END = "end" _SCROLL_TO_LINE_INDEX = "scroll_to_line_index" _FOREGROUND_COLORS = { "white": curses.COLOR_WHITE, "red": curses.COLOR_RED, "green": curses.COLOR_GREEN, "yellow": curses.COLOR_YELLOW, "blue": curses.COLOR_BLUE, "magenta": curses.COLOR_MAGENTA, "black": curses.COLOR_BLACK, } _BACKGROUND_COLORS = { "white": curses.COLOR_WHITE, "black": curses.COLOR_BLACK, } # Font attribute for search and highlighting. _SEARCH_HIGHLIGHT_FONT_ATTR = "black_on_white" _ARRAY_INDICES_COLOR_PAIR = "black_on_white" _ERROR_TOAST_COLOR_PAIR = "red_on_white" _STATUS_BAR_COLOR_PAIR = "black_on_white" def __init__(self): self._screen_init() self._screen_refresh_size() # TODO(cais): Error out if the size of the screen is too small. # Initialize some UI component size and locations. self._init_layout() self._command_handler_registry = ( debugger_cli_common.CommandHandlerRegistry()) # Create tab completion registry and register the empty-str (top-level) # tab-completion context with it. self._tab_completion_registry = debugger_cli_common.TabCompletionRegistry() # Create top-level tab-completion context and register the exit and help # commands. self._tab_completion_registry.register_tab_comp_context( [""], self.CLI_EXIT_COMMANDS + [debugger_cli_common.CommandHandlerRegistry.HELP_COMMAND] + debugger_cli_common.CommandHandlerRegistry.HELP_COMMAND_ALIASES) self._command_history_store = debugger_cli_common.CommandHistory() # Active list of command history, used in history navigation. # _command_handler_registry holds all the history commands the CLI has # received, up to a size limit. _active_command_history is the history # currently being navigated in, e.g., using the Up/Down keys. The latter # can be different from the former during prefixed or regex-based history # navigation, e.g., when user enter the beginning of a command and hit Up. self._active_command_history = [] # Pointer to the current position in the history sequence. # 0 means it is a new command being keyed in. self._command_pointer = 0 self._command_history_limit = 100 self._pending_command = "" # State related to screen output. self._output_pad = None self._output_pad_row = 0 self._output_array_pointer_indices = None self._curr_unwrapped_output = None self._curr_wrapped_output = None # Register signal handler for SIGINT. signal.signal(signal.SIGINT, self._interrupt_handler) def _init_layout(self): """Initialize the layout of UI components. Initialize the location and size of UI components such as command textbox and output region according to the terminal size. """ # NamedTuple for rectangular locations on screen self.rectangle = collections.namedtuple("rectangle", "top left bottom right") # Height of command text box self._command_textbox_height = 2 self._title_row = 0 # Top row index of the output pad. # A "pad" is a curses object that holds lines of text and not limited to # screen size. It can be rendered on the screen partially with scroll # parameters specified. self._output_top_row = 1 # Number of rows that the output pad has. self._output_num_rows = ( self._max_y - self._output_top_row - self._command_textbox_height - 1) # Row index of scroll information line: Taking into account the zero-based # row indexing and the command textbox area under the scroll information # row. self._output_scroll_row = self._max_y - 1 - self._command_textbox_height # Tab completion bottom row. self._candidates_top_row = self._output_scroll_row - 4 self._candidates_bottom_row = self._output_scroll_row - 1 # Maximum number of lines the candidates display can have. self._candidates_max_lines = int(self._output_num_rows / 2) self.max_output_lines = 10000 # Regex search state. self._curr_search_regex = None self._unwrapped_regex_match_lines = [] # Size of view port on screen, which is always smaller or equal to the # screen size. self._output_pad_screen_height = self._output_num_rows - 1 self._output_pad_screen_width = self._max_x - 1 self._output_pad_screen_location = self.rectangle( top=self._output_top_row, left=0, bottom=self._output_top_row + self._output_num_rows, right=self._output_pad_screen_width) def _screen_init(self): """Screen initialization. Creates curses stdscr and initialize the color pairs for display. """ self._stdscr = curses.initscr() self._command_window = None # Prepare color pairs. curses.start_color() self._color_pairs = {} color_index = 0 for fg_color in self._FOREGROUND_COLORS: for bg_color in self._BACKGROUND_COLORS: color_index += 1 curses.init_pair(color_index, self._FOREGROUND_COLORS[fg_color], self._BACKGROUND_COLORS[bg_color]) color_name = fg_color if bg_color != "black": color_name += "_on_" + bg_color self._color_pairs[color_name] = curses.color_pair(color_index) # A_BOLD is not really a "color". But place it here for convenience. self._color_pairs["bold"] = curses.A_BOLD # Default color pair to use when a specified color pair does not exist. self._default_color_pair = self._color_pairs["white"] def _screen_launch(self): """Launch the curses screen.""" curses.noecho() curses.cbreak() self._stdscr.keypad(1) self._screen_create_command_window() def _screen_create_command_window(self): """Create command window according to screen size.""" if self._command_window: del self._command_window self._command_window = curses.newwin( self._command_textbox_height, self._max_x - len(self.CLI_PROMPT), self._max_y - self._command_textbox_height, len(self.CLI_PROMPT)) def _screen_refresh(self): self._stdscr.refresh() def _screen_terminate(self): """Terminate the curses screen.""" self._stdscr.keypad(0) curses.nocbreak() curses.echo() curses.endwin() # Remove SIGINT handler. signal.signal(signal.SIGINT, signal.SIG_DFL) def run_ui(self, init_command=None, title=None, title_color=None): """Run the Curses CLI. Args: init_command: (str) Optional command to run on CLI start up. title: (str) Optional title to display in the CLI. title_color: (str) Optional color of the title, e.g., "yellow". Returns: An exit token of arbitrary type. Can be None. """ self._screen_launch() # Optional initial command. if init_command is not None: self._dispatch_command(init_command) if title is not None: self._title(title, title_color=title_color) # CLI main loop. exit_token = self._ui_loop() self._screen_terminate() return exit_token def register_command_handler(self, prefix, handler, help_info, prefix_aliases=None): """A wrapper around CommandHandlerRegistry.register_command_handler(). In addition to calling the wrapped register_command_handler() method, this method also registers the top-level tab-completion context based on the command prefixes and their aliases. See the doc string of the wrapped method for more details on the args. Args: prefix: (str) command prefix. handler: (callable) command handler. help_info: (str) help information. prefix_aliases: (list of str) aliases of the command prefix. """ self._command_handler_registry.register_command_handler( prefix, handler, help_info, prefix_aliases=prefix_aliases) self._tab_completion_registry.extend_comp_items("", [prefix]) if prefix_aliases: self._tab_completion_registry.extend_comp_items("", prefix_aliases) def register_tab_comp_context(self, *args, **kwargs): """Wrapper around TabCompletionRegistry.register_tab_comp_context().""" self._tab_completion_registry.register_tab_comp_context(*args, **kwargs) def set_help_intro(self, help_intro): """Set an introductory message to the help output of the command registry. Args: help_intro: (list of str) Text lines appended to the beginning of the the output of the command "help", as introductory information. """ self._command_handler_registry.set_help_intro(help_intro=help_intro) def get_help(self): return self._command_handler_registry.get_help() def _screen_create_command_textbox(self, existing_command): """Create command textbox on screen. Args: existing_command: (str) A command string to put in the textbox right after its creation. """ # Display the tfdbg prompt. self._stdscr.addstr(self._max_y - self._command_textbox_height, 0, self.CLI_PROMPT, curses.A_BOLD) self._stdscr.refresh() self._command_window.clear() # Command text box. self._command_textbox = textpad.Textbox( self._command_window, insert_mode=True) # Enter existing command. self._auto_key_in(existing_command) def _ui_loop(self): """Command-line UI loop. Returns: An exit token of arbitrary type. The token can be None. """ while True: # Enter history command if pointer is in history (> 0): if self._command_pointer > 0: existing_command = self._active_command_history[-self._command_pointer] else: existing_command = self._pending_command self._screen_create_command_textbox(existing_command) command, terminator, pending_command_changed = self._get_user_command() if terminator in self.CLI_CR_KEYS: exit_token = self._dispatch_command(command) if exit_token is not None: return exit_token elif terminator == self.CLI_TAB_KEY: tab_completed = self._tab_complete(command) self._pending_command = tab_completed self._cmd_ptr = 0 elif pending_command_changed: self._pending_command = command return def _get_user_command(self): """Get user command from UI. Returns: command: (str) The user-entered command. terminator: (str) Terminator type for the command. If command is a normal command entered with the Enter key, the value will be the key itself. If this is a tab completion call (using the Tab key), the value will reflect that as well. pending_command_changed: (bool) If the pending command has changed. Used during command history navigation. """ # First, reset textbox state variables. self._textbox_curr_terminator = None self._textbox_pending_command_changed = False command = self._screen_get_user_command() command = self._strip_terminator(command) return (command, self._textbox_curr_terminator, self._textbox_pending_command_changed) def _screen_get_user_command(self): return self._command_textbox.edit(validate=self._on_textbox_keypress) def _strip_terminator(self, command): for v in self.CLI_CR_KEYS: if v < 256: command = command.replace(chr(v), "") return command.strip() def _screen_refresh_size(self): self._max_y, self._max_x = self._stdscr.getmaxyx() def _dispatch_command(self, command): """Dispatch user command. Args: command: (str) Command to dispatch. Returns: An exit token object. None value means that the UI loop should not exit. A non-None value means the UI loop should exit. """ if command in self.CLI_EXIT_COMMANDS: # Explicit user command-triggered exit: EXPLICIT_USER_EXIT as the exit # token. return debugger_cli_common.EXPLICIT_USER_EXIT if command: self._command_history_store.add_command(command) if (command.startswith(self.REGEX_SEARCH_PREFIX) and self._curr_unwrapped_output): if len(command) > len(self.REGEX_SEARCH_PREFIX): # Command is like "/regex". Perform regex search. regex = command[len(self.REGEX_SEARCH_PREFIX):] self._curr_search_regex = regex self._display_output(self._curr_unwrapped_output, highlight_regex=regex) elif self._unwrapped_regex_match_lines: # Command is "/". Continue scrolling down matching lines. self._display_output( self._curr_unwrapped_output, is_refresh=True, highlight_regex=self._curr_search_regex) self._command_pointer = 0 self._pending_command = "" return elif command.startswith(self.TENSOR_INDICES_NAVIGATION_PREFIX): indices_str = command[1:].strip() if indices_str: try: indices = command_parser.parse_indices(indices_str) omitted, line_index, _, _ = tensor_format.locate_tensor_element( self._curr_wrapped_output, indices) if not omitted: self._scroll_output( self._SCROLL_TO_LINE_INDEX, line_index=line_index) except Exception as e: # pylint: disable=broad-except self._error_toast(str(e)) else: self._error_toast("Empty indices.") return prefix, args = self._parse_command(command) if not prefix: # Empty command: take no action. Should not exit. return screen_info = {"cols": self._max_x} exit_token = None if self._command_handler_registry.is_registered(prefix): try: screen_output = self._command_handler_registry.dispatch_command( prefix, args, screen_info=screen_info) except debugger_cli_common.CommandLineExit as e: exit_token = e.exit_token else: screen_output = debugger_cli_common.RichTextLines([ self.ERROR_MESSAGE_PREFIX + "Invalid command prefix \"%s\"" % prefix ]) # Clear active command history. Until next up/down history navigation # occurs, it will stay empty. self._active_command_history = [] if exit_token is not None: return exit_token self._display_output(screen_output) self._command_pointer = 0 self._pending_command = "" def _parse_command(self, command): """Parse a command string into prefix and arguments. Args: command: (str) Command string to be parsed. Returns: prefix: (str) The command prefix. args: (list of str) The command arguments (i.e., not including the prefix). """ command = command.strip() if not command: return "", [] command_items = command_parser.parse_command(command) return command_items[0], command_items[1:] def _screen_gather_textbox_str(self): """Gather the text string in the command text box. Returns: (str) the current text string in the command textbox, excluding any return keys. """ txt = self._command_textbox.gather() return txt.strip() def _on_textbox_keypress(self, x): """Text box key validator: Callback of key strokes. Handles a user's keypress in the input text box. Translates certain keys to terminator keys for the textbox to allow its edit() method to return. Also handles special key-triggered events such as PgUp/PgDown scrolling of the screen output. Args: x: (int) Key code. Returns: (int) A translated key code. In most cases, this is identical to the input x. However, if x is a Return key, the return value will be CLI_TERMINATOR_KEY, so that the text box's edit() method can return. Raises: TypeError: If the input x is not of type int. """ if not isinstance(x, int): raise TypeError("Key validator expected type int, received type %s" % type(x)) if x in self.CLI_CR_KEYS: # Make Enter key the terminator self._textbox_curr_terminator = x return self.CLI_TERMINATOR_KEY elif x == self.CLI_TAB_KEY: self._textbox_curr_terminator = self.CLI_TAB_KEY return self.CLI_TERMINATOR_KEY elif x == curses.KEY_PPAGE: self._scroll_output(self._SCROLL_UP) return x elif x == curses.KEY_NPAGE: self._scroll_output(self._SCROLL_DOWN) return x elif x == curses.KEY_HOME: self._scroll_output(self._SCROLL_HOME) return x elif x == curses.KEY_END: self._scroll_output(self._SCROLL_END) return x elif x in [curses.KEY_UP, curses.KEY_DOWN]: # Command history navigation. if not self._active_command_history: hist_prefix = self._screen_gather_textbox_str() self._active_command_history = ( self._command_history_store.lookup_prefix( hist_prefix, self._command_history_limit)) if self._active_command_history: if x == curses.KEY_UP: if self._command_pointer < len(self._active_command_history): self._command_pointer += 1 elif x == curses.KEY_DOWN: if self._command_pointer > 0: self._command_pointer -= 1 else: self._command_pointer = 0 self._textbox_curr_terminator = x # Force return from the textbox edit(), so that the textbox can be # redrawn with a history command entered. return self.CLI_TERMINATOR_KEY elif x == curses.KEY_RESIZE: # Respond to terminal resize. self._screen_refresh_size() self._init_layout() self._screen_create_command_window() if self._curr_unwrapped_output is not None: # Force render screen output again, under new screen size. self._output_pad = self._display_output( self._curr_unwrapped_output, is_refresh=True) # Force return from the textbox edit(), so that the textbox can be # redrawn. return self.CLI_TERMINATOR_KEY else: # Mark the pending command as modified. self._textbox_pending_command_changed = True # Invalidate active command history. self._command_pointer = 0 self._active_command_history = [] return x def _title(self, title, title_color=None): """Display title. Args: title: (str) The title to display. title_color: (str) Color of the title, e.g., "yellow". """ # Pad input title str with "-" and space characters to make it pretty. self._title_line = "--- %s " % title if len(self._title_line) < self._max_x: self._title_line += "-" * (self._max_x - len(self._title_line)) self._screen_draw_text_line( self._title_row, self._title_line, color=title_color) def _auto_key_in(self, command): """Automatically key in a command to the command Textbox. Args: command: The command, as a string. """ for c in command: self._command_textbox.do_command(ord(c)) def _screen_draw_text_line(self, row, line, attr=curses.A_NORMAL, color=None): """Render a line of text on the screen. Args: row: (int) Row index. line: (str) The line content. attr: curses font attribute. color: (str) font foreground color name. Raises: TypeError: If row is not of type int. """ if not isinstance(row, int): raise TypeError("Invalid type in row") if len(line) > self._max_x: line = line[:self._max_x] if color is None: self._stdscr.addstr(row, 0, line, attr) else: self._stdscr.addstr(row, 0, line, self._color_pairs[color]) self._screen_refresh() def _screen_new_output_pad(self, rows, cols): """Generate a new pad on the screen. Args: rows: (int) Number of rows the pad will have: not limited to screen size. cols: (int) Number of columns the pad will have: not limited to screen size. Returns: A curses textpad object. """ return curses.newpad(rows, cols) def _screen_display_output(self, output): """Actually render text output on the screen. Wraps the lines according to screen width. Pad lines below according to screen height so that the user can scroll the output to a state where the last non-empty line is on the top of the screen. Then renders the lines on the screen. Args: output: (RichTextLines) text lines to display on the screen. These lines may have widths exceeding the screen width. This method will take care of the wrapping. Returns: (List of int) A list of line indices, in the wrapped output, where there are regex matches. """ # Wrap the output lines according to screen width. self._curr_wrapped_output, wrapped_line_indices = ( debugger_cli_common.wrap_rich_text_lines(output, self._max_x - 1)) # Append lines to curr_wrapped_output so that the user can scroll to a # state where the last text line is on the top of the output area. self._curr_wrapped_output.lines.extend([""] * (self._output_num_rows - 1)) # Limit number of lines displayed to avoid curses overflow problems. if self._curr_wrapped_output.num_lines() > self.max_output_lines: self._curr_wrapped_output = self._curr_wrapped_output.slice( 0, self.max_output_lines) self._curr_wrapped_output.lines.append("Output cut off at %d lines!" % self.max_output_lines) self._curr_wrapped_output.font_attr_segs[self.max_output_lines] = [ (0, len(output.lines[-1]), "magenta") ] (self._output_pad, self._output_pad_height, self._output_pad_width) = self._display_lines(self._curr_wrapped_output, self._output_num_rows) # The indices of lines with regex matches (if any) need to be mapped to # indices of wrapped lines. return [ wrapped_line_indices[line] for line in self._unwrapped_regex_match_lines ] def _display_output(self, output, is_refresh=False, highlight_regex=None): """Display text output in a scrollable text pad. This method does some preprocessing on the text lines, render them on the screen and scroll to the appropriate line. These are done according to regex highlighting requests (if any), scroll-to-next-match requests (if any), and screen refresh requests (if any). TODO(cais): Separate these unrelated request to increase clarity and maintainability. Args: output: A RichTextLines object that is the screen output text. is_refresh: (bool) Is this a refreshing display with existing output. highlight_regex: (str) Optional string representing the regex used to search and highlight in the current screen output. """ if highlight_regex: try: output = debugger_cli_common.regex_find( output, highlight_regex, font_attr=self._SEARCH_HIGHLIGHT_FONT_ATTR) except ValueError as e: self._error_toast(str(e)) return if not is_refresh: # Perform new regex search on the current output. self._unwrapped_regex_match_lines = output.annotations[ debugger_cli_common.REGEX_MATCH_LINES_KEY] else: # Continue scrolling down. self._output_pad_row += 1 else: self._curr_unwrapped_output = output self._unwrapped_regex_match_lines = [] # Display output on the screen. wrapped_regex_match_lines = self._screen_display_output(output) # Now that the text lines are displayed on the screen scroll to the # appropriate line according to previous scrolling state and regex search # and highlighting state. if highlight_regex: next_match_line = -1 for match_line in wrapped_regex_match_lines: if match_line >= self._output_pad_row: next_match_line = match_line break if next_match_line >= 0: self._scroll_output( self._SCROLL_TO_LINE_INDEX, line_index=next_match_line) else: # Regex search found no match >= current line number. Display message # stating as such. self._toast("Pattern not found", color=self._ERROR_TOAST_COLOR_PAIR) elif is_refresh: self._scroll_output(self._SCROLL_REFRESH) else: self._output_pad_row = 0 self._scroll_output(self._SCROLL_HOME) def _display_lines(self, output, min_num_rows): """Display RichTextLines object on screen. Args: output: A RichTextLines object. min_num_rows: (int) Minimum number of output rows. Returns: 1) The text pad object used to display the text. 2) (int) number of rows of the text pad, which may exceed screen size. 3) (int) number of columns of the text pad. Raises: ValueError: If input argument "output" is invalid. """ if not isinstance(output, debugger_cli_common.RichTextLines): raise ValueError( "Output is required to be an instance of RichTextLines, but is not.") self._screen_refresh() # Number of rows the output area will have. rows = max(min_num_rows, len(output.lines)) # Size of the output pad, which may exceed screen size and require # scrolling. cols = self._max_x - 1 # Create new output pad. pad = self._screen_new_output_pad(rows, cols) for i in xrange(len(output.lines)): if i in output.font_attr_segs: self._screen_add_line_to_output_pad( pad, i, output.lines[i], color_segments=output.font_attr_segs[i]) else: self._screen_add_line_to_output_pad(pad, i, output.lines[i]) return pad, rows, cols def _screen_add_line_to_output_pad(self, pad, row, txt, color_segments=None): """Render a line in a text pad. Assumes: segments in color_segments are sorted in ascending order of the beginning index. Note: Gaps between the segments are allowed and will be fixed in with a default color. Args: pad: The text pad to render the line in. row: Row index, as an int. txt: The text to be displayed on the specified row, as a str. color_segments: A list of 3-tuples. Each tuple represents the beginning and the end of a color segment, in the form of a right-open interval: [start, end). The last element of the tuple is a color string, e.g., "red". Raisee: TypeError: If color_segments is not of type list. """ if not color_segments: pad.addstr(row, 0, txt, self._default_color_pair) return if not isinstance(color_segments, list): raise TypeError("Input color_segments needs to be a list, but is not.") all_segments = [] all_color_pairs = [] # Process the beginning. if color_segments[0][0] == 0: pass else: all_segments.append((0, color_segments[0][0])) all_color_pairs.append(self._default_color_pair) for (curr_start, curr_end, curr_color), (next_start, _, _) in zip( color_segments, color_segments[1:] + [(len(txt), None, None)]): all_segments.append((curr_start, curr_end)) all_color_pairs.append( self._color_pairs.get(curr_color, self._default_color_pair)) if curr_end < next_start: # Fill in the gap with the default color. all_segments.append((curr_end, next_start)) all_color_pairs.append(self._default_color_pair) # Finally, draw all the segments. for segment, color_pair in zip(all_segments, all_color_pairs): pad.addstr(row, segment[0], txt[segment[0]:segment[1]], color_pair) def _screen_scroll_output_pad(self, pad, viewport_top, viewport_left, screen_location_top, screen_location_left, screen_location_bottom, screen_location_right): pad.refresh(viewport_top, viewport_left, screen_location_top, screen_location_left, screen_location_bottom, screen_location_right) def _scroll_output(self, direction, line_index=None): """Scroll the output pad. Args: direction: _SCROLL_REFRESH, _SCROLL_UP, _SCROLL_DOWN, _SCROLL_HOME or _SCROLL_END, _SCROLL_TO_LINE_INDEX line_index: (int) Specifies the zero-based line index to scroll to. Applicable only if direction is _SCROLL_TO_LINE_INDEX. Raises: ValueError: On invalid scroll direction. TypeError: If line_index is not int and direction is _SCROLL_TO_LINE_INDEX. """ if not self._output_pad: # No output pad is present. Do nothing. return if direction == self._SCROLL_REFRESH: pass elif direction == self._SCROLL_UP: # Scroll up if self._output_pad_row - 1 >= 0: self._output_pad_row -= 1 elif direction == self._SCROLL_DOWN: # Scroll down if self._output_pad_row + 1 < ( self._output_pad_height - self._output_pad_screen_height): self._output_pad_row += 1 elif direction == self._SCROLL_HOME: # Scroll to top self._output_pad_row = 0 elif direction == self._SCROLL_END: # Scroll to bottom self._output_pad_row = ( self._output_pad_height - self._output_pad_screen_height - 1) elif direction == self._SCROLL_TO_LINE_INDEX: if not isinstance(line_index, int): raise TypeError("Invalid line_index type (%s) under mode %s" % (type(line_index), self._SCROLL_TO_LINE_INDEX)) self._output_pad_row = line_index else: raise ValueError("Unsupported scroll mode: %s" % direction) # Actually scroll the output pad: refresh with new location. self._screen_scroll_output_pad(self._output_pad, self._output_pad_row, 0, self._output_pad_screen_location.top, self._output_pad_screen_location.left, self._output_pad_screen_location.bottom, self._output_pad_screen_location.right) if self._output_pad_height > self._output_pad_screen_height + 1: # Display information about the scrolling of tall screen output. self._scroll_info = "--- Scroll: %.2f%% " % (100.0 * (min( 1.0, float(self._output_pad_row) / (self._output_pad_height - self._output_pad_screen_height - 1)))) self._output_array_pointer_indices = self._show_array_indices() # Add array indices information to scroll message. if self._output_array_pointer_indices: if self._output_array_pointer_indices[0]: self._scroll_info += self._format_indices( self._output_array_pointer_indices[0]) self._scroll_info += "-" if self._output_array_pointer_indices[-1]: self._scroll_info += self._format_indices( self._output_array_pointer_indices[-1]) self._scroll_info += " " if len(self._scroll_info) < self._max_x: self._scroll_info += "-" * (self._max_x - len(self._scroll_info)) self._screen_draw_text_line( self._output_scroll_row, self._scroll_info, color=self._STATUS_BAR_COLOR_PAIR) else: # Screen output is not tall enough to cause scrolling. self._scroll_info = "-" * self._max_x self._screen_draw_text_line( self._output_scroll_row, self._scroll_info, color=self._STATUS_BAR_COLOR_PAIR) def _format_indices(self, indices): # Remove the spaces to make it compact. return repr(indices).replace(" ", "") def _show_array_indices(self): """Show array indices for the lines at the top and bottom of the output. For the top line and bottom line of the output display area, show the element indices of the array being displayed. Returns: If either the top of the bottom row has any matching array indices, a dict from line index (0 being the top of the display area, -1 being the bottom of the display area) to array element indices. For example: {0: [0, 0], -1: [10, 0]} Otherwise, None. """ indices_top = self._show_array_index_at_line(0) bottom_line_index = (self._output_pad_screen_location.bottom - self._output_pad_screen_location.top - 1) indices_bottom = self._show_array_index_at_line(bottom_line_index) if indices_top or indices_bottom: return {0: indices_top, -1: indices_bottom} else: return None def _show_array_index_at_line(self, line_index): """Show array indices for the specified line in the display area. Uses the line number to array indices map in the annotations field of the RichTextLines object being displayed. If the displayed RichTextLines object does not contain such a mapping, will do nothing. Args: line_index: (int) 0-based line index from the top of the display area. For example,if line_index == 0, this method will display the array indices for the line currently at the top of the display area. Returns: (list) The array indices at the specified line, if available. None, if not available. """ # Examine whether the index information is available for the specified line # number. pointer = self._output_pad_row + line_index if pointer in self._curr_wrapped_output.annotations: indices = self._curr_wrapped_output.annotations[pointer]["i0"] array_indices_str = self._format_indices(indices) array_indices_info = "@" + array_indices_str self._toast( array_indices_info, color=self._ARRAY_INDICES_COLOR_PAIR, line_index=self._output_pad_screen_location.top + line_index) return indices else: return None def _tab_complete(self, command_str): """Perform tab completion. Obtains tab completion candidates. If there are no candidates, return command_str and take no other actions. If there are candidates, display the candidates on screen and return command_str + (common prefix of the candidates). Args: command_str: (str) The str in the command input textbox when Tab key is hit. Returns: (str) Completed string. Could be the same as command_str if no completion candidate is available. If candidate(s) are available, return command_str appended by the common prefix of the candidates. """ command_str = command_str.lstrip() if not command_str: # Empty (top-level) context. context = "" prefix = "" items = [] else: items = command_str.split(" ") if len(items) == 1: # Single word: top-level context. context = "" prefix = items[0] else: # Multiple words. context = items[0] prefix = items[-1] candidates, common_prefix = self._tab_completion_registry.get_completions( context, prefix) if candidates and len(candidates) > 1: self._display_candidates(candidates) else: # In the case of len(candidates) == 1, the single completion will be # entered to the textbox automatically. So there is no need to show any # candidates. self._display_candidates([]) if common_prefix: # Common prefix is not None and non-empty. The completed string will # incorporate the common prefix. return " ".join(items[:-1] + [common_prefix]) else: return " ".join(items) def _display_candidates(self, candidates): """Show candidates (e.g., tab-completion candidates) on multiple lines. Args: candidates: (list of str) candidates. """ if self._curr_unwrapped_output: # Force refresh screen output. self._scroll_output(self._SCROLL_REFRESH) if not candidates: return candidates_prefix = "Candidates: " candidates_line = candidates_prefix + " ".join(candidates) candidates_output = debugger_cli_common.RichTextLines( candidates_line, font_attr_segs={ 0: [(len(candidates_prefix), len(candidates_line), "yellow")] }) candidates_output, _ = debugger_cli_common.wrap_rich_text_lines( candidates_output, self._max_x - 2) # Calculate how many lines the candidate text should occupy. Limit it to # a maximum value. candidates_num_rows = min( len(candidates_output.lines), self._candidates_max_lines) self._candidates_top_row = ( self._candidates_bottom_row - candidates_num_rows + 1) # Render the candidate text on screen. pad, _, _ = self._display_lines(candidates_output, 0) self._screen_scroll_output_pad( pad, 0, 0, self._candidates_top_row, 0, self._candidates_top_row + candidates_num_rows - 1, self._max_x - 1) def _toast(self, message, color=None, line_index=None): """Display a one-line message on the screen. By default, the toast is displayed in the line right above the scroll bar. But the line location can be overridden with the line_index arg. Args: message: (str) the message to display. color: (str) optional color attribute for the message. line_index: (int) line index. """ pad, _, _ = self._display_lines( debugger_cli_common.RichTextLines( message, font_attr_segs={0: [(0, len(message), color or "white")]}), 0) right_end = min(len(message), self._max_x - 1) if line_index is None: line_index = self._output_scroll_row - 1 self._screen_scroll_output_pad(pad, 0, 0, line_index, 0, line_index, right_end) def _error_toast(self, message): """Display a one-line error message on screen. Args: message: The error message, without the preceding "ERROR: " substring. """ self._toast( self.ERROR_MESSAGE_PREFIX + message, color=self._ERROR_TOAST_COLOR_PAIR) def _interrupt_handler(self, signal_num, frame): _ = signal_num # Unused. _ = frame # Unused. self._screen_terminate() print("\ntfdbg: caught SIGINT; calling sys.exit(1).", file=sys.stderr) sys.exit(1)
r''' Copyright 2014 Google Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' #! /usr/bin/env python import time import random import logging import logging.handlers import argparse import threading import textwrap import atexit import subprocess import signal import ConfigParser import collections import sys from nogotofail.mitm.blame import Server as AppBlameServer from nogotofail.mitm.connection import Server, RedirectConnection, SocksConnection, TproxyConnection from nogotofail.mitm.connection import handlers from nogotofail.mitm.connection.handlers import preconditions from nogotofail.mitm.looper import MitmLoop from nogotofail.mitm.util import routing, extras LOG_FORMAT = logging.Formatter("%(asctime)-15s [%(levelname)s] %(message)s") EVENT_FORMAT = logging.Formatter("%(message)s") logger = logging.getLogger("nogotofail.mitm") event_logger = logging.getLogger("event") traffic_logger = logging.getLogger("traffic") def build_selector(MITM_all=False): def handler_selector(connection, app_blame): if not MITM_all and not app_blame.client_available( connection.client_addr): return handlers.base.BaseConnectionHandler return handlers.connection.LoggingHandler return handler_selector def build_ssl_selector(default_ssl_handlers, prob_MITM=0.5, MITM_all=False): def attack_selector(connection, client_hello, app_blame): if not MITM_all and not app_blame.client_available( connection.client_addr): return None client_info = app_blame.clients.get(connection.client_addr) client_info = client_info.info if client_info else None if client_info: attack_prob = client_info.get("Attack-Probability", prob_MITM) ssl_handlers = client_info.get("Attacks", default_ssl_handlers) else: attack_prob = prob_MITM ssl_handlers = default_ssl_handlers if not ssl_handlers: return None if random.random() < attack_prob: return random.choice(ssl_handlers) return None return attack_selector def build_data_selector(default_handlers, MITM_all, prob_attack=0.5): internal = handlers.data.handlers.internal def data_selector(connection, app_blame): if not MITM_all and not app_blame.client_available( connection.client_addr): return internal + [] # Figure out our possible handlers client_info = app_blame.clients.get(connection.client_addr) client_info = client_info.info if client_info else None if client_info: handlers = client_info.get("Data-Attacks", default_handlers) attack_prob = client_info.get("Attack-Probability", prob_attack) else: handlers = default_handlers attack_prob = prob_attack # Split handlers into passive/active passive, active = [], [] for handler in handlers: (active, passive)[handler.passive].append(handler) # 1-p chance of not using any data attacks on a connection. if random.random() >= attack_prob: active = [] return internal + passive + active return data_selector def build_server(port, blame, selector, ssl_selector, data_selector, block, ipv6, cls): return Server(port, blame, handler_selector=selector, ssl_handler_selector=ssl_selector, data_handler_selector=data_selector, block_non_clients=block, ipv6=ipv6, connection_class=cls) def build_blame(port, cert, probability, attacks, data_attacks): return AppBlameServer(port, cert, probability, attacks, data_attacks) def set_redirect_rules(args): port = args.port ipv6 = args.ipv6 routing.enable_redirect_rules(port, ipv6=ipv6) atexit.register(routing.disable_redirect_rules, ipv6=ipv6) def set_tproxy_rules(args): port = args.port ipv6 = args.ipv6 routing.enable_tproxy_rules(port, ipv6=ipv6) atexit.register(routing.disable_tproxy_rules, ipv6=ipv6) # Traffic capture modes Mode = collections.namedtuple("Mode", ["cls", "setup", "description"]) modes = { "redirect": Mode(RedirectConnection, set_redirect_rules, "Use Iptables REDIRECT to route traffic. Ipv6 support is limited in this mode."), "tproxy": Mode(TproxyConnection, set_tproxy_rules, "Use iptables TPROXY/mark to route traffic"), "socks": Mode(SocksConnection, None, "Listen as a SOCKS server to route traffic"), } default_mode = "tproxy" def parse_args(): all_attacks = handlers.connection.handlers.map.keys() default_attacks = [h.name for h in handlers.connection.handlers.default] all_data = handlers.data.handlers.map.keys() default_data = [h.name for h in handlers.data.handlers.default] # Check for a config file parser = argparse.ArgumentParser(add_help=False) parser.add_argument("-c", "--config") args, argv = parser.parse_known_args() if args.config: config = ConfigParser.SafeConfigParser() config.read(args.config) config = dict(config.items("nogotofail.mitm")) if "attacks" in config: config["attacks"] = config["attacks"].split(" ") if "data" in config: config["data"] = config["data"].split(" ") else: config = {} modes_str = ("Supported modes:\n" + "\n".join(["\n\t".join( textwrap.wrap("%s - %s" % (name, mode.description), 80)) for name, mode in modes.items()])) attacks_str = ("Supported attacks:\n" + "\n".join(["\n\t".join( textwrap.wrap("%s - %s" % (name, handler.description), 80)) for name, handler in handlers.connection.handlers.map.items()])) data_str = ("Supported data handlers:\n" + "\n".join(["\n\t".join( textwrap.wrap("%s - %s" % (name, handler.description), 80)) for name, handler in handlers.data.handlers.map.items()])) epilog = "\n\n".join([modes_str, attacks_str, data_str]) parser = ( argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter, epilog=epilog)) # Technically --config is eaten by the previous parser, this is just to make # it show up in --help. parser.add_argument( "-c", "--config", help="Configuration file", metavar="FILE") parser.add_argument( "-p", "--probability", help="probably of attacking a SSL connection", action="store", type=float, default=0.5) parser.add_argument( "-d", "--debug", help="Print debug output", action="store_true", default=False) parser.add_argument( "-b", "--bridge", help="Bridge connections from hosts without a client", action="store_false", default=True, dest="all") parser.add_argument( "-l", "--logfile", help="Log output file", action="store") parser.add_argument( "-e", "--eventlogfile", help="Event log output file", action="store") parser.add_argument( "-t", "--trafficfile", help="Traffic output file", action="store") parser.add_argument( "-q", "--quiet", help="Quiet output. Only prints important messages.", action="store_true", default=False) parser.add_argument( "--port", help="Port to bind the mitm to", action="store", type=int, default=8080) parser.add_argument( "--cport", help="Port to listen for nogotofail clients on", action="store", type=int, default=8443) parser.add_argument( "-6", "--ipv6", help=("Route IPv6 traffic. " "Requires support for ip6tables NAT redirect when in redirect mode (iptables > 1.4.17)"), default=False, action="store_true") parser.add_argument( "-A", "--attacks", help="Connection attacks to run. Supported attacks are " + ", ".join(all_attacks), choices=handlers.connection.handlers.map, nargs="+", metavar="ATTACK", action="store", default=default_attacks) parser.add_argument( "-D", "--data", help="Data attacks to run. Supported attacks are " + ", ".join(all_data), choices=handlers.data.handlers.map, nargs="+", metavar="ATTACK", action="store", default=default_data) parser.add_argument( "--serverssl", help="Run the app blame server with SSL using PEMFILE", metavar="PEMFILE", action="store") parser.add_argument( "--block", help="Block connections with unknown blame info", action="store_true", default=False) parser.add_argument( "--mode", help="Traffic capture mode. Options are " + ", ".join(modes.keys()), choices=modes, metavar="MODE", action="store", default=default_mode) parser.add_argument( "-x", "--extrasdir", help="Directory containing extra files required by handlers", default = "./") parser.set_defaults(**config) return parser.parse_args(argv) def sigterm_handler(num, frame): """Gracefully exit on a SIGTERM. atexit isn't called on a SIGTERM, causing our cleanup code not to be called. instead catch the sigterm and call sys.exit, which will call our cleanup """ sys.exit() def setup_logging(args): """Setup logging handlers based on arguments """ handler = logging.StreamHandler() handler.setFormatter(LOG_FORMAT) if args.debug: handler.setLevel(logging.DEBUG) elif args.quiet: handler.setLevel(logging.WARNING) else: handler.setLevel(logging.INFO) logger.addHandler(handler) if args.logfile: handler = logging.handlers.WatchedFileHandler(args.logfile) handler.setFormatter(LOG_FORMAT) if args.debug: handler.setLevel(logging.DEBUG) else: handler.setLevel(logging.INFO) logger.addHandler(handler) if args.eventlogfile: handler = logging.handlers.WatchedFileHandler(args.eventlogfile) else: handler = logging.NullHandler() handler.setLevel(logging.INFO) event_logger.addHandler(handler) event_logger.setLevel(logging.INFO) if args.trafficfile: handler = logging.handlers.WatchedFileHandler(args.trafficfile) else: handler = logging.NullHandler() handler.setLevel(logging.INFO) traffic_logger.addHandler(handler) traffic_logger.setLevel(logging.INFO) logger.setLevel(logging.DEBUG) def run(): args = parse_args() setup_logging(args) extras.extras_dir = args.extrasdir selector = build_selector(args.all) attack_cls = [handlers.connection.handlers.map[name] for name in args.attacks] attack_cls = preconditions.filter_preconditions(attack_cls, logger) data_cls = [handlers.data.handlers.map[name] for name in args.data] data_cls = preconditions.filter_preconditions(data_cls, logger) ssl_selector = build_ssl_selector(attack_cls, args.probability, args.all) data_selector = build_data_selector(data_cls, args.all, prob_attack=args.probability) logger.info("Starting...") try: signal.signal(signal.SIGTERM, sigterm_handler) mode = modes[args.mode] if mode.setup: mode.setup(args) blame = ( build_blame( args.cport, args.serverssl, args.probability, attack_cls, data_cls)) server = ( build_server( args.port, blame, selector, ssl_selector, data_selector, args.block, args.ipv6, mode.cls)) blame.start_listening() server.start_listening() # Run the main loop looper = MitmLoop(blame, server) looper.run() except KeyboardInterrupt: server.shutdown() blame.shutdown() except Exception as e: logger.exception("Uncaught top level exception!") logger.fatal("EXITING") if __name__ == "__main__": run()
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import cStringIO as StringIO from tempest.api.image import base from tempest.common.utils import data_utils from tempest import config from tempest import test CONF = config.CONF class CreateRegisterImagesTest(base.BaseV1ImageTest): """Here we test the registration and creation of images.""" @test.attr(type='gate') def test_register_then_upload(self): # Register, then upload an image properties = {'prop1': 'val1'} _, body = self.create_image(name='New Name', container_format='bare', disk_format='raw', is_public=False, properties=properties) self.assertIn('id', body) image_id = body.get('id') self.assertEqual('New Name', body.get('name')) self.assertFalse(body.get('is_public')) self.assertEqual('queued', body.get('status')) for key, val in properties.items(): self.assertEqual(val, body.get('properties')[key]) # Now try uploading an image file image_file = StringIO.StringIO(data_utils.random_bytes()) _, body = self.client.update_image(image_id, data=image_file) self.assertIn('size', body) self.assertEqual(1024, body.get('size')) @test.attr(type='gate') def test_register_remote_image(self): # Register a new remote image _, body = self.create_image(name='New Remote Image', container_format='bare', disk_format='raw', is_public=False, location=CONF.image.http_image, properties={'key1': 'value1', 'key2': 'value2'}) self.assertIn('id', body) self.assertEqual('New Remote Image', body.get('name')) self.assertFalse(body.get('is_public')) self.assertEqual('active', body.get('status')) properties = body.get('properties') self.assertEqual(properties['key1'], 'value1') self.assertEqual(properties['key2'], 'value2') @test.attr(type='gate') def test_register_http_image(self): _, body = self.create_image(name='New Http Image', container_format='bare', disk_format='raw', is_public=False, copy_from=CONF.image.http_image) self.assertIn('id', body) image_id = body.get('id') self.assertEqual('New Http Image', body.get('name')) self.assertFalse(body.get('is_public')) self.client.wait_for_image_status(image_id, 'active') self.client.get_image(image_id) @test.attr(type='gate') def test_register_image_with_min_ram(self): # Register an image with min ram properties = {'prop1': 'val1'} _, body = self.create_image(name='New_image_with_min_ram', container_format='bare', disk_format='raw', is_public=False, min_ram=40, properties=properties) self.assertIn('id', body) self.assertEqual('New_image_with_min_ram', body.get('name')) self.assertFalse(body.get('is_public')) self.assertEqual('queued', body.get('status')) self.assertEqual(40, body.get('min_ram')) for key, val in properties.items(): self.assertEqual(val, body.get('properties')[key]) self.client.delete_image(body['id']) class ListImagesTest(base.BaseV1ImageTest): """ Here we test the listing of image information """ @classmethod def resource_setup(cls): super(ListImagesTest, cls).resource_setup() # We add a few images here to test the listing functionality of # the images API img1 = cls._create_remote_image('one', 'bare', 'raw') img2 = cls._create_remote_image('two', 'ami', 'ami') img3 = cls._create_remote_image('dup', 'bare', 'raw') img4 = cls._create_remote_image('dup', 'bare', 'raw') img5 = cls._create_standard_image('1', 'ami', 'ami', 42) img6 = cls._create_standard_image('2', 'ami', 'ami', 142) img7 = cls._create_standard_image('33', 'bare', 'raw', 142) img8 = cls._create_standard_image('33', 'bare', 'raw', 142) cls.created_set = set(cls.created_images) # 4x-4x remote image cls.remote_set = set((img1, img2, img3, img4)) cls.standard_set = set((img5, img6, img7, img8)) # 5x bare, 3x ami cls.bare_set = set((img1, img3, img4, img7, img8)) cls.ami_set = set((img2, img5, img6)) # 1x with size 42 cls.size42_set = set((img5,)) # 3x with size 142 cls.size142_set = set((img6, img7, img8,)) # dup named cls.dup_set = set((img3, img4)) @classmethod def _create_remote_image(cls, name, container_format, disk_format): """ Create a new remote image and return the ID of the newly-registered image """ name = 'New Remote Image %s' % name location = CONF.image.http_image _, image = cls.create_image(name=name, container_format=container_format, disk_format=disk_format, is_public=False, location=location) image_id = image['id'] return image_id @classmethod def _create_standard_image(cls, name, container_format, disk_format, size): """ Create a new standard image and return the ID of the newly-registered image. Note that the size of the new image is a random number between 1024 and 4096 """ image_file = StringIO.StringIO(data_utils.random_bytes(size)) name = 'New Standard Image %s' % name _, image = cls.create_image(name=name, container_format=container_format, disk_format=disk_format, is_public=False, data=image_file) image_id = image['id'] return image_id @test.attr(type='gate') def test_index_no_params(self): # Simple test to see all fixture images returned _, images_list = self.client.image_list() image_list = map(lambda x: x['id'], images_list) for image_id in self.created_images: self.assertIn(image_id, image_list) @test.attr(type='gate') def test_index_disk_format(self): _, images_list = self.client.image_list(disk_format='ami') for image in images_list: self.assertEqual(image['disk_format'], 'ami') result_set = set(map(lambda x: x['id'], images_list)) self.assertTrue(self.ami_set <= result_set) self.assertFalse(self.created_set - self.ami_set <= result_set) @test.attr(type='gate') def test_index_container_format(self): _, images_list = self.client.image_list(container_format='bare') for image in images_list: self.assertEqual(image['container_format'], 'bare') result_set = set(map(lambda x: x['id'], images_list)) self.assertTrue(self.bare_set <= result_set) self.assertFalse(self.created_set - self.bare_set <= result_set) @test.attr(type='gate') def test_index_max_size(self): _, images_list = self.client.image_list(size_max=42) for image in images_list: self.assertTrue(image['size'] <= 42) result_set = set(map(lambda x: x['id'], images_list)) self.assertTrue(self.size42_set <= result_set) self.assertFalse(self.created_set - self.size42_set <= result_set) @test.attr(type='gate') def test_index_min_size(self): _, images_list = self.client.image_list(size_min=142) for image in images_list: self.assertTrue(image['size'] >= 142) result_set = set(map(lambda x: x['id'], images_list)) self.assertTrue(self.size142_set <= result_set) self.assertFalse(self.size42_set <= result_set) @test.attr(type='gate') def test_index_status_active_detail(self): _, images_list = self.client.image_list_detail(status='active', sort_key='size', sort_dir='desc') top_size = images_list[0]['size'] # We have non-zero sized images for image in images_list: size = image['size'] self.assertTrue(size <= top_size) top_size = size self.assertEqual(image['status'], 'active') @test.attr(type='gate') def test_index_name(self): _, images_list = self.client.image_list_detail( name='New Remote Image dup') result_set = set(map(lambda x: x['id'], images_list)) for image in images_list: self.assertEqual(image['name'], 'New Remote Image dup') self.assertTrue(self.dup_set <= result_set) self.assertFalse(self.created_set - self.dup_set <= result_set) class ListSnapshotImagesTest(base.BaseV1ImageTest): @classmethod def resource_setup(cls): # This test class only uses nova v3 api to create snapshot # as the similar test which uses nova v2 api already exists # in nova v2 compute images api tests. # Since nova v3 doesn't have images api proxy, this test # class was added in the image api tests. if not CONF.compute_feature_enabled.api_v3: skip_msg = ("%s skipped as nova v3 api is not available" % cls.__name__) raise cls.skipException(skip_msg) super(ListSnapshotImagesTest, cls).resource_setup() cls.servers_client = cls.os.servers_v3_client cls.servers = [] # We add a few images here to test the listing functionality of # the images API cls.snapshot = cls._create_snapshot( 'snapshot', CONF.compute.image_ref, CONF.compute.flavor_ref) cls.snapshot_set = set((cls.snapshot,)) image_file = StringIO.StringIO('*' * 42) _, image = cls.create_image(name="Standard Image", container_format='ami', disk_format='ami', is_public=False, data=image_file) cls.image_id = image['id'] cls.client.wait_for_image_status(image['id'], 'active') @classmethod def resource_cleanup(cls): for server in getattr(cls, "servers", []): cls.servers_client.delete_server(server['id']) super(ListSnapshotImagesTest, cls).resource_cleanup() @classmethod def _create_snapshot(cls, name, image_id, flavor, **kwargs): _, server = cls.servers_client.create_server( name, image_id, flavor, **kwargs) cls.servers.append(server) cls.servers_client.wait_for_server_status( server['id'], 'ACTIVE') resp, _ = cls.servers_client.create_image(server['id'], name) image_id = data_utils.parse_image_id(resp['location']) cls.created_images.append(image_id) cls.client.wait_for_image_status(image_id, 'active') return image_id @test.attr(type='gate') @test.services('compute') def test_index_server_id(self): # The images should contain images filtered by server id _, images = self.client.image_list_detail( {'instance_uuid': self.servers[0]['id']}) result_set = set(map(lambda x: x['id'], images)) self.assertEqual(self.snapshot_set, result_set) @test.attr(type='gate') @test.services('compute') def test_index_type(self): # The list of servers should be filtered by image type params = {'image_type': 'snapshot'} _, images = self.client.image_list_detail(params) result_set = set(map(lambda x: x['id'], images)) self.assertIn(self.snapshot, result_set) @test.attr(type='gate') @test.services('compute') def test_index_limit(self): # Verify only the expected number of results are returned _, images = self.client.image_list_detail(limit=1) self.assertEqual(1, len(images)) @test.attr(type='gate') @test.services('compute') def test_index_by_change_since(self): # Verify an update image is returned # Becoming ACTIVE will modify the updated time # Filter by the image's created time _, image = self.client.get_image_meta(self.snapshot) self.assertEqual(self.snapshot, image['id']) _, images = self.client.image_list_detail( changes_since=image['updated_at']) result_set = set(map(lambda x: x['id'], images)) self.assertIn(self.image_id, result_set) self.assertNotIn(self.snapshot, result_set) class UpdateImageMetaTest(base.BaseV1ImageTest): @classmethod def resource_setup(cls): super(UpdateImageMetaTest, cls).resource_setup() cls.image_id = cls._create_standard_image('1', 'ami', 'ami', 42) @classmethod def _create_standard_image(cls, name, container_format, disk_format, size): """ Create a new standard image and return the ID of the newly-registered image. """ image_file = StringIO.StringIO(data_utils.random_bytes(size)) name = 'New Standard Image %s' % name _, image = cls.create_image(name=name, container_format=container_format, disk_format=disk_format, is_public=False, data=image_file, properties={'key1': 'value1'}) image_id = image['id'] return image_id @test.attr(type='gate') def test_list_image_metadata(self): # All metadata key/value pairs for an image should be returned _, resp_metadata = self.client.get_image_meta(self.image_id) expected = {'key1': 'value1'} self.assertEqual(expected, resp_metadata['properties']) @test.attr(type='gate') def test_update_image_metadata(self): # The metadata for the image should match the updated values req_metadata = {'key1': 'alt1', 'key2': 'value2'} _, metadata = self.client.get_image_meta(self.image_id) self.assertEqual(metadata['properties'], {'key1': 'value1'}) metadata['properties'].update(req_metadata) _, metadata = self.client.update_image( self.image_id, properties=metadata['properties']) _, resp_metadata = self.client.get_image_meta(self.image_id) expected = {'key1': 'alt1', 'key2': 'value2'} self.assertEqual(expected, resp_metadata['properties'])
""" This module contains the base ``Instance`` classes that concrete classes inherit from. Specifically, there are three classes: 1. ``Instance``, that just exists as a base type with no functionality 2. ``TextInstance``, which adds a ``words()`` method and a method to convert strings to indices using a DataIndexer. 3. ``IndexedInstance``, which is a ``TextInstance`` that has had all of its strings converted into indices. This class has methods to deal with padding (so that sequences all have the same length) and converting an ``Instance`` into a set of Numpy arrays suitable for use with Keras. As this codebase is dealing mostly with textual question answering, pretty much all of the concrete ``Instance`` types will have both a ``TextInstance`` and a corresponding ``IndexedInstance``, which you can see in the individual files for each ``Instance`` type. """ import itertools from typing import Any, Callable, Dict, List from ...common.params import Params from ..tokenizers import tokenizers from ..data_indexer import DataIndexer class Instance: """ A data instance, used either for training a neural network or for testing one. Parameters ---------- label : Any Any kind of label that you might want to predict in a model. Could be a class label, a tag sequence, a character span in a passage, etc. index : int, optional Used for matching instances with other data, such as background sentences. """ def __init__(self, label, index: int=None): self.label = label self.index = index class TextInstance(Instance): """ An ``Instance`` that has some attached text, typically either a sentence or a logical form. This is called a ``TextInstance`` because the individual tokens here are encoded as strings, and we can get a list of strings out when we ask what words show up in the instance. We use these kinds of instances to fit a ``DataIndexer`` (i.e., deciding which words should be mapped to an unknown token); to use them in training or testing, we need to first convert them into ``IndexedInstances``. In order to actually convert text into some kind of indexed sequence, we rely on a ``TextEncoder``. There are several ``TextEncoder`` subclasses, that will let you use word token sequences, character sequences, and other options. By default we use word tokens. You can override this by setting the ``encoder`` class variable. """ tokenizer = tokenizers['words'](Params({})) def __init__(self, label, index: int=None): super(TextInstance, self).__init__(label, index) def _words_from_text(self, text: str) -> Dict[str, List[str]]: return self.tokenizer.get_words_for_indexer(text) def _index_text(self, text: str, data_indexer: DataIndexer) -> List[int]: return self.tokenizer.index_text(text, data_indexer) def words(self) -> Dict[str, List[str]]: """ Returns a list of all of the words in this instance, contained in a namespace dictionary. This is mainly used for computing word counts when fitting a word vocabulary on a dataset. The namespace dictionary allows you to have several embedding matrices with different vocab sizes, e.g., for words and for characters (in fact, words and characters are the only use cases I can think of for now, but this allows you to do other more crazy things if you want). You can call the namespaces whatever you want, but if you want the ``DataIndexer`` to work correctly without namespace arguments, you should use the key 'words' to represent word tokens. Returns ------- namespace : Dictionary of {str: List[str]} The ``str`` key refers to vocabularies, and the ``List[str]`` should contain the tokens in that vocabulary. For example, you should use the key ``words`` to represent word tokens, and the correspoding value in the dictionary would be a list of all the words in the instance. """ raise NotImplementedError def to_indexed_instance(self, data_indexer: DataIndexer) -> 'IndexedInstance': """ Converts the words in this ``Instance`` into indices using the ``DataIndexer``. Parameters ---------- data_indexer : DataIndexer ``DataIndexer`` to use in converting the ``Instance`` to an ``IndexedInstance``. Returns ------- indexed_instance : IndexedInstance A ``TextInstance`` that has had all of its strings converted into indices. """ raise NotImplementedError @classmethod def read_from_line(cls, line: str): """ Reads an instance of this type from a line. Parameters ---------- line : str A line from a data file. Returns ------- indexed_instance : IndexedInstance A ``TextInstance`` that has had all of its strings converted into indices. Notes ----- We throw a ``RuntimeError`` here instead of a ``NotImplementedError``, because it's not expected that all subclasses will implement this. """ # pylint: disable=unused-argument raise RuntimeError("%s instances can't be read from a line!" % str(cls)) class IndexedInstance(Instance): """ An indexed data instance has all word tokens replaced with word indices, along with some kind of label, suitable for input to a Keras model. An ``IndexedInstance`` is created from an ``Instance`` using a ``DataIndexer``, and the indices here have no recoverable meaning without the ``DataIndexer``. For example, we might have the following ``Instance``: - ``TrueFalseInstance('Jamie is nice, Holly is mean', True, 25)`` After being converted into an ``IndexedInstance``, we might have the following: - ``IndexedTrueFalseInstance([1, 6, 7, 1, 6, 8], True, 25)`` This would mean that ``"Jamie"`` and ``"Holly"`` were OOV to the ``DataIndexer``, and the other words were given indices. """ @classmethod def empty_instance(cls): """ Returns an empty, unpadded instance of this class. Necessary for option padding in multiple choice instances. """ raise NotImplementedError def get_padding_lengths(self) -> Dict[str, int]: """ Returns the length of this instance in all dimensions that require padding. Different kinds of instances have different fields that are padded, such as sentence length, number of background sentences, number of options, etc. Returns ------- padding_lengths: Dict[str, int] A dictionary mapping padding keys (like "num_sentence_words") to lengths. """ raise NotImplementedError def pad(self, padding_lengths: Dict[str, int]): """ Add zero-padding to make each data example of equal length for use in the neural network. This modifies the current object. Parameters ---------- padding_lengths: Dict[str, int] In this dictionary, each ``str`` refers to a type of token (e.g. ``num_sentence_words``), and the corresponding ``int`` is the value. This dictionary must have the same keys as was returned by :func:`~IndexedInstance.get_padding_lengths()`. We will use these lengths to pad the instance in all of the necessary dimensions to the given leangths. """ raise NotImplementedError def as_training_data(self): """ Convert this ``IndexedInstance`` to NumPy arrays suitable for use as training data to Keras models. Returns ------- train_data : (inputs, label) The ``IndexedInstance`` as NumPy arrays to be uesd in Keras. Note that ``inputs`` might itself be a complex tuple, depending on the ``Instance`` type. """ raise NotImplementedError @staticmethod def _get_word_sequence_lengths(word_indices: List) -> Dict[str, int]: """ Because ``TextEncoders`` can return complex data structures, we might actually have several things to pad for a single word sequence. We check for that and handle it in a single spot here. We return a dictionary containing 'num_sentence_words', which is the number of words in word_indices. If the word representations also contain characters, the dictionary additionally contains a 'num_word_characters' key, with a value corresponding to the longest word in the sequence. """ padding_lengths = {'num_sentence_words': len(word_indices)} if len(word_indices) > 0 and not isinstance(word_indices[0], int): if isinstance(word_indices[0], list): padding_lengths['num_word_characters'] = max([len(word) for word in word_indices]) # There might someday be other cases we're missing here, but we'll punt for now. return padding_lengths @staticmethod def pad_word_sequence(word_sequence: List[int], padding_lengths: Dict[str, int], truncate_from_right: bool=True) -> List: """ Take a list of indices and pads them. Parameters ---------- word_sequence : List of int A list of word indices. padding_lengths : Dict[str, int] In this dictionary, each ``str`` refers to a type of token (e.g. ``num_sentence_words``), and the corresponding ``int`` is the value. This dictionary must have the same dimension as was returned by :func:`~IndexedInstance.get_padding_lengths()`. We will use these lengths to pad the instance in all of the necessary dimensions to the given leangths. truncate_from_right : bool, default=True If truncating the indices is necessary, this parameter dictates whether we do so on the left or right. Returns ------- padded_word_sequence : List of int A padded list of word indices. Notes ----- The reason we truncate from the right by default is for cases that are questions, with long set ups. We at least want to get the question encoded, which is always at the end, even if we've lost much of the question set up. If you want to truncate from the other direction, you can. TODO(matt): we should probably switch the default to truncate from the left, and clear up the naming here - it's easy to get confused about what "truncate from right" means. """ default_value = lambda: 0 if 'num_word_characters' in padding_lengths: default_value = lambda: [] padded_word_sequence = IndexedInstance.pad_sequence_to_length( word_sequence, padding_lengths['num_sentence_words'], default_value, truncate_from_right) if 'num_word_characters' in padding_lengths: desired_length = padding_lengths['num_word_characters'] longest_word = max(padded_word_sequence, key=len) if desired_length > len(longest_word): # since we want to pad to greater than the longest word, we add a # "dummy word" to get the speed of itertools.zip_longest padded_word_sequence.append([0]*desired_length) # pad the list of lists to the longest sublist, appending 0's words_padded_to_longest = list(zip(*itertools.zip_longest(*padded_word_sequence, fillvalue=0))) if desired_length > len(longest_word): # now we remove the "dummy word" if we appended one. words_padded_to_longest.pop() # now we need to truncate all of them to our desired length. # since truncate_from_right is always False, we chop off starting from # the right. padded_word_sequence = [list(word[:desired_length]) for word in words_padded_to_longest] return padded_word_sequence @staticmethod def pad_sequence_to_length(sequence: List, desired_length: int, default_value: Callable[[], Any]=lambda: 0, truncate_from_right: bool=True) -> List: """ Take a list of indices and pads them to the desired length. Parameters ---------- word_sequence : List of int A list of word indices. desired_length : int Maximum length of each sequence. Longer sequences are truncated to this length, and shorter ones are padded to it. default_value: Callable, default=lambda: 0 Callable that outputs a default value (of any type) to use as padding values. truncate_from_right : bool, default=True If truncating the indices is necessary, this parameter dictates whether we do so on the left or right. Returns ------- padded_word_sequence : List of int A padded or truncated list of word indices. Notes ----- The reason we truncate from the right by default is for cases that are questions, with long set ups. We at least want to get the question encoded, which is always at the end, even if we've lost much of the question set up. If you want to truncate from the other direction, you can. """ if truncate_from_right: truncated = sequence[-desired_length:] else: truncated = sequence[:desired_length] if len(truncated) < desired_length: # If the length of the truncated sequence is less than the desired # length, we need to pad. padding_sequence = [default_value()] * (desired_length - len(truncated)) if truncate_from_right: # When we truncate from the right, we add zeroes to the front. padding_sequence.extend(truncated) return padding_sequence else: # When we do not truncate from the right, we add zeroes to the end. truncated.extend(padding_sequence) return truncated return truncated
#!/usr/bin/env python # -*- coding: utf-8 -*- """ tcpserver.py ------------ TxTrader TCP server module - Implement ASCII line oriented event interface. Copyright (c) 2015 Reliance Systems Inc. <[email protected]> Licensed under the MIT license. See LICENSE for details. """ from txtrader import VERSION, DATE, LABEL import sys import os from twisted.internet.protocol import Factory from twisted.internet import reactor, defer from twisted.protocols import basic from socket import gethostname import ujson as json import traceback # set 512MB line buffer LINE_BUFFER_LENGTH = 0x20000000 class tcpserver(basic.NetstringReceiver): MAX_LENGTH = LINE_BUFFER_LENGTH def __init__(self): self.commands = { 'auth': self.cmd_auth, 'help': self.cmd_help, 'quit': self.cmd_disconnect, 'exit': self.cmd_disconnect, 'bye': self.cmd_disconnect, 'status': self.cmd_status, 'getbars': self.cmd_getbars, 'marketorder': self.cmd_market_order, 'stagemarketorder': self.cmd_stage_market_order, 'stoporder': self.cmd_stop_order, 'limitorder': self.cmd_limit_order, 'stoplimitorder': self.cmd_stoplimit_order, 'add': self.cmd_add, 'del': self.cmd_del, 'query': self.cmd_query, 'querydata': self.cmd_query_data, 'symbols': self.cmd_symbols, 'positions': self.cmd_positions, 'orders': self.cmd_orders, 'tickets': self.cmd_tickets, 'executions': self.cmd_executions, 'globalcancel': self.cmd_global_cancel, 'cancel': self.cmd_cancel, 'setaccount': self.cmd_setaccount, 'accounts': self.cmd_accounts, 'shutdown': self.cmd_shutdown, } self.authmap = set([]) self.options = {} def stringReceived(self, line): line = line.decode().strip() self.factory.output( 'user command: %s' % ('%s xxxxxxxxxxx' % ' '.join(line.split()[:2]) if line.startswith('auth') else line) ) if line: cmd = line.split()[0] if cmd in self.commands.keys(): try: response = self.commands[cmd](line) except Exception as exc: self.factory.api.error_handler(self, repr(exc)) traceback.print_exc() response = f'.error: {repr(exc)}' self.send(response) self.factory.api.check_exception_halt(exc, self) else: if response: self.send(response) else: self.send('.what?') def send(self, line): if len(line) > self.MAX_LENGTH: self.factory.api.force_disconnect( f"NetstringReceiver: cannot send message of length {len(line)} {repr(line[:64])}..." ) else: return self.sendString(line.encode()) def cmd_auth(self, line): auth, username, password = (line).split()[:3] options_field = (line[len(auth) + len(username) + len(password) + 3:]).strip() if not options_field.startswith('{'): # legacy options are in string format: i.e. 'noquotes notrades'; convert to dict if options_field == 'noquotes notrades': # legacy clients sending "noquotes notrades" expect a default of {'order-notification': True} self.options = {'order-notification': True} self.factory.api.output(f"Setting legacy client options to: {repr(self.options)}") else: self.options = {o: True for o in options_field.strip().split()} else: self.options = json.loads(options_field) if options_field else {} if self.factory.validate(username, password): self.authmap.add(self.transport.getPeer()) self.factory.api.open_client(self) return '.Authorized %s' % self.factory.api.channel else: self.check_authorized() def check_authorized(self): authorized = self.transport.getPeer() in self.authmap if not authorized: self.send('.Authorization required!') self.factory.api.close_client(self) self.transport.loseConnection() return authorized def check_initialized(self): initialized = self.factory.api.initialized if not initialized: self.send('.Initialization not complete!') self.factory.api.close_client(self) self.transport.loseConnection() return initialized def cmd_shutdown(self, line): if self.check_authorized(): self.factory.output('client at %s requested shutdown: %s' % (self.transport.getPeer(), line)) self.factory.api.close_client(self) reactor.callLater(0, reactor.stop) def cmd_help(self, line): self.send('.commands: %s' % repr(self.commands.keys())) def cmd_disconnect(self, line): self.authmap.discard(self.transport.getPeer()) self.transport.loseConnection() def cmd_status(self, line): self.send('.status: %s' % self.factory.api.query_connection_status()) def cmd_setaccount(self, line): if self.check_authorized() and self.check_initialized(): setaccount, account = line.split()[:2] self.factory.api.set_account(account, self.send) def cmd_accounts(self, line): if self.check_authorized() and self.check_initialized(): self.send('.accounts: %s' % self.factory.api.accounts) self.factory.api.request_accounts(self.defer_response(self.send_response, 'accounts')) def cmd_getbars(self, line): if self.check_authorized() and self.check_initialized(): _, symbol, period, start_date, start_time, end_date, end_time = line.split()[:7] self.factory.api.query_bars( symbol, period, ' '.join((start_date, start_time)), ' '.join((end_date, end_time)), self.send ) def cmd_add(self, line): if self.check_authorized() and self.check_initialized(): _, symbol = line.split()[:2] symbol = symbol.upper() self.factory.api.symbol_enable(symbol, self, self.defer_response(self.send_response, 'symbol')) #self.send(f".symbol: {symbol} added") def cmd_del(self, line): if self.check_authorized() and self.check_initialized(): _, symbol = line.split()[:2] symbol = symbol.upper() self.factory.api.symbol_disable(symbol, self, self.defer_response(self.send_response, 'symbol')) #self.send(f".symbol: {symbol} deleted") def cmd_query(self, line): if self.check_authorized() and self.check_initialized(): _, symbol = line.split()[:2] symbol = symbol.upper() self.send_response(json.dumps(self._symbol_fields(symbol)), 'symbol') def cmd_query_data(self, line): if self.check_authorized() and self.check_initialized(): _, symbol = line.split()[:2] symbol = symbol.upper() self.send_response(json.dumps(self._symbol_fields(symbol, raw=True)), 'symbol-data') def _symbol_fields(self, symbol, raw=False): if raw: symbol_fields = self.factory.api.symbols[symbol].rawdata else: symbol_fields = self.factory.api.symbols[symbol].export(self.options.get('SYMBOL_FIELDS', None)) return symbol_fields def cmd_market_order(self, line): if self.check_authorized() and self.check_initialized(): _, account, route, symbol, qstr = line.split()[:5] self.factory.api.market_order(account, route, symbol, int(qstr), self.send) def cmd_stage_market_order(self, line): if self.check_authorized() and self.check_initialized(): _, tag, account, route, symbol, qstr = line.split()[:6] self.factory.api.stage_market_order(tag, account, route, symbol, int(qstr), self.send) def cmd_stop_order(self, line): if self.check_authorized() and self.check_initialized(): _order, account, route, symbol, price, qstr = line.split()[:6] self.factory.api.stop_order(account, route, symbol, float(price), int(qstr), self.send) def cmd_limit_order(self, line): if self.check_authorized() and self.check_initialized(): _, account, route, symbol, price, qstr = line.split()[:6] self.factory.api.limit_order(account, route, symbol, float(price), int(qstr), self.send) def cmd_stoplimit_order(self, line): if self.check_authorized() and self.check_initialized(): _, account, route, symbol, stop_price, limit_price, qstr = line.split()[:7] self.factory.api.stoplimit_order( account, route, symbol, float(stop_price), float(limit_price), int(qstr), self.send ) def cmd_cancel(self, line): if self.check_authorized() and self.check_initialized(): _, _id = line.split()[:2] self.factory.api.cancel_order(_id, self.send) def cmd_symbols(self, line): if self.check_authorized() and self.check_initialized(): symbols = {s: self._symbol_fields(s) for s in s.self.factory.api.symbols} self.send_response(json.dumps(symbols), 'symbols') def cmd_positions(self, line): if self.check_authorized() and self.check_initialized(): self.factory.api.request_positions(self.defer_response(self.send_response, 'positions')) def cmd_orders(self, line): if self.check_authorized() and self.check_initialized(): self.factory.api.request_orders(self.defer_response(self.send_response, 'orders')) def cmd_tickets(self, line): if self.check_authorized() and self.check_initialized(): self.factory.api.request_tickets(self.defer_response(self.send_response, 'tickets')) def cmd_executions(self, line): if self.check_authorized() and self.check_initialized(): self.factory.api.request_executions(self.defer_response(self.send_response, 'executions')) def cmd_global_cancel(self, line): if self.check_authorized() and self.check_initialized(): self.factory.api.request_global_cancel() self.send('.global order cancel requested') def connectionMade(self): self.factory.output('client connection from %s' % self.transport.getPeer()) self.authmap.discard(self.transport.getPeer()) self.send( '.connected: %s %s %s %s on %s' % (self.factory.api.label, str(VERSION), str(DATE), str(LABEL), str(gethostname())) ) def connectionLost(self, reason): self.factory.output('client connection from %s lost: %s' % (self.transport.getPeer(), repr(reason))) self.authmap.discard(self.transport.getPeer()) self.factory.api.close_client(self) def send_response(self, data, label): self.send(f'{self.factory.api.channel}.{label}: {data}') def defer_response(self, sender, command): d = defer.Deferred() d.addCallback(sender, command) d.addErrback(self.api_error) d.addErrback(self.api_timeout) return d def api_timeout(self, failure): self.send(f'alert: API timeout errback: {repr(failure)}') return failure def api_error(self, failure): self.send(f'alert: API errback: {repr(failure)}') return failure class serverFactory(Factory): protocol = tcpserver def __init__(self, api): self.api = api self.output = api.output def validate(self, username, password): return username == self.api.username and password == self.api.password def buildProtocol(self, addr): self.output(f'buildProtocol: addr={addr}') return super().buildProtocol(addr)
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Invenio module for information retrieval.""" from __future__ import absolute_import, print_function import errno import json import os import warnings from elasticsearch import VERSION as ES_VERSION from elasticsearch import Elasticsearch from pkg_resources import iter_entry_points, resource_filename, \ resource_isdir, resource_listdir from werkzeug.utils import cached_property from . import config from .cli import index as index_cmd from .errors import IndexAlreadyExistsError from .utils import build_alias_name, build_index_from_parts, \ build_index_name, timestamp_suffix class _SearchState(object): """Store connection to elastic client and registered indexes.""" def __init__(self, app, entry_point_group_mappings=None, entry_point_group_templates=None, **kwargs): """Initialize state. :param app: An instance of :class:`~flask.app.Flask`. :param entry_point_group_mappings: The entrypoint group name to load mappings. :param entry_point_group_templates: The entrypoint group name to load templates. """ self.app = app self.mappings = {} self.aliases = {} self._client = kwargs.get('client') self.entry_point_group_templates = entry_point_group_templates self._current_suffix = None if entry_point_group_mappings: self.load_entry_point_group_mappings(entry_point_group_mappings) if ES_VERSION[0] in (2, 5): warnings.warn( "Elasticsearch v2 and v5 support will be removed.", DeprecationWarning) @property def current_suffix(self): """Return the current suffix.""" if self._current_suffix is None: self._current_suffix = timestamp_suffix() return self._current_suffix @cached_property def templates(self): """Generate a dictionary with template names and file paths.""" templates = {} result = [] if self.entry_point_group_templates: result = self.load_entry_point_group_templates( self.entry_point_group_templates) or [] for template in result: for name, path in template.items(): templates[name] = path return templates def register_mappings(self, alias, package_name): """Register mappings from a package under given alias. :param alias: The alias. :param package_name: The package name. """ # For backwards compatibility, we also allow for ES2 mappings to be # placed at the root level of the specified package path, and not in # the `<package-path>/v2` directory. if ES_VERSION[0] == 2: try: resource_listdir(package_name, 'v2') package_name += '.v2' except (OSError, IOError) as ex: if getattr(ex, 'errno', 0) != errno.ENOENT: raise warnings.warn( "Having mappings in a path which doesn't specify the " "Elasticsearch version is deprecated. Please move your " "mappings to a subfolder named according to the " "Elasticsearch version which your mappings are intended " "for. (e.g. '{}/v2/{}')".format( package_name, alias), PendingDeprecationWarning) else: package_name = '{}.v{}'.format(package_name, ES_VERSION[0]) def _walk_dir(aliases, *parts): root_name = build_index_from_parts(*parts) resource_name = os.path.join(*parts) data = aliases.get(root_name, {}) for filename in resource_listdir(package_name, resource_name): file_path = os.path.join(resource_name, filename) if resource_isdir(package_name, file_path): _walk_dir(data, *(parts + (filename, ))) continue filename_root, ext = os.path.splitext(filename) if ext not in {'.json', }: continue index_name = build_index_from_parts( *(parts + (filename_root, )) ) assert index_name not in data, 'Duplicate index' filename = resource_filename( package_name, os.path.join(resource_name, filename)) data[index_name] = filename self.mappings[index_name] = filename aliases[root_name] = data # Start the recursion here: _walk_dir(self.aliases, alias) def register_templates(self, module): """Register templates from the provided module. :param module: The templates module. """ try: resource_listdir(module, 'v{}'.format(ES_VERSION[0])) module = '{}.v{}'.format(module, ES_VERSION[0]) except (OSError, IOError) as ex: if getattr(ex, 'errno', 0) == errno.ENOENT: raise OSError( "Please move your templates to a subfolder named " "according to the Elasticsearch version " "which your templates are intended " "for. (e.g. '{}')".format(version_module)) result = {} def _walk_dir(*parts): parts = parts or tuple() resource_name = os.path.join(*parts) if parts else '' for filename in resource_listdir(module, resource_name): file_path = os.path.join(resource_name, filename) if resource_isdir(module, file_path): _walk_dir(*(parts + (filename, ))) continue filename_root, ext = os.path.splitext(filename) if ext not in {'.json', }: continue template_name = build_index_from_parts( *(parts + (filename_root, )) ) result[template_name] = resource_filename( module, os.path.join(resource_name, filename)) # Start the recursion here: _walk_dir() return result def load_entry_point_group_mappings(self, entry_point_group_mappings): """Load actions from an entry point group.""" for ep in iter_entry_points(group=entry_point_group_mappings): self.register_mappings(ep.name, ep.module_name) def load_entry_point_group_templates(self, entry_point_group_templates): """Load actions from an entry point group.""" result = [] for ep in iter_entry_points(group=entry_point_group_templates): with self.app.app_context(): for template_dir in ep.load()(): result.append(self.register_templates(template_dir)) return result def _client_builder(self): """Build Elasticsearch client.""" client_config = self.app.config.get('SEARCH_CLIENT_CONFIG') or {} client_config.setdefault( 'hosts', self.app.config.get('SEARCH_ELASTIC_HOSTS')) return Elasticsearch(**client_config) @property def client(self): """Return client for current application.""" if self._client is None: self._client = self._client_builder() return self._client def flush_and_refresh(self, index): """Flush and refresh one or more indices. .. warning:: Do not call this method unless you know what you are doing. This method is only intended to be called during tests. """ prefixed_index = build_alias_name(index, app=self.app) self.client.indices.flush(wait_if_ongoing=True, index=prefixed_index) self.client.indices.refresh(index=prefixed_index) self.client.cluster.health( wait_for_status='yellow', request_timeout=30) return True @property def cluster_version(self): """Get version of Elasticsearch running on the cluster.""" versionstr = self.client.info()['version']['number'] return [int(x) for x in versionstr.split('.')] @property def active_aliases(self): """Get a filtered list of aliases based on configuration. Returns aliases and their mappings that are defined in the `SEARCH_MAPPINGS` config variable. If the `SEARCH_MAPPINGS` is set to `None` (the default), all aliases are included. """ whitelisted_aliases = self.app.config.get('SEARCH_MAPPINGS') if whitelisted_aliases is None: return self.aliases else: return {k: v for k, v in self.aliases.items() if k in whitelisted_aliases} def _get_indices(self, tree_or_filename): for name, value in tree_or_filename.items(): if isinstance(value, dict): for result in self._get_indices(value): yield result else: yield name def create_index(self, index, mapping_path=None, prefix=None, suffix=None, create_write_alias=True, ignore=None, dry_run=False): """Create index with a write alias.""" mapping_path = mapping_path or self.mappings[index] final_alias = None final_index = None index_result = None, None alias_result = None, None # To prevent index init --force from creating a suffixed # index if the current instance is running without suffixes # make sure there is no index with the same name as the # alias name (i.e. the index name without the suffix). with open(mapping_path, 'r') as body: final_index = build_index_name( index, prefix=prefix, suffix=suffix, app=self.app) if create_write_alias: final_alias = build_alias_name( index, prefix=prefix, app=self.app) index_result = ( final_index, self.client.indices.create( index=final_index, body=json.load(body), ignore=ignore, ) if not dry_run else None ) if create_write_alias: alias_result = ( final_alias, self.client.indices.put_alias( index=final_index, name=final_alias, ignore=ignore, ) if not dry_run else None ) return index_result, alias_result def create(self, ignore=None, ignore_existing=False, index_list=None): """Yield tuple with created index name and responses from a client.""" ignore = ignore or [] new_indices = {} actions = [] if ignore_existing and not ignore: ignore = [400] elif ignore_existing and 400 not in ignore: ignore.append(400) def ensure_not_exists(name): if not ignore_existing and self.client.indices.exists(name): raise IndexAlreadyExistsError( 'index/alias with name "{}" already exists'.format(name)) def _build(tree_or_filename, alias=None): """Build a list of index/alias actions to perform.""" for name, value in tree_or_filename.items(): if isinstance(value, dict): _build(value, alias=name) else: if index_list and name not in index_list: continue index_result, alias_result = \ self.create_index( name, ignore=ignore, dry_run=True ) ensure_not_exists(index_result[0]) new_indices[name] = index_result[0] if alias_result[0]: ensure_not_exists(alias_result[0]) actions.append(dict( type='create_index', index=name, create_write_alias=True )) else: actions.append(dict( type='create_index', index=name, create_write_alias=False )) if alias: alias_indices = self._get_indices(tree_or_filename) alias_indices = [ new_indices[i] for i in alias_indices if i in new_indices ] if alias_indices: alias_name = build_alias_name(alias, app=self.app) ensure_not_exists(alias_name) actions.append(dict( type='create_alias', index=alias_indices, alias=alias_name )) _build(self.active_aliases) for action in actions: if action['type'] == 'create_index': index_result, alias_result = self.create_index( action['index'], create_write_alias=action.get('create_write_alias', True), ignore=ignore ) yield index_result if alias_result[0]: yield alias_result elif action['type'] == 'create_alias': yield action['alias'], self.client.indices.put_alias( index=action['index'], name=action['alias'], ignore=ignore, ) def put_templates(self, ignore=None): """Yield tuple with registered template and response from client.""" ignore = ignore or [] def _replace_prefix(template_path, body): """Replace index prefix in template request body.""" pattern = '__SEARCH_INDEX_PREFIX__' prefix = self.app.config['SEARCH_INDEX_PREFIX'] or '' if prefix: assert pattern in body, "You are using the prefix `{0}`, " "but the template `{1}` does not contain the " "pattern `{2}`.".format(prefix, template_path, pattern) return body.replace(pattern, prefix) def _put_template(template): """Put template in search client.""" with open(self.templates[template], 'r') as fp: body = fp.read() replaced_body = _replace_prefix(self.templates[template], body) template_name = build_alias_name(template, app=self.app) return self.templates[template],\ self.client.indices.put_template( name=template_name, body=json.loads(replaced_body), ignore=ignore, ) for template in self.templates: yield _put_template(template) def delete(self, ignore=None, index_list=None): """Yield tuple with deleted index name and responses from a client.""" ignore = ignore or [] def _delete(tree_or_filename, alias=None): """Delete indexes and aliases by walking DFS.""" # Iterate over aliases: for name, value in tree_or_filename.items(): if isinstance(value, dict): for result in _delete(value, alias=name): yield result else: if index_list and name not in index_list: continue # Resolve values to suffixed (or not) indices prefixed_index = build_alias_name(name, app=self.app) lookup_response = self.client.indices.get_alias( index=prefixed_index, ignore=[404]) if 'error' in lookup_response: indices_to_delete = [] else: indices_to_delete = list(lookup_response.keys()) if len(indices_to_delete) == 0: pass elif len(indices_to_delete) == 1: yield name, self.client.indices.delete( index=indices_to_delete[0], ignore=ignore, ) else: warnings.warn(( 'Multiple indices found during deletion of ' '{name}: {indices}. Deletion was skipped for them.' ).format(name=name, indices=indices_to_delete)) for result in _delete(self.active_aliases): yield result class InvenioSearch(object): """Invenio-Search extension.""" def __init__(self, app=None, **kwargs): """Extension initialization. :param app: An instance of :class:`~flask.app.Flask`. """ self._clients = {} if app: self.init_app(app, **kwargs) def init_app(self, app, entry_point_group_mappings='invenio_search.mappings', entry_point_group_templates='invenio_search.templates', **kwargs): """Flask application initialization. :param app: An instance of :class:`~flask.app.Flask`. """ self.init_config(app) app.cli.add_command(index_cmd) state = _SearchState( app, entry_point_group_mappings=entry_point_group_mappings, entry_point_group_templates=entry_point_group_templates, **kwargs ) self._state = app.extensions['invenio-search'] = state @staticmethod def init_config(app): """Initialize configuration. :param app: An instance of :class:`~flask.app.Flask`. """ for k in dir(config): if k.startswith('SEARCH_'): app.config.setdefault(k, getattr(config, k)) def __getattr__(self, name): """Proxy to state object.""" return getattr(self._state, name, None)
"""Real-time information about public transport departures in Norway.""" from datetime import datetime, timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( ATTR_ATTRIBUTION, CONF_LATITUDE, CONF_LONGITUDE, CONF_NAME, CONF_SHOW_ON_MAP, ) from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle import homeassistant.util.dt as dt_util _LOGGER = logging.getLogger(__name__) API_CLIENT_NAME = "homeassistant-homeassistant" ATTRIBUTION = "Data provided by entur.org under NLOD" CONF_STOP_IDS = "stop_ids" CONF_EXPAND_PLATFORMS = "expand_platforms" CONF_WHITELIST_LINES = "line_whitelist" CONF_OMIT_NON_BOARDING = "omit_non_boarding" CONF_NUMBER_OF_DEPARTURES = "number_of_departures" DEFAULT_NAME = "Entur" DEFAULT_ICON_KEY = "bus" ICONS = { "air": "mdi:airplane", "bus": "mdi:bus", "metro": "mdi:subway", "rail": "mdi:train", "tram": "mdi:tram", "water": "mdi:ferry", } SCAN_INTERVAL = timedelta(seconds=45) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_STOP_IDS): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_EXPAND_PLATFORMS, default=True): cv.boolean, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_SHOW_ON_MAP, default=False): cv.boolean, vol.Optional(CONF_WHITELIST_LINES, default=[]): cv.ensure_list, vol.Optional(CONF_OMIT_NON_BOARDING, default=True): cv.boolean, vol.Optional(CONF_NUMBER_OF_DEPARTURES, default=2): vol.All( cv.positive_int, vol.Range(min=2, max=10) ), } ) ATTR_STOP_ID = "stop_id" ATTR_ROUTE = "route" ATTR_ROUTE_ID = "route_id" ATTR_EXPECTED_AT = "due_at" ATTR_DELAY = "delay" ATTR_REALTIME = "real_time" ATTR_NEXT_UP_IN = "next_due_in" ATTR_NEXT_UP_ROUTE = "next_route" ATTR_NEXT_UP_ROUTE_ID = "next_route_id" ATTR_NEXT_UP_AT = "next_due_at" ATTR_NEXT_UP_DELAY = "next_delay" ATTR_NEXT_UP_REALTIME = "next_real_time" ATTR_TRANSPORT_MODE = "transport_mode" def due_in_minutes(timestamp: datetime) -> int: """Get the time in minutes from a timestamp.""" if timestamp is None: return None diff = timestamp - dt_util.now() return int(diff.total_seconds() / 60) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Entur public transport sensor.""" from enturclient import EnturPublicTransportData expand = config.get(CONF_EXPAND_PLATFORMS) line_whitelist = config.get(CONF_WHITELIST_LINES) name = config.get(CONF_NAME) show_on_map = config.get(CONF_SHOW_ON_MAP) stop_ids = config.get(CONF_STOP_IDS) omit_non_boarding = config.get(CONF_OMIT_NON_BOARDING) number_of_departures = config.get(CONF_NUMBER_OF_DEPARTURES) stops = [s for s in stop_ids if "StopPlace" in s] quays = [s for s in stop_ids if "Quay" in s] data = EnturPublicTransportData( API_CLIENT_NAME, stops=stops, quays=quays, line_whitelist=line_whitelist, omit_non_boarding=omit_non_boarding, number_of_departures=number_of_departures, web_session=async_get_clientsession(hass), ) if expand: await data.expand_all_quays() await data.update() proxy = EnturProxy(data) entities = [] for place in data.all_stop_places_quays(): try: given_name = "{} {}".format(name, data.get_stop_info(place).name) except KeyError: given_name = "{} {}".format(name, place) entities.append( EnturPublicTransportSensor(proxy, given_name, place, show_on_map) ) async_add_entities(entities, True) class EnturProxy: """Proxy for the Entur client. Ensure throttle to not hit rate limiting on the API. """ def __init__(self, api): """Initialize the proxy.""" self._api = api @Throttle(timedelta(seconds=15)) async def async_update(self) -> None: """Update data in client.""" await self._api.update() def get_stop_info(self, stop_id: str) -> dict: """Get info about specific stop place.""" return self._api.get_stop_info(stop_id) class EnturPublicTransportSensor(Entity): """Implementation of a Entur public transport sensor.""" def __init__(self, api: EnturProxy, name: str, stop: str, show_on_map: bool): """Initialize the sensor.""" self.api = api self._stop = stop self._show_on_map = show_on_map self._name = name self._state = None self._icon = ICONS[DEFAULT_ICON_KEY] self._attributes = {} @property def name(self) -> str: """Return the name of the sensor.""" return self._name @property def state(self) -> str: """Return the state of the sensor.""" return self._state @property def device_state_attributes(self) -> dict: """Return the state attributes.""" self._attributes[ATTR_ATTRIBUTION] = ATTRIBUTION self._attributes[ATTR_STOP_ID] = self._stop return self._attributes @property def unit_of_measurement(self) -> str: """Return the unit this state is expressed in.""" return "min" @property def icon(self) -> str: """Icon to use in the frontend.""" return self._icon async def async_update(self) -> None: """Get the latest data and update the states.""" await self.api.async_update() self._attributes = {} data = self.api.get_stop_info(self._stop) if data is None: self._state = None return if self._show_on_map and data.latitude and data.longitude: self._attributes[CONF_LATITUDE] = data.latitude self._attributes[CONF_LONGITUDE] = data.longitude calls = data.estimated_calls if not calls: self._state = None return self._state = due_in_minutes(calls[0].expected_departure_time) self._icon = ICONS.get(calls[0].transport_mode, ICONS[DEFAULT_ICON_KEY]) self._attributes[ATTR_ROUTE] = calls[0].front_display self._attributes[ATTR_ROUTE_ID] = calls[0].line_id self._attributes[ATTR_EXPECTED_AT] = calls[0].expected_departure_time.strftime( "%H:%M" ) self._attributes[ATTR_REALTIME] = calls[0].is_realtime self._attributes[ATTR_DELAY] = calls[0].delay_in_min number_of_calls = len(calls) if number_of_calls < 2: return self._attributes[ATTR_NEXT_UP_ROUTE] = calls[1].front_display self._attributes[ATTR_NEXT_UP_ROUTE_ID] = calls[1].line_id self._attributes[ATTR_NEXT_UP_AT] = calls[1].expected_departure_time.strftime( "%H:%M" ) self._attributes[ATTR_NEXT_UP_IN] = "{} min".format( due_in_minutes(calls[1].expected_departure_time) ) self._attributes[ATTR_NEXT_UP_REALTIME] = calls[1].is_realtime self._attributes[ATTR_NEXT_UP_DELAY] = calls[1].delay_in_min if number_of_calls < 3: return for i, call in enumerate(calls[2:]): key_name = "departure_#" + str(i + 3) self._attributes[key_name] = "{}{} {}".format( "" if bool(call.is_realtime) else "ca. ", call.expected_departure_time.strftime("%H:%M"), call.front_display, )
# Copyright (C) 2015 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from fabric.api import local from lib import base from lib.gobgp import * from lib.quagga import * import sys import os import time import nose from noseplugin import OptionParser, parser_option from itertools import chain class GoBGPTestBase(unittest.TestCase): @classmethod def setUpClass(cls): gobgp_ctn_image_name = parser_option.gobgp_image base.TEST_PREFIX = parser_option.test_prefix g1 = GoBGPContainer(name='g1', asn=65000, router_id='192.168.0.1', ctn_image_name=gobgp_ctn_image_name, log_level=parser_option.gobgp_log_level) q1 = QuaggaBGPContainer(name='q1', asn=65001, router_id='192.168.0.2') q2 = QuaggaBGPContainer(name='q2', asn=65002, router_id='192.168.0.3') q3 = QuaggaBGPContainer(name='q3', asn=65003, router_id='192.168.0.4') qs = [q1, q2, q3] ctns = [g1, q1, q2, q3] # advertise a route from q1, q2, q3 for idx, q in enumerate(qs): route = '10.0.{0}.0/24'.format(idx+1) q.add_route(route) initial_wait_time = max(ctn.run() for ctn in ctns) time.sleep(initial_wait_time) for q in qs: g1.add_peer(q, reload_config=False, passwd='passwd') q.add_peer(g1, passwd='passwd', passive=True) g1.create_config() g1.reload_config() cls.gobgp = g1 cls.quaggas = {'q1': q1, 'q2': q2, 'q3': q3} # test each neighbor state is turned establish def test_01_neighbor_established(self): for q in self.quaggas.itervalues(): self.gobgp.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q) def test_02_check_gobgp_global_rib(self): for q in self.quaggas.itervalues(): # paths expected to exist in gobgp's global rib routes = q.routes.keys() timeout = 120 interval = 1 count = 0 while True: # gobgp's global rib global_rib = [p['prefix'] for p in self.gobgp.get_global_rib()] for p in global_rib: if p in routes: routes.remove(p) if len(routes) == 0: break time.sleep(interval) count += interval if count >= timeout: raise Exception('timeout') # check gobgp properly add it's own asn to aspath def test_03_check_gobgp_adj_out_rib(self): for q in self.quaggas.itervalues(): for path in self.gobgp.get_adj_rib_out(q): asns = path['aspath'] self.assertTrue(self.gobgp.asn in asns) # check routes are properly advertised to all BGP speaker def test_04_check_quagga_global_rib(self): interval = 1 timeout = int(120/interval) for q in self.quaggas.itervalues(): done = False for _ in range(timeout): if done: break global_rib = q.get_global_rib() global_rib = [p['prefix'] for p in global_rib] if len(global_rib) < len(self.quaggas): time.sleep(interval) continue self.assertTrue(len(global_rib) == len(self.quaggas)) for c in self.quaggas.itervalues(): for r in c.routes: self.assertTrue(r in global_rib) done = True if done: continue # should not reach here self.assertTrue(False) def test_05_add_quagga(self): q4 = QuaggaBGPContainer(name='q4', asn=65004, router_id='192.168.0.5') self.quaggas['q4'] = q4 q4.add_route('10.0.4.0/24') initial_wait_time = q4.run() time.sleep(initial_wait_time) self.gobgp.add_peer(q4) q4.add_peer(self.gobgp) self.gobgp.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q4) def test_06_check_global_rib(self): self.test_02_check_gobgp_global_rib() self.test_04_check_quagga_global_rib() def test_07_stop_one_quagga(self): q4 = self.quaggas['q4'] q4.stop() self.gobgp.wait_for(expected_state=BGP_FSM_ACTIVE, peer=q4) del self.quaggas['q4'] # check gobgp properly send withdrawal message with q4's route def test_08_check_global_rib(self): self.test_02_check_gobgp_global_rib() self.test_04_check_quagga_global_rib() def test_09_add_distant_relative(self): q1 = self.quaggas['q1'] q2 = self.quaggas['q2'] q3 = self.quaggas['q3'] q5 = QuaggaBGPContainer(name='q5', asn=65005, router_id='192.168.0.6') initial_wait_time = q5.run() time.sleep(initial_wait_time) for q in [q2, q3]: q5.add_peer(q) q.add_peer(q5) med200 = {'name': 'med200', 'type': 'permit', 'match': '0.0.0.0/0', 'direction': 'out', 'med': 200} q2.add_policy(med200, self.gobgp) med100 = {'name': 'med100', 'type': 'permit', 'match': '0.0.0.0/0', 'direction': 'out', 'med': 100} q3.add_policy(med100, self.gobgp) q5.add_route('10.0.6.0/24') self.gobgp.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q2) self.gobgp.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q3) q2.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q5) q3.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q5) timeout = 120 interval = 1 count = 0 while True: paths = self.gobgp.get_adj_rib_out(q1, '10.0.6.0/24') if len(paths) > 0: path = paths[0] print "{0}'s nexthop is {1}".format(path['nlri']['prefix'], path['nexthop']) n_addrs = [i[1].split('/')[0] for i in self.gobgp.ip_addrs] if path['nexthop'] in n_addrs: break time.sleep(interval) count += interval if count >= timeout: raise Exception('timeout') def test_10_originate_path(self): self.gobgp.add_route('10.10.0.0/24') dst = self.gobgp.get_global_rib('10.10.0.0/24') self.assertTrue(len(dst) == 1) self.assertTrue(len(dst[0]['paths']) == 1) path = dst[0]['paths'][0] self.assertTrue(path['nexthop'] == '0.0.0.0') self.assertTrue(len(path['aspath']) == 0) def test_11_check_adj_rib_out(self): for q in self.quaggas.itervalues(): paths = self.gobgp.get_adj_rib_out(q, '10.10.0.0/24') self.assertTrue(len(paths) == 1) path = paths[0] peer_info = self.gobgp.peers[q] local_addr = peer_info['local_addr'].split('/')[0] self.assertTrue(path['nexthop'] == local_addr) self.assertTrue(path['aspath'] == [self.gobgp.asn]) def test_12_disable_peer(self): q1 = self.quaggas['q1'] self.gobgp.disable_peer(q1) self.gobgp.wait_for(expected_state=BGP_FSM_IDLE, peer=q1) time.sleep(3) for route in q1.routes.iterkeys(): dst = self.gobgp.get_global_rib(route) self.assertTrue(len(dst) == 0) for q in self.quaggas.itervalues(): if q is q1: continue paths = self.gobgp.get_adj_rib_out(q, route) self.assertTrue(len(paths) == 0) def test_13_enable_peer(self): q1 = self.quaggas['q1'] self.gobgp.enable_peer(q1) self.gobgp.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=q1) def test_14_check_adj_rib_out(self): self.test_11_check_adj_rib_out() def test_15_check_active_connection(self): g1 = self.gobgp g2 = GoBGPContainer(name='g2', asn=65000, router_id='192.168.0.5', ctn_image_name=self.gobgp.image, log_level=parser_option.gobgp_log_level) time.sleep(g2.run()) self.quaggas['g2'] = g2 g2.add_peer(g1, passive=True) g1.add_peer(g2) g1.wait_for(expected_state=BGP_FSM_ESTABLISHED, peer=g2) def test_16_check_local_pref_and_med_handling(self): g1 = self.gobgp g1.add_route('10.20.0.0/24', local_pref=1000, med=2000) # iBGP peer g2 = self.quaggas['g2'] paths = g2.get_global_rib('10.20.0.0/24') self.assertTrue(len(paths) == 1) self.assertTrue(len(paths[0]['paths']) == 1) path = paths[0]['paths'][0] local_pref = extract_path_attribute(path, BGP_ATTR_TYPE_LOCAL_PREF) self.assertTrue(local_pref['value'] == 1000) med = extract_path_attribute(path, BGP_ATTR_TYPE_MULTI_EXIT_DISC) self.assertTrue(med['metric'] == 2000) # eBGP peer q1 = self.quaggas['q1'] paths = q1.get_global_rib('10.20.0.0/24') self.assertTrue(len(paths) == 1) path = paths[0] local_pref = extract_path_attribute(path, BGP_ATTR_TYPE_LOCAL_PREF) # local_pref's default value is 100 self.assertTrue(local_pref['value'] == 100) med = extract_path_attribute(path, BGP_ATTR_TYPE_MULTI_EXIT_DISC) self.assertTrue(med['metric'] == 2000) if __name__ == '__main__': if os.geteuid() is not 0: print "you are not root." sys.exit(1) output = local("which docker 2>&1 > /dev/null ; echo $?", capture=True) if int(output) is not 0: print "docker not found" sys.exit(1) nose.main(argv=sys.argv, addplugins=[OptionParser()], defaultTest=sys.argv[0])
#!/usr/bin/python2.4 # Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. '''A gatherer for the TotalRecall brand of HTML templates with replaceable portions. We wanted to reuse extern.tclib.api.handlers.html.TCHTMLParser but this proved impossible due to the fact that the TotalRecall HTML templates are in general quite far from parseable HTML and the TCHTMLParser derives from HTMLParser.HTMLParser which requires relatively well-formed HTML. Some examples of "HTML" from the TotalRecall HTML templates that wouldn't be parseable include things like: <a [PARAMS]>blabla</a> (not parseable because attributes are invalid) <table><tr><td>[LOTSOFSTUFF]</tr></table> (not parseable because closing </td> is in the HTML [LOTSOFSTUFF] is replaced by) The other problem with using general parsers (such as TCHTMLParser) is that we want to make sure we output the TotalRecall template with as little changes as possible in terms of whitespace characters, layout etc. With any parser that generates a parse tree, and generates output by dumping the parse tree, we would always have little inconsistencies which could cause bugs (the TotalRecall template stuff is quite brittle and can break if e.g. a tab character is replaced with spaces). The solution, which may be applicable to some other HTML-like template languages floating around Google, is to create a parser with a simple state machine that keeps track of what kind of tag it's inside, and whether it's in a translateable section or not. Translateable sections are: a) text (including [BINGO] replaceables) inside of tags that can contain translateable text (which is all tags except for a few) b) text inside of an 'alt' attribute in an <image> element, or the 'value' attribute of a <submit>, <button> or <text> element. The parser does not build up a parse tree but rather a "skeleton" which is a list of nontranslateable strings intermingled with grit.clique.MessageClique objects. This simplifies the parser considerably compared to a regular HTML parser. To output a translated document, each item in the skeleton is printed out, with the relevant Translation from each MessageCliques being used for the requested language. This implementation borrows some code, constants and ideas from extern.tclib.api.handlers.html.TCHTMLParser. ''' import re import types from grit import clique from grit import exception from grit import util from grit import tclib from grit.gather import interface # HTML tags which break (separate) chunks. _BLOCK_TAGS = ['script', 'p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'hr', 'br', 'body', 'style', 'head', 'title', 'table', 'tr', 'td', 'th', 'ul', 'ol', 'dl', 'nl', 'li', 'div', 'object', 'center', 'html', 'link', 'form', 'select', 'textarea', 'button', 'option', 'map', 'area', 'blockquote', 'pre', 'meta', 'xmp', 'noscript', 'label', 'tbody', 'thead', 'script', 'style', 'pre', 'iframe', 'img', 'input', 'nowrap'] # HTML tags which may appear within a chunk. _INLINE_TAGS = ['b', 'i', 'u', 'tt', 'code', 'font', 'a', 'span', 'small', 'key', 'nobr', 'url', 'em', 's', 'sup', 'strike', 'strong'] # HTML tags within which linebreaks are significant. _PREFORMATTED_TAGS = ['textarea', 'xmp', 'pre'] # An array mapping some of the inline HTML tags to more meaningful # names for those tags. This will be used when generating placeholders # representing these tags. _HTML_PLACEHOLDER_NAMES = { 'a' : 'link', 'br' : 'break', 'b' : 'bold', 'i' : 'italic', 'li' : 'item', 'ol' : 'ordered_list', 'p' : 'paragraph', 'ul' : 'unordered_list', 'img' : 'image', 'em' : 'emphasis' } # We append each of these characters in sequence to distinguish between # different placeholders with basically the same name (e.g. BOLD1, BOLD2). # Keep in mind that a placeholder name must not be a substring of any other # placeholder name in the same message, so we can't simply count (BOLD_1 # would be a substring of BOLD_10). _SUFFIXES = '123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' # Matches whitespace in an HTML document. Also matches HTML comments, which are # treated as whitespace. _WHITESPACE = re.compile(r'(\s|&nbsp;|\\n|\\r|<!--\s*desc\s*=.*?-->)+', re.DOTALL) # Finds a non-whitespace character _NON_WHITESPACE = re.compile(r'\S') # Matches two or more &nbsp; in a row (a single &nbsp is not changed into # placeholders because different languages require different numbers of spaces # and placeholders must match exactly; more than one is probably a "special" # whitespace sequence and should be turned into a placeholder). _NBSP = re.compile(r'&nbsp;(&nbsp;)+') # Matches nontranslateable chunks of the document _NONTRANSLATEABLES = re.compile(r''' <\s*script.+?<\s*/\s*script\s*> | <\s*style.+?<\s*/\s*style\s*> | <!--.+?--> | <\?IMPORT\s.+?> # import tag | <\s*[a-zA-Z_]+:.+?> # custom tag (open) | <\s*/\s*[a-zA-Z_]+:.+?> # custom tag (close) | <!\s*[A-Z]+\s*([^>]+|"[^"]+"|'[^']+')*?> ''', re.MULTILINE | re.DOTALL | re.VERBOSE | re.IGNORECASE) # Matches a tag and its attributes _ELEMENT = re.compile(r''' # Optional closing /, element name <\s*(?P<closing>/)?\s*(?P<element>[a-zA-Z0-9]+)\s* # Attributes and/or replaceables inside the tag, if any (?P<atts>( \s*([a-zA-Z_][-:.a-zA-Z_0-9]*) # Attribute name (\s*=\s*(\'[^\']*\'|"[^"]*"|[-a-zA-Z0-9./,:;+*%?!&$\(\)_#=~\'"@]*))? | \s*\[(\$?\~)?([A-Z0-9-_]+?)(\~\$?)?\] )*) \s*(?P<empty>/)?\s*> # Optional empty-tag closing /, and tag close ''', re.MULTILINE | re.DOTALL | re.VERBOSE) # Matches elements that may have translateable attributes. The value of these # special attributes is given by group 'value1' or 'value2'. Note that this # regexp demands that the attribute value be quoted; this is necessary because # the non-tree-building nature of the parser means we don't know when we're # writing out attributes, so we wouldn't know to escape spaces. _SPECIAL_ELEMENT = re.compile(r''' <\s*( input[^>]+?value\s*=\s*(\'(?P<value3>[^\']*)\'|"(?P<value4>[^"]*)") [^>]+type\s*=\s*"?'?(button|reset|text|submit)'?"? | ( table[^>]+?title\s*= | img[^>]+?alt\s*= | input[^>]+?type\s*=\s*"?'?(button|reset|text|submit)'?"?[^>]+?value\s*= ) \s*(\'(?P<value1>[^\']*)\'|"(?P<value2>[^"]*)") )[^>]*?> ''', re.MULTILINE | re.DOTALL | re.VERBOSE | re.IGNORECASE) # Matches stuff that is translateable if it occurs in the right context # (between tags). This includes all characters and character entities. # Note that this also matches &nbsp; which needs to be handled as whitespace # before this regexp is applied. _CHARACTERS = re.compile(r''' ( \w | [\!\@\#\$\%\^\*\(\)\-\=\_\+\[\]\{\}\\\|\;\:\'\"\,\.\/\?\`\~] | &(\#[0-9]+|\#x[0-9a-fA-F]+|[A-Za-z0-9]+); )+ ''', re.MULTILINE | re.DOTALL | re.VERBOSE) # Matches Total Recall's "replaceable" tags, which are just any text # in capitals enclosed by delimiters like [] or [~~] or [$~~$] (e.g. [HELLO], # [~HELLO~] and [$~HELLO~$]). _REPLACEABLE = re.compile(r'\[(\$?\~)?(?P<name>[A-Z0-9-_]+?)(\~\$?)?\]', re.MULTILINE) # Matches the silly [!]-prefixed "header" that is used in some TotalRecall # templates. _SILLY_HEADER = re.compile(r'\[!\]\ntitle\t(?P<title>[^\n]+?)\n.+?\n\n', re.MULTILINE | re.DOTALL) # Matches a comment that provides a description for the message it occurs in. _DESCRIPTION_COMMENT = re.compile( r'<!--\s*desc\s*=\s*(?P<description>.+?)\s*-->', re.DOTALL) _DEBUG = 0 def _DebugPrint(text): if _DEBUG: print text.encode('utf-8') class HtmlChunks(object): '''A parser that knows how to break an HTML-like document into a list of chunks, where each chunk is either translateable or non-translateable. The chunks are unmodified sections of the original document, so concatenating the text of all chunks would result in the original document.''' def InTranslateable(self): return self.last_translateable != -1 def Rest(self): return self.text_[self.current:] def StartTranslateable(self): assert not self.InTranslateable() if self.current != 0: # Append a nontranslateable chunk chunk_text = self.text_[self.chunk_start : self.last_nontranslateable + 1] # Needed in the case where document starts with a translateable. if len(chunk_text) > 0: self.AddChunk(False, chunk_text) self.chunk_start = self.last_nontranslateable + 1 self.last_translateable = self.current self.last_nontranslateable = -1 def EndTranslateable(self): assert self.InTranslateable() # Append a translateable chunk self.AddChunk(True, self.text_[self.chunk_start : self.last_translateable + 1]) self.chunk_start = self.last_translateable + 1 self.last_translateable = -1 self.last_nontranslateable = self.current def AdvancePast(self, match): self.current += match.end() def AddChunk(self, translateable, text): '''Adds a chunk to self, removing linebreaks and duplicate whitespace if appropriate. ''' if translateable and not self.last_element_ in _PREFORMATTED_TAGS: text = text.replace('\n', ' ') text = text.replace('\r', ' ') text = text.replace(' ', ' ') text = text.replace(' ', ' ') m = _DESCRIPTION_COMMENT.search(text) if m: self.last_description = m.group('description') # remove the description from the output text text = _DESCRIPTION_COMMENT.sub('', text) if translateable: description = self.last_description self.last_description = '' else: description = '' if text != '': self.chunks_.append((translateable, text, description)) def Parse(self, text): '''Parses self.text_ into an intermediate format stored in self.chunks_ which is translateable and nontranslateable chunks. Also returns self.chunks_ Return: [chunk1, chunk2, chunk3, ...] (instances of class Chunk) ''' # # Chunker state # self.text_ = text # A list of tuples (is_translateable, text) which represents the document # after chunking. self.chunks_ = [] # Start index of the last chunk, whether translateable or not self.chunk_start = 0 # Index of the last for-sure translateable character if we are parsing # a translateable chunk, -1 to indicate we are not in a translateable chunk. # This is needed so that we don't include trailing whitespace in the # translateable chunk (whitespace is neutral). self.last_translateable = -1 # Index of the last for-sure nontranslateable character if we are parsing # a nontranslateable chunk, -1 if we are not in a nontranslateable chunk. # This is needed to make sure we can group e.g. "<b>Hello</b> there" # together instead of just "Hello</b> there" which would be much worse # for translation. self.last_nontranslateable = -1 # Index of the character we're currently looking at. self.current = 0 # The name of the last block element parsed. self.last_element_ = '' # The last explicit description we found. self.last_description = '' while self.current < len(self.text_): _DebugPrint('REST: %s' % self.text_[self.current:self.current+60]) # First try to match whitespace m = _WHITESPACE.match(self.Rest()) if m: # Whitespace is neutral, it just advances 'current' and does not switch # between translateable/nontranslateable. If we are in a # nontranslateable section that extends to the current point, we extend # it to include the whitespace. If we are in a translateable section, # we do not extend it until we find # more translateable parts, because we never want a translateable chunk # to end with whitespace. if (not self.InTranslateable() and self.last_nontranslateable == self.current - 1): self.last_nontranslateable = self.current + m.end() - 1 self.AdvancePast(m) continue # Then we try to match nontranslateables m = _NONTRANSLATEABLES.match(self.Rest()) if m: if self.InTranslateable(): self.EndTranslateable() self.last_nontranslateable = self.current + m.end() - 1 self.AdvancePast(m) continue # Now match all other HTML element tags (opening, closing, or empty, we # don't care). m = _ELEMENT.match(self.Rest()) if m: element_name = m.group('element').lower() if element_name in _BLOCK_TAGS: self.last_element_ = element_name if self.InTranslateable(): self.EndTranslateable() # Check for "special" elements, i.e. ones that have a translateable # attribute, and handle them correctly. Note that all of the # "special" elements are block tags, so no need to check for this # if the tag is not a block tag. sm = _SPECIAL_ELEMENT.match(self.Rest()) if sm: # Get the appropriate group name for group in sm.groupdict().keys(): if sm.groupdict()[group]: break # First make a nontranslateable chunk up to and including the # quote before the translateable attribute value self.AddChunk(False, self.text_[ self.chunk_start : self.current + sm.start(group)]) # Then a translateable for the translateable bit self.AddChunk(True, self.Rest()[sm.start(group) : sm.end(group)]) # Finally correct the data invariant for the parser self.chunk_start = self.current + sm.end(group) self.last_nontranslateable = self.current + m.end() - 1 elif self.InTranslateable(): # We're in a translateable and the tag is an inline tag, so we # need to include it in the translateable. self.last_translateable = self.current + m.end() - 1 self.AdvancePast(m) continue # Anything else we find must be translateable, so we advance one character # at a time until one of the above matches. if not self.InTranslateable(): self.StartTranslateable() else: self.last_translateable = self.current self.current += 1 # Close the final chunk if self.InTranslateable(): self.AddChunk(True, self.text_[self.chunk_start : ]) else: self.AddChunk(False, self.text_[self.chunk_start : ]) return self.chunks_ def HtmlToMessage(html, include_block_tags=False, description=''): '''Takes a bit of HTML, which must contain only "inline" HTML elements, and changes it into a tclib.Message. This involves escaping any entities and replacing any HTML code with placeholders. If include_block_tags is true, no error will be given if block tags (e.g. <p> or <br>) are included in the HTML. Args: html: 'Hello <b>[USERNAME]</b>, how&nbsp;<i>are</i> you?' include_block_tags: False Return: tclib.Message('Hello START_BOLD1USERNAMEEND_BOLD, ' 'howNBSPSTART_ITALICareEND_ITALIC you?', [ Placeholder('START_BOLD', '<b>', ''), Placeholder('USERNAME', '[USERNAME]', ''), Placeholder('END_BOLD', '</b>', ''), Placeholder('START_ITALIC', '<i>', ''), Placeholder('END_ITALIC', '</i>', ''), ]) ''' # Approach is: # - first placeholderize, finding <elements>, [REPLACEABLES] and &nbsp; # - then escape all character entities in text in-between placeholders parts = [] # List of strings (for text chunks) and tuples (ID, original) # for placeholders count_names = {} # Map of base names to number of times used end_names = {} # Map of base names to stack of end tags (for correct nesting) def MakeNameClosure(base, type = ''): '''Returns a closure that can be called once all names have been allocated to return the final name of the placeholder. This allows us to minimally number placeholders for non-overlap. Also ensures that END_XXX_Y placeholders have the same Y as the corresponding BEGIN_XXX_Y placeholder when we have nested tags of the same type. Args: base: 'phname' type: '' | 'begin' | 'end' Return: Closure() ''' name = base if type != '': name = ('%s_%s' % (type, base)).upper() if name in count_names.keys(): count_names[name] += 1 else: count_names[name] = 1 def MakeFinalName(name_ = name, index = count_names[name] - 1): if (type.lower() == 'end' and base in end_names.keys() and len(end_names[base])): return end_names[base].pop(-1) # For correct nesting if count_names[name_] != 1: name_ = '%s_%s' % (name_, _SUFFIXES[index]) # We need to use a stack to ensure that the end-tag suffixes match # the begin-tag suffixes. Only needed when more than one tag of the # same type. if type == 'begin': end_name = ('END_%s_%s' % (base, _SUFFIXES[index])).upper() if base in end_names.keys(): end_names[base].append(end_name) else: end_names[base] = [end_name] return name_ return MakeFinalName current = 0 while current < len(html): m = _NBSP.match(html[current:]) if m: parts.append((MakeNameClosure('SPACE'), m.group())) current += m.end() continue m = _REPLACEABLE.match(html[current:]) if m: # Replaceables allow - but placeholders don't, so replace - with _ ph_name = MakeNameClosure('X_%s_X' % m.group('name').replace('-', '_')) parts.append((ph_name, m.group())) current += m.end() continue m = _SPECIAL_ELEMENT.match(html[current:]) if m: if not include_block_tags: raise exception.BlockTagInTranslateableChunk(html) element_name = 'block' # for simplification # Get the appropriate group name for group in m.groupdict().keys(): if m.groupdict()[group]: break parts.append((MakeNameClosure(element_name, 'begin'), html[current : current + m.start(group)])) parts.append(m.group(group)) parts.append((MakeNameClosure(element_name, 'end'), html[current + m.end(group) : current + m.end()])) current += m.end() continue m = _ELEMENT.match(html[current:]) if m: element_name = m.group('element').lower() if not include_block_tags and not element_name in _INLINE_TAGS: raise exception.BlockTagInTranslateableChunk(html[current:]) if element_name in _HTML_PLACEHOLDER_NAMES: # use meaningful names element_name = _HTML_PLACEHOLDER_NAMES[element_name] # Make a name for the placeholder type = '' if not m.group('empty'): if m.group('closing'): type = 'end' else: type = 'begin' parts.append((MakeNameClosure(element_name, type), m.group())) current += m.end() continue if len(parts) and isinstance(parts[-1], types.StringTypes): parts[-1] += html[current] else: parts.append(html[current]) current += 1 msg_text = '' placeholders = [] for part in parts: if isinstance(part, types.TupleType): final_name = part[0]() original = part[1] msg_text += final_name placeholders.append(tclib.Placeholder(final_name, original, '(HTML code)')) else: msg_text += part msg = tclib.Message(text=msg_text, placeholders=placeholders, description=description) content = msg.GetContent() for ix in range(len(content)): if isinstance(content[ix], types.StringTypes): content[ix] = util.UnescapeHtml(content[ix], replace_nbsp=False) return msg class TrHtml(interface.GathererBase): '''Represents a document or message in the template format used by Total Recall for HTML documents.''' def __init__(self, text): '''Creates a new object that represents 'text'. Args: text: '<html>...</html>' ''' super(type(self), self).__init__() self.text_ = text self.have_parsed_ = False self.skeleton_ = [] # list of strings and MessageClique objects def GetText(self): '''Returns the original text of the HTML document''' return self.text_ def GetCliques(self): '''Returns the message cliques for each translateable message in the document.''' return filter(lambda x: isinstance(x, clique.MessageClique), self.skeleton_) def Translate(self, lang, pseudo_if_not_available=True, skeleton_gatherer=None, fallback_to_english=False): '''Returns this document with translateable messages filled with the translation for language 'lang'. Args: lang: 'en' pseudo_if_not_available: True Return: 'ID_THIS_SECTION TYPE\n...BEGIN\n "Translated message"\n......\nEND Raises: grit.exception.NotReady() if used before Parse() has been successfully called. grit.exception.NoSuchTranslation() if 'pseudo_if_not_available' is false and there is no translation for the requested language. ''' if len(self.skeleton_) == 0: raise exception.NotReady() # TODO(joi) Implement support for skeleton gatherers here. out = [] for item in self.skeleton_: if isinstance(item, types.StringTypes): out.append(item) else: msg = item.MessageForLanguage(lang, pseudo_if_not_available, fallback_to_english) for content in msg.GetContent(): if isinstance(content, tclib.Placeholder): out.append(content.GetOriginal()) else: # We escape " characters to increase the chance that attributes # will be properly escaped. out.append(util.EscapeHtml(content, True)) return ''.join(out) # Parsing is done in two phases: First, we break the document into # translateable and nontranslateable chunks. Second, we run through each # translateable chunk and insert placeholders for any HTML elements, unescape # escaped characters, etc. def Parse(self): if self.have_parsed_: return self.have_parsed_ = True text = self.text_ # First handle the silly little [!]-prefixed header because it's not # handled by our HTML parsers. m = _SILLY_HEADER.match(text) if m: self.skeleton_.append(text[:m.start('title')]) self.skeleton_.append(self.uberclique.MakeClique( tclib.Message(text=text[m.start('title'):m.end('title')]))) self.skeleton_.append(text[m.end('title') : m.end()]) text = text[m.end():] chunks = HtmlChunks().Parse(text) for chunk in chunks: if chunk[0]: # Chunk is translateable self.skeleton_.append(self.uberclique.MakeClique( HtmlToMessage(chunk[1], description=chunk[2]))) else: self.skeleton_.append(chunk[1]) # Go through the skeleton and change any messages that consist solely of # placeholders and whitespace into nontranslateable strings. for ix in range(len(self.skeleton_)): got_text = False if isinstance(self.skeleton_[ix], clique.MessageClique): msg = self.skeleton_[ix].GetMessage() for item in msg.GetContent(): if (isinstance(item, types.StringTypes) and _NON_WHITESPACE.search(item) and item != '&nbsp;'): got_text = True break if not got_text: self.skeleton_[ix] = msg.GetRealContent() # Static method def FromFile(html, extkey=None, encoding = 'utf-8'): '''Creates a TrHtml object from the contents of 'html' which are decoded using 'encoding'. Returns a new TrHtml object, upon which Parse() has not been called. Args: html: file('') | 'filename.html' extkey: ignored encoding: 'utf-8' (note that encoding is ignored if 'html' is not a file name but instead an open file or file-like object) Return: TrHtml(text_of_file) ''' if isinstance(html, types.StringTypes): html = util.WrapInputStream(file(html, 'r'), encoding) doc = html.read() # Ignore the BOM character if the document starts with one. if len(doc) and doc[0] == u'\ufeff': doc = doc[1:] return TrHtml(doc) FromFile = staticmethod(FromFile)
import base64 import collections import datetime import logging import re import sys import time from urllib import urlencode import urlparse import configparser import dateutil.parser import requests import rethinkdb as r from termcolor import colored from db.github_repos import PluginGithubRepos, DotfilesGithubRepos import db.plugins import db.util import util r_conn = db.util.r_conn try: import secrets _GITHUB_API_TOKEN = getattr(secrets, 'GITHUB_PERSONAL_ACCESS_TOKEN', None) except ImportError: _GITHUB_API_TOKEN = None _NO_GITHUB_API_TOKEN_MESSAGE = """ ******************************************************************************* * Warning: GitHub API token not found in secrets.py. Scraping will be severely * rate-limited. See secrets.py.example to obtain a GitHub personal access token ******************************************************************************* """ if not _GITHUB_API_TOKEN: logging.warn(colored(_NO_GITHUB_API_TOKEN_MESSAGE, 'red')) ReposByManager = collections.namedtuple('ReposByManager', ['vundle', 'neobundle', 'vimplug']) ############################################################################### # General utilities for interacting with the GitHub API. class ApiRateLimitExceededError(Exception): def __init__(self, headers): self.headers = headers def __str__(self): return repr(self.headers) def get_api_page(url_or_path, query_params=None, page=1, per_page=100): """Get a page from GitHub's v3 API. Arguments: url_or_path: The API method to call or the full URL. query_params: A dict of additional query parameters page: Page number per_page: How many results to return per page. Max is 100. Returns: A tuple: (Response object, JSON-decoded dict of the response) Raises: ApiRateLimitExceededError """ split_url = urlparse.urlsplit(url_or_path) query = { 'page': page, 'per_page': per_page, } if _GITHUB_API_TOKEN: query['access_token'] = _GITHUB_API_TOKEN query.update(dict(urlparse.parse_qsl(split_url.query))) query.update(query_params or {}) url = urlparse.SplitResult(scheme='https', netloc='api.github.com', path=split_url.path, query=urlencode(query), fragment=split_url.fragment).geturl() res = requests.get(url) if res.status_code == 403 and res.headers['X-RateLimit-Remaining'] == '0': raise ApiRateLimitExceededError(res.headers) return res, res.json() def get_requests_left(): """Retrieve how many API requests are remaining""" _, data = get_api_page('rate_limit') return data['rate']['remaining'] def maybe_wait_until_api_limit_resets(response_headers): """If we're about to exceed our API limit, sleeps until our API limit is reset. """ if response_headers['X-RateLimit-Remaining'] == '0': reset_timestamp = response_headers['X-RateLimit-Reset'] reset_date = datetime.datetime.fromtimestamp(int(reset_timestamp)) now = datetime.datetime.now() seconds_to_wait = (reset_date - now).seconds + 1 print "Sleeping %s seconds for API limit to reset." % seconds_to_wait time.sleep(seconds_to_wait) ############################################################################### # Routines for scraping Vim plugin repos from GitHub. def get_plugin_data(owner, repo_name, repo_data, readme_data=None): """Populate info relevant to a plugin from a GitHub repo. This should not be used to fetch info from the vim-scripts user's repos. Arguments: owner: The repo's owner's login, eg. "gmarik" repo_name: The repo name, eg. "vundle" repo_data: GitHub API /repos response for this repo readme_data: (optional) GitHub API /readme response for this repo scrape_fork: Whether to bother scraping this repo if it's a fork Returns: A dict of properties that can be inserted as a row in the plugins table """ assert owner != 'vim-scripts' if not readme_data: _, readme_data = get_api_page('repos/%s/%s/readme' % ( owner, repo_name)) readme_base64_decoded = base64.b64decode(readme_data.get('content', '')) readme = unicode(readme_base64_decoded, 'utf-8', errors='ignore') readme_filename = readme_data.get('name', '') # TODO(david): We used to extract the vim.org ID from the homepage if it # were a vim.org URL, but that became too unreliable as many different # repos would all claim to have the same vim.org homepage, when # sometimes those repos were of different plugins. But it's still # useful information in heuristic matching, just can't be used as # a key. homepage = repo_data['homepage'] repo_created_date = dateutil.parser.parse(repo_data['created_at']) # Fetch commits so we can get the update/create dates. _, commits_data = get_api_page('repos/%s/%s/commits' % (owner, repo_name), per_page=100) if commits_data and isinstance(commits_data, list) and len(commits_data): # Unfortunately repo_data['updated_at'] and repo_data['pushed_at'] are # wildy misrepresentative of the last time someone made a commit to the # repo. updated_date_text = commits_data[0]['commit']['author']['date'] updated_date = dateutil.parser.parse(updated_date_text) # To get the creation date, we use the heuristic of min(repo creation # date, 100th latest commit date). We do this because repo creation # date can be later than the date of the first commit, which is # particularly pervasive for vim-scripts repos. Fortunately, most # vim-scripts repos don't have more than 100 commits, and also we get # creation_date for vim-scripts repos when scraping vim.org. early_commit_date_text = commits_data[-1]['commit']['author']['date'] early_commit_date = dateutil.parser.parse(early_commit_date_text) created_date = min(repo_created_date, early_commit_date) else: updated_date = dateutil.parser.parse(repo_data['updated_at']) created_date = repo_created_date # Fetch owner info to get author name. owner_login = repo_data['owner']['login'] _, owner_data = get_api_page('users/%s' % owner_login) author = owner_data.get('name') or owner_data.get('login') return { 'created_at': util.to_timestamp(created_date), 'updated_at': util.to_timestamp(updated_date), 'vimorg_id': None, 'github_repo_id': str(repo_data['id']), 'github_owner': owner, 'github_repo_name': repo_name, 'github_author': author, 'github_stars': repo_data['watchers'], 'github_homepage': homepage, 'github_short_desc': repo_data['description'], 'github_readme': readme, 'github_readme_filename': readme_filename, } def _add_submission_data(plugin, submission): """Updates a plugin with info from a user submission.""" if (plugin.get('category', 'uncategorized') == 'uncategorized' and submission.get('category', 'uncategorized') != 'uncategorized'): plugin['category'] = submission['category'] if not plugin.get('tags') and submission.get('tags'): db.plugins.update_tags(plugin, submission['tags']) # TODO(david): Simplify/break-up this function. def scrape_plugin_repos(num): """Scrapes the num plugin repos that have been least recently scraped.""" MIN_FORK_USERS = 3 query = r.table('plugin_github_repos').filter({'is_blacklisted': False}) # We don't want to scrape forks that not many people use. query = query.filter(r.not_((r.row['is_fork'] == True) & ( # NOQA r.row['plugin_manager_users'] < MIN_FORK_USERS)), default=True) # Only scrape repos that don't redirect to other ones (probably renamed). query = query.filter(r.row['redirects_to'] == '') # We scrape vim-scripts separately using the batch /users/:user/repos call query = query.filter(r.row['owner'] != 'vim-scripts') query = query.order_by('last_scraped_at').limit(num) repos = query.run(r_conn()) # TODO(david): Print stats at the end: # successfully scraped, # not found, # # redirects, etc. for repo in repos: repo_name = repo['repo_name'] repo_owner = repo['owner'] # Print w/o newline. print " scraping %s/%s ..." % (repo_owner, repo_name), sys.stdout.flush() # Attempt to fetch data about the plugin. res, repo_data = get_api_page('repos/%s/%s' % (repo_owner, repo_name)) # If the API call 404s, then see if the repo has been renamed by # checking for a redirect in a non-API call. if res.status_code == 404: res = requests.head('https://github.com/%s/%s' % ( repo_owner, repo_name)) if res.status_code == 301: location = res.headers.get('location') valid_repo_url = re.compile("^https://github.com/[^/]+/[^/]+") if not valid_repo_url.match(location): print 'redirects to invalid GitHub repo URL: %s' % location continue _, redirect_owner, redirect_repo_name = location.rsplit('/', 2) repo['redirects_to'] = '%s/%s' % (redirect_owner, redirect_repo_name) # Make sure we insert the new location of the repo, which will # be scraped in a future run. PluginGithubRepos.upsert_with_owner_repo({ 'owner': redirect_owner, 'repo_name': redirect_repo_name, # TODO(david): Should append to a list 'redirects_from': ('%s/%s' % (repo_owner, repo_name)), }) # And now change the GitHub repo location of the plugin that # the old repo location pointed to query = r.table('plugins').get_all( [repo_owner, repo_name], index='github_owner_repo') db_plugin = db.util.get_first(query) if db_plugin: db_plugin['github_owner'] = redirect_owner db_plugin['github_repo_name'] = redirect_repo_name db.plugins.insert(db_plugin, conflict='replace') print 'redirects to %s/%s.' % (redirect_owner, redirect_repo_name) else: # TODO(david): Insert some metadata in the github repo that # this is not found print 'not found.' plugin_data = None else: plugin_data = get_plugin_data(repo_owner, repo_name, repo_data) repo['repo_data'] = repo_data repo['repo_id'] = str(repo_data.get('id', repo['repo_id'])) PluginGithubRepos.log_scrape(repo) # If this is a fork, note it and ensure we know about original repo. if repo_data.get('fork'): repo['is_fork'] = True PluginGithubRepos.upsert_with_owner_repo({ 'owner': repo_data['parent']['owner']['login'], 'repo_name': repo_data['parent']['name'], }) PluginGithubRepos.upsert_with_owner_repo(repo) # For most cases we don't care about forked repos, unless the forked # repo is used by others. if repo_data.get('fork') and ( repo.get('plugin_manager_users', 0) < MIN_FORK_USERS): print 'skipping fork of %s' % repo_data['parent']['full_name'] continue if plugin_data: # Insert the number of plugin manager users across all names/owners # of this repo. # TODO(david): Try to also use repo_id for this (but not all repos # have it), or look at multiple levels of redirects. plugin_manager_users = repo.get('plugin_manager_users', 0) other_repos = r.table('plugin_github_repos').get_all( '%s/%s' % (repo_owner, repo_name), index='redirects_to').run(r_conn()) for other_repo in other_repos: if other_repo['id'] == repo['id']: continue plugin_manager_users += other_repo.get( 'plugin_manager_users', 0) plugin_data['github_bundles'] = plugin_manager_users if repo.get('from_submission'): _add_submission_data(plugin_data, repo['from_submission']) db.plugins.add_scraped_data(plugin_data, repo, submission=repo.get('from_submission')) print 'done.' def scrape_vim_scripts_repos(num): """Scrape at least num repos from the vim-scripts GitHub user.""" _, user_data = get_api_page('users/vim-scripts') # Calculate how many pages of repositories there are. num_repos = user_data['public_repos'] num_pages = (num_repos + 99) / 100 # ceil(num_repos / 100.0) num_inserted = 0 num_scraped = 0 for page in range(1, num_pages + 1): if num_scraped >= num: break _, repos_data = get_api_page('users/vim-scripts/repos', page=page) for repo_data in repos_data: # Scrape plugin-relevant data. We don't need much info from # vim-scripts because it's a mirror of vim.org. # vimorg_id is required for associating with the corresponding # vim.org-scraped plugin. vimorg_id = util.get_vimorg_id_from_url(repo_data['homepage']) assert vimorg_id repo_name = repo_data['name'] repo = PluginGithubRepos.get_with_owner_repo('vim-scripts', repo_name) num_bundles = repo['plugin_manager_users'] if repo else 0 db.plugins.add_scraped_data({ 'vimorg_id': vimorg_id, 'github_vim_scripts_repo_name': repo_name, 'github_vim_scripts_stars': repo_data['watchers'], 'github_vim_scripts_bundles': num_bundles, }) # Also add to our index of known GitHub plugins. inserted = PluginGithubRepos.upsert_with_owner_repo({ 'owner': 'vim-scripts', 'repo_name': repo_name, 'repo_data': repo_data, }) num_inserted += int(inserted) num_scraped += 1 print ' scraped %s repos' % num_scraped print "\nScraped %s vim-scripts GitHub repos; inserted %s new ones." % ( num_scraped, num_inserted) ############################################################################### # Code to scrape GitHub dotfiles repos to extract plugins used. # TODO(david): Write up a blurb on how all of this works. # The following are names of repos and locations where we search for # Vundle/Pathogen plugin references. They were found by manually going through # search results of # github.com/search?q=scrooloose%2Fsyntastic&ref=searchresults&type=Code # TODO(david): It would be good to add "vim", "settings", and "config", but # there are too many false positives that need to be filtered out. _DOTFILE_REPO_NAMES = ['vimrc', 'vimfile', 'vim-file', 'vimconf', 'vim-conf', 'dotvim', 'vim-setting', 'myvim', 'dotfile', 'config-files', 'plug'] _VIMRC_FILENAMES = ['vimrc', 'bundle', 'vundle.vim', 'vundles.vim', 'vim.config', 'plugins.vim', 'plug.vim'] _VIM_DIRECTORIES = ['vim', 'config', 'home'] # Regexes for extracting plugin references from dotfile repos. See # github_test.py for examples of what they match and don't. # Matches eg. "Bundle 'gmarik/vundle'" or "Bundle 'taglist'" # [^\S\n] means whitespace except newline: stackoverflow.com/a/3469155/392426 _PLUGIN_REGEX_TEMPLATE = r'^[^\S\n]*%s[^\S\n]*[\'"]([^\'"\n\r]+)[\'"]' _VUNDLE_PLUGIN_REGEX = re.compile(_PLUGIN_REGEX_TEMPLATE % '(?:Bundle|Plugin)', re.MULTILINE) _NEOBUNDLE_PLUGIN_REGEX = re.compile(_PLUGIN_REGEX_TEMPLATE % '(?:NeoBundle|NeoBundleFetch|NeoBundleLazy)', re.MULTILINE) _VIMPLUG_PLUGIN_REGEX = re.compile(_PLUGIN_REGEX_TEMPLATE % '(?:Plug)', re.MULTILINE) # Extracts owner and repo name from a bundle spec -- a git repo URI, implicity # github.com if host not given. # eg. ('gmarik', 'vundle') or (None, 'taglist') _BUNDLE_OWNER_REPO_REGEX = re.compile( r'(?:([^:\'"/]+)/)?([^\'"\n\r/]+?)(?:\.git|/)?$') # Matches a .gitmodules section heading that's likely of a Pathogen bundle. _SUBMODULE_IS_BUNDLE_REGEX = re.compile(r'submodule.+(bundles?)|(vim.plugins).+', re.IGNORECASE) def _extract_bundles_with_regex(file_contents, bundle_plugin_regex): """Extracts plugin repos from contents of a file using a given regex. Arguments: file_contents: A string of the contents of the file to search through. bundle_plugin_regex: A regex to use to match all lines referencing plugin repos. Returns: A list of tuples (owner, repo_name) referencing GitHub repos. """ bundles = bundle_plugin_regex.findall(file_contents) if not bundles: return [] plugin_repos = [] for bundle in bundles: match = _BUNDLE_OWNER_REPO_REGEX.search(bundle) if match and len(match.groups()) == 2: owner, repo = match.groups() owner = 'vim-scripts' if owner is None else owner plugin_repos.append((owner, repo)) else: logging.error(colored( 'Failed to extract owner/repo from "%s"' % bundle, 'red')) return plugin_repos def _extract_bundle_repos_from_file(file_contents): """Extracts Vundle Neobundle and Plug plugins from contents of a vimrc-like file. Arguments: file_contents: A string of the contents of the file to search through. Returns: A named tuple with a key for each plugin manager. Each value is a list of tuples of the form (owner, repo_name) referencing a GitHub repo. """ vundle_repos = _extract_bundles_with_regex(file_contents, _VUNDLE_PLUGIN_REGEX) neobundle_repos = _extract_bundles_with_regex(file_contents, _NEOBUNDLE_PLUGIN_REGEX) vimplug_repos = _extract_bundles_with_regex(file_contents, _VIMPLUG_PLUGIN_REGEX) return ReposByManager(vundle_repos, neobundle_repos, vimplug_repos) def _extract_bundle_repos_from_dir(dir_data, depth=0): """Extracts vim plugin bundles from a GitHub dotfiles directory. Will recursively search through directories likely to contain vim config files (lots of people seem to like putting their vim config in a "vim" subdirectory). Arguments: dir_data: API response from GitHub of a directory or repo's contents. depth: Current recursion depth (0 = top-level repo). Returns: A tuple (Vundle repos, NeoBundle repos). Each element is a list of tuples of the form (owner, repo_name) referencing a GitHub repo. """ # First, look for top-level files that are likely to contain references to # vim plugins. files = [f for f in dir_data if f['type'] == 'file'] for file_data in files: filename = file_data['name'].lower() if 'gvimrc' in filename: continue if not any((f in filename) for f in _VIMRC_FILENAMES): continue # Ok, there could potentially be references to vim plugins here. _, file_contents = get_api_page(file_data['url']) contents_decoded = base64.b64decode(file_contents.get('content', '')) repos_by_manger = _extract_bundle_repos_from_file(contents_decoded) if any(repos_by_manger): return repos_by_manger if depth >= 3: return ReposByManager([], [], []) # No plugins were found, so look in subdirectories that could potentially # have vim config files. dirs = [f for f in dir_data if f['type'] == 'dir'] for dir_data in dirs: filename = dir_data['name'].lower() if not any((f in filename) for f in _VIM_DIRECTORIES): continue # Ok, there could potentially be vim config files in here. _, subdir_data = get_api_page(dir_data['url']) repos_by_manger = _extract_bundle_repos_from_dir(subdir_data, depth + 1) if any(repos_by_manger): return repos_by_manger return ReposByManager([], [], []) def _extract_pathogen_repos(repo_contents): """Extracts Pathogen plugin repos from a GitHub dotfiles repository. This currently just extracts plugins if they are checked in as submodules, because it's easy to extract repo URLs from the .gitmodules file but difficult to determine the repo URL of a plugin that's just cloned in. Arguments: repo_contents: API response from GitHub of a directory or repo's contents. Returns: A list of tuples (owner, repo_name) referencing GitHub repos. """ gitmodules = filter(lambda f: f['type'] == 'file' and f['name'].lower() == '.gitmodules', repo_contents) if not gitmodules: return [] _, file_contents = get_api_page(gitmodules[0]['url']) contents_decoded = base64.b64decode(file_contents.get('content', '')) contents_unicode = unicode(contents_decoded, 'utf-8', errors='ignore') parser = configparser.ConfigParser(interpolation=None) try: parser.read_string(unicode(contents_unicode)) except configparser.Error: logging.exception(colored( 'Could not parse the .gitmodules file of %s.' % file_contents['url'], 'red')) return [] plugin_repos = [] for section, config in parser.items(): if not _SUBMODULE_IS_BUNDLE_REGEX.search(section): continue if not config.get('url'): continue # The parser sometimes over-parses the value url = config['url'].split('\n')[0] match = _BUNDLE_OWNER_REPO_REGEX.search(url) if match and len(match.groups()) == 2 and match.group(1): owner, repo = match.groups() plugin_repos.append((owner, repo)) else: logging.error(colored( 'Failed to extract owner/repo from "%s"' % url, 'red')) return plugin_repos def _get_plugin_repos_from_dotfiles(repo_data, search_keyword): """Search for references to vim plugin repos from a dotfiles repository, and insert them into DB. Arguments: repo_data: API response from GitHub of a repository. search_keyword: The keyword used that found this repo. """ owner_repo = repo_data['full_name'] # Print w/o newline. print " scraping %s ..." % owner_repo, sys.stdout.flush() res, contents_data = get_api_page('repos/%s/contents' % owner_repo) if res.status_code == 404 or not isinstance(contents_data, list): print "contents not found" return repos_by_manager = _extract_bundle_repos_from_dir(contents_data) vundle_repos = repos_by_manager.vundle neobundle_repos = repos_by_manager.neobundle vimplug_repos = repos_by_manager.vimplug pathogen_repos = _extract_pathogen_repos(contents_data) owner, repo_name = owner_repo.split('/') db_repo = DotfilesGithubRepos.get_with_owner_repo(owner, repo_name) pushed_date = dateutil.parser.parse(repo_data['pushed_at']) def stringify_repo(owner_repo_tuple): return '/'.join(owner_repo_tuple) repo = dict(db_repo or {}, **{ 'owner': owner, 'pushed_at': util.to_timestamp(pushed_date), 'repo_name': repo_name, 'search_keyword': search_keyword, 'vundle_repos': map(stringify_repo, vundle_repos), 'neobundle_repos': map(stringify_repo, neobundle_repos), 'vimplug_repos': map(stringify_repo, vimplug_repos), 'pathogen_repos': map(stringify_repo, pathogen_repos), }) DotfilesGithubRepos.log_scrape(repo) DotfilesGithubRepos.upsert_with_owner_repo(repo) print 'found %s Vundles, %s NeoBundles, %s VimPlugs, %s Pathogens' % ( len(vundle_repos), len(neobundle_repos), len(vimplug_repos), len(pathogen_repos)) return { 'vundle_repos_count': len(vundle_repos), 'neobundle_repos_count': len(neobundle_repos), 'vimplug_repos_count': len(vimplug_repos), 'pathogen_repos_count': len(pathogen_repos), } def scrape_dotfiles_repos(num): """Scrape at most num dotfiles repos from GitHub for references to Vim plugin repos. We perform a search on GitHub repositories that are likely to contain Vundle and Pathogen bundles instead of a code search matching Vundle/Pathogen commands (which has higher precision and recall), because GitHub's API requires code search to be limited to a user/repo/organization. :( """ # Earliest allowable updated date to start scraping from (so we won't be # scraping repos that were last pushed before this date). EARLIEST_PUSHED_DATE = datetime.datetime(2013, 1, 1) repos_scraped = 0 scraped_counter = collections.Counter() for repo_name in _DOTFILE_REPO_NAMES: latest_repo = DotfilesGithubRepos.get_latest_with_keyword(repo_name) if latest_repo and latest_repo.get('pushed_at'): last_pushed_date = max(datetime.datetime.utcfromtimestamp( latest_repo['pushed_at']), EARLIEST_PUSHED_DATE) else: last_pushed_date = EARLIEST_PUSHED_DATE # We're going to scrape all repos updated after the latest updated repo # in our DB, starting with the least recently updated. This maintains # the invariant that we have scraped all repos pushed before the latest # push date (and after EARLIEST_PUSHED_DATE). while True: start_date_iso = last_pushed_date.isoformat() search_params = { 'q': '%s in:name pushed:>%s' % (repo_name, start_date_iso), 'sort': 'updated', 'order': 'asc', } per_page = 100 response, search_data = get_api_page('search/repositories', query_params=search_params, page=1, per_page=per_page) items = search_data.get('items', []) for item in items: try: stats = _get_plugin_repos_from_dotfiles(item, repo_name) except ApiRateLimitExceededError: logging.exception('API rate limit exceeded.') return repos_scraped, scraped_counter except Exception: logging.exception('Error scraping dotfiles repo %s' % item['full_name']) stats = {} scraped_counter.update(stats) # If we've scraped the number repos desired, we can quit. repos_scraped += 1 if repos_scraped >= num: return repos_scraped, scraped_counter # If we're about to exceed the rate limit (20 requests / min), # sleep until the limit resets. maybe_wait_until_api_limit_resets(response.headers) # If we've scraped all repos with this name, move on to the next # repo name. if len(items) < per_page: break else: last_pushed_date = dateutil.parser.parse( items[-1]['pushed_at']) return repos_scraped, scraped_counter
# Copyright (c) 2001-2008 Twisted Matrix Laboratories. # See LICENSE for details. """ Test methods in twisted.internet.threads and reactor thread APIs. """ import sys, os, time from twisted.trial import unittest from twisted.internet import reactor, defer, interfaces, threads, protocol, error from twisted.python import failure, threadable, log, threadpool class ReactorThreadsTestCase(unittest.TestCase): """ Tests for the reactor threading API. """ def test_suggestThreadPoolSize(self): """ Try to change maximum number of threads. """ reactor.suggestThreadPoolSize(34) self.assertEquals(reactor.threadpool.max, 34) reactor.suggestThreadPoolSize(4) self.assertEquals(reactor.threadpool.max, 4) def _waitForThread(self): """ The reactor's threadpool is only available when the reactor is running, so to have a sane behavior during the tests we make a dummy L{threads.deferToThread} call. """ return threads.deferToThread(time.sleep, 0) def test_callInThread(self): """ Test callInThread functionality: set a C{threading.Event}, and check that it's not in the main thread. """ def cb(ign): waiter = threading.Event() result = [] def threadedFunc(): result.append(threadable.isInIOThread()) waiter.set() reactor.callInThread(threadedFunc) waiter.wait(120) if not waiter.isSet(): self.fail("Timed out waiting for event.") else: self.assertEquals(result, [False]) return self._waitForThread().addCallback(cb) def test_callFromThread(self): """ Test callFromThread functionality: from the main thread, and from another thread. """ def cb(ign): firedByReactorThread = defer.Deferred() firedByOtherThread = defer.Deferred() def threadedFunc(): reactor.callFromThread(firedByOtherThread.callback, None) reactor.callInThread(threadedFunc) reactor.callFromThread(firedByReactorThread.callback, None) return defer.DeferredList( [firedByReactorThread, firedByOtherThread], fireOnOneErrback=True) return self._waitForThread().addCallback(cb) def test_wakerOverflow(self): """ Try to make an overflow on the reactor waker using callFromThread. """ def cb(ign): self.failure = None waiter = threading.Event() def threadedFunction(): # Hopefully a hundred thousand queued calls is enough to # trigger the error condition for i in xrange(100000): try: reactor.callFromThread(lambda: None) except: self.failure = failure.Failure() break waiter.set() reactor.callInThread(threadedFunction) waiter.wait(120) if not waiter.isSet(): self.fail("Timed out waiting for event") if self.failure is not None: return defer.fail(self.failure) return self._waitForThread().addCallback(cb) def _testBlockingCallFromThread(self, reactorFunc): """ Utility method to test L{threads.blockingCallFromThread}. """ waiter = threading.Event() results = [] errors = [] def cb1(ign): def threadedFunc(): try: r = threads.blockingCallFromThread(reactor, reactorFunc) except Exception, e: errors.append(e) else: results.append(r) waiter.set() reactor.callInThread(threadedFunc) return threads.deferToThread(waiter.wait, self.getTimeout()) def cb2(ign): if not waiter.isSet(): self.fail("Timed out waiting for event") return results, errors return self._waitForThread().addCallback(cb1).addBoth(cb2) def test_blockingCallFromThread(self): """ Test blockingCallFromThread facility: create a thread, call a function in the reactor using L{threads.blockingCallFromThread}, and verify the result returned. """ def reactorFunc(): return defer.succeed("foo") def cb(res): self.assertEquals(res[0][0], "foo") return self._testBlockingCallFromThread(reactorFunc).addCallback(cb) def test_asyncBlockingCallFromThread(self): """ Test blockingCallFromThread as above, but be sure the resulting Deferred is not already fired. """ def reactorFunc(): d = defer.Deferred() reactor.callLater(0.1, d.callback, "egg") return d def cb(res): self.assertEquals(res[0][0], "egg") return self._testBlockingCallFromThread(reactorFunc).addCallback(cb) def test_errorBlockingCallFromThread(self): """ Test error report for blockingCallFromThread. """ def reactorFunc(): return defer.fail(RuntimeError("bar")) def cb(res): self.assert_(isinstance(res[1][0], RuntimeError)) self.assertEquals(res[1][0].args[0], "bar") return self._testBlockingCallFromThread(reactorFunc).addCallback(cb) def test_asyncErrorBlockingCallFromThread(self): """ Test error report for blockingCallFromThread as above, but be sure the resulting Deferred is not already fired. """ def reactorFunc(): d = defer.Deferred() reactor.callLater(0.1, d.errback, RuntimeError("spam")) return d def cb(res): self.assert_(isinstance(res[1][0], RuntimeError)) self.assertEquals(res[1][0].args[0], "spam") return self._testBlockingCallFromThread(reactorFunc).addCallback(cb) class Counter: index = 0 problem = 0 def add(self): """A non thread-safe method.""" next = self.index + 1 # another thread could jump in here and increment self.index on us if next != self.index + 1: self.problem = 1 raise ValueError # or here, same issue but we wouldn't catch it. We'd overwrite # their results, and the index will have lost a count. If # several threads get in here, we will actually make the count # go backwards when we overwrite it. self.index = next class DeferredResultTestCase(unittest.TestCase): """ Test twisted.internet.threads. """ def setUp(self): reactor.suggestThreadPoolSize(8) def tearDown(self): reactor.suggestThreadPoolSize(0) def testCallMultiple(self): L = [] N = 10 d = defer.Deferred() def finished(): self.assertEquals(L, range(N)) d.callback(None) threads.callMultipleInThread([ (L.append, (i,), {}) for i in xrange(N) ] + [(reactor.callFromThread, (finished,), {})]) return d def test_deferredResult(self): """ L{threads.deferToThread} executes the function passed, and correctly handles the positional and keyword arguments given. """ d = threads.deferToThread(lambda x, y=5: x + y, 3, y=4) d.addCallback(self.assertEquals, 7) return d def test_deferredFailure(self): """ Check that L{threads.deferToThread} return a failure object with an appropriate exception instance when the called function raises an exception. """ class NewError(Exception): pass def raiseError(): raise NewError() d = threads.deferToThread(raiseError) return self.assertFailure(d, NewError) def test_deferredFailureAfterSuccess(self): """ Check that a successfull L{threads.deferToThread} followed by a one that raises an exception correctly result as a failure. """ # set up a condition that causes cReactor to hang. These conditions # can also be set by other tests when the full test suite is run in # alphabetical order (test_flow.FlowTest.testThreaded followed by # test_internet.ReactorCoreTestCase.testStop, to be precise). By # setting them up explicitly here, we can reproduce the hang in a # single precise test case instead of depending upon side effects of # other tests. # # alas, this test appears to flunk the default reactor too d = threads.deferToThread(lambda: None) d.addCallback(lambda ign: threads.deferToThread(lambda: 1/0)) return self.assertFailure(d, ZeroDivisionError) class DeferToThreadPoolTestCase(unittest.TestCase): """ Test L{twisted.internet.threads.deferToThreadPool}. """ def setUp(self): self.tp = threadpool.ThreadPool(0, 8) self.tp.start() def tearDown(self): self.tp.stop() def test_deferredResult(self): """ L{threads.deferToThreadPool} executes the function passed, and correctly handles the positional and keyword arguments given. """ d = threads.deferToThreadPool(reactor, self.tp, lambda x, y=5: x + y, 3, y=4) d.addCallback(self.assertEqual, 7) return d def test_deferredFailure(self): """ Check that L{threads.deferToThreadPool} return a failure object with an appropriate exception instance when the called function raises an exception. """ class NewError(Exception): pass def raiseError(): raise NewError() d = threads.deferToThreadPool(reactor, self.tp, raiseError) return self.assertFailure(d, NewError) _callBeforeStartupProgram = """ import time import %(reactor)s %(reactor)s.install() from twisted.internet import reactor def threadedCall(): print 'threaded call' reactor.callInThread(threadedCall) # Spin very briefly to try to give the thread a chance to run, if it # is going to. Is there a better way to achieve this behavior? for i in xrange(100): time.sleep(0.0) """ class ThreadStartupProcessProtocol(protocol.ProcessProtocol): def __init__(self, finished): self.finished = finished self.out = [] self.err = [] def outReceived(self, out): self.out.append(out) def errReceived(self, err): self.err.append(err) def processEnded(self, reason): self.finished.callback((self.out, self.err, reason)) class StartupBehaviorTestCase(unittest.TestCase): """ Test cases for the behavior of the reactor threadpool near startup boundary conditions. In particular, this asserts that no threaded calls are attempted until the reactor starts up, that calls attempted before it starts are in fact executed once it has started, and that in both cases, the reactor properly cleans itself up (which is tested for somewhat implicitly, by requiring a child process be able to exit, something it cannot do unless the threadpool has been properly torn down). """ def testCallBeforeStartupUnexecuted(self): progname = self.mktemp() progfile = file(progname, 'w') progfile.write(_callBeforeStartupProgram % {'reactor': reactor.__module__}) progfile.close() def programFinished((out, err, reason)): if reason.check(error.ProcessTerminated): self.fail("Process did not exit cleanly (out: %s err: %s)" % (out, err)) if err: log.msg("Unexpected output on standard error: %s" % (err,)) self.failIf(out, "Expected no output, instead received:\n%s" % (out,)) def programTimeout(err): err.trap(error.TimeoutError) proto.signalProcess('KILL') return err env = os.environ.copy() env['PYTHONPATH'] = os.pathsep.join(sys.path) d = defer.Deferred().addCallbacks(programFinished, programTimeout) proto = ThreadStartupProcessProtocol(d) reactor.spawnProcess(proto, sys.executable, ('python', progname), env) return d if interfaces.IReactorThreads(reactor, None) is None: for cls in (ReactorThreadsTestCase, DeferredResultTestCase, StartupBehaviorTestCase): cls.skip = "No thread support, nothing to test here." else: import threading if interfaces.IReactorProcess(reactor, None) is None: for cls in (StartupBehaviorTestCase,): cls.skip = "No process support, cannot run subprocess thread tests."
