gt
stringclasses
1 value
context
stringlengths
2.49k
119k
#!/usr/bin/env python2 #This is the main Bolinas script that runs the parser. import sys import fileinput import math import pprint from argparse import ArgumentParser # Bolinas imports from config import config from common.hgraph.hgraph import Hgraph from common import log from common import output from common.exceptions import DerivationException from common.grammar import Grammar from parser.parser import Parser from parser.vo_rule import VoRule from parser_td.td_rule import TdRule from parser_td.td_item import Item from parser_td.parser_td import ParserTD def read_pairs(input): """ An iterator over pairs of elements in an iterator. """ while True: line1 = input.next() try: line2 = input.next() except StopIteration: raise IOError, "Uneven number of lines in input." yield (line1, line2) if __name__ == "__main__": # Parse all the command line arguments, figure out what to do and dispatch to the appropriate modules. # Initialize the command line argument parser argparser = ArgumentParser(description = "Bolinas is a toolkit for synchronous hyperedge replacement grammars.") argparser.add_argument("grammar_file", help="A hyperedge replacement grammar (HRG) or synchronous HRG (SHRG).") argparser.add_argument("input_file", nargs="?", help="Input file containing one object per line or pairs of objects. Use - to read from stdin.") argparser.add_argument("-o","--output_file", type=str, help="Write output to a file instead of stdout.") direction = argparser.add_mutually_exclusive_group() direction.add_argument("-f","--forward", action="store_true", default=True, help="Apply the synchronous HRG left-to-right (default)") direction.add_argument("-r","--backward", action="store_true", default=False, help="Apply the synchronous HRG right-to-left.") direction.add_argument("-b","--bitext", action="store_true", default=False, help="Parse pairs of objects from an input file with alternating lines.") argparser.add_argument("-ot","--output_type", type=str, default="derived", help="Set the type of the output to be produced for each object in the input file. \n'forest' produces parse forests.\n'derivation' produces k-best derivations.\n'derived' produces k-best derived objects (default).") mode = argparser.add_mutually_exclusive_group() mode.add_argument("-g", type=int, default=0, const=5, nargs='?', help ="Generate G random derivations from the grammar stochastically. Cannot be used with -k.") mode.add_argument("-k",type=int, default=False, help ="Generate K best derivations for the objects in the input file. Cannot be used with -g (default with K=1).") weights = argparser.add_mutually_exclusive_group() #weights.add_argument("-d","--randomize", default=False, action="store_true", help="Randomize weights to be distributed between 0.2 and 0.8. Useful for EM training.") weights.add_argument("-n","--normalize", default=False, action="store_true", help="Normalize weights. If -b is specified, rules with the same LHS sum up to 1.0. If -f is specified rules with the same LHS and second RHS sum up to 1.0. If -r is specified rules with the same LHS and first RHS sum up to 1.0.") weights.add_argument("-t","--train", default=0, type=int, const=5, nargs='?', help="Use TRAIN iterations of EM to train weights for the grammar using the input (graph, string, or pairs of objects in alternating lines). Initialize with the weights in the grammar file or with uniform weights if none are provided. Writes a grammar file with trained weights to the output.") argparser.add_argument("-m", "--weight_type", default="prob", help="Input/output in real probabilities ('prob', default) or log probabilities ('logprob').") argparser.add_argument("-p","--parser", default="basic", help="Specify which graph parser to use. 'td': the tree decomposition parser of Chiang et al, ACL 2013 (default). 