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UFlow augmentation. This library contains various augmentation functions. """ # pylint:disable=g-importing-member from functools import partial from math import pi import gin import gin.tf import tensorflow as tf from tensorflow_addons import image as tfa_image from uflow import uflow_utils def apply_augmentation(images, flow=None, mask=None, crop_height=640, crop_width=640): """Applies photometric and geometric augmentations to images and flow.""" # ensure sequence length of two, to be able to unstack images images = tf.ensure_shape(images, (2, None, None, None)) # apply geometric augmentation functions images, flow, mask = geometric_augmentation( images, flow, mask, crop_height, crop_width) # apply photometric augmentation functions images_aug = photometric_augmentation(images) # return flow and mask if available if flow is not None: return images_aug, images, flow, mask return images_aug, images @gin.configurable def photometric_augmentation(images, augment_color_swap=True, augment_hue_shift=True, augment_saturation=False, augment_brightness=False, augment_contrast=False, augment_gaussian_noise=False, augment_brightness_individual=False, augment_contrast_individual=False, max_delta_hue=0.5, min_bound_saturation=0.8, max_bound_saturation=1.2, max_delta_brightness=0.1, min_bound_contrast=0.8, max_bound_contrast=1.2, min_bound_gaussian_noise=0.0, max_bound_gaussian_noise=0.02, max_delta_brightness_individual=0.02, min_bound_contrast_individual=0.95, max_bound_contrast_individual=1.05): """Applies photometric augmentations to an image pair.""" # Randomly permute colors by rolling and reversing. # This covers all permutations. if augment_color_swap: r = tf.random.uniform([], maxval=3, dtype=tf.int32) images = tf.roll(images, r, axis=-1) r = tf.equal(tf.random.uniform([], maxval=2, dtype=tf.int32), 1) images = tf.cond(pred=r, true_fn=lambda: tf.reverse(images, axis=[-1]), false_fn=lambda: images) if augment_hue_shift: images = tf.image.random_hue(images, max_delta_hue) if augment_saturation: images = tf.image.random_saturation( images, min_bound_saturation, max_bound_saturation) if augment_brightness: images = tf.image.random_brightness(images, max_delta_brightness) if augment_contrast: images = tf.image.random_contrast( images, min_bound_contrast, max_bound_contrast) if augment_gaussian_noise: sigma = tf.random.uniform([], minval=min_bound_gaussian_noise, maxval=max_bound_gaussian_noise, dtype=tf.float32) noise = tf.random.normal( tf.shape(input=images), stddev=sigma, dtype=tf.float32) images = images + noise # perform relative photometric augmentation (individually per image) image_1, image_2 = tf.unstack(images) if augment_brightness_individual: image_1 = tf.image.random_contrast( image_1, min_bound_contrast_individual, max_bound_contrast_individual) image_2 = tf.image.random_contrast( image_2, min_bound_contrast_individual, max_bound_contrast_individual) if augment_contrast_individual: image_1 = tf.image.random_brightness( image_1, max_delta_brightness_individual) image_2 = tf.image.random_brightness( image_2, max_delta_brightness_individual) # crop values to ensure values in [0,1] (some augmentations can violate this) image_1 = tf.clip_by_value(image_1, 0.0, 1.0) image_2 = tf.clip_by_value(image_2, 0.0, 1.0) return tf.stack([image_1, image_2]) @gin.configurable def geometric_augmentation(images, flow=None, mask=None, crop_height=640, crop_width=640, augment_flip_left_right=False, augment_flip_up_down=False, augment_scale=False, augment_relative_scale=False, augment_rotation=False, augment_relative_rotation=False, augment_crop_offset=False, min_bound_scale=0.9, max_bound_scale=1.5, min_bound_relative_scale=0.95, max_bound_relative_scale=1.05, max_rotation_deg=15, max_relative_rotation_deg=3, max_relative_crop_offset=5): """Apply geometric augmentations to an image pair and corresponding flow.""" # apply geometric augmentation if augment_flip_left_right: images, flow, mask = random_flip_left_right(images, flow, mask) if augment_flip_up_down: images, flow, mask = random_flip_up_down(images, flow, mask) if augment_scale: images, flow, mask = random_scale( images, flow, mask, min_scale=min_bound_scale, max_scale=max_bound_scale) if augment_relative_scale: images, flow, mask = random_scale_second( images, flow, mask, min_scale=min_bound_relative_scale, max_scale=max_bound_relative_scale) if augment_rotation: images, flow, mask = random_rotation( images, flow, mask, max_rotation=max_rotation_deg, not_empty_crop=True) if augment_relative_rotation: images, flow, mask = random_rotation_second( images, flow, mask, max_rotation=max_relative_rotation_deg, not_empty_crop=True) # always perform random cropping if not augment_crop_offset: max_relative_crop_offset = 0 images, flow, mask = random_crop( images, flow, mask, crop_height, crop_width, relative_offset=max_relative_crop_offset) # return flow and mask if available return images, flow, mask def _center_crop(images, height, width): """Performs a center crop with the given heights and width.""" # ensure height, width to be int height = tf.cast(height, tf.int32) width = tf.cast(width, tf.int32) # get current size images_shape = tf.shape(images) current_height = images_shape[-3] current_width = images_shape[-2] # compute required offset offset_height = tf.cast((current_height - height) / 2, tf.int32) offset_width = tf.cast((current_width - width) / 2, tf.int32) # perform the crop images = tf.image.crop_to_bounding_box( images, offset_height, offset_width, height, width) return images def _positions_center_origin(height, width): """Returns image coordinates where the origin at the image center.""" h = tf.range(0.0, height, 1) w = tf.range(0.0, width, 1) center_h = tf.cast(height, tf.float32) / 2.0 - 0.5 center_w = tf.cast(width, tf.float32) / 2.0 - 0.5 return tf.stack(tf.meshgrid(h - center_h, w - center_w, indexing='ij'), -1) def rotate(img, angle_radian, is_flow, mask=None): """Rotate an image or flow field.""" def _rotate(img, mask=None): if angle_radian == 0.0: # early return if no resizing is required if mask is not None: return img, mask else: return img if mask is not None: # multiply with mask, to ensure non-valid locations are zero img = tf.math.multiply(img, mask) # rotate img img_rotated = tfa_image.rotate( img, angle_radian, interpolation='BILINEAR') # rotate mask (will serve as normalization weights) mask_rotated = tfa_image.rotate( mask, angle_radian, interpolation='BILINEAR') # normalize sparse flow field and mask img_rotated = tf.math.multiply( img_rotated, tf.math.reciprocal_no_nan(mask_rotated)) mask_rotated = tf.math.multiply( mask_rotated, tf.math.reciprocal_no_nan(mask_rotated)) else: img_rotated = tfa_image.rotate( img, angle_radian, interpolation='BILINEAR') if is_flow: # If image is a flow image, scale flow values to be consistent with the # rotation. cos = tf.math.cos(angle_radian) sin = tf.math.sin(angle_radian) rotation_matrix = tf.reshape([cos, sin, -sin, cos], [2, 2]) img_rotated = tf.linalg.matmul(img_rotated, rotation_matrix) if mask is not None: return img_rotated, mask_rotated return img_rotated # Apply resizing at the right shape. shape = img.shape.as_list() if len(shape) == 3: if mask is not None: img_rotated, mask_rotated = _rotate(img[None], mask[None]) return img_rotated[0], mask_rotated[0] else: return _rotate(img[None])[0] elif len(shape) == 4: # Input at the right shape. return _rotate(img, mask) else: raise ValueError('Cannot rotate an image of shape', shape) def random_flip_left_right(images, flow=None, mask=None): """Performs a random left/right flip.""" # 50/50 chance perform_flip = tf.equal(tf.random.uniform([], maxval=2, dtype=tf.int32), 1) # apply flip images = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(images, axis=[-2]), false_fn=lambda: images) if flow is not None: flow = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(flow, axis=[-2]), false_fn=lambda: flow) mask = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(mask, axis=[-2]), false_fn=lambda: mask) # correct sign of flow sign_correction = tf.reshape([1.0, -1.0], [1, 1, 2]) flow = tf.cond(pred=perform_flip, true_fn=lambda: flow * sign_correction, false_fn=lambda: flow) return images, flow, mask def random_flip_up_down(images, flow=None, mask=None): """Performs a random up/down flip.""" # 50/50 chance perform_flip = tf.equal(tf.random.uniform([], maxval=2, dtype=tf.int32), 1) # apply flip images = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(images, axis=[-3]), false_fn=lambda: images) if flow is not None: flow = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(flow, axis=[-3]), false_fn=lambda: flow) mask = tf.cond(pred=perform_flip, true_fn=lambda: tf.reverse(mask, axis=[-3]), false_fn=lambda: mask) # correct sign of flow sign_correction = tf.reshape([-1.0, 1.0], [1, 1, 2]) flow = tf.cond(pred=perform_flip, true_fn=lambda: flow * sign_correction, false_fn=lambda: flow) return images, flow, mask def random_scale(images, flow=None, mask=None, min_scale=1.0, max_scale=1.0): """Performs a random scaling in the given range.""" # choose a random scale factor and compute new resolution orig_height = tf.shape(images)[-3] orig_width = tf.shape(images)[-2] scale = tf.random.uniform([], minval=min_scale, maxval=max_scale, dtype=tf.float32) new_height = tf.cast( tf.math.ceil(tf.cast(orig_height, tf.float32) * scale), tf.int32) new_width = tf.cast( tf.math.ceil(tf.cast(orig_width, tf.float32) * scale), tf.int32) # rescale the images (and flow) images = uflow_utils.resize(images, new_height, new_width, is_flow=False) if flow is not None: flow, mask = uflow_utils.resize( flow, new_height, new_width, is_flow=True, mask=mask) return images, flow, mask def random_scale_second( images, flow=None, mask=None, min_scale=1.0, max_scale=1.0): """Performs a random scaling on the second image in the given range.""" # choose a random scale factor and compute new resolution orig_height = tf.shape(images)[-3] orig_width = tf.shape(images)[-2] scale = tf.random.uniform( [], minval=min_scale, maxval=max_scale, dtype=tf.float32) new_height = tf.cast( tf.math.ceil(tf.cast(orig_height, tf.float32) * scale), tf.int32) new_width = tf.cast( tf.math.ceil(tf.cast(orig_width, tf.float32) * scale), tf.int32) # rescale only the second image image_1, image_2 = tf.unstack(images) image_2 = uflow_utils.resize(image_2, new_height, new_width, is_flow=False) # crop either first or second image to have matching dimensions if scale < 1.0: image_1 = _center_crop(image_1, new_height, new_width) else: image_2 = _center_crop(image_2, orig_height, orig_width) images = tf.stack([image_1, image_2]) if flow is not None: # get current locations (with the origin in the image center) positions = _positions_center_origin(orig_height, orig_width) # compute scale factor of the actual new image resolution scale_flow_h = tf.cast(new_height, tf.float32) / tf.cast( orig_height, tf.float32) scale_flow_w = tf.cast(new_width, tf.float32) / tf.cast( orig_width, tf.float32) scale_flow = tf.stack([scale_flow_h, scale_flow_w]) # compute augmented flow (multiply by mask to zero invalid flow locations) flow = ((positions + flow) * scale_flow - positions) * mask if scale < 1.0: # in case we downsample the image we crop the reference image to keep the # same shape flow = _center_crop(flow, new_height, new_width) mask = _center_crop(mask, new_height, new_width) return images, flow, mask def random_crop(images, flow=None, mask=None, crop_height=None, crop_width=None, relative_offset=0): """Performs a random crop with the given height and width.""" # early return if crop_height or crop_width is not specified if crop_height is None or crop_width is None: return images, flow, mask orig_height = tf.shape(images)[-3] orig_width = tf.shape(images)[-2] # check if crop size fits the image size scale = 1.0 ratio = tf.cast(crop_height, tf.float32) / tf.cast(orig_height, tf.float32) scale = tf.math.maximum(scale, ratio) ratio = tf.cast(crop_width, tf.float32) / tf.cast(orig_width, tf.float32) scale = tf.math.maximum(scale, ratio) # compute minimum required hight new_height = tf.cast( tf.math.ceil(tf.cast(orig_height, tf.float32) * scale), tf.int32) new_width = tf.cast( tf.math.ceil(tf.cast(orig_width, tf.float32) * scale), tf.int32) # perform resize (scales with 1 if not required) images = uflow_utils.resize(images, new_height, new_width, is_flow=False) # compute joint offset max_offset_h = new_height - tf.cast(crop_height, dtype=tf.int32) max_offset_w = new_width - tf.cast(crop_width, dtype=tf.int32) joint_offset_h = tf.random.uniform([], maxval=max_offset_h+1, dtype=tf.int32) joint_offset_w = tf.random.uniform([], maxval=max_offset_w+1, dtype=tf.int32) # compute relative offset min_relative_offset_h = tf.math.maximum( joint_offset_h - relative_offset, 0) max_relative_offset_h = tf.math.minimum( joint_offset_h + relative_offset, max_offset_h) min_relative_offset_w = tf.math.maximum( joint_offset_w - relative_offset, 0) max_relative_offset_w = tf.math.minimum( joint_offset_w + relative_offset, max_offset_w) relative_offset_h = tf.random.uniform( [], minval=min_relative_offset_h, maxval=max_relative_offset_h+1, dtype=tf.int32) relative_offset_w = tf.random.uniform( [], minval=min_relative_offset_w, maxval=max_relative_offset_w+1, dtype=tf.int32) # crop both images image_1, image_2 = tf.unstack(images) image_1 = tf.image.crop_to_bounding_box( image_1, offset_height=joint_offset_h, offset_width=joint_offset_w, target_height=crop_height, target_width=crop_width) image_2 = tf.image.crop_to_bounding_box( image_2, offset_height=relative_offset_h, offset_width=relative_offset_w, target_height=crop_height, target_width=crop_width) images = tf.stack([image_1, image_2]) if flow is not None: # perform resize (scales with 1 if not required) flow, mask = uflow_utils.resize( flow, new_height, new_width, is_flow=True, mask=mask) # crop flow and mask flow = tf.image.crop_to_bounding_box( flow, offset_height=joint_offset_h, offset_width=joint_offset_w, target_height=crop_height, target_width=crop_width) mask = tf.image.crop_to_bounding_box( mask, offset_height=joint_offset_h, offset_width=joint_offset_w, target_height=crop_height, target_width=crop_width) # correct flow for relative shift (/crop) flow_delta = tf.stack( [tf.cast(relative_offset_h - joint_offset_h, tf.float32), tf.cast(relative_offset_w - joint_offset_w, tf.float32)]) flow = (flow - flow_delta) * mask return images, flow, mask def random_rotation( images, flow=None, mask=None, max_rotation=10, not_empty_crop=True): """Performs a random rotation with the specified maximum rotation.""" angle_radian = tf.random.uniform( [], minval=-max_rotation, maxval=max_rotation, dtype=tf.float32) * pi / 180.0 images = rotate(images, angle_radian, is_flow=False, mask=None) if not_empty_crop: orig_height = tf.shape(images)[-3] orig_width = tf.shape(images)[-2] # introduce abbreviations for shorter notation cos = tf.math.cos(angle_radian % pi) sin = tf.math.sin(angle_radian % pi) h = tf.cast(orig_height, tf.float32) w = tf.cast(orig_width, tf.float32) # compute required scale factor scale = tf.cond(tf.math.less(angle_radian % pi, pi/2.0), lambda: tf.math.maximum((w/h)*sin+cos, (h/w)*sin+cos), lambda: tf.math.maximum((w/h)*sin-cos, (h/w)*sin-cos)) new_height = tf.math.floor(h / scale) new_width = tf.math.floor(w / scale) # crop image again to original size offset_height = tf.cast((h - new_height) / 2, tf.int32) offset_width = tf.cast((w - new_width) / 2, tf.int32) images = tf.image.crop_to_bounding_box( images, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) if flow is not None: flow, mask = rotate(flow, angle_radian, is_flow=True, mask=mask) if not_empty_crop: # crop flow and mask again to original size flow = tf.image.crop_to_bounding_box( flow, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) mask = tf.image.crop_to_bounding_box( mask, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) return images, flow, mask def random_rotation_second( images, flow=None, mask=None, max_rotation=10, not_empty_crop=True): """Performs a random rotation on only the second image.""" angle_radian = tf.random.uniform( [], minval=-max_rotation, maxval=max_rotation, dtype=tf.float32)*pi/180.0 image_1, image_2 = tf.unstack(images) image_2 = rotate(image_2, angle_radian, is_flow=False, mask=None) images = tf.stack([image_1, image_2]) if not_empty_crop: orig_height = tf.shape(images)[-3] orig_width = tf.shape(images)[-2] # introduce abbreviations for shorter notation cos = tf.math.cos(angle_radian % pi) sin = tf.math.sin(angle_radian % pi) h = tf.cast(orig_height, tf.float32) w = tf.cast(orig_width, tf.float32) # compute required scale factor scale = tf.cond(tf.math.less(angle_radian % pi, pi/2.0), lambda: tf.math.maximum((w/h)*sin+cos, (h/w)*sin+cos), lambda: tf.math.maximum((w/h)*sin-cos, (h/w)*sin-cos)) new_height = tf.math.floor(h / scale) new_width = tf.math.floor(w / scale) # crop image again to original size offset_height = tf.cast((h-new_height)/2, tf.int32) offset_width = tf.cast((w-new_width)/2, tf.int32) images = tf.image.crop_to_bounding_box( images, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) if flow is not None: # get current locations (with the origin in the image center) positions = _positions_center_origin(orig_height, orig_width) # compute augmented flow (multiply by mask to zero invalid flow locations) cos = tf.math.cos(angle_radian) sin = tf.math.sin(angle_radian) rotation_matrix = tf.reshape([cos, sin, -sin, cos], [2, 2]) flow = (tf.linalg.matmul((positions+flow), rotation_matrix)-positions)*mask if not_empty_crop: # crop flow and mask again to original size flow = tf.image.crop_to_bounding_box( flow, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) mask = tf.image.crop_to_bounding_box( mask, offset_height=offset_height, offset_width=offset_width, target_height=tf.cast(new_height, tf.int32), target_width=tf.cast(new_width, tf.int32)) return images, flow, mask def build_selfsup_transformations(num_flow_levels=3, seq_len=2, crop_height=0, crop_width=0, max_shift_height=0, max_shift_width=0, resize=True): """Apply augmentations to a list of student images.""" def transform(images, i_or_ij, is_flow, crop_height, crop_width, shift_heights, shift_widths, resize): # Expect (i, j) for flows and masks and i for images. if isinstance(i_or_ij, int): i = i_or_ij # Flow needs i and j. assert not is_flow else: i, j = i_or_ij if is_flow: shifts = tf.stack([shift_heights, shift_widths], axis=-1) flow_offset = shifts[i] - shifts[j] images = images + tf.cast(flow_offset, tf.float32) shift_height = shift_heights[i] shift_width = shift_widths[i] height = images.shape[-3] width = images.shape[-2] # Assert that the cropped bounding box does not go out of the image frame. op1 = tf.compat.v1.assert_greater_equal(crop_height + shift_height, 0) op2 = tf.compat.v1.assert_greater_equal(crop_width + shift_width, 0) op3 = tf.compat.v1.assert_less_equal(height - crop_height + shift_height, height) op4 = tf.compat.v1.assert_less_equal(width - crop_width + shift_width, width) op5 = tf.compat.v1.assert_greater( height, 2 * crop_height, message='Image height is too small for cropping.') op6 = tf.compat.v1.assert_greater( width, 2 * crop_width, message='Image width is too small for cropping.') with tf.control_dependencies([op1, op2, op3, op4, op5, op6]): images = images[:, crop_height + shift_height:height - crop_height + shift_height, crop_width + shift_width:width - crop_width + shift_width, :] if resize: images = uflow_utils.resize(images, height, width, is_flow=is_flow) images.set_shape((images.shape[0], height, width, images.shape[3])) else: images.set_shape((images.shape[0], height - 2 * crop_height, width - 2 * crop_width, images.shape[3])) return images max_divisor = 2**(num_flow_levels - 1) assert crop_height % max_divisor == 0 assert crop_width % max_divisor == 0 assert max_shift_height <= crop_height assert max_shift_width <= crop_width # Compute random shifts for different images in a sequence. if max_shift_height > 0 or max_shift_width > 0: max_rand = max_shift_height // max_divisor shift_height_at_highest_level = tf.random.uniform([seq_len], minval=-max_rand, maxval=max_rand + 1, dtype=tf.int32) shift_heights = shift_height_at_highest_level * max_divisor max_rand = max_shift_height // max_divisor shift_width_at_highest_level = tf.random.uniform([seq_len], minval=-max_rand, maxval=max_rand + 1, dtype=tf.int32) shift_widths = shift_width_at_highest_level * max_divisor transform_fns = [] for level in range(num_flow_levels): if max_shift_height == 0 and max_shift_width == 0: shift_heights = [0, 0] shift_widths = [0, 0] else: shift_heights = shift_heights // (2**level) shift_widths = shift_widths // (2**level) fn = partial( transform, crop_height=crop_height // (2**level), crop_width=crop_width // (2**level), shift_heights=shift_heights, shift_widths=shift_widths, resize=resize) transform_fns.append(fn) assert len(transform_fns) == num_flow_levels return transform_fns
#!/usr/bin/python3 ## Autocompletion plugin # @package hive_autocomplete_plugin # @author Vincent Yahna # # Plugin that autocompletes # parameters, object names, elements # attributes, and enum values for HIVE files. # Assumption: Each tag has less than 9000 characters # (for optimization purposes) import sublime, sublime_plugin from .Module_DataDictionary import * from .Module_XMLTagIterator import * ## Dictionary containing mappings of objects to parameters and # mapping of elements to subelements and attributes. # Autocompletion and help info plugins store a reference to this object DATA_DICTIONARY = None #cannot initialize dictionary at plugin load time #Option names and default values settings_file = 'hive.sublime-settings' ##the sublime selector that autocompletion should #occur in. text.xml is for xml files AUTOCOMPLETION_SELECTOR = "text.xml" #enums ## context for object types OBJECT_TYPE_CONTEXT = 1 #context for object type autocompletion ## context for object types with no quotes typed OBJECT_TYPE_CONTEXT_NO_QUOTES = 2 ## context for param names PARAM_NAME_CONTEXT = 3 ## context for param names with no quotes typed PARAM_NAME_CONTEXT_NO_QUOTES = 4 ## context for param values PARAM_VALUE_CONTEXT = 5 ## context for param values with no quotes typed PARAM_VALUE_CONTEXT_NO_QUOTES = 6 ## context for an element ELEMENT_CONTEXT = 7 ## context for an attribute ATTRIBUTE_CONTEXT = 8 ## context for an attribute value other # than object type, param name, and param value ATTRIBUTE_VALUE_CONTEXT = 9 ## context for an attribute value with no quotes typed ATTRIBUTE_VALUE_CONTEXT_NO_QUOTES = 10 ## context for an object type where colons # are not used as a word separator # but are present in the prefix OBJECT_TYPE_COLON_CONTEXT = 11 ## context for an object type where colons # are not used as a word separator # but are present in the prefix # and no quotes have been typed OBJECT_TYPE_COLON_CONTEXT_NO_QUOTES = 12 CONTEXT_NAMES = [ "None", "OBJECT_TYPE_CONTEXT", "OBJECT_TYPE_CONTEXT_NO_QUOTES", "PARAM_NAME_CONTEXT", "PARAM_NAME_CONTEXT_NO_QUOTES", "PARAM_VALUE_CONTEXT", "PARAM_VALUE_CONTEXT_NO_QUOTES", "ELEMENT_CONTEXT", "ATTRIBUTE_CONTEXT", "ATTRIBUTE_VALUE_CONTEXT", "ATTRIBUTE_VALUE_CONTEXT_NO_QUOTES", "OBJECT_TYPE_COLON_CONTEXT", "OBJECT_TYPE_COLON_CONTEXT_NO_QUOTES" ] # Check if we are running on a Windows operating system os_is_windows = os.name == 'nt' # The default name of the clang-format executable default_binary = 'HiveAPIQuery.exe' if os_is_windows else 'HiveAPIQuery' def loadSettings(): global queryBinary global inhibitComp settings = sublime.load_settings(settings_file) inhibitComp = settings.get("inhibit_other_completions", True) queryBinary = settings.get("hive_api_query", default_binary) # This function taken from Stack Overflow response: # http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python def which(program): def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None # Display input panel to update the path. def updateQueryPath(): loadSettings() w = sublime.active_window() w.show_input_panel("Path to HiveAPIQuery: ", queryBinary, setQueryPath, None, None) def setQueryPath(path): settings = sublime.load_settings(settings_file) settings.set("hive_api_query", path) sublime.save_settings(settings_file) loadSettings() def checkQueryBinary(): # Make sure we could find the API Binary if which(queryBinary) == None: # Ask if they want to set it if sublime.ok_cancel_dialog("HiveAPIQuery binary was not found. Do you want to set a new path?"): updateQueryPath() ## Once sublime has finished loading, the dictionary can be initialized # with the information in the settings file. # Sublime executes plugin_loaded once the api is ready to use def plugin_loaded(): global DATA_DICTIONARY loadSettings() checkQueryBinary() DATA_DICTIONARY = DataDictionary(queryBinary) #///////////////////////////////////////////////GLOBAL METHODS///////////////////////////////////////////////////////////////////// ## Method for determining whether the given tokens form the beginning of a parameter tag. # @param tokens - a list of strings # @returns True if the first two tokens are '<' and 'param' # and False otherwise def isParamTag(tokens): return len(tokens) >= 2 and tokens[0] == '<' and tokens[1] == 'param' ## Method for determining whether the given tokens form the beginning of an object tag. # @param tokens - a list of strings # @returns True if the first two tokens are '<' and 'object' # and False otherwise def isObjectTag(tokens): return len(tokens) >=2 and tokens[0] == '<' and tokens[1] == 'object' ## Method that gives the element of the tag # at the location. # @param view - a view object # @param location - an integer for indexing into the view # @returns a string or None if no element is found def getCurrentElementType(view, location): index = location -1 #initialize index to location left of cursor #get range from current cursor to either the beginning of file or a tag < while(index >= 0 and view.substr(index) != '<' and view.substr(index) != '>'): index -= 1 if(index < 0 or view.substr(index) != '<'): return None #the cursor is not in an XML tag currentRegion = sublime.Region(index, location) currentTag = view.substr(currentRegion) tokens = currentTag.replace('=', ' = ').replace('<', ' < ').replace('\"', ' \" ').split() if(len(tokens) <= 1): return None return tokens[1] ## method that gets the value of the current param element's name attribute. # This method does not check whether the current tag is a param tag; # It just gets the value of a name attribute if available. # @param view - a sublime view object # @param location - an integer index into the view # @returns a string or None def getCurrentParamName(view, location): index = location -1 #initialize index to location left of cursor #get range from current cursor to either the beginning of file or a tag < while(index >= 0 and view.substr(index) != '<' and view.substr(index) != '>'): index -= 1 if(index < 0 or view.substr(index) != '<'): return None #the cursor is not in an XML tag currentRegion = sublime.Region(index, location) currentTag = view.substr(currentRegion) tokens = currentTag.replace('=', ' = ').replace('<', ' < ').replace('\"', ' \" ').split() index = 0 while(index < len(tokens) and tokens[index] != 'name'): index = index + 1 if(index + 3 < len(tokens)): return tokens[index + 3] else: return None ## Method that determines the context of the current cursor # @param view - a sublime view object # @param location - index for cursor location in the view # @param prefix - the current word being typed, which should # be removed from the list of tokens # @returns an enum value def getContext(view, location, prefix=""): index = location -1 #initialize index to location left of cursor charCount = 0 #get range from current cursor to either the beginning of file or a tag < while(index >= 0 and view.substr(index) != '<' and view.substr(index) != '>' and charCount < 9000): index -= 1 #for optimization, stop looking for < and > after charCount reaches 9000 charCount += 1 if(view.substr(index) != '<'): return 0 #the cursor is not in an XML tag currentRegion = sublime.Region(index, location) #currentTag may be an incomplete tag (no '>' ) currentTag = view.substr(currentRegion) tokens = currentTag.replace('=', ' = ').replace('<', ' < ').replace('\"', ' \" ').split() # print("Prefix [%s] CurrTag [%s], Tokens[%s]" % (prefix, currentTag, tokens)) context = 0 colonsNotWordSeparator = False #user might have begun typing the word to be autocompleted, so remove word if so if(len(tokens) != 0 and tokens[-1] == prefix): tokens.pop() #if the prefix is not found in tokens because of colons not being a word separator #then mark the colonsNotWordSeparator flag and pop the last token which ends with prefix elif(len(tokens) != 0 and view.substr(location - len(prefix)-1) == ':' and tokens[-1].endswith(prefix)): tokens.pop() colonsNotWordSeparator = True if(len(tokens) >= 5 and tokens[-1] == '\"' and tokens[-2] == '=' and tokens[-3] == 'type' and isObjectTag(tokens)): if(colonsNotWordSeparator): context = OBJECT_TYPE_COLON_CONTEXT else: context = OBJECT_TYPE_CONTEXT elif(len(tokens) >=4 and tokens[-1] == '=' and tokens[-2] == 'type' and isObjectTag(tokens)): if(colonsNotWordSeparator): context = OBJECT_TYPE_COLON_CONTEXT_NO_QUOTES else: context = OBJECT_TYPE_CONTEXT_NO_QUOTES elif(len(tokens) >= 5 and tokens[-1] == '\"' and tokens[-2] == '=' and tokens[-3] == 'name' and isParamTag(tokens)): context = PARAM_NAME_CONTEXT elif(len(tokens) >=4 and tokens[-1] == '=' and tokens[-2] == 'name' and isParamTag(tokens)): context = PARAM_NAME_CONTEXT_NO_QUOTES elif(len(tokens) >= 3 and tokens[-1] == '"' and tokens[-2] == '=' and tokens[-3] == 'value' and isParamTag(tokens)): context = PARAM_VALUE_CONTEXT elif(len(tokens) >= 2 and tokens[-1] == '=' and tokens[-2] == 'value' and isParamTag(tokens)): context = PARAM_VALUE_CONTEXT_NO_QUOTES elif(tokens.count('\"') % 2 == 1): #odd number means inside of a quote #This is here to protect against lists of values #for attributes. context = ATTRIBUTE_VALUE_CONTEXT elif(len(tokens) >= 1 and tokens[-1] == '<'): context = ELEMENT_CONTEXT elif(len(tokens) >= 3 and tokens[0] == '<' and tokens[-1] == '\"' and tokens[-2] == '='): context = ATTRIBUTE_VALUE_CONTEXT elif(len(tokens) >= 2 and tokens[0] == '<' and tokens[-1] != '='): context = ATTRIBUTE_CONTEXT elif(len(tokens) >= 2 and tokens[0] == '<' and tokens[-1] == '='): context = ATTRIBUTE_VALUE_CONTEXT_NO_QUOTES return context ## returns the object type as a string # that a parameter belongs to # or none if no object tag is found. # Does not check if the tag is an object tag, # it simply looks for an attribute called type. # @param view - a sublime view object # @param location -integer index into view # @returns a string def getParentObjectName(view, location): tags = XMLTagIterator(view, location) parentTag = tags.getParent() if(parentTag is not None): tokens = view.substr(parentTag).replace('=', ' = ').replace('<', ' < ').replace('\"', ' \" ').replace('>', ' > ').split() else: return None #no parent found #get the object type i = 0 while(i < len(tokens) and tokens[i] != 'type'): i = i + 1 if(i + 3 < len(tokens)): return tokens[i + 3] #+ 3 to account for = and " after type else: return None #object type is not contained in the tag ## Get the element type of the tag governing # the current tag. # Works similarly to getParentObjectName. # Each tag before the current one is assessed # to determine where the parent tag is. # @returns a string of the element name # or 'root' if there is no governing tag (i.e. the root tag) # or None if the tag found has less than 2 tokens (which shouldn't be possible) def getParentTagType(view, location): tags = XMLTagIterator(view, location) parentTag = tags.getParent() if(parentTag is not None): tokens = view.substr(parentTag).replace('=', ' = ').replace('<', ' < ').replace('\"', ' \" ').replace('>', ' > ').split() else: return 'root' #no parent found if(len(tokens) >= 2) : return tokens[1] #return element (might return > for an incomplete tag) else: return None #tokens has less than two items (this shouldn't be possible) ## A method that finds the prefix for an object type # when colons are word separators. # @param view - a sublime view object # @param location - the location in the view where the # object type ends # @param suffix - the current part of the object type that # is being typed (the prefix for autocompletion) # @returns a string def getObjectTypePrefix(view, location, suffix): index = location - 1 while(index >= 0 and view.substr(index) != '=' and view.substr(index) != '\"'): index -=1 return view.substr(sublime.Region(index + 1, location)).rstrip(suffix) ## Filters the object completions list based on # a prefix and trims the words based on the prefix. # @param completions - a list of trigger-completions pairs. # Should not include quotation marks. # @param prefix - a string def filterObjectTypeCompletions(completions, prefix): i = len(completions) - 1 while(i >= 0): if(completions[i][0].startswith(prefix)): completions[i][0] = completions[i][0].replace(prefix,"",1) completions[i][1] = completions[i][1].replace(prefix,"",1) else: completions.pop(i) i -= 1 #//////////////////////////END GLOBAL METHODS///////////////////////////////////////////////////////////////////////////////////////////////////////////////// ## An auto complete plugin # that gives context specfic completions for hive files. # All other completions are inhibited while using this plugin class HiveAutoComplete(sublime_plugin.EventListener): ## Constructor def __init__(self): ## reference to global DATA_DICTIONARY self.DD = DATA_DICTIONARY #DATA_DICTIONARY will be None at initialization time ## Method that feeds Sublime's autocomplete lists # returns a list of trigger-completion pairs # and possibly a flag preventing sublime from # adding its own completions. # Only the first cursor is checked def on_query_completions(self, view, prefix, locations): # we delay loading the dictionary until here because # we need to make sure sublime is done loading # and has executed plugin_loaded if(self.DD is None): self.DD = DATA_DICTIONARY items = [] settings = view.settings() inXML = view.score_selector(locations[0], AUTOCOMPLETION_SELECTOR) #impede plugin if not in an xml file if not inXML: return items context = getContext(view, locations[0], prefix) # print("Context = %s(%d)" % (CONTEXT_NAMES[context], context)) if self.DD is None: return items if(context == OBJECT_TYPE_CONTEXT): items = self.DD.getObjectCompletions() elif(context == OBJECT_TYPE_CONTEXT_NO_QUOTES): items = self.DD.getObjectCompletions(addQuotes=True) elif(context == PARAM_NAME_CONTEXT): items = self.DD.getParamCompletions(getParentObjectName(view, locations[0])) elif(context == PARAM_NAME_CONTEXT_NO_QUOTES): items = self.DD.getParamCompletions(getParentObjectName(view, locations[0]), addQuotes=True) elif(context == ELEMENT_CONTEXT): items = self.DD.getElementCompletions(getParentTagType(view, locations[0])) elif(context == ATTRIBUTE_CONTEXT): #get element type of current tag element = getCurrentElementType(view, locations[0]) items = self.DD.getAttributeCompletions(element) elif(context == PARAM_VALUE_CONTEXT): valPrefix = getObjectTypePrefix(view, locations[0], prefix) paramName = getCurrentParamName(view, locations[0]) parent = getParentObjectName(view, locations[0]) items = self.DD.getParamValueCompletions(paramName, parent, valPrefix) elif(context == PARAM_VALUE_CONTEXT_NO_QUOTES): valPrefix = getObjectTypePrefix(view, locations[0], prefix) # Force add the quotes view.run_command("add_quotes", {"end": locations[0] +1, "start": locations[0] - (len(valPrefix) + len(prefix)) } ) #move the cursor back before the last quote view.run_command("move", {"by": "characters", "forward": False}) paramName = getCurrentParamName(view, locations[0]) parent = getParentObjectName(view, locations[0]) items = self.DD.getParamValueCompletions(paramName, parent, valPrefix, addQuotes=True) elif(context == ATTRIBUTE_VALUE_CONTEXT): pass elif(context ==ATTRIBUTE_VALUE_CONTEXT_NO_QUOTES): pass elif(context == OBJECT_TYPE_COLON_CONTEXT or context == OBJECT_TYPE_COLON_CONTEXT_NO_QUOTES): objPrefix = getObjectTypePrefix(view, locations[0], prefix) if(context == OBJECT_TYPE_COLON_CONTEXT_NO_QUOTES): #quotes must manually be inserted view.run_command("add_quotes", {"end": locations[0] +1, "start": locations[0] - (len(objPrefix) + len(prefix)) } ) #move the cursor back before the last quote view.run_command("move", {"by": "characters", "forward": False}) if(objPrefix.endswith("::")): items = self.DD.getObjectCompletions(prefix=objPrefix) # filterObjectTypeCompletions(items, objPrefix) items.sort() # If there are no items, or we are not preventin other auto complets from being shown # then just return the items. if len(items) == 0 or not inhibitComp: return items; return items # return (items, sublime.INHIBIT_WORD_COMPLETIONS) ## Plugin that adds quotes at two points class AddQuotesCommand(sublime_plugin.TextCommand): ## method executed when the plugin runs. # @param edit - a sublime edit object # @param start - the first place to add quotes # @param end - the second place to add quotes def run(self, edit, start, end): self.view.insert(edit, start, '\"') self.view.insert(edit, end, '\"') # Called to set the path to the HiveAPIQuery binary class HiveApiQuerySetPathCommand(sublime_plugin.WindowCommand): def run(self): updateQueryPath()
import happyforms from django import forms from django.db.models import Q from django.conf import settings from django.contrib.auth.models import User from django.core.exceptions import ValidationError from django.core.validators import MinValueValidator from django.utils.timezone import make_naive, now from product_details import product_details from django_statsd.clients import statsd from pytz import common_timezones, timezone from remo.base.datetimewidgets import SplitSelectDateTimeWidget from remo.base.templatetags.helpers import get_full_name from remo.base.utils import get_date, get_object_or_none, validate_datetime from remo.events.models import EventMetric from remo.events.templatetags.helpers import get_event_link from remo.profiles.models import FunctionalArea from remo.reports import ACTIVITY_POST_EVENT_METRICS from remo.reports.models import Activity, Campaign, NGReport from remo.remozilla.models import Bug from models import Event, EventComment, EventMetricOutcome class MinBaseInlineFormSet(forms.models.BaseInlineFormSet): """Inline form-set support for minimum number of filled forms.""" def __init__(self, *args, **kwargs): """Init formset with minimum number of 2 forms.""" self.min_forms = kwargs.pop('min_forms', 2) super(MinBaseInlineFormSet, self).__init__(*args, **kwargs) def _count_filled_forms(self): """Count valid, filled forms, with delete == False.""" valid_forms = 0 for form in self.forms: if (form.is_valid() and len(form.cleaned_data)): if form.cleaned_data['DELETE'] is False: valid_forms += 1 return valid_forms def clean(self): """Make sure that we have at least min_forms filled.""" if (self.min_forms > self._count_filled_forms()): raise ValidationError('You must fill at least %d forms' % self.min_forms) return super(MinBaseInlineFormSet, self).clean() class BaseEventMetricsFormset(MinBaseInlineFormSet): """Inline form-set support for event metrics.""" def __init__(self, *args, **kwargs): self.clone = kwargs.pop('clone', None) super(BaseEventMetricsFormset, self).__init__(*args, **kwargs) def clean(self): """Check for unique metrics inside formset.""" super(BaseEventMetricsFormset, self).clean() if any(self.errors): # Do not check unless are fields are valid return # Disable adding new forms in post event form. if self.instance.is_past_event and self.instance.has_new_metrics and not self.clone: if self.extra_forms and len(self.extra_forms) > 2: error_msg = 'You cannot add new metrics in a past event.' raise ValidationError(error_msg) if [key for key in self.cleaned_data if key.get('DELETE')]: error_msg = 'You cannot delete metrics in a past event.' raise ValidationError(error_msg) metrics = [] field_error_msg = 'This metric has already been selected.' for i, form in enumerate(self.forms): if 'metric' in form.cleaned_data: metric = form.cleaned_data['metric'] if metric in metrics: self.errors[i]['metric'] = field_error_msg metrics.append(metric) def save_existing(self, form, instance, commit=True): """Override save_existing on cloned event to save metrics""" if self.clone: form.instance.id = None return self.save_new(form) return super(BaseEventMetricsFormset, self).save_existing(form, instance, commit) def save(self, *args, **kwargs): """Override save on cloned events.""" if self.clone: for form in self.initial_forms: form.changed_data.append('id') return super(BaseEventMetricsFormset, self).save() class EventMetricsForm(happyforms.ModelForm): """EventMetrics form.""" metric = forms.ModelChoiceField(queryset=EventMetric.active_objects.all(), empty_label='Please select an event metric.') expected_outcome = forms.IntegerField(error_messages={'invalid': 'Please enter a number.'}) class Meta: model = EventMetricOutcome fields = ('metric', 'expected_outcome') def __init__(self, *args, **kwargs): """Dynamically initialize form.""" self.clone = kwargs.pop('clone', None) super(EventMetricsForm, self).__init__(*args, **kwargs) if self.instance.id: # Dynamic queryset for active metrics in saved events current_metrics = self.instance.event.metrics.all() metrics_query = Q(active=True) | Q(pk__in=current_metrics) qs = EventMetric.objects.filter(metrics_query) self.fields['metric'].queryset = qs def save(self, *args, **kwargs): """Override save method to handle metrics cloning.""" if self.clone: self.instance.pk = None self.instance.outcome = None self.instance.details = '' return super(EventMetricsForm, self).save(*args, **kwargs) class PostEventMetricsForm(EventMetricsForm): """PostEventMetrics form.""" outcome = forms.IntegerField(error_messages={'invalid': 'Please enter a number.'}) class Meta(EventMetricsForm.Meta): fields = ('metric', 'expected_outcome', 'outcome', 'details') def __init__(self, *args, **kwargs): """Make expected outcome readonly.""" super(PostEventMetricsForm, self).__init__(*args, **kwargs) if self.instance.expected_outcome: self.fields['expected_outcome'].widget.attrs['readonly'] = True class EventForm(happyforms.ModelForm): """Form of an event.""" categories = forms.ChoiceField(choices=[]) country = forms.ChoiceField( choices=[], error_messages={'required': 'Please select one option from the list.'}) swag_bug_form = forms.CharField(required=False) budget_bug_form = forms.CharField(required=False) estimated_attendance = forms.IntegerField( validators=[MinValueValidator(1)], error_messages={'invalid': 'Please enter a number.'}) owner = forms.IntegerField(required=False) timezone = forms.ChoiceField(choices=zip(common_timezones, common_timezones)) start = forms.DateTimeField(required=False) end = forms.DateTimeField(required=False) campaign = forms.ModelChoiceField(queryset=Campaign.active_objects.all()) def __init__(self, *args, **kwargs): """Initialize form. Dynamically set choices for country field. """ if 'editable_owner' in kwargs: self.editable_owner = kwargs['editable_owner'] del(kwargs['editable_owner']) self.clone = kwargs.pop('clone', None) self.user = kwargs.pop('user', None) super(EventForm, self).__init__(*args, **kwargs) # Dynamic categories field. categories_query = FunctionalArea.objects.filter(Q(active=True)) if self.instance.id and self.instance.categories.all(): categories_query |= categories_query.filter(Q(id__in=self.instance.categories.all())) initial_category = self.instance.categories.all()[0] self.fields['categories'].initial = initial_category.id categories = ([('', 'Please select a functional area')] + list(categories_query.values_list('id', 'name'))) self.fields['categories'].choices = categories # Intiatives/Campaign field self.fields['campaign'].empty_label = 'Please select an initiative.' # Dynamic countries field. countries = product_details.get_regions('en').values() countries.sort() country_choices = ([('', 'Country or Region')] + [(country, country) for country in countries]) self.fields['country'].choices = country_choices # Dynamic owner field. initial_user = self.instance.owner if self.clone: initial_user = self.user if self.editable_owner: self.fields['owner_form'] = forms.ModelChoiceField( queryset=User.objects.filter(userprofile__registration_complete=True, groups__name='Rep').order_by('first_name'), empty_label='Owner', initial=initial_user.id) else: self.fields['owner_form'] = forms.CharField(required=False, initial=get_full_name(initial_user), widget=forms.TextInput( attrs={'readonly': 'readonly', 'class': 'input-text big'})) instance = self.instance # Dynamically set the year portion of the datetime widget start_year = min(getattr(self.instance.start, 'year', now().year), now().year - 1) end_year = min(getattr(self.instance.end, 'year', now().year), now().year - 1) self.fields['start_form'] = forms.DateTimeField(widget=SplitSelectDateTimeWidget( years=range(start_year, start_year + 10), minute_step=5), validators=[validate_datetime]) self.fields['end_form'] = forms.DateTimeField(widget=SplitSelectDateTimeWidget( years=range(end_year, end_year + 10), minute_step=5), validators=[validate_datetime]) # Make times local to venue if self.instance.start: start = make_naive(instance.local_start, timezone(instance.timezone)) self.fields['start_form'].initial = start if self.instance.end: end = make_naive(instance.local_end, timezone(instance.timezone)) self.fields['end_form'].initial = end # Use of intermediate fields to translate between bug.id and # bug.bug_id if instance.budget_bug: self.fields['budget_bug_form'].initial = instance.budget_bug.bug_id if instance.swag_bug: self.fields['swag_bug_form'].initial = instance.swag_bug.bug_id def clean(self): """Clean form.""" super(EventForm, self).clean() cdata = self.cleaned_data cdata['budget_bug'] = cdata.get('budget_bug_form', None) cdata['swag_bug'] = cdata.get('swag_bug_form', None) if self.editable_owner: cdata['owner'] = cdata.get('owner_form', None) else: cdata['owner'] = self.instance.owner # Check if keys exists in cleaned data. if not all(k in cdata for k in ('start_form', 'end_form')): raise ValidationError('Please correct the form errors.') # Set timezone t = timezone(cdata['timezone']) start = make_naive(cdata['start_form'], timezone(settings.TIME_ZONE)) cdata['start'] = t.localize(start) end = make_naive(cdata['end_form'], timezone(settings.TIME_ZONE)) cdata['end'] = t.localize(end) # Do not allow cloning with a past date if cdata['start'] < now() and self.clone: msg = 'Start date in a cloned event cannot be in the past.' self._errors['start_form'] = self.error_class([msg]) if cdata['start'] >= cdata['end']: msg = 'Start date should come before end date.' self._errors['start_form'] = self.error_class([msg]) # Check that there is a cateogry selected if not cdata.get('categories'): msg = 'You need to select one functional area for this event.' self._errors['categories'] = self.error_class([msg]) return cdata def _clean_bug(self, bug_id): """Get or create Bug with bug_id and component. """ if bug_id == '': return None try: bug_id = int(bug_id) except ValueError: raise ValidationError('Please provide a number') bug, created = Bug.objects.get_or_create(bug_id=bug_id) return bug def clean_categories(self): category_id = self.cleaned_data['categories'] return get_object_or_none(FunctionalArea, id=category_id) def clean_swag_bug_form(self): """Clean swag_bug_form field.""" data = self.cleaned_data['swag_bug_form'] return self._clean_bug(data) def clean_budget_bug_form(self): """Clean budget_bug_form field.""" data = self.cleaned_data['budget_bug_form'] return self._clean_bug(data) def save(self, commit=True): """Override save method for custom functionality.""" event = super(EventForm, self).save(commit=False) if self.clone: event.pk = None event.has_new_metrics = True event.actual_attendance = None event.times_edited = 0 event.owner = self.user elif self.instance.pk: # It's not either a clone event nor a new one, # please increment number of event edits event.times_edited += 1 event.save() # Clear all relations in order to force only one field event.categories.clear() event.categories.add(self.cleaned_data['categories']) return event class Meta: model = Event fields = ['name', 'start', 'end', 'venue', 'region', 'owner', 'country', 'city', 'lat', 'lon', 'external_link', 'planning_pad_url', 'timezone', 'estimated_attendance', 'description', 'extra_content', 'hashtag', 'mozilla_event', 'swag_bug', 'budget_bug', 'campaign'] widgets = {'lat': forms.HiddenInput(attrs={'id': 'lat'}), 'lon': forms.HiddenInput(attrs={'id': 'lon'}), 'start': SplitSelectDateTimeWidget(), 'end': SplitSelectDateTimeWidget()} class PostEventForm(EventForm): """Post event form.""" actual_attendance = forms.IntegerField(validators=[MinValueValidator(1)], error_messages={'invalid': 'Please enter a number.'}) def save(self, *args, **kwargs): """Create post event data report.""" event = super(PostEventForm, self).save() activity = Activity.objects.get(name=ACTIVITY_POST_EVENT_METRICS) reports = NGReport.objects.filter(event=event, activity=activity) if not reports: up = event.owner.userprofile attrs = { 'activity': activity, 'report_date': get_date(), 'longitude': up.lon, 'latitude': up.lat, 'location': '%s, %s, %s' % (up.city, up.region, up.country), 'link': get_event_link(event), 'is_passive': True, 'event': event, 'user': event.owner } report = NGReport.objects.create(**attrs) report.functional_areas.add(*event.categories.all()) statsd.incr('reports.create_passive_post_event_metrics') return event class Meta(EventForm.Meta): fields = EventForm.Meta.fields + ['actual_attendance'] def __init__(self, *args, **kwargs): """Make estimated attendance readonly.""" super(PostEventForm, self).__init__(*args, **kwargs) self.fields['estimated_attendance'].widget.attrs['readonly'] = True class EventCommentForm(happyforms.ModelForm): """Form of an event comment.""" class Meta: model = EventComment fields = ['comment'] class EventMetricForm(happyforms.ModelForm): """Form for EventMetric Model.""" class Meta: model = EventMetric fields = ['name', 'active']
# -*- coding: utf-8 -*- """Writer for setup configuration and script files.""" from __future__ import unicode_literals import glob import io import os import textwrap from l2tdevtools.dependency_writers import interface class SetupCfgWriter(interface.DependencyFileWriter): """Setup configuration file writer.""" PATH = 'setup.cfg' _DOC_FILES = ('ACKNOWLEDGEMENTS', 'AUTHORS', 'LICENSE', 'README') _PROJECTS_WITH_SDIST_TEST_DATA = ( 'dfvfs', 'dfwinreg', 'plaso') _TEMPLATE_DIRECTORY = os.path.join('data', 'templates', 'setup.cfg') def _GenerateFromTemplate(self, template_filename, template_mappings): """Generates file context based on a template file. Args: template_filename (str): path of the template file. template_mappings (dict[str, str]): template mappings, where the key maps to the name of a template variable. Returns: str: output based on the template string. Raises: RuntimeError: if the template cannot be formatted. """ template_filename = os.path.join( self._l2tdevtools_path, self._TEMPLATE_DIRECTORY, template_filename) return super(SetupCfgWriter, self)._GenerateFromTemplate( template_filename, template_mappings) def Write(self): """Writes a setup.cfg file.""" doc_files = [ doc_file for doc_file in self._DOC_FILES if os.path.isfile(doc_file)] formatted_doc_files = [] for index, doc_file in enumerate(sorted(doc_files)): if index == 0: line = 'doc_files = {0:s}'.format(doc_file) else: line = ' {0:s}'.format(doc_file) formatted_doc_files.append(line) python3_dependencies = self._dependency_helper.GetRPMRequires( python_version=3) formatted_requires = [] for index, dependency in enumerate(python3_dependencies): if index == 0: line = 'requires = {0:s}'.format(dependency) else: line = ' {0:s}'.format(dependency) formatted_requires.append(line) formatted_requires.append('') template_mappings = { 'doc_files': '\n'.join(formatted_doc_files), 'maintainer': self._project_definition.maintainer, 'requires': '\n'.join(formatted_requires)} file_content = [] template_data = self._GenerateFromTemplate('metadata', template_mappings) file_content.append(template_data) if self._project_definition.name in self._PROJECTS_WITH_SDIST_TEST_DATA: template_data = self._GenerateFromTemplate( 'sdist_test_data', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate('bdist_rpm', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate('bdist_wheel', template_mappings) file_content.append(template_data) file_content = ''.join(file_content) with io.open(self.PATH, 'w', encoding='utf-8') as file_object: file_object.write(file_content) class SetupPyWriter(interface.DependencyFileWriter): """Setup script file writer.""" PATH = os.path.join('setup.py') _DOC_FILES = ('ACKNOWLEDGEMENTS', 'AUTHORS', 'LICENSE', 'README') _PROJECTS_WITH_PACKAGE_DATA = ( 'dfvfs', 'dfwinreg', 'dtformats', 'plaso', 'winregrc') _PROJECTS_WITH_PYTHON3_AS_DEFAULT = ('plaso', ) _PROJECTS_WITH_SDIST_TEST_DATA = ( 'dfvfs', 'dfwinreg', 'plaso') _TEMPLATE_DIRECTORY = os.path.join('data', 'templates', 'setup.py') def _DetermineSubmoduleLevels(self, project_name): """Determines the number of submodule levels. Args: project_name (str): name of the project. Return: int: number of submodule levels. """ submodule_glob = project_name submodule_levels = 0 while submodule_levels < 10: submodule_glob = '{0:s}/*'.format(submodule_glob) submodule_paths = [ path for path in glob.glob(submodule_glob) if os.path.isdir(path) and os.path.basename(path) != '__pycache__'] if not submodule_paths: break submodule_levels += 1 return submodule_levels def _GenerateFromTemplate(self, template_filename, template_mappings): """Generates file context based on a template file. Args: template_filename (str): path of the template file. template_mappings (dict[str, str]): template mappings, where the key maps to the name of a template variable. Returns: str: output based on the template string. Raises: RuntimeError: if the template cannot be formatted. """ template_filename = os.path.join( self._l2tdevtools_path, self._TEMPLATE_DIRECTORY, template_filename) return super(SetupPyWriter, self)._GenerateFromTemplate( template_filename, template_mappings) def Write(self): """Writes a setup.py file.""" # Width is 80 characters minus 4 spaces, 2 single quotes and 1 comma. text_wrapper = textwrap.TextWrapper(drop_whitespace=False, width=73) description_short = text_wrapper.wrap( self._project_definition.description_short) description_short = '\n'.join([ ' \'{0:s}\''.format(line) for line in description_short]) description_long = text_wrapper.wrap( self._project_definition.description_long) description_long = '\n'.join([ ' \'{0:s}\''.format(line) for line in description_long]) if self._project_definition.name in self._PROJECTS_WITH_PYTHON3_AS_DEFAULT: shebang = '#!/usr/bin/env python3' else: shebang = '#!/usr/bin/env python' if self._project_definition.name in ('artifacts', 'plaso'): data_files_path = 'share/{0:s}'.format(self._project_definition.name) else: data_files_path = 'share/{0:s}/data'.format(self._project_definition.name) doc_files = [ doc_file for doc_file in self._DOC_FILES if os.path.isfile(doc_file)] maintainer = self._project_definition.maintainer maintainer, _, maintainer_email = maintainer.rpartition('<') maintainer_email, _, _ = maintainer_email.rpartition('>') if self._project_definition.status == 'experimental': development_status = 'Development Status :: 2 - Pre-Alpha' elif self._project_definition.status == 'alpha': development_status = 'Development Status :: 3 - Alpha' elif self._project_definition.status == 'beta': development_status = 'Development Status :: 4 - Beta' elif self._project_definition.status == 'stable': development_status = 'Development Status :: 5 - Production/Stable' else: development_status = '' packages_exclude = ['tests', 'tests.*', 'utils'] if os.path.isdir('docs'): packages_exclude.append('docs') data_directory = None if os.path.isdir('data'): data_directory = 'data' scripts_directory = None if os.path.isdir('scripts'): scripts_directory = 'scripts' elif os.path.isdir('tools'): scripts_directory = 'tools' if scripts_directory: packages_exclude.append(scripts_directory) packages_exclude = ', '.join([ '\'{0:s}\''.format(exclude) for exclude in sorted(packages_exclude)]) submodule_levels = self._DetermineSubmoduleLevels( self._project_definition.name) python3_package_module_prefix = '%{{{{python3_sitelib}}}}/{0:s}'.format( self._project_definition.name) python3_package_files = [ '{0:s}/*.py'.format(python3_package_module_prefix)] yaml_glob = os.path.join(python3_package_module_prefix[21:], '*.yaml') if glob.glob(yaml_glob): python3_package_files.append( '{0:s}/*.yaml'.format(python3_package_module_prefix)) for _ in range(submodule_levels): python3_package_module_prefix = '{0:s}/*'.format( python3_package_module_prefix) python3_package_files.append( '{0:s}/*.py'.format(python3_package_module_prefix)) yaml_glob = os.path.join(python3_package_module_prefix[21:], '*.yaml') if glob.glob(yaml_glob): python3_package_files.append( '{0:s}/*.yaml'.format(python3_package_module_prefix)) python3_package_files.extend([ '%{{python3_sitelib}}/{0:s}*.egg-info/*', '', '%exclude %{{_prefix}}/share/doc/*']) python3_package_module_prefix = '%{{{{python3_sitelib}}}}/{0:s}'.format( self._project_definition.name) python3_package_files.append( '%exclude {0:s}/__pycache__/*'.format(python3_package_module_prefix)) for _ in range(submodule_levels): python3_package_module_prefix = '{0:s}/*'.format( python3_package_module_prefix) python3_package_files.append( '%exclude {0:s}/__pycache__/*'.format(python3_package_module_prefix)) if not data_directory and scripts_directory: python3_package_files.append('%exclude %{{_bindir}}/*.py') python3_package_files = ',\n'.join([ ' \'{0:s}\''.format(package_file) for package_file in python3_package_files]) python3_package_files = python3_package_files.format( self._project_definition.name) rpm_doc_files = [ doc_file for doc_file in doc_files if doc_file != 'LICENSE'] rpm_license_file = 'LICENSE' template_mappings = { 'data_files_path': data_files_path, 'doc_files': ', '.join([ '\'{0:s}\''.format(doc_file) for doc_file in doc_files]), 'description_long': description_long, 'description_short': description_short, 'development_status': development_status, 'homepage_url': self._project_definition.homepage_url, 'maintainer': maintainer.strip(), 'maintainer_email': maintainer_email.strip(), 'packages_exclude': packages_exclude, 'project_name_description': self._project_definition.name_description, 'project_name': self._project_definition.name, 'python3_package_files': python3_package_files, 'rpm_doc_files': ' '.join(rpm_doc_files), 'rpm_license_file': rpm_license_file, 'shebang': shebang, 'scripts_directory': scripts_directory, } if self._project_definition.name in self._PROJECTS_WITH_PACKAGE_DATA: if self._project_definition.name == 'dfvfs': package_data_paths = ['dfvfs.lib'] elif self._project_definition.name == 'plaso': package_data_paths = [ 'plaso.parsers', 'plaso.parsers.esedb_plugins', 'plaso.parsers.olecf_plugins', 'plaso.parsers.plist_plugins', 'plaso.parsers.winreg_plugins'] elif self._project_definition.name == 'winreg-kb': package_data_paths = ['winregrc'] else: package_data_paths = [self._project_definition.name] template_mappings['package_data_paths'] = ',\n'.join([ ' \'{0:s}\': [\'*.yaml\']'.format(path) for path in package_data_paths]) file_content = [] if scripts_directory: template_data = self._GenerateFromTemplate( 'header_scripts', template_mappings) else: template_data = self._GenerateFromTemplate( 'header', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'header_setuptools', template_mappings) file_content.append(template_data) if self._project_definition.name in self._PROJECTS_WITH_SDIST_TEST_DATA: template_data = self._GenerateFromTemplate( 'import_sdist', template_mappings) file_content.append(template_data) for template_file in ('import_module', 'bdist_msi', 'bdist_rpm-start'): template_data = self._GenerateFromTemplate( template_file, template_mappings) file_content.append(template_data) if data_directory and scripts_directory: template_file = 'bdist_rpm-with_data_and_tools' elif data_directory: template_file = 'bdist_rpm-with_data' else: template_file = 'bdist_rpm' template_data = self._GenerateFromTemplate(template_file, template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'setup_header', template_mappings) file_content.append(template_data) if self._project_definition.name in self._PROJECTS_WITH_SDIST_TEST_DATA: template_file = 'setup_cmdclass_sdist' else: template_file = 'setup_cmdclass' template_data = self._GenerateFromTemplate(template_file, template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'setup_classifiers', template_mappings) file_content.append(template_data) if self._project_definition.name in self._PROJECTS_WITH_PACKAGE_DATA: template_data = self._GenerateFromTemplate( 'setup_package_data', template_mappings) file_content.append(template_data) if scripts_directory: template_data = self._GenerateFromTemplate( 'setup_scripts', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'setup_data_files', template_mappings) file_content.append(template_data) if data_directory: template_data = self._GenerateFromTemplate( 'setup_data_files-with_data', template_mappings) file_content.append(template_data) template_data = self._GenerateFromTemplate( 'setup_footer', template_mappings) file_content.append(template_data) file_content = ''.join(file_content) with io.open(self.PATH, 'w', encoding='utf-8') as file_object: file_object.write(file_content)
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import warnings from typing import Any, Callable, Iterable, Optional, overload import prestodb from prestodb.exceptions import DatabaseError from prestodb.transaction import IsolationLevel from airflow import AirflowException from airflow.configuration import conf from airflow.hooks.dbapi import DbApiHook from airflow.models import Connection class PrestoException(Exception): """Presto exception""" def _boolify(value): if isinstance(value, bool): return value if isinstance(value, str): if value.lower() == 'false': return False elif value.lower() == 'true': return True return value class PrestoHook(DbApiHook): """ Interact with Presto through prestodb. >>> ph = PrestoHook() >>> sql = "SELECT count(1) AS num FROM airflow.static_babynames" >>> ph.get_records(sql) [[340698]] """ conn_name_attr = 'presto_conn_id' default_conn_name = 'presto_default' conn_type = 'presto' hook_name = 'Presto' def get_conn(self) -> Connection: """Returns a connection object""" db = self.get_connection(self.presto_conn_id) # type: ignore[attr-defined] extra = db.extra_dejson auth = None if db.password and extra.get('auth') == 'kerberos': raise AirflowException("Kerberos authorization doesn't support password.") elif db.password: auth = prestodb.auth.BasicAuthentication(db.login, db.password) elif extra.get('auth') == 'kerberos': auth = prestodb.auth.KerberosAuthentication( config=extra.get('kerberos__config', os.environ.get('KRB5_CONFIG')), service_name=extra.get('kerberos__service_name'), mutual_authentication=_boolify(extra.get('kerberos__mutual_authentication', False)), force_preemptive=_boolify(extra.get('kerberos__force_preemptive', False)), hostname_override=extra.get('kerberos__hostname_override'), sanitize_mutual_error_response=_boolify( extra.get('kerberos__sanitize_mutual_error_response', True) ), principal=extra.get('kerberos__principal', conf.get('kerberos', 'principal')), delegate=_boolify(extra.get('kerberos__delegate', False)), ca_bundle=extra.get('kerberos__ca_bundle'), ) presto_conn = prestodb.dbapi.connect( host=db.host, port=db.port, user=db.login, source=db.extra_dejson.get('source', 'airflow'), http_scheme=db.extra_dejson.get('protocol', 'http'), catalog=db.extra_dejson.get('catalog', 'hive'), schema=db.schema, auth=auth, isolation_level=self.get_isolation_level(), # type: ignore[func-returns-value] ) if extra.get('verify') is not None: # Unfortunately verify parameter is available via public API. # The PR is merged in the presto library, but has not been released. # See: https://github.com/prestosql/presto-python-client/pull/31 presto_conn._http_session.verify = _boolify(extra['verify']) return presto_conn def get_isolation_level(self) -> Any: """Returns an isolation level""" db = self.get_connection(self.presto_conn_id) # type: ignore[attr-defined] isolation_level = db.extra_dejson.get('isolation_level', 'AUTOCOMMIT').upper() return getattr(IsolationLevel, isolation_level, IsolationLevel.AUTOCOMMIT) @staticmethod def _strip_sql(sql: str) -> str: return sql.strip().rstrip(';') @overload def get_records(self, sql: str = "", parameters: Optional[dict] = None): """Get a set of records from Presto :param sql: SQL statement to be executed. :param parameters: The parameters to render the SQL query with. """ @overload def get_records(self, sql: str = "", parameters: Optional[dict] = None, hql: str = ""): """:sphinx-autoapi-skip:""" def get_records(self, sql: str = "", parameters: Optional[dict] = None, hql: str = ""): """:sphinx-autoapi-skip:""" if hql: warnings.warn( "The hql parameter has been deprecated. You should pass the sql parameter.", DeprecationWarning, stacklevel=2, ) sql = hql try: return super().get_records(self._strip_sql(sql), parameters) except DatabaseError as e: raise PrestoException(e) @overload def get_first(self, sql: str = "", parameters: Optional[dict] = None) -> Any: """Returns only the first row, regardless of how many rows the query returns. :param sql: SQL statement to be executed. :param parameters: The parameters to render the SQL query with. """ @overload def get_first(self, sql: str = "", parameters: Optional[dict] = None, hql: str = "") -> Any: """:sphinx-autoapi-skip:""" def get_first(self, sql: str = "", parameters: Optional[dict] = None, hql: str = "") -> Any: """:sphinx-autoapi-skip:""" if hql: warnings.warn( "The hql parameter has been deprecated. You should pass the sql parameter.", DeprecationWarning, stacklevel=2, ) sql = hql try: return super().get_first(self._strip_sql(sql), parameters) except DatabaseError as e: raise PrestoException(e) @overload def get_pandas_df(self, sql: str = "", parameters=None, **kwargs): """Get a pandas dataframe from a sql query. :param sql: SQL statement to be executed. :param parameters: The parameters to render the SQL query with. """ @overload def get_pandas_df(self, sql: str = "", parameters=None, hql: str = "", **kwargs): """:sphinx-autoapi-skip:""" def get_pandas_df(self, sql: str = "", parameters=None, hql: str = "", **kwargs): """:sphinx-autoapi-skip:""" if hql: warnings.warn( "The hql parameter has been deprecated. You should pass the sql parameter.", DeprecationWarning, stacklevel=2, ) sql = hql import pandas cursor = self.get_cursor() try: cursor.execute(self._strip_sql(sql), parameters) data = cursor.fetchall() except DatabaseError as e: raise PrestoException(e) column_descriptions = cursor.description if data: df = pandas.DataFrame(data, **kwargs) df.columns = [c[0] for c in column_descriptions] else: df = pandas.DataFrame(**kwargs) return df @overload def run( self, sql: str = "", autocommit: bool = False, parameters: Optional[dict] = None, handler: Optional[Callable] = None, ) -> None: """Execute the statement against Presto. Can be used to create views.""" @overload def run( self, sql: str = "", autocommit: bool = False, parameters: Optional[dict] = None, handler: Optional[Callable] = None, hql: str = "", ) -> None: """:sphinx-autoapi-skip:""" def run( self, sql: str = "", autocommit: bool = False, parameters: Optional[dict] = None, handler: Optional[Callable] = None, hql: str = "", ) -> None: """:sphinx-autoapi-skip:""" if hql: warnings.warn( "The hql parameter has been deprecated. You should pass the sql parameter.", DeprecationWarning, stacklevel=2, ) sql = hql return super().run(sql=self._strip_sql(sql), parameters=parameters, handler=handler) def insert_rows( self, table: str, rows: Iterable[tuple], target_fields: Optional[Iterable[str]] = None, commit_every: int = 0, replace: bool = False, **kwargs, ) -> None: """ A generic way to insert a set of tuples into a table. :param table: Name of the target table :param rows: The rows to insert into the table :param target_fields: The names of the columns to fill in the table :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :param replace: Whether to replace instead of insert """ if self.get_isolation_level() == IsolationLevel.AUTOCOMMIT: self.log.info( 'Transactions are not enable in presto connection. ' 'Please use the isolation_level property to enable it. ' 'Falling back to insert all rows in one transaction.' ) commit_every = 0 super().insert_rows(table, rows, target_fields, commit_every)
#!/usr/bin/env python2.7 import h5py, os, sys, csv import argparse # General from glob import glob import string from cStringIO import StringIO from collections import defaultdict from Bio import SeqIO from math import log10, log import numpy as np # Plotting import matplotlib.pyplot as plt # Fast5Tools from fast5tools.f5class import * from fast5tools.f5ops import * from fast5tools.helperops import * from fast5tools.fileListClass import * from fast5tools.plotops import * from fast5tools.edgeRops import * ################################################# ## Argument Parser ################################################# parser = argparse.ArgumentParser(description = """ Given path(s) to fast5 file(s) and/or directories of fast5s, - get kmer count tables - see differentially-represented kmers (given reference set) Note: IF you have the right rpy2 setup, you can calculate differentially represented kmers using EdgeR from bioconductor. - http://bioconductor.org/packages/2.5/bioc/html/edgeR.html The EdgeR analysis is derived from Brad Chapman's example at: https://github.com/chapmanb/bcbb/blob/master/stats/count_diffexp.py You can always do the median-normalization analysis. Instead of TMM, the median is subtracted from each count, followed by normalizing it to the MAD. John Urban (2015, 2016, 2017, 2018) """, formatter_class = argparse.RawTextHelpFormatter) parser.add_argument('fast5', metavar='fast5', nargs='+', type= str, help='''Paths to as many fast5 files and/or directories filled with fast5 files as you want. Assumes all fast5 files have '.fast5' extension. If inside dir of dirs with .fast5 files, then can just do "*" to get all files from all dirs.''') parser.add_argument('-k', '--k', type=int, default=6, help = '''Kmer-size. Default: 6.''') parser.add_argument('--revcomp', default=False, action='store_true', help = '''Also count kmers from reverse complement of each sequence.''') parser_not_fast5 = parser.add_mutually_exclusive_group() parser_not_fast5.add_argument('--fasta', '-fa', action='store_true', default=False, help='''Looking at a FASTA file or list of FASTA files, not FAST5s''') parser_not_fast5.add_argument('--fastq', '-fq', action='store_true', default=False, help='''Looking at a FASTQ file or list of FASTQ files, not FAST5s''') #nargs='+', parser.add_argument('--reference', type=str, default=None, help='''All files after this flag and before the next, are interpreted as Reference fastA/Q/5 files. NOTE: Unlike the default datasets that can contain as many files/dirs/fofns as you'd like, this can only be pointed at 1 object UNLESS you put everything between quotation marks, which allows you to specify as many reference files/dirs/FOFNs as you'd like. E.g. --reference "fast5dir1/ fast5dir2/" ''') parser_ref_not_fast5 = parser.add_mutually_exclusive_group() parser_ref_not_fast5.add_argument('--reffasta', '-rfa', action='store_true', default=False, help='''The reference dataset is a FASTA file or list of FASTA files, not FAST5s''') parser_ref_not_fast5.add_argument('--reffastq', '-rfq', action='store_true', default=False, help='''The reference dataset is a FASTQ file or list of FASTQ files, not FAST5s''') parser.add_argument('-r', '--readtype', default='template', type= str, help='''Choose type of fasta to get. Choices: 'template', 'complement', '2d', 'molecule', 'all', 'MoleQual'. Default: template. Molecule returns single fasta for each fast5 by following rules: if 2d present, return 2d. elif complement present with no 2d, return longer of template or complement. elif only template present, return template. 'MoleQual' is similar to molecule. It differs only in choosing between template and complement when a 2D is not present. Instead of choosing the longer one, it chooses the one with a higher quality mean quality score.''') parser.add_argument('-bcv', '--square-root-dispersion', dest='bcv', type=float, default=0.2, help='''When there are no replicates in edgeR, dispersion must be determined by the user. The default is 0.2. Other values to try could be 0.01-0.4 (or any). p-values will be sensitive to choice of bcv. Fold change will not.''') parser.add_argument('--minlen', type=int, default=0, help='''Only report reads >= minlen. Default: 0 bp.''') parser.add_argument('--maxlen', type=int, default=int(3e9), help='''Only report reads <= maxlen. Default: 3 billion bp.''') parser.add_argument('--minq', type=float, default=0, help='''Only report reads with mean quality scores >= Q. Default: 0.''') parser.add_argument('--maxq', type=float, default=int(10e3), help='''Only report reads with mean quality scores <= Q. Default: 10000 (this is orders of magnitude higher than normal max which are always < 20)''') parser.add_argument('-n', '--nfiles', type=int, default=1000000000000, help = '''This defaults to 1000000000000 in order to use all files (will you ever need to look at more than that?). However, you can downsample with this option by adjusting this number to get info from the first N files. Use --random to select N at random from the list. Aim this script at a specific file for that file's contents.''') parser.add_argument('-R', '--random', action='store_true', default=False, help = '''Randomize what files are looked at.''') parser.add_argument('-S', '--randomseed', type=int, default=False, help = '''Randomize what files are looked at, but use given seed for reproducibility.''') parser.add_argument('--filesused', type=str, default='qual_v_pos', help=''' ''') parser.add_argument('-o', '--outdir', type=str, default="./", help = '''....''') parser.add_argument('--filename', type=str, default='kmer_counts.txt', help=''' For output. Default: kmer_counts.txt. (Formerly defaulted to None). If a filename is given, filesused will be reported in a similarly named file ending with .filesused.fofn When --reference used, files will have similar name with reference_ prepended.''') parser.add_argument('--plotfilesuffix', type=str, default=None, help=''' Suffix and extension for output plots. Default None (PDFs output in outdir using hard-coded prefixes). Plots will be in specified outdir. The minimum information to give is the extension (no dot needed) -- e.g. png, jpg, pdf. Example1: myexperiment.png ((plots will be named plotprefix_myexperiment.png)) Example2: .jpg ((plots will be named plotprefix_.jpg)) Example3: jpg ((plots will be named plotprefix.jpg)) Example4: when None (default), plots will be named plotprefix.pdf''') parser.add_argument('--notarlite', action='store_true', default=False, help=''' The default methof (called tarlite) extracts 1 file from a given tarchive at a time, processes, and deletes it. This options says to turn tarlite off resulting in extracting entire tarchive before proceeding (and finally deleting). It is possible that --notarlite is faster, but at the expense of exceeding file number limits or disk storage quotas. Nonetheless, the difference in speed is a lot smaller than the difference in space needed. For example, not using tarlite will require >2*tarchive amount of disk space (i.e. the tar.gz and its extracted contents). The tarlite method only requires the disk space already taken by the tarchive and enough for 1 additional file at a time. A corollary is that tarlite just needs to be allowed to form 1 (or a few) files compared to what could be thousands to millions. ''') parser.add_argument('--tarlite', action='store_true', default=False, help='''This legacy option is outdated. However, it is kept here to avoid breaking pipelines that make use of it. The tarlite approach is now default. Specifying this will not change that default behavior. It will just prevent pipelines from breaking. However, not specifying this will still also result in the tarlite approach. Use --notarlite to turn it off.''') args = parser.parse_args() ## run_kmer_counting() used to be defined here. I moved it to helperops in the kmer section. ## That required adding imports including fast5tools imports. ## If that interferes w/ other scripts down the road, then I will change back or make a specific kmerops file. if __name__ == "__main__": # Process Args args.outdir = process_outdir(args.outdir) outfile = args.outdir + args.filename if (args.filename is not None) else None ## Execute kmerdict, filesused = run_kmer_counting(initial_list=args.fast5, \ k=args.k, \ readtype=args.readtype, \ revcomp=args.revcomp, \ nfiles=args.nfiles, \ random=args.random, \ randomseed=args.randomseed, \ notarlite=args.notarlite, \ fasta=args.fasta, \ fastq=args.fastq, \ minlen=args.minlen, \ maxlen=args.maxlen, \ minq=args.minq, \ maxq=args.maxq) ## Write writekmer(kmerdict, outfile) ## Files used process_filesused(trigger=args.filename, filesused=filesused, outdir=args.outdir) ## Reference? do_comparison = False if args.reference is not None: do_comparison = True ## Out refoutfile = args.outdir + 'reference_' + args.filename if (args.filename is not None) else None ## Convert into list: args.reference = args.reference.strip().split() refdict, refsused = run_kmer_counting(initial_list=args.reference, \ k=args.k, \ readtype=args.readtype, \ revcomp=args.revcomp, \ nfiles=args.nfiles, \ random=args.random, \ randomseed=args.randomseed, \ notarlite=args.notarlite, \ fasta=args.fasta, \ fastq=args.fastq, \ minlen=args.minlen, \ maxlen=args.maxlen, \ minq=args.minq, \ maxq=args.maxq) ## Write writekmer(refdict, refoutfile) ## Files used trigger = 'reference_'+args.filename if args.filename is not None else None process_filesused(trigger=trigger, filesused=refsused, outdir=args.outdir) ## TODO: ## Text file with both kmers, raw counts, medNorm counts, TMM counts, other EdgeR table stuff ## Fix up EdgeR class to not necessarily make the dict -- can access all values from the R objects directly (have started to implement this) ## ## COMPARITIVE ANALYSES if do_comparison: ## Median Normalization Approach results = MedNormAnalysis(kmerdict, refdict) if has_R: #EdgeR edgeR_results = EdgeR(kmerdict, refdict) ## DETERMINE PLOT SUFFIX if args.plotfilesuffix is None: sfx = '.pdf' else: if '.' in args.plotfilesuffix: ## assumes format words.ext, makes sfx = _words.ext sfx = '_' + args.plotfilesuffix else: ## assumes image type specified (e.g. pdf, jpg, png) sfx = '.' + args.plotfilesuffix make_name = make_name_function(pfx=args.outdir, sfx=sfx) ## PLOTTING singleTableKmerPlot(kmerdict, saveas=make_name('test_kmer_plot')) singleTableKmerHist(kmerdict, saveas=make_name('test_kmer_hist')) if args.reference is not None: singleTableKmerPlot(refdict, saveas=make_name('ref_kmer_plot')) singleTableKmerHist(refdict, saveas=make_name('ref_kmer_hist')) twoTableKmerScatterPlot(kmerdict, refdict, saveas=make_name('raw_scatter_test_v_ref')) twoTableKmer_MA_Plot(results, saveas=make_name('medNorm_MA_plot')) general_scatter(x=results.get_norm_count_avg(), y=results.get_norm_count_diff(), words=results.get_genes(), saveas=make_name('medNorm_scaledToRef_avgCount_v_CountDiffs'), xlab='Average Normalized Counts', ylab='Difference: norm_test - norm_ref') general_scatter(x=results.get_ref_zscores(), y=results.get_test_zscores(), words=results.get_genes(), saveas=make_name('robust_zscore_scatter_test_v_ref'), xlab='Reference Z-scores', ylab='Test Z-scores') alphabeticalPlot(results.get_logfc(), results.get_genes(), saveas=make_name('alpabeticalKmers_v_mednormlogFC')) gcPlot(results.get_logfc(), results.get_genes(), saveas=make_name('kmerGCcontent_v_mednormlogFC')) compressionPlot(results.get_logfc(), results.get_genes(), saveas=make_name('kmerCompressionLength_v_mednormlogFC')) if has_R: twoTableKmerScatterPlotEdgeR(edgeR_results, saveas=make_name('TMM_scatter_test_v_ref')) volcanoPlot(edgeR_results.get_logfc(), edgeR_results.get_pvalues(), edgeR_results.get_k(), saveas=make_name('TMM_volcano')) smearPlot(edgeR_results.get_logfc(), edgeR_results.get_logcpm(), edgeR_results.get_k(), saveas=make_name('TMM_MA')) alphabeticalPlot(edgeR_results.get_logfc(), edgeR_results.get_k(), saveas=make_name('alpabeticalKmers_v_TMMlogFC')) gcPlot(edgeR_results.get_logfc(), edgeR_results.get_k(), saveas=make_name('kmerGCcontent_v_TMMlogFC')) compressionPlot(edgeR_results.get_logfc(), edgeR_results.get_k(), saveas=make_name('kmerCompressionLength_v_TMMlogFC'))
#!/usr/bin/env python # -*- coding: utf-8 -*- import xml.etree.ElementTree as ET import pprint import re import codecs import json """ Clean, format the osm data into a JSON format for import into mongodb """ # REGEX to check for all lower case characters in a string lower = re.compile(r'^([a-z]|_)*$') # REGEX to check for colon values lower_colon = re.compile(r'^([a-z]|_)*:([a-z]|_)*$') # REGEX to check for mongodb specific characters problemchars = re.compile(r'[=\+/&<>;\'"\?%#$@\,\. \t\r\n]') ''' street_type_re Regex which scans for the following items listed below to determine if we have a match for a street name which is shortened, abbriviated and is only comparing the last word at the end of the string. https://docs.python.org/2/library/re.html \b assert position at a word boundary (^\w|\w$|\W\w|\w\W) \S+ match any non-white space character [^\r\n\t\f ] Quantifier: + Between one and unlimited times, as many times as possible, giving back as needed [greedy] \.? matches the character . literally Quantifier: ? Between zero and one time, as many times as possible, giving back as needed [greedy] $ assert position at end of the string https://www.regex101.com/#python ''' street_type_re = re.compile(r'\b\S+\.?$', re.IGNORECASE) # The expected street names expected_street_names = ["Avenue", "Boulevard", "Circle", "Commons", "Court", "Drive", "Highway", "Lane", "Loop", "Parkway", "Place", "Road", "Sqaure", "Street", "Trail"] ''' map_old_to_new Create Dictionary to map abreiviations to full street's suffix ''' map_old_to_new = { "Ave" : "Avenue", "Ave." : "Avenue", "Blvd" : "Boulevard", "Blvd." : "Boulevard", "Cir" : "Circle", "Cmn" : "Commons", "Crt" : "Court", "Crt." : "Court", "Dr" : "Drive", "Dr." : "Drive", "Hwy" : "Highway", "Ln" : "Lane", "Ln." : "Lane", "LN" : "Lane", "Lp" : "Loop", "PARK":"Park", "Pk" : "Parkway", "Pk." : "Parkway", "Pl" : "Place", "Pl." : "Place", "Rd.": "Road", "Rd" : "Road", "Sq": "Sqaure", "Sq.": "Sqaure", "St": "Street", "St.": "Street", "Tr": "Trail", "Tr.": "Trail", "Ashwood": "Ashwood Street" } ''' Create the CREATED dictionary to store the a node's meta data ''' CREATED = [ "version", "changeset", "timestamp", "user", "uid"] ''' Create the POSITION Dictionary, which contains the latititude and the longititued. Lat is in the 0 position Lon is in the 1 position, This will be used as a lookup dictionary to determine if a key exits in an element ''' POSITION = ["lat","lon"] def shape_element(element): ''' shape_element will peform the following tasks: - if second level tag "k" value contains problematic characters, it should be ignored - if second level tag "k" value starts with "addr:", it should be added to a dictionary "address" - if second level tag "k" value does not start with "addr:", but contains ":", you can process it same as any other tag. - if there is a second ":" that separates the type/direction of a street, the tag should be ignored, for example: ''' # Create the node dictionary node = {} # Add the created object to the node dictionary node['created'] = {} # For Lat and Lon we will store these in a 'pos' (position) # we need lat, lon and in specific order (LAT, LON) node['pos'] =[0 for i in range(2)] # Search only through the node and way types if element.tag == "node" or element.tag == "way" : # add the type to the node, the tag of the element node['type'] = element.tag # Search through the node and way types # to build the CREATED and POSITION dictionaries for k,v in element.attrib.iteritems(): # CREATE VALUES {"version", "changeset", "timestamp", "user", "uid"} if k in CREATED: node['created'][k] = v #TODO: make sure time is formated from string to date # Lat is in first position, Lon second position # In JSON and mongodb we need to represent the Lat and Lon as floats elif k in POSITION: if k=="lat": node['pos'][0]=(float(v)) else: # Lon node['pos'][1]=(float(v)) # Key was not in the CREATED or POSITION dictionary # Add a new key value pair else: node[k] = v ''' Setup processing for the TAGS - Addresses and other meta data for the node and way objects ''' # Instantiate the address dictionary address = {} ''' Search all the subelements and prepare valid tags for processing Any ignored data will be emitted to the console ''' for tag in element.iter("tag"): if is_valid_tag(tag) == True: # address attributes - create the dictionary object to hold # the attributes. # use a slice of the item from beginning for 5 characters if tag.attrib['k'][:5] == "addr:": # Set the keyName to the text to the RIGHT of the colon, dropping "addr:" newKey = tag.attrib['k'][5:] # if there is a second ":" that separates the # type/direction of a street ignore it - Per Assignment if newKey.count(":")> 0: print "found colon, and it's not address - ignoring it", newKey else: # Add new key to the address object, and assign the # value to the key address[newKey] = tag.attrib['v'] # Clean the Address if newKey == "street": clean_name = update_streetname(tag.attrib['v'], map_old_to_new) address[newKey] = clean_name # Clean the postcode if newKey == "postcode": clean_zip = update_zipcode(tag.attrib['v'] ) address[newKey] = clean_zip # Clean the state, assume all states should be AK if newKey == "state": if tag.attrib['v'] != "AK": address[newKey] = "AK" # clean the city name if newKey == "city": clean_city = update_city(tag.attrib['v']) address[newKey] = clean_city # we have a generic tag item with no colon, to be added root on the node/way object elif tag.attrib['k'].count(":") < 1: plainKey = tag.attrib['k'] #print "Plain KEY", tag.attrib['k'], tag.attrib['v'] node[plainKey] = tag.attrib['v'] # For keys similar to the "addr:" key process these keys like the generic keys elif tag.attrib['k'].count(":") == 1 and tag.attrib['k'][:5] != "addr:" and tag.attrib['k'][5:] != "created" : # Get the length to the colon, and get the text from the # right of colon to the end for the key. # We are going to strip off the first text to the left of # the colon, for readability and mongodb keyIndex = tag.attrib['k'].find(":") # increment by one so we start at the new key name keyIndex += 1 # Get the key name and create a dictionary for this key and value oddKey = tag.attrib['k'][keyIndex:] node[oddKey] = tag.attrib['v'] else: print "Ingnore tag - tag is invalid" , tag.attrib['k'], tag.attrib['v'] # Search for any node_refs in the sub arrays - just for the way tag, per instructions node_refs = [] if element.tag =="way": for ndref in element.iter("nd"): node_refs.append(ndref.attrib['ref']) # Check to see if we have any node_refs, if we do add the node_refs to the node if len(node_refs) > 0: node['node_refs'] = node_refs # Check to see if we have any addresses, if we have addresses add the addresses to the node if len(address)>0: node['address'] = address return node else: return None def is_valid_tag(element): ''' Check for Valid Tags and return true for valid tags false for invalid ''' isValid = True if problemchars.search(element.attrib['k']): isValid = False else: # Count all the others as valid isValid = True return isValid def process_map(file_in, pretty = False): ''' Process map reads in the OpenStreet Map file and writes out to file the JSON data structure file_in is the path and filename, pretty parameter formats the json ''' # Keep the same filename and just append .json to the filename file_out = "{0}.2.json".format(file_in) data = [] with codecs.open(file_out, "w") as fo: # Go element by element to read the file for _, element in ET.iterparse(file_in): el = shape_element(element) # If we have an element add it to the dictionary # and write the data to a file if el: data.append(el) if pretty: fo.write(json.dumps(el, indent=2)+"\n") else: fo.write(json.dumps(el) + "\n") return data def update_streetname(name, map_old_to_new): ''' Update name compares current name to the map of bad values to good values and provides the updated name back to the method ''' for iName in map_old_to_new.keys(): #Check to see if we find a match for a bad value in our map match = re.search(iName, name) #if match is found then remap the old value with new value if match: name = re.sub(iName+'$', map_old_to_new[iName], name) return name def update_zipcode(zipcode): ''' Clean the zip code These are a few of the errors one might encounter { "_id" : "Homer, AK 99603", "count" : 2 } { "_id" : "AK", "count" : 1 } { "_id" : "Alaska", "count" : 1 } { "_id" : "AK 99501-2129", "count" : 1 } { "_id" : "AK 99501-2118", "count" : 1 } ''' # use regex to remove all strings from zipcode, this # will leave us with a numeric number which should be # 5 or 9 characters long zipcode_clean = re.sub(r"\D", "", zipcode) return zipcode_clean def update_city(cityname): ''' TODO Scan the dictionary of city names and fix bad spellings, improve alogrithim over time ''' if cityname == "Anchoage": cityname = "Anchorage" return cityname def test(): # NOTE: if you are running this code on your computer, with a larger dataset, # call the process_map procedure with pretty=False. The pretty=True option adds # additional spaces to the output, making it significantly larger. data = process_map('Alaska_Small.xml', False) pprint.pprint(len(data)) print "DONE" if __name__ == "__main__": test()
#!/usr/bin/env python # # Copyright 2009 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """An I/O event loop for non-blocking sockets. Typical applications will use a single `IOLoop` object, in the `IOLoop.instance` singleton. The `IOLoop.start` method should usually be called at the end of the ``main()`` function. Atypical applications may use more than one `IOLoop`, such as one `IOLoop` per thread, or per `unittest` case. In addition to I/O events, the `IOLoop` can also schedule time-based events. `IOLoop.add_timeout` is a non-blocking alternative to `time.sleep`. """ from __future__ import absolute_import, division, print_function, with_statement import datetime import errno import functools import heapq import logging import numbers import os import select import sys import threading import time import traceback from tornado.concurrent import Future, TracebackFuture from tornado.log import app_log, gen_log from tornado import stack_context from tornado.util import Configurable try: import signal except ImportError: signal = None try: import thread # py2 except ImportError: import _thread as thread # py3 from tornado.platform.auto import set_close_exec, Waker class TimeoutError(Exception): pass class IOLoop(Configurable): """A level-triggered I/O loop. We use ``epoll`` (Linux) or ``kqueue`` (BSD and Mac OS X) if they are available, or else we fall back on select(). If you are implementing a system that needs to handle thousands of simultaneous connections, you should use a system that supports either ``epoll`` or ``kqueue``. Example usage for a simple TCP server:: import errno import functools import ioloop import socket def connection_ready(sock, fd, events): while True: try: connection, address = sock.accept() except socket.error, e: if e.args[0] not in (errno.EWOULDBLOCK, errno.EAGAIN): raise return connection.setblocking(0) handle_connection(connection, address) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) sock.bind(("", port)) sock.listen(128) io_loop = ioloop.IOLoop.instance() callback = functools.partial(connection_ready, sock) io_loop.add_handler(sock.fileno(), callback, io_loop.READ) io_loop.start() """ # Constants from the epoll module _EPOLLIN = 0x001 _EPOLLPRI = 0x002 _EPOLLOUT = 0x004 _EPOLLERR = 0x008 _EPOLLHUP = 0x010 _EPOLLRDHUP = 0x2000 _EPOLLONESHOT = (1 << 30) _EPOLLET = (1 << 31) # Our events map exactly to the epoll events NONE = 0 READ = _EPOLLIN WRITE = _EPOLLOUT ERROR = _EPOLLERR | _EPOLLHUP # Global lock for creating global IOLoop instance _instance_lock = threading.Lock() _current = threading.local() @staticmethod def instance(): """Returns a global `IOLoop` instance. Most applications have a single, global `IOLoop` running on the main thread. Use this method to get this instance from another thread. To get the current thread's `IOLoop`, use `current()`. """ if not hasattr(IOLoop, "_instance"): with IOLoop._instance_lock: if not hasattr(IOLoop, "_instance"): # New instance after double check IOLoop._instance = IOLoop() return IOLoop._instance @staticmethod def initialized(): """Returns true if the singleton instance has been created.""" return hasattr(IOLoop, "_instance") def install(self): """Installs this `IOLoop` object as the singleton instance. This is normally not necessary as `instance()` will create an `IOLoop` on demand, but you may want to call `install` to use a custom subclass of `IOLoop`. """ assert not IOLoop.initialized() IOLoop._instance = self @staticmethod def current(): """Returns the current thread's `IOLoop`. If an `IOLoop` is currently running or has been marked as current by `make_current`, returns that instance. Otherwise returns `IOLoop.instance()`, i.e. the main thread's `IOLoop`. A common pattern for classes that depend on ``IOLoops`` is to use a default argument to enable programs with multiple ``IOLoops`` but not require the argument for simpler applications:: class MyClass(object): def __init__(self, io_loop=None): self.io_loop = io_loop or IOLoop.current() In general you should use `IOLoop.current` as the default when constructing an asynchronous object, and use `IOLoop.instance` when you mean to communicate to the main thread from a different one. """ current = getattr(IOLoop._current, "instance", None) if current is None: return IOLoop.instance() return current def make_current(self): """Makes this the `IOLoop` for the current thread. An `IOLoop` automatically becomes current for its thread when it is started, but it is sometimes useful to call `make_current` explictly before starting the `IOLoop`, so that code run at startup time can find the right instance. """ IOLoop._current.instance = self @staticmethod def clear_current(): IOLoop._current.instance = None @classmethod def configurable_base(cls): return IOLoop @classmethod def configurable_default(cls): if hasattr(select, "epoll"): from tornado.platform.epoll import EPollIOLoop return EPollIOLoop if hasattr(select, "kqueue"): # Python 2.6+ on BSD or Mac from tornado.platform.kqueue import KQueueIOLoop return KQueueIOLoop from tornado.platform.select import SelectIOLoop return SelectIOLoop def initialize(self): pass def close(self, all_fds=False): """Closes the `IOLoop`, freeing any resources used. If ``all_fds`` is true, all file descriptors registered on the IOLoop will be closed (not just the ones created by the `IOLoop` itself). Many applications will only use a single `IOLoop` that runs for the entire lifetime of the process. In that case closing the `IOLoop` is not necessary since everything will be cleaned up when the process exits. `IOLoop.close` is provided mainly for scenarios such as unit tests, which create and destroy a large number of ``IOLoops``. An `IOLoop` must be completely stopped before it can be closed. This means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must be allowed to return before attempting to call `IOLoop.close()`. Therefore the call to `close` will usually appear just after the call to `start` rather than near the call to `stop`. .. versionchanged:: 3.1 If the `IOLoop` implementation supports non-integer objects for "file descriptors", those objects will have their ``close`` method when ``all_fds`` is true. """ raise NotImplementedError() def add_handler(self, fd, handler, events): """Registers the given handler to receive the given events for fd. The ``events`` argument is a bitwise or of the constants ``IOLoop.READ``, ``IOLoop.WRITE``, and ``IOLoop.ERROR``. When an event occurs, ``handler(fd, events)`` will be run. """ raise NotImplementedError() def update_handler(self, fd, events): """Changes the events we listen for fd.""" raise NotImplementedError() def remove_handler(self, fd): """Stop listening for events on fd.""" raise NotImplementedError() def set_blocking_signal_threshold(self, seconds, action): """Sends a signal if the `IOLoop` is blocked for more than ``s`` seconds. Pass ``seconds=None`` to disable. Requires Python 2.6 on a unixy platform. The action parameter is a Python signal handler. Read the documentation for the `signal` module for more information. If ``action`` is None, the process will be killed if it is blocked for too long. """ raise NotImplementedError() def set_blocking_log_threshold(self, seconds): """Logs a stack trace if the `IOLoop` is blocked for more than ``s`` seconds. Equivalent to ``set_blocking_signal_threshold(seconds, self.log_stack)`` """ self.set_blocking_signal_threshold(seconds, self.log_stack) def log_stack(self, signal, frame): """Signal handler to log the stack trace of the current thread. For use with `set_blocking_signal_threshold`. """ gen_log.warning('IOLoop blocked for %f seconds in\n%s', self._blocking_signal_threshold, ''.join(traceback.format_stack(frame))) def start(self): """Starts the I/O loop. The loop will run until one of the callbacks calls `stop()`, which will make the loop stop after the current event iteration completes. """ raise NotImplementedError() def stop(self): """Stop the I/O loop. If the event loop is not currently running, the next call to `start()` will return immediately. To use asynchronous methods from otherwise-synchronous code (such as unit tests), you can start and stop the event loop like this:: ioloop = IOLoop() async_method(ioloop=ioloop, callback=ioloop.stop) ioloop.start() ``ioloop.start()`` will return after ``async_method`` has run its callback, whether that callback was invoked before or after ``ioloop.start``. Note that even after `stop` has been called, the `IOLoop` is not completely stopped until `IOLoop.start` has also returned. Some work that was scheduled before the call to `stop` may still be run before the `IOLoop` shuts down. """ raise NotImplementedError() def run_sync(self, func, timeout=None): """Starts the `IOLoop`, runs the given function, and stops the loop. If the function returns a `.Future`, the `IOLoop` will run until the future is resolved. If it raises an exception, the `IOLoop` will stop and the exception will be re-raised to the caller. The keyword-only argument ``timeout`` may be used to set a maximum duration for the function. If the timeout expires, a `TimeoutError` is raised. This method is useful in conjunction with `tornado.gen.coroutine` to allow asynchronous calls in a ``main()`` function:: @gen.coroutine def main(): # do stuff... if __name__ == '__main__': IOLoop.instance().run_sync(main) """ future_cell = [None] def run(): try: result = func() except Exception: future_cell[0] = TracebackFuture() future_cell[0].set_exc_info(sys.exc_info()) else: if isinstance(result, Future): future_cell[0] = result else: future_cell[0] = TracebackFuture() future_cell[0].set_result(result) self.add_future(future_cell[0], lambda future: self.stop()) self.add_callback(run) if timeout is not None: timeout_handle = self.add_timeout(self.time() + timeout, self.stop) self.start() if timeout is not None: self.remove_timeout(timeout_handle) if not future_cell[0].done(): raise TimeoutError('Operation timed out after %s seconds' % timeout) return future_cell[0].result() def time(self): """Returns the current time according to the `IOLoop`'s clock. The return value is a floating-point number relative to an unspecified time in the past. By default, the `IOLoop`'s time function is `time.time`. However, it may be configured to use e.g. `time.monotonic` instead. Calls to `add_timeout` that pass a number instead of a `datetime.timedelta` should use this function to compute the appropriate time, so they can work no matter what time function is chosen. """ return time.time() def add_timeout(self, deadline, callback): """Runs the ``callback`` at the time ``deadline`` from the I/O loop. Returns an opaque handle that may be passed to `remove_timeout` to cancel. ``deadline`` may be a number denoting a time (on the same scale as `IOLoop.time`, normally `time.time`), or a `datetime.timedelta` object for a deadline relative to the current time. Note that it is not safe to call `add_timeout` from other threads. Instead, you must use `add_callback` to transfer control to the `IOLoop`'s thread, and then call `add_timeout` from there. """ raise NotImplementedError() def remove_timeout(self, timeout): """Cancels a pending timeout. The argument is a handle as returned by `add_timeout`. It is safe to call `remove_timeout` even if the callback has already been run. """ raise NotImplementedError() def add_callback(self, callback, *args, **kwargs): """Calls the given callback on the next I/O loop iteration. It is safe to call this method from any thread at any time, except from a signal handler. Note that this is the **only** method in `IOLoop` that makes this thread-safety guarantee; all other interaction with the `IOLoop` must be done from that `IOLoop`'s thread. `add_callback()` may be used to transfer control from other threads to the `IOLoop`'s thread. To add a callback from a signal handler, see `add_callback_from_signal`. """ raise NotImplementedError() def add_callback_from_signal(self, callback, *args, **kwargs): """Calls the given callback on the next I/O loop iteration. Safe for use from a Python signal handler; should not be used otherwise. Callbacks added with this method will be run without any `.stack_context`, to avoid picking up the context of the function that was interrupted by the signal. """ raise NotImplementedError() def add_future(self, future, callback): """Schedules a callback on the ``IOLoop`` when the given `.Future` is finished. The callback is invoked with one argument, the `.Future`. """ assert isinstance(future, Future) callback = stack_context.wrap(callback) future.add_done_callback( lambda future: self.add_callback(callback, future)) def _run_callback(self, callback): """Runs a callback with error handling. For use in subclasses. """ try: callback() except Exception: self.handle_callback_exception(callback) def handle_callback_exception(self, callback): """This method is called whenever a callback run by the `IOLoop` throws an exception. By default simply logs the exception as an error. Subclasses may override this method to customize reporting of exceptions. The exception itself is not passed explicitly, but is available in `sys.exc_info`. """ app_log.error("Exception in callback %r", callback, exc_info=True) class PollIOLoop(IOLoop): """Base class for IOLoops built around a select-like function. For concrete implementations, see `tornado.platform.epoll.EPollIOLoop` (Linux), `tornado.platform.kqueue.KQueueIOLoop` (BSD and Mac), or `tornado.platform.select.SelectIOLoop` (all platforms). """ def initialize(self, impl, time_func=None): super(PollIOLoop, self).initialize() self._impl = impl if hasattr(self._impl, 'fileno'): set_close_exec(self._impl.fileno()) self.time_func = time_func or time.time self._handlers = {} self._events = {} self._callbacks = [] self._callback_lock = threading.Lock() self._timeouts = [] self._cancellations = 0 self._running = False self._stopped = False self._closing = False self._thread_ident = None self._blocking_signal_threshold = None # Create a pipe that we send bogus data to when we want to wake # the I/O loop when it is idle self._waker = Waker() self.add_handler(self._waker.fileno(), lambda fd, events: self._waker.consume(), self.READ) def close(self, all_fds=False): with self._callback_lock: self._closing = True self.remove_handler(self._waker.fileno()) if all_fds: for fd in self._handlers.keys(): try: close_method = getattr(fd, 'close', None) if close_method is not None: close_method() else: os.close(fd) except Exception: gen_log.debug("error closing fd %s", fd, exc_info=True) self._waker.close() self._impl.close() def add_handler(self, fd, handler, events): self._handlers[fd] = stack_context.wrap(handler) self._impl.register(fd, events | self.ERROR) def update_handler(self, fd, events): self._impl.modify(fd, events | self.ERROR) def remove_handler(self, fd): self._handlers.pop(fd, None) self._events.pop(fd, None) try: self._impl.unregister(fd) except Exception: gen_log.debug("Error deleting fd from IOLoop", exc_info=True) def set_blocking_signal_threshold(self, seconds, action): if not hasattr(signal, "setitimer"): gen_log.error("set_blocking_signal_threshold requires a signal module " "with the setitimer method") return self._blocking_signal_threshold = seconds if seconds is not None: signal.signal(signal.SIGALRM, action if action is not None else signal.SIG_DFL) def start(self): if not logging.getLogger().handlers: # The IOLoop catches and logs exceptions, so it's # important that log output be visible. However, python's # default behavior for non-root loggers (prior to python # 3.2) is to print an unhelpful "no handlers could be # found" message rather than the actual log entry, so we # must explicitly configure logging if we've made it this # far without anything. logging.basicConfig() if self._stopped: self._stopped = False return old_current = getattr(IOLoop._current, "instance", None) IOLoop._current.instance = self self._thread_ident = thread.get_ident() self._running = True # signal.set_wakeup_fd closes a race condition in event loops: # a signal may arrive at the beginning of select/poll/etc # before it goes into its interruptible sleep, so the signal # will be consumed without waking the select. The solution is # for the (C, synchronous) signal handler to write to a pipe, # which will then be seen by select. # # In python's signal handling semantics, this only matters on the # main thread (fortunately, set_wakeup_fd only works on the main # thread and will raise a ValueError otherwise). # # If someone has already set a wakeup fd, we don't want to # disturb it. This is an issue for twisted, which does its # SIGCHILD processing in response to its own wakeup fd being # written to. As long as the wakeup fd is registered on the IOLoop, # the loop will still wake up and everything should work. old_wakeup_fd = None if hasattr(signal, 'set_wakeup_fd') and os.name == 'posix': # requires python 2.6+, unix. set_wakeup_fd exists but crashes # the python process on windows. try: old_wakeup_fd = signal.set_wakeup_fd(self._waker.write_fileno()) if old_wakeup_fd != -1: # Already set, restore previous value. This is a little racy, # but there's no clean get_wakeup_fd and in real use the # IOLoop is just started once at the beginning. signal.set_wakeup_fd(old_wakeup_fd) old_wakeup_fd = None except ValueError: # non-main thread pass while True: poll_timeout = 3600.0 # Prevent IO event starvation by delaying new callbacks # to the next iteration of the event loop. with self._callback_lock: callbacks = self._callbacks self._callbacks = [] for callback in callbacks: self._run_callback(callback) # Closures may be holding on to a lot of memory, so allow # them to be freed before we go into our poll wait. callbacks = callback = None if self._timeouts: now = self.time() while self._timeouts: if self._timeouts[0].callback is None: # the timeout was cancelled heapq.heappop(self._timeouts) self._cancellations -= 1 elif self._timeouts[0].deadline <= now: timeout = heapq.heappop(self._timeouts) self._run_callback(timeout.callback) del timeout else: seconds = self._timeouts[0].deadline - now poll_timeout = min(seconds, poll_timeout) break if (self._cancellations > 512 and self._cancellations > (len(self._timeouts) >> 1)): # Clean up the timeout queue when it gets large and it's # more than half cancellations. self._cancellations = 0 self._timeouts = [x for x in self._timeouts if x.callback is not None] heapq.heapify(self._timeouts) if self._callbacks: # If any callbacks or timeouts called add_callback, # we don't want to wait in poll() before we run them. poll_timeout = 0.0 if not self._running: break if self._blocking_signal_threshold is not None: # clear alarm so it doesn't fire while poll is waiting for # events. signal.setitimer(signal.ITIMER_REAL, 0, 0) try: event_pairs = self._impl.poll(poll_timeout) except Exception as e: # Depending on python version and IOLoop implementation, # different exception types may be thrown and there are # two ways EINTR might be signaled: # * e.errno == errno.EINTR # * e.args is like (errno.EINTR, 'Interrupted system call') if (getattr(e, 'errno', None) == errno.EINTR or (isinstance(getattr(e, 'args', None), tuple) and len(e.args) == 2 and e.args[0] == errno.EINTR)): continue else: raise if self._blocking_signal_threshold is not None: signal.setitimer(signal.ITIMER_REAL, self._blocking_signal_threshold, 0) # Pop one fd at a time from the set of pending fds and run # its handler. Since that handler may perform actions on # other file descriptors, there may be reentrant calls to # this IOLoop that update self._events self._events.update(event_pairs) while self._events: fd, events = self._events.popitem() try: self._handlers[fd](fd, events) except (OSError, IOError) as e: if e.args[0] == errno.EPIPE: # Happens when the client closes the connection pass else: app_log.error("Exception in I/O handler for fd %s", fd, exc_info=True) except Exception: app_log.error("Exception in I/O handler for fd %s", fd, exc_info=True) # reset the stopped flag so another start/stop pair can be issued self._stopped = False if self._blocking_signal_threshold is not None: signal.setitimer(signal.ITIMER_REAL, 0, 0) IOLoop._current.instance = old_current if old_wakeup_fd is not None: signal.set_wakeup_fd(old_wakeup_fd) def stop(self): self._running = False self._stopped = True self._waker.wake() def time(self): return self.time_func() def add_timeout(self, deadline, callback): timeout = _Timeout(deadline, stack_context.wrap(callback), self) heapq.heappush(self._timeouts, timeout) return timeout def remove_timeout(self, timeout): # Removing from a heap is complicated, so just leave the defunct # timeout object in the queue (see discussion in # http://docs.python.org/library/heapq.html). # If this turns out to be a problem, we could add a garbage # collection pass whenever there are too many dead timeouts. timeout.callback = None self._cancellations += 1 def add_callback(self, callback, *args, **kwargs): with self._callback_lock: if self._closing: raise RuntimeError("IOLoop is closing") list_empty = not self._callbacks self._callbacks.append(functools.partial( stack_context.wrap(callback), *args, **kwargs)) if list_empty and thread.get_ident() != self._thread_ident: # If we're in the IOLoop's thread, we know it's not currently # polling. If we're not, and we added the first callback to an # empty list, we may need to wake it up (it may wake up on its # own, but an occasional extra wake is harmless). Waking # up a polling IOLoop is relatively expensive, so we try to # avoid it when we can. self._waker.wake() def add_callback_from_signal(self, callback, *args, **kwargs): with stack_context.NullContext(): if thread.get_ident() != self._thread_ident: # if the signal is handled on another thread, we can add # it normally (modulo the NullContext) self.add_callback(callback, *args, **kwargs) else: # If we're on the IOLoop's thread, we cannot use # the regular add_callback because it may deadlock on # _callback_lock. Blindly insert into self._callbacks. # This is safe because the GIL makes list.append atomic. # One subtlety is that if the signal interrupted the # _callback_lock block in IOLoop.start, we may modify # either the old or new version of self._callbacks, # but either way will work. self._callbacks.append(functools.partial( stack_context.wrap(callback), *args, **kwargs)) class _Timeout(object): """An IOLoop timeout, a UNIX timestamp and a callback""" # Reduce memory overhead when there are lots of pending callbacks __slots__ = ['deadline', 'callback'] def __init__(self, deadline, callback, io_loop): if isinstance(deadline, numbers.Real): self.deadline = deadline elif isinstance(deadline, datetime.timedelta): self.deadline = io_loop.time() + _Timeout.timedelta_to_seconds(deadline) else: raise TypeError("Unsupported deadline %r" % deadline) self.callback = callback @staticmethod def timedelta_to_seconds(td): """Equivalent to td.total_seconds() (introduced in python 2.7).""" return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / float(10 ** 6) # Comparison methods to sort by deadline, with object id as a tiebreaker # to guarantee a consistent ordering. The heapq module uses __le__ # in python2.5, and __lt__ in 2.6+ (sort() and most other comparisons # use __lt__). def __lt__(self, other): return ((self.deadline, id(self)) < (other.deadline, id(other))) def __le__(self, other): return ((self.deadline, id(self)) <= (other.deadline, id(other))) class PeriodicCallback(object): """Schedules the given callback to be called periodically. The callback is called every ``callback_time`` milliseconds. `start` must be called after the `PeriodicCallback` is created. """ def __init__(self, callback, callback_time, io_loop=None): self.callback = callback if callback_time <= 0: raise ValueError("Periodic callback must have a positive callback_time") self.callback_time = callback_time self.io_loop = io_loop or IOLoop.current() self._running = False self._timeout = None def start(self): """Starts the timer.""" self._running = True self._next_timeout = self.io_loop.time() self._schedule_next() def stop(self): """Stops the timer.""" self._running = False if self._timeout is not None: self.io_loop.remove_timeout(self._timeout) self._timeout = None def _run(self): if not self._running: return try: self.callback() except Exception: app_log.error("Error in periodic callback", exc_info=True) self._schedule_next() def _schedule_next(self): if self._running: current_time = self.io_loop.time() while self._next_timeout <= current_time: self._next_timeout += self.callback_time / 1000.0 self._timeout = self.io_loop.add_timeout(self._next_timeout, self._run)
# BEGIN_COPYRIGHT # # Copyright 2009-2015 CRS4. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # END_COPYRIGHT """ pydoop.hdfs.file -- HDFS File Objects ------------------------------------- """ import os from pydoop.hdfs import common def _complain_ifclosed(closed): if closed: raise ValueError("I/O operation on closed HDFS file object") def _seek_with_boundary_checks(f, position, whence): if whence == os.SEEK_CUR: position += f.tell() elif whence == os.SEEK_END: position += f.size position = max(0, position) if position > f.size: raise IOError('cannot seek past end of file') if f.mode != 'r': raise IOError('can seek only in read-only') return position class hdfs_file(object): """ Instances of this class represent HDFS file objects. Objects from this class should not be instantiated directly. To open an HDFS file, use :meth:`~.fs.hdfs.open_file`, or the top-level ``open`` function in the hdfs package. """ ENDL = os.linesep def __init__(self, raw_hdfs_file, fs, name, flags, chunk_size=common.BUFSIZE): if not chunk_size > 0: raise ValueError("chunk size must be positive") self.f = raw_hdfs_file self.__fs = fs self.__name = fs.get_path_info(name)["name"] self.__size = fs.get_path_info(name)["size"] self.__mode = "r" if flags == os.O_RDONLY else "w" self.chunk_size = chunk_size self.closed = False self.__reset() def __reset(self): self.buffer_list = [] self.chunk = "" self.EOF = False self.p = 0 def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @property def fs(self): """ The file's hdfs instance. """ return self.__fs @property def name(self): """ The file's fully qualified name. """ return self.__name @property def size(self): """ The file's size in bytes. This attribute is initialized when the file is opened and updated when it is closed. """ return self.__size @property def mode(self): """ The I/O mode for the file. """ return self.__mode def __read_chunk(self): self.chunk = self.f.read(self.chunk_size) self.p = 0 if not self.chunk: self.EOF = True def __read_chunks_until_nl(self): if self.EOF: eol = self.chunk.find(self.ENDL, self.p) return eol if eol > -1 else len(self.chunk) if not self.chunk: self.__read_chunk() eol = self.chunk.find(self.ENDL, self.p) while eol < 0 and not self.EOF: if self.p < len(self.chunk): self.buffer_list.append(self.chunk[self.p:]) self.__read_chunk() eol = self.chunk.find(self.ENDL, self.p) return eol if eol > -1 else len(self.chunk) def readline(self): """ Read and return a line of text. :rtype: str :return: the next line of text in the file, including the newline character """ _complain_ifclosed(self.closed) eol = self.__read_chunks_until_nl() line = "".join(self.buffer_list) + self.chunk[self.p:eol+1] self.buffer_list = [] self.p = eol + 1 return line def next(self): """ Return the next input line, or raise :class:`StopIteration` when EOF is hit. """ _complain_ifclosed(self.closed) line = self.readline() if line == "": raise StopIteration return line def __iter__(self): return self def available(self): """ Number of bytes that can be read from this input stream without blocking. :rtype: int :return: available bytes """ _complain_ifclosed(self.closed) return self.f.available() def close(self): """ Close the file. """ if not self.closed: self.closed = True retval = self.f.close() if self.mode == "w": self.__size = self.fs.get_path_info(self.name)["size"] return retval def pread(self, position, length): r""" Read ``length`` bytes of data from the file, starting from ``position``\ . :type position: int :param position: position from which to read :type length: int :param length: the number of bytes to read :rtype: string :return: the chunk of data read from the file """ _complain_ifclosed(self.closed) if position < 0: raise ValueError("position must be >= 0") if position > self.size: raise IOError("position cannot be past EOF") if length < 0: length = self.size - position return self.f.pread(position, length) def pread_chunk(self, position, chunk): r""" Works like :meth:`pread`\ , but data is stored in the writable buffer ``chunk`` rather than returned. Reads at most a number of bytes equal to the size of ``chunk``\ . :type position: int :param position: position from which to read :type chunk: writable string buffer :param chunk: a c-like string buffer, such as the one returned by the ``create_string_buffer`` function in the :mod:`ctypes` module :rtype: int :return: the number of bytes read """ _complain_ifclosed(self.closed) if position > self.size: raise IOError("position cannot be past EOF") return self.f.pread_chunk(position, chunk) def read(self, length=-1): """ Read ``length`` bytes from the file. If ``length`` is negative or omitted, read all data until EOF. :type length: int :param length: the number of bytes to read :rtype: string :return: the chunk of data read from the file """ _complain_ifclosed(self.closed) # NOTE: libhdfs read stops at block boundaries: it is *essential* # to ensure that we actually read the required number of bytes. if length < 0: length = self.size chunks = [] while 1: if length <= 0: break c = self.f.read(min(self.chunk_size, length)) if c == "": break chunks.append(c) length -= len(c) return "".join(chunks) def read_chunk(self, chunk): r""" Works like :meth:`read`\ , but data is stored in the writable buffer ``chunk`` rather than returned. Reads at most a number of bytes equal to the size of ``chunk``\ . :type chunk: writable string buffer :param chunk: a c-like string buffer, such as the one returned by the ``create_string_buffer`` function in the :mod:`ctypes` module :rtype: int :return: the number of bytes read """ _complain_ifclosed(self.closed) return self.f.read_chunk(chunk) def seek(self, position, whence=os.SEEK_SET): """ Seek to ``position`` in file. :type position: int :param position: offset in bytes to seek to :type whence: int :param whence: defaults to ``os.SEEK_SET`` (absolute); other values are ``os.SEEK_CUR`` (relative to the current position) and ``os.SEEK_END`` (relative to the file's end). """ _complain_ifclosed(self.closed) position = _seek_with_boundary_checks(self, position, whence) self.__reset() return self.f.seek(position) def tell(self): """ Get the current byte offset in the file. :rtype: int :return: current offset in bytes """ _complain_ifclosed(self.closed) return self.f.tell() def write(self, data): """ Write ``data`` to the file. :type data: string :param data: the data to be written to the file :rtype: int :return: the number of bytes written """ _complain_ifclosed(self.closed) return self.f.write(data) def write_chunk(self, chunk): """ Write data from buffer ``chunk`` to the file. :type chunk: writable string buffer :param chunk: a c-like string buffer, such as the one returned by the ``create_string_buffer`` function in the :mod:`ctypes` module :rtype: int :return: the number of bytes written """ return self.write(chunk) def flush(self): """ Force any buffered output to be written. """ _complain_ifclosed(self.closed) return self.f.flush() class local_file(file): def __init__(self, fs, name, flags): if not flags.startswith("r"): local_file.__make_parents(fs, name) super(local_file, self).__init__(name, flags) self.__fs = fs self.__name = os.path.abspath(super(local_file, self).name) self.__size = os.fstat(super(local_file, self).fileno()).st_size self.f = self self.chunk_size = 0 @staticmethod def __make_parents(fs, name): d = os.path.dirname(name) if d: try: fs.create_directory(d) except IOError: raise IOError("Cannot open file %s" % name) @property def fs(self): return self.__fs @property def name(self): return self.__name @property def size(self): return self.__size def write(self, data): _complain_ifclosed(self.closed) if isinstance(data, unicode): data = data.encode(common.TEXT_ENCODING) elif not isinstance(data, (basestring, bytearray)): # access non string data through a buffer data = str(buffer(data)) super(local_file, self).write(data) return len(data) def available(self): _complain_ifclosed(self.closed) return self.size def close(self): if self.mode == "w": self.flush() os.fsync(self.fileno()) self.__size = os.fstat(self.fileno()).st_size super(local_file, self).close() def seek(self, position, whence=os.SEEK_SET): position = _seek_with_boundary_checks(self, position, whence) return super(local_file, self).seek(position) def pread(self, position, length): _complain_ifclosed(self.closed) if position < 0: raise ValueError("Position must be >= 0") old_pos = self.tell() self.seek(position) if length < 0: length = self.size - position data = self.read(length) self.seek(old_pos) return data def pread_chunk(self, position, chunk): _complain_ifclosed(self.closed) data = self.pread(position, len(chunk)) chunk[:len(data)] = data return len(data) def read_chunk(self, chunk): _complain_ifclosed(self.closed) data = self.read(len(chunk)) chunk[:len(data)] = data return len(data) def write_chunk(self, chunk): return self.write(chunk)
from __future__ import with_statement import os from os.path import isabs, join from subprocess import Popen, check_call, PIPE, STDOUT import tempfile import shutil from cStringIO import StringIO from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import find_executable from latex import latex def preview(expr, output='png', viewer=None, euler=True, packages=(), filename=None, outputbuffer=None, preamble=None, dvioptions=None, outputTexFile=None, **latex_settings): r""" View expression or LaTeX markup in PNG, DVI, PostScript or PDF form. If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, 'expr', may also be a LaTeX string. The function will then run the appropriate viewer for the given output format or use the user defined one. By default png output is generated. By default pretty Euler fonts are used for typesetting (they were used to typeset the well known "Concrete Mathematics" book). For that to work, you need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the texlive-fonts-extra package). If you prefer default AMS fonts or your system lacks 'eulervm' LaTeX package then unset the 'euler' keyword argument. To use viewer auto-detection, lets say for 'png' output, issue >>> from sympy import symbols, preview, Symbol >>> x, y = symbols("x,y") >>> preview(x + y, output='png') # doctest: +SKIP This will choose 'pyglet' by default. To select a different one, do >>> preview(x + y, output='png', viewer='gimp') # doctest: +SKIP The 'png' format is considered special. For all other formats the rules are slightly different. As an example we will take 'dvi' output format. If you would run >>> preview(x + y, output='dvi') # doctest: +SKIP then 'view' will look for available 'dvi' viewers on your system (predefined in the function, so it will try evince, first, then kdvi and xdvi). If nothing is found you will need to set the viewer explicitly. >>> preview(x + y, output='dvi', viewer='superior-dvi-viewer') # doctest: +SKIP This will skip auto-detection and will run user specified 'superior-dvi-viewer'. If 'view' fails to find it on your system it will gracefully raise an exception. You may also enter 'file' for the viewer argument. Doing so will cause this function to return a file object in read-only mode, if 'filename' is unset. However, if it was set, then 'preview' writes the genereted file to this filename instead. There is also support for writing to a StringIO like object, which needs to be passed to the 'outputbuffer' argument. >>> from StringIO import StringIO >>> obj = StringIO() >>> preview(x + y, output='png', viewer='StringIO', ... outputbuffer=obj) # doctest: +SKIP The LaTeX preamble can be customized by setting the 'preamble' keyword argument. This can be used, e.g., to set a different font size, use a custom documentclass or import certain set of LaTeX packages. >>> preamble = "\\documentclass[10pt]{article}\n" \ ... "\\usepackage{amsmath,amsfonts}\\begin{document}" >>> preview(x + y, output='png', preamble=preamble) # doctest: +SKIP If the value of 'output' is different from 'dvi' then command line options can be set ('dvioptions' argument) for the execution of the 'dvi'+output conversion tool. These options have to be in the form of a list of strings (see subprocess.Popen). Additional keyword args will be passed to the latex call, e.g., the symbol_names flag. >>> phidd = Symbol('phidd') >>> preview(phidd, symbol_names={phidd:r'\ddot{\varphi}'}) # doctest: +SKIP For post-processing the generated TeX File can be written to a file by passing the desired filename to the 'outputTexFile' keyword argument. To write the TeX code to a file named "sample.tex" and run the default png viewer to display the resulting bitmap, do >>> preview(x+y, output='png', outputTexFile="sample.tex") # doctest: +SKIP """ special = [ 'pyglet' ] if viewer is None: if output == "png": viewer = "pyglet" else: # sorted in order from most pretty to most ugly # very discussable, but indeed 'gv' looks awful :) # TODO add candidates for windows to list candidates = { "dvi": [ "evince", "okular", "kdvi", "xdvi" ], "ps": [ "evince", "okular", "gsview", "gv" ], "pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ], } try: for candidate in candidates[output]: if find_executable(candidate): viewer = candidate break else: raise SystemError( "No viewers found for '%s' output format." % output) except KeyError: raise SystemError("Invalid output format: %s" % output) else: if viewer == "file": if filename is None: SymPyDeprecationWarning(feature="Using viewer=\"file\" without a " "specified filename ", last_supported_version="0.7.3", use_instead="viewer=\"file\" and filename=\"desiredname\"") elif viewer == "StringIO": if outputbuffer is None: raise ValueError("outputbuffer has to be a StringIO " "compatible object if viewer=\"StringIO\"") elif viewer not in special and not find_executable(viewer): raise SystemError("Unrecognized viewer: %s" % viewer) if preamble is None: actual_packages = packages + ("amsmath", "amsfonts") if euler: actual_packages += ("euler",) package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p for p in actual_packages]) preamble = r"""\documentclass[12pt]{article} \pagestyle{empty} %s \begin{document} """ % (package_includes) else: if len(packages) > 0: raise ValueError("The \"packages\" keyword must not be set if a " "custom LaTeX preamble was specified") latex_main = preamble + '\n%s\n\n' + r"\end{document}" if isinstance(expr, str): latex_string = expr else: latex_string = latex(expr, mode='inline', **latex_settings) try: workdir = tempfile.mkdtemp() with open(join(workdir, 'texput.tex'), 'w') as fh: fh.write(latex_main % latex_string) if outputTexFile is not None: shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile) with open(os.devnull, 'w') as devnull: check_call(['latex', '-halt-on-error', 'texput.tex'], cwd=workdir, stdout=devnull, stderr=STDOUT) if output != "dvi": defaultoptions = { "ps": [], "pdf": [], "png": ["-T", "tight", "-z", "9", "--truecolor"] } commandend = { "ps": ["-o", "texput.ps", "texput.dvi"], "pdf": ["texput.dvi", "texput.pdf"], "png": ["-o", "texput.png", "texput.dvi"] } cmd = ["dvi" + output] try: if dvioptions is not None: cmd.extend(dvioptions) else: cmd.extend(defaultoptions[output]) cmd.extend(commandend[output]) except KeyError: raise SystemError("Invalid output format: %s" % output) with open(os.devnull, 'w') as devnull: check_call(cmd, cwd=workdir, stdout=devnull, stderr=STDOUT) src = "texput.%s" % (output) if viewer == "file": if filename is None: buffer = StringIO() with open(join(workdir, src), 'rb') as fh: buffer.write(fh.read()) return buffer else: shutil.move(join(workdir,src), filename) elif viewer == "StringIO": with open(join(workdir, src), 'rb') as fh: outputbuffer.write(fh.read()) elif viewer == "pyglet": try: from pyglet import window, image, gl from pyglet.window import key except ImportError: raise ImportError("pyglet is required for plotting.\n visit http://www.pyglet.org/") if output == "png": from pyglet.image.codecs.png import PNGImageDecoder img = image.load(join(workdir, src), decoder=PNGImageDecoder()) else: raise SystemError("pyglet preview works only for 'png' files.") offset = 25 win = window.Window( width=img.width + 2*offset, height=img.height + 2*offset, caption="sympy", resizable=False ) win.set_vsync(False) try: def on_close(): win.has_exit = True win.on_close = on_close def on_key_press(symbol, modifiers): if symbol in [key.Q, key.ESCAPE]: on_close() win.on_key_press = on_key_press def on_expose(): gl.glClearColor(1.0, 1.0, 1.0, 1.0) gl.glClear(gl.GL_COLOR_BUFFER_BIT) img.blit( (win.width - img.width) / 2, (win.height - img.height) / 2 ) win.on_expose = on_expose while not win.has_exit: win.dispatch_events() win.flip() except KeyboardInterrupt: pass win.close() else: with open(os.devnull, 'w') as devnull: check_call([viewer, src], cwd=workdir, stdout=devnull, stderr=STDOUT) finally: try: shutil.rmtree(workdir) # delete directory except OSError, e: if e.errno != 2: # code 2 - no such file or directory raise
''' This is still a sketch. The goal is to to make this inherit from Cube, but it's created via c = Cube() bc = BinnedCube(c, binsize=50) but then has access to the same visualization, saving, and processing tools. ''' ''' The stuff below is mostly code that came out of the original Cube (some not) ### FIX ME ### (looks like this was made before multiple widths became a thing) def roughLC(self, target=None, comps=None, wavelengths=None, **kwargs): '''construct a rough LC, over a given wavelength bin''' # if comps is just one-element, make it into a list target = self.target comps = self.comparisons self.speak('updating the rough LC with target {0} and comps {1} and wavelength range {2}'.format(target, comps, wavelengths)) w = self.spectral['wavelength'] if wavelengths is None: wavelengths = [np.min(w), np.max(w)] blueenough = (w <= np.max(wavelengths)) redenough = (w >= np.min(wavelengths)) waveok = blueenough*redenough targetflux = self.cubes['raw_counts'][target][:,waveok].sum(-1) comparisonflux = self.cubes['raw_counts'][comps].sum(0)[:,waveok].sum(-1) self.speak('comp/targ is typically {0}'.format(np.median(comparisonflux/targetflux))) self.temporal['lc'] = targetflux/comparisonflux self.temporal['lc'] /= np.median(self.temporal['lc']) self.speak('rms is {0}'.format(np.std(self.temporal['lc']))) plt.ion() x, y = self.temporal['bjd'], self.temporal['lc'] ok = self.temporal['ok'] plt.plot(x[ok], y[ok], **kwargs) # ???????? def doubleplot(self, binsize=500, wavemin=4500, wavemax=9000, divide=False, ylim=None, median=False, title=None): self.populate() c = self name = c.obs.target.name date = c.obs.night.name wavelengths = np.arange(wavemin, wavemax, binsize) lcs = [] import craftroom.cmaps blue, red = 'indigo', 'darkorange' cmap = craftroom.cmaps.one2another(blue, red) plt.ioff() for i, w in enumerate(wavelengths): c.roughLC(wavelengths=[w-binsize/2, w+binsize/2]) ok = np.array(c.temporal['ok']) lc = c.temporal['bjd']+0.0, c.temporal['lc'] +0.0, ok lcs.append(lc) offset = int(c.temporal['bjd'][0]) plt.figure(name, figsize=(8,6), dpi=70) if median: gs = plt.matplotlib.gridspec.GridSpec(3,1, height_ratios=[1,1,.5], hspace=0.02) else: gs = plt.matplotlib.gridspec.GridSpec(2,1, height_ratios=[1,.5], hspace=0.02) axlc = plt.subplot(gs[-1]) plt.xlabel('BJD - {0}'.format(offset)) plt.ylabel('Relative Flux') n, m = len(lc[2]), len(wavelengths) image, imageok = np.zeros((n,m)), np.zeros((n,m)) for i, lc in enumerate(lcs): fraction = i/(len(wavelengths) - 1.0) t = lc[0] - offset flux = lc[1] ok = lc[2] image[:,i] = flux + 0.0 imageok[:,i] = ok + 0 #print ok plt.plot(t[ok], flux[ok], alpha=binsize/500.0, linewidth=1,color=cmap(fraction)) if ylim is None: valid = np.nonzero((imageok*np.isfinite(image)).flatten())[0] ylim = np.percentile(image.flatten()[valid], [1,99]) plt.ylim(*ylim) plt.xlim(t.min(), t.max()) if divide: image /= np.median(image, 1)[:,np.newaxis] axim = plt.subplot(gs[0]) kw = dict(interpolation='nearest', cmap='gray', vmin=ylim[0], vmax=ylim[1], aspect='auto', extent=[min(t), max(t), (min(wavelengths) - binsize/2.0)/10, (max(wavelengths) + binsize/2.0)/10], origin='lower') axim.imshow(image.T, **kw) plt.setp(axim.get_xticklabels(), visible=False) if title is None: title = '{name} with {instrument}\n[from {0}nm ({blue}) to {1}nm ({red}) in {2}nm-wide bins]'.format( wavemin/10, wavemax/10, binsize/10, name=name,blue=blue, red=red, instrument=c.obs.instrument.name) plt.title(title) plt.ylabel('Wavelength (nm)') if median: axmed = plt.subplot(gs[1]) divided = (image/np.median(image, 1)[:,np.newaxis]) kw['vmin'], kw['vmax'] = np.percentile(divided, [5,95]) axmed.imshow(divided.T, **kw) plt.setp(axmed.get_xticklabels(), visible=False) plt.draw() if divide: filename = '{0}_binto{1}_{2}_normalized.pdf'.format(name,binsize, date) else: filename = '{0}_binto{1}_{2}.pdf'.format(name,binsize, date) plt.savefig(filename) ### FIX ME (not used) def convolveCube(self,width=0.5): '''Take a spectral cube, convolve it with a Gaussian (NOT USED!).''' c = self.flux w = self.spectral['wavelength'] plt.ion() x = np.arange(-width*10, width*10) gauss = lambda x: np.exp(-0.5*x**2/width**2) new_cube = np.copy(c) for star in range(len(c[:,0,0])): plt.figure('convolution') for i in range(len(c[0,:,0])): new_cube[star,i,:] = np.convolve(c[star,i,:], gauss(x),'same') plt.plot(c[star,i,:]) plt.plot(new_cube[star,i,:]) self.flux = new_cube def createBins(self, binsize=250, remake=False): '''Take a spectral cube, and creates big wavelength bins.''' self.populate() self.speak("Binning the spectral cube to {0}A binsize.".format(binsize)) #self.shiftCube(plot=True) #self.show() wavelength = self.spectral['wavelength'] #dnpixelsdw = self.spectral['dnpixelsdw'] # the shape of the cube nStars, nTimes, nWaves = self.cubes['raw_counts'].shape plt.ion() self.binned_cubes = {} # define bins bin_starts = np.arange(wavelength.min(), wavelength.max() - binsize/2.0, binsize) bin_ends = bin_starts + binsize bin_centers = (bin_starts + bin_ends)/2.0 nBins = bin_centers.size bin_ok = np.zeros((nStars, nBins)) satlimit = 150000 faintlimit = 2500 # loop through stars, determining which bins are okay for each for k in self.cubes.keys(): self.speak('binning {0} to {1}A bins'.format(k, binsize)) shape = (self.numberofstars, self.numberoftimes, self.numberofwavelengths/binsize, binsize) # integrate spectrum over bin (dndw factor accounts for the fractional pixels represented by resampled cube spectrum # !!!!! DO I NEED TO INCLUDE DNPIXELSDW?? # this was the old version: # self.binned_cubes[newkey][star, time, bin] = scipy.integrate.trapz(wholespectrum[mask]*dnpixelsdw[mask], wavelength[mask]) #if k == 'ok': # dndw = 1 #else: # dndw = self.spectral['dnpixelsdw'].reshape(1, 1, self.numberofwavelengths) self.binned_cubes[k] = (self.cubes[k]*dndw).reshape(shape).sum(-1) if k=='width' or k =='centroid' or k =='peak': self.binned_cubes[k] /= (dndw).reshape((1,1, self.numberofwavelengths/binsize, binsize)).sum(-1) if k=='ok': self.binned_cubes[k] = (self.binned_cubes[k]/binsize).astype(np.bool) # self.bin_centers = bin_centers self.binned_cubes = astropy.table.Table(self.binned_cubes) #np.save(binned_filename, (self.binned_cubes, self.bin_centers, self.binned_cubes['ok'])) #self.speak(" Saved binned cube to {0}".format(binned_filename)) def correctBins(self, **kw): '''Use comparison stars to correct for atmospheric losses, create a self.binned_corrected.''' self.populate() self.speak('using comparison stars {0} to correct for atmospheric losses'.format(self.comparisons)) wavelength = self.bin_centers vmin = 0.98 vmax = 1.02 nStars, nTimes, nWaves = self.binned_cubes['raw_counts'].shape # create empty correction and uncertainty arrays correction, uncertainty = np.ones((nTimes, nWaves)), np.ones((nTimes, nWaves)) def weightedsum(array): return ((array*self.binned_cubes['ok'])[self.comparisons,:,:].sum(0)/(self.binned_cubes['ok'])[self.comparisons,:,:].sum(0)) correction = weightedsum(self.binned_cubes['raw_counts']) uncertainty = np.sqrt(weightedsum(self.binned_cubes['raw_counts'] + self.binned_cubes['sky'])) self.binned_correction = np.ma.MaskedArray(correction, mask=((self.binned_cubes['ok']==False).sum(0).astype(np.bool)), fill_value=np.nan) self.binned_correction_uncertainty = np.ma.MaskedArray(uncertainty, mask=((self.binned_cubes['ok']==False).sum(0).astype(np.bool)), fill_value=np.nan) # normalize the correction spectrum to be close to one mediancompositespectrum = np.ma.median(self.binned_correction, 0) self.binned_correction /= mediancompositespectrum.reshape(1,nWaves) self.binned_correction_uncertainty /= mediancompositespectrum.reshape(1,nWaves) #self.display.one(self.binned_correction.filled(), clobber=True) #self.display.one(self.binned_correction_uncertainty.filled()) self.binned_cubes['corrected'] = self.binned_cubes['raw_counts']/self.binned_correction photonnoise = np.sqrt(self.binned_cubes['raw_counts'] + self.binned_cubes['sky'])/self.binned_cubes['raw_counts'] correctionnoise = self.binned_correction_uncertainty self.binned_cubes['uncertainty'] = np.sqrt(photonnoise**2 + correctionnoise**2) def imageBins(self, **kw): self.createBins(**kw) self.correctBins(**kw) figure = plt.figure(figsize=(10,10), dpi=70) gs = plt.matplotlib.gridspec.GridSpec(self.numberofstars, 2) kw = dict(cmap='gray') ax=None for i in range(self.numberofstars): ax = plt.subplot(gs[i,0], sharex=ax, sharey=ax) ax.imshow(self.binned_cubes['raw_counts'][i], **kw) ax = plt.subplot(gs[i,1], sharex=ax, sharey=ax) ax.imshow(self.binned_cubes['corrected'][i], **kw) def makeMeanSpectrum(self, plot=False): self.populate() wavelength = self.spectral['wavelength'] spectrum = np.median(self.cubes['raw_counts'][self.obs.target,:,:],1).flatten() assert(len(spectrum) == len(wavelength)) if plot: fi, ax = plt.subplots(1) unit = 10.0 ax.plot(wavelength/unit, spectrum*unit) ax.set_xlabel('Wavelength (nm)') ax.set_ylabel('Flux (photons/nm/exposure)') self.speak("saving median spectrum to") filename = os.path.join(self.directory, 'medianSpectrum.npy') self.speak(filename) np.save(filename, (wavelength, spectrum)) def makeLCs(self,binsize=250, remake=False): '''Wrapper to go from extracted spectra to binned, multiwavelength lightcurves.''' self.populate() # make (and save) and mean spectrum, for plotting comparisons at later steps self.makeMeanSpectrum() # pick the target star target = self.target comparisons = self.obs.comparisons # bin the cube into manageable wavelength bins self.createBins(binsize=binsize) # use comparison star(s) to divide out flux losses self.correctBins() # setup nStars, nTimes, nWaves = self.binned_cubes['corrected'].shape bw = self.bin_centers binsize = bw[1] - bw[0] bin_starts = bw - binsize/2.0 bin_ends = bw + binsize/2.0 lcDirectory = os.path.join(self.directory, "chromatic{binsize:05.0f}/".format(binsize=binsize)) mkdir(lcDirectory) lcDirectory = os.path.join(lcDirectory, 'originalLCs/') mkdir(lcDirectory) self.lcs = [] # loop through wavelength bins for wave in range(nWaves): left, right = bin_starts[wave], bin_ends[wave] lcfilename = os.path.join(lcDirectory, '/{0:05d}to{1:05d}.lightcurve'.format(np.int(left), np.int(right))) # is there *any* good data at this wavelength? if self.binned_cubes['ok'][target,:,wave].any(): # determine where the target star is ok and the correction is ok (on a time-by-time basis) ok = ((self.binned_cubes['ok'][target,:,wave] != False).flatten()*(self.binned_correction.mask[:,wave] == False).flatten()) # report what's being made self.speak('making light curve for {0} to {1}A, with {2} good points'.format(bin_starts[wave], bin_ends[wave], np.sum(ok != False))) # create an empty LC object lc = astropy.table.Table() lc['bjd'] = self.temporal['bjd'] lc['flux'] = self.binned_cubes['corrected'][target,:,wave].flatten()/np.median(self.binned_cubes['raw_counts'][target,:,wave].flatten()) lc['uncertainty'] = self.binned_cubes['uncertainty'][target,:,wave].flatten() lc['ok'] = ok.astype(np.int) # pull out global values for key in ['airmass', 'rotatore']: lc['{0}'.format(key)] = self.temporal[key] # pull out the star-by-star (wavelength-independent) quantities for key in ['width', 'centroid', 'shift']: try: lc['{0}_target'.format(key)] = self.squares[key][target] for comparison in comparisons: lc['{0}_star{1:02.0f}'.format(key, comparison)] = self.squares[key][comparison] except KeyError: self.speak("{} couldn't be found!".format(key)) # pull out the star-by-star wavelength specific values for key in ['sky', 'peak']: lc['{0}_target'.format(key)] = self.binned_cubes[key][target,:,wave] for comparison in comparisons: lc['{0}_star{1:02.0f}'.format(key, comparison)] = self.binned_cubes[key][comparison,:,wave] # pull out the star-by-star wavelength specific values that should be measured relative to the more global values for key in ['width', 'centroid']: lc['d{0}_target'.format(key)] = self.binned_cubes[key][target,:,wave] - lc['{0}_target'.format(key)] for comparison in comparisons: lc['d{0}_star{1:02.0f}'.format(key, comparison)] = self.binned_cubes[key][comparison,:,wave] - lc['{0}_star{1:02.0f}'.format(key, comparison)] #lc.populate(bjd, flux, uncertainty, **lc) table = astropy.table.Table(lc) table['bjd'].format = '.10f' #table = table[table['ok'].astype(np.bool)] # REMOVED TO MAKE SURE MASKING IS EASIER AT LATER STEP table.write(lcfilename, format='ascii.fixed_width', bookend=False) self.speak('saved light curve to') self.speak('{0}'.format(lcfilename)) '''for key in self.binned_cubes.keys(): if key != 'corrected' and key != 'error': dict[key+'_target'] = self.binned_cubes[key][target,ok,wave].flatten() for comparison in self.obs.comparisons: dict[key+'_comparison{0:02.0f}'.format(comparison)] = self.binned_cubes[key][comparison,ok,wave].flatten() for k in keystoinclude: if k == 'ok': continue if k == 'airmass': newkey = k else: newkey = 'global_{0}'.format(k) dict[k] = self.temporal[k][ok] assert(np.isfinite(flux[ok]).all()) assert(np.sum(ok) > 0) self.speak(bjd.flatten()[ok].size) lc.populate(bjd[ok], flux[ok], error[ok], **dict) #lc.plot() self.speak(lc) lc.save() self.lcs.append(lc)''' def loadLCs(self, binsize=250): lcDirectory = os.path.join(self.directory, 'lc_binby' + ('%d' % binsize) + '/') g = glob.glob(os.path.join(lcDirectory, 'lc_*.npy')) wavelengths = [] lcs = [] for file in g: lc = LC(self.obs, filename=file) if lc.lc is not None: wavelengths.append(lc.wavelength) lcs.append(lc) self.lcs = np.array(lcs) self.lcs = self.lcs[np.argsort(wavelengths)] return self.lcs def imageTarget(self, title=None, vmin=None, vmax=None): '''Make an image of the input cube.''' if title is None: title = self.obs.target.name + ' | ' + self.obs.night self.speak(" Trying to image bins for " + title) bin_centers = self.bin_centers bin_ok = self.binned_cubes['ok'] target = self.target_raw '''Take binned lightcurves, image them. Returns the bins with median correction subtracted.''' plt.ion() if vmin == None: vmin = 0.985 if vmax == None: vmax = 1.005 nTimes, nWaves = target.shape fi, ax = plt.subplots(4,1, figsize=(4.5,12), sharex=True, sharey=True) plt.subplots_adjust() ax[0].set_title(title) binsize = bin_centers[1] - bin_centers[0] self.bin_starts = bin_centers - binsize/2.0 self.bin_ends = bin_centers + binsize/2.0 nBins = bin_centers.size normalized = np.ones_like(self.target_raw) targets = [self.target_raw, self.target_corrected, self.target_median, self.target_divided] names = ['Raw Detected Flux', 'Divided by Comparison', 'Median Transit', 'Divided by Transit'] for i in range(len(targets)): target = targets[i] medianspectrum = np.median(target,0)*np.ones_like(target) normalized = target/medianspectrum ax[i].imshow(normalized, vmin=vmin, vmax=vmax, extent=[self.bin_starts.min(), self.bin_ends.max(), 0, nTimes], aspect='auto', cmap='gray', interpolation='nearest') ax[i].set_ylabel(names[i]) ax[-1].set_xlabel('Wavelength (angstroms)') ax[-1].set_xlim(self.bin_starts.min(), self.bin_ends.max()) for bin in range(nBins): if bin_ok[self.obs.target,bin] == 0: for a in ax: a.axvspan(self.bin_starts[bin], self.bin_ends[bin], alpha=0.7, color='white', edgecolor=None) plt.tight_layout(h_pad=0.0) plt.savefig(os.path.join(self.obs.reducer.extractionDirectory, + 'divided_{0}.pdf'.format(self.obs.night))) a = raw_input('imaging target') def help(self): self.speak(cubehelp) class LC(): def __init__(self, obs, left=None, right=None, filename=None): self.obs = obs if filename is not None: self.load(filename) else: self.left = left self.right = right self.setup() def setup(self): self.wavelength = (self.left + self.right)/2.0 self.binsize = self.right - self.left self.filename = os.path.join(self.directory, 'lc_binby' + ('%d' % self.binsize) + '/lc_{0:05d}to{1:05d}.npy'.format(np.int(self.left), np.int(self.right))) def populate(self, bjd, flux, error, **kwargs): # set up the column names for the light curve record array types = [('bjd', np.float), ('flux', np.float), ('error', np.float)] for key in kwargs.keys(): types.append((key,np.float)) # populate the columns with data self.lc = np.zeros(bjd.size, types) self.lc['bjd'] = bjd self.lc['flux'] = flux self.lc['error'] = error for key in kwargs.keys(): self.lc[key] = kwargs[key] def save(self): np.save(self.filename, self.lc) def load(self, filename): self.left = np.float(filename.split('lc_')[-1].split('to')[-2]) self.right = np.float(filename.split('.npy')[-2].split('to')[-1]) self.setup() assert(self.filename == filename) self.lc = np.load(self.filename) def plot(self): try: for a in self.ax.values(): a.cla() except: self.cubekeystoplot = ['flux', 'raw_counts_target', 'sky_target', 'airmass', 'width_target', 'centroid_target', 'peak_target'] gs = plt.matplotlib.gridspec.GridSpec(len(self.cubekeystoplot), 1, height_ratios=[5,1,1,1,1,1,1], wspace=0, hspace=0) self.ax = {} for i in range(len(self.cubekeystoplot)): key = self.cubekeystoplot[i] try: sharex = self.ax[self.cubekeystoplot[0]] except: sharex = None self.ax[key] = plt.subplot(gs[i], sharex=sharex) for key in self.cubekeystoplot: self.ax[key].plot(self.lc['bjd'], self.lc[key], markersize=1, marker='o', alpha=0.3, color='black', linewidth=0) self.ax[key].set_xlim(self.lc['bjd'].min(), self.lc['bjd'].max()) self.ax[key].set_ylabel(key) plt.draw() bla = raw_input(self.filename + '?')
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.compiler.jit.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.compiler import jit from tensorflow.python.framework import constant_op from tensorflow.python.framework import function from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import gradients from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test # pylint: enable=g-import-not-at-top _REGISTERED_OPS = op_def_registry.get_registered_ops() def enable_jit_nonstateful(node_def): try: return not _REGISTERED_OPS[node_def.op].is_stateful except KeyError: raise ValueError("Unregistered op being created: %s" % node_def) class JITTest(test.TestCase): def compute(self, use_jit, compute_fn): random_seed.set_random_seed(1234) with self.session(graph=ops.Graph()) as sess: with jit.experimental_jit_scope(use_jit): r = compute_fn() sess.run(variables.global_variables_initializer()) return (r, sess.run(r)) def testJITCreateOpsLambda(self): """Test several ways of customizing the compilation attribute.""" def create_ops(): with variable_scope.variable_scope( "root", initializer=init_ops.random_uniform_initializer( -0.1, 0.1, seed=2)): inputs = random_ops.random_uniform((1,), seed=1) return inputs v_false_1_t, v_false_1 = self.compute(False, create_ops) _, v_false_2 = self.compute(False, create_ops) v_true_1_t, v_true_1 = self.compute(enable_jit_nonstateful, create_ops) _, v_true_2 = self.compute(enable_jit_nonstateful, create_ops) v_all_true_t, _ = self.compute(True, create_ops) self.assertFalse(v_false_1_t.op.get_attr("_XlaCompile")) v_true_1_t_sampler_op = v_true_1_t.graph.get_operation_by_name( "root/random_uniform/RandomUniform") v_all_true_t_sampler_op = v_all_true_t.graph.get_operation_by_name( "root/random_uniform/RandomUniform") self.assertFalse(v_true_1_t_sampler_op.get_attr("_XlaCompile")) self.assertTrue(v_all_true_t_sampler_op.get_attr("_XlaCompile")) self.assertTrue(v_true_1_t.op.get_attr("_XlaCompile")) self.assertTrue(v_all_true_t.op.get_attr("_XlaCompile")) # Additionally ensure that where no JIT compilation happens on the # random_uniform op, the output values are identical to the case # where no JIT compilation happens anywhere. self.assertAllClose(v_false_1, v_false_2) self.assertAllClose(v_true_1, v_true_2) self.assertAllClose(v_false_1, v_true_1) def testJITXlaScope(self): with self.session(graph=ops.Graph()): with jit.experimental_jit_scope(True): # XlaScope 0 a1 = constant_op.constant(1) with jit.experimental_jit_scope(True): # XlaScope 1 a2 = constant_op.constant(1) with jit.experimental_jit_scope(True): # XlaScope still 1, depth 1 a3 = constant_op.constant(1) with jit.experimental_jit_scope(True): # XlaScope still 1, depth 2 a4 = constant_op.constant(1) # XlaScope still 1, depth 1 a5 = constant_op.constant(1) with jit.experimental_jit_scope(True): # XlaScope now 2, depth 0 a6 = constant_op.constant(1) self.assertEqual(b"jit_scope_0", a1.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a2.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a3.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a4.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a5.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_2", a6.op.get_attr("_XlaScope")) def testJITVariableSeed(self): """Test that the stateful initializer is not marked for compilation. XLA does not currently support seeded initialization and XLA initializers therefore return different values than non-XLA counterparts. Here we ensure that if we can disable JIT compilation for the initializers and get the same variable values as if no JIT compilation happened. """ def create_ops(): with variable_scope.variable_scope( "root", initializer=init_ops.random_uniform_initializer( -0.1, 0.1, seed=2)): inputs = variable_scope.get_variable("var", (1,)) return inputs _, v_false_1 = self.compute(False, create_ops) _, v_false_2 = self.compute(False, create_ops) _, v_true_1 = self.compute(enable_jit_nonstateful, create_ops) _, v_true_2 = self.compute(enable_jit_nonstateful, create_ops) self.assertAllClose(v_false_1, v_false_2) self.assertAllClose(v_true_1, v_true_2) self.assertAllClose(v_false_1, v_true_1) def testDefunNoJitScope(self): with self.session(graph=ops.Graph()): @function.Defun(compiled=True, noinline=True) def mulop(x1, x2): return x1 * x2 x = constant_op.constant(1.0) r = mulop(x, x) # Ensure the forward function is compiled. graph_def = r.graph.as_graph_def() func_attrs = graph_def.library.function[0].attr self.assertTrue(func_attrs["_XlaCompile"].b) # No enclosing jit scope so function sets its own value for _XlaScope. self.assertEqual(b"function_mulop", func_attrs["_XlaScope"].s) def testDefunInheritsJitScope(self): with self.session(graph=ops.Graph()): with jit.experimental_jit_scope(True): @function.Defun(compiled=True, noinline=True) def mulop(x1, x2): return x1 * x2 x = constant_op.constant(1.0) r = mulop(x, x) # Ensure the forward function is compiled. graph_def = r.graph.as_graph_def() func_attrs = graph_def.library.function[0].attr self.assertTrue(func_attrs["_XlaCompile"].b) # Ensure _XlaScope is inherited from enclosing context. self.assertEqual(b"jit_scope_0", func_attrs["_XlaScope"].s) class CompilationEnabledInGradientTest(test.TestCase): def testCompilationInGradient(self): with self.test_session(): x = constant_op.constant([[3.]]) y_nc = math_ops.matmul(x, x, name="not_compiled") with jit.experimental_jit_scope(): y_c = math_ops.matmul(y_nc, y_nc, name="compiled") x_grads = gradients.gradients([y_c], [x])[0] operations = x.graph.get_operations() c_grad_ops = [ op for op in operations if "gradients/compiled" in op.name] nc_grad_ops = [ op for op in operations if "gradients/not_compiled" in op.name] self.assertGreater(len(c_grad_ops), 0) self.assertGreater(len(nc_grad_ops), 0) for cg in c_grad_ops: self.assertTrue(cg.get_attr("_XlaCompile")) for ncg in nc_grad_ops: with self.assertRaisesRegexp(ValueError, "[Nn]o attr named"): ncg.get_attr("_XlaCompile") # d/dx (x ** 4) = 4 * (x ** 3) self.assertAllClose([[108]], x_grads.eval()) def testCompilationGradientScopeNames(self): with self.session(graph=ops.Graph()): with jit.experimental_jit_scope(): # XlaScope 0 a1 = constant_op.constant([[1.]]) a1t = math_ops.matmul(a1, a1) with jit.experimental_jit_scope(): # XlaScope 1 a2 = constant_op.constant([[1.]]) a2t = math_ops.matmul(a2, a2) self.assertEqual(b"jit_scope_0", a1.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a2.op.get_attr("_XlaScope")) grad_a1 = gradients.gradients(a1t, a1, name="GA")[0] grad_a2 = gradients.gradients(a2t, a2, name="GB")[0] grad_a1 = grad_a1.op.inputs[0] grad_a2 = grad_a2.op.inputs[0] self.assertTrue(grad_a1.op.get_attr("_XlaCompile")) self.assertTrue(grad_a2.op.get_attr("_XlaCompile")) self.assertEqual(b"jit_scope_0", grad_a1.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", grad_a2.op.get_attr("_XlaScope")) def testCompilationSeparateGradientScopeNames(self): with self.session(graph=ops.Graph()): with jit.experimental_jit_scope(True, separate_compiled_gradients=True): # XlaScope 0 a1 = constant_op.constant([[1.]]) a1t = math_ops.matmul(a1, a1) with jit.experimental_jit_scope(True, separate_compiled_gradients=True): # XlaScope 1 a2 = constant_op.constant([[1.]]) a2t = math_ops.matmul(a2, a2) self.assertEqual(b"jit_scope_0", a1.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1", a2.op.get_attr("_XlaScope")) grad_a1 = gradients.gradients(a1t, a1, name="GA")[0] grad_a2 = gradients.gradients(a2t, a2, name="GB")[0] grad_a1 = grad_a1.op.inputs[0] grad_a2 = grad_a2.op.inputs[0] self.assertTrue(grad_a1.op.get_attr("_XlaCompile")) self.assertTrue(grad_a2.op.get_attr("_XlaCompile")) self.assertEqual(b"jit_scope_0_grad_GA", grad_a1.op.get_attr("_XlaScope")) self.assertEqual(b"jit_scope_1_grad_GB", grad_a2.op.get_attr("_XlaScope")) def testPlaysNicelyWithDefun(self): with self.session(graph=ops.Graph()) as sess: with jit.experimental_jit_scope(True): @function.Defun(compiled=True, noinline=True) def mulop(x1, x2): return x1 * x2 x = constant_op.constant(1.0) r = mulop(x, x) g_r = gradients.gradients(r, x, name="GA")[0] # Ensure the forward function is compiled. graph_def = r.graph.as_graph_def() func_attrs = graph_def.library.function[0].attr self.assertTrue(func_attrs["_XlaCompile"].b) self.assertEqual(b"jit_scope_0", func_attrs["_XlaScope"].s) # Ensure the gradient (SymbolicGradient) is compiled, with the same # _XlaScope as the function itself. grad_op = g_r.op.inputs[0].op self.assertTrue(grad_op.get_attr("_XlaCompile")) self.assertEqual(b"jit_scope_0", grad_op.get_attr("_XlaScope")) # Ensure the ops run: grad(x1*x1) = 2*x1 self.assertAllClose([1.0, 1.0, 2.0], sess.run([x, r, g_r])) def testPlaysNicelyWithDefunSeparateGradientScope(self): with self.session(graph=ops.Graph()) as sess: with jit.experimental_jit_scope(True): @function.Defun( compiled=True, noinline=True, separate_compiled_gradients=True) def mulop(x1, x2): return x1 * x2 x = constant_op.constant(1.0) r = mulop(x, x) g_r = gradients.gradients(r, x, name="GA")[0] # Ensure the forward function is compiled. graph_def = r.graph.as_graph_def() func_attrs = graph_def.library.function[0].attr self.assertTrue(func_attrs["_XlaCompile"].b) self.assertEqual(b"jit_scope_0", func_attrs["_XlaScope"].s) # Ensure the gradient (SymbolicGradient) is compiled, with a different # _XlaScope from the function itself. grad_op = g_r.op.inputs[0].op self.assertTrue(grad_op.get_attr("_XlaCompile")) self.assertEqual(b"jit_scope_0_grad_GA", grad_op.get_attr("_XlaScope")) # Ensure the ops run: grad(x1*x1) = 2*x1 self.assertAllClose([1.0, 1.0, 2.0], sess.run([x, r, g_r])) if __name__ == "__main__": test.main()
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Efficient ImageNet input pipeline using tf.data.Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc from collections import namedtuple import functools import os import tensorflow.compat.v1 as tf import resnet_preprocessing from tensorflow.contrib import cloud as contrib_cloud def image_serving_input_fn(): """Serving input fn for raw images.""" def _preprocess_image(image_bytes): """Preprocess a single raw image.""" image = resnet_preprocessing.preprocess_image( image_bytes=image_bytes, is_training=False) return image image_bytes_list = tf.placeholder( shape=[None], dtype=tf.string, ) images = tf.map_fn( _preprocess_image, image_bytes_list, back_prop=False, dtype=tf.float32) return tf.estimator.export.ServingInputReceiver( images, {'image_bytes': image_bytes_list}) class ImageNetTFExampleInput(object): """Base class for ImageNet input_fn generator. Args: is_training: `bool` for whether the input is for training use_bfloat16: If True, use bfloat16 precision; else use float32. transpose_input: 'bool' for whether to use the double transpose trick num_cores: `int` for the number of TPU cores """ __metaclass__ = abc.ABCMeta def __init__(self, is_training, use_bfloat16, num_cores=8, image_size=224, transpose_input=False): self.image_preprocessing_fn = resnet_preprocessing.preprocess_image self.is_training = is_training self.use_bfloat16 = use_bfloat16 self.num_cores = num_cores self.transpose_input = transpose_input self.image_size = image_size def set_shapes(self, batch_size, images, labels): """Statically set the batch_size dimension.""" if self.transpose_input: images.set_shape(images.get_shape().merge_with( tf.TensorShape([None, None, None, batch_size]))) labels.set_shape(labels.get_shape().merge_with( tf.TensorShape([batch_size]))) else: images.set_shape(images.get_shape().merge_with( tf.TensorShape([batch_size, None, None, None]))) labels.set_shape(labels.get_shape().merge_with( tf.TensorShape([batch_size]))) return images, labels def dataset_parser(self, value): """Parses an image and its label from a serialized ResNet-50 TFExample. Args: value: serialized string containing an ImageNet TFExample. Returns: Returns a tuple of (image, label) from the TFExample. """ keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, ''), 'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'), 'image/class/label': tf.FixedLenFeature([], tf.int64, -1), 'image/class/text': tf.FixedLenFeature([], tf.string, ''), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature(dtype=tf.int64), } parsed = tf.parse_single_example(value, keys_to_features) image_bytes = tf.reshape(parsed['image/encoded'], shape=[]) image = self.image_preprocessing_fn( image_bytes=image_bytes, is_training=self.is_training, image_size=self.image_size, use_bfloat16=self.use_bfloat16) # Subtract one so that labels are in [0, 1000). label = tf.cast( tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1 return image, label @abc.abstractmethod def make_source_dataset(self): """Makes dataset of serialized TFExamples. The returned dataset will contain `tf.string` tensors, but these strings are serialized `TFExample` records that will be parsed by `dataset_parser`. If self.is_training, the dataset should be infinite. Returns: A `tf.data.Dataset` object. """ return def input_fn(self, params): """Input function which provides a single batch for train or eval. Args: params: `dict` of parameters passed from the `TPUEstimator`. `params['batch_size']` is always provided and should be used as the effective batch size. Returns: A `tf.data.Dataset` object. """ # Retrieves the batch size for the current shard. The # of shards is # computed according to the input pipeline deployment. See # tf.contrib.tpu.RunConfig for details. batch_size = params['batch_size'] dataset = self.make_source_dataset() # Use the fused map-and-batch operation. # # For XLA, we must used fixed shapes. Because we repeat the source training # dataset indefinitely, we can use `drop_remainder=True` to get fixed-size # batches without dropping any training examples. # # When evaluating, `drop_remainder=True` prevents accidentally evaluating # the same image twice by dropping the final batch if it is less than a full # batch size. As long as this validation is done with consistent batch size, # exactly the same images will be used. dataset = dataset.apply( tf.data.experimental.map_and_batch( self.dataset_parser, batch_size=batch_size, num_parallel_batches=self.num_cores, drop_remainder=True)) # Transpose for performance on TPU if self.transpose_input: dataset = dataset.map( lambda images, labels: (tf.transpose(images, [1, 2, 3, 0]), labels), num_parallel_calls=self.num_cores) # Assign static batch size dimension dataset = dataset.map(functools.partial(self.set_shapes, batch_size)) # Prefetch overlaps in-feed with training dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) if self.is_training: # Use tf.data's experimental_slack option to reduce CPU contention at the # start of a step. Enable non-determinism only for training. options = tf.data.Options() options.experimental_slack = True options.experimental_deterministic = False dataset = dataset.with_options(options) return dataset class ImageNetInput(ImageNetTFExampleInput): """Generates ImageNet input_fn from a series of TFRecord files. The training data is assumed to be in TFRecord format with keys as specified in the dataset_parser below, sharded across 1024 files, named sequentially: train-00000-of-01024 train-00001-of-01024 ... train-01023-of-01024 The validation data is in the same format but sharded in 128 files. The format of the data required is created by the script at: https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py """ def __init__(self, is_training, use_bfloat16, transpose_input, data_dir, image_size=224, num_parallel_calls=64, cache=False, num_replicas=None, replica=0): """Create an input from TFRecord files. Args: is_training: `bool` for whether the input is for training use_bfloat16: If True, use bfloat16 precision; else use float32. transpose_input: 'bool' for whether to use the double transpose trick data_dir: `str` for the directory of the training and validation data; if 'null' (the literal string 'null') or implicitly False then construct a null pipeline, consisting of empty images and blank labels. num_parallel_calls: concurrency level to use when reading data from disk. cache: if true, fill the dataset by repeating from its cache num_replicas: `int` for the number of model replicas this dataset should be sharded onto, or `None` if this dataset should not be sharded. replica: `int` for the replica that input_fn should produce data for """ super(ImageNetInput, self).__init__( is_training=is_training, image_size=image_size, use_bfloat16=use_bfloat16, transpose_input=transpose_input) self.data_dir = data_dir # TODO(b/112427086): simplify the choice of input source if self.data_dir == 'null' or not self.data_dir: self.data_dir = None self.num_parallel_calls = num_parallel_calls self.cache = cache self.num_replicas = num_replicas self.replica = replica def _get_null_input(self, data): """Returns a null image (all black pixels). Args: data: element of a dataset, ignored in this method, since it produces the same null image regardless of the element. Returns: a tensor representing a null image. """ del data # Unused since output is constant regardless of input return tf.zeros([self.image_size, self.image_size, 3], tf.bfloat16 if self.use_bfloat16 else tf.float32) def dataset_parser(self, value): """See base class.""" if not self.data_dir: return value, tf.constant(0, tf.int32) return super(ImageNetInput, self).dataset_parser(value) def make_source_dataset(self): """See base class.""" if not self.data_dir: tf.logging.info('Undefined data_dir implies null input') return tf.data.Dataset.range(1).repeat().map(self._get_null_input) # Shuffle the filenames to ensure better randomization. file_pattern = os.path.join( self.data_dir, 'train-*' if self.is_training else 'validation-*') dataset = tf.data.Dataset.list_files(file_pattern, shuffle=self.is_training) # Shard the data into `num_replicas` parts, get the part for `replica` if self.num_replicas: dataset = dataset.shard(self.num_replicas, self.replica) if self.is_training and not self.cache: dataset = dataset.repeat() def fetch_dataset(filename): buffer_size = 8 * 1024 * 1024 # 8 MiB per file dataset = tf.data.TFRecordDataset(filename, buffer_size=buffer_size) return dataset # Read the data from disk in parallel dataset = dataset.interleave( fetch_dataset, cycle_length=self.num_parallel_calls, num_parallel_calls=self.num_parallel_calls) if self.cache: dataset = dataset.cache().shuffle(1024 * 16).repeat() else: dataset = dataset.shuffle(1024) return dataset # Defines a selection of data from a Cloud Bigtable. BigtableSelection = namedtuple('BigtableSelection', ['project', 'instance', 'table', 'prefix', 'column_family', 'column_qualifier']) class ImageNetBigtableInput(ImageNetTFExampleInput): """Generates ImageNet input_fn from a Bigtable for training or evaluation. """ def __init__(self, is_training, use_bfloat16, transpose_input, selection): """Constructs an ImageNet input from a BigtableSelection. Args: is_training: `bool` for whether the input is for training use_bfloat16: If True, use bfloat16 precision; else use float32. transpose_input: 'bool' for whether to use the double transpose trick selection: a BigtableSelection specifying a part of a Bigtable. """ super(ImageNetBigtableInput, self).__init__( is_training=is_training, use_bfloat16=use_bfloat16, transpose_input=transpose_input) self.selection = selection def make_source_dataset(self): """See base class.""" data = self.selection client = contrib_cloud.BigtableClient(data.project, data.instance) table = client.table(data.table) ds = table.parallel_scan_prefix(data.prefix, columns=[(data.column_family, data.column_qualifier)]) # The Bigtable datasets will have the shape (row_key, data) ds_data = ds.map(lambda index, data: data) if self.is_training: ds_data = ds_data.repeat() return ds_data
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'IndustryProfile.create_date' db.add_column(u'account_industryprofile', 'create_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'IndustryProfile.write_date' db.add_column(u'account_industryprofile', 'write_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'UserProfile.create_date' db.add_column(u'account_userprofile', 'create_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'UserProfile.write_date' db.add_column(u'account_userprofile', 'write_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'TrainingProfile.create_date' db.add_column(u'account_trainingprofile', 'create_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'TrainingProfile.write_date' db.add_column(u'account_trainingprofile', 'write_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'GovernmentProfile.create_date' db.add_column(u'account_governmentprofile', 'create_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'GovernmentProfile.write_date' db.add_column(u'account_governmentprofile', 'write_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'StudentProfile.create_date' db.add_column(u'account_studentprofile', 'create_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) # Adding field 'StudentProfile.write_date' db.add_column(u'account_studentprofile', 'write_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 12, 31, 0, 0), blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'IndustryProfile.create_date' db.delete_column(u'account_industryprofile', 'create_date') # Deleting field 'IndustryProfile.write_date' db.delete_column(u'account_industryprofile', 'write_date') # Deleting field 'UserProfile.create_date' db.delete_column(u'account_userprofile', 'create_date') # Deleting field 'UserProfile.write_date' db.delete_column(u'account_userprofile', 'write_date') # Deleting field 'TrainingProfile.create_date' db.delete_column(u'account_trainingprofile', 'create_date') # Deleting field 'TrainingProfile.write_date' db.delete_column(u'account_trainingprofile', 'write_date') # Deleting field 'GovernmentProfile.create_date' db.delete_column(u'account_governmentprofile', 'create_date') # Deleting field 'GovernmentProfile.write_date' db.delete_column(u'account_governmentprofile', 'write_date') # Deleting field 'StudentProfile.create_date' db.delete_column(u'account_studentprofile', 'create_date') # Deleting field 'StudentProfile.write_date' db.delete_column(u'account_studentprofile', 'write_date') models = { u'account.emailaddress': { 'Meta': {'object_name': 'EmailAddress'}, 'email': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'primary': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'account.emailconfirmation': { 'Meta': {'object_name': 'EmailConfirmation'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email_address': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['account.EmailAddress']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'sent': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}) }, u'account.governmentprofile': { 'Meta': {'object_name': 'GovernmentProfile'}, 'contact_person': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'department': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'department_type': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mobile_phone': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'region': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'user_profile': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['account.UserProfile']", 'unique': 'True'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'account.industryprofile': { 'Meta': {'object_name': 'IndustryProfile'}, 'company': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['admin.Company']", 'null': 'True', 'blank': 'True'}), 'contact_person': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'est_year': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'industry_type': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mobile_phone': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'sub_sector': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'user_profile': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['account.UserProfile']", 'unique': 'True'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'account.studentprofile': { 'Meta': {'object_name': 'StudentProfile'}, 'address_line1': ('django.db.models.fields.TextField', [], {}), 'address_line2': ('django.db.models.fields.TextField', [], {}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'current_company': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'educational_background': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'experience': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'functional_area': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '2'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'industry_belongs_to': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'key_skills': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['admin.OccupationalStandard']", 'symmetrical': 'False'}), 'mobile_phone': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'postal_code': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'telephone': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'user_profile': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['account.UserProfile']", 'unique': 'True'}), 'work_status': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'account.trainingprofile': { 'Meta': {'object_name': 'TrainingProfile'}, 'area_of_specialization': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'contact_person': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'est_year': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'mobile_phone': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'user_profile': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['account.UserProfile']", 'unique': 'True'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'account.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'role': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'admin.company': { 'Meta': {'object_name': 'Company'}, 'company_type': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '3'}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': 'None', 'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'nasscom_membership_number': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '20'}), 'training_provider': ('django.db.models.fields.CharField', [], {'default': "'NO'", 'max_length': '3'}), 'url': ('django.db.models.fields.URLField', [], {'unique': 'True', 'max_length': '100'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'admin.occupationalstandard': { 'Meta': {'unique_together': "(('code', 'version'),)", 'object_name': 'OccupationalStandard'}, 'attachment': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'code': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '9', 'db_index': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'default': 'None'}), 'drafted_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_draft': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'knowledge': ('tinymce.models.HTMLField', [], {'default': 'None'}), 'last_reviewed_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'next_review_on': ('django.db.models.fields.DateField', [], {}), 'performace_criteria': ('tinymce.models.HTMLField', [], {'default': 'None'}), 'scope': ('tinymce.models.HTMLField', [], {'default': 'None'}), 'skills': ('tinymce.models.HTMLField', [], {'default': 'None'}), 'sub_sector': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['admin.SubSector']"}), 'title': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '50', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '8', 'db_index': 'True'}) }, 'admin.sector': { 'Meta': {'object_name': 'Sector', 'index_together': "[['name']]"}, 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': 'None', 'unique': 'True', 'max_length': '9', 'db_index': 'True'}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'admin.subsector': { 'Meta': {'unique_together': "(('sector', 'name'),)", 'object_name': 'SubSector', 'index_together': "[['name', 'sector']]"}, 'career_guide': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True'}), 'create_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mobility_map': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '50', 'db_index': 'True'}), 'sector': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['admin.Sector']"}), 'write_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['account']
# # Collective Knowledge # # See CK LICENSE.txt for licensing details # See CK COPYRIGHT.txt for copyright details # # Developer: Grigori Fursin # cfg={} # Will be updated by CK (meta description of this module) work={} # Will be updated by CK (temporal data) ck=None # Will be updated by CK (initialized CK kernel) # Local settings import os ############################################################################## # Initialize module def init(i): """ Input: {} Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ return {'return':0} ############################################################################## # Add module def add(i): """ Input: { (repo_uoa) - repo UOA module_uoa - normally should be 'module' already data_uoa - UOA of the module to be created (desc) - module description (license) - module license (copyright) - module copyright (developer) - module developer (developer_email) - module developer (developer_webpage) - module developer (actions) - dict with actions {"func1":{}, "func2":{} ...} (dict) - other meta description to add to entry } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 Output of the 'add' kernel function } """ # Check if global writing is allowed r=ck.check_writing({'module_uoa':work['self_module_uoa']}) if r['return']>0: return r o=i.get('out','') # Find path to module 'module' to get dummies r=ck.access({'action':'load', 'module_uoa':work['self_module_uoa'], 'data_uoa':work['self_module_uoa'], 'common_func':'yes'}) if r['return']>0: return r p=r['path'] pm=os.path.join(p,cfg['dummy_module']) pma=os.path.join(p,cfg['dummy_module_action']) # Load module dummy r=ck.load_text_file({'text_file':pm}) if r['return']>0: return r spm=r['string'] # Load module action dummy r=ck.load_text_file({'text_file':pma}) if r['return']>0: return r spma=r['string'] # Prepare meta description desc=i.get('desc','') license=i.get('license','') copyright=i.get('copyright','') developer=i.get('developer','') developer_email=i.get('developer_email','') developer_webpage=i.get('developer_webpage','') actions=i.get('actions',{}) # If console mode, ask some questions if o=='con': if desc=='': r=ck.inp({'text':'Add brief module description: '}) desc=r['string'] ck.out('') if license=='': r=ck.inp({'text':'Add brief module license (or Enter to use "'+ck.cfg['default_license']+'"): '}) license=r['string'] if license=='': license=ck.cfg['default_license'] if copyright=='': r=ck.inp({'text':'Add brief module copyright (or Enter to use "'+ck.cfg['default_copyright']+'"): '}) copyright=r['string'] if copyright=='': copyright=ck.cfg['default_copyright'] ck.out('') if developer=='': r=ck.inp({'text':'Add module\'s developer (or Enter to use "'+ck.cfg['default_developer']+'"): '}) developer=r['string'] if developer=='': developer=ck.cfg['default_developer'] if developer_email=='': r=ck.inp({'text':'Add module\'s developer email (or Enter to use "'+ck.cfg['default_developer_email']+'"): '}) developer_email=r['string'] if developer_email=='': developer_email=ck.cfg['default_developer_email'] if developer_webpage=='': r=ck.inp({'text':'Add module\'s developer webpage (or Enter to use "'+ck.cfg['default_developer_webpage']+'"): '}) developer_webpage=r['string'] if developer_webpage=='': developer_webpage=ck.cfg['default_developer_webpage'] if len(actions)==0: act='*' while act!='': ck.out('') r=ck.inp({'text':'Add action function (or Enter to stop): '}) act=r['string'] if act!='': actions[act]={} r1=ck.inp({'text':'Support web (y/N): '}) x=r1['string'].lower() if x=='yes' or x=='y': fweb='yes' actions[act]['for_web']=fweb r1=ck.inp({'text':'Add action description: '}) adesc=r1['string'] if adesc!='': actions[act]['desc']=adesc ck.out('') # Prepare meta description dd={} if desc!='': dd['desc']=desc spm=spm.replace('$#desc#$', desc) if license!='': dd['license']=license spm=spm.replace('$#license#$', license) if copyright!='': dd['copyright']=copyright spm=spm.replace('$#copyright#$', copyright) dev='' if developer!='': dev=developer dd['developer']=developer if developer_email!='': if dev!='': dev+=', ' dev+=developer_email dd['developer_email']=developer_email if developer_webpage!='': if dev!='': dev+=', ' dev+=developer_webpage dd['developer_webpage']=developer_webpage if dev!='': spm=spm.replace('$#developer#$', dev) dd['actions']=actions # Substitute actions for act in actions: adesc=actions[act].get('desc','TBD: action description') spm+='\n'+spma.replace('$#action#$', act).replace('$#desc#$',adesc) dx=i.get('dict',{}) r=ck.merge_dicts({'dict1':dx, 'dict2':dd}) if r['return']>0: return r # Add entry (it will ask further questions about alias and user-friendly name) i['common_func']='yes' i['dict']=dx i['sort_keys']='yes' r=ck.access(i) if r['return']>0: return r # Add module code p=r['path'] pf=os.path.join(p, ck.cfg['module_full_code_name']) if o=='con': ck.out('') ck.out('Creating module code '+pf+' ...') # Write module code rx=ck.save_text_file({'text_file':pf, 'string':spm}) if rx['return']>0: return rx return r ############################################################################## # show info about modules def show(i): """ Input: { (the same as list; can use wildcards) } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ o=i.get('out','') html=False if o=='html' or i.get('web','')=='yes': html=True h='' unique_repo=False if i.get('repo_uoa','')!='': unique_repo=True import copy ii=copy.deepcopy(i) ii['out']='' ii['action']='list' ii['add_meta']='yes' rx=ck.access(ii) if rx['return']>0: return rx ll=sorted(rx['lst'], key=lambda k: k['data_uoa']) if html: h+='<i><b>Note:</b> you can obtain JSON API of a given action of a given module in CMD via "ck &lt;action&gt; &lt;module&gt; --help"</i><br><br>\n' h+='<table cellpadding="5">\n' h+=' <tr>\n' h+=' <td><b>CK&nbsp;module&nbsp;(aka&nbsp;wrapper,&nbsp;plugin&nbsp;or&nbsp;container):</b></td>\n' h+=' <td width="200"><b>CK Repository:</b></td>\n' h+=' <td><b>Description and actions:</b></td>\n' h+=' </tr>\n' repo_url={} for l in ll: ln=l['data_uoa'] lr=l['repo_uoa'] lr_uid=l['repo_uid'] url='' if lr=='default': url='' #'http://github.com/ctuning/ck' elif lr_uid in repo_url: url=repo_url[lr_uid] else: rx=ck.load_repo_info_from_cache({'repo_uoa':lr_uid}) if rx['return']>0: return rx url=rx.get('dict',{}).get('url','') repo_url[lr_uid]=url if lr not in cfg['skip_repos']: lm=l['meta'] ld=lm.get('desc','') actions=lm.get('actions',{}) ############################################################### if html: h+=' <tr>\n' h+=' <td valign="top"><b>'+ln+'</b></td>\n' x1='' x2='' if url!='': x1='<a href="'+url+'">' x2='</a>' h+=' <td valign="top"><i>'+x1+lr+x2+'</i></td>\n' h+=' <td valign="top">'+ld+'\n' if len(actions)>0: h+='<ul>\n' for q in sorted(actions): qq=actions[q] qd=qq.get('desc','') h+='<li><i>'+q+'</i>' if qd!='': h+=' - '+qd h+='</ul>\n' h+='</td>\n' h+=' </tr>\n' ############################################################### elif o=='mediawiki': x=lr if url!='': x='['+url+' '+lr+']' ck.out('* \'\'\''+ln+'\'\'\' ('+x+') - '+ld) if len(actions)>0: for q in sorted(actions): qq=actions[q] qd=qq.get('desc','') ck.out('** \'\''+q+'\'\' - '+qd) ############################################################### elif o=='con' or o=='txt': if unique_repo: ck.out('') s=ln+' - '+ld else: ss='' if len(ln)<35: ss=' '*(35-len(ln)) ss1='' if len(lr)<30: ss1=' '*(30-len(lr)) s=ln+ss+' ('+lr+')' if ld!='': s+=ss1+' '+ld ck.out(s) if len(actions)>0: ck.out('') for q in sorted(actions): qq=actions[q] qd=qq.get('desc','') ck.out(' * '+q+' - '+qd) if html: h+='</table>\n' return {'return':0, 'html':h}
""" Tests for transformer objects. """ from __future__ import division from __future__ import unicode_literals from deepchem.molnet import load_delaney from deepchem.trans.transformers import FeaturizationTransformer __author__ = "Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import os import unittest import numpy as np import pandas as pd import deepchem as dc class TestTransformers(unittest.TestCase): """ Test top-level API for transformer objects. """ def setUp(self): super(TestTransformers, self).setUp() self.current_dir = os.path.dirname(os.path.abspath(__file__)) def test_y_log_transformer(self): """Tests logarithmic data transformer.""" solubility_dataset = dc.data.tests.load_solubility_data() log_transformer = dc.trans.LogTransformer( transform_y=True, dataset=solubility_dataset) X, y, w, ids = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) solubility_dataset = log_transformer.transform(solubility_dataset) X_t, y_t, w_t, ids_t = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a y transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check y is now a logarithmic version of itself np.testing.assert_allclose(y_t, np.log(y + 1)) # Check that untransform does the right thing. np.testing.assert_allclose(log_transformer.untransform(y_t), y) def test_transform_unlabelled(self): ul_dataset = dc.data.tests.load_unlabelled_data() # transforming y should raise an exception with self.assertRaises(ValueError) as context: dc.trans.transformers.Transformer(transform_y=True).transform(ul_dataset) # transforming w should raise an exception with self.assertRaises(ValueError) as context: dc.trans.transformers.Transformer(transform_w=True).transform(ul_dataset) # transforming X should be okay dc.trans.NormalizationTransformer( transform_X=True, dataset=ul_dataset).transform(ul_dataset) def test_X_log_transformer(self): """Tests logarithmic data transformer.""" solubility_dataset = dc.data.tests.load_solubility_data() log_transformer = dc.trans.LogTransformer( transform_X=True, dataset=solubility_dataset) X, y, w, ids = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) solubility_dataset = log_transformer.transform(solubility_dataset) X_t, y_t, w_t, ids_t = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is a X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check y is now a logarithmic version of itself np.testing.assert_allclose(X_t, np.log(X + 1)) # Check that untransform does the right thing. np.testing.assert_allclose(log_transformer.untransform(X_t), X) def test_y_log_transformer_select(self): """Tests logarithmic data transformer with selection.""" multitask_dataset = dc.data.tests.load_feat_multitask_data() dfe = pd.read_csv( os.path.join(self.current_dir, "../../models/tests/feat_multitask_example.csv")) tid = [] tasklist = ["task0", "task3", "task4", "task5"] first_task = "task0" for task in tasklist: tiid = dfe.columns.get_loc(task) - dfe.columns.get_loc(first_task) tid = np.concatenate((tid, np.array([tiid]))) tasks = tid.astype(int) log_transformer = dc.trans.LogTransformer( transform_y=True, tasks=tasks, dataset=multitask_dataset) X, y, w, ids = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) multitask_dataset = log_transformer.transform(multitask_dataset) X_t, y_t, w_t, ids_t = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a y transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check y is now a logarithmic version of itself np.testing.assert_allclose(y_t[:, tasks], np.log(y[:, tasks] + 1)) # Check that untransform does the right thing. np.testing.assert_allclose(log_transformer.untransform(y_t), y) def test_X_log_transformer_select(self): # Tests logarithmic data transformer with selection. multitask_dataset = dc.data.tests.load_feat_multitask_data() dfe = pd.read_csv( os.path.join(self.current_dir, "../../models/tests/feat_multitask_example.csv")) fid = [] featurelist = ["feat0", "feat1", "feat2", "feat3", "feat5"] first_feature = "feat0" for feature in featurelist: fiid = dfe.columns.get_loc(feature) - dfe.columns.get_loc(first_feature) fid = np.concatenate((fid, np.array([fiid]))) features = fid.astype(int) log_transformer = dc.trans.LogTransformer( transform_X=True, features=features, dataset=multitask_dataset) X, y, w, ids = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) multitask_dataset = log_transformer.transform(multitask_dataset) X_t, y_t, w_t, ids_t = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is a X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check y is now a logarithmic version of itself np.testing.assert_allclose(X_t[:, features], np.log(X[:, features] + 1)) # Check that untransform does the right thing. np.testing.assert_allclose(log_transformer.untransform(X_t), X) def test_y_normalization_transformer(self): """Tests normalization transformer.""" solubility_dataset = dc.data.tests.load_solubility_data() normalization_transformer = dc.trans.NormalizationTransformer( transform_y=True, dataset=solubility_dataset) X, y, w, ids = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) solubility_dataset = normalization_transformer.transform(solubility_dataset) X_t, y_t, w_t, ids_t = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a y transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check that y_t has zero mean, unit std. assert np.isclose(y_t.mean(), 0.) assert np.isclose(y_t.std(), 1.) # Check that untransform does the right thing. np.testing.assert_allclose(normalization_transformer.untransform(y_t), y) def test_X_normalization_transformer(self): """Tests normalization transformer.""" solubility_dataset = dc.data.tests.load_solubility_data() normalization_transformer = dc.trans.NormalizationTransformer( transform_X=True, dataset=solubility_dataset) X, y, w, ids = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) solubility_dataset = normalization_transformer.transform(solubility_dataset) X_t, y_t, w_t, ids_t = (solubility_dataset.X, solubility_dataset.y, solubility_dataset.w, solubility_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is a X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check that X_t has zero mean, unit std. # np.set_printoptions(threshold='nan') mean = X_t.mean(axis=0) assert np.amax(np.abs(mean - np.zeros_like(mean))) < 1e-7 orig_std_array = X.std(axis=0) std_array = X_t.std(axis=0) # Entries with zero std are not normalized for orig_std, std in zip(orig_std_array, std_array): if not np.isclose(orig_std, 0): assert np.isclose(std, 1) # TODO(rbharath): Untransform doesn't work properly for binary feature # vectors. Need to figure out what's wrong here. (low priority) ## Check that untransform does the right thing. # np.testing.assert_allclose(normalization_transformer.untransform(X_t), X) def test_cdf_X_transformer(self): """Test CDF transformer on Gaussian normal dataset.""" target = np.array(np.transpose(np.linspace(0., 1., 1001))) target = np.transpose(np.array(np.append([target], [target], axis=0))) gaussian_dataset = dc.data.tests.load_gaussian_cdf_data() bins = 1001 cdf_transformer = dc.trans.CDFTransformer( transform_X=True, dataset=gaussian_dataset, bins=bins) X, y, w, ids = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) gaussian_dataset = cdf_transformer.transform(gaussian_dataset, bins=bins) X_t, y_t, w_t, ids_t = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is an X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is an X transformer np.testing.assert_allclose(w, w_t) # Check X is now holding the proper values when sorted. sorted = np.sort(X_t, axis=0) np.testing.assert_allclose(sorted, target) def test_cdf_y_transformer(self): # Test CDF transformer on Gaussian normal dataset. target = np.array(np.transpose(np.linspace(0., 1., 1001))) target = np.transpose(np.array(np.append([target], [target], axis=0))) gaussian_dataset = dc.data.tests.load_gaussian_cdf_data() bins = 1001 cdf_transformer = dc.trans.CDFTransformer( transform_y=True, dataset=gaussian_dataset, bins=bins) X, y, w, ids = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) gaussian_dataset = cdf_transformer.transform(gaussian_dataset, bins=bins) X_t, y_t, w_t, ids_t = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is an y transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is an y transformer np.testing.assert_allclose(w, w_t) # Check y is now holding the proper values when sorted. sorted = np.sort(y_t, axis=0) np.testing.assert_allclose(sorted, target) # Check that untransform does the right thing. np.testing.assert_allclose(cdf_transformer.untransform(y_t), y) def test_clipping_X_transformer(self): """Test clipping transformer on X of singletask dataset.""" n_samples = 10 n_features = 3 n_tasks = 1 ids = np.arange(n_samples) X = np.ones((n_samples, n_features)) target = 5. * X X *= 6. y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) transformer = dc.trans.ClippingTransformer(transform_X=True, x_max=5.) clipped_dataset = transformer.transform(dataset) X_t, y_t, w_t, ids_t = (clipped_dataset.X, clipped_dataset.y, clipped_dataset.w, clipped_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is an X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is an X transformer np.testing.assert_allclose(w, w_t) # Check X is now holding the proper values when sorted. np.testing.assert_allclose(X_t, target) def test_clipping_y_transformer(self): """Test clipping transformer on y of singletask dataset.""" n_samples = 10 n_features = 3 n_tasks = 1 ids = np.arange(n_samples) X = np.zeros((n_samples, n_features)) y = np.ones((n_samples, n_tasks)) target = 5. * y y *= 6. w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) transformer = dc.trans.ClippingTransformer(transform_y=True, y_max=5.) clipped_dataset = transformer.transform(dataset) X_t, y_t, w_t, ids_t = (clipped_dataset.X, clipped_dataset.y, clipped_dataset.w, clipped_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a y transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is a y transformer np.testing.assert_allclose(w, w_t) # Check y is now holding the proper values when sorted. np.testing.assert_allclose(y_t, target) def test_power_X_transformer(self): """Test Power transformer on Gaussian normal dataset.""" gaussian_dataset = dc.data.tests.load_gaussian_cdf_data() powers = [1, 2, 0.5] power_transformer = dc.trans.PowerTransformer( transform_X=True, powers=powers) X, y, w, ids = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) gaussian_dataset2 = power_transformer.transform(gaussian_dataset) X_t, y_t, w_t, ids_t = (gaussian_dataset2.X, gaussian_dataset2.y, gaussian_dataset2.w, gaussian_dataset2.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check y is unchanged since this is an X transformer np.testing.assert_allclose(y, y_t) # Check w is unchanged since this is an X transformer np.testing.assert_allclose(w, w_t) # Check X is now holding the proper values in each column. np.testing.assert_allclose(X_t.shape[1], len(powers) * X.shape[1]) np.testing.assert_allclose(X, X_t[:, :2]) np.testing.assert_allclose(np.power(X, 2), X_t[:, 2:4]) np.testing.assert_allclose(np.power(X, 0.5), X_t[:, 4:]) def test_power_y_transformer(self): """Test Power transformer on Gaussian normal dataset.""" gaussian_dataset = dc.data.tests.load_gaussian_cdf_data() powers = [1, 2, 0.5] power_transformer = dc.trans.PowerTransformer( transform_y=True, powers=powers) X, y, w, ids = (gaussian_dataset.X, gaussian_dataset.y, gaussian_dataset.w, gaussian_dataset.ids) gaussian_dataset2 = power_transformer.transform(gaussian_dataset) X_t, y_t, w_t, ids_t = (gaussian_dataset2.X, gaussian_dataset2.y, gaussian_dataset2.w, gaussian_dataset2.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is an X transformer np.testing.assert_allclose(X, X_t) # Check w is unchanged since this is an X transformer np.testing.assert_allclose(w, w_t) # Check y is now holding the proper values in each column. np.testing.assert_allclose(y_t.shape[1], len(powers) * y.shape[1]) np.testing.assert_allclose(y, y_t[:, :2]) np.testing.assert_allclose(np.power(y, 2), y_t[:, 2:4]) np.testing.assert_allclose(np.power(y, 0.5), y_t[:, 4:]) # Check that untransform does the right thing. np.testing.assert_allclose(power_transformer.untransform(y_t), y) def test_singletask_balancing_transformer(self): """Test balancing transformer on single-task dataset.""" classification_dataset = dc.data.tests.load_classification_data() balancing_transformer = dc.trans.BalancingTransformer( transform_w=True, dataset=classification_dataset) X, y, w, ids = (classification_dataset.X, classification_dataset.y, classification_dataset.w, classification_dataset.ids) classification_dataset = balancing_transformer.transform( classification_dataset) X_t, y_t, w_t, ids_t = (classification_dataset.X, classification_dataset.y, classification_dataset.w, classification_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a w transformer np.testing.assert_allclose(X, X_t) # Check y is unchanged since this is a w transformer np.testing.assert_allclose(y, y_t) for ind, task in enumerate(classification_dataset.get_task_names()): y_task = y_t[:, ind] w_task = w_t[:, ind] w_orig_task = w[:, ind] # Assert that entries with zero weight retain zero weight np.testing.assert_allclose(w_task[w_orig_task == 0], np.zeros_like(w_task[w_orig_task == 0])) # Check that sum of 0s equals sum of 1s in transformed for each task assert np.isclose( np.sum(w_task[y_task == 0]), np.sum(w_task[y_task == 1])) def test_multitask_balancing_transformer(self): """Test balancing transformer on multitask dataset.""" multitask_dataset = dc.data.tests.load_multitask_data() balancing_transformer = dc.trans.BalancingTransformer( transform_w=True, dataset=multitask_dataset) X, y, w, ids = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) multitask_dataset = balancing_transformer.transform(multitask_dataset) X_t, y_t, w_t, ids_t = (multitask_dataset.X, multitask_dataset.y, multitask_dataset.w, multitask_dataset.ids) # Check ids are unchanged. for id_elt, id_t_elt in zip(ids, ids_t): assert id_elt == id_t_elt # Check X is unchanged since this is a w transformer np.testing.assert_allclose(X, X_t) # Check y is unchanged since this is a w transformer np.testing.assert_allclose(y, y_t) for ind, task in enumerate(multitask_dataset.get_task_names()): y_task = y_t[:, ind] w_task = w_t[:, ind] w_orig_task = w[:, ind] # Assert that entries with zero weight retain zero weight np.testing.assert_allclose(w_task[w_orig_task == 0], np.zeros_like(w_task[w_orig_task == 0])) # Check that sum of 0s equals sum of 1s in transformed for each task assert np.isclose( np.sum(w_task[y_task == 0]), np.sum(w_task[y_task == 1])) def test_coulomb_fit_transformer(self): """Test coulomb fit transformer on singletask dataset.""" n_samples = 10 n_features = 3 n_tasks = 1 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) fit_transformer = dc.trans.CoulombFitTransformer(dataset) X_t = fit_transformer.X_transform(dataset.X) assert len(X_t.shape) == 2 def test_IRV_transformer(self): n_features = 128 n_samples = 20 test_samples = 5 n_tasks = 2 X = np.random.randint(2, size=(n_samples, n_features)) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids=None) X_test = np.random.randint(2, size=(test_samples, n_features)) y_test = np.zeros((test_samples, n_tasks)) w_test = np.ones((test_samples, n_tasks)) test_dataset = dc.data.NumpyDataset(X_test, y_test, w_test, ids=None) sims = np.sum( X_test[0, :] * X, axis=1, dtype=float) / np.sum( np.sign(X_test[0, :] + X), axis=1, dtype=float) sims = sorted(sims, reverse=True) IRV_transformer = dc.trans.IRVTransformer(10, n_tasks, dataset) test_dataset_trans = IRV_transformer.transform(test_dataset) dataset_trans = IRV_transformer.transform(dataset) assert test_dataset_trans.X.shape == (test_samples, 20 * n_tasks) assert np.allclose(test_dataset_trans.X[0, :10], sims[:10]) assert np.allclose(test_dataset_trans.X[0, 10:20], [0] * 10) assert not np.isclose(dataset_trans.X[0, 0], 1.) def test_featurization_transformer(self): fp_size = 2048 tasks, all_dataset, transformers = load_delaney('Raw') train = all_dataset[0] transformer = FeaturizationTransformer( transform_X=True, dataset=train, featurizer=dc.feat.CircularFingerprint(size=fp_size)) new_train = transformer.transform(train) self.assertEqual(new_train.y.shape, train.y.shape) self.assertEqual(new_train.X.shape[-1], fp_size)
from unittest import TestCase from ..utils import FieldsParameterParseError, parse_boolean, parse_fields_parameter class TestParseFieldsParameter(TestCase): # GOOD STUFF def test_valid_single_field(self): parsed = parse_fields_parameter('test') self.assertEqual(parsed, [ ('test', False, None), ]) def test_valid_multiple_fields(self): parsed = parse_fields_parameter('test,another_test') self.assertEqual(parsed, [ ('test', False, None), ('another_test', False, None), ]) def test_valid_negated_field(self): parsed = parse_fields_parameter('-test') self.assertEqual(parsed, [ ('test', True, None), ]) def test_valid_nested_fields(self): parsed = parse_fields_parameter('test(foo,bar)') self.assertEqual(parsed, [ ('test', False, [ ('foo', False, None), ('bar', False, None), ]), ]) def test_valid_star_field(self): parsed = parse_fields_parameter('*,-test') self.assertEqual(parsed, [ ('*', False, None), ('test', True, None), ]) def test_valid_star_with_additional_field(self): # Note: '*,test' is not allowed but '*,test(foo)' is parsed = parse_fields_parameter('*,test(foo)') self.assertEqual(parsed, [ ('*', False, None), ('test', False, [ ('foo', False, None), ]), ]) def test_valid_underscore_field(self): parsed = parse_fields_parameter('_,test') self.assertEqual(parsed, [ ('_', False, None), ('test', False, None), ]) def test_valid_field_with_underscore_in_middle(self): parsed = parse_fields_parameter('a_test') self.assertEqual(parsed, [ ('a_test', False, None), ]) def test_valid_negated_field_with_underscore_in_middle(self): parsed = parse_fields_parameter('-a_test') self.assertEqual(parsed, [ ('a_test', True, None), ]) def test_valid_field_with_underscore_at_beginning(self): parsed = parse_fields_parameter('_test') self.assertEqual(parsed, [ ('_test', False, None), ]) def test_valid_field_with_underscore_at_end(self): parsed = parse_fields_parameter('test_') self.assertEqual(parsed, [ ('test_', False, None), ]) # BAD STUFF def test_invalid_char(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test#') self.assertEqual(str(e.exception), "unexpected char '#' at position 4") def test_invalid_whitespace_before_identifier(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter(' test') self.assertEqual(str(e.exception), "unexpected whitespace at position 0") def test_invalid_whitespace_after_identifier(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test ') self.assertEqual(str(e.exception), "unexpected whitespace at position 4") def test_invalid_whitespace_after_comma(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test, test') self.assertEqual(str(e.exception), "unexpected whitespace at position 5") def test_invalid_whitespace_before_comma(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test ,test') self.assertEqual(str(e.exception), "unexpected whitespace at position 4") def test_invalid_unexpected_negation_operator(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test-') self.assertEqual(str(e.exception), "unexpected char '-' at position 4") def test_invalid_unexpected_open_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,(foo)') self.assertEqual(str(e.exception), "unexpected char '(' at position 5") def test_invalid_unexpected_close_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test)') self.assertEqual(str(e.exception), "unexpected char ')' at position 4") def test_invalid_unexpected_comma_in_middle(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,,foo') self.assertEqual(str(e.exception), "unexpected char ',' at position 5") def test_invalid_unexpected_comma_at_end(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,foo,') self.assertEqual(str(e.exception), "unexpected char ',' at position 9") def test_invalid_unclosed_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test(foo') self.assertEqual(str(e.exception), "unexpected end of input (did you miss out a close bracket?)") def test_invalid_subfields_on_negated_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-test(foo)') self.assertEqual(str(e.exception), "unexpected char '(' at position 5") def test_invalid_star_field_in_wrong_position(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,*') self.assertEqual(str(e.exception), "'*' must be in the first position") def test_invalid_negated_star(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-*') self.assertEqual(str(e.exception), "'*' cannot be negated") def test_invalid_star_with_nesting(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*(foo,bar)') self.assertEqual(str(e.exception), "unexpected char '(' at position 1") def test_invalid_star_with_chars_after(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*foo') self.assertEqual(str(e.exception), "unexpected char 'f' at position 1") def test_invalid_star_with_chars_before(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('foo*') self.assertEqual(str(e.exception), "unexpected char '*' at position 3") def test_invalid_star_with_additional_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*,foo') self.assertEqual(str(e.exception), "additional fields with '*' doesn't make sense") def test_invalid_underscore_in_wrong_position(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,_') self.assertEqual(str(e.exception), "'_' must be in the first position") def test_invalid_negated_underscore(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-_') self.assertEqual(str(e.exception), "'_' cannot be negated") def test_invalid_underscore_with_nesting(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('_(foo,bar)') self.assertEqual(str(e.exception), "unexpected char '(' at position 1") def test_invalid_underscore_with_negated_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('_,-foo') self.assertEqual(str(e.exception), "negated fields with '_' doesn't make sense") def test_invalid_star_and_underscore(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*,_') self.assertEqual(str(e.exception), "'_' must be in the first position") class TestParseBoolean(TestCase): # GOOD STUFF def test_valid_true(self): parsed = parse_boolean('true') self.assertEqual(parsed, True) def test_valid_false(self): parsed = parse_boolean('false') self.assertEqual(parsed, False) def test_valid_1(self): parsed = parse_boolean('1') self.assertEqual(parsed, True) def test_valid_0(self): parsed = parse_boolean('0') self.assertEqual(parsed, False) # BAD STUFF def test_invalid(self): with self.assertRaises(ValueError) as e: parse_boolean('foo') self.assertEqual(str(e.exception), "expected 'true' or 'false', got 'foo'") def test_invalid_integer(self): with self.assertRaises(ValueError) as e: parse_boolean('2') self.assertEqual(str(e.exception), "expected 'true' or 'false', got '2'")
"""Session implementation for CherryPy. You need to edit your config file to use sessions. Here's an example:: [/] tools.sessions.on = True tools.sessions.storage_class = cherrypy.lib.sessions.FileSession tools.sessions.storage_path = "/home/site/sessions" tools.sessions.timeout = 60 This sets the session to be stored in files in the directory /home/site/sessions, and the session timeout to 60 minutes. If you omit ``storage_class``, the sessions will be saved in RAM. ``tools.sessions.on`` is the only required line for working sessions, the rest are optional. By default, the session ID is passed in a cookie, so the client's browser must have cookies enabled for your site. To set data for the current session, use ``cherrypy.session['fieldname'] = 'fieldvalue'``; to get data use ``cherrypy.session.get('fieldname')``. ================ Locking sessions ================ By default, the ``'locking'`` mode of sessions is ``'implicit'``, which means the session is locked early and unlocked late. Be mindful of this default mode for any requests that take a long time to process (streaming responses, expensive calculations, database lookups, API calls, etc), as other concurrent requests that also utilize sessions will hang until the session is unlocked. If you want to control when the session data is locked and unlocked, set ``tools.sessions.locking = 'explicit'``. Then call ``cherrypy.session.acquire_lock()`` and ``cherrypy.session.release_lock()``. Regardless of which mode you use, the session is guaranteed to be unlocked when the request is complete. ================= Expiring Sessions ================= You can force a session to expire with :func:`cherrypy.lib.sessions.expire`. Simply call that function at the point you want the session to expire, and it will cause the session cookie to expire client-side. =========================== Session Fixation Protection =========================== If CherryPy receives, via a request cookie, a session id that it does not recognize, it will reject that id and create a new one to return in the response cookie. This `helps prevent session fixation attacks <http://en.wikipedia.org/wiki/Session_fixation#Regenerate_SID_on_each_request>`_. However, CherryPy "recognizes" a session id by looking up the saved session data for that id. Therefore, if you never save any session data, **you will get a new session id for every request**. A side effect of CherryPy overwriting unrecognised session ids is that if you have multiple, separate CherryPy applications running on a single domain (e.g. on different ports), each app will overwrite the other's session id because by default they use the same cookie name (``"session_id"``) but do not recognise each others sessions. It is therefore a good idea to use a different name for each, for example:: [/] ... tools.sessions.name = "my_app_session_id" ================ Sharing Sessions ================ If you run multiple instances of CherryPy (for example via mod_python behind Apache prefork), you most likely cannot use the RAM session backend, since each instance of CherryPy will have its own memory space. Use a different backend instead, and verify that all instances are pointing at the same file or db location. Alternately, you might try a load balancer which makes sessions "sticky". Google is your friend, there. ================ Expiration Dates ================ The response cookie will possess an expiration date to inform the client at which point to stop sending the cookie back in requests. If the server time and client time differ, expect sessions to be unreliable. **Make sure the system time of your server is accurate**. CherryPy defaults to a 60-minute session timeout, which also applies to the cookie which is sent to the client. Unfortunately, some versions of Safari ("4 public beta" on Windows XP at least) appear to have a bug in their parsing of the GMT expiration date--they appear to interpret the date as one hour in the past. Sixty minutes minus one hour is pretty close to zero, so you may experience this bug as a new session id for every request, unless the requests are less than one second apart. To fix, try increasing the session.timeout. On the other extreme, some users report Firefox sending cookies after their expiration date, although this was on a system with an inaccurate system time. Maybe FF doesn't trust system time. """ import sys import datetime import os import time import threading import binascii import pickle import zc.lockfile import cherrypy from cherrypy.lib import httputil from cherrypy.lib import locking from cherrypy.lib import is_iterator missing = object() class Session(object): """A CherryPy dict-like Session object (one per request).""" _id = None id_observers = None "A list of callbacks to which to pass new id's." @property def id(self): """Return the current session id.""" return self._id @id.setter def id(self, value): self._id = value for o in self.id_observers: o(value) timeout = 60 'Number of minutes after which to delete session data.' locked = False """ If True, this session instance has exclusive read/write access to session data.""" loaded = False """ If True, data has been retrieved from storage. This should happen automatically on the first attempt to access session data.""" clean_thread = None 'Class-level Monitor which calls self.clean_up.' clean_freq = 5 'The poll rate for expired session cleanup in minutes.' originalid = None 'The session id passed by the client. May be missing or unsafe.' missing = False 'True if the session requested by the client did not exist.' regenerated = False """ True if the application called session.regenerate(). This is not set by internal calls to regenerate the session id.""" debug = False 'If True, log debug information.' # --------------------- Session management methods --------------------- # def __init__(self, id=None, **kwargs): self.id_observers = [] self._data = {} for k, v in kwargs.items(): setattr(self, k, v) self.originalid = id self.missing = False if id is None: if self.debug: cherrypy.log('No id given; making a new one', 'TOOLS.SESSIONS') self._regenerate() else: self.id = id if self._exists(): if self.debug: cherrypy.log('Set id to %s.' % id, 'TOOLS.SESSIONS') else: if self.debug: cherrypy.log('Expired or malicious session %r; ' 'making a new one' % id, 'TOOLS.SESSIONS') # Expired or malicious session. Make a new one. # See https://github.com/cherrypy/cherrypy/issues/709. self.id = None self.missing = True self._regenerate() def now(self): """Generate the session specific concept of 'now'. Other session providers can override this to use alternative, possibly timezone aware, versions of 'now'. """ return datetime.datetime.now() def regenerate(self): """Replace the current session (with a new id).""" self.regenerated = True self._regenerate() def _regenerate(self): if self.id is not None: if self.debug: cherrypy.log( 'Deleting the existing session %r before ' 'regeneration.' % self.id, 'TOOLS.SESSIONS') self.delete() old_session_was_locked = self.locked if old_session_was_locked: self.release_lock() if self.debug: cherrypy.log('Old lock released.', 'TOOLS.SESSIONS') self.id = None while self.id is None: self.id = self.generate_id() # Assert that the generated id is not already stored. if self._exists(): self.id = None if self.debug: cherrypy.log('Set id to generated %s.' % self.id, 'TOOLS.SESSIONS') if old_session_was_locked: self.acquire_lock() if self.debug: cherrypy.log('Regenerated lock acquired.', 'TOOLS.SESSIONS') def clean_up(self): """Clean up expired sessions.""" pass def generate_id(self): """Return a new session id.""" return binascii.hexlify(os.urandom(20)).decode('ascii') def save(self): """Save session data.""" try: # If session data has never been loaded then it's never been # accessed: no need to save it if self.loaded: t = datetime.timedelta(seconds=self.timeout * 60) expiration_time = self.now() + t if self.debug: cherrypy.log('Saving session %r with expiry %s' % (self.id, expiration_time), 'TOOLS.SESSIONS') self._save(expiration_time) else: if self.debug: cherrypy.log( 'Skipping save of session %r (no session loaded).' % self.id, 'TOOLS.SESSIONS') finally: if self.locked: # Always release the lock if the user didn't release it self.release_lock() if self.debug: cherrypy.log('Lock released after save.', 'TOOLS.SESSIONS') def load(self): """Copy stored session data into this session instance.""" data = self._load() # data is either None or a tuple (session_data, expiration_time) if data is None or data[1] < self.now(): if self.debug: cherrypy.log('Expired session %r, flushing data.' % self.id, 'TOOLS.SESSIONS') self._data = {} else: if self.debug: cherrypy.log('Data loaded for session %r.' % self.id, 'TOOLS.SESSIONS') self._data = data[0] self.loaded = True # Stick the clean_thread in the class, not the instance. # The instances are created and destroyed per-request. cls = self.__class__ if self.clean_freq and not cls.clean_thread: # clean_up is an instancemethod and not a classmethod, # so that tool config can be accessed inside the method. t = cherrypy.process.plugins.Monitor( cherrypy.engine, self.clean_up, self.clean_freq * 60, name='Session cleanup') t.subscribe() cls.clean_thread = t t.start() if self.debug: cherrypy.log('Started cleanup thread.', 'TOOLS.SESSIONS') def delete(self): """Delete stored session data.""" self._delete() if self.debug: cherrypy.log('Deleted session %s.' % self.id, 'TOOLS.SESSIONS') # -------------------- Application accessor methods -------------------- # def __getitem__(self, key): if not self.loaded: self.load() return self._data[key] def __setitem__(self, key, value): if not self.loaded: self.load() self._data[key] = value def __delitem__(self, key): if not self.loaded: self.load() del self._data[key] def pop(self, key, default=missing): """Remove the specified key and return the corresponding value. If key is not found, default is returned if given, otherwise KeyError is raised. """ if not self.loaded: self.load() if default is missing: return self._data.pop(key) else: return self._data.pop(key, default) def __contains__(self, key): if not self.loaded: self.load() return key in self._data def get(self, key, default=None): """D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.""" if not self.loaded: self.load() return self._data.get(key, default) def update(self, d): """D.update(E) -> None. Update D from E: for k in E: D[k] = E[k].""" if not self.loaded: self.load() self._data.update(d) def setdefault(self, key, default=None): """D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D.""" if not self.loaded: self.load() return self._data.setdefault(key, default) def clear(self): """D.clear() -> None. Remove all items from D.""" if not self.loaded: self.load() self._data.clear() def keys(self): """D.keys() -> list of D's keys.""" if not self.loaded: self.load() return self._data.keys() def items(self): """D.items() -> list of D's (key, value) pairs, as 2-tuples.""" if not self.loaded: self.load() return self._data.items() def values(self): """D.values() -> list of D's values.""" if not self.loaded: self.load() return self._data.values() class RamSession(Session): # Class-level objects. Don't rebind these! cache = {} locks = {} def clean_up(self): """Clean up expired sessions.""" now = self.now() for _id, (data, expiration_time) in self.cache.copy().items(): if expiration_time <= now: try: del self.cache[_id] except KeyError: pass try: if self.locks[_id].acquire(blocking=False): lock = self.locks.pop(_id) lock.release() except KeyError: pass # added to remove obsolete lock objects for _id in list(self.locks): locked = ( _id not in self.cache and self.locks[_id].acquire(blocking=False) ) if locked: lock = self.locks.pop(_id) lock.release() def _exists(self): return self.id in self.cache def _load(self): return self.cache.get(self.id) def _save(self, expiration_time): self.cache[self.id] = (self._data, expiration_time) def _delete(self): self.cache.pop(self.id, None) def acquire_lock(self): """Acquire an exclusive lock on the currently-loaded session data.""" self.locked = True self.locks.setdefault(self.id, threading.RLock()).acquire() def release_lock(self): """Release the lock on the currently-loaded session data.""" self.locks[self.id].release() self.locked = False def __len__(self): """Return the number of active sessions.""" return len(self.cache) class FileSession(Session): """Implementation of the File backend for sessions storage_path The folder where session data will be saved. Each session will be saved as pickle.dump(data, expiration_time) in its own file; the filename will be self.SESSION_PREFIX + self.id. lock_timeout A timedelta or numeric seconds indicating how long to block acquiring a lock. If None (default), acquiring a lock will block indefinitely. """ SESSION_PREFIX = 'session-' LOCK_SUFFIX = '.lock' pickle_protocol = pickle.HIGHEST_PROTOCOL def __init__(self, id=None, **kwargs): # The 'storage_path' arg is required for file-based sessions. kwargs['storage_path'] = os.path.abspath(kwargs['storage_path']) kwargs.setdefault('lock_timeout', None) Session.__init__(self, id=id, **kwargs) # validate self.lock_timeout if isinstance(self.lock_timeout, (int, float)): self.lock_timeout = datetime.timedelta(seconds=self.lock_timeout) if not isinstance(self.lock_timeout, (datetime.timedelta, type(None))): raise ValueError( 'Lock timeout must be numeric seconds or a timedelta instance.' ) @classmethod def setup(cls, **kwargs): """Set up the storage system for file-based sessions. This should only be called once per process; this will be done automatically when using sessions.init (as the built-in Tool does). """ # The 'storage_path' arg is required for file-based sessions. kwargs['storage_path'] = os.path.abspath(kwargs['storage_path']) for k, v in kwargs.items(): setattr(cls, k, v) def _get_file_path(self): f = os.path.join(self.storage_path, self.SESSION_PREFIX + self.id) if not os.path.abspath(f).startswith(self.storage_path): raise cherrypy.HTTPError(400, 'Invalid session id in cookie.') return f def _exists(self): path = self._get_file_path() return os.path.exists(path) def _load(self, path=None): assert self.locked, ('The session load without being locked. ' "Check your tools' priority levels.") if path is None: path = self._get_file_path() try: with open(path, 'rb') as f: return pickle.load(f) except (IOError, EOFError): e = sys.exc_info()[1] if self.debug: cherrypy.log('Error loading the session pickle: %s' % e, 'TOOLS.SESSIONS') return None def _save(self, expiration_time): assert self.locked, ('The session was saved without being locked. ' "Check your tools' priority levels.") with open(self._get_file_path(), 'wb') as f: pickle.dump((self._data, expiration_time), f, self.pickle_protocol) def _delete(self): assert self.locked, ('The session deletion without being locked. ' "Check your tools' priority levels.") try: os.unlink(self._get_file_path()) except OSError: pass def acquire_lock(self, path=None): """Acquire an exclusive lock on the currently-loaded session data.""" if path is None: path = self._get_file_path() path += self.LOCK_SUFFIX checker = locking.LockChecker(self.id, self.lock_timeout) while not checker.expired(): try: self.lock = zc.lockfile.LockFile(path) except zc.lockfile.LockError: time.sleep(0.1) else: break self.locked = True if self.debug: cherrypy.log('Lock acquired.', 'TOOLS.SESSIONS') def release_lock(self, path=None): """Release the lock on the currently-loaded session data.""" self.lock.close() self.locked = False def clean_up(self): """Clean up expired sessions.""" now = self.now() # Iterate over all session files in self.storage_path for fname in os.listdir(self.storage_path): have_session = ( fname.startswith(self.SESSION_PREFIX) and not fname.endswith(self.LOCK_SUFFIX) ) if have_session: # We have a session file: lock and load it and check # if it's expired. If it fails, nevermind. path = os.path.join(self.storage_path, fname) self.acquire_lock(path) if self.debug: # This is a bit of a hack, since we're calling clean_up # on the first instance rather than the entire class, # so depending on whether you have "debug" set on the # path of the first session called, this may not run. cherrypy.log('Cleanup lock acquired.', 'TOOLS.SESSIONS') try: contents = self._load(path) # _load returns None on IOError if contents is not None: data, expiration_time = contents if expiration_time < now: # Session expired: deleting it os.unlink(path) finally: self.release_lock(path) def __len__(self): """Return the number of active sessions.""" return len([fname for fname in os.listdir(self.storage_path) if (fname.startswith(self.SESSION_PREFIX) and not fname.endswith(self.LOCK_SUFFIX))]) class MemcachedSession(Session): # The most popular memcached client for Python isn't thread-safe. # Wrap all .get and .set operations in a single lock. mc_lock = threading.RLock() # This is a separate set of locks per session id. locks = {} servers = ['localhost:11211'] @classmethod def setup(cls, **kwargs): """Set up the storage system for memcached-based sessions. This should only be called once per process; this will be done automatically when using sessions.init (as the built-in Tool does). """ for k, v in kwargs.items(): setattr(cls, k, v) import memcache cls.cache = memcache.Client(cls.servers) def _exists(self): self.mc_lock.acquire() try: return bool(self.cache.get(self.id)) finally: self.mc_lock.release() def _load(self): self.mc_lock.acquire() try: return self.cache.get(self.id) finally: self.mc_lock.release() def _save(self, expiration_time): # Send the expiration time as "Unix time" (seconds since 1/1/1970) td = int(time.mktime(expiration_time.timetuple())) self.mc_lock.acquire() try: if not self.cache.set(self.id, (self._data, expiration_time), td): raise AssertionError( 'Session data for id %r not set.' % self.id) finally: self.mc_lock.release() def _delete(self): self.cache.delete(self.id) def acquire_lock(self): """Acquire an exclusive lock on the currently-loaded session data.""" self.locked = True self.locks.setdefault(self.id, threading.RLock()).acquire() if self.debug: cherrypy.log('Lock acquired.', 'TOOLS.SESSIONS') def release_lock(self): """Release the lock on the currently-loaded session data.""" self.locks[self.id].release() self.locked = False def __len__(self): """Return the number of active sessions.""" raise NotImplementedError # Hook functions (for CherryPy tools) def save(): """Save any changed session data.""" if not hasattr(cherrypy.serving, 'session'): return request = cherrypy.serving.request response = cherrypy.serving.response # Guard against running twice if hasattr(request, '_sessionsaved'): return request._sessionsaved = True if response.stream: # If the body is being streamed, we have to save the data # *after* the response has been written out request.hooks.attach('on_end_request', cherrypy.session.save) else: # If the body is not being streamed, we save the data now # (so we can release the lock). if is_iterator(response.body): response.collapse_body() cherrypy.session.save() save.failsafe = True def close(): """Close the session object for this request.""" sess = getattr(cherrypy.serving, 'session', None) if getattr(sess, 'locked', False): # If the session is still locked we release the lock sess.release_lock() if sess.debug: cherrypy.log('Lock released on close.', 'TOOLS.SESSIONS') close.failsafe = True close.priority = 90 def init(storage_type=None, path=None, path_header=None, name='session_id', timeout=60, domain=None, secure=False, clean_freq=5, persistent=True, httponly=False, debug=False, # Py27 compat # *, storage_class=RamSession, **kwargs): """Initialize session object (using cookies). storage_class The Session subclass to use. Defaults to RamSession. storage_type (deprecated) One of 'ram', 'file', memcached'. This will be used to look up the corresponding class in cherrypy.lib.sessions globals. For example, 'file' will use the FileSession class. path The 'path' value to stick in the response cookie metadata. path_header If 'path' is None (the default), then the response cookie 'path' will be pulled from request.headers[path_header]. name The name of the cookie. timeout The expiration timeout (in minutes) for the stored session data. If 'persistent' is True (the default), this is also the timeout for the cookie. domain The cookie domain. secure If False (the default) the cookie 'secure' value will not be set. If True, the cookie 'secure' value will be set (to 1). clean_freq (minutes) The poll rate for expired session cleanup. persistent If True (the default), the 'timeout' argument will be used to expire the cookie. If False, the cookie will not have an expiry, and the cookie will be a "session cookie" which expires when the browser is closed. httponly If False (the default) the cookie 'httponly' value will not be set. If True, the cookie 'httponly' value will be set (to 1). Any additional kwargs will be bound to the new Session instance, and may be specific to the storage type. See the subclass of Session you're using for more information. """ # Py27 compat storage_class = kwargs.pop('storage_class', RamSession) request = cherrypy.serving.request # Guard against running twice if hasattr(request, '_session_init_flag'): return request._session_init_flag = True # Check if request came with a session ID id = None if name in request.cookie: id = request.cookie[name].value if debug: cherrypy.log('ID obtained from request.cookie: %r' % id, 'TOOLS.SESSIONS') first_time = not hasattr(cherrypy, 'session') if storage_type: if first_time: msg = 'storage_type is deprecated. Supply storage_class instead' cherrypy.log(msg) storage_class = storage_type.title() + 'Session' storage_class = globals()[storage_class] # call setup first time only if first_time: if hasattr(storage_class, 'setup'): storage_class.setup(**kwargs) # Create and attach a new Session instance to cherrypy.serving. # It will possess a reference to (and lock, and lazily load) # the requested session data. kwargs['timeout'] = timeout kwargs['clean_freq'] = clean_freq cherrypy.serving.session = sess = storage_class(id, **kwargs) sess.debug = debug def update_cookie(id): """Update the cookie every time the session id changes.""" cherrypy.serving.response.cookie[name] = id sess.id_observers.append(update_cookie) # Create cherrypy.session which will proxy to cherrypy.serving.session if not hasattr(cherrypy, 'session'): cherrypy.session = cherrypy._ThreadLocalProxy('session') if persistent: cookie_timeout = timeout else: # See http://support.microsoft.com/kb/223799/EN-US/ # and http://support.mozilla.com/en-US/kb/Cookies cookie_timeout = None set_response_cookie(path=path, path_header=path_header, name=name, timeout=cookie_timeout, domain=domain, secure=secure, httponly=httponly) def set_response_cookie(path=None, path_header=None, name='session_id', timeout=60, domain=None, secure=False, httponly=False): """Set a response cookie for the client. path the 'path' value to stick in the response cookie metadata. path_header if 'path' is None (the default), then the response cookie 'path' will be pulled from request.headers[path_header]. name the name of the cookie. timeout the expiration timeout for the cookie. If 0 or other boolean False, no 'expires' param will be set, and the cookie will be a "session cookie" which expires when the browser is closed. domain the cookie domain. secure if False (the default) the cookie 'secure' value will not be set. If True, the cookie 'secure' value will be set (to 1). httponly If False (the default) the cookie 'httponly' value will not be set. If True, the cookie 'httponly' value will be set (to 1). """ # Set response cookie cookie = cherrypy.serving.response.cookie cookie[name] = cherrypy.serving.session.id cookie[name]['path'] = ( path or cherrypy.serving.request.headers.get(path_header) or '/' ) if timeout: cookie[name]['max-age'] = timeout * 60 _add_MSIE_max_age_workaround(cookie[name], timeout) if domain is not None: cookie[name]['domain'] = domain if secure: cookie[name]['secure'] = 1 if httponly: if not cookie[name].isReservedKey('httponly'): raise ValueError('The httponly cookie token is not supported.') cookie[name]['httponly'] = 1 def _add_MSIE_max_age_workaround(cookie, timeout): """ We'd like to use the "max-age" param as indicated in http://www.faqs.org/rfcs/rfc2109.html but IE doesn't save it to disk and the session is lost if people close the browser. So we have to use the old "expires" ... sigh ... """ expires = time.time() + timeout * 60 cookie['expires'] = httputil.HTTPDate(expires) def expire(): """Expire the current session cookie.""" name = cherrypy.serving.request.config.get( 'tools.sessions.name', 'session_id') one_year = 60 * 60 * 24 * 365 e = time.time() - one_year cherrypy.serving.response.cookie[name]['expires'] = httputil.HTTPDate(e) cherrypy.serving.response.cookie[name].pop('max-age', None)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import logging import re from django.utils.translation import ugettext_lazy as _ from django.views.decorators.debug import sensitive_variables # noqa from horizon import exceptions from horizon import forms from horizon import messages from openstack_dashboard import api LOG = logging.getLogger(__name__) def exception_to_validation_msg(e): """Extracts a validation message to display to the user.""" try: error = json.loads(str(e)) # NOTE(jianingy): if no message exists, we just return 'None' # and let the caller to deciede what to show return error['error'].get('message', None) except Exception: # NOTE(jianingy): fallback to legacy message parsing approach # either if error message isn't a json nor the json isn't in # valid format. validation_patterns = [ "Remote error: \w* {'Error': '(.*?)'}", 'Remote error: \w* (.*?) \[', '400 Bad Request\n\nThe server could not comply with the request ' 'since it is either malformed or otherwise incorrect.\n\n (.*)', '(ParserError: .*)' ] for pattern in validation_patterns: match = re.search(pattern, str(e)) if match: return match.group(1) def create_upload_form_attributes(prefix, input_type, name): """Creates attribute dicts for the switchable upload form :type prefix: str :param prefix: prefix (environment, template) of field :type input_type: str :param input_type: field type (file, raw, url) :type name: str :param name: translated text label to display to user :rtype: dict :return: an attribute set to pass to form build """ attributes = {'class': 'switched', 'data-switch-on': prefix + 'source'} attributes['data-' + prefix + 'source-' + input_type] = name return attributes class TemplateForm(forms.SelfHandlingForm): class Meta: name = _('Select Template') help_text = _('From here you can select a template to launch ' 'a stack.') choices = [('url', _('URL')), ('file', _('File')), ('raw', _('Direct Input'))] attributes = {'class': 'switchable', 'data-slug': 'templatesource'} template_source = forms.ChoiceField(label=_('Template Source'), choices=choices, widget=forms.Select(attrs=attributes)) attributes = create_upload_form_attributes( 'template', 'file', _('Template File')) template_upload = forms.FileField( label=_('Template File'), help_text=_('A local template to upload.'), widget=forms.FileInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'template', 'url', _('Template URL')) template_url = forms.URLField( label=_('Template URL'), help_text=_('An external (HTTP) URL to load the template from.'), widget=forms.TextInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'template', 'raw', _('Template Data')) template_data = forms.CharField( label=_('Template Data'), help_text=_('The raw contents of the template.'), widget=forms.widgets.Textarea(attrs=attributes), required=False) attributes = {'data-slug': 'envsource', 'class': 'switchable'} environment_source = forms.ChoiceField( label=_('Environment Source'), choices=choices, widget=forms.Select(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'env', 'file', _('Environment File')) environment_upload = forms.FileField( label=_('Environment File'), help_text=_('A local environment to upload.'), widget=forms.FileInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'env', 'url', _('Environment URL')) environment_url = forms.URLField( label=_('Environment URL'), help_text=_('An external (HTTP) URL to load the environment from.'), widget=forms.TextInput(attrs=attributes), required=False) attributes = create_upload_form_attributes( 'env', 'raw', _('Environment Data')) environment_data = forms.CharField( label=_('Environment Data'), help_text=_('The raw contents of the environment file.'), widget=forms.widgets.Textarea(attrs=attributes), required=False) def __init__(self, *args, **kwargs): self.next_view = kwargs.pop('next_view') super(TemplateForm, self).__init__(*args, **kwargs) def clean(self): cleaned = super(TemplateForm, self).clean() files = self.request.FILES self.clean_uploaded_files('template', _('template'), cleaned, files) self.clean_uploaded_files('environment', _('environment'), cleaned, files) # Validate the template and get back the params. kwargs = {} if cleaned['template_data']: kwargs['template'] = cleaned['template_data'] else: kwargs['template_url'] = cleaned['template_url'] try: validated = api.heat.template_validate(self.request, **kwargs) cleaned['template_validate'] = validated except Exception as e: msg = exception_to_validation_msg(e) if not msg: msg = _('An unknown problem occurred validating the template.') LOG.exception(msg) raise forms.ValidationError(msg) return cleaned def clean_uploaded_files(self, prefix, field_label, cleaned, files): """Cleans Template & Environment data from form upload. Does some of the crunchy bits for processing uploads vs raw data depending on what the user specified. Identical process for environment data & template data. :type prefix: str :param prefix: prefix (environment, template) of field :type field_label: str :param field_label: translated prefix str for messages :type input_type: dict :param prefix: existing cleaned fields from form :rtype: dict :return: cleaned dict including environment & template data """ upload_str = prefix + "_upload" data_str = prefix + "_data" url = cleaned.get(prefix + '_url') data = cleaned.get(prefix + '_data') has_upload = upload_str in files # Uploaded file handler if has_upload and not url: log_template_name = files[upload_str].name LOG.info('got upload %s' % log_template_name) tpl = files[upload_str].read() if tpl.startswith('{'): try: json.loads(tpl) except Exception as e: msg = _('There was a problem parsing the' ' %(prefix)s: %(error)s') msg = msg % {'prefix': prefix, 'error': e} raise forms.ValidationError(msg) cleaned[data_str] = tpl # URL handler elif url and (has_upload or data): msg = _('Please specify a %s using only one source method.') msg = msg % field_label raise forms.ValidationError(msg) elif prefix == 'template': # Check for raw template input - blank environment allowed if not url and not data: msg = _('You must specify a template via one of the ' 'available sources.') raise forms.ValidationError(msg) def create_kwargs(self, data): kwargs = {'parameters': data['template_validate'], 'environment_data': data['environment_data'], 'environment_url': data['environment_url'], 'template_data': data['template_data'], 'template_url': data['template_url']} if data.get('stack_id'): kwargs['stack_id'] = data['stack_id'] return kwargs def handle(self, request, data): kwargs = self.create_kwargs(data) # NOTE (gabriel): This is a bit of a hack, essentially rewriting this # request so that we can chain it as an input to the next view... # but hey, it totally works. request.method = 'GET' return self.next_view.as_view()(request, **kwargs) class ChangeTemplateForm(TemplateForm): class Meta: name = _('Edit Template') help_text = _('From here you can select a new template to re-launch ' 'a stack.') stack_id = forms.CharField(label=_('Stack ID'), widget=forms.widgets.HiddenInput, required=True) stack_name = forms.CharField(label=_('Stack Name'), widget=forms.TextInput( attrs={'readonly': 'readonly'} )) class CreateStackForm(forms.SelfHandlingForm): param_prefix = '__param_' class Meta: name = _('Create Stack') template_data = forms.CharField( widget=forms.widgets.HiddenInput, required=False) template_url = forms.CharField( widget=forms.widgets.HiddenInput, required=False) environment_data = forms.CharField( widget=forms.widgets.HiddenInput, required=False) environment_url = forms.CharField( widget=forms.widgets.HiddenInput, required=False) parameters = forms.CharField( widget=forms.widgets.HiddenInput, required=True) stack_name = forms.RegexField( max_length='255', label=_('Stack Name'), help_text=_('Name of the stack to create.'), regex=r"^[a-zA-Z][a-zA-Z0-9_.-]*$", error_messages={'invalid': _('Name must start with a letter and may ' 'only contain letters, numbers, underscores, ' 'periods and hyphens.')}, required=True) timeout_mins = forms.IntegerField( initial=60, label=_('Creation Timeout (minutes)'), help_text=_('Stack creation timeout in minutes.'), required=True) enable_rollback = forms.BooleanField( label=_('Rollback On Failure'), help_text=_('Enable rollback on create/update failure.'), required=False) def __init__(self, *args, **kwargs): parameters = kwargs.pop('parameters') # special case: load template data from API, not passed in params if(kwargs.get('validate_me')): parameters = kwargs.pop('validate_me') super(CreateStackForm, self).__init__(*args, **kwargs) self._build_parameter_fields(parameters) def _build_parameter_fields(self, template_validate): self.fields['password'] = forms.CharField( label=_('Password for user "%s"') % self.request.user.username, help_text=_('This is required for operations to be performed ' 'throughout the lifecycle of the stack'), required=True, widget=forms.PasswordInput()) self.help_text = template_validate['Description'] params = template_validate.get('Parameters', {}) for param_key, param in params.items(): field_key = self.param_prefix + param_key field_args = { 'initial': param.get('Default', None), 'label': param_key, 'help_text': param.get('Description', ''), 'required': param.get('Default', None) is None } param_type = param.get('Type', None) if 'AllowedValues' in param: choices = map(lambda x: (x, x), param['AllowedValues']) field_args['choices'] = choices field = forms.ChoiceField(**field_args) elif param_type in ('CommaDelimitedList', 'String'): if 'MinLength' in param: field_args['min_length'] = int(param['MinLength']) field_args['required'] = param.get('MinLength', 0) > 0 if 'MaxLength' in param: field_args['max_length'] = int(param['MaxLength']) field = forms.CharField(**field_args) elif param_type == 'Number': if 'MinValue' in param: field_args['min_value'] = int(param['MinValue']) if 'MaxValue' in param: field_args['max_value'] = int(param['MaxValue']) field = forms.IntegerField(**field_args) self.fields[field_key] = field @sensitive_variables('password') def handle(self, request, data): prefix_length = len(self.param_prefix) params_list = [(k[prefix_length:], v) for (k, v) in data.iteritems() if k.startswith(self.param_prefix)] fields = { 'stack_name': data.get('stack_name'), 'timeout_mins': data.get('timeout_mins'), 'disable_rollback': not(data.get('enable_rollback')), 'parameters': dict(params_list), 'password': data.get('password') } if data.get('template_data'): fields['template'] = data.get('template_data') else: fields['template_url'] = data.get('template_url') if data.get('environment_data'): fields['environment'] = data.get('environment_data') elif data.get('environment_url'): fields['environment_url'] = data.get('environment_url') try: api.heat.stack_create(self.request, **fields) messages.success(request, _("Stack creation started.")) return True except Exception as e: msg = exception_to_validation_msg(e) exceptions.handle(request, msg or _('Stack creation failed.')) class EditStackForm(CreateStackForm): class Meta: name = _('Update Stack Parameters') stack_id = forms.CharField(label=_('Stack ID'), widget=forms.widgets.HiddenInput, required=True) stack_name = forms.CharField(label=_('Stack Name'), widget=forms.TextInput( attrs={'readonly': 'readonly'} )) @sensitive_variables('password') def handle(self, request, data): prefix_length = len(self.param_prefix) params_list = [(k[prefix_length:], v) for (k, v) in data.iteritems() if k.startswith(self.param_prefix)] stack_id = data.get('stack_id') fields = { 'stack_name': data.get('stack_name'), 'timeout_mins': data.get('timeout_mins'), 'disable_rollback': not(data.get('enable_rollback')), 'parameters': dict(params_list), 'password': data.get('password') } # if the user went directly to this form, resubmit the existing # template data. otherwise, submit what they had from the first form if data.get('template_data'): fields['template'] = data.get('template_data') elif data.get('template_url'): fields['template_url'] = data.get('template_url') elif data.get('parameters'): fields['template'] = data.get('parameters') try: api.heat.stack_update(self.request, stack_id=stack_id, **fields) messages.success(request, _("Stack update started.")) return True except Exception as e: msg = exception_to_validation_msg(e) exceptions.handle(request, msg or _('Stack update failed.'))
""" Support for Honeywell Round Connected and Honeywell Evohome thermostats. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/climate.honeywell/ """ import logging import socket import datetime import voluptuous as vol import requests from homeassistant.components.climate import (ClimateDevice, PLATFORM_SCHEMA, ATTR_FAN_MODE, ATTR_FAN_LIST, ATTR_OPERATION_MODE, ATTR_OPERATION_LIST) from homeassistant.const import ( CONF_PASSWORD, CONF_USERNAME, TEMP_CELSIUS, TEMP_FAHRENHEIT, ATTR_TEMPERATURE) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['evohomeclient==0.2.5', 'somecomfort==0.4.1'] _LOGGER = logging.getLogger(__name__) ATTR_FAN = 'fan' ATTR_SYSTEM_MODE = 'system_mode' ATTR_CURRENT_OPERATION = 'equipment_output_status' CONF_AWAY_TEMPERATURE = 'away_temperature' CONF_COOL_AWAY_TEMPERATURE = 'away_cool_temperature' CONF_HEAT_AWAY_TEMPERATURE = 'away_heat_temperature' CONF_REGION = 'region' DEFAULT_AWAY_TEMPERATURE = 16 DEFAULT_COOL_AWAY_TEMPERATURE = 30 DEFAULT_HEAT_AWAY_TEMPERATURE = 16 DEFAULT_REGION = 'eu' REGIONS = ['eu', 'us'] PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_AWAY_TEMPERATURE, default=DEFAULT_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_COOL_AWAY_TEMPERATURE, default=DEFAULT_COOL_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_HEAT_AWAY_TEMPERATURE, default=DEFAULT_HEAT_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_REGION, default=DEFAULT_REGION): vol.In(REGIONS), }) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Honeywell thermostat.""" username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) region = config.get(CONF_REGION) if region == 'us': return _setup_us(username, password, config, add_devices) else: return _setup_round(username, password, config, add_devices) def _setup_round(username, password, config, add_devices): """Setup rounding function.""" from evohomeclient import EvohomeClient away_temp = config.get(CONF_AWAY_TEMPERATURE) evo_api = EvohomeClient(username, password) try: zones = evo_api.temperatures(force_refresh=True) for i, zone in enumerate(zones): add_devices( [RoundThermostat(evo_api, zone['id'], i == 0, away_temp)] ) except socket.error: _LOGGER.error( "Connection error logging into the honeywell evohome web service") return False return True # config will be used later def _setup_us(username, password, config, add_devices): """Setup user.""" import somecomfort try: client = somecomfort.SomeComfort(username, password) except somecomfort.AuthError: _LOGGER.error('Failed to login to honeywell account %s', username) return False except somecomfort.SomeComfortError as ex: _LOGGER.error('Failed to initialize honeywell client: %s', str(ex)) return False dev_id = config.get('thermostat') loc_id = config.get('location') cool_away_temp = config.get(CONF_COOL_AWAY_TEMPERATURE) heat_away_temp = config.get(CONF_HEAT_AWAY_TEMPERATURE) add_devices([HoneywellUSThermostat(client, device, cool_away_temp, heat_away_temp, username, password) for location in client.locations_by_id.values() for device in location.devices_by_id.values() if ((not loc_id or location.locationid == loc_id) and (not dev_id or device.deviceid == dev_id))]) return True class RoundThermostat(ClimateDevice): """Representation of a Honeywell Round Connected thermostat.""" def __init__(self, device, zone_id, master, away_temp): """Initialize the thermostat.""" self.device = device self._current_temperature = None self._target_temperature = None self._name = 'round connected' self._id = zone_id self._master = master self._is_dhw = False self._away_temp = away_temp self._away = False self.update() @property def name(self): """Return the name of the honeywell, if any.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" if self._is_dhw: return None return self._target_temperature def set_temperature(self, **kwargs): """Set new target temperature.""" temperature = kwargs.get(ATTR_TEMPERATURE) if temperature is None: return self.device.set_temperature(self._name, temperature) @property def current_operation(self: ClimateDevice) -> str: """Get the current operation of the system.""" return getattr(self.device, ATTR_SYSTEM_MODE, None) @property def is_away_mode_on(self): """Return true if away mode is on.""" return self._away def set_operation_mode(self: ClimateDevice, operation_mode: str) -> None: """Set the HVAC mode for the thermostat.""" if hasattr(self.device, ATTR_SYSTEM_MODE): self.device.system_mode = operation_mode def turn_away_mode_on(self): """Turn away on. Honeywell does have a proprietary away mode, but it doesn't really work the way it should. For example: If you set a temperature manually it doesn't get overwritten when away mode is switched on. """ self._away = True self.device.set_temperature(self._name, self._away_temp) def turn_away_mode_off(self): """Turn away off.""" self._away = False self.device.cancel_temp_override(self._name) def update(self): """Get the latest date.""" try: # Only refresh if this is the "master" device, # others will pick up the cache for val in self.device.temperatures(force_refresh=self._master): if val['id'] == self._id: data = val except StopIteration: _LOGGER.error("Did not receive any temperature data from the " "evohomeclient API.") return self._current_temperature = data['temp'] self._target_temperature = data['setpoint'] if data['thermostat'] == 'DOMESTIC_HOT_WATER': self._name = 'Hot Water' self._is_dhw = True else: self._name = data['name'] self._is_dhw = False class HoneywellUSThermostat(ClimateDevice): """Representation of a Honeywell US Thermostat.""" def __init__(self, client, device, cool_away_temp, heat_away_temp, username, password): """Initialize the thermostat.""" self._client = client self._device = device self._cool_away_temp = cool_away_temp self._heat_away_temp = heat_away_temp self._away = False self._username = username self._password = password @property def is_fan_on(self): """Return true if fan is on.""" return self._device.fan_running @property def name(self): """Return the name of the honeywell, if any.""" return self._device.name @property def temperature_unit(self): """Return the unit of measurement.""" return (TEMP_CELSIUS if self._device.temperature_unit == 'C' else TEMP_FAHRENHEIT) @property def current_temperature(self): """Return the current temperature.""" return self._device.current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" if self._device.system_mode == 'cool': return self._device.setpoint_cool else: return self._device.setpoint_heat @property def current_operation(self: ClimateDevice) -> str: """Return current operation ie. heat, cool, idle.""" oper = getattr(self._device, ATTR_CURRENT_OPERATION, None) if oper == "off": oper = "idle" return oper def set_temperature(self, **kwargs): """Set target temperature.""" temperature = kwargs.get(ATTR_TEMPERATURE) if temperature is None: return import somecomfort try: # Get current mode mode = self._device.system_mode # Set hold if this is not the case if getattr(self._device, "hold_{}".format(mode)) is False: # Get next period key next_period_key = '{}NextPeriod'.format(mode.capitalize()) # Get next period raw value next_period = self._device.raw_ui_data.get(next_period_key) # Get next period time hour, minute = divmod(next_period * 15, 60) # Set hold time setattr(self._device, "hold_{}".format(mode), datetime.time(hour, minute)) # Set temperature setattr(self._device, "setpoint_{}".format(mode), temperature) except somecomfort.SomeComfortError: _LOGGER.error('Temperature %.1f out of range', temperature) @property def device_state_attributes(self): """Return the device specific state attributes.""" import somecomfort data = { ATTR_FAN: (self.is_fan_on and 'running' or 'idle'), ATTR_FAN_MODE: self._device.fan_mode, ATTR_OPERATION_MODE: self._device.system_mode, } data[ATTR_FAN_LIST] = somecomfort.FAN_MODES data[ATTR_OPERATION_LIST] = somecomfort.SYSTEM_MODES return data @property def is_away_mode_on(self): """Return true if away mode is on.""" return self._away def turn_away_mode_on(self): """Turn away on. Somecomfort does have a proprietary away mode, but it doesn't really work the way it should. For example: If you set a temperature manually it doesn't get overwritten when away mode is switched on. """ self._away = True import somecomfort try: # Get current mode mode = self._device.system_mode except somecomfort.SomeComfortError: _LOGGER.error('Can not get system mode') return try: # Set permanent hold setattr(self._device, "hold_{}".format(mode), True) # Set temperature setattr(self._device, "setpoint_{}".format(mode), getattr(self, "_{}_away_temp".format(mode))) except somecomfort.SomeComfortError: _LOGGER.error('Temperature %.1f out of range', getattr(self, "_{}_away_temp".format(mode))) def turn_away_mode_off(self): """Turn away off.""" self._away = False import somecomfort try: # Disabling all hold modes self._device.hold_cool = False self._device.hold_heat = False except somecomfort.SomeComfortError: _LOGGER.error('Can not stop hold mode') def set_operation_mode(self: ClimateDevice, operation_mode: str) -> None: """Set the system mode (Cool, Heat, etc).""" if hasattr(self._device, ATTR_SYSTEM_MODE): self._device.system_mode = operation_mode def update(self): """Update the state.""" import somecomfort retries = 3 while retries > 0: try: self._device.refresh() break except (somecomfort.client.APIRateLimited, OSError, requests.exceptions.ReadTimeout) as exp: retries -= 1 if retries == 0: raise exp if not self._retry(): raise exp _LOGGER.error("SomeComfort update failed, Retrying " "- Error: %s", exp) def _retry(self): """Recreate a new somecomfort client. When we got an error, the best way to be sure that the next query will succeed, is to recreate a new somecomfort client. """ import somecomfort try: self._client = somecomfort.SomeComfort(self._username, self._password) except somecomfort.AuthError: _LOGGER.error('Failed to login to honeywell account %s', self._username) return False except somecomfort.SomeComfortError as ex: _LOGGER.error('Failed to initialize honeywell client: %s', str(ex)) return False devices = [device for location in self._client.locations_by_id.values() for device in location.devices_by_id.values() if device.name == self._device.name] if len(devices) != 1: _LOGGER.error('Failed to find device %s', self._device.name) return False self._device = devices[0] return True
import pytest from flask import Response from werkzeug.exceptions import Forbidden from flask_allows import Allows from flask_allows.additional import Additional, current_additions from flask_allows.overrides import Override, current_overrides def test_warns_about_request_deprecation_with_old_style_requirement(member): import warnings allows = Allows(identity_loader=lambda: member) req = lambda u, p: True # noqa: E731 repred = repr(req) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DeprecationWarning) allows.fulfill([req]) warnings.simplefilter("default", DeprecationWarning) assert len(w) == 1 assert issubclass(w[0].category, DeprecationWarning) assert str(w[0].message).startswith(repred) assert "Passing request to requirements is now deprecated" in str(w[0].message) def test_Allows_defaults(): allows = Allows() assert allows._identity_loader is None and allows.throws is Forbidden def test_Allows_config_with_app(app): allows = Allows(app) assert hasattr(app, "extensions") and allows is app.extensions["allows"] def test_Allows_init_app(app): allows = Allows() assert app.extensions == {} allows.init_app(app) assert hasattr(app, "extensions") and allows is app.extensions["allows"] def test_Allows_identity_loader_on_init(member): ident = lambda: member # noqa allows = Allows(identity_loader=ident) assert allows._identity_loader is ident def test_Allows_custom_throws(): myforbid = Forbidden() allows = Allows(throws=myforbid) assert allows.throws is myforbid def test_Allows_identity_loader_func(member): allows = Allows() @allows.identity_loader def ident(): return member assert allows._identity_loader is ident and allows._identity_loader() is member def test_Allows_fulfill_true(member, always): allows = Allows(identity_loader=lambda: member) assert allows.fulfill([always]) assert always.called_with == {"user": member} def test_Allows_fulfill_false(member, never): allows = Allows(identity_loader=lambda: member) assert not allows.fulfill([never]) def test_Allows_fulfill_ident_override(member, guest, spy): allows = Allows(identity_loader=lambda: guest) allows.fulfill([spy], identity=member) assert spy.called_with["user"] is member def test_allows_requires(member, ismember): allows = Allows(identity_loader=lambda: member) @allows.requires(ismember) def stub(): return True assert stub() def test_allows_requires_throws(member, atleastmod): allows = Allows(identity_loader=lambda: member) @allows.requires(atleastmod) def stub(): return True with pytest.raises(Forbidden) as excinfo: stub() assert excinfo.value.code == 403 def test_allows_requires_throws_override(member, atleastmod): class MyForbid(Forbidden): pass allows = Allows(identity_loader=lambda: member) @allows.requires(atleastmod, throws=MyForbid("Go away")) def stub(): pass with pytest.raises(MyForbid) as excinfo: stub() assert "Go away" == excinfo.value.description def test_allows_on_fail(member, atleastmod): allows = Allows( identity_loader=lambda: member, on_fail=lambda *a, **k: "I've failed" ) @allows.requires(atleastmod) def stub(): pass assert stub() == "I've failed" def test_allows_makes_on_fail_callable(member, atleastmod): allows = Allows(identity_loader=lambda: member, on_fail="I've failed") @allows.requires(atleastmod) def stub(): pass assert stub() == "I've failed" def test_allows_on_fail_override_at_decoration(member, atleastmod): allows = Allows(identity_loader=lambda: member) @allows.requires(atleastmod, on_fail=lambda *a, **k: "Overridden failure") def stub(): pass assert stub() == "Overridden failure" def test_allows_on_fail_returning_none_raises(member, atleastmod): allows = Allows(on_fail=lambda *a, **k: None, identity_loader=lambda: member) @allows.requires(atleastmod) def stub(): pass with pytest.raises(Forbidden): stub() def test_allows_can_call_requirements_with_old_and_new_style_arguments(member): allows = Allows(identity_loader=lambda: member) def new_style(user): return True def old_style(user, request): return True assert allows.fulfill([new_style, old_style]) def test_fulfills_skips_overridden_requirements(member, never): allows = Allows(identity_loader=lambda: member) allows.overrides.push(Override(never)) assert allows.fulfill([never]) # be a good test denizen and cleanup allows.overrides.pop() def test_allows_cleans_up_override_contexts_in_after_request( app, member, never, always ): allows = Allows(app, identity_loader=lambda: member) # need to route a request for this test so the whole before/after request # cycle is invoked @app.route("/") def index(): assert allows.overrides.current.is_overridden(never) assert allows.additional.current.is_added(always) return Response("...") @app.before_request def disable_never(*a, **k): current_overrides.add(never) current_additions.add(always) with app.test_request_context("/"): app.preprocess_request() result = index() app.process_response(result) assert allows.overrides.current is None assert allows.additional.current is None def test_fulfill_calls_additional_requirements(member, always): allows = Allows(identity_loader=lambda: member) allows.additional.push(Additional(always)) assert allows.fulfill([]) assert always.called def test_req_not_called_when_both_added_and_overridden(member, never): allows = Allows(identity_loader=lambda: member) allows.additional.push(Additional(never)) allows.overrides.push(Override(never)) assert allows.fulfill([]) def test_req_called_once_even_if_added_multiple_times(member, counter): allows = Allows(identity_loader=lambda: member) allows.additional.push(Additional(counter, counter)) assert allows.fulfill([]) assert counter.count == 1
""" Form classes """ from __future__ import absolute_import, unicode_literals import copy import warnings from django.core.exceptions import ValidationError from django.forms.fields import Field, FileField from django.forms.util import flatatt, ErrorDict, ErrorList from django.forms.widgets import Media, media_property, TextInput, Textarea from django.utils.datastructures import SortedDict from django.utils.html import conditional_escape, format_html from django.utils.encoding import smart_text, force_text, python_2_unicode_compatible from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from django.utils import six __all__ = ('BaseForm', 'Form') NON_FIELD_ERRORS = '__all__' def pretty_name(name): """Converts 'first_name' to 'First name'""" if not name: return '' return name.replace('_', ' ').capitalize() def get_declared_fields(bases, attrs, with_base_fields=True): """ Create a list of form field instances from the passed in 'attrs', plus any similar fields on the base classes (in 'bases'). This is used by both the Form and ModelForm metaclasses. If 'with_base_fields' is True, all fields from the bases are used. Otherwise, only fields in the 'declared_fields' attribute on the bases are used. The distinction is useful in ModelForm subclassing. Also integrates any additional media definitions. """ fields = [(field_name, attrs.pop(field_name)) for field_name, obj in list(six.iteritems(attrs)) if isinstance(obj, Field)] fields.sort(key=lambda x: x[1].creation_counter) # If this class is subclassing another Form, add that Form's fields. # Note that we loop over the bases in *reverse*. This is necessary in # order to preserve the correct order of fields. if with_base_fields: for base in bases[::-1]: if hasattr(base, 'base_fields'): fields = list(six.iteritems(base.base_fields)) + fields else: for base in bases[::-1]: if hasattr(base, 'declared_fields'): fields = list(six.iteritems(base.declared_fields)) + fields return SortedDict(fields) class DeclarativeFieldsMetaclass(type): """ Metaclass that converts Field attributes to a dictionary called 'base_fields', taking into account parent class 'base_fields' as well. """ def __new__(cls, name, bases, attrs): attrs['base_fields'] = get_declared_fields(bases, attrs) new_class = super(DeclarativeFieldsMetaclass, cls).__new__(cls, name, bases, attrs) if 'media' not in attrs: new_class.media = media_property(new_class) return new_class @python_2_unicode_compatible class BaseForm(object): # This is the main implementation of all the Form logic. Note that this # class is different than Form. See the comments by the Form class for more # information. Any improvements to the form API should be made to *this* # class, not to the Form class. def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=ErrorList, label_suffix=':', empty_permitted=False): self.is_bound = data is not None or files is not None self.data = data or {} self.files = files or {} self.auto_id = auto_id self.prefix = prefix self.initial = initial or {} self.error_class = error_class self.label_suffix = label_suffix self.empty_permitted = empty_permitted self._errors = None # Stores the errors after clean() has been called. self._changed_data = None # The base_fields class attribute is the *class-wide* definition of # fields. Because a particular *instance* of the class might want to # alter self.fields, we create self.fields here by copying base_fields. # Instances should always modify self.fields; they should not modify # self.base_fields. self.fields = copy.deepcopy(self.base_fields) def __str__(self): return self.as_table() def __iter__(self): for name in self.fields: yield self[name] def __getitem__(self, name): "Returns a BoundField with the given name." try: field = self.fields[name] except KeyError: raise KeyError('Key %r not found in Form' % name) return BoundField(self, field, name) @property def errors(self): "Returns an ErrorDict for the data provided for the form" if self._errors is None: self.full_clean() return self._errors def is_valid(self): """ Returns True if the form has no errors. Otherwise, False. If errors are being ignored, returns False. """ return self.is_bound and not bool(self.errors) def add_prefix(self, field_name): """ Returns the field name with a prefix appended, if this Form has a prefix set. Subclasses may wish to override. """ return self.prefix and ('%s-%s' % (self.prefix, field_name)) or field_name def add_initial_prefix(self, field_name): """ Add a 'initial' prefix for checking dynamic initial values """ return 'initial-%s' % self.add_prefix(field_name) def _html_output(self, normal_row, error_row, row_ender, help_text_html, errors_on_separate_row): "Helper function for outputting HTML. Used by as_table(), as_ul(), as_p()." top_errors = self.non_field_errors() # Errors that should be displayed above all fields. output, hidden_fields = [], [] for name, field in self.fields.items(): html_class_attr = '' bf = self[name] # Escape and cache in local variable. bf_errors = self.error_class([conditional_escape(error) for error in bf.errors]) if bf.is_hidden: if bf_errors: top_errors.extend( [_('(Hidden field %(name)s) %(error)s') % {'name': name, 'error': force_text(e)} for e in bf_errors]) hidden_fields.append(six.text_type(bf)) else: # Create a 'class="..."' atribute if the row should have any # CSS classes applied. css_classes = bf.css_classes() if css_classes: html_class_attr = ' class="%s"' % css_classes if errors_on_separate_row and bf_errors: output.append(error_row % force_text(bf_errors)) if bf.label: label = conditional_escape(force_text(bf.label)) # Only add the suffix if the label does not end in # punctuation. if self.label_suffix: if label[-1] not in ':?.!': label = format_html('{0}{1}', label, self.label_suffix) label = bf.label_tag(label) or '' else: label = '' if field.help_text: help_text = help_text_html % force_text(field.help_text) else: help_text = '' output.append(normal_row % { 'errors': force_text(bf_errors), 'label': force_text(label), 'field': six.text_type(bf), 'help_text': help_text, 'html_class_attr': html_class_attr }) if top_errors: output.insert(0, error_row % force_text(top_errors)) if hidden_fields: # Insert any hidden fields in the last row. str_hidden = ''.join(hidden_fields) if output: last_row = output[-1] # Chop off the trailing row_ender (e.g. '</td></tr>') and # insert the hidden fields. if not last_row.endswith(row_ender): # This can happen in the as_p() case (and possibly others # that users write): if there are only top errors, we may # not be able to conscript the last row for our purposes, # so insert a new, empty row. last_row = (normal_row % {'errors': '', 'label': '', 'field': '', 'help_text':'', 'html_class_attr': html_class_attr}) output.append(last_row) output[-1] = last_row[:-len(row_ender)] + str_hidden + row_ender else: # If there aren't any rows in the output, just append the # hidden fields. output.append(str_hidden) return mark_safe('\n'.join(output)) def as_table(self): "Returns this form rendered as HTML <tr>s -- excluding the <table></table>." return self._html_output( normal_row = '<tr%(html_class_attr)s><th>%(label)s</th><td>%(errors)s%(field)s%(help_text)s</td></tr>', error_row = '<tr><td colspan="2">%s</td></tr>', row_ender = '</td></tr>', help_text_html = '<br /><span class="helptext">%s</span>', errors_on_separate_row = False) def as_ul(self): "Returns this form rendered as HTML <li>s -- excluding the <ul></ul>." return self._html_output( normal_row = '<li%(html_class_attr)s>%(errors)s%(label)s %(field)s%(help_text)s</li>', error_row = '<li>%s</li>', row_ender = '</li>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = False) def as_p(self): "Returns this form rendered as HTML <p>s." return self._html_output( normal_row = '<p%(html_class_attr)s>%(label)s %(field)s%(help_text)s</p>', error_row = '%s', row_ender = '</p>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = True) def non_field_errors(self): """ Returns an ErrorList of errors that aren't associated with a particular field -- i.e., from Form.clean(). Returns an empty ErrorList if there are none. """ return self.errors.get(NON_FIELD_ERRORS, self.error_class()) def _raw_value(self, fieldname): """ Returns the raw_value for a particular field name. This is just a convenient wrapper around widget.value_from_datadict. """ field = self.fields[fieldname] prefix = self.add_prefix(fieldname) return field.widget.value_from_datadict(self.data, self.files, prefix) def full_clean(self): """ Cleans all of self.data and populates self._errors and self.cleaned_data. """ self._errors = ErrorDict() if not self.is_bound: # Stop further processing. return self.cleaned_data = {} # If the form is permitted to be empty, and none of the form data has # changed from the initial data, short circuit any validation. if self.empty_permitted and not self.has_changed(): return self._clean_fields() self._clean_form() self._post_clean() def _clean_fields(self): for name, field in self.fields.items(): # value_from_datadict() gets the data from the data dictionaries. # Each widget type knows how to retrieve its own data, because some # widgets split data over several HTML fields. value = field.widget.value_from_datadict(self.data, self.files, self.add_prefix(name)) try: if isinstance(field, FileField): initial = self.initial.get(name, field.initial) value = field.clean(value, initial) else: value = field.clean(value) self.cleaned_data[name] = value if hasattr(self, 'clean_%s' % name): value = getattr(self, 'clean_%s' % name)() self.cleaned_data[name] = value except ValidationError as e: self._errors[name] = self.error_class(e.messages) if name in self.cleaned_data: del self.cleaned_data[name] def _clean_form(self): try: self.cleaned_data = self.clean() except ValidationError as e: self._errors[NON_FIELD_ERRORS] = self.error_class(e.messages) def _post_clean(self): """ An internal hook for performing additional cleaning after form cleaning is complete. Used for model validation in model forms. """ pass def clean(self): """ Hook for doing any extra form-wide cleaning after Field.clean() been called on every field. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field named '__all__'. """ return self.cleaned_data def has_changed(self): """ Returns True if data differs from initial. """ return bool(self.changed_data) @property def changed_data(self): if self._changed_data is None: self._changed_data = [] # XXX: For now we're asking the individual widgets whether or not the # data has changed. It would probably be more efficient to hash the # initial data, store it in a hidden field, and compare a hash of the # submitted data, but we'd need a way to easily get the string value # for a given field. Right now, that logic is embedded in the render # method of each widget. for name, field in self.fields.items(): prefixed_name = self.add_prefix(name) data_value = field.widget.value_from_datadict(self.data, self.files, prefixed_name) if not field.show_hidden_initial: initial_value = self.initial.get(name, field.initial) else: initial_prefixed_name = self.add_initial_prefix(name) hidden_widget = field.hidden_widget() try: initial_value = field.to_python(hidden_widget.value_from_datadict( self.data, self.files, initial_prefixed_name)) except ValidationError: # Always assume data has changed if validation fails. self._changed_data.append(name) continue if hasattr(field.widget, '_has_changed'): warnings.warn("The _has_changed method on widgets is deprecated," " define it at field level instead.", PendingDeprecationWarning, stacklevel=2) if field.widget._has_changed(initial_value, data_value): self._changed_data.append(name) elif field._has_changed(initial_value, data_value): self._changed_data.append(name) return self._changed_data @property def media(self): """ Provide a description of all media required to render the widgets on this form """ media = Media() for field in self.fields.values(): media = media + field.widget.media return media def is_multipart(self): """ Returns True if the form needs to be multipart-encoded, i.e. it has FileInput. Otherwise, False. """ for field in self.fields.values(): if field.widget.needs_multipart_form: return True return False def hidden_fields(self): """ Returns a list of all the BoundField objects that are hidden fields. Useful for manual form layout in templates. """ return [field for field in self if field.is_hidden] def visible_fields(self): """ Returns a list of BoundField objects that aren't hidden fields. The opposite of the hidden_fields() method. """ return [field for field in self if not field.is_hidden] class Form(six.with_metaclass(DeclarativeFieldsMetaclass, BaseForm)): "A collection of Fields, plus their associated data." # This is a separate class from BaseForm in order to abstract the way # self.fields is specified. This class (Form) is the one that does the # fancy metaclass stuff purely for the semantic sugar -- it allows one # to define a form using declarative syntax. # BaseForm itself has no way of designating self.fields. @python_2_unicode_compatible class BoundField(object): "A Field plus data" def __init__(self, form, field, name): self.form = form self.field = field self.name = name self.html_name = form.add_prefix(name) self.html_initial_name = form.add_initial_prefix(name) self.html_initial_id = form.add_initial_prefix(self.auto_id) if self.field.label is None: self.label = pretty_name(name) else: self.label = self.field.label self.help_text = field.help_text or '' def __str__(self): """Renders this field as an HTML widget.""" if self.field.show_hidden_initial: return self.as_widget() + self.as_hidden(only_initial=True) return self.as_widget() def __iter__(self): """ Yields rendered strings that comprise all widgets in this BoundField. This really is only useful for RadioSelect widgets, so that you can iterate over individual radio buttons in a template. """ for subwidget in self.field.widget.subwidgets(self.html_name, self.value()): yield subwidget def __len__(self): return len(list(self.__iter__())) def __getitem__(self, idx): return list(self.__iter__())[idx] @property def errors(self): """ Returns an ErrorList for this field. Returns an empty ErrorList if there are none. """ return self.form.errors.get(self.name, self.form.error_class()) def as_widget(self, widget=None, attrs=None, only_initial=False): """ Renders the field by rendering the passed widget, adding any HTML attributes passed as attrs. If no widget is specified, then the field's default widget will be used. """ if not widget: widget = self.field.widget attrs = attrs or {} auto_id = self.auto_id if auto_id and 'id' not in attrs and 'id' not in widget.attrs: if not only_initial: attrs['id'] = auto_id else: attrs['id'] = self.html_initial_id if not only_initial: name = self.html_name else: name = self.html_initial_name return widget.render(name, self.value(), attrs=attrs) def as_text(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="text">. """ return self.as_widget(TextInput(), attrs, **kwargs) def as_textarea(self, attrs=None, **kwargs): "Returns a string of HTML for representing this as a <textarea>." return self.as_widget(Textarea(), attrs, **kwargs) def as_hidden(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="hidden">. """ return self.as_widget(self.field.hidden_widget(), attrs, **kwargs) @property def data(self): """ Returns the data for this BoundField, or None if it wasn't given. """ return self.field.widget.value_from_datadict(self.form.data, self.form.files, self.html_name) def value(self): """ Returns the value for this BoundField, using the initial value if the form is not bound or the data otherwise. """ if not self.form.is_bound: data = self.form.initial.get(self.name, self.field.initial) if callable(data): data = data() else: data = self.field.bound_data( self.data, self.form.initial.get(self.name, self.field.initial) ) return self.field.prepare_value(data) def label_tag(self, contents=None, attrs=None): """ Wraps the given contents in a <label>, if the field has an ID attribute. contents should be 'mark_safe'd to avoid HTML escaping. If contents aren't given, uses the field's HTML-escaped label. If attrs are given, they're used as HTML attributes on the <label> tag. """ contents = contents or conditional_escape(self.label) widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id if id_: attrs = attrs and flatatt(attrs) or '' contents = format_html('<label for="{0}"{1}>{2}</label>', widget.id_for_label(id_), attrs, contents ) return mark_safe(contents) def css_classes(self, extra_classes=None): """ Returns a string of space-separated CSS classes for this field. """ if hasattr(extra_classes, 'split'): extra_classes = extra_classes.split() extra_classes = set(extra_classes or []) if self.errors and hasattr(self.form, 'error_css_class'): extra_classes.add(self.form.error_css_class) if self.field.required and hasattr(self.form, 'required_css_class'): extra_classes.add(self.form.required_css_class) return ' '.join(extra_classes) @property def is_hidden(self): "Returns True if this BoundField's widget is hidden." return self.field.widget.is_hidden @property def auto_id(self): """ Calculates and returns the ID attribute for this BoundField, if the associated Form has specified auto_id. Returns an empty string otherwise. """ auto_id = self.form.auto_id if auto_id and '%s' in smart_text(auto_id): return smart_text(auto_id) % self.html_name elif auto_id: return self.html_name return '' @property def id_for_label(self): """ Wrapper around the field widget's `id_for_label` method. Useful, for example, for focusing on this field regardless of whether it has a single widget or a MutiWidget. """ widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id return widget.id_for_label(id_)
""" Interface and implementation of a Kademlia routing table. Classes: RoutingTable -- Interface OptimizedTreeRoutingTable -- Implementation """ from abc import ABCMeta, abstractmethod import logging import time from node import constants, guid, kbucket class RoutingTable(object): """ Interface for routing table implementations. Classes inheriting from this should provide a suitable routing table for a parent Node object (i.e. the local entity in the Kademlia network). """ __metaclass__ = ABCMeta def __init__(self, parent_node_id, market_id): """ Initialize a new RoutingTable. @param parent_node_id: The node ID of the node to which this routing table belongs. @type parent_node_id: guid.GUIDMixin or str or unicode @param market_id: FILLME @type: int """ self.market_id = market_id self.parent_node_id = parent_node_id self.log = logging.getLogger( '[%s] %s' % (self.market_id, self.__class__.__name__) ) @abstractmethod def add_contact(self, node_id): """ Add the given node to the correct KBucket; if it already exists, update its status. @param contact: The contact to add to this node's KBuckets @type contact: guid.GUIDMixin or str or unicode """ pass @staticmethod def distance(node_id1, node_id2): """ Calculate the XOR result between two string variables. @param node_id1: The ID of the first node. @type node_id1: guid.GUIDMixin or str or unicode @param node_id2: The ID of the second node. @type node_id1: guid.GUIDMixin or str or unicode @return: XOR result of two long variables @rtype: long @raises: ValueError: The strings have improper lengths for IDs. """ if isinstance(node_id1, guid.GUIDMixin): key1 = node_id1.guid else: key1 = node_id1 if isinstance(node_id2, guid.GUIDMixin): key2 = node_id2.guid else: key2 = node_id2 if len(key1) != constants.HEX_NODE_ID_LEN: raise ValueError( "node_id1 has invalid length %d; must be %d" % ( len(key1), constants.HEX_NODE_ID_LEN ) ) if len(key2) != constants.HEX_NODE_ID_LEN: raise ValueError( "node_id2 has invalid length %d; must be %d" % ( len(key2), constants.HEX_NODE_ID_LEN ) ) val_key1 = int(key1, base=16) val_key2 = int(key2, base=16) return val_key1 ^ val_key2 @staticmethod def num_to_id(node_num): """ Converts an integer to a node ID. It is the caller's responsibility to ensure the resulting node ID falls in the ID space. @param node_num: The integer to convert. @type node_num: int @return: A node ID (hex) corresponding to the number given. @rtype: str """ # Convert to hex string. node_id = hex(node_num) # Strip '0x' prefix and 'L' suffix. bare_node_id = node_id.lstrip("0x").rstrip("L") # Pad to proper length and return. return bare_node_id.rjust(constants.HEX_NODE_ID_LEN, '0') @abstractmethod def find_close_nodes(self, node_id, count, rpc_node_id=None): """ Find a number of known nodes closest to the node/value with the specified ID. @param node_id: The node ID to search for @type node_id: guid.GUIDMixin or str or unicode @param count: The amount of contacts to return @type count: int @param rpc_node_id: Used during RPC, this is the sender's node ID. The ID passed as parameter is excluded from the list of returned contacts. @type rpc_node_id: guid.GUIDMixin or str or unicode @return: A list of nodes closest to the specified key. This method will return constants.K (or count, if specified) contacts if at all possible; it will only return fewer if the node is returning all of the contacts that it knows of. @rtype: list of guid.GUIDMixin """ pass @abstractmethod def get_contact(self, node_id): """ Return the known node with the specified ID, None if not found. @param: node_id: The ID of the node to search for. @type: guid.GUIDMixin or str or unicode @return: The node with the specified ID or None @rtype: guid.GUIDMixin or NoneType """ pass @abstractmethod def get_refresh_list(self, start_index=0, force=False): """ Find all KBuckets that need refreshing, starting at the KBucket with the specified index, and return IDs to be searched for in order to refresh those KBuckets. @param start_index: The index of the bucket to start refreshing at; this bucket and those further away from it will be refreshed. For example, when joining the network, this node will set this to the index of the bucket after the one containing its closest neighbour. @type start_index: int @param force: If this is True, all buckets in the specified range will be refreshed, regardless of the time they were last accessed. @type force: bool @return: A list of node IDs that the parent node should search for in order to refresh the routing Table. @rtype: list of guid.GUIDMixin """ pass @abstractmethod def remove_contact(self, node_id): """ Remove the node with the specified ID from the routing table. @param node_id: The ID of the node to remove. @type node_id: guid.GUIDMixin or str or unicode """ pass @abstractmethod def touch_kbucket(self, node_id, timestamp=None): """ Update the "last accessed" timestamp of the KBucket which covers the range containing the specified key in the key/ID space. @param node_id: A key in the range of the target KBucket @type node_id: guid.GUIDMixin or str or unicode @param timestamp: The timestamp to set on the bucket. If None, it will be set to int(time.time()). @type timestamp: int """ pass class OptimizedTreeRoutingTable(RoutingTable): """ This class implements a routing table used by a Node class. The Kademlia routing table is a binary tree whose leaves are KBuckets, where each KBucket contains nodes with some common prefix of their IDs. This prefix is the KBucket's position in the binary tree; it therefore covers some range of ID values, and together all of the KBuckets cover the entire ID space, without any overlaps. Note: This implementation adds nodes in the tree (the KBuckets) in an on-demand fashion, as described in section 2.4 of the 13-page version of the Kademlia paper[1]. It also uses the contact accounting optimization specified in section 4.1 of the said paper (optimized node accounting without PINGs). This results in much less network traffic, at the expense of some memory. [1]: http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf """ def __init__(self, parent_node_id, market_id): """ Initialize a new OptimizedTreeRoutingTable. For details, see RoutingTable documentation. """ super(OptimizedTreeRoutingTable, self).__init__( parent_node_id, market_id ) # Cache containing nodes eligible to replace stale KBucket entries self.replacement_cache = {} self.buckets = [ kbucket.KBucket( range_min=0, range_max=2**constants.BIT_NODE_ID_LEN, market_id=market_id ) ] def add_contact(self, contact): """ Add the given contact to the correct KBucket; if it already exists, update its status. For details, see RoutingTable documentation. """ if not contact.guid: self.log.error('No guid specified') return if contact.guid == self.parent_node_id: self.log.info('Trying to add yourself. Leaving.') return bucket_index = self.kbucket_index(contact.guid) old_contact = self.buckets[bucket_index].get_contact(contact.guid) if not old_contact: try: self.buckets[bucket_index].add_contact(contact) except kbucket.BucketFull: # The bucket is full; see if it can be split (by checking if # its range includes the host node's id) if self.buckets[bucket_index].key_in_range(self.parent_node_id): self.split_bucket(bucket_index) # Retry the insertion attempt self.add_contact(contact) else: # We can't split the KBucket # NOTE: This implementation follows section 4.1 of the 13 # page version of the Kademlia paper (optimized contact # accounting without PINGs - results in much less network # traffic, at the expense of some memory) # Put the new contact in our replacement cache for the # corresponding KBucket (or update it's position if it # exists already) if bucket_index not in self.replacement_cache: self.replacement_cache[bucket_index] = [] if contact in self.replacement_cache[bucket_index]: self.replacement_cache[bucket_index].remove(contact) # TODO: Using k to limit the size of the contact # replacement cache - maybe define a separate value for # this in constants.py? elif len(self.replacement_cache) >= constants.K: self.replacement_cache.pop(0) self.replacement_cache[bucket_index].append(contact) elif old_contact.address != contact.address: self.log.info('Remove contact') self.remove_contact(contact.guid) try: self.buckets[bucket_index].add_contact(contact) except kbucket.BucketFull: # The bucket is full; see if it can be split (by checking # if its range includes the host node's id) if self.buckets[bucket_index].key_in_range(self.parent_node_id): self.split_bucket(bucket_index) # Retry the insertion attempt self.add_contact(contact) else: # We can't split the KBucket # NOTE: This implementation follows section 4.1 of the # 13 page version of the Kademlia paper (optimized # contact accounting without PINGs - results in much # less network traffic, at the expense of some memory) # Put the new contact in our replacement cache for the # corresponding KBucket (or update it's position if # it exists already) if bucket_index not in self.replacement_cache: self.replacement_cache[bucket_index] = [] if contact in self.replacement_cache[bucket_index]: self.replacement_cache[bucket_index].remove(contact) # TODO: Using k to limit the size of the contact # replacement cache - maybe define a separate value # for this in constants.py? elif len(self.replacement_cache) >= constants.K: self.replacement_cache.pop(0) self.replacement_cache[bucket_index].append(contact) def find_close_nodes(self, key, count, node_id=None): """ Find a number of known nodes closest to the node/value with the specified key. @param key: The key (i.e. the node or value ID) to search for. @type key: str @param count: the amount of contacts to return @type count: int @param nodeID: Used during RPC, this is the sender's Node ID. The ID passed in the paramater is excluded from the list of contacts returned. @type nodeID: str @return: A list of node contacts (C{guid.GUIDMixin instances}) closest to the specified key. This method will return C{k} (or C{count}, if specified) contacts if at all possible; it will only return fewer if the node is returning all of the contacts that it knows of. @rtype: list """ bucket_index = self.kbucket_index(key) bucket = self.buckets[bucket_index] closest_nodes = bucket.get_contacts(constants.K, node_id) # This method must return k contacts (even if we have the node with # the specified key as node ID), unless there is less than k remote # nodes in the routing table. i = 1 can_go_lower = bucket_index - i >= 0 can_go_higher = bucket_index + i < len(self.buckets) # Fill up the node list to k nodes, starting with the closest # neighbouring nodes known. while len(closest_nodes) < constants.K and (can_go_lower or can_go_higher): # TODO: this may need to be optimized if can_go_lower: bucket = self.buckets[bucket_index - i] closest_nodes.extend( bucket.get_contacts( constants.K - len(closest_nodes), node_id ) ) can_go_lower = bucket_index - (i + 1) >= 0 if can_go_higher: bucket = self.buckets[bucket_index + i] closest_nodes.extend( bucket.get_contacts( constants.K - len(closest_nodes), node_id ) ) can_go_higher = bucket_index + (i + 1) < len(self.buckets) i += 1 self.log.datadump('Closest Nodes: %s', closest_nodes) return closest_nodes def get_contact(self, node_id): """ Return the known node with the specified ID, None if not found. For details, see RoutingTable documentation. """ bucket_index = self.kbucket_index(node_id) return self.buckets[bucket_index].get_contact(node_id) def get_refresh_list(self, start_index=0, force=False): """ Find all KBuckets that need refreshing, starting at the KBucket with the specified index, and return IDs to be searched for in order to refresh those KBuckets. For details, see RoutingTable documentation. """ if force: # Copy the list to avoid accidental mutation. return list(self.buckets[start_index:]) now = int(time.time()) timeout = constants.REFRESH_TIMEOUT return [ # Since range_min is always in the KBucket's range # return that as a representative. self.num_to_id(bucket.range_min) for bucket in self.buckets[start_index:] if now - bucket.last_accessed >= timeout ] def remove_contact(self, node_id): """ Remove the node with the specified ID from the routing table. For details, see RoutingTable documentation. """ bucket_index = self.kbucket_index(node_id) try: self.buckets[bucket_index].remove_contact(node_id) except ValueError: self.log.error("Attempted to remove absent contact %s.", node_id) else: # Replace this stale contact with one from our replacement # cache, if available. try: cached = self.replacement_cache[bucket_index].pop() except KeyError: # No replacement cache for this bucket. pass except IndexError: # No cached contact for this bucket. pass else: self.buckets[bucket_index].add_contact(cached) finally: self.log.datadump('Contacts: %s', self.buckets[bucket_index].contacts) def touch_kbucket(self, node_id, timestamp=None): """ Update the "last accessed" timestamp of the KBucket which covers the range containing the specified key in the key/ID space. For details, see RoutingTable documentation. """ if timestamp is None: timestamp = int(time.time()) bucket_index = self.kbucket_index(node_id) self.buckets[bucket_index].last_accessed = timestamp def kbucket_index(self, node_id): """ Calculate the index of the KBucket which is responsible for the specified key (or ID). @param key: The key for which to find the appropriate KBucket index @type key: guid.GUIDMixin or str or unicode @raises: KeyError: The key was no KBucket's responsibility; absent key. RuntimeError: Many KBuckets responsible for same key; invariants have been violated. ValueError: The key is badly encoded. @return: The index of the KBucket responsible for the specified key @rtype: int """ if isinstance(node_id, guid.GUIDMixin): key = node_id.guid else: key = node_id # TODO: Since we are using monotonic node ID spaces, # this *begs* to be done with binary search. indexes = [ i for i, bucket in enumerate(self.buckets) if bucket.key_in_range(key) ] if not indexes: raise KeyError("No KBucket responsible for key %s." % key) elif len(indexes) > 1: raise RuntimeError( "Many KBuckets responsible for key %s." % key ) return indexes[0] def split_bucket(self, old_bucket_index): """ Split the specified KBucket into two new buckets which together cover the same range in the key/ID space. @param old_bucket_index: The index of KBucket to split (in this table's list of KBuckets) @type old_bucket_index: int """ # Halve the range of the current (old) KBucket. old_bucket = self.buckets[old_bucket_index] split_point = (old_bucket.range_max - (old_bucket.range_max - old_bucket.range_min) // 2) # Create a new KBucket to cover the range split off from the old one. new_bucket = kbucket.KBucket( split_point, old_bucket.range_max, self.market_id ) old_bucket.range_max = split_point # Now, add the new bucket into the routing table tree self.buckets.insert(old_bucket_index + 1, new_bucket) # Finally, copy all nodes that belong to the new KBucket into it... for contact in old_bucket.contacts: if new_bucket.key_in_range(contact.guid): new_bucket.add_contact(contact) # ...and remove them from the old bucket for contact in new_bucket.contacts: old_bucket.remove_contact(contact)
# Copyright (c) 2016 EMC Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. try: import cookielib as cookie_lib except ImportError: import http.cookiejar as cookie_lib import socket import requests from requests import exceptions import six from cinder.i18n import _ from cinder.volume.drivers.coprhd.helpers import commoncoprhdapi as common class Authentication(common.CoprHDResource): # Commonly used URIs for the 'Authentication' module URI_SERVICES_BASE = '' URI_AUTHENTICATION = '/login' HEADERS = {'Content-Type': 'application/json', 'ACCEPT': 'application/json', 'X-EMC-REST-CLIENT': 'TRUE'} def authenticate_user(self, username, password): """Makes REST API call to generate the authentication token. Authentication token is generated for the specified user after validation :param username: Name of the user :param password: Password for the user :returns: The authtoken """ SEC_REDIRECT = 302 SEC_AUTHTOKEN_HEADER = 'X-SDS-AUTH-TOKEN' LB_API_PORT = 4443 # Port on which load-balancer/reverse-proxy listens to all incoming # requests for CoprHD REST APIs APISVC_PORT = 8443 # Port on which apisvc listens to incoming requests cookiejar = cookie_lib.LWPCookieJar() url = ('https://%(ip)s:%(port)d%(uri)s' % {'ip': self.ipaddr, 'port': self.port, 'uri': self.URI_AUTHENTICATION}) try: if self.port == APISVC_PORT: login_response = requests.get( url, headers=self.HEADERS, verify=False, auth=(username, password), cookies=cookiejar, allow_redirects=False, timeout=common.TIMEOUT_SEC) if login_response.status_code == SEC_REDIRECT: location = login_response.headers['Location'] if not location: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("The redirect" " location of the" " authentication" " service is not" " provided"))) # Make the second request login_response = requests.get( location, headers=self.HEADERS, verify=False, cookies=cookiejar, allow_redirects=False, timeout=common.TIMEOUT_SEC) if (login_response.status_code != requests.codes['unauthorized']): raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("The" " authentication" " service failed" " to reply with" " 401"))) # Now provide the credentials login_response = requests.get( location, headers=self.HEADERS, auth=(username, password), verify=False, cookies=cookiejar, allow_redirects=False, timeout=common.TIMEOUT_SEC) if login_response.status_code != SEC_REDIRECT: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("Access forbidden: Authentication required"))) location = login_response.headers['Location'] if not location: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("The" " authentication service failed to provide the" " location of the service URI when redirecting" " back"))) authtoken = login_response.headers[SEC_AUTHTOKEN_HEADER] if not authtoken: details_str = self.extract_error_detail(login_response) raise common.CoprHdError(common.CoprHdError.HTTP_ERR, (_("The token is not" " generated by" " authentication service." "%s") % details_str)) # Make the final call to get the page with the token new_headers = self.HEADERS new_headers[SEC_AUTHTOKEN_HEADER] = authtoken login_response = requests.get( location, headers=new_headers, verify=False, cookies=cookiejar, allow_redirects=False, timeout=common.TIMEOUT_SEC) if login_response.status_code != requests.codes['ok']: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_( "Login failure code: " "%(statuscode)s Error: %(responsetext)s") % {'statuscode': six.text_type( login_response.status_code), 'responsetext': login_response.text})) elif self.port == LB_API_PORT: login_response = requests.get( url, headers=self.HEADERS, verify=False, cookies=cookiejar, allow_redirects=False) if(login_response.status_code == requests.codes['unauthorized']): # Now provide the credentials login_response = requests.get( url, headers=self.HEADERS, auth=(username, password), verify=False, cookies=cookiejar, allow_redirects=False) authtoken = None if SEC_AUTHTOKEN_HEADER in login_response.headers: authtoken = login_response.headers[SEC_AUTHTOKEN_HEADER] else: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("Incorrect port number. Load balanced port is: " "%(lb_api_port)s, api service port is: " "%(apisvc_port)s") % {'lb_api_port': LB_API_PORT, 'apisvc_port': APISVC_PORT})) if not authtoken: details_str = self.extract_error_detail(login_response) raise common.CoprHdError( common.CoprHdError.HTTP_ERR, (_("The token is not generated by authentication service." " %s") % details_str)) if login_response.status_code != requests.codes['ok']: error_msg = None if login_response.status_code == 401: error_msg = _("Access forbidden: Authentication required") elif login_response.status_code == 403: error_msg = _("Access forbidden: You don't have" " sufficient privileges to perform" " this operation") elif login_response.status_code == 500: error_msg = _("Bourne internal server error") elif login_response.status_code == 404: error_msg = _( "Requested resource is currently unavailable") elif login_response.status_code == 405: error_msg = (_("GET method is not supported by resource:" " %s"), url) elif login_response.status_code == 503: error_msg = _("Service temporarily unavailable:" " The server is temporarily unable" " to service your request") else: error_msg = login_response.text raise common.CoprHdError(common.CoprHdError.HTTP_ERR, (_("HTTP code: %(status_code)s" ", response: %(reason)s" " [%(error_msg)s]") % { 'status_code': six.text_type( login_response.status_code), 'reason': six.text_type( login_response.reason), 'error_msg': six.text_type( error_msg) })) except (exceptions.SSLError, socket.error, exceptions.ConnectionError, exceptions.Timeout) as e: raise common.CoprHdError( common.CoprHdError.HTTP_ERR, six.text_type(e)) return authtoken def extract_error_detail(self, login_response): details_str = "" try: if login_response.content: json_object = common.json_decode(login_response.content) if 'details' in json_object: details_str = json_object['details'] return details_str except common.CoprHdError: return details_str
#!/usr/bin/env python3 """Implement configuration file parsing.""" # Copyright (C) 2015 Brad Cowie, Christopher Lorier and Joe Stringer. # Copyright (C) 2015 Research and Education Advanced Network New Zealand Ltd. # Copyright (C) 2015--2019 The Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import re from faucet import config_parser_util from faucet.acl import ACL from faucet.conf import test_config_condition, InvalidConfigError from faucet.dp import DP from faucet.meter import Meter from faucet.port import Port from faucet.router import Router from faucet.vlan import VLAN from faucet.watcher_conf import WatcherConf V2_TOP_CONFS = ( 'acls', 'dps', 'meters', 'routers', 'vlans') def dp_parser(config_file, logname, meta_dp_state=None): """Parse a config file into DP configuration objects with hashes of config include/files.""" conf, _ = config_parser_util.read_config(config_file, logname) config_hashes = None dps = None test_config_condition(conf is None, 'Config file is empty') test_config_condition( not isinstance(conf, dict), 'Config file does not have valid syntax') version = conf.pop('version', 2) test_config_condition(version != 2, 'Only config version 2 is supported') config_hashes, config_contents, dps, top_conf = _config_parser_v2( config_file, logname, meta_dp_state) test_config_condition(dps is None, 'no DPs are not defined') return config_hashes, config_contents, dps, top_conf def _get_vlan_by_key(dp_id, vlan_key, vlans): try: if vlan_key in vlans: return vlans[vlan_key] except TypeError as err: raise InvalidConfigError(err) from err for vlan in vlans.values(): if vlan_key == vlan.vid: return vlan test_config_condition(not isinstance(vlan_key, int), ( 'Implicitly created VLAN %s must be an int (not %s)' % ( vlan_key, type(vlan_key)))) # Create VLAN with VID, if not defined. return vlans.setdefault(vlan_key, VLAN(vlan_key, dp_id)) def _dp_parse_port(dp_id, port_key, port_conf, vlans): def _dp_parse_native_port_vlan(): if port.native_vlan is not None: vlan = _get_vlan_by_key(dp_id, port.native_vlan, vlans) port.native_vlan = vlan def _dp_parse_tagged_port_vlans(): if port.tagged_vlans: port_tagged_vlans = [ _get_vlan_by_key(dp_id, vlan_key, vlans) for vlan_key in port.tagged_vlans] port.tagged_vlans = port_tagged_vlans port = Port(port_key, dp_id, port_conf) test_config_condition(str(port_key) not in (str(port.number), port.name), ( 'Port key %s match port name or port number' % port_key)) _dp_parse_native_port_vlan() _dp_parse_tagged_port_vlans() return port def _dp_add_ports(dp, dp_conf, dp_id, vlans): ports_conf = dp_conf.get('interfaces', {}) port_ranges_conf = dp_conf.get('interface_ranges', {}) # as users can config port VLAN by using VLAN name, we store vid in # Port instance instead of VLAN name for data consistency test_config_condition(not isinstance(ports_conf, dict), ( 'Invalid syntax in interface config')) test_config_condition(not isinstance(port_ranges_conf, dict), ( 'Invalid syntax in interface ranges config')) def _map_port_num_to_port(ports_conf): port_num_to_port_conf = {} for port_key, port_conf in ports_conf.items(): test_config_condition(not isinstance(port_conf, dict), 'Invalid syntax in port config') port_num = port_conf.get('number', port_key) try: port_num_to_port_conf[port_num] = (port_key, port_conf) except TypeError as type_error: raise InvalidConfigError('Invalid syntax in port config') from type_error return port_num_to_port_conf def _parse_port_ranges(port_ranges_conf, port_num_to_port_conf): all_port_nums = set() for port_range, port_conf in port_ranges_conf.items(): # port range format: 1-6 OR 1-6,8-9 OR 1-3,5,7-9 test_config_condition(not isinstance(port_conf, dict), 'Invalid syntax in port config') port_nums = set() if 'number' in port_conf: del port_conf['number'] for range_ in re.findall(r'(\d+-\d+)', str(port_range)): start_num, end_num = [int(num) for num in range_.split('-')] test_config_condition(start_num >= end_num, ( 'Incorrect port range (%d - %d)' % (start_num, end_num))) port_nums.update(range(start_num, end_num + 1)) port_range = re.sub(range_, '', port_range) other_nums = [int(p) for p in re.findall(r'\d+', str(port_range))] port_nums.update(other_nums) test_config_condition( not port_nums, 'interface-ranges contain invalid config') test_config_condition( port_nums.intersection(all_port_nums), 'interfaces-ranges cannot overlap') all_port_nums.update(port_nums) for port_num in port_nums: if port_num in port_num_to_port_conf: # port range config has lower priority than individual port config for attr, value in port_conf.items(): port_num_to_port_conf[port_num][1].setdefault(attr, value) else: port_num_to_port_conf[port_num] = (port_num, port_conf) port_num_to_port_conf = _map_port_num_to_port(ports_conf) _parse_port_ranges(port_ranges_conf, port_num_to_port_conf) for port_num, port_conf in port_num_to_port_conf.values(): port = _dp_parse_port(dp_id, port_num, port_conf, vlans) dp.add_port(port) def _parse_acls(dp, acls_conf): for acl_key, acl_conf in acls_conf.items(): acl = ACL(acl_key, dp.dp_id, acl_conf) dp.add_acl(acl_key, acl) def _parse_routers(dp, routers_conf): for router_key, router_conf in routers_conf.items(): router = Router(router_key, dp.dp_id, router_conf) dp.add_router(router_key, router) def _parse_meters(dp, meters_conf): for meter_key, meter_conf in meters_conf.items(): meter = Meter(meter_key, dp.dp_id, meter_conf) dp.meters[meter_key] = meter def _parse_dp(dp_key, dp_conf, acls_conf, meters_conf, routers_conf, vlans_conf): test_config_condition(not isinstance(dp_conf, dict), 'DP config must be dict') dp = DP(dp_key, dp_conf.get('dp_id', None), dp_conf) test_config_condition(dp.name != dp_key, ( 'DP key %s and DP name must match' % dp_key)) vlans = {} vids = set() for vlan_key, vlan_conf in vlans_conf.items(): vlan = VLAN(vlan_key, dp.dp_id, vlan_conf) test_config_condition(str(vlan_key) not in (str(vlan.vid), vlan.name), ( 'VLAN %s key must match VLAN name or VLAN VID' % vlan_key)) test_config_condition(not isinstance(vlan_key, (str, int)), ( 'VLAN %s key must not be type %s' % (vlan_key, type(vlan_key)))) test_config_condition(vlan.vid in vids, ( 'VLAN VID %u multiply configured' % vlan.vid)) vlans[vlan_key] = vlan vids.add(vlan.vid) _parse_acls(dp, acls_conf) _parse_routers(dp, routers_conf) _parse_meters(dp, meters_conf) _dp_add_ports(dp, dp_conf, dp.dp_id, vlans) return (dp, vlans) def _dp_parser_v2(dps_conf, acls_conf, meters_conf, routers_conf, vlans_conf, meta_dp_state): # pylint: disable=invalid-name dp_vlans = [] for dp_key, dp_conf in dps_conf.items(): try: dp, vlans = _parse_dp( dp_key, dp_conf, acls_conf, meters_conf, routers_conf, vlans_conf) dp_vlans.append((dp, vlans)) except InvalidConfigError as err: raise InvalidConfigError('DP %s: %s' % (dp_key, err)) from err # Some VLANs are created implicitly just by referencing them in tagged/native, # so we must make them available to all DPs. implicit_vids = set() for dp, vlans in dp_vlans: implicit_vids.update(set(vlans.keys()) - set(vlans_conf.keys())) dps = [] for dp, vlans in dp_vlans: for vlan_key in implicit_vids: if vlan_key not in vlans: vlans[vlan_key] = VLAN(vlan_key, dp.dp_id) dp.reset_refs(vlans=vlans) dps.append(dp) for dp in dps: dp.finalize_config(dps) for dp in dps: dp.resolve_stack_topology(dps, meta_dp_state) for dp in dps: dp.finalize() dpid_refs = set() for dp in dps: test_config_condition(dp.dp_id in dpid_refs, ( 'DPID %u is duplicated' % dp.dp_id)) dpid_refs.add(dp.dp_id) routers_referenced = set() for dp in dps: routers_referenced.update(dp.routers.keys()) for router in routers_conf: test_config_condition(router not in routers_referenced, ( 'router %s configured but not used by any DP' % router)) return dps def dp_preparsed_parser(top_confs, meta_dp_state): """Parse a preparsed (after include files have been applied) FAUCET config.""" local_top_confs = copy.deepcopy(top_confs) return _dp_parser_v2( local_top_confs.get('dps', {}), local_top_confs.get('acls', {}), local_top_confs.get('meters', {}), local_top_confs.get('routers', {}), local_top_confs.get('vlans', {}), meta_dp_state) def _config_parser_v2(config_file, logname, meta_dp_state): config_path = config_parser_util.dp_config_path(config_file) top_confs = {top_conf: {} for top_conf in V2_TOP_CONFS} config_hashes = {} config_contents = {} dps = None if not config_parser_util.dp_include( config_hashes, config_contents, config_path, logname, top_confs): raise InvalidConfigError('Error found while loading config file: %s' % config_path) if not top_confs['dps']: raise InvalidConfigError('DPs not configured in file: %s' % config_path) dps = dp_preparsed_parser(top_confs, meta_dp_state) return (config_hashes, config_contents, dps, top_confs) def watcher_parser(config_file, logname, prom_client): """Return Watcher instances from config.""" conf, _ = config_parser_util.read_config(config_file, logname) conf_hash = config_parser_util.config_file_hash(config_file) faucet_config_files, faucet_conf_hashes, result = _watcher_parser_v2( conf, logname, prom_client) return conf_hash, faucet_config_files, faucet_conf_hashes, result def _parse_dps_for_watchers(conf, logname, meta_dp_state=None): all_dps_list = [] faucet_conf_hashes = {} if not isinstance(conf, dict): raise InvalidConfigError('Gauge config not valid') faucet_config_files = conf.get('faucet_configs', []) for faucet_config_file in faucet_config_files: conf_hashes, _, dp_list, _ = dp_parser(faucet_config_file, logname) if dp_list: faucet_conf_hashes[faucet_config_file] = conf_hashes all_dps_list.extend(dp_list) faucet_config = conf.get('faucet', None) if faucet_config: all_dps_list.extend(dp_preparsed_parser(faucet_config, meta_dp_state)) dps = {dp.name: dp for dp in all_dps_list} if not dps: raise InvalidConfigError( 'Gauge configured without any FAUCET configuration') return faucet_config_files, faucet_conf_hashes, dps def _watcher_parser_v2(conf, logname, prom_client): logger = config_parser_util.get_logger(logname) if conf is None: conf = {} faucet_config_files, faucet_conf_hashes, dps = _parse_dps_for_watchers( conf, logname) dbs = conf.pop('dbs') result = [] for watcher_name, watcher_conf in conf['watchers'].items(): if watcher_conf.get('all_dps', False): watcher_dps = dps.keys() else: watcher_dps = watcher_conf['dps'] # Watcher config has a list of DPs, but actually a WatcherConf is # created for each DP. # TODO: refactor watcher_conf as a container. for dp_name in watcher_dps: if dp_name not in dps: logger.error('DP %s in Gauge but not configured in FAUCET', dp_name) continue dp = dps[dp_name] if 'dbs' in watcher_conf: watcher_dbs = watcher_conf['dbs'] elif 'db' in watcher_conf: watcher_dbs = [watcher_conf['db']] else: raise InvalidConfigError('Watcher configured without DB') for db in watcher_dbs: watcher = WatcherConf(watcher_name, dp.dp_id, watcher_conf, prom_client) watcher.add_db(dbs[db]) watcher.add_dp(dp) result.append(watcher) return faucet_config_files, faucet_conf_hashes, result def get_config_for_api(valves): """Return config as dict for all DPs.""" config = {i: {} for i in V2_TOP_CONFS} for valve in valves.values(): valve_conf = valve.get_config_dict() for i in V2_TOP_CONFS: if i in valve_conf: config[i].update(valve_conf[i]) # pytype: disable=attribute-error return config
# -*- coding: utf-8 -*- import mock import pytest import urlparse from django.db import connection, transaction from django.test import TransactionTestCase from django.test.utils import CaptureQueriesContext from osf.models import QuickFilesNode from website import util as website_utils from api.base.settings.defaults import API_BASE from osf_tests.factories import ( AuthUserFactory, CollectionFactory, ProjectFactory, ) from website.util.sanitize import strip_html from website.views import find_bookmark_collection @pytest.mark.django_db class TestUserDetail: @pytest.fixture() def user_one(self): user_one = AuthUserFactory() user_one.social['twitter'] = 'rheisendennis' user_one.save() return user_one @pytest.fixture() def user_two(self): return AuthUserFactory() def test_get(self, app, user_one, user_two): # test_gets_200 url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url) assert res.status_code == 200 assert res.content_type == 'application/vnd.api+json' # test_get_correct_pk_user url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url) user_json = res.json['data'] assert user_json['attributes']['full_name'] == user_one.fullname assert user_one.social['twitter'] in user_json['attributes']['social']['twitter'] # test_get_incorrect_pk_user_logged_in url = '/{}users/{}/'.format(API_BASE, user_two._id) res = app.get(url) user_json = res.json['data'] assert user_json['attributes']['full_name'] != user_one.fullname # test_returns_timezone_and_locale url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url) attributes = res.json['data']['attributes'] assert attributes['timezone'] == user_one.timezone assert attributes['locale'] == user_one.locale # test_get_new_users url = '/{}users/{}/'.format(API_BASE, user_two._id) res = app.get(url) assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == user_two.fullname assert res.json['data']['attributes']['social'] == {} # test_get_incorrect_pk_user_not_logged_in url = '/{}users/{}/'.format(API_BASE, user_two._id) res = app.get(url, auth=user_one.auth) user_json = res.json['data'] assert user_json['attributes']['full_name'] != user_one.fullname assert user_json['attributes']['full_name'] == user_two.fullname # test_user_detail_takes_profile_image_size_param size = 42 url = '/{}users/{}/?profile_image_size={}'.format(API_BASE, user_one._id, size) res = app.get(url) user_json = res.json['data'] profile_image_url = user_json['links']['profile_image'] query_dict = urlparse.parse_qs(urlparse.urlparse(profile_image_url).query) assert int(query_dict.get('s')[0]) == size # test_profile_image_in_links url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url) user_json = res.json['data'] assert 'profile_image' in user_json['links'] def test_files_relationship_upload(self, app, user_one): url = "/{}users/{}/".format(API_BASE, user_one._id) res = app.get(url, auth=user_one) quickfiles = QuickFilesNode.objects.get(creator=user_one) user_json = res.json['data'] upload_url = user_json['relationships']['quickfiles']['links']['upload']['href'] waterbutler_upload = website_utils.waterbutler_api_url_for(quickfiles._id, 'osfstorage') assert upload_url == waterbutler_upload def test_preprint_relationship(self, app, user_one): url = "/{}users/{}/".format(API_BASE, user_one._id) preprint_url = "/{}users/{}/preprints/".format(API_BASE, user_one._id) res = app.get(url, auth=user_one) user_json = res.json['data'] href_url = user_json['relationships']['preprints']['links']['related']['href'] assert preprint_url in href_url def test_registrations_relationship(self, app, user_one): url = "/{}users/{}/".format(API_BASE, user_one._id) registration_url = "/{}users/{}/registrations/".format(API_BASE, user_one._id) res = app.get(url, auth=user_one) user_json = res.json['data'] href_url = user_json['relationships']['registrations']['links']['related']['href'] assert registration_url in href_url def test_nodes_relationship_is_absent(self, app, user_one): url = "/{}users/{}/".format(API_BASE, user_one._id) res = app.get(url, auth=user_one) assert 'node' not in res.json['data']['relationships'].keys() # Regression test for https://openscience.atlassian.net/browse/OSF-8966 def test_browsable_api_for_user_detail(self, app, user_one): url = "/{}users/{}/?format=api".format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 @pytest.mark.django_db class TestUserRoutesNodeRoutes: @pytest.fixture() def user_one(self): user_one = AuthUserFactory() user_one.social['twitter'] = 'rheisendennis' user_one.save() return user_one @pytest.fixture() def user_two(self): return AuthUserFactory() @pytest.fixture() def project_public_user_one(self, user_one): return ProjectFactory(title='Public Project User One', is_public=True, creator=user_one) @pytest.fixture() def project_private_user_one(self, user_one): return ProjectFactory(title='Private Project User One', is_public=False, creator=user_one) @pytest.fixture() def project_deleted_user_one(self, user_one): return CollectionFactory(title='Deleted Project User One', is_public=False, creator=user_one, is_deleted=True) @pytest.fixture() def project_public_user_two(self, user_two): return ProjectFactory(title='Public Project User Two', is_public=True, creator=user_two) @pytest.fixture() def project_private_user_two(self, user_two): return ProjectFactory(title='Private Project User Two', is_public=False, creator=user_two) @pytest.fixture() def folder(self): return CollectionFactory() @pytest.fixture() def folder_deleted(self, user_one): return CollectionFactory(title='Deleted Folder User One', is_public=False, creator=user_one, is_deleted=True) @pytest.fixture() def bookmark_collection(self, user_one): return find_bookmark_collection(user_one) def test_get_200_responses(self, app, user_one, user_two, project_public_user_one, project_public_user_two, project_private_user_one, project_private_user_two, project_deleted_user_one, folder, folder_deleted, bookmark_collection): # test_get_200_path_users_me_userone_logged_in url = '/{}users/me/'.format(API_BASE) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 # test_get_200_path_users_me_usertwo_logged_in url = '/{}users/me/'.format(API_BASE) res = app.get(url, auth=user_two.auth) assert res.status_code == 200 # test_get_200_path_users_user_id_user_logged_in url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 # test_get_200_path_users_user_id_no_user url = '/{}users/{}/'.format(API_BASE, user_two._id) res = app.get(url) assert res.status_code == 200 # test_get_200_path_users_user_id_unauthorized_user url = '/{}users/{}/'.format(API_BASE, user_two._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['id'] == user_two._id # test_get_200_path_users_me_nodes_user_logged_in url = '/{}users/me/nodes/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 ids = {each['id'] for each in res.json['data']} assert project_public_user_one._id in ids assert project_private_user_one._id in ids assert project_public_user_two._id not in ids assert project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_200_path_users_user_id_nodes_user_logged_in url = '/{}users/{}/nodes/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 ids = {each['id'] for each in res.json['data']} assert project_public_user_one._id in ids assert project_private_user_one._id in ids assert project_public_user_two._id not in ids assert project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_200_path_users_user_id_nodes_no_user url = '/{}users/{}/nodes/'.format(API_BASE, user_one._id) res = app.get(url) assert res.status_code == 200 # an anonymous/unauthorized user can only see the public projects user_one contributes to. ids = {each['id'] for each in res.json['data']} assert project_public_user_one._id in ids assert project_private_user_one._id not in ids assert project_public_user_two._id not in ids assert project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_200_path_users_user_id_nodes_unauthorized_user url = '/{}users/{}/nodes/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth) assert res.status_code == 200 # an anonymous/unauthorized user can only see the public projects user_one contributes to. ids = {each['id'] for each in res.json['data']} assert project_public_user_one._id in ids assert project_private_user_one._id not in ids assert project_public_user_two._id not in ids assert project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids def test_get_400_responses(self, app, user_one, user_two): # test_get_403_path_users_me_nodes_no_user # TODO: change expected exception from 403 to 401 for unauthorized users url = '/{}users/me/nodes/'.format(API_BASE) res = app.get(url, expect_errors=True) assert res.status_code == 401 # test_get_403_path_users_me_no_user # TODO: change expected exception from 403 to 401 for unauthorized users url = '/{}users/me/'.format(API_BASE) res = app.get(url, expect_errors=True) assert res.status_code == 401 # test_get_404_path_users_user_id_me_user_logged_in url = '/{}users/{}/me/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_users_user_id_me_no_user url = '/{}users/{}/me/'.format(API_BASE, user_one._id) res = app.get(url, expect_errors=True) assert res.status_code == 404 # test_get_404_path_users_user_id_me_unauthorized_user url = '/{}users/{}/me/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_users_user_id_nodes_me_user_logged_in url = '/{}users/{}/nodes/me/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_users_user_id_nodes_me_unauthorized_user url = '/{}users/{}/nodes/me/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_users_user_id_nodes_me_no_user url = '/{}users/{}/nodes/me/'.format(API_BASE, user_one._id) res = app.get(url, expect_errors=True) assert res.status_code == 404 # test_get_404_path_nodes_me_user_logged_in url = '/{}nodes/me/'.format(API_BASE) res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_nodes_me_no_user url = '/{}nodes/me/'.format(API_BASE) res = app.get(url, expect_errors=True) assert res.status_code == 404 # test_get_404_path_nodes_user_id_user_logged_in url = '/{}nodes/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_nodes_user_id_unauthorized_user url = '/{}nodes/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth, expect_errors=True) assert res.status_code == 404 # test_get_404_path_nodes_user_id_no_user url = '/{}nodes/{}/'.format(API_BASE, user_one._id) res = app.get(url, expect_errors=True) assert res.status_code == 404 @pytest.mark.django_db class TestUserUpdate: @pytest.fixture() def user_one(self): user_one = AuthUserFactory.build( fullname='Martin Luther King Jr.', given_name='Martin', family_name='King', suffix='Jr.', social=dict( github='userOneGithub', scholar='userOneScholar', profileWebsites=['http://www.useronepersonalwebsite.com'], twitter='userOneTwitter', linkedIn='userOneLinkedIn', impactStory='userOneImpactStory', orcid='userOneOrcid', researcherId='userOneResearcherId' ) ) user_one.save() return user_one @pytest.fixture() def user_two(self): return AuthUserFactory() @pytest.fixture() def url_user_one(self, user_one): return '/v2/users/{}/'.format(user_one._id) @pytest.fixture() def data_new_user_one(self, user_one): return { 'data': { 'type': 'users', 'id': user_one._id, 'attributes': { 'full_name': 'el-Hajj Malik el-Shabazz', 'given_name': 'Malcolm', 'middle_names': 'Malik el-Shabazz', 'family_name': 'X', 'suffix': 'Sr.', 'social': { 'github': ['http://github.com/even_newer_github/'], 'scholar': ['http://scholar.google.com/citations?user=newScholar'], 'profileWebsites': ['http://www.newpersonalwebsite.com'], 'twitter': ['http://twitter.com/newtwitter'], 'linkedIn': ['https://www.linkedin.com/newLinkedIn'], 'impactStory': ['https://impactstory.org/newImpactStory'], 'orcid': ['http://orcid.org/newOrcid'], 'researcherId': ['http://researcherid.com/rid/newResearcherId'], } }, } } @pytest.fixture() def data_missing_id(self): return { 'data': { 'type': 'users', 'attributes': { 'full_name': 'el-Hajj Malik el-Shabazz', 'family_name': 'Z', } } } @pytest.fixture() def data_missing_type(self, user_one): return { 'data': { 'id': user_one._id, 'attributes': { 'fullname': 'el-Hajj Malik el-Shabazz', 'family_name': 'Z', } } } @pytest.fixture() def data_incorrect_id(self): return { 'data': { 'id': '12345', 'type': 'users', 'attributes': { 'full_name': 'el-Hajj Malik el-Shabazz', 'family_name': 'Z', } } } @pytest.fixture() def data_incorrect_type(self, user_one): return { 'data': { 'id': user_one._id, 'type': 'Wrong type.', 'attributes': { 'full_name': 'el-Hajj Malik el-Shabazz', 'family_name': 'Z', } } } @pytest.fixture() def data_blank_but_not_empty_full_name(self, user_one): return { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': ' ' } } } def test_select_for_update(self, app, user_one, url_user_one, data_new_user_one): with transaction.atomic(), CaptureQueriesContext(connection) as ctx: res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'family_name': data_new_user_one['data']['attributes']['family_name'], } } }, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['attributes']['family_name'] == data_new_user_one['data']['attributes']['family_name'] for_update_sql = connection.ops.for_update_sql() assert any(for_update_sql in query['sql'] for query in ctx.captured_queries) @mock.patch('osf.utils.requests.settings.SELECT_FOR_UPDATE_ENABLED', False) def test_select_for_update_disabled(self, app, user_one, url_user_one, data_new_user_one): with transaction.atomic(), CaptureQueriesContext(connection) as ctx: res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'family_name': data_new_user_one['data']['attributes']['family_name'], } } }, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['attributes']['family_name'] == data_new_user_one['data']['attributes']['family_name'] for_update_sql = connection.ops.for_update_sql() assert not any(for_update_sql in query['sql'] for query in ctx.captured_queries) def test_update_patch_errors(self, app, user_one, user_two, data_new_user_one, data_incorrect_type, data_incorrect_id, data_missing_type, data_missing_id, data_blank_but_not_empty_full_name, url_user_one): # test_update_user_blank_but_not_empty_full_name res = app.put_json_api(url_user_one, data_blank_but_not_empty_full_name, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'This field may not be blank.' # test_partial_update_user_blank_but_not_empty_full_name res = app.patch_json_api(url_user_one, data_blank_but_not_empty_full_name, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'This field may not be blank.' # test_patch_user_incorrect_type res = app.put_json_api(url_user_one, data_incorrect_type, auth=user_one.auth, expect_errors=True) assert res.status_code == 409 # test_patch_user_incorrect_id res = app.put_json_api(url_user_one, data_incorrect_id, auth=user_one.auth, expect_errors=True) assert res.status_code == 409 # test_patch_user_no_type res = app.put_json_api(url_user_one, data_missing_type, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'This field may not be null.' # test_patch_user_no_id res = app.put_json_api(url_user_one, data_missing_id, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'This field may not be null.' # test_partial_patch_user_incorrect_type res = app.patch_json_api(url_user_one, data_incorrect_type, auth=user_one.auth, expect_errors=True) assert res.status_code == 409 # test_partial_patch_user_incorrect_id res = app.patch_json_api(url_user_one, data_incorrect_id, auth=user_one.auth, expect_errors=True) assert res.status_code == 409 # test_partial_patch_user_no_type res = app.patch_json_api(url_user_one, data_missing_type, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 # test_partial_patch_user_no_id res = app.patch_json_api(url_user_one, data_missing_id, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 # test_patch_fields_not_nested res = app.put_json_api(url_user_one, {'data': {'id': user_one._id, 'type': 'users', 'full_name': 'New name'}}, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'Request must include /data/attributes.' # test_partial_patch_fields_not_nested res = app.patch_json_api(url_user_one, {'data': {'id': user_one._id, 'type': 'users', 'full_name': 'New name'}}, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 # test_patch_user_logged_out res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': data_new_user_one['data']['attributes']['full_name'], } } }, expect_errors=True) assert res.status_code == 401 # test_put_user_without_required_field # PUT requires all required fields res = app.put_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'family_name': data_new_user_one['data']['attributes']['family_name'], } } }, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 # test_put_user_logged_out res = app.put_json_api(url_user_one, data_new_user_one, expect_errors=True) assert res.status_code == 401 # test_put_wrong_user # User tries to update someone else's user information via put res = app.put_json_api(url_user_one, data_new_user_one, auth=user_two.auth, expect_errors=True) assert res.status_code == 403 # test_patch_wrong_user # User tries to update someone else's user information via patch res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': data_new_user_one['data']['attributes']['full_name'], } } }, auth=user_two.auth, expect_errors=True) assert res.status_code == 403 user_one.reload() assert user_one.fullname != data_new_user_one['data']['attributes']['full_name'] # test_update_user_social_with_invalid_value """update the social key which is not profileWebsites with more than one value should throw an error""" res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': 'new_fullname', 'suffix': 'The Millionth', 'social': { 'github': ['even_newer_github', 'bad_github'], } }, } }, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert 'github only accept a list of one single value' == res.json['errors'][0]['detail'] def test_patch_user_without_required_field(self, app, user_one, data_new_user_one, url_user_one): # PATCH does not require required fields res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'family_name': data_new_user_one['data']['attributes']['family_name'], } } }, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['attributes']['family_name'] == data_new_user_one['data']['attributes']['family_name'] user_one.reload() assert user_one.family_name == data_new_user_one['data']['attributes']['family_name'] def test_partial_patch_user_logged_in(self, app, user_one, url_user_one): # Test to make sure new fields are patched and old fields stay the same res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': 'new_fullname', 'suffix': 'The Millionth', 'social': { 'github': ['even_newer_github'], } }, }}, auth=user_one.auth) user_one.reload() assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == 'new_fullname' assert res.json['data']['attributes']['suffix'] == 'The Millionth' social = res.json['data']['attributes']['social'] assert 'even_newer_github' in social['github'][0] assert res.json['data']['attributes']['given_name'] == user_one.given_name assert res.json['data']['attributes']['middle_names'] == user_one.middle_names assert res.json['data']['attributes']['family_name'] == user_one.family_name assert user_one.social['profileWebsites'] == social['profileWebsites'] assert user_one.social['twitter'] in social['twitter'][0] assert user_one.social['linkedIn'] in social['linkedIn'][0] assert user_one.social['impactStory'] in social['impactStory'][0] assert user_one.social['orcid'] in social['orcid'][0] assert user_one.social['researcherId'] in social['researcherId'][0] assert user_one.fullname == 'new_fullname' assert user_one.suffix == 'The Millionth' assert user_one.social['github'] == 'even_newer_github' def test_partial_patch_user_logged_in_no_social_fields(self, app, user_one, url_user_one): # Test to make sure new fields are patched and old fields stay the same res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': 'new_fullname', 'suffix': 'The Millionth', 'social': { 'github': ['even_newer_github'], } }, } }, auth=user_one.auth) user_one.reload() assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == 'new_fullname' assert res.json['data']['attributes']['suffix'] == 'The Millionth' social = res.json['data']['attributes']['social'] assert user_one.social['github'] in social['github'][0] assert res.json['data']['attributes']['given_name'] == user_one.given_name assert res.json['data']['attributes']['middle_names'] == user_one.middle_names assert res.json['data']['attributes']['family_name'] == user_one.family_name assert user_one.social['profileWebsites'] == social['profileWebsites'] assert user_one.social['twitter'] in social['twitter'][0] assert user_one.social['linkedIn'] in social['linkedIn'][0] assert user_one.social['impactStory'] in social['impactStory'][0] assert user_one.social['orcid'] in social['orcid'][0] assert user_one.social['researcherId'] in social['researcherId'][0] assert user_one.fullname == 'new_fullname' assert user_one.suffix == 'The Millionth' assert user_one.social['github'] == user_one.social['github'] def test_partial_put_user_logged_in(self, app, user_one, url_user_one): # Test to make sure new fields are patched and old fields stay the same res = app.put_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': 'new_fullname', 'suffix': 'The Millionth', 'social': { 'github': ['even_newer_github'], } }, } }, auth=user_one.auth) user_one.reload() assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == 'new_fullname' assert res.json['data']['attributes']['suffix'] == 'The Millionth' assert 'even_newer_github' in res.json['data']['attributes']['social']['github'][0] assert res.json['data']['attributes']['given_name'] == user_one.given_name assert res.json['data']['attributes']['middle_names'] == user_one.middle_names assert res.json['data']['attributes']['family_name'] == user_one.family_name assert user_one.fullname == 'new_fullname' assert user_one.suffix == 'The Millionth' assert user_one.social['github'] == 'even_newer_github' def test_put_user_logged_in(self, app, user_one, data_new_user_one, url_user_one): # Logged in user updates their user information via put res = app.put_json_api(url_user_one, data_new_user_one, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == data_new_user_one['data']['attributes']['full_name'] assert res.json['data']['attributes']['given_name'] == data_new_user_one['data']['attributes']['given_name'] assert res.json['data']['attributes']['middle_names'] == data_new_user_one['data']['attributes']['middle_names'] assert res.json['data']['attributes']['family_name'] == data_new_user_one['data']['attributes']['family_name'] assert res.json['data']['attributes']['suffix'] == data_new_user_one['data']['attributes']['suffix'] social = res.json['data']['attributes']['social'] assert 'even_newer_github' in social['github'][0] assert 'http://www.newpersonalwebsite.com' in social['profileWebsites'][0] assert 'newtwitter' in social['twitter'][0] assert 'newLinkedIn' in social['linkedIn'][0] assert 'newImpactStory' in social['impactStory'][0] assert 'newOrcid' in social['orcid'][0] assert 'newResearcherId' in social['researcherId'][0] user_one.reload() assert user_one.fullname == data_new_user_one['data']['attributes']['full_name'] assert user_one.given_name == data_new_user_one['data']['attributes']['given_name'] assert user_one.middle_names == data_new_user_one['data']['attributes']['middle_names'] assert user_one.family_name == data_new_user_one['data']['attributes']['family_name'] assert user_one.suffix == data_new_user_one['data']['attributes']['suffix'] assert 'even_newer_github' in social['github'][0] assert 'http://www.newpersonalwebsite.com' in social['profileWebsites'][0] assert 'newtwitter' in social['twitter'][0] assert 'newLinkedIn' in social['linkedIn'][0] assert 'newImpactStory' in social['impactStory'][0] assert 'newOrcid' in social['orcid'][0] assert 'newResearcherId' in social['researcherId'][0] def test_update_user_sanitizes_html_properly(self, app, user_one, url_user_one): """Post request should update resource, and any HTML in fields should be stripped""" bad_fullname = 'Malcolm <strong>X</strong>' bad_family_name = 'X <script>alert("is")</script> a cool name' res = app.patch_json_api(url_user_one, { 'data': { 'id': user_one._id, 'type': 'users', 'attributes': { 'full_name': bad_fullname, 'family_name': bad_family_name, } } }, auth=user_one.auth) assert res.status_code == 200 assert res.json['data']['attributes']['full_name'] == strip_html(bad_fullname) assert res.json['data']['attributes']['family_name'] == strip_html(bad_family_name) @pytest.mark.django_db class TestDeactivatedUser: @pytest.fixture() def user_one(self): return AuthUserFactory() @pytest.fixture() def user_two(self): return AuthUserFactory() def test_requesting_as_deactivated_user_returns_400_response(self, app, user_one): url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 200 user_one.is_disabled = True user_one.save() res = app.get(url, auth=user_one.auth, expect_errors=True) assert res.status_code == 400 assert res.json['errors'][0]['detail'] == 'Making API requests with credentials associated with a deactivated account is not allowed.' def test_unconfirmed_users_return_entire_user_object(self, app, user_one, user_two): url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth, expect_errors=True) assert res.status_code == 200 user_one.is_registered = False user_one.save() res = app.get(url, expect_errors=True) assert res.status_code == 200 attr = res.json['data']['attributes'] assert attr['active'] is False assert res.json['data']['id'] == user_one._id def test_requesting_deactivated_user_returns_410_response_and_meta_info(self, app, user_one, user_two): url = '/{}users/{}/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_two.auth, expect_errors=True) assert res.status_code == 200 user_one.is_disabled = True user_one.save() res = app.get(url, expect_errors=True) assert res.status_code == 410 assert res.json['errors'][0]['meta']['family_name'] == user_one.family_name assert res.json['errors'][0]['meta']['given_name'] == user_one.given_name assert res.json['errors'][0]['meta']['middle_names'] == user_one.middle_names assert res.json['errors'][0]['meta']['full_name'] == user_one.fullname assert urlparse.urlparse(res.json['errors'][0]['meta']['profile_image']).netloc == 'secure.gravatar.com' assert res.json['errors'][0]['detail'] == 'The requested user is no longer available.'