'basic': a basic generalization of CKY that matches rules according to an arbitrary visit order on edges (less efficient).") argparser.add_argument("-e","--edge_labels", action="store_true", default=False, help="Consider only edge labels when matching HRG rules. By default node labels need to match. Warning: The default is potentially unsafe when node-labels are used for non-leaf nodes on the target side of a synchronous grammar.") argparser.add_argument("-bn","--boundary_nodes", action="store_true", help="In the tree decomposition parser, use the full representation for graph fragments instead of the compact boundary node representation. This can provide some speedup for grammars with small rules.") #argparser.add_argument("-s","--remove_spurious", default=False, action="store_true", help="Remove spurious ambiguity. Only keep the best derivation for identical derived objects.") argparser.add_argument("-s","--start_symbol", default=None, type=str, help="Use this start symbol instead of the left hand side of the first rule in the grammar.") argparser.add_argument("-v","--verbose", type=int, default=2, help="Stderr output verbosity: 0 (all off), 1 (warnings), 2 (info, default), 3 (details), 3 (debug)") args = argparser.parse_args() # Verify command line parameters if not args.output_type in ['forest', 'derivation', 'derived', 'yield', 'both']: log.err("Output type (-ot) must be either 'forest', 'derivation', or 'derived'.") sys.exit(1) if not args.weight_type in ['prob', 'logprob']: log.err("Weight type (-m) must be either 'prob'or 'logprob'.") sys.exit(1) logprob = (args.weight_type == 'logprob') if args.output_type == "forest": if not args.output_file: log.err("Need to provide '-o FILE_PREFIX' with output type 'forest'.") sys.exit(1) if args.k: log.warn("Ignoring -k command line option because output type is 'forest'.") if not args.parser in ['td', 'basic']: log.err("Parser (-p) must be either 'td' or 'basic'.") sys.exit(1) if args.parser != 'td' and args.boundary_nodes: log.warn('The -bn option is only relevant for the tree decomposition parser ("-p td").') if args.k > config.maxk: log.err("k must be <= than %i (defined in in args.py)." % args.maxk) sys.exit(1) if args.verbose < 0 or args.verbose > 4: log.err("Invalid verbosity level, must be 0-4.") sys.exit(1) # Updat global configuration with command line args config.__dict__.update(vars(args)) # Definition of logger output verbosity levels log.LOG = {0:{log.err}, 1:{log.err, log.warn}, 2:{log.err, log.warn, log.info}, 3:{log.err, log.warn, log.info, log.chatter}, 4:{log.err, log.warn, log.chatter, log.info, log.debug} }[config.verbose] # Direct output to stdout if no filename is provided if config.output_type is not "derivation": if config.output_file: output_file = open(config.output_file,'wa') else: output_file = sys.stdout with open(config.grammar_file,'ra') as grammar_file: # Select the parser and rule class to use if config.parser == 'td': parser_class = ParserTD rule_class = TdRule if config.boundary_nodes: parser_class.item_class = Item elif config.parser == 'basic': parser_class = Parser rule_class = VoRule # Read the grammar grammar = Grammar.load_from_file(grammar_file, rule_class, config.backward, nodelabels = (not config.edge_labels), logprob = logprob) if config.start_symbol: grammar.start_symbol = config.start_symbol if len(grammar) == 0: log.err("Unable to load grammar from file.") sys.exit(1) log.info("Loaded %s%s grammar with %i rules."\ % (grammar.rhs1_type, "-to-%s" % grammar.rhs2_type if grammar.rhs2_type else '', len(grammar))) # EM training if config.train: iterations = config.train if not config.input_file: log.err("Please specify corpus file for EM training.") sys.exit(1) if config.bitext: corpus = list(read_pairs(fileinput.input(config.input_file))) grammar.em(corpus, iterations, parser_class, "synchronous") else: corpus = [Hgraph.from_string(x) for x in fileinput.input(config.input_file)] grammar.em(corpus, iterations, parser_class, "forward") for rid in sorted(grammar.keys()): output_file.write(str(grammar[rid])) output_file.write("\n") sys.exit(0) # Normalization if config.normalize: if config.bitext or grammar.rhs2_type is None or config.g or (config.k and not config.input_files): grammar.normalize_lhs() else: grammar.normalize_rhs2() for rid in sorted(grammar.keys()): output_file.write(str(grammar[rid])) output_file.write("\n") sys.exit(0) # kbest derivations from grammar derivations = [] if config.k and not config.input_file: grammar.normalize_lhs() derivations = grammar.kbest(config.k) # Stochastically generate derivations if config.g: grammar.normalize_lhs() derivations = (grammar.stochastically_generate() for i in range(config.g)) if derivations: for score, derivation in derivations: if not logprob: n_score = math.exp(score) else: n_score = score if config.output_type == "derived": if grammar.rhs2_type == "string": output_file.write("%s\t#%f\n" % (" ".join(output.apply_string_derivation(derivation)), n_score)) else: output_file.write("%s\t#%f\n" % (output.apply_graph_derivation(derivation).to_string(), n_score)) elif config.output_type == "derivation": output_file.write("%s\t#%f\n" % (output.format_derivation(derivation), n_score)) elif config.output_type == "yield": if grammar.rhs2_type == "string": output_file.write("%s\t#%f\n" % (" ".join(output.apply_string_derivation(derivation)), n_score)) else: output_file.write("%s\t#%f\n" % (" ".join(output.apply_graph_derivation(derivation).graph_yield()), n_score)) sys.exit(0) # Otherwise set up the correct parser and parser options parser = parser_class(grammar) if grammar.rhs2_type is None and config.output_type == "derived" and not config.g: log.info('Printing derivation trees for HRG.') config.output_type = "derivation" if not config.k: config.k = 1 if config.bitext: if parser_class == ParserTD: log.err("Bigraph parsing with tree decomposition based parser is not yet implemented. Use '-p basic'.") sys.exit(1) parse_generator = parser.parse_bitexts(read_pairs(fileinput.input(config.input_file))) else: if grammar.rhs1_type == "string": if parser_class == ParserTD: log.err("Parser class needs to be 'basic' to parse strings.") sys.exit(1) else: parse_generator = parser.parse_strings(x.strip().split() for x in fileinput.input(config.input_file)) else: parse_generator = parser.parse_graphs(Hgraph.from_string(x) for x in fileinput.input(config.input_file)) # Process input (if any) and produce desired output if config.input_file: count = 1 # Run the parser for each graph in the input for chart in parse_generator: # Produce Tiburon format derivation forests if config.output_type == "forest": output_file = open("%s_%i.rtg" % (config.output_file, count), 'wa') output_file.write(output.format_tiburon(chart)) output_file.close() count = count + 1 # Produce k-best derivations if config.output_type == "derivation" or config.output_type == "both": l1s = [] kbest = chart.kbest('START', config.k) if kbest and len(kbest) < config.k: log.info("Found only %i derivations." % len(kbest)) for score, derivation in kbest: n_score = score if logprob else math.exp(score) l1s.append("%s\t#%g\n" % (output.format_derivation(derivation), n_score)) # Produce k-best derived graphs/strings if config.output_type == "derived" or config.output_type == "both": l2s = [] kbest = chart.kbest('START', config.k) if kbest and kbest < config.k: log.info("Found only %i derivations." % len(kbest)) if grammar.rhs2_type == "hypergraph": for score, derivation in kbest: n_score = score if logprob else math.exp(score) try: output_file.write l2s.append("%s\t#%g\n" % (output.apply_graph_derivation(derivation).to_string(newline = False), n_score)) except DerivationException,e: log.err("Could not construct derivation: '%s'. Skipping." % e.message) l2s.append("") elif grammar.rhs2_type == "string": for score, derivation in kbest: n_score = score if logprob else math.exp(score) l2s.append("%s\t#%g\n" % (" ".join(output.apply_string_derivation(derivation)), n_score)) if config.output_type == "derivation": for l in l1s: output_file.write(l) output_file.write("\n") elif config.output_type == "derived": for l in l2s: output_file.write(l) output_file.write("\n") elif config.output_type == "both": for l1, l2 in zip(l1s, l2s): output_file.write(l1) output_file.write(l2) output_file.write("\n")
"""SCons.Tool.mslink Tool-specific initialization for the Microsoft linker. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/mslink.py 4369 2009/09/19 15:58:29 scons" import os.path import SCons.Action import SCons.Defaults import SCons.Errors import SCons.Platform.win32 import SCons.Tool import SCons.Tool.msvc import SCons.Tool.msvs import SCons.Util from MSCommon import merge_default_version, msvs_exists def pdbGenerator(env, target, source, for_signature): try: return ['/PDB:%s' % target[0].attributes.pdb, '/DEBUG'] except (AttributeError, IndexError): return None def _dllTargets(target, source, env, for_signature, paramtp): listCmd = [] dll = env.FindIxes(target, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp) if dll: listCmd.append("/out:%s"%dll.get_string(for_signature)) implib = env.FindIxes(target, 'LIBPREFIX', 'LIBSUFFIX') if implib: listCmd.append("/implib:%s"%implib.get_string(for_signature)) return listCmd def _dllSources(target, source, env, for_signature, paramtp): listCmd = [] deffile = env.FindIxes(source, "WINDOWSDEFPREFIX", "WINDOWSDEFSUFFIX") for src in