#!/usr/bin/env python # -*- coding: utf-8 -*- # vispy: gallery 30 # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import argparse import numpy as np from vispy import gloo from vispy import app from vispy.util.transforms import perspective, translate, rotate # Manual galaxy creation #imported argparse to add statement below parser = argparse.ArgumentParser() parser.add_argument("num_arms", type=int) parser.add_argument('--debug', '-d', action='store_true') args = parser.parse_args() if args.debug: DEBUG = True else: DEBUG = False if args.num_arms: num_arms= int(args.num_arms) else: num_arms=3 def make_arm(n, angle): R = np.linspace(10, 450 + 50 * np.random.uniform(.5, 1.), n) R += 40 * np.random.normal(0, 2., n) * np.linspace(1, .1, n) #printed variables if DEBUG: print("The value of variable R is {0}".format(R)) T = angle + np.linspace(0, 2.5 * np.pi, n) + \ np.pi / 6 * np.random.normal(0, .5, n) if DEBUG: print("The value of variable T is {0}".format(T)) S = 8 + 2 * np.abs(np.random.normal(0, 1, n)) S *= np.linspace(1, .85, n) if DEBUG: print("The value of variable S is {0}".format(S)) P = np.zeros((n, num_arms), dtype=np.float32) if DEBUG: print("The value of variable P is {0}".format(P)) X, Y, Z = P[:, 0], P[:, 1], P[:, 2] X[...] = R * np.cos(T) if DEBUG: print("The value of variable X is {0}".format(X)) Y[...] = R * np.sin(T) * 1.1 if DEBUG: print("The value of variable Y is {0}".format(Y)) D = np.sqrt(X * X + Y * Y) if DEBUG: print("Th e value of variable D is {0}".format(D)) Z[...] = 8 * np.random.normal(0, 2 - D / 512., n) if DEBUG: print("The value of variable Z is {0}".format(Z)) X += (D * np.random.uniform(0, 1, n) > 250) * \ (.05 * D * np.random.uniform(-1, 1, n)) Y += (D * np.random.uniform(0, 1, n) > 250) * \ (.05 * D * np.random.uniform(-1, 1, n)) Z += (D * np.random.uniform(0, 1, n) > 250) * \ (.05 * D * np.random.uniform(-1, 1, n)) D = (D - D.min()) / (D.max() - D.min()) return P / 256, S / 2, D p = 1000 n = num_arms * p # Very simple colormap cmap = np.array([[255, 124, 0], [255, 163, 76], [255, 192, 130], [255, 214, 173], [255, 232, 212], [246, 238, 237], [237, 240, 253], [217, 228, 255], [202, 219, 255], [191, 212, 255], [182, 206, 255], [174, 202, 255], [168, 198, 255], [162, 195, 255], [158, 192, 255], [155, 189, 255], [151, 187, 255], [148, 185, 255], [145, 183, 255], [143, 182, 255], [141, 181, 255], [140, 179, 255], [139, 179, 255], [137, 177, 255]], dtype=np.uint8).reshape(1, 24, 3) VERT_SHADER = """ #version 120 // Uniforms // ------------------------------------ uniform mat4 u_model; uniform mat4 u_view; uniform mat4 u_projection; uniform float u_size; // Attributes // ------------------------------------ attribute vec3 a_position; attribute float a_size; attribute float a_dist; // Varyings // ------------------------------------ varying float v_size; varying float v_dist; void main (void) { v_size = a_size*u_size*.75; v_dist = a_dist; gl_Position = u_projection * u_view * u_model * vec4(a_position,1.0); gl_PointSize = v_size; } """ FRAG_SHADER = """ #version 120 // Uniforms // ------------------------------------ uniform sampler2D u_colormap; // Varyings // ------------------------------------ varying float v_size; varying float v_dist; // Main // ------------------------------------ void main() { float a = 2*(length(gl_PointCoord.xy - vec2(0.5,0.5)) / sqrt(2.0)); vec3 color = texture2D(u_colormap, vec2(v_dist,.5)).rgb; gl_FragColor = vec4(color,(1-a)*.25); } """ class Canvas(app.Canvas): def __init__(self): app.Canvas.__init__(self, keys='interactive', size=(800, 600)) ps = self.pixel_scale self.title = "Deysha's Galaxy" data = np.zeros(n, [('a_position', np.float32, num_arms), ('a_size', np.float32, 1), ('a_dist', np.float32, 1)]) #changed 3 to num_arms so the galaxy has more arms. for i in range(num_arms): P, S, D = make_arm(p, i * 2 * np.pi / num_arms) data['a_dist'][(i + 0) * p:(i + 1) * p] = D data['a_position'][(i + 0) * p:(i + 1) * p] = P data['a_size'][(i + 0) * p:(i + 1) * p] = S*ps self.program = gloo.Program(VERT_SHADER, FRAG_SHADER) self.model = np.eye(4, dtype=np.float32) self.projection = np.eye(4, dtype=np.float32) self.theta, self.phi = 0, 0 self.translate = 5 self.view = translate((0, 0, -self.translate)) self.program.bind(gloo.VertexBuffer(data)) self.program['u_colormap'] = gloo.Texture2D(cmap) self.program['u_size'] = 5. / self.translate self.program['u_model'] = self.model self.program['u_view'] = self.view self.apply_zoom() gloo.set_state(depth_test=False, blend=True, blend_func=('src_alpha', 'one'), clear_color='black') # Start the timer upon initialization. self.timer = app.Timer('auto', connect=self.on_timer) self.timer.start() self.show() def on_key_press(self, event): if event.text == ' ': if self.timer.running: self.timer.stop() else: self.timer.start() def on_timer(self, event): self.theta += .11 self.phi += .13 self.model = np.dot(rotate(self.theta, (0, 0, 1)), rotate(self.phi, (0, 1, 0))) self.program['u_model'] = self.model self.update() def on_resize(self, event): self.apply_zoom() def on_mouse_wheel(self, event): self.translate -= event.delta[1] self.translate = max(2, self.translate) self.view = translate((0, 0, -self.translate)) self.program['u_view'] = self.view self.program['u_size'] = 5 / self.translate self.update() def on_draw(self, event): gloo.clear() self.program.draw('points') def apply_zoom(self): gloo.set_viewport(0, 0, self.physical_size[0], self.physical_size[1]) self.projection = perspective(45.0, self.size[0] / float(self.size[1]), 1.0, 1000.0) self.program['u_projection'] = self.projection if __name__ == '__main__': c = Canvas() app.run()
"""Generate and tweet GIFs based on SDO imagery.""" import datetime import json import logging import logging.handlers import os import tempfile from time import sleep import shutil import subprocess import time import urllib.parse import backoff import click import lxml.html from PIL import Image import requests import twython # ======= # Globals # ======= logger = logging.getLogger(__name__) start_time = datetime.datetime.utcnow() - datetime.timedelta(minutes=10) SDO_URL_TEMPLATE = ("http://sdo.gsfc.nasa.gov/assets/img/browse/" "{year:04d}/{month:02d}/{day:02d}/") DEST_FILENAME_TEMPLATE = "{year:04d}_{month:02d}_{day:02d}_{hour:02d}.gif" DELETION_LIMIT = 24 * 60 * 60 # ====================== # CLI callback functions # ====================== def process_keyfile(ctx, param, value): """Read keyfile and load JSON.""" if value is not None: try: auth_info = json.load(value)['twitter'] except: click.echo('A valid JSON keyfile is required!') raise return auth_info else: return value def validate_dirs(ctx, param, value): """Confirm that the work directory has the right subdirectories.""" if value is not None: originals = os.path.join(value, 'originals') gifs = os.path.join(value, 'gifs') if not all([os.path.isdir(originals), os.path.isdir(gifs)]): click.echo("Error: working directory requires " "'originals' and 'gifs' subdirectories to exist!") ctx.exit(1) return value def select_level(ctx, param, value): """Select logging level from accepted options.""" return {'debug': logging.DEBUG, 'info': logging.INFO}[value] def oauth_dance(ctx, param, value): """Set up OAuth.""" if not value or ctx.resilient_parsing: return # set up try: auth_info = ctx.params['auth_info'] except KeyError: click.echo("Error: --keyfile option is required to request access") ctx.exit(1) pre_auth_twitter = twython.Twython(auth_info['consumer_key'], auth_info['consumer_secret']) twitter_auth = pre_auth_twitter.get_authentication_tokens() # prompt user to go to web and get verifier code click.echo("Open: {}".format(twitter_auth['auth_url'])) verifier = click.prompt("Please enter the code provided by Twitter") post_auth_twitter = twython.Twython(auth_info['consumer_key'], auth_info['consumer_secret'], twitter_auth['oauth_token'], twitter_auth['oauth_token_secret']) access_info = post_auth_twitter.get_authorized_tokens(verifier) click.echo("") click.echo("Access key: {}".format(access_info['oauth_token'])) click.echo("Access secret: {}".format(access_info['oauth_token_secret'])) ctx.exit() # ====================== # Command-line interface # ====================== @click.command(help=__doc__) @click.argument('work_dir', required=True, callback=validate_dirs, type=click.Path(exists=True, file_okay=False, dir_okay=True, writable=True, readable=True, resolve_path=True)) @click.option('--tweet/--no-tweet', default=True, help='Generate a GIF and tweet or skip tweeting.') @click.option('--keyfile', 'auth_info', type=click.File('r'), required=True, callback=process_keyfile, help='JSON file with Twitter keys and secrets.') @click.option('--logfile', type=click.Path(writable=True), default=None) @click.option('--loglevel', type=click.Choice(['debug', 'info']), callback=select_level, default=None) @click.option('--request-access', default=False, is_flag=True, callback=oauth_dance, expose_value=False, help='Request access key and secret.') def cli(work_dir, tweet, auth_info, logfile, loglevel): configure_logging(logfile, loglevel) logger.debug("Command-line interface proccessed") with open(make_sun_gif(work_dir), 'rb') as fp: if not tweet: logger.warn("--no-tweet option selected, not tweeting") return twitter = twython.Twython(auth_info['consumer_key'], auth_info['consumer_secret'], auth_info['access_key'], auth_info['access_secret']) attempts = 0 limit = 3 while True: try: attempts += 1 logger.debug("Tweeting (attempt %d of %d)", attempts, limit) media_id = twitter.upload_media(media=fp)[u'media_id'] tweet_response = twitter.update_status(media_ids=[media_id]) logger.info("Tweeted http://twitter.com/starnearyou/status/%s", tweet_response[u'id_str']) clean_up(work_dir) return except twython.exceptions.TwythonError as err: logger.exception("Tweeting failed: %r", err) if attempts < limit: time.sleep(1) continue else: logger.critical("Tweeting failed %s times, aborting.", attempts) break # ===================== # Logging configuration # ===================== def configure_logging(filename=None, level=logging.INFO): """Configure logging. The console will always print logs at the WARNING level, but uses INFO by default. Log files will only be created if selected.""" logger.setLevel(min([logging.WARNING, level])) # log to screen console = logging.StreamHandler() console_formatter = logging.Formatter("%(levelname)s - %(message)s") console.setFormatter(console_formatter) console.setLevel(logging.WARNING) logger.addHandler(console) logging.getLogger('backoff').addHandler(console) logging.getLogger('backoff').setLevel(logging.INFO) # log to file if filename is not None: logfile = logging.handlers.RotatingFileHandler(filename, maxBytes=5 * 10 ** 6, backupCount=4) file_fmt = "%(asctime)s - %(levelname)s - %(message)s" file_formatter = logging.Formatter(file_fmt) logfile.setFormatter(file_formatter) logfile.setLevel(level) logger.addHandler(logfile) logging.getLogger('backoff').addHandler(logfile) # ======================= # GIF generating pipeline # ======================= def make_sun_gif(work_dir): """Fetch and make the latest Sun GIF in `work_dir`.""" download_dir = os.path.join(work_dir, 'originals') gifs_dir = os.path.join(work_dir, 'gifs') urls = list(frame_urls()) downloaded_filenames = (download_frame(url, download_dir) for url in urls) processed_images = (process_image(fname) for fname in downloaded_filenames) try: temp_dir = tempfile.mkdtemp() temp_files = [] for image, url in zip(processed_images, urls): temp_file = os.path.join(temp_dir, split_url(url)) image.save(temp_file) temp_files.append(temp_file) logger.info("%s frames processed", len(temp_files)) dest_filename = DEST_FILENAME_TEMPLATE.format(year=start_time.year, month=start_time.month, day=start_time.day, hour=start_time.hour) original_filename = os.path.join(temp_dir, dest_filename) final_filename = os.path.join(gifs_dir, dest_filename) convert_to_gif(temp_files, original_filename) optimize_gif(original_filename, final_filename) logger.info("Final GIF saved: %s", final_filename) finally: logger.debug("Cleaning up temporary files") shutil.rmtree(temp_dir) return final_filename # ============== # Image fetching # ============== @backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_tries=8) def frame_urls(limit=32): """Yield the URLs of frames.""" sdo_url = SDO_URL_TEMPLATE.format(year=start_time.year, month=start_time.month, day=start_time.day, hour=start_time.hour) logger.info("Fetching frames index: %s", sdo_url) response = requests.get(sdo_url, stream=True, timeout=5 * 60) response.raw.decode_content = True logger.debug("Frames index reponse: %s", response.status_code) sdo_index = lxml.html.parse(response.raw, base_url=sdo_url).getroot() sdo_index.make_links_absolute(sdo_url) link_tags = sdo_index.xpath("//a[contains(@href, '_1024_0193.jpg')]") logger.info("%s frame URLs found (limit: %s)", len(link_tags), limit) for link in link_tags[-1 * limit:]: yield link.get('href') @backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_tries=8) def download_frame(url, download_dir): """Download the URL to a given directory, if it doesn't already exist.""" filename = os.path.join(download_dir, split_url(url)) try: with open(filename) as fp: logger.debug("Skipping frame: %s", url) logger.debug("File already exists: %s", filename) logger.debug("Using existing frame: %s", url) except IOError: logger.debug("File does not exist: %s", filename) logger.debug("Downloading frame: %s", url) sleep(.250) # rate limit response = requests.get(url, stream=True) response.raw.decode_content = True with open(filename, 'wb') as fp: shutil.copyfileobj(response.raw, fp) logger.debug("Frame saved: %s", filename) logger.debug("Downloaded and saved: %s", url) return filename # ================ # Image processing # ================ def process_image(filename): """Crop, rotate, and resize the image.""" logger.debug("Cropping, rotating, and resizing %s", filename) with open(filename, 'rb') as fp: image = Image.open(fp) origin = 0 width = 1024 height = 1024 assert image.size == (width, height) crop_box = ( origin, # left origin + 72, # top, except the first 72 pixels width - (width / 2), # right, except second half height - 72, # bottom, except the last 72 pixels ) image = image.crop(crop_box) # rotate for a funkier presentation, since GIFs get too big with the # full disk image = image.rotate(-90, Image.NEAREST, expand=True) # cut it down to near 440 x 220, which is optimal-ish for the Twitter # timeline # also, thumbnail works in place, rather than making a copy, for some # reason image.thumbnail((image.size[0] / 2, image.size[1] / 2), Image.LANCZOS) logger.debug("Cropped, rotated, and resized %s", filename) return image # ============================== # Generating and optimizing GIFs # ============================== def convert_to_gif(frame_filenames, dest_filename): """Convert `frame_filenames` to an animated gif at path `dest_filename`.""" logger.info("Converting %s frames to GIF", len(frame_filenames)) convert_cmd = ['convert', '-delay', '15'] + \ [f for f in frame_filenames] + \ [dest_filename] subprocess.call(convert_cmd) logger.debug("Preliminary GIF saved: %s", dest_filename) def optimize_gif(source, dest): """Shrink GIF size.""" logger.debug("Optimizing file size of %s", source) optimize_cmd = 'gifsicle --colors 256 --optimize=02 {0} > {1}' subprocess.call(optimize_cmd.format(source, dest), shell=True) logger.debug("Optimized GIF saved: %s", dest) def clean_up(work_dir): logger.debug("Cleaning up downloaded files") download_dir = os.path.join(work_dir, 'originals') deletion_count = 0 for dirpath, dirnames, filenames in os.walk(download_dir): for filename in filenames: fpath = os.path.join(dirpath, filename) if is_file_too_old(fpath): logger.debug('Deleting %s', fpath) deletion_count += 1 os.remove(fpath) logger.info('Deleted %s files', deletion_count) # ========= # Utilities # ========= def split_url(url): """Get the filename portion of a URL.""" return os.path.basename(urllib.parse.urlparse(url).path) def is_file_too_old(fpath): """Return whether the file is older than the `DELETION_LIMIT` threshhold in seconds. """ mtime = os.path.getmtime(fpath) return (time.time() - mtime) > DELETION_LIMIT if __name__ == '__main__': cli()
# Copyright (c) Hynek Schlawack, Richard Wall # See LICENSE for details. from __future__ import absolute_import, division, print_function import getdns from twisted.trial.unittest import SynchronousTestCase from twisted.python.filepath import FilePath from OpenSSL import crypto from danex import _dane class TLSADomainNameTests(SynchronousTestCase): def test_tlsaDomainName(self): """ L{_dane.tlsaDomainName} returns the port, proto and parent domain as labels of a new domain name string. """ self.assertEqual( "_443._tcp.example.com", _dane.tlsaDomainName('example.com', 443, 'tcp') ) class GetdnsResponseErrorTests(SynchronousTestCase): def test_errorText(self): """ L{_dane.GetdnsResponseError} has an C{errorText} attribute which is the name of the corresponding L{getdns} constant. """ self.assertEqual( "GETDNS_RESPSTATUS_NO_NAME", _dane.GetdnsResponseError(getdns.GETDNS_RESPSTATUS_NO_NAME).errorText ) class TLSARecordTests(SynchronousTestCase): def test_matchesCertificateCertTrue(self): """ """ serverCertBytes = FilePath(__file__).sibling('example_cert.bin').open().read() serverCert = crypto.load_certificate(crypto.FILETYPE_ASN1, serverCertBytes) self.assertEqual( True, _dane.TLSARecord( payload=serverCertBytes, usage=0, selector=_dane.SELECTOR.CERT.value, matchingType=_dane.MATCHING_TYPE.FULL.value ).matchesCertificate(serverCert) ) def test_matchesCertificateCertFalse(self): """ """ serverCertBytesOriginal = FilePath(__file__).sibling('example_cert.bin').open().read() serverCert = crypto.load_certificate(crypto.FILETYPE_ASN1, serverCertBytesOriginal) originalSerial = serverCert.get_serial_number() serverCert.set_serial_number(100) self.assertNotEqual(originalSerial, serverCert.get_serial_number()) serverCertBytesNew = crypto.dump_certificate(crypto.FILETYPE_ASN1, serverCert) self.assertNotEqual(serverCertBytesOriginal, serverCertBytesNew) self.assertEqual( False, _dane.TLSARecord( payload=serverCertBytesNew, usage=0, selector=_dane.SELECTOR.CERT.value, matchingType=_dane.MATCHING_TYPE.FULL.value ).matchesCertificate(serverCert) ) test_matchesCertificateCertFalse.skip = True def test_matchesCertificateSPKITrue(self): """ """ serverCertBytesOriginal = FilePath(__file__).sibling('example_cert.bin').open().read() serverCert = crypto.load_certificate(crypto.FILETYPE_ASN1, serverCertBytesOriginal) serverCert.set_serial_number(100) serverCertBytes = crypto.dump_certificate(crypto.FILETYPE_ASN1, serverCert) self.assertEqual(serverCertBytesOriginal, serverCertBytes) # import pdb; pdb.set_trace() self.assertEqual( False, _dane.TLSARecord( payload=serverCertBytes + b'xxx', usage=0, selector=_dane.SELECTOR.SPKI.value, matchingType=_dane.MATCHING_TYPE.FULL.value ).matchesCertificate(serverCert) ) test_matchesCertificateSPKITrue.skip = True class FakeGetdns(object): """ An in memory fake of the getdns api for testing. """ def __init__(self, generalResult=None): self._generalResult = generalResult for k, v in getdns.__dict__.items(): if k.startswith('GETDNS_'): setattr(self, k, v) def context_create(self): """ """ def general(self, context, name, request_type, extensions): """ """ return self._generalResult class TLSATests(SynchronousTestCase): def test_tlsaCert(self): """ L{_dane.lookup_tlsa_records} returns a L{_dane.TLSARecord} instance if the domain name exists and a verified record is found and the record selector type is CERT. """ fakeGetdns = FakeGetdns( generalResult=createResults(status=getdns.GETDNS_RESPSTATUS_GOOD, selector=_dane.SELECTOR.CERT.value, certificate_association_data=b'FOOBAR')) _, (res,) = _dane.lookup_tlsa_records( 'example.com', 443, 'tcp', getdns=fakeGetdns) self.assertEqual( (_dane.SELECTOR.CERT, b'FOOBAR'), (res.selector, res.payload) ) def test_tlsaSPKI(self): """ L{_dane.lookup_tlsa_records} returns a L{_dane.TLSARecord} instance if the domain name exists and a verfied record is found and the record selector type is SPKI. """ fakeGetdns = FakeGetdns( generalResult=createResults(status=getdns.GETDNS_RESPSTATUS_GOOD, selector=_dane.SELECTOR.SPKI.value, certificate_association_data=b'FOOBAR')) _, (res,) = _dane.lookup_tlsa_records( 'example.com', 443, 'tcp', getdns=fakeGetdns) self.assertEqual( (_dane.SELECTOR.SPKI, b'FOOBAR'), (res.selector, res.payload) ) def test_tlsaNoname(self): """ L{_dane.lookup_tlsa_records} raises LookupError if the domain name does not exist. """ e = self.assertRaises( _dane.GetdnsResponseError, _dane.lookup_tlsa_records, 'example.com', 443, 'tcp', getdns=FakeGetdns( generalResult=createResults( status=getdns.GETDNS_RESPSTATUS_NO_NAME ) ) ) self.assertEqual( getdns.GETDNS_RESPSTATUS_NO_NAME, e.errorCode ) def createResults(status=getdns.GETDNS_RESPSTATUS_GOOD, selector=None, certificate_association_data=b"",): return {'answer_type': 800, 'canonical_name': '_443._tcp.getdnsapi.org.', 'just_address_answers': [], # 'replies_full': [<read-only buffer ptr 0x7fe2e0029e80, size 636 at 0x7fe2e4e58fb0>], 'replies_tree': [{'answer': [{'class': 1, 'name': '_443._tcp.getdnsapi.org.', 'rdata': { 'certificate_association_data': certificate_association_data, 'certificate_usage': 3, 'matching_type': 1, # 'rdata_raw': "", 'selector': selector }, # 'ttl': 450, 'type': 52, # {'class': 1, # 'name': '_443._tcp.getdnsapi.org.', # 'rdata': {'algorithm': 7, # 'key_tag': 49262, # 'labels': 4, # 'original_ttl': 450, # 'rdata_raw': <read-only buffer ptr 0x7fe2e0261b70, size 161 at 0x7fe2e4e60130>, # 'signature': <read-only buffer ptr 0x7fe2e0254c40, size 128 at 0x7fe2e4e60170>, # 'signature_expiration': 1399325172, # 'signature_inception': 1398100703, # 'signers_name': 'getdnsapi.org.', # 'type_covered': 52}, # 'ttl': 450, # 'type': 46 } ], 'answer_type': 800, # 'authority': [{'class': 1, # 'name': 'getdnsapi.org.', # 'rdata': {'nsdname': 'ns.secret-wg.org.', # 'rdata_raw': 'ns.secret-wg.org.'}, # 'ttl': 450, # 'type': 2}, # {'class': 1, # 'name': 'getdnsapi.org.', # 'rdata': {'nsdname': 'mcvax.nlnetlabs.nl.', # 'rdata_raw': 'mcvax.nlnetlabs.nl.'}, # 'ttl': 450, # 'type': 2}, # {'class': 1, # 'name': 'getdnsapi.org.', # 'rdata': {'nsdname': 'open.nlnetlabs.nl.', # 'rdata_raw': 'open.nlnetlabs.nl.'}, # 'ttl': 450, # 'type': 2}, # {'class': 1, # 'name': 'getdnsapi.org.', # 'rdata': {'algorithm': 7, # 'key_tag': 49262, # 'labels': 2, # 'original_ttl': 450, # 'rdata_raw': <read-only buffer ptr 0x7fe2e0261f90, size 161 at 0x7fe2e4e601f0>, # 'signature': <read-only buffer ptr 0x7fe2e0028120, size 128 at 0x7fe2e4e60230>, # 'signature_expiration': 1399278072, # 'signature_inception': 1398093503, # 'signers_name': 'getdnsapi.org.', # 'type_covered': 2}, # 'ttl': 450, # 'type': 46}], 'canonical_name': '_443._tcp.getdnsapi.org.', 'dnssec_status': 400, 'header': {'aa': 0, 'ad': 1, 'ancount': 2, 'arcount': 0, 'cd': 0, 'id': 0, 'nscount': 4, 'opcode': 0, 'qdcount': 1, 'qr': 1, 'ra': 1, 'rcode': 0, 'rd': 1, 'tc': 0, 'z': 0}, 'question': {'qclass': 1, 'qname': '_443._tcp.getdnsapi.org.', 'qtype': 52}}], 'status': status}
#!/usr/bin/env python3 """ Rules for building C/API module with f2py2e. Here is a skeleton of a new wrapper function (13Dec2001): wrapper_function(args) declarations get_python_arguments, say, `a' and `b' get_a_from_python if (successful) { get_b_from_python if (successful) { callfortran if (successful) { put_a_to_python if (successful) { put_b_to_python if (successful) { buildvalue = ... } } } } cleanup_b } cleanup_a return buildvalue Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/08/30 08:58:42 $ Pearu Peterson """ __version__ = "$Revision: 1.129 $"[10:-1] from . import __version__ f2py_version = __version__.version import os import time import copy from .auxfuncs import ( applyrules, debugcapi, dictappend, errmess, gentitle, getargs2, hascallstatement, hasexternals, hasinitvalue, hasnote, hasresultnote, isarray, isarrayofstrings, iscomplex, iscomplexarray, iscomplexfunction, iscomplexfunction_warn, isdummyroutine, isexternal, isfunction, isfunction_wrap, isint1array, isintent_aux, isintent_c, isintent_callback, isintent_copy, isintent_hide, isintent_inout, isintent_nothide, isintent_out, isintent_overwrite, islogical, islong_complex, islong_double, islong_doublefunction, islong_long, islong_longfunction, ismoduleroutine, isoptional, isrequired, isscalar, issigned_long_longarray, isstring, isstringarray, isstringfunction, issubroutine, issubroutine_wrap, isthreadsafe, isunsigned, isunsigned_char, isunsigned_chararray, isunsigned_long_long, isunsigned_long_longarray, isunsigned_short, isunsigned_shortarray, l_and, l_not, l_or, outmess, replace, stripcomma, ) from . import capi_maps from . import cfuncs from . import common_rules from . import use_rules from . import f90mod_rules from . import func2subr options = {} sepdict = {} #for k in ['need_cfuncs']: sepdict[k]=',' for k in ['decl', 'frompyobj', 'cleanupfrompyobj', 'topyarr', 'method', 'pyobjfrom', 'closepyobjfrom', 'freemem', 'userincludes', 'includes0', 'includes', 'typedefs', 'typedefs_generated', 'cppmacros', 'cfuncs', 'callbacks', 'latexdoc', 'restdoc', 'routine_defs', 'externroutines', 'initf2pywraphooks', 'commonhooks', 'initcommonhooks', 'f90modhooks', 'initf90modhooks']: sepdict[k] = '\n' #################### Rules for C/API module ################# generationtime = int(os.environ.get('SOURCE_DATE_EPOCH', time.time())) module_rules = { 'modulebody': """\ /* File: #modulename#module.c * This file is auto-generated with f2py (version:#f2py_version#). * f2py is a Fortran to Python Interface Generator (FPIG), Second Edition, * written by Pearu Peterson <[email protected]>. * Generation date: """ + time.asctime(time.gmtime(generationtime)) + """ * Do not edit this file directly unless you know what you are doing!!! */ #ifdef __cplusplus extern \"C\" { #endif """ + gentitle("See f2py2e/cfuncs.py: includes") + """ #includes# #includes0# """ + gentitle("See f2py2e/rules.py: mod_rules['modulebody']") + """ static PyObject *#modulename#_error; static PyObject *#modulename#_module; """ + gentitle("See f2py2e/cfuncs.py: typedefs") + """ #typedefs# """ + gentitle("See f2py2e/cfuncs.py: typedefs_generated") + """ #typedefs_generated# """ + gentitle("See f2py2e/cfuncs.py: cppmacros") + """ #cppmacros# """ + gentitle("See f2py2e/cfuncs.py: cfuncs") + """ #cfuncs# """ + gentitle("See f2py2e/cfuncs.py: userincludes") + """ #userincludes# """ + gentitle("See f2py2e/capi_rules.py: usercode") + """ #usercode# /* See f2py2e/rules.py */ #externroutines# """ + gentitle("See f2py2e/capi_rules.py: usercode1") + """ #usercode1# """ + gentitle("See f2py2e/cb_rules.py: buildcallback") + """ #callbacks# """ + gentitle("See f2py2e/rules.py: buildapi") + """ #body# """ + gentitle("See f2py2e/f90mod_rules.py: buildhooks") + """ #f90modhooks# """ + gentitle("See f2py2e/rules.py: module_rules['modulebody']") + """ """ + gentitle("See f2py2e/common_rules.py: buildhooks") + """ #commonhooks# """ + gentitle("See f2py2e/rules.py") + """ static FortranDataDef f2py_routine_defs[] = { #routine_defs# \t{NULL} }; static PyMethodDef f2py_module_methods[] = { #pymethoddef# \t{NULL,NULL} }; static struct PyModuleDef moduledef = { \tPyModuleDef_HEAD_INIT, \t"#modulename#", \tNULL, \t-1, \tf2py_module_methods, \tNULL, \tNULL, \tNULL, \tNULL }; PyMODINIT_FUNC PyInit_#modulename#(void) { \tint i; \tPyObject *m,*d, *s, *tmp; \tm = #modulename#_module = PyModule_Create(&moduledef); \tPy_TYPE(&PyFortran_Type) = &PyType_Type; \timport_array(); \tif (PyErr_Occurred()) \t\t{PyErr_SetString(PyExc_ImportError, \"can't initialize module #modulename# (failed to import numpy)\"); return m;} \td = PyModule_GetDict(m); \ts = PyString_FromString(\"$R""" + """evision: $\"); \tPyDict_SetItemString(d, \"__version__\", s); \tPy_DECREF(s); \ts = PyUnicode_FromString( \t\t\"This module '#modulename#' is auto-generated with f2py (version:#f2py_version#).\\nFunctions:\\n\"\n#docs#\".\"); \tPyDict_SetItemString(d, \"__doc__\", s); \tPy_DECREF(s); \t#modulename#_error = PyErr_NewException (\"#modulename#.error\", NULL, NULL); \t/* \t * Store the error object inside the dict, so that it could get deallocated. \t * (in practice, this is a module, so it likely will not and cannot.) \t */ \tPyDict_SetItemString(d, \"_#modulename#_error\", #modulename#_error); \tPy_DECREF(#modulename#_error); \tfor(i=0;f2py_routine_defs[i].name!=NULL;i++) { \t\ttmp = PyFortranObject_NewAsAttr(&f2py_routine_defs[i]); \t\tPyDict_SetItemString(d, f2py_routine_defs[i].name, tmp); \t\tPy_DECREF(tmp); \t} #initf2pywraphooks# #initf90modhooks# #initcommonhooks# #interface_usercode# #ifdef F2PY_REPORT_ATEXIT \tif (! PyErr_Occurred()) \t\ton_exit(f2py_report_on_exit,(void*)\"#modulename#\"); #endif \treturn m; } #ifdef __cplusplus } #endif """, 'separatorsfor': {'latexdoc': '\n\n', 'restdoc': '\n\n'}, 'latexdoc': ['\\section{Module \\texttt{#texmodulename#}}\n', '#modnote#\n', '#latexdoc#'], 'restdoc': ['Module #modulename#\n' + '=' * 80, '\n#restdoc#'] } defmod_rules = [ {'body': '/*eof body*/', 'method': '/*eof method*/', 'externroutines': '/*eof externroutines*/', 'routine_defs': '/*eof routine_defs*/', 'initf90modhooks': '/*eof initf90modhooks*/', 'initf2pywraphooks': '/*eof initf2pywraphooks*/', 'initcommonhooks': '/*eof initcommonhooks*/', 'latexdoc': '', 'restdoc': '', 'modnote': {hasnote: '#note#', l_not(hasnote): ''}, } ] routine_rules = { 'separatorsfor': sepdict, 'body': """ #begintitle# static char doc_#apiname#[] = \"\\\n#docreturn##name#(#docsignatureshort#)\\n\\nWrapper for ``#name#``.\\\n\\n#docstrsigns#\"; /* #declfortranroutine# */ static PyObject *#apiname#(const PyObject *capi_self, PyObject *capi_args, PyObject *capi_keywds, #functype# (*f2py_func)(#callprotoargument#)) { \tPyObject * volatile capi_buildvalue = NULL; \tvolatile int f2py_success = 1; #decl# \tstatic char *capi_kwlist[] = {#kwlist##kwlistopt##kwlistxa#NULL}; #usercode# #routdebugenter# #ifdef F2PY_REPORT_ATEXIT f2py_start_clock(); #endif \tif (!PyArg_ParseTupleAndKeywords(capi_args,capi_keywds,\\ \t\t\"#argformat#|#keyformat##xaformat#:#pyname#\",\\ \t\tcapi_kwlist#args_capi##keys_capi##keys_xa#))\n\t\treturn NULL; #frompyobj# /*end of frompyobj*/ #ifdef F2PY_REPORT_ATEXIT f2py_start_call_clock(); #endif #callfortranroutine# if (PyErr_Occurred()) f2py_success = 0; #ifdef F2PY_REPORT_ATEXIT f2py_stop_call_clock(); #endif /*end of callfortranroutine*/ \t\tif (f2py_success) { #pyobjfrom# /*end of pyobjfrom*/ \t\tCFUNCSMESS(\"Building return value.\\n\"); \t\tcapi_buildvalue = Py_BuildValue(\"#returnformat#\"#return#); /*closepyobjfrom*/ #closepyobjfrom# \t\t} /*if (f2py_success) after callfortranroutine*/ /*cleanupfrompyobj*/ #cleanupfrompyobj# \tif (capi_buildvalue == NULL) { #routdebugfailure# \t} else { #routdebugleave# \t} \tCFUNCSMESS(\"Freeing memory.\\n\"); #freemem# #ifdef F2PY_REPORT_ATEXIT f2py_stop_clock(); #endif \treturn capi_buildvalue; } #endtitle# """, 'routine_defs': '#routine_def#', 'initf2pywraphooks': '#initf2pywraphook#', 'externroutines': '#declfortranroutine#', 'doc': '#docreturn##name#(#docsignature#)', 'docshort': '#docreturn##name#(#docsignatureshort#)', 'docs': '"\t#docreturn##name#(#docsignature#)\\n"\n', 'need': ['arrayobject.h', 'CFUNCSMESS', 'MINMAX'], 'cppmacros': {debugcapi: '#define DEBUGCFUNCS'}, 'latexdoc': ['\\subsection{Wrapper function \\texttt{#texname#}}\n', """ \\noindent{{}\\verb@#docreturn##name#@{}}\\texttt{(#latexdocsignatureshort#)} #routnote# #latexdocstrsigns# """], 'restdoc': ['Wrapped function ``#name#``\n' + '-' * 80, ] } ################## Rules for C/API function ############## rout_rules = [ { # Init 'separatorsfor': {'callfortranroutine': '\n', 'routdebugenter': '\n', 'decl': '\n', 'routdebugleave': '\n', 'routdebugfailure': '\n', 'setjmpbuf': ' || ', 'docstrreq': '\n', 'docstropt': '\n', 'docstrout': '\n', 'docstrcbs': '\n', 'docstrsigns': '\\n"\n"', 'latexdocstrsigns': '\n', 'latexdocstrreq': '\n', 'latexdocstropt': '\n', 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', }, 'kwlist': '', 'kwlistopt': '', 'callfortran': '', 'callfortranappend': '', 'docsign': '', 'docsignopt': '', 'decl': '/*decl*/', 'freemem': '/*freemem*/', 'docsignshort': '', 'docsignoptshort': '', 'docstrsigns': '', 'latexdocstrsigns': '', 'docstrreq': '\\nParameters\\n----------', 'docstropt': '\\nOther Parameters\\n----------------', 'docstrout': '\\nReturns\\n-------', 'docstrcbs': '\\nNotes\\n-----\\nCall-back functions::\\n', 'latexdocstrreq': '\\noindent Required arguments:', 'latexdocstropt': '\\noindent Optional arguments:', 'latexdocstrout': '\\noindent Return objects:', 'latexdocstrcbs': '\\noindent Call-back functions:', 'args_capi': '', 'keys_capi': '', 'functype': '', 'frompyobj': '/*frompyobj*/', # this list will be reversed 'cleanupfrompyobj': ['/*end of cleanupfrompyobj*/'], 'pyobjfrom': '/*pyobjfrom*/', # this list will be reversed 'closepyobjfrom': ['/*end of closepyobjfrom*/'], 'topyarr': '/*topyarr*/', 'routdebugleave': '/*routdebugleave*/', 'routdebugenter': '/*routdebugenter*/', 'routdebugfailure': '/*routdebugfailure*/', 'callfortranroutine': '/*callfortranroutine*/', 'argformat': '', 'keyformat': '', 'need_cfuncs': '', 'docreturn': '', 'return': '', 'returnformat': '', 'rformat': '', 'kwlistxa': '', 'keys_xa': '', 'xaformat': '', 'docsignxa': '', 'docsignxashort': '', 'initf2pywraphook': '', 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, }, { 'apiname': 'f2py_rout_#modulename#_#name#', 'pyname': '#modulename#.#name#', 'decl': '', '_check': l_not(ismoduleroutine) }, { 'apiname': 'f2py_rout_#modulename#_#f90modulename#_#name#', 'pyname': '#modulename#.#f90modulename#.#name#', 'decl': '', '_check': ismoduleroutine }, { # Subroutine 'functype': 'void', 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern void #fortranname#(#callprotoargument#);', ismoduleroutine: '', isdummyroutine: '' }, 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isdummyroutine): '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'need': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'F_FUNC'}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `#fortranname#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \t\tif (#setjmpbuf#) { \t\t\tf2py_success = 0; \t\t} else {"""}, {isthreadsafe: '\t\t\tPy_BEGIN_ALLOW_THREADS'}, {hascallstatement: '''\t\t\t\t#callstatement#; \t\t\t\t/*(*f2py_func)(#callfortran#);*/'''}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t\t\t\t(*f2py_func)(#callfortran#);'}, {isthreadsafe: '\t\t\tPy_END_ALLOW_THREADS'}, {hasexternals: """\t\t}"""} ], '_check': l_and(issubroutine, l_not(issubroutine_wrap)), }, { # Wrapped function 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern #ctype# #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); tmp = F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL); PyObject_SetAttrString(o,"_cpointer", tmp); Py_DECREF(tmp); s = PyUnicode_FromString("#name#"); PyObject_SetAttrString(o,"__name__", s); Py_DECREF(s); } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t(*f2py_func)(#callfortran#);'}, {hascallstatement: '\t#callstatement#;\n\t/*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'} ], '_check': isfunction_wrap, }, { # Wrapped subroutine 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern void #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); tmp = F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL); PyObject_SetAttrString(o,"_cpointer", tmp); Py_DECREF(tmp); s = PyUnicode_FromString("#name#"); PyObject_SetAttrString(o,"__name__", s); Py_DECREF(s); } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t(*f2py_func)(#callfortran#);'}, {hascallstatement: '\t#callstatement#;\n\t/*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'} ], '_check': issubroutine_wrap, }, { # Function 'functype': '#ctype#', 'docreturn': {l_not(isintent_hide): '#rname#,'}, 'docstrout': '#pydocsignout#', 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', {hasresultnote: '--- #resultnote#'}], 'callfortranroutine': [{l_and(debugcapi, isstringfunction): """\ #ifdef USESCOMPAQFORTRAN \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callcompaqfortran#)\\n\"); #else \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); #endif """}, {l_and(debugcapi, l_not(isstringfunction)): """\ \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); """} ], '_check': l_and(isfunction, l_not(isfunction_wrap)) }, { # Scalar function 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern #ctype# #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern #ctype# #fortranname#(#callprotoargument#);', isdummyroutine: '' }, 'routine_def': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'decl': [{iscomplexfunction_warn: '\t#ctype# #name#_return_value={0,0};', l_not(iscomplexfunction): '\t#ctype# #name#_return_value=0;'}, {iscomplexfunction: '\tPyObject *#name#_return_value_capi = Py_None;'} ], 'callfortranroutine': [ {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {hascallstatement: '''\t#callstatement#; /*\t#name#_return_value = (*f2py_func)(#callfortran#);*/ '''}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t#name#_return_value = (*f2py_func)(#callfortran#);'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'}, {l_and(debugcapi, iscomplexfunction) : '\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value.r,#name#_return_value.i);'}, {l_and(debugcapi, l_not(iscomplexfunction)): '\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value);'}], 'pyobjfrom': {iscomplexfunction: '\t#name#_return_value_capi = pyobj_from_#ctype#1(#name#_return_value);'}, 'need': [{l_not(isdummyroutine): 'F_FUNC'}, {iscomplexfunction: 'pyobj_from_#ctype#1'}, {islong_longfunction: 'long_long'}, {islong_doublefunction: 'long_double'}], 'returnformat': {l_not(isintent_hide): '#rformat#'}, 'return': {iscomplexfunction: ',#name#_return_value_capi', l_not(l_or(iscomplexfunction, isintent_hide)): ',#name#_return_value'}, '_check': l_and(isfunction, l_not(isstringfunction), l_not(isfunction_wrap)) }, { # String function # in use for --no-wrap 'declfortranroutine': 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},' }, 'decl': ['\t#ctype# #name#_return_value = NULL;', '\tint #name#_return_value_len = 0;'], 'callfortran':'#name#_return_value,#name#_return_value_len,', 'callfortranroutine':['\t#name#_return_value_len = #rlength#;', '\tif ((#name#_return_value = (string)malloc(sizeof(char)*(#name#_return_value_len+1))) == NULL) {', '\t\tPyErr_SetString(PyExc_MemoryError, \"out of memory\");', '\t\tf2py_success = 0;', '\t} else {', "\t\t(#name#_return_value)[#name#_return_value_len] = '\\0';", '\t}', '\tif (f2py_success) {', {hasexternals: """\ \t\tif (#setjmpbuf#) { \t\t\tf2py_success = 0; \t\t} else {"""}, {isthreadsafe: '\t\tPy_BEGIN_ALLOW_THREADS'}, """\ #ifdef USESCOMPAQFORTRAN \t\t(*f2py_func)(#callcompaqfortran#); #else \t\t(*f2py_func)(#callfortran#); #endif """, {isthreadsafe: '\t\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t\t}'}, {debugcapi: '\t\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value_len,#name#_return_value);'}, '\t} /* if (f2py_success) after (string)malloc */', ], 'returnformat': '#rformat#', 'return': ',#name#_return_value', 'freemem': '\tSTRINGFREE(#name#_return_value);', 'need': ['F_FUNC', '#ctype#', 'STRINGFREE'], '_check':l_and(isstringfunction, l_not(isfunction_wrap)) # ???obsolete }, { # Debugging 'routdebugenter': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#(#docsignature#)\\n");', 'routdebugleave': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: successful.\\n");', 'routdebugfailure': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: failure.\\n");', '_check': debugcapi } ] ################ Rules for arguments ################## typedef_need_dict = {islong_long: 'long_long', islong_double: 'long_double', islong_complex: 'complex_long_double', isunsigned_char: 'unsigned_char', isunsigned_short: 'unsigned_short', isunsigned: 'unsigned', isunsigned_long_long: 'unsigned_long_long', isunsigned_chararray: 'unsigned_char', isunsigned_shortarray: 'unsigned_short', isunsigned_long_longarray: 'unsigned_long_long', issigned_long_longarray: 'long_long', } aux_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': ['\t/* Processing auxiliary variable #varname# */', {debugcapi: '\tfprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': '\t/* End of cleaning variable #varname# */', 'need': typedef_need_dict, }, # Scalars (not complex) { # Common 'decl': '\t#ctype# #varname# = 0;', 'need': {hasinitvalue: 'math.h'}, 'frompyobj': {hasinitvalue: '\t#varname# = #init#;'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { 'return': ',#varname#', 'docstrout': '#pydocsignout#', 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': l_and(isscalar, l_not(iscomplex), isintent_out), }, # Complex scalars { # Common 'decl': '\t#ctype# #varname#;', 'frompyobj': {hasinitvalue: '\t#varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': iscomplex }, # String { # Common 'decl': ['\t#ctype# #varname# = NULL;', '\tint slen(#varname#);', ], 'need':['len..'], '_check':isstring }, # Array { # Common 'decl': ['\t#ctype# *#varname# = NULL;', '\tnpy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', '\tconst int #varname#_Rank = #rank#;', ], 'need':['len..', {hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] arg_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': ['\t/* Processing variable #varname# */', {debugcapi: '\tfprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': '\t/* End of cleaning variable #varname# */', '_depend': '', 'need': typedef_need_dict, }, # Doc signatures { 'docstropt': {l_and(isoptional, isintent_nothide): '#pydocsign#'}, 'docstrreq': {l_and(isrequired, isintent_nothide): '#pydocsign#'}, 'docstrout': {isintent_out: '#pydocsignout#'}, 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', {l_and(hasnote, isintent_hide): '--- #note#', l_and(hasnote, isintent_nothide): '--- See above.'}]}, 'depend': '' }, # Required/Optional arguments { 'kwlist': '"#varname#",', 'docsign': '#varname#,', '_check': l_and(isintent_nothide, l_not(isoptional)) }, { 'kwlistopt': '"#varname#",', 'docsignopt': '#varname#=#showinit#,', 'docsignoptshort': '#varname#,', '_check': l_and(isintent_nothide, isoptional) }, # Docstring/BuildValue { 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': isintent_out }, # Externals (call-back functions) { # Common 'docsignxa': {isintent_nothide: '#varname#_extra_args=(),'}, 'docsignxashort': {isintent_nothide: '#varname#_extra_args,'}, 'docstropt': {isintent_nothide: '#varname#_extra_args : input tuple, optional\\n Default: ()'}, 'docstrcbs': '#cbdocstr#', 'latexdocstrcbs': '\\item[] #cblatexdocstr#', 'latexdocstropt': {isintent_nothide: '\\item[]{{}\\verb@#varname#_extra_args := () input tuple@{}} --- Extra arguments for call-back function {{}\\verb@#varname#@{}}.'}, 'decl': ['\tPyObject *#varname#_capi = Py_None;', '\tPyTupleObject *#varname#_xa_capi = NULL;', '\tPyTupleObject *#varname#_args_capi = NULL;', '\tint #varname#_nofargs_capi = 0;', {l_not(isintent_callback): '\t#cbname#_typedef #varname#_cptr;'} ], 'kwlistxa': {isintent_nothide: '"#varname#_extra_args",'}, 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'xaformat': {isintent_nothide: 'O!'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'keys_xa': ',&PyTuple_Type,&#varname#_xa_capi', 'setjmpbuf': '(setjmp(#cbname#_jmpbuf))', 'callfortran': {l_not(isintent_callback): '#varname#_cptr,'}, 'need': ['#cbname#', 'setjmp.h'], '_check':isexternal }, { 'frompyobj': [{l_not(isintent_callback): """\ if(F2PyCapsule_Check(#varname#_capi)) { #varname#_cptr = F2PyCapsule_AsVoidPtr(#varname#_capi); } else { #varname#_cptr = #cbname#; } """}, {isintent_callback: """\ if (#varname#_capi==Py_None) { #varname#_capi = PyObject_GetAttrString(#modulename#_module,\"#varname#\"); if (#varname#_capi) { if (#varname#_xa_capi==NULL) { if (PyObject_HasAttrString(#modulename#_module,\"#varname#_extra_args\")) { PyObject* capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#varname#_extra_args\"); if (capi_tmp) { #varname#_xa_capi = (PyTupleObject *)PySequence_Tuple(capi_tmp); Py_DECREF(capi_tmp); } else { #varname#_xa_capi = (PyTupleObject *)Py_BuildValue(\"()\"); } if (#varname#_xa_capi==NULL) { PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#varname#_extra_args to tuple.\\n\"); return NULL; } } } } if (#varname#_capi==NULL) { PyErr_SetString(#modulename#_error,\"Callback #varname# not defined (as an argument or module #modulename# attribute).\\n\"); return NULL; } } """}, """\ \t#varname#_nofargs_capi = #cbname#_nofargs; \tif (create_cb_arglist(#varname#_capi,#varname#_xa_capi,#maxnofargs#,#nofoptargs#,&#cbname#_nofargs,&#varname#_args_capi,\"failed in processing argument list for call-back #varname#.\")) { \t\tjmp_buf #varname#_jmpbuf;""", {debugcapi: ["""\ \t\tfprintf(stderr,\"debug-capi:Assuming %d arguments; at most #maxnofargs#(-#nofoptargs#) is expected.\\n\",#cbname#_nofargs); \t\tCFUNCSMESSPY(\"for #varname#=\",#cbname#_capi);""", {l_not(isintent_callback): """\t\tfprintf(stderr,\"#vardebugshowvalue# (call-back in C).\\n\",#cbname#);"""}]}, """\ \t\tCFUNCSMESS(\"Saving jmpbuf for `#varname#`.\\n\"); \t\tSWAP(#varname#_capi,#cbname#_capi,PyObject); \t\tSWAP(#varname#_args_capi,#cbname#_args_capi,PyTupleObject); \t\tmemcpy(&#varname#_jmpbuf,&#cbname#_jmpbuf,sizeof(jmp_buf));""", ], 'cleanupfrompyobj': """\ \t\tCFUNCSMESS(\"Restoring jmpbuf for `#varname#`.\\n\"); \t\t#cbname#_capi = #varname#_capi; \t\tPy_DECREF(#cbname#_args_capi); \t\t#cbname#_args_capi = #varname#_args_capi; \t\t#cbname#_nofargs = #varname#_nofargs_capi; \t\tmemcpy(&#cbname#_jmpbuf,&#varname#_jmpbuf,sizeof(jmp_buf)); \t}""", 'need': ['SWAP', 'create_cb_arglist'], '_check':isexternal, '_depend':'' }, # Scalars (not complex) { # Common 'decl': '\t#ctype# #varname# = 0;', 'pyobjfrom': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'return': {isintent_out: ',#varname#'}, '_check': l_and(isscalar, l_not(iscomplex)) }, { 'need': {hasinitvalue: 'math.h'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': {isintent_inout: """\ \tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); \tif (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: "\t} /*if (f2py_success) of #varname# pyobjfrom*/"}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide) }, { 'frompyobj': [ # hasinitvalue... # if pyobj is None: # varname = init # else # from_pyobj(varname) # # isoptional and noinitvalue... # if pyobj is not None: # from_pyobj(varname) # else: # varname is uninitialized # # ... # from_pyobj(varname) # {hasinitvalue: '\tif (#varname#_capi == Py_None) #varname# = #init#; else', '_depend': ''}, {l_and(isoptional, l_not(hasinitvalue)): '\tif (#varname#_capi != Py_None)', '_depend': ''}, {l_not(islogical): '''\ \t\tf2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#"); \tif (f2py_success) {'''}, {islogical: '''\ \t\t#varname# = (#ctype#)PyObject_IsTrue(#varname#_capi); \t\tf2py_success = 1; \tif (f2py_success) {'''}, ], 'cleanupfrompyobj': '\t} /*if (f2py_success) of #varname#*/', 'need': {l_not(islogical): '#ctype#_from_pyobj'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide), '_depend': '' }, { # Hidden 'frompyobj': {hasinitvalue: '\t#varname# = #init#;'}, 'need': typedef_need_dict, '_check': l_and(isscalar, l_not(iscomplex), isintent_hide), '_depend': '' }, { # Common 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, '_check': l_and(isscalar, l_not(iscomplex)), '_depend': '' }, # Complex scalars { # Common 'decl': '\t#ctype# #varname#;', 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'pyobjfrom': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, 'return': {isintent_out: ',#varname#_capi'}, '_check': iscomplex }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, 'pyobjfrom': {isintent_inout: """\ \t\tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); \t\tif (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: "\t\t} /*if (f2py_success) of #varname# pyobjfrom*/"}, '_check': l_and(iscomplex, isintent_nothide) }, { 'frompyobj': [{hasinitvalue: '\tif (#varname#_capi==Py_None) {#varname#.r = #init.r#, #varname#.i = #init.i#;} else'}, {l_and(isoptional, l_not(hasinitvalue)) : '\tif (#varname#_capi != Py_None)'}, '\t\tf2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#");' '\n\tif (f2py_success) {'], 'cleanupfrompyobj': '\t} /*if (f2py_success) of #varname# frompyobj*/', 'need': ['#ctype#_from_pyobj'], '_check': l_and(iscomplex, isintent_nothide), '_depend': '' }, { # Hidden 'decl': {isintent_out: '\tPyObject *#varname#_capi = Py_None;'}, '_check': l_and(iscomplex, isintent_hide) }, { 'frompyobj': {hasinitvalue: '\t#varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': l_and(iscomplex, isintent_hide), '_depend': '' }, { # Common 'pyobjfrom': {isintent_out: '\t#varname#_capi = pyobj_from_#ctype#1(#varname#);'}, 'need': ['pyobj_from_#ctype#1'], '_check': iscomplex }, { 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, '_check': iscomplex, '_depend': '' }, # String { # Common 'decl': ['\t#ctype# #varname# = NULL;', '\tint slen(#varname#);', '\tPyObject *#varname#_capi = Py_None;'], 'callfortran':'#varname#,', 'callfortranappend':'slen(#varname#),', 'pyobjfrom':{debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, 'return': {isintent_out: ',#varname#'}, 'need': ['len..'], # 'STRINGFREE'], '_check':isstring }, { # Common 'frompyobj': """\ \tslen(#varname#) = #length#; \tf2py_success = #ctype#_from_pyobj(&#varname#,&slen(#varname#),#init#,#varname#_capi,\"#ctype#_from_pyobj failed in converting #nth# `#varname#\' of #pyname# to C #ctype#\"); \tif (f2py_success) {""", 'cleanupfrompyobj': """\ \t\tSTRINGFREE(#varname#); \t} /*if (f2py_success) of #varname#*/""", 'need': ['#ctype#_from_pyobj', 'len..', 'STRINGFREE'], '_check':isstring, '_depend':'' }, { # Not hidden 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': {isintent_inout: '''\ \tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,#varname#); \tif (f2py_success) {'''}, 'closepyobjfrom': {isintent_inout: '\t} /*if (f2py_success) of #varname# pyobjfrom*/'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, '_check': l_and(isstring, isintent_nothide) }, { # Hidden '_check': l_and(isstring, isintent_hide) }, { 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, '_check': isstring, '_depend': '' }, # Array { # Common 'decl': ['\t#ctype# *#varname# = NULL;', '\tnpy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', '\tconst int #varname#_Rank = #rank#;', '\tPyArrayObject *capi_#varname#_tmp = NULL;', '\tint capi_#varname#_intent = 0;', ], 'callfortran':'#varname#,', 'return':{isintent_out: ',capi_#varname#_tmp'}, 'need': 'len..', '_check': isarray }, { # intent(overwrite) array 'decl': '\tint capi_overwrite_#varname# = 1;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=1,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 1', '_check': l_and(isarray, isintent_overwrite), }, { 'frompyobj': '\tcapi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_overwrite), '_depend': '', }, { # intent(copy) array 'decl': '\tint capi_overwrite_#varname# = 0;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=0,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 0', '_check': l_and(isarray, isintent_copy), }, { 'frompyobj': '\tcapi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_copy), '_depend': '', }, { 'need': [{hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray, '_depend': '' }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, '_check': l_and(isarray, isintent_nothide) }, { 'frompyobj': ['\t#setdims#;', '\tcapi_#varname#_intent |= #intent#;', {isintent_hide: '\tcapi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,Py_None);'}, {isintent_nothide: '\tcapi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,#varname#_capi);'}, """\ \tif (capi_#varname#_tmp == NULL) { \t\tPyObject *exc, *val, *tb; \t\tPyErr_Fetch(&exc, &val, &tb); \t\tPyErr_SetString(exc ? exc : #modulename#_error,\"failed in converting #nth# `#varname#\' of #pyname# to C/Fortran array\" ); \t\tnpy_PyErr_ChainExceptionsCause(exc, val, tb); \t} else { \t\t#varname# = (#ctype# *)(PyArray_DATA(capi_#varname#_tmp)); """, {hasinitvalue: [ {isintent_nothide: '\tif (#varname#_capi == Py_None) {'}, {isintent_hide: '\t{'}, {iscomplexarray: '\t\t#ctype# capi_c;'}, """\ \t\tint *_i,capi_i=0; \t\tCFUNCSMESS(\"#name#: Initializing #varname#=#init#\\n\"); \t\tif (initforcomb(PyArray_DIMS(capi_#varname#_tmp),PyArray_NDIM(capi_#varname#_tmp),1)) { \t\t\twhile ((_i = nextforcomb())) \t\t\t\t#varname#[capi_i++] = #init#; /* fortran way */ \t\t} else { \t\t\tPyObject *exc, *val, *tb; \t\t\tPyErr_Fetch(&exc, &val, &tb); \t\t\tPyErr_SetString(exc ? exc : #modulename#_error,\"Initialization of #nth# #varname# failed (initforcomb).\"); \t\t\tnpy_PyErr_ChainExceptionsCause(exc, val, tb); \t\t\tf2py_success = 0; \t\t} \t} \tif (f2py_success) {"""]}, ], 'cleanupfrompyobj': [ # note that this list will be reversed '\t} /*if (capi_#varname#_tmp == NULL) ... else of #varname#*/', {l_not(l_or(isintent_out, isintent_hide)): """\ \tif((PyObject *)capi_#varname#_tmp!=#varname#_capi) { \t\tPy_XDECREF(capi_#varname#_tmp); }"""}, {l_and(isintent_hide, l_not(isintent_out)) : """\t\tPy_XDECREF(capi_#varname#_tmp);"""}, {hasinitvalue: '\t} /*if (f2py_success) of #varname# init*/'}, ], '_check': isarray, '_depend': '' }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] ################# Rules for checking ############### check_rules = [ { 'frompyobj': {debugcapi: '\tfprintf(stderr,\"debug-capi:Checking `#check#\'\\n\");'}, 'need': 'len..' }, { 'frompyobj': '\tCHECKSCALAR(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': '\t} /*CHECKSCALAR(#check#)*/', 'need': 'CHECKSCALAR', '_check': l_and(isscalar, l_not(iscomplex)), '_break': '' }, { 'frompyobj': '\tCHECKSTRING(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': '\t} /*CHECKSTRING(#check#)*/', 'need': 'CHECKSTRING', '_check': isstring, '_break': '' }, { 'need': 'CHECKARRAY', 'frompyobj': '\tCHECKARRAY(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': '\t} /*CHECKARRAY(#check#)*/', '_check': isarray, '_break': '' }, { 'need': 'CHECKGENERIC', 'frompyobj': '\tCHECKGENERIC(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': '\t} /*CHECKGENERIC(#check#)*/', } ] ########## Applying the rules. No need to modify what follows ############# #################### Build C/API module ####################### def buildmodule(m, um): """ Return """ outmess('\tBuilding module "%s"...\n' % (m['name'])) ret = {} mod_rules = defmod_rules[:] vrd = capi_maps.modsign2map(m) rd = dictappend({'f2py_version': f2py_version}, vrd) funcwrappers = [] funcwrappers2 = [] # F90 codes for n in m['interfaced']: nb = None for bi in m['body']: if not bi['block'] == 'interface': errmess('buildmodule: Expected interface block. Skipping.\n') continue for b in bi['body']: if b['name'] == n: nb = b break if not nb: errmess( 'buildmodule: Could not found the body of interfaced routine "%s". Skipping.\n' % (n)) continue nb_list = [nb] if 'entry' in nb: for k, a in nb['entry'].items(): nb1 = copy.deepcopy(nb) del nb1['entry'] nb1['name'] = k nb1['args'] = a nb_list.append(nb1) for nb in nb_list: api, wrap = buildapi(nb) if wrap: if ismoduleroutine(nb): funcwrappers2.append(wrap) else: funcwrappers.append(wrap) ar = applyrules(api, vrd) rd = dictappend(rd, ar) # Construct COMMON block support cr, wrap = common_rules.buildhooks(m) if wrap: funcwrappers.append(wrap) ar = applyrules(cr, vrd) rd = dictappend(rd, ar) # Construct F90 module support mr, wrap = f90mod_rules.buildhooks(m) if wrap: funcwrappers2.append(wrap) ar = applyrules(mr, vrd) rd = dictappend(rd, ar) for u in um: ar = use_rules.buildusevars(u, m['use'][u['name']]) rd = dictappend(rd, ar) needs = cfuncs.get_needs() code = {} for n in needs.keys(): code[n] = [] for k in needs[n]: c = '' if k in cfuncs.includes0: c = cfuncs.includes0[k] elif k in cfuncs.includes: c = cfuncs.includes[k] elif k in cfuncs.userincludes: c = cfuncs.userincludes[k] elif k in cfuncs.typedefs: c = cfuncs.typedefs[k] elif k in cfuncs.typedefs_generated: c = cfuncs.typedefs_generated[k] elif k in cfuncs.cppmacros: c = cfuncs.cppmacros[k] elif k in cfuncs.cfuncs: c = cfuncs.cfuncs[k] elif k in cfuncs.callbacks: c = cfuncs.callbacks[k] elif k in cfuncs.f90modhooks: c = cfuncs.f90modhooks[k] elif k in cfuncs.commonhooks: c = cfuncs.commonhooks[k] else: errmess('buildmodule: unknown need %s.\n' % (repr(k))) continue code[n].append(c) mod_rules.append(code) for r in mod_rules: if ('_check' in r and r['_check'](m)) or ('_check' not in r): ar = applyrules(r, vrd, m) rd = dictappend(rd, ar) ar = applyrules(module_rules, rd) fn = os.path.join(options['buildpath'], vrd['coutput']) ret['csrc'] = fn with open(fn, 'w') as f: f.write(ar['modulebody'].replace('\t', 2 * ' ')) outmess('\tWrote C/API module "%s" to file "%s"\n' % (m['name'], fn)) if options['dorestdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.rest') with open(fn, 'w') as f: f.write('.. -*- rest -*-\n') f.write('\n'.join(ar['restdoc'])) outmess('\tReST Documentation is saved to file "%s/%smodule.rest"\n' % (options['buildpath'], vrd['modulename'])) if options['dolatexdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.tex') ret['ltx'] = fn with open(fn, 'w') as f: f.write( '%% This file is auto-generated with f2py (version:%s)\n' % (f2py_version)) if 'shortlatex' not in options: f.write( '\\documentclass{article}\n\\usepackage{a4wide}\n\\begin{document}\n\\tableofcontents\n\n') f.write('\n'.join(ar['latexdoc'])) if 'shortlatex' not in options: f.write('\\end{document}') outmess('\tDocumentation is saved to file "%s/%smodule.tex"\n' % (options['buildpath'], vrd['modulename'])) if funcwrappers: wn = os.path.join(options['buildpath'], vrd['f2py_wrapper_output']) ret['fsrc'] = wn with open(wn, 'w') as f: f.write('C -*- fortran -*-\n') f.write( 'C This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( 'C It contains Fortran 77 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers) + '\n').split('\n'): if l and l[0] == ' ': while len(l) >= 66: lines.append(l[:66] + '\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) outmess('\tFortran 77 wrappers are saved to "%s"\n' % (wn)) if funcwrappers2: wn = os.path.join( options['buildpath'], '%s-f2pywrappers2.f90' % (vrd['modulename'])) ret['fsrc'] = wn with open(wn, 'w') as f: f.write('! -*- f90 -*-\n') f.write( '! This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( '! It contains Fortran 90 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers2) + '\n').split('\n'): if len(l) > 72 and l[0] == ' ': lines.append(l[:72] + '&\n &') l = l[72:] while len(l) > 66: lines.append(l[:66] + '&\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) outmess('\tFortran 90 wrappers are saved to "%s"\n' % (wn)) return ret ################## Build C/API function ############# stnd = {1: 'st', 2: 'nd', 3: 'rd', 4: 'th', 5: 'th', 6: 'th', 7: 'th', 8: 'th', 9: 'th', 0: 'th'} def buildapi(rout): rout, wrap = func2subr.assubr(rout) args, depargs = getargs2(rout) capi_maps.depargs = depargs var = rout['vars'] if ismoduleroutine(rout): outmess('\t\t\tConstructing wrapper function "%s.%s"...\n' % (rout['modulename'], rout['name'])) else: outmess('\t\tConstructing wrapper function "%s"...\n' % (rout['name'])) # Routine vrd = capi_maps.routsign2map(rout) rd = dictappend({}, vrd) for r in rout_rules: if ('_check' in r and r['_check'](rout)) or ('_check' not in r): ar = applyrules(r, vrd, rout) rd = dictappend(rd, ar) # Args nth, nthk = 0, 0 savevrd = {} for a in args: vrd = capi_maps.sign2map(a, var[a]) if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules if not isintent_hide(var[a]): if not isoptional(var[a]): nth = nth + 1 vrd['nth'] = repr(nth) + stnd[nth % 10] + ' argument' else: nthk = nthk + 1 vrd['nth'] = repr(nthk) + stnd[nthk % 10] + ' keyword' else: vrd['nth'] = 'hidden' savevrd[a] = vrd for r in _rules: if '_depend' in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break for a in depargs: if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules vrd = savevrd[a] for r in _rules: if '_depend' not in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break if 'check' in var[a]: for c in var[a]['check']: vrd['check'] = c ar = applyrules(check_rules, vrd, var[a]) rd = dictappend(rd, ar) if isinstance(rd['cleanupfrompyobj'], list): rd['cleanupfrompyobj'].reverse() if isinstance(rd['closepyobjfrom'], list): rd['closepyobjfrom'].reverse() rd['docsignature'] = stripcomma(replace('#docsign##docsignopt##docsignxa#', {'docsign': rd['docsign'], 'docsignopt': rd['docsignopt'], 'docsignxa': rd['docsignxa']})) optargs = stripcomma(replace('#docsignopt##docsignxa#', {'docsignxa': rd['docsignxashort'], 'docsignopt': rd['docsignoptshort']} )) if optargs == '': rd['docsignatureshort'] = stripcomma( replace('#docsign#', {'docsign': rd['docsign']})) else: rd['docsignatureshort'] = replace('#docsign#[#docsignopt#]', {'docsign': rd['docsign'], 'docsignopt': optargs, }) rd['latexdocsignatureshort'] = rd['docsignatureshort'].replace('_', '\\_') rd['latexdocsignatureshort'] = rd[ 'latexdocsignatureshort'].replace(',', ', ') cfs = stripcomma(replace('#callfortran##callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) if len(rd['callfortranappend']) > 1: rd['callcompaqfortran'] = stripcomma(replace('#callfortran# 0,#callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) else: rd['callcompaqfortran'] = cfs rd['callfortran'] = cfs if isinstance(rd['docreturn'], list): rd['docreturn'] = stripcomma( replace('#docreturn#', {'docreturn': rd['docreturn']})) + ' = ' rd['docstrsigns'] = [] rd['latexdocstrsigns'] = [] for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: if k in rd and isinstance(rd[k], list): rd['docstrsigns'] = rd['docstrsigns'] + rd[k] k = 'latex' + k if k in rd and isinstance(rd[k], list): rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ ['\\begin{description}'] + rd[k][1:] +\ ['\\end{description}'] ar = applyrules(routine_rules, rd) if ismoduleroutine(rout): outmess('\t\t\t %s\n' % (ar['docshort'])) else: outmess('\t\t %s\n' % (ar['docshort'])) return ar, wrap #################### EOF rules.py #######################
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, print_function import contextlib import itertools import os import platform import random import subprocess import sys from contextlib import contextmanager from textwrap import dedent from pex.common import ( atomic_directory, open_zip, safe_mkdir, safe_mkdtemp, safe_rmtree, safe_sleep, temporary_dir, ) from pex.compatibility import to_unicode from pex.executor import Executor from pex.interpreter import PythonInterpreter from pex.pex import PEX from pex.pex_builder import PEXBuilder from pex.pex_info import PexInfo from pex.pip import get_pip from pex.targets import LocalInterpreter from pex.third_party.pkg_resources import Distribution from pex.typing import TYPE_CHECKING from pex.util import DistributionHelper, named_temporary_file if TYPE_CHECKING: from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Mapping, Optional, Set, Text, Tuple, Union, ) import attr # vendor:skip else: from pex.third_party import attr PY_VER = sys.version_info[:2] IS_PYPY = hasattr(sys, "pypy_version_info") IS_PYPY2 = IS_PYPY and sys.version_info[0] == 2 IS_PYPY3 = IS_PYPY and sys.version_info[0] == 3 NOT_CPYTHON27 = IS_PYPY or PY_VER != (2, 7) IS_LINUX = platform.system() == "Linux" IS_MAC = platform.system() == "Darwin" IS_NOT_LINUX = not IS_LINUX NOT_CPYTHON27_OR_OSX = NOT_CPYTHON27 or IS_NOT_LINUX @contextlib.contextmanager def temporary_filename(): # type: () -> Iterator[str] """Creates a temporary filename. This is useful when you need to pass a filename to an API. Windows requires all handles to a file be closed before deleting/renaming it, so this makes it a bit simpler. """ with named_temporary_file() as fp: fp.write(b"") fp.close() yield fp.name def random_bytes(length): # type: (int) -> bytes return "".join(map(chr, (random.randint(ord("a"), ord("z")) for _ in range(length)))).encode( "utf-8" ) def get_dep_dist_names_from_pex(pex_path, match_prefix=""): # type: (str, str) -> Set[str] """Given an on-disk pex, extract all of the unique first-level paths under `.deps`.""" with open_zip(pex_path) as pex_zip: dep_gen = (f.split(os.sep)[1] for f in pex_zip.namelist() if f.startswith(".deps/")) return set(item for item in dep_gen if item.startswith(match_prefix)) @contextlib.contextmanager def temporary_content(content_map, interp=None, seed=31337, perms=0o644): # type: (Mapping[str, Union[int, str]], Optional[Dict[str, Any]], int, int) -> Iterator[str] """Write content to disk where content is map from string => (int, string). If target is int, write int random bytes. Otherwise write contents of string. """ random.seed(seed) interp = interp or {} with temporary_dir() as td: for filename, size_or_content in content_map.items(): dest = os.path.join(td, filename) safe_mkdir(os.path.dirname(dest)) with open(dest, "wb") as fp: if isinstance(size_or_content, int): fp.write(random_bytes(size_or_content)) else: fp.write((size_or_content % interp).encode("utf-8")) os.chmod(dest, perms) yield td @contextlib.contextmanager def make_project( name="my_project", # type: str version="0.0.0", # type: str zip_safe=True, # type: bool install_reqs=None, # type: Optional[List[str]] extras_require=None, # type: Optional[Dict[str, List[str]]] entry_points=None, # type: Optional[Union[str, Dict[str, List[str]]]] python_requires=None, # type: Optional[str] universal=False, # type: bool ): # type: (...) -> Iterator[str] project_content = { "setup.py": dedent( """ from setuptools import setup setup( name=%(project_name)r, version=%(version)r, zip_safe=%(zip_safe)r, packages=[%(project_name)r], scripts=[ 'scripts/hello_world', 'scripts/shell_script', ], package_data={%(project_name)r: ['package_data/*.dat']}, install_requires=%(install_requires)r, extras_require=%(extras_require)r, entry_points=%(entry_points)r, python_requires=%(python_requires)r, options={'bdist_wheel': {'universal': %(universal)r}}, ) """ ), "scripts/hello_world": '#!/usr/bin/env python\nprint("hello world from py script!")\n', "scripts/shell_script": "#!/usr/bin/env bash\necho hello world from shell script\n", os.path.join(name, "__init__.py"): 0, os.path.join(name, "my_module.py"): 'def do_something():\n print("hello world!")\n', os.path.join(name, "package_data/resource1.dat"): 1000, os.path.join(name, "package_data/resource2.dat"): 1000, } # type: Dict[str, Union[str, int]] interp = { "project_name": name, "version": version, "zip_safe": zip_safe, "install_requires": install_reqs or [], "extras_require": extras_require or {}, "entry_points": entry_points or {}, "python_requires": python_requires, "universal": universal, } with temporary_content(project_content, interp=interp) as td: yield td class WheelBuilder(object): """Create a wheel distribution from an unpacked setup.py-based project.""" class BuildFailure(Exception): pass def __init__( self, source_dir, # type: str interpreter=None, # type: Optional[PythonInterpreter] wheel_dir=None, # type: Optional[str] verify=True, # type: bool ): # type: (...) -> None """Create a wheel from an unpacked source distribution in source_dir.""" self._source_dir = source_dir self._wheel_dir = wheel_dir or safe_mkdtemp() self._interpreter = interpreter or PythonInterpreter.get() self._verify = verify def bdist(self): # type: () -> str get_pip(interpreter=self._interpreter).spawn_build_wheels( distributions=[self._source_dir], wheel_dir=self._wheel_dir, interpreter=self._interpreter, verify=self._verify, ).wait() dists = os.listdir(self._wheel_dir) if len(dists) == 0: raise self.BuildFailure("No distributions were produced!") if len(dists) > 1: raise self.BuildFailure("Ambiguous source distributions found: %s" % (" ".join(dists))) return os.path.join(self._wheel_dir, dists[0]) @contextlib.contextmanager def built_wheel( name="my_project", # type: str version="0.0.0", # type: str zip_safe=True, # type: bool install_reqs=None, # type: Optional[List[str]] extras_require=None, # type: Optional[Dict[str, List[str]]] entry_points=None, # type: Optional[Union[str, Dict[str, List[str]]]] interpreter=None, # type: Optional[PythonInterpreter] python_requires=None, # type: Optional[str] universal=False, # type: bool **kwargs # type: Any ): # type: (...) -> Iterator[str] with make_project( name=name, version=version, zip_safe=zip_safe, install_reqs=install_reqs, extras_require=extras_require, entry_points=entry_points, python_requires=python_requires, universal=universal, ) as td: builder = WheelBuilder(td, interpreter=interpreter, **kwargs) yield builder.bdist() @contextlib.contextmanager def make_source_dir( name="my_project", # type: str version="0.0.0", # type: str install_reqs=None, # type: Optional[List[str]] extras_require=None, # type: Optional[Dict[str, List[str]]] ): # type: (...) -> Iterator[str] with make_project( name=name, version=version, install_reqs=install_reqs, extras_require=extras_require ) as td: yield td @contextlib.contextmanager def make_bdist( name="my_project", # type: str version="0.0.0", # type: str zip_safe=True, # type: bool interpreter=None, # type: Optional[PythonInterpreter] **kwargs # type: Any ): # type: (...) -> Iterator[Distribution] with built_wheel( name=name, version=version, zip_safe=zip_safe, interpreter=interpreter, **kwargs ) as dist_location: install_dir = os.path.join(safe_mkdtemp(), os.path.basename(dist_location)) get_pip(interpreter=interpreter).spawn_install_wheel( wheel=dist_location, install_dir=install_dir, target=LocalInterpreter.create(interpreter), ).wait() dist = DistributionHelper.distribution_from_path(install_dir) assert dist is not None yield dist COVERAGE_PREAMBLE = """ try: from coverage import coverage cov = coverage(auto_data=True, data_suffix=True) cov.start() except ImportError: pass """ def write_simple_pex( td, # type: str exe_contents=None, # type: Optional[str] dists=None, # type: Optional[Iterable[Distribution]] sources=None, # type: Optional[Iterable[Tuple[str, str]]] coverage=False, # type: bool interpreter=None, # type: Optional[PythonInterpreter] pex_info=None, # type: Optional[PexInfo] ): # type: (...) -> PEXBuilder """Write a pex file that optionally contains an executable entry point. :param td: temporary directory path :param exe_contents: entry point python file :param dists: distributions to include, typically sdists or bdists :param sources: sources to include, as a list of pairs (env_filename, contents) :param coverage: include coverage header :param interpreter: a custom interpreter to use to build the pex :param pex_info: a custom PexInfo to use to build the pex. """ dists = dists or [] sources = sources or [] safe_mkdir(td) pb = PEXBuilder( path=td, preamble=COVERAGE_PREAMBLE if coverage else None, interpreter=interpreter, pex_info=pex_info, ) for dist in dists: pb.add_dist_location(dist.location if isinstance(dist, Distribution) else dist) for env_filename, contents in sources: src_path = os.path.join(td, env_filename) safe_mkdir(os.path.dirname(src_path)) with open(src_path, "w") as fp: fp.write(contents) pb.add_source(src_path, env_filename) if exe_contents: with open(os.path.join(td, "exe.py"), "w") as fp: fp.write(exe_contents) pb.set_executable(os.path.join(td, "exe.py")) pb.freeze() return pb @attr.s(frozen=True) class IntegResults(object): """Convenience object to return integration run results.""" output = attr.ib() # type: Text error = attr.ib() # type: Text return_code = attr.ib() # type: int def assert_success(self): # type: () -> None assert ( self.return_code == 0 ), "integration test failed: return_code={}, output={}, error={}".format( self.return_code, self.output, self.error ) def assert_failure(self): # type: () -> None assert self.return_code != 0 def create_pex_command( args=None, # type: Optional[Iterable[str]] python=None, # type: Optional[str] quiet=False, # type: bool ): # type: (...) -> List[str] cmd = [python or sys.executable, "-mpex"] if not quiet: cmd.append("-vvvvv") if args: cmd.extend(args) return cmd def run_pex_command( args, # type: Iterable[str] env=None, # type: Optional[Dict[str, str]] python=None, # type: Optional[str] quiet=False, # type: bool ): # type: (...) -> IntegResults """Simulate running pex command for integration testing. This is different from run_simple_pex in that it calls the pex command rather than running a generated pex. This is useful for testing end to end runs with specific command line arguments or env options. """ cmd = create_pex_command(args, python=python, quiet=quiet) process = Executor.open_process( cmd=cmd, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) output, error = process.communicate() return IntegResults(output.decode("utf-8"), error.decode("utf-8"), process.returncode) def run_simple_pex( pex, # type: str args=(), # type: Iterable[str] interpreter=None, # type: Optional[PythonInterpreter] stdin=None, # type: Optional[bytes] **kwargs # type: Any ): # type: (...) -> Tuple[bytes, int] p = PEX(pex, interpreter=interpreter) process = p.run( args=args, blocking=False, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, **kwargs ) stdout, _ = process.communicate(input=stdin) return stdout.replace(b"\r", b""), process.returncode def run_simple_pex_test( body, # type: str args=(), # type: Iterable[str] env=None, # type: Optional[Mapping[str, str]] dists=None, # type: Optional[Iterable[Distribution]] coverage=False, # type: bool interpreter=None, # type: Optional[PythonInterpreter] ): # type: (...) -> Tuple[bytes, int] with temporary_dir() as td1, temporary_dir() as td2: pb = write_simple_pex(td1, body, dists=dists, coverage=coverage, interpreter=interpreter) pex = os.path.join(td2, "app.pex") pb.build(pex) return run_simple_pex(pex, args=args, env=env, interpreter=interpreter) def bootstrap_python_installer(dest): # type: (str) -> None for _ in range(3): try: subprocess.check_call(["git", "clone", "https://github.com/pyenv/pyenv.git", dest]) except subprocess.CalledProcessError as e: print("caught exception: %r" % e) continue else: break else: raise RuntimeError("Helper method could not clone pyenv from git after 3 tries") # NB: We keep the pool of bootstrapped interpreters as small as possible to avoid timeouts in CI # otherwise encountered when fetching and building too many on a cache miss. In the past we had # issues with the combination of 7 total unique interpreter versions and a Travis-CI timeout of 50 # minutes for a shard. PY27 = "2.7.18" PY37 = "3.7.11" PY310 = "3.10.1" ALL_PY_VERSIONS = (PY27, PY37, PY310) _ALL_PY3_VERSIONS = (PY37, PY310) def ensure_python_distribution(version): # type: (str) -> Tuple[str, str, Callable[[Iterable[str]], Text]] if version not in ALL_PY_VERSIONS: raise ValueError("Please constrain version to one of {}".format(ALL_PY_VERSIONS)) pyenv_root = os.path.abspath( os.path.join( os.path.expanduser(os.environ.get("_PEX_TEST_PYENV_ROOT", "~/.pex_dev")), "pyenv", ) ) interpreter_location = os.path.join(pyenv_root, "versions", version) pyenv = os.path.join(pyenv_root, "bin", "pyenv") pyenv_env = os.environ.copy() pyenv_env["PYENV_ROOT"] = pyenv_root pip = os.path.join(interpreter_location, "bin", "pip") with atomic_directory(target_dir=os.path.join(pyenv_root), exclusive=True) as target_dir: if not target_dir.is_finalized(): bootstrap_python_installer(target_dir.work_dir) with atomic_directory( target_dir=interpreter_location, exclusive=True ) as interpreter_target_dir: if not interpreter_target_dir.is_finalized(): subprocess.check_call( [ "git", "--git-dir={}".format(os.path.join(pyenv_root, ".git")), "--work-tree={}".format(pyenv_root), "pull", "--ff-only", "https://github.com/pyenv/pyenv.git", ] ) env = pyenv_env.copy() if sys.platform.lower().startswith("linux"): env["CONFIGURE_OPTS"] = "--enable-shared" # The pyenv builder detects `--enable-shared` and sets up `RPATH` via # `LDFLAGS=-Wl,-rpath=... $LDFLAGS` to ensure the built python binary links the # correct libpython shared lib. Some versions of compiler set the `RUNPATH` instead # though which is searched _after_ the `LD_LIBRARY_PATH` environment variable. To # ensure an inopportune `LD_LIBRARY_PATH` doesn't fool the pyenv python binary into # linking the wrong libpython, force `RPATH`, which is searched 1st by the linker, # with with `--disable-new-dtags`. env["LDFLAGS"] = "-Wl,--disable-new-dtags" subprocess.check_call([pyenv, "install", "--keep", version], env=env) subprocess.check_call([pip, "install", "-U", "pip"]) major, minor = version.split(".")[:2] python = os.path.join( interpreter_location, "bin", "python{major}.{minor}".format(major=major, minor=minor) ) def run_pyenv(args): # type: (Iterable[str]) -> Text return to_unicode(subprocess.check_output([pyenv] + list(args), env=pyenv_env)) return python, pip, run_pyenv def ensure_python_venv(version, latest_pip=True, system_site_packages=False): python, pip, _ = ensure_python_distribution(version) venv = safe_mkdtemp() if version in _ALL_PY3_VERSIONS: args = [python, "-m", "venv", venv] if system_site_packages: args.append("--system-site-packages") subprocess.check_call(args=args) else: subprocess.check_call(args=[pip, "install", "virtualenv==16.7.10"]) args = [python, "-m", "virtualenv", venv, "-q"] if system_site_packages: args.append("--system-site-packages") subprocess.check_call(args=args) python, pip = tuple(os.path.join(venv, "bin", exe) for exe in ("python", "pip")) if latest_pip: subprocess.check_call(args=[pip, "install", "-U", "pip"]) return python, pip def ensure_python_interpreter(version): # type: (str) -> str python, _, _ = ensure_python_distribution(version) return python @contextmanager def environment_as(**kwargs): # type: (**Any) -> Iterator[None] existing = {key: os.environ.get(key) for key in kwargs} def adjust_environment(mapping): for key, value in mapping.items(): if value is not None: os.environ[key] = str(value) else: os.environ.pop(key, None) adjust_environment(kwargs) try: yield finally: adjust_environment(existing) @contextmanager def pushd(directory): # type: (str) -> Iterator[None] cwd = os.getcwd() try: os.chdir(directory) yield finally: os.chdir(cwd) def make_env(**kwargs): # type: (**Any) -> Dict[str, str] """Create a copy of the current environment with the given modifications. The given kwargs add to or update the environment when they have a non-`None` value. When they have a `None` value, the environment variable is removed from the environment. All non-`None` values are converted to strings by apply `str`. """ env = os.environ.copy() env.update((k, str(v)) for k, v in kwargs.items() if v is not None) for k, v in kwargs.items(): if v is None: env.pop(k, None) return env def run_commands_with_jitter( commands, # type: Iterable[Iterable[str]] path_argument, # type: str extra_env=None, # type: Optional[Mapping[str, str]] delay=2.0, # type: float ): # type: (...) -> List[str] """Runs the commands with tactics that attempt to introduce randomness in outputs. Each command will run against a clean Pex cache with a unique path injected as the value for `path_argument`. A unique `PYTHONHASHSEED` is set in the environment for each execution as well. Additionally, a delay is inserted between executions. By default, this delay is 2s to ensure zip precision is stressed. See: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT. """ td = safe_mkdtemp() pex_root = os.path.join(td, "pex_root") paths = [] for index, command in enumerate(commands): path = os.path.join(td, str(index)) cmd = list(command) + [path_argument, path] # Note that we change the `PYTHONHASHSEED` to ensure that there are no issues resulting # from the random seed, such as data structures, as Tox sets this value by default. # See: # https://tox.readthedocs.io/en/latest/example/basic.html#special-handling-of-pythonhashseed env = make_env(PEX_ROOT=pex_root, PYTHONHASHSEED=(index * 497) + 4) if extra_env: env.update(extra_env) if index > 0: safe_sleep(delay) # Ensure the PEX is fully rebuilt. safe_rmtree(pex_root) subprocess.check_call(args=cmd, env=env) paths.append(path) return paths def run_command_with_jitter( args, # type: Iterable[str] path_argument, # type: str extra_env=None, # type: Optional[Mapping[str, str]] delay=2.0, # type: float count=3, # type: int ): # type: (...) -> List[str] """Runs the command `count` times in an attempt to introduce randomness. Each run of the command will run against a clean Pex cache with a unique path injected as the value for `path_argument`. A unique `PYTHONHASHSEED` is set in the environment for each execution as well. Additionally, a delay is inserted between executions. By default, this delay is 2s to ensure zip precision is stressed. See: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT. """ return run_commands_with_jitter( commands=list(itertools.repeat(list(args), count)), path_argument=path_argument, extra_env=extra_env, delay=delay, ) def pex_project_dir(): # type: () -> str return str( subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).decode("ascii").strip() )
from __future__ import absolute_import, print_function, division import itertools import operator from collections import OrderedDict from petl.compat import next, string_types, reduce, text_type from petl.errors import ArgumentError from petl.util.base import Table, iterpeek, rowgroupby from petl.util.base import values from petl.util.counting import nrows from petl.transform.sorts import sort, mergesort from petl.transform.basics import cut from petl.transform.dedup import distinct def rowreduce(table, key, reducer, header=None, presorted=False, buffersize=None, tempdir=None, cache=True): """ Group rows under the given key then apply `reducer` to produce a single output row for each input group of rows. E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar'], ... ['a', 3], ... ['a', 7], ... ['b', 2], ... ['b', 1], ... ['b', 9], ... ['c', 4]] >>> def sumbar(key, rows): ... return [key, sum(row[1] for row in rows)] ... >>> table2 = etl.rowreduce(table1, key='foo', reducer=sumbar, ... header=['foo', 'barsum']) >>> table2 +-----+--------+ | foo | barsum | +=====+========+ | 'a' | 10 | +-----+--------+ | 'b' | 12 | +-----+--------+ | 'c' | 4 | +-----+--------+ N.B., this is not strictly a "reduce" in the sense of the standard Python :func:`reduce` function, i.e., the `reducer` function is *not* applied recursively to values within a group, rather it is applied once to each row group as a whole. See also :func:`petl.transform.reductions.aggregate` and :func:`petl.transform.reductions.fold`. """ return RowReduceView(table, key, reducer, header=header, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.rowreduce = rowreduce class RowReduceView(Table): def __init__(self, source, key, reducer, header=None, presorted=False, buffersize=None, tempdir=None, cache=True): if presorted: self.source = source else: self.source = sort(source, key, buffersize=buffersize, tempdir=tempdir, cache=cache) self.key = key self.header = header self.reducer = reducer def __iter__(self): return iterrowreduce(self.source, self.key, self.reducer, self.header) def iterrowreduce(source, key, reducer, header): if header is None: # output header from source header, source = iterpeek(source) yield tuple(header) for key, rows in rowgroupby(source, key): yield tuple(reducer(key, rows)) def aggregate(table, key, aggregation=None, value=None, presorted=False, buffersize=None, tempdir=None, cache=True, field='value'): """Apply aggregation functions. E.g.:: >>> import petl as etl >>> >>> table1 = [['foo', 'bar', 'baz'], ... ['a', 3, True], ... ['a', 7, False], ... ['b', 2, True], ... ['b', 2, False], ... ['b', 9, False], ... ['c', 4, True]] >>> # aggregate whole rows ... table2 = etl.aggregate(table1, 'foo', len) >>> table2 +-----+-------+ | foo | value | +=====+=======+ | 'a' | 2 | +-----+-------+ | 'b' | 3 | +-----+-------+ | 'c' | 1 | +-----+-------+ >>> # aggregate whole rows without a key >>> etl.aggregate(table1, None, len) +-------+ | value | +=======+ | 6 | +-------+ >>> # aggregate single field ... table3 = etl.aggregate(table1, 'foo', sum, 'bar') >>> table3 +-----+-------+ | foo | value | +=====+=======+ | 'a' | 10 | +-----+-------+ | 'b' | 13 | +-----+-------+ | 'c' | 4 | +-----+-------+ >>> # aggregate single field without a key >>> etl.aggregate(table1, None, sum, 'bar') +-------+ | value | +=======+ | 27 | +-------+ >>> # alternative signature using keyword args ... table4 = etl.aggregate(table1, key=('foo', 'bar'), ... aggregation=list, value=('bar', 'baz')) >>> table4 +-----+-----+-------------------------+ | foo | bar | value | +=====+=====+=========================+ | 'a' | 3 | [(3, True)] | +-----+-----+-------------------------+ | 'a' | 7 | [(7, False)] | +-----+-----+-------------------------+ | 'b' | 2 | [(2, True), (2, False)] | +-----+-----+-------------------------+ | 'b' | 9 | [(9, False)] | +-----+-----+-------------------------+ | 'c' | 4 | [(4, True)] | +-----+-----+-------------------------+ >>> # alternative signature using keyword args without a key >>> etl.aggregate(table1, key=None, ... aggregation=list, value=('bar', 'baz')) +-----------------------------------------------------------------------+ | value | +=======================================================================+ | [(3, True), (7, False), (2, True), (2, False), (9, False), (4, True)] | +-----------------------------------------------------------------------+ >>> # aggregate multiple fields ... from collections import OrderedDict >>> import petl as etl >>> >>> aggregation = OrderedDict() >>> aggregation['count'] = len >>> aggregation['minbar'] = 'bar', min >>> aggregation['maxbar'] = 'bar', max >>> aggregation['sumbar'] = 'bar', sum >>> # default aggregation function is list ... aggregation['listbar'] = 'bar' >>> aggregation['listbarbaz'] = ('bar', 'baz'), list >>> aggregation['bars'] = 'bar', etl.strjoin(', ') >>> table5 = etl.aggregate(table1, 'foo', aggregation) >>> table5 +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | foo | count | minbar | maxbar | sumbar | listbar | listbarbaz | bars | +=====+=======+========+========+========+===========+=====================================+===========+ | 'a' | 2 | 3 | 7 | 10 | [3, 7] | [(3, True), (7, False)] | '3, 7' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | 'b' | 3 | 2 | 9 | 13 | [2, 2, 9] | [(2, True), (2, False), (9, False)] | '2, 2, 9' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | 'c' | 1 | 4 | 4 | 4 | [4] | [(4, True)] | '4' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ >>> # aggregate multiple fields without a key >>> etl.aggregate(table1, None, aggregation) +-------+--------+--------+--------+--------------------+-----------------------------------------------------------------------+--------------------+ | count | minbar | maxbar | sumbar | listbar | listbarbaz | bars | +=======+========+========+========+====================+=======================================================================+====================+ | 6 | 2 | 9 | 27 | [3, 7, 2, 2, 9, 4] | [(3, True), (7, False), (2, True), (2, False), (9, False), (4, True)] | '3, 7, 2, 2, 9, 4' | +-------+--------+--------+--------+--------------------+-----------------------------------------------------------------------+--------------------+ If `presorted` is True, it is assumed that the data are already sorted by the given key, and the `buffersize`, `tempdir` and `cache` arguments are ignored. Otherwise, the data are sorted, see also the discussion of the `buffersize`, `tempdir` and `cache` arguments under the :func:`petl.transform.sorts.sort` function. If `key` is None, sorting is not necessary. """ if callable(aggregation): return SimpleAggregateView(table, key, aggregation=aggregation, value=value, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache, field=field) elif aggregation is None or isinstance(aggregation, (list, tuple, dict)): # ignore value arg return MultiAggregateView(table, key, aggregation=aggregation, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) else: raise ArgumentError('expected aggregation is callable, list, tuple, dict ' 'or None') Table.aggregate = aggregate class SimpleAggregateView(Table): def __init__(self, table, key, aggregation=list, value=None, presorted=False, buffersize=None, tempdir=None, cache=True, field='value'): if presorted or key is None: self.table = table else: self.table = sort(table, key, buffersize=buffersize, tempdir=tempdir, cache=cache) self.key = key self.aggregation = aggregation self.value = value self.field = field def __iter__(self): return itersimpleaggregate(self.table, self.key, self.aggregation, self.value, self.field) def itersimpleaggregate(table, key, aggregation, value, field): # special case counting if aggregation == len and key is not None: aggregation = lambda g: sum(1 for _ in g) # count length of iterable # special case where length of key is 1 if isinstance(key, (list, tuple)) and len(key) == 1: key = key[0] # determine output header if isinstance(key, (list, tuple)): outhdr = tuple(key) + (field,) elif callable(key): outhdr = ('key', field) elif key is None: outhdr = field, else: outhdr = (key, field) yield outhdr # generate data if isinstance(key, (list, tuple)): for k, grp in rowgroupby(table, key, value): yield tuple(k) + (aggregation(grp),) elif key is None: # special case counting if aggregation == len: yield nrows(table), else: yield aggregation(values(table, value)), else: for k, grp in rowgroupby(table, key, value): yield k, aggregation(grp) class MultiAggregateView(Table): def __init__(self, source, key, aggregation=None, presorted=False, buffersize=None, tempdir=None, cache=True): if presorted or key is None: self.source = source else: self.source = sort(source, key, buffersize=buffersize, tempdir=tempdir, cache=cache) self.key = key if aggregation is None: self.aggregation = OrderedDict() elif isinstance(aggregation, (list, tuple)): self.aggregation = OrderedDict() for t in aggregation: self.aggregation[t[0]] = t[1:] elif isinstance(aggregation, dict): self.aggregation = aggregation else: raise ArgumentError( 'expected aggregation is None, list, tuple or dict, found %r' % aggregation ) def __iter__(self): return itermultiaggregate(self.source, self.key, self.aggregation) def __setitem__(self, key, value): self.aggregation[key] = value def itermultiaggregate(source, key, aggregation): aggregation = OrderedDict(aggregation.items()) # take a copy it = iter(source) hdr = next(it) # push back header to ensure we iterate only once it = itertools.chain([hdr], it) # normalise aggregators for outfld in aggregation: agg = aggregation[outfld] if callable(agg): aggregation[outfld] = None, agg elif isinstance(agg, string_types): aggregation[outfld] = agg, list # list is default elif len(agg) == 1 and isinstance(agg[0], string_types): aggregation[outfld] = agg[0], list # list is default elif len(agg) == 1 and callable(agg[0]): aggregation[outfld] = None, agg[0] # aggregate whole rows elif len(agg) == 2: pass # no need to normalise else: raise ArgumentError('invalid aggregation: %r, %r' % (outfld, agg)) # determine output header if isinstance(key, (list, tuple)): outhdr = list(key) elif callable(key): outhdr = ['key'] elif key is None: outhdr = [] else: outhdr = [key] for outfld in aggregation: outhdr.append(outfld) yield tuple(outhdr) if key is None: grouped = rowgroupby(it, lambda x: None) else: grouped = rowgroupby(it, key) # generate data for k, rows in grouped: rows = list(rows) # may need to iterate over these more than once # handle compound key if isinstance(key, (list, tuple)): outrow = list(k) elif key is None: outrow = [] else: outrow = [k] for outfld in aggregation: srcfld, aggfun = aggregation[outfld] if srcfld is None: aggval = aggfun(rows) outrow.append(aggval) elif isinstance(srcfld, (list, tuple)): idxs = [hdr.index(f) for f in srcfld] valgetter = operator.itemgetter(*idxs) vals = (valgetter(row) for row in rows) aggval = aggfun(vals) outrow.append(aggval) else: idx = hdr.index(srcfld) # try using generator comprehension vals = (row[idx] for row in rows) aggval = aggfun(vals) outrow.append(aggval) yield tuple(outrow) def groupcountdistinctvalues(table, key, value): """Group by the `key` field then count the number of distinct values in the `value` field.""" s1 = cut(table, key, value) s2 = distinct(s1) s3 = aggregate(s2, key, len) return s3 Table.groupcountdistinctvalues = groupcountdistinctvalues def groupselectfirst(table, key, presorted=False, buffersize=None, tempdir=None, cache=True): """Group by the `key` field then return the first row within each group. E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar', 'baz'], ... ['A', 1, True], ... ['C', 7, False], ... ['B', 2, False], ... ['C', 9, True]] >>> table2 = etl.groupselectfirst(table1, key='foo') >>> table2 +-----+-----+-------+ | foo | bar | baz | +=====+=====+=======+ | 'A' | 1 | True | +-----+-----+-------+ | 'B' | 2 | False | +-----+-----+-------+ | 'C' | 7 | False | +-----+-----+-------+ See also :func:`petl.transform.reductions.groupselectlast`, :func:`petl.transform.dedup.distinct`. """ def _reducer(k, rows): return next(rows) return rowreduce(table, key, reducer=_reducer, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.groupselectfirst = groupselectfirst def groupselectlast(table, key, presorted=False, buffersize=None, tempdir=None, cache=True): """Group by the `key` field then return the last row within each group. E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar', 'baz'], ... ['A', 1, True], ... ['C', 7, False], ... ['B', 2, False], ... ['C', 9, True]] >>> table2 = etl.groupselectlast(table1, key='foo') >>> table2 +-----+-----+-------+ | foo | bar | baz | +=====+=====+=======+ | 'A' | 1 | True | +-----+-----+-------+ | 'B' | 2 | False | +-----+-----+-------+ | 'C' | 9 | True | +-----+-----+-------+ See also :func:`petl.transform.reductions.groupselectfirst`, :func:`petl.transform.dedup.distinct`. .. versionadded:: 1.1.0 """ def _reducer(k, rows): row = None for row in rows: pass return row return rowreduce(table, key, reducer=_reducer, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.groupselectlast = groupselectlast def groupselectmin(table, key, value, presorted=False, buffersize=None, tempdir=None, cache=True): """Group by the `key` field then return the row with the minimum of the `value` field within each group. N.B., will only return one row for each group, even if multiple rows have the same (minimum) value.""" return groupselectfirst(sort(table, value, reverse=False), key, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.groupselectmin = groupselectmin def groupselectmax(table, key, value, presorted=False, buffersize=None, tempdir=None, cache=True): """Group by the `key` field then return the row with the maximum of the `value` field within each group. N.B., will only return one row for each group, even if multiple rows have the same (maximum) value.""" return groupselectfirst(sort(table, value, reverse=True), key, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.groupselectmax = groupselectmax def mergeduplicates(table, key, missing=None, presorted=False, buffersize=None, tempdir=None, cache=True): """ Merge duplicate rows under the given key. E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar', 'baz'], ... ['A', 1, 2.7], ... ['B', 2, None], ... ['D', 3, 9.4], ... ['B', None, 7.8], ... ['E', None, 42.], ... ['D', 3, 12.3], ... ['A', 2, None]] >>> table2 = etl.mergeduplicates(table1, 'foo') >>> table2 +-----+------------------+-----------------------+ | foo | bar | baz | +=====+==================+=======================+ | 'A' | Conflict({1, 2}) | 2.7 | +-----+------------------+-----------------------+ | 'B' | 2 | 7.8 | +-----+------------------+-----------------------+ | 'D' | 3 | Conflict({9.4, 12.3}) | +-----+------------------+-----------------------+ | 'E' | None | 42.0 | +-----+------------------+-----------------------+ Missing values are overridden by non-missing values. Conflicting values are reported as an instance of the Conflict class (sub-class of frozenset). If `presorted` is True, it is assumed that the data are already sorted by the given key, and the `buffersize`, `tempdir` and `cache` arguments are ignored. Otherwise, the data are sorted, see also the discussion of the `buffersize`, `tempdir` and `cache` arguments under the :func:`petl.transform.sorts.sort` function. See also :func:`petl.transform.dedup.conflicts`. """ return MergeDuplicatesView(table, key, missing=missing, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.mergeduplicates = mergeduplicates class MergeDuplicatesView(Table): def __init__(self, table, key, missing=None, presorted=False, buffersize=None, tempdir=None, cache=True): if presorted: self.table = table else: self.table = sort(table, key, buffersize=buffersize, tempdir=tempdir, cache=cache) self.key = key self.missing = missing def __iter__(self): return itermergeduplicates(self.table, self.key, self.missing) def itermergeduplicates(table, key, missing): it = iter(table) hdr, it = iterpeek(it) flds = list(map(text_type, hdr)) # determine output fields if isinstance(key, string_types): outhdr = [key] keyflds = {key} else: outhdr = list(key) keyflds = set(key) valflds = [f for f in flds if f not in keyflds] valfldidxs = [flds.index(f) for f in valflds] outhdr.extend(valflds) yield tuple(outhdr) # do the work for k, grp in rowgroupby(it, key): grp = list(grp) if isinstance(key, string_types): outrow = [k] else: outrow = list(k) mergedvals = [set(row[i] for row in grp if len(row) > i and row[i] != missing) for i in valfldidxs] normedvals = [vals.pop() if len(vals) == 1 else missing if len(vals) == 0 else Conflict(vals) for vals in mergedvals] outrow.extend(normedvals) yield tuple(outrow) def merge(*tables, **kwargs): """ Convenience function to combine multiple tables (via :func:`petl.transform.sorts.mergesort`) then combine duplicate rows by merging under the given key (via :func:`petl.transform.reductions.mergeduplicates`). E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar', 'baz'], ... [1, 'A', True], ... [2, 'B', None], ... [4, 'C', True]] >>> table2 = [['bar', 'baz', 'quux'], ... ['A', True, 42.0], ... ['B', False, 79.3], ... ['C', False, 12.4]] >>> table3 = etl.merge(table1, table2, key='bar') >>> table3 +-----+-----+-------------------------+------+ | bar | foo | baz | quux | +=====+=====+=========================+======+ | 'A' | 1 | True | 42.0 | +-----+-----+-------------------------+------+ | 'B' | 2 | False | 79.3 | +-----+-----+-------------------------+------+ | 'C' | 4 | Conflict({False, True}) | 12.4 | +-----+-----+-------------------------+------+ Keyword arguments are the same as for :func:`petl.transform.sorts.mergesort`, except `key` is required. """ assert 'key' in kwargs, 'keyword argument "key" is required' key = kwargs['key'] t1 = mergesort(*tables, **kwargs) t2 = mergeduplicates(t1, key=key, presorted=True) return t2 Table.merge = merge class Conflict(frozenset): def __new__(cls, items): s = super(Conflict, cls).__new__(cls, items) return s def fold(table, key, f, value=None, presorted=False, buffersize=None, tempdir=None, cache=True): """ Reduce rows recursively via the Python standard :func:`reduce` function. E.g.:: >>> import petl as etl >>> table1 = [['id', 'count'], ... [1, 3], ... [1, 5], ... [2, 4], ... [2, 8]] >>> import operator >>> table2 = etl.fold(table1, 'id', operator.add, 'count', ... presorted=True) >>> table2 +-----+-------+ | key | value | +=====+=======+ | 1 | 8 | +-----+-------+ | 2 | 12 | +-----+-------+ See also :func:`petl.transform.reductions.aggregate`, :func:`petl.transform.reductions.rowreduce`. """ return FoldView(table, key, f, value=value, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) Table.fold = fold class FoldView(Table): def __init__(self, table, key, f, value=None, presorted=False, buffersize=None, tempdir=None, cache=True): if presorted: self.table = table else: self.table = sort(table, key, buffersize=buffersize, tempdir=tempdir, cache=cache) self.key = key self.f = f self.value = value def __iter__(self): return iterfold(self.table, self.key, self.f, self.value) def iterfold(table, key, f, value): yield ('key', 'value') for k, grp in rowgroupby(table, key, value): yield k, reduce(f, grp)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2012 Cisco Systems, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Sumit Naiksatam, Cisco Systems, Inc. import inspect import logging from sqlalchemy import orm from quantum.common import exceptions as exc from quantum.db import db_base_plugin_v2 from quantum.db import models_v2 from quantum.openstack.common import importutils from quantum.plugins.cisco.common import cisco_constants as const from quantum.plugins.cisco.common import cisco_exceptions as cexc from quantum.plugins.cisco.common import cisco_utils as cutil from quantum.plugins.cisco.db import network_db_v2 as cdb from quantum.plugins.cisco import l2network_plugin_configuration as conf LOG = logging.getLogger(__name__) class PluginV2(db_base_plugin_v2.QuantumDbPluginV2): """ Meta-Plugin with v2 API support for multiple sub-plugins. """ supported_extension_aliases = ["Cisco Credential", "Cisco qos"] _methods_to_delegate = ['create_network', 'delete_network', 'update_network', 'get_network', 'get_networks', 'create_port', 'delete_port', 'update_port', 'get_port', 'get_ports', 'create_subnet', 'delete_subnet', 'update_subnet', 'get_subnet', 'get_subnets', ] _master = True def __init__(self): """ Loads the model class. """ self._model = importutils.import_object(conf.MODEL_CLASS) if hasattr(self._model, "MANAGE_STATE") and self._model.MANAGE_STATE: self._master = False LOG.debug(_("Model %s manages state"), conf.MODEL_CLASS) native_bulk_attr_name = ("_%s__native_bulk_support" % self._model.__class__.__name__) self.__native_bulk_support = getattr(self._model, native_bulk_attr_name, False) if hasattr(self._model, "supported_extension_aliases"): self.supported_extension_aliases.extend( self._model.supported_extension_aliases) LOG.debug(_("Plugin initialization complete")) def __getattribute__(self, name): """ When the configured model class offers to manage the state of the logical resources, we delegate the core API calls directly to it. Note: Bulking calls will be handled by this class, and turned into non-bulking calls to be considered for delegation. """ master = object.__getattribute__(self, "_master") methods = object.__getattribute__(self, "_methods_to_delegate") if not master and name in methods: return getattr(object.__getattribute__(self, "_model"), name) else: return object.__getattribute__(self, name) def __getattr__(self, name): """ This delegates the calls to the extensions explicitly implemented by the model. """ if hasattr(self._model, name): return getattr(self._model, name) else: # Must make sure we re-raise the error that led us here, since # otherwise getattr() and even hasattr() doesn't work corretly. raise AttributeError("'%s' object has no attribute '%s'" % (self._model, name)) """ Core API implementation """ def create_network(self, context, network): """ Creates a new Virtual Network, and assigns it a symbolic name. """ LOG.debug(_("create_network() called")) new_network = super(PluginV2, self).create_network(context, network) try: self._invoke_device_plugins(self._func_name(), [context, new_network]) return new_network except: super(PluginV2, self).delete_network(context, new_network['id']) raise def update_network(self, context, id, network): """ Updates the symbolic name belonging to a particular Virtual Network. """ LOG.debug(_("update_network() called")) upd_net_dict = super(PluginV2, self).update_network(context, id, network) self._invoke_device_plugins(self._func_name(), [context, id, upd_net_dict]) return upd_net_dict def delete_network(self, context, id): """ Deletes the network with the specified network identifier belonging to the specified tenant. """ LOG.debug(_("delete_network() called")) #We first need to check if there are any ports on this network with context.session.begin(): network = self._get_network(context, id) filter = {'network_id': [id]} ports = self.get_ports(context, filters=filter) # check if there are any tenant owned ports in-use prefix = db_base_plugin_v2.AGENT_OWNER_PREFIX only_svc = all(p['device_owner'].startswith(prefix) for p in ports) if not only_svc: raise exc.NetworkInUse(net_id=id) context.session.close() #Network does not have any ports, we can proceed to delete try: network = self._get_network(context, id) kwargs = {const.NETWORK: network, const.BASE_PLUGIN_REF: self} self._invoke_device_plugins(self._func_name(), [context, id, kwargs]) return super(PluginV2, self).delete_network(context, id) except: raise def get_network(self, context, id, fields=None): """ Gets a particular network """ LOG.debug(_("get_network() called")) return super(PluginV2, self).get_network(context, id, fields) def get_networks(self, context, filters=None, fields=None): """ Gets all networks """ LOG.debug(_("get_networks() called")) return super(PluginV2, self).get_networks(context, filters, fields) def create_port(self, context, port): """ Creates a port on the specified Virtual Network. """ LOG.debug(_("create_port() called")) new_port = super(PluginV2, self).create_port(context, port) try: self._invoke_device_plugins(self._func_name(), [context, new_port]) return new_port except: super(PluginV2, self).delete_port(context, new_port['id']) raise def delete_port(self, context, id): """ Deletes a port """ LOG.debug(_("delete_port() called")) port = self._get_port(context, id) """ TODO (Sumit): Disabling this check for now, check later #Allow deleting a port only if the administrative state is down, #and its operation status is also down if port['admin_state_up'] or port['status'] == 'ACTIVE': raise exc.PortInUse(port_id=id, net_id=port['network_id'], att_id=port['device_id']) """ try: kwargs = {const.PORT: port} # TODO (Sumit): Might first need to check here if port is active self._invoke_device_plugins(self._func_name(), [context, id, kwargs]) return super(PluginV2, self).delete_port(context, id) except: raise def update_port(self, context, id, port): """ Updates the state of a port and returns the updated port """ LOG.debug(_("update_port() called")) try: self._invoke_device_plugins(self._func_name(), [context, id, port]) return super(PluginV2, self).update_port(context, id, port) except: raise def create_subnet(self, context, subnet): """ Create a subnet, which represents a range of IP addresses that can be allocated to devices. """ LOG.debug(_("create_subnet() called")) new_subnet = super(PluginV2, self).create_subnet(context, subnet) try: self._invoke_device_plugins(self._func_name(), [context, new_subnet]) return new_subnet except: super(PluginV2, self).delete_subnet(context, new_subnet['id']) raise def update_subnet(self, context, id, subnet): """ Updates the state of a subnet and returns the updated subnet """ LOG.debug(_("update_subnet() called")) try: self._invoke_device_plugins(self._func_name(), [context, id, subnet]) return super(PluginV2, self).update_subnet(context, id, subnet) except: raise def delete_subnet(self, context, id): """ Deletes a subnet """ LOG.debug(_("delete_subnet() called")) with context.session.begin(): subnet = self._get_subnet(context, id) # Check if ports are using this subnet allocated_qry = context.session.query(models_v2.IPAllocation) allocated_qry = allocated_qry.options(orm.joinedload('ports')) allocated = allocated_qry.filter_by(subnet_id=id).all() prefix = db_base_plugin_v2.AGENT_OWNER_PREFIX if not all(not a.port_id or a.ports.device_owner.startswith(prefix) for a in allocated): raise exc.SubnetInUse(subnet_id=id) context.session.close() try: kwargs = {const.SUBNET: subnet} self._invoke_device_plugins(self._func_name(), [context, id, kwargs]) return super(PluginV2, self).delete_subnet(context, id) except: raise """ Extension API implementation """ def get_all_qoss(self, tenant_id): """Get all QoS levels""" LOG.debug(_("get_all_qoss() called")) qoslist = cdb.get_all_qoss(tenant_id) return qoslist def get_qos_details(self, tenant_id, qos_id): """Get QoS Details""" LOG.debug(_("get_qos_details() called")) try: qos_level = cdb.get_qos(tenant_id, qos_id) except Exception: raise cexc.QosNotFound(tenant_id=tenant_id, qos_id=qos_id) return qos_level def create_qos(self, tenant_id, qos_name, qos_desc): """Create a QoS level""" LOG.debug(_("create_qos() called")) qos = cdb.add_qos(tenant_id, qos_name, str(qos_desc)) return qos def delete_qos(self, tenant_id, qos_id): """Delete a QoS level""" LOG.debug(_("delete_qos() called")) try: qos_level = cdb.get_qos(tenant_id, qos_id) except Exception: raise cexc.QosNotFound(tenant_id=tenant_id, qos_id=qos_id) return cdb.remove_qos(tenant_id, qos_id) def rename_qos(self, tenant_id, qos_id, new_name): """Rename QoS level""" LOG.debug(_("rename_qos() called")) try: qos_level = cdb.get_qos(tenant_id, qos_id) except Exception: raise cexc.QosNotFound(tenant_id=tenant_id, qos_id=qos_id) qos = cdb.update_qos(tenant_id, qos_id, new_name) return qos def get_all_credentials(self, tenant_id): """Get all credentials""" LOG.debug(_("get_all_credentials() called")) credential_list = cdb.get_all_credentials(tenant_id) return credential_list def get_credential_details(self, tenant_id, credential_id): """Get a particular credential""" LOG.debug(_("get_credential_details() called")) try: credential = cdb.get_credential(tenant_id, credential_id) except Exception: raise cexc.CredentialNotFound(tenant_id=tenant_id, credential_id=credential_id) return credential def create_credential(self, tenant_id, credential_name, user_name, password): """Create a new credential""" LOG.debug(_("create_credential() called")) credential = cdb.add_credential(tenant_id, credential_name, user_name, password) return credential def delete_credential(self, tenant_id, credential_id): """Delete a credential""" LOG.debug(_("delete_credential() called")) try: credential = cdb.get_credential(tenant_id, credential_id) except Exception: raise cexc.CredentialNotFound(tenant_id=tenant_id, credential_id=credential_id) credential = cdb.remove_credential(tenant_id, credential_id) return credential def rename_credential(self, tenant_id, credential_id, new_name): """Rename the particular credential resource""" LOG.debug(_("rename_credential() called")) try: credential = cdb.get_credential(tenant_id, credential_id) except Exception: raise cexc.CredentialNotFound(tenant_id=tenant_id, credential_id=credential_id) credential = cdb.update_credential(tenant_id, credential_id, new_name) return credential def schedule_host(self, tenant_id, instance_id, instance_desc): """Provides the hostname on which a dynamic vnic is reserved""" LOG.debug(_("schedule_host() called")) host_list = self._invoke_device_plugins(self._func_name(), [tenant_id, instance_id, instance_desc]) return host_list def associate_port(self, tenant_id, instance_id, instance_desc): """ Get the portprofile name and the device name for the dynamic vnic """ LOG.debug(_("associate_port() called")) return self._invoke_device_plugins(self._func_name(), [tenant_id, instance_id, instance_desc]) def detach_port(self, tenant_id, instance_id, instance_desc): """ Remove the association of the VIF with the dynamic vnic """ LOG.debug(_("detach_port() called")) return self._invoke_device_plugins(self._func_name(), [tenant_id, instance_id, instance_desc]) """ Private functions """ def _invoke_device_plugins(self, function_name, args): """ Device-specific calls including core API and extensions are delegated to the model. """ if hasattr(self._model, function_name): return getattr(self._model, function_name)(*args) def _func_name(self, offset=0): """Getting the name of the calling funciton""" return inspect.stack()[1 + offset][3]
"""The tests for the Template vacuum platform.""" import logging import pytest from homeassistant import setup from homeassistant.const import STATE_ON, STATE_OFF, STATE_UNKNOWN, STATE_UNAVAILABLE from homeassistant.components.vacuum import ( ATTR_BATTERY_LEVEL, STATE_CLEANING, STATE_DOCKED, STATE_IDLE, STATE_PAUSED, STATE_RETURNING, ) from tests.common import async_mock_service, assert_setup_component from tests.components.vacuum import common _LOGGER = logging.getLogger(__name__) _TEST_VACUUM = "vacuum.test_vacuum" _STATE_INPUT_SELECT = "input_select.state" _SPOT_CLEANING_INPUT_BOOLEAN = "input_boolean.spot_cleaning" _LOCATING_INPUT_BOOLEAN = "input_boolean.locating" _FAN_SPEED_INPUT_SELECT = "input_select.fan_speed" _BATTERY_LEVEL_INPUT_NUMBER = "input_number.battery_level" @pytest.fixture def calls(hass): """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") # Configuration tests # async def test_missing_optional_config(hass, calls): """Test: missing optional template is ok.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": {"start": {"service": "script.vacuum_start"}} }, } }, ) await hass.async_start() await hass.async_block_till_done() _verify(hass, STATE_UNKNOWN, None) async def test_missing_start_config(hass, calls): """Test: missing 'start' will fail.""" with assert_setup_component(0, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": {"test_vacuum": {"value_template": "{{ 'on' }}"}}, } }, ) await hass.async_start() await hass.async_block_till_done() assert hass.states.async_all() == [] async def test_invalid_config(hass, calls): """Test: invalid config structure will fail.""" with assert_setup_component(0, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "platform": "template", "vacuums": { "test_vacuum": {"start": {"service": "script.vacuum_start"}} }, }, ) await hass.async_start() await hass.async_block_till_done() assert hass.states.async_all() == [] # End of configuration tests # # Template tests # async def test_templates_with_entities(hass, calls): """Test templates with values from other entities.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "value_template": "{{ states('input_select.state') }}", "battery_level_template": "{{ states('input_number.battery_level') }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() _verify(hass, STATE_UNKNOWN, None) hass.states.async_set(_STATE_INPUT_SELECT, STATE_CLEANING) hass.states.async_set(_BATTERY_LEVEL_INPUT_NUMBER, 100) await hass.async_block_till_done() _verify(hass, STATE_CLEANING, 100) async def test_templates_with_valid_values(hass, calls): """Test templates with valid values.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "value_template": "{{ 'cleaning' }}", "battery_level_template": "{{ 100 }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() _verify(hass, STATE_CLEANING, 100) async def test_templates_invalid_values(hass, calls): """Test templates with invalid values.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "value_template": "{{ 'abc' }}", "battery_level_template": "{{ 101 }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() _verify(hass, STATE_UNKNOWN, None) async def test_invalid_templates(hass, calls): """Test invalid templates.""" with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "value_template": "{{ this_function_does_not_exist() }}", "battery_level_template": "{{ this_function_does_not_exist() }}", "fan_speed_template": "{{ this_function_does_not_exist() }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() _verify(hass, STATE_UNKNOWN, None) async def test_available_template_with_entities(hass, calls): """Test availability templates with values from other entities.""" assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_template_vacuum": { "availability_template": "{{ is_state('availability_state.state', 'on') }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() # When template returns true.. hass.states.async_set("availability_state.state", STATE_ON) await hass.async_block_till_done() # Device State should not be unavailable assert hass.states.get("vacuum.test_template_vacuum").state != STATE_UNAVAILABLE # When Availability template returns false hass.states.async_set("availability_state.state", STATE_OFF) await hass.async_block_till_done() # device state should be unavailable assert hass.states.get("vacuum.test_template_vacuum").state == STATE_UNAVAILABLE async def test_invalid_availability_template_keeps_component_available(hass, caplog): """Test that an invalid availability keeps the device available.""" assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_template_vacuum": { "availability_template": "{{ x - 12 }}", "start": {"service": "script.vacuum_start"}, } }, } }, ) await hass.async_start() await hass.async_block_till_done() assert hass.states.get("vacuum.test_template_vacuum") != STATE_UNAVAILABLE assert ("UndefinedError: 'x' is undefined") in caplog.text # End of template tests # # Function tests # async def test_state_services(hass, calls): """Test state services.""" await _register_components(hass) # Start vacuum await common.async_start(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_STATE_INPUT_SELECT).state == STATE_CLEANING _verify(hass, STATE_CLEANING, None) # Pause vacuum await common.async_pause(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_STATE_INPUT_SELECT).state == STATE_PAUSED _verify(hass, STATE_PAUSED, None) # Stop vacuum await common.async_stop(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_STATE_INPUT_SELECT).state == STATE_IDLE _verify(hass, STATE_IDLE, None) # Return vacuum to base await common.async_return_to_base(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_STATE_INPUT_SELECT).state == STATE_RETURNING _verify(hass, STATE_RETURNING, None) async def test_unused_services(hass, calls): """Test calling unused services should not crash.""" await _register_basic_vacuum(hass) # Pause vacuum await common.async_pause(hass, _TEST_VACUUM) await hass.async_block_till_done() # Stop vacuum await common.async_stop(hass, _TEST_VACUUM) await hass.async_block_till_done() # Return vacuum to base await common.async_return_to_base(hass, _TEST_VACUUM) await hass.async_block_till_done() # Spot cleaning await common.async_clean_spot(hass, _TEST_VACUUM) await hass.async_block_till_done() # Locate vacuum await common.async_locate(hass, _TEST_VACUUM) await hass.async_block_till_done() # Set fan's speed await common.async_set_fan_speed(hass, "medium", _TEST_VACUUM) await hass.async_block_till_done() _verify(hass, STATE_UNKNOWN, None) async def test_clean_spot_service(hass, calls): """Test clean spot service.""" await _register_components(hass) # Clean spot await common.async_clean_spot(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_SPOT_CLEANING_INPUT_BOOLEAN).state == STATE_ON async def test_locate_service(hass, calls): """Test locate service.""" await _register_components(hass) # Locate vacuum await common.async_locate(hass, _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_LOCATING_INPUT_BOOLEAN).state == STATE_ON async def test_set_fan_speed(hass, calls): """Test set valid fan speed.""" await _register_components(hass) # Set vacuum's fan speed to high await common.async_set_fan_speed(hass, "high", _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_FAN_SPEED_INPUT_SELECT).state == "high" # Set fan's speed to medium await common.async_set_fan_speed(hass, "medium", _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_FAN_SPEED_INPUT_SELECT).state == "medium" async def test_set_invalid_fan_speed(hass, calls): """Test set invalid fan speed when fan has valid speed.""" await _register_components(hass) # Set vacuum's fan speed to high await common.async_set_fan_speed(hass, "high", _TEST_VACUUM) await hass.async_block_till_done() # verify assert hass.states.get(_FAN_SPEED_INPUT_SELECT).state == "high" # Set vacuum's fan speed to 'invalid' await common.async_set_fan_speed(hass, "invalid", _TEST_VACUUM) await hass.async_block_till_done() # verify fan speed is unchanged assert hass.states.get(_FAN_SPEED_INPUT_SELECT).state == "high" def _verify(hass, expected_state, expected_battery_level): """Verify vacuum's state and speed.""" state = hass.states.get(_TEST_VACUUM) attributes = state.attributes assert state.state == expected_state assert attributes.get(ATTR_BATTERY_LEVEL) == expected_battery_level async def _register_basic_vacuum(hass): """Register basic vacuum with only required options for testing.""" with assert_setup_component(1, "input_select"): assert await setup.async_setup_component( hass, "input_select", {"input_select": {"state": {"name": "State", "options": [STATE_CLEANING]}}}, ) with assert_setup_component(1, "vacuum"): assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": { "test_vacuum": { "start": { "service": "input_select.select_option", "data": { "entity_id": _STATE_INPUT_SELECT, "option": STATE_CLEANING, }, } } }, } }, ) await hass.async_start() await hass.async_block_till_done() async def _register_components(hass): """Register basic components for testing.""" with assert_setup_component(2, "input_boolean"): assert await setup.async_setup_component( hass, "input_boolean", {"input_boolean": {"spot_cleaning": None, "locating": None}}, ) with assert_setup_component(2, "input_select"): assert await setup.async_setup_component( hass, "input_select", { "input_select": { "state": { "name": "State", "options": [ STATE_CLEANING, STATE_DOCKED, STATE_IDLE, STATE_PAUSED, STATE_RETURNING, ], }, "fan_speed": { "name": "Fan speed", "options": ["", "low", "medium", "high"], }, } }, ) with assert_setup_component(1, "vacuum"): test_vacuum_config = { "value_template": "{{ states('input_select.state') }}", "fan_speed_template": "{{ states('input_select.fan_speed') }}", "start": { "service": "input_select.select_option", "data": {"entity_id": _STATE_INPUT_SELECT, "option": STATE_CLEANING}, }, "pause": { "service": "input_select.select_option", "data": {"entity_id": _STATE_INPUT_SELECT, "option": STATE_PAUSED}, }, "stop": { "service": "input_select.select_option", "data": {"entity_id": _STATE_INPUT_SELECT, "option": STATE_IDLE}, }, "return_to_base": { "service": "input_select.select_option", "data": {"entity_id": _STATE_INPUT_SELECT, "option": STATE_RETURNING}, }, "clean_spot": { "service": "input_boolean.turn_on", "entity_id": _SPOT_CLEANING_INPUT_BOOLEAN, }, "locate": { "service": "input_boolean.turn_on", "entity_id": _LOCATING_INPUT_BOOLEAN, }, "set_fan_speed": { "service": "input_select.select_option", "data_template": { "entity_id": _FAN_SPEED_INPUT_SELECT, "option": "{{ fan_speed }}", }, }, "fan_speeds": ["low", "medium", "high"], } assert await setup.async_setup_component( hass, "vacuum", { "vacuum": { "platform": "template", "vacuums": {"test_vacuum": test_vacuum_config}, } }, ) await hass.async_start() await hass.async_block_till_done()
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype from pandas import ( Index, NaT, Period, PeriodIndex, Series, date_range, offsets, period_range, ) import pandas._testing as tm from pandas.core.arrays import PeriodArray class TestPeriodIndex: def test_construction_base_constructor(self): # GH 13664 arr = [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")] tm.assert_index_equal(Index(arr), PeriodIndex(arr)) tm.assert_index_equal(Index(np.array(arr)), PeriodIndex(np.array(arr))) arr = [np.nan, NaT, Period("2011-03", freq="M")] tm.assert_index_equal(Index(arr), PeriodIndex(arr)) tm.assert_index_equal(Index(np.array(arr)), PeriodIndex(np.array(arr))) arr = [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="D")] tm.assert_index_equal(Index(arr), Index(arr, dtype=object)) tm.assert_index_equal(Index(np.array(arr)), Index(np.array(arr), dtype=object)) def test_base_constructor_with_period_dtype(self): dtype = PeriodDtype("D") values = ["2011-01-01", "2012-03-04", "2014-05-01"] result = Index(values, dtype=dtype) expected = PeriodIndex(values, dtype=dtype) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "values_constructor", [list, np.array, PeriodIndex, PeriodArray._from_sequence] ) def test_index_object_dtype(self, values_constructor): # Index(periods, dtype=object) is an Index (not an PeriodIndex) periods = [ Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M"), ] values = values_constructor(periods) result = Index(values, dtype=object) assert type(result) is Index tm.assert_numpy_array_equal(result.values, np.array(values)) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") expected = period_range(start="4/2/2012", periods=10, freq="B") index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, Index(years)) tm.assert_index_equal(pindex.quarter, Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx = period_range("2007-01", periods=20, freq="M") # values is an array of Period, thus can retrieve freq tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) msg = "freq not specified and cannot be inferred" with pytest.raises(ValueError, match=msg): PeriodIndex(idx.asi8) with pytest.raises(ValueError, match=msg): PeriodIndex(list(idx.asi8)) msg = "'Period' object is not iterable" with pytest.raises(TypeError, match=msg): PeriodIndex(data=Period("2007", freq="A")) result = PeriodIndex(iter(idx)) tm.assert_index_equal(result, idx) result = PeriodIndex(idx) tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq="M") tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq=offsets.MonthEnd()) tm.assert_index_equal(result, idx) assert result.freq == "M" result = PeriodIndex(idx, freq="2M") tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq=offsets.MonthEnd(2)) tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq="D") exp = idx.asfreq("D", "e") tm.assert_index_equal(result, exp) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype("M8[us]")) msg = r"Wrong dtype: datetime64\[us\]" with pytest.raises(ValueError, match=msg): PeriodIndex(vals, freq="D") @pytest.mark.parametrize("box", [None, "series", "index"]) def test_constructor_datetime64arr_ok(self, box): # https://github.com/pandas-dev/pandas/issues/23438 data = date_range("2017", periods=4, freq="M") if box is None: data = data._values elif box == "series": data = Series(data) result = PeriodIndex(data, freq="D") expected = PeriodIndex( ["2017-01-31", "2017-02-28", "2017-03-31", "2017-04-30"], freq="D" ) tm.assert_index_equal(result, expected) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = PeriodIndex(["2013-01", "2013-03"], dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-03"], freq="M") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[M]" idx = PeriodIndex(["2013-01-05", "2013-03-05"], dtype="period[3D]") exp = PeriodIndex(["2013-01-05", "2013-03-05"], freq="3D") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[3D]" # if we already have a freq and its not the same, then asfreq # (not changed) idx = PeriodIndex(["2013-01-01", "2013-01-02"], freq="D") res = PeriodIndex(idx, dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-01"], freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" res = PeriodIndex(idx, freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" msg = "specified freq and dtype are different" with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(["2011-01"], freq="M", dtype="period[D]") def test_constructor_empty(self): idx = PeriodIndex([], freq="M") assert isinstance(idx, PeriodIndex) assert len(idx) == 0 assert idx.freq == "M" with pytest.raises(ValueError, match="freq not specified"): PeriodIndex([]) def test_constructor_pi_nat(self): idx = PeriodIndex( [Period("2011-01", freq="M"), NaT, Period("2011-01", freq="M")] ) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array([Period("2011-01", freq="M"), NaT, Period("2011-01", freq="M")]) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex( [NaT, NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M")] ) exp = PeriodIndex(["NaT", "NaT", "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array( [NaT, NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M")] ) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex([NaT, NaT, "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex([NaT, NaT]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array([NaT, NaT])) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(["NaT", "NaT"]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array(["NaT", "NaT"])) def test_constructor_incompat_freq(self): msg = "Input has different freq=D from PeriodIndex\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex([Period("2011-01", freq="M"), NaT, Period("2011-01", freq="D")]) with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex( np.array( [Period("2011-01", freq="M"), NaT, Period("2011-01", freq="D")] ) ) # first element is NaT with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex([NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")]) with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex( np.array( [NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) ) def test_constructor_mixed(self): idx = PeriodIndex(["2011-01", NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex(["NaT", NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["NaT", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex([Period("2011-01-01", freq="D"), NaT, "2012-01-01"]) exp = PeriodIndex(["2011-01-01", "NaT", "2012-01-01"], freq="D") tm.assert_index_equal(idx, exp) def test_constructor_simple_new(self): idx = period_range("2007-01", name="p", periods=2, freq="M") with pytest.raises(AssertionError, match="<class .*PeriodIndex'>"): idx._simple_new(idx, name="p") result = idx._simple_new(idx._data, name="p") tm.assert_index_equal(result, idx) msg = "Should be numpy array of type i8" with pytest.raises(AssertionError, match=msg): # Need ndarray, not Int64Index type(idx._data)._simple_new(Index(idx.asi8), freq=idx.freq) arr = type(idx._data)._simple_new(idx.asi8, freq=idx.freq) result = idx._simple_new(arr, name="p") tm.assert_index_equal(result, idx) def test_constructor_simple_new_empty(self): # GH13079 idx = PeriodIndex([], freq="M", name="p") with pytest.raises(AssertionError, match="<class .*PeriodIndex'>"): idx._simple_new(idx, name="p") result = idx._simple_new(idx._data, name="p") tm.assert_index_equal(result, idx) @pytest.mark.parametrize("floats", [[1.1, 2.1], np.array([1.1, 2.1])]) def test_constructor_floats(self, floats): with pytest.raises(AssertionError, match="<class "): PeriodIndex._simple_new(floats) msg = "PeriodIndex does not allow floating point in construction" with pytest.raises(TypeError, match=msg): PeriodIndex(floats) def test_constructor_nat(self): msg = "start and end must not be NaT" with pytest.raises(ValueError, match=msg): period_range(start="NaT", end="2011-01-01", freq="M") with pytest.raises(ValueError, match=msg): period_range(start="2011-01-01", end="NaT", freq="M") def test_constructor_year_and_quarter(self): year = Series([2001, 2002, 2003]) quarter = year - 2000 idx = PeriodIndex(year=year, quarter=quarter) strs = [f"{t[0]:d}Q{t[1]:d}" for t in zip(quarter, year)] lops = list(map(Period, strs)) p = PeriodIndex(lops) tm.assert_index_equal(p, idx) def test_constructor_freq_mult(self): # GH #7811 pidx = period_range(start="2014-01", freq="2M", periods=4) expected = PeriodIndex(["2014-01", "2014-03", "2014-05", "2014-07"], freq="2M") tm.assert_index_equal(pidx, expected) pidx = period_range(start="2014-01-02", end="2014-01-15", freq="3D") expected = PeriodIndex( ["2014-01-02", "2014-01-05", "2014-01-08", "2014-01-11", "2014-01-14"], freq="3D", ) tm.assert_index_equal(pidx, expected) pidx = period_range(end="2014-01-01 17:00", freq="4H", periods=3) expected = PeriodIndex( ["2014-01-01 09:00", "2014-01-01 13:00", "2014-01-01 17:00"], freq="4H" ) tm.assert_index_equal(pidx, expected) msg = "Frequency must be positive, because it represents span: -1M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="-1M") msg = "Frequency must be positive, because it represents span: 0M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="0M") msg = "Frequency must be positive, because it represents span: 0M" with pytest.raises(ValueError, match=msg): period_range("2011-01", periods=3, freq="0M") @pytest.mark.parametrize("freq", ["A", "M", "D", "T", "S"]) @pytest.mark.parametrize("mult", [1, 2, 3, 4, 5]) def test_constructor_freq_mult_dti_compat(self, mult, freq): freqstr = str(mult) + freq pidx = period_range(start="2014-04-01", freq=freqstr, periods=10) expected = date_range(start="2014-04-01", freq=freqstr, periods=10).to_period( freqstr ) tm.assert_index_equal(pidx, expected) def test_constructor_freq_combined(self): for freq in ["1D1H", "1H1D"]: pidx = PeriodIndex(["2016-01-01", "2016-01-02"], freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 00:00"], freq="25H") for freq in ["1D1H", "1H1D"]: pidx = period_range(start="2016-01-01", periods=2, freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 01:00"], freq="25H") tm.assert_index_equal(pidx, expected) def test_constructor(self): pi = period_range(freq="A", start="1/1/2001", end="12/1/2009") assert len(pi) == 9 pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009") assert len(pi) == 4 * 9 pi = period_range(freq="M", start="1/1/2001", end="12/1/2009") assert len(pi) == 12 * 9 pi = period_range(freq="D", start="1/1/2001", end="12/31/2009") assert len(pi) == 365 * 9 + 2 pi = period_range(freq="B", start="1/1/2001", end="12/31/2009") assert len(pi) == 261 * 9 pi = period_range(freq="H", start="1/1/2001", end="12/31/2001 23:00") assert len(pi) == 365 * 24 pi = period_range(freq="Min", start="1/1/2001", end="1/1/2001 23:59") assert len(pi) == 24 * 60 pi = period_range(freq="S", start="1/1/2001", end="1/1/2001 23:59:59") assert len(pi) == 24 * 60 * 60 start = Period("02-Apr-2005", "B") i1 = period_range(start=start, periods=20) assert len(i1) == 20 assert i1.freq == start.freq assert i1[0] == start end_intv = Period("2006-12-31", "W") i1 = period_range(end=end_intv, periods=10) assert len(i1) == 10 assert i1.freq == end_intv.freq assert i1[-1] == end_intv end_intv = Period("2006-12-31", "1w") i2 = period_range(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period("2005-05-01", "B") i1 = period_range(start=start, end=end_intv) # infer freq from first element i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")]) assert len(i2) == 2 assert i2[0] == end_intv i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")])) assert len(i2) == 2 assert i2[0] == end_intv # Mixed freq should fail vals = [end_intv, Period("2006-12-31", "w")] msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)" with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) vals = np.array(vals) with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) # tuple freq disallowed GH#34703 with pytest.raises(TypeError, match="pass as a string instead"): Period("2006-12-31", ("w", 1)) @pytest.mark.parametrize( "freq", ["M", "Q", "A", "D", "B", "T", "S", "L", "U", "N", "H"] ) def test_recreate_from_data(self, freq): org = period_range(start="2001/04/01", freq=freq, periods=1) idx = PeriodIndex(org.values, freq=freq) tm.assert_index_equal(idx, org) def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq="A") expected = Index([str(num) for num in raw]) res = index.map(str) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, str) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected) class TestShallowCopy: def test_shallow_copy_empty(self): # GH#13067 idx = PeriodIndex([], freq="M") result = idx._view() expected = idx tm.assert_index_equal(result, expected) def test_shallow_copy_disallow_i8(self): # GH#24391 pi = period_range("2018-01-01", periods=3, freq="2D") with pytest.raises(AssertionError, match="ndarray"): pi._shallow_copy(pi.asi8) def test_shallow_copy_requires_disallow_period_index(self): pi = period_range("2018-01-01", periods=3, freq="2D") with pytest.raises(AssertionError, match="PeriodIndex"): pi._shallow_copy(pi) class TestSeriesPeriod: def test_constructor_cant_cast_period(self): msg = "Cannot cast PeriodIndex to dtype float64" with pytest.raises(TypeError, match=msg): Series(period_range("2000-01-01", periods=10, freq="D"), dtype=float) def test_constructor_cast_object(self): s = Series(period_range("1/1/2000", periods=10), dtype=PeriodDtype("D")) exp = Series(period_range("1/1/2000", periods=10)) tm.assert_series_equal(s, exp)
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Util functions and classes for cloudstorage_api.""" __all__ = ['set_default_retry_params', 'RetryParams', ] import copy import httplib import logging import math import os import threading import time import urllib try: from google.appengine.api import urlfetch from google.appengine.datastore import datastore_rpc from google.appengine.ext.ndb import eventloop from google.appengine.ext.ndb import utils from google.appengine import runtime from google.appengine.runtime import apiproxy_errors except ImportError: from google.appengine.api import urlfetch from google.appengine.datastore import datastore_rpc from google.appengine import runtime from google.appengine.runtime import apiproxy_errors from google.appengine.ext.ndb import eventloop from google.appengine.ext.ndb import utils _RETRIABLE_EXCEPTIONS = (urlfetch.DownloadError, apiproxy_errors.Error) _thread_local_settings = threading.local() _thread_local_settings.default_retry_params = None def set_default_retry_params(retry_params): """Set a default RetryParams for current thread current request.""" _thread_local_settings.default_retry_params = copy.copy(retry_params) def _get_default_retry_params(): """Get default RetryParams for current request and current thread. Returns: A new instance of the default RetryParams. """ default = getattr(_thread_local_settings, 'default_retry_params', None) if default is None or not default.belong_to_current_request(): return RetryParams() else: return copy.copy(default) def _quote_filename(filename): """Quotes filename to use as a valid URI path. Args: filename: user provided filename. /bucket/filename. Returns: The filename properly quoted to use as URI's path component. """ return urllib.quote(filename) def _unquote_filename(filename): """Unquotes a valid URI path back to its filename. This is the opposite of _quote_filename. Args: filename: a quoted filename. /bucket/some%20filename. Returns: The filename unquoted. """ return urllib.unquote(filename) def _should_retry(resp): """Given a urlfetch response, decide whether to retry that request.""" return (resp.status_code == httplib.REQUEST_TIMEOUT or (resp.status_code >= 500 and resp.status_code < 600)) class RetryParams(object): """Retry configuration parameters.""" @datastore_rpc._positional(1) def __init__(self, backoff_factor=2.0, initial_delay=0.1, max_delay=10.0, min_retries=3, max_retries=6, max_retry_period=30.0, urlfetch_timeout=None, save_access_token=False): """Init. This object is unique per request per thread. Library will retry according to this setting when App Engine Server can't call urlfetch, urlfetch timed out, or urlfetch got a 408 or 500-600 response. Args: backoff_factor: exponential backoff multiplier. initial_delay: seconds to delay for the first retry. max_delay: max seconds to delay for every retry. min_retries: min number of times to retry. This value is automatically capped by max_retries. max_retries: max number of times to retry. Set this to 0 for no retry. max_retry_period: max total seconds spent on retry. Retry stops when this period passed AND min_retries has been attempted. urlfetch_timeout: timeout for urlfetch in seconds. Could be None, in which case the value will be chosen by urlfetch module. save_access_token: persist access token to datastore to avoid excessive usage of GetAccessToken API. Usually the token is cached in process and in memcache. In some cases, memcache isn't very reliable. """ self.backoff_factor = self._check('backoff_factor', backoff_factor) self.initial_delay = self._check('initial_delay', initial_delay) self.max_delay = self._check('max_delay', max_delay) self.max_retry_period = self._check('max_retry_period', max_retry_period) self.max_retries = self._check('max_retries', max_retries, True, int) self.min_retries = self._check('min_retries', min_retries, True, int) if self.min_retries > self.max_retries: self.min_retries = self.max_retries self.urlfetch_timeout = None if urlfetch_timeout is not None: self.urlfetch_timeout = self._check('urlfetch_timeout', urlfetch_timeout) self.save_access_token = self._check('save_access_token', save_access_token, True, bool) self._request_id = os.getenv('REQUEST_LOG_ID') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) @classmethod def _check(cls, name, val, can_be_zero=False, val_type=float): """Check init arguments. Args: name: name of the argument. For logging purpose. val: value. Value has to be non negative number. can_be_zero: whether value can be zero. val_type: Python type of the value. Returns: The value. Raises: ValueError: when invalid value is passed in. TypeError: when invalid value type is passed in. """ valid_types = [val_type] if val_type is float: valid_types.append(int) if type(val) not in valid_types: raise TypeError( 'Expect type %s for parameter %s' % (val_type.__name__, name)) if val < 0: raise ValueError( 'Value for parameter %s has to be greater than 0' % name) if not can_be_zero and val == 0: raise ValueError( 'Value for parameter %s can not be 0' % name) return val def belong_to_current_request(self): return os.getenv('REQUEST_LOG_ID') == self._request_id def delay(self, n, start_time): """Calculate delay before the next retry. Args: n: the number of current attempt. The first attempt should be 1. start_time: the time when retry started in unix time. Returns: Number of seconds to wait before next retry. -1 if retry should give up. """ if (n > self.max_retries or (n > self.min_retries and time.time() - start_time > self.max_retry_period)): return -1 return min( math.pow(self.backoff_factor, n-1) * self.initial_delay, self.max_delay) def _retry_fetch(url, retry_params, **kwds): """A blocking fetch function similar to urlfetch.fetch. This function should be used when a urlfetch has timed out or the response shows http request timeout. This function will put current thread to sleep between retry backoffs. Args: url: url to fetch. retry_params: an instance of RetryParams. **kwds: keyword arguments for urlfetch. If deadline is specified in kwds, it precedes the one in RetryParams. If none is specified, it's up to urlfetch to use its own default. Returns: A urlfetch response from the last retry. None if no retry was attempted. Raises: Whatever exception encountered during the last retry. """ n = 1 start_time = time.time() delay = retry_params.delay(n, start_time) if delay <= 0: return logging.info('Will retry request to %s.', url) while delay > 0: resp = None try: logging.info('Retry in %s seconds.', delay) time.sleep(delay) resp = urlfetch.fetch(url, **kwds) except runtime.DeadlineExceededError: logging.info( 'Urlfetch retry %s will exceed request deadline ' 'after %s seconds total', n, time.time() - start_time) raise except _RETRIABLE_EXCEPTIONS, e: pass n += 1 delay = retry_params.delay(n, start_time) if resp and not _should_retry(resp): break elif resp: logging.info( 'Got status %s from GCS.', resp.status_code) else: logging.info( 'Got exception "%r" while contacting GCS.', e) if resp: return resp logging.info('Urlfetch failed after %s retries and %s seconds in total.', n - 1, time.time() - start_time) raise def _run_until_rpc(): """Eagerly evaluate tasklets until it is blocking on some RPC. Usually ndb eventloop el isn't run until some code calls future.get_result(). When an async tasklet is called, the tasklet wrapper evaluates the tasklet code into a generator, enqueues a callback _help_tasklet_along onto the el.current queue, and returns a future. _help_tasklet_along, when called by the el, will get one yielded value from the generator. If the value if another future, set up a callback _on_future_complete to invoke _help_tasklet_along when the dependent future fulfills. If the value if a RPC, set up a callback _on_rpc_complete to invoke _help_tasklet_along when the RPC fulfills. Thus _help_tasklet_along drills down the chain of futures until some future is blocked by RPC. El runs all callbacks and constantly check pending RPC status. """ el = eventloop.get_event_loop() while el.current: el.run0() def _eager_tasklet(tasklet): """Decorator to turn tasklet to run eagerly.""" @utils.wrapping(tasklet) def eager_wrapper(*args, **kwds): fut = tasklet(*args, **kwds) _run_until_rpc() return fut return eager_wrapper
# Copyright 2013 OpenStack Foundation # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import mox from neutronclient.common import exceptions as n_exc from neutronclient.v2_0 import client from nova.api.openstack.compute.contrib import security_groups from nova import context from nova import exception from nova.network import neutronv2 from nova.network.security_group import neutron_driver from nova import test class TestNeutronDriver(test.NoDBTestCase): def setUp(self): super(TestNeutronDriver, self).setUp() self.mox.StubOutWithMock(neutronv2, 'get_client') self.moxed_client = self.mox.CreateMock(client.Client) neutronv2.get_client(mox.IgnoreArg()).MultipleTimes().AndReturn( self.moxed_client) self.context = context.RequestContext('userid', 'my_tenantid') setattr(self.context, 'auth_token', 'bff4a5a6b9eb4ea2a6efec6eefb77936') def test_list_with_project(self): project_id = '0af70a4d22cf4652824ddc1f2435dd85' security_groups_list = {'security_groups': []} self.moxed_client.list_security_groups(tenant_id=project_id).AndReturn( security_groups_list) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() sg_api.list(self.context, project=project_id) def test_get_with_name_duplicated(self): sg_name = 'web_server' expected_sg_id = '85cc3048-abc3-43cc-89b3-377341426ac5' list_security_groups = {'security_groups': [{'name': sg_name, 'id': expected_sg_id, 'tenant_id': self.context.tenant, 'description': 'server', 'rules': []} ]} self.moxed_client.list_security_groups(name=sg_name, fields='id', tenant_id=self.context.tenant).AndReturn(list_security_groups) expected_sg = {'security_group': {'name': sg_name, 'id': expected_sg_id, 'tenant_id': self.context.tenant, 'description': 'server', 'rules': []}} self.moxed_client.show_security_group(expected_sg_id).AndReturn( expected_sg) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() observed_sg = sg_api.get(self.context, name=sg_name) expected_sg['security_group']['project_id'] = self.context.tenant del expected_sg['security_group']['tenant_id'] self.assertEqual(expected_sg['security_group'], observed_sg) def test_create_security_group_exceed_quota(self): name = 'test-security-group' description = 'test-security-group' body = {'security_group': {'name': name, 'description': description}} message = "Quota exceeded for resources: ['security_group']" self.moxed_client.create_security_group( body).AndRaise(n_exc.NeutronClientException(status_code=409, message=message)) self.mox.ReplayAll() sg_api = security_groups.NativeNeutronSecurityGroupAPI() self.assertRaises(exception.SecurityGroupLimitExceeded, sg_api.create_security_group, self.context, name, description) def test_create_security_group_rules_exceed_quota(self): vals = {'protocol': 'tcp', 'cidr': '0.0.0.0/0', 'parent_group_id': '7ae75663-277e-4a0e-8f87-56ea4e70cb47', 'group_id': None, 'from_port': 1025, 'to_port': 1025} body = {'security_group_rules': [{'remote_group_id': None, 'direction': 'ingress', 'protocol': 'tcp', 'ethertype': 'IPv4', 'port_range_max': 1025, 'port_range_min': 1025, 'security_group_id': '7ae75663-277e-4a0e-8f87-56ea4e70cb47', 'remote_ip_prefix': '0.0.0.0/0'}]} name = 'test-security-group' message = "Quota exceeded for resources: ['security_group_rule']" self.moxed_client.create_security_group_rule( body).AndRaise(n_exc.NeutronClientException(status_code=409, message=message)) self.mox.ReplayAll() sg_api = security_groups.NativeNeutronSecurityGroupAPI() self.assertRaises(exception.SecurityGroupLimitExceeded, sg_api.add_rules, self.context, None, name, [vals]) def test_list_security_group_with_no_port_range_and_not_tcp_udp_icmp(self): sg1 = {'description': 'default', 'id': '07f1362f-34f6-4136-819a-2dcde112269e', 'name': 'default', 'tenant_id': 'c166d9316f814891bcb66b96c4c891d6', 'security_group_rules': [{'direction': 'ingress', 'ethertype': 'IPv4', 'id': '0a4647f1-e1aa-488d-90e1-97a7d0293beb', 'port_range_max': None, 'port_range_min': None, 'protocol': '51', 'remote_group_id': None, 'remote_ip_prefix': None, 'security_group_id': '07f1362f-34f6-4136-819a-2dcde112269e', 'tenant_id': 'c166d9316f814891bcb66b96c4c891d6'}]} self.moxed_client.list_security_groups().AndReturn( {'security_groups': [sg1]}) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() result = sg_api.list(self.context) expected = [{'rules': [{'from_port': -1, 'protocol': '51', 'to_port': -1, 'parent_group_id': '07f1362f-34f6-4136-819a-2dcde112269e', 'cidr': '0.0.0.0/0', 'group_id': None, 'id': '0a4647f1-e1aa-488d-90e1-97a7d0293beb'}], 'project_id': 'c166d9316f814891bcb66b96c4c891d6', 'id': '07f1362f-34f6-4136-819a-2dcde112269e', 'name': 'default', 'description': 'default'}] self.assertEqual(expected, result) def test_instances_security_group_bindings(self): server_id = 'c5a20e8d-c4b0-47cf-9dca-ebe4f758acb1' port1_id = '4c505aec-09aa-47bc-bcc0-940477e84dc0' port2_id = 'b3b31a53-6e29-479f-ae5c-00b7b71a6d44' sg1_id = '2f7ce969-1a73-4ef9-bbd6-c9a91780ecd4' sg2_id = '20c89ce5-9388-4046-896e-64ffbd3eb584' servers = [{'id': server_id}] ports = [{'id': port1_id, 'device_id': server_id, 'security_groups': [sg1_id]}, {'id': port2_id, 'device_id': server_id, 'security_groups': [sg2_id]}] port_list = {'ports': ports} sg1 = {'id': sg1_id, 'name': 'wol'} sg2 = {'id': sg2_id, 'name': 'eor'} security_groups_list = {'security_groups': [sg1, sg2]} sg_bindings = {server_id: [{'name': 'wol'}, {'name': 'eor'}]} self.moxed_client.list_ports(device_id=[server_id]).AndReturn( port_list) self.moxed_client.list_security_groups(id=[sg2_id, sg1_id]).AndReturn( security_groups_list) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() result = sg_api.get_instances_security_groups_bindings( self.context, servers) self.assertEqual(result, sg_bindings) def _test_instances_security_group_bindings_scale(self, num_servers): max_query = 150 sg1_id = '2f7ce969-1a73-4ef9-bbd6-c9a91780ecd4' sg2_id = '20c89ce5-9388-4046-896e-64ffbd3eb584' sg1 = {'id': sg1_id, 'name': 'wol'} sg2 = {'id': sg2_id, 'name': 'eor'} security_groups_list = {'security_groups': [sg1, sg2]} servers = [] device_ids = [] ports = [] sg_bindings = {} for i in xrange(0, num_servers): server_id = "server-%d" % i port_id = "port-%d" % i servers.append({'id': server_id}) device_ids.append(server_id) ports.append({'id': port_id, 'device_id': server_id, 'security_groups': [sg1_id, sg2_id]}) sg_bindings[server_id] = [{'name': 'wol'}, {'name': 'eor'}] for x in xrange(0, num_servers, max_query): self.moxed_client.list_ports( device_id=device_ids[x:x + max_query]).\ AndReturn({'ports': ports[x:x + max_query]}) self.moxed_client.list_security_groups(id=[sg2_id, sg1_id]).AndReturn( security_groups_list) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() result = sg_api.get_instances_security_groups_bindings( self.context, servers) self.assertEqual(result, sg_bindings) def test_instances_security_group_bindings_less_than_max(self): self._test_instances_security_group_bindings_scale(100) def test_instances_security_group_bindings_max(self): self._test_instances_security_group_bindings_scale(150) def test_instances_security_group_bindings_more_then_max(self): self._test_instances_security_group_bindings_scale(300) def test_instances_security_group_bindings_with_hidden_sg(self): servers = [{'id': 'server_1'}] ports = [{'id': '1', 'device_id': 'dev_1', 'security_groups': ['1']}, {'id': '2', 'device_id': 'dev_1', 'security_groups': ['2']}] port_list = {'ports': ports} sg1 = {'id': '1', 'name': 'wol'} # User doesn't have access to sg2 security_groups_list = {'security_groups': [sg1]} sg_bindings = {'dev_1': [{'name': 'wol'}]} self.moxed_client.list_ports(device_id=['server_1']).AndReturn( port_list) self.moxed_client.list_security_groups(id=['1', '2']).AndReturn( security_groups_list) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() result = sg_api.get_instances_security_groups_bindings( self.context, servers) self.assertEqual(result, sg_bindings) def test_instance_empty_security_groups(self): port_list = {'ports': [{'id': 1, 'device_id': '1', 'security_groups': []}]} self.moxed_client.list_ports(device_id=['1']).AndReturn(port_list) self.mox.ReplayAll() sg_api = neutron_driver.SecurityGroupAPI() result = sg_api.get_instance_security_groups(self.context, '1') self.assertEqual([], result)
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Service.url' db.alter_column(u'operations_service', 'url', self.gf('django.db.models.fields.URLField')(max_length=600)) # Changing field 'Agency.url' db.alter_column(u'operations_agency', 'url', self.gf('django.db.models.fields.URLField')(max_length=600, null=True)) # Changing field 'Event.product_feed_url' db.alter_column(u'operations_event', 'product_feed_url', self.gf('django.db.models.fields.TextField')(null=True)) def backwards(self, orm): # Changing field 'Service.url' db.alter_column(u'operations_service', 'url', self.gf('django.db.models.fields.URLField')(max_length=200)) # Changing field 'Agency.url' db.alter_column(u'operations_agency', 'url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True)) # Changing field 'Event.product_feed_url' db.alter_column(u'operations_event', 'product_feed_url', self.gf('django.db.models.fields.CharField')(max_length=200, null=True)) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'maps.map': { 'Meta': {'object_name': 'Map'}, 'center_x': ('django.db.models.fields.FloatField', [], {'default': '0.0'}), 'center_y': ('django.db.models.fields.FloatField', [], {'default': '0.0'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '800', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'projection': ('django.db.models.fields.CharField', [], {'default': "'EPSG:4326'", 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75'}), 'zoom': ('django.db.models.fields.IntegerField', [], {}) }, u'operations.agency': { 'Meta': {'ordering': "['name']", 'object_name': 'Agency'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'logo': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '600', 'null': 'True', 'blank': 'True'}) }, u'operations.deployment': { 'Meta': {'object_name': 'Deployment'}, 'closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'deployers': ('django.db.models.fields.related.ManyToManyField', [], {'max_length': '250', 'to': u"orm['auth.User']", 'null': 'True', 'symmetrical': 'False', 'blank': 'True'}), 'deployment_location': ('django.db.models.fields.CharField', [], {'max_length': '400'}), 'description': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['operations.Event']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.FloatField', [], {}), 'longitude': ('django.db.models.fields.FloatField', [], {}), 'point': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1'}) }, u'operations.event': { 'Meta': {'ordering': "['-last_updated']", 'object_name': 'Event'}, 'agencies': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['operations.Agency']", 'null': 'True', 'blank': 'True'}), 'closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'collaboration_link': ('django.db.models.fields.URLField', [], {'default': "'https://connect.dco.dod.mil/r3ops?launcher=false'", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'event_location': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'event_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'filedropoff_path': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'geowidgets': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['operations.GeoWidget']", 'null': 'True', 'blank': 'True'}), 'gq_job_ids': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'gq_project_ids': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'null': 'True', 'blank': 'True'}), 'latitude': ('django.db.models.fields.FloatField', [], {}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'longitude': ('django.db.models.fields.FloatField', [], {}), 'map': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['maps.Map']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'poc': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'point': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'posture': ('django.db.models.fields.CharField', [], {'default': "'Monitoring'", 'max_length': '25'}), 'product_feed_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'rfi_generator_id': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'services': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['operations.Service']", 'null': 'True', 'blank': 'True'}), 'show_deployments': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_event_on_map': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_geomedia_triage': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_notes': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_products': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_related_files': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_rfis': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_services': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_supporting_agencies': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_supporting_apps': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_timeline': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '250'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1'}), 'tags': ('django.db.models.fields.CharField', [], {'max_length': '75', 'null': 'True', 'blank': 'True'}) }, u'operations.geowidget': { 'Meta': {'ordering': "['name']", 'object_name': 'GeoWidget'}, 'above_zoom': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'below_zoom': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'data_type': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '300', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'listName': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}), 'selectorLink': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'selectorName': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'selectorPoint': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'selectorShowIf': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'selectorSummary': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'style': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'tabToOpenIn': ('django.db.models.fields.CharField', [], {'default': "'_new'", 'max_length': '20', 'null': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'url_if_local': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}) }, u'operations.lessonlearned': { 'Meta': {'ordering': "['-created']", 'unique_together': "(('submitted_by', 'description', 'event'),)", 'object_name': 'LessonLearned'}, 'action': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'assigned_to': ('django.db.models.fields.related.ForeignKey', [], {'max_length': '250', 'related_name': "'lesson_learned_assignment'", 'null': 'True', 'blank': 'True', 'to': u"orm['auth.User']"}), 'category': ('django.db.models.fields.related.ForeignKey', [], {'max_length': '50', 'to': u"orm['operations.LessonLearnedCategory']", 'null': 'True', 'blank': 'True'}), 'closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True'}), 'due': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['operations.Event']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'priority': ('django.db.models.fields.CharField', [], {'default': "'Low'", 'max_length': '25', 'null': 'True', 'blank': 'True'}), 'resolution': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1', 'null': 'True', 'blank': 'True'}), 'submitted_by': ('django.db.models.fields.related.ForeignKey', [], {'max_length': '250', 'related_name': "'lesson_learned_submission'", 'null': 'True', 'blank': 'True', 'to': u"orm['auth.User']"}), 'work_around': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}) }, u'operations.lessonlearnedcategory': { 'Meta': {'ordering': "['name']", 'object_name': 'LessonLearnedCategory'}, 'description': ('tinymce.models.HTMLField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'operations.service': { 'Meta': {'ordering': "['name']", 'object_name': 'Service'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('tinymce.models.HTMLField', [], {'max_length': '800', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'service_type': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['operations.ServiceType']", 'symmetrical': 'False'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '600'}) }, u'operations.servicetype': { 'Meta': {'ordering': "['name']", 'object_name': 'ServiceType'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('tinymce.models.HTMLField', [], {'max_length': '800', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '15'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1'}) }, u'operations.sitrep': { 'Meta': {'ordering': "['-created']", 'object_name': 'SitRep'}, 'closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'content': ('tinymce.models.HTMLField', [], {'max_length': '6000'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['operations.Event']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'max_length': '250', 'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1', 'max_length': '1', 'null': 'True', 'blank': 'True'}) }, u'taggit.tag': { 'Meta': {'object_name': 'Tag'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}) }, u'taggit.taggeditem': { 'Meta': {'object_name': 'TaggedItem'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'taggit_taggeditem_tagged_items'", 'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'taggit_taggeditem_items'", 'to': u"orm['taggit.Tag']"}) } } complete_apps = ['operations']
from sfepy.terms.terms import * from sfepy.terms.terms_base import ScalarScalar class DiffusionTerm( ScalarScalar, Term ): r""" :Description: General diffusion term with permeability :math:`K_{ij}`. Can be evaluated. Can use derivatives. :Definition: .. math:: \int_{\Omega} K_{ij} \nabla_i q \nabla_j p \mbox{ , } \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r :Arguments 1: material : :math:`K_{ij}`, virtual : :math:`q`, state : :math:`p` :Arguments 2: material : :math:`K_{ij}`, parameter_1 : :math:`\bar{p}`, parameter_2 : :math:`r` """ name = 'dw_diffusion' arg_types = (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2')) modes = ('weak', 'eval') symbolic = {'expression': 'div( K * grad( u ) )', 'map' : {'u' : 'state', 'K' : 'material'}} def get_fargs_weak( self, diff_var = None, chunk_size = None, **kwargs ): mat, virtual, state = self.get_args( **kwargs ) ap, vg = self.get_approximation(virtual) self.set_data_shape( ap ) shape, mode = self.get_shape( diff_var, chunk_size ) vec = self.get_vector( state ) n_el, n_qp, dim, n_ep = self.data_shape if state.is_real(): return (vec, 0, mat, vg, ap.econn), shape, mode else: ac = nm.ascontiguousarray mode += 1j return [(ac(vec.real), 0, mat, vg, ap.econn), (ac(vec.imag), 0, mat, vg, ap.econn)], shape, mode def get_fargs_eval( self, diff_var = None, chunk_size = None, **kwargs ): mat, par1, par2 = self.get_args( **kwargs ) ap, vg = self.get_approximation(par1) self.set_data_shape( ap ) n_el, n_qp, dim, n_ep = self.data_shape cache = self.get_cache( 'grad_scalar', 0 ) gp1 = cache('grad', self, 0, state=par1, get_vector=self.get_vector) cache = self.get_cache( 'grad_scalar', 1 ) gp2 = cache('grad', self, 0, state=par2, get_vector=self.get_vector) return (gp1, gp2, mat, vg), (chunk_size, 1, 1, 1), 0 def set_arg_types( self ): if self.mode == 'weak': self.function = terms.dw_diffusion use_method_with_name( self, self.get_fargs_weak, 'get_fargs' ) else: self.function = terms.d_diffusion use_method_with_name( self, self.get_fargs_eval, 'get_fargs' ) self.use_caches = {'grad_scalar' : [['parameter_1'], ['parameter_2']]} class LaplaceTerm(DiffusionTerm): r""" :Description: Laplace term with :math:`c` coefficient. Can be evaluated. Can use derivatives. :Definition: .. math:: \int_{\Omega} c \nabla q \cdot \nabla p \mbox{ , } \int_{\Omega} c \nabla \bar{p} \cdot \nabla r :Arguments 1: material : :math:`c`, virtual : :math:`q`, state : :math:`p` :Arguments 2: material : :math:`c`, parameter_1 : :math:`\bar{p}`, parameter_2 : :math:`r` """ name = 'dw_laplace' arg_types = (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2')) modes = ('weak', 'eval') symbolic = {'expression': 'c * div( grad( u ) )', 'map' : {'u' : 'state', 'c' : 'material'}} def set_arg_types(self): if self.mode == 'weak': self.function = terms.dw_laplace use_method_with_name(self, self.get_fargs_weak, 'get_fargs') else: self.function = terms.d_laplace use_method_with_name(self, self.get_fargs_eval, 'get_fargs') self.use_caches = {'grad_scalar' : [['parameter_1'], ['parameter_2']]} class PermeabilityRTerm( Term ): r""" :Description: Special-purpose diffusion-like term with permeability :math:`K_{ij}` (to use on the right-hand side). :Definition: .. math:: \int_{\Omega} K_{ij} \nabla_j q :Arguments: material : :math:`K_{ij}`, virtual : :math:`q`, index : :math:`i` """ name = 'dw_permeability_r' arg_types = ('material', 'virtual', 'index') function = staticmethod(terms.dw_permeability_r) def __call__( self, diff_var = None, chunk_size = None, **kwargs ): mat, virtual, index = self.get_args( **kwargs ) ap, vg = self.get_approximation(virtual) n_el, n_qp, dim, n_ep = ap.get_v_data_shape(self.integral) if diff_var is None: shape = (chunk_size, 1, n_ep, 1) else: raise StopIteration if isinstance(index, list): index = index[0] mat = nm.ascontiguousarray(mat[...,index:index+1]) for out, chunk in self.char_fun( chunk_size, shape ): status = self.function( out, mat, vg, ap.econn, chunk ) yield out, chunk, status class DiffusionRTerm( PermeabilityRTerm ): r""" :Description: Diffusion-like term with material parameter :math:`K_{j}` (to use on the right-hand side). :Definition: .. math:: \int_{\Omega} K_{j} \nabla_j q :Arguments: material : :math:`K_j`, virtual : :math:`q` """ name = 'dw_diffusion_r' arg_types = ('material', 'virtual') def __call__( self, diff_var = None, chunk_size = None, **kwargs ): mat, virtual = self.get_args( **kwargs ) ap, vg = self.get_approximation(virtual) n_el, n_qp, dim, n_ep = ap.get_v_data_shape(self.integral) if diff_var is None: shape = (chunk_size, 1, n_ep, 1) else: raise StopIteration for out, chunk in self.char_fun( chunk_size, shape ): status = self.function( out, mat, vg, ap.econn, chunk ) yield out, chunk, status class DiffusionVelocityTerm( Term ): r""" :Description: Diffusion velocity averaged in elements. :Definition: .. math:: \mbox{vector for } K \from \Ical_h: \int_{T_K} -K_{ij} \nabla_j r / \int_{T_K} 1 :Arguments: material : :math:`K_{ij}`, parameter : :math:`r` """ name = 'de_diffusion_velocity' arg_types = ('material','parameter') function = staticmethod(terms.de_diffusion_velocity) def __call__( self, diff_var = None, chunk_size = None, **kwargs ): mat, parameter = self.get_args( **kwargs ) ap, vg = self.get_approximation(parameter) n_el, n_qp, dim, n_ep = ap.get_v_data_shape(self.integral) if diff_var is None: shape = (chunk_size, 1, dim, 1) else: raise StopIteration vec = parameter() for out, chunk in self.char_fun( chunk_size, shape ): status = self.function( out, vec, 0, mat, vg, ap.econn, chunk ) out1 = out / vg.variable( 2 )[chunk] yield out1, chunk, status
# -*- coding: utf-8 -*- import pytest import six import pvl class DictLike(object): def keys(self): return ['a', 'b', 'a'] def __getitem__(self, key): return 42 def test_empty(): module = pvl.PVLModule() assert len(module) == 0 assert module.get('c', 42) == 42 with pytest.raises(KeyError): module['c'] def test_list_creation(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module['a'] == 1 assert module['b'] == 2 assert module.getlist('a') == [1, 3] with pytest.raises(KeyError): module['c'] assert module.get('c', 42) == 42 with pytest.raises(TypeError): pvl.PVLModule([], []) module = pvl.PVLModule(DictLike()) assert len(module) == 3 assert module['a'] == 42 assert module['b'] == 42 assert module.getlist('a') == [42, 42] with pytest.raises(KeyError): module['c'] def test_dict_creation(): module = pvl.PVLModule({'a': 1, 'b': 2}) assert module['a'] == 1 assert module['b'] == 2 assert len(module) == 2 with pytest.raises(KeyError): module['c'] assert module.get('c', 42) == 42 def test_keyword_creation(): module = pvl.PVLModule(a=1, b=2) assert module['a'] == 1 assert module['b'] == 2 assert len(module) == 2 with pytest.raises(KeyError): module['c'] assert module.get('c', 42) == 42 def test_key_access(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert module['a'] == 1 assert module['b'] == 2 with pytest.raises(KeyError): module['c'] def test_index_access(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert module[0] == ('a', 1) assert module[1] == ('b', 2) assert module[2] == ('a', 3) with pytest.raises(IndexError): module[3] def test_slice_access(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert module[0:3] == [('a', 1), ('b', 2), ('a', 3)] assert module[1:] == [('b', 2), ('a', 3)] assert module[:-1] == [('a', 1), ('b', 2)] def test_set(): module = pvl.PVLModule() module['a'] = 1 module['b'] = 2 module['a'] = 3 assert module['a'] == 3 assert module['b'] == 2 assert module.getlist('a') == [3] assert len(module) == 2 with pytest.raises(KeyError): module['c'] assert module.get('c', 42) == 42 assert list(module) == [('a', 3), ('b', 2)] def test_delete(): module = pvl.PVLModule(a=1, b=2) assert len(module) == 2 assert module['a'] == 1 del module['a'] assert len(module) == 1 with pytest.raises(KeyError): module['a'] module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module['a'] == 1 del module['a'] assert len(module) == 1 with pytest.raises(KeyError): module['a'] with pytest.raises(KeyError): del module['c'] def test_clear(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module['a'] == 1 module.clear() assert len(module) == 0 assert module.getlist('a') == [] with pytest.raises(KeyError): module['a'] with pytest.raises(KeyError): module['b'] module['a'] = 42 assert len(module) == 1 assert module['a'] == 42 def test_discard(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module['a'] == 1 module.discard('a') assert len(module) == 1 assert module.getlist('a') == [] with pytest.raises(KeyError): module['a'] assert module['b'] == 2 module.discard('b') assert len(module) == 0 with pytest.raises(KeyError): module['b'] module.discard('c') assert len(module) == 0 def test_pop(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module.pop('a') == 1 assert len(module) == 1 with pytest.raises(KeyError): module['a'] with pytest.raises(KeyError): module.pop('a') assert module.pop('a', 42) == 42 assert module.pop('b') == 2 assert len(module) == 0 with pytest.raises(KeyError): module.pop('b') with pytest.raises(KeyError): module['b'] assert module.pop('b', 42) == 42 with pytest.raises(KeyError): module.pop('c') assert module.pop('c', 42) == 42 def test_popitem(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 assert module.popitem() == ('a', 3) assert len(module) == 2 assert module.popitem() == ('b', 2) assert len(module) == 1 assert module.popitem() == ('a', 1) assert len(module) == 0 with pytest.raises(KeyError): module.popitem() def test_update(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) module.update({'a': 42, 'c': 7}) assert len(module) == 3 assert module['a'] == 42 assert module['b'] == 2 assert module['c'] == 7 module.update() assert len(module) == 3 assert module['a'] == 42 assert module['b'] == 2 assert module['c'] == 7 def test_append(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) module.append('a', 42) assert len(module) == 4 assert module['a'] == 1 assert module.getlist('a') == [1, 3, 42] module.append('c', 43) assert len(module) == 5 assert module['c'] == 43 assert module.getlist('c') == [43] def test_len(): module = pvl.PVLModule() assert len(module) == 0 module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert len(module) == 3 def test_repr(): module = pvl.PVLModule() assert isinstance(repr(module), str) assert repr(module) == 'PVLModule([])' module = pvl.PVLModule(a=1) assert isinstance(repr(module), str) @pytest.mark.skipif(six.PY3, reason='requires python2') def test_py2_items(): module = pvl.PVLModule() assert isinstance(module.items(), list) assert module.items() == [] assert isinstance(module.keys(), list) assert module.keys() == [] assert isinstance(module.values(), list) assert module.values() == [] module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) items = module.items() assert isinstance(items, list) assert items == [('a', 1), ('b', 2), ('a', 3)] assert items.index(('a', 1)) == 0 assert items.index(('b', 2)) == 1 assert items.index(('a', 3)) == 2 keys = module.keys() assert isinstance(keys, list) assert keys == ['a', 'b', 'a'] assert keys.index('a') == 0 assert keys.index('b') == 1 values = module.values() assert isinstance(values, list) assert values == [1, 2, 3] assert values.index(1) == 0 assert values.index(2) == 1 assert values.index(3) == 2 @pytest.mark.skipif(six.PY2, reason='requires python3') def test_py3_items(): module = pvl.PVLModule() assert isinstance(module.items(), pvl._collections.ItemsView) with pytest.raises(IndexError): module.items()[0] assert isinstance(module.keys(), pvl._collections.KeysView) with pytest.raises(IndexError): module.keys()[0] assert isinstance(module.values(), pvl._collections.ValuesView) with pytest.raises(IndexError): module.values()[0] module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert isinstance(module.items(), pvl._collections.ItemsView) items = module.items() assert items[0] == ('a', 1) assert items[1] == ('b', 2) assert items[2] == ('a', 3) assert items.index(('a', 1)) == 0 assert items.index(('b', 2)) == 1 assert items.index(('a', 3)) == 2 assert isinstance(module.keys(), pvl._collections.KeysView) keys = module.keys() assert keys[0] == 'a' assert keys[1] == 'b' assert keys[2] == 'a' assert keys.index('a') == 0 assert keys.index('b') == 1 assert isinstance(module.values(), pvl._collections.ValuesView) values = module.values() assert values[0] == 1 assert values[1] == 2 assert values[2] == 3 assert values.index(1) == 0 assert values.index(2) == 1 assert values.index(3) == 2 if six.PY3: def iteritems(module): return module.items() def iterkeys(module): return module.keys() def itervalues(module): return module.values() else: def iteritems(module): return module.iteritems() def iterkeys(module): return module.iterkeys() def itervalues(module): return module.itervalues() def test_iterators(): module = pvl.PVLModule() assert isinstance(iteritems(module), pvl._collections.MappingView) assert list(iteritems(module)) == [] assert len(iteritems(module)) == 0 assert isinstance(repr(iteritems(module)), str) assert ('a', 1) not in iteritems(module) assert isinstance(iterkeys(module), pvl._collections.MappingView) assert list(iterkeys(module)) == [] assert len(iterkeys(module)) == 0 assert isinstance(repr(iterkeys(module)), str) assert 'a' not in iterkeys(module) assert isinstance(itervalues(module), pvl._collections.MappingView) assert list(itervalues(module)) == [] assert len(itervalues(module)) == 0 assert isinstance(repr(itervalues(module)), str) assert 1 not in itervalues(module) module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) assert isinstance(iteritems(module), pvl._collections.MappingView) assert list(iteritems(module)) == [('a', 1), ('b', 2), ('a', 3)] assert len(iteritems(module)) == 3 assert isinstance(repr(iteritems(module)), str) assert ('a', 1) in iteritems(module) assert ('b', 2) in iteritems(module) assert ('a', 3) in iteritems(module) assert ('c', 4) not in iteritems(module) assert isinstance(iterkeys(module), pvl._collections.MappingView) assert list(iterkeys(module)) == ['a', 'b', 'a'] assert len(iterkeys(module)) == 3 assert isinstance(repr(iterkeys(module)), str) assert 'a' in iterkeys(module) assert 'b' in iterkeys(module) assert 'c' not in iterkeys(module) assert isinstance(itervalues(module), pvl._collections.MappingView) assert list(itervalues(module)) == [1, 2, 3] assert len(itervalues(module)) == 3 assert isinstance(repr(itervalues(module)), str) assert 1 in itervalues(module) assert 2 in itervalues(module) assert 3 in itervalues(module) assert 4 not in itervalues(module) def test_equlity(): assert not pvl.PVLModule() assert not pvl.PVLGroup() assert not pvl.PVLObject() assert not not pvl.PVLModule(a=1) assert not not pvl.PVLGroup(a=1) assert not not pvl.PVLObject(a=1) assert pvl.PVLModule() == pvl.PVLModule() assert pvl.PVLModule() != pvl.PVLGroup() assert pvl.PVLModule() != pvl.PVLObject() assert pvl.PVLGroup() != pvl.PVLModule() assert pvl.PVLGroup() == pvl.PVLGroup() assert pvl.PVLGroup() != pvl.PVLObject() assert pvl.PVLObject() != pvl.PVLModule() assert pvl.PVLObject() != pvl.PVLGroup() assert pvl.PVLObject() == pvl.PVLObject() assert pvl.PVLModule() != pvl.PVLModule(a=1) assert pvl.PVLModule(a=1) == pvl.PVLModule(a=1) assert pvl.PVLModule(a=1) == pvl.PVLModule([('a', 1)]) assert pvl.PVLModule(a=1) == pvl.PVLModule({'a': 1}) assert pvl.PVLModule(a=1) != pvl.PVLModule(b=1) assert pvl.PVLModule(a=1) != pvl.PVLModule(a=2) def test_copy(): module = pvl.PVLModule() copy = module.copy() assert module == copy assert module is not copy module['c'] = 42 assert module != copy module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) copy = module.copy() assert module == copy assert module is not copy module['c'] = 42 assert module != copy def test_conversion(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) expected_dict = { 'a': [1, 3], 'b': [2], } expected_list = [ ('a', 1), ('b', 2), ('a', 3), ] assert dict(module) == expected_dict assert list(module) == expected_list @pytest.mark.parametrize( 'expected_label, key, instance, expected_list, expected_value', [ ([ ('a', 4), ('a', 1), ('b', 2), ('a', 3), ('c', 5), ], 'a', 0, [4, 1, 3], 4), ([ ('a', 1), ('a', 4), ('b', 2), ('a', 3), ('c', 5), ], 'b', 0, [1, 4, 3], 1), ([ ('a', 1), ('b', 2), ('a', 4), ('a', 3), ('c', 5), ], 'a', 1, [1, 4, 3], 1), ([ ('a', 1), ('b', 2), ('a', 3), ('a', 4), ('c', 5), ], 'c', 0, [1, 3, 4], 1) ]) def test_insert_before(expected_label, key, instance, expected_list, expected_value): module1 = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ('c', 5), ]) module2 = module1.copy() expected_module = pvl.PVLModule(expected_label) module1.insert_before(key, [('a', 4)], instance) assert expected_module == module1 assert module1['a'] == expected_value assert module1.getlist('a') == expected_list module2.insert_before(key, pvl.PVLModule([('a', 4)]), instance) assert module2 == expected_module assert module1['a'] == expected_value assert module1.getlist('a') == expected_list @pytest.mark.parametrize( 'expected_label, key, instance, expected_list, expected_value', [ ([ ('a', 1), ('a', 4), ('b', 2), ('a', 3), ('c', 5), ], 'a', 0, [1, 4, 3], 1), ([ ('a', 1), ('b', 2), ('a', 4), ('a', 3), ('c', 5), ], 'b', 0, [1, 4, 3], 1), ([ ('a', 1), ('b', 2), ('a', 3), ('a', 4), ('c', 5), ], 'a', 1, [1, 3, 4], 1), ([ ('a', 1), ('b', 2), ('a', 3), ('c', 5), ('a', 4), ], 'c', 0, [1, 3, 4], 1) ]) def test_insert_after(expected_label, key, instance, expected_list, expected_value): module1 = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ('c', 5), ]) module2 = module1.copy() expected_module = pvl.PVLModule(expected_label) module1.insert_after(key, [('a', 4)], instance) assert expected_module == module1 assert module1['a'] == expected_value assert module1.getlist('a') == expected_list module2.insert_after(key, pvl.PVLModule([('a', 4)]), instance) assert module2 == expected_module assert module1['a'] == expected_value assert module1.getlist('a') == expected_list @pytest.mark.parametrize( 'key, instance, expected_index', [ ('a', 0, 0), ('b', 0, 1), ('a', 1, 2) ]) def test_get_index_for_insert(key, instance, expected_index): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) module._get_index_for_insert(key, instance) == expected_index def test_insert_raises(): module = pvl.PVLModule([ ('a', 1), ('b', 2), ('a', 3), ]) with pytest.raises(KeyError): module.insert_before('error_key', [('foo', 'bar')]) with pytest.raises(KeyError): module.insert_after('error_key', [('foo', 'bar')]) with pytest.raises(TypeError): module.insert_before('a', ('foo', 'bar')) with pytest.raises(TypeError): module.insert_after('a', ('foo', 'bar')) with pytest.raises(ValueError): module.insert_before('a', [('foo', 'bar')], 2) with pytest.raises(ValueError): module.insert_after('a', [('foo', 'bar')], 2)
# Copyright 2011 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os.path import traceback import webob from webob import exc from nova.api.openstack import common from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova import compute from nova.compute import vm_states from nova import exception from nova import flags from nova.openstack.common import log as logging FLAGS = flags.FLAGS LOG = logging.getLogger(__name__) # States usable in resetState action state_map = dict(active=vm_states.ACTIVE, error=vm_states.ERROR) def authorize(context, action_name): action = 'admin_actions:%s' % action_name extensions.extension_authorizer('compute', action)(context) class AdminActionsController(wsgi.Controller): def __init__(self, *args, **kwargs): super(AdminActionsController, self).__init__(*args, **kwargs) self.compute_api = compute.API() # TODO(bcwaldon): These action names should be prefixed with 'os-' @wsgi.action('pause') def _pause(self, req, id, body): """Permit Admins to pause the server""" ctxt = req.environ['nova.context'] authorize(ctxt, 'pause') try: server = self.compute_api.get(ctxt, id) self.compute_api.pause(ctxt, server) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'pause') except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::pause %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('unpause') def _unpause(self, req, id, body): """Permit Admins to unpause the server""" ctxt = req.environ['nova.context'] authorize(ctxt, 'unpause') try: server = self.compute_api.get(ctxt, id) self.compute_api.unpause(ctxt, server) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'unpause') except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::unpause %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('suspend') def _suspend(self, req, id, body): """Permit admins to suspend the server""" context = req.environ['nova.context'] authorize(context, 'suspend') try: server = self.compute_api.get(context, id) self.compute_api.suspend(context, server) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'suspend') except Exception: readable = traceback.format_exc() LOG.exception(_("compute.api::suspend %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('resume') def _resume(self, req, id, body): """Permit admins to resume the server from suspend""" context = req.environ['nova.context'] authorize(context, 'resume') try: server = self.compute_api.get(context, id) self.compute_api.resume(context, server) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'resume') except Exception: readable = traceback.format_exc() LOG.exception(_("compute.api::resume %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('migrate') def _migrate(self, req, id, body): """Permit admins to migrate a server to a new host""" context = req.environ['nova.context'] authorize(context, 'migrate') try: instance = self.compute_api.get(context, id) self.compute_api.resize(req.environ['nova.context'], instance) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'migrate') except Exception, e: LOG.exception(_("Error in migrate %s"), e) raise exc.HTTPBadRequest() return webob.Response(status_int=202) @wsgi.action('resetNetwork') def _reset_network(self, req, id, body): """Permit admins to reset networking on an server""" context = req.environ['nova.context'] authorize(context, 'resetNetwork') try: instance = self.compute_api.get(context, id) self.compute_api.reset_network(context, instance) except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::reset_network %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('injectNetworkInfo') def _inject_network_info(self, req, id, body): """Permit admins to inject network info into a server""" context = req.environ['nova.context'] authorize(context, 'injectNetworkInfo') try: instance = self.compute_api.get(context, id) self.compute_api.inject_network_info(context, instance) except exception.InstanceNotFound: raise exc.HTTPNotFound(_("Server not found")) except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::inject_network_info %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('lock') def _lock(self, req, id, body): """Permit admins to lock a server""" context = req.environ['nova.context'] authorize(context, 'lock') try: instance = self.compute_api.get(context, id) self.compute_api.lock(context, instance) except exception.InstanceNotFound: raise exc.HTTPNotFound(_("Server not found")) except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::lock %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('unlock') def _unlock(self, req, id, body): """Permit admins to lock a server""" context = req.environ['nova.context'] authorize(context, 'unlock') try: instance = self.compute_api.get(context, id) self.compute_api.unlock(context, instance) except exception.InstanceNotFound: raise exc.HTTPNotFound(_("Server not found")) except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::unlock %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) @wsgi.action('createBackup') def _create_backup(self, req, id, body): """Backup a server instance. Images now have an `image_type` associated with them, which can be 'snapshot' or the backup type, like 'daily' or 'weekly'. If the image_type is backup-like, then the rotation factor can be included and that will cause the oldest backups that exceed the rotation factor to be deleted. """ context = req.environ["nova.context"] authorize(context, 'createBackup') try: entity = body["createBackup"] except (KeyError, TypeError): raise exc.HTTPBadRequest(_("Malformed request body")) try: image_name = entity["name"] backup_type = entity["backup_type"] rotation = entity["rotation"] except KeyError as missing_key: msg = _("createBackup entity requires %s attribute") % missing_key raise exc.HTTPBadRequest(explanation=msg) except TypeError: msg = _("Malformed createBackup entity") raise exc.HTTPBadRequest(explanation=msg) try: rotation = int(rotation) except ValueError: msg = _("createBackup attribute 'rotation' must be an integer") raise exc.HTTPBadRequest(explanation=msg) if rotation < 0: msg = _("createBackup attribute 'rotation' must be greater " "than or equal to zero") raise exc.HTTPBadRequest(explanation=msg) props = {} metadata = entity.get('metadata', {}) common.check_img_metadata_properties_quota(context, metadata) try: props.update(metadata) except ValueError: msg = _("Invalid metadata") raise exc.HTTPBadRequest(explanation=msg) try: instance = self.compute_api.get(context, id) except exception.NotFound: raise exc.HTTPNotFound(_("Instance not found")) try: image = self.compute_api.backup(context, instance, image_name, backup_type, rotation, extra_properties=props) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'createBackup') resp = webob.Response(status_int=202) # build location of newly-created image entity if rotation is not zero if rotation > 0: image_id = str(image['id']) image_ref = os.path.join(req.application_url, 'images', image_id) resp.headers['Location'] = image_ref return resp @wsgi.action('os-migrateLive') def _migrate_live(self, req, id, body): """Permit admins to (live) migrate a server to a new host""" context = req.environ["nova.context"] authorize(context, 'migrateLive') try: block_migration = body["os-migrateLive"]["block_migration"] disk_over_commit = body["os-migrateLive"]["disk_over_commit"] host = body["os-migrateLive"]["host"] except (TypeError, KeyError): msg = _("host and block_migration must be specified.") raise exc.HTTPBadRequest(explanation=msg) try: instance = self.compute_api.get(context, id) self.compute_api.live_migrate(context, instance, block_migration, disk_over_commit, host) except exception.ComputeServiceUnavailable as ex: raise exc.HTTPBadRequest(explanation=ex.format_message()) except Exception: msg = _("Live migration of instance %(id)s to host %(host)s" " failed") % locals() LOG.exception(msg) # Return messages from scheduler raise exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=202) @wsgi.action('os-resetState') def _reset_state(self, req, id, body): """Permit admins to reset the state of a server.""" context = req.environ["nova.context"] authorize(context, 'resetState') # Identify the desired state from the body try: state = state_map[body["os-resetState"]["state"]] except (TypeError, KeyError): msg = _("Desired state must be specified. Valid states " "are: %s") % ', '.join(sorted(state_map.keys())) raise exc.HTTPBadRequest(explanation=msg) try: instance = self.compute_api.get(context, id) self.compute_api.update(context, instance, vm_state=state, task_state=None) except exception.InstanceNotFound: raise exc.HTTPNotFound(_("Server not found")) except Exception: readable = traceback.format_exc() LOG.exception(_("Compute.api::resetState %s"), readable) raise exc.HTTPUnprocessableEntity() return webob.Response(status_int=202) class Admin_actions(extensions.ExtensionDescriptor): """Enable admin-only server actions Actions include: pause, unpause, suspend, resume, migrate, resetNetwork, injectNetworkInfo, lock, unlock, createBackup """ name = "AdminActions" alias = "os-admin-actions" namespace = "http://docs.openstack.org/compute/ext/admin-actions/api/v1.1" updated = "2011-09-20T00:00:00+00:00" def get_controller_extensions(self): controller = AdminActionsController() extension = extensions.ControllerExtension(self, 'servers', controller) return [extension]
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Manages subcommands in a script. Each subcommand should look like this: @usage('[pet name]') def CMDpet(parser, args): '''Prints a pet. Many people likes pet. This command prints a pet for your pleasure. ''' parser.add_option('--color', help='color of your pet') options, args = parser.parse_args(args) if len(args) != 1: parser.error('A pet name is required') pet = args[0] if options.color: print('Nice %s %d' % (options.color, pet)) else: print('Nice %s' % pet) return 0 Explanation: - usage decorator alters the 'usage: %prog' line in the command's help. - docstring is used to both short help line and long help line. - parser can be augmented with arguments. - return the exit code. - Every function in the specified module with a name starting with 'CMD' will be a subcommand. - The module's docstring will be used in the default 'help' page. - If a command has no docstring, it will not be listed in the 'help' page. Useful to keep compatibility commands around or aliases. - If a command is an alias to another one, it won't be documented. E.g.: CMDoldname = CMDnewcmd will result in oldname not being documented but supported and redirecting to newcmd. Make it a real function that calls the old function if you want it to be documented. - CMDfoo_bar will be command 'foo-bar'. """ import difflib import sys import textwrap def usage(more): """Adds a 'usage_more' property to a CMD function.""" def hook(fn): fn.usage_more = more return fn return hook def epilog(text): """Adds an 'epilog' property to a CMD function. It will be shown in the epilog. Usually useful for examples. """ def hook(fn): fn.epilog = text return fn return hook def CMDhelp(parser, args): """Prints list of commands or help for a specific command.""" # This is the default help implementation. It can be disabled or overriden if # wanted. if not any(i in ('-h', '--help') for i in args): args = args + ['--help'] _, args = parser.parse_args(args) # Never gets there. assert False def _get_color_module(): """Returns the colorama module if available. If so, assumes colors are supported and return the module handle. """ return sys.modules.get('colorama') or sys.modules.get('third_party.colorama') def _function_to_name(name): """Returns the name of a CMD function.""" return name[3:].replace('_', '-') class CommandDispatcher(object): def __init__(self, module): """module is the name of the main python module where to look for commands. The python builtin variable __name__ MUST be used for |module|. If the script is executed in the form 'python script.py', __name__ == '__main__' and sys.modules['script'] doesn't exist. On the other hand if it is unit tested, __main__ will be the unit test's module so it has to reference to itself with 'script'. __name__ always match the right value. """ self.module = sys.modules[module] def enumerate_commands(self): """Returns a dict of command and their handling function. The commands must be in the '__main__' modules. To import a command from a submodule, use: from mysubcommand import CMDfoo Automatically adds 'help' if not already defined. Normalizes '_' in the commands to '-'. A command can be effectively disabled by defining a global variable to None, e.g.: CMDhelp = None """ cmds = dict( (_function_to_name(name), getattr(self.module, name)) for name in dir(self.module) if name.startswith('CMD')) cmds.setdefault('help', CMDhelp) return cmds def find_nearest_command(self, name_asked): """Retrieves the function to handle a command as supplied by the user. It automatically tries to guess the _intended command_ by handling typos and/or incomplete names. """ commands = self.enumerate_commands() name_to_dash = name_asked.replace('_', '-') if name_to_dash in commands: return commands[name_to_dash] # An exact match was not found. Try to be smart and look if there's # something similar. commands_with_prefix = [c for c in commands if c.startswith(name_asked)] if len(commands_with_prefix) == 1: return commands[commands_with_prefix[0]] # A #closeenough approximation of levenshtein distance. def close_enough(a, b): return difflib.SequenceMatcher(a=a, b=b).ratio() hamming_commands = sorted( ((close_enough(c, name_asked), c) for c in commands), reverse=True) if (hamming_commands[0][0] - hamming_commands[1][0]) < 0.3: # Too ambiguous. return if hamming_commands[0][0] < 0.8: # Not similar enough. Don't be a fool and run a random command. return return commands[hamming_commands[0][1]] def _gen_commands_list(self): """Generates the short list of supported commands.""" commands = self.enumerate_commands() docs = sorted( (cmd_name, self._create_command_summary(cmd_name, handler)) for cmd_name, handler in commands.iteritems()) # Skip commands without a docstring. docs = [i for i in docs if i[1]] # Then calculate maximum length for alignment: length = max(len(c) for c in commands) # Look if color is supported. colors = _get_color_module() green = reset = '' if colors: green = colors.Fore.GREEN reset = colors.Fore.RESET return ( 'Commands are:\n' + ''.join( ' %s%-*s%s %s\n' % (green, length, cmd_name, reset, doc) for cmd_name, doc in docs)) def _add_command_usage(self, parser, command): """Modifies an OptionParser object with the function's documentation.""" cmd_name = _function_to_name(command.__name__) if cmd_name == 'help': cmd_name = '<command>' # Use the module's docstring as the description for the 'help' command if # available. parser.description = (self.module.__doc__ or '').rstrip() if parser.description: parser.description += '\n\n' parser.description += self._gen_commands_list() # Do not touch epilog. else: # Use the command's docstring if available. For commands, unlike module # docstring, realign. lines = (command.__doc__ or '').rstrip().splitlines() if lines[:1]: rest = textwrap.dedent('\n'.join(lines[1:])) parser.description = '\n'.join((lines[0], rest)) else: parser.description = lines[0] if lines else '' if parser.description: parser.description += '\n' parser.epilog = getattr(command, 'epilog', None) if parser.epilog: parser.epilog = '\n' + parser.epilog.strip() + '\n' more = getattr(command, 'usage_more', '') extra = '' if not more else ' ' + more parser.set_usage('usage: %%prog %s [options]%s' % (cmd_name, extra)) @staticmethod def _create_command_summary(cmd_name, command): """Creates a oneliner summary from the command's docstring.""" if cmd_name != _function_to_name(command.__name__): # Skip aliases. For example using at module level: # CMDfoo = CMDbar return '' doc = command.__doc__ or '' line = doc.split('\n', 1)[0].rstrip('.') if not line: return line return (line[0].lower() + line[1:]).strip() def execute(self, parser, args): """Dispatches execution to the right command. Fallbacks to 'help' if not disabled. """ # Unconditionally disable format_description() and format_epilog(). # Technically, a formatter should be used but it's not worth (yet) the # trouble. parser.format_description = lambda _: parser.description or '' parser.format_epilog = lambda _: parser.epilog or '' if args: if args[0] in ('-h', '--help') and len(args) > 1: # Inverse the argument order so 'tool --help cmd' is rewritten to # 'tool cmd --help'. args = [args[1], args[0]] + args[2:] command = self.find_nearest_command(args[0]) if command: if command.__name__ == 'CMDhelp' and len(args) > 1: # Inverse the arguments order so 'tool help cmd' is rewritten to # 'tool cmd --help'. Do it here since we want 'tool hel cmd' to work # too. args = [args[1], '--help'] + args[2:] command = self.find_nearest_command(args[0]) or command # "fix" the usage and the description now that we know the subcommand. self._add_command_usage(parser, command) return command(parser, args[1:]) cmdhelp = self.enumerate_commands().get('help') if cmdhelp: # Not a known command. Default to help. self._add_command_usage(parser, cmdhelp) return cmdhelp(parser, args) # Nothing can be done. return 2
# Copyright 2011 Alex K (wtwf.com) __author__ = 'wtwf.com (Alex K)' import os import logging import datetime import urllib import PyRSS2Gen as rss from google.appengine.api import mail from google.appengine.api import users from google.appengine.ext import ndb from google.appengine.ext import webapp from google.appengine.ext.webapp.mail_handlers import InboundMailHandler from google.appengine.api.mail import InboundEmailMessage from wtwf import wtwfhandler from wtwf.WtwfModel import WtwfNdbModel from crud import crud_model from crud import crud_handler # wget -O - 'http://localhost:8080/mailfeed/test' | xmllint -format - class MailFeed(crud_model.CrudNdbModel): """Info and options about a feed. None yet.""" name = ndb.StringProperty() # automatic fields created = ndb.DateTimeProperty(auto_now_add=True) class MailFeedItem(crud_model.CrudNdbModel): """Stores Info about a post to a feed.""" parent_model_name = 'MailFeed' subject = ndb.StringProperty() body = ndb.TextProperty() guid = ndb.StringProperty() # automatic fields created = ndb.DateTimeProperty(auto_now_add=True) class EmailToFeed(InboundMailHandler): def post(self, name): """Transforms body to email request.""" try: name = urllib.unquote(name).split('@')[0] except: pass # get the feed object feed = MailFeed.query(MailFeed.name == name).get() if feed is not None: self.receive(mail.InboundEmailMessage(self.request.body), feed) else: # 404 ? pass def receive(self, mail_message, feed): sender = None if 'list-id' in mail_message.original: sender = mail_message.original['list-id'].strip("""<>"'`""").split(".")[0] else: sender = mail_message.sender if sender: # strip it just to the domain name try: short_sender = sender.split("@")[1].split(".")[-2] if short_sender in ['gmail', 'google', 'yahoo', 'aol', 'ca']: # o.k. try the bit before the @ sign for gmail users sender = sender.split("@")[0] else: sender = short_sender except IndexError: pass subject = mail_message.subject if sender: subject = ": ".join([sender, subject]) body = mail_message.bodies().next()[1].decode() logging.info("Subject is : %r", subject) logging.debug("Body is : %r", body) item = MailFeedItem(parent=feed.key, subject=subject, body=body) item.put() logging.info("Added a message for: " + feed.name) class FeedFromEmail(webapp.RequestHandler): """output a feed for a given name.""" def get(self, name): feed = MailFeed.query(MailFeed.name == name).get() if not feed: # no feed we need to make one feed = MailFeed(name=name) feed.put() items = MailFeedItem.query(ancestor=feed.key).order( -MailFeedItem.created).fetch(5) f = rss.RSS2( title="Generated Feed", link="http://example.com/", description="Generated Feed ", lastBuildDate=datetime.datetime.now(), ) for x in items: guid = x.guid if not guid: x.guid = 'feedapp-%s-%s' % (name, x.created) try: x.save() except: pass f.items.append(rss.RSSItem( title=x.subject, link=None, description=x.body, guid=rss.Guid(x.guid, False), pubDate=x.created, )) self.response.headers['Content-Type'] = 'text/xml' f.write_xml(self.response.out) class SetupDemo(webapp.RequestHandler): """Setup a Demo feed.""" def get(self): if not users.is_current_user_admin(): self.error(401) return # remove the old test name = "test_feed" feed = MailFeed.query(MailFeed.name == name).get() if feed: for item in MailFeedItem.query(ancestor=feed.key): item.key.delete() feed.key.delete() # now make some test stuff feed = MailFeed(name=name) feed.put() logging.info('added new feed: %s', name) testdata = os.path.join(os.path.dirname(__file__), 'testdata') etf = EmailToFeed() for x in range(1, 4): filename = os.path.join(testdata, "email-%02d.txt" % x) logging.info('adding: %s', filename) self.response.out.write(filename + '</br>') f = file(filename) body = '\r\n'.join(line.rstrip() for line in f) f.close() # now inject this into the code where we process emails. msg = InboundEmailMessage(body) etf.receive(msg, feed) self.response.out.write('<p><button onClick="history.back()">' + 'DONE</button></p>') class BulkDeleteMailItems(webapp.RequestHandler): """Blow away old feed items.""" def get(self): logging.info('BulkDeleteMailItems') if not users.is_current_user_admin(): self.error(401) return logging.info('Passed Auth') # olderthan = datetime.datetime(2018,1,1) olderthan = datetime.datetime.now() - datetime.timedelta(days=180) q = MailFeedItem.query().filter(MailFeedItem.created < olderthan) items = q.fetch(5000, keys_only=True) self.response.out.write('<p>%d items</p>' % len(items)) ndb.delete_multi(items) self.response.out.write('<p><button onClick="history.back()">' + 'DONE</button></p>') class MailItemDataHandler(crud_handler.GetCrudHandler(MailFeedItem)): def postEntity(self, item, js): if self.request.get('action') == 'tombstone': item.body = item.subject = "This post is no longer available." item.put() # no need to updated id from key because item will never be new js = item.AsJsonObject(js=js) return js
#!/usr/bin/env python """This file defines the base classes for Flows. A Flow is a state machine which executes actions on the client. Messages are transmitted between the flow object and the client with their responses introduced into a state handler within the flow. The flow can send messages to a client, or launch other child flows. While these messages are processed, the flow can be suspended indefinitely into the data store. When replies arrive from the client, or a child flow, the flow is woken up and the responses are sent to one of the flow state methods. In order for the flow to be suspended and restored, its state is stored in a protobuf. Rather than storing the entire flow, the preserved state is well defined and can be found in the flow's "state" attribute. Note that this means that any parameters assigned to the flow object itself are not preserved across state executions - only parameters specifically stored in the state are preserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import traceback from grr_response_core.lib import rdfvalue from grr_response_core.lib import registry from grr_response_core.lib import type_info from grr_response_core.lib.util import compatibility from grr_response_core.lib.util import random from grr_response_core.stats import metrics from grr_response_server import access_control from grr_response_server import data_store from grr_response_server.databases import db from grr_response_server.rdfvalues import flow_objects as rdf_flow_objects from grr_response_server.rdfvalues import flow_runner as rdf_flow_runner GRR_FLOW_INVALID_FLOW_COUNT = metrics.Counter("grr_flow_invalid_flow_count") class Error(Exception): """Base class for this package's exceptions.""" class CanNotStartFlowWithExistingIdError(Error): """Raises by StartFlow when trying to start a flow with an exising id.""" def __init__(self, client_id, flow_id): message = ("Flow %s already exists on the client %s." % (client_id, flow_id)) super(CanNotStartFlowWithExistingIdError, self).__init__(message) self.client_id = client_id self.flow_id = flow_id class FlowResourcesExceededError(Error): """An error indicating that the flow used too many resources.""" # This is an implementation of an AttributedDict taken from # http://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute-in-python # It works very well but there is a small drawback - there is no way # to assign an attribute to this dict that does not get serialized. Do # not inherit from this class, there might be interesting side # effects. class AttributedDict(dict): def __init__(self, *args, **kwargs): super(AttributedDict, self).__init__(*args, **kwargs) self.__dict__ = self def FilterArgsFromSemanticProtobuf(protobuf, kwargs): """Assign kwargs to the protobuf, and remove them from the kwargs dict.""" for descriptor in protobuf.type_infos: value = kwargs.pop(descriptor.name, None) if value is not None: setattr(protobuf, descriptor.name, value) def GetOutputPluginStates(output_plugins, source=None, token=None): """Initializes state for a list of output plugins.""" output_plugins_states = [] for plugin_descriptor in output_plugins: plugin_class = plugin_descriptor.GetPluginClass() try: _, plugin_state = plugin_class.CreatePluginAndDefaultState( source_urn=source, args=plugin_descriptor.plugin_args, token=token) except Exception as e: # pylint: disable=broad-except raise ValueError("Plugin %s failed to initialize (%s)" % (plugin_class, e)) # TODO(amoser): Those do not need to be inside the state, they # could be part of the plugin descriptor. plugin_state["logs"] = [] plugin_state["errors"] = [] output_plugins_states.append( rdf_flow_runner.OutputPluginState( plugin_state=plugin_state, plugin_descriptor=plugin_descriptor)) return output_plugins_states def RandomFlowId(): """Returns a random flow id encoded as a hex string.""" return "%08X" % random.PositiveUInt32() def StartFlow(client_id=None, cpu_limit=None, creator=None, flow_args=None, flow_cls=None, network_bytes_limit=None, original_flow=None, output_plugins=None, start_at=None, parent_flow_obj=None, parent_hunt_id=None, runtime_limit=None, **kwargs): """The main factory function for creating and executing a new flow. Args: client_id: ID of the client this flow should run on. cpu_limit: CPU limit in seconds for this flow. creator: Username that requested this flow. flow_args: An arg protocol buffer which is an instance of the required flow's args_type class attribute. flow_cls: Class of the flow that should be started. network_bytes_limit: Limit on the network traffic this flow can generated. original_flow: A FlowReference object in case this flow was copied from another flow. output_plugins: An OutputPluginDescriptor object indicating what output plugins should be used for this flow. start_at: If specified, flow will be started not immediately, but at a given time. parent_flow_obj: A parent flow object. None if this is a top level flow. parent_hunt_id: String identifying parent hunt. Can't be passed together with parent_flow_obj. runtime_limit: Runtime limit as Duration for all ClientActions. **kwargs: If args or runner_args are not specified, we construct these protobufs from these keywords. Returns: the flow id of the new flow. Raises: ValueError: Unknown or invalid parameters were provided. """ if parent_flow_obj is not None and parent_hunt_id is not None: raise ValueError( "parent_flow_obj and parent_hunt_id are mutually exclusive.") # Is the required flow a known flow? try: registry.FlowRegistry.FlowClassByName(flow_cls.__name__) except ValueError: GRR_FLOW_INVALID_FLOW_COUNT.Increment() raise ValueError("Unable to locate flow %s" % flow_cls.__name__) if not client_id: raise ValueError("Client_id is needed to start a flow.") # Now parse the flow args into the new object from the keywords. if flow_args is None: flow_args = flow_cls.args_type() FilterArgsFromSemanticProtobuf(flow_args, kwargs) # At this point we should exhaust all the keyword args. If any are left # over, we do not know what to do with them so raise. if kwargs: raise type_info.UnknownArg("Unknown parameters to StartFlow: %s" % kwargs) # Check that the flow args are valid. flow_args.Validate() rdf_flow = rdf_flow_objects.Flow( client_id=client_id, flow_class_name=flow_cls.__name__, args=flow_args, create_time=rdfvalue.RDFDatetime.Now(), creator=creator, output_plugins=output_plugins, original_flow=original_flow, flow_state="RUNNING") if parent_hunt_id is not None and parent_flow_obj is None: rdf_flow.flow_id = parent_hunt_id else: rdf_flow.flow_id = RandomFlowId() # For better performance, only do conflicting IDs check for top-level flows. if not parent_flow_obj: try: data_store.REL_DB.ReadFlowObject(client_id, rdf_flow.flow_id) raise CanNotStartFlowWithExistingIdError(client_id, rdf_flow.flow_id) except db.UnknownFlowError: pass if parent_flow_obj: # A flow is a nested flow. parent_rdf_flow = parent_flow_obj.rdf_flow rdf_flow.long_flow_id = "%s/%s" % (parent_rdf_flow.long_flow_id, rdf_flow.flow_id) rdf_flow.parent_flow_id = parent_rdf_flow.flow_id rdf_flow.parent_hunt_id = parent_rdf_flow.parent_hunt_id rdf_flow.parent_request_id = parent_flow_obj.GetCurrentOutboundId() if parent_rdf_flow.creator: rdf_flow.creator = parent_rdf_flow.creator elif parent_hunt_id: # A flow is a root-level hunt-induced flow. rdf_flow.long_flow_id = "%s/%s" % (client_id, rdf_flow.flow_id) rdf_flow.parent_hunt_id = parent_hunt_id else: # A flow is a root-level non-hunt flow. rdf_flow.long_flow_id = "%s/%s" % (client_id, rdf_flow.flow_id) if output_plugins: rdf_flow.output_plugins_states = GetOutputPluginStates( output_plugins, rdf_flow.long_flow_id, token=access_control.ACLToken(username=rdf_flow.creator)) if network_bytes_limit is not None: rdf_flow.network_bytes_limit = network_bytes_limit if cpu_limit is not None: rdf_flow.cpu_limit = cpu_limit if runtime_limit is not None: rdf_flow.runtime_limit_us = runtime_limit logging.info(u"Scheduling %s(%s) on %s (%s)", rdf_flow.long_flow_id, rdf_flow.flow_class_name, client_id, start_at or "now") rdf_flow.current_state = "Start" flow_obj = flow_cls(rdf_flow) # Prevent a race condition, where a flow is scheduled twice, because one # worker inserts the row and another worker silently updates the existing row. allow_update = False if start_at is None: # Store an initial version of the flow straight away. This is needed so the # database doesn't raise consistency errors due to missing parent keys when # writing logs / errors / results which might happen in Start(). try: data_store.REL_DB.WriteFlowObject(flow_obj.rdf_flow, allow_update=False) except db.FlowExistsError: raise CanNotStartFlowWithExistingIdError(client_id, rdf_flow.flow_id) allow_update = True try: # Just run the first state inline. NOTE: Running synchronously means # that this runs on the thread that starts the flow. The advantage is # that that Start method can raise any errors immediately. flow_obj.Start() # The flow does not need to actually remain running. if not flow_obj.outstanding_requests: flow_obj.RunStateMethod("End") # Additional check for the correct state in case the End method raised # and terminated the flow. if flow_obj.IsRunning(): flow_obj.MarkDone() except Exception as e: # pylint: disable=broad-except # We catch all exceptions that happen in Start() and mark the flow as # failed. msg = compatibility.NativeStr(e) if compatibility.PY2: msg = msg.decode("utf-8", "replace") flow_obj.Error(error_message=msg, backtrace=traceback.format_exc()) else: flow_obj.CallState("Start", start_time=start_at) flow_obj.PersistState() try: data_store.REL_DB.WriteFlowObject( flow_obj.rdf_flow, allow_update=allow_update) except db.FlowExistsError: raise CanNotStartFlowWithExistingIdError(client_id, rdf_flow.flow_id) if parent_flow_obj is not None: # We can optimize here and not write requests/responses to the database # since we have to do this for the parent flow at some point anyways. parent_flow_obj.MergeQueuedMessages(flow_obj) else: flow_obj.FlushQueuedMessages() return rdf_flow.flow_id
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- '''pyglet is a cross-platform games and multimedia package. Detailed documentation is available at http://www.pyglet.org ''' __docformat__ = 'restructuredtext' __version__ = '$Id$' import os import sys _is_epydoc = hasattr(sys, 'is_epydoc') and sys.is_epydoc #: The release version of this pyglet installation. #: #: Valid only if pyglet was installed from a source or binary distribution #: (i.e. not in a checked-out copy from SVN). #: #: Use setuptools if you need to check for a specific release version, e.g.:: #: #: >>> import pyglet #: >>> from pkg_resources import parse_version #: >>> parse_version(pyglet.version) >= parse_version('1.1') #: True #: version = '1.2dev' def _require_ctypes_version(version): # Check ctypes version import ctypes req = [int(i) for i in version.split('.')] have = [int(i) for i in ctypes.__version__.split('.')] if not tuple(have) >= tuple(req): raise ImportError('pyglet requires ctypes %s or later.' % version) _require_ctypes_version('1.0.0') _enable_optimisations = not __debug__ if getattr(sys, 'frozen', None): _enable_optimisations = True #: Global dict of pyglet options. To change an option from its default, you #: must import ``pyglet`` before any sub-packages. For example:: #: #: import pyglet #: pyglet.options['debug_gl'] = False #: #: The default options can be overridden from the OS environment. The #: corresponding environment variable for each option key is prefaced by #: ``PYGLET_``. For example, in Bash you can set the ``debug_gl`` option with:: #: #: PYGLET_DEBUG_GL=True; export PYGLET_DEBUG_GL #: #: For options requiring a tuple of values, separate each value with a comma. #: #: The non-development options are: #: #: audio #: A sequence of the names of audio modules to attempt to load, in #: order of preference. Valid driver names are: #: #: * directsound, the Windows DirectSound audio module (Windows only) #: * pulse, the PulseAudio module (Linux only) #: * openal, the OpenAL audio module #: * silent, no audio #: debug_lib #: If True, prints the path of each dynamic library loaded. #: debug_gl #: If True, all calls to OpenGL functions are checked afterwards for #: errors using ``glGetError``. This will severely impact performance, #: but provides useful exceptions at the point of failure. By default, #: this option is enabled if ``__debug__`` is (i.e., if Python was not run #: with the -O option). It is disabled by default when pyglet is "frozen" #: within a py2exe or py2app library archive. #: shadow_window #: By default, pyglet creates a hidden window with a GL context when #: pyglet.gl is imported. This allows resources to be loaded before #: the application window is created, and permits GL objects to be #: shared between windows even after they've been closed. You can #: disable the creation of the shadow window by setting this option to #: False. Recommended for advanced devlopers only. #: #: **Since:** pyglet 1.1 #: vsync #: If set, the `pyglet.window.Window.vsync` property is ignored, and #: this option overrides it (to either force vsync on or off). If unset, #: or set to None, the `pyglet.window.Window.vsync` property behaves #: as documented. #: xsync #: If set (the default), pyglet will attempt to synchronise the drawing of #: double-buffered windows to the border updates of the X11 window #: manager. This improves the appearance of the window during resize #: operations. This option only affects double-buffered windows on #: X11 servers supporting the Xsync extension with a window manager #: that implements the _NET_WM_SYNC_REQUEST protocol. #: #: **Since:** pyglet 1.1 #: options = { 'audio': ('directsound', 'pulse', 'openal', 'silent'), 'font': ('gdiplus', 'win32'), # ignored outside win32; win32 is deprecated 'debug_font': False, 'debug_gl': not _enable_optimisations, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_graphics_batch': False, 'debug_lib': False, 'debug_media': False, 'profile_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'graphics_vbo': True, 'shadow_window': True, 'vsync': None, 'xsync': True, 'xlib_fullscreen_override_redirect': False, } _option_types = { 'audio': tuple, 'font': tuple, 'debug_font': bool, 'debug_gl': bool, 'debug_gl_trace': bool, 'debug_gl_trace_args': bool, 'debug_graphics_batch': bool, 'debug_lib': bool, 'debug_media': bool, 'profile_media': bool, 'debug_texture': bool, 'debug_trace': bool, 'debug_trace_args': bool, 'debug_trace_depth': int, 'debug_trace_flush': bool, 'debug_win32': bool, 'debug_x11': bool, 'graphics_vbo': bool, 'shadow_window': bool, 'vsync': bool, 'xsync': bool, 'xlib_fullscreen_override_redirect': bool, } def _read_environment(): '''Read defaults for options from environment''' for key in options: env = 'PYGLET_%s' % key.upper() try: value = os.environ[env] if _option_types[key] is tuple: options[key] = value.split(',') elif _option_types[key] is bool: options[key] = value in ('true', 'TRUE', 'True', '1') elif _option_types[key] is int: options[key] = int(value) except KeyError: pass _read_environment() if sys.platform == 'cygwin': # This hack pretends that the posix-like ctypes provides windows # functionality. COM does not work with this hack, so there is no # DirectSound support. import ctypes ctypes.windll = ctypes.cdll ctypes.oledll = ctypes.cdll ctypes.WINFUNCTYPE = ctypes.CFUNCTYPE ctypes.HRESULT = ctypes.c_long # Call tracing # ------------ _trace_filename_abbreviations = {} def _trace_repr(value, size=40): value = repr(value) if len(value) > size: value = value[:size//2-2] + '...' + value[-size//2-1:] return value def _trace_frame(thread, frame, indent): from pyglet import lib if frame.f_code is lib._TraceFunction.__call__.func_code: is_ctypes = True func = frame.f_locals['self']._func name = func.__name__ location = '[ctypes]' else: is_ctypes = False code = frame.f_code name = code.co_name path = code.co_filename line = code.co_firstlineno try: filename = _trace_filename_abbreviations[path] except KeyError: # Trim path down dir = '' path, filename = os.path.split(path) while len(dir + filename) < 30: filename = os.path.join(dir, filename) path, dir = os.path.split(path) if not dir: filename = os.path.join('', filename) break else: filename = os.path.join('...', filename) _trace_filename_abbreviations[path] = filename location = '(%s:%d)' % (filename, line) if indent: name = 'Called from %s' % name print '[%d] %s%s %s' % (thread, indent, name, location) if _trace_args: if is_ctypes: args = [_trace_repr(arg) for arg in frame.f_locals['args']] print ' %sargs=(%s)' % (indent, ', '.join(args)) else: for argname in code.co_varnames[:code.co_argcount]: try: argvalue = _trace_repr(frame.f_locals[argname]) print ' %s%s=%s' % (indent, argname, argvalue) except: pass if _trace_flush: sys.stdout.flush() def _thread_trace_func(thread): def _trace_func(frame, event, arg): if event == 'call': indent = '' for i in range(_trace_depth): _trace_frame(thread, frame, indent) indent += ' ' frame = frame.f_back if not frame: break elif event == 'exception': (exception, value, traceback) = arg print 'First chance exception raised:', repr(exception) return _trace_func def _install_trace(): global _trace_thread_count sys.setprofile(_thread_trace_func(_trace_thread_count)) _trace_thread_count += 1 _trace_thread_count = 0 _trace_args = options['debug_trace_args'] _trace_depth = options['debug_trace_depth'] _trace_flush = options['debug_trace_flush'] if options['debug_trace']: _install_trace() # Lazy loading # ------------ class _ModuleProxy(object): _module = None def __init__(self, name): self.__dict__['_module_name'] = name def __getattr__(self, name): try: return getattr(self._module, name) except AttributeError: if self._module is not None: raise import_name = 'pyglet.%s' % self._module_name __import__(import_name) module = sys.modules[import_name] object.__setattr__(self, '_module', module) globals()[self._module_name] = module return getattr(module, name) def __setattr__(self, name, value): try: setattr(self._module, name, value) except AttributeError: if self._module is not None: raise import_name = 'pyglet.%s' % self._module_name __import__(import_name) module = sys.modules[import_name] object.__setattr__(self, '_module', module) globals()[self._module_name] = module setattr(module, name, value) if not _is_epydoc: app = _ModuleProxy('app') canvas = _ModuleProxy('canvas') clock = _ModuleProxy('clock') com = _ModuleProxy('com') event = _ModuleProxy('event') font = _ModuleProxy('font') gl = _ModuleProxy('gl') graphics = _ModuleProxy('graphics') image = _ModuleProxy('image') input = _ModuleProxy('input') lib = _ModuleProxy('lib') media = _ModuleProxy('media') resource = _ModuleProxy('resource') sprite = _ModuleProxy('sprite') text = _ModuleProxy('text') window = _ModuleProxy('window') # Fool py2exe, py2app into including all top-level modules (doesn't understand # lazy loading) if False: import app import canvas import clock import com import event import font import gl import graphics import input import image import lib import media import resource import sprite import text import window # Hack around some epydoc bug that causes it to think pyglet.window is None. if _is_epydoc: import window
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: skip-file from __future__ import print_function import numpy as np import mxnet as mx import random import itertools from numpy.testing import assert_allclose, assert_array_equal from mxnet.test_utils import * from common import assert_raises_cudnn_not_satisfied, xfail_when_nonstandard_decimal_separator import unittest def test_box_nms_op(): def test_box_nms_forward(data, expected, thresh=0.5, valid=0, topk=-1, coord=2, score=1, cid=0, bid=-1, force=False, in_format='corner', out_format='corner'): for dtype in ['float16', 'float32', 'float64']: data = mx.nd.array(data, dtype=dtype) out = mx.contrib.nd.box_nms(data, overlap_thresh=thresh, valid_thresh=valid, topk=topk, coord_start=coord, score_index=score, id_index=cid, background_id=bid, force_suppress=force, in_format=in_format, out_format=out_format) assert_almost_equal(out.asnumpy(), expected.astype(dtype), rtol=1e-3, atol=1e-3) def test_box_nms_backward(data, grad, expected, thresh=0.5, valid=0, topk=-1, coord=2, score=1, cid=0, bid=-1, force=False, in_format='corner', out_format='corner'): in_var = mx.sym.Variable('data') arr_data = mx.nd.array(data) arr_grad = mx.nd.empty(arr_data.shape) op = mx.contrib.sym.box_nms(in_var, overlap_thresh=thresh, valid_thresh=valid, topk=topk, coord_start=coord, score_index=score, id_index=cid, background_id=bid, force_suppress=force, in_format=in_format, out_format=out_format) exe = op._bind(ctx=default_context(), args=[arr_data], args_grad=[arr_grad]) exe.forward(is_train=True) exe.backward(mx.nd.array(grad)) assert_almost_equal(arr_grad.asnumpy(), expected) def corner_to_center(data): out = np.reshape(data, (-1, 6)).copy() out[:, 2] = (data[:, 2] + data[:, 4]) / 2.0 out[:, 3] = (data[:, 3] + data[:, 5]) / 2.0 out[:, 4] = data[:, 4] - data[:, 2] out[:, 5] = data[:, 5] - data[:, 3] invalid = np.where(data[:, 0] < 0)[0] out[invalid, :] = -1 return out def center_to_corner(data): data = np.reshape(data, (-1, 6)).copy() out[:, 2] = data[:, 2] - data[:, 4] / 2.0 out[:, 3] = data[:, 3] - data[:, 5] / 2.0 out[:, 4] = data[:, 2] + data[:, 4] / 2.0 out[:, 5] = data[:, 3] + data[:, 5] / 2.0 invalid = np.where(data[:, 0] < 0)[0] out[invalid, :] = -1 return out def swap_position(data, expected, coord=2, score=1, cid=0, new_col=0): data = np.reshape(data, (-1, 6)) expected = np.reshape(expected, (-1, 6)) new_coord = random.randint(0, 6 + new_col - 4) others = list(range(new_coord)) + list(range(new_coord + 4, 6 + new_col)) random.shuffle(others) new_score = others[0] new_cid = others[1] new_data = np.full((data.shape[0], data.shape[1] + new_col), -1.0) new_expected = np.full((expected.shape[0], expected.shape[1] + new_col), -1.0) new_data[:, new_coord:new_coord+4] = data[:, coord:coord+4] new_data[:, new_score] = data[:, score] new_data[:, new_cid] = data[:, cid] new_expected[:, new_coord:new_coord+4] = expected[:, coord:coord+4] new_expected[:, new_score] = expected[:, score] new_expected[:, new_cid] = expected[:, cid] return new_data, new_expected, new_coord, new_score, new_cid # manually set up test cases boxes = [[0, 0.5, 0.1, 0.1, 0.2, 0.2], [1, 0.4, 0.1, 0.1, 0.2, 0.2], [0, 0.3, 0.1, 0.1, 0.14, 0.14], [2, 0.6, 0.5, 0.5, 0.7, 0.8]] # case1 force = True thresh = 0.5 expected = [[2, 0.6, 0.5, 0.5, 0.7, 0.8], [0, 0.5, 0.1, 0.1, 0.2, 0.2], [0, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, -1, -1, -1, -1, -1]] grad = np.random.rand(4, 6) expected_in_grad = grad[(1, 3, 2, 0), :] expected_in_grad[1, :] = 0 test_box_nms_forward(np.array(boxes), np.array(expected), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes), grad, expected_in_grad, force=force, thresh=thresh) # case2: multi batch boxes2 = [boxes] * 3 expected2 = [expected] * 3 grad2 = np.array([grad.tolist()] * 3) expected_in_grad2 = np.array([expected_in_grad.tolist()] * 3) test_box_nms_forward(np.array(boxes2), np.array(expected2), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes2), grad2, expected_in_grad2, force=force, thresh=thresh) # another new dim boxes2 = [boxes2] * 2 expected2 = [expected2] * 2 grad2 = np.array([grad2.tolist()] * 2) expected_in_grad2 = np.array([expected_in_grad2.tolist()] * 2) test_box_nms_forward(np.array(boxes2), np.array(expected2), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes2), grad2, expected_in_grad2, force=force, thresh=thresh) # case3: thresh thresh = 0.1 boxes3 = boxes expected3 = [[2, 0.6, 0.5, 0.5, 0.7, 0.8], [0, 0.5, 0.1, 0.1, 0.2, 0.2], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]] grad3 = np.random.rand(4, 6) expected_in_grad3 = grad3[(1, 3, 2, 0), :] expected_in_grad3[(1, 2), :] = 0 test_box_nms_forward(np.array(boxes3), np.array(expected3), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes3), grad3, expected_in_grad3, force=force, thresh=thresh) # case4: non-force boxes4 = boxes force = False expected4 = [[2, 0.6, 0.5, 0.5, 0.7, 0.8], [0, 0.5, 0.1, 0.1, 0.2, 0.2], [1, 0.4, 0.1, 0.1, 0.2, 0.2], [-1, -1, -1, -1, -1, -1]] grad4 = np.random.rand(4, 6) expected_in_grad4 = grad4[(1, 2, 3, 0), :] expected_in_grad4[2, :] = 0 test_box_nms_forward(np.array(boxes4), np.array(expected4), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes4), grad4, expected_in_grad4, force=force, thresh=thresh) # case5: different coding boxes5 = corner_to_center(np.array(boxes4)) test_box_nms_forward(np.array(boxes5), np.array(expected4), force=force, thresh=thresh, in_format='center') expected5 = corner_to_center(np.array(expected4)) test_box_nms_forward(np.array(boxes4), np.array(expected5), force=force, thresh=thresh, out_format='center') test_box_nms_forward(np.array(boxes5), np.array(expected5), force=force, thresh=thresh, in_format='center', out_format='center') # case6: different position boxes6, expected6, new_coord, new_score, new_id = swap_position(np.array(boxes4), np.array(expected4), new_col=2) test_box_nms_forward(np.array(boxes6), np.array(expected6), force=force, thresh=thresh, coord=new_coord, score=new_score, cid=new_id) # case7: no id, should be same with force=True force = False thresh = 0.5 test_box_nms_forward(np.array(boxes), np.array(expected), force=force, thresh=thresh, cid=-1) # case8: multi-batch thresh + topk boxes8 = [[[1, 1, 0, 0, 10, 10], [1, 0.4, 0, 0, 10, 10], [1, 0.3, 0, 0, 10, 10]], [[2, 1, 0, 0, 10, 10], [2, 0.4, 0, 0, 10, 10], [2, 0.3, 0, 0, 10, 10]], [[3, 1, 0, 0, 10, 10], [3, 0.4, 0, 0, 10, 10], [3, 0.3, 0, 0, 10, 10]]] expected8 = [[[1, 1, 0, 0, 10, 10], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]], [[2, 1, 0, 0, 10, 10], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]], [[3, 1, 0, 0, 10, 10], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]]] grad8 = np.random.rand(3, 3, 6) expected_in_grad8 = np.zeros((3, 3, 6)) expected_in_grad8[(0, 1, 2), (0, 0, 0), :] = grad8[(0, 1, 2), (0, 0, 0), :] force = False thresh = 0.5 valid = 0.5 topk = 2 test_box_nms_forward(np.array(boxes8), np.array(expected8), force=force, thresh=thresh, valid=valid, topk=topk) test_box_nms_backward(np.array(boxes8), grad8, expected_in_grad8, force=force, thresh=thresh, valid=valid, topk=topk) # case9: background id filter out # default background id -1 boxes9 = [[0, 0.5, 0.1, 0.1, 0.2, 0.2], [0, 0.4, 0.1, 0.1, 0.2, 0.2], [1, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, 0.6, 0.5, 0.5, 0.7, 0.8]] expected9 = [[0, 0.5, 0.1, 0.1, 0.2, 0.2], [1, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]] force = True thresh = 0.5 grad9 = np.random.rand(4, 6) expected_in_grad9 = grad9[(0, 2, 1, 3), :] expected_in_grad9[(1, 3), :] = 0 test_box_nms_forward(np.array(boxes9), np.array(expected9), force=force, thresh=thresh) test_box_nms_backward(np.array(boxes9), grad9, expected_in_grad9, force=force, thresh=thresh) # set background id background_id = 0 expected9 = [[-1, 0.6, 0.5, 0.5, 0.7, 0.8], [1, 0.3, 0.1, 0.1, 0.14, 0.14], [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1]] grad9 = np.random.rand(4, 6) expected_in_grad9 = grad9[(2, 3, 1, 0), :] expected_in_grad9[(0, 1), :] = 0 test_box_nms_forward(np.array(boxes9), np.array(expected9), force=force, thresh=thresh, bid=background_id) test_box_nms_backward(np.array(boxes9), grad9, expected_in_grad9, force=force, thresh=thresh, bid=background_id) def test_box_iou_op(): def numpy_box_iou(a, b, fmt='corner'): def area(left, top, right, bottom): return np.maximum(0, right - left) * np.maximum(0, bottom - top) assert a.shape[-1] == 4 assert b.shape[-1] == 4 oshape = a.shape[:-1] + b.shape[:-1] a = a.reshape((-1, 4)) ashape = a.shape b = b.reshape((-1, 4)) a = np.tile(a, reps=[1, b.shape[0]]).reshape((-1, 4)) b = np.tile(b, reps=[ashape[0], 1]).reshape((-1, 4)) if fmt == 'corner': al, at, ar, ab = np.split(a, 4, axis=-1) bl, bt, br, bb = np.split(b, 4, axis=-1) elif fmt == 'center': ax, ay, aw, ah = np.split(a, 4, axis=-1) bx, by, bw, bh = np.split(b, 4, axis=-1) al, at, ar, ab = ax - aw / 2, ay - ah / 2, ax + aw / 2, ay + ah / 2 bl, bt, br, bb = bx - bw / 2, by - bh / 2, bx + bw / 2, by + bh / 2 else: raise NotImplementedError("Fmt {} not supported".format(fmt)) width = np.maximum(0, np.minimum(ar, br) - np.maximum(al, bl)) height = np.maximum(0, np.minimum(ab, bb) - np.maximum(at, bt)) intersect = width * height union = area(al, at, ar, ab) + area(bl, bt, br, bb) - intersect union[np.where(intersect <= 0)] = 1e-12 iou = intersect / union return iou.reshape(oshape) def generate_boxes(dims): s1, off1, s2, off2 = np.random.rand(4) * 100 xy = np.random.rand(*(dims + [2])) * s1 + off1 wh = np.random.rand(*(dims + [2])) * s2 + off2 xywh = np.concatenate([xy, wh], axis=-1) ltrb = np.concatenate([xy - wh / 2, xy + wh / 2], axis=-1) return xywh, ltrb for ndima in range(1, 6): for ndimb in range(1, 6): dims_a = np.random.randint(low=1, high=3, size=ndima).tolist() dims_b = np.random.randint(low=1, high=3, size=ndimb).tolist() # generate left, top, right, bottom xywh_a, ltrb_a = generate_boxes(dims_a) xywh_b, ltrb_b = generate_boxes(dims_b) iou_np = numpy_box_iou(ltrb_a, ltrb_b, fmt='corner') iou_np2 = numpy_box_iou(xywh_a, xywh_b, fmt='center') iou_mx = mx.nd.contrib.box_iou(mx.nd.array(ltrb_a), mx.nd.array(ltrb_b), format='corner') iou_mx2 = mx.nd.contrib.box_iou(mx.nd.array(xywh_a), mx.nd.array(xywh_b), format='center') assert_allclose(iou_np, iou_np2, rtol=1e-5, atol=1e-5) assert_allclose(iou_np, iou_mx.asnumpy(), rtol=1e-5, atol=1e-5) assert_allclose(iou_np, iou_mx2.asnumpy(), rtol=1e-5, atol=1e-5) def test_bipartite_matching_op(): def assert_match(inputs, x, y, threshold, is_ascend=False): for dtype in ['float16', 'float32', 'float64']: inputs = mx.nd.array(inputs, dtype=dtype) x = np.array(x, dtype=dtype) y = np.array(y, dtype=dtype) a, b = mx.nd.contrib.bipartite_matching(inputs, threshold=threshold, is_ascend=is_ascend) assert_array_equal(a.asnumpy().astype('int64'), x.astype('int64')) assert_array_equal(b.asnumpy().astype('int64'), y.astype('int64')) assert_match([[0.5, 0.6], [0.1, 0.2], [0.3, 0.4]], [1, -1, 0], [2, 0], 1e-12, False) assert_match([[0.5, 0.6], [0.1, 0.2], [0.3, 0.4]], [-1, 0, 1], [1, 2], 100, True) def test_multibox_target_op(): anchors = mx.nd.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]], ctx=default_context()).reshape((1, -1, 4)) cls_pred = mx.nd.array(list(range(10)), ctx=default_context()).reshape((1, -1, 2)) label = mx.nd.array([1, 0.1, 0.1, 0.5, 0.6], ctx=default_context()).reshape((1, -1, 5)) loc_target, loc_mask, cls_target = \ mx.nd.contrib.MultiBoxTarget(anchors, label, cls_pred, overlap_threshold=0.5, negative_mining_ratio=3, negative_mining_thresh=0.4) expected_loc_target = np.array([[5.0, 2.5000005, 3.4657357, 4.581454, 0., 0., 0., 0.]]) expected_loc_mask = np.array([[1, 1, 1, 1, 0, 0, 0, 0]]) expected_cls_target = np.array([[2, 0]]) assert_allclose(loc_target.asnumpy(), expected_loc_target, rtol=1e-5, atol=1e-5) assert_array_equal(loc_mask.asnumpy(), expected_loc_mask) assert_array_equal(cls_target.asnumpy(), expected_cls_target) @xfail_when_nonstandard_decimal_separator def test_gradient_multiplier_op(): # We use the quadratic function in combination with gradient multiplier def f(x, a, b, c): return a * x**2 + b * x + c a = np.random.random_sample() b = np.random.random_sample() c = np.random.random_sample() m = np.random.random_sample() - 0.5 data = mx.symbol.Variable('data') quad_sym = mx.sym.contrib.quadratic(data=data, a=a, b=b, c=c) gr_q_sym = mx.sym.contrib.gradientmultiplier(quad_sym, scalar=m) for dtype in [np.float16, np.float32, np.float64]: for ndim in range(1, 6): shape = rand_shape_nd(ndim, 5) data_np = np.random.randn(*shape).astype(dtype) expected = f(data_np, a, b, c) backward_expected = (2 * a * data_np + b) * m # check imperative forward output = mx.nd.contrib.quadratic(mx.nd.array(data_np), a=a, b=b, c=c) output = mx.nd.contrib.gradientmultiplier(output, scalar=m) assert_almost_equal(output.asnumpy(), expected, rtol=1e-2 if dtype is np.float16 else 1e-5, atol=1e-2 if dtype is np.float16 else 1e-5) # check forward check_symbolic_forward(gr_q_sym, [data_np], [expected], rtol=1e-2 if dtype is np.float16 else 1e-5, atol=1e-2 if dtype is np.float16 else 1e-5) # check backward check_symbolic_backward(gr_q_sym, [data_np], [np.ones(expected.shape)], [backward_expected], rtol=1e-2 if dtype is np.float16 else 1e-5, atol=1e-2 if dtype is np.float16 else 1e-5) def test_multibox_prior_op(): h = 561 w = 728 X = mx.nd.random.uniform(shape=(1, 3, h, w)) Y = mx.contrib.nd.MultiBoxPrior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5]) assert_array_equal(Y.shape, np.array((1, 2042040, 4))) boxes = Y.reshape((h, w, 5, 4)) assert_allclose(boxes.asnumpy()[250, 250, 0, :], np.array([0.055117, 0.071524, 0.63307 , 0.821524]), atol=1e-5, rtol=1e-5) # relax first ratio if user insists Y = mx.contrib.nd.MultiBoxPrior(X, sizes=[0.75, 0.5, 0.25], ratios=[20, 2, 0.5]) boxes = Y.reshape((h, w, 5, 4)) assert_allclose(boxes.asnumpy()[250, 250, 0, :], np.array([-0.948249, 0.362671, 1.636436, 0.530377]), atol=1e-5, rtol=1e-5) def test_box_encode_op(): anchors = mx.nd.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]).reshape((1, -1, 4)) refs = mx.nd.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]).reshape((1, -1, 4)) samples = mx.nd.array([[0, 1]]) matches = mx.nd.array([[0, 1]]) means = mx.nd.array([0.0, 0.0, 0.0, 0.0]) stds = mx.nd.array([0.1, 0.1, 0.2, 0.2]) Y, mask = mx.nd.contrib.box_encode(samples, matches, anchors, refs, means, stds) assert_allclose(Y.asnumpy(), np.zeros((1, 2, 4)), atol=1e-5, rtol=1e-5) assert_allclose(mask.asnumpy(), np.array([[[0., 0., 0., 0.], [1., 1., 1., 1.]]]), atol=1e-5, rtol=1e-5) def test_box_decode_op(): data = mx.nd.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]).reshape((1, -1, 4)) anchors = mx.nd.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]).reshape((1, -1, 4)) Y = mx.nd.contrib.box_decode(data, anchors, .1, .1, .2, .2) assert_allclose(Y.asnumpy(), np.array([[[-0.0562755, -0.00865743, 0.26227552, 0.42465743], \ [0.13240421, 0.17859563, 0.93759584, 1.1174043 ]]]), atol=1e-5, rtol=1e-5) def test_op_mrcnn_mask_target(): if default_context().device_type != 'gpu': return num_rois = 2 num_classes = 4 mask_size = (3, 3) ctx = mx.gpu(0) # (B, N, 4) rois = mx.nd.array([[[2.3, 4.3, 2.2, 3.3], [3.5, 5.5, 0.9, 2.4]]], ctx=ctx) gt_masks = mx.nd.arange(0, 4*32*32, ctx=ctx).reshape(1, 4, 32, 32) # (B, N) matches = mx.nd.array([[2, 0]], ctx=ctx) # (B, N) cls_targets = mx.nd.array([[2, 1]], ctx=ctx) mask_targets, mask_cls = mx.nd.contrib.mrcnn_mask_target(rois, gt_masks, matches, cls_targets, num_rois=num_rois, num_classes=num_classes, mask_size=mask_size) # Ground truth outputs were generated with GluonCV's target generator # gluoncv.model_zoo.mask_rcnn.MaskTargetGenerator(1, num_rois, num_classes, mask_size) gt_mask_targets = mx.nd.array([[[[[2193.4 , 2193.7332 , 2194.0667 ], [2204.0667 , 2204.4 , 2204.7334 ], [2214.7334 , 2215.0667 , 2215.4 ]], [[2193.4 , 2193.7332 , 2194.0667 ], [2204.0667 , 2204.4 , 2204.7334 ], [2214.7334 , 2215.0667 , 2215.4 ]], [[2193.4 , 2193.7332 , 2194.0667 ], [2204.0667 , 2204.4 , 2204.7334 ], [2214.7334 , 2215.0667 , 2215.4 ]], [[2193.4 , 2193.7332 , 2194.0667 ], [2204.0667 , 2204.4 , 2204.7334 ], [2214.7334 , 2215.0667 , 2215.4 ]]], [[[ 185. , 185.33334, 185.66667], [ 195.66667, 196.00002, 196.33334], [ 206.33333, 206.66666, 207. ]], [[ 185. , 185.33334, 185.66667], [ 195.66667, 196.00002, 196.33334], [ 206.33333, 206.66666, 207. ]], [[ 185. , 185.33334, 185.66667], [ 195.66667, 196.00002, 196.33334], [ 206.33333, 206.66666, 207. ]], [[ 185. , 185.33334, 185.66667], [ 195.66667, 196.00002, 196.33334], [ 206.33333, 206.66666, 207. ]]]]]) gt_mask_cls = mx.nd.array([[0,0,1,0], [0,1,0,0]]) gt_mask_cls = gt_mask_cls.reshape(1,2,4,1,1).broadcast_axes(axis=(3,4), size=(3,3)) assert_almost_equal(mask_targets.asnumpy(), gt_mask_targets.asnumpy()) assert_almost_equal(mask_cls.asnumpy(), gt_mask_cls.asnumpy()) def test_dynamic_reshape(): def dynamic_reshape_testcases(src_shape, shape_arg, dst_shape): data = mx.sym.Variable('data') shape = mx.sym.Variable('shape') net = mx.sym.contrib.dynamic_reshape(data, shape) js = net.tojson() net = mx.sym.load_json(js) dat_npy = np.random.rand(*src_shape) grad_npy = np.random.rand(*dst_shape) args = { 'data': mx.nd.array(dat_npy), 'shape': mx.nd.array(shape_arg) } args_grad = { 'data': mx.nd.empty(src_shape) } exe = net._bind(default_context(), args, args_grad) exe.forward(is_train=True) assert np.square(exe.outputs[0].asnumpy() - dat_npy.reshape(dst_shape)).mean() < 1E-7 exe.backward(out_grads=mx.nd.array(grad_npy)) assert np.square(exe.grad_dict['data'].asnumpy() - grad_npy.reshape(src_shape)).mean() < 1E-7 # test ndarray X = mx.nd.random.uniform(shape=src_shape) Y = mx.contrib.nd.dynamic_reshape(X, mx.nd.array(shape_arg)) assert_array_equal(Y.shape, dst_shape) test_cases = [ [(2, 3, 5, 5), (0, -1), (2, 75)], [(2, 3, 5, 5), (0, 0, -1), (2, 3, 25)], [(5, 3, 4, 5), (0, -1, 0), (5, 15, 4)], [(2, 3, 5, 4), (-1, 0, 0), (8, 3, 5)], [(2, 3, 5, 5), (0, 0, 0, 0), (2, 3, 5, 5)], [(2, 4, 5, 3), (-1, 2, 2, 1), (30, 2, 2, 1)], [(2, 3, 5, 6), (-2,), (2, 3, 5, 6)], [(2, 3, 5, 6), (6, 1, -2), (6, 1, 5, 6)], [(2, 3, 5, 6), (-3, -3), (6, 30)], [(2, 3, 5, 6), (-3, -1), (6, 30)], [(64,), (-4, 16, 4), (16, 4)], [(64,), (-4, 16, -1), (16, 4)], [(64, 1, 2, 3), (-4, 16, -1, -2), (16, 4, 1, 2, 3)]] for test_case in test_cases: dynamic_reshape_testcases(*test_case) if __name__ == '__main__': import nose nose.runmodule()
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ShardedVariable.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.client import session as session_lib from tensorflow.python.compat import v2_compat from tensorflow.python.distribute import sharded_variable from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.module import module from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.saved_model import load from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import save from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.training.tracking import tracking from tensorflow.python.training.tracking import util from tensorflow.python.util import nest def _load_and_run( model_dir, inputs, signature_key=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY): """Load a SavedModel into a TF 1.x-style graph and run `signature_key`.""" graph = ops.Graph() with graph.as_default(), session_lib.Session() as session: meta_graph_def = loader.load(session, [tag_constants.SERVING], model_dir) signature = meta_graph_def.signature_def[signature_key] feed_dict = {} for arg_name in inputs.keys(): input_tensor = session.graph.get_tensor_by_name( signature.inputs[arg_name].name) feed_dict[input_tensor] = inputs[arg_name] output_dict = {} for output_name, output_tensor_info in signature.outputs.items(): output_dict[output_name] = session.graph.get_tensor_by_name( output_tensor_info.name) return session.run(output_dict, feed_dict=feed_dict) class PartitionerTest(test.TestCase): def test_fixed_shards_partitioner(self): partitioner = sharded_variable.FixedShardsPartitioner(num_shards=2) got = partitioner(tensor_shape.TensorShape([10, 3]), dtypes.float32) self.assertAllEqual(got, [2, 1]) def test_min_size_partitioner(self): partitioner = sharded_variable.MinSizePartitioner( min_shard_bytes=4, max_shards=2) got = partitioner(tensor_shape.TensorShape([6, 1]), dtypes.float32) self.assertAllEqual(got, [2, 1]) partitioner = sharded_variable.MinSizePartitioner( min_shard_bytes=4, max_shards=10) got = partitioner(tensor_shape.TensorShape([6, 1]), dtypes.float32) self.assertAllEqual(got, [6, 1]) def test_max_size_partitioner(self): partitioner = sharded_variable.MaxSizePartitioner(max_shard_bytes=4) got = partitioner(tensor_shape.TensorShape([6, 1]), dtypes.float32) self.assertAllEqual(got, [6, 1]) partitioner = sharded_variable.MaxSizePartitioner( max_shard_bytes=4, max_shards=2) got = partitioner(tensor_shape.TensorShape([6, 1]), dtypes.float32) self.assertAllEqual(got, [2, 1]) partitioner = sharded_variable.MaxSizePartitioner(max_shard_bytes=1024) got = partitioner(tensor_shape.TensorShape([6, 1]), dtypes.float32) self.assertAllEqual(got, [1, 1]) class ShardedVariableTest(test.TestCase): def test_sharded_variable_simple(self): v0 = variables_lib.Variable([0]) v1 = variables_lib.Variable([1]) s = sharded_variable.ShardedVariable([v0, v1], name='s') self.assertEqual(s.variables[0], v0) self.assertEqual(s.variables[1], v1) self.assertEqual(s.shape.as_list(), [2]) self.assertEqual(s.dtype, v0.dtype) self.assertEqual(s.name, 's') def test_assign(self): v0 = variables_lib.Variable([[0, 0]]) v1 = variables_lib.Variable([[1, 1], [2, 2]]) v2 = variables_lib.Variable([[3, 3]]) s = sharded_variable.ShardedVariable([v0, v1, v2]) ret = s.assign([[4, 4], [5, 5], [6, 6], [7, 7]]) self.assertAllEqual(self.evaluate(s.variables[0]), [[4, 4]]) self.assertAllEqual(self.evaluate(s.variables[1]), [[5, 5], [6, 6]]) self.assertAllEqual(self.evaluate(s.variables[2]), [[7, 7]]) self.assertIs(ret, s) def test_assign_add(self): v0 = variables_lib.Variable([[0, 0]]) v1 = variables_lib.Variable([[1, 1], [2, 2]]) v2 = variables_lib.Variable([[3, 3]]) s = sharded_variable.ShardedVariable([v0, v1, v2]) ret = s.assign_add([[1, 1], [1, 1], [2, 2], [2, 2]]) self.assertAllEqual(self.evaluate(s.variables[0]), [[1, 1]]) self.assertAllEqual(self.evaluate(s.variables[1]), [[2, 2], [4, 4]]) self.assertAllEqual(self.evaluate(s.variables[2]), [[5, 5]]) self.assertIs(ret, s) def test_assign_sub(self): v0 = variables_lib.Variable([[0, 0]]) v1 = variables_lib.Variable([[1, 1], [2, 2]]) v2 = variables_lib.Variable([[3, 3]]) s = sharded_variable.ShardedVariable([v0, v1, v2]) ret = s.assign_sub([[0, 0], [1, 1], [1, 1], [3, 3]]) self.assertAllEqual(self.evaluate(s.variables[0]), [[0, 0]]) self.assertAllEqual(self.evaluate(s.variables[1]), [[0, 0], [1, 1]]) self.assertAllEqual(self.evaluate(s.variables[2]), [[0, 0]]) self.assertIs(ret, s) def test_control_dep_on_assign(self): v0 = variables_lib.Variable([[0, 0]]) v1 = variables_lib.Variable([[1, 1], [2, 2]]) v2 = variables_lib.Variable([[3, 3]]) s = sharded_variable.ShardedVariable([v0, v1, v2]) @def_function.function def func(): ret = s.assign([[4, 4], [5, 5], [6, 6], [7, 7]]) with ops.control_dependencies([ret]): a = array_ops.ones((1, 1)) with ops.control_dependencies([control_flow_ops.group(ret)]): b = array_ops.ones((1, 1)) return a, b func() def test_convert_to_tensor(self): v0 = variables_lib.Variable([[0, 0]]) v1 = variables_lib.Variable([[1, 1], [2, 2]]) v2 = variables_lib.Variable([[3, 3]]) s = sharded_variable.ShardedVariable([v0, v1, v2]) t = ops.convert_to_tensor(s) self.assertAllEqual(t, [[0, 0], [1, 1], [2, 2], [3, 3]]) def test_save_restore(self): fname = os.path.join(self.get_temp_dir(), 'checkpoint') variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), variables_lib.Variable([2]), variables_lib.Variable([3]) ] s = sharded_variable.ShardedVariable(variables, name='s') cp = util.Checkpoint(s=s) self.assertEqual(self.evaluate(cp.s.variables[0]), [0]) cp.write(fname) self.evaluate(cp.s.variables[0].assign([4])) self.assertEqual(self.evaluate(cp.s.variables[0]), [4]) cp.restore(fname) # Tests that the original weights are restored. self.assertEqual(self.evaluate(cp.s.variables[0]), [0]) def test_save_restore_different_partitions(self): fname = os.path.join(self.get_temp_dir(), 'checkpoint') variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), variables_lib.Variable([2]), variables_lib.Variable([3]) ] s = sharded_variable.ShardedVariable(variables, name='s') cp = util.Checkpoint(s=s) cp.write(fname) variables2 = [variables_lib.Variable([0, 0, 0, 0])] s2 = sharded_variable.ShardedVariable(variables2, name='s') # Restore from 4 partitions into 1. cp2 = util.Checkpoint(s=s2) cp2.restore(fname) self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1, 2, 3]) self.evaluate(cp2.s.variables[0].assign([5, 10, 15, 20])) cp2.write(fname) # Restore 1 partition into 4. cp.restore(fname) self.assertEqual(self.evaluate(cp.s.variables[0]), [5]) self.assertEqual(self.evaluate(cp.s.variables[1]), [10]) self.assertEqual(self.evaluate(cp.s.variables[2]), [15]) self.assertEqual(self.evaluate(cp.s.variables[3]), [20]) def test_save_restore_4_to_2_partitions(self): fname = os.path.join(self.get_temp_dir(), 'checkpoint') variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), variables_lib.Variable([2]), variables_lib.Variable([3]) ] s = sharded_variable.ShardedVariable(variables, name='s') cp = util.Checkpoint(s=s) cp.write(fname) variables2 = [ variables_lib.Variable([0, 0]), variables_lib.Variable([0, 0]) ] s2 = sharded_variable.ShardedVariable(variables2, name='s') cp2 = util.Checkpoint(s=s2) cp2.restore(fname) # Assert that weights from the 4 partitions were loaded here. self.assertLen(cp2.s.variables, 2) self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1]) self.assertAllEqual(self.evaluate(cp2.s.variables[1]), [2, 3]) def test_delayed_restore(self): fname = os.path.join(self.get_temp_dir(), 'checkpoint') model = tracking.AutoTrackable() variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), variables_lib.Variable([2]), variables_lib.Variable([3]) ] model.s = sharded_variable.ShardedVariable(variables) cp = util.Checkpoint(model=model) cp.write(fname) model2 = tracking.AutoTrackable() cp2 = util.Checkpoint(model=model2) cp2.restore(fname) variables2 = [ variables_lib.Variable([0]), variables_lib.Variable([0]), variables_lib.Variable([0]), variables_lib.Variable([0]) ] model2.s = sharded_variable.ShardedVariable(variables2) self.assertAllEqual(self.evaluate(model2.s.variables[0]), [0]) self.assertAllEqual(self.evaluate(model2.s.variables[1]), [1]) self.assertAllEqual(self.evaluate(model2.s.variables[2]), [2]) self.assertAllEqual(self.evaluate(model2.s.variables[3]), [3]) def test_delayed_restore_4_to_2_partitions(self): fname = os.path.join(self.get_temp_dir(), 'checkpoint') model = tracking.AutoTrackable() variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), variables_lib.Variable([2]), variables_lib.Variable([3]) ] model.s = sharded_variable.ShardedVariable(variables) cp = util.Checkpoint(model=model) cp.write(fname) model2 = tracking.AutoTrackable() cp2 = util.Checkpoint(model=model2) cp2.restore(fname) variables2 = [ variables_lib.Variable([0, 0]), variables_lib.Variable([0, 0]) ] model2.s = sharded_variable.ShardedVariable(variables2) self.assertAllEqual(self.evaluate(model2.s.variables[0]), [0, 1]) self.assertAllEqual(self.evaluate(model2.s.variables[1]), [2, 3]) def test_save_graph_def(self): root = tracking.AutoTrackable() v1 = variables_lib.Variable([3.]) v2 = variables_lib.Variable([2.]) root.v = sharded_variable.ShardedVariable([v1, v2]) root.train = def_function.function( lambda x: embedding_ops.embedding_lookup_v2(root.v.variables, x)) # TODO(b/144057383): Remove the necessity of root.serve once saving context # is made to tf.function cache. root.serve = def_function.function( lambda x: embedding_ops.embedding_lookup_v2(root.v.variables[0], x), input_signature=[tensor_spec.TensorSpec([2], dtypes.int32, name='x')]) # Trace and use root.train self.assertAllEqual([3., 2.], root.train([0, 1]).numpy()) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save.save(root, save_dir, root.serve) self.assertAllEqual([3., 2.], _load_and_run(save_dir, {'x': [0, 1]})['output_0']) # Continue using root.train for training self.assertAllEqual([3., 2.], root.train([0, 1]).numpy()) def test_load_raises_error(self): root = tracking.AutoTrackable() v1 = variables_lib.Variable([3.]) v2 = variables_lib.Variable([2.]) root.v = sharded_variable.ShardedVariable([v1, v2]) save_dir = os.path.join(self.get_temp_dir(), 'saved_model') save.save(root, save_dir) with self.assertRaisesRegex( ValueError, 'Loading a saved_model containing ShardedVariable'): load.load(save_dir) def test_validation_errors(self): with self.assertRaisesRegex(ValueError, 'Expected a list of '): sharded_variable.ShardedVariable( [variables_lib.Variable([0]), 'not-a-variable']) with self.assertRaisesRegex(ValueError, 'must have the same dtype'): sharded_variable.ShardedVariable([ variables_lib.Variable([0], dtype='int64'), variables_lib.Variable([1], dtype='int32') ]) with self.assertRaisesRegex(ValueError, 'the same shapes except'): sharded_variable.ShardedVariable([ variables_lib.Variable(array_ops.ones((5, 10))), variables_lib.Variable(array_ops.ones((5, 20))) ]) with self.assertRaisesRegex(ValueError, '`SaveSliceInfo` should not'): v = variables_lib.Variable([0]) v._set_save_slice_info( variables_lib.Variable.SaveSliceInfo( full_name='s', full_shape=[2], var_offset=[0], var_shape=[1])) sharded_variable.ShardedVariable([v]) def test_as_function_input(self): variables1 = [ variables_lib.Variable([1]), variables_lib.Variable([1]), ] s = sharded_variable.ShardedVariable(variables1) variables2 = [ variables_lib.Variable([2]), variables_lib.Variable([2]), ] s2 = sharded_variable.ShardedVariable(variables2) trace_count = [0] @def_function.function def func(sharded_var): trace_count[0] = trace_count[0] + 1 sharded_var.assign([0, 0]) func(s) self.assertAllEqual(ops.convert_to_tensor(s), [0, 0]) self.assertEqual(trace_count[0], 1) func(s2) self.assertAllEqual(ops.convert_to_tensor(s2), [0, 0]) self.assertEqual(trace_count[0], 1) def test_flatten(self): variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), ] s = sharded_variable.ShardedVariable(variables) got = nest.flatten(s) self.assertIs(s, got[0]) got = nest.flatten(s, expand_composites=True) self.assertAllEqual(variables, got) def test_tf_module(self): class Model(module.Module): def __init__(self): super().__init__() variables = [ variables_lib.Variable([0]), variables_lib.Variable([1]), ] self.w = sharded_variable.ShardedVariable(variables) model = Model() self.assertLen(model.variables, 2) self.assertEqual(model.variables[0], [0]) self.assertEqual(model.variables[1], [1]) self.assertAllEqual(model.variables, model.trainable_variables) self.assertLen(model._checkpoint_dependencies, 1) self.assertIs(model._checkpoint_dependencies[0].ref, model.w) def test_embedding_lookup(self): v = [ variables_lib.Variable([[1., 2.], [3., 4.]]), variables_lib.Variable([[5., 6.], [7., 8.]]), variables_lib.Variable([[9., 10.]]) ] sv = sharded_variable.ShardedVariable(v) @def_function.function def lookup(): ids = constant_op.constant([0, 3, 4]) return embedding_ops.embedding_lookup_v2(sv, ids) @def_function.function def sparse_lookup(): sp_ids = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 1], [1, 0], [2, 2]], values=[0, 3, 4, 1], dense_shape=[3, 3]) return embedding_ops.embedding_lookup_sparse_v2(sv, sp_ids, None) @def_function.function def safe_sparse_lookup(): sp_ids = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 1], [1, 0], [2, 2]], values=[0, -1, 4, 1], dense_shape=[3, 3]) sp_weights = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 1], [1, 0], [2, 2]], values=[1., 1., -1., 1.], dense_shape=[3, 3]) return embedding_ops.safe_embedding_lookup_sparse_v2( sv, sp_ids, sp_weights) # TODO(chenkai): Add safe_sparse_lookup to the list. Currently # ShardedVariable is converted to a tensor in safe_sparse_lookup. for func in [lookup, sparse_lookup]: num_gather_ops = 0 for op in func.get_concrete_function().graph.get_operations(): if op.type == 'ResourceGather': num_gather_ops += 1 self.assertEqual( num_gather_ops, len(v), 'Number of ResourceGather op does not match' ' expected, possibly due to ShardedVariable accidentally being' ' converted to tensor in embedding_lookup ops.') self.assertAllEqual(lookup(), [[1., 2.], [7., 8.], [9., 10.]]) self.assertAllClose(sparse_lookup(), [[4., 5.], [9., 10.], [3., 4.]]) self.assertAllClose(safe_sparse_lookup(), [[1., 2.], [0., 0.], [3., 4.]]) def test_slicing(self): v = [ variables_lib.Variable([[1, 2], [3, 4], [5, 6]]), variables_lib.Variable([[7, 8], [9, 10], [11, 12]]), variables_lib.Variable([[13, 14], [15, 16]]) ] sv = sharded_variable.ShardedVariable(v) empty = v[0][0:0] # Test cases: positive step self.assertAllEqual(sv[:], array_ops.concat(v, axis=0)) self.assertAllEqual(sv[:2], [[1, 2], [3, 4]]) self.assertAllEqual(sv[-8:2], [[1, 2], [3, 4]]) self.assertAllEqual(sv[-10:2], [[1, 2], [3, 4]]) self.assertAllEqual(sv[5:], [[11, 12], [13, 14], [15, 16]]) self.assertAllEqual(sv[5:-1], [[11, 12], [13, 14]]) self.assertAllEqual(sv[::3], [[1, 2], [7, 8], [13, 14]]) self.assertAllEqual(sv[::5], [[1, 2], [11, 12]]) self.assertAllEqual(sv[1::6], [[3, 4], [15, 16]]) self.assertAllEqual(sv[1:5:6], [[3, 4]]) self.assertAllEqual(sv[1::7], [[3, 4]]) self.assertAllEqual(sv[2:7], [[5, 6], [7, 8], [9, 10], [11, 12], [13, 14]]) self.assertAllEqual(sv[2:7:2], [[5, 6], [9, 10], [13, 14]]) self.assertAllEqual(sv[2:7:3], [[5, 6], [11, 12]]) # Test cases: negative step self.assertAllEqual( sv[::-1], array_ops.reverse(array_ops.concat(v, axis=0), axis=[0])) self.assertAllEqual(sv[2::-1], [[5, 6], [3, 4], [1, 2]]) self.assertAllEqual(sv[2:-8:-1], [[5, 6], [3, 4]]) self.assertAllEqual(sv[2:-10:-1], [[5, 6], [3, 4], [1, 2]]) self.assertAllEqual(sv[4::-1], [[9, 10], [7, 8], [5, 6], [3, 4], [1, 2]]) self.assertAllEqual(sv[-1:-3:-1], [[15, 16], [13, 14]]) self.assertAllEqual(sv[::-5], [[15, 16], [5, 6]]) self.assertAllEqual(sv[6::-6], [[13, 14], [1, 2]]) self.assertAllEqual(sv[6:5:-6], [[13, 14]]) self.assertAllEqual(sv[6::-7], [[13, 14]]) self.assertAllEqual(sv[7:1:-1], [[15, 16], [13, 14], [11, 12], [9, 10], [7, 8], [5, 6]]) self.assertAllEqual(sv[7:1:-2], [[15, 16], [11, 12], [7, 8]]) self.assertAllEqual(sv[7:1:-4], [[15, 16], [7, 8]]) # Test cases: empty slice self.assertAllEqual(sv[0:0], empty) self.assertAllEqual(sv[5:3], empty) self.assertAllEqual(sv[3:5:-1], empty) self.assertAllEqual(sv[-1:0], empty) self.assertAllEqual(sv[2:-1:-1], empty) # Test cases: slicing other dimensions self.assertAllEqual(sv[:, 0], [1, 3, 5, 7, 9, 11, 13, 15]) self.assertAllEqual(sv[:, 0:1], [[1], [3], [5], [7], [9], [11], [13], [15]]) # Test cases: normal indexing self.assertAllEqual(sv[2], [5, 6]) self.assertAllEqual(sv[6], [13, 14]) self.assertAllEqual(sv[2, 1], 6) self.assertAllEqual(sv[-2], [13, 14]) with self.assertRaisesRegex(IndexError, 'out of bounds'): _ = sv[100] with self.assertRaisesRegex(IndexError, 'out of bounds'): _ = sv[-100] # Test cases: Ellipsis self.assertAllEqual(sv[...], array_ops.concat(v, axis=0)) self.assertAllEqual(sv[..., 0], [1, 3, 5, 7, 9, 11, 13, 15]) self.assertAllEqual(sv[0:1, ...], [[1, 2]]) # Test cases: newaxis self.assertAllEqual( sv[array_ops.newaxis, ...], array_ops.expand_dims_v2(array_ops.concat(v, axis=0), axis=0)) # Test cases: boolean masks self.assertAllEqual(sv[ops.convert_to_tensor(sv) > 10], [11, 12, 13, 14, 15, 16]) # Test cases: tensor input with self.assertRaisesRegex(TypeError, 'not allowed'): _ = sv[constant_op.constant(1)::] with self.assertRaisesRegex(TypeError, 'not allowed'): _ = sv[:constant_op.constant(1):] with self.assertRaisesRegex(TypeError, 'not allowed'): _ = sv[constant_op.constant(1)] # Test cases: inside tf.function @def_function.function def func(): a = sv[:, 0] return a self.assertAllEqual(func(), [1, 3, 5, 7, 9, 11, 13, 15]) def test_operator_overload(self): v1 = [ variables_lib.Variable([1.]), variables_lib.Variable([2.]), ] sv1 = sharded_variable.ShardedVariable(v1) v2 = [ variables_lib.Variable([1.]), variables_lib.Variable([2.]), ] sv2 = sharded_variable.ShardedVariable(v2) equal = sv1 == sv2 self.assertAllEqual(equal, [True, True]) self.assertAllEqual(sv1 + sv2, [2.0, 4.0]) if __name__ == '__main__': v2_compat.enable_v2_behavior() test.main()
import sys from glob import glob import os from datetime import datetime from tasks import plotms ''' Plot visibility data for each spw to allow for easy manual flags ''' try: vis_name = sys.argv[1] field_names = sys.argv[2] corrstring = sys.argv[3] starting_spw = int(sys.argv[4]) bp_scan = sys.argv[5] show_channels = True if sys.argv[6] == "T" else False except IndexError: vis_name = raw_input("MS Name? : ") field_names = raw_input("Field Name/Number(s)? : ") corrstring = raw_input("Corrstring? : ") starting_spw = int(raw_input("SPW to start at? : ")) bp_scan = raw_input("Bandpass scan? (None or scan number): ") show_channels = True if \ raw_input("Show amp/channel and phase/channel? (T or F): ") == "T" \ else False # Only show BP scan plots when given if bp_scan == "None" or bp_scan == "none": bp_scan = None tb.open(vis_name + '/SPECTRAL_WINDOW') freqs = tb.getcol('REF_FREQUENCY') nchans = tb.getcol('NUM_CHAN') tb.close() spws = range(starting_spw, len(freqs)) fields = field_names.split(",") for n, field_name in enumerate(fields): print("On {0}. {1} out of {2} fields.".format(field_name, n + 1, len(fields))) for spw_num in spws: nchan = nchans[spw_num] print "On SPW {0} of {1}".format(str(spw_num + 1), str(len(freqs))) if bp_scan is not None: default('plotms') vis = vis_name xaxis = 'time' yaxis = 'amp' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) scan = bp_scan correlation = corrstring averagedata = False avgscan = False transform = False extendflag = False iteraxis = '' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") if show_channels: default('plotms') vis = vis_name xaxis = 'channel' yaxis = 'phase' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) correlation = corrstring averagedata = True avgtime = '1e8s' avgscan = True transform = False extendflag = False iteraxis = '' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") default('plotms') vis = vis_name xaxis = 'channel' yaxis = 'amp' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) correlation = corrstring averagedata = True avgtime = '1e8s' avgscan = True transform = False extendflag = False iteraxis = '' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") default('plotms') vis = vis_name xaxis = 'time' yaxis = 'amp' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) correlation = corrstring averagedata = True avgchannel = str(nchan) avgscan = False transform = False extendflag = False iteraxis = 'scan' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") default('plotms') vis = vis_name xaxis = 'time' yaxis = 'phase' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) correlation = corrstring averagedata = True avgchannel = str(nchan) avgscan = False transform = False extendflag = False iteraxis = 'scan' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") default('plotms') vis = vis_name xaxis = 'uvwave' yaxis = 'amp' ydatacolumn = 'corrected' selectdata = True field = field_name spw = str(spw_num) correlation = corrstring averagedata = True avgchannel = str(nchan) avgtime = '60s' avgscan = False transform = False extendflag = False iteraxis = '' coloraxis = 'antenna2' plotrange = [] xlabel = '' ylabel = '' showmajorgrid = False showminorgrid = False plotms() raw_input("Continue?") # Get the existing flag version names. flag_folder = "{}.flagversions".format(vis_name) tstamp = datetime.now().strftime("%Y%m%d-%H%M%S") if not os.path.exists(flag_folder): print("No flag versions exist. Using default flag name.") versionname = "manual_flagging_1_{}".format(tstamp) else: flag_versions = glob(os.path.join(flag_folder, "flags.manual_flagging_*")) if len(flag_versions) == 0: versionname = "manual_flagging_1_{}".format(tstamp) else: num = len(flag_versions) + 1 versionname = "manual_flagging_{0}_{1}".format(num, tstamp) # Save this new version of the flags flagmanager(vis=vis_name, mode='save', versionname=versionname)
from django.db.backends import BaseDatabaseOperations class DatabaseOperations(BaseDatabaseOperations): def __init__(self, connection): super(DatabaseOperations, self).__init__(connection) def date_extract_sql(self, lookup_type, field_name): # http://www.postgresql.org/docs/8.0/static/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT if lookup_type == 'week_day': # For consistency across backends, we return Sunday=1, Saturday=7. return "EXTRACT('dow' FROM %s) + 1" % field_name else: return "EXTRACT('%s' FROM %s)" % (lookup_type, field_name) def date_interval_sql(self, sql, connector, timedelta): """ implements the interval functionality for expressions format for Postgres: (datefield + interval '3 days 200 seconds 5 microseconds') """ modifiers = [] if timedelta.days: modifiers.append(u'%s days' % timedelta.days) if timedelta.seconds: modifiers.append(u'%s seconds' % timedelta.seconds) if timedelta.microseconds: modifiers.append(u'%s microseconds' % timedelta.microseconds) mods = u' '.join(modifiers) conn = u' %s ' % connector return u'(%s)' % conn.join([sql, u'interval \'%s\'' % mods]) def date_trunc_sql(self, lookup_type, field_name): # http://www.postgresql.org/docs/8.0/static/functions-datetime.html#FUNCTIONS-DATETIME-TRUNC return "DATE_TRUNC('%s', %s)" % (lookup_type, field_name) def deferrable_sql(self): return " DEFERRABLE INITIALLY DEFERRED" def lookup_cast(self, lookup_type): lookup = '%s' # Cast text lookups to text to allow things like filter(x__contains=4) if lookup_type in ('iexact', 'contains', 'icontains', 'startswith', 'istartswith', 'endswith', 'iendswith'): lookup = "%s::text" # Use UPPER(x) for case-insensitive lookups; it's faster. if lookup_type in ('iexact', 'icontains', 'istartswith', 'iendswith'): lookup = 'UPPER(%s)' % lookup return lookup def field_cast_sql(self, db_type): if db_type == 'inet': return 'HOST(%s)' return '%s' def last_insert_id(self, cursor, table_name, pk_name): # Use pg_get_serial_sequence to get the underlying sequence name # from the table name and column name (available since PostgreSQL 8) cursor.execute("SELECT CURRVAL(pg_get_serial_sequence('%s','%s'))" % ( self.quote_name(table_name), pk_name)) return cursor.fetchone()[0] def no_limit_value(self): return None def quote_name(self, name): if name.startswith('"') and name.endswith('"'): return name # Quoting once is enough. return '"%s"' % name def set_time_zone_sql(self): return "SET TIME ZONE %s" def sql_flush(self, style, tables, sequences): if tables: # Perform a single SQL 'TRUNCATE x, y, z...;' statement. It allows # us to truncate tables referenced by a foreign key in any other # table. sql = ['%s %s;' % \ (style.SQL_KEYWORD('TRUNCATE'), style.SQL_FIELD(', '.join([self.quote_name(table) for table in tables])) )] # 'ALTER SEQUENCE sequence_name RESTART WITH 1;'... style SQL statements # to reset sequence indices for sequence_info in sequences: table_name = sequence_info['table'] column_name = sequence_info['column'] if not (column_name and len(column_name) > 0): # This will be the case if it's an m2m using an autogenerated # intermediate table (see BaseDatabaseIntrospection.sequence_list) column_name = 'id' sql.append("%s setval(pg_get_serial_sequence('%s','%s'), 1, false);" % \ (style.SQL_KEYWORD('SELECT'), style.SQL_TABLE(self.quote_name(table_name)), style.SQL_FIELD(column_name)) ) return sql else: return [] def tablespace_sql(self, tablespace, inline=False): if inline: return "USING INDEX TABLESPACE %s" % self.quote_name(tablespace) else: return "TABLESPACE %s" % self.quote_name(tablespace) def sequence_reset_sql(self, style, model_list): from django.db import models output = [] qn = self.quote_name for model in model_list: # Use `coalesce` to set the sequence for each model to the max pk value if there are records, # or 1 if there are none. Set the `is_called` property (the third argument to `setval`) to true # if there are records (as the max pk value is already in use), otherwise set it to false. # Use pg_get_serial_sequence to get the underlying sequence name from the table name # and column name (available since PostgreSQL 8) for f in model._meta.local_fields: if isinstance(f, models.AutoField): output.append("%s setval(pg_get_serial_sequence('%s','%s'), coalesce(max(%s), 1), max(%s) %s null) %s %s;" % \ (style.SQL_KEYWORD('SELECT'), style.SQL_TABLE(qn(model._meta.db_table)), style.SQL_FIELD(f.column), style.SQL_FIELD(qn(f.column)), style.SQL_FIELD(qn(f.column)), style.SQL_KEYWORD('IS NOT'), style.SQL_KEYWORD('FROM'), style.SQL_TABLE(qn(model._meta.db_table)))) break # Only one AutoField is allowed per model, so don't bother continuing. for f in model._meta.many_to_many: if not f.rel.through: output.append("%s setval(pg_get_serial_sequence('%s','%s'), coalesce(max(%s), 1), max(%s) %s null) %s %s;" % \ (style.SQL_KEYWORD('SELECT'), style.SQL_TABLE(qn(f.m2m_db_table())), style.SQL_FIELD('id'), style.SQL_FIELD(qn('id')), style.SQL_FIELD(qn('id')), style.SQL_KEYWORD('IS NOT'), style.SQL_KEYWORD('FROM'), style.SQL_TABLE(qn(f.m2m_db_table())))) return output def savepoint_create_sql(self, sid): return "SAVEPOINT %s" % sid def savepoint_commit_sql(self, sid): return "RELEASE SAVEPOINT %s" % sid def savepoint_rollback_sql(self, sid): return "ROLLBACK TO SAVEPOINT %s" % sid def prep_for_iexact_query(self, x): return x def check_aggregate_support(self, aggregate): """Check that the backend fully supports the provided aggregate. The implementation of population statistics (STDDEV_POP and VAR_POP) under Postgres 8.2 - 8.2.4 is known to be faulty. Raise NotImplementedError if this is the database in use. """ if aggregate.sql_function in ('STDDEV_POP', 'VAR_POP'): pg_version = self.connection.pg_version if pg_version >= 80200 and pg_version <= 80204: raise NotImplementedError('PostgreSQL 8.2 to 8.2.4 is known to have a faulty implementation of %s. Please upgrade your version of PostgreSQL.' % aggregate.sql_function) def max_name_length(self): """ Returns the maximum length of an identifier. Note that the maximum length of an identifier is 63 by default, but can be changed by recompiling PostgreSQL after editing the NAMEDATALEN macro in src/include/pg_config_manual.h . This implementation simply returns 63, but can easily be overridden by a custom database backend that inherits most of its behavior from this one. """ return 63 def distinct_sql(self, fields): if fields: return 'DISTINCT ON (%s)' % ', '.join(fields) else: return 'DISTINCT' def last_executed_query(self, cursor, sql, params): # http://initd.org/psycopg/docs/cursor.html#cursor.query # The query attribute is a Psycopg extension to the DB API 2.0. return cursor.query def return_insert_id(self): return "RETURNING %s", () def bulk_insert_sql(self, fields, num_values): items_sql = "(%s)" % ", ".join(["%s"] * len(fields)) return "VALUES " + ", ".join([items_sql] * num_values)
"""Deployment utilities for clld apps.""" # flake8: noqa import time import json from getpass import getpass import os from datetime import datetime, timedelta from importlib import import_module import contextlib from pytz import timezone, utc from fabric.api import sudo, run, local, put, env, cd, task, execute, settings from fabric.contrib.console import confirm from fabric.contrib.files import exists from fabtools import require from fabtools.files import upload_template from fabtools.python import virtualenv from fabtools import service from fabtools import postgres from clldutils.path import Path from clld.scripts.util import data_file # we prevent the tasks defined here from showing up in fab --list, because we only # want the wrapped version imported from clldfabric.tasks to be listed. __all__ = [] TEMPLATE_DIR = os.path.join(os.path.dirname(__file__), 'templates') env.use_ssh_config = True def get_input(prompt): return raw_input(prompt) @contextlib.contextmanager def working_directory(path): """A context manager which changes the working directory to the given path, and then changes it back to its previous value on exit. """ prev_cwd = os.getcwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd) def upload_template_as_root(dest, template, context=None, mode=None, owner='root'): if mode is not None: mode = int(mode, 8) upload_template(template, str(dest), context, use_jinja=True, template_dir=TEMPLATE_DIR, use_sudo=True, backup=False, mode=mode, chown=True, user=owner) def create_file_as_root(path, content, **kw): kw.setdefault('owner', 'root') kw.setdefault('group', 'root') require.files.file(str(path), contents=content, use_sudo=True, **kw) def get_template_variables(app, monitor_mode=False, with_blog=False): if monitor_mode and not os.environ.get('NEWRELIC_API_KEY'): print('--> Warning: no newrelic api key found in environment') # pragma: no cover res = dict( app=app, env=env, newrelic_api_key=os.environ.get('NEWRELIC_API_KEY'), gunicorn=app.bin('gunicorn_paster'), newrelic=app.bin('newrelic-admin'), monitor_mode=monitor_mode, auth='', bloghost='', bloguser='', blogpassword='') if with_blog: # pragma: no cover for key, default in [ ('bloghost', 'blog.%s' % app.domain), ('bloguser', app.name), ('blogpassword', ''), ]: res[key] = os.environ.get(('%s_%s' % (app.name, key)).upper(), '') if not res[key]: custom = get_input('Blog %s [%s]: ' % (key[4:], default)) res[key] = custom if custom else default assert res['blogpassword'] return res @task def supervisor(app, command, template_variables=None): """ .. seealso: http://serverfault.com/a/479754 """ template_variables = template_variables or get_template_variables(app) template_variables['PAUSE'] = {'pause': True, 'run': False}[command] upload_template_as_root( app.supervisor, 'supervisor.conf', template_variables, mode='644') if command == 'run': sudo('supervisorctl reread') sudo('supervisorctl update %s' % app.name) sudo('supervisorctl restart %s' % app.name) else: sudo('supervisorctl stop %s' % app.name) #sudo('supervisorctl reread %s' % app.name) #sudo('supervisorctl update %s' % app.name) time.sleep(1) def require_bibutils(app): # pragma: no cover """ tar -xzvf bibutils_5.0_src.tgz -C /home/{app.name} cd /home/{app.name}/bibutils_5.0 configure make sudo make install """ if not exists('/usr/local/bin/bib2xml'): tgz = str(app.venv.joinpath('src', 'clld', 'tools', 'bibutils_5.0_src.tgz')) sudo('tar -xzvf {tgz} -C {app.home}'.format(tgz=tgz, app=app)) with cd(str(app.home.joinpath('bibutils_5.0'))): sudo('./configure') sudo('make') sudo('make install') @task def uninstall(app): # pragma: no cover for file_ in [app.supervisor, app.nginx_location, app.nginx_site]: file_ = str(file_) if exists(file_): sudo('rm %s' % file_) service.reload('nginx') sudo('supervisorctl stop %s' % app.name) @task def maintenance(app, hours=2, template_variables=None): """turn maintenance mode on|off """ template_variables = template_variables or get_template_variables(app) ts = utc.localize(datetime.utcnow() + timedelta(hours=hours)) ts = ts.astimezone(timezone('Europe/Berlin')).strftime('%Y-%m-%d %H:%M %Z%z') template_variables['timestamp'] = ts require.files.directory(str(app.www), use_sudo=True) upload_template_as_root( app.www.joinpath('503.html'), '503.html', template_variables) def http_auth(app): pwds = { app.name: getpass(prompt='HTTP Basic Auth password for user %s: ' % app.name), 'admin': ''} while not pwds['admin']: pwds['admin'] = getpass(prompt='HTTP Basic Auth password for user admin: ') for i, pair in enumerate([(n, p) for n, p in pwds.items() if p]): opts = 'bd' if i == 0: opts += 'c' sudo('htpasswd -%s %s %s %s' % (opts, app.nginx_htpasswd, pair[0], pair[1])) return bool(pwds[app.name]), """\ proxy_set_header Authorization $http_authorization; proxy_pass_header Authorization; auth_basic "%s"; auth_basic_user_file %s;""" % (app.name, app.nginx_htpasswd) @task def copy_files(app): data_dir = data_file(import_module(app.name)) tarball = '/tmp/%s-files.tgz' % app.name local('tar -C %s -czf %s files' % (data_dir, tarball)) require.files.file(tarball, source=tarball) if os.path.exists(tarball): os.remove(tarball) # pragma: no cover with cd('/tmp'): tarfile = tarball.split('/')[2] sudo('tar -xzf %s' % tarfile) target = app.www.joinpath('files') if exists(target): sudo('cp -ru files/* %s' % target) sudo('rm -rf files') else: sudo('mv files %s' % app.www) # pragma: no cover sudo('chown -R root:root %s' % target) sudo('rm %s' % tarfile) sudo('tree %s' % app.www) @task def copy_rdfdump(app): execute(copy_downloads(app, pattern='*.n3.gz')) @task def copy_downloads(app, pattern='*'): dl_dir = app.src.joinpath(app.name, 'static', 'download') require.files.directory(dl_dir, use_sudo=True, mode="777") local_dl_dir = Path(import_module(app.name).__file__).parent.joinpath('static', 'download') for f in local_dl_dir.glob(pattern): target = dl_dir.joinpath(f.name) create_file_as_root(target, open(f.as_posix()).read()) sudo('chown %s:%s %s' % (app.name, app.name, target)) require.files.directory(dl_dir, use_sudo=True, mode="755") def init_pg_collkey(app): require.files.file( '/tmp/collkey_icu.sql', source=os.path.join( os.path.dirname(__file__), 'pg_collkey-v0.5', 'collkey_icu.sql')) sudo('sudo -u postgres psql -f /tmp/collkey_icu.sql -d {0.name}'.format(app)) @task def deploy(app, environment, with_alembic=False, with_blog=False, with_files=True): with settings(warn_only=True): lsb_release = run('lsb_release -a') for codename in ['trusty', 'precise']: if codename in lsb_release: lsb_release = codename break else: if lsb_release != '{"status": "ok"}': # if this were the case, we'd be in a test! raise ValueError('unsupported platform: %s' % lsb_release) if environment == 'test' and app.workers > 3: app.workers = 3 template_variables = get_template_variables( app, monitor_mode='true' if environment == 'production' else 'false', with_blog=with_blog) require.users.user(app.name, shell='/bin/bash') require.postfix.server(env['host']) require.postgres.server() require.deb.packages(app.require_deb) require.postgres.user(app.name, app.name) require.postgres.database(app.name, app.name) require.files.directory(str(app.venv), use_sudo=True) if getattr(app, 'pg_unaccent', False): require.deb.packages(['postgresql-contrib']) sudo('sudo -u postgres psql -c "{0}" -d {1.name}'.format( 'CREATE EXTENSION IF NOT EXISTS unaccent WITH SCHEMA public;', app)) with_pg_collkey = getattr(app, 'pg_collkey', False) if with_pg_collkey: pg_version = '9.1' if lsb_release == 'precise' else '9.3' if not exists('/usr/lib/postgresql/%s/lib/collkey_icu.so' % pg_version): require.deb.packages(['postgresql-server-dev-%s' % pg_version, 'libicu-dev']) upload_template_as_root( '/tmp/Makefile', 'pg_collkey_Makefile', dict(pg_version=pg_version)) require.files.file( '/tmp/collkey_icu.c', source=os.path.join( os.path.dirname(__file__), 'pg_collkey-v0.5', 'collkey_icu.c')) with cd('/tmp'): sudo('make') sudo('make install') init_pg_collkey(app) if lsb_release == 'precise': require.deb.package('python-dev') require.python.virtualenv(str(app.venv), use_sudo=True) else: require.deb.package('python3-dev') require.deb.package('python-virtualenv') if not exists(str(app.venv.joinpath('bin'))): sudo('virtualenv -q --python=python3 %s' % app.venv) require.files.directory(str(app.logs), use_sudo=True) if app.pages and not exists(str(app.pages)): with cd(str(app.home)): sudo('sudo -u {0} git clone https://github.com/clld/{0}-pages.git'.format(app.name)) with virtualenv(str(app.venv)): require.python.pip('6.0.6') sp = env['sudo_prefix'] env['sudo_prefix'] += ' -H' # set HOME for pip log/cache require.python.packages(app.require_pip, use_sudo=True) for name in [app.name] + getattr(app, 'dependencies', []): pkg = '-e git+git://github.com/clld/%s.git#egg=%s' % (name, name) require.python.package(pkg, use_sudo=True) env['sudo_prefix'] = sp sudo('webassets -m %s.assets build' % app.name) res = sudo('python -c "import clld; print(clld.__file__)"') assert res.startswith('/usr/venvs') and '__init__.py' in res template_variables['clld_dir'] = '/'.join(res.split('/')[:-1]) require_bibutils(app) # # configure nginx: # require.files.directory( os.path.dirname(str(app.nginx_location)), owner='root', group='root', use_sudo=True) restricted, auth = http_auth(app) if restricted: template_variables['auth'] = auth template_variables['admin_auth'] = auth if environment == 'test': upload_template_as_root('/etc/nginx/sites-available/default', 'nginx-default.conf') template_variables['SITE'] = False upload_template_as_root( app.nginx_location, 'nginx-app.conf', template_variables) elif environment == 'production': template_variables['SITE'] = True upload_template_as_root(app.nginx_site, 'nginx-app.conf', template_variables) upload_template_as_root( '/etc/logrotate.d/{0}'.format(app.name), 'logrotate.conf', template_variables) maintenance(app, hours=app.deploy_duration, template_variables=template_variables) service.reload('nginx') # # TODO: replace with initialization of db from data repos! # if with_files: if confirm('Copy files?', default=False): execute(copy_files, app) if not with_alembic and confirm('Recreate database?', default=False): db_name = get_input('from db [{0.name}]: '.format(app)) local('pg_dump -x -O -f /tmp/{0.name}.sql {1}'.format(app, db_name or app.name)) local('gzip -f /tmp/{0.name}.sql'.format(app)) require.files.file( '/tmp/{0.name}.sql.gz'.format(app), source="/tmp/{0.name}.sql.gz".format(app)) sudo('gunzip -f /tmp/{0.name}.sql.gz'.format(app)) supervisor(app, 'pause', template_variables) if postgres.database_exists(app.name): with cd('/var/lib/postgresql'): sudo('sudo -u postgres dropdb %s' % app.name) require.postgres.database(app.name, app.name) if with_pg_collkey: init_pg_collkey(app) sudo('sudo -u {0.name} psql -f /tmp/{0.name}.sql -d {0.name}'.format(app)) else: if exists(app.src.joinpath('alembic.ini')): if confirm('Upgrade database?', default=False): # Note: stopping the app is not strictly necessary, because the alembic # revisions run in separate transactions! supervisor(app, 'pause', template_variables) with virtualenv(str(app.venv)): with cd(str(app.src)): sudo('sudo -u {0.name} {1} -n production upgrade head'.format( app, app.bin('alembic'))) if confirm('Vacuum database?', default=False): if confirm('VACUUM FULL?', default=False): sudo('sudo -u postgres vacuumdb -f -z -d %s' % app.name) else: sudo('sudo -u postgres vacuumdb -z -d %s' % app.name) template_variables['TEST'] = {'test': True, 'production': False}[environment] # We only set add a setting clld.files, if the corresponding directory exists; # otherwise the app would throw an error on startup. template_variables['files'] = False if exists(app.www.joinpath('files')): template_variables['files'] = app.www.joinpath('files') upload_template_as_root(app.config, 'config.ini', template_variables) upload_template_as_root(app.newrelic_config, 'newrelic.ini', template_variables) supervisor(app, 'run', template_variables) time.sleep(5) res = run('curl http://localhost:%s/_ping' % app.port) assert json.loads(res)['status'] == 'ok' @task def pipfreeze(app, environment): with virtualenv(app.venv): with open('requirements.txt', 'w') as fp: for line in sudo('pip freeze').splitlines(): if '%s.git' % app.name in line: continue if line.split('==')[0].lower() in ['fabric', 'pyx', 'fabtools', 'paramiko', 'pycrypto', 'babel']: continue if 'clld.git' in line: line = 'clld' if 'clldmpg.git' in line: line = 'clldmpg' fp.write(line+ '\n') @task def run_script(app, script_name, *args): # pragma: no cover with cd(str(app.home)): sudo( '%s %s %s#%s %s' % ( app.bin('python'), app.src.joinpath(app.name, 'scripts', '%s.py' % script_name), os.path.basename(str(app.config)), app.name, ' '.join('%s' % arg for arg in args), ), user=app.name) @task def create_downloads(app): # pragma: no cover dl_dir = app.src.joinpath(app.name, 'static', 'download') require.files.directory(dl_dir, use_sudo=True, mode="777") # run the script to create the exports from the database as glottolog3 user run_script(app, 'create_downloads') require.files.directory(dl_dir, use_sudo=True, mode="755") def bootstrap(nr='y'): # pragma: no cover for pkg in 'vim tree nginx open-vm-tools'.split(): require.deb.package(pkg) sudo('/etc/init.d/nginx start') if nr == 'y': for cmd in [ 'wget -O /etc/apt/sources.list.d/newrelic.list http://download.newrelic.com/debian/newrelic.list', 'apt-key adv --keyserver hkp://subkeys.pgp.net --recv-keys 548C16BF', 'apt-get update', 'apt-get install newrelic-sysmond', 'nrsysmond-config --set license_key=%s' % os.environ['NEWRELIC_API_KEY'], '/etc/init.d/newrelic-sysmond start', ]: sudo(cmd)
# -*- coding: utf-8 -*- """ Parse pykit IR in the form of C. """ from __future__ import print_function, division, absolute_import from io import StringIO from os.path import dirname, abspath, join import tempfile import json import tokenize from functools import partial from collections import defaultdict, namedtuple from pykit import types from pykit.ir import defs, Module, Function, Builder, Const, GlobalValue, ops from pykit.deps.pycparser import preprocess_file, c_ast, CParser root = dirname(abspath(__file__)) ir_root = join(dirname(root), 'ir') #===------------------------------------------------------------------=== # Metadata and comment preprocessing #===------------------------------------------------------------------=== Token = namedtuple('Token', ['toknum', 'tokval', 'beginpos', 'endpos']) def parse_metadata(metadata): """Parse metadata (a JSON dict) as a string""" return json.loads(metadata) def preprocess(source): """ Preprocess source and return metadata. I wish CParser would accept a modified CLexer... Finds metadata between '/*:' and ':*/' lines c = (int) add(a, b); /*: { sideeffects: false } :*/ """ metadata = {} # { lineno : dict of metadata } tokens = [] # TODO: Python 3 doesn't accept a 'tokeneater' argument def eat(toknum, tokval, beginpos, endpos, rest): tokens.append(Token(toknum, tokval, beginpos, endpos)) def error(tok, msg): raise SyntaxError("%d:%s: %s" % (tok.beginpos + (msg,))) tokenize.tokenize(StringIO(unicode(source)).readline, tokeneater=eat) tokval = lambda t: t.tokval lines = [""] + source.splitlines() i = 0 while i < len(tokens): # Locate start of comment if "".join(map(tokval, tokens[i:i+3])) == "/*:": for j in xrange(i+3, len(tokens)): # Locate end of comment if "".join(map(tokval, tokens[j:j+3])) == ":*/": lineno = tokens[j].beginpos[0] if lineno != tokens[i].beginpos[0]: raise error(tokens[i], "Metadata must be on a single line") # Cut out string and parse start, end = tokens[i+3].beginpos[1], tokens[j].beginpos[1] metadata[lineno] = parse_metadata(lines[lineno][start:end]) i = j + 3 break else: raise error(tokens[i], "Metadata not terminated") i = i + 1 return metadata #===------------------------------------------------------------------=== # Parsing #===------------------------------------------------------------------=== type_env = { "Type": types.Type, "_list": list, "void": types.Void, "int": types.Int, "long": types.Long, "long long": types.LongLong, "float": types.Float32, "double": types.Float64, "string": types.Bytes, } binary_defs = dict(defs.binary_defs, **defs.compare_defs) def error(node, msg): raise SyntaxError("%s:%d: %s" % (node.coord.file, node.coord.line, msg)) class PykitIRVisitor(c_ast.NodeVisitor): """ Map pykit IR in the form of polymorphic C to in-memory pykit IR. int function(float x) { int i = 0; /* I am a comment */ while (i < 10) { /*: { "unroll": true } :*/ x = call_external("sqrt", x * x); } return (int) x; } Attributes: """ in_function = False def __init__(self, type_env=None): self.mod = Module() self.type_env = type_env or {} self.func = None self.builder = None self.local_vars = None self.allocas = None self.global_vars = {} self.functions = {} # ______________________________________________________________________ @property def vars(self): if self.in_function: return self.local_vars else: return self.global_vars def enter_func(self): self.in_function = True self.local_vars = {} self.allocas = {} def leave_func(self): self.in_function = False self.mod.add_function(self.func) self.local_vars = None self.allocas = None self.func = None def visit(self, node, type=None): """ Visit a node. :type: Whether we have a type for this opcode, which is an LHS type or a cast. E.g.: (Int) call(...) // cast result = call(...) // assmnt, assuming 'result' is declared result = call(..., call(...)) // second 'call' isn't typed """ self.type = type method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) # if visitor is None: # raise SyntaxError( # "Node %s not supported in %s:%s" % (node, node.coord.file, # node.coord.line)) return visitor(node) def visitif(self, node): if node: return self.visit(node) def visits(self, node): return list(map(self.visit, node)) # ______________________________________________________________________ def alloca(self, varname): if varname not in self.allocas: # Allocate variable with alloca with self.builder.at_front(self.func.startblock): type = types.Pointer(self.local_vars[varname]) result = self.func.temp(varname) self.allocas[varname] = self.builder.alloca(type, [], result) return self.allocas[varname] def assignvar(self, varname, rhs): self.builder.store(rhs, self.alloca(varname)) def assign(self, varname, rhs): if self.in_function: # Local variable type = self.local_vars[varname] self.assignvar(varname, self.visit(rhs, type=type)) else: # Global variable type = self.global_vars[varname] self.mod.add_global(GlobalValue(varname, type=self.type, value=self.visit(rhs, type=type))) # ______________________________________________________________________ def visit_Decl(self, decl): if decl.name in self.vars: error(decl, "Var '%s' already declared!" % (decl.name,)) type = self.visit(decl.type) self.vars[decl.name] = type if decl.init: self.assign(decl.name, decl.init) elif not self.in_function: extern = decl.storage == 'external' self.mod.add_global(GlobalValue(decl.name, type, external=extern)) return type def visit_TypeDecl(self, decl): return self.visit(decl.type) visit_Typename = visit_TypeDecl def visit_PtrDecl(self, decl): return types.Pointer(self.visit(decl.type.type)) def visit_FuncDecl(self, decl): if decl.args: params = self.visits(decl.args.params) else: params = [] return types.Function(self.visit(decl.type), params) def visit_IdentifierType(self, node): name, = node.names return self.type_env[name] def visit_Typedef(self, node): if node.name in ("Type", "_list"): type = self.type_env[node.name] else: type = self.visit(node.type) if type == types.Type: type = getattr(types, node.name) self.type_env[node.name] = type return type def visit_Template(self, node): left = self.visit(node.left) subtypes = self.visits(node.right) if left is list: return list(subtypes) else: assert issubclass(left, types.Type) subtypes = self.visits(node.right) return left(*subtypes) # ______________________________________________________________________ def visit_FuncDef(self, node): assert not node.param_decls self.enter_func() name = node.decl.name type = self.visit(node.decl.type) if node.decl.type.args: argnames = [p.name or "" for p in node.decl.type.args.params] else: argnames = [] self.func = Function(name, argnames, type) self.func.new_block('entry') self.builder = Builder(self.func) self.builder.position_at_end(self.func.startblock) # Store arguments in stack variables for argname in argnames: self.assignvar(argname, self.func.get_arg(argname)) self.generic_visit(node.body) self.leave_func() # ______________________________________________________________________ def visit_FuncCall(self, node): type = self.type opcode = node.name.name args = self.visits(node.args.exprs) if node.args else [] if opcode == "list": return args elif not type and not ops.is_void(opcode): error(node, "Expected a type for sub-expression " "(add a cast or assignment)") elif not hasattr(self.builder, opcode): if opcode in self.mod.functions: return self.builder.call(type, [self.mod.get_function(opcode), args]) error(node, "No opcode %s" % (opcode,)) buildop = getattr(self.builder, opcode) if ops.is_void(opcode): return buildop(*args) else: return buildop(type or "Unset", args) def visit_ID(self, node): if self.in_function: if node.name in self.local_vars: result = self.alloca(node.name) return self.builder.load(result.type.base, [result]) global_val = (self.mod.get_function(node.name) or self.mod.get_global(node.name)) if not global_val: error(node, "Not a local or global: %r" % node.name) return global_val def visit_Cast(self, node): type = self.visit(node.to_type) if isinstance(node.expr, c_ast.FuncCall): op = self.visit(node.expr, type=type) op.type = type return op else: result = self.visit(node.expr) if result.type == type: return result return self.builder.convert(type, [result]) def visit_Assignment(self, node): if node.op != '=': error(node, "Only assignment with '=' is supported") if not isinstance(node.lvalue, c_ast.ID): error(node, "Canot only assign to a name") self.assign(node.lvalue.name, node.rvalue) def visit_Constant(self, node): type = self.type_env[node.type] const = types.convert(node.value, types.resolve_typedef(type)) if isinstance(const, basestring): const = const[1:-1] # slice away quotes return Const(const) def visit_UnaryOp(self, node): op = defs.unary_defs[node.op] buildop = getattr(self.builder, op) arg = self.visit(node.expr) type = self.type or arg.type return buildop(type, [arg]) def visit_BinaryOp(self, node): op = binary_defs[node.op] buildop = getattr(self.builder, op) left, right = self.visits([node.left, node.right]) type = self.type if not type: l, r = map(types.resolve_typedef, [left.type, right.type]) assert l == r, (l, r) if node.op in defs.compare_defs: type = types.Bool return buildop(type or left.type, [left, right]) def visit_If(self, node): cond = self.visit(node.cond) ifpos, elsepos, exit_block = self.builder.ifelse(cond) with ifpos: self.visit(node.iftrue) self.builder.jump(exit_block) with elsepos: if node.iffalse: self.visit(node.iffalse) self.builder.jump(exit_block) self.builder.position_at_end(exit_block) def _loop(self, init, cond, next, body): _, exit_block = self.builder.splitblock(self.func.temp("exit")) _, body_block = self.builder.splitblock(self.func.temp("body")) _, cond_block = self.builder.splitblock(self.func.temp("cond")) self.visitif(init) self.builder.jump(cond_block) with self.builder.at_front(cond_block): cond = self.visit(cond, type=types.Bool) self.builder.cbranch(cond, body_block, exit_block) with self.builder.at_front(body_block): self.visit(body) self.visitif(next) bb = self.builder.basic_block if not bb.tail or not ops.is_terminator(bb.tail.opcode): self.builder.jump(cond_block) self.builder.position_at_end(exit_block) def visit_While(self, node): self._loop(None, node.cond, None, node.stmt) def visit_For(self, node): # avoid silly 2to3 rewrite to 'node.__next__' next = getattr(node, 'next') self._loop(node.init, node.cond, next, node.stmt) def visit_Return(self, node): b = self.builder value = self.visit(node.expr) t = self.func.temp b.ret(b.convert(self.func.type.restype, [value])) debug_args = dict(lex_optimize=False, yacc_optimize=False, yacc_debug=True) def parse(source, filename): return CParser().parse(source, filename) def from_c(source, filename="<string>"): # TODO: process metadata # metadata = preprocess(source) # Preprocess... f = tempfile.NamedTemporaryFile('w+t') try: f.write(source) f.flush() source = preprocess_file(f.name, cpp_args=['-I' + ir_root]) finally: f.close() # Parse ast = parse(source, filename) # ast.show() visitor = PykitIRVisitor(dict(type_env)) visitor.visit(ast) return visitor.mod
# -*- coding: utf-8 -*- # # Copyright 2015 Twitter Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """luigi bindings for Google Cloud Storage""" import io import logging import mimetypes import os import tempfile import time try: from urlparse import urlsplit except ImportError: from urllib.parse import urlsplit import luigi.target from luigi import six from luigi.six.moves import xrange logger = logging.getLogger('luigi-interface') try: import httplib2 import oauth2client.client from googleapiclient import errors from googleapiclient import discovery from googleapiclient import http except ImportError: logger.warning("Loading GCS module without the python packages googleapiclient & oauth2client. \ This will crash at runtime if GCS functionality is used.") else: # Retry transport and file IO errors. RETRYABLE_ERRORS = (httplib2.HttpLib2Error, IOError) # Number of times to retry failed downloads. NUM_RETRIES = 5 # Number of bytes to send/receive in each request. CHUNKSIZE = 10 * 1024 * 1024 # Mimetype to use if one can't be guessed from the file extension. DEFAULT_MIMETYPE = 'application/octet-stream' # Time to sleep while waiting for eventual consistency to finish. EVENTUAL_CONSISTENCY_SLEEP_INTERVAL = 0.1 # Maximum number of sleeps for eventual consistency. EVENTUAL_CONSISTENCY_MAX_SLEEPS = 300 def _wait_for_consistency(checker): """Eventual consistency: wait until GCS reports something is true. This is necessary for e.g. create/delete where the operation might return, but won't be reflected for a bit. """ for _ in xrange(EVENTUAL_CONSISTENCY_MAX_SLEEPS): if checker(): return time.sleep(EVENTUAL_CONSISTENCY_SLEEP_INTERVAL) logger.warning('Exceeded wait for eventual GCS consistency - this may be a' 'bug in the library or something is terribly wrong.') class InvalidDeleteException(luigi.target.FileSystemException): pass class GCSClient(luigi.target.FileSystem): """An implementation of a FileSystem over Google Cloud Storage. There are several ways to use this class. By default it will use the app default credentials, as described at https://developers.google.com/identity/protocols/application-default-credentials . Alternatively, you may pass an oauth2client credentials object. e.g. to use a service account:: credentials = oauth2client.client.SignedJwtAssertionCredentials( '012345678912-ThisIsARandomServiceAccountEmail@developer.gserviceaccount.com', 'These are the contents of the p12 file that came with the service account', scope='https://www.googleapis.com/auth/devstorage.read_write') client = GCSClient(oauth_credentials=credentails) The chunksize parameter specifies how much data to transfer when downloading or uploading files. .. warning:: By default this class will use "automated service discovery" which will require a connection to the web. The google api client downloads a JSON file to "create" the library interface on the fly. If you want a more hermetic build, you can pass the contents of this file (currently found at https://www.googleapis.com/discovery/v1/apis/storage/v1/rest ) as the ``descriptor`` argument. """ def __init__(self, oauth_credentials=None, descriptor='', http_=None, chunksize=CHUNKSIZE): self.chunksize = chunksize http_ = http_ or httplib2.Http() if not oauth_credentials: oauth_credentials = oauth2client.client.GoogleCredentials.get_application_default() if descriptor: self.client = discovery.build_from_document(descriptor, credentials=oauth_credentials, http=http_) else: self.client = discovery.build('storage', 'v1', credentials=oauth_credentials, http=http_) def _path_to_bucket_and_key(self, path): (scheme, netloc, path, _, _) = urlsplit(path) assert scheme == 'gs' path_without_initial_slash = path[1:] return netloc, path_without_initial_slash def _is_root(self, key): return len(key) == 0 or key == '/' def _add_path_delimiter(self, key): return key if key[-1:] == '/' else key + '/' def _obj_exists(self, bucket, obj): try: self.client.objects().get(bucket=bucket, object=obj).execute() except errors.HttpError as ex: if ex.resp['status'] == '404': return False raise else: return True def _list_iter(self, bucket, prefix): request = self.client.objects().list(bucket=bucket, prefix=prefix) response = request.execute() while response is not None: for it in response.get('items', []): yield it request = self.client.objects().list_next(request, response) if request is None: break response = request.execute() def _do_put(self, media, dest_path): bucket, obj = self._path_to_bucket_and_key(dest_path) request = self.client.objects().insert(bucket=bucket, name=obj, media_body=media) if not media.resumable(): return request.execute() response = None attempts = 0 while response is None: error = None try: status, response = request.next_chunk() if status: logger.debug('Upload progress: %.2f%%', 100 * status.progress()) except errors.HttpError as err: error = err if err.resp.status < 500: raise logger.warning('Caught error while uploading', exc_info=True) except RETRYABLE_ERRORS as err: logger.warning('Caught error while uploading', exc_info=True) error = err if error: attempts += 1 if attempts >= NUM_RETRIES: raise error else: attempts = 0 _wait_for_consistency(lambda: self._obj_exists(bucket, obj)) return response def exists(self, path): bucket, obj = self._path_to_bucket_and_key(path) if self._obj_exists(bucket, obj): return True return self.isdir(path) def isdir(self, path): bucket, obj = self._path_to_bucket_and_key(path) if self._is_root(obj): try: self.client.buckets().get(bucket=bucket).execute() except errors.HttpError as ex: if ex.resp['status'] == '404': return False raise obj = self._add_path_delimiter(obj) if self._obj_exists(bucket, obj): return True # Any objects with this prefix resp = self.client.objects().list(bucket=bucket, prefix=obj, maxResults=20).execute() lst = next(iter(resp.get('items', [])), None) return bool(lst) def remove(self, path, recursive=True): (bucket, obj) = self._path_to_bucket_and_key(path) if self._is_root(obj): raise InvalidDeleteException( 'Cannot delete root of bucket at path {}'.format(path)) if self._obj_exists(bucket, obj): self.client.objects().delete(bucket=bucket, object=obj).execute() _wait_for_consistency(lambda: not self._obj_exists(bucket, obj)) return True if self.isdir(path): if not recursive: raise InvalidDeleteException( 'Path {} is a directory. Must use recursive delete'.format(path)) req = http.BatchHttpRequest() for it in self._list_iter(bucket, self._add_path_delimiter(obj)): req.add(self.client.objects().delete(bucket=bucket, object=it['name'])) req.execute() _wait_for_consistency(lambda: not self.isdir(path)) return True return False def put(self, filename, dest_path, mimetype=None, chunksize=None): chunksize = chunksize or self.chunksize resumable = os.path.getsize(filename) > 0 mimetype = mimetype or mimetypes.guess_type(dest_path)[0] or DEFAULT_MIMETYPE media = http.MediaFileUpload(filename, mimetype, chunksize=chunksize, resumable=resumable) self._do_put(media, dest_path) def put_string(self, contents, dest_path, mimetype=None): mimetype = mimetype or mimetypes.guess_type(dest_path)[0] or DEFAULT_MIMETYPE assert isinstance(mimetype, six.string_types) if not isinstance(contents, six.binary_type): contents = contents.encode("utf-8") media = http.MediaIoBaseUpload(six.BytesIO(contents), mimetype, resumable=bool(contents)) self._do_put(media, dest_path) def mkdir(self, path, parents=True, raise_if_exists=False): if self.exists(path): if raise_if_exists: raise luigi.target.FileAlreadyExists() elif not self.isdir(path): raise luigi.target.NotADirectory() else: return self.put_string(b"", self._add_path_delimiter(path), mimetype='text/plain') def copy(self, source_path, destination_path): src_bucket, src_obj = self._path_to_bucket_and_key(source_path) dest_bucket, dest_obj = self._path_to_bucket_and_key(destination_path) if self.isdir(source_path): src_prefix = self._add_path_delimiter(src_obj) dest_prefix = self._add_path_delimiter(dest_obj) source_path = self._add_path_delimiter(source_path) copied_objs = [] for obj in self.listdir(source_path): suffix = obj[len(source_path):] self.client.objects().copy( sourceBucket=src_bucket, sourceObject=src_prefix + suffix, destinationBucket=dest_bucket, destinationObject=dest_prefix + suffix, body={}).execute() copied_objs.append(dest_prefix + suffix) _wait_for_consistency( lambda: all(self._obj_exists(dest_bucket, obj) for obj in copied_objs)) else: self.client.objects().copy( sourceBucket=src_bucket, sourceObject=src_obj, destinationBucket=dest_bucket, destinationObject=dest_obj, body={}).execute() _wait_for_consistency(lambda: self._obj_exists(dest_bucket, dest_obj)) def rename(self, source_path, destination_path): """ Rename/move an object from one S3 location to another. """ self.copy(source_path, destination_path) self.remove(source_path) def listdir(self, path): """ Get an iterable with S3 folder contents. Iterable contains paths relative to queried path. """ bucket, obj = self._path_to_bucket_and_key(path) obj_prefix = self._add_path_delimiter(obj) if self._is_root(obj_prefix): obj_prefix = '' obj_prefix_len = len(obj_prefix) for it in self._list_iter(bucket, obj_prefix): yield self._add_path_delimiter(path) + it['name'][obj_prefix_len:] def download(self, path, chunksize=None): chunksize = chunksize or self.chunksize bucket, obj = self._path_to_bucket_and_key(path) with tempfile.NamedTemporaryFile(delete=False) as fp: # We can't return the tempfile reference because of a bug in python: http://bugs.python.org/issue18879 return_fp = _DeleteOnCloseFile(fp.name, 'r') # Special case empty files because chunk-based downloading doesn't work. result = self.client.objects().get(bucket=bucket, object=obj).execute() if int(result['size']) == 0: return return_fp request = self.client.objects().get_media(bucket=bucket, object=obj) downloader = http.MediaIoBaseDownload(fp, request, chunksize=chunksize) attempts = 0 done = False while not done: error = None try: _, done = downloader.next_chunk() except errors.HttpError as err: error = err if err.resp.status < 500: raise logger.warning('Error downloading file, retrying', exc_info=True) except RETRYABLE_ERRORS as err: logger.warning('Error downloading file, retrying', exc_info=True) error = err if error: attempts += 1 if attempts >= NUM_RETRIES: raise error else: attempts = 0 return return_fp class _DeleteOnCloseFile(io.FileIO): def close(self): super(_DeleteOnCloseFile, self).close() os.remove(self.name) def readable(self): return True def writable(self): return False def seekable(self): return True class AtomicGCSFile(luigi.target.AtomicLocalFile): """ A GCS file that writes to a temp file and put to GCS on close. """ def __init__(self, path, gcs_client): self.gcs_client = gcs_client super(AtomicGCSFile, self).__init__(path) def move_to_final_destination(self): self.gcs_client.put(self.tmp_path, self.path) class GCSTarget(luigi.target.FileSystemTarget): fs = None def __init__(self, path, format=None, client=None): super(GCSTarget, self).__init__(path) if format is None: format = luigi.format.get_default_format() self.format = format self.fs = client or GCSClient() def open(self, mode='r'): if mode == 'r': return self.format.pipe_reader(self.fs.download(self.path)) elif mode == 'w': return self.format.pipe_writer(AtomicGCSFile(self.path, self.fs)) else: raise ValueError("Unsupported open mode '{}'".format(mode)) class GCSFlagTarget(GCSTarget): """ Defines a target directory with a flag-file (defaults to `_SUCCESS`) used to signify job success. This checks for two things: * the path exists (just like the GCSTarget) * the _SUCCESS file exists within the directory. Because Hadoop outputs into a directory and not a single file, the path is assumed to be a directory. This is meant to be a handy alternative to AtomicGCSFile. The AtomicFile approach can be burdensome for GCS since there are no directories, per se. If we have 1,000,000 output files, then we have to rename 1,000,000 objects. """ fs = None def __init__(self, path, format=None, client=None, flag='_SUCCESS'): """ Initializes a S3FlagTarget. :param path: the directory where the files are stored. :type path: str :param client: :type client: :param flag: :type flag: str """ if format is None: format = luigi.format.get_default_format() if path[-1] != "/": raise ValueError("S3FlagTarget requires the path to be to a " "directory. It must end with a slash ( / ).") super(GCSFlagTarget, self).__init__(path) self.format = format self.fs = client or GCSClient() self.flag = flag def exists(self): flag_target = self.path + self.flag return self.fs.exists(flag_target)
import xlwt import numpy as np import colour from ..configuration.base_configuration import Filter from ..configuration.base_configuration import TimeOfDayFilter from ..core.status import Status class report: bold_style = xlwt.easyxf('font: bold 1') no_dp_style = xlwt.easyxf(num_format_str='0') one_dp_style = xlwt.easyxf(num_format_str='0.0') two_dp_style = xlwt.easyxf(num_format_str='0.00') three_dp_style = xlwt.easyxf(num_format_str='0.000') four_dp_style = xlwt.easyxf(num_format_str='0.0000') percent_style = xlwt.easyxf(num_format_str='0.00%') percent_no_dp_style = xlwt.easyxf(num_format_str='0%') def __init__(self, windSpeedBins, turbulenceBins, version="unknown", report_power_curve = True): self.version = version self.windSpeedBins = windSpeedBins self.turbulenceBins = turbulenceBins self.report_power_curve = report_power_curve def report(self, path, analysis): book = xlwt.Workbook() plotsDir = analysis.config.path.replace(".xml","_PPAnalysisPlots") analysis.png_plots(plotsDir) gradient = colour.ColourGradient(-0.1, 0.1, 0.01, book) if self.report_power_curve: sh = book.add_sheet("PowerCurves", cell_overwrite_ok=True) settingsSheet = book.add_sheet("Settings", cell_overwrite_ok=True) self.reportSettings(settingsSheet, analysis) if self.report_power_curve: rowsAfterCurves = [] #rowsAfterCurves.append(self.reportPowerCurve(sh, 0, 0, 'uniqueAnalysisId', analysis.specifiedPowerCurve, analysis)) #needs fixing + move to settings sheet if analysis.specifiedPowerCurve is not None: if len(analysis.specifiedPowerCurve.powerCurveLevels) != 0: rowsAfterCurves.append( self.reportPowerCurve(sh, 1, 0, 'Specified', analysis.specifiedPowerCurve, analysis)) if analysis.hasActualPower: #for name in analysis.residualWindSpeedMatrices: # residualMatrix = analysis.residualWindSpeedMatrices[name] # # if residualMatrix != None: # self.reportPowerDeviations(book, "ResidualWindSpeed-%s" % name, residualMatrix, gradient) if analysis.hasShear and analysis.innerMeasuredPowerCurve != None: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 5, 'Inner', analysis.innerMeasuredPowerCurve, analysis) ) if analysis.innerTurbulenceMeasuredPowerCurve != None: rowsAfterCurves.append( self.reportPowerCurve(sh, 1, 10, 'InnerTurbulence', analysis.innerTurbulenceMeasuredPowerCurve, analysis) ) if analysis.hasShear and analysis.outerMeasuredPowerCurve != None: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 15, 'Outer', analysis.outerMeasuredPowerCurve, analysis) ) rowsAfterCurves.append( self.reportPowerCurve(sh, 1, 20, 'All', analysis.allMeasuredPowerCurve, analysis) ) if analysis.turbRenormActive: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 25, 'TurbulenceRenormalisedPower', analysis.allMeasuredTurbCorrectedPowerCurve, analysis) ) if analysis.specifiedPowerCurve is not None: rowAfterCurves = max(rowsAfterCurves) + 5 sh.write(rowAfterCurves-2, 0, "Power Curves Interpolated to Specified Bins:", self.bold_style) specifiedLevels = analysis.specifiedPowerCurve.powerCurveLevels.index if analysis.hasShear and analysis.innerMeasuredPowerCurve != None: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 5, 'Inner', analysis.innerMeasuredPowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 10, 'InnerTurbulence', analysis.innerTurbulenceMeasuredPowerCurve, specifiedLevels) if analysis.hasShear and analysis.outerMeasuredPowerCurve != None: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 15, 'Outer', analysis.outerMeasuredPowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 20, 'All', analysis.allMeasuredPowerCurve, specifiedLevels) if analysis.turbRenormActive: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 25, 'TurbulenceRenormalisedPower', analysis.allMeasuredTurbCorrectedPowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, (30 if analysis.turbRenormActive else 25), 'DayTime', analysis.dayTimePowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, (35 if analysis.turbRenormActive else 30), 'NightTime', analysis.nightTimePowerCurve, specifiedLevels) self.reportPowerDeviations(book, "HubPowerDeviations", analysis.hubPowerDeviations, gradient) #self.reportPowerDeviations(book, "HubPowerDeviationsInnerShear", analysis.hubPowerDeviationsInnerShear, gradient) if analysis.rewsActive: self.reportPowerDeviations(book, "REWSPowerDeviations", analysis.rewsPowerDeviations, gradient) #self.reportPowerDeviationsDifference(book, "Hub-REWS-DevDiff", analysis.hubPowerDeviations, analysis.rewsPowerDeviations, gradient) self.reportPowerDeviations(book, "REWS Deviation", analysis.rewsMatrix, gradient) if analysis.hasShear: self.reportPowerDeviations(book, "REWS Deviation Inner Shear", analysis.rewsMatrixInnerShear, gradient) if analysis.hasShear: self.reportPowerDeviations(book, "REWS Deviation Outer Shear", analysis.rewsMatrixOuterShear, gradient) #self.reportPowerDeviations(book, "REWSPowerDeviationsInnerShear", analysis.rewsPowerDeviationsInnerShear, gradient) if analysis.turbRenormActive: self.reportPowerDeviations(book, "TurbPowerDeviations", analysis.turbPowerDeviations, gradient) #self.reportPowerDeviationsDifference(book, "Hub-Turb-DevDiff", analysis.hubPowerDeviations, analysis.turbPowerDeviations, gradient) #self.reportPowerDeviations(book, "TurbPowerDeviationsInnerShear", analysis.turbPowerDeviationsInnerShear, gradient) if analysis.turbRenormActive and analysis.rewsActive: self.reportPowerDeviations(book, "CombPowerDeviations", analysis.combPowerDeviations, gradient) #self.reportPowerDeviationsDifference(book, "Hub-Comb-DevDiff", analysis.hubPowerDeviations, analysis.combPowerDeviations, gradient) #self.reportPowerDeviations(book, "CombPowerDeviationsInnerShear", analysis.combPowerDeviationsInnerShear, gradient) if analysis.powerDeviationMatrixActive: self.reportPowerDeviations(book, "PowerDeviationMatrixDeviations", analysis.powerDeviationMatrixDeviations, gradient) #self.reportPowerDeviationsDifference(book, "Hub-Turb-DevDiff", analysis.hubPowerDeviations, analysis.turbPowerDeviations, gradient) #self.reportPowerDeviations(book, "TurbPowerDeviationsInnerShear", analysis.turbPowerDeviationsInnerShear, gradient) if analysis.config.nominal_wind_speed_distribution.absolute_path is not None: sh = book.add_sheet("EnergyAnalysis", cell_overwrite_ok=True) self.report_aep(sh,analysis) if len(analysis.calibrations) == 1: calSheet = book.add_sheet("Calibration", cell_overwrite_ok=True) self.reportCalibration(calSheet,analysis.calibrations[0],timeStepInSeconds = analysis.timeStepInSeconds) elif len(analysis.calibrations) > 1: i = 0 for cal in analysis.calibrations: i += 1 calSheet = book.add_sheet("Calibration_%03d" % i, cell_overwrite_ok=True) self.reportCalibration(calSheet,cal,timeStepInSeconds = analysis.timeStepInSeconds) book.save(path) def reportCalibration(self,sh,calibration,timeStepInSeconds = 600.): conf, calib = calibration sh.write(0, 0, "Dataset Name", self.bold_style) sh.write(1, 0, conf.name) startRow = 3 col = -14 if 'belowAbove' in calib.calibrationSectorDataframe.columns : belowAbove = True else: belowAbove = False col+=16 row=startRow sh.write(row,col,conf.name, self.bold_style) sh.write(row,col+1,"Method:"+conf.calibrationMethod, self.bold_style) row += 1 sh.write(row,col,"Bin", self.bold_style) sh.write(row,col+1,"Slope", self.bold_style) sh.write(row,col+2,"Offset", self.bold_style) if conf.calibrationMethod != 'Specified': sh.write(row,col+3,"Count", self.bold_style) sh.write(row,col+4,"Hours", self.bold_style) if belowAbove: sh.write(row,col+5,"Count <= 8m/s", self.bold_style) sh.write(row,col+6,"Hours <= 8m/s", self.bold_style) sh.write(row,col+7,"Count > 8m/s", self.bold_style) sh.write(row,col+8,"Hours > 8m/s", self.bold_style) sh.write(row,col+9,"Speedup at 10m/s", self.bold_style) sh.write(row,col+10,"% Speedup at 10m/s", self.bold_style) sh.write(row,col+11,"Filter (Total Hours > 24)", self.bold_style) sh.write(row,col+12,"Filter (Hours Below/Above 8m/s > 6)", self.bold_style) sh.write(row,col+13,"Filter (Speedup Change < 2%)", self.bold_style) sh.write(row,col+14,"Valid Sector", self.bold_style) row+=1 for key in sorted(calib.calibrationSectorDataframe.index): sh.write(row,col,float(key), self.bold_style) sh.write(row,col+1,calib.calibrationSectorDataframe['Slope'][key], self.four_dp_style) sh.write(row,col+2,calib.calibrationSectorDataframe['Offset'][key], self.four_dp_style) if conf.calibrationMethod != 'Specified': if 'Count' in calib.calibrationSectorDataframe.columns: sh.write(row,col+3,calib.calibrationSectorDataframe['Count'][key], self.no_dp_style) sh.write(row,col+4,calib.calibrationSectorDataframe['Count'][key]*(timeStepInSeconds/3600.0), self.one_dp_style) if belowAbove: ba = calib.calibrationSectorDataframe.loc[key,'belowAbove'] sh.write(row,col+5,ba[0], self.no_dp_style) sh.write(row,col+6,ba[0]*(timeStepInSeconds/3600.0), self.one_dp_style) sh.write(row,col+7,ba[1], self.no_dp_style) sh.write(row,col+8,ba[1]*(timeStepInSeconds/3600.0), self.one_dp_style) sh.write(row,col+9,calib.calibrationSectorDataframe['SpeedUpAt10'][key], self.four_dp_style) sh.write(row,col+10,(calib.calibrationSectorDataframe['SpeedUpAt10'][key]-1.0), self.percent_style) totalHoursValid = calib.getTotalHoursValidity(key, timeStepInSeconds) sh.write(row,col+11, "TRUE" if totalHoursValid else "FALSE") if belowAbove: belowAboveValid = calib.getBelowAboveValidity(key, timeStepInSeconds) sh.write(row,col+12, "TRUE" if belowAboveValid else "FALSE") speedUpChangeValid = calib.getSpeedUpChangeValidity(key) sh.write(row,col+13, "TRUE" if speedUpChangeValid else "FALSE") sectorValid = calib.getSectorValidity(key, timeStepInSeconds) sh.write(row,col+14, "TRUE" if sectorValid else "FALSE", self.bold_style) row += 1 if len(conf.calibrationFilters) > 0: row += 2 sh.write(row, col, "Calibration Filters", self.bold_style) row += 1 sh.write(row, col, "Data Column", self.bold_style) sh.write(row, col+1, "Filter Type", self.bold_style) sh.write(row, col+2, "Inclusive", self.bold_style) sh.write(row, col+3, "Filter Value", self.bold_style) sh.write(row, col+4, "Active", self.bold_style) row += 1 for filt in conf.calibrationFilters: if isinstance(Filter,TimeOfDayFilter): sh.write(row, col, "Time Of Day Filter") sh.write(row, col + 1, str(filt.startTime)) sh.write(row, col + 2, str(filt.endTime)) sh.write(row, col + 3, str(filt.daysOfTheWeek)) sh.write(row, col + 4, str(filt.months)) else: sh.write(row, col, filt.column) sh.write(row, col+1, filt.filterType) sh.write(row, col+2, filt.inclusive) sh.write(row, col+3, str(filt)) sh.write(row, col+4, filt.active) # always true if in list... row += 1 def reportSettings(self, sh, analysis): config = analysis.config sh.write(0, 1, "PCWG Tool Version Number:") sh.write(0, 2, self.version) sh.write(0, 3, xlwt.Formula('HYPERLINK("http://www.pcwg.org";"PCWG Website")')) row = 3 labelColumn = 1 dataColumn = 2 sh.col(labelColumn).width = 256 * 30 sh.col(dataColumn).width = 256 * 50 sh.col(dataColumn+1).width = 256 * 50 #Corretions sh.write(row, labelColumn, "Density Correction Active", self.bold_style) sh.write(row, dataColumn, config.densityCorrectionActive) row += 1 sh.write(row, labelColumn, "REWS Correction Active", self.bold_style) sh.write(row, dataColumn, config.rewsActive) row += 1 sh.write(row, labelColumn, "Turbulence Correction Active", self.bold_style) sh.write(row, dataColumn, config.turbRenormActive) row += 1 #General Settings row += 1 sh.write(row, labelColumn, "Time Step In Seconds", self.bold_style) sh.write(row, dataColumn, analysis.timeStepInSeconds) row += 1 sh.write(row, labelColumn, "Power Curve Minimum Count", self.bold_style) sh.write(row, dataColumn, config.powerCurveMinimumCount) row += 1 sh.write(row, labelColumn, "Baseline Mode", self.bold_style) sh.write(row, dataColumn, config.baseLineMode) row += 1 sh.write(row, labelColumn, "Filter Mode", self.bold_style) sh.write(row, dataColumn, config.filterMode) row += 1 sh.write(row, labelColumn, "Power Curve Mode", self.bold_style) sh.write(row, dataColumn, config.powerCurveMode) row += 1 #Inner Range row += 1 sh.write(row, labelColumn, "Inner Range", self.bold_style) row += 1 sh.write(row, labelColumn, "Lower Turbulence", self.bold_style) sh.write(row, dataColumn, config.innerRangeLowerTurbulence) row += 1 sh.write(row, labelColumn, "Upper Turbulence", self.bold_style) sh.write(row, dataColumn, config.innerRangeUpperTurbulence) row += 1 sh.write(row, labelColumn, "Lower Shear", self.bold_style) sh.write(row, dataColumn, config.innerRangeLowerShear) row += 1 sh.write(row, labelColumn, "Upper Shear", self.bold_style) sh.write(row, dataColumn, config.innerRangeUpperShear) row += 1 #Turbine row += 1 sh.write(row, labelColumn, "Turbine", self.bold_style) row += 1 sh.write(row, labelColumn, "Specified Power Curve", self.bold_style) sh.write(row, dataColumn, config.specified_power_curve.absolute_path) row += 1 #datasets row += 1 sh.write(row, labelColumn, "Datasets", self.bold_style) row += 2 for datasetConfig in analysis.datasetConfigs: sh.write(row, labelColumn, "Name", self.bold_style) sh.write(row, dataColumn, datasetConfig.name) row += 1 sh.write(row, labelColumn, "Path", self.bold_style) sh.write(row, dataColumn, datasetConfig.path) row += 1 sh.write(row, labelColumn, "Rated Power", self.bold_style) sh.write(row, dataColumn, datasetConfig.ratedPower) row += 1 sh.write(row, labelColumn, "HubHeight", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubHeight) row += 1 sh.write(row, labelColumn, "Diameter", self.bold_style) sh.write(row, dataColumn, datasetConfig.diameter) row += 1 sh.write(row, labelColumn, "Cut In Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.cutInWindSpeed) row += 1 sh.write(row, labelColumn, "Cut Out Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.cutOutWindSpeed) row += 1 sh.write(row, labelColumn, "Start Date", self.bold_style) sh.write(row, dataColumn, str(datasetConfig.startDate)) row += 1 sh.write(row, labelColumn, "End Date", self.bold_style) sh.write(row, dataColumn, str(datasetConfig.endDate)) row += 1 sh.write(row, labelColumn, "Hub Wind Speed Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubWindSpeedMode) row += 1 sh.write(row, labelColumn, "Density Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.densityMode) row += 2 sh.write(row, labelColumn, "REWS Defined", self.bold_style) sh.write(row, dataColumn, datasetConfig.rewsDefined) row += 1 sh.write(row, labelColumn, "Rotor Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.rotorMode) row += 1 sh.write(row, labelColumn, "Hub Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubMode) row += 1 sh.write(row, labelColumn, "Number of Rotor Levels", self.bold_style) sh.write(row, dataColumn, datasetConfig.numberOfRotorLevels) row += 2 sh.write(row, labelColumn, "Measurements", self.bold_style) row += 1 sh.write(row, labelColumn, "Input Time Series Path", self.bold_style) sh.write(row, dataColumn, datasetConfig.input_time_series.absolute_path) row += 1 sh.write(row, labelColumn, "Date Format", self.bold_style) sh.write(row, dataColumn, datasetConfig.dateFormat) row += 1 sh.write(row, labelColumn, "Time Step In Seconds", self.bold_style) sh.write(row, dataColumn, datasetConfig.timeStepInSeconds) row += 1 sh.write(row, labelColumn, "Time Stamp", self.bold_style) sh.write(row, dataColumn, datasetConfig.timeStamp) row += 1 sh.write(row, labelColumn, "Bad Data Value", self.bold_style) sh.write(row, dataColumn, datasetConfig.badData) row += 1 sh.write(row, labelColumn, "Header Rows", self.bold_style) sh.write(row, dataColumn, datasetConfig.headerRows) row += 1 sh.write(row, labelColumn, "Turbine Location Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.turbineLocationWindSpeed) row += 1 sh.write(row, labelColumn, "Hub Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubWindSpeed) row += 1 sh.write(row, labelColumn, "Hub Turbulence", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubTurbulence) row += 1 sh.write(row, labelColumn, "Reference Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindSpeed) row += 1 sh.write(row, labelColumn, "Reference Wind Speed Std Dev", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindSpeedStdDev) row += 1 sh.write(row, labelColumn, "Reference Wind Direction", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindDirection) row += 1 sh.write(row, labelColumn, "Reference Wind Direction Offset", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindDirectionOffset) row += 1 sh.write(row, labelColumn, "Density", self.bold_style) sh.write(row, dataColumn, datasetConfig.density) row += 1 sh.write(row, labelColumn, "Temperature", self.bold_style) sh.write(row, dataColumn, datasetConfig.temperature) row += 1 sh.write(row, labelColumn, "Pressure", self.bold_style) sh.write(row, dataColumn, datasetConfig.pressure) row += 1 if len(datasetConfig.turbineShearMeasurements) > 0: row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.referenceShearMeasurements,'Reference Location ') row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.turbineShearMeasurements,'Turbine Location ') else: row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.referenceShearMeasurements) sh.write(row, labelColumn, "Power", self.bold_style) sh.write(row, dataColumn, datasetConfig.power) row += 2 if datasetConfig.rewsDefined: sh.write(row, labelColumn, "Profile Levels", self.bold_style) row += 1 sh.write(row, labelColumn, "Height", self.bold_style) sh.write(row, dataColumn, "Speed", self.bold_style) sh.write(row, dataColumn + 1, "Direction", self.bold_style) row += 1 for height in sorted(datasetConfig.data.windSpeedLevels): sh.write(row, labelColumn, height) sh.write(row, dataColumn, datasetConfig.data.windSpeedLevels[height]) if hasattr(datasetConfig.data, 'windDirectionLevels'): # we are not using this in REWS yet if height in datasetConfig.data.windDirectionLevels: sh.write(row, dataColumn + 1, datasetConfig.data.windDirectionLevels[height]) row += 1 sh.write(row, labelColumn, "Filters", self.bold_style) row += 1 sh.write(row, labelColumn, "Data Column", self.bold_style) sh.write(row, dataColumn, "Filter Type", self.bold_style) sh.write(row, dataColumn + 1, "Inclusive", self.bold_style) sh.write(row, dataColumn + 2, "Filter Value", self.bold_style) sh.write(row, dataColumn + 3, "Active", self.bold_style) row += 1 for filter in datasetConfig.filters: if isinstance(Filter,TimeOfDayFilter): sh.write(row, labelColumn, "Time Of Day Filter") sh.write(row, dataColumn, str(filter.startTime)) sh.write(row, dataColumn + 1, str(filter.endTime)) sh.write(row, dataColumn + 2, str(filter.daysOfTheWeek)) sh.write(row, dataColumn + 3, str(filter.months)) else: sh.write(row, labelColumn, filter.column) sh.write(row, dataColumn, filter.filterType) sh.write(row, dataColumn + 1, filter.inclusive) sh.write(row, dataColumn + 2, str(filter)) sh.write(row, dataColumn + 3, "True") # always true if in list... row += 1 def writeShear(self,sh,labelColumn,dataColumn,row,shearList,prefix=""): i=0 for sh_meas in shearList: sh.write(row, labelColumn, prefix+"Shear Measurement " + str(i+1), self.bold_style) sh.write(row, dataColumn, sh_meas.height) row += 1 sh.write(row, labelColumn, prefix+"Shear Measurement {0} Height ".format(i+1), self.bold_style) sh.write(row, dataColumn, sh_meas.wind_speed_column) row += 1 return row def reportPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve, analysis): powerCurveLevels = powerCurve.powerCurveLevels.copy() if powerCurve.inputHubWindSpeed is None: powerCurveLevels['Specified Wind Speed'] = powerCurveLevels.index windSpeedCol = 'Specified Wind Speed' else: windSpeedCol = analysis.inputHubWindSpeed #'Input Hub Wind Speed' powerCurveLevels = powerCurveLevels.sort(windSpeedCol) sh.write(rowOffset, columnOffset + 2, name, self.bold_style) sh.col(columnOffset + 1).width = 256 * 15 sh.col(columnOffset + 2).width = 256 * 15 sh.col(columnOffset + 3).width = 256 * 15 if powerCurve.inputHubWindSpeed is None: sh.col(columnOffset + 5).width = 256 * 5 else: sh.col(columnOffset + 4).width = 256 * 15 sh.col(columnOffset + 5).width = 256 * 5 rowOrders = { 'Data Count':4, analysis.actualPower:2, analysis.hubTurbulence:3, analysis.inputHubWindSpeed:1, 'Specified Power':2,'Specified Turbulence':3, 'Specified Wind Speed':1, analysis.measuredTurbulencePower:2} styles = { 'Data Count':self.no_dp_style, analysis.inputHubWindSpeed:self.two_dp_style, analysis.actualPower: self.no_dp_style, analysis.hubTurbulence:self.percent_no_dp_style, 'Specified Power':self.no_dp_style,'Specified Turbulence':self.percent_no_dp_style, 'Specified Wind Speed':self.two_dp_style,analysis.measuredTurbulencePower:self.no_dp_style} for colname in powerCurveLevels.columns: if colname in styles.keys(): sh.write(rowOffset + 1, columnOffset + rowOrders[colname], colname, self.bold_style) countRow = 1 for windSpeed in powerCurveLevels.index: for colname in powerCurveLevels.columns: if colname in styles.keys(): val = powerCurveLevels[colname][windSpeed] if type(val) is np.int64: #xlwt needs numbers to be recognisable as integers or floats; isinstance(np.int64(1), int) returns False. #Other numpy types (int32, float64, etc) are recognised as int and float appropriately. val = int(val) sh.write(rowOffset + countRow + 1, columnOffset + rowOrders[colname], val, styles[colname]) countRow += 1 if hasattr(powerCurve, 'zeroTurbulencePowerCurve'): countRow += 3 try: pc = powerCurve.zeroTurbulencePowerCurve.dfPowerLevels sh.write(rowOffset + countRow, columnOffset + 2, name + ' Zero TI Power Curve', self.bold_style) countRow += 1 sh.write(rowOffset + countRow, columnOffset + 1, 'Wind Speed', self.bold_style) sh.write(rowOffset + countRow, columnOffset + 2, 'Power', self.bold_style) for ws in pc.index: sh.write(rowOffset + countRow + 1, columnOffset + 1, ws, styles['Specified Wind Speed']) sh.write(rowOffset + countRow + 1, columnOffset + 2, pc.loc[ws, 'Power'], styles['Specified Wind Speed']) countRow += 1 except: sh.write(rowOffset + countRow, columnOffset + 2,'Zero TI Power Curve not calculated successfully for %s power curve.' % name) countRow+=1 else: countRow += 3 Status.add("Not reporting zero TI power curve for %s as it is not defined." % (name), verbosity=2) sh.write(rowOffset + countRow, columnOffset + 2,"Not reporting zero TI power curve for %s as it is not defined." % (name)) countRow+=1 return countRow def reportInterpolatedPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve, levels): sh.write(rowOffset, columnOffset + 2, name, self.bold_style) sh.write(rowOffset + 1, columnOffset + 1, "Wind Speed", self.bold_style) sh.write(rowOffset + 1, columnOffset + 2, "Power", self.bold_style) sh.write(rowOffset + 1, columnOffset + 3, "Turbulence", self.bold_style) count = 1 for windSpeed in sorted(levels): sh.write(rowOffset + count + 1, columnOffset + 1, windSpeed, self.two_dp_style) sh.write(rowOffset + count + 1, columnOffset + 2, float(powerCurve.powerFunction(windSpeed)), self.no_dp_style) sh.write(rowOffset + count + 1, columnOffset + 3, float(powerCurve.turbulenceFunction(windSpeed)), self.percent_no_dp_style) count += 1 def reportPowerDeviations(self, book, sheetName, powerDeviations, gradient): sh = book.add_sheet(sheetName, cell_overwrite_ok=True) sh.write_merge(1,self.turbulenceBins.numberOfBins,0,0,"Turbulence Intensity", xlwt.easyxf('align: rotation 90')) sh.write_merge(self.turbulenceBins.numberOfBins+2,self.turbulenceBins.numberOfBins+2,2,self.windSpeedBins.numberOfBins+1, "Wind Speed", self.bold_style) for i in range(self.windSpeedBins.numberOfBins): sh.col(i + 2).width = 256 * 5 for j in range(self.turbulenceBins.numberOfBins): turbulence = self.turbulenceBins.binCenterByIndex(j) row = self.turbulenceBins.numberOfBins - j sh.write(row, 1, turbulence, self.percent_no_dp_style) for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) col = i + 2 if j == 0: sh.write(self.turbulenceBins.numberOfBins+1, col, windSpeed, self.one_dp_style) if windSpeed in powerDeviations.matrix: if turbulence in powerDeviations.matrix[windSpeed]: deviation = powerDeviations.matrix[windSpeed][turbulence] if not np.isnan(deviation): sh.write(row, col, deviation, gradient.getStyle(deviation)) def reportPowerDeviationsDifference(self, book, sheetName, deviationsA, deviationsB, gradient): sh = book.add_sheet(sheetName, cell_overwrite_ok=True) for i in range(self.windSpeedBins.numberOfBins): sh.col(i + 1).width = 256 * 5 for j in range(self.turbulenceBins.numberOfBins): turbulence = self.turbulenceBins.binCenterByIndex(j) row = self.turbulenceBins.numberOfBins - j - 1 sh.write(row, 0, turbulence, self.percent_no_dp_style) for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) col = i + 1 if j == 0: sh.write(self.turbulenceBins.numberOfBins, col, windSpeed, self.one_dp_style) if windSpeed in deviationsA.matrix: if turbulence in deviationsA.matrix[windSpeed]: deviationA = deviationsA.matrix[windSpeed][turbulence] deviationB = deviationsB.matrix[windSpeed][turbulence] if not np.isnan(deviationA) and not np.isnan(deviationB): diff = abs(deviationA) - abs(deviationB) sh.write(row, col, diff, gradient.getStyle(diff)) def report_aep(self,sh,analysis): sh # get tables in PP report form # Summary of EY acceptance test results: hrsMultiplier = (analysis.timeStepInSeconds/3600.0) row = 2 tall_style = xlwt.easyxf('font:height 360;') # 18pt first_row = sh.row(row) first_row.set_style(tall_style) sh.write(row,2, "Reference Turbine", self.bold_style) sh.write(row,3, "Measured (LCB) Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,4, "Extrapolated Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,5, "Last Complete Bin (LCB)", self.bold_style) sh.write(row,6, "Direction Sectors Analysed (degrees)", self.bold_style) sh.write(row,7, "Measured Hours", self.bold_style) #sh.write(row,8, "Annual Energy Yield Uncertainty as a percentage of the Warranted Annual Yield (%)", self.bold_style) row += 1 sh.write(row,2, analysis.config.Name) sh.write(row,3, analysis.aepCalcLCB.AEP*100, self.two_dp_style) sh.write(row,4, analysis.aepCalc.AEP*100, self.two_dp_style) sh.write(row,5, analysis.aepCalcLCB.lcb, self.two_dp_style) sh.write(row,6, "{mi} - {ma}".format(mi=analysis.dataFrame[analysis.windDirection].min(),ma=analysis.dataFrame[analysis.windDirection].max())) timeCovered = analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.dataCount].sum() * hrsMultiplier sh.write(row,7, timeCovered, self.two_dp_style) #sh.write(row,8, "NOT YET CALCULATED") row += 3 if hasattr(analysis.specifiedPowerCurve,"referenceDensity"): sh.write_merge(row,row,2,6, "Measured Power Curve\n Reference Air Density = {ref} kg/m^3".format(ref=analysis.specifiedPowerCurve.referenceDensity), self.bold_style) #sh.write(row,7, "Category A Uncertainty", self.bold_style) #sh.write(row,8, "Category B Uncertainty", self.bold_style) #sh.write(row,9, "Category C Uncertainty", self.bold_style) row += 1 sh.write(row,2, "Bin No", self.bold_style) sh.write(row,3, "Bin Centre Wind Speed", self.bold_style) sh.write(row,4, "Hub Height Wind Speed", self.bold_style) sh.write(row,5, "Power Output", self.bold_style) sh.write(row,6, "Cp", self.bold_style) sh.write(row,7, "Qty 10-Min Data", self.bold_style) sh.write(row,8, "Standard Deviation", self.bold_style) #sh.write(row,7, "Standard Uncertainty", self.bold_style) #sh.write(row,8, "Standard Uncertainty", self.bold_style) #sh.write(row,9, "Standard Uncertainty", self.bold_style) row += 1 sh.write(row,2, "I", self.bold_style) sh.write(row,3, "Vi_centre", self.bold_style) sh.write(row,4, "Vi", self.bold_style) sh.write(row,5, "Pi", self.bold_style) sh.write(row,7, "Ni", self.bold_style) sh.write(row,8, "StDev i", self.bold_style) #sh.write(row,7, "si", self.bold_style) #sh.write(row,8, "ui", self.bold_style) #sh.write(row,9, "uc,I", self.bold_style) row += 1 sh.write(row,3, "[m/s]", self.bold_style) sh.write(row,4, "[kW]", self.bold_style) sh.write(row,8, "[kW]", self.bold_style) #sh.write(row,7, "[kW]", self.bold_style) #sh.write(row,8, "[kW]", self.bold_style) #sh.write(row,9, "[kW]", self.bold_style) for binNo,ws in enumerate(analysis.allMeasuredPowerCurve.powerCurveLevels .index): if ws <= analysis.aepCalcLCB.lcb and analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.dataCount][ws] > 0: row+=1 sh.write(row,2, binNo+1, self.no_dp_style) sh.write(row,3, ws, self.one_dp_style) sh.write(row,4, analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.inputHubWindSpeed][ws], self.two_dp_style) sh.write(row,5, analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.actualPower][ws], self.two_dp_style) if analysis.powerCoeff in analysis.allMeasuredPowerCurve.powerCurveLevels.columns: sh.write(row,6, analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.powerCoeff][ws], self.two_dp_style) else: sh.write(row,6, "-", self.no_dp_style) datCount = analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.dataCount][ws] sh.write(row,7, datCount, self.no_dp_style) if analysis.powerStandDev in analysis.allMeasuredPowerCurve.powerCurveLevels.columns: sh.write(row,8, analysis.allMeasuredPowerCurve.powerCurveLevels[analysis.powerStandDev][ws]) else: sh.write(row,8, "-", self.no_dp_style) #sh.write(row,7, "-", self.no_dp_style) #sh.write(row,8, "~", self.no_dp_style) #sh.write(row,9, "-", self.no_dp_style) row+=2 sh.write_merge(row,row,2,5, "More than 180 hours of data:", self.bold_style) sh.write(row,6, "TRUE" if timeCovered > 180 else "FALSE") sh.write(row,7, "({0} Hours)".format(round(timeCovered,2)) , self.two_dp_style) row+=1 if hasattr(analysis,"windSpeedAt85pctX1pnt5"): sh.write_merge(row,row,2,5, "Largest WindSpeed > {0}:".format(round(analysis.windSpeedAt85pctX1pnt5,2)), self.bold_style) sh.write(row,6, "TRUE" if analysis.aepCalcLCB.lcb > analysis.windSpeedAt85pctX1pnt5 else "FALSE") sh.write(row,7, "Threshold is 1.5*([email protected]*RatedPower)") row+=1 sh.write_merge(row,row,2,5, "AEP Extrap. within 1% of AEP LCB:",self.bold_style) ans = abs(1-(analysis.aepCalc.AEP/analysis.aepCalcLCB.AEP)) < 0.01 sh.write(row,6, "TRUE" if ans else "FALSE") if not ans: sh.write(row,8, analysis.aepCalc.AEP) sh.write(row,9, analysis.aepCalcLCB.AEP) if analysis.turbRenormActive: row += 2 sh.write(row,3, "Turbulence Corrected Measured (LCB) Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,4, "Turbulence Corrected Extrapolated Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row+1,3, analysis.turbCorrectedAepCalcLCB.AEP*100, self.two_dp_style) sh.write(row+1,4, analysis.turbCorrectedAepCalc.AEP*100, self.two_dp_style) row+=2 sh.write_merge(row,row,3,10,"AEP Distribution",self.bold_style) row+=1 sh.write_merge(row,row,3,6, "Reference", self.bold_style) sh.write_merge(row,row,7,10, "Measured", self.bold_style) row+=1 sh.write(row,2,"Wind Speed",self.bold_style) sh.write(row,3,'Reference Freq',self.bold_style) sh.write(row,4,'Reference Power',self.bold_style) sh.write(row,5,'Reference Power (Resampled)',self.bold_style) sh.write(row,6,"Reference Energy",self.bold_style) sh.write(row,7,'Measured Freq',self.bold_style) sh.write(row,8,'Measured Power',self.bold_style) sh.write(row,9,'Measured Power (Resampled)',self.bold_style) sh.write(row,10,"Measured Energy",self.bold_style) for binNum in analysis.aepCalc.energy_distribution.index: row+=1 sh.write(row,2,binNum,self.two_dp_style) sh.write(row,3,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Freq"] ,self.four_dp_style) sh.write(row,4,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Upper"] ,self.four_dp_style) sh.write(row,5,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Power"] ,self.four_dp_style) sh.write(row,6,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Energy"] ,self.four_dp_style) sh.write(row,7,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Freq"] ,self.four_dp_style) sh.write(row,8,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Upper"] ,self.four_dp_style) sh.write(row,9,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Power"] ,self.four_dp_style) sh.write(row,10,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Energy"] ,self.four_dp_style) row+=3 def write_power_curves(self): Status.add("Wind Speed\tSpecified\tInner\tOuter\tAll", verbosity=2) for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) text = "%0.4f\t" % windSpeed if windSpeed in self.specifiedPowerCurve.powerCurveLevels: text += "%0.4f\t" % self.specifiedPowerCurve.powerCurveLevels[windSpeed] else: text += "\t" if windSpeed in self.innerMeasuredPowerCurve.powerCurveLevels: text += "%0.4f\t" % self.innerMeasuredPowerCurve.powerCurveLevels[windSpeed] else: text += "\t" if windSpeed in self.outerMeasuredPowerCurve.powerCurveLevels: text += "%0.4f\t" % self.outerMeasuredPowerCurve.powerCurveLevels[windSpeed] else: text += "\t" if windSpeed in self.allMeasuredPowerCurve.powerCurveLevels: text += "%0.4f\t" % self.allMeasuredPowerCurve.powerCurveLevels[windSpeed] else: text += "\t" Status.add(text, verbosity=2) def write_power_deviation_matrix(self): for j in reversed(range(self.turbulenceBins.numberOfBins)): turbulence = self.turbulenceBins.binCenterByIndex(j) text = "%f\t" % turbulence for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) if windSpeed in self.powerDeviations: if turbulence in self.powerDeviations[windSpeed]: text += "%f\t" % self.powerDeviations[windSpeed][turbulence] else: text += "\t" else: text += "\t" Status.add(text, verbosity=2) text = "\t" for i in range(self.windSpeedBins.numberOfBins): text += "%f\t" % self.windSpeedBins.binCenterByIndex(i) Status.add(text, verbosity=2) def report_scatter_metric(self,sh,analysis,row, turbRenormActive): row += 5 sh.write(row, 1, "Scatter Metric Before TI Renormalisation:", self.bold_style) sh.write(row+1, 1, analysis.powerCurveScatterMetric, self.percent_style) if turbRenormActive: sh.write(row, 2, "Scatter Metric After TI Renormalisation:", self.bold_style) sh.write(row+1, 2, analysis.powerCurveScatterMetricAfterTiRenorm , self.percent_style) return row + 3 class AnonReport(report): def __init__(self,targetPowerCurve,wind_bins, turbulence_bins, version="unknown"): self.version = version self.targetPowerCurve = targetPowerCurve self.turbulenceBins = turbulence_bins self.normalisedWindSpeedBins = wind_bins def report(self, path, analysis, powerDeviationMatrix = True, scatterMetric=True): self.analysis = analysis book = xlwt.Workbook() sh = book.add_sheet("Anonymous Report", cell_overwrite_ok=True) sh.write(0, 0, "PCWG Tool Version Number:") sh.write(0, 1, self.version) sh.write(0, 2, xlwt.Formula('HYPERLINK("http://www.pcwg.org";"PCWG Website")')) row = 1 if powerDeviationMatrix: row = self.report_power_deviation_matrix(sh,analysis,book) if scatterMetric: row = self.report_scatter_metric(sh,analysis,row, analysis.turbRenormActive) book.save(path) def report_power_deviation_matrix(self,sh,analysis,book): gradient = colour.ColourGradient(-0.1, 0.1, 0.01, book) pcStart = 2 pcEnd = pcStart + self.normalisedWindSpeedBins.numberOfBins + 5 deviationMatrixStart = pcEnd + 5 row= [] row.append( self.reportPowerCurve(sh, pcStart, 0, self.targetPowerCurve.name + ' Power Curve', self.targetPowerCurve) ) row.append( self.reportPowerDeviations(sh,deviationMatrixStart, analysis.normalisedHubPowerDeviations, gradient, "Hub Power")) if analysis.normalisedTurbPowerDeviations != None: deviationMatrixStart += (self.turbulenceBins.numberOfBins + 5) * 2 row.append(self.reportPowerDeviations(sh,deviationMatrixStart, analysis.normalisedTurbPowerDeviations, gradient, "Turb Corrected Power") ) return max(row) def reportPowerDeviations(self,sh, startRow, powerDeviations, gradient, name): countShift = self.turbulenceBins.numberOfBins + 5 sh.write(startRow, 1, "Deviations Matrix (%s)" % name, self.bold_style) sh.write(startRow + countShift, 1, "Data Count Matrix (%s)" % name, self.bold_style) for j in range(self.turbulenceBins.numberOfBins): turbulence = self.turbulenceBins.binCenterByIndex(j) row = startRow + self.turbulenceBins.numberOfBins - j countRow = row + countShift sh.write(row, 0, turbulence, self.percent_no_dp_style) sh.write(countRow, 0, turbulence, self.percent_no_dp_style) for i in range(self.normalisedWindSpeedBins.numberOfBins): windSpeed = self.normalisedWindSpeedBins.binCenterByIndex(i) col = i + 1 if j == 0: sh.write(row + 1, col, windSpeed, self.two_dp_style) sh.write(countRow + 1, col, windSpeed, self.two_dp_style) if windSpeed in powerDeviations.matrix: if turbulence in powerDeviations.matrix[windSpeed]: deviation = powerDeviations.matrix[windSpeed][turbulence] count = int(powerDeviations.count[windSpeed][turbulence]) if not np.isnan(deviation): sh.write(row, col, deviation, gradient.getStyle(deviation)) sh.write(countRow, col, count, self.no_dp_style) return startRow + self.turbulenceBins.numberOfBins + countShift def reportPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve): sh.write(rowOffset, columnOffset + 2, name, self.bold_style) rowOrders = { 'Data Count':4, 'Normalised Wind Speed':1,'Normalised Power':2, 'Turbulence':3} for colname in rowOrders.keys(): sh.write(rowOffset + 1, columnOffset + rowOrders[colname], colname, self.bold_style) countRow = 1 for i in range(self.normalisedWindSpeedBins.numberOfBins): windSpeed = self.normalisedWindSpeedBins.binCenterByIndex(i) mask = self.analysis.dataFrame['Normalised WS Bin'] == windSpeed dataCount = self.analysis.dataFrame[mask]['Normalised WS Bin'].count() absoluteWindSpeed = windSpeed * self.analysis.observedRatedWindSpeed sh.write(rowOffset + countRow + 1, columnOffset + 1, windSpeed, self.two_dp_style) sh.write(rowOffset + countRow + 1, columnOffset + 4, dataCount, self.no_dp_style) if dataCount > 0: sh.write(rowOffset + countRow + 1, columnOffset + 2, float(powerCurve.powerFunction(absoluteWindSpeed))/self.analysis.observedRatedPower, self.two_dp_style) sh.write(rowOffset + countRow + 1, columnOffset + 3, float(powerCurve.turbulenceFunction(absoluteWindSpeed)), self.percent_no_dp_style) countRow += 1 return countRow
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # isort:skip_file """Unit tests for Superset Celery worker""" import datetime import json import subprocess import time import unittest import unittest.mock as mock from tests.test_app import app # isort:skip from superset import db, sql_lab from superset.dataframe import SupersetDataFrame from superset.db_engine_specs.base import BaseEngineSpec from superset.models.helpers import QueryStatus from superset.models.sql_lab import Query from superset.sql_parse import ParsedQuery from superset.utils.core import get_example_database from .base_tests import SupersetTestCase CELERY_SLEEP_TIME = 5 class UtilityFunctionTests(SupersetTestCase): # TODO(bkyryliuk): support more cases in CTA function. def test_create_table_as(self): q = ParsedQuery("SELECT * FROM outer_space;") self.assertEqual( "CREATE TABLE tmp AS \nSELECT * FROM outer_space", q.as_create_table("tmp") ) self.assertEqual( "DROP TABLE IF EXISTS tmp;\n" "CREATE TABLE tmp AS \nSELECT * FROM outer_space", q.as_create_table("tmp", overwrite=True), ) # now without a semicolon q = ParsedQuery("SELECT * FROM outer_space") self.assertEqual( "CREATE TABLE tmp AS \nSELECT * FROM outer_space", q.as_create_table("tmp") ) # now a multi-line query multi_line_query = "SELECT * FROM planets WHERE\n" "Luke_Father = 'Darth Vader'" q = ParsedQuery(multi_line_query) self.assertEqual( "CREATE TABLE tmp AS \nSELECT * FROM planets WHERE\n" "Luke_Father = 'Darth Vader'", q.as_create_table("tmp"), ) class CeleryTestCase(SupersetTestCase): def get_query_by_name(self, sql): session = db.session query = session.query(Query).filter_by(sql=sql).first() session.close() return query def get_query_by_id(self, id): session = db.session query = session.query(Query).filter_by(id=id).first() session.close() return query @classmethod def setUpClass(cls): with app.app_context(): class CeleryConfig(object): BROKER_URL = app.config["CELERY_CONFIG"].BROKER_URL CELERY_IMPORTS = ("superset.sql_lab",) CELERY_ANNOTATIONS = {"sql_lab.add": {"rate_limit": "10/s"}} CONCURRENCY = 1 app.config["CELERY_CONFIG"] = CeleryConfig db.session.query(Query).delete() db.session.commit() base_dir = app.config["BASE_DIR"] worker_command = base_dir + "/bin/superset worker -w 2" subprocess.Popen(worker_command, shell=True, stdout=subprocess.PIPE) @classmethod def tearDownClass(cls): subprocess.call( "ps auxww | grep 'celeryd' | awk '{print $2}' | xargs kill -9", shell=True ) subprocess.call( "ps auxww | grep 'superset worker' | awk '{print $2}' | xargs kill -9", shell=True, ) def run_sql( self, db_id, sql, client_id=None, cta=False, tmp_table="tmp", async_=False ): self.login() resp = self.client.post( "/superset/sql_json/", json=dict( database_id=db_id, sql=sql, runAsync=async_, select_as_cta=cta, tmp_table_name=tmp_table, client_id=client_id, ), ) self.logout() return json.loads(resp.data) def test_run_sync_query_dont_exist(self): main_db = get_example_database() db_id = main_db.id sql_dont_exist = "SELECT name FROM table_dont_exist" result1 = self.run_sql(db_id, sql_dont_exist, "1", cta=True) self.assertTrue("error" in result1) def test_run_sync_query_cta(self): main_db = get_example_database() backend = main_db.backend db_id = main_db.id tmp_table_name = "tmp_async_22" self.drop_table_if_exists(tmp_table_name, main_db) name = "James" sql_where = f"SELECT name FROM birth_names WHERE name='{name}' LIMIT 1" result = self.run_sql(db_id, sql_where, "2", tmp_table=tmp_table_name, cta=True) self.assertEqual(QueryStatus.SUCCESS, result["query"]["state"]) self.assertEqual([], result["data"]) self.assertEqual([], result["columns"]) query2 = self.get_query_by_id(result["query"]["serverId"]) # Check the data in the tmp table. if backend != "postgresql": # TODO This test won't work in Postgres results = self.run_sql(db_id, query2.select_sql, "sdf2134") self.assertEqual(results["status"], "success") self.assertGreater(len(results["data"]), 0) def test_run_sync_query_cta_no_data(self): main_db = get_example_database() db_id = main_db.id sql_empty_result = "SELECT * FROM birth_names WHERE name='random'" result3 = self.run_sql(db_id, sql_empty_result, "3") self.assertEqual(QueryStatus.SUCCESS, result3["query"]["state"]) self.assertEqual([], result3["data"]) self.assertEqual([], result3["columns"]) query3 = self.get_query_by_id(result3["query"]["serverId"]) self.assertEqual(QueryStatus.SUCCESS, query3.status) def drop_table_if_exists(self, table_name, database=None): """Drop table if it exists, works on any DB""" sql = "DROP TABLE {}".format(table_name) db_id = database.id if database: database.allow_dml = True db.session.flush() return self.run_sql(db_id, sql) def test_run_async_query(self): main_db = get_example_database() db_id = main_db.id self.drop_table_if_exists("tmp_async_1", main_db) sql_where = "SELECT name FROM birth_names WHERE name='James' LIMIT 10" result = self.run_sql( db_id, sql_where, "4", async_=True, tmp_table="tmp_async_1", cta=True ) db.session.close() assert result["query"]["state"] in ( QueryStatus.PENDING, QueryStatus.RUNNING, QueryStatus.SUCCESS, ) time.sleep(CELERY_SLEEP_TIME) query = self.get_query_by_id(result["query"]["serverId"]) self.assertEqual(QueryStatus.SUCCESS, query.status) self.assertTrue("FROM tmp_async_1" in query.select_sql) self.assertEqual( "CREATE TABLE tmp_async_1 AS \n" "SELECT name FROM birth_names " "WHERE name='James' " "LIMIT 10", query.executed_sql, ) self.assertEqual(sql_where, query.sql) self.assertEqual(0, query.rows) self.assertEqual(True, query.select_as_cta) self.assertEqual(True, query.select_as_cta_used) def test_run_async_query_with_lower_limit(self): main_db = get_example_database() db_id = main_db.id tmp_table = "tmp_async_2" self.drop_table_if_exists(tmp_table, main_db) sql_where = "SELECT name FROM birth_names LIMIT 1" result = self.run_sql( db_id, sql_where, "5", async_=True, tmp_table=tmp_table, cta=True ) db.session.close() assert result["query"]["state"] in ( QueryStatus.PENDING, QueryStatus.RUNNING, QueryStatus.SUCCESS, ) time.sleep(CELERY_SLEEP_TIME) query = self.get_query_by_id(result["query"]["serverId"]) self.assertEqual(QueryStatus.SUCCESS, query.status) self.assertTrue(f"FROM {tmp_table}" in query.select_sql) self.assertEqual( f"CREATE TABLE {tmp_table} AS \n" "SELECT name FROM birth_names LIMIT 1", query.executed_sql, ) self.assertEqual(sql_where, query.sql) self.assertEqual(0, query.rows) self.assertEqual(1, query.limit) self.assertEqual(True, query.select_as_cta) self.assertEqual(True, query.select_as_cta_used) def test_default_data_serialization(self): data = [("a", 4, 4.0, datetime.datetime(2019, 8, 18, 16, 39, 16, 660000))] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() cdf = SupersetDataFrame(data, cursor_descr, db_engine_spec) with mock.patch.object( db_engine_spec, "expand_data", wraps=db_engine_spec.expand_data ) as expand_data: data, selected_columns, all_columns, expanded_columns = sql_lab._serialize_and_expand_data( cdf, db_engine_spec, False, True ) expand_data.assert_called_once() self.assertIsInstance(data, list) def test_new_data_serialization(self): data = [("a", 4, 4.0, datetime.datetime(2019, 8, 18, 16, 39, 16, 660000))] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() cdf = SupersetDataFrame(data, cursor_descr, db_engine_spec) with mock.patch.object( db_engine_spec, "expand_data", wraps=db_engine_spec.expand_data ) as expand_data: data, selected_columns, all_columns, expanded_columns = sql_lab._serialize_and_expand_data( cdf, db_engine_spec, True ) expand_data.assert_not_called() self.assertIsInstance(data, bytes) def test_default_payload_serialization(self): use_new_deserialization = False data = [("a", 4, 4.0, datetime.datetime(2019, 8, 18, 16, 39, 16, 660000))] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() cdf = SupersetDataFrame(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": QueryStatus.PENDING, } serialized_data, selected_columns, all_columns, expanded_columns = sql_lab._serialize_and_expand_data( cdf, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": QueryStatus.SUCCESS, "state": QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized = sql_lab._serialize_payload(payload, use_new_deserialization) self.assertIsInstance(serialized, str) def test_msgpack_payload_serialization(self): use_new_deserialization = True data = [("a", 4, 4.0, datetime.datetime(2019, 8, 18, 16, 39, 16, 660000))] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() cdf = SupersetDataFrame(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": QueryStatus.PENDING, } serialized_data, selected_columns, all_columns, expanded_columns = sql_lab._serialize_and_expand_data( cdf, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": QueryStatus.SUCCESS, "state": QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized = sql_lab._serialize_payload(payload, use_new_deserialization) self.assertIsInstance(serialized, bytes) @staticmethod def de_unicode_dict(d): def str_if_basestring(o): if isinstance(o, str): return str(o) return o return {str_if_basestring(k): str_if_basestring(d[k]) for k in d} @classmethod def dictify_list_of_dicts(cls, l, k): return {str(o[k]): cls.de_unicode_dict(o) for o in l} if __name__ == "__main__": unittest.main()
from functools import wraps from flask import (Flask, render_template, request, redirect, url_for, flash, make_response, jsonify) from flask import session as login_session from sqlalchemy import create_engine, asc from sqlalchemy.orm import sessionmaker from database_setup import (Base, User, Catalog, Category, Record, Field, RecordTemplate, FieldTemplate, Option) from oauth2client.client import flow_from_clientsecrets from oauth2client.client import FlowExchangeError import random, string, httplib2, json, requests app = Flask(__name__) APPLICATION_NAME = "Catalogizer" # client id for google openID CLIENT_ID = json.loads(open( 'client_secrets.json', 'r').read())['web']['client_id'] engine = create_engine('sqlite:///catalogizer.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() def login_required(f): # Needed for decoraters to update __name__ and __module__ @wraps(f) def decorated_function(*args, **kwargs): if 'user_id' not in login_session: return redirect('/login') return f(*args, **kwargs) return decorated_function @app.route('/login/') def show_login(): state = ''.join(random.choice( string.ascii_uppercase + string.digits) for x in xrange(32)) login_session['state'] = state if 'gplus_id' in login_session: flash('You are already logged in.', 'error') return redirect('/') if 'facebook_id' in login_session: flash('You are already logged in.', 'error') return redirect('/') return render_template('login.html', STATE=state) @app.route('/gconnect', methods=['Post']) def gconnect(): if request.args.get('state') != login_session.get('state'): response = make_response(json.dumps('Invalid state parameter'), 401) response.headers['Content-Type'] = 'application/json' return response code = request.data try: # Upgrade the authorization code into a credentials object that can be # used to authorize requests. oauth_flow = flow_from_clientsecrets('client_secrets.json', scope='') oauth_flow.redirect_uri = 'postmessage' credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: response = make_response(json.dumps( 'Failed to upgrade the authorization code.'), 401) response.headers['Content-Type'] = 'application/json' return response # Check that the access token is valid. access_token = credentials.access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' % access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) # If there was an error in the access token info, abort. if result.get('error') is not None: response = make_response(json.dumps(result.get('error')), 500) response.headers['Content-Type'] = 'application/json' # Verify that the acces token is used for the intendend user. gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: response = make_response(json.dumps( "Token's user ID doesn't match given user ID."), 401) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is valid for this app. if result['issued_to'] != CLIENT_ID: response = make_response(json.dumps( "Token's client ID does not match app's"), 401) response.headers['Content-Type'] = 'application/json' return response # Check to see if user is already logged in. stored_access_token = login_session.get('access_token') stored_gplus_id = login_session.get('gplus_id') if stored_access_token is not None and gplus_id == stored_gplus_id: response = make_response(json.dumps( "Current user is already connected."), 200) response.headers['Content-Type'] = 'application/json' return response # Store the access token in the session for later use. login_session['access_token'] = access_token login_session['gplus_id'] = gplus_id # Get user info userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params=params) data = answer.json() login_session['username'] = data['name'] login_session['picture'] = data['picture'] login_session['email'] = data['email'] # See if user exists and get ID assigned in database. user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id updateUser(login_session['user_id'], login_session['picture'], login_session['username']) output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += (' " style = "width: 300px; height: 300px;' 'border-radius: 150px;-webkit-border-radius: 150px' ';-moz-border-radius: 150px;"> ') flash("Now logged in as %s" % login_session['username']) print login_session return output @app.route('/fbconnect', methods=['POST']) def fbconnect(): if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state parameter.'), 401) response.headers['Content-Type'] = 'application/json' return response access_token = request.data app_id = json.loads(open( 'fb_client_secrets.json', 'r').read())['web']['app_id'] app_secret = json.loads(open( 'fb_client_secrets.json', 'r').read())['web']['app_secret'] url = ('https://graph.facebook.com/oauth/access_token?' 'grant_type=fb_exchange_token&client_id=%s&client_secret=%s&' 'fb_exchange_token=%s' % (app_id, app_secret, access_token)) h = httplib2.Http() result = h.request(url, 'GET')[1] # Use token to get user info from API userinfo_url = "https://graph.facebook.com/v2.4/me" # Strip expire tag from access token token = result.split("&")[0] url = userinfo_url + '?%s&fields=name,id,email' % token h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) login_session['username'] = data["name"] login_session['email'] = data["email"] login_session['facebook_id'] = data["id"] # The token must be stored in the login_session in order to properly logout # strip out the information before the equals sign in the token stored_token = token.split("=")[1] login_session['access_token'] = stored_token # Get user picture url = ('https://graph.facebook.com/v2.4/me/picture?' '%s&redirect=0&height=200&width=200' % token) h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) login_session['picture'] = data["data"]["url"] # see if user exists, create user if they don't, and get assigned id user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id updateUser(login_session['user_id'], login_session['picture'], login_session['username']) output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += (' " style = "width: 300px; height: 300px;' 'border-radius: 150px;-webkit-border-radius: 150px' ';-moz-border-radius: 150px;"> ') flash("Now logged in as %s" % login_session['username']) return output # DISCONNECT - Revoke a current user's token and reset their login_session. def gdisconnect(): access_token = login_session['access_token'] url = 'https://accounts.google.com/o/oauth2/revoke?token=%s' % access_token h = httplib2.Http() result = h.request(url, 'GET')[0] if result['status'] == '200': del login_session['access_token'] del login_session['gplus_id'] del login_session['username'] del login_session['email'] del login_session['picture'] del login_session['user_id'] flash('You have been sucessfully logged out') return redirect(url_for('viewCatalogs')) else: response = make_response(json.dumps( 'Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response def fbdisconnect(): access_token = login_session['access_token'] facebook_id = login_session['facebook_id'] url = 'https://graph.facebook.com/%s/\ permissions?access_token=%s' % (facebook_id, access_token) h = httplib2.Http() result = h.request(url, 'DELETE')[1] print 'result is ' print result if 'success' in result: del login_session['access_token'] del login_session['facebook_id'] del login_session['username'] del login_session['email'] del login_session['picture'] del login_session['user_id'] flash('You have been sucessfully logged out') return redirect(url_for('viewCatalogs')) else: response = make_response(json.dumps( 'Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response @app.route("/disconnect/") def disconnect(): if not login_session: return redirect('/login') access_token = login_session.get('access_token') if access_token is None: flash('You are not logged in', 'error') return redirect(url_for('show_login')) if 'gplus_id' in login_session: return gdisconnect() elif 'facebook_id' in login_session: return fbdisconnect() else: return redirect('/login') @app.route('/') @app.route('/catalog/') def viewCatalogs(): # print login_session catalogs = getCatalogs() return render_template('viewCatalogs.html', catalogs=catalogs, current_user=login_session.get('user_id')) @app.route('/catalog/new/', methods=['GET', 'POST']) @login_required def newCatalog(): if request.method == 'POST': catalogName = request.form['catalog-name'] newCatalogEntry = Catalog(name=catalogName, user_id=login_session.get('user_id')) try: session.add(newCatalogEntry) session.commit() flash('%s successfully created!' % catalogName) except: session.rollback() raise return redirect(url_for('viewCatalogs')) else: return render_template('newCatalog.html') @app.route('/catalog/<int:catalog_id>/edit/', methods=['GET', 'POST']) @login_required def editCatalog(catalog_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can edit this catalog.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': newCatalogName = request.form['new-catalog-name'] catalog.name = newCatalogName try: session.commit() flash('%s successfully edited!' % newCatalogName) except: session.rollback() raise return redirect(url_for('viewCatalogs')) else: return render_template('editCatalog.html', catalog=catalog) @app.route('/catalog/<int:catalog_id>/delete/', methods=['GET', 'POST']) @login_required def deleteCatalog(catalog_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can delete this catalog.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': delCatalog(catalog_id) return redirect(url_for('viewCatalogs')) else: return render_template('deleteCatalog.html', catalog=catalog) @app.route('/catalog/<int:catalog_id>/category/') def viewCategories(catalog_id): catalog = getCatalog(catalog_id) categories = getCategories(catalog_id) return render_template('viewCategories.html', catalog=catalog, categories=categories, current_user=login_session.get('user_id')) @app.route('/catalog/<int:catalog_id>/category/new', methods=['GET', 'POST']) @login_required def newCategory(catalog_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can add a category to it.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': categoryName = request.form['category-name'] categoryEntry = Category(name=categoryName, catalog_id=catalog.id) try: session.add(categoryEntry) session.commit() flash('%s successfully created!' % categoryName) except: session.rollback() raise return redirect(url_for('viewCategories', catalog_id=catalog.id)) else: return render_template('newCategory.html', catalog=catalog) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/edit/', methods=['GET', 'POST']) @login_required def editCategory(catalog_id, category_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can edit this category.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) category = getCategory(category_id) if request.method == 'POST': newCategoryName = request.form['new-category-name'] category.name = newCategoryName try: session.commit() except: session.rollback() raise flash('%s successfully edited!' % newCategoryName) return redirect(url_for('viewCategories', catalog_id=catalog_id)) else: return render_template('editCategory.html', catalog=catalog, category=category) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/delete/', methods=['GET', 'POST']) @login_required def deleteCategory(catalog_id, category_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can delete this category.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': delCategory(category_id) return redirect(url_for('viewCategories', catalog_id=catalog_id)) else: category = getCategory(category_id) return render_template('deleteCategory.html', catalog=catalog, category=category) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/') def viewRecords(catalog_id, category_id): catalog = getCatalog(catalog_id) category = getCategory(category_id) records = getRecordsByCategoryId(category_id) return render_template('viewRecords.html', catalog=catalog, category=category, records=records, current_user=login_session.get('user_id')) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/add/') @login_required def addRecord(catalog_id, category_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can add a new record to it.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) category = getCategory(category_id) recordTemplates = getRecordTemplates(category_id) return render_template('addRecord.html', catalog=catalog, category=category, rTemplates=recordTemplates, current_user=login_session.get('user_id')) # Over 80 characters, however URL Routes break if they go to new line. @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/add/<int:record_template_id>/new/', methods=['GET', 'POST']) @login_required def newRecord(catalog_id, category_id, record_template_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can add a new record to it.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': recordName = request.form['record-name'] addNewRecord(category_id, record_template_id) flash('%s successfully created!' % recordName) return redirect(url_for('viewRecords', catalog_id=catalog_id, category_id=category_id)) else: category = getCategory(category_id) recordTemplate = getRecordTemplate(record_template_id) fieldTemplatesWithOptions = getFormattedFieldTemplatesWithOptions( record_template_id) return render_template('newRecord.html', catalog=catalog, category=category, rTemplate=recordTemplate, fTemplates=fieldTemplatesWithOptions) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/<int:record_id>/edit/', methods=['GET', 'POST']) @login_required def editRecord(catalog_id, category_id, record_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can edit this record.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) record = getRecord(record_id) if request.method == 'POST': newName = request.form['record-name'] record_template_id = record.record_template_id delRecord(record_id) addNewRecord(category_id, record_template_id) flash('%s successfully edited!' % newName) return redirect(url_for('viewRecords', catalog_id=catalog_id, category_id=category_id)) else: category = getCategory(category_id) fieldTemplatesWithValues = getFieldTemplatesWithValues(record_id) return render_template('editRecord.html', catalog=catalog, category=category, record=record, fTemplates=fieldTemplatesWithValues) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/<int:record_id>/delete/', methods=['GET', 'POST']) @login_required def deleteRecord(catalog_id, category_id, record_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can delete this record.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': record = getRecord(record_id) flash('%s successfully deleted!' % record.name) delRecord(record_id) return redirect(url_for('viewRecords', catalog_id=catalog_id, category_id=category_id)) else: category = getCategory(category_id) record = getRecord(record_id) return render_template('deleteRecord.html', catalog=catalog, category=category, record=record) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/<int:record_id>/view/') def showRecord(catalog_id, category_id, record_id): catalog = getCatalog(catalog_id) category = getCategory(category_id) record = getRecord(record_id) fields = getFormattedFields(record_id) return render_template('showRecord.html', catalog=catalog, category=category, record=record, fields=fields) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/add/template/', methods=['GET', 'POST']) @login_required def newRecordTemplate(catalog_id, category_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can add a record template for it.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': # werkzeug returns an immutable object. Using .copy() creates a mutable # copy. formData = request.form.copy() # Pop recordTemplateName as it has a different format than the other # values, and goes in a seperate table. recordTemplateName = formData.pop('template-name') recordTemplateEntry = RecordTemplate(name=recordTemplateName, category_id=category_id) try: session.add(recordTemplateEntry) session.commit() except: session.rollback() raise # Iterate over form inputs, placing labels and field kind inside the # FieldTemplate table, and options within the Option table. for keyValue in formData.lists(): # Each field template has a 'label' and a field 'kind', # which may or may not have 'options' assigned to it. # They are grouped together by a group identifier number at # the beginning of the field name (before the first hyphen). groupIdentifier = keyValue[0][0:keyValue[0].find("-")] inputType = keyValue[0][keyValue[0].find("-") + 1:] # For each of the inputs with the name "field-kind", # find their label and options using the group identifier and # add them to their respective tables. if inputType == "field-kind": fieldTemplateLabel = formData.get( groupIdentifier + "-field-label") fieldTemplateKind = formData.get( groupIdentifier + "-field-kind") fieldTemplateOptions = formData.getlist( groupIdentifier + "-option") fieldTemplateEntry = FieldTemplate( label=fieldTemplateLabel, kind=fieldTemplateKind, order=groupIdentifier, record_template_id=recordTemplateEntry.id) try: session.add(fieldTemplateEntry) session.commit() except: session.rollback() raise while len(fieldTemplateOptions) > 0: optionEntry = Option( name=fieldTemplateOptions.pop(0), field_template_id=fieldTemplateEntry.id) try: session.add(optionEntry) session.commit() except: session.rollback() raise flash('%s successfully created!' % recordTemplateName) return redirect(url_for('addRecord', catalog_id=catalog_id, category_id=category_id)) else: category = getCategory(category_id) return render_template('recordTemplate.html', catalog=catalog, category=category) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/add/template/<int:record_template_id>/edit/', methods=['GET', 'POST']) @login_required def editRecordTemplate(catalog_id, category_id, record_template_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can edit this record template.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) rTemplate = getRecordTemplate(record_template_id) if request.method == 'POST': newRecordTemplateName = request.form['new-rt-name'] rTemplate.name = newRecordTemplateName try: session.commit() flash('%s successfully edited!' % newRecordTemplateName) except: session.rollback() raise return redirect(url_for('addRecord', catalog_id=catalog_id, category_id=category_id)) else: catalog = getCatalog(catalog_id) category = getCategory(category_id) return render_template('editRecordTemplate.html', catalog=catalog, category=category, rTemplate=rTemplate) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/add/template/<int:record_template_id>/delete/', methods=['GET', 'POST']) @login_required def deleteRecordTemplate(catalog_id, category_id, record_template_id): catalog = getCatalog(catalog_id) if catalog.user_id != login_session.get('user_id'): flash('Only the owner of %s can delete this record template.' % catalog.name, 'error') return redirect(url_for('viewCatalogs')) if request.method == 'POST': delRecord_Template(record_template_id) return redirect(url_for('addRecord', catalog_id=catalog_id, category_id=category_id)) else: category = getCategory(category_id) rTemplate = getRecordTemplate(record_template_id) return render_template('deleteRecordTemplate.html', catalog=catalog, category=category, rTemplate=rTemplate) # JSON API Endpoints @app.route('/catalog/json/') def catalogListJSON(): catalogs = getCatalogs() return jsonify(Catalogs=[c.serialize for c in catalogs]) @app.route('/catalog/<int:catalog_id>/category/json/') def categoryListJSON(catalog_id): categories = getCategories(catalog_id) return jsonify(Categories=[c.serialize for c in categories]) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/json/') def recordListJSON(catalog_id, category_id): records = getRecordsByCategoryId(category_id) return jsonify(Records=[r.serialize for r in records]) @app.route('/catalog/<int:catalog_id>/category/<int:category_id>/record/<int:record_id>/view/json/') def fieldListJSON(catalog_id, category_id, record_id): fields = getFields(record_id) return jsonify(Fields=[r.serialize for r in fields]) # Helper functions for adding new entries or updating entries def createUser(login_session): newUser = User(name=login_session['username'], email=login_session['email'], picture=login_session['picture']) try: session.add(newUser) session.commit() except: session.rollback() raise # user = session.query(User).filter_by(email=login_session['email']).one() # return user.id return newUser.id def updateUser(user_id, picture, name): user = session.query(User).filter_by(id=user_id).one() change = False if user.picture != picture: user.picture = picture change = True if user.name != name: user.name = name change = True if change is True: try: session.commit() except: session.rollback() raise def addNewRecord(category_id, record_template_id): # The request object is a Werkzeug data structure called # ImmutableMultiDict, which has a copy method that returns a # mutable Wekzeug MultiDict. formData = request.form.copy() # Pop the first item (the record name) for a list on the dict, and remove # the key from the dict. recordName = formData.pop('record-name') newRecordEntry = Record(name=recordName, record_template_id=record_template_id, category_id=category_id) try: session.add(newRecordEntry) session.commit() except: session.rollback() raise # Call lists method on the formData multiDict, to get a list of # tupples of keys and a list of all values corresponding to each # unique key. for keyValues in formData.lists(): fieldTemplateId = int(keyValues[0]) fieldValues = keyValues[1] for fieldValue in fieldValues: # After calling session.commit() on the newRecordEntry, # SQLAlchemy automatically reloads the object from the database, # allowing access to its assigned primary key. newFieldEntry = Field(value=fieldValue, field_template_id=fieldTemplateId, record_id=newRecordEntry.id) session.add(newFieldEntry) try: session.commit() except: session.rollback() raise # Helper functions to filter through and get database elements def getUserID(email): try: user = session.query(User).filter_by(email=email).one() return user.id except: return None def getCatalogs(): return session.query(Catalog).all() def getCatalog(catalog_id): return session.query(Catalog).filter_by(id=catalog_id).one() def getCategories(catalog_id): return session.query(Category).filter_by(catalog_id=catalog_id).all() def getCategory(category_id): return session.query(Category).filter_by(id=category_id).one() def getRecord(record_id): return session.query(Record).filter_by(id=record_id).one() def getRecordsByCategoryId(category_id): return session.query(Record).filter_by(category_id=category_id).all() def getRecordsByRecordTemplateId(record_template_id): return session.query(Record).filter_by( record_template_id=record_template_id).all() def getFields(record_id): return session.query(Field).filter_by(record_id=record_id).all() def getRecordTemplate(record_template_id): return session.query(RecordTemplate).filter_by(id=record_template_id).one() def getRecordTemplates(category_id): return session.query(RecordTemplate).filter_by( category_id=category_id).all() def getFieldTemplates(record_template_id): return session.query(FieldTemplate).filter_by( record_template_id=record_template_id).order_by( asc(FieldTemplate.order)) def getOptions(field_template_id): return session.query(Option).filter_by( field_template_id=field_template_id).order_by( asc(Option.id)) def getFormattedFields(record_id): """Returns field labels and values in the form of an array of tupples of the field label and an array of the field values. E.g. [ ( field label, [field value1, field value2] ) ]""" record = getRecord(record_id) fieldTemplates = getFieldTemplates(record.record_template_id) fields = [] for fieldTemplate in fieldTemplates: fieldLabel = fieldTemplate.label valueList = session.query(Field).filter_by( field_template_id=fieldTemplate.id, record_id=record.id).order_by( asc(Field.id)) fieldValues = [] for v in valueList: fieldValues.append(v.value) fields.append((fieldLabel, fieldValues)) return fields def getFormattedFieldTemplatesWithOptions(record_template_id): """Returns a list of dictionaries containing field template id, label, kind, and a list of options for that field template.""" fieldTemplates = getFieldTemplates(record_template_id) fieldsWithOptions = [] for fieldTemplate in fieldTemplates: fieldTemplateDict = { 'id': fieldTemplate.id, 'label': fieldTemplate.label, 'kind': fieldTemplate.kind, 'options': [] } options = getOptions(fieldTemplate.id) for option in options: fieldTemplateDict['options'].append((option.name, option.id)) fieldsWithOptions.append(fieldTemplateDict) return fieldsWithOptions def getFieldTemplatesWithValues(record_id): """Returns a list of dictionaries containing field template id, label, kind, a list of options for that field template, and the value(s) for that field. Field Templates of the kind 'checkbox' may have more than one of the options selected as s value""" record = getRecord(record_id) ftDictList = getFormattedFieldTemplatesWithOptions( record.record_template_id) for ftDict in ftDictList: ftDict['values'] = [] ftId = ftDict['id'] fields = session.query(Field).filter_by(field_template_id=ftId).all() for field in fields: value = field.value ftDict['values'].append(value) return ftDictList # Helper functions to delete database items def delRecord(record_id): record = getRecord(record_id) fields = getFields(record_id) for field in fields: try: session.delete(field) session.commit() except: session.rollback() raise try: session.delete(record) session.commit() except: session.rollback() raise def delRecord_Template(record_template_id): recordTemplate = getRecordTemplate(record_template_id) fieldTemplates = getFieldTemplates(record_template_id) records = getRecordsByRecordTemplateId(record_template_id) flash('%s successfully deleted!' % recordTemplate.name) for record in records: delRecord(record.id) for fieldTemplate in fieldTemplates: options = getOptions(fieldTemplate.id) for option in options: try: session.delete(option) session.commit() except: session.rollback() raise try: session.delete(fieldTemplate) session.commit() except: session.rollback() raise try: session.delete(recordTemplate) session.commit() except: session.rollback() raise def delCategory(category_id): category = getCategory(category_id) recordTemplates = getRecordTemplates(category_id) flash('%s successfully deleted!' % category.name) for recordTemplate in recordTemplates: delRecord_Template(recordTemplate.id) try: session.delete(category) session.commit() except: session.rollback() raise def delCatalog(catalog_id): catalog = getCatalog(catalog_id) categories = getCategories(catalog_id) flash('%s successfully deleted!' % catalog.name) for category in categories: delCategory(category.id) try: session.delete(catalog) session.commit() except: session.rollback() raise if __name__ == '__main__': app.secret_key = 'super_secret_key' app.debug = True app.run(host='0.0.0.0', port=5000)
# Copyright 2013 the Melange authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for student forms view.""" import os import tempfile from tests import profile_utils from tests import test_utils from tests.utils import project_utils class FormPageTest(test_utils.GSoCDjangoTestCase): """Test student form page.""" def setUp(self): self.init() def testLoneUserAccessForbidden(self): self._assertAccessForbiddenForUrl(self._getEnrollmentFormUrl()) self._assertAccessForbiddenForUrl(self._getTaxFormUrl()) def testMentorAccessForbidden(self): user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) profile_utils.seedNDBProfile( self.program.key(), user=user, mentor_for=[self.org.key]) self._assertAccessForbiddenForUrl(self._getEnrollmentFormUrl()) self._assertAccessForbiddenForUrl(self._getTaxFormUrl()) def testOrgAdminAccessForbidden(self): user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) profile_utils.seedNDBProfile( self.program.key(), user=user, admin_for=[self.org.key]) self._assertAccessForbiddenForUrl(self._getEnrollmentFormUrl()) self._assertAccessForbiddenForUrl(self._getTaxFormUrl()) def testHostAccessForbidden(self): user = profile_utils.seedNDBUser(host_for=[self.program]) profile_utils.loginNDB(user) self._assertAccessForbiddenForUrl(self._getEnrollmentFormUrl()) self._assertAccessForbiddenForUrl(self._getTaxFormUrl()) def testStudentAccessForbidden(self): # access should be forbidden because at this point students are not # permitted to upload their forms self.timeline_helper.studentsAnnounced() user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program, user=user) project_utils.seedProject( student, self.program.key(), org_key=self.org.key) self._assertAccessForbiddenForUrl(self._getEnrollmentFormUrl()) self._assertAccessForbiddenForUrl(self._getTaxFormUrl()) def testStudentAccessGranted(self): self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program, user=user) project_utils.seedProject( student, self.program.key(), org_key=self.org.key) # check for enrollment form url = self._getEnrollmentFormUrl() response = self.get(url) self.assertResponseOK(response) self._assertStudentFormsTemplatesUsed(response) # check for tax form url = self._getTaxFormUrl() response = self.get(url) self.assertResponseOK(response) self._assertStudentFormsTemplatesUsed(response) def testEnrollmentFormSubmissionByStudent(self): """Tests that enrollment form is submitted properly by a student.""" self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program, user=user) project_utils.seedProject( student, self.program.key(), org_key=self.org.key) # check that there is no enrollment form at this stage self.assertIsNone(student.student_data.enrollment_form) with tempfile.NamedTemporaryFile() as test_file: # check for the enrollment form url = self._getEnrollmentFormUrl() postdata = {'enrollment_form': test_file} response = self.post(url, postdata) self.assertResponseRedirect( response, self._getEnrollmentFormUrl(validated=True)) # check if the form has been submitted student = student.key.get() self.assertIsNotNone(student.student_data.enrollment_form) def testTaxFormSubmissionByStudent(self): """Tests that enrollment form is submitted properly by a student.""" self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program, user=user) project_utils.seedProject( student, self.program.key(), org_key=self.org.key) # check that there is no tax form at this stage self.assertIsNone(student.student_data.tax_form) with tempfile.NamedTemporaryFile() as test_file: # check for the enrollment form url = self._getTaxFormUrl() postdata = {'tax_form': test_file} response = self.post(url, postdata) self.assertResponseRedirect( response, self._getTaxFormUrl(validated=True)) # check if the form has been submitted student = student.key.get() self.assertIsNotNone(student.student_data.tax_form) def testEnrollmentFormSubmissionByAdmin(self): """Tests that enrollment form is submitted properly by an admin.""" self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser(host_for=[self.program]) profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program) project_utils.seedProject(student, self.program.key(), org_key=self.org.key) # check that there is no enrollment form at this stage self.assertIsNone(student.student_data.enrollment_form) with tempfile.NamedTemporaryFile() as test_file: url = self._getAdminEnrollmentForm(student) postdata = {'enrollment_form': test_file} response = self.post(url, postdata) self.assertResponseRedirect( response, self._getAdminEnrollmentForm(student, validated=True)) # check if the form has been submitted student = student.key.get() self.assertIsNotNone(student.student_data.enrollment_form) def testTaxFormSubmissionByAdmin(self): """Tests that tax form is submitted properly by an admin.""" self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser(host_for=[self.program]) profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program) project_utils.seedProject(student, self.program.key(), org_key=self.org.key) # check that there is no tax form at this stage self.assertIsNone(student.student_data.tax_form) with tempfile.NamedTemporaryFile() as test_file: url = self._getAdminTaxForm(student) postdata = {'tax_form': test_file} response = self.post(url, postdata) self.assertResponseRedirect( response, self._getAdminTaxForm(student, validated=True)) # check if the form has been submitted student = student.key.get() self.assertIsNotNone(student.student_data.tax_form) def testSubmitAnotherForm(self): """Tests that another form may be resubmitted by a student.""" self.timeline_helper.formSubmission() user = profile_utils.seedNDBUser() profile_utils.loginNDB(user) student = profile_utils.seedSOCStudent(self.program, user=user) project_utils.seedProject( student, self.program.key(), org_key=self.org.key) # set initial tax form blob_key = self.createBlob('initial_tax_form.pdf') student.student_data.tax_form = blob_key student.put() # submit a new tax form with tempfile.NamedTemporaryFile() as test_file: # check for the enrollment form url = self._getTaxFormUrl() postdata = {'tax_form': test_file} response = self.post(url, postdata) self.assertResponseRedirect( response, self._getTaxFormUrl(validated=True)) # check if the form has been submitted student = student.key.get() self.assertIsNotNone(student.student_data.tax_form) self.assertEqual(os.path.basename(test_file.name), student.student_data.tax_form) def _getEnrollmentFormUrl(self, validated=False): """Returns URL for the student enrollment form upload.""" url = '/gsoc/student_forms/enrollment/' + self.gsoc.key().name() return url if not validated else url + '?validated' def _getTaxFormUrl(self, validated=False): """Returns URL for the student tax form upload.""" url = '/gsoc/student_forms/tax/' + self.gsoc.key().name() return url if not validated else url + '?validated' def _getAdminEnrollmentForm(self, profile, validated=False): """Returns URL for the student enrollment form upload by admin.""" url = '/gsoc/student_forms/admin/enrollment/%s' % profile.key.id() return url if not validated else url + '?validated' def _getAdminTaxForm(self, profile, validated=False): """Returns URL for the student tax form upload by admin.""" url = '/gsoc/student_forms/admin/tax/%s' % profile.key.id() return url if not validated else url + '?validated' def _assertAccessForbiddenForUrl(self, url): """Asserts that GET request will return forbidden response for the specified URL.""" response = self.get(url) self.assertResponseForbidden(response) self.assertErrorTemplatesUsed(response) def _assertStudentFormsTemplatesUsed(self, response): """Asserts that all the templates from the student forms were used. """ self.assertGSoCTemplatesUsed(response) self.assertTemplateUsed(response, 'modules/gsoc/student_forms/base.html') self.assertTemplateUsed(response, 'modules/gsoc/_form.html') def _createNewMentor(self): """Returns a newly created mentor.""" return profile_utils.seedNDBProfile( self.program.key(), mentor_for=[self.org.key])
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for embeddings.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import constant_op from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops def embedding_lookup(params, ids, partition_strategy="mod", name=None, validate_indices=True): """Looks up `ids` in a list of embedding tensors. This function is used to perform parallel lookups on the list of tensors in `params`. It is a generalization of [`tf.gather()`](../../api_docs/python/array_ops.md#gather), where `params` is interpreted as a partition of a larger embedding tensor. If `len(params) > 1`, each element `id` of `ids` is partitioned between the elements of `params` according to the `partition_strategy`. In all strategies, if the id space does not evenly divide the number of partitions, each of the first `(max_id + 1) % len(params)` partitions will be assigned one more id. If `partition_strategy` is `"mod"`, we assign each id to partition `p = id % len(params)`. For instance, 13 ids are split across 5 partitions as: `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]` If `partition_strategy` is `"div"`, we assign ids to partitions in a contiguous manner. In this case, 13 ids are split across 5 partitions as: `[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]` The results of the lookup are concatenated into a dense tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`. Args: params: A list of tensors with the same type and which can be concatenated along dimension 0. Each `Tensor` must be appropriately sized for the given `partition_strategy`. ids: A `Tensor` with type `int32` or `int64` containing the ids to be looked up in `params`. partition_strategy: A string specifying the partitioning strategy, relevant if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default is `"mod"`. name: A name for the operation (optional). validate_indices: Whether or not to validate gather indices. Returns: A `Tensor` with the same type as the tensors in `params`. Raises: ValueError: If `params` is empty. """ if not isinstance(params, list): params = [params] with ops.op_scope(params + [ids], name, "embedding_lookup") as name: if not params: raise ValueError("Need at least one param") np = len(params) # Number of partitions params = ops.convert_n_to_tensor_or_indexed_slices(params, name="params") if np == 1: with ops.colocate_with(params[0]): return array_ops.gather(params[0], ids, name=name, validate_indices=validate_indices) else: ids = ops.convert_to_tensor(ids, name="ids") flat_ids = array_ops.reshape(ids, [-1]) original_indices = math_ops.range(array_ops.size(flat_ids)) # Create p_assignments and set new_ids depending on the strategy. if partition_strategy == "mod": p_assignments = flat_ids % np new_ids = flat_ids // np elif partition_strategy == "div": # Compute num_total_ids as the sum of dim-0 of params, then assign to # partitions based on a constant number of ids per partition. Optimize # if we already know the full shape statically. dim_0_size = params[0].get_shape()[0] for p in xrange(1, np): dim_0_size += params[p].get_shape()[0] if dim_0_size.value: num_total_ids = constant_op.constant(dim_0_size.value, flat_ids.dtype) else: dim_0_sizes = [] for p in xrange(np): with ops.colocate_with(params[p]): dim_0_sizes.append(array_ops.shape(params[p])[0]) num_total_ids = math_ops.reduce_sum( math_ops.cast(array_ops.pack(dim_0_sizes), flat_ids.dtype)) ids_per_partition = num_total_ids // np extras = num_total_ids % np p_assignments = math_ops.maximum( flat_ids // (ids_per_partition + 1), (flat_ids - extras) // ids_per_partition) # Emulate a conditional using a boolean indicator tensor is_in_first_extras_partitions = math_ops.cast( p_assignments < extras, flat_ids.dtype) new_ids = ( is_in_first_extras_partitions * ( flat_ids % (ids_per_partition + 1)) + (1 - is_in_first_extras_partitions) * ( (flat_ids - extras) % ids_per_partition)) else: raise ValueError("Unrecognized partition strategy: " + partition_strategy) # Cast partition assignments to int32 for use in dynamic_partition. # There really should not be more than 2^32 partitions. p_assignments = math_ops.cast(p_assignments, dtypes.int32) # Partition list of ids based on assignments into np separate lists gather_ids = data_flow_ops.dynamic_partition(new_ids, p_assignments, np) # Similarly, partition the original indices. pindices = data_flow_ops.dynamic_partition(original_indices, p_assignments, np) # Do np separate lookups, finding embeddings for plist[p] in params[p] partitioned_result = [] for p in xrange(np): with ops.colocate_with(params[p]): partitioned_result.append(array_ops.gather( params[p], gather_ids[p], validate_indices=validate_indices)) # Stitch these back together ret = data_flow_ops.dynamic_stitch(pindices, partitioned_result, name=name) # Reshape to reverse the flattening of ids. # It's important that we compute params[0].shape on the right device # to avoid data motion. with ops.colocate_with(params[0]): params_shape = array_ops.shape(params[0]) ret = array_ops.reshape(ret, array_ops.concat(0, [ array_ops.shape(ids), array_ops.slice(params_shape, [1], [-1])])) # output shape = ids.shape + params[*].shape[1:] # Normally the reshape is sufficient, but setting shape explicitly # teaches shape inference that params[1:].get_shape() matters. element_shape = params[0].get_shape()[1:] for p in params[1:]: element_shape = element_shape.merge_with(p.get_shape()[1:]) ret.set_shape(ids.get_shape().concatenate(element_shape)) return ret # TODO(lif): Add support for higher-rank SparseTensors def embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy="mod", name=None, combiner="mean"): """Computes embeddings for the given ids and weights. This op assumes that there is at least one id for each row in the dense tensor represented by sp_ids (i.e. there are no rows with empty features), and that all the indices of sp_ids are in canonical row-major order. It also assumes that all id values lie in the range [0, p0), where p0 is the sum of the size of params along dimension 0. Args: params: A single tensor representing the complete embedding tensor, or a list of P tensors all of same shape except for the first dimension, representing sharded embedding tensors. sp_ids: N x M SparseTensor of int64 ids (typically from FeatureValueToId), where N is typically batch size and M is arbitrary. sp_weights: either a SparseTensor of float / double weights, or None to indicate all weights should be taken to be 1. If specified, sp_weights must have exactly the same shape and indices as sp_ids. partition_strategy: A string specifying the partitioning strategy, relevant if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default is `"mod"`. See `tf.nn.embedding_lookup` for more details. name: Optional name for the op. combiner: A string specifying the reduction op. Currently "mean", "sqrtn" and "sum" are supported. "sum" computes the weighted sum of the embedding results for each row. "mean" is the weighted sum divided by the total weight. "sqrtn" is the weighted sum divided by the square root of the sum of the squares of the weights. Returns: A dense tensor representing the combined embeddings for the sparse ids. For each row in the dense tensor represented by sp_ids, the op looks up the embeddings for all ids in that row, multiplies them by the corresponding weight, and combines these embeddings as specified. In other words, if shape(combined params) = [p0, p1, ..., pm] and shape(sp_ids) = shape(sp_weights) = [d0, d1, ..., dn] then shape(output) = [d0, d1, ..., dn-1, p1, ..., pm]. For instance, if params is a 10x20 matrix, and sp_ids / sp_weights are [0, 0]: id 1, weight 2.0 [0, 1]: id 3, weight 0.5 [1, 0]: id 0, weight 1.0 [2, 3]: id 1, weight 3.0 with combiner="mean", then the output will be a 3x20 matrix where output[0, :] = (params[1, :] * 2.0 + params[3, :] * 0.5) / (2.0 + 0.5) output[1, :] = params[0, :] * 1.0 output[2, :] = params[1, :] * 3.0 Raises: TypeError: If sp_ids is not a SparseTensor, or if sp_weights is neither None nor SparseTensor. ValueError: If combiner is not one of {"mean", "sqrtn", "sum"}. """ if combiner not in ("mean", "sqrtn", "sum"): raise ValueError("combiner must be one of 'mean', 'sqrtn' or 'sum'") if not isinstance(params, list): params = [params] if not isinstance(sp_ids, ops.SparseTensor): raise TypeError("sp_ids must be SparseTensor") ignore_weights = sp_weights is None if not ignore_weights: if not isinstance(sp_weights, ops.SparseTensor): raise TypeError("sp_weights must be either None or SparseTensor") sp_ids.values.get_shape().assert_is_compatible_with( sp_weights.values.get_shape()) sp_ids.indices.get_shape().assert_is_compatible_with( sp_weights.indices.get_shape()) sp_ids.shape.get_shape().assert_is_compatible_with( sp_weights.shape.get_shape()) # TODO(yleon): Add enhanced node assertions to verify that sp_ids and # sp_weights have equal indices and shapes. with ops.op_scope(params + [sp_ids], name, "embedding_lookup_sparse") as name: segment_ids = sp_ids.indices[:, 0] if segment_ids.dtype != dtypes.int32: segment_ids = math_ops.cast(segment_ids, dtypes.int32) ids = sp_ids.values if ignore_weights: ids, idx = array_ops.unique(ids) else: idx = None embeddings = embedding_lookup( params, ids, partition_strategy=partition_strategy) if not ignore_weights: weights = sp_weights.values if weights.dtype != embeddings.dtype: weights = math_ops.cast(weights, embeddings.dtype) # Reshape weights to allow broadcast ones = array_ops.fill( array_ops.expand_dims(array_ops.rank(embeddings) - 1, 0), 1) bcast_weights_shape = array_ops.concat(0, [ array_ops.shape(weights), ones]) orig_weights_shape = weights.get_shape() weights = array_ops.reshape(weights, bcast_weights_shape) # Set the weight shape, since after reshaping to bcast_weights_shape, # the shape becomes None. if embeddings.get_shape().ndims is not None: weights.set_shape(orig_weights_shape.concatenate( [1 for _ in range(embeddings.get_shape().ndims - 1)])) embeddings *= weights if combiner == "sum": embeddings = math_ops.segment_sum(embeddings, segment_ids, name=name) elif combiner == "mean": embeddings = math_ops.segment_sum(embeddings, segment_ids) weight_sum = math_ops.segment_sum(weights, segment_ids) embeddings = math_ops.div(embeddings, weight_sum, name=name) elif combiner == "sqrtn": embeddings = math_ops.segment_sum(embeddings, segment_ids) weights_squared = math_ops.pow(weights, 2) weight_sum = math_ops.segment_sum(weights_squared, segment_ids) weight_sum_sqrt = math_ops.sqrt(weight_sum) embeddings = math_ops.div(embeddings, weight_sum_sqrt, name=name) else: assert False, "Unrecognized combiner" else: assert idx is not None if combiner == "sum": embeddings = math_ops.sparse_segment_sum(embeddings, idx, segment_ids, name=name) elif combiner == "mean": embeddings = math_ops.sparse_segment_mean(embeddings, idx, segment_ids, name=name) elif combiner == "sqrtn": embeddings = math_ops.sparse_segment_sqrt_n(embeddings, idx, segment_ids, name=name) else: assert False, "Unrecognized combiner" return embeddings
# Copyright 2010-2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base test cases for all neutron tests. """ import contextlib import gc import logging as std_logging import os import os.path import random import weakref import eventlet.timeout import fixtures import mock from oslo_concurrency.fixture import lockutils from oslo_config import cfg from oslo_messaging import conffixture as messaging_conffixture from oslo_utils import strutils import six import testtools from neutron.agent.linux import external_process from neutron.api.rpc.callbacks.consumer import registry as rpc_consumer_reg from neutron.callbacks import manager as registry_manager from neutron.callbacks import registry from neutron.common import config from neutron.common import constants from neutron.common import rpc as n_rpc from neutron.db import agentschedulers_db from neutron import manager from neutron import policy from neutron.tests import fake_notifier from neutron.tests import post_mortem_debug from neutron.tests import tools CONF = cfg.CONF CONF.import_opt('state_path', 'neutron.common.config') LOG_FORMAT = "%(asctime)s %(levelname)8s [%(name)s] %(message)s" ROOTDIR = os.path.dirname(__file__) ETCDIR = os.path.join(ROOTDIR, 'etc') def etcdir(*p): return os.path.join(ETCDIR, *p) def fake_use_fatal_exceptions(*args): return True def fake_consume_in_threads(self): return [] def get_rand_name(max_length=None, prefix='test'): """Return a random string. The string will start with 'prefix' and will be exactly 'max_length'. If 'max_length' is None, then exactly 8 random characters, each hexadecimal, will be added. In case len(prefix) <= len(max_length), ValueError will be raised to indicate the problem. """ if max_length: length = max_length - len(prefix) if length <= 0: raise ValueError("'max_length' must be bigger than 'len(prefix)'.") suffix = ''.join(str(random.randint(0, 9)) for i in range(length)) else: suffix = hex(random.randint(0x10000000, 0x7fffffff))[2:] return prefix + suffix def get_rand_device_name(prefix='test'): return get_rand_name( max_length=constants.DEVICE_NAME_MAX_LEN, prefix=prefix) def bool_from_env(key, strict=False, default=False): value = os.environ.get(key) return strutils.bool_from_string(value, strict=strict, default=default) def get_test_timeout(default=0): return int(os.environ.get('OS_TEST_TIMEOUT', 0)) class AttributeDict(dict): """ Provide attribute access (dict.key) to dictionary values. """ def __getattr__(self, name): """Allow attribute access for all keys in the dict.""" if name in self: return self[name] raise AttributeError(_("Unknown attribute '%s'.") % name) class DietTestCase(testtools.TestCase): """Same great taste, less filling. BaseTestCase is responsible for doing lots of plugin-centric setup that not all tests require (or can tolerate). This class provides only functionality that is common across all tests. """ def setUp(self): super(DietTestCase, self).setUp() # Configure this first to ensure pm debugging support for setUp() debugger = os.environ.get('OS_POST_MORTEM_DEBUGGER') if debugger: self.addOnException(post_mortem_debug.get_exception_handler( debugger)) # Make sure we see all relevant deprecation warnings when running tests self.useFixture(tools.WarningsFixture()) if bool_from_env('OS_DEBUG'): _level = std_logging.DEBUG else: _level = std_logging.INFO capture_logs = bool_from_env('OS_LOG_CAPTURE') if not capture_logs: std_logging.basicConfig(format=LOG_FORMAT, level=_level) self.log_fixture = self.useFixture( fixtures.FakeLogger( format=LOG_FORMAT, level=_level, nuke_handlers=capture_logs, )) test_timeout = get_test_timeout() if test_timeout == -1: test_timeout = 0 if test_timeout > 0: self.useFixture(fixtures.Timeout(test_timeout, gentle=True)) # If someone does use tempfile directly, ensure that it's cleaned up self.useFixture(fixtures.NestedTempfile()) self.useFixture(fixtures.TempHomeDir()) self.addCleanup(mock.patch.stopall) if bool_from_env('OS_STDOUT_CAPTURE'): stdout = self.useFixture(fixtures.StringStream('stdout')).stream self.useFixture(fixtures.MonkeyPatch('sys.stdout', stdout)) if bool_from_env('OS_STDERR_CAPTURE'): stderr = self.useFixture(fixtures.StringStream('stderr')).stream self.useFixture(fixtures.MonkeyPatch('sys.stderr', stderr)) self.addOnException(self.check_for_systemexit) self.orig_pid = os.getpid() def check_for_systemexit(self, exc_info): if isinstance(exc_info[1], SystemExit): if os.getpid() != self.orig_pid: # Subprocess - let it just exit raise # This makes sys.exit(0) still a failure self.force_failure = True @contextlib.contextmanager def assert_max_execution_time(self, max_execution_time=5): with eventlet.timeout.Timeout(max_execution_time, False): yield return self.fail('Execution of this test timed out') def assertOrderedEqual(self, expected, actual): expect_val = self.sort_dict_lists(expected) actual_val = self.sort_dict_lists(actual) self.assertEqual(expect_val, actual_val) def sort_dict_lists(self, dic): for key, value in six.iteritems(dic): if isinstance(value, list): dic[key] = sorted(value) elif isinstance(value, dict): dic[key] = self.sort_dict_lists(value) return dic def assertDictSupersetOf(self, expected_subset, actual_superset): """Checks that actual dict contains the expected dict. After checking that the arguments are of the right type, this checks that each item in expected_subset is in, and matches, what is in actual_superset. Separate tests are done, so that detailed info can be reported upon failure. """ if not isinstance(expected_subset, dict): self.fail("expected_subset (%s) is not an instance of dict" % type(expected_subset)) if not isinstance(actual_superset, dict): self.fail("actual_superset (%s) is not an instance of dict" % type(actual_superset)) for k, v in expected_subset.items(): self.assertIn(k, actual_superset) self.assertEqual(v, actual_superset[k], "Key %(key)s expected: %(exp)r, actual %(act)r" % {'key': k, 'exp': v, 'act': actual_superset[k]}) class ProcessMonitorFixture(fixtures.Fixture): """Test fixture to capture and cleanup any spawn process monitor.""" def _setUp(self): self.old_callable = ( external_process.ProcessMonitor._spawn_checking_thread) p = mock.patch("neutron.agent.linux.external_process.ProcessMonitor." "_spawn_checking_thread", new=lambda x: self.record_calls(x)) p.start() self.instances = [] self.addCleanup(self.stop) def stop(self): for instance in self.instances: instance.stop() def record_calls(self, instance): self.old_callable(instance) self.instances.append(instance) class BaseTestCase(DietTestCase): @staticmethod def config_parse(conf=None, args=None): """Create the default configurations.""" # neutron.conf includes rpc_backend which needs to be cleaned up if args is None: args = [] args += ['--config-file', etcdir('neutron.conf')] if conf is None: config.init(args=args) else: conf(args) def setUp(self): super(BaseTestCase, self).setUp() # suppress all but errors here capture_logs = bool_from_env('OS_LOG_CAPTURE') self.useFixture( fixtures.FakeLogger( name='neutron.api.extensions', format=LOG_FORMAT, level=std_logging.ERROR, nuke_handlers=capture_logs, )) self.useFixture(lockutils.ExternalLockFixture()) cfg.CONF.set_override('state_path', self.get_default_temp_dir().path) self.addCleanup(CONF.reset) self.useFixture(ProcessMonitorFixture()) self.useFixture(fixtures.MonkeyPatch( 'neutron.common.exceptions.NeutronException.use_fatal_exceptions', fake_use_fatal_exceptions)) self.useFixture(fixtures.MonkeyPatch( 'oslo_config.cfg.find_config_files', lambda project=None, prog=None, extension=None: [])) self.setup_rpc_mocks() self.setup_config() self.setup_test_registry_instance() policy.init() self.addCleanup(policy.reset) self.addCleanup(rpc_consumer_reg.clear) def get_new_temp_dir(self): """Create a new temporary directory. :returns fixtures.TempDir """ return self.useFixture(fixtures.TempDir()) def get_default_temp_dir(self): """Create a default temporary directory. Returns the same directory during the whole test case. :returns fixtures.TempDir """ if not hasattr(self, '_temp_dir'): self._temp_dir = self.get_new_temp_dir() return self._temp_dir def get_temp_file_path(self, filename, root=None): """Returns an absolute path for a temporary file. If root is None, the file is created in default temporary directory. It also creates the directory if it's not initialized yet. If root is not None, the file is created inside the directory passed as root= argument. :param filename: filename :type filename: string :param root: temporary directory to create a new file in :type root: fixtures.TempDir :returns absolute file path string """ root = root or self.get_default_temp_dir() return root.join(filename) def setup_rpc_mocks(self): # don't actually start RPC listeners when testing self.useFixture(fixtures.MonkeyPatch( 'neutron.common.rpc.Connection.consume_in_threads', fake_consume_in_threads)) self.useFixture(fixtures.MonkeyPatch( 'oslo_messaging.Notifier', fake_notifier.FakeNotifier)) self.messaging_conf = messaging_conffixture.ConfFixture(CONF) self.messaging_conf.transport_driver = 'fake' # NOTE(russellb) We want all calls to return immediately. self.messaging_conf.response_timeout = 0 self.useFixture(self.messaging_conf) self.addCleanup(n_rpc.clear_extra_exmods) n_rpc.add_extra_exmods('neutron.test') self.addCleanup(n_rpc.cleanup) n_rpc.init(CONF) def setup_test_registry_instance(self): """Give a private copy of the registry to each test.""" self._callback_manager = registry_manager.CallbacksManager() mock.patch.object(registry, '_get_callback_manager', return_value=self._callback_manager).start() def setup_config(self, args=None): """Tests that need a non-default config can override this method.""" self.config_parse(args=args) def config(self, **kw): """Override some configuration values. The keyword arguments are the names of configuration options to override and their values. If a group argument is supplied, the overrides are applied to the specified configuration option group. All overrides are automatically cleared at the end of the current test by the fixtures cleanup process. """ group = kw.pop('group', None) for k, v in six.iteritems(kw): CONF.set_override(k, v, group) def setup_coreplugin(self, core_plugin=None): cp = PluginFixture(core_plugin) self.useFixture(cp) self.patched_dhcp_periodic = cp.patched_dhcp_periodic def setup_notification_driver(self, notification_driver=None): self.addCleanup(fake_notifier.reset) if notification_driver is None: notification_driver = [fake_notifier.__name__] cfg.CONF.set_override("notification_driver", notification_driver) class PluginFixture(fixtures.Fixture): def __init__(self, core_plugin=None): super(PluginFixture, self).__init__() self.core_plugin = core_plugin def _setUp(self): self.dhcp_periodic_p = mock.patch( 'neutron.db.agentschedulers_db.DhcpAgentSchedulerDbMixin.' 'start_periodic_dhcp_agent_status_check') self.patched_dhcp_periodic = self.dhcp_periodic_p.start() # Plugin cleanup should be triggered last so that # test-specific cleanup has a chance to release references. self.addCleanup(self.cleanup_core_plugin) if self.core_plugin is not None: cfg.CONF.set_override('core_plugin', self.core_plugin) def cleanup_core_plugin(self): """Ensure that the core plugin is deallocated.""" nm = manager.NeutronManager if not nm.has_instance(): return # TODO(marun) Fix plugins that do not properly initialize notifiers agentschedulers_db.AgentSchedulerDbMixin.agent_notifiers = {} # Perform a check for deallocation only if explicitly # configured to do so since calling gc.collect() after every # test increases test suite execution time by ~50%. check_plugin_deallocation = ( bool_from_env('OS_CHECK_PLUGIN_DEALLOCATION')) if check_plugin_deallocation: plugin = weakref.ref(nm._instance.plugin) nm.clear_instance() if check_plugin_deallocation: gc.collect() # TODO(marun) Ensure that mocks are deallocated? if plugin() and not isinstance(plugin(), mock.Base): raise AssertionError( 'The plugin for this test was not deallocated.')
# -*- coding: utf-8 -*- """ requests.models ~~~~~~~~~~~~~~~ This module contains the primary objects that power Requests. """ import collections import datetime import sys # Import encoding now, to avoid implicit import later. # Implicit import within threads may cause LookupError when standard library is in a ZIP, # such as in Embedded Python. See https://github.com/kennethreitz/requests/issues/3578. import encodings.idna from io import BytesIO, UnsupportedOperation from .hooks import default_hooks from .structures import CaseInsensitiveDict from .auth import HTTPBasicAuth from .cookies import cookiejar_from_dict, get_cookie_header, _copy_cookie_jar from .packages.urllib3.fields import RequestField from .packages.urllib3.filepost import encode_multipart_formdata from .packages.urllib3.util import parse_url from .packages.urllib3.exceptions import ( DecodeError, ReadTimeoutError, ProtocolError, LocationParseError) from .exceptions import ( HTTPError, MissingSchema, InvalidURL, ChunkedEncodingError, ContentDecodingError, ConnectionError, StreamConsumedError) from ._internal_utils import to_native_string, unicode_is_ascii from .utils import ( guess_filename, get_auth_from_url, requote_uri, stream_decode_response_unicode, to_key_val_list, parse_header_links, iter_slices, guess_json_utf, super_len, check_header_validity) from .compat import ( cookielib, urlunparse, urlsplit, urlencode, str, bytes, StringIO, is_py2, chardet, builtin_str, basestring) from .compat import json as complexjson from .status_codes import codes #: The set of HTTP status codes that indicate an automatically #: processable redirect. REDIRECT_STATI = ( codes.moved, # 301 codes.found, # 302 codes.other, # 303 codes.temporary_redirect, # 307 codes.permanent_redirect, # 308 ) DEFAULT_REDIRECT_LIMIT = 30 CONTENT_CHUNK_SIZE = 10 * 1024 ITER_CHUNK_SIZE = 512 class RequestEncodingMixin(object): @property def path_url(self): """Build the path URL to use.""" url = [] p = urlsplit(self.url) path = p.path if not path: path = '/' url.append(path) query = p.query if query: url.append('?') url.append(query) return ''.join(url) @staticmethod def _encode_params(data): """Encode parameters in a piece of data. Will successfully encode parameters when passed as a dict or a list of 2-tuples. Order is retained if data is a list of 2-tuples but arbitrary if parameters are supplied as a dict. """ if isinstance(data, (str, bytes)): return data elif hasattr(data, 'read'): return data elif hasattr(data, '__iter__'): result = [] for k, vs in to_key_val_list(data): if isinstance(vs, basestring) or not hasattr(vs, '__iter__'): vs = [vs] for v in vs: if v is not None: result.append( (k.encode('utf-8') if isinstance(k, str) else k, v.encode('utf-8') if isinstance(v, str) else v)) return urlencode(result, doseq=True) else: return data @staticmethod def _encode_files(files, data): """Build the body for a multipart/form-data request. Will successfully encode files when passed as a dict or a list of tuples. Order is retained if data is a list of tuples but arbitrary if parameters are supplied as a dict. The tuples may be 2-tuples (filename, fileobj), 3-tuples (filename, fileobj, contentype) or 4-tuples (filename, fileobj, contentype, custom_headers). """ if (not files): raise ValueError("Files must be provided.") elif isinstance(data, basestring): raise ValueError("Data must not be a string.") new_fields = [] fields = to_key_val_list(data or {}) files = to_key_val_list(files or {}) for field, val in fields: if isinstance(val, basestring) or not hasattr(val, '__iter__'): val = [val] for v in val: if v is not None: # Don't call str() on bytestrings: in Py3 it all goes wrong. if not isinstance(v, bytes): v = str(v) new_fields.append( (field.decode('utf-8') if isinstance(field, bytes) else field, v.encode('utf-8') if isinstance(v, str) else v)) for (k, v) in files: # support for explicit filename ft = None fh = None if isinstance(v, (tuple, list)): if len(v) == 2: fn, fp = v elif len(v) == 3: fn, fp, ft = v else: fn, fp, ft, fh = v else: fn = guess_filename(v) or k fp = v if isinstance(fp, (str, bytes, bytearray)): fdata = fp else: fdata = fp.read() rf = RequestField(name=k, data=fdata, filename=fn, headers=fh) rf.make_multipart(content_type=ft) new_fields.append(rf) body, content_type = encode_multipart_formdata(new_fields) return body, content_type class RequestHooksMixin(object): def register_hook(self, event, hook): """Properly register a hook.""" if event not in self.hooks: raise ValueError('Unsupported event specified, with event name "%s"' % (event)) if isinstance(hook, collections.Callable): self.hooks[event].append(hook) elif hasattr(hook, '__iter__'): self.hooks[event].extend(h for h in hook if isinstance(h, collections.Callable)) def deregister_hook(self, event, hook): """Deregister a previously registered hook. Returns True if the hook existed, False if not. """ try: self.hooks[event].remove(hook) return True except ValueError: return False class Request(RequestHooksMixin): """A user-created :class:`Request <Request>` object. Used to prepare a :class:`PreparedRequest <PreparedRequest>`, which is sent to the server. :param method: HTTP method to use. :param url: URL to send. :param headers: dictionary of headers to send. :param files: dictionary of {filename: fileobject} files to multipart upload. :param data: the body to attach to the request. If a dictionary is provided, form-encoding will take place. :param json: json for the body to attach to the request (if files or data is not specified). :param params: dictionary of URL parameters to append to the URL. :param auth: Auth handler or (user, pass) tuple. :param cookies: dictionary or CookieJar of cookies to attach to this request. :param hooks: dictionary of callback hooks, for internal usage. Usage:: >>> import requests >>> req = requests.Request('GET', 'http://httpbin.org/get') >>> req.prepare() <PreparedRequest [GET]> """ def __init__(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): # Default empty dicts for dict params. data = [] if data is None else data files = [] if files is None else files headers = {} if headers is None else headers params = {} if params is None else params hooks = {} if hooks is None else hooks self.hooks = default_hooks() for (k, v) in list(hooks.items()): self.register_hook(event=k, hook=v) self.method = method self.url = url self.headers = headers self.files = files self.data = data self.json = json self.params = params self.auth = auth self.cookies = cookies def __repr__(self): return '<Request [%s]>' % (self.method) def prepare(self): """Constructs a :class:`PreparedRequest <PreparedRequest>` for transmission and returns it.""" p = PreparedRequest() p.prepare( method=self.method, url=self.url, headers=self.headers, files=self.files, data=self.data, json=self.json, params=self.params, auth=self.auth, cookies=self.cookies, hooks=self.hooks, ) return p class PreparedRequest(RequestEncodingMixin, RequestHooksMixin): """The fully mutable :class:`PreparedRequest <PreparedRequest>` object, containing the exact bytes that will be sent to the server. Generated from either a :class:`Request <Request>` object or manually. Usage:: >>> import requests >>> req = requests.Request('GET', 'http://httpbin.org/get') >>> r = req.prepare() <PreparedRequest [GET]> >>> s = requests.Session() >>> s.send(r) <Response [200]> """ def __init__(self): #: HTTP verb to send to the server. self.method = None #: HTTP URL to send the request to. self.url = None #: dictionary of HTTP headers. self.headers = None # The `CookieJar` used to create the Cookie header will be stored here # after prepare_cookies is called self._cookies = None #: request body to send to the server. self.body = None #: dictionary of callback hooks, for internal usage. self.hooks = default_hooks() #: integer denoting starting position of a readable file-like body. self._body_position = None def prepare(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): """Prepares the entire request with the given parameters.""" self.prepare_method(method) self.prepare_url(url, params) self.prepare_headers(headers) self.prepare_cookies(cookies) self.prepare_body(data, files, json) self.prepare_auth(auth, url) # Note that prepare_auth must be last to enable authentication schemes # such as OAuth to work on a fully prepared request. # This MUST go after prepare_auth. Authenticators could add a hook self.prepare_hooks(hooks) def __repr__(self): return '<PreparedRequest [%s]>' % (self.method) def copy(self): p = PreparedRequest() p.method = self.method p.url = self.url p.headers = self.headers.copy() if self.headers is not None else None p._cookies = _copy_cookie_jar(self._cookies) p.body = self.body p.hooks = self.hooks p._body_position = self._body_position return p def prepare_method(self, method): """Prepares the given HTTP method.""" self.method = method if self.method is not None: self.method = to_native_string(self.method.upper()) @staticmethod def _get_idna_encoded_host(host): try: from .packages import idna except ImportError: # tolerate the possibility of downstream repackagers unvendoring `requests` # For more information, read: packages/__init__.py import idna sys.modules['requests.packages.idna'] = idna try: host = idna.encode(host, uts46=True).decode('utf-8') except idna.IDNAError: raise UnicodeError return host def prepare_url(self, url, params): """Prepares the given HTTP URL.""" #: Accept objects that have string representations. #: We're unable to blindly call unicode/str functions #: as this will include the bytestring indicator (b'') #: on python 3.x. #: https://github.com/kennethreitz/requests/pull/2238 if isinstance(url, bytes): url = url.decode('utf8') else: url = unicode(url) if is_py2 else str(url) # Remove leading whitespaces from url url = url.lstrip() # Don't do any URL preparation for non-HTTP schemes like `mailto`, # `data` etc to work around exceptions from `url_parse`, which # handles RFC 3986 only. if ':' in url and not url.lower().startswith('http'): self.url = url return # Support for unicode domain names and paths. try: scheme, auth, host, port, path, query, fragment = parse_url(url) except LocationParseError as e: raise InvalidURL(*e.args) if not scheme: error = ("Invalid URL {0!r}: No schema supplied. Perhaps you meant http://{0}?") error = error.format(to_native_string(url, 'utf8')) raise MissingSchema(error) if not host: raise InvalidURL("Invalid URL %r: No host supplied" % url) # In general, we want to try IDNA encoding the hostname if the string contains # non-ASCII characters. This allows users to automatically get the correct IDNA # behaviour. For strings containing only ASCII characters, we need to also verify # it doesn't start with a wildcard (*), before allowing the unencoded hostname. if not unicode_is_ascii(host): try: host = self._get_idna_encoded_host(host) except UnicodeError: raise InvalidURL('URL has an invalid label.') elif host.startswith(u'*'): raise InvalidURL('URL has an invalid label.') # Carefully reconstruct the network location netloc = auth or '' if netloc: netloc += '@' netloc += host if port: netloc += ':' + str(port) # Bare domains aren't valid URLs. if not path: path = '/' if is_py2: if isinstance(scheme, str): scheme = scheme.encode('utf-8') if isinstance(netloc, str): netloc = netloc.encode('utf-8') if isinstance(path, str): path = path.encode('utf-8') if isinstance(query, str): query = query.encode('utf-8') if isinstance(fragment, str): fragment = fragment.encode('utf-8') if isinstance(params, (str, bytes)): params = to_native_string(params) enc_params = self._encode_params(params) if enc_params: if query: query = '%s&%s' % (query, enc_params) else: query = enc_params url = requote_uri(urlunparse([scheme, netloc, path, None, query, fragment])) self.url = url def prepare_headers(self, headers): """Prepares the given HTTP headers.""" self.headers = CaseInsensitiveDict() if headers: for header in headers.items(): # Raise exception on invalid header value. check_header_validity(header) name, value = header self.headers[to_native_string(name)] = value def prepare_body(self, data, files, json=None): """Prepares the given HTTP body data.""" # Check if file, fo, generator, iterator. # If not, run through normal process. # Nottin' on you. body = None content_type = None if not data and json is not None: # urllib3 requires a bytes-like body. Python 2's json.dumps # provides this natively, but Python 3 gives a Unicode string. content_type = 'application/json' body = complexjson.dumps(json) if not isinstance(body, bytes): body = body.encode('utf-8') is_stream = all([ hasattr(data, '__iter__'), not isinstance(data, (basestring, list, tuple, collections.Mapping)) ]) try: length = super_len(data) except (TypeError, AttributeError, UnsupportedOperation): length = None if is_stream: body = data if getattr(body, 'tell', None) is not None: # Record the current file position before reading. # This will allow us to rewind a file in the event # of a redirect. try: self._body_position = body.tell() except (IOError, OSError): # This differentiates from None, allowing us to catch # a failed `tell()` later when trying to rewind the body self._body_position = object() if files: raise NotImplementedError('Streamed bodies and files are mutually exclusive.') if length: self.headers['Content-Length'] = builtin_str(length) else: self.headers['Transfer-Encoding'] = 'chunked' else: # Multi-part file uploads. if files: (body, content_type) = self._encode_files(files, data) else: if data: body = self._encode_params(data) if isinstance(data, basestring) or hasattr(data, 'read'): content_type = None else: content_type = 'application/x-www-form-urlencoded' self.prepare_content_length(body) # Add content-type if it wasn't explicitly provided. if content_type and ('content-type' not in self.headers): self.headers['Content-Type'] = content_type self.body = body def prepare_content_length(self, body): """Prepare Content-Length header based on request method and body""" if body is not None: length = super_len(body) if length: # If length exists, set it. Otherwise, we fallback # to Transfer-Encoding: chunked. self.headers['Content-Length'] = builtin_str(length) elif self.method not in ('GET', 'HEAD') and self.headers.get('Content-Length') is None: # Set Content-Length to 0 for methods that can have a body # but don't provide one. (i.e. not GET or HEAD) self.headers['Content-Length'] = '0' def prepare_auth(self, auth, url=''): """Prepares the given HTTP auth data.""" # If no Auth is explicitly provided, extract it from the URL first. if auth is None: url_auth = get_auth_from_url(self.url) auth = url_auth if any(url_auth) else None if auth: if isinstance(auth, tuple) and len(auth) == 2: # special-case basic HTTP auth auth = HTTPBasicAuth(*auth) # Allow auth to make its changes. r = auth(self) # Update self to reflect the auth changes. self.__dict__.update(r.__dict__) # Recompute Content-Length self.prepare_content_length(self.body) def prepare_cookies(self, cookies): """Prepares the given HTTP cookie data. This function eventually generates a ``Cookie`` header from the given cookies using cookielib. Due to cookielib's design, the header will not be regenerated if it already exists, meaning this function can only be called once for the life of the :class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls to ``prepare_cookies`` will have no actual effect, unless the "Cookie" header is removed beforehand. """ if isinstance(cookies, cookielib.CookieJar): self._cookies = cookies else: self._cookies = cookiejar_from_dict(cookies) cookie_header = get_cookie_header(self._cookies, self) if cookie_header is not None: self.headers['Cookie'] = cookie_header def prepare_hooks(self, hooks): """Prepares the given hooks.""" # hooks can be passed as None to the prepare method and to this # method. To prevent iterating over None, simply use an empty list # if hooks is False-y hooks = hooks or [] for event in hooks: self.register_hook(event, hooks[event]) class Response(object): """The :class:`Response <Response>` object, which contains a server's response to an HTTP request. """ __attrs__ = [ '_content', 'status_code', 'headers', 'url', 'history', 'encoding', 'reason', 'cookies', 'elapsed', 'request' ] def __init__(self): super(Response, self).__init__() self._content = False self._content_consumed = False #: Integer Code of responded HTTP Status, e.g. 404 or 200. self.status_code = None #: Case-insensitive Dictionary of Response Headers. #: For example, ``headers['content-encoding']`` will return the #: value of a ``'Content-Encoding'`` response header. self.headers = CaseInsensitiveDict() #: File-like object representation of response (for advanced usage). #: Use of ``raw`` requires that ``stream=True`` be set on the request. # This requirement does not apply for use internally to Requests. self.raw = None #: Final URL location of Response. self.url = None #: Encoding to decode with when accessing r.text. self.encoding = None #: A list of :class:`Response <Response>` objects from #: the history of the Request. Any redirect responses will end #: up here. The list is sorted from the oldest to the most recent request. self.history = [] #: Textual reason of responded HTTP Status, e.g. "Not Found" or "OK". self.reason = None #: A CookieJar of Cookies the server sent back. self.cookies = cookiejar_from_dict({}) #: The amount of time elapsed between sending the request #: and the arrival of the response (as a timedelta). #: This property specifically measures the time taken between sending #: the first byte of the request and finishing parsing the headers. It #: is therefore unaffected by consuming the response content or the #: value of the ``stream`` keyword argument. self.elapsed = datetime.timedelta(0) #: The :class:`PreparedRequest <PreparedRequest>` object to which this #: is a response. self.request = None def __getstate__(self): # Consume everything; accessing the content attribute makes # sure the content has been fully read. if not self._content_consumed: self.content return dict( (attr, getattr(self, attr, None)) for attr in self.__attrs__ ) def __setstate__(self, state): for name, value in state.items(): setattr(self, name, value) # pickled objects do not have .raw setattr(self, '_content_consumed', True) setattr(self, 'raw', None) def __repr__(self): return '<Response [%s]>' % (self.status_code) def __bool__(self): """Returns true if :attr:`status_code` is 'OK'.""" return self.ok def __nonzero__(self): """Returns true if :attr:`status_code` is 'OK'.""" return self.ok def __iter__(self): """Allows you to use a response as an iterator.""" return self.iter_content(128) @property def ok(self): try: self.raise_for_status() except HTTPError: return False return True @property def is_redirect(self): """True if this Response is a well-formed HTTP redirect that could have been processed automatically (by :meth:`Session.resolve_redirects`). """ return ('location' in self.headers and self.status_code in REDIRECT_STATI) @property def is_permanent_redirect(self): """True if this Response one of the permanent versions of redirect""" return ('location' in self.headers and self.status_code in (codes.moved_permanently, codes.permanent_redirect)) @property def apparent_encoding(self): """The apparent encoding, provided by the chardet library""" return chardet.detect(self.content)['encoding'] def iter_content(self, chunk_size=1, decode_unicode=False): """Iterates over the response data. When stream=True is set on the request, this avoids reading the content at once into memory for large responses. The chunk size is the number of bytes it should read into memory. This is not necessarily the length of each item returned as decoding can take place. chunk_size must be of type int or None. A value of None will function differently depending on the value of `stream`. stream=True will read data as it arrives in whatever size the chunks are received. If stream=False, data is returned as a single chunk. If decode_unicode is True, content will be decoded using the best available encoding based on the response. """ def generate(): # Special case for urllib3. if hasattr(self.raw, 'stream'): try: for chunk in self.raw.stream(chunk_size, decode_content=True): yield chunk except ProtocolError as e: raise ChunkedEncodingError(e) except DecodeError as e: raise ContentDecodingError(e) except ReadTimeoutError as e: raise ConnectionError(e) else: # Standard file-like object. while True: chunk = self.raw.read(chunk_size) if not chunk: break yield chunk self._content_consumed = True if self._content_consumed and isinstance(self._content, bool): raise StreamConsumedError() elif chunk_size is not None and not isinstance(chunk_size, int): raise TypeError("chunk_size must be an int, it is instead a %s." % type(chunk_size)) # simulate reading small chunks of the content reused_chunks = iter_slices(self._content, chunk_size) stream_chunks = generate() chunks = reused_chunks if self._content_consumed else stream_chunks if decode_unicode: chunks = stream_decode_response_unicode(chunks, self) return chunks def iter_lines(self, chunk_size=ITER_CHUNK_SIZE, decode_unicode=None, delimiter=None): """Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids reading the content at once into memory for large responses. .. note:: This method is not reentrant safe. """ pending = None for chunk in self.iter_content(chunk_size=chunk_size, decode_unicode=decode_unicode): if pending is not None: chunk = pending + chunk if delimiter: lines = chunk.split(delimiter) else: lines = chunk.splitlines() if lines and lines[-1] and chunk and lines[-1][-1] == chunk[-1]: pending = lines.pop() else: pending = None for line in lines: yield line if pending is not None: yield pending @property def content(self): """Content of the response, in bytes.""" if self._content is False: # Read the contents. if self._content_consumed: raise RuntimeError( 'The content for this response was already consumed') if self.status_code == 0 or self.raw is None: self._content = None else: self._content = bytes().join(self.iter_content(CONTENT_CHUNK_SIZE)) or bytes() self._content_consumed = True # don't need to release the connection; that's been handled by urllib3 # since we exhausted the data. return self._content @property def text(self): """Content of the response, in unicode. If Response.encoding is None, encoding will be guessed using ``chardet``. The encoding of the response content is determined based solely on HTTP headers, following RFC 2616 to the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding, you should set ``r.encoding`` appropriately before accessing this property. """ # Try charset from content-type content = None encoding = self.encoding if not self.content: return str('') # Fallback to auto-detected encoding. if self.encoding is None: encoding = self.apparent_encoding # Decode unicode from given encoding. try: content = str(self.content, encoding, errors='replace') except (LookupError, TypeError): # A LookupError is raised if the encoding was not found which could # indicate a misspelling or similar mistake. # # A TypeError can be raised if encoding is None # # So we try blindly encoding. content = str(self.content, errors='replace') return content def json(self, **kwargs): """Returns the json-encoded content of a response, if any. :param \*\*kwargs: Optional arguments that ``json.loads`` takes. :raises ValueError: If the response body does not contain valid json. """ if not self.encoding and self.content and len(self.content) > 3: # No encoding set. JSON RFC 4627 section 3 states we should expect # UTF-8, -16 or -32. Detect which one to use; If the detection or # decoding fails, fall back to `self.text` (using chardet to make # a best guess). encoding = guess_json_utf(self.content) if encoding is not None: try: return complexjson.loads( self.content.decode(encoding), **kwargs ) except UnicodeDecodeError: # Wrong UTF codec detected; usually because it's not UTF-8 # but some other 8-bit codec. This is an RFC violation, # and the server didn't bother to tell us what codec *was* # used. pass return complexjson.loads(self.text, **kwargs) @property def links(self): """Returns the parsed header links of the response, if any.""" header = self.headers.get('link') # l = MultiDict() l = {} if header: links = parse_header_links(header) for link in links: key = link.get('rel') or link.get('url') l[key] = link return l def raise_for_status(self): """Raises stored :class:`HTTPError`, if one occurred.""" http_error_msg = '' if isinstance(self.reason, bytes): # We attempt to decode utf-8 first because some servers # choose to localize their reason strings. If the string # isn't utf-8, we fall back to iso-8859-1 for all other # encodings. (See PR #3538) try: reason = self.reason.decode('utf-8') except UnicodeDecodeError: reason = self.reason.decode('iso-8859-1') else: reason = self.reason if 400 <= self.status_code < 500: http_error_msg = u'%s Client Error: %s for url: %s' % (self.status_code, reason, self.url) elif 500 <= self.status_code < 600: http_error_msg = u'%s Server Error: %s for url: %s' % (self.status_code, reason, self.url) if http_error_msg: raise HTTPError(http_error_msg, response=self) def close(self): """Releases the connection back to the pool. Once this method has been called the underlying ``raw`` object must not be accessed again. *Note: Should not normally need to be called explicitly.* """ if not self._content_consumed: self.raw.close() release_conn = getattr(self.raw, 'release_conn', None) if release_conn is not None: release_conn()
"""Blueprint models.""" import asyncio import logging import pathlib from typing import Any, Dict, Optional, Union import voluptuous as vol from voluptuous.humanize import humanize_error from homeassistant.const import CONF_DOMAIN, CONF_NAME, CONF_PATH from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import placeholder from homeassistant.util import yaml from .const import ( BLUEPRINT_FOLDER, CONF_BLUEPRINT, CONF_INPUT, CONF_SOURCE_URL, CONF_USE_BLUEPRINT, DOMAIN, ) from .errors import ( BlueprintException, FailedToLoad, InvalidBlueprint, InvalidBlueprintInputs, MissingPlaceholder, ) from .schemas import BLUEPRINT_INSTANCE_FIELDS, BLUEPRINT_SCHEMA class Blueprint: """Blueprint of a configuration structure.""" def __init__( self, data: dict, *, path: Optional[str] = None, expected_domain: Optional[str] = None, ) -> None: """Initialize a blueprint.""" try: data = self.data = BLUEPRINT_SCHEMA(data) except vol.Invalid as err: raise InvalidBlueprint(expected_domain, path, data, err) from err self.placeholders = placeholder.extract_placeholders(data) # In future, we will treat this as "incorrect" and allow to recover from this data_domain = data[CONF_BLUEPRINT][CONF_DOMAIN] if expected_domain is not None and data_domain != expected_domain: raise InvalidBlueprint( expected_domain, path or self.name, data, f"Found incorrect blueprint type {data_domain}, expected {expected_domain}", ) self.domain = data_domain missing = self.placeholders - set(data[CONF_BLUEPRINT].get(CONF_INPUT, {})) if missing: raise InvalidBlueprint( data_domain, path or self.name, data, f"Missing input definition for {', '.join(missing)}", ) @property def name(self) -> str: """Return blueprint name.""" return self.data[CONF_BLUEPRINT][CONF_NAME] @property def metadata(self) -> dict: """Return blueprint metadata.""" return self.data[CONF_BLUEPRINT] def update_metadata(self, *, source_url: Optional[str] = None) -> None: """Update metadata.""" if source_url is not None: self.data[CONF_BLUEPRINT][CONF_SOURCE_URL] = source_url class BlueprintInputs: """Inputs for a blueprint.""" def __init__( self, blueprint: Blueprint, config_with_inputs: Dict[str, Any] ) -> None: """Instantiate a blueprint inputs object.""" self.blueprint = blueprint self.config_with_inputs = config_with_inputs @property def inputs(self): """Return the inputs.""" return self.config_with_inputs[CONF_USE_BLUEPRINT][CONF_INPUT] def validate(self) -> None: """Validate the inputs.""" missing = self.blueprint.placeholders - set(self.inputs) if missing: raise MissingPlaceholder( self.blueprint.domain, self.blueprint.name, missing ) # In future we can see if entities are correct domain, areas exist etc # using the new selector helper. @callback def async_substitute(self) -> dict: """Get the blueprint value with the inputs substituted.""" processed = placeholder.substitute(self.blueprint.data, self.inputs) combined = {**self.config_with_inputs, **processed} # From config_with_inputs combined.pop(CONF_USE_BLUEPRINT) # From blueprint combined.pop(CONF_BLUEPRINT) return combined class DomainBlueprints: """Blueprints for a specific domain.""" def __init__( self, hass: HomeAssistant, domain: str, logger: logging.Logger, ) -> None: """Initialize a domain blueprints instance.""" self.hass = hass self.domain = domain self.logger = logger self._blueprints = {} self._load_lock = asyncio.Lock() hass.data.setdefault(DOMAIN, {})[domain] = self @callback def async_reset_cache(self) -> None: """Reset the blueprint cache.""" self._blueprints = {} def _load_blueprint(self, blueprint_path) -> Blueprint: """Load a blueprint.""" try: blueprint_data = yaml.load_yaml( self.hass.config.path(BLUEPRINT_FOLDER, self.domain, blueprint_path) ) except (HomeAssistantError, FileNotFoundError) as err: raise FailedToLoad(self.domain, blueprint_path, err) from err return Blueprint( blueprint_data, expected_domain=self.domain, path=blueprint_path ) def _load_blueprints(self) -> Dict[str, Union[Blueprint, BlueprintException]]: """Load all the blueprints.""" blueprint_folder = pathlib.Path( self.hass.config.path(BLUEPRINT_FOLDER, self.domain) ) results = {} for blueprint_path in blueprint_folder.glob("**/*.yaml"): blueprint_path = str(blueprint_path.relative_to(blueprint_folder)) if self._blueprints.get(blueprint_path) is None: try: self._blueprints[blueprint_path] = self._load_blueprint( blueprint_path ) except BlueprintException as err: self._blueprints[blueprint_path] = None results[blueprint_path] = err continue results[blueprint_path] = self._blueprints[blueprint_path] return results async def async_get_blueprints( self, ) -> Dict[str, Union[Blueprint, BlueprintException]]: """Get all the blueprints.""" async with self._load_lock: return await self.hass.async_add_executor_job(self._load_blueprints) async def async_get_blueprint(self, blueprint_path: str) -> Blueprint: """Get a blueprint.""" if blueprint_path in self._blueprints: return self._blueprints[blueprint_path] async with self._load_lock: # Check it again if blueprint_path in self._blueprints: return self._blueprints[blueprint_path] try: blueprint = await self.hass.async_add_executor_job( self._load_blueprint, blueprint_path ) except Exception: self._blueprints[blueprint_path] = None raise self._blueprints[blueprint_path] = blueprint return blueprint async def async_inputs_from_config( self, config_with_blueprint: dict ) -> BlueprintInputs: """Process a blueprint config.""" try: config_with_blueprint = BLUEPRINT_INSTANCE_FIELDS(config_with_blueprint) except vol.Invalid as err: raise InvalidBlueprintInputs( self.domain, humanize_error(config_with_blueprint, err) ) from err bp_conf = config_with_blueprint[CONF_USE_BLUEPRINT] blueprint = await self.async_get_blueprint(bp_conf[CONF_PATH]) inputs = BlueprintInputs(blueprint, config_with_blueprint) inputs.validate() return inputs
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' This script is used to test Salt from a Jenkins server, specifically jenkins.saltstack.com. This script is intended to be shell-centric!! ''' # Import python libs from __future__ import absolute_import, print_function import glob import os import re import sys import json import time import shutil import optparse import subprocess import random # Import Salt libs import salt.utils try: from salt.utils.nb_popen import NonBlockingPopen except ImportError: # Salt not installed, or nb_popen was not yet shipped with it SALT_LIB = os.path.abspath( os.path.dirname(os.path.dirname(__file__)) ) if SALT_LIB not in sys.path: sys.path.insert(0, SALT_LIB) try: # Let's try using the current checked out code from salt.utils.nb_popen import NonBlockingPopen except ImportError: # Still an ImportError??? Let's use some "brute-force" sys.path.insert( 0, os.path.join(SALT_LIB, 'salt', 'utils') ) from nb_popen import NonBlockingPopen # Import 3rd-party libs import yaml try: import requests HAS_REQUESTS = True except ImportError: HAS_REQUESTS = False SALT_GIT_URL = 'https://github.com/saltstack/salt.git' def build_pillar_data(options): ''' Build a YAML formatted string to properly pass pillar data ''' pillar = {'test_transport': options.test_transport, 'cloud_only': options.cloud_only, 'with_coverage': options.test_without_coverage is False} if options.test_git_commit is not None: pillar['test_git_commit'] = options.test_git_commit if options.test_git_url is not None: pillar['test_git_url'] = options.test_git_url if options.bootstrap_salt_url is not None: pillar['bootstrap_salt_url'] = options.bootstrap_salt_url if options.bootstrap_salt_commit is not None: pillar['bootstrap_salt_commit'] = options.bootstrap_salt_commit if options.package_source_dir: pillar['package_source_dir'] = options.package_source_dir if options.package_build_dir: pillar['package_build_dir'] = options.package_build_dir if options.package_artifact_dir: pillar['package_artifact_dir'] = options.package_artifact_dir if options.pillar: pillar.update(dict(options.pillar)) return yaml.dump(pillar, default_flow_style=True, indent=0, width=sys.maxint).rstrip() def build_minion_target(options, vm_name): target = vm_name for grain in options.grain_target: target += ' and G@{0}'.format(grain) if options.grain_target: return '"{0}"'.format(target) return target def generate_vm_name(options): ''' Generate a random enough vm name ''' if 'BUILD_NUMBER' in os.environ: random_part = 'BUILD{0:0>6}'.format(os.environ.get('BUILD_NUMBER')) else: random_part = os.urandom(3).encode('hex') return '{0}-{1}-{2}'.format(options.vm_prefix, options.platform, random_part) def delete_vm(options): ''' Stop a VM ''' cmd = 'salt-cloud -d {0} -y'.format(options.delete_vm) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() def echo_parseable_environment(options, parser): ''' Echo NAME=VAL parseable output ''' output = [] if options.platform: name = generate_vm_name(options) output.extend([ 'JENKINS_SALTCLOUD_VM_PLATFORM={0}'.format(options.platform), 'JENKINS_SALTCLOUD_VM_NAME={0}'.format(name) ]) if options.provider: output.append( 'JENKINS_SALTCLOUD_VM_PROVIDER={0}'.format(options.provider) ) if options.pull_request: # This is a Jenkins triggered Pull Request # We need some more data about the Pull Request available to the # environment if HAS_REQUESTS is False: parser.error( 'The python \'requests\' library needs to be installed' ) headers = {} url = 'https://api.github.com/repos/saltstack/salt/pulls/{0}'.format(options.pull_request) github_access_token_path = os.path.join( os.environ.get('JENKINS_HOME', os.path.expanduser('~')), '.github_token' ) if os.path.isfile(github_access_token_path): headers = { 'Authorization': 'token {0}'.format( open(github_access_token_path).read().strip() ) } http_req = requests.get(url, headers=headers) if http_req.status_code != 200: parser.error( 'Unable to get the pull request: {0[message]}'.format(http_req.json()) ) pr_details = http_req.json() output.extend([ 'SALT_PR_GIT_URL={0}'.format(pr_details['head']['repo']['clone_url']), 'SALT_PR_GIT_BRANCH={0}'.format(pr_details['head']['ref']), 'SALT_PR_GIT_COMMIT={0}'.format(pr_details['head']['sha']), 'SALT_PR_GIT_BASE_BRANCH={0}'.format(pr_details['base']['ref']), ]) sys.stdout.write('\n\n{0}\n\n'.format('\n'.join(output))) sys.stdout.flush() def download_unittest_reports(options): print('Downloading remote unittest reports...') sys.stdout.flush() workspace = options.workspace xml_reports_path = os.path.join(workspace, 'xml-test-reports') if os.path.isdir(xml_reports_path): shutil.rmtree(xml_reports_path) os.makedirs(xml_reports_path) cmds = ( 'salt {0} archive.tar zcvf /tmp/xml-test-reports.tar.gz \'*.xml\' cwd=/tmp/xml-unittests-output/', 'salt {0} cp.push /tmp/xml-test-reports.tar.gz', 'mv -f /var/cache/salt/master/minions/{1}/files/tmp/xml-test-reports.tar.gz {2} && ' 'tar zxvf {2}/xml-test-reports.tar.gz -C {2}/xml-test-reports && ' 'rm -f {2}/xml-test-reports.tar.gz' ) vm_name = options.download_unittest_reports for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_coverage_report(options): print('Downloading remote coverage report...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_coverage_report if os.path.isfile(os.path.join(workspace, 'coverage.xml')): os.unlink(os.path.join(workspace, 'coverage.xml')) cmds = ( 'salt {0} archive.gzip /tmp/coverage.xml', 'salt {0} cp.push /tmp/coverage.xml.gz', 'gunzip /var/cache/salt/master/minions/{1}/files/tmp/coverage.xml.gz', 'mv /var/cache/salt/master/minions/{1}/files/tmp/coverage.xml {2}' ) for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_remote_logs(options): print('Downloading remote logs...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_remote_logs for fname in ('salt-runtests.log', 'minion.log'): if os.path.isfile(os.path.join(workspace, fname)): os.unlink(os.path.join(workspace, fname)) if not options.remote_log_path: options.remote_log_path = [ '/tmp/salt-runtests.log', '/var/log/salt/minion' ] cmds = [] for remote_log in options.remote_log_path: cmds.extend([ 'salt {{0}} archive.gzip {0}'.format(remote_log), 'salt {{0}} cp.push {0}.gz'.format(remote_log), 'gunzip /var/cache/salt/master/minions/{{1}}/files{0}.gz'.format(remote_log), 'mv /var/cache/salt/master/minions/{{1}}/files{0} {{2}}/{1}'.format( remote_log, '{0}{1}'.format( os.path.basename(remote_log), '' if remote_log.endswith('.log') else '.log' ) ) ]) for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_packages(options): print('Downloading packages...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_packages for fglob in ('salt-*.rpm', 'salt-*.deb', 'salt-*.pkg.xz', 'salt-buildpackage.log'): for fname in glob.glob(os.path.join(workspace, fglob)): if os.path.isfile(fname): os.unlink(fname) cmds = [ ('salt {{0}} archive.tar czf {0}.tar.gz sources=\'*.*\' cwd={0}' .format(options.package_artifact_dir)), 'salt {{0}} cp.push {0}.tar.gz'.format(options.package_artifact_dir), ('tar -C {{2}} -xzf /var/cache/salt/master/minions/{{1}}/files{0}.tar.gz' .format(options.package_artifact_dir)), ] for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def run(opts): ''' RUN! ''' vm_name = os.environ.get( 'JENKINS_SALTCLOUD_VM_NAME', generate_vm_name(opts) ) if opts.download_remote_reports: if opts.test_without_coverage is False: opts.download_coverage_report = vm_name opts.download_unittest_reports = vm_name opts.download_packages = vm_name if opts.bootstrap_salt_commit is not None: if opts.bootstrap_salt_url is None: opts.bootstrap_salt_url = 'https://github.com/saltstack/salt.git' cmd = ( 'salt-cloud -l debug' ' --script-args "-D -g {bootstrap_salt_url} -n git {1}"' ' -p {provider}_{platform} {0}'.format( vm_name, os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit ), **opts.__dict__ ) ) else: cmd = ( 'salt-cloud -l debug' ' --script-args "-D -n git {1}" -p {provider}_{platform} {0}'.format( vm_name, os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit ), **opts.__dict__ ) ) if opts.splay is not None: # Sleep a random number of seconds cloud_downtime = random.randint(0, opts.splay) print('Sleeping random period before calling salt-cloud: {0}'.format(cloud_downtime)) time.sleep(cloud_downtime) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to bootstrap VM. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('VM Bootstrapped. Exit code: {0}'.format(retcode)) sys.stdout.flush() # Sleep a random number of seconds bootstrap_downtime = random.randint(0, opts.splay) print('Sleeping for {0} seconds to allow the minion to breathe a little'.format(bootstrap_downtime)) sys.stdout.flush() time.sleep(bootstrap_downtime) if opts.bootstrap_salt_commit is not None: # Let's find out if the installed version matches the passed in pillar # information print('Grabbing bootstrapped minion version information ... ') cmd = 'salt -t 100 {0} --out json test.version'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to get the bootstrapped minion version. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) outstr = salt.utils.to_str(stdout).strip() if not outstr: print('Failed to get the bootstrapped minion version(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: version_info = json.loads(outstr) bootstrap_minion_version = os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit[:7] ) print('Minion reported salt version: {0}'.format(version_info)) if bootstrap_minion_version not in version_info[vm_name]: print('\n\nATTENTION!!!!\n') print('The boostrapped minion version commit does not contain the desired commit:') print( ' \'{0}\' does not contain \'{1}\''.format( version_info[vm_name], bootstrap_minion_version ) ) print('\n\n') sys.stdout.flush() #if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: # delete_vm(opts) #sys.exit(retcode) else: print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(outstr)) if opts.cloud_only: # Run Cloud Provider tests preparation SLS cloud_provider_downtime = random.randint(3, opts.splay) time.sleep(cloud_provider_downtime) cmd = ( 'salt -t 900 {target} state.sls {cloud_prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), cloud_prep_sls='cloud-only', pillar=build_pillar_data(opts), ) ) else: # Run standard preparation SLS standard_sls_downtime = random.randint(3, opts.splay) time.sleep(standard_sls_downtime) cmd = ( 'salt -t 1800 {target} state.sls {prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), prep_sls=opts.prep_sls, pillar=build_pillar_data(opts), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.to_str(stdout)) if stderr: print(salt.utils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if opts.cloud_only: cloud_provider_pillar = random.randint(3, opts.splay) time.sleep(cloud_provider_pillar) # Run Cloud Provider tests pillar preparation SLS cmd = ( 'salt -t 600 {target} state.sls {cloud_prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), cloud_prep_sls='cloud-test-configs', pillar=build_pillar_data(opts), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdout, stderr = proc.communicate() if stdout: # DO NOT print the state return here! print('Cloud configuration files provisioned via pillar.') if stderr: print(salt.utils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if opts.prep_sls_2 is not None: sls_2_downtime = random.randint(3, opts.splay) time.sleep(sls_2_downtime) # Run the 2nd preparation SLS cmd = ( 'salt -t 30 {target} state.sls {prep_sls_2} pillar="{pillar}" ' '--no-color'.format( prep_sls_2=opts.prep_sls_2, pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.to_str(stdout)) if stderr: print(salt.utils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the 2nd preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) # Run remote checks if opts.test_git_url is not None: test_git_downtime = random.randint(1, opts.splay) time.sleep(test_git_downtime) # Let's find out if the cloned repository if checked out from the # desired repository print('Grabbing the cloned repository remotes information ... ') cmd = 'salt -t 100 {0} --out json git.remote_get /testing'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to get the cloned repository remote. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if not stdout: print('Failed to get the cloned repository remote(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: remotes_info = json.loads(stdout.strip()) if remotes_info is None or remotes_info[vm_name] is None or opts.test_git_url not in remotes_info[vm_name]: print('The cloned repository remote is not the desired one:') print(' \'{0}\' is not in {1}'.format(opts.test_git_url, remotes_info)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(salt.utils.to_str(stdout).strip())) if opts.test_git_commit is not None: test_git_commit_downtime = random.randint(1, opts.splay) time.sleep(test_git_commit_downtime) # Let's find out if the cloned repository is checked out at the desired # commit print('Grabbing the cloned repository commit information ... ') cmd = 'salt -t 100 {0} --out json git.revision /testing'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to get the cloned repository revision. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if not stdout: print('Failed to get the cloned repository revision(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: revision_info = json.loads(stdout.strip()) if revision_info[vm_name][7:] != opts.test_git_commit[7:]: print('The cloned repository commit is not the desired one:') print(' \'{0}\' != \'{1}\''.format(revision_info[vm_name][:7], opts.test_git_commit[:7])) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(salt.utils.to_str(stdout).strip())) # Run tests here test_begin_downtime = random.randint(3, opts.splay) time.sleep(test_begin_downtime) cmd = ( 'salt -t 1800 {target} state.sls {sls} pillar="{pillar}" --no-color'.format( sls=opts.sls, pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() outstr = salt.utils.to_str(stdout) if outstr: print(outstr) if stderr: print(salt.utils.to_str(stderr)) sys.stdout.flush() try: match = re.search(r'Test Suite Exit Code: (?P<exitcode>[\d]+)', outstr) retcode = int(match.group('exitcode')) except AttributeError: # No regex matching retcode = 1 except ValueError: # Not a number!? retcode = 1 except TypeError: # No output!? retcode = 1 if outstr: # Anything else, raise the exception raise if retcode == 0: # Build packages time.sleep(3) cmd = ( 'salt -t 1800 {target} state.sls buildpackage pillar="{pillar}" --no-color'.format( pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.to_str(stdout)) if stderr: print(salt.utils.to_str(stderr)) sys.stdout.flush() # Grab packages and log file (or just log file if build failed) download_packages(opts) if opts.download_remote_reports: # Download unittest reports download_unittest_reports(opts) # Download coverage report if opts.test_without_coverage is False: download_coverage_report(opts) if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) return retcode def parse(): ''' Parse the CLI options ''' parser = optparse.OptionParser() parser.add_option( '--vm-prefix', default=os.environ.get('JENKINS_VM_NAME_PREFIX', 'ZJENKINS'), help='The bootstrapped machine name prefix' ) parser.add_option( '-w', '--workspace', default=os.path.abspath( os.environ.get( 'WORKSPACE', os.path.dirname(os.path.dirname(__file__)) ) ), help='Path the execution workspace' ) parser.add_option( '--platform', default=os.environ.get('JENKINS_SALTCLOUD_VM_PLATFORM', None), help='The target platform, choose from:\ncent6\ncent5\nubuntu12.04') parser.add_option( '--provider', default=os.environ.get('JENKINS_SALTCLOUD_VM_PROVIDER', None), help='The vm provider') parser.add_option( '--bootstrap-salt-url', default=None, help='The salt git repository url used to boostrap a minion') parser.add_option( '--bootstrap-salt-commit', default=None, help='The salt git commit used to boostrap a minion') parser.add_option( '--test-git-url', default=None, help='The testing git repository url') parser.add_option( '--test-git-commit', default=None, help='The testing git commit to track') parser.add_option( '--test-transport', default='zeromq', choices=('zeromq', 'raet', 'tcp'), help=('Select which transport to run the integration tests with, ' 'zeromq, raet, or tcp. Default: %default') ) parser.add_option( '--test-without-coverage', default=False, action='store_true', help='Do not generate coverage reports' ) parser.add_option( '--prep-sls', default='git.salt', help='The sls file to execute to prepare the system') parser.add_option( '--prep-sls-2', default=None, help='An optional 2nd system preparation SLS') parser.add_option( '--sls', default='testrun-no-deps', help='The final sls file to execute') parser.add_option( '--pillar', action='append', nargs=2, help='Pillar (key, value)s to pass to the sls file. ' 'Example: \'--pillar pillar_key pillar_value\'') parser.add_option( '--no-clean', dest='clean', default=True, action='store_false', help='Clean up the built vm') parser.add_option( '--echo-parseable-environment', default=False, action='store_true', help='Print a parseable KEY=VAL output' ) parser.add_option( '--pull-request', type=int, help='Include the PR info only' ) parser.add_option( '--delete-vm', default=None, help='Delete a running VM' ) parser.add_option( '--download-remote-reports', default=False, action='store_true', help='Download remote reports when running remote \'testrun\' state' ) parser.add_option( '--download-unittest-reports', default=None, help='Download the XML unittest results' ) parser.add_option( '--download-coverage-report', default=None, help='Download the XML coverage reports' ) parser.add_option( '--remote-log-path', action='append', default=[], help='Provide additional log paths to download from remote minion' ) parser.add_option( '--download-remote-logs', default=None, help='Download remote minion and runtests log files' ) parser.add_option( '--grain-target', action='append', default=[], help='Match minions using compound matchers, the minion ID, plus the passed grain.' ) parser.add_option( '--cloud-only', default=False, action='store_true', help='Run the cloud provider tests only.' ) parser.add_option( '--build-packages', default=True, action='store_true', help='Run buildpackage.py to create packages off of the git build.' ) # These next three options are ignored if --build-packages is False parser.add_option( '--package-source-dir', default='/testing', help='Directory where the salt source code checkout is found ' '(default: %default)', ) parser.add_option( '--package-build-dir', default='/tmp/salt-buildpackage', help='Build root for automated package builds (default: %default)', ) parser.add_option( '--package-artifact-dir', default='/tmp/salt-packages', help='Location on the minion from which packages should be ' 'retrieved (default: %default)', ) parser.add_option( '--splay', default='10', help='The number of seconds across which calls to provisioning components should be made' ) options, args = parser.parse_args() if options.delete_vm is not None and not options.test_git_commit: delete_vm(options) parser.exit(0) if options.download_unittest_reports is not None and not options.test_git_commit: download_unittest_reports(options) parser.exit(0) if options.test_without_coverage is False: if options.download_coverage_report is not None and not options.test_git_commit: download_coverage_report(options) parser.exit(0) if options.download_remote_logs is not None and not options.test_git_commit: download_remote_logs(options) parser.exit(0) if not options.platform and not options.pull_request: parser.exit('--platform or --pull-request is required') if not options.provider and not options.pull_request: parser.exit('--provider or --pull-request is required') if options.echo_parseable_environment: echo_parseable_environment(options, parser) parser.exit(0) if not options.test_git_commit and not options.pull_request: parser.exit('--commit or --pull-request is required') return options if __name__ == '__main__': exit_code = run(parse()) print('Exit Code: {0}'.format(exit_code)) sys.exit(exit_code)
__author__ = 'croxis' from io import BytesIO import random import re from PIL import Image, ImageDraw, ImageFont import requests import lib.transforms as transforms import lib.utils as utils from lib.manalib import Manatext from . import magic_image from . import img_manager try: import textwrap import nltk.data sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') # This crazy thing is actually invoked as an unpass, so newlines are still # encoded. def sentencecase(s): s = s.replace(utils.x_marker, utils.reserved_marker) lines = s.split(utils.newline) clines = [] for line in lines: if line: sentences = sent_tokenizer.tokenize(line) clines += [' '.join([sent.capitalize() for sent in sentences])] return utils.newline.join(clines).replace(utils.reserved_marker, utils.x_marker) except ImportError: def sentencecase(s): return s.capitalize() def get_fonts(): return dict( font_title=ImageFont.truetype("fonts/beleren-bold_P1.01.ttf", size=18), font_type=ImageFont.truetype("fonts/beleren-bold_P1.01.ttf", size=16), font=ImageFont.truetype("fonts/mplantin.ttf", size=18)) def draw_costs(image, draw, fonts, card): cost = get_cost(card) w, h = img_manager.get_icon('white').size x_offset = 0 for x in range(0, cost['white']): image.paste(img_manager.get_icon('white'), (321 - x_offset, 42 - h // 2), img_manager.get_icon('white')) x_offset += 23 for x in range(0, cost['blue']): image.paste(img_manager.get_icon('blue'), (321 - x_offset, 42 - h // 2), img_manager.get_icon('blue')) x_offset += 23 for x in range(0, cost['black']): image.paste(img_manager.get_icon('black'), (321 - x_offset, 42 - h // 2), img_manager.get_icon('blue')) x_offset += 23 for x in range(0, cost['green']): image.paste(img_manager.get_icon('green'), (321 - x_offset, 42 - h // 2), img_manager.get_icon('blue')) x_offset += 23 for x in range(0, cost['red']): image.paste(img_manager.get_icon('red'), (321 - x_offset, 42 - h // 2), img_manager.get_icon('blue')) x_offset += 23 if cost['colorless']: colorless_mana = img_manager.get_icon('colorless') draw_colorless = ImageDraw.Draw(colorless_mana) w, h = draw_colorless.textsize(str(cost['colorless'])) W, H = colorless_mana.size draw_colorless.text(((W - w) // 2 - 2, (H - h) // 2 - 5), str(cost['colorless']), fill=(0, 0, 0, 255), font=fonts['font_title']) image.paste(colorless_mana, (321 - x_offset, 36 - h // 2), colorless_mana) colorless_mana.close() def draw_title(image, draw, fonts, card): w, h = draw.textsize(card.name.title()) draw.text((35, 38 - h // 2), # card.name.format(gatherer=True), card.name.title(), fill=(0, 0, 0, 255), font=fonts['font_title']) def draw_types(image, draw, fonts, card): typeline = "" if card.supertypes: typeline += ' '.join(card.supertypes).title() + ' ' typeline += ' '.join(card.types).title() if card.subtypes: typeline += ' - ' + ' '.join(card.subtypes).title() w, h = draw.textsize(typeline) draw.text((35, 304 - h // 2), typeline, fill=(0, 0, 0, 255), font=fonts['font_type']) def get_card_text(card): # Card texts # card_text = card.text.format() mtext = card.text.text mtext = transforms.text_unpass_1_choice(mtext, delimit=True) mtext = transforms.text_unpass_2_counters(mtext) mtext = transforms.text_unpass_3_uncast(mtext) mtext = transforms.text_unpass_4_unary(mtext) mtext = transforms.text_unpass_5_symbols(mtext, for_forum=False) mtext = sentencecase(mtext) # We will do step 5 ourselves to keep capitalization mtext = transforms.text_unpass_6_cardname(mtext, card.name.title()) mtext = transforms.text_unpass_7_newlines(mtext) mtext = transforms.text_unpass_8_unicode(mtext) new_text = Manatext('') new_text.text = mtext new_text.costs = card.text.costs card_text = new_text.format() return card_text def draw_card_text(image, draw, fonts, card): lines = textwrap.wrap(get_card_text(card), 37, replace_whitespace=False) y_offset = 0 for line in lines: for sub_line in line.split('\n'): x_offset = 0 rg = re.compile('(\\{.*?\\})', re.IGNORECASE | re.DOTALL) for subsub_line in rg.split(sub_line): if subsub_line: x = 36 + x_offset y = 335 + y_offset - 3 if rg.match(subsub_line): if '{w}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('white'), (x, y), img_manager.get_icon_text('blue')) x_offset += 21 elif '{b}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('black'), (36 + x_offset, 335 + y_offset - 3), img_manager.get_icon_text('blue')) x_offset += 21 elif '{u}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('blue'), (36 + x_offset, 335 + y_offset - 3), img_manager.get_icon_text('blue')) x_offset += 21 elif '{r}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('red'), (36 + x_offset, 335 + y_offset - 3), img_manager.get_icon_text('blue')) x_offset += 21 elif '{g}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('green'), (36 + x_offset, 335 + y_offset - 3), img_manager.get_icon_text('blue')) x_offset += 21 elif '{t}' in subsub_line.lower(): image.paste(img_manager.get_icon_text('tap'), (36 + x_offset, 335 + y_offset - 3), img_manager.get_icon_text('tap')) x_offset += 21 else: try: int(subsub_line[1]) colorless_mana = img_manager.get_icon_text( 'colorless') draw_colorless = ImageDraw.Draw(colorless_mana) w, h = draw_colorless.textsize( str(subsub_line[1])) draw_colorless.text( ((18 - w) // 2 - 2, (18 - h) // 2 - 4), str(subsub_line[1]), fill=(0, 0, 0, 255), font=fonts['font_title']) image.paste(colorless_mana, (x, y), colorless_mana) colorless_mana.close() x_offset += 21 except: pass else: draw.text((35 + x_offset, 335 + y_offset), subsub_line, fill=(0, 0, 0, 255), font=fonts['font']) x_offset += fonts['font'].getsize(subsub_line)[0] y_offset += 19 def draw_card_copywrite(image, draw, fonts, card): draw.text((60, 484), "Copy, right?", fill=(0, 0, 0, 255), font=fonts['font']) def draw_power_toughness(image, draw, fonts, card): if not card.pt: return power = str(card.pt_p.count('^')) toughness = str(card.pt_t.count('^')) c = card.cost.colors if len(c) == '': c = 'a' if len(c) > 1: c = 'm' c = c.lower() if not c: c = 'a' pt_image = Image.open('app/card_parts/magic-new.mse-style/' + c + 'pt.jpg') image.paste(pt_image, (271, 461)) draw.text((295, 470), power + " / " + toughness, fill=(0, 0, 0, 255), font=fonts['font_title']) def draw_rarity(image, draw, fonts, card): pass def create_card_img(card, google): background_color = get_background_color(card) image = img_manager.get_background(background_color) fonts = get_fonts() draw = ImageDraw.Draw(image) draw_costs(image, draw, fonts, card) draw_title(image, draw, fonts, card) draw_types(image, draw, fonts, card) draw_card_text(image, draw, fonts, card) draw_card_copywrite(image, draw, fonts, card) draw_power_toughness(image, draw, fonts, card) draw_rarity(image, draw, fonts, card) art, w, h = get_card_art(card, google) draw_card_art(image, draw, fonts, card, art, w, h) return image def draw_card_art(image, draw, fonts, card, art, w, h): image.paste(art, ((image.size[0] - w) // 2, 175 - h // 2)) def get_cost(card): cost = {} cost['colorless'] = 0 cost['white'] = card.cost.format().lower().count('w') cost['blue'] = card.cost.format().lower().count('u') cost['black'] = card.cost.format().lower().count('b') cost['red'] = card.cost.format().lower().count('r') cost['green'] = card.cost.format().lower().count('g') rg = re.compile('(\\d+)', re.IGNORECASE | re.DOTALL) m = rg.search(card.cost.format()) if m: cost['colorless'] = int(m.group(1)) return cost def get_background_color(card): colors = card.cost.get_colors() if colors == "": return 'artifact' if len(colors) > 1: return 'multicolor' if colors == "W": return 'white' if colors == "U": return 'blue' if colors == "B": return 'black' if colors == 'R': return 'red' if colors == 'G': return 'green' return None def get_card_art(card, google): if google: google_result = google_card_art(card) if google_result != None: return google_result return get_default_card_art(card) def get_default_card_art(card): art = img_manager.default_portrait art = art.crop((0, 0, 311, 228)) w, h = art.size return (art, w, h) def google_card_art(card): terms = magic_image.find_search_terms(card) random.shuffle(terms) img_url = None for term in terms[:5]: color = term[-1] query = "+".join(term[:-1]) if color == 'u': color = 'blue' img_url = magic_image.fetch(query + '+"fantasy"+paintings+-card', color) if img_url: break if img_url: with BytesIO(requests.get(img_url).content) as reader: reader.seek(0) try: art = Image.open(reader) art.thumbnail((311, 311)) art = art.crop((0, 0, 311, 229)) w, h = art.size return (art, w, h) except OSError: print("Unable to handle this kind of image.") return None
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.datasets.base import _pkl_filepath from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = DIRECTORY_URL + "samples.zip" COVERAGES_URL = DIRECTORY_URL + "coverages.zip" DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = int(header[b'NODATA_value']) if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 archive_path = _pkl_filepath(data_home, DATA_ARCHIVE_NAME) if not exists(archive_path): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, archive_path, compress=9) else: bunch = joblib.load(archive_path) return bunch
from __future__ import print_function import warnings from six.moves import range import numpy as np from time import sleep from landlab import ModelParameterDictionary, CLOSED_BOUNDARY, Component from landlab.core.model_parameter_dictionary import MissingKeyError from landlab.field.scalar_data_fields import FieldError from landlab.grid.base import BAD_INDEX_VALUE from landlab.utils.decorators import make_return_array_immutable class SedDepEroder(Component): """ This module implements sediment flux dependent channel incision following:: E = f(Qs, Qc) * ([a stream power-like term] - [an optional threshold]), where E is the bed erosion rate, Qs is the volumetric sediment flux into a node, and Qc is the volumetric sediment transport capacity at that node. This component is under active research and development; proceed with its use at your own risk. The details of the implementation are a function of the two key arguments, *sed_dependency_type* and *Qc*. The former controls the shape of the sediment dependent response function f(Qs, Qc), the latter controls the way in which sediment transport capacities are calculated (primarily, whether a full Meyer-Peter Muller approach is used, or whether simpler stream-power-like equations can be assumed). For Qc, 'power_law' broadly follows the assumptions in Gasparini et al. 2006, 2007; 'MPM' broadly follows those in Hobley et al., 2011. Note that a convex-up channel can result in many cases assuming MPM, unless parameters b and c are carefully tuned. If ``Qc == 'power_law'``:: E = K_sp * f(Qs, Qc) * A ** m_sp * S ** n_sp; Qc = K_t * A ** m_t * S ** n_t If ``Qc == 'MPM'``:: shear_stress = fluid_density * g * depth * S = fluid_density * g * (mannings_n/k_w) ** 0.6 * ( k_Q* A ** c_sp) ** (0.6 * (1. - b_sp)) * S ** 0.7, for consistency with MPM E = K_sp * f(Qs, Qc) * (shear_stress ** a_sp - [threshold_sp]) Qc = 8 * C_MPM * sqrt((sed_density-fluid_density)/fluid_density * g * D_char**3) * (shields_stress - threshold_shields)**1.5 shields_stress = shear_stress / (g * (sed_density-fluid_density) * D_char) If you choose Qc='MPM', you may provide thresholds for both channel incision and shields number, or alternatively set either or both of these threshold dynamically. The minimum shear stress can be made equivalent to the Shields number using *set_threshold_from_Dchar*, for full consistency with the MPM approach (i.e., the threshold becomes a function of the characteristic grain size on the bed). The Shields threshold itself can also be a weak function of slope if *slope_sensitive_threshold*, following Lamb et al. 2008, taustar_c = 0.15 * S ** 0.25. The component is able to handle flooded nodes, if created by a lake filler. It assumes the flow paths found in the fields already reflect any lake routing operations, and then requires the optional argument *flooded_depths* be passed to the run method. A flooded depression acts as a perfect sediment trap, and will be filled sequentially from the inflow points towards the outflow points. Construction:: SedDepEroder(grid, K_sp=1.e-6, g=9.81, rock_density=2700, sediment_density=2700, fluid_density=1000, runoff_rate=1., sed_dependency_type='generalized_humped', kappa_hump=13.683, nu_hump=1.13, phi_hump=4.24, c_hump=0.00181, Qc='power_law', m_sp=0.5, n_sp=1., K_t=1.e-4, m_t=1.5, n_t=1., C_MPM=1., a_sp=1., b_sp=0.5, c_sp=1., k_w=2.5, k_Q=2.5e-7, mannings_n=0.05, threshold_shear_stress=None, Dchar=0.05, set_threshold_from_Dchar=True, set_Dchar_from_threshold=False, threshold_Shields=0.05, slope_sensitive_threshold=False, pseudoimplicit_repeats=5, return_stream_properties=False) Parameters ---------- grid : a ModelGrid A grid. K_sp : float (time unit must be *years*) K in the stream power equation; the prefactor on the erosion equation (units vary with other parameters). g : float (m/s**2) Acceleration due to gravity. rock_density : float (Kg m**-3) Bulk intact rock density. sediment_density : float (Kg m**-3) Typical density of loose sediment on the bed. fluid_density : float (Kg m**-3) Density of the fluid. runoff_rate : float, array or field name (m/s) The rate of excess overland flow production at each node (i.e., rainfall rate less infiltration). pseudoimplicit_repeats : int Number of loops to perform with the pseudoimplicit iterator, seeking a stable solution. Convergence is typically rapid. return_stream_properties : bool Whether to perform a few additional calculations in order to set the additional optional output fields, 'channel__width', 'channel__depth', and 'channel__discharge' (default False). sed_dependency_type : {'generalized_humped', 'None', 'linear_decline', 'almost_parabolic'} The shape of the sediment flux function. For definitions, see Hobley et al., 2011. 'None' gives a constant value of 1. NB: 'parabolic' is currently not supported, due to numerical stability issues at channel heads. Qc : {'power_law', 'MPM'} Whether to use simple stream-power-like equations for both sediment transport capacity and erosion rate, or more complex forms based directly on the Meyer-Peter Muller equation and a shear stress based erosion model consistent with MPM (per Hobley et al., 2011). If ``sed_dependency_type == 'generalized_humped'``... kappa_hump : float Shape parameter for sediment flux function. Primarily controls function amplitude (i.e., scales the function to a maximum of 1). Default follows Leh valley values from Hobley et al., 2011. nu_hump : float Shape parameter for sediment flux function. Primarily controls rate of rise of the "tools" limb. Default follows Leh valley values from Hobley et al., 2011. phi_hump : float Shape parameter for sediment flux function. Primarily controls rate of fall of the "cover" limb. Default follows Leh valley values from Hobley et al., 2011. c_hump : float Shape parameter for sediment flux function. Primarily controls degree of function asymmetry. Default follows Leh valley values from Hobley et al., 2011. If ``Qc == 'power_law'``... m_sp : float Power on drainage area in the erosion equation. n_sp : float Power on slope in the erosion equation. K_t : float (time unit must be in *years*) Prefactor in the transport capacity equation. m_t : float Power on drainage area in the transport capacity equation. n_t : float Power on slope in the transport capacity equation. if ``Qc == 'MPM'``... C_MPM : float A prefactor on the MPM relation, allowing tuning to known sediment saturation conditions (leave as 1. in most cases). a_sp : float Power on shear stress to give erosion rate. b_sp : float Power on drainage area to give channel width. c_sp : float Power on drainage area to give discharge. k_w : float (unit variable with b_sp) Prefactor on A**b_sp to give channel width. k_Q : float (unit variable with c_sp, but time unit in *seconds*) Prefactor on A**c_sp to give discharge. mannings_n : float Manning's n for the channel. threshold_shear_stress : None or float (Pa) The threshold shear stress in the equation for erosion rate. If None, implies that *set_threshold_from_Dchar* is True, and this parameter will get set from the Dchar value and critical Shields number. Dchar :None, float, array, or field name (m) The characteristic grain size on the bed, that controls the relationship between critical Shields number and critical shear stress. If None, implies that *set_Dchar_from_threshold* is True, and this parameter will get set from the threshold_shear_stress value and critical Shields number. set_threshold_from_Dchar : bool If True (default), threshold_shear_stress will be set based on Dchar and threshold_Shields. set_Dchar_from_threshold : bool If True, Dchar will be set based on threshold_shear_stress and threshold_Shields. Default is False. threshold_Shields : None or float The threshold Shields number. If None, implies that *slope_sensitive_threshold* is True. slope_sensitive_threshold : bool If True, the threshold_Shields will be set according to 0.15 * S ** 0.25, per Lamb et al., 2008 & Hobley et al., 2011. """ _name = 'SedDepEroder' _input_var_names = ( 'topographic__elevation', 'drainage_area', 'flow__receiver_node', 'flow__upstream_node_order', 'topographic__steepest_slope', 'flow__link_to_receiver_node' ) _output_var_names = ( 'topographic__elevation', 'channel__bed_shear_stress', 'channel_sediment__volumetric_transport_capacity', 'channel_sediment__volumetric_flux', 'channel_sediment__relative_flux', 'channel__discharge', 'channel__width', # optional 'channel__depth', # optional ) _optional_var_names = ( 'channel__width', 'channel__depth' ) _var_units = {'topographic__elevation': 'm', 'drainage_area': 'm**2', 'flow__receiver_node': '-', 'topographic__steepest_slope': '-', 'flow__upstream_node_order': '-', 'flow__link_to_receiver_node': '-', 'channel__bed_shear_stress': 'Pa', 'channel_sediment__volumetric_transport_capacity': 'm**3/s', 'channel_sediment__volumetric_flux': 'm**3/s', 'channel_sediment__relative_flux': '-', 'channel__discharge': 'm**3/s', 'channel__width': 'm', 'channel__depth': 'm' } _var_mapping = {'topographic__elevation': 'node', 'drainage_area': 'node', 'flow__receiver_node': 'node', 'topographic__steepest_slope': 'node', 'flow__upstream_node_order': 'node', 'flow__link_to_receiver_node': 'node', 'channel__bed_shear_stress': 'node', 'channel_sediment__volumetric_transport_capacity': 'node', 'channel_sediment__volumetric_flux': 'node', 'channel_sediment__relative_flux': 'node', 'channel__discharge': 'node', 'channel__width': 'node', 'channel__depth': 'node' } _var_type = {'topographic__elevation': float, 'drainage_area': float, 'flow__receiver_node': int, 'topographic__steepest_slope': float, 'flow__upstream_node_order': int, 'flow__link_to_receiver_node': int, 'channel__bed_shear_stress': float, 'channel_sediment__volumetric_transport_capacity': float, 'channel_sediment__volumetric_flux': float, 'channel_sediment__relative_flux': float, 'channel__discharge': float, 'channel__width': float, 'channel__depth': float } _var_doc = { 'topographic__elevation': 'Land surface topographic elevation', 'drainage_area': ("Upstream accumulated surface area contributing to the node's " + "discharge"), 'flow__receiver_node': ('Node array of receivers (node that receives flow from current ' + 'node)'), 'topographic__steepest_slope': 'Node array of steepest *downhill* slopes', 'flow__upstream_node_order': ('Node array containing downstream-to-upstream ordered list of ' + 'node IDs'), 'flow__link_to_receiver_node': 'ID of link downstream of each node, which carries the discharge', 'channel__bed_shear_stress': ('Shear exerted on the bed of the channel, assuming all ' + 'discharge travels along a single, self-formed channel'), 'channel_sediment__volumetric_transport_capacity': ('Volumetric transport capacity of a channel carrying all runoff' + ' through the node, assuming the Meyer-Peter Muller transport ' + 'equation'), 'channel_sediment__volumetric_flux': ('Total volumetric fluvial sediment flux brought into the node ' + 'from upstream'), 'channel_sediment__relative_flux': ('The fluvial_sediment_flux_into_node divided by the fluvial_' + 'sediment_transport_capacity'), 'channel__discharge': ('Volumetric water flux of the a single channel carrying all ' + 'runoff through the node'), 'channel__width': ('Width of the a single channel carrying all runoff through the ' + 'node'), 'channel__depth': ('Depth of the a single channel carrying all runoff through the ' + 'node') } def __init__(self, grid, K_sp=1.e-6, g=9.81, rock_density=2700, sediment_density=2700, fluid_density=1000, runoff_rate=1., sed_dependency_type='generalized_humped', kappa_hump=13.683, nu_hump=1.13, phi_hump=4.24, c_hump=0.00181, Qc='power_law', m_sp=0.5, n_sp=1., K_t=1.e-4, m_t=1.5, n_t=1., # these params for Qc='MPM': C_MPM=1., a_sp=1., b_sp=0.5, c_sp=1., k_w=2.5, k_Q=2.5e-7, mannings_n=0.05, threshold_shear_stress=None, Dchar=0.05, set_threshold_from_Dchar=True, set_Dchar_from_threshold=False, threshold_Shields=0.05, slope_sensitive_threshold=False, # params for model numeric behavior: pseudoimplicit_repeats=5, return_stream_properties=False, **kwds): """Constructor for the class.""" self._grid = grid self.pseudoimplicit_repeats = pseudoimplicit_repeats self.link_S_with_trailing_blank = np.zeros(grid.number_of_links+1) # ^needs to be filled with values in execution self.count_active_links = np.zeros_like( self.link_S_with_trailing_blank, dtype=int) self.count_active_links[:-1] = 1 self._K_unit_time = K_sp/31557600. # ^...because we work with dt in seconds # set gravity self.g = g self.rock_density = rock_density self.sed_density = sediment_density self.fluid_density = fluid_density self.relative_weight = ( (self.sed_density-self.fluid_density)/self.fluid_density*self.g) # ^to accelerate MPM calcs self.rho_g = self.fluid_density*self.g self.type = sed_dependency_type assert self.type in ('generalized_humped', 'None', 'linear_decline', 'almost_parabolic') self.Qc = Qc assert self.Qc in ('MPM', 'power_law') self.return_ch_props = return_stream_properties if return_stream_properties: assert self.Qc == 'MPM', ("Qc must be 'MPM' to return stream " + "properties") if type(runoff_rate) in (float, int): self.runoff_rate = float(runoff_rate) elif type(runoff_rate) is str: self.runoff_rate = self.grid.at_node[runoff_rate] else: self.runoff_rate = np.array(runoff_rate) assert runoff_rate.size == self.grid.number_of_nodes if self.Qc == 'MPM': if threshold_shear_stress is not None: self.thresh = threshold_shear_stress self.set_threshold = True # ^flag for sed_flux_dep_incision to see if the threshold was # manually set. # print("Found a shear stress threshold to use: ", self.thresh) else: warnings.warn("Found no incision threshold to use.") self.thresh = 0. self.set_threshold = False self._a = a_sp self._b = b_sp self._c = c_sp self.k_Q = k_Q self.k_w = k_w self.mannings_n = mannings_n if mannings_n < 0. or mannings_n > 0.2: warnings.warn("Manning's n outside it's typical range") self.diffusivity_power_on_A = 0.9*self._c*(1.-self._b) # ^i.e., q/D**(1/6) self.override_threshold = set_threshold_from_Dchar self.override_Dchar = set_Dchar_from_threshold if self.override_threshold: assert self.set_threshold is False, ( "If set_threshold_from_Dchar, threshold_Shields must be " + "set to None") assert self.override_Dchar is False if self.override_Dchar: assert self.override_threshold is False self.shields_crit = threshold_Shields self.lamb_flag = slope_sensitive_threshold if self.lamb_flag: assert self.shields_crit is None, ( "If slope_sensitive_threshold, threshold_Shields must " + "be set to None") elif self.Qc == 'power_law': self._m = m_sp self._n = n_sp self._Kt = K_t/31557600. # in sec self._mt = m_t self._nt = n_t # now conditional inputs if self.type == 'generalized_humped': self.kappa = kappa_hump self.nu = nu_hump self.phi = phi_hump self.c = c_hump if self.Qc == 'MPM': if Dchar is not None: if type(Dchar) in (int, float): self.Dchar_in = float(Dchar) elif type(Dchar) is str: self.Dchar_in = self.grid.at_node[Dchar] else: self.Dchar_in = np.array(Dchar) assert self.Dchar_in.size == self.grid.number_of_nodes assert not self.override_Dchar, ( "If set_Dchar_from_threshold, Dchar must be set to None") else: assert self.override_Dchar # remember the threshold getting set is already tau**a if not self.lamb_flag: self.Dchar_in = self.thresh/self.g/( self.sed_density-self.fluid_density)/self.shields_crit else: self.Dchar_in = None self.C_MPM = C_MPM if self.override_threshold: # print("Overriding any supplied threshold...") try: self.thresh = self.shields_crit*self.g*( self.sed_density-self.fluid_density)*self.Dchar_in except AttributeError: self.thresh = self.shields_crit*self.g*( self.sed_density-self.fluid_density)*Dchar # new 11/12/14 self.point6onelessb = 0.6*(1.-self._b) self.shear_stress_prefactor = self.fluid_density*self.g*( self.mannings_n/self.k_w)**0.6 if self.set_threshold is False or self.override_threshold: try: self.shields_prefactor_to_shear = ( (self.sed_density-self.fluid_density)*self.g * self.Dchar_in) except AttributeError: # no Dchar self.shields_prefactor_to_shear_noDchar = ( self.sed_density-self.fluid_density)*self.g twothirds = 2./3. self.Qs_prefactor = ( 4.*self.C_MPM**twothirds*self.fluid_density**twothirds / (self.sed_density-self.fluid_density)**twothirds*self.g ** (twothirds/2.)*mannings_n**0.6*self.k_w**(1./15.)*self.k_Q ** (0.6+self._b/15.)/self.sed_density**twothirds) self.Qs_thresh_prefactor = ( 4.*(self.C_MPM*self.k_w*self.k_Q**self._b/self.fluid_density ** 0.5/(self.sed_density-self.fluid_density)/self.g / self.sed_density)**twothirds) # both these are divided by sed density to give a vol flux self.Qs_power_onA = self._c*(0.6+self._b/15.) self.Qs_power_onAthresh = twothirds*self._b*self._c self.cell_areas = np.empty(grid.number_of_nodes) self.cell_areas.fill(np.mean(grid.area_of_cell)) self.cell_areas[grid.node_at_cell] = grid.area_of_cell # set up the necessary fields: self.initialize_output_fields() if self.return_ch_props: self.initialize_optional_output_fields() def get_sed_flux_function(self, rel_sed_flux): if self.type == 'generalized_humped': "Returns K*f(qs,qc)" sed_flux_fn = self.kappa*(rel_sed_flux**self.nu + self.c)*np.exp( -self.phi*rel_sed_flux) elif self.type == 'linear_decline': sed_flux_fn = (1.-rel_sed_flux) elif self.type == 'parabolic': raise MissingKeyError( 'Pure parabolic (where intersect at zero flux is exactly ' + 'zero) is currently not supported, sorry. Try ' + 'almost_parabolic instead?') sed_flux_fn = 1. - 4.*(rel_sed_flux-0.5)**2. elif self.type == 'almost_parabolic': sed_flux_fn = np.where(rel_sed_flux > 0.1, 1. - 4.*(rel_sed_flux-0.5)**2., 2.6*rel_sed_flux+0.1) elif self.type == 'None': sed_flux_fn = 1. else: raise MissingKeyError( 'Provided sed flux sensitivity type in input file was not ' + 'recognised!') return sed_flux_fn def get_sed_flux_function_pseudoimplicit(self, sed_in, trans_cap_vol_out, prefactor_for_volume, prefactor_for_dz): rel_sed_flux_in = sed_in/trans_cap_vol_out rel_sed_flux = rel_sed_flux_in if self.type == 'generalized_humped': "Returns K*f(qs,qc)" def sed_flux_fn_gen(rel_sed_flux_in): return self.kappa*(rel_sed_flux_in**self.nu + self.c)*np.exp( -self.phi*rel_sed_flux_in) elif self.type == 'linear_decline': def sed_flux_fn_gen(rel_sed_flux_in): return 1.-rel_sed_flux_in elif self.type == 'parabolic': raise MissingKeyError( 'Pure parabolic (where intersect at zero flux is exactly ' + 'zero) is currently not supported, sorry. Try ' + 'almost_parabolic instead?') def sed_flux_fn_gen(rel_sed_flux_in): return 1. - 4.*(rel_sed_flux_in-0.5)**2. elif self.type == 'almost_parabolic': def sed_flux_fn_gen(rel_sed_flux_in): return np.where(rel_sed_flux_in > 0.1, 1. - 4.*(rel_sed_flux_in-0.5)**2., 2.6*rel_sed_flux_in+0.1) elif self.type == 'None': def sed_flux_fn_gen(rel_sed_flux_in): return 1. else: raise MissingKeyError( 'Provided sed flux sensitivity type in input file was not ' + 'recognised!') for i in range(self.pseudoimplicit_repeats): sed_flux_fn = sed_flux_fn_gen(rel_sed_flux) sed_vol_added = prefactor_for_volume*sed_flux_fn rel_sed_flux = rel_sed_flux_in + sed_vol_added/trans_cap_vol_out # print rel_sed_flux if rel_sed_flux >= 1.: rel_sed_flux = 1. break if rel_sed_flux < 0.: rel_sed_flux = 0. break last_sed_flux_fn = sed_flux_fn sed_flux_fn = sed_flux_fn_gen(rel_sed_flux) # this error could alternatively be used to break the loop error_in_sed_flux_fn = sed_flux_fn-last_sed_flux_fn dz = prefactor_for_dz*sed_flux_fn sed_flux_out = rel_sed_flux*trans_cap_vol_out return dz, sed_flux_out, rel_sed_flux, error_in_sed_flux_fn def erode(self, dt, flooded_depths=None, **kwds): """Erode and deposit on the channel bed for a duration of *dt*. Erosion occurs according to the sediment dependent rules specified during initialization. Parameters ---------- dt : float (years, only!) Timestep for which to run the component. flooded_depths : array or field name (m) Depths of flooding at each node, zero where no lake. Note that the component will dynamically update this array as it fills nodes with sediment (...but does NOT update any other related lake fields). """ grid = self.grid node_z = grid.at_node['topographic__elevation'] node_A = grid.at_node['drainage_area'] flow_receiver = grid.at_node['flow__receiver_node'] s_in = grid.at_node['flow__upstream_node_order'] node_S = grid.at_node['topographic__steepest_slope'] if type(flooded_depths) is str: flooded_depths = mg.at_node[flooded_depths] # also need a map of initial flooded conds: flooded_nodes = flooded_depths > 0. elif type(flooded_depths) is np.ndarray: assert flooded_depths.size == self.grid.number_of_nodes flooded_nodes = flooded_depths > 0. # need an *updateable* record of the pit depths else: # if None, handle in loop flooded_nodes = None steepest_link = 'flow__link_to_receiver_node' link_length = np.empty(grid.number_of_nodes, dtype=float) link_length.fill(np.nan) draining_nodes = np.not_equal(grid.at_node[steepest_link], BAD_INDEX_VALUE) core_draining_nodes = np.intersect1d(np.where(draining_nodes)[0], grid.core_nodes, assume_unique=True) link_length[core_draining_nodes] = grid._length_of_link_with_diagonals[ grid.at_node[steepest_link][core_draining_nodes]] if self.Qc == 'MPM': if self.Dchar_in is not None: self.Dchar = self.Dchar_in else: assert not self.set_threshold, ( "Something is seriously wrong with your model " + "initialization.") assert self.override_threshold, ( "You need to confirm to the module you intend it to " + "internally calculate a shear stress threshold, " + "with set_threshold_from_Dchar in the input file.") # we need to adjust the thresholds for the Shields number # & gs dynamically: variable_thresh = self.shields_crit*self.g*( self.sed_density-self.fluid_density)*self.Dchar if self.lamb_flag: variable_shields_crit = 0.15*node_S**0.25 try: variable_thresh = (variable_shields_crit * self.shields_prefactor_to_shear) except AttributeError: variable_thresh = ( variable_shields_crit * self.shields_prefactor_to_shear_noDchar*self.Dchar) node_Q = self.k_Q*self.runoff_rate*node_A**self._c shear_stress_prefactor_timesAparts = ( self.shear_stress_prefactor*node_Q**self.point6onelessb) try: transport_capacities_thresh = ( self.thresh*self.Qs_thresh_prefactor*self.runoff_rate**( 0.66667*self._b)*node_A**self.Qs_power_onAthresh) except AttributeError: transport_capacities_thresh = ( variable_thresh*self.Qs_thresh_prefactor * self.runoff_rate**(0.66667*self._b)*node_A ** self.Qs_power_onAthresh) transport_capacity_prefactor_withA = ( self.Qs_prefactor*self.runoff_rate**(0.6+self._b/15.)*node_A ** self.Qs_power_onA) internal_t = 0. break_flag = False dt_secs = dt*31557600. counter = 0 rel_sed_flux = np.empty_like(node_Q) # excess_vol_overhead = 0. while 1: # ^use the break flag, to improve computational efficiency for # runs which are very stable # we assume the drainage structure is forbidden to change # during the whole dt # note slopes will be *negative* at pits # track how many loops we perform: counter += 1 downward_slopes = node_S.clip(0.) # this removes the tendency to transfer material against # gradient, including in any lake depressions # we DON'T immediately zero trp capacity in the lake. # positive_slopes = np.greater(downward_slopes, 0.) slopes_tothe07 = downward_slopes**0.7 transport_capacities_S = (transport_capacity_prefactor_withA * slopes_tothe07) trp_diff = (transport_capacities_S - transport_capacities_thresh).clip(0.) transport_capacities = np.sqrt(trp_diff*trp_diff*trp_diff) shear_stress = (shear_stress_prefactor_timesAparts * slopes_tothe07) shear_tothe_a = shear_stress**self._a dt_this_step = dt_secs-internal_t # ^timestep adjustment is made AFTER the dz calc node_vol_capacities = transport_capacities*dt_this_step sed_into_node = np.zeros(grid.number_of_nodes, dtype=float) dz = np.zeros(grid.number_of_nodes, dtype=float) len_s_in = s_in.size cell_areas = self.cell_areas try: raise NameError # ^tripped out deliberately for now; doesn't appear to # accelerate much weave.inline(self.routing_code, [ 'len_s_in', 'sed_into_node', 'transport_capacities', 'dz', 'cell_areas', 'dt_this_step', 'flow__receiver_node']) except NameError: for i in s_in[::-1]: # work downstream cell_area = cell_areas[i] if flooded_nodes is not None: flood_depth = flooded_depths[i] else: flood_depth = 0. sed_flux_into_this_node = sed_into_node[i] node_capacity = transport_capacities[i] # ^we work in volume flux, not volume per se here node_vol_capacity = node_vol_capacities[i] if flood_depth > 0.: node_vol_capacity = 0. # requires special case handling - as much sed as # possible is dumped here, then the remainder # passed on if sed_flux_into_this_node < node_vol_capacity: # ^note incision is forbidden at capacity # flooded nodes never enter this branch # #implementing the pseudoimplicit method: try: thresh = variable_thresh except: # it doesn't exist thresh = self.thresh dz_prefactor = self._K_unit_time*dt_this_step*( shear_tothe_a[i]-thresh).clip(0.) vol_prefactor = dz_prefactor*cell_area (dz_here, sed_flux_out, rel_sed_flux_here, error_in_sed_flux) = \ self.get_sed_flux_function_pseudoimplicit( sed_flux_into_this_node, node_vol_capacity, vol_prefactor, dz_prefactor) # note now dz_here may never create more sed than # the out can transport... assert sed_flux_out <= node_vol_capacity, ( 'failed at node '+str(s_in.size-i) + ' with rel sed flux '+str( sed_flux_out/node_capacity)) rel_sed_flux[i] = rel_sed_flux_here vol_pass = sed_flux_out else: rel_sed_flux[i] = 1. vol_dropped = (sed_flux_into_this_node - node_vol_capacity) dz_here = -vol_dropped/cell_area # with the pits, we aim to inhibit incision, but # depo is OK. We have already zero'd any adverse # grads, so sed can make it to the bottom of the # pit but no further in a single step, which seems # raeasonable. Pit should fill. if flood_depth <= 0.: vol_pass = node_vol_capacity else: height_excess = -dz_here - flood_depth # ...above water level if height_excess <= 0.: vol_pass = 0. # dz_here is already correct flooded_depths[i] += dz_here else: dz_here = -flood_depth vol_pass = height_excess * cell_area # ^bit cheeky? flooded_depths[i] = 0. # note we must update flooded depths # transiently to conserve mass # do we need to retain a small downhill slope? # ...don't think so. Will resolve itself on next # timestep. dz[i] -= dz_here sed_into_node[flow_receiver[i]] += vol_pass break_flag = True node_z[grid.core_nodes] += dz[grid.core_nodes] if break_flag: break # do we need to reroute the flow/recalc the slopes here? # -> NO, slope is such a minor component of Diff we'll be OK # BUT could be important not for the stability, but for the # actual calc. So YES. node_S = np.zeros_like(node_S) node_S[core_draining_nodes] = (node_z-node_z[flow_receiver])[ core_draining_nodes]/link_length[core_draining_nodes] internal_t += dt_this_step # still in seconds, remember elif self.Qc == 'power_law': transport_capacity_prefactor_withA = self._Kt * node_A**self._mt erosion_prefactor_withA = self._K_unit_time * node_A**self._m # ^doesn't include S**n*f(Qc/Qc) internal_t = 0. break_flag = False dt_secs = dt*31557600. counter = 0 rel_sed_flux = np.empty_like(node_A) while 1: counter += 1 # print counter downward_slopes = node_S.clip(0.) # positive_slopes = np.greater(downward_slopes, 0.) slopes_tothen = downward_slopes**self._n slopes_tothent = downward_slopes**self._nt transport_capacities = (transport_capacity_prefactor_withA * slopes_tothent) erosion_prefactor_withS = ( erosion_prefactor_withA * slopes_tothen) # no time, no fqs # shear_tothe_a = shear_stress**self._a dt_this_step = dt_secs-internal_t # ^timestep adjustment is made AFTER the dz calc node_vol_capacities = transport_capacities*dt_this_step sed_into_node = np.zeros(grid.number_of_nodes, dtype=float) dz = np.zeros(grid.number_of_nodes, dtype=float) cell_areas = self.cell_areas for i in s_in[::-1]: # work downstream cell_area = cell_areas[i] if flooded_nodes is not None: flood_depth = flooded_depths[i] else: flood_depth = 0. sed_flux_into_this_node = sed_into_node[i] node_capacity = transport_capacities[i] # ^we work in volume flux, not volume per se here node_vol_capacity = node_vol_capacities[i] if flood_depth > 0.: node_vol_capacity = 0. if sed_flux_into_this_node < node_vol_capacity: # ^note incision is forbidden at capacity dz_prefactor = dt_this_step*erosion_prefactor_withS[i] vol_prefactor = dz_prefactor*cell_area (dz_here, sed_flux_out, rel_sed_flux_here, error_in_sed_flux) = \ self.get_sed_flux_function_pseudoimplicit( sed_flux_into_this_node, node_vol_capacity, vol_prefactor, dz_prefactor) # note now dz_here may never create more sed than the # out can transport... assert sed_flux_out <= node_vol_capacity, ( 'failed at node '+str(s_in.size-i) + ' with rel sed flux '+str( sed_flux_out/node_capacity)) rel_sed_flux[i] = rel_sed_flux_here vol_pass = sed_flux_out else: rel_sed_flux[i] = 1. vol_dropped = (sed_flux_into_this_node - node_vol_capacity) dz_here = -vol_dropped/cell_area try: isflooded = flooded_nodes[i] except TypeError: # was None isflooded = False if flood_depth <= 0. and not isflooded: vol_pass = node_vol_capacity # we want flooded nodes which have already been # filled to enter the else statement else: height_excess = -dz_here - flood_depth # ...above water level if height_excess <= 0.: vol_pass = 0. # dz_here is already correct flooded_depths[i] += dz_here else: dz_here = -flood_depth vol_pass = height_excess * cell_area # ^bit cheeky? flooded_depths[i] = 0. dz[i] -= dz_here sed_into_node[flow_receiver[i]] += vol_pass break_flag = True node_z[grid.core_nodes] += dz[grid.core_nodes] if break_flag: break # do we need to reroute the flow/recalc the slopes here? # -> NO, slope is such a minor component of Diff we'll be OK # BUT could be important not for the stability, but for the # actual calc. So YES. node_S = np.zeros_like(node_S) # print link_length[core_draining_nodes] node_S[core_draining_nodes] = (node_z-node_z[flow_receiver])[ core_draining_nodes]/link_length[core_draining_nodes] internal_t += dt_this_step # still in seconds, remember active_nodes = grid.core_nodes if self.return_ch_props: # add the channel property field entries, # 'channel__width', 'channel__depth', and 'channel__discharge' W = self.k_w*node_Q**self._b H = shear_stress/self.rho_g/node_S # ...sneaky! grid.at_node['channel__width'][:] = W grid.at_node['channel__depth'][:] = H grid.at_node['channel__discharge'][:] = node_Q grid.at_node['channel__bed_shear_stress'][:] = shear_stress grid.at_node['channel_sediment__volumetric_transport_capacity'][ :] = transport_capacities grid.at_node['channel_sediment__volumetric_flux'][:] = sed_into_node grid.at_node['channel_sediment__relative_flux'][:] = rel_sed_flux # elevs set automatically to the name used in the function call. self.iterations_in_dt = counter return grid, grid.at_node['topographic__elevation'] def run_one_step(self, dt, flooded_depths=None, **kwds): """Run the component across one timestep increment, dt. Erosion occurs according to the sediment dependent rules specified during initialization. Method is fully equivalent to the :func:`erode` method. Parameters ---------- dt : float (years, only!) Timestep for which to run the component. flooded_depths : array or field name (m) Depths of flooding at each node, zero where no lake. Note that the component will dynamically update this array as it fills nodes with sediment (...but does NOT update any other related lake fields). """ self.erode(dt=dt, flooded_depths=flooded_depths, **kwds) @property @make_return_array_immutable def characteristic_grainsize(self): """Return the characteristic grain size used by the component. Particularly useful if the set_Dchar_from_threshold flag was True at initialization. Returns ------- Dchar : float or array Examples -------- >>> from landlab import RasterModelGrid >>> mg1 = RasterModelGrid((3,4), 1.) >>> thresh_shields = np.arange(1, mg1.number_of_nodes+1, dtype=float) >>> thresh_shields /= 100. >>> sde1 = SedDepEroder(mg1, threshold_shear_stress=100., Qc='MPM', ... Dchar=None, set_threshold_from_Dchar=False, ... set_Dchar_from_threshold=True, ... threshold_Shields=thresh_shields) >>> sde1.characteristic_grainsize array([ 0.59962823, 0.29981412, 0.19987608, 0.14990706, 0.11992565, 0.09993804, 0.08566118, 0.07495353, 0.06662536, 0.05996282, 0.05451166, 0.04996902]) >>> mg2 = RasterModelGrid((3,4), 1.) >>> sde2 = SedDepEroder(mg2, threshold_shear_stress=100., Qc='MPM', ... Dchar=None, set_threshold_from_Dchar=False, ... set_Dchar_from_threshold=True, ... threshold_Shields=None, ... slope_sensitive_threshold=True) >>> S = mg2.add_ones('node', 'topographic__steepest_slope') >>> S *= 0.05 # thresh = 100 Pa @ 5pc slope >>> sde2.characteristic_grainsize # doctest: +NORMALIZE_WHITESPACE array([ 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729, 0.08453729]) """ # Dchar is None means self.lamb_flag, Dchar is spatially variable, # and not calculated until the main loop assert self.Qc == 'MPM', ("Characteristic grainsize is only " + "calculated if Qc == 'MPM'") if self.Dchar_in is not None: return self.Dchar_in else: taustarcrit = 0.15 * self.grid.at_node[ 'topographic__steepest_slope']**0.25 Dchar = self.thresh/(self.g*(self.sed_density - self.fluid_density)*taustarcrit) return Dchar
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metadata builder helper for models built with Keras API. Currently, there are 3 different model-building styles in Keras: sequential, functional and subclassed models. This module supports all 3 different flavors for Tensorflow 1.X. In order to make use of it, a KerasGraphMetadataBuilder should be initialized with a Keras model object and other optional parameters such as session (if using other than Keras' default), serving_inputs (signature definition dictionary if saving the model with this module), etc. The module creates default metadata from given Keras model. Users have the option to supplement input and output metadata with additional configuration parameters using set_* functions. In addition, auxiliary input and output can be added using add_* functions or deleted using remove_* functions. Final metadata can either be fetched as a dictionary using get_metadata function or written to a directory along with the model using save_model_with_metadata function. Example usage is as follows: model = keras.models.Sequential() model.add(keras.layers.Dense(32, activation='relu', input_dim=10)) model.add(keras.layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy') builder = KerasGraphMetadataBuilder(model) builder.save_model_with_metadata("gs://xai/model/keras/") """ from typing import Dict, Text, Optional, List, Any, Set, Union import tensorflow.compat.v1 as tf from explainable_ai_sdk.metadata import parameters from explainable_ai_sdk.metadata.tf.v1 import graph_metadata_builder class KerasGraphMetadataBuilder(graph_metadata_builder.GraphMetadataBuilder): """Class for generating metadata for models built with Keras API.""" def __init__(self, model: tf.keras.Model, outputs_to_explain: Optional[List[tf.Tensor]] = (), session: tf.Session = None, serving_inputs: Optional[Dict[Text, tf.Tensor]] = None, serving_outputs: Optional[Dict[Text, tf.Tensor]] = None, tags: Set[Text] = (tf.saved_model.tag_constants.SERVING,), auto_infer: bool = True, **kwargs): # pytype: disable=annotation-type-mismatch """Initializes a KerasGraphMetadataBuilder object. Args: model: Keras model to write the metadata for. outputs_to_explain: List of output tensors (model.outputs) to explain. Only single output is supported for now. Hence, the list should contain one element. This parameter is required if the model has multiple outputs. session: Optional TF Session, if using a session different than of Keras backend. serving_inputs: A dictionary mapping from serving key to corresponding input tensors. If not provided or empty, added and/or inferred input metadata will be used. serving_outputs: A dictionary mapping from serving key to model outputs. If not provided or empty, added and/or inferred output metadata will be used. tags: The set of tags to annotate the meta graph def with. auto_infer: A boolean flag to indicate whether inputs and outputs should be inferred from the model itself. If set to False, the model's inputs and an output must be provided. **kwargs: Any keyword arguments to be passed to saved model builder's add_meta_graph() function. """ if outputs_to_explain and len(outputs_to_explain) > 1: raise ValueError('"outputs_to_explain" can only contain 1 element.\n' 'Got: %s' % len(outputs_to_explain)) if not outputs_to_explain and len(model.outputs) > 1: raise ValueError('Model has multiple outputs. Please specify which one to' ' explain via "outputs_to_explain" parameter.') self._model = model self._output_tensors = outputs_to_explain self._inputs, self._outputs = {}, {} if auto_infer: self._create_metadata_entries_from_model() self._session = session if session else tf.keras.backend.get_session() self._serving_inputs = serving_inputs self._serving_outputs = serving_outputs self._saved_model_args = kwargs self._tags = tags def _create_metadata_entries_from_model(self): """Creates input and output metadata from models inputs and outputs.""" for model_input in self._model.inputs: self.add_numeric_metadata(model_input, model_input.op.name) for model_output in self._model.outputs: if (not self._output_tensors or model_output.name == self._output_tensors[0].name): self.add_output_metadata(model_output, model_output.op.name) break else: raise ValueError('Provided output is not one of model outputs.') def set_categorical_metadata(self, model_input: tf.Tensor, encoded_layer: tf.keras.layers.Layer, encoding: Text, name: Optional[Text] = None, input_baselines: Optional[List[Any]] = None, encoded_baselines: Optional[List[Any]] = None): """Sets an existing metadata identified by input as categorical with params. Args: model_input: One of model inputs. encoded_layer: Encoded model layer for input layer if it exists. Output of this layer will be used as the encoded tensor. encoding: Encoding type if encoded_layer is provided. Possible values are {identity, bag_of_features, bag_of_features_sparse, indicator, combined_embedding, concat_embedding}. name: Unique friendly name for this feature. input_baselines: A list of baseline values. Each baseline value can be a single entity or of the same shape as the model_input (except for the batch dimension). encoded_baselines: A list of baseline values for encoded layer output. Each baseline value can be a single entity or of the same shape as the encoded tensor (except for the batch dimension). """ self.remove_input_metadata(model_input) self.add_categorical_metadata(model_input, encoded_layer.output, encoding, name, input_baselines, encoded_baselines) def set_numeric_metadata(self, model_input: tf.Tensor, name: Optional[Text] = None, input_baselines: Optional[List[Any]] = None, index_feature_mapping: Optional[List[Any]] = None): """Sets an existing metadata identified by input as numeric with params. Args: model_input: One of model inputs. name: Unique friendly name for this feature. input_baselines: A list of baseline values. Each baseline value can be a single entity or of the same shape as the model_input (except for the batch dimension). index_feature_mapping: A list of feature names for each index in the input tensor. """ self.remove_input_metadata(model_input) self.add_numeric_metadata( model_input, name, input_baselines, index_feature_mapping=index_feature_mapping) def set_text_metadata(self, model_input: tf.Tensor, encoded_layer: tf.keras.layers.Layer, encoding: Text, name: Optional[Text] = None, input_baselines: Optional[List[Any]] = None, encoded_baselines: Optional[List[Any]] = None): """Sets an existing metadata identified by input as text with params. Args: model_input: One of model inputs. encoded_layer: Encoded model layer for input layer if it exists. Output of this layer will be used as the encoded tensor. encoding: Encoding type if encoded_layer is provided. Possible values are {identity, bag_of_features, bag_of_features_sparse, indicator, combined_embedding, concat_embedding}. name: Unique friendly name for this feature. input_baselines: A list of baseline values. Each baseline value can be a single entity or of the same shape as the model_input (except for the batch dimension). encoded_baselines: A list of baseline values for encoded layer output. Each baseline value can be a single entity or of the same shape as the encoded tensor (except for the batch dimension). """ self.remove_input_metadata(model_input) self.add_text_metadata(model_input, encoded_layer.output, encoding, name, input_baselines, encoded_baselines) def set_image_metadata( self, model_input: tf.Tensor, name: Optional[Text] = None, input_baselines: Optional[List[Any]] = None, visualization: Optional[Union[Dict[str, str], parameters.VisualizationParameters]] = None, domain: Optional[parameters.DomainInfo] = None ): """Sets an existing metadata identified by input as image with params. Args: model_input: One of model inputs. name: Unique friendly name for this feature. input_baselines: A list of baseline values. Each baseline value can be a single entity or of the same shape as the model_input (except for the batch dimension). visualization: Either a dictionary of visualization parameters or VisualizationParameters instance. Using VisualizationParameters is recommended instead of a dictionary, which will be deprecated soon. If None, a default visualization config will be selected based on the explanation method (IG/XRAI). domain: DomainInfo object specifying the range of the input feature. """ self.remove_input_metadata(model_input) self.add_image_metadata(model_input, name, input_baselines, visualization, domain) def set_output_metadata(self, model_output: tf.Tensor, name: Optional[Text] = None): """Adds output tensor as output metadata. Args: model_output: Model output to get the explanations for. Needs to be a tensor of float type, such as probabilities, logits. name: Unique friendly name for the output. """ self.remove_output_metadata(model_output) self.add_output_metadata(model_output, name) def remove_input_metadata(self, model_input: tf.Tensor): """Removes a metadata entry identified by the tensor. Args: model_input: Model input to be removed from input metadata entries. """ if model_input.name not in self._inputs: raise ValueError('Input "%s" does not exist.' % model_input.name) del self._inputs[model_input.name] def remove_output_metadata(self, model_output: tf.Tensor): """Removes a metadata entry identified by the tensor. Args: model_output: Model output to be removed from output metadata. """ if model_output.name not in self._outputs: raise ValueError('Output "%s" does not exist.' % model_output.name) del self._outputs[model_output.name]
""" Support for Synology NAS Sensors. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.synologydsm/ """ import logging from datetime import timedelta from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.helpers.entity import Entity from homeassistant.const import ( CONF_HOST, CONF_USERNAME, CONF_PASSWORD, CONF_PORT, CONF_MONITORED_CONDITIONS, TEMP_CELSIUS, EVENT_HOMEASSISTANT_START) from homeassistant.util import Throttle import homeassistant.helpers.config_validation as cv import voluptuous as vol REQUIREMENTS = ['python-synology==0.1.0'] _LOGGER = logging.getLogger(__name__) CONF_DISKS = 'disks' CONF_VOLUMES = 'volumes' DEFAULT_NAME = 'Synology DSM' DEFAULT_PORT = 5000 MIN_TIME_BETWEEN_UPDATES = timedelta(minutes=15) _UTILISATION_MON_COND = { 'cpu_other_load': ['CPU Load (Other)', '%', 'mdi:chip'], 'cpu_user_load': ['CPU Load (User)', '%', 'mdi:chip'], 'cpu_system_load': ['CPU Load (System)', '%', 'mdi:chip'], 'cpu_total_load': ['CPU Load (Total)', '%', 'mdi:chip'], 'cpu_1min_load': ['CPU Load (1 min)', '%', 'mdi:chip'], 'cpu_5min_load': ['CPU Load (5 min)', '%', 'mdi:chip'], 'cpu_15min_load': ['CPU Load (15 min)', '%', 'mdi:chip'], 'memory_real_usage': ['Memory Usage (Real)', '%', 'mdi:memory'], 'memory_size': ['Memory Size', 'Mb', 'mdi:memory'], 'memory_cached': ['Memory Cached', 'Mb', 'mdi:memory'], 'memory_available_swap': ['Memory Available (Swap)', 'Mb', 'mdi:memory'], 'memory_available_real': ['Memory Available (Real)', 'Mb', 'mdi:memory'], 'memory_total_swap': ['Memory Total (Swap)', 'Mb', 'mdi:memory'], 'memory_total_real': ['Memory Total (Real)', 'Mb', 'mdi:memory'], 'network_up': ['Network Up', 'Kbps', 'mdi:upload'], 'network_down': ['Network Down', 'Kbps', 'mdi:download'], } _STORAGE_VOL_MON_COND = { 'volume_status': ['Status', None, 'mdi:checkbox-marked-circle-outline'], 'volume_device_type': ['Type', None, 'mdi:harddisk'], 'volume_size_total': ['Total Size', None, 'mdi:chart-pie'], 'volume_size_used': ['Used Space', None, 'mdi:chart-pie'], 'volume_percentage_used': ['Volume Used', '%', 'mdi:chart-pie'], 'volume_disk_temp_avg': ['Average Disk Temp', None, 'mdi:thermometer'], 'volume_disk_temp_max': ['Maximum Disk Temp', None, 'mdi:thermometer'], } _STORAGE_DSK_MON_COND = { 'disk_name': ['Name', None, 'mdi:harddisk'], 'disk_device': ['Device', None, 'mdi:dots-horizontal'], 'disk_smart_status': ['Status (Smart)', None, 'mdi:checkbox-marked-circle-outline'], 'disk_status': ['Status', None, 'mdi:checkbox-marked-circle-outline'], 'disk_exceed_bad_sector_thr': ['Exceeded Max Bad Sectors', None, 'mdi:test-tube'], 'disk_below_remain_life_thr': ['Below Min Remaining Life', None, 'mdi:test-tube'], 'disk_temp': ['Temperature', None, 'mdi:thermometer'], } _MONITORED_CONDITIONS = list(_UTILISATION_MON_COND.keys()) + \ list(_STORAGE_VOL_MON_COND.keys()) + \ list(_STORAGE_DSK_MON_COND.keys()) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_MONITORED_CONDITIONS): vol.All(cv.ensure_list, [vol.In(_MONITORED_CONDITIONS)]), vol.Optional(CONF_DISKS, default=None): cv.ensure_list, vol.Optional(CONF_VOLUMES, default=None): cv.ensure_list, }) def setup_platform(hass, config, add_devices_callback, discovery_info=None): """Setup the Synology NAS Sensor.""" # pylint: disable=too-many-locals def run_setup(event): """Wait until HASS is fully initialized before creating. Delay the setup until Home Assistant is fully initialized. This allows any entities to be created already """ # Setup API api = SynoApi(config.get(CONF_HOST), config.get(CONF_PORT), config.get(CONF_USERNAME), config.get(CONF_PASSWORD), hass.config.units.temperature_unit) sensors = [SynoNasUtilSensor(api, variable, _UTILISATION_MON_COND[variable]) for variable in config[CONF_MONITORED_CONDITIONS] if variable in _UTILISATION_MON_COND] # Handle all Volumes volumes = config['volumes'] if volumes is None: volumes = api.storage.volumes for volume in volumes: sensors += [SynoNasStorageSensor(api, variable, _STORAGE_VOL_MON_COND[variable], volume) for variable in config[CONF_MONITORED_CONDITIONS] if variable in _STORAGE_VOL_MON_COND] # Handle all Disks disks = config['disks'] if disks is None: disks = api.storage.disks for disk in disks: sensors += [SynoNasStorageSensor(api, variable, _STORAGE_DSK_MON_COND[variable], disk) for variable in config[CONF_MONITORED_CONDITIONS] if variable in _STORAGE_DSK_MON_COND] add_devices_callback(sensors) # Wait until start event is sent to load this component. hass.bus.listen_once(EVENT_HOMEASSISTANT_START, run_setup) class SynoApi(): """Class to interface with API.""" # pylint: disable=too-many-arguments, bare-except def __init__(self, host, port, username, password, temp_unit): """Constructor of the API wrapper class.""" from SynologyDSM import SynologyDSM self.temp_unit = temp_unit try: self._api = SynologyDSM(host, port, username, password) except: _LOGGER.error("Error setting up Synology DSM") # Will be updated when `update` gets called. self.utilisation = self._api.utilisation self.storage = self._api.storage @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Update function for updating api information.""" self._api.update() class SynoNasSensor(Entity): """Representation of a Synology Nas Sensor.""" def __init__(self, api, variable, variableInfo, monitor_device=None): """Initialize the sensor.""" self.var_id = variable self.var_name = variableInfo[0] self.var_units = variableInfo[1] self.var_icon = variableInfo[2] self.monitor_device = monitor_device self._api = api @property def name(self): """Return the name of the sensor, if any.""" if self.monitor_device is not None: return "{} ({})".format(self.var_name, self.monitor_device) else: return self.var_name @property def icon(self): """Icon to use in the frontend, if any.""" return self.var_icon @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" if self.var_id in ['volume_disk_temp_avg', 'volume_disk_temp_max', 'disk_temp']: return self._api.temp_unit else: return self.var_units def update(self): """Get the latest data for the states.""" if self._api is not None: self._api.update() class SynoNasUtilSensor(SynoNasSensor): """Representation a Synology Utilisation Sensor.""" @property def state(self): """Return the state of the sensor.""" network_sensors = ['network_up', 'network_down'] memory_sensors = ['memory_size', 'memory_cached', 'memory_available_swap', 'memory_available_real', 'memory_total_swap', 'memory_total_real'] if self.var_id in network_sensors or self.var_id in memory_sensors: attr = getattr(self._api.utilisation, self.var_id)(False) if self.var_id in network_sensors: return round(attr / 1024.0, 1) elif self.var_id in memory_sensors: return round(attr / 1024.0 / 1024.0, 1) else: return getattr(self._api.utilisation, self.var_id) class SynoNasStorageSensor(SynoNasSensor): """Representation a Synology Utilisation Sensor.""" @property def state(self): """Return the state of the sensor.""" temp_sensors = ['volume_disk_temp_avg', 'volume_disk_temp_max', 'disk_temp'] if self.monitor_device is not None: if self.var_id in temp_sensors: attr = getattr(self._api.storage, self.var_id)(self.monitor_device) if self._api.temp_unit == TEMP_CELSIUS: return attr else: return round(attr * 1.8 + 32.0, 1) else: return getattr(self._api.storage, self.var_id)(self.monitor_device)
import random import math import benchmarkFunctions import copy NUM_DIMENSIONS = 20 NUM_ITERATIONS = 1000 POPULATION_SIZE = 50 START_EXPLOTATION = 600 random_range_value = 1 INERTIA_NEIGHBORS = 0.9 INERTIA_FOOD = 0.9 CT = 0.5 N_MAX = 0.02 FORAGING_SPEED = 0.02 DIFUSION_SPEED = 0.005 EPSILON = 10**-5 CONVERGENCE_PRECISION = 10**-3 X_MAX = 32 X_MIN = -32 Y_MAX = 32 Y_MIN = -32 fitness = benchmarkFunctions.ackley kbest = 10**9 kworst = 0 SOLUTION_FOUND_ITERATIONS = list() CONVERGENT_EXECS = 0 CONVERGENT_INDIVIDUALS = list() ALL_SOLVED_ITERATIONS = list() INDIVIDUALS_FITNESS = list() KBEST_FITNESS = list() # individual representation, (self, self_historical_best, old_N, old_F) def generate_population(): population = list() for i in range(POPULATION_SIZE): genome = list() for s in range(NUM_DIMENSIONS): individual = random.uniform(X_MIN, X_MAX); genome.append(individual) population.append((genome, genome, zero_vector(NUM_DIMENSIONS), zero_vector(NUM_DIMENSIONS))) return population def generate_population_branin(): population = list() for i in range(POPULATION_SIZE): genome = list() individual1 = random.uniform(X_MIN, X_MAX) individual2 = random.uniform(Y_MIN, Y_MAX) genome.extend([individual1, individual2]) population.append((genome, genome, zero_vector(NUM_DIMENSIONS), zero_vector(NUM_DIMENSIONS))) return population ##### # Auxliar Functions ### def make_rand_vector(dims): vec = [random.uniform(-random_range_value, random_range_value) for i in range(dims)] return [x for x in vec] def zero_vector(dims): return [0 for i in range(dims)] def norm(vector): return math.sqrt(sum(map(lambda x : x**2, vector))) def vector_diff(vector1, vector2): return [x_i - x_j for x_i, x_j in zip(vector1, vector2)] def vector_sum(vector1, vector2): return [x_i + x_j for x_i, x_j in zip(vector1, vector2)] def vector_constant_product(vector1, constant): return [x_i * constant for x_i in vector1] def distance(v1, v2): return norm(vector_diff(v1,v2)) ##### # Random Difusion ### def random_difusion(iteration): return vector_constant_product(make_rand_vector(NUM_DIMENSIONS), DIFUSION_SPEED * (1 - 3*iteration/NUM_ITERATIONS)) ##### # Ni ### def k_hat(ki, kj): global kworst global kbest return (ki - kj) / (kworst - kbest) def x_hat(xi, xj): diff = vector_diff(xj,xi) norm_diff = norm(diff) return [float(x)/(norm_diff + EPSILON) for x in diff] def k_x_hat_product(krill_i,krill_j,fitness_i, fitness_j): return vector_constant_product(x_hat(krill_i, krill_j), k_hat(fitness_i, fitness_j)) def alfa_local(krill, krill_fit, population, population_fitness): (neighbors, neighbors_fit) = find_neighbors(krill, population, population_fitness) # print "num neighbors:" +str(len(neighbors)) # print "neighbors:" +str(neighbors) sum_vec = zero_vector(NUM_DIMENSIONS) for idx, value in enumerate(neighbors): sum_vec = vector_sum(sum_vec, k_x_hat_product(krill, value, krill_fit, neighbors_fit[idx])) return sum_vec def find_neighbors(krill, population, population_fitness): ds = sensing_distance(krill,population) # print "sensing_distance: " + str(ds) neighbors = list() neighbors_fit = list() for idx, x in enumerate(population): individual_i = x[0] distance_i = distance(krill,individual_i) # print distance_i if(individual_i != krill and distance_i <= ds): neighbors.append(x[0]) neighbors_fit.append(population_fitness[idx]) return (neighbors, neighbors_fit) def sensing_distance(krill, population): val1 = sum(map(lambda x : distance(x[0], krill), population)) # print val1 return float(val1)/(POPULATION_SIZE*5) def alfa_target(krill, krill_fit, best, best_fit, iteration): cbest = C_best(iteration) return vector_constant_product(k_x_hat_product(krill, best, krill_fit, best_fit), cbest) def alfa(krill, krill_fit, best, population, population_fitness, iteration): best_fit = fitness(best) local = alfa_local(krill, krill_fit, population, population_fitness) target = alfa_target(krill, krill_fit, best, best_fit, iteration) # print "local: "+ str(local) # print "target: "+ str(target) return vector_sum(local,target) def C_best(iteration): return 2 * (random.uniform(0,1) + float(iteration)/NUM_ITERATIONS) def neighbors_induced_mov(krill, krill_fit, best, population, population_fitness, old_N, iteration): return vector_sum(vector_constant_product(alfa(krill, krill_fit, best, population, population_fitness, iteration), N_MAX), vector_constant_product(old_N, INERTIA_NEIGHBORS)) ##### # Fi ### def food_position(population, population_fitness): sum_denominator = 0 sum_numerator = zero_vector(len(population[0][0])) for idx, krill in enumerate(population): fit_weight = 1.0/population_fitness[idx] sum_numerator = vector_sum(sum_numerator, vector_constant_product(krill[0],fit_weight)) sum_denominator += fit_weight return vector_constant_product(sum_numerator, 1/sum_denominator) def beta_food(krill, krill_fit, food_pos, iteration): # print (food_pos) food_fit = fitness(food_pos) return vector_constant_product(k_x_hat_product(krill, food_pos, krill_fit, food_fit), C_food(iteration)) def C_food(iteration): return 2*(1 - float(iteration)/NUM_ITERATIONS) def beta(krill, krill_fit, krill_best, x_food, population, population_fitness, iteration): return vector_sum( beta_food(krill, krill_fit, x_food, iteration), k_x_hat_product(krill, krill_best, krill_fit, fitness(krill_best))) def food_induced_mov(krill, krill_fit, krill_best, x_food, population, population_fitness, old_F, iteration): return vector_sum(vector_constant_product(beta(krill, krill_fit, krill_best, x_food, population, population_fitness, iteration), FORAGING_SPEED), vector_constant_product(old_F, INERTIA_FOOD)) ##### # Movement ### def dX_dt(krill, krill_fit, krill_best, best, x_food, population, population_fitness, old_N, old_F, iteration): Ni = neighbors_induced_mov(krill, krill_fit, best, population, population_fitness, old_N, iteration) # print Ni Fi = food_induced_mov(krill, krill_fit, krill_best, x_food, population, population_fitness, old_F, iteration) Di = random_difusion(iteration) return (vector_sum(vector_sum(Ni,Fi),Di), Ni, Fi) def move(krill, delta_t, delta_move): return vector_sum( krill,vector_constant_product(delta_move, delta_t)) def select_best_krill(population): min_krill = population[0] min_fitness = 10**9 population_fitness = list() for x in population: curr_fit = fitness(x[0]) population_fitness.append(curr_fit) if min_fitness > curr_fit: min_krill = x min_fitness = curr_fit return (min_krill,population_fitness) def delta_t(population, explore): sumi = 0 lower_bound = copy.copy(population[0][0]) upper_bound = copy.copy(population[0][0]) c_t = CT if not explore: c_t /= 2 lower_bound = copy.copy(population[0][0]) upper_bound = copy.copy(population[0][0]) for x in population: for xi in range(NUM_DIMENSIONS): if lower_bound[xi] > x[0][xi]: lower_bound[xi] = x[0][xi] if upper_bound[xi] < x[0][xi]: upper_bound[xi] = x[0][xi] meanU = list() for x in range(NUM_DIMENSIONS): if not explore: meanU.append(2*(upper_bound[x] - lower_bound[x])) else: meanU.append(X_MAX - X_MIN) # list.sort(meanU) # print(meanU) return c_t * sum(meanU) def delta_t_branin(population, explore): sumi = 0 lower_bound = copy.copy(population[0][0]) upper_bound = copy.copy(population[0][0]) c_t = CT if not explore: c_t /= 2 lower_bound = copy.copy(population[0][0]) upper_bound = copy.copy(population[0][0]) for x in population: for xi in range(NUM_DIMENSIONS): if lower_bound[xi] > x[0][xi]: lower_bound[xi] = x[0][xi] if upper_bound[xi] < x[0][xi]: upper_bound[xi] = x[0][xi] meanU = list() if not explore: meanU.append(2*(upper_bound[x] - lower_bound[x])) meanU.append(2*(upper_bound[x] - lower_bound[x])) else: meanU.append(X_MAX - X_MIN) meanU.append(Y_MAX - Y_MIN) return c_t * sum(meanU) def check_for_solution(population): solutions = 0 for x in population: if abs(fitness(x[1])) < CONVERGENCE_PRECISION: solutions += 1 return solutions def evolve(): global CONVERGENT_EXECS global kworst global kbest global INERTIA_NEIGHBORS global FORAGING_SPEED movement_vector = list() population = generate_population() krill = population[0] solved = False i = 0 best_change_iterations = 0 INERTIA_NEIGHBORS = 0.9 INERTIA_FOOD = 0.9 kworst = 0 kbest = 10**9 benchmarkFunctions.FUNCTION_EVALUATION = 0 while i < NUM_ITERATIONS: i += 1 (best_krill, population_fitness) = select_best_krill(population) x_food = food_position(population, population_fitness) new_population = list() iteration_min_fit = min(population_fitness) iteration_max_fit = max(population_fitness) if kworst < iteration_max_fit: kworst = iteration_max_fit if kbest > iteration_min_fit: kbest = iteration_min_fit best_change_iterations = 0 DIFUSION_SPEED = 0.005 else: best_change_iterations += 1 INERTIA_NEIGHBORS = 0.1 + 0.8 * (1 - i/NUM_ITERATIONS) INERTIA_FOOD = 0.1 + 0.8 * (1 - i/NUM_ITERATIONS) print "iteration "+ str(i)+ ": kworst = "+ str(kworst)+ " | kbest = "+ str(kbest) isExploration = int(i/50)%2 == 0 print isExploration dt = delta_t(population, isExploration) flag_test = False if best_change_iterations > 20: best_change_iterations = 0 DIFUSION_SPEED *= 10 flag_test = True; if i > 500: dt /= 3 # if i > 750: # dt /= 3 print dt for idx, krill in enumerate(population): krill_best = krill[1] (movement_vector, new_N, new_F) = dX_dt(krill[0], population_fitness[idx], krill_best, best_krill[0], x_food ,population, population_fitness, krill[2], krill[3],i) new_krill_position = vector_sum(krill[0] ,vector_constant_product(movement_vector, dt)) if fitness(new_krill_position) < fitness(krill_best): krill_best = new_krill_position new_population.append((new_krill_position, krill_best, new_N, new_F)); population = new_population print "########################" global DIFUSION_SPEED if flag_test: flag_test = False DIFUSION_SPEED = 0.005 # print population solutions = check_for_solution(new_population) CONVERGENT_INDIVIDUALS.append(solutions) SOLUTION_FOUND_ITERATIONS.append(i) print SOLUTION_FOUND_ITERATIONS kbest_fit = map(lambda x: fitness(x[1]), population) mean_pop_fitness = mean(kbest_fit) KBEST_FITNESS.append(min(kbest_fit)) INDIVIDUALS_FITNESS.append(mean_pop_fitness) print "best "+ str(population[kbest_fit.index(min(kbest_fit))][1]) print "Population fitness: " + str(mean_pop_fitness) print "Convergent individuals: " + str(solutions) if solutions > 0: solved = True CONVERGENT_EXECS+=1 print "Solution found after " + str(i) + " iterations" else: print "Solution not found!" def mean(list_items): return sum(list_items)/float(len(list_items)) def std_dev(list_items, mean_items): variance_list = map(lambda x : pow(x-mean_items, 2), list_items) return math.sqrt(sum(variance_list)/float(len(list_items))) def initialize_function(benchmark_params, dims): global fitness global X_MIN global X_MAX global CONVERGENCE_PRECISION global NUM_DIMENSIONS fitness = benchmark_params[0] if dims==None: NUM_DIMENSIONS = benchmark_params[1] else: NUM_DIMENSIONS = dims CONVERGENCE_PRECISION = benchmark_params[2] X_MIN = benchmark_params[3] X_MAX = benchmark_params[4] if fitness == benchmarkFunctions.branin: global Y_MIN global Y_MAX global generate_population global delta_t Y_MIN = benchmark_params[5] Y_MAX = benchmark_params[6] generate_population = generate_population_branin delta_t = delta_t_branin def main(num_of_trials, function_params, dims = None): initialize_function(function_params, dims) print CONVERGENCE_PRECISION print NUM_DIMENSIONS print X_MAX print X_MIN print Y_MAX print Y_MIN for i in range(num_of_trials): print "Execution " + str(i+1) evolve() print "" mean_iterations = mean(SOLUTION_FOUND_ITERATIONS) mean_fitness = mean(INDIVIDUALS_FITNESS) mean_individuals = mean(CONVERGENT_INDIVIDUALS) print "Convergent executions: " + str(CONVERGENT_EXECS) print "Mean of iterations: " + str(mean_iterations) # print "Std of iterations: " + str(std_dev(SOLUTION_FOUND_ITERATIONS, mean_iterations)) print "Mean of fitness: " + str(mean_fitness) print "Std of fitness: " + str(std_dev(INDIVIDUALS_FITNESS, mean_fitness)) print "Mean of convergent indivs: " + str(mean_individuals) print "Std of convergent indivs: " + str(std_dev(CONVERGENT_INDIVIDUALS, mean_individuals)) print "Best solution found " + str(min(KBEST_FITNESS)) print "Mean solution found " + str(mean(KBEST_FITNESS)) # print "Mean of total convergence iterations: " + str(mean_iter_total) #print "ACKLEY" #main(5, benchmarkFunctions.ACKLEY()) #print "GRIEWANK" #main(5, benchmarkFunctions.GRIEWANK()) #print "RASTRIGIN" #main(5, benchmarkFunctions.RASTRIGIN()) #print "ROSENBROCK" #main(5, benchmarkFunctions.ROSENBROCK()) #print "SCHEWEFEL 226" #main(5, benchmarkFunctions.SCHWEFEL226()) #print "SCHEWEFEL 222" #main(5, benchmarkFunctions.SCHWEFEL222()) #print "SPHERE" #main(5, benchmarkFunctions.SPHERE()) print "BRANIN" main(5, benchmarkFunctions.BRANIN()) print "ALPINE" main(5, benchmarkFunctions.ALPINE())
# encoding: utf-8 """ supervisor.py Created by Thomas Mangin on 2011-11-29. Copyright (c) 2011-2013 Exa Networks. All rights reserved. """ import os import sys import signal import traceback from socket import has_ipv6 from .util.pid import PID from .util.daemon import Daemon from .util.alarm import alarm_thread from .reactor.content.manager import ContentManager from .reactor.client.manager import ClientManager from .reactor.resolver.manager import ResolverManager from .network.async import Poller from .network.server import Server from .html.page import Page from .monitor import Monitor from .reactor import Reactor from .reactor.redirector import fork_redirector from .reactor.redirector import redirector_message_thread from .configuration import load from exaproxy.util.log.logger import Logger from exaproxy.util.log.writer import SysLogWriter from exaproxy.util.log.writer import UsageWriter from exaproxy.util.interfaces import getifaddrs,AF_INET,AF_INET6 class Supervisor (object): alarm_time = 0.1 # regular backend work second_frequency = int(1/alarm_time) # when we record history minute_frequency = int(60/alarm_time) # when we want to average history increase_frequency = int(5/alarm_time) # when we add workers decrease_frequency = int(60/alarm_time) # when we remove workers saturation_frequency = int(20/alarm_time) # when we report connection saturation interface_frequency = int(300/alarm_time) # when we check for new interfaces # import os # clear = [hex(ord(c)) for c in os.popen('clear').read()] # clear = ''.join([chr(int(c,16)) for c in ['0x1b', '0x5b', '0x48', '0x1b', '0x5b', '0x32', '0x4a']]) def __init__ (self,configuration): self.configuration = configuration # Only here so the introspection code can find them self.log = Logger('supervisor', configuration.log.supervisor) self.log.error('Starting exaproxy version %s' % configuration.proxy.version) self.signal_log = Logger('signal', configuration.log.signal) self.log_writer = SysLogWriter('log', configuration.log.destination, configuration.log.enable, level=configuration.log.level) self.usage_writer = UsageWriter('usage', configuration.usage.destination, configuration.usage.enable) sys.exitfunc = self.log_writer.writeMessages self.log_writer.setIdentifier(configuration.daemon.identifier) #self.usage_writer.setIdentifier(configuration.daemon.identifier) if configuration.debug.log: self.log_writer.toggleDebug() self.usage_writer.toggleDebug() self.log.error('python version %s' % sys.version.replace(os.linesep,' ')) self.log.debug('starting %s' % sys.argv[0]) self.pid = PID(self.configuration) self.daemon = Daemon(self.configuration) self.poller = Poller(self.configuration.daemon) self.poller.setupRead('read_proxy') # Listening proxy sockets self.poller.setupRead('read_web') # Listening webserver sockets self.poller.setupRead('read_icap') # Listening icap sockets self.poller.setupRead('read_redirector') # Pipes carrying responses from the redirector process self.poller.setupRead('read_resolver') # Sockets currently listening for DNS responses self.poller.setupRead('read_client') # Active clients self.poller.setupRead('opening_client') # Clients we have not yet read a request from self.poller.setupWrite('write_client') # Active clients with buffered data to send self.poller.setupWrite('write_resolver') # Active DNS requests with buffered data to send self.poller.setupRead('read_download') # Established connections self.poller.setupWrite('write_download') # Established connections we have buffered data to send to self.poller.setupWrite('opening_download') # Opening connections self.poller.setupRead('read_interrupt') # Scheduled events self.poller.setupRead('read_control') # Responses from commands sent to the redirector process self.monitor = Monitor(self) self.page = Page(self) self.content = ContentManager(self,configuration) self.client = ClientManager(self.poller, configuration) self.resolver = ResolverManager(self.poller, self.configuration, configuration.dns.retries*10) self.proxy = Server('http proxy',self.poller,'read_proxy', configuration.http.connections) self.web = Server('web server',self.poller,'read_web', configuration.web.connections) self.icap = Server('icap server',self.poller,'read_icap', configuration.icap.connections) self._shutdown = True if self.daemon.filemax == 0 else False # stop the program self._softstop = False # stop once all current connection have been dealt with self._reload = False # unimplemented self._toggle_debug = False # start logging a lot self._decrease_spawn_limit = 0 self._increase_spawn_limit = 0 self._refork = False # unimplemented self._pdb = False # turn on pdb debugging self._listen = None # listening change ? None: no, True: listen, False: stop listeing self.wait_time = 5.0 # how long do we wait at maximum once we have been soft-killed self.local = set() # what addresses are on our local interfaces if not self.initialise(): self._shutdown = True elif self.daemon.drop_privileges(): self.log.critical('Could not drop privileges to \'%s\'. Refusing to run as root' % self.daemon.user) self.log.critical('Set the environment value USER to change the unprivileged user') self._shutdown = True # fork the redirector process before performing any further setup redirector = fork_redirector(self.poller, self.configuration) # use simple blocking IO for communication with the redirector process self.redirector = redirector_message_thread(redirector) # NOTE: create threads _after_ all forking is done # regularly interrupt the reactor for maintenance self.interrupt_scheduler = alarm_thread(self.poller, self.alarm_time) self.reactor = Reactor(self.configuration, self.web, self.proxy, self.icap, self.redirector, self.content, self.client, self.resolver, self.log_writer, self.usage_writer, self.poller) self.interfaces() signal.signal(signal.SIGQUIT, self.sigquit) signal.signal(signal.SIGINT, self.sigterm) signal.signal(signal.SIGTERM, self.sigterm) # signal.signal(signal.SIGABRT, self.sigabrt) # signal.signal(signal.SIGHUP, self.sighup) signal.signal(signal.SIGTRAP, self.sigtrap) signal.signal(signal.SIGUSR1, self.sigusr1) signal.signal(signal.SIGUSR2, self.sigusr2) signal.signal(signal.SIGTTOU, self.sigttou) signal.signal(signal.SIGTTIN, self.sigttin) # make sure we always have data in history # (done in zero for dependencies reasons) if self._shutdown is False: self.redirector.requestStats() command, control_data = self.redirector.readResponse() stats_data = control_data if command == 'STATS' else None stats = self.monitor.statistics(stats_data) ok = self.monitor.zero(stats) if ok: self.redirector.requestStats() else: self._shutdown = True def exit (self): sys.exit() def sigquit (self,signum, frame): if self._softstop: self.signal_log.critical('multiple SIG INT received, shutdown') self._shutdown = True else: self.signal_log.critical('SIG INT received, soft-stop') self._softstop = True self._listen = False def sigterm (self,signum, frame): self.signal_log.critical('SIG TERM received, shutdown request') if os.environ.get('PDB',False): self._pdb = True else: self._shutdown = True # def sigabrt (self,signum, frame): # self.signal_log.info('SIG INFO received, refork request') # self._refork = True # def sighup (self,signum, frame): # self.signal_log.info('SIG HUP received, reload request') # self._reload = True def sigtrap (self,signum, frame): self.signal_log.critical('SIG TRAP received, toggle debug') self._toggle_debug = True def sigusr1 (self,signum, frame): self.signal_log.critical('SIG USR1 received, decrease worker number') self._decrease_spawn_limit += 1 def sigusr2 (self,signum, frame): self.signal_log.critical('SIG USR2 received, increase worker number') self._increase_spawn_limit += 1 def sigttou (self,signum, frame): self.signal_log.critical('SIG TTOU received, stop listening') self._listen = False def sigttin (self,signum, frame): self.signal_log.critical('SIG IN received, star listening') self._listen = True def interfaces (self): local = { '127.0.0.1', '::1' } for interface in getifaddrs(): if interface.family not in (AF_INET,AF_INET6): continue if interface.address not in self.local: self.log.info('found new local ip %s (%s)' % (interface.address,interface.name)) local.add(interface.address) for ip in self.local: if ip not in local: self.log.info('removed local ip %s' % ip) if local == self.local: self.log.info('no ip change') else: self.local = local def run (self): count_second = 0 count_minute = 0 count_saturation = 0 count_interface = 0 events = {'read_interrupt'} while True: count_second = (count_second + 1) % self.second_frequency count_minute = (count_minute + 1) % self.minute_frequency count_saturation = (count_saturation + 1) % self.saturation_frequency count_interface = (count_interface + 1) % self.interface_frequency try: if self._pdb: self._pdb = False import pdb pdb.set_trace() # prime the alarm if 'read_interrupt' in events: self.interrupt_scheduler.setAlarm() # check for IO change with select status, events = self.reactor.run() # shut down the server if a child process disappears if status is False: self._shutdown = True # respond to control responses immediately if 'read_control' in events: command, control_data = self.redirector.readResponse() if command == 'STATS': ok = self.doStats(count_second, count_minute, control_data) if ok is False: self._shutdown = True # jump straight back into the reactor if we haven't yet received an # interrupt event if 'read_interrupt' not in events: continue # clear the alarm condition self.interrupt_scheduler.acknowledgeAlarm() # must follow the reactor so we are sure to go through the reactor at least once # and flush any logs if self._shutdown: self._shutdown = False self.shutdown() break elif self._reload: self._reload = False self.reload() elif self._refork: self._refork = False self.signal_log.warning('refork not implemented') # stop listening to new connections # refork the program (as we have been updated) # just handle current open connection # ask the redirector process for stats self.redirector.requestStats() if self._softstop: if self._listen == False: self.proxy.rejecting() self._listen = None if self.client.softstop(): self._shutdown = True # only change listening if we are not shutting down elif self._listen is not None: if self._listen: self._shutdown = not self.proxy.accepting() self._listen = None else: self.proxy.rejecting() self._listen = None if self._toggle_debug: self._toggle_debug = False self.log_writer.toggleDebug() if self._decrease_spawn_limit: count = self._decrease_spawn_limit self.redirector.decreaseSpawnLimit(count) self._decrease_spawn_limit = 0 if self._increase_spawn_limit: count = self._increase_spawn_limit self.redirector.increaseSpawnLimit(count) self._increase_spawn_limit = 0 # cleanup idle connections # TODO: track all idle connections, not just the ones that have never sent data expired = self.reactor.client.expire() if expired: self.proxy.notifyClose(None, count=expired) # report if we saw too many connections if count_saturation == 0: self.proxy.saturation() self.web.saturation() if self.configuration.daemon.poll_interfaces and count_interface == 0: self.interfaces() except KeyboardInterrupt: self.log.critical('^C received') self._shutdown = True except OSError,e: # This shoould never happen as we are limiting how many connections we accept if e.errno == 24: # Too many open files self.log.critical('Too many opened files, shutting down') for line in traceback.format_exc().split('\n'): self.log.critical(line) self._shutdown = True else: self.log.critical('unrecoverable io error') for line in traceback.format_exc().split('\n'): self.log.critical(line) self._shutdown = True finally: pass # try: # from exaproxy.leak import objgraph # if objgraph: # count += 1 # if count >= 30: # print "*"*10, time.strftime('%d-%m-%Y %H:%M:%S') # print objgraph.show_most_common_types(limit=20) # print "*"*10 # print # except KeyboardInterrupt: # self.log.info('^C received') # self._shutdown = True def doStats (self, count_second, count_minute, stats_data): # parse the data we were sent stats = self.monitor.statistics(stats_data) # save our monitoring stats if count_second == 0: ok = self.monitor.second(stats) else: ok = True expired = 0 if ok is True and count_minute == 0: ok = self.monitor.minute(stats) return ok def initialise (self): self.daemon.daemonise() self.pid.save() # only start listening once we know we were able to fork our worker processes tcp4 = self.configuration.tcp4 tcp6 = self.configuration.tcp6 icap = self.configuration.icap if not has_ipv6 and (tcp6.listen or tcp6.out or icap.ipv6): tcp6.listen = False tcp6.out = False self.log.critical('your python interpreter does not have ipv6 support !') out = bool(tcp4.out or tcp6.out) if not out: self.log.critical('we need to use IPv4 or IPv6 for outgoing connection - both can not be disabled !') listen = bool(tcp4.listen or tcp6.listen) or bool(icap.host or icap.ipv6) if not listen: self.log.critical('Not listening on either IPv4 or IPv6.') ok = out and listen if ok and tcp4.listen: s = self.proxy.listen(tcp4.host,tcp4.port, tcp4.timeout, tcp4.backlog) ok = bool(s) if not ok: self.log.critical('IPv4 proxy, unable to listen on %s:%s' % (tcp4.host,tcp4.port)) if ok and tcp6.listen: s = self.proxy.listen(tcp6.host,tcp6.port, tcp6.timeout, tcp6.backlog) ok = bool(s) if not ok: self.log.critical('IPv6 proxy, unable to listen on %s:%s' % (tcp6.host,tcp6.port)) if ok and icap.enable: s = self.icap.listen(icap.host, icap.port, tcp4.timeout, tcp4.backlog) ok = bool(s) if not ok: self.log.critical('ICAP server, unable to listen on %s:%s' % (icap.host, icap.port)) if ok and icap.enable and tcp6.listen: s = self.icap.listen(icap.ipv6, icap.port, tcp4.timeout, tcp4.backlog) ok = bool(s) if not ok: self.log.critical('ICAP server, unable to listen on %s:%s' % (icap.host, icap.port)) if ok and self.configuration.web.enable: s = self.web.listen(self.configuration.web.host,self.configuration.web.port, 10, 10) ok = bool(s) if not ok: self.log.critical('internal web server, unable to listen on %s:%s' % (self.configuration.web.host, self.configuration.web.port)) return ok def shutdown (self): """terminate all the current BGP connections""" self.log.info('Performing shutdown') try: self.web.stop() # accept no new web connection self.proxy.stop() # accept no new proxy connections self.redirector.stop() # shut down redirector children self.content.stop() # stop downloading data self.client.stop() # close client connections self.pid.remove() self.interrupt_scheduler.stop() except KeyboardInterrupt: self.log.info('^C received while shutting down. Exiting immediately because you insisted.') sys.exit() def reload (self): self.log.info('Performing reload of exaproxy %s' % self.configuration.proxy.version) self.redirector.respawn()
import json import itertools import rtree import requests from parse import search from geomet import wkt from datetime import datetime, timedelta from functools import partial, lru_cache import pyproj import numpy as np from time import time import logging from shapely.geometry import shape, mapping, box from shapely.geometry.polygon import Polygon from shapely.geometry.multipolygon import MultiPolygon from shapely.geometry.collection import GeometryCollection from shapely.geometry.point import Point from shapely.ops import unary_union, transform __all__ = ['json2ogr', 'ogr2json', 'dissolve', 'intersect', 'project_local', 'project_global', 'buffer_to_dist', 'get_area', 'get_area_percent', 'esri_server2ogr', 'get_species_count', 'esri_server2histo', 'esri_count_groupby', 'cartodb2ogr', 'esri_count_30days', 'esri_last_instance', 'erase', 'get_date_from_timestamp', 'get_feature_count', 'test_ip', 'esri_attributes', 'get_presence', 'get_histo_loss_area', 'get_histo_pre2001_area', 'get_histo_total_area', 'get_area_by_attributes', 'get_geom_by_attributes', 'pad_counts', 'vals_by_year', 'split', 'split_features', 'get_counts_by_year', 'get_count_by_year', 'combine_counts_by_year', 'get_ok'] HA_CONVERSION = 10000 FEATURE_GEOG_THRESHOLD = 1.2 REQUEST_GEOG_THRESHOLD = 20 REQUEST_COORD_THRESHOLD = 20000 FUNCTION_COUNT = 0 def get_ok(): return 'ok' def test_ip(): return requests.get('http://checkip.amazonaws.com').text.replace('\n', '') def json2ogr(in_json): ''' Convert geojson object to GDAL geometry ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION json2ogr STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if isinstance(in_json, str): in_json = json.loads(in_json) if not isinstance(in_json, dict): raise ValueError('input json must be dictionary') if 'features' not in in_json.keys(): raise ValueError('input json must contain features property') for f in in_json['features']: f['geometry'] = shape(f['geometry']) if not f['geometry'].is_valid: f['geometry'] = f['geometry'].buffer(0) for i in range(len(in_json['features'])): in_json['features'][i]['properties']['id'] = i # logging.info('FUNCTION json2ogr STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return in_json def ogr2json(featureset): ''' Convert GDAL geometry to geojson object ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION ogr2json STEP {} START'.format(FUNCTION_COUNT)) t0 = time() new_features = [] for f in featureset['features']: new_features.append(dict(geometry=mapping(f['geometry']), properties=f['properties'], type=f['type'])) # f['geometry'] = mapping(f['geometry']) new_featureset = dict(type=featureset['type'], features=new_features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION ogr2json STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return json.dumps(new_featureset) def explode(coords): """Explode a GeoJSON geometry's coordinates object and yield coordinate tuples. As long as the input is conforming, the type of the geometry doesn't matter. https://gis.stackexchange.com/questions/90553/fiona-get-each-feature- extent-bounds""" for e in coords: if isinstance(e, (float, int)): yield coords break else: for f in explode(e): yield f def bounds(f): if isinstance(f['geometry'], dict): geom = f['geometry']['coordinates'] else: try: geom = mapping(f['geometry'])['coordinates'] except Exception as e: raise ValueError((str(e),f['geometry'],mapping(f['geometry']))) x, y = zip(*list(explode(geom))) return min(x), min(y), max(x), max(y) def bbox(f): tups = mapping(box(*bounds(f)))['coordinates'] return [[list(tup) for tup in tups[0]]] def ogr2rings(f): return [[list(tup) for tup in mapping(f['geometry'])['coordinates'][0]]] # @lru_cache(5) def esri_server2ogr(layer_endpoint, aoi, out_fields, where='1=1', token=''): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_server2ogr STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/query' params = {} params['where'] = where if 'objectid' not in out_fields: out_fields = 'objectid,' + out_fields if out_fields else 'objectid' params['outFields'] = out_fields params['returnGeometry'] = True params['returnM'] = False params['returnZ'] = False params['f'] = 'geojson' params['geometryType'] = 'esriGeometryPolygon' params['spatialRel'] = 'esriSpatialRelIntersects' # if protected service, retrieve token if token: params['token'] = token # iterate through aoi features (Esri does not accept multipart polygons # as a spatial filter, and the aoi features may be too far apart to combine # into one bounding box) featureset = {'type': 'FeatureCollection', 'features': []} features = [] objectids = [] if isinstance(aoi, str): aoi = json.loads(aoi) for f in aoi['features']: params['geometry'] = str({'rings': bbox(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() try: # response = json2ogr(req.text) response = req.json() assert 'features' in response except: raise ValueError((req.text, url, params)) # append response to full dataset, except features already included for h in response['features']: feat_id = ','.join([str(prop) for prop in h['properties'].values()]) if feat_id not in objectids: features.append(h) objectids.append(feat_id) featureset = json2ogr(dict(type='FeatureCollection', features=features)) # logging.info('FUNCTION esri_server2ogr STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return featureset def esri_server2histo(layer_endpoint, aoi): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_server2histo STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/computeHistograms' params = {} params['f'] = 'json' params['geometryType'] = 'esriGeometryPolygon' params['spatialRel'] = 'esriSpatialRelIntersects' params['returnGeometry'] = True params['where'] = '1=1' if isinstance(aoi, str): aoi = json.loads(aoi) # if featureset['features']: # f = featureset['features'][0] histogram = [0] * 256 for f in aoi['features']: params['geometry'] = str({'rings': ogr2rings(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() try: response = req.json()['histograms'] if response: for i, count in enumerate(response[0]['counts']): histogram[i] += count except Exception as e: raise ValueError('{} --- {}'.format(e, req.text)) # logging.info('FUNCTION esri_server2histo STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return histogram def esri_attributes(layer_endpoint, aoi, out_fields): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_attributes STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/query' params = {} params['f'] = 'json' params['geometryType'] = 'esriGeometryPolygon' params['where'] = '1=1' params['spatialRel'] = 'esriSpatialRelIntersects' params['returnGeometry'] = False params['outFields'] = out_fields if isinstance(aoi, str): aoi = json.loads(aoi) objectids = [] attributes = [] for f in aoi['features']: params['geometry'] = str({'rings': ogr2rings(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() # return [feat['attributes'] for feat in req.json()['features']] for h in req.json()['features']: feat_id = ','.join([str(prop) for prop in h['attributes'].values()]) if feat_id not in objectids: attributes.append(h['attributes']) objectids.append(feat_id) # logging.info('FUNCTION esri_attributes STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return attributes def esri_count_groupby(layer_endpoint, aoi, count_fields): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_count_groupby STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/query' params = {} params['f'] = 'json' params['geometryType'] = 'esriGeometryPolygon' params['where'] = '1=1' params['spatialRel'] = 'esriSpatialRelIntersects' params['returnGeometry'] = False params['groupByFieldsForStatistics'] = count_fields count_fields = count_fields.split(',') params['outStatistics'] = json.dumps([{ 'statisticType': 'count', 'onStatisticField': count_fields[0], 'outStatisticFieldName': 'count' }]) if isinstance(aoi, str): aoi = json.loads(aoi) counts = {} for f in aoi['features']: params['geometry'] = str({'rings': ogr2rings(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() try: f_counts = {'-'.join([str(item['attributes'][field]) for field in count_fields]): item['attributes']['count'] for item in req.json()['features']} for key, val in f_counts.items(): if not key in counts.keys(): counts[key] = val else: counts[key] += val except Exception as e: raise ValueError((str(e), url, params, req.text)) # logging.info('FUNCTION esri_count_groupby STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return counts def esri_count_30days(layer_endpoint, aoi, date_field): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_count_30days STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/query' date = (datetime.utcnow() - timedelta(days=30)).strftime('%Y-%m-%d') params = {} params['f'] = 'json' params['geometryType'] = 'esriGeometryPolygon' params['where'] = "{} >= date '{}'".format(date_field, date) params['spatialRel'] = 'esriSpatialRelIntersects' params['returnGeometry'] = False params['returnCountOnly'] = True if isinstance(aoi, str): aoi = json.loads(aoi) count = 0 for f in aoi['features']: params['geometry'] = str({'rings': ogr2rings(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() count += req.json()['count'] # logging.info('FUNCTION esri_count_30days STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return count def esri_last_instance(layer_endpoint, aoi, field): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION esri_last_instance STEP {} START'.format(FUNCTION_COUNT)) t0 = time() url = layer_endpoint.replace('?f=pjson', '') + '/query' params = {} params['f'] = 'json' params['geometryType'] = 'esriGeometryPolygon' params['where'] = '1=1' params['spatialRel'] = 'esriSpatialRelIntersects' params['returnGeometry'] = False params['outFields'] = field params['orderByFields'] = field params['returnDistinctValues'] = True if isinstance(aoi, str): aoi = json.loads(aoi) last_instance = None for f in aoi['features']: params['geometry'] = str({'rings': ogr2rings(f), 'spatialReference': {'wkid': 4326}}) req = requests.post(url, data=params) req.raise_for_status() try: instances = [item['attributes'][field] for item in req.json()['features']] if instances: if not last_instance: last_instance = instances[-1] elif instances[-1] > last_instance: last_instance = instances[-1] except Exception as e: raise ValueError((str(e), url, params, req.text)) # logging.info('FUNCTION esri_last_instance STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return last_instance # @lru_cache(5) def cartodb2ogr(service_endpoint, aoi, out_fields, where='', _=''): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION cartodb2ogr STEP {} START'.format(FUNCTION_COUNT)) t0 = time() endpoint_template = 'https://{}.carto.com/tables/{}/' username, table = search(endpoint_template, service_endpoint + '/') url = 'https://{username}.carto.com/api/v2/sql'.format(username=username) if isinstance(aoi, str): aoi = json.loads(aoi) params = {} fields = ['ST_AsGeoJSON(the_geom) as geometry'] out_fields = out_fields.split(',') for field in out_fields: if field: fields.append('{field} as {field}'.format(field=field)) temp = "ST_Intersects(ST_Buffer(ST_GeomFromText('{}',4326),0),the_geom)" features = [] objectids = [] for f in aoi['features']: where_clause = temp.format(wkt.dumps({'type': 'Polygon', 'coordinates': bbox(f)})) if where and not where == '1=1': where_clause += 'AND {}'.format(where) q = 'SELECT {fields} FROM {table} WHERE {where}' params = {'q': q.format(fields=','.join(fields), table=table, where=where_clause)} try: req = requests.get(url, params=params) req.raise_for_status() except Exception as e: raise ValueError((e, url, bbox(f))) response = json.loads(req.text)['rows'] features += [{ 'type': 'Feature', 'geometry': json.loads(h['geometry']), 'properties': {field: h[field] for field in out_fields if field} } for h in response] featureset = json2ogr({ 'type': 'FeatureCollection', 'features': features }) # logging.info('FUNCTION cartodb2ogr STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return featureset def get_split_boxes(f): ''' Check if number of vertices or width or height of bounding box exceed thresholds. If they do, returns two revised bounding boxes (Left/Upper and Right/Bottom) for intersecting with the geometry ''' x1, y1, x2, y2 = bounds(f) if (x2 - x1 > FEATURE_GEOG_THRESHOLD or y2 - y1 > FEATURE_GEOG_THRESHOLD): if x2 - x1 > y2 - y1: x_split = x1 + (x2 - x1) / 2 return [box(x1, y1, x_split, y2), box(x_split, y1, x2, y2)] else: y_split = y1 + (y2 - y1) / 2 return [box(x1, y1, x2, y_split), box(x1, y_split, x2, y2)] return None def split_multipolygon(f): ''' Split multipolygon into coterminous polygons ''' new_features = [{'type': 'Feature', 'properties': f['properties'], 'geometry': poly} for poly in f['geometry']] return new_features def split_polygon(f): ''' Split complex geometry in half until they are below vertex and bounding box size constraints ''' bbs = get_split_boxes(f) new_features = [] if bbs: for bb in bbs: geom = f['geometry'] if not geom.is_valid: geom = geom.buffer(0) split_feat = {'type': 'Feature', 'properties': f['properties'], 'geometry': geom.intersection(bb)} if split_feat['geometry'].type == 'MultiPolygon': poly_feats = split_multipolygon(split_feat) for h in poly_feats: new_features.extend(split_polygon(h)) else: new_features.extend(split_polygon(split_feat)) else: new_features.append(f) return new_features def split(featureset): ''' First split all multipolygons into coterminous polygons. Then check each against vertex and bounding box size constraints, and split into multiple polygons using recursive halving if necessary ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION split STEP {} START'.format(FUNCTION_COUNT)) t0 = time() new_features = [] split_id = 0 for f in featureset['features']: f['properties']['split_id'] = split_id split_id += 1 if f['geometry'].type == 'MultiPolygon': poly_feats = split_multipolygon(f) for h in poly_feats: new_features.extend(split_polygon(h)) elif f['geometry'].type == 'Polygon': new_features.extend(split_polygon(f)) new_featureset = dict(type=featureset['type'], features=new_features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION split STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def get_centroid_bbox(features): x, y = zip([f['properties']['centroid'] for f in features]) return min(x), min(y), max(x), max(y) def split_features(featureset): ''' Sort features into groups where all features have centroids clustered within the geographic size limit and the total number of coordinates is beneath the coordinate length limit ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION split_features STEP {} START'.format(FUNCTION_COUNT)) t0 = time() feature_groups = [featureset['features']] # logging.info('FUNCTION split_features STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return def condense_properties(properties): ''' Combine common properties with duplicate values from all features being dissolved ''' return {key: val for key, val in properties[0].items() if all(key in p.keys() and val == p[key] for p in properties)} def dissolve(featureset, fields=None): ''' Dissolve a set of geometries on a field, or dissolve fully to a single feature if no field is provided ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION dissolve STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if fields: def sort_func(k): return ','.join([str(k['properties'][field]) for field in fields.split(',')]) else: sort_func = None new_features = [] dissolve_id = 0 try: assert isinstance(featureset, dict) assert 'features' in featureset.keys() assert isinstance(featureset['features'], list) except Exception as e: raise ValueError((str(e),featureset)) if len(featureset['features']) > 0: if sort_func: features = sorted(featureset['features'], key=sort_func) for key, group in itertools.groupby(features, key=sort_func): properties, geoms = zip(*[(f['properties'], f['geometry']) for f in group]) if geoms and not any(geom is None for geom in geoms): try: new_geom = unary_union(geoms) except Exception as e: new_geom = unary_union([geom if geom.is_valid else geom.buffer(0) for geom in geoms]) new_properties = condense_properties(properties) new_properties['dissolve_id'] = dissolve_id dissolve_id += 1 new_features.append(dict(type='Feature', geometry=new_geom, properties=new_properties)) else: geoms = [f['geometry'] if f['geometry'].is_valid else f['geometry'].buffer(0) for f in featureset['features']] new_properties = condense_properties([f['properties'] for f in featureset['features']]) new_properties['dissolve_id'] = dissolve_id dissolve_id += 1 new_features.append(dict(type='Feature', geometry=unary_union(geoms), properties=new_properties)) new_featureset = dict(type=featureset['type'], features=new_features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION dissolve STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def index_featureset(featureset): ''' ''' index = rtree.index.Index() for i, f in enumerate(featureset['features']): geom = f['geometry'] if isinstance(geom, GeometryCollection): minx = np.min([item.bounds[0] for item in geom]) miny = np.min([item.bounds[1] for item in geom]) maxx = np.max([item.bounds[2] for item in geom]) maxy = np.max([item.bounds[3] for item in geom]) index.insert(i, (minx, miny, maxx, maxy)) else: index.insert(i, geom.bounds) return index def intersect(featureset1, featureset2): ''' ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION intersect STEP {} START'.format(FUNCTION_COUNT)) t0 = time() index = index_featureset(featureset2) new_features = [] for f in featureset1['features']: feat1 = f geom1 = f['geometry'] for fid in list(index.intersection(geom1.bounds)): feat2 = featureset2['features'][fid] geom2 = feat2['geometry'] if not geom1.is_valid: # raise ValueError('Geometry from featureset1 is not valid') geom1 = geom1.buffer(0) if not geom2.is_valid: # raise ValueError('Geometry from featureset2 is not valid') geom2 = geom2.buffer(0) if geom1.intersects(geom2): # TODO: optimize to on intersect call? new_geom = geom1.intersection(geom2) new_feat = dict(properties={**feat2['properties'], **feat1['properties']}, geometry=new_geom, type='Feature') new_features.append(new_feat) new_featureset = dict(type=featureset2['type'], features=new_features) if 'crs' in featureset2.keys(): new_featureset['crs'] = featureset2['crs'] # logging.info('FUNCTION intersect STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def erase(featureset, erase_featureset): ''' ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION erase STEP {} START'.format(FUNCTION_COUNT)) t0 = time() index = index_featureset(erase_featureset) new_features = [] for f in featureset['features']: feat = f geom = f['geometry'] for fid in list(index.intersection(geom.bounds)): erase_feat = erase_featureset['features'][fid] erase_geom = erase_feat['geometry'] if geom.intersects(erase_geom): new_geom = geom.difference(erase_geom) new_feat = dict(properties={**feat['properties']}, geometry=new_geom, type='Feature') new_features.append(new_feat) new_featureset = dict(type=featureset['type'], features=new_features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION erase STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def project_feature(f, project): if isinstance(f['geometry'], Polygon): geom = Polygon(f['geometry']) elif isinstance(f['geometry'], MultiPolygon): geom = MultiPolygon(f['geometry']) elif isinstance(f['geometry'], GeometryCollection): geom = GeometryCollection(f['geometry']) elif isinstance(f['geometry'], Point): geom = Point(f['geometry']) projected_geom = transform(project, geom) new_feat = dict(properties=f['properties'], geometry=projected_geom, type='Feature') return new_feat def project_local(featureset): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION project_local STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if ('crs' in featureset.keys() and featureset['crs']['properties']['name'] == 'urn:ogc:def:uom:EPSG::9102'): return featureset name = 'urn:ogc:def:uom:EPSG::9102' # get cumulative centroid of all features new_features = [] for f in featureset['features']: if isinstance(f['geometry'], GeometryCollection): x = np.mean([geom_item.centroid.x for geom_item in f['geometry']]) y = np.mean([geom_item.centroid.y for geom_item in f['geometry']]) else: x = f['geometry'].centroid.x y = f['geometry'].centroid.y # define local projection proj4 = '+proj=aeqd +lat_0={} +lon_0={} +x_0=0 +y_0=0 +datum=WGS84 \ +units=m +no_defs +R=6371000 '.format(y, x) # define projection transformation project = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'), pyproj.Proj(proj4)) # peoject features and add projection info new_feat = project_feature(f, project) new_feat['properties']['centroid'] = (x,y) new_features.append(new_feat) new_featureset = dict(type=featureset['type'], features=new_features, crs=dict(type="name", properties=dict(name=name))) # logging.info('FUNCTION project_local STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def project_global(featureset): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION project_global STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if ('crs' in featureset.keys() and featureset['crs']['properties']['name'] == 'EPSG:4326'): return featureset elif 'crs' not in featureset.keys(): raise ValueError('Local projection must have crs info to reproject') name = 'EPSG:4326' # [x, y] = featureset['crs']['properties']['centroid'] new_features = [] for f in featureset['features']: (x, y) = f['properties']['centroid'] proj4 = '+proj=aeqd +lat_0={} +lon_0={} +x_0=0 +y_0=0 +datum=WGS84 \ +units=m +no_defs +R=6371000 '.format(y, x) project = partial(pyproj.transform, pyproj.Proj(proj4), pyproj.Proj(init='epsg:4326')) new_feat = project_feature(f, project) new_feat['properties'] = {key: val for key, val in new_feat['properties'].items() if not key == 'centroid'} new_features.append(new_feat) new_featureset = dict(type=featureset['type'], features=new_features, crs=dict(type="name", properties=dict(name=name))) # logging.info('FUNCTION project_global STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def buffer_to_dist(featureset, distance): ''' Buffer a geometry with a given distance (assumed to be kilometers) ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION buffer_to_dist STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if not (featureset['crs']['properties']['name'] == 'urn:ogc:def:uom:EPSG::9102'): raise ValueError('geometries must be projected with the World ' + 'Azimuthal Equidistant coordinate system') new_features = [] for f in featureset['features']: geom = f['geometry'] buffered_geom = geom.buffer(int(distance) * 1000.0) new_feat = dict(properties=f['properties'], geometry=buffered_geom, type='Feature') new_features.append(new_feat) new_featureset = dict(type=featureset['type'], features=new_features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION buffer_to_dist STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset def get_presence(attributes, field): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_presence STEP {} START'.format(FUNCTION_COUNT)) t0 = time() result = any(item[field] > 0 for item in attributes) # logging.info('FUNCTION get_presence STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return result def get_area_by_attributes(featureset, posfields, negfields): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_area_by_attributes STEP {} START'.format(FUNCTION_COUNT)) t0 = time() posfields = posfields.split(',') if posfields else [] negfields = negfields.split(',') if negfields else [] try: area_m = sum([f['geometry'].area for f in featureset['features'] if all(f['properties'][fld] and f['properties'][fld] > 0 for fld in posfields) and all(f['properties'][fld] and f['properties'][fld] < 0 for fld in negfields)]) except: raise ValueError([f['properties'] for field in posfields for f in featureset['features'] if f['properties'][field] is None]) # logging.info('FUNCTION get_area_by_attributes STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return area_m / HA_CONVERSION def get_geom_by_attributes(featureset, posfields, negfields): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_geom_by_attributes STEP {} START'.format(FUNCTION_COUNT)) t0 = time() posfields = posfields.split(',') if posfields else [] negfields = negfields.split(',') if negfields else [] features = [f for f in featureset['features'] if all(f['properties'][fld] and f['properties'][fld] > 0 for fld in posfields) and all(f['properties'][fld] and f['properties'][fld] < 0 for fld in negfields)] new_featureset = dict(type=featureset['type'], features=features) if 'crs' in featureset.keys(): new_featureset['crs'] = featureset['crs'] # logging.info('FUNCTION get_geom_by_attributes STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_featureset # def get_counts_by_year(layer_endpoints, featureset): # global FUNCTION_COUNT # FUNCTION_COUNT += 1 # logging.info('FUNCTION get_counts_by_year STEP {} START'.format(FUNCTION_COUNT)) # t0 = time() # counts = {} # for layer_endpoint in layer_endpoints.split(','): # yr = layer_endpoint.replace('/ImageServer','')[-4:] # frequencies = esri_server2histo(layer_endpoint, featureset) # counts[yr] = sum([i * freq for i, freq in enumerate(frequencies)]) # logging.info('FUNCTION get_counts_by_year STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) # return counts def get_count_by_year(layer_endpoint, featureset, yr): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_counts_by_year STEP {} START'.format(FUNCTION_COUNT)) t0 = time() frequencies = esri_server2histo(layer_endpoint.replace('2000', yr), featureset) # logging.info('FUNCTION get_counts_by_year STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return (yr, sum([i * freq for i, freq in enumerate(frequencies)])) def combine_counts_by_year(*counts): # logging.info(counts) return {yr: count for yr, count in counts} # ------------------------- Calculation Functions -------------------------- def validate_featureset(featureset, fields=[None]): ''' ''' valid_fields = [f for f in fields if f] for field in valid_fields: for f in featureset['features']: if field not in f['properties'].keys(): raise ValueError('Featureset with category field must ' + 'have category field as a property of ' + 'every feature') if len(valid_fields) == 0: if len(featureset['features']) > 1: raise ValueError('Featureset with multiple features must ' + 'be dissolved or have a category field in ' + 'order to calculate statistics') def get_area(featureset, field=None): global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_area STEP {} START'.format(FUNCTION_COUNT)) t0 = time() # validate_featureset(featureset, [field]) if field: area = {} categories = set([f['properties'][field] for f in featureset['features']]) for cat in categories: area[cat] = sum([f['geometry'].area / HA_CONVERSION for f in featureset['features'] if f['properties'][field] == cat]) else: if featureset['features']: area = sum([f['geometry'].area / HA_CONVERSION for f in featureset['features']]) else: area = 0 # logging.info('FUNCTION get_area STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return area def get_histo_loss_area(histograms): ''' Returns the sum of tree cover loss for years 2001 through 2014 ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_histo_loss_area STEP {} START'.format(FUNCTION_COUNT)) t0 = time() year_indices = {(i+2001): i+1 for i in range(13)} histo_area_loss = {year: 0.09 * histograms[year_index] for year, year_index in year_indices.items()} # logging.info('FUNCTION get_histo_loss_area STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return histo_area_loss def get_histo_pre2001_area(histograms): ''' Returns the sum of histo on tree cover loss, aggregated on years prior to 2001 ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_histo_pre2001_area STEP {} START'.format(FUNCTION_COUNT)) t0 = time() histo_area_loss = 0.09 * histograms[14] # logging.info('FUNCTION get_histo_pre2001_area STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return histo_area_loss def get_histo_total_area(histograms): ''' Returns total area of histo within the aoi ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_histo_total_area STEP {} START'.format(FUNCTION_COUNT)) t0 = time() year_indices = {(i+2000): i for i in range(15)} histo_area_total = {year: 0.09 * histograms[year_index] for year, year_index in year_indices.items()} # logging.info('FUNCTION get_histo_total_area STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return histo_area_total def get_date_from_timestamp(timestamp): ''' Convert a timestamp (which may be in milliseconds, and is assumed to be UTC) to a date string of the form YYYY-MM-DD ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_date_from_timestamp STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if not timestamp: # logging.info('FUNCTION get_date_from_timestamp STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return None if timestamp > 100000000000: timestamp = timestamp/1000 # logging.info('FUNCTION get_date_from_timestamp STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d') def get_species_count(intersection, field): ''' Count number of unique species found within the features of an intersection with the user AOI ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_species_count STEP {} START'.format(FUNCTION_COUNT)) t0 = time() species_list = [] for f in intersection['features']: species_string = f['properties'][field][1:-1].replace('"', '') species_list += species_string.split(',') species_set = set(species_list) # logging.info('FUNCTION get_species_count STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return len(species_set) def get_feature_count(intersection, field): ''' Count the number of features, or the number of features for each value in the intersection's field property ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION get_feature_count STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if field: counts = {} for f in intersection['features']: if f['properties'][field] in counts.keys(): counts[f['properties'][field]] += 1 else: counts[f['properties'][field]] = 1 # logging.info('FUNCTION get_feature_count STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return counts else: # logging.info('FUNCTION get_feature_count STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return len(intersection['features']) def pad_counts(counts, start_yr, end_yr): ''' Pad result object for fires counts by month or year with zeros for all missing months or years ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION pad_counts STEP {} START'.format(FUNCTION_COUNT)) t0 = time() if counts: if '-' in counts.keys(): new_counts = {'{}-{}'.format(yr, mn): 0 for mn in range(1, 13) for yr in range(int(start_yr), int(end_yr)+1)} else: new_counts = {str(yr): 0 for yr in range(int(start_yr), int(end_yr)+1)} else: new_counts = {} for key in new_counts.keys(): if key in counts.keys(): new_counts[key] = counts[key] # logging.info('FUNCTION pad_counts STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return new_counts def vals_by_year(val, start_yr, end_yr): ''' Store value in a by-year object (for consistency with the rest of the Palm Risk tool) ''' global FUNCTION_COUNT FUNCTION_COUNT += 1 # logging.info('FUNCTION vals_by_year STEP {} START'.format(FUNCTION_COUNT)) t0 = time() result = {str(yr): val for yr in range(int(start_yr), int(end_yr)+1)} # logging.info('FUNCTION vals_by_year STEP {} DONE - {} SECONDS'.format(FUNCTION_COUNT, time()-t0)) return result def is_valid(analysis_method): ''' Validate that method exists ''' return analysis_method in __all__
import os, sys from pip.req import InstallRequirement, RequirementSet from pip.req import parse_requirements from pip.log import logger from pip.locations import build_prefix, src_prefix from pip.basecommand import Command from pip.index import PackageFinder from pip.exceptions import InstallationError class InstallCommand(Command): name = 'install' usage = '%prog [OPTIONS] PACKAGE_NAMES...' summary = 'Install packages' bundle = False def __init__(self): super(InstallCommand, self).__init__() self.parser.add_option( '-e', '--editable', dest='editables', action='append', default=[], metavar='VCS+REPOS_URL[@REV]#egg=PACKAGE', help='Install a package directly from a checkout. Source will be checked ' 'out into src/PACKAGE (lower-case) and installed in-place (using ' 'setup.py develop). You can run this on an existing directory/checkout (like ' 'pip install -e src/mycheckout). This option may be provided multiple times. ' 'Possible values for VCS are: svn, git, hg and bzr.') self.parser.add_option( '-r', '--requirement', dest='requirements', action='append', default=[], metavar='FILENAME', help='Install all the packages listed in the given requirements file. ' 'This option can be used multiple times.') self.parser.add_option( '-f', '--find-links', dest='find_links', action='append', default=[], metavar='URL', help='URL to look for packages at') self.parser.add_option( '-i', '--index-url', '--pypi-url', dest='index_url', metavar='URL', default='http://pypi.python.org/simple/', help='Base URL of Python Package Index (default %default)') self.parser.add_option( '--extra-index-url', dest='extra_index_urls', metavar='URL', action='append', default=[], help='Extra URLs of package indexes to use in addition to --index-url') self.parser.add_option( '--no-index', dest='no_index', action='store_true', default=False, help='Ignore package index (only looking at --find-links URLs instead)') self.parser.add_option( '-M', '--use-mirrors', dest='use_mirrors', action='store_true', default=False, help='Use the PyPI mirrors as a fallback in case the main index is down.') self.parser.add_option( '--mirrors', dest='mirrors', metavar='URL', action='append', default=[], help='Specific mirror URLs to query when --use-mirrors is used') self.parser.add_option( '-b', '--build', '--build-dir', '--build-directory', dest='build_dir', metavar='DIR', default=None, help='Unpack packages into DIR (default %s) and build from there' % build_prefix) self.parser.add_option( '-d', '--download', '--download-dir', '--download-directory', dest='download_dir', metavar='DIR', default=None, help='Download packages into DIR instead of installing them') self.parser.add_option( '--download-cache', dest='download_cache', metavar='DIR', default=None, help='Cache downloaded packages in DIR') self.parser.add_option( '--src', '--source', '--source-dir', '--source-directory', dest='src_dir', metavar='DIR', default=None, help='Check out --editable packages into DIR (default %s)' % src_prefix) self.parser.add_option( '-U', '--upgrade', dest='upgrade', action='store_true', help='Upgrade all packages to the newest available version') self.parser.add_option( '-I', '--ignore-installed', dest='ignore_installed', action='store_true', help='Ignore the installed packages (reinstalling instead)') self.parser.add_option( '--no-deps', '--no-dependencies', dest='ignore_dependencies', action='store_true', default=False, help='Ignore package dependencies') self.parser.add_option( '--no-install', dest='no_install', action='store_true', help="Download and unpack all packages, but don't actually install them") self.parser.add_option( '--no-download', dest='no_download', action="store_true", help="Don't download any packages, just install the ones already downloaded " "(completes an install run with --no-install)") self.parser.add_option( '--install-option', dest='install_options', action='append', help="Extra arguments to be supplied to the setup.py install " "command (use like --install-option=\"--install-scripts=/usr/local/bin\"). " "Use multiple --install-option options to pass multiple options to setup.py install. " "If you are using an option with a directory path, be sure to use absolute path.") self.parser.add_option( '--global-option', dest='global_options', action='append', help="Extra global options to be supplied to the setup.py" "call before the install command") self.parser.add_option( '--user', dest='use_user_site', action='store_true', help='Install to user-site') def _build_package_finder(self, options, index_urls): """ Create a package finder appropriate to this install command. This method is meant to be overridden by subclasses, not called directly. """ return PackageFinder(find_links=options.find_links, index_urls=index_urls, use_mirrors=options.use_mirrors, mirrors=options.mirrors) def run(self, options, args): if not options.build_dir: options.build_dir = build_prefix if not options.src_dir: options.src_dir = src_prefix if options.download_dir: options.no_install = True options.ignore_installed = True options.build_dir = os.path.abspath(options.build_dir) options.src_dir = os.path.abspath(options.src_dir) install_options = options.install_options or [] if options.use_user_site: install_options.append('--user') global_options = options.global_options or [] index_urls = [options.index_url] + options.extra_index_urls if options.no_index: logger.notify('Ignoring indexes: %s' % ','.join(index_urls)) index_urls = [] finder = self._build_package_finder(options, index_urls) requirement_set = RequirementSet( build_dir=options.build_dir, src_dir=options.src_dir, download_dir=options.download_dir, download_cache=options.download_cache, upgrade=options.upgrade, ignore_installed=options.ignore_installed, ignore_dependencies=options.ignore_dependencies) for name in args: requirement_set.add_requirement( InstallRequirement.from_line(name, None)) for name in options.editables: requirement_set.add_requirement( InstallRequirement.from_editable(name, default_vcs=options.default_vcs)) for filename in options.requirements: for req in parse_requirements(filename, finder=finder, options=options): requirement_set.add_requirement(req) if not requirement_set.has_requirements: if options.find_links: raise InstallationError('You must give at least one ' 'requirement to %s (maybe you meant "pip install %s"?)' % (self.name, " ".join(options.find_links))) raise InstallationError('You must give at least one requirement ' 'to %(name)s (see "pip help %(name)s")' % dict(name=self.name)) if (options.use_user_site and sys.version_info < (2, 6)): raise InstallationError('--user is only supported in Python version 2.6 and newer') import setuptools if (options.use_user_site and requirement_set.has_editables and not getattr(setuptools, '_distribute', False)): raise InstallationError('--user --editable not supported with setuptools, use distribute') if not options.no_download: requirement_set.prepare_files(finder, force_root_egg_info=self.bundle, bundle=self.bundle) else: requirement_set.locate_files() if not options.no_install and not self.bundle: requirement_set.install(install_options, global_options) installed = ' '.join([req.name for req in requirement_set.successfully_installed]) if installed: logger.notify('Successfully installed %s' % installed) elif not self.bundle: downloaded = ' '.join([req.name for req in requirement_set.successfully_downloaded]) if downloaded: logger.notify('Successfully downloaded %s' % downloaded) elif self.bundle: requirement_set.create_bundle(self.bundle_filename) logger.notify('Created bundle in %s' % self.bundle_filename) # Clean up if not options.no_install: requirement_set.cleanup_files(bundle=self.bundle) return requirement_set InstallCommand()
# -*- coding: utf-8 -*- """ Survey Module -- a tool to create surveys. @author: Robert O'Connor """ prefix = request.controller resourcename = request.function if prefix not in deployment_settings.modules: session.error = T("Module disabled!") redirect(URL(r=request, c="default", f="index")) from gluon.html import * from gluon.sqlhtml import SQLFORM response.menu_options = [ [T("Templates"), False, URL(r=request, f="template"),[ [T("List"), False, URL(r=request, f="template")], [T("Add"), False, URL(r=request, f="template", args="create")] ]], [T("Series"), False, URL(r=request, f="series"),[ [T("List"), False, URL(r=request, f="series")], [T("Add"), False, URL(r=request, f="series", args="create")] ]]] def index(): """ Module's Home Page """ module_name = deployment_settings.modules[prefix].name_nice response.title = module_name return dict(module_name=module_name) def template(): """ RESTful CRUD controller """ tablename = "%s_%s" % (prefix, resourcename) table = db[tablename] def prep(r): s3xrc.model.configure(r.table, create_next = URL(r=request, c="survey", f="questions"), update_next = URL(r=request, c="survey", f="questions")) return True response.s3.prep = prep table.uuid.requires = IS_NOT_ONE_OF(db,"%s.uuid" % tablename) table.name.requires = IS_NOT_EMPTY() table.name.label = T("Survey Name") table.description.label = T("Description") # CRUD Strings s3.crud_strings[tablename] = Storage( title_create = T("Add Survey Template"), title_display = T("Survey Template Details"), title_list = T("List Survey Templates"), title_update = T("Edit Survey Template"), subtitle_create = T("Add New Survey Template"), subtitle_list = T("Survey Templates"), label_list_button = T("List Survey Templates"), label_create_button = T("Add Survey Template"), label_delete_button = T("Delete Survey Template"), msg_record_created = T("Survey Template added"), msg_record_modified = T("Survey Template updated"), msg_record_deleted = T("Survey Template deleted"), msg_list_empty = T("No Survey Template currently registered")) s3xrc.model.configure(table, listadd=False) output = s3_rest_controller(prefix, resourcename) #return transform_buttons(output, next=True, cancel=True) return output def template_link(): """ @todo: fix docstring, PEP8 """ response.s3.prep = lambda r: r.representation in ("xml", "json") and True or False return s3_rest_controller("survey", "template_link") def questions(): """ At this stage, the user the following workflow will be implemented: - User adds questions via the drop down or clicks "Add Question" to add a new one. """ table = db["survey_questions"] record = request.args(0) template = db(db.survey_template.id == session.rcvars.survey_template).select(limitby=(0, 1)).first() if not template: session.error = T("No template found!") redirect(URL(r=request, f="template")) if not record: questions_query = (db.survey_template_link.survey_questions_id == db.survey_questions.id) & (template.id == db.survey_template_link.survey_template_id) record = db(questions_query).select(db.survey_questions.id, limitby=(0, 1)).first() if record: redirect(URL(r=request, f="questions", args=[record.id])) questions_form = SQLFORM(table, record, deletable=True, keepvalues=True) all_questions = db().select(db.survey_question.ALL) output = dict(all_questions=all_questions) # Let's avoid blowing up -- this loads questions try: query = (template.id == db.survey_template_link.survey_template_id) contained_questions = db(query).select(db.survey_question.id) if len(contained_questions) > 0: output.update(contained_questions=contained_questions) else: output.update(contained_questions=contained_questions) except: output.update(contained_questions=[]) pass # this means we didn't pass an id, e.g., making a new section! if questions_form.accepts(request.vars, session, keepvalues=True): questions = request.post_vars.questions if questions: for question in questions: if not has_dupe_questions(template.id, question): db.survey_template_link.insert(survey_template_id=session.rcvars.survey_template, survey_questions_id=questions_form.vars.id, survey_question_id=question) elif questions_form.errors: response.error = T("Please correct all errors.") output.update(form=questions_form) return output def table(): """ @todo: fix docstring, PEP8 """ if not "series_id" in request.vars: response.error = T("You must provide a series id to proceed.") return dict() # empty dict! # store the necessary information -- we're safe at this point. series_id = request.vars.series_id # first check the series exists. series = db(db.survey_series.id == series_id).select(limitby=(0, 1)).first() if not series: response.error = T("A survey series with id %s does not exist. Please go back and create one.") % (series_id) return dict() # query for the template to get the table name template = db(db.survey_template.id == series.survey_template_id).select(limitby=(0, 1)).first() # everything is good at this point! table = get_table_for_template(template.id) resourcename = "template_%s" % (template.id) table.uuid.requires = IS_NOT_ONE_OF(db, "%s.uuid" % template.table_name) table.id.represent = lambda id: A(id, _href=URL(r=request, f="table", args=[id, "update"], vars={"series_id":request.vars.series_id})) # CRUD Strings s3.crud_strings[template.table_name] = Storage( title_create = T("Add Survey Answer"), title_display = T("Survey Answer Details"), title_list = T("List Survey Answers"), title_update = T("Edit Survey Answer"), subtitle_create = T("Add New Survey Answer"), subtitle_list = T("Survey Answer"), label_list_button = T("List Survey Answers"), label_create_button = T("Add Survey Answer"), label_delete_button = T("Delete Survey Answer"), msg_record_created = T("Survey Answer added"), msg_record_modified = T("Survey Answer updated"), msg_record_deleted = T("Survey Answer deleted"), msg_list_empty = T("No Survey Answers currently registered")) response.s3.filter = (table.series_id == series_id) s3xrc.model.configure(table, listadd=False) output = s3_rest_controller("survey", resourcename) authorised = s3_has_permission("create", table) if authorised: output.update(add_btn=A(T("Add Survey Answer"), _href=URL(r=request, f="table", args=["create"], vars={"series_id":request.vars.series_id}), _class="action-btn")) else: output.update(add_btn="") return output def series(): """ RESTful CRUD controller """ tablename = "%s_%s" % (prefix, resourcename) table = db[tablename] table.uuid.requires = IS_NOT_ONE_OF(db,"%s.uuid" % tablename) table.name.requires = IS_NOT_EMPTY() table.name.label = T("Survey Series Name") table.description.label = T("Description") table.survey_template_id.label = T("Survey Template") table.survey_template_id.requires = IS_ONE_OF(db, "survey_template.id", "%(name)s") table.survey_template_id.represent = lambda id: (id and [db(db.survey_template.id == id).select(db.survey_template.name, limitby=(0, 1)).first().name] or [""])[0] table.start_date.label = T("Start of Period") table.start_date.requires = IS_NOT_EMPTY() table.end_date.label = T("End of Period") table.end_date.requires = IS_NOT_EMPTY() # CRUD Strings s3.crud_strings[tablename] = Storage( title_create = T("Add Survey Series"), title_display = T("Survey Series Details"), title_list = T("List Survey Series"), title_update = T("Edit Survey Series"), subtitle_create = T("Add New Survey Series"), subtitle_list = T("Survey Series"), label_list_button = T("List Survey Series"), label_create_button = T("Add Survey Series"), label_delete_button = T("Delete Survey Series"), msg_record_created = T("Survey Series added"), msg_record_modified = T("Survey Series updated"), msg_record_deleted = T("Survey Series deleted"), msg_list_empty = T("No Survey Series currently registered")) # Post-processor def postp(r, output): shn_survey_action_buttons(r, deletable=False) return output response.s3.postp = postp s3xrc.model.configure(table, listadd=False) output = s3_rest_controller(prefix, resourcename) return output def question(): """ Question data, e.g., name, description, etc. """ tablename = "%s_%s" % (prefix, resourcename) table = db[tablename] table.uuid.requires = IS_NOT_ONE_OF(db, "%s.uuid" % tablename) table.name.requires = IS_NOT_EMPTY() table.name.label = T("Survey Question Display Name") table.description.label = T("Description") # table.tf_ta_columns.label = T("Number of Columns") # table.ta_rows.label = T("Number of Rows") # table.aggregation_type.writable = False # table.aggregation_type.readable = False question_types = { # 1:T("Multiple Choice (Only One Answer)"), # 2:T("Multiple Choice (Multiple Answers)"), # 3:T("Matrix of Choices (Only one answer)"), # 4:T("Matrix of Choices (Multiple Answers)"), # 5:T("Rating Scale"), 6:T("Text"), # 7:T("Multiple Text Fields"), # 8:T("Matrix of Text Fields"), 9:T("Long Text"), 10:T("Number"), 11:T("Date"), # 12:T("Image"), # 13:T("Descriptive Text (e.g., Prose, etc)"), # 14:T("Location"), # 15:T("Organization"), # 16:T("Person"), ## 16:T("Custom Database Resource (e.g., anything defined as a resource in Sahana)") } table.question_type.requires = IS_IN_SET(question_types) # CRUD Strings s3.crud_strings[tablename] = Storage( title_create = T("Add Survey Question"), title_display = T("Survey Question Details"), title_list = T("List Survey Questions"), title_update = T("Edit Survey Question"), subtitle_create = T("Add New Survey Question"), subtitle_list = T("Survey Question"), label_list_button = T("List Survey Questions"), label_create_button = T("Add Survey Question"), label_delete_button = T("Delete Survey Question"), msg_record_created = T("Survey Question added"), msg_record_modified = T("Survey Question updated"), msg_record_deleted = T("Survey Question deleted"), msg_list_empty = T("No Survey Questions currently registered")) s3xrc.model.configure(table, listadd=False) output = s3_rest_controller(prefix, resourcename) #return transform_buttons(output, cancel=True, save=True) return output def add_buttons(form, save = None, prev = None, next = None, finish = None, cancel=None): """ Utility Function to reduce code duplication as this deals with: 1) removing the save button 2) adding the following: Cancel, Next, Previous and Finish (shown on the last step *ONLY*) """ form[0][-1][1][0] = "" # remove the original Save Button if save: form[-1][-1][1].append(INPUT(_type="submit", _name = "save", _value=T("Save"), _id="save")) if cancel: form[-1][-1][1].append(INPUT(_type="button", _name = "cancel", _value=T("Cancel"), _id="cancel")) if prev: form[-1][-1][1].append(INPUT(_type="submit",_name = "prev", _value=T("Previous"), _id="prev")) if next: form[-1][-1][1].append(INPUT(_type="submit", _value=T("Next"), _name="next", _id="next")) if finish: form[-1][-1][1].append(INPUT(_type="submit", _value=T("Finish"), _name="finish", _id="finish")) return form def transform_buttons(output,save = None, prev = None, next = None, finish = None, cancel=None): """ @todo: fix docstring, PEP8 """ # fails when output is not HTML (e.g., JSON) if isinstance(output, dict): form = output.get("form", None) if form: add_buttons(form, save, prev, next, finish, cancel) return output def has_dupe_questions(template_id, question_id): """ @todo: fix docstring, PEP8 """ question_query = (db.survey_template_link.survey_template_id == template_id) \ & (question_id == db.survey_template_link.survey_question_id) questions = db(question_query).select(db.survey_question.ALL) if len(questions) > 1: return True else: return False def prune_questions(questions_id, questions, all_questions): """ @todo: fix docstring, PEP8 """ if not questions_id: return # do nothing if not questions: return # nothing to act on. for question in all_questions: if not question in questions: question_query = (db.survey_template_link.survey_questions_id == questions_id) \ & (question.id == db.survey_template_link.survey_question_id) db(question_query).delete() db.commit() return questions def get_contained_questions(questions_id): """ @todo: fix docstring, PEP8 """ question_query = (db.survey_template_link.survey_questions_id == questions_id) & \ (db.survey_question.id == db.survey_template_link.survey_question_id) & \ (db.survey_template.id == db.survey_template_link.survey_template_id) contained_questions = db(question_query).select(db.survey_question.ALL) return contained_questions def get_table_for_template(template_id): """ Returns the table for the given template and if it doesn't exist -- creates and returns that """ # get the template first -- we need to get the table name template = db(db.survey_template.id == template_id).select().first() tbl = None if template: # avoid blow ups! fields = [Field("series_id", db.survey_series, writable=False, readable=False) ] # A list of Fields representing the questions questions = db((db.survey_template_link.survey_template_id == template_id) & \ (db.survey_question.id == db.survey_template_link.survey_question_id)).select(db.survey_question.ALL) # for each question, depending on its type create a Field for question in questions: question_type = question.question_type if question_type == 6: # Single TF -- simple for now -- will introduce more types later. fields.append(Field("question_%s" % (question.id), label=question.name)) elif question_type == 9: fields.append(Field("question_%s" % (question.id), "text", label=question.name)) elif question_type == 10: fields.append(Field("question_%s" % (question.id), "integer", label=question.name)) elif question_type == 11: fields.append(Field("question_%s" % (question.id), "date", label=question.name)) fields.append(s3_meta_fields()) tbl = db.define_table("survey_template_%s" % (template_id), #uuidstamp, #deletion_status, #authorstamp, migrate=True, *fields) # now add the table name to the template record so we can reference it later. db(db.survey_template.id == template_id).update(table_name="survey_template_%s" % (template.id)) db.commit() # set up onaccept for this table. def _onaccept(form): db(tbl.id == form.vars.id).update(series_id=request.vars.series_id) db.commit() s3xrc.model.configure(tbl, onaccept=lambda form: _onaccept(form)) # finally we return the newly created or existing table. return tbl def shn_survey_action_buttons(r, deletable=True): """ Over-ride the usual Action Buttons for Column views. Designed to be called from a postp """ if r.component: args = [r.component_name, "[id]"] else: args = ["[id]"] if auth.is_logged_in(): # Provide the ability to delete records in bulk if deletable: response.s3.actions = [ dict(label=str(UPDATE), _class="action-btn", url=str(URL(r=request, args = args + ["update"]))), dict(label=str(DELETE), _class="action-btn", url=str(URL(r=request, args = args + ["delete"]))) ] else: url = URL(r=request, f="table", vars={"series_id":args}) response.s3.actions = [ dict(label=str(UPDATE), _class="action-btn", url=str(URL(r=request, args = args + ["update"]))), dict(label="Answer", _class="action-btn", url=str(URL(r=request, f="table",args="create", vars={"series_id":"[id]"}))), dict(label="Results", _class="action-btn", url=str(URL(r=request, f="table", vars={"series_id":"[id]"}))) ] else: response.s3.actions = [ dict(label=str(READ), _class="action-btn", url=str(URL(r=request, args = args))) ] return # Unused code #def section(): # """ RESTful CRUD controller """ # tablename = "%s_%s" % (prefix, resourcename) # table = db[tablename] # table.uuid.requires = IS_NOT_ONE_OF(db, "%s.uuid" % tablename) # table.name.requires = IS_NOT_EMPTY() # table.name.label = T("Survey Section Display Name") # table.description.label = T("Description") # # # CRUD Strings # s3.crud_strings[tablename] = Storage( # title_create = T("Add Survey Section"), # title_display = T("Survey Section Details"), # title_list = T("List Survey Sections"), # title_update = T("Edit Survey Section"), # subtitle_create = T("Add New Survey Section"), # subtitle_list = T("Survey Section"), # label_list_button = T("List Survey Sections"), # label_create_button = T("Add Survey Section"), # label_delete_button = T("Delete Survey Section"), # msg_record_created = T("Survey Section added"), # msg_record_modified = T("Survey Section updated"), # msg_record_deleted = T("Survey Section deleted"), # msg_list_empty = T("No Survey Sections currently registered")) # output = s3_rest_controller(prefix, resourcename) # # return transform_buttons(output, save=True, cancel=True) #def question_options(): # resourcename = "question" # tablename = "%s_%s" % (prefix, resourcename) # table = db[tablename] # table.uuid.requires = IS_NOT_ONE_OF(db, "%s.uuid" % tablename) # table.tf_ta_columns.label = T("Number of Columns") # table.ta_rows.label = T("Number of Rows") ## table.answer_choices.label = T("Answer Choices (One Per Line)") # table.aggregation_type.writable = False # table.aggregation_type.readable = False ## table.row_choices.label = T("Row Choices (One Per Line)") ## table.column_choices.label = T("Column Choices (One Per Line") ## table.tf_choices.label = T("Text before each Text Field (One per line)") # output = s3_rest_controller(prefix, resourcename) # output.update(question_type=question_type) # return transform_buttons(output, prev=True, finish=True, cancel=True) #def get_options_for_questions(template_id): # questions = db((db.survey_template_link.survey_template_id == template_id) & \ # (db.survey_question.id == db.survey_template_link.survey_question_id)).select(db.survey_question.ALL) # opt_map = {} # for question in questions: # question_type = question.question_type # if question_type == 6: # Single TF -- simple for now -- will introduce more types later. # opt_map[question.id] = {"allow_comments":question.allow_comments,\ # "comment_display_label":question.comment_display_label,\ # "required":question.required} # # elif question_type == 9: # opt_map[question.id] = { "allow_comments":question.allow_comments,\ # "comment_display_label":question.comment_display_label,\ # "required":question.required} # elif question_type == 10: # opt_map[question.id] = {"allow_comments":question.allow_comments,\ # "comment_display_label":question.comment_display_label,\ # "required":question.required} # # elif question_type == 11: # opt_map[question.id] = {"allow_comments":question.allow_comments,\ # "comment_display_label":question.comment_display_label,\ # "required":question.required} # return opt_map
# -*- coding: utf-8 -*- from copy import deepcopy import numpy as np from scipy import linalg from ..bem import _check_origin from ..io.constants import FIFF from ..io.pick import pick_types, pick_info from ..surface import get_head_surf, get_meg_helmet_surf from ..io.proj import _has_eeg_average_ref_proj, make_projector from ..transforms import (transform_surface_to, read_trans, _find_trans, _ensure_trans) from ._make_forward import _create_meg_coils, _create_eeg_els, _read_coil_defs from ._lead_dots import (_do_self_dots, _do_surface_dots, _get_legen_table, _do_cross_dots) from ..parallel import check_n_jobs from ..utils import logger, verbose from ..externals.six import string_types def _is_axial_coil(coil): """Determine if the coil is axial.""" is_ax = coil['coil_class'] in (FIFF.FWD_COILC_MAG, FIFF.FWD_COILC_AXIAL_GRAD, FIFF.FWD_COILC_AXIAL_GRAD2) return is_ax def _ad_hoc_noise(coils, ch_type='meg'): """Create ad-hoc noise covariance.""" # XXX should de-duplicate with make_ad_hoc_cov v = np.empty(len(coils)) if ch_type == 'meg': axs = np.array([_is_axial_coil(coil) for coil in coils], dtype=bool) v[axs] = 4e-28 # 20e-15 ** 2 v[np.logical_not(axs)] = 2.5e-25 # 5e-13 ** 2 else: v.fill(1e-12) # 1e-6 ** 2 cov = dict(diag=True, data=v, eig=None, eigvec=None) return cov def _setup_dots(mode, coils, ch_type): """Set up dot products.""" from scipy.interpolate import interp1d int_rad = 0.06 noise = _ad_hoc_noise(coils, ch_type) n_coeff, interp = (50, 'nearest') if mode == 'fast' else (100, 'linear') lut, n_fact = _get_legen_table(ch_type, False, n_coeff, verbose=False) lut_fun = interp1d(np.linspace(-1, 1, lut.shape[0]), lut, interp, axis=0) return int_rad, noise, lut_fun, n_fact def _compute_mapping_matrix(fmd, info): """Do the hairy computations.""" logger.info(' Preparing the mapping matrix...') # assemble a projector and apply it to the data ch_names = fmd['ch_names'] projs = info.get('projs', list()) proj_op = make_projector(projs, ch_names)[0] proj_dots = np.dot(proj_op.T, np.dot(fmd['self_dots'], proj_op)) noise_cov = fmd['noise'] # Whiten if not noise_cov['diag']: raise NotImplementedError # this shouldn't happen whitener = np.diag(1.0 / np.sqrt(noise_cov['data'].ravel())) whitened_dots = np.dot(whitener.T, np.dot(proj_dots, whitener)) # SVD is numerically better than the eigenvalue composition even if # mat is supposed to be symmetric and positive definite uu, sing, vv = linalg.svd(whitened_dots, full_matrices=False, overwrite_a=True) # Eigenvalue truncation sumk = np.cumsum(sing) sumk /= sumk[-1] fmd['nest'] = np.where(sumk > (1.0 - fmd['miss']))[0][0] logger.info(' [Truncate at %d missing %g]' % (fmd['nest'], fmd['miss'])) sing = 1.0 / sing[:fmd['nest']] # Put the inverse together inv = np.dot(uu[:, :fmd['nest']] * sing, vv[:fmd['nest']]).T # Sandwich with the whitener inv_whitened = np.dot(whitener.T, np.dot(inv, whitener)) # Take into account that the lead fields used to compute # d->surface_dots were unprojected inv_whitened_proj = (np.dot(inv_whitened.T, proj_op)).T # Finally sandwich in the selection matrix # This one picks up the correct lead field projection mapping_mat = np.dot(fmd['surface_dots'], inv_whitened_proj) # Optionally apply the average electrode reference to the final field map if fmd['kind'] == 'eeg': if _has_eeg_average_ref_proj(projs): logger.info(' The map will have average electrode reference') mapping_mat -= np.mean(mapping_mat, axis=0)[np.newaxis, :] return mapping_mat def _map_meg_channels(info_from, info_to, mode='fast', origin=(0., 0., 0.04)): """Find mapping from one set of channels to another. Parameters ---------- info_from : instance of Info The measurement data to interpolate from. info_to : instance of Info The measurement info to interpolate to. mode : str Either `'accurate'` or `'fast'`, determines the quality of the Legendre polynomial expansion used. `'fast'` should be sufficient for most applications. Returns ------- mapping : array A mapping matrix of shape len(pick_to) x len(pick_from). """ # no need to apply trans because both from and to coils are in device # coordinates templates = _read_coil_defs(verbose=False) coils_from = _create_meg_coils(info_from['chs'], 'normal', info_from['dev_head_t'], templates) coils_to = _create_meg_coils(info_to['chs'], 'normal', info_to['dev_head_t'], templates) miss = 1e-4 # Smoothing criterion for MEG origin = _check_origin(origin, info_from) # # Step 2. Calculate the dot products # int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils_from, 'meg') logger.info(' Computing dot products for %i coils...' % (len(coils_from))) self_dots = _do_self_dots(int_rad, False, coils_from, origin, 'meg', lut_fun, n_fact, n_jobs=1) logger.info(' Computing cross products for coils %i x %i coils...' % (len(coils_from), len(coils_to))) cross_dots = _do_cross_dots(int_rad, False, coils_from, coils_to, origin, 'meg', lut_fun, n_fact).T ch_names = [c['ch_name'] for c in info_from['chs']] fmd = dict(kind='meg', ch_names=ch_names, origin=origin, noise=noise, self_dots=self_dots, surface_dots=cross_dots, int_rad=int_rad, miss=miss) # # Step 3. Compute the mapping matrix # mapping = _compute_mapping_matrix(fmd, info_from) return mapping def _as_meg_type_evoked(evoked, ch_type='grad', mode='fast'): """Compute virtual evoked using interpolated fields in mag/grad channels. Parameters ---------- evoked : instance of mne.Evoked The evoked object. ch_type : str The destination channel type. It can be 'mag' or 'grad'. mode : str Either `'accurate'` or `'fast'`, determines the quality of the Legendre polynomial expansion used. `'fast'` should be sufficient for most applications. Returns ------- evoked : instance of mne.Evoked The transformed evoked object containing only virtual channels. """ evoked = evoked.copy() if ch_type not in ['mag', 'grad']: raise ValueError('to_type must be "mag" or "grad", not "%s"' % ch_type) # pick the original and destination channels pick_from = pick_types(evoked.info, meg=True, eeg=False, ref_meg=False) pick_to = pick_types(evoked.info, meg=ch_type, eeg=False, ref_meg=False) if len(pick_to) == 0: raise ValueError('No channels matching the destination channel type' ' found in info. Please pass an evoked containing' 'both the original and destination channels. Only the' ' locations of the destination channels will be used' ' for interpolation.') info_from = pick_info(evoked.info, pick_from) info_to = pick_info(evoked.info, pick_to) mapping = _map_meg_channels(info_from, info_to, mode=mode) # compute evoked data by multiplying by the 'gain matrix' from # original sensors to virtual sensors data = np.dot(mapping, evoked.data[pick_from]) # keep only the destination channel types evoked.pick_types(meg=ch_type, eeg=False, ref_meg=False) evoked.data = data # change channel names to emphasize they contain interpolated data for ch in evoked.info['chs']: ch['ch_name'] += '_virtual' evoked.info._update_redundant() evoked.info._check_consistency() return evoked @verbose def _make_surface_mapping(info, surf, ch_type='meg', trans=None, mode='fast', n_jobs=1, origin=(0., 0., 0.04), verbose=None): """Re-map M/EEG data to a surface. Parameters ---------- info : instance of Info Measurement info. surf : dict The surface to map the data to. The required fields are `'rr'`, `'nn'`, and `'coord_frame'`. Must be in head coordinates. ch_type : str Must be either `'meg'` or `'eeg'`, determines the type of field. trans : None | dict If None, no transformation applied. Should be a Head<->MRI transformation. mode : str Either `'accurate'` or `'fast'`, determines the quality of the Legendre polynomial expansion used. `'fast'` should be sufficient for most applications. n_jobs : int Number of permutations to run in parallel (requires joblib package). origin : array-like, shape (3,) | str Origin of internal and external multipolar moment space in head coords and in meters. The default is ``'auto'``, which means a head-digitization-based origin fit. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- mapping : array A n_vertices x n_sensors array that remaps the MEG or EEG data, as `new_data = np.dot(mapping, data)`. """ if not all(key in surf for key in ['rr', 'nn']): raise KeyError('surf must have both "rr" and "nn"') if 'coord_frame' not in surf: raise KeyError('The surface coordinate frame must be specified ' 'in surf["coord_frame"]') if mode not in ['accurate', 'fast']: raise ValueError('mode must be "accurate" or "fast", not "%s"' % mode) # deal with coordinate frames here -- always go to "head" (easiest) orig_surf = surf surf = transform_surface_to(deepcopy(surf), 'head', trans) n_jobs = check_n_jobs(n_jobs) origin = _check_origin(origin, info) # # Step 1. Prepare the coil definitions # Do the dot products, assume surf in head coords # if ch_type not in ('meg', 'eeg'): raise ValueError('unknown coil type "%s"' % ch_type) if ch_type == 'meg': picks = pick_types(info, meg=True, eeg=False, ref_meg=False) logger.info('Prepare MEG mapping...') else: picks = pick_types(info, meg=False, eeg=True, ref_meg=False) logger.info('Prepare EEG mapping...') if len(picks) == 0: raise RuntimeError('cannot map, no channels found') chs = pick_info(info, picks)['chs'] # create coil defs in head coordinates if ch_type == 'meg': # Put them in head coordinates coils = _create_meg_coils(chs, 'normal', info['dev_head_t']) type_str = 'coils' miss = 1e-4 # Smoothing criterion for MEG else: # EEG coils = _create_eeg_els(chs) type_str = 'electrodes' miss = 1e-3 # Smoothing criterion for EEG # # Step 2. Calculate the dot products # int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils, ch_type) logger.info('Computing dot products for %i %s...' % (len(coils), type_str)) self_dots = _do_self_dots(int_rad, False, coils, origin, ch_type, lut_fun, n_fact, n_jobs) sel = np.arange(len(surf['rr'])) # eventually we should do sub-selection logger.info('Computing dot products for %i surface locations...' % len(sel)) surface_dots = _do_surface_dots(int_rad, False, coils, surf, sel, origin, ch_type, lut_fun, n_fact, n_jobs) # # Step 4. Return the result # ch_names = [c['ch_name'] for c in chs] fmd = dict(kind=ch_type, surf=surf, ch_names=ch_names, coils=coils, origin=origin, noise=noise, self_dots=self_dots, surface_dots=surface_dots, int_rad=int_rad, miss=miss) logger.info('Field mapping data ready') fmd['data'] = _compute_mapping_matrix(fmd, info) # bring the original back, whatever coord frame it was in fmd['surf'] = orig_surf # Remove some unnecessary fields del fmd['self_dots'] del fmd['surface_dots'] del fmd['int_rad'] del fmd['miss'] return fmd @verbose def make_field_map(evoked, trans='auto', subject=None, subjects_dir=None, ch_type=None, mode='fast', meg_surf='helmet', origin=(0., 0., 0.04), n_jobs=1, verbose=None): """Compute surface maps used for field display in 3D. Parameters ---------- evoked : Evoked | Epochs | Raw The measurement file. Need to have info attribute. trans : str | 'auto' | None The full path to the `*-trans.fif` file produced during coregistration. If present or found using 'auto' the maps will be in MRI coordinates. If None, map for EEG data will not be available. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None, map for EEG data will not be available. subjects_dir : str The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. ch_type : None | 'eeg' | 'meg' If None, a map for each available channel type will be returned. Else only the specified type will be used. mode : str Either `'accurate'` or `'fast'`, determines the quality of the Legendre polynomial expansion used. `'fast'` should be sufficient for most applications. meg_surf : str Should be ``'helmet'`` or ``'head'`` to specify in which surface to compute the MEG field map. The default value is ``'helmet'`` origin : array-like, shape (3,) | str Origin of internal and external multipolar moment space in head coords and in meters. Can be ``'auto'``, which means a head-digitization-based origin fit. Default is ``(0., 0., 0.04)``. .. versionadded:: 0.11 n_jobs : int The number of jobs to run in parallel. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). .. versionadded:: 0.11 Returns ------- surf_maps : list The surface maps to be used for field plots. The list contains separate ones for MEG and EEG (if both MEG and EEG are present). """ info = evoked.info if ch_type is None: types = [t for t in ['eeg', 'meg'] if t in evoked] else: if ch_type not in ['eeg', 'meg']: raise ValueError("ch_type should be 'eeg' or 'meg' (got %s)" % ch_type) types = [ch_type] if trans == 'auto': # let's try to do this in MRI coordinates so they're easy to plot trans = _find_trans(subject, subjects_dir) if 'eeg' in types and trans is None: logger.info('No trans file available. EEG data ignored.') types.remove('eeg') if len(types) == 0: raise RuntimeError('No data available for mapping.') if trans is not None: if isinstance(trans, string_types): trans = read_trans(trans) trans = _ensure_trans(trans, 'head', 'mri') if meg_surf not in ['helmet', 'head']: raise ValueError('Surface to plot MEG fields must be ' '"helmet" or "head"') surfs = [] for this_type in types: if this_type == 'meg' and meg_surf == 'helmet': surf = get_meg_helmet_surf(info, trans) else: surf = get_head_surf(subject, subjects_dir=subjects_dir) surfs.append(surf) surf_maps = list() for this_type, this_surf in zip(types, surfs): this_map = _make_surface_mapping(evoked.info, this_surf, this_type, trans, n_jobs=n_jobs, origin=origin, mode=mode) surf_maps.append(this_map) return surf_maps
from __future__ import unicode_literals import datetime import re from datetime import date from decimal import Decimal from django import forms from django.core.exceptions import ImproperlyConfigured from django.db import models from django.forms.models import (_get_foreign_key, inlineformset_factory, modelformset_factory, BaseModelFormSet) from django.test import TestCase, skipUnlessDBFeature from django.utils import six from .models import (Author, BetterAuthor, Book, BookWithCustomPK, BookWithOptionalAltEditor, AlternateBook, AuthorMeeting, CustomPrimaryKey, Place, Owner, Location, OwnerProfile, Restaurant, Product, Price, MexicanRestaurant, ClassyMexicanRestaurant, Repository, Revision, Person, Membership, Team, Player, Poet, Poem, Post) class DeletionTests(TestCase): def test_deletion(self): PoetFormSet = modelformset_factory(Poet, fields="__all__", can_delete=True) poet = Poet.objects.create(name='test') data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '1', 'form-MAX_NUM_FORMS': '0', 'form-0-id': str(poet.pk), 'form-0-name': 'test', 'form-0-DELETE': 'on', } formset = PoetFormSet(data, queryset=Poet.objects.all()) formset.save(commit=False) self.assertEqual(Poet.objects.count(), 1) formset.save() self.assertTrue(formset.is_valid()) self.assertEqual(Poet.objects.count(), 0) def test_add_form_deletion_when_invalid(self): """ Make sure that an add form that is filled out, but marked for deletion doesn't cause validation errors. """ PoetFormSet = modelformset_factory(Poet, fields="__all__", can_delete=True) poet = Poet.objects.create(name='test') # One existing untouched and two new unvalid forms data = { 'form-TOTAL_FORMS': '3', 'form-INITIAL_FORMS': '1', 'form-MAX_NUM_FORMS': '0', 'form-0-id': six.text_type(poet.id), 'form-0-name': 'test', 'form-1-id': '', 'form-1-name': 'x' * 1000, # Too long 'form-2-id': six.text_type(poet.id), # Violate unique constraint 'form-2-name': 'test2', } formset = PoetFormSet(data, queryset=Poet.objects.all()) # Make sure this form doesn't pass validation. self.assertEqual(formset.is_valid(), False) self.assertEqual(Poet.objects.count(), 1) # Then make sure that it *does* pass validation and delete the object, # even though the data in new forms aren't actually valid. data['form-0-DELETE'] = 'on' data['form-1-DELETE'] = 'on' data['form-2-DELETE'] = 'on' formset = PoetFormSet(data, queryset=Poet.objects.all()) self.assertEqual(formset.is_valid(), True) formset.save() self.assertEqual(Poet.objects.count(), 0) def test_change_form_deletion_when_invalid(self): """ Make sure that a change form that is filled out, but marked for deletion doesn't cause validation errors. """ PoetFormSet = modelformset_factory(Poet, fields="__all__", can_delete=True) poet = Poet.objects.create(name='test') data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '1', 'form-MAX_NUM_FORMS': '0', 'form-0-id': six.text_type(poet.id), 'form-0-name': 'x' * 1000, } formset = PoetFormSet(data, queryset=Poet.objects.all()) # Make sure this form doesn't pass validation. self.assertEqual(formset.is_valid(), False) self.assertEqual(Poet.objects.count(), 1) # Then make sure that it *does* pass validation and delete the object, # even though the data isn't actually valid. data['form-0-DELETE'] = 'on' formset = PoetFormSet(data, queryset=Poet.objects.all()) self.assertEqual(formset.is_valid(), True) formset.save() self.assertEqual(Poet.objects.count(), 0) def test_outdated_deletion(self): poet = Poet.objects.create(name='test') poem = Poem.objects.create(name='Brevity is the soul of wit', poet=poet) PoemFormSet = inlineformset_factory(Poet, Poem, fields="__all__", can_delete=True) # Simulate deletion of an object that doesn't exist in the database data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '2', 'form-0-id': str(poem.pk), 'form-0-name': 'foo', 'form-1-id': str(poem.pk + 1), # doesn't exist 'form-1-name': 'bar', 'form-1-DELETE': 'on', } formset = PoemFormSet(data, instance=poet, prefix="form") # The formset is valid even though poem.pk + 1 doesn't exist, # because it's marked for deletion anyway self.assertTrue(formset.is_valid()) formset.save() # Make sure the save went through correctly self.assertEqual(Poem.objects.get(pk=poem.pk).name, "foo") self.assertEqual(poet.poem_set.count(), 1) self.assertFalse(Poem.objects.filter(pk=poem.pk + 1).exists()) class ModelFormsetTest(TestCase): def test_modelformset_factory_without_fields(self): """ Regression for #19733 """ message = ( "Calling modelformset_factory without defining 'fields' or 'exclude' " "explicitly is prohibited." ) with self.assertRaisesMessage(ImproperlyConfigured, message): modelformset_factory(Author) def test_simple_save(self): qs = Author.objects.all() AuthorFormSet = modelformset_factory(Author, fields="__all__", extra=3) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 3) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-name">Name:</label> <input id="id_form-0-name" type="text" name="form-0-name" maxlength="100" /><input type="hidden" name="form-0-id" id="id_form-0-id" /></p>') self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_form-1-name">Name:</label> <input id="id_form-1-name" type="text" name="form-1-name" maxlength="100" /><input type="hidden" name="form-1-id" id="id_form-1-id" /></p>') self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_form-2-name">Name:</label> <input id="id_form-2-name" type="text" name="form-2-name" maxlength="100" /><input type="hidden" name="form-2-id" id="id_form-2-id" /></p>') data = { 'form-TOTAL_FORMS': '3', # the number of forms rendered 'form-INITIAL_FORMS': '0', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-name': 'Charles Baudelaire', 'form-1-name': 'Arthur Rimbaud', 'form-2-name': '', } formset = AuthorFormSet(data=data, queryset=qs) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 2) author1, author2 = saved self.assertEqual(author1, Author.objects.get(name='Charles Baudelaire')) self.assertEqual(author2, Author.objects.get(name='Arthur Rimbaud')) authors = list(Author.objects.order_by('name')) self.assertEqual(authors, [author2, author1]) # Gah! We forgot Paul Verlaine. Let's create a formset to edit the # existing authors with an extra form to add him. We *could* pass in a # queryset to restrict the Author objects we edit, but in this case # we'll use it to display them in alphabetical order by name. qs = Author.objects.order_by('name') AuthorFormSet = modelformset_factory(Author, fields="__all__", extra=1, can_delete=False) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 3) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-name">Name:</label> <input id="id_form-0-name" type="text" name="form-0-name" value="Arthur Rimbaud" maxlength="100" /><input type="hidden" name="form-0-id" value="%d" id="id_form-0-id" /></p>' % author2.id) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_form-1-name">Name:</label> <input id="id_form-1-name" type="text" name="form-1-name" value="Charles Baudelaire" maxlength="100" /><input type="hidden" name="form-1-id" value="%d" id="id_form-1-id" /></p>' % author1.id) self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_form-2-name">Name:</label> <input id="id_form-2-name" type="text" name="form-2-name" maxlength="100" /><input type="hidden" name="form-2-id" id="id_form-2-id" /></p>') data = { 'form-TOTAL_FORMS': '3', # the number of forms rendered 'form-INITIAL_FORMS': '2', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-id': str(author2.id), 'form-0-name': 'Arthur Rimbaud', 'form-1-id': str(author1.id), 'form-1-name': 'Charles Baudelaire', 'form-2-name': 'Paul Verlaine', } formset = AuthorFormSet(data=data, queryset=qs) self.assertTrue(formset.is_valid()) # Only changed or new objects are returned from formset.save() saved = formset.save() self.assertEqual(len(saved), 1) author3 = saved[0] self.assertEqual(author3, Author.objects.get(name='Paul Verlaine')) authors = list(Author.objects.order_by('name')) self.assertEqual(authors, [author2, author1, author3]) # This probably shouldn't happen, but it will. If an add form was # marked for deletion, make sure we don't save that form. qs = Author.objects.order_by('name') AuthorFormSet = modelformset_factory(Author, fields="__all__", extra=1, can_delete=True) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 4) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-name">Name:</label> <input id="id_form-0-name" type="text" name="form-0-name" value="Arthur Rimbaud" maxlength="100" /></p>\n' '<p><label for="id_form-0-DELETE">Delete:</label> <input type="checkbox" name="form-0-DELETE" id="id_form-0-DELETE" /><input type="hidden" name="form-0-id" value="%d" id="id_form-0-id" /></p>' % author2.id) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_form-1-name">Name:</label> <input id="id_form-1-name" type="text" name="form-1-name" value="Charles Baudelaire" maxlength="100" /></p>\n' '<p><label for="id_form-1-DELETE">Delete:</label> <input type="checkbox" name="form-1-DELETE" id="id_form-1-DELETE" /><input type="hidden" name="form-1-id" value="%d" id="id_form-1-id" /></p>' % author1.id) self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_form-2-name">Name:</label> <input id="id_form-2-name" type="text" name="form-2-name" value="Paul Verlaine" maxlength="100" /></p>\n' '<p><label for="id_form-2-DELETE">Delete:</label> <input type="checkbox" name="form-2-DELETE" id="id_form-2-DELETE" /><input type="hidden" name="form-2-id" value="%d" id="id_form-2-id" /></p>' % author3.id) self.assertHTMLEqual(formset.forms[3].as_p(), '<p><label for="id_form-3-name">Name:</label> <input id="id_form-3-name" type="text" name="form-3-name" maxlength="100" /></p>\n' '<p><label for="id_form-3-DELETE">Delete:</label> <input type="checkbox" name="form-3-DELETE" id="id_form-3-DELETE" /><input type="hidden" name="form-3-id" id="id_form-3-id" /></p>') data = { 'form-TOTAL_FORMS': '4', # the number of forms rendered 'form-INITIAL_FORMS': '3', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-id': str(author2.id), 'form-0-name': 'Arthur Rimbaud', 'form-1-id': str(author1.id), 'form-1-name': 'Charles Baudelaire', 'form-2-id': str(author3.id), 'form-2-name': 'Paul Verlaine', 'form-3-name': 'Walt Whitman', 'form-3-DELETE': 'on', } formset = AuthorFormSet(data=data, queryset=qs) self.assertTrue(formset.is_valid()) # No objects were changed or saved so nothing will come back. self.assertEqual(formset.save(), []) authors = list(Author.objects.order_by('name')) self.assertEqual(authors, [author2, author1, author3]) # Let's edit a record to ensure save only returns that one record. data = { 'form-TOTAL_FORMS': '4', # the number of forms rendered 'form-INITIAL_FORMS': '3', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-id': str(author2.id), 'form-0-name': 'Walt Whitman', 'form-1-id': str(author1.id), 'form-1-name': 'Charles Baudelaire', 'form-2-id': str(author3.id), 'form-2-name': 'Paul Verlaine', 'form-3-name': '', 'form-3-DELETE': '', } formset = AuthorFormSet(data=data, queryset=qs) self.assertTrue(formset.is_valid()) # One record has changed. saved = formset.save() self.assertEqual(len(saved), 1) self.assertEqual(saved[0], Author.objects.get(name='Walt Whitman')) def test_commit_false(self): # Test the behavior of commit=False and save_m2m author1 = Author.objects.create(name='Charles Baudelaire') author2 = Author.objects.create(name='Paul Verlaine') author3 = Author.objects.create(name='Walt Whitman') meeting = AuthorMeeting.objects.create(created=date.today()) meeting.authors = Author.objects.all() # create an Author instance to add to the meeting. author4 = Author.objects.create(name='John Steinbeck') AuthorMeetingFormSet = modelformset_factory(AuthorMeeting, fields="__all__", extra=1, can_delete=True) data = { 'form-TOTAL_FORMS': '2', # the number of forms rendered 'form-INITIAL_FORMS': '1', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-id': str(meeting.id), 'form-0-name': '2nd Tuesday of the Week Meeting', 'form-0-authors': [author2.id, author1.id, author3.id, author4.id], 'form-1-name': '', 'form-1-authors': '', 'form-1-DELETE': '', } formset = AuthorMeetingFormSet(data=data, queryset=AuthorMeeting.objects.all()) self.assertTrue(formset.is_valid()) instances = formset.save(commit=False) for instance in instances: instance.created = date.today() instance.save() formset.save_m2m() self.assertQuerysetEqual(instances[0].authors.all(), [ '<Author: Charles Baudelaire>', '<Author: John Steinbeck>', '<Author: Paul Verlaine>', '<Author: Walt Whitman>', ]) def test_max_num(self): # Test the behavior of max_num with model formsets. It should allow # all existing related objects/inlines for a given object to be # displayed, but not allow the creation of new inlines beyond max_num. Author.objects.create(name='Charles Baudelaire') Author.objects.create(name='Paul Verlaine') Author.objects.create(name='Walt Whitman') qs = Author.objects.order_by('name') AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=None, extra=3) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 6) self.assertEqual(len(formset.extra_forms), 3) AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=4, extra=3) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 4) self.assertEqual(len(formset.extra_forms), 1) AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=0, extra=3) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 3) self.assertEqual(len(formset.extra_forms), 0) AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=None) formset = AuthorFormSet(queryset=qs) self.assertQuerysetEqual(formset.get_queryset(), [ '<Author: Charles Baudelaire>', '<Author: Paul Verlaine>', '<Author: Walt Whitman>', ]) AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=0) formset = AuthorFormSet(queryset=qs) self.assertQuerysetEqual(formset.get_queryset(), [ '<Author: Charles Baudelaire>', '<Author: Paul Verlaine>', '<Author: Walt Whitman>', ]) AuthorFormSet = modelformset_factory(Author, fields="__all__", max_num=4) formset = AuthorFormSet(queryset=qs) self.assertQuerysetEqual(formset.get_queryset(), [ '<Author: Charles Baudelaire>', '<Author: Paul Verlaine>', '<Author: Walt Whitman>', ]) def test_min_num(self): # Test the behavior of min_num with model formsets. It should be # added to extra. qs = Author.objects.none() AuthorFormSet = modelformset_factory(Author, fields="__all__", extra=0) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 0) AuthorFormSet = modelformset_factory(Author, fields="__all__", min_num=1, extra=0) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 1) AuthorFormSet = modelformset_factory(Author, fields="__all__", min_num=1, extra=1) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 2) def test_min_num_with_existing(self): # Test the behavior of min_num with existing objects. Author.objects.create(name='Charles Baudelaire') qs = Author.objects.all() AuthorFormSet = modelformset_factory(Author, fields="__all__", extra=0, min_num=1) formset = AuthorFormSet(queryset=qs) self.assertEqual(len(formset.forms), 1) def test_custom_save_method(self): class PoetForm(forms.ModelForm): def save(self, commit=True): # change the name to "Vladimir Mayakovsky" just to be a jerk. author = super(PoetForm, self).save(commit=False) author.name = "Vladimir Mayakovsky" if commit: author.save() return author PoetFormSet = modelformset_factory(Poet, fields="__all__", form=PoetForm) data = { 'form-TOTAL_FORMS': '3', # the number of forms rendered 'form-INITIAL_FORMS': '0', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-name': 'Walt Whitman', 'form-1-name': 'Charles Baudelaire', 'form-2-name': '', } qs = Poet.objects.all() formset = PoetFormSet(data=data, queryset=qs) self.assertTrue(formset.is_valid()) poets = formset.save() self.assertEqual(len(poets), 2) poet1, poet2 = poets self.assertEqual(poet1.name, 'Vladimir Mayakovsky') self.assertEqual(poet2.name, 'Vladimir Mayakovsky') def test_custom_form(self): """ Test that model_formset respects fields and exclude parameters of custom form """ class PostForm1(forms.ModelForm): class Meta: model = Post fields = ('title', 'posted') class PostForm2(forms.ModelForm): class Meta: model = Post exclude = ('subtitle',) PostFormSet = modelformset_factory(Post, form=PostForm1) formset = PostFormSet() self.assertFalse("subtitle" in formset.forms[0].fields) PostFormSet = modelformset_factory(Post, form=PostForm2) formset = PostFormSet() self.assertFalse("subtitle" in formset.forms[0].fields) def test_custom_queryset_init(self): """ Test that a queryset can be overridden in the __init__ method. https://docs.djangoproject.com/en/dev/topics/forms/modelforms/#changing-the-queryset """ Author.objects.create(name='Charles Baudelaire') Author.objects.create(name='Paul Verlaine') class BaseAuthorFormSet(BaseModelFormSet): def __init__(self, *args, **kwargs): super(BaseAuthorFormSet, self).__init__(*args, **kwargs) self.queryset = Author.objects.filter(name__startswith='Charles') AuthorFormSet = modelformset_factory(Author, fields='__all__', formset=BaseAuthorFormSet) formset = AuthorFormSet() self.assertEqual(len(formset.get_queryset()), 1) def test_model_inheritance(self): BetterAuthorFormSet = modelformset_factory(BetterAuthor, fields="__all__") formset = BetterAuthorFormSet() self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-name">Name:</label> <input id="id_form-0-name" type="text" name="form-0-name" maxlength="100" /></p>\n' '<p><label for="id_form-0-write_speed">Write speed:</label> <input type="number" name="form-0-write_speed" id="id_form-0-write_speed" /><input type="hidden" name="form-0-author_ptr" id="id_form-0-author_ptr" /></p>') data = { 'form-TOTAL_FORMS': '1', # the number of forms rendered 'form-INITIAL_FORMS': '0', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-author_ptr': '', 'form-0-name': 'Ernest Hemingway', 'form-0-write_speed': '10', } formset = BetterAuthorFormSet(data) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) author1, = saved self.assertEqual(author1, BetterAuthor.objects.get(name='Ernest Hemingway')) hemingway_id = BetterAuthor.objects.get(name="Ernest Hemingway").pk formset = BetterAuthorFormSet() self.assertEqual(len(formset.forms), 2) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-name">Name:</label> <input id="id_form-0-name" type="text" name="form-0-name" value="Ernest Hemingway" maxlength="100" /></p>\n' '<p><label for="id_form-0-write_speed">Write speed:</label> <input type="number" name="form-0-write_speed" value="10" id="id_form-0-write_speed" /><input type="hidden" name="form-0-author_ptr" value="%d" id="id_form-0-author_ptr" /></p>' % hemingway_id) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_form-1-name">Name:</label> <input id="id_form-1-name" type="text" name="form-1-name" maxlength="100" /></p>\n' '<p><label for="id_form-1-write_speed">Write speed:</label> <input type="number" name="form-1-write_speed" id="id_form-1-write_speed" /><input type="hidden" name="form-1-author_ptr" id="id_form-1-author_ptr" /></p>') data = { 'form-TOTAL_FORMS': '2', # the number of forms rendered 'form-INITIAL_FORMS': '1', # the number of forms with initial data 'form-MAX_NUM_FORMS': '', # the max number of forms 'form-0-author_ptr': hemingway_id, 'form-0-name': 'Ernest Hemingway', 'form-0-write_speed': '10', 'form-1-author_ptr': '', 'form-1-name': '', 'form-1-write_speed': '', } formset = BetterAuthorFormSet(data) self.assertTrue(formset.is_valid()) self.assertEqual(formset.save(), []) def test_inline_formsets(self): # We can also create a formset that is tied to a parent model. This is # how the admin system's edit inline functionality works. AuthorBooksFormSet = inlineformset_factory(Author, Book, can_delete=False, extra=3, fields="__all__") author = Author.objects.create(name='Charles Baudelaire') formset = AuthorBooksFormSet(instance=author) self.assertEqual(len(formset.forms), 3) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_book_set-0-title">Title:</label> <input id="id_book_set-0-title" type="text" name="book_set-0-title" maxlength="100" /><input type="hidden" name="book_set-0-author" value="%d" id="id_book_set-0-author" /><input type="hidden" name="book_set-0-id" id="id_book_set-0-id" /></p>' % author.id) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_book_set-1-title">Title:</label> <input id="id_book_set-1-title" type="text" name="book_set-1-title" maxlength="100" /><input type="hidden" name="book_set-1-author" value="%d" id="id_book_set-1-author" /><input type="hidden" name="book_set-1-id" id="id_book_set-1-id" /></p>' % author.id) self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_book_set-2-title">Title:</label> <input id="id_book_set-2-title" type="text" name="book_set-2-title" maxlength="100" /><input type="hidden" name="book_set-2-author" value="%d" id="id_book_set-2-author" /><input type="hidden" name="book_set-2-id" id="id_book_set-2-id" /></p>' % author.id) data = { 'book_set-TOTAL_FORMS': '3', # the number of forms rendered 'book_set-INITIAL_FORMS': '0', # the number of forms with initial data 'book_set-MAX_NUM_FORMS': '', # the max number of forms 'book_set-0-title': 'Les Fleurs du Mal', 'book_set-1-title': '', 'book_set-2-title': '', } formset = AuthorBooksFormSet(data, instance=author) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) book1, = saved self.assertEqual(book1, Book.objects.get(title='Les Fleurs du Mal')) self.assertQuerysetEqual(author.book_set.all(), ['<Book: Les Fleurs du Mal>']) # Now that we've added a book to Charles Baudelaire, let's try adding # another one. This time though, an edit form will be available for # every existing book. AuthorBooksFormSet = inlineformset_factory(Author, Book, can_delete=False, extra=2, fields="__all__") author = Author.objects.get(name='Charles Baudelaire') formset = AuthorBooksFormSet(instance=author) self.assertEqual(len(formset.forms), 3) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_book_set-0-title">Title:</label> <input id="id_book_set-0-title" type="text" name="book_set-0-title" value="Les Fleurs du Mal" maxlength="100" /><input type="hidden" name="book_set-0-author" value="%d" id="id_book_set-0-author" /><input type="hidden" name="book_set-0-id" value="%d" id="id_book_set-0-id" /></p>' % (author.id, book1.id)) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_book_set-1-title">Title:</label> <input id="id_book_set-1-title" type="text" name="book_set-1-title" maxlength="100" /><input type="hidden" name="book_set-1-author" value="%d" id="id_book_set-1-author" /><input type="hidden" name="book_set-1-id" id="id_book_set-1-id" /></p>' % author.id) self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_book_set-2-title">Title:</label> <input id="id_book_set-2-title" type="text" name="book_set-2-title" maxlength="100" /><input type="hidden" name="book_set-2-author" value="%d" id="id_book_set-2-author" /><input type="hidden" name="book_set-2-id" id="id_book_set-2-id" /></p>' % author.id) data = { 'book_set-TOTAL_FORMS': '3', # the number of forms rendered 'book_set-INITIAL_FORMS': '1', # the number of forms with initial data 'book_set-MAX_NUM_FORMS': '', # the max number of forms 'book_set-0-id': str(book1.id), 'book_set-0-title': 'Les Fleurs du Mal', 'book_set-1-title': 'Les Paradis Artificiels', 'book_set-2-title': '', } formset = AuthorBooksFormSet(data, instance=author) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) book2, = saved self.assertEqual(book2, Book.objects.get(title='Les Paradis Artificiels')) # As you can see, 'Les Paradis Artificiels' is now a book belonging to # Charles Baudelaire. self.assertQuerysetEqual(author.book_set.order_by('title'), [ '<Book: Les Fleurs du Mal>', '<Book: Les Paradis Artificiels>', ]) def test_inline_formsets_save_as_new(self): # The save_as_new parameter lets you re-associate the data to a new # instance. This is used in the admin for save_as functionality. AuthorBooksFormSet = inlineformset_factory(Author, Book, can_delete=False, extra=2, fields="__all__") Author.objects.create(name='Charles Baudelaire') data = { 'book_set-TOTAL_FORMS': '3', # the number of forms rendered 'book_set-INITIAL_FORMS': '2', # the number of forms with initial data 'book_set-MAX_NUM_FORMS': '', # the max number of forms 'book_set-0-id': '1', 'book_set-0-title': 'Les Fleurs du Mal', 'book_set-1-id': '2', 'book_set-1-title': 'Les Paradis Artificiels', 'book_set-2-title': '', } formset = AuthorBooksFormSet(data, instance=Author(), save_as_new=True) self.assertTrue(formset.is_valid()) new_author = Author.objects.create(name='Charles Baudelaire') formset = AuthorBooksFormSet(data, instance=new_author, save_as_new=True) saved = formset.save() self.assertEqual(len(saved), 2) book1, book2 = saved self.assertEqual(book1.title, 'Les Fleurs du Mal') self.assertEqual(book2.title, 'Les Paradis Artificiels') # Test using a custom prefix on an inline formset. formset = AuthorBooksFormSet(prefix="test") self.assertEqual(len(formset.forms), 2) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_test-0-title">Title:</label> <input id="id_test-0-title" type="text" name="test-0-title" maxlength="100" /><input type="hidden" name="test-0-author" id="id_test-0-author" /><input type="hidden" name="test-0-id" id="id_test-0-id" /></p>') self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_test-1-title">Title:</label> <input id="id_test-1-title" type="text" name="test-1-title" maxlength="100" /><input type="hidden" name="test-1-author" id="id_test-1-author" /><input type="hidden" name="test-1-id" id="id_test-1-id" /></p>') def test_inline_formsets_with_custom_pk(self): # Test inline formsets where the inline-edited object has a custom # primary key that is not the fk to the parent object. self.maxDiff = 1024 AuthorBooksFormSet2 = inlineformset_factory(Author, BookWithCustomPK, can_delete=False, extra=1, fields="__all__") author = Author.objects.create(pk=1, name='Charles Baudelaire') formset = AuthorBooksFormSet2(instance=author) self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_bookwithcustompk_set-0-my_pk">My pk:</label> <input id="id_bookwithcustompk_set-0-my_pk" type="number" name="bookwithcustompk_set-0-my_pk" step="1" /></p>\n' '<p><label for="id_bookwithcustompk_set-0-title">Title:</label> <input id="id_bookwithcustompk_set-0-title" type="text" name="bookwithcustompk_set-0-title" maxlength="100" /><input type="hidden" name="bookwithcustompk_set-0-author" value="1" id="id_bookwithcustompk_set-0-author" /></p>') data = { 'bookwithcustompk_set-TOTAL_FORMS': '1', # the number of forms rendered 'bookwithcustompk_set-INITIAL_FORMS': '0', # the number of forms with initial data 'bookwithcustompk_set-MAX_NUM_FORMS': '', # the max number of forms 'bookwithcustompk_set-0-my_pk': '77777', 'bookwithcustompk_set-0-title': 'Les Fleurs du Mal', } formset = AuthorBooksFormSet2(data, instance=author) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) book1, = saved self.assertEqual(book1.pk, 77777) book1 = author.bookwithcustompk_set.get() self.assertEqual(book1.title, 'Les Fleurs du Mal') def test_inline_formsets_with_multi_table_inheritance(self): # Test inline formsets where the inline-edited object uses multi-table # inheritance, thus has a non AutoField yet auto-created primary key. AuthorBooksFormSet3 = inlineformset_factory(Author, AlternateBook, can_delete=False, extra=1, fields="__all__") author = Author.objects.create(pk=1, name='Charles Baudelaire') formset = AuthorBooksFormSet3(instance=author) self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_alternatebook_set-0-title">Title:</label> <input id="id_alternatebook_set-0-title" type="text" name="alternatebook_set-0-title" maxlength="100" /></p>\n' '<p><label for="id_alternatebook_set-0-notes">Notes:</label> <input id="id_alternatebook_set-0-notes" type="text" name="alternatebook_set-0-notes" maxlength="100" /><input type="hidden" name="alternatebook_set-0-author" value="1" id="id_alternatebook_set-0-author" /><input type="hidden" name="alternatebook_set-0-book_ptr" id="id_alternatebook_set-0-book_ptr" /></p>') data = { 'alternatebook_set-TOTAL_FORMS': '1', # the number of forms rendered 'alternatebook_set-INITIAL_FORMS': '0', # the number of forms with initial data 'alternatebook_set-MAX_NUM_FORMS': '', # the max number of forms 'alternatebook_set-0-title': 'Flowers of Evil', 'alternatebook_set-0-notes': 'English translation of Les Fleurs du Mal' } formset = AuthorBooksFormSet3(data, instance=author) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) book1, = saved self.assertEqual(book1.title, 'Flowers of Evil') self.assertEqual(book1.notes, 'English translation of Les Fleurs du Mal') @skipUnlessDBFeature('supports_partially_nullable_unique_constraints') def test_inline_formsets_with_nullable_unique_together(self): # Test inline formsets where the inline-edited object has a # unique_together constraint with a nullable member AuthorBooksFormSet4 = inlineformset_factory(Author, BookWithOptionalAltEditor, can_delete=False, extra=2, fields="__all__") author = Author.objects.create(pk=1, name='Charles Baudelaire') data = { 'bookwithoptionalalteditor_set-TOTAL_FORMS': '2', # the number of forms rendered 'bookwithoptionalalteditor_set-INITIAL_FORMS': '0', # the number of forms with initial data 'bookwithoptionalalteditor_set-MAX_NUM_FORMS': '', # the max number of forms 'bookwithoptionalalteditor_set-0-author': '1', 'bookwithoptionalalteditor_set-0-title': 'Les Fleurs du Mal', 'bookwithoptionalalteditor_set-1-author': '1', 'bookwithoptionalalteditor_set-1-title': 'Les Fleurs du Mal', } formset = AuthorBooksFormSet4(data, instance=author) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 2) book1, book2 = saved self.assertEqual(book1.author_id, 1) self.assertEqual(book1.title, 'Les Fleurs du Mal') self.assertEqual(book2.author_id, 1) self.assertEqual(book2.title, 'Les Fleurs du Mal') def test_inline_formsets_with_custom_save_method(self): AuthorBooksFormSet = inlineformset_factory(Author, Book, can_delete=False, extra=2, fields="__all__") author = Author.objects.create(pk=1, name='Charles Baudelaire') book1 = Book.objects.create(pk=1, author=author, title='Les Paradis Artificiels') book2 = Book.objects.create(pk=2, author=author, title='Les Fleurs du Mal') book3 = Book.objects.create(pk=3, author=author, title='Flowers of Evil') class PoemForm(forms.ModelForm): def save(self, commit=True): # change the name to "Brooklyn Bridge" just to be a jerk. poem = super(PoemForm, self).save(commit=False) poem.name = "Brooklyn Bridge" if commit: poem.save() return poem PoemFormSet = inlineformset_factory(Poet, Poem, form=PoemForm, fields="__all__") data = { 'poem_set-TOTAL_FORMS': '3', # the number of forms rendered 'poem_set-INITIAL_FORMS': '0', # the number of forms with initial data 'poem_set-MAX_NUM_FORMS': '', # the max number of forms 'poem_set-0-name': 'The Cloud in Trousers', 'poem_set-1-name': 'I', 'poem_set-2-name': '', } poet = Poet.objects.create(name='Vladimir Mayakovsky') formset = PoemFormSet(data=data, instance=poet) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 2) poem1, poem2 = saved self.assertEqual(poem1.name, 'Brooklyn Bridge') self.assertEqual(poem2.name, 'Brooklyn Bridge') # We can provide a custom queryset to our InlineFormSet: custom_qs = Book.objects.order_by('-title') formset = AuthorBooksFormSet(instance=author, queryset=custom_qs) self.assertEqual(len(formset.forms), 5) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_book_set-0-title">Title:</label> <input id="id_book_set-0-title" type="text" name="book_set-0-title" value="Les Paradis Artificiels" maxlength="100" /><input type="hidden" name="book_set-0-author" value="1" id="id_book_set-0-author" /><input type="hidden" name="book_set-0-id" value="1" id="id_book_set-0-id" /></p>') self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_book_set-1-title">Title:</label> <input id="id_book_set-1-title" type="text" name="book_set-1-title" value="Les Fleurs du Mal" maxlength="100" /><input type="hidden" name="book_set-1-author" value="1" id="id_book_set-1-author" /><input type="hidden" name="book_set-1-id" value="2" id="id_book_set-1-id" /></p>') self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_book_set-2-title">Title:</label> <input id="id_book_set-2-title" type="text" name="book_set-2-title" value="Flowers of Evil" maxlength="100" /><input type="hidden" name="book_set-2-author" value="1" id="id_book_set-2-author" /><input type="hidden" name="book_set-2-id" value="3" id="id_book_set-2-id" /></p>') self.assertHTMLEqual(formset.forms[3].as_p(), '<p><label for="id_book_set-3-title">Title:</label> <input id="id_book_set-3-title" type="text" name="book_set-3-title" maxlength="100" /><input type="hidden" name="book_set-3-author" value="1" id="id_book_set-3-author" /><input type="hidden" name="book_set-3-id" id="id_book_set-3-id" /></p>') self.assertHTMLEqual(formset.forms[4].as_p(), '<p><label for="id_book_set-4-title">Title:</label> <input id="id_book_set-4-title" type="text" name="book_set-4-title" maxlength="100" /><input type="hidden" name="book_set-4-author" value="1" id="id_book_set-4-author" /><input type="hidden" name="book_set-4-id" id="id_book_set-4-id" /></p>') data = { 'book_set-TOTAL_FORMS': '5', # the number of forms rendered 'book_set-INITIAL_FORMS': '3', # the number of forms with initial data 'book_set-MAX_NUM_FORMS': '', # the max number of forms 'book_set-0-id': str(book1.id), 'book_set-0-title': 'Les Paradis Artificiels', 'book_set-1-id': str(book2.id), 'book_set-1-title': 'Les Fleurs du Mal', 'book_set-2-id': str(book3.id), 'book_set-2-title': 'Flowers of Evil', 'book_set-3-title': 'Revue des deux mondes', 'book_set-4-title': '', } formset = AuthorBooksFormSet(data, instance=author, queryset=custom_qs) self.assertTrue(formset.is_valid()) custom_qs = Book.objects.filter(title__startswith='F') formset = AuthorBooksFormSet(instance=author, queryset=custom_qs) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_book_set-0-title">Title:</label> <input id="id_book_set-0-title" type="text" name="book_set-0-title" value="Flowers of Evil" maxlength="100" /><input type="hidden" name="book_set-0-author" value="1" id="id_book_set-0-author" /><input type="hidden" name="book_set-0-id" value="3" id="id_book_set-0-id" /></p>') self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_book_set-1-title">Title:</label> <input id="id_book_set-1-title" type="text" name="book_set-1-title" maxlength="100" /><input type="hidden" name="book_set-1-author" value="1" id="id_book_set-1-author" /><input type="hidden" name="book_set-1-id" id="id_book_set-1-id" /></p>') self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_book_set-2-title">Title:</label> <input id="id_book_set-2-title" type="text" name="book_set-2-title" maxlength="100" /><input type="hidden" name="book_set-2-author" value="1" id="id_book_set-2-author" /><input type="hidden" name="book_set-2-id" id="id_book_set-2-id" /></p>') data = { 'book_set-TOTAL_FORMS': '3', # the number of forms rendered 'book_set-INITIAL_FORMS': '1', # the number of forms with initial data 'book_set-MAX_NUM_FORMS': '', # the max number of forms 'book_set-0-id': str(book3.id), 'book_set-0-title': 'Flowers of Evil', 'book_set-1-title': 'Revue des deux mondes', 'book_set-2-title': '', } formset = AuthorBooksFormSet(data, instance=author, queryset=custom_qs) self.assertTrue(formset.is_valid()) def test_custom_pk(self): # We need to ensure that it is displayed CustomPrimaryKeyFormSet = modelformset_factory(CustomPrimaryKey, fields="__all__") formset = CustomPrimaryKeyFormSet() self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-my_pk">My pk:</label> <input id="id_form-0-my_pk" type="text" name="form-0-my_pk" maxlength="10" /></p>\n' '<p><label for="id_form-0-some_field">Some field:</label> <input id="id_form-0-some_field" type="text" name="form-0-some_field" maxlength="100" /></p>') # Custom primary keys with ForeignKey, OneToOneField and AutoField ############ place = Place.objects.create(pk=1, name='Giordanos', city='Chicago') FormSet = inlineformset_factory(Place, Owner, extra=2, can_delete=False, fields="__all__") formset = FormSet(instance=place) self.assertEqual(len(formset.forms), 2) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_owner_set-0-name">Name:</label> <input id="id_owner_set-0-name" type="text" name="owner_set-0-name" maxlength="100" /><input type="hidden" name="owner_set-0-place" value="1" id="id_owner_set-0-place" /><input type="hidden" name="owner_set-0-auto_id" id="id_owner_set-0-auto_id" /></p>') self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_owner_set-1-name">Name:</label> <input id="id_owner_set-1-name" type="text" name="owner_set-1-name" maxlength="100" /><input type="hidden" name="owner_set-1-place" value="1" id="id_owner_set-1-place" /><input type="hidden" name="owner_set-1-auto_id" id="id_owner_set-1-auto_id" /></p>') data = { 'owner_set-TOTAL_FORMS': '2', 'owner_set-INITIAL_FORMS': '0', 'owner_set-MAX_NUM_FORMS': '', 'owner_set-0-auto_id': '', 'owner_set-0-name': 'Joe Perry', 'owner_set-1-auto_id': '', 'owner_set-1-name': '', } formset = FormSet(data, instance=place) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) owner1, = saved self.assertEqual(owner1.name, 'Joe Perry') self.assertEqual(owner1.place.name, 'Giordanos') formset = FormSet(instance=place) self.assertEqual(len(formset.forms), 3) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_owner_set-0-name">Name:</label> <input id="id_owner_set-0-name" type="text" name="owner_set-0-name" value="Joe Perry" maxlength="100" /><input type="hidden" name="owner_set-0-place" value="1" id="id_owner_set-0-place" /><input type="hidden" name="owner_set-0-auto_id" value="%d" id="id_owner_set-0-auto_id" /></p>' % owner1.auto_id) self.assertHTMLEqual(formset.forms[1].as_p(), '<p><label for="id_owner_set-1-name">Name:</label> <input id="id_owner_set-1-name" type="text" name="owner_set-1-name" maxlength="100" /><input type="hidden" name="owner_set-1-place" value="1" id="id_owner_set-1-place" /><input type="hidden" name="owner_set-1-auto_id" id="id_owner_set-1-auto_id" /></p>') self.assertHTMLEqual(formset.forms[2].as_p(), '<p><label for="id_owner_set-2-name">Name:</label> <input id="id_owner_set-2-name" type="text" name="owner_set-2-name" maxlength="100" /><input type="hidden" name="owner_set-2-place" value="1" id="id_owner_set-2-place" /><input type="hidden" name="owner_set-2-auto_id" id="id_owner_set-2-auto_id" /></p>') data = { 'owner_set-TOTAL_FORMS': '3', 'owner_set-INITIAL_FORMS': '1', 'owner_set-MAX_NUM_FORMS': '', 'owner_set-0-auto_id': six.text_type(owner1.auto_id), 'owner_set-0-name': 'Joe Perry', 'owner_set-1-auto_id': '', 'owner_set-1-name': 'Jack Berry', 'owner_set-2-auto_id': '', 'owner_set-2-name': '', } formset = FormSet(data, instance=place) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) owner2, = saved self.assertEqual(owner2.name, 'Jack Berry') self.assertEqual(owner2.place.name, 'Giordanos') # Ensure a custom primary key that is a ForeignKey or OneToOneField get rendered for the user to choose. FormSet = modelformset_factory(OwnerProfile, fields="__all__") formset = FormSet() self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_form-0-owner">Owner:</label> <select name="form-0-owner" id="id_form-0-owner">\n' '<option value="" selected="selected">---------</option>\n' '<option value="%d">Joe Perry at Giordanos</option>\n' '<option value="%d">Jack Berry at Giordanos</option>\n' '</select></p>\n' '<p><label for="id_form-0-age">Age:</label> <input type="number" name="form-0-age" id="id_form-0-age" min="0" /></p>' % (owner1.auto_id, owner2.auto_id)) owner1 = Owner.objects.get(name='Joe Perry') FormSet = inlineformset_factory(Owner, OwnerProfile, max_num=1, can_delete=False, fields="__all__") self.assertEqual(FormSet.max_num, 1) formset = FormSet(instance=owner1) self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_ownerprofile-0-age">Age:</label> <input type="number" name="ownerprofile-0-age" id="id_ownerprofile-0-age" min="0" /><input type="hidden" name="ownerprofile-0-owner" value="%d" id="id_ownerprofile-0-owner" /></p>' % owner1.auto_id) data = { 'ownerprofile-TOTAL_FORMS': '1', 'ownerprofile-INITIAL_FORMS': '0', 'ownerprofile-MAX_NUM_FORMS': '1', 'ownerprofile-0-owner': '', 'ownerprofile-0-age': '54', } formset = FormSet(data, instance=owner1) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) profile1, = saved self.assertEqual(profile1.owner, owner1) self.assertEqual(profile1.age, 54) formset = FormSet(instance=owner1) self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_ownerprofile-0-age">Age:</label> <input type="number" name="ownerprofile-0-age" value="54" id="id_ownerprofile-0-age" min="0" /><input type="hidden" name="ownerprofile-0-owner" value="%d" id="id_ownerprofile-0-owner" /></p>' % owner1.auto_id) data = { 'ownerprofile-TOTAL_FORMS': '1', 'ownerprofile-INITIAL_FORMS': '1', 'ownerprofile-MAX_NUM_FORMS': '1', 'ownerprofile-0-owner': six.text_type(owner1.auto_id), 'ownerprofile-0-age': '55', } formset = FormSet(data, instance=owner1) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) profile1, = saved self.assertEqual(profile1.owner, owner1) self.assertEqual(profile1.age, 55) def test_unique_true_enforces_max_num_one(self): # ForeignKey with unique=True should enforce max_num=1 place = Place.objects.create(pk=1, name='Giordanos', city='Chicago') FormSet = inlineformset_factory(Place, Location, can_delete=False, fields="__all__") self.assertEqual(FormSet.max_num, 1) formset = FormSet(instance=place) self.assertEqual(len(formset.forms), 1) self.assertHTMLEqual(formset.forms[0].as_p(), '<p><label for="id_location_set-0-lat">Lat:</label> <input id="id_location_set-0-lat" type="text" name="location_set-0-lat" maxlength="100" /></p>\n' '<p><label for="id_location_set-0-lon">Lon:</label> <input id="id_location_set-0-lon" type="text" name="location_set-0-lon" maxlength="100" /><input type="hidden" name="location_set-0-place" value="1" id="id_location_set-0-place" /><input type="hidden" name="location_set-0-id" id="id_location_set-0-id" /></p>') def test_foreign_keys_in_parents(self): self.assertEqual(type(_get_foreign_key(Restaurant, Owner)), models.ForeignKey) self.assertEqual(type(_get_foreign_key(MexicanRestaurant, Owner)), models.ForeignKey) def test_unique_validation(self): FormSet = modelformset_factory(Product, fields="__all__", extra=1) data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-slug': 'car-red', } formset = FormSet(data) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) product1, = saved self.assertEqual(product1.slug, 'car-red') data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-slug': 'car-red', } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset.errors, [{'slug': ['Product with this Slug already exists.']}]) def test_modelformset_validate_max_flag(self): # If validate_max is set and max_num is less than TOTAL_FORMS in the # data, then throw an exception. MAX_NUM_FORMS in the data is # irrelevant here (it's output as a hint for the client but its # value in the returned data is not checked) data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '2', # should be ignored 'form-0-price': '12.00', 'form-0-quantity': '1', 'form-1-price': '24.00', 'form-1-quantity': '2', } FormSet = modelformset_factory(Price, fields="__all__", extra=1, max_num=1, validate_max=True) formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset.non_form_errors(), ['Please submit 1 or fewer forms.']) # Now test the same thing without the validate_max flag to ensure # default behavior is unchanged FormSet = modelformset_factory(Price, fields="__all__", extra=1, max_num=1) formset = FormSet(data) self.assertTrue(formset.is_valid()) def test_unique_together_validation(self): FormSet = modelformset_factory(Price, fields="__all__", extra=1) data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-price': '12.00', 'form-0-quantity': '1', } formset = FormSet(data) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) price1, = saved self.assertEqual(price1.price, Decimal('12.00')) self.assertEqual(price1.quantity, 1) data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-price': '12.00', 'form-0-quantity': '1', } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset.errors, [{'__all__': ['Price with this Price and Quantity already exists.']}]) def test_unique_together_with_inlineformset_factory(self): # Also see bug #8882. repository = Repository.objects.create(name='Test Repo') FormSet = inlineformset_factory(Repository, Revision, extra=1, fields="__all__") data = { 'revision_set-TOTAL_FORMS': '1', 'revision_set-INITIAL_FORMS': '0', 'revision_set-MAX_NUM_FORMS': '', 'revision_set-0-repository': repository.pk, 'revision_set-0-revision': '146239817507f148d448db38840db7c3cbf47c76', 'revision_set-0-DELETE': '', } formset = FormSet(data, instance=repository) self.assertTrue(formset.is_valid()) saved = formset.save() self.assertEqual(len(saved), 1) revision1, = saved self.assertEqual(revision1.repository, repository) self.assertEqual(revision1.revision, '146239817507f148d448db38840db7c3cbf47c76') # attempt to save the same revision against against the same repo. data = { 'revision_set-TOTAL_FORMS': '1', 'revision_set-INITIAL_FORMS': '0', 'revision_set-MAX_NUM_FORMS': '', 'revision_set-0-repository': repository.pk, 'revision_set-0-revision': '146239817507f148d448db38840db7c3cbf47c76', 'revision_set-0-DELETE': '', } formset = FormSet(data, instance=repository) self.assertFalse(formset.is_valid()) self.assertEqual(formset.errors, [{'__all__': ['Revision with this Repository and Revision already exists.']}]) # unique_together with inlineformset_factory with overridden form fields # Also see #9494 FormSet = inlineformset_factory(Repository, Revision, fields=('revision',), extra=1) data = { 'revision_set-TOTAL_FORMS': '1', 'revision_set-INITIAL_FORMS': '0', 'revision_set-MAX_NUM_FORMS': '', 'revision_set-0-repository': repository.pk, 'revision_set-0-revision': '146239817507f148d448db38840db7c3cbf47c76', 'revision_set-0-DELETE': '', } formset = FormSet(data, instance=repository) self.assertFalse(formset.is_valid()) def test_callable_defaults(self): # Use of callable defaults (see bug #7975). person = Person.objects.create(name='Ringo') FormSet = inlineformset_factory(Person, Membership, can_delete=False, extra=1, fields="__all__") formset = FormSet(instance=person) # Django will render a hidden field for model fields that have a callable # default. This is required to ensure the value is tested for change correctly # when determine what extra forms have changed to save. self.assertEqual(len(formset.forms), 1) # this formset only has one form form = formset.forms[0] now = form.fields['date_joined'].initial() result = form.as_p() result = re.sub(r'[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}(?:\.[0-9]+)?', '__DATETIME__', result) self.assertHTMLEqual(result, '<p><label for="id_membership_set-0-date_joined">Date joined:</label> <input type="text" name="membership_set-0-date_joined" value="__DATETIME__" id="id_membership_set-0-date_joined" /><input type="hidden" name="initial-membership_set-0-date_joined" value="__DATETIME__" id="initial-membership_set-0-id_membership_set-0-date_joined" /></p>\n' '<p><label for="id_membership_set-0-karma">Karma:</label> <input type="number" name="membership_set-0-karma" id="id_membership_set-0-karma" /><input type="hidden" name="membership_set-0-person" value="%d" id="id_membership_set-0-person" /><input type="hidden" name="membership_set-0-id" id="id_membership_set-0-id" /></p>' % person.id) # test for validation with callable defaults. Validations rely on hidden fields data = { 'membership_set-TOTAL_FORMS': '1', 'membership_set-INITIAL_FORMS': '0', 'membership_set-MAX_NUM_FORMS': '', 'membership_set-0-date_joined': six.text_type(now.strftime('%Y-%m-%d %H:%M:%S')), 'initial-membership_set-0-date_joined': six.text_type(now.strftime('%Y-%m-%d %H:%M:%S')), 'membership_set-0-karma': '', } formset = FormSet(data, instance=person) self.assertTrue(formset.is_valid()) # now test for when the data changes one_day_later = now + datetime.timedelta(days=1) filled_data = { 'membership_set-TOTAL_FORMS': '1', 'membership_set-INITIAL_FORMS': '0', 'membership_set-MAX_NUM_FORMS': '', 'membership_set-0-date_joined': six.text_type(one_day_later.strftime('%Y-%m-%d %H:%M:%S')), 'initial-membership_set-0-date_joined': six.text_type(now.strftime('%Y-%m-%d %H:%M:%S')), 'membership_set-0-karma': '', } formset = FormSet(filled_data, instance=person) self.assertFalse(formset.is_valid()) # now test with split datetime fields class MembershipForm(forms.ModelForm): date_joined = forms.SplitDateTimeField(initial=now) class Meta: model = Membership fields = "__all__" def __init__(self, **kwargs): super(MembershipForm, self).__init__(**kwargs) self.fields['date_joined'].widget = forms.SplitDateTimeWidget() FormSet = inlineformset_factory(Person, Membership, form=MembershipForm, can_delete=False, extra=1, fields="__all__") data = { 'membership_set-TOTAL_FORMS': '1', 'membership_set-INITIAL_FORMS': '0', 'membership_set-MAX_NUM_FORMS': '', 'membership_set-0-date_joined_0': six.text_type(now.strftime('%Y-%m-%d')), 'membership_set-0-date_joined_1': six.text_type(now.strftime('%H:%M:%S')), 'initial-membership_set-0-date_joined': six.text_type(now.strftime('%Y-%m-%d %H:%M:%S')), 'membership_set-0-karma': '', } formset = FormSet(data, instance=person) self.assertTrue(formset.is_valid()) def test_inlineformset_factory_with_null_fk(self): # inlineformset_factory tests with fk having null=True. see #9462. # create some data that will exhibit the issue team = Team.objects.create(name="Red Vipers") Player(name="Timmy").save() Player(name="Bobby", team=team).save() PlayerInlineFormSet = inlineformset_factory(Team, Player, fields="__all__") formset = PlayerInlineFormSet() self.assertQuerysetEqual(formset.get_queryset(), []) formset = PlayerInlineFormSet(instance=team) players = formset.get_queryset() self.assertEqual(len(players), 1) player1, = players self.assertEqual(player1.team, team) self.assertEqual(player1.name, 'Bobby') def test_model_formset_with_custom_pk(self): # a formset for a Model that has a custom primary key that still needs to be # added to the formset automatically FormSet = modelformset_factory(ClassyMexicanRestaurant, fields=["tacos_are_yummy"]) self.assertEqual(sorted(FormSet().forms[0].fields.keys()), ['restaurant', 'tacos_are_yummy']) def test_model_formset_with_initial_model_instance(self): # has_changed should compare model instance and primary key # see #18898 FormSet = modelformset_factory(Poem, fields='__all__') john_milton = Poet(name="John Milton") john_milton.save() data = { 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': '', 'form-0-name': '', 'form-0-poet': str(john_milton.id), } formset = FormSet(initial=[{'poet': john_milton}], data=data) self.assertFalse(formset.extra_forms[0].has_changed()) def test_model_formset_with_initial_queryset(self): # has_changed should work with queryset and list of pk's # see #18898 FormSet = modelformset_factory(AuthorMeeting, fields='__all__') Author.objects.create(pk=1, name='Charles Baudelaire') data = { 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': '', 'form-0-name': '', 'form-0-created': '', 'form-0-authors': list(Author.objects.values_list('id', flat=True)), } formset = FormSet(initial=[{'authors': Author.objects.all()}], data=data) self.assertFalse(formset.extra_forms[0].has_changed()) def test_prevent_duplicates_from_with_the_same_formset(self): FormSet = modelformset_factory(Product, fields="__all__", extra=2) data = { 'form-TOTAL_FORMS': 2, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': '', 'form-0-slug': 'red_car', 'form-1-slug': 'red_car', } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for slug.']) FormSet = modelformset_factory(Price, fields="__all__", extra=2) data = { 'form-TOTAL_FORMS': 2, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': '', 'form-0-price': '25', 'form-0-quantity': '7', 'form-1-price': '25', 'form-1-quantity': '7', } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for price and quantity, which must be unique.']) # Only the price field is specified, this should skip any unique checks since # the unique_together is not fulfilled. This will fail with a KeyError if broken. FormSet = modelformset_factory(Price, fields=("price",), extra=2) data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-price': '24', 'form-1-price': '24', } formset = FormSet(data) self.assertTrue(formset.is_valid()) FormSet = inlineformset_factory(Author, Book, extra=0, fields="__all__") author = Author.objects.create(pk=1, name='Charles Baudelaire') Book.objects.create(pk=1, author=author, title='Les Paradis Artificiels') Book.objects.create(pk=2, author=author, title='Les Fleurs du Mal') Book.objects.create(pk=3, author=author, title='Flowers of Evil') book_ids = author.book_set.order_by('id').values_list('id', flat=True) data = { 'book_set-TOTAL_FORMS': '2', 'book_set-INITIAL_FORMS': '2', 'book_set-MAX_NUM_FORMS': '', 'book_set-0-title': 'The 2008 Election', 'book_set-0-author': str(author.id), 'book_set-0-id': str(book_ids[0]), 'book_set-1-title': 'The 2008 Election', 'book_set-1-author': str(author.id), 'book_set-1-id': str(book_ids[1]), } formset = FormSet(data=data, instance=author) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for title.']) self.assertEqual(formset.errors, [{}, {'__all__': ['Please correct the duplicate values below.']}]) FormSet = modelformset_factory(Post, fields="__all__", extra=2) data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'blah', 'form-0-slug': 'Morning', 'form-0-subtitle': 'foo', 'form-0-posted': '2009-01-01', 'form-1-title': 'blah', 'form-1-slug': 'Morning in Prague', 'form-1-subtitle': 'rawr', 'form-1-posted': '2009-01-01' } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for title which must be unique for the date in posted.']) self.assertEqual(formset.errors, [{}, {'__all__': ['Please correct the duplicate values below.']}]) data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', 'form-0-slug': 'Morning in Prague', 'form-0-subtitle': 'foo', 'form-0-posted': '2009-01-01', 'form-1-title': 'blah', 'form-1-slug': 'Morning in Prague', 'form-1-subtitle': 'rawr', 'form-1-posted': '2009-08-02' } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for slug which must be unique for the year in posted.']) data = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', 'form-0-slug': 'Morning in Prague', 'form-0-subtitle': 'rawr', 'form-0-posted': '2008-08-01', 'form-1-title': 'blah', 'form-1-slug': 'Prague', 'form-1-subtitle': 'rawr', 'form-1-posted': '2009-08-02' } formset = FormSet(data) self.assertFalse(formset.is_valid()) self.assertEqual(formset._non_form_errors, ['Please correct the duplicate data for subtitle which must be unique for the month in posted.']) class TestModelFormsetOverridesTroughFormMeta(TestCase): def test_modelformset_factory_widgets(self): widgets = { 'name': forms.TextInput(attrs={'class': 'poet'}) } PoetFormSet = modelformset_factory(Poet, fields="__all__", widgets=widgets) form = PoetFormSet.form() self.assertHTMLEqual( "%s" % form['name'], '<input id="id_name" maxlength="100" type="text" class="poet" name="name" />' ) def test_inlineformset_factory_widgets(self): widgets = { 'title': forms.TextInput(attrs={'class': 'book'}) } BookFormSet = inlineformset_factory(Author, Book, widgets=widgets, fields="__all__") form = BookFormSet.form() self.assertHTMLEqual( "%s" % form['title'], '<input class="book" id="id_title" maxlength="100" name="title" type="text" />' ) def test_modelformset_factory_labels_overrides(self): BookFormSet = modelformset_factory(Book, fields="__all__", labels={ 'title': 'Name' }) form = BookFormSet.form() self.assertHTMLEqual(form['title'].label_tag(), '<label for="id_title">Name:</label>') def test_inlineformset_factory_labels_overrides(self): BookFormSet = inlineformset_factory(Author, Book, fields="__all__", labels={ 'title': 'Name' }) form = BookFormSet.form() self.assertHTMLEqual(form['title'].label_tag(), '<label for="id_title">Name:</label>') def test_modelformset_factory_help_text_overrides(self): BookFormSet = modelformset_factory(Book, fields="__all__", help_texts={ 'title': 'Choose carefully.' }) form = BookFormSet.form() self.assertEqual(form['title'].help_text, 'Choose carefully.') def test_inlineformset_factory_help_text_overrides(self): BookFormSet = inlineformset_factory(Author, Book, fields="__all__", help_texts={ 'title': 'Choose carefully.' }) form = BookFormSet.form() self.assertEqual(form['title'].help_text, 'Choose carefully.') def test_modelformset_factory_error_messages_overrides(self): author = Author.objects.create(pk=1, name='Charles Baudelaire') BookFormSet = modelformset_factory(Book, fields="__all__", error_messages={ 'title': { 'max_length': 'Title too long!!' } }) form = BookFormSet.form(data={'title': 'Foo ' * 30, 'author': author.id}) form.full_clean() self.assertEqual(form.errors, {'title': ['Title too long!!']}) def test_inlineformset_factory_error_messages_overrides(self): author = Author.objects.create(pk=1, name='Charles Baudelaire') BookFormSet = inlineformset_factory(Author, Book, fields="__all__", error_messages={ 'title': { 'max_length': 'Title too long!!' } }) form = BookFormSet.form(data={'title': 'Foo ' * 30, 'author': author.id}) form.full_clean() self.assertEqual(form.errors, {'title': ['Title too long!!']})
from __future__ import absolute_import from __future__ import print_function from contextlib import contextmanager from typing import (cast, Any, Callable, Dict, Generator, Iterable, Iterator, List, Mapping, Optional, Sized, Tuple, Union, IO) from django.core.urlresolvers import LocaleRegexURLResolver from django.conf import settings from django.test import TestCase from django.test.client import ( BOUNDARY, MULTIPART_CONTENT, encode_multipart, ) from django.template import loader from django.http import HttpResponse from django.db.utils import IntegrityError from django.utils.translation import ugettext as _ from zerver.lib.avatar import avatar_url from zerver.lib.initial_password import initial_password from zerver.lib.db import TimeTrackingCursor from zerver.lib.str_utils import force_text from zerver.lib import cache from zerver.tornado import event_queue from zerver.tornado.handlers import allocate_handler_id from zerver.worker import queue_processors from zerver.lib.actions import ( check_send_message, create_stream_if_needed, bulk_add_subscriptions, get_display_recipient, bulk_remove_subscriptions ) from zerver.models import ( get_realm, get_stream, get_user_profile_by_email, Client, Message, Realm, Recipient, Stream, Subscription, UserMessage, UserProfile, ) from zerver.lib.request import JsonableError import collections import base64 import mock import os import re import sys import time import ujson import unittest from six.moves import urllib from six import text_type, binary_type from zerver.lib.str_utils import NonBinaryStr from contextlib import contextmanager import six @contextmanager def simulated_queue_client(client): # type: (type) -> Iterator[None] real_SimpleQueueClient = queue_processors.SimpleQueueClient queue_processors.SimpleQueueClient = client # type: ignore # https://github.com/JukkaL/mypy/issues/1152 yield queue_processors.SimpleQueueClient = real_SimpleQueueClient # type: ignore # https://github.com/JukkaL/mypy/issues/1152 @contextmanager def tornado_redirected_to_list(lst): # type: (List[Mapping[str, Any]]) -> Iterator[None] real_event_queue_process_notification = event_queue.process_notification event_queue.process_notification = lst.append yield event_queue.process_notification = real_event_queue_process_notification @contextmanager def simulated_empty_cache(): # type: () -> Generator[List[Tuple[str, Union[text_type, List[text_type]], text_type]], None, None] cache_queries = [] # type: List[Tuple[str, Union[text_type, List[text_type]], text_type]] def my_cache_get(key, cache_name=None): # type: (text_type, Optional[str]) -> Any cache_queries.append(('get', key, cache_name)) return None def my_cache_get_many(keys, cache_name=None): # type: (List[text_type], Optional[str]) -> Dict[text_type, Any] cache_queries.append(('getmany', keys, cache_name)) return None old_get = cache.cache_get old_get_many = cache.cache_get_many cache.cache_get = my_cache_get cache.cache_get_many = my_cache_get_many yield cache_queries cache.cache_get = old_get cache.cache_get_many = old_get_many @contextmanager def queries_captured(include_savepoints=False): # type: (Optional[bool]) -> Generator[List[Dict[str, Union[str, binary_type]]], None, None] ''' Allow a user to capture just the queries executed during the with statement. ''' queries = [] # type: List[Dict[str, Union[str, binary_type]]] def wrapper_execute(self, action, sql, params=()): # type: (TimeTrackingCursor, Callable, NonBinaryStr, Iterable[Any]) -> None start = time.time() try: return action(sql, params) finally: stop = time.time() duration = stop - start if include_savepoints or ('SAVEPOINT' not in sql): queries.append({ 'sql': self.mogrify(sql, params).decode('utf-8'), 'time': "%.3f" % duration, }) old_execute = TimeTrackingCursor.execute old_executemany = TimeTrackingCursor.executemany def cursor_execute(self, sql, params=()): # type: (TimeTrackingCursor, NonBinaryStr, Iterable[Any]) -> None return wrapper_execute(self, super(TimeTrackingCursor, self).execute, sql, params) # type: ignore # https://github.com/JukkaL/mypy/issues/1167 TimeTrackingCursor.execute = cursor_execute # type: ignore # https://github.com/JukkaL/mypy/issues/1167 def cursor_executemany(self, sql, params=()): # type: (TimeTrackingCursor, NonBinaryStr, Iterable[Any]) -> None return wrapper_execute(self, super(TimeTrackingCursor, self).executemany, sql, params) # type: ignore # https://github.com/JukkaL/mypy/issues/1167 TimeTrackingCursor.executemany = cursor_executemany # type: ignore # https://github.com/JukkaL/mypy/issues/1167 yield queries TimeTrackingCursor.execute = old_execute # type: ignore # https://github.com/JukkaL/mypy/issues/1167 TimeTrackingCursor.executemany = old_executemany # type: ignore # https://github.com/JukkaL/mypy/issues/1167 def get_test_image_file(filename): # type: (str) -> IO[Any] test_avatar_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../tests/images')) return open(os.path.join(test_avatar_dir, filename), 'rb') def avatar_disk_path(user_profile, medium=False): # type: (UserProfile, bool) -> str avatar_url_path = avatar_url(user_profile, medium) avatar_disk_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", avatar_url_path.split("/")[-1].split("?")[0]) return avatar_disk_path def make_client(name): # type: (str) -> Client client, _ = Client.objects.get_or_create(name=name) return client def find_key_by_email(address): # type: (text_type) -> text_type from django.core.mail import outbox key_regex = re.compile("accounts/do_confirm/([a-f0-9]{40})>") for message in reversed(outbox): if address in message.to: return key_regex.search(message.body).groups()[0] def message_ids(result): # type: (Dict[str, Any]) -> Set[int] return set(message['id'] for message in result['messages']) def message_stream_count(user_profile): # type: (UserProfile) -> int return UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ count() def most_recent_usermessage(user_profile): # type: (UserProfile) -> UserMessage query = UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ order_by('-message') return query[0] # Django does LIMIT here def most_recent_message(user_profile): # type: (UserProfile) -> Message usermessage = most_recent_usermessage(user_profile) return usermessage.message def get_user_messages(user_profile): # type: (UserProfile) -> List[Message] query = UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ order_by('message') return [um.message for um in query] class DummyHandler(object): def __init__(self): # type: () -> None allocate_handler_id(self) # type: ignore # this is a testing mock class POSTRequestMock(object): method = "POST" def __init__(self, post_data, user_profile): # type: (Dict[str, Any], UserProfile) -> None self.GET = {} # type: Dict[str, Any] self.POST = post_data self.user = user_profile self._tornado_handler = DummyHandler() self._log_data = {} # type: Dict[str, Any] self.META = {'PATH_INFO': 'test'} class HostRequestMock(object): """A mock request object where get_host() works. Useful for testing routes that use Zulip's subdomains feature""" def __init__(self, host=settings.EXTERNAL_HOST): # type: (text_type) -> None self.host = host def get_host(self): # type: () -> text_type return self.host class MockPythonResponse(object): def __init__(self, text, status_code): # type: (text_type, int) -> None self.text = text self.status_code = status_code @property def ok(self): # type: () -> bool return self.status_code == 200 INSTRUMENTING = os.environ.get('TEST_INSTRUMENT_URL_COVERAGE', '') == 'TRUE' INSTRUMENTED_CALLS = [] # type: List[Dict[str, Any]] UrlFuncT = Callable[..., HttpResponse] # TODO: make more specific def instrument_url(f): # type: (UrlFuncT) -> UrlFuncT if not INSTRUMENTING: return f else: def wrapper(self, url, info={}, **kwargs): # type: (Any, text_type, Dict[str, Any], **Any) -> HttpResponse start = time.time() result = f(self, url, info, **kwargs) delay = time.time() - start test_name = self.id() if '?' in url: url, extra_info = url.split('?', 1) else: extra_info = '' INSTRUMENTED_CALLS.append(dict( url=url, status_code=result.status_code, method=f.__name__, delay=delay, extra_info=extra_info, info=info, test_name=test_name, kwargs=kwargs)) return result return wrapper def write_instrumentation_reports(full_suite): # type: (bool) -> None if INSTRUMENTING: calls = INSTRUMENTED_CALLS from zproject.urls import urlpatterns, v1_api_and_json_patterns # Find our untested urls. pattern_cnt = collections.defaultdict(int) # type: Dict[str, int] def re_strip(r): # type: (Any) -> str return str(r).lstrip('^').rstrip('$') def find_patterns(patterns, prefixes): # type: (List[Any], List[str]) -> None for pattern in patterns: find_pattern(pattern, prefixes) def cleanup_url(url): # type: (str) -> str if url.startswith('/'): url = url[1:] if url.startswith('http://testserver/'): url = url[len('http://testserver/'):] if url.startswith('http://zulip.testserver/'): url = url[len('http://zulip.testserver/'):] if url.startswith('http://testserver:9080/'): url = url[len('http://testserver:9080/'):] return url def find_pattern(pattern, prefixes): # type: (Any, List[str]) -> None if isinstance(pattern, type(LocaleRegexURLResolver)): return if hasattr(pattern, 'url_patterns'): return canon_pattern = prefixes[0] + re_strip(pattern.regex.pattern) cnt = 0 for call in calls: if 'pattern' in call: continue url = cleanup_url(call['url']) for prefix in prefixes: if url.startswith(prefix): match_url = url[len(prefix):] if pattern.regex.match(match_url): if call['status_code'] in [200, 204, 301, 302]: cnt += 1 call['pattern'] = canon_pattern pattern_cnt[canon_pattern] += cnt find_patterns(urlpatterns, ['', 'en/', 'de/']) find_patterns(v1_api_and_json_patterns, ['api/v1/', 'json/']) assert len(pattern_cnt) > 100 untested_patterns = set([p for p in pattern_cnt if pattern_cnt[p] == 0]) # We exempt some patterns that are called via Tornado. exempt_patterns = set([ 'api/v1/events', 'api/v1/register', ]) untested_patterns -= exempt_patterns var_dir = 'var' # TODO make sure path is robust here fn = os.path.join(var_dir, 'url_coverage.txt') with open(fn, 'w') as f: for call in calls: try: line = ujson.dumps(call) f.write(line + '\n') except OverflowError: print(''' A JSON overflow error was encountered while producing the URL coverage report. Sometimes this indicates that a test is passing objects into methods like client_post(), which is unnecessary and leads to false positives. ''') print(call) if full_suite: print('INFO: URL coverage report is in %s' % (fn,)) print('INFO: Try running: ./tools/create-test-api-docs') if full_suite and len(untested_patterns): print("\nERROR: Some URLs are untested! Here's the list of untested URLs:") for untested_pattern in sorted(untested_patterns): print(" %s" % (untested_pattern,)) sys.exit(1) def get_all_templates(): # type: () -> List[str] templates = [] relpath = os.path.relpath isfile = os.path.isfile path_exists = os.path.exists def is_valid_template(p, n): # type: (text_type, text_type) -> bool return (not n.startswith('.') and not n.startswith('__init__') and not n.endswith(".md") and isfile(p)) def process(template_dir, dirname, fnames): # type: (str, str, Iterable[str]) -> None for name in fnames: path = os.path.join(dirname, name) if is_valid_template(path, name): templates.append(relpath(path, template_dir)) for engine in loader.engines.all(): template_dirs = [d for d in engine.template_dirs if path_exists(d)] for template_dir in template_dirs: template_dir = os.path.normpath(template_dir) for dirpath, dirnames, fnames in os.walk(template_dir): process(template_dir, dirpath, fnames) return templates
from scipy.misc import imresize import utils import numpy as np from scipy import ndimage from utils import to_int def get_random_transform_params(input_shape, rotation_range = 0., height_shift_range = 0., width_shift_range = 0., shear_range = 0., zoom_range = (1, 1), horizontal_flip = False, resize_range = None, distortion_prob = 0., additive_gaussian_noise_range = None, multiplication_gaussian = 0, transform_colorspace_param = None, transform_colorspace_bounds = (-1, 1)): """ This closure function returns generative function that gets random instance trough parameter and together with closed input parameters generates random parameters for transformation matrix. :param distortion_prob: Probability of the downsampling and upsampling of the image :param resize_range: Defines uniform interval of downsampling factor :param input_shape: Shape of images to be transformed with matrix with this parameters :param rotation_range: Interval of rotation in degrees (used for in both direction) :param height_shift_range: Value of two-sided interval of random shift in vertical direction :param width_shift_range: Value of two-sided interval of random shift in horizontal direction :param shear_range: Value of two-sided interval of random shear in horizontal direction :param zoom_range: Tuple with 2 values representing range of random zoom (values > 1.0 is for zoom out) :param horizontal_flip: Whether do random horizontal flip image :return: Function that with given random instance generates random parameters for transformation matrix """ def get_instance(rnd): U = rnd.uniform N = rnd.normal rr = rotation_range hs = height_shift_range ws = width_shift_range sr = shear_range agn = additive_gaussian_noise_range dp = distortion_prob mg = multiplication_gaussian tcp = transform_colorspace_param tcb = transform_colorspace_bounds return { 'input_shape': input_shape, 'theta': np.pi / 180 * U(-rr, rr) if rr else 0, 'ty': U(-hs, hs) * input_shape[0] if hs else 0, 'tx': U(-ws, ws) * input_shape[1] if ws else 0, 'shear': U(-sr, sr) if shear_range else 0, 'z': U(zoom_range[0], zoom_range[1]) if zoom_range != (1, 1) else 1, 'h_flip': rnd.rand() < 0.5 if horizontal_flip else False, 'add_noise': N(0, U(agn[0], agn[1]), input_shape) if agn is not None else None, 'resize': U(*resize_range) if U(0, 1) < dp else None, 'resize_smooth': U(0, 1) < 0.5, 'mul': N(1, mg) if mg > 0 else None, 'color_m': utils.crop_value(N(tcp[0], tcp[1], (3, 3)), tcb) if tcp is not None else None, 'agn': agn } return get_instance def assemble_transformation_matrix(input_shape, theta = 0, tx = 0, ty = 0, shear = 0, z = 1): """ Creates transformation matrix with given parameters. That resulting matrix has origin in centre of the image :param input_shape: Shape of images to be transformed with matrix. Origin of transformation matrix is set in the middle of image. :param theta: Rotation in radians :param tx: Translation in X axis :param ty: Translation in Y axis :param shear: Shear in horizontal direction :param z: Image zoom :return: Transformation matrix """ def transform_matrix_offset_center(matrix, x, y): """ Creates translation matrix from input matrix with origin in the centre of image :param matrix: Input matrix :param x: Width of the image :param y: Height of the image :return: Returns shifted input matrix with origin in [y/2, x/2] """ o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) t_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return t_matrix rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) translation_matrix = np.array([[1, 0, ty], [0, 1, tx], [0, 0, 1]]) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) zoom_matrix = np.array([[z, 0, 0], [0, z, 0], [0, 0, 1]]) # Assembling transformation matrix transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix) # Set origin of transformation to center of the image h, w = input_shape[0], input_shape[1] transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) return transform_matrix def transform(v, t_matrix, h_flip = False, add_noise = None, resize = None, resize_smooth = None, mul = None, color_m = None): """ Transform image with (inverted) transformation matrix :param v: Input image to be transformed :param t_matrix: Transformation matrix :param h_flip: Whether do horizontal flip :return: Transformed image """ def apply_transform(x, transform_matrix, channel_index = 0, fill_mode = 'nearest', cval = 0.): x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndimage.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order = 2, mode = fill_mode, cval = cval) for x_channel in x] x = np.stack(channel_images, axis = 0) x = np.rollaxis(x, 0, channel_index + 1) return x def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x v = apply_transform(v, t_matrix, 2) if h_flip: v = flip_axis(v, 1) if color_m is not None or mul is not None or add_noise is not None: v = v.astype(np.float32) shape = v.shape if mul is not None: v *= mul if color_m is not None: v = np.reshape(v, [-1, 3]) v = np.matmul(v, color_m) v = np.reshape(v, shape) if add_noise is not None: v += add_noise if resize is not None: interpolation = 'bilinear' if resize_smooth else 'nearest' v = imresize(v, (resize * np.array(shape[:2])).astype(np.uint16), interpolation) v = imresize(v, shape[:2], interpolation) v = utils.crop_value(v, [np.zeros(shape), np.ones(shape) * 255]) return v.astype(np.uint8) def crop_data(img, labels, new_img_size, new_label_size = None, crop_label = True): """ Both images and labels will be cropped to match the given size :param img: Images to be cropped :param labels: Labels to be cropped :param new_img_size: New image size :param new_label_size: New labels size :return: Cropped image and labels """ img_size = img.shape[-3] r = to_int((img_size - new_img_size) / 2) img = img[..., r:r + new_img_size, r:r + new_img_size, :] if crop_label: labels -= r if new_label_size is not None: labels = np.array((labels / new_img_size) * new_label_size, dtype = np.int32) return img, labels def flip_body_joints(points): """ Change semantic of labels after flip transformation - i.e. left leg will be now right and so on. :param points: Body joints to be changed """ def swap(a, b): points[:, [a, b]] = points[:, [b, a]] # Leg swap(0, 5) swap(1, 4) swap(2, 3) # Arm swap(10, 15) swap(11, 14) swap(12, 13) def generate_random__transformation(X, rseed = 0, t_params_f = None): rnd = np.random.RandomState(rseed) if not t_params_f: raise Exception('No attributes given!') n = X.shape[0] X_t = [] t_params = t_params_f(rnd) h_flip = t_params.pop('h_flip') add_noise = t_params.pop('add_noise') resize = t_params.pop('resize') mul = t_params.pop('mul') agn = t_params.pop('agn') color_m = t_params.pop('color_m') resize_smooth = t_params.pop('resize_smooth') t_matrix = assemble_transformation_matrix(**t_params) for k in range(n): inp = np.squeeze(X[k]) if agn is not None: gauss = rnd.normal(0, rnd.uniform(agn[0], agn[1]), inp.shape) else: gauss = None x_t = transform(inp, t_matrix, h_flip, gauss, resize, resize_smooth, mul, color_m) X_t.append(x_t) return np.array(X_t) def generate_random_sequences(X, Y, sequence_size = 32, shift = 16, rseed = 0, final_size = None, t_params_f = None, final_heatmap_size = None): rnd = np.random.RandomState(rseed) if not t_params_f: raise Exception('No attributes given!') if final_size is None: final_size = min(X.shape[2], X.shape[3]) n = X.shape[0] perm = rnd.permutation(range(0, n, shift)) perm_n = perm.shape[0] for idx in range(perm_n): b = range(perm[idx], min(perm[idx] + sequence_size, n)) X_t = [] Y_t = [] t_params = t_params_f(rnd) h_flip = t_params.pop('h_flip') add_noise = t_params.pop('add_noise') resize = t_params.pop('resize') mul = t_params.pop('mul') agn = t_params.pop('agn') color_m = t_params.pop('color_m') resize_smooth = t_params.pop('resize_smooth') t_matrix = assemble_transformation_matrix(**t_params) for k in b: inp = np.squeeze(X[k]) if agn is not None: gauss = rnd.normal(0, rnd.uniform(agn[0], agn[1]), inp.shape) else: gauss = None x_t = transform(inp, t_matrix, h_flip, gauss, resize, resize_smooth, mul, color_m) y_t = utils.get_affine_transform(np.squeeze(Y[k]), np.linalg.inv(t_matrix)) if Y is not None else None x_t, y_t = crop_data(x_t, y_t, final_size, final_heatmap_size) X_t.append(x_t) if Y is not None: if h_flip: y_t[1, :] = (final_size if final_heatmap_size is None else final_heatmap_size) - y_t[1, :] flip_body_joints(y_t) Y_t.append(y_t) if Y is not None: yield np.array(X_t), np.array(Y_t), idx else: yield np.array(X_t), idx def generate_minibatches(X, Y = None, batch_size = 32, rseed = 0, final_size = None, t_params_f = None, final_heatmap_size = None): """ This function splits whole input batch of images into minibatches of given size. All images in batch are transformed using affine transformations in order to prevent over-fitting during training. :param X: Batch of input images to be divided. It has to be 4D tensor [batch, channel, height, width] :param Y: Labels of input images (joint positions on heatmap). 3D tensor [batch, image dimension, joint]. E.g. joint with index 4 present in 10th image (i.e. index 9) that is in position [50, 80] is in indexes: Y[9, :, 4] == [50, 80] :param batch_size: Size of each mini-batch :param rseed: Random seed :param t_params_f: Function that generates parameters for transformation matrix (see get_random_transform_params) :param final_size: Transformed images are cropped to match the given size :param final_heatmap_size: Size of heatmaps :return: Sequence of randomly ordered and transformed mini-batches """ rnd = np.random.RandomState(rseed) if not t_params_f: raise Exception('No attributes given!') if final_size is None: final_size = min(X.shape[2], X.shape[3]) n = X.shape[0] perm = rnd.permutation(n) for idx in range(0, n, batch_size): b = perm[idx:min(idx + batch_size, n)] X_t = [] Y_t = [] for k in b: t_params = t_params_f(rnd) h_flip = t_params.pop('h_flip') add_noise = t_params.pop('add_noise') resize = t_params.pop('resize') mul = t_params.pop('mul') color_m = t_params.pop('color_m') agn = t_params.pop('agn') resize_smooth = t_params.pop('resize_smooth') t_matrix = assemble_transformation_matrix(**t_params) x_t = transform(np.squeeze(X[k]), t_matrix, h_flip, add_noise, resize, resize_smooth, mul, color_m) y_t = utils.get_affine_transform(np.squeeze(Y[k]), np.linalg.inv(t_matrix)) if Y is not None else None x_t, y_t = crop_data(x_t, y_t, final_size, final_heatmap_size) X_t.append(x_t) if Y is not None: if h_flip: y_t[1, :] = (final_size if final_heatmap_size is None else final_heatmap_size) - y_t[1, :] flip_body_joints(y_t) Y_t.append(y_t) if Y is not None: yield np.array(X_t), np.array(Y_t), b else: yield np.array(X_t), b
# Copyright (c) 2011 Intel Corporation # Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """The FilterScheduler is for creating volumes. You can customize this scheduler by specifying your own volume Filters and Weighing Functions. """ from oslo_config import cfg from oslo_log import log as logging from cinder import exception from cinder.i18n import _, _LE, _LW from cinder.scheduler import driver from cinder.scheduler import scheduler_options from cinder.volume import utils CONF = cfg.CONF LOG = logging.getLogger(__name__) class FilterScheduler(driver.Scheduler): """Scheduler that can be used for filtering and weighing.""" def __init__(self, *args, **kwargs): super(FilterScheduler, self).__init__(*args, **kwargs) self.cost_function_cache = None self.options = scheduler_options.SchedulerOptions() self.max_attempts = self._max_attempts() def schedule(self, context, topic, method, *args, **kwargs): """Schedule contract that returns best-suited host for this request.""" self._schedule(context, topic, *args, **kwargs) def _get_configuration_options(self): """Fetch options dictionary. Broken out for testing.""" return self.options.get_configuration() def populate_filter_properties(self, request_spec, filter_properties): """Stuff things into filter_properties. Can be overridden in a subclass to add more data. """ vol = request_spec['volume_properties'] filter_properties['size'] = vol['size'] filter_properties['availability_zone'] = vol.get('availability_zone') filter_properties['user_id'] = vol.get('user_id') filter_properties['metadata'] = vol.get('metadata') filter_properties['qos_specs'] = vol.get('qos_specs') def schedule_create_consistencygroup(self, context, group, request_spec_list, filter_properties_list): weighed_host = self._schedule_group( context, request_spec_list, filter_properties_list) if not weighed_host: raise exception.NoValidHost(reason=_("No weighed hosts available")) host = weighed_host.obj.host updated_group = driver.group_update_db(context, group, host) self.volume_rpcapi.create_consistencygroup(context, updated_group, host) def schedule_create_volume(self, context, request_spec, filter_properties): weighed_host = self._schedule(context, request_spec, filter_properties) if not weighed_host: raise exception.NoValidHost(reason=_("No weighed hosts available")) host = weighed_host.obj.host volume_id = request_spec['volume_id'] updated_volume = driver.volume_update_db(context, volume_id, host) self._post_select_populate_filter_properties(filter_properties, weighed_host.obj) # context is not serializable filter_properties.pop('context', None) self.volume_rpcapi.create_volume(context, updated_volume, host, request_spec, filter_properties, allow_reschedule=True) def host_passes_filters(self, context, host, request_spec, filter_properties): """Check if the specified host passes the filters.""" weighed_hosts = self._get_weighted_candidates(context, request_spec, filter_properties) for weighed_host in weighed_hosts: host_state = weighed_host.obj if host_state.host == host: return host_state raise exception.NoValidHost(reason=_('Cannot place volume %(id)s on ' '%(host)s') % {'id': request_spec['volume_id'], 'host': host}) def find_retype_host(self, context, request_spec, filter_properties=None, migration_policy='never'): """Find a host that can accept the volume with its new type.""" filter_properties = filter_properties or {} current_host = request_spec['volume_properties']['host'] # The volume already exists on this host, and so we shouldn't check if # it can accept the volume again in the CapacityFilter. filter_properties['vol_exists_on'] = current_host weighed_hosts = self._get_weighted_candidates(context, request_spec, filter_properties) if not weighed_hosts: raise exception.NoValidHost(reason=_('No valid hosts for volume ' '%(id)s with type %(type)s') % {'id': request_spec['volume_id'], 'type': request_spec['volume_type']}) for weighed_host in weighed_hosts: host_state = weighed_host.obj if host_state.host == current_host: return host_state if utils.extract_host(current_host, 'pool') is None: # legacy volumes created before pool is introduced has no pool # info in host. But host_state.host always include pool level # info. In this case if above exact match didn't work out, we # find host_state that are of the same host of volume being # retyped. In other words, for legacy volumes, retyping could # cause migration between pools on same host, which we consider # it is different from migration between hosts thus allow that # to happen even migration policy is 'never'. for weighed_host in weighed_hosts: host_state = weighed_host.obj backend = utils.extract_host(host_state.host, 'backend') if backend == current_host: return host_state if migration_policy == 'never': raise exception.NoValidHost(reason=_('Current host not valid for ' 'volume %(id)s with type ' '%(type)s, migration not ' 'allowed') % {'id': request_spec['volume_id'], 'type': request_spec['volume_type']}) top_host = self._choose_top_host(weighed_hosts, request_spec) return top_host.obj def get_pools(self, context, filters): # TODO(zhiteng) Add filters support return self.host_manager.get_pools(context) def _post_select_populate_filter_properties(self, filter_properties, host_state): """Populate filter properties with additional information. Add additional information to the filter properties after a host has been selected by the scheduling process. """ # Add a retry entry for the selected volume backend: self._add_retry_host(filter_properties, host_state.host) def _add_retry_host(self, filter_properties, host): """Add a retry entry for the selected volume backend. In the event that the request gets re-scheduled, this entry will signal that the given backend has already been tried. """ retry = filter_properties.get('retry', None) if not retry: return hosts = retry['hosts'] hosts.append(host) def _max_attempts(self): max_attempts = CONF.scheduler_max_attempts if max_attempts < 1: raise exception.InvalidParameterValue( err=_("Invalid value for 'scheduler_max_attempts', " "must be >=1")) return max_attempts def _log_volume_error(self, volume_id, retry): """Log requests with exceptions from previous volume operations.""" exc = retry.pop('exc', None) # string-ified exception from volume if not exc: return # no exception info from a previous attempt, skip hosts = retry.get('hosts', None) if not hosts: return # no previously attempted hosts, skip last_host = hosts[-1] LOG.error(_LE("Error scheduling %(volume_id)s from last vol-service: " "%(last_host)s : %(exc)s"), {'volume_id': volume_id, 'last_host': last_host, 'exc': exc}) def _populate_retry(self, filter_properties, properties): """Populate filter properties with history of retries for request. If maximum retries is exceeded, raise NoValidHost. """ max_attempts = self.max_attempts retry = filter_properties.pop('retry', {}) if max_attempts == 1: # re-scheduling is disabled. return # retry is enabled, update attempt count: if retry: retry['num_attempts'] += 1 else: retry = { 'num_attempts': 1, 'hosts': [] # list of volume service hosts tried } filter_properties['retry'] = retry volume_id = properties.get('volume_id') self._log_volume_error(volume_id, retry) if retry['num_attempts'] > max_attempts: raise exception.NoValidHost( reason=_("Exceeded max scheduling attempts %(max_attempts)d " "for volume %(volume_id)s") % {'max_attempts': max_attempts, 'volume_id': volume_id}) def _get_weighted_candidates(self, context, request_spec, filter_properties=None): """Return a list of hosts that meet required specs. Returned list is ordered by their fitness. """ elevated = context.elevated() volume_properties = request_spec['volume_properties'] # Since Cinder is using mixed filters from Oslo and it's own, which # takes 'resource_XX' and 'volume_XX' as input respectively, copying # 'volume_XX' to 'resource_XX' will make both filters happy. resource_properties = volume_properties.copy() volume_type = request_spec.get("volume_type", None) resource_type = request_spec.get("volume_type", None) request_spec.update({'resource_properties': resource_properties}) config_options = self._get_configuration_options() if filter_properties is None: filter_properties = {} self._populate_retry(filter_properties, resource_properties) filter_properties.update({'context': context, 'request_spec': request_spec, 'config_options': config_options, 'volume_type': volume_type, 'resource_type': resource_type}) self.populate_filter_properties(request_spec, filter_properties) # If multiattach is enabled on a volume, we need to add # multiattach to extra specs, so that the capability # filtering is enabled. multiattach = volume_properties.get('multiattach', False) if multiattach and 'multiattach' not in resource_type.get( 'extra_specs', {}): if 'extra_specs' not in resource_type: resource_type['extra_specs'] = {} resource_type['extra_specs'].update( multiattach='<is> True') # Find our local list of acceptable hosts by filtering and # weighing our options. we virtually consume resources on # it so subsequent selections can adjust accordingly. # Note: remember, we are using an iterator here. So only # traverse this list once. hosts = self.host_manager.get_all_host_states(elevated) # Filter local hosts based on requirements ... hosts = self.host_manager.get_filtered_hosts(hosts, filter_properties) if not hosts: return [] LOG.debug("Filtered %s", hosts) # weighted_host = WeightedHost() ... the best # host for the job. weighed_hosts = self.host_manager.get_weighed_hosts(hosts, filter_properties) return weighed_hosts def _get_weighted_candidates_group(self, context, request_spec_list, filter_properties_list=None): """Finds hosts that supports the consistencygroup. Returns a list of hosts that meet the required specs, ordered by their fitness. """ elevated = context.elevated() weighed_hosts = [] index = 0 for request_spec in request_spec_list: volume_properties = request_spec['volume_properties'] # Since Cinder is using mixed filters from Oslo and it's own, which # takes 'resource_XX' and 'volume_XX' as input respectively, # copying 'volume_XX' to 'resource_XX' will make both filters # happy. resource_properties = volume_properties.copy() volume_type = request_spec.get("volume_type", None) resource_type = request_spec.get("volume_type", None) request_spec.update({'resource_properties': resource_properties}) config_options = self._get_configuration_options() filter_properties = {} if filter_properties_list: filter_properties = filter_properties_list[index] if filter_properties is None: filter_properties = {} self._populate_retry(filter_properties, resource_properties) # Add consistencygroup_support in extra_specs if it is not there. # Make sure it is populated in filter_properties if 'consistencygroup_support' not in resource_type.get( 'extra_specs', {}): resource_type['extra_specs'].update( consistencygroup_support='<is> True') filter_properties.update({'context': context, 'request_spec': request_spec, 'config_options': config_options, 'volume_type': volume_type, 'resource_type': resource_type}) self.populate_filter_properties(request_spec, filter_properties) # Find our local list of acceptable hosts by filtering and # weighing our options. we virtually consume resources on # it so subsequent selections can adjust accordingly. # Note: remember, we are using an iterator here. So only # traverse this list once. all_hosts = self.host_manager.get_all_host_states(elevated) if not all_hosts: return [] # Filter local hosts based on requirements ... hosts = self.host_manager.get_filtered_hosts(all_hosts, filter_properties) if not hosts: return [] LOG.debug("Filtered %s", hosts) # weighted_host = WeightedHost() ... the best # host for the job. temp_weighed_hosts = self.host_manager.get_weighed_hosts( hosts, filter_properties) if not temp_weighed_hosts: return [] if index == 0: weighed_hosts = temp_weighed_hosts else: new_weighed_hosts = [] for host1 in weighed_hosts: for host2 in temp_weighed_hosts: if host1.obj.host == host2.obj.host: new_weighed_hosts.append(host1) weighed_hosts = new_weighed_hosts if not weighed_hosts: return [] index += 1 return weighed_hosts def _schedule(self, context, request_spec, filter_properties=None): weighed_hosts = self._get_weighted_candidates(context, request_spec, filter_properties) if not weighed_hosts: LOG.warning(_LW('No weighed hosts found for volume ' 'with properties: %s'), filter_properties['request_spec']['volume_type']) return None return self._choose_top_host(weighed_hosts, request_spec) def _schedule_group(self, context, request_spec_list, filter_properties_list=None): weighed_hosts = self._get_weighted_candidates_group( context, request_spec_list, filter_properties_list) if not weighed_hosts: return None return self._choose_top_host_group(weighed_hosts, request_spec_list) def _choose_top_host(self, weighed_hosts, request_spec): top_host = weighed_hosts[0] host_state = top_host.obj LOG.debug("Choosing %s", host_state.host) volume_properties = request_spec['volume_properties'] host_state.consume_from_volume(volume_properties) return top_host def _choose_top_host_group(self, weighed_hosts, request_spec_list): top_host = weighed_hosts[0] host_state = top_host.obj LOG.debug("Choosing %s", host_state.host) return top_host
""" A lan connect class using udp """ __author__ = "Oliver Lindemann <[email protected]>" __version__ = "0.5" import atexit import os import socket from multiprocessing import Process, Event, Queue import logging from .types import UDPData from .polling_time_profile import PollingTimeProfile from .process_priority_manager import get_priority from .timer import Timer, app_timer, get_time_ms def get_lan_ip(): if os.name != "nt": # linux from subprocess import check_output rtn = check_output("hostname -I".split(" ")) rtn = rtn.decode().split(" ") return rtn[0].strip() else: # windows # code bas on http://stackoverflow.com/questions/11735821/python-get-localhost-ip return socket.gethostbyname(socket.gethostname()) class UDPConnection(object): # DOC document the usage "connecting" "unconnecting" COMMAND_CHAR = b"$" CONNECT = COMMAND_CHAR + b"connect" UNCONNECT = COMMAND_CHAR + b"unconnect" COMMAND_REPLY = COMMAND_CHAR + b"ok" PING = COMMAND_CHAR + b"ping" MY_IP = get_lan_ip() def __init__(self, udp_port=5005): self.udp_port = udp_port self._socket = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP self._socket.bind((UDPConnection.MY_IP, self.udp_port)) self._socket.setblocking(False) self.peer_ip = None self.timer = Timer(sync_timer=app_timer) # own timer, because often # used in own process @property def my_ip(self): return UDPConnection.MY_IP def __str__(self): return "ip: {0} (port: {1}); peer: {2}".format(UDPConnection.MY_IP, self.udp_port, self.peer_ip) def receive(self, timeout): """checks for received data and returns it In contrast to poll the function keep polling until timeout if no new data are available. timeout in seconds """ t = get_time_ms() timeout_ms = int(timeout*1000) while True: rtn = self.poll() if rtn is not None: #print("UDP receive: {0}".format(rtn)) return rtn if (get_time_ms() - t) > timeout_ms: return None def poll(self): """returns data (bytes) or None if no data found process also commands if send is unkown input is ignored """ try: data, sender = self._socket.recvfrom(1024) except: return None # process data if data == UDPConnection.CONNECT: #connection request self.peer_ip = sender[0] if not self.send(UDPConnection.COMMAND_REPLY): self.peer_ip = None elif sender[0] != self.peer_ip: return None # ignore data elif data == UDPConnection.PING: self.send(UDPConnection.COMMAND_REPLY) elif data == self.UNCONNECT: self.unconnect_peer() return data def send(self, data, timeout=1.0): """returns if problems or not timeout in seconds (default = 1.0) return False if failed to send """ timeout_ms = int(timeout*1000) if self.peer_ip is None: return False start = get_time_ms() if isinstance(data, str): data = data.encode() # force to byte while get_time_ms() - start < timeout_ms: try: self._socket.sendto(data, (self.peer_ip, self.udp_port)) #print("UDP send: {0}".format(data)) return True except: pass return False def connect_peer(self, peer_ip, timeout=1.0): self.unconnect_peer() self.peer_ip = peer_ip if self.send(UDPConnection.CONNECT, timeout=timeout) and \ self.wait_input(UDPConnection.COMMAND_REPLY, duration=timeout): return True self.peer_ip = None return False def wait_input(self, input_string, duration=1.0): """poll the connection and waits for a specific input""" start = get_time_ms() duration_ms = int(duration*1000) while get_time_ms() - start < duration_ms: in_ = self.poll() if in_ == input_string: return True return False def unconnect_peer(self, timeout=1.0): self.send(UDPConnection.UNCONNECT, timeout=timeout) self.peer_ip = None @property def is_connected(self): return self.peer_ip is not None def ping(self, timeout=0.5): """returns boolean if succeeded and ping time in ms""" if self.peer_ip == None: return False, None start = get_time_ms() if self.send(UDPConnection.PING, timeout=timeout) and \ self.wait_input(UDPConnection.COMMAND_REPLY, duration=timeout): return True, get_time_ms() - start return False, None def clear_receive_buffer(self): data = "" while data is not None: data = self.poll() def poll_last_data(self): """polls all data and returns only the last one return None if not data found""" rtn = None tmp = self.poll() while tmp is not None: rtn = tmp tmp = self.poll() return rtn class UDPConnectionProcess(Process): """UDPConnectionProcess polls and writes to a data queue. Example:: # Server that prints each input and echos it to the client # that is currently connected from udp_connection import UDPConnectionProcess, Queue receive_queue = Queue() udp_p = UDPConnectionProcess(receive_queue=receive_queue) udp_p.start() udp_p.event_polling.set() # start polling while True: data = receive_queue.get() print(data) if data is not None: udp_p.send_queue.put(data.string) Example:: # connecting to a server """ # DOC def __init__(self, event_trigger = (), event_ignore_tag = None): """Initialize UDPConnectionProcess Parameters ---------- receive_queue: multiprocessing.Queue the queue to which the received data should be put peer_ip : string the IP of the peer to which the connection should be established sync_clock : Clock the internal clock for timestamps will synchronized with this clock event_trigger: multiprocessing.Event() (or list of..) event trigger(s) to be set. If Udp event is received and it is not a command to set this event (typical of sensor recording processes). event_ignore_tag: udp data that start with this tag will be ignored for event triggering """ # DOC super(UDPConnectionProcess, self).__init__() self.receive_queue = Queue() self.send_queue = Queue() self.event_is_connected = Event() self._event_quit_request = Event() self._event_is_polling = Event() self._event_ignore_tag = event_ignore_tag if isinstance(event_trigger, type(Event) ): event_trigger = (event_trigger) try: self._event_trigger = tuple(event_trigger) except: self._event_trigger = () atexit.register(self.quit) @property def my_ip(self): return UDPConnection.MY_IP def quit(self): self._event_quit_request.set() if self.is_alive(): self.join() def pause(self): self._event_is_polling.clear() def start_polling(self): self._event_is_polling.set() def run(self): udp_connection = UDPConnection(udp_port=5005) self.start_polling() ptp = PollingTimeProfile() prev_event_polling = None while not self._event_quit_request.is_set(): if prev_event_polling != self._event_is_polling.is_set(): # event pooling changed prev_event_polling = self._event_is_polling.is_set() if prev_event_polling: logging.warning("UDP start, pid {}, priority {}".format( self.pid, get_priority(self.pid))) else: logging.warning("UDP stop") ptp.stop() if not self._event_is_polling.is_set(): self._event_is_polling.wait(timeout=0.1) else: data = udp_connection.poll() t = udp_connection.timer.time ptp.update(t) if data is not None: d = UDPData(string=data, time=t) self.receive_queue.put(d) if self._event_ignore_tag is not None and \ not d.startswith(self._event_ignore_tag): for ev in self._event_trigger: # set all connected trigger ev.set() try: udp_connection.send(self.send_queue.get_nowait()) except: pass # has connection changed? if self.event_is_connected.is_set() != udp_connection.is_connected: if udp_connection.is_connected: self.event_is_connected.set() else: self.event_is_connected.clear() if not udp_connection.is_connected: udp_connection.timer.wait(200) udp_connection.unconnect_peer() logging.warning("UDP quit, {}".format(ptp.get_profile_str()))
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import now, cint from frappe.model import no_value_fields from frappe.model.document import Document from frappe.model.db_schema import type_map from frappe.core.doctype.property_setter.property_setter import make_property_setter from frappe.core.doctype.notification_count.notification_count import delete_notification_count_for from frappe.modules import make_boilerplate form_grid_templates = { "fields": "templates/form_grid/fields.html" } class DocType(Document): def validate(self): if not frappe.conf.get("developer_mode"): frappe.throw(_("Not in Developer Mode! Set in site_config.json")) for c in [".", "/", "#", "&", "=", ":", "'", '"']: if c in self.name: frappe.throw(_("{0} not allowed in name").format(c)) self.validate_series() self.scrub_field_names() self.validate_title_field() validate_fields(self.get("fields")) if self.istable: # no permission records for child table self.permissions = [] else: validate_permissions(self) self.make_amendable() def change_modified_of_parent(self): if frappe.flags.in_import: return parent_list = frappe.db.sql("""SELECT parent from tabDocField where fieldtype="Table" and options=%s""", self.name) for p in parent_list: frappe.db.sql('UPDATE tabDocType SET modified=%s WHERE `name`=%s', (now(), p[0])) def scrub_field_names(self): restricted = ('name','parent','creation','modified','modified_by', 'parentfield','parenttype',"file_list") for d in self.get("fields"): if d.fieldtype: if (not getattr(d, "fieldname", None)): if d.label: d.fieldname = d.label.strip().lower().replace(' ','_') if d.fieldname in restricted: d.fieldname = d.fieldname + '1' else: d.fieldname = d.fieldtype.lower().replace(" ","_") + "_" + str(d.idx) def validate_title_field(self): if self.title_field and \ self.title_field not in [d.fieldname for d in self.get("fields")]: frappe.throw(_("Title field must be a valid fieldname")) def validate_series(self, autoname=None, name=None): if not autoname: autoname = self.autoname if not name: name = self.name if not autoname and self.get("fields", {"fieldname":"naming_series"}): self.autoname = "naming_series:" if autoname and (not autoname.startswith('field:')) \ and (not autoname.startswith('eval:')) \ and (not autoname in ('Prompt', 'hash')) \ and (not autoname.startswith('naming_series:')): prefix = autoname.split('.')[0] used_in = frappe.db.sql('select name from tabDocType where substring_index(autoname, ".", 1) = %s and name!=%s', (prefix, name)) if used_in: frappe.throw(_("Series {0} already used in {1}").format(prefix, used_in[0][0])) def on_update(self): from frappe.model.db_schema import updatedb updatedb(self.name) self.change_modified_of_parent() make_module_and_roles(self) from frappe import conf if not (frappe.flags.in_import or frappe.flags.in_test) and conf.get('developer_mode') or 0: self.export_doc() self.make_controller_template() # update index if not getattr(self, "custom", False): from frappe.modules import load_doctype_module module = load_doctype_module(self.name, self.module) if hasattr(module, "on_doctype_update"): module.on_doctype_update() delete_notification_count_for(doctype=self.name) frappe.clear_cache(doctype=self.name) def before_rename(self, old, new, merge=False): if merge: frappe.throw(_("DocType can not be merged")) def after_rename(self, old, new, merge=False): if self.issingle: frappe.db.sql("""update tabSingles set doctype=%s where doctype=%s""", (new, old)) else: frappe.db.sql("rename table `tab%s` to `tab%s`" % (old, new)) def before_reload(self): if not (self.issingle and self.istable): self.preserve_naming_series_options_in_property_setter() def preserve_naming_series_options_in_property_setter(self): """preserve naming_series as property setter if it does not exist""" naming_series = self.get("fields", {"fieldname": "naming_series"}) if not naming_series: return # check if atleast 1 record exists if not (frappe.db.table_exists("tab" + self.name) and frappe.db.sql("select name from `tab{}` limit 1".format(self.name))): return existing_property_setter = frappe.db.get_value("Property Setter", {"doc_type": self.name, "property": "options", "field_name": "naming_series"}) if not existing_property_setter: make_property_setter(self.name, "naming_series", "options", naming_series[0].options, "Text", validate_fields_for_doctype=False) if naming_series[0].default: make_property_setter(self.name, "naming_series", "default", naming_series[0].default, "Text", validate_fields_for_doctype=False) def export_doc(self): from frappe.modules.export_file import export_to_files export_to_files(record_list=[['DocType', self.name]]) def import_doc(self): from frappe.modules.import_module import import_from_files import_from_files(record_list=[[self.module, 'doctype', self.name]]) def make_controller_template(self): make_boilerplate("controller.py", self) if not (self.istable or self.issingle): make_boilerplate("test_controller.py", self) make_boilerplate("test_records.json", self) def make_amendable(self): """ if is_submittable is set, add amended_from docfields """ if self.is_submittable: if not frappe.db.sql("""select name from tabDocField where fieldname = 'amended_from' and parent = %s""", self.name): self.append("fields", { "label": "Amended From", "fieldtype": "Link", "fieldname": "amended_from", "options": self.name, "read_only": 1, "print_hide": 1, "no_copy": 1 }) def get_max_idx(self): max_idx = frappe.db.sql("""select max(idx) from `tabDocField` where parent = %s""", self.name) return max_idx and max_idx[0][0] or 0 def validate_fields_for_doctype(doctype): validate_fields(frappe.get_meta(doctype).get("fields")) # this is separate because it is also called via custom field def validate_fields(fields): def check_illegal_characters(fieldname): for c in ['.', ',', ' ', '-', '&', '%', '=', '"', "'", '*', '$', '(', ')', '[', ']', '/']: if c in fieldname: frappe.throw(_("{0} not allowed in fieldname {1}").format(c, fieldname)) def check_unique_fieldname(fieldname): duplicates = filter(None, map(lambda df: df.fieldname==fieldname and str(df.idx) or None, fields)) if len(duplicates) > 1: frappe.throw(_("Fieldname {0} appears multiple times in rows {1}").format(fieldname, ", ".join(duplicates))) def check_illegal_mandatory(d): if (d.fieldtype in no_value_fields) and d.fieldtype!="Table" and d.reqd: frappe.throw(_("Field {0} of type {1} cannot be mandatory").format(d.label, d.fieldtype)) def check_link_table_options(d): if d.fieldtype in ("Link", "Table"): if not d.options: frappe.throw(_("Options requried for Link or Table type field {0} in row {1}").format(d.label, d.idx)) if d.options=="[Select]" or d.options==d.parent: return if d.options != d.parent and not frappe.db.exists("DocType", d.options): frappe.throw(_("Options must be a valid DocType for field {0} in row {1}").format(d.label, d.idx)) def check_hidden_and_mandatory(d): if d.hidden and d.reqd and not d.default: frappe.throw(_("Field {0} in row {1} cannot be hidden and mandatory without default").format(d.label, d.idx)) def check_min_items_in_list(fields): if len(filter(lambda d: d.in_list_view, fields))==0: for d in fields[:5]: if d.fieldtype in type_map: d.in_list_view = 1 def check_width(d): if d.fieldtype == "Currency" and cint(d.width) < 100: frappe.throw(_("Max width for type Currency is 100px in row {0}").format(d.idx)) def check_in_list_view(d): if d.in_list_view and d.fieldtype!="Image" and (d.fieldtype in no_value_fields): frappe.throw(_("'In List View' not allowed for type {0} in row {1}").format(d.fieldtype, d.idx)) def check_dynamic_link_options(d): if d.fieldtype=="Dynamic Link": doctype_pointer = filter(lambda df: df.fieldname==d.options, fields) if not doctype_pointer or (doctype_pointer[0].fieldtype!="Link") \ or (doctype_pointer[0].options!="DocType"): frappe.throw(_("Options 'Dynamic Link' type of field must point to another Link Field with options as 'DocType'")) def check_fold(fields): fold_exists = False for i, f in enumerate(fields): if f.fieldtype=="Fold": if fold_exists: frappe.throw(_("There can be only one Fold in a form")) fold_exists = True if i < len(fields)-1: nxt = fields[i+1] if nxt.fieldtype != "Section Break" \ or (nxt.fieldtype=="Section Break" and not nxt.label): frappe.throw(_("Fold must come before a labelled Section Break")) else: frappe.throw(_("Fold can not be at the end of the form")) for d in fields: if not d.permlevel: d.permlevel = 0 if not d.fieldname: frappe.throw(_("Fieldname is required in row {0}").format(d.idx)) check_illegal_characters(d.fieldname) check_unique_fieldname(d.fieldname) check_illegal_mandatory(d) check_link_table_options(d) check_dynamic_link_options(d) check_hidden_and_mandatory(d) check_in_list_view(d) check_min_items_in_list(fields) check_fold(fields) def validate_permissions_for_doctype(doctype, for_remove=False): doctype = frappe.get_doc("DocType", doctype) if frappe.conf.developer_mode and not frappe.flags.in_test: # save doctype doctype.save() else: validate_permissions(doctype, for_remove) # save permissions for perm in doctype.get("permissions"): perm.db_update() def validate_permissions(doctype, for_remove=False): permissions = doctype.get("permissions") if not permissions: frappe.throw(_('Enter at least one permission row'), frappe.MandatoryError) issingle = issubmittable = isimportable = False if doctype: issingle = cint(doctype.issingle) issubmittable = cint(doctype.is_submittable) isimportable = cint(doctype.allow_import) def get_txt(d): return _("For {0} at level {1} in {2} in row {3}").format(d.role, d.permlevel, d.parent, d.idx) def check_atleast_one_set(d): if not d.read and not d.write and not d.submit and not d.cancel and not d.create: frappe.throw(_("{0}: No basic permissions set").format(get_txt(d))) def check_double(d): has_similar = False for p in permissions: if (p.role==d.role and p.permlevel==d.permlevel and p.apply_user_permissions==d.apply_user_permissions and p!=d): has_similar = True break if has_similar: frappe.throw(_("{0}: Only one rule allowed with the same Role, Level and Apply User Permissions").format(get_txt(d))) def check_level_zero_is_set(d): if cint(d.permlevel) > 0 and d.role != 'All': has_zero_perm = False for p in permissions: if p.role==d.role and (p.permlevel or 0)==0 and p!=d: has_zero_perm = True break if not has_zero_perm: frappe.throw(_("{0}: Permission at level 0 must be set before higher levels are set").format(get_txt(d))) if d.create or d.submit or d.cancel or d.amend or d.match: frappe.throw(_("{0}: Create, Submit, Cancel and Amend only valid at level 0").format(get_txt(d))) def check_permission_dependency(d): if d.cancel and not d.submit: frappe.throw(_("{0}: Cannot set Cancel without Submit").format(get_txt(d))) if (d.submit or d.cancel or d.amend) and not d.write: frappe.throw(_("{0}: Cannot set Submit, Cancel, Amend without Write").format(get_txt(d))) if d.amend and not d.write: frappe.throw(_("{0}: Cannot set Amend without Cancel").format(get_txt(d))) if d.get("import") and not d.create: frappe.throw(_("{0}: Cannot set Import without Create").format(get_txt(d))) def remove_rights_for_single(d): if not issingle: return if d.report: frappe.msgprint(_("Report cannot be set for Single types")) d.report = 0 d.set("import", 0) d.set("export", 0) for ptype, label in ( ("set_user_permissions", _("Set User Permissions")), ("apply_user_permissions", _("Apply User Permissions"))): if d.get(ptype): d.set(ptype, 0) frappe.msgprint(_("{0} cannot be set for Single types").format(label)) def check_if_submittable(d): if d.submit and not issubmittable: frappe.throw(_("{0}: Cannot set Assign Submit if not Submittable").format(get_txt(d))) elif d.amend and not issubmittable: frappe.throw(_("{0}: Cannot set Assign Amend if not Submittable").format(get_txt(d))) def check_if_importable(d): if d.get("import") and not isimportable: frappe.throw(_("{0}: Cannot set import as {1} is not importable").format(get_txt(d), doctype)) for d in permissions: if not d.permlevel: d.permlevel=0 check_atleast_one_set(d) if not for_remove: check_double(d) check_permission_dependency(d) check_if_submittable(d) check_if_importable(d) check_level_zero_is_set(d) remove_rights_for_single(d) def make_module_and_roles(doc, perm_fieldname="permissions"): try: if not frappe.db.exists("Module Def", doc.module): m = frappe.get_doc({"doctype": "Module Def", "module_name": doc.module}) m.app_name = frappe.local.module_app[frappe.scrub(doc.module)] m.ignore_mandatory = m.ignore_permissions = True m.insert() default_roles = ["Administrator", "Guest", "All"] roles = [p.role for p in doc.get("permissions") or []] + default_roles for role in list(set(roles)): if not frappe.db.exists("Role", role): r = frappe.get_doc({"doctype": "Role", "role_name": role}) r.role_name = role r.ignore_mandatory = r.ignore_permissions = True r.insert() except frappe.DoesNotExistError, e: pass except frappe.SQLError, e: if e.args[0]==1146: pass else: raise def init_list(doctype): doc = frappe.get_meta(doctype) make_boilerplate("controller_list.js", doc) make_boilerplate("controller_list.html", doc)
#!/usr/bin/env python # pylint: disable=protected-access, unused-variable, locally-disabled, len-as-condition """Lint helper to generate lint summary of source. Copyright by Contributors """ from __future__ import print_function import argparse import codecs import sys import re import os import cpplint from cpplint import _cpplint_state from pylint import epylint CXX_SUFFIX = set(['cc', 'c', 'cpp', 'h', 'cu', 'hpp']) PYTHON_SUFFIX = set(['py']) def filepath_enumerate(paths): """Enumerate the file paths of all subfiles of the list of paths""" out = [] for path in paths: if os.path.isfile(path): out.append(path) else: for root, dirs, files in os.walk(path): for name in files: out.append(os.path.normpath(os.path.join(root, name))) return out # pylint: disable=useless-object-inheritance class LintHelper(object): """Class to help runing the lint and records summary""" @staticmethod def _print_summary_map(strm, result_map, ftype): """Print summary of certain result map.""" if len(result_map) == 0: return 0 npass = len([x for k, x in result_map.items() if len(x) == 0]) strm.write('=====%d/%d %s files passed check=====\n' % (npass, len(result_map), ftype)) for fname, emap in result_map.items(): if len(emap) == 0: continue strm.write('%s: %d Errors of %d Categories map=%s\n' % ( fname, sum(emap.values()), len(emap), str(emap))) return len(result_map) - npass def __init__(self): self.project_name = None self.cpp_header_map = {} self.cpp_src_map = {} self.python_map = {} pylint_disable = ['superfluous-parens', 'too-many-instance-attributes', 'too-few-public-methods'] # setup pylint self.pylint_opts = ['--extension-pkg-whitelist=numpy', '--disable=' + ','.join(pylint_disable)] self.pylint_cats = set(['error', 'warning', 'convention', 'refactor']) # setup cpp lint cpplint_args = ['.', '--extensions=' + (','.join(CXX_SUFFIX))] _ = cpplint.ParseArguments(cpplint_args) cpplint._SetFilters(','.join(['-build/c++11', '-build/namespaces', '-build/include,', '+build/include_what_you_use', '+build/include_order'])) cpplint._SetCountingStyle('toplevel') cpplint._line_length = 100 def process_cpp(self, path, suffix): """Process a cpp file.""" _cpplint_state.ResetErrorCounts() cpplint.ProcessFile(str(path), _cpplint_state.verbose_level) _cpplint_state.PrintErrorCounts() errors = _cpplint_state.errors_by_category.copy() if suffix == 'h': self.cpp_header_map[str(path)] = errors else: self.cpp_src_map[str(path)] = errors def process_python(self, path): """Process a python file.""" (pylint_stdout, pylint_stderr) = epylint.py_run( ' '.join([str(path)] + self.pylint_opts), return_std=True) emap = {} err = pylint_stderr.read() if len(err): print(err) for line in pylint_stdout: sys.stderr.write(line) key = line.split(':')[-1].split('(')[0].strip() if key not in self.pylint_cats: continue if key not in emap: emap[key] = 1 else: emap[key] += 1 self.python_map[str(path)] = emap def print_summary(self, strm): """Print summary of lint.""" nerr = 0 nerr += LintHelper._print_summary_map(strm, self.cpp_header_map, 'cpp-header') nerr += LintHelper._print_summary_map(strm, self.cpp_src_map, 'cpp-soruce') nerr += LintHelper._print_summary_map(strm, self.python_map, 'python') if nerr == 0: strm.write('All passed!\n') else: strm.write('%d files failed lint\n' % nerr) return nerr # singleton helper for lint check _HELPER = LintHelper() def get_header_guard_dmlc(filename): """Get Header Guard Convention for DMLC Projects. For headers in include, directly use the path For headers in src, use project name plus path Examples: with project-name = dmlc include/dmlc/timer.h -> DMLC_TIMTER_H_ src/io/libsvm_parser.h -> DMLC_IO_LIBSVM_PARSER_H_ """ fileinfo = cpplint.FileInfo(filename) file_path_from_root = fileinfo.RepositoryName() inc_list = ['include', 'api', 'wrapper', 'contrib'] if os.name == 'nt': inc_list.append("mshadow") if file_path_from_root.find('src/') != -1 and _HELPER.project_name is not None: idx = file_path_from_root.find('src/') file_path_from_root = _HELPER.project_name + file_path_from_root[idx + 3:] else: idx = file_path_from_root.find("include/") if idx != -1: file_path_from_root = file_path_from_root[idx + 8:] for spath in inc_list: prefix = spath + '/' if file_path_from_root.startswith(prefix): file_path_from_root = re.sub('^' + prefix, '', file_path_from_root) break return re.sub(r'[-./\s]', '_', file_path_from_root).upper() + '_' cpplint.GetHeaderGuardCPPVariable = get_header_guard_dmlc def process(fname, allow_type): """Process a file.""" fname = str(fname) arr = fname.rsplit('.', 1) if fname.find('#') != -1 or arr[-1] not in allow_type: return if arr[-1] in CXX_SUFFIX: _HELPER.process_cpp(fname, arr[-1]) if arr[-1] in PYTHON_SUFFIX: _HELPER.process_python(fname) def main(): """Main entry function.""" parser = argparse.ArgumentParser(description="lint source codes") parser.add_argument('project', help='project name') parser.add_argument('filetype', choices=['python', 'cpp', 'all'], help='source code type') parser.add_argument('path', nargs='+', help='path to traverse') parser.add_argument('--exclude_path', nargs='+', default=[], help='exclude this path, and all subfolders if path is a folder') parser.add_argument('--pylint-rc', default=None, help='pylint rc file') args = parser.parse_args() _HELPER.project_name = args.project if args.pylint_rc is not None: _HELPER.pylint_opts = ['--rcfile='+args.pylint_rc,] file_type = args.filetype allow_type = [] if file_type in ('python', 'all'): allow_type += [x for x in PYTHON_SUFFIX] if file_type in ('cpp', 'all'): allow_type += [x for x in CXX_SUFFIX] allow_type = set(allow_type) if sys.version_info.major == 2 and os.name != 'nt': sys.stderr = codecs.StreamReaderWriter(sys.stderr, codecs.getreader('utf8'), codecs.getwriter('utf8'), 'replace') # get excluded files excluded_paths = filepath_enumerate(args.exclude_path) for path in args.path: if os.path.isfile(path): normpath = os.path.normpath(path) if normpath not in excluded_paths: process(path, allow_type) else: for root, dirs, files in os.walk(path): for name in files: file_path = os.path.normpath(os.path.join(root, name)) if file_path not in excluded_paths: process(file_path, allow_type) nerr = _HELPER.print_summary(sys.stderr) sys.exit(nerr > 0) if __name__ == '__main__': main()
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Needs to stay compatible with Python 2.5 due to GAE. # # Copyright 2007 Google Inc. All Rights Reserved. """Descriptors essentially contain exactly the information found in a .proto file, in types that make this information accessible in Python. """ __author__ = '[email protected] (Will Robinson)' from protobuf26.internal import api_implementation if api_implementation.Type() == 'cpp': # Used by MakeDescriptor in cpp mode import os import uuid if api_implementation.Version() == 2: from protobuf26.pyext import _message else: from protobuf26.internal import cpp_message class Error(Exception): """Base error for this module.""" class TypeTransformationError(Error): """Error transforming between python proto type and corresponding C++ type.""" class DescriptorBase(object): """Descriptors base class. This class is the base of all descriptor classes. It provides common options related functionaility. Attributes: has_options: True if the descriptor has non-default options. Usually it is not necessary to read this -- just call GetOptions() which will happily return the default instance. However, it's sometimes useful for efficiency, and also useful inside the protobuf implementation to avoid some bootstrapping issues. """ def __init__(self, options, options_class_name): """Initialize the descriptor given its options message and the name of the class of the options message. The name of the class is required in case the options message is None and has to be created. """ self._options = options self._options_class_name = options_class_name # Does this descriptor have non-default options? self.has_options = options is not None def _SetOptions(self, options, options_class_name): """Sets the descriptor's options This function is used in generated proto2 files to update descriptor options. It must not be used outside proto2. """ self._options = options self._options_class_name = options_class_name # Does this descriptor have non-default options? self.has_options = options is not None def GetOptions(self): """Retrieves descriptor options. This method returns the options set or creates the default options for the descriptor. """ if self._options: return self._options from protobuf26 import descriptor_pb2 try: options_class = getattr(descriptor_pb2, self._options_class_name) except AttributeError: raise RuntimeError('Unknown options class name %s!' % (self._options_class_name)) self._options = options_class() return self._options class _NestedDescriptorBase(DescriptorBase): """Common class for descriptors that can be nested.""" def __init__(self, options, options_class_name, name, full_name, file, containing_type, serialized_start=None, serialized_end=None): """Constructor. Args: options: Protocol message options or None to use default message options. options_class_name: (str) The class name of the above options. name: (str) Name of this protocol message type. full_name: (str) Fully-qualified name of this protocol message type, which will include protocol "package" name and the name of any enclosing types. file: (FileDescriptor) Reference to file info. containing_type: if provided, this is a nested descriptor, with this descriptor as parent, otherwise None. serialized_start: The start index (inclusive) in block in the file.serialized_pb that describes this descriptor. serialized_end: The end index (exclusive) in block in the file.serialized_pb that describes this descriptor. """ super(_NestedDescriptorBase, self).__init__( options, options_class_name) self.name = name # TODO(falk): Add function to calculate full_name instead of having it in # memory? self.full_name = full_name self.file = file self.containing_type = containing_type self._serialized_start = serialized_start self._serialized_end = serialized_end def GetTopLevelContainingType(self): """Returns the root if this is a nested type, or itself if its the root.""" desc = self while desc.containing_type is not None: desc = desc.containing_type return desc def CopyToProto(self, proto): """Copies this to the matching proto in descriptor_pb2. Args: proto: An empty proto instance from descriptor_pb2. Raises: Error: If self couldnt be serialized, due to to few constructor arguments. """ if (self.file is not None and self._serialized_start is not None and self._serialized_end is not None): proto.ParseFromString(self.file.serialized_pb[ self._serialized_start:self._serialized_end]) else: raise Error('Descriptor does not contain serialization.') class Descriptor(_NestedDescriptorBase): """Descriptor for a protocol message type. A Descriptor instance has the following attributes: name: (str) Name of this protocol message type. full_name: (str) Fully-qualified name of this protocol message type, which will include protocol "package" name and the name of any enclosing types. containing_type: (Descriptor) Reference to the descriptor of the type containing us, or None if this is top-level. fields: (list of FieldDescriptors) Field descriptors for all fields in this type. fields_by_number: (dict int -> FieldDescriptor) Same FieldDescriptor objects as in |fields|, but indexed by "number" attribute in each FieldDescriptor. fields_by_name: (dict str -> FieldDescriptor) Same FieldDescriptor objects as in |fields|, but indexed by "name" attribute in each FieldDescriptor. nested_types: (list of Descriptors) Descriptor references for all protocol message types nested within this one. nested_types_by_name: (dict str -> Descriptor) Same Descriptor objects as in |nested_types|, but indexed by "name" attribute in each Descriptor. enum_types: (list of EnumDescriptors) EnumDescriptor references for all enums contained within this type. enum_types_by_name: (dict str ->EnumDescriptor) Same EnumDescriptor objects as in |enum_types|, but indexed by "name" attribute in each EnumDescriptor. enum_values_by_name: (dict str -> EnumValueDescriptor) Dict mapping from enum value name to EnumValueDescriptor for that value. extensions: (list of FieldDescriptor) All extensions defined directly within this message type (NOT within a nested type). extensions_by_name: (dict, string -> FieldDescriptor) Same FieldDescriptor objects as |extensions|, but indexed by "name" attribute of each FieldDescriptor. is_extendable: Does this type define any extension ranges? options: (descriptor_pb2.MessageOptions) Protocol message options or None to use default message options. oneofs: (list of OneofDescriptor) The list of descriptors for oneof fields in this message. oneofs_by_name: (dict str -> OneofDescriptor) Same objects as in |oneofs|, but indexed by "name" attribute. file: (FileDescriptor) Reference to file descriptor. """ # NOTE(tmarek): The file argument redefining a builtin is nothing we can # fix right now since we don't know how many clients already rely on the # name of the argument. def __init__(self, name, full_name, filename, containing_type, fields, nested_types, enum_types, extensions, options=None, is_extendable=True, extension_ranges=None, oneofs=None, file=None, serialized_start=None, serialized_end=None): # pylint:disable=redefined-builtin """Arguments to __init__() are as described in the description of Descriptor fields above. Note that filename is an obsolete argument, that is not used anymore. Please use file.name to access this as an attribute. """ super(Descriptor, self).__init__( options, 'MessageOptions', name, full_name, file, containing_type, serialized_start=serialized_start, serialized_end=serialized_end) # We have fields in addition to fields_by_name and fields_by_number, # so that: # 1. Clients can index fields by "order in which they're listed." # 2. Clients can easily iterate over all fields with the terse # syntax: for f in descriptor.fields: ... self.fields = fields for field in self.fields: field.containing_type = self self.fields_by_number = dict((f.number, f) for f in fields) self.fields_by_name = dict((f.name, f) for f in fields) self.nested_types = nested_types for nested_type in nested_types: nested_type.containing_type = self self.nested_types_by_name = dict((t.name, t) for t in nested_types) self.enum_types = enum_types for enum_type in self.enum_types: enum_type.containing_type = self self.enum_types_by_name = dict((t.name, t) for t in enum_types) self.enum_values_by_name = dict( (v.name, v) for t in enum_types for v in t.values) self.extensions = extensions for extension in self.extensions: extension.extension_scope = self self.extensions_by_name = dict((f.name, f) for f in extensions) self.is_extendable = is_extendable self.extension_ranges = extension_ranges self.oneofs = oneofs if oneofs is not None else [] self.oneofs_by_name = dict((o.name, o) for o in self.oneofs) for oneof in self.oneofs: oneof.containing_type = self def EnumValueName(self, enum, value): """Returns the string name of an enum value. This is just a small helper method to simplify a common operation. Args: enum: string name of the Enum. value: int, value of the enum. Returns: string name of the enum value. Raises: KeyError if either the Enum doesn't exist or the value is not a valid value for the enum. """ return self.enum_types_by_name[enum].values_by_number[value].name def CopyToProto(self, proto): """Copies this to a descriptor_pb2.DescriptorProto. Args: proto: An empty descriptor_pb2.DescriptorProto. """ # This function is overriden to give a better doc comment. super(Descriptor, self).CopyToProto(proto) # TODO(robinson): We should have aggressive checking here, # for example: # * If you specify a repeated field, you should not be allowed # to specify a default value. # * [Other examples here as needed]. # # TODO(robinson): for this and other *Descriptor classes, we # might also want to lock things down aggressively (e.g., # prevent clients from setting the attributes). Having # stronger invariants here in general will reduce the number # of runtime checks we must do in reflection.py... class FieldDescriptor(DescriptorBase): """Descriptor for a single field in a .proto file. A FieldDescriptor instance has the following attributes: name: (str) Name of this field, exactly as it appears in .proto. full_name: (str) Name of this field, including containing scope. This is particularly relevant for extensions. index: (int) Dense, 0-indexed index giving the order that this field textually appears within its message in the .proto file. number: (int) Tag number declared for this field in the .proto file. type: (One of the TYPE_* constants below) Declared type. cpp_type: (One of the CPPTYPE_* constants below) C++ type used to represent this field. label: (One of the LABEL_* constants below) Tells whether this field is optional, required, or repeated. has_default_value: (bool) True if this field has a default value defined, otherwise false. default_value: (Varies) Default value of this field. Only meaningful for non-repeated scalar fields. Repeated fields should always set this to [], and non-repeated composite fields should always set this to None. containing_type: (Descriptor) Descriptor of the protocol message type that contains this field. Set by the Descriptor constructor if we're passed into one. Somewhat confusingly, for extension fields, this is the descriptor of the EXTENDED message, not the descriptor of the message containing this field. (See is_extension and extension_scope below). message_type: (Descriptor) If a composite field, a descriptor of the message type contained in this field. Otherwise, this is None. enum_type: (EnumDescriptor) If this field contains an enum, a descriptor of that enum. Otherwise, this is None. is_extension: True iff this describes an extension field. extension_scope: (Descriptor) Only meaningful if is_extension is True. Gives the message that immediately contains this extension field. Will be None iff we're a top-level (file-level) extension field. options: (descriptor_pb2.FieldOptions) Protocol message field options or None to use default field options. containing_oneof: (OneofDescriptor) If the field is a member of a oneof union, contains its descriptor. Otherwise, None. """ # Must be consistent with C++ FieldDescriptor::Type enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. TYPE_DOUBLE = 1 TYPE_FLOAT = 2 TYPE_INT64 = 3 TYPE_UINT64 = 4 TYPE_INT32 = 5 TYPE_FIXED64 = 6 TYPE_FIXED32 = 7 TYPE_BOOL = 8 TYPE_STRING = 9 TYPE_GROUP = 10 TYPE_MESSAGE = 11 TYPE_BYTES = 12 TYPE_UINT32 = 13 TYPE_ENUM = 14 TYPE_SFIXED32 = 15 TYPE_SFIXED64 = 16 TYPE_SINT32 = 17 TYPE_SINT64 = 18 MAX_TYPE = 18 # Must be consistent with C++ FieldDescriptor::CppType enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. CPPTYPE_INT32 = 1 CPPTYPE_INT64 = 2 CPPTYPE_UINT32 = 3 CPPTYPE_UINT64 = 4 CPPTYPE_DOUBLE = 5 CPPTYPE_FLOAT = 6 CPPTYPE_BOOL = 7 CPPTYPE_ENUM = 8 CPPTYPE_STRING = 9 CPPTYPE_MESSAGE = 10 MAX_CPPTYPE = 10 _PYTHON_TO_CPP_PROTO_TYPE_MAP = { TYPE_DOUBLE: CPPTYPE_DOUBLE, TYPE_FLOAT: CPPTYPE_FLOAT, TYPE_ENUM: CPPTYPE_ENUM, TYPE_INT64: CPPTYPE_INT64, TYPE_SINT64: CPPTYPE_INT64, TYPE_SFIXED64: CPPTYPE_INT64, TYPE_UINT64: CPPTYPE_UINT64, TYPE_FIXED64: CPPTYPE_UINT64, TYPE_INT32: CPPTYPE_INT32, TYPE_SFIXED32: CPPTYPE_INT32, TYPE_SINT32: CPPTYPE_INT32, TYPE_UINT32: CPPTYPE_UINT32, TYPE_FIXED32: CPPTYPE_UINT32, TYPE_BYTES: CPPTYPE_STRING, TYPE_STRING: CPPTYPE_STRING, TYPE_BOOL: CPPTYPE_BOOL, TYPE_MESSAGE: CPPTYPE_MESSAGE, TYPE_GROUP: CPPTYPE_MESSAGE } # Must be consistent with C++ FieldDescriptor::Label enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. LABEL_OPTIONAL = 1 LABEL_REQUIRED = 2 LABEL_REPEATED = 3 MAX_LABEL = 3 # Must be consistent with C++ constants kMaxNumber, kFirstReservedNumber, # and kLastReservedNumber in descriptor.h MAX_FIELD_NUMBER = (1 << 29) - 1 FIRST_RESERVED_FIELD_NUMBER = 19000 LAST_RESERVED_FIELD_NUMBER = 19999 def __init__(self, name, full_name, index, number, type, cpp_type, label, default_value, message_type, enum_type, containing_type, is_extension, extension_scope, options=None, has_default_value=True, containing_oneof=None): """The arguments are as described in the description of FieldDescriptor attributes above. Note that containing_type may be None, and may be set later if necessary (to deal with circular references between message types, for example). Likewise for extension_scope. """ super(FieldDescriptor, self).__init__(options, 'FieldOptions') self.name = name self.full_name = full_name self.index = index self.number = number self.type = type self.cpp_type = cpp_type self.label = label self.has_default_value = has_default_value self.default_value = default_value self.containing_type = containing_type self.message_type = message_type self.enum_type = enum_type self.is_extension = is_extension self.extension_scope = extension_scope self.containing_oneof = containing_oneof if api_implementation.Type() == 'cpp': if is_extension: if api_implementation.Version() == 2: # pylint: disable=protected-access self._cdescriptor = ( _message.Message._GetExtensionDescriptor(full_name)) # pylint: enable=protected-access else: self._cdescriptor = cpp_message.GetExtensionDescriptor(full_name) else: if api_implementation.Version() == 2: # pylint: disable=protected-access self._cdescriptor = _message.Message._GetFieldDescriptor(full_name) # pylint: enable=protected-access else: self._cdescriptor = cpp_message.GetFieldDescriptor(full_name) else: self._cdescriptor = None @staticmethod def ProtoTypeToCppProtoType(proto_type): """Converts from a Python proto type to a C++ Proto Type. The Python ProtocolBuffer classes specify both the 'Python' datatype and the 'C++' datatype - and they're not the same. This helper method should translate from one to another. Args: proto_type: the Python proto type (descriptor.FieldDescriptor.TYPE_*) Returns: descriptor.FieldDescriptor.CPPTYPE_*, the C++ type. Raises: TypeTransformationError: when the Python proto type isn't known. """ try: return FieldDescriptor._PYTHON_TO_CPP_PROTO_TYPE_MAP[proto_type] except KeyError: raise TypeTransformationError('Unknown proto_type: %s' % proto_type) class EnumDescriptor(_NestedDescriptorBase): """Descriptor for an enum defined in a .proto file. An EnumDescriptor instance has the following attributes: name: (str) Name of the enum type. full_name: (str) Full name of the type, including package name and any enclosing type(s). values: (list of EnumValueDescriptors) List of the values in this enum. values_by_name: (dict str -> EnumValueDescriptor) Same as |values|, but indexed by the "name" field of each EnumValueDescriptor. values_by_number: (dict int -> EnumValueDescriptor) Same as |values|, but indexed by the "number" field of each EnumValueDescriptor. containing_type: (Descriptor) Descriptor of the immediate containing type of this enum, or None if this is an enum defined at the top level in a .proto file. Set by Descriptor's constructor if we're passed into one. file: (FileDescriptor) Reference to file descriptor. options: (descriptor_pb2.EnumOptions) Enum options message or None to use default enum options. """ def __init__(self, name, full_name, filename, values, containing_type=None, options=None, file=None, serialized_start=None, serialized_end=None): """Arguments are as described in the attribute description above. Note that filename is an obsolete argument, that is not used anymore. Please use file.name to access this as an attribute. """ super(EnumDescriptor, self).__init__( options, 'EnumOptions', name, full_name, file, containing_type, serialized_start=serialized_start, serialized_end=serialized_end) self.values = values for value in self.values: value.type = self self.values_by_name = dict((v.name, v) for v in values) self.values_by_number = dict((v.number, v) for v in values) def CopyToProto(self, proto): """Copies this to a descriptor_pb2.EnumDescriptorProto. Args: proto: An empty descriptor_pb2.EnumDescriptorProto. """ # This function is overriden to give a better doc comment. super(EnumDescriptor, self).CopyToProto(proto) class EnumValueDescriptor(DescriptorBase): """Descriptor for a single value within an enum. name: (str) Name of this value. index: (int) Dense, 0-indexed index giving the order that this value appears textually within its enum in the .proto file. number: (int) Actual number assigned to this enum value. type: (EnumDescriptor) EnumDescriptor to which this value belongs. Set by EnumDescriptor's constructor if we're passed into one. options: (descriptor_pb2.EnumValueOptions) Enum value options message or None to use default enum value options options. """ def __init__(self, name, index, number, type=None, options=None): """Arguments are as described in the attribute description above.""" super(EnumValueDescriptor, self).__init__(options, 'EnumValueOptions') self.name = name self.index = index self.number = number self.type = type class OneofDescriptor(object): """Descriptor for a oneof field. name: (str) Name of the oneof field. full_name: (str) Full name of the oneof field, including package name. index: (int) 0-based index giving the order of the oneof field inside its containing type. containing_type: (Descriptor) Descriptor of the protocol message type that contains this field. Set by the Descriptor constructor if we're passed into one. fields: (list of FieldDescriptor) The list of field descriptors this oneof can contain. """ def __init__(self, name, full_name, index, containing_type, fields): """Arguments are as described in the attribute description above.""" self.name = name self.full_name = full_name self.index = index self.containing_type = containing_type self.fields = fields class ServiceDescriptor(_NestedDescriptorBase): """Descriptor for a service. name: (str) Name of the service. full_name: (str) Full name of the service, including package name. index: (int) 0-indexed index giving the order that this services definition appears withing the .proto file. methods: (list of MethodDescriptor) List of methods provided by this service. options: (descriptor_pb2.ServiceOptions) Service options message or None to use default service options. file: (FileDescriptor) Reference to file info. """ def __init__(self, name, full_name, index, methods, options=None, file=None, serialized_start=None, serialized_end=None): super(ServiceDescriptor, self).__init__( options, 'ServiceOptions', name, full_name, file, None, serialized_start=serialized_start, serialized_end=serialized_end) self.index = index self.methods = methods # Set the containing service for each method in this service. for method in self.methods: method.containing_service = self def FindMethodByName(self, name): """Searches for the specified method, and returns its descriptor.""" for method in self.methods: if name == method.name: return method return None def CopyToProto(self, proto): """Copies this to a descriptor_pb2.ServiceDescriptorProto. Args: proto: An empty descriptor_pb2.ServiceDescriptorProto. """ # This function is overriden to give a better doc comment. super(ServiceDescriptor, self).CopyToProto(proto) class MethodDescriptor(DescriptorBase): """Descriptor for a method in a service. name: (str) Name of the method within the service. full_name: (str) Full name of method. index: (int) 0-indexed index of the method inside the service. containing_service: (ServiceDescriptor) The service that contains this method. input_type: The descriptor of the message that this method accepts. output_type: The descriptor of the message that this method returns. options: (descriptor_pb2.MethodOptions) Method options message or None to use default method options. """ def __init__(self, name, full_name, index, containing_service, input_type, output_type, options=None): """The arguments are as described in the description of MethodDescriptor attributes above. Note that containing_service may be None, and may be set later if necessary. """ super(MethodDescriptor, self).__init__(options, 'MethodOptions') self.name = name self.full_name = full_name self.index = index self.containing_service = containing_service self.input_type = input_type self.output_type = output_type class FileDescriptor(DescriptorBase): """Descriptor for a file. Mimics the descriptor_pb2.FileDescriptorProto. Note that enum_types_by_name, extensions_by_name, and dependencies fields are only set by the message_factory module, and not by the generated proto code. name: name of file, relative to root of source tree. package: name of the package serialized_pb: (str) Byte string of serialized descriptor_pb2.FileDescriptorProto. dependencies: List of other FileDescriptors this FileDescriptor depends on. message_types_by_name: Dict of message names of their descriptors. enum_types_by_name: Dict of enum names and their descriptors. extensions_by_name: Dict of extension names and their descriptors. """ def __init__(self, name, package, options=None, serialized_pb=None, dependencies=None): """Constructor.""" super(FileDescriptor, self).__init__(options, 'FileOptions') self.message_types_by_name = {} self.name = name self.package = package self.serialized_pb = serialized_pb self.enum_types_by_name = {} self.extensions_by_name = {} self.dependencies = (dependencies or []) if (api_implementation.Type() == 'cpp' and self.serialized_pb is not None): if api_implementation.Version() == 2: # pylint: disable=protected-access _message.Message._BuildFile(self.serialized_pb) # pylint: enable=protected-access else: cpp_message.BuildFile(self.serialized_pb) def CopyToProto(self, proto): """Copies this to a descriptor_pb2.FileDescriptorProto. Args: proto: An empty descriptor_pb2.FileDescriptorProto. """ proto.ParseFromString(self.serialized_pb) def _ParseOptions(message, string): """Parses serialized options. This helper function is used to parse serialized options in generated proto2 files. It must not be used outside proto2. """ message.ParseFromString(string) return message def MakeDescriptor(desc_proto, package='', build_file_if_cpp=True): """Make a protobuf Descriptor given a DescriptorProto protobuf. Handles nested descriptors. Note that this is limited to the scope of defining a message inside of another message. Composite fields can currently only be resolved if the message is defined in the same scope as the field. Args: desc_proto: The descriptor_pb2.DescriptorProto protobuf message. package: Optional package name for the new message Descriptor (string). build_file_if_cpp: Update the C++ descriptor pool if api matches. Set to False on recursion, so no duplicates are created. Returns: A Descriptor for protobuf messages. """ if api_implementation.Type() == 'cpp' and build_file_if_cpp: # The C++ implementation requires all descriptors to be backed by the same # definition in the C++ descriptor pool. To do this, we build a # FileDescriptorProto with the same definition as this descriptor and build # it into the pool. from protobuf26 import descriptor_pb2 file_descriptor_proto = descriptor_pb2.FileDescriptorProto() file_descriptor_proto.message_type.add().MergeFrom(desc_proto) # Generate a random name for this proto file to prevent conflicts with # any imported ones. We need to specify a file name so BuildFile accepts # our FileDescriptorProto, but it is not important what that file name # is actually set to. proto_name = str(uuid.uuid4()) if package: file_descriptor_proto.name = os.path.join(package.replace('.', '/'), proto_name + '.proto') file_descriptor_proto.package = package else: file_descriptor_proto.name = proto_name + '.proto' if api_implementation.Version() == 2: # pylint: disable=protected-access _message.Message._BuildFile(file_descriptor_proto.SerializeToString()) # pylint: enable=protected-access else: cpp_message.BuildFile(file_descriptor_proto.SerializeToString()) full_message_name = [desc_proto.name] if package: full_message_name.insert(0, package) # Create Descriptors for enum types enum_types = {} for enum_proto in desc_proto.enum_type: full_name = '.'.join(full_message_name + [enum_proto.name]) enum_desc = EnumDescriptor( enum_proto.name, full_name, None, [ EnumValueDescriptor(enum_val.name, ii, enum_val.number) for ii, enum_val in enumerate(enum_proto.value)]) enum_types[full_name] = enum_desc # Create Descriptors for nested types nested_types = {} for nested_proto in desc_proto.nested_type: full_name = '.'.join(full_message_name + [nested_proto.name]) # Nested types are just those defined inside of the message, not all types # used by fields in the message, so no loops are possible here. nested_desc = MakeDescriptor(nested_proto, package='.'.join(full_message_name), build_file_if_cpp=False) nested_types[full_name] = nested_desc fields = [] for field_proto in desc_proto.field: full_name = '.'.join(full_message_name + [field_proto.name]) enum_desc = None nested_desc = None if field_proto.HasField('type_name'): type_name = field_proto.type_name full_type_name = '.'.join(full_message_name + [type_name[type_name.rfind('.')+1:]]) if full_type_name in nested_types: nested_desc = nested_types[full_type_name] elif full_type_name in enum_types: enum_desc = enum_types[full_type_name] # Else type_name references a non-local type, which isn't implemented field = FieldDescriptor( field_proto.name, full_name, field_proto.number - 1, field_proto.number, field_proto.type, FieldDescriptor.ProtoTypeToCppProtoType(field_proto.type), field_proto.label, None, nested_desc, enum_desc, None, False, None, has_default_value=False) fields.append(field) desc_name = '.'.join(full_message_name) return Descriptor(desc_proto.name, desc_name, None, None, fields, nested_types.values(), enum_types.values(), [])
"""A few small utilities.""" import pandas from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Tuple from functools import reduce # # Join shortcuts # def join(sep, s): """Return 's' joined with 'sep'. Coerces to str.""" return sep.join(str(x) for x in list(s)) def sjoin(s): """Return 's' joined with spaces.""" return join(' ', [str(x) for x in s]) def njoin(s): """Return 's' joined with newlines.""" return join('\n', s) def cjoin(s): """Return 's' joined with commas.""" return join(',', s) def tjoin(s): """Return 's' joined with tabs.""" return join('\t', s) # # Misc # def shape(n, nbatch): """Return NumPy shape.""" if isinstance(n, (list, tuple)): return [nbatch] + list(n) return [nbatch, n] def product(xs): """Return product of factors.""" return reduce(lambda x, y: x * y, xs, 1) def flatten(xs): """Flatten list of lists to a list.""" return sum(xs, []) def write_tsv(path, records, meta={}, overwrite=False): """Write tab separated file.""" path = Path(path) dat = [] with open(path, 'a') as f: if overwrite: f.truncate(0) if f.tell() == 0: if meta is not None: for k, v in meta.items(): dat.append(f'# {k}: {v}') dat += [tjoin([str(x) for x in r]) for r in records] f.write(njoin(dat)) f.write('\n') def write_csv(path, records, meta={}, overwrite=False): """Write commas separated file.""" path = Path(path) dat = [] with open(path, 'a') as f: if overwrite: f.truncate(0) if meta is not None: for k, v in meta.items(): dat.append(f'# {k}: {v}') dat += [cjoin([str(x) for x in r]) for r in records] f.write(njoin(dat)) # # DAT files # @dataclass class Sample: """Dyna-rider/rider timing sample: list of times for a given length+batch. This corresponds to a single line of a dat file. """ lengths: List[int] nbatch: int times: List[float] label: str = None def __post_init__(self): self.label = 'x'.join(map(str, self.lengths)) + 'b' + str(self.nbatch) @dataclass class DAT: """Dyna-rider/rider DAT. This corresponds to a single .dat file. """ tag: str path: Path samples: Dict[Tuple, Sample] meta: Dict[str, str] def sorted_samples(self): keys = sorted(self.samples.keys(), key=lambda x: product(x)) for key in keys: yield key, product(key), self.samples[key] def print(self): print("tag:", self.tag) print("path:", self.path) print("meta:", self.meta) print("samples:", self.samples) @dataclass class Run: """Dyna-rider/rider runs. This corresponds to a directory of .dat files. """ title: str path: Path dats: Dict[Path, DAT] def write_dat(fname, length, nbatch, seconds, meta={}): """Append record to dyna-rider/rider .dat file.""" if isinstance(length, int): length = [length] record = [len(length)] + list(length) + [nbatch, len(seconds)] + seconds write_tsv(fname, [record], meta=meta, overwrite=False) def read_dat(fname): """Read dyna-rider/rider .dat file.""" path = Path(fname) records, meta = {}, {} for line in path.read_text().splitlines(): if line.startswith('# '): k, v = [x.strip() for x in line[2:].split(':', 1)] meta[k] = v continue words = line.split("\t") dim = int(words[0]) lengths = tuple(map(int, words[1:dim + 1])) nbatch = int(words[dim + 1]) times = list(map(float, words[dim + 3:])) records[lengths] = Sample(list(lengths), nbatch, times) tag = meta['title'].replace(' ', '_') return DAT(tag, path, records, meta) def read_run(dname): """Read all .dat files in a directory.""" path = Path(dname) dats = {} for dat in sorted(path.glob('**/*.dat')): dats[dat.stem] = read_dat(dat) return Run(path.stem, path, dats) def list_run(dname): """List all .dat files in a directory.""" path = Path(dname) return sorted(list(path.glob('*.dat'))) def read_runs(dnames): """Read all .dat files in directories.""" return [read_run(dname) for dname in dnames] def get_post_processed(dname, docdir, outdirs): """Return file names of post-processed performance data. The 'primary' files contain median confidence intervals for each DAT file. The 'secondary' files contain XXX. """ primary = [] for outdir in outdirs: path = (Path(outdir) / dname).with_suffix('.mdat') if path.exists(): primary.append(path) secondary = [] for outdir in outdirs[1:]: path = (docdir / (str(outdir.name) + "-over-" + str(outdirs[0].name) + "-" + dname)).with_suffix('.sdat') if path.exists(): secondary.append(path) return primary, secondary def by_dat(runs): r = {} for dat in runs[0].dats.values(): dstem = dat.path.stem r[dstem] = { run.path: run.dats[dstem] for run in runs if dstem in run.dats } return r def to_data_frames(primaries, secondaries): data_frames = [] for primary in primaries: df = pandas.read_csv(primary, delimiter='\t', comment='#') data_frames.append(df) for i, secondary in enumerate(secondaries): df = pandas.read_csv(secondary, delimiter='\t', comment='#') data_frames[i+1] = data_frames[i+1].merge(df, how='left', on='length', suffixes=('', '_y')) return data_frames def write_pts_dat(fname, records, meta={}): """Write data to *.ptsdat""" write_csv(fname, records, meta=meta, overwrite=True)
# Copyright 2016 Raytheon BBN Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 import os import sys if sys.platform == 'win32' or 'NOFORKING' in os.environ: import threading as mp from queue import Queue else: import multiprocessing as mp from multiprocessing import Queue from multiprocessing import Value, RawValue, RawArray import ctypes import logging import numbers import itertools import time import datetime import numpy as np from functools import reduce from auspex.log import logger def cartesian(arrays, out=None, dtype='f'): """http://stackoverflow.com/questions/28684492/numpy-equivalent-of-itertools-product""" arrays = [np.asarray(x) for x in arrays] # dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.zeros([n, len(arrays)], dtype=dtype) m = int(n / arrays[0].size) out[:,0] = np.repeat(arrays[0], m) if arrays[1:]: cartesian(arrays[1:], out=out[0:m,1:]) for j in range(1, arrays[0].size): out[j*m:(j+1)*m,1:] = out[0:m,1:] return out class DataAxis(object): """An axis in a data stream""" def __init__(self, name, points=[], unit=None, metadata=None, dtype=np.float32): super(DataAxis, self).__init__() if isinstance(name, list): self.unstructured = True self.name = name else: self.unstructured = False self.name = str(name) # self.points holds the CURRENT set of points. During adaptive sweeps # this will hold the most recently added points of the axis. self.points = np.array(points) self.unit = unit self.refine_func = None self.metadata = metadata # By definition data axes will be done after every experiment.run() call self.done = True # For adaptive sweeps, etc., keep a record of the original points that we had around self.original_points = self.points self.has_been_extended = False self.num_new_points = 0 self.dtype = dtype if self.unstructured: if unit is not None and len(name) != len(unit): raise ValueError("DataAxis unit length {} and tuples length {} must match.".format(len(unit),len(name))) if self.unstructured and len(name) != len(points[0]): raise ValueError("DataAxis points length {} and names length {} must match.".format(len(points[0]), len(name))) def data_type(self, with_metadata=False): dtype = [] if self.unstructured: name = "+".join(self.name) dtype.extend([(p.name, 'f') for p in self.parameter]) else: name = self.name dtype.append((name, 'f')) if with_metadata and self.metadata is not None: dtype.append((name + "_metadata", str)) return dtype def points_with_metadata(self): if self.metadata is not None: if self.unstructured: return [list(self.original_points[i]) + [self.metadata[i]] for i in range(len(self.original_points))] return [(self.original_points[i], self.metadata[i], ) for i in range(len(self.original_points))] if self.unstructured: return [tuple(self.original_points[i]) for i in range(len(self.original_points))] return [(self.original_points[i],) for i in range(len(self.original_points))] def tuple_width(self): if self.unstructured: width = len(name) else: width = 1 if self.metadata: width += 1 return width def num_points(self): if self.has_been_extended: return len(self.points) else: return len(self.original_points) def add_points(self, points): if self.unstructured and len(self.parameter) != len(points[0]): raise ValueError("Parameter value tuples must be the same length as the number of parameters.") if type(points) in [list, np.ndarray]: points = np.array(points) else: # Somebody gave one point to the "add_points" method... points = np.array([points]) self.num_new_points = len(points) self.points = np.append(self.points, points, axis=0) self.has_been_extended = True def reset(self): self.points = self.original_points self.has_been_extended = False self.num_new_points = 0 def __repr__(self): return "<DataAxis(name={}, start={}, stop={}, num={}, unit={})>".format( self.name, self.points[0], self.points[-1], len(self.points), self.unit) def __str__(self): return "<DataAxis(name={}, start={}, stop={}, num={}, unit={})>".format( self.name, self.points[0], self.points[-1], len(self.points), self.unit) class SweepAxis(DataAxis): """ Structure for sweep axis, separate from DataAxis. Can be an unstructured axis, in which case 'parameter' is actually a list of parameters. """ def __init__(self, parameter, points = [], metadata=None, refine_func=None, callback_func=None): self.unstructured = hasattr(parameter, '__iter__') self.parameter = parameter if self.unstructured: unit = [p.unit for p in parameter] super(SweepAxis, self).__init__([p.name for p in parameter], points=points, unit=unit, metadata=metadata) self.value = points[0] else: super(SweepAxis, self).__init__(parameter.name, points, unit=parameter.unit, metadata=metadata) self.value = points[0] # Current value of the metadata if self.metadata is not None: self.metadata_value = self.metadata[0] # This is run at the end of this sweep axis # Refine_func receives the sweep axis and the experiment as arguments self.refine_func = refine_func # This is run before each point in the sweep axis is executed # Callback_func receives the sweep axis and the experiment as arguments self.callback_func = callback_func self.step = 0 self.done = False self.experiment = None # Should be explicitly set by the experiment if self.unstructured and len(parameter) != len(points[0]): raise ValueError("Parameter value tuples must be the same length as the number of parameters.") logger.debug("Created {}".format(self.__repr__())) def update(self): """ Update value after each run. """ if self.step < self.num_points(): if self.callback_func: self.callback_func(self, self.experiment) self.value = self.points[self.step] if self.metadata is not None: self.metadata_value = self.metadata[self.step] logger.debug("Sweep Axis '{}' at step {} takes value: {}.".format(self.name, self.step,self.value)) self.push() self.step += 1 self.done = False def check_for_refinement(self, output_connectors_dict): """Check to see if we need to perform any refinements. If there is a refine_func and it returns a list of points, then we need to extend the axes. Otherwise, if the refine_func returns None or false, then we reset the axis to its original set of points. If there is no refine_func then we don't do anything at all.""" if not self.done and self.step==self.num_points(): logger.debug("Refining on axis {}".format(self.name)) if self.refine_func: points = self.refine_func(self, self.experiment) if points is None or points is False: # Returns false if no refinements needed, otherwise adds points to list self.step = 0 self.done = True self.reset() logger.debug("Sweep Axis '{}' complete.".format(self.name)) # Push to ocs, which should push to processes for oc in output_connectors_dict.values(): oc.push_event("refined", (self.name, True, self.original_points)) # axis name, reset, points return False self.add_points(points) self.done = False for oc in output_connectors_dict.values(): oc.push_event("refined", (self.name, False, points)) # axis name, reset, points return True else: self.step = 0 self.done = True logger.debug("Sweep Axis '{}' complete.".format(self.name)) return False def push(self): """ Push parameter value(s) """ if self.unstructured: for p, v in zip(self.parameter, self.value): p.value = v p.push() else: self.parameter.value = self.value self.parameter.push() def __repr__(self): return "<SweepAxis(name={},length={},unit={},value={},unstructured={}>".format(self.name, self.num_points(),self.unit,self.value,self.unstructured) class DataStreamDescriptor(object): """Axes information""" def __init__(self, dtype=np.float32): super(DataStreamDescriptor, self).__init__() self.data_name = "Data" self.data_unit = "Unit" self.axes = [] self.unit = None self.params = {} # Parameters associated with each dataset self.parent = None self._exp_src = None # Actual source code from the underlying experiment self.dtype = dtype self.metadata = {} # Buffer size multiplier: use this to inflate the size of the # shared memory buffer. This is needed for partial averages, which # may require more space than their descriptors would indicate # since they are emitted as often as possible. self.buffer_mult_factor = 1 # Keep track of the parameter permutations we have actually used... self.visited_tuples = [] def is_adaptive(self): return True in [a.refine_func is not None for a in self.axes] def add_axis(self, axis, position=0): # Check if axis is DataAxis or SweepAxis (which inherits from DataAxis) if isinstance(axis, DataAxis): logger.debug("Adding DataAxis into DataStreamDescriptor: {}".format(axis)) self.axes.insert(position, axis) else: raise TypeError("Failed adding axis. Object is not DataAxis: {}".format(axis)) def add_param(self, key, value): self.params[key] = value def num_dims(self): # Number of axes return len(self.axes) def extent(self, flip=False): """Convenience function for matplotlib.imshow, which expects extent=(left, right, bottom, top).""" if self.num_dims() == 2: return (self.axes[1].points[0], self.axes[1].points[-1], self.axes[0].points[0], self.axes[0].points[-1]) else: raise Exception("Can't get extent for any number of axes other than two.") def data_dims(self): # Return dimension (length) of the data axes, exclude sweep axes (return 1 for each) dims = [] for a in self.axes: if isinstance(a, SweepAxis): dims.append(1) else: dims.append(len(a.points)) return dims def tuple_width(self): return sum([a.tuple_width() for a in self.axes]) def dims(self): dims = [] for a in self.axes: dims.append(len(a.points)) return [a.num_points() for a in self.axes] def axes_done(self): # The axis is considered done when all of the sub-axes are done # This can happen mulitple times for a single axis doneness = [a.done for a in self.axes] return [np.all(doneness[i:]) for i in range(len(doneness))] def done(self): return np.all([a.done for a in self.axes]) def num_points(self): if len(self.axes)>0: return reduce(lambda x,y: x*y, [a.num_points() for a in self.axes]) else: return 0 def expected_num_points(self): if len(self.axes)>0: return reduce(lambda x,y: x*y, [len(a.original_points) for a in self.axes]) else: return 0 def last_data_axis(self): # Return the outer most data axis but not sweep axis data_axes_idx = [i for i, a in enumerate(self.axes) if not isinstance(a,SweepAxis)] if len(data_axes_idx)>0: return data_axes_idx[0] else: logger.warning("DataStreamDescriptor has no pure DataAxis. Return None.") return None def axis_data_type(self, with_metadata=False, excluding_axis=None): dtype = [] for a in self.axes: if a.name != excluding_axis: dtype.extend(a.data_type(with_metadata=with_metadata)) return dtype def tuples(self, as_structured_array=True): """Returns a list of all tuples visited by the sweeper. Should only be used with adaptive sweeps.""" if len(self.visited_tuples) == 0: self.visited_tuples = self.expected_tuples(with_metadata=True) if as_structured_array: # If we already have a structured array if type(self.visited_tuples) is np.ndarray and type(self.visited_tuples.dtype.names) is tuple: return self.visited_tuples elif type(self.visited_tuples) is np.ndarray: return np.rec.fromarrays(self.visited_tuples.T, dtype=self.axis_data_type(with_metadata=True)) return np.core.records.fromrecords(self.visited_tuples, dtype=self.axis_data_type(with_metadata=True)) return self.visited_tuples def expected_tuples(self, with_metadata=False, as_structured_array=True): """Returns a list of tuples representing the cartesian product of the axis values. Should only be used with non-adaptive sweeps.""" vals = [a.points_with_metadata() for a in self.axes] # # TODO: avoid this slow list comprehension simple = True if True in [a.unstructured for a in self.axes]: simple = False if True in [a.metadata is not None for a in self.axes]: simple = False if self.axes == []: simple = False if simple: # flattened_list = [tuple((val for sublist in line for val in sublist)) for line in nested_list] flattened_list = cartesian(vals) else: nested_list = itertools.product(*vals) flattened_list = [tuple((val for sublist in line for val in sublist)) for line in nested_list] # flattened_list = np.array(list(nested_list)).reshape(-1, self.tuple_width()) if as_structured_array: if simple: return np.rec.fromarrays(flattened_list.T, dtype=self.axis_data_type(with_metadata=True)) return np.rec.fromrecords(flattened_list, dtype=self.axis_data_type(with_metadata=True)) return flattened_list def axis_names(self, with_metadata=False): """Returns all axis names included those from unstructured axes""" vals = [] for a in self.axes: if a.unstructured: for p in a.parameter: vals.append(p.name) else: vals.append(a.name) if with_metadata and a.metadata is not None: if a.unstructured: vals.append("+".join(a.name) + "_metadata") else: vals.append(a.name + "_metadata") return vals def num_data_axis_points(self): return self.num_points_through_axis(self.last_data_axis()) def data_axis_values(self): """Returns a list of point lists for each data axis, ignoring sweep axes.""" return [a.points_with_metadata() for a in self.axes if not isinstance(a,SweepAxis) ] def reset(self): for a in self.axes: a.done = False a.reset() def __copy__(self): newone = type(self)() newone.__dict__.update(self.__dict__) newone.axes = self.axes[:] return newone def copy(self): return self.__copy__() def axis(self, axis_name): return self.axes[self.axis_num(axis_name)] def axis_num(self, axis_name): names = [a.name for a in self.axes] return names.index(axis_name) def pop_axis(self, axis_name): # Pop the time axis (which should be here) names = [a.name for a in self.axes] if axis_name not in names: raise Exception("Couldn't pop axis {} from descriptor, it probably doesn't exist.".format(axis_name)) return self.axes.pop(names.index(axis_name)) def num_points_through_axis(self, axis_name): if type(axis_name) is int: axis_num = axis_name else: axis_num = self.axis_num(axis_name) # if False in [a.refine_func is None for a in self.axes[axis_num:]]: # raise Exception("Cannot call num_points_through_axis with interior adaptive sweeps.") if axis_num >= len(self.axes): return 0 elif len(self.axes) == 1: return self.axes[0].num_points() else: return reduce(lambda x,y: x*y, [a.num_points() for a in self.axes[axis_num:]]) def num_new_points_through_axis(self, axis_name): if type(axis_name) is int: axis_num = axis_name else: axis_num = self.axis_num(axis_name) if axis_num >= len(self.axes): return 0 elif len(self.axes) == 1: return self.axes[0].num_new_points else: return self.axes[axis_num].num_new_points * reduce(lambda x,y: x*y, [a.num_points() for a in self.axes[axis_num+1:]]) def __repr__(self): return "<DataStreamDescriptor(num_dims={}, num_points={})>".format( self.num_dims(), self.num_points()) def __getitem__(self, axis_name): return self.axis(axis_name).points def _ipython_key_completions_(self): return [a.name for a in self.axes] class DataStream(object): """A stream of data""" def __init__(self, name=None, unit=None): super(DataStream, self).__init__() self.queue = Queue() self.name = name self.unit = unit self.points_taken_lock = mp.Lock() self.points_taken = Value('i', 0) # Using shared memory since these are used in filter processes self.descriptor = None self.start_connector = None self.end_connector = None self.closed = False # Shared memory interface self.buffer_lock = mp.Lock() # self.buffer_size = 500000 self.buff_idx = Value('i', 0) def final_init(self): self.buffer_size = self.descriptor.num_points()*self.descriptor.buffer_mult_factor # logger.info(f"{self.start_connector.parent}:{self.start_connector} to {self.end_connector.parent}:{self.end_connector} buffer of size {self.buffer_size}") if self.buffer_size > 50e6: logger.debug(f"Limiting buffer size of {self} to 50 Million Points") self.buffer_size = 50e6 self.buff_shared_re = RawArray(ctypes.c_double, int(self.buffer_size)) self.buff_shared_im = RawArray(ctypes.c_double, int(self.buffer_size)) self.re_np = np.frombuffer(self.buff_shared_re, dtype=np.float64) self.im_np = np.frombuffer(self.buff_shared_im, dtype=np.float64) def set_descriptor(self, descriptor): if isinstance(descriptor,DataStreamDescriptor): logger.debug("Setting descriptor on stream '%s' to '%s'", self.name, descriptor) self.descriptor = descriptor else: raise TypeError("Failed setting descriptor. Object is not DataStreamDescriptor: {}".format(descriptor)) def num_points(self): if self.descriptor is not None: return self.descriptor.num_points() else: logger.warning("Stream '{}' has no descriptor. Function num_points() returns 0.".format(self.name)) return 0 def done(self): with self.points_taken_lock: return self.points_taken.value >= self.num_points() def percent_complete(self): if (self.descriptor is not None) and self.num_points()>0: with self.points_taken_lock: return 100.0*self.points_taken.value/self.num_points() else: return 0.0 def reset(self): self.descriptor.reset() with self.points_taken_lock: self.points_taken.value = 0 while not self.queue.empty(): self.queue.get_nowait() if self.start_connector is not None: self.start_connector.points_taken.value = 0 def __repr__(self): return "<DataStream(name={}, completion={}%, descriptor={})>".format( self.name, self.percent_complete(), self.descriptor) def push(self, data): if self.closed: raise Exception("The queue is closed and should not be receiving any more data") with self.points_taken_lock: if hasattr(data, 'size'): self.points_taken.value += data.size else: try: self.points_taken.value += len(data) except: try: junk = data + 1.0 self.points_taken.value += 1 except: raise ValueError("Got data {} that is neither an array nor a float".format(data)) with self.buffer_lock: start = self.buff_idx.value re = np.real(np.array(data)).flatten() if start+re.size > self.re_np.size: raise ValueError(f"Stream {self} received more data than fits in the shared memory buffer. \ This is probably due to digitizer raw streams producing data too quickly for the pipeline.") self.re_np[start:start+re.size] = re if np.issubdtype(self.descriptor.dtype, np.complexfloating): im = np.imag(data).flatten() self.im_np[start:start+im.size] = im message = {"type": "data", "data": None} self.buff_idx.value = start + np.array(data).size self.queue.put(message) def pop(self): result = None with self.buffer_lock: idx = self.buff_idx.value if idx != 0: result = self.re_np[:idx] if np.issubdtype(self.descriptor.dtype, np.complexfloating): result = result.astype(np.complex128) + 1.0j*self.im_np[:idx] self.buff_idx.value = 0 result = result.copy() return result def push_event(self, event_type, data=None): if self.closed: raise Exception("The queue is closed and should not be receiving any more data") message = {"type": "event", "event_type": event_type, "data": data} self.queue.put(message) if event_type == "done": logger.debug(f"Closing out queue {self}") self.queue.close() self.closed = True # These connectors are where we attached the DataStreams class InputConnector(object): def __init__(self, name="", parent=None, datatype=None, max_input_streams=1): self.name = name self.stream = None self.max_input_streams = max_input_streams self.num_input_streams = 0 self.input_streams = [] self.descriptor = None self.parent = parent def add_input_stream(self, stream): logger.debug("Adding input stream '%s' to input connector %s.", stream, self) if self.num_input_streams < self.max_input_streams: self.input_streams.append(stream) self.num_input_streams += 1 stream.end_connector = self else: raise ValueError("Reached maximum number of input connectors. Could not add another input stream to the connector.") def done(self): return all([stream.done() for stream in self.input_streams]) def num_points(self): if len(self.input_streams) > 0: return self.input_streams[0].num_points() else: raise ValueError("Cannot get num_points since no input streams are present on this connector.") def update_descriptors(self): logger.debug("Starting descriptor update in input connector %s.", self.name) self.descriptor = self.input_streams[0].descriptor self.parent.update_descriptors() def __repr__(self): return "<InputConnector(name={})>".format(self.name) class OutputConnector(object): def __init__(self, name="", data_name=None, unit=None, parent=None, dtype=np.float32): self.name = name self.output_streams = [] self.parent = parent self.unit = unit self.points_taken_lock = mp.Lock() self.points_taken = Value('i', 0) # Using shared memory since these are used in filter processes # if data_name is not none, then it is the origin of the whole chain self.data_name = data_name self.data_unit = unit # Set up a default descriptor, and add access # to its methods for convenience. self.descriptor = DataStreamDescriptor(dtype=dtype) if self.data_name: self.descriptor.data_name = self.data_name self.descriptor.unit = self.unit self.add_axis = self.descriptor.add_axis # Determine whether we need to deal with adaptive sweeps self.has_adaptive_sweeps = False def __len__(self): with self.points_taken_lock: return self.points_taken.value # We allow the connectors itself to posess # a descriptor, that it may pass def set_descriptor(self, descriptor): self.descriptor = descriptor def add_output_stream(self, stream): logger.debug("Adding output stream '%s' to output connector %s.", stream, self) self.output_streams.append(stream) stream.start_connector = self def update_descriptors(self): logger.debug("Starting descriptor update in output connector %s, where the descriptor is %s", self.name, self.descriptor) for stream in self.output_streams: logger.debug("\tnow setting stream %s to %s", stream, self.descriptor) stream.set_descriptor(self.descriptor) logger.debug("\tnow setting stream end connector %s to %s", stream.end_connector, self.descriptor) stream.end_connector.update_descriptors() def num_points(self): return self.descriptor.num_points() def done(self): return all([stream.done() for stream in self.output_streams]) def push(self, data): with self.points_taken_lock: if hasattr(data, 'size'): self.points_taken.value += data.size elif isinstance(data, numbers.Number): self.points_taken.value += 1 else: self.points_taken.value += len(data) for stream in self.output_streams: stream.push(data) def push_event(self, event_type, data=None): for stream in self.output_streams: stream.push_event(event_type, data) def __repr__(self): return "<OutputConnector(name={})>".format(self.name)