source: # Check explicitly for a non-None deffile so that the __cmp__ # method of the base SCons.Util.Proxy class used for some Node # proxies doesn't try to use a non-existent __dict__ attribute. if deffile and src == deffile: # Treat this source as a .def file. listCmd.append("/def:%s" % src.get_string(for_signature)) else: # Just treat it as a generic source file. listCmd.append(src) return listCmd def windowsShlinkTargets(target, source, env, for_signature): return _dllTargets(target, source, env, for_signature, 'SHLIB') def windowsShlinkSources(target, source, env, for_signature): return _dllSources(target, source, env, for_signature, 'SHLIB') def _windowsLdmodTargets(target, source, env, for_signature): """Get targets for loadable modules.""" return _dllTargets(target, source, env, for_signature, 'LDMODULE') def _windowsLdmodSources(target, source, env, for_signature): """Get sources for loadable modules.""" return _dllSources(target, source, env, for_signature, 'LDMODULE') def _dllEmitter(target, source, env, paramtp): """Common implementation of dll emitter.""" SCons.Tool.msvc.validate_vars(env) extratargets = [] extrasources = [] dll = env.FindIxes(target, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp) no_import_lib = env.get('no_import_lib', 0) if not dll: raise SCons.Errors.UserError, 'A shared library should have exactly one target with the suffix: %s' % env.subst('$%sSUFFIX' % paramtp) insert_def = env.subst("$WINDOWS_INSERT_DEF") if not insert_def in ['', '0', 0] and \ not env.FindIxes(source, "WINDOWSDEFPREFIX", "WINDOWSDEFSUFFIX"): # append a def file to the list of sources extrasources.append( env.ReplaceIxes(dll, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp, "WINDOWSDEFPREFIX", "WINDOWSDEFSUFFIX")) version_num, suite = SCons.Tool.msvs.msvs_parse_version(env.get('MSVS_VERSION', '6.0')) if version_num >= 8.0 and env.get('WINDOWS_INSERT_MANIFEST', 0): # MSVC 8 automatically generates .manifest files that must be installed extratargets.append( env.ReplaceIxes(dll, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp, "WINDOWSSHLIBMANIFESTPREFIX", "WINDOWSSHLIBMANIFESTSUFFIX")) if env.has_key('PDB') and env['PDB']: pdb = env.arg2nodes('$PDB', target=target, source=source)[0] extratargets.append(pdb) target[0].attributes.pdb = pdb if not no_import_lib and \ not env.FindIxes(target, "LIBPREFIX", "LIBSUFFIX"): # Append an import library to the list of targets. extratargets.append( env.ReplaceIxes(dll, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp, "LIBPREFIX", "LIBSUFFIX")) # and .exp file is created if there are exports from a DLL extratargets.append( env.ReplaceIxes(dll, '%sPREFIX' % paramtp, '%sSUFFIX' % paramtp, "WINDOWSEXPPREFIX", "WINDOWSEXPSUFFIX")) return (target+extratargets, source+extrasources) def windowsLibEmitter(target, source, env): return _dllEmitter(target, source, env, 'SHLIB') def ldmodEmitter(target, source, env): """Emitter for loadable modules. Loadable modules are identical to shared libraries on Windows, but building them is subject to different parameters (LDMODULE*). """ return _dllEmitter(target, source, env, 'LDMODULE') def prog_emitter(target, source, env): SCons.Tool.msvc.validate_vars(env) extratargets = [] exe = env.FindIxes(target, "PROGPREFIX", "PROGSUFFIX") if not exe: raise SCons.Errors.UserError, "An executable should have exactly one target with the suffix: %s" % env.subst("$PROGSUFFIX") version_num, suite = SCons.Tool.msvs.msvs_parse_version(env.get('MSVS_VERSION', '6.0')) if version_num >= 8.0 and env.get('WINDOWS_INSERT_MANIFEST', 0): # MSVC 8 automatically generates .manifest files that have to be installed extratargets.append( env.ReplaceIxes(exe, "PROGPREFIX", "PROGSUFFIX", "WINDOWSPROGMANIFESTPREFIX", "WINDOWSPROGMANIFESTSUFFIX")) if env.has_key('PDB') and env['PDB']: pdb = env.arg2nodes('$PDB', target=target, source=source)[0] extratargets.append(pdb) target[0].attributes.pdb = pdb return (target+extratargets,source) def RegServerFunc(target, source, env): if env.has_key('register') and env['register']: ret = regServerAction([target[0]], [source[0]], env) if ret: raise SCons.Errors.UserError, "Unable to register %s" % target[0] else: print "Registered %s sucessfully" % target[0] return ret return 0 regServerAction = SCons.Action.Action("$REGSVRCOM", "$REGSVRCOMSTR") regServerCheck = SCons.Action.Action(RegServerFunc, None) shlibLinkAction = SCons.Action.Action('${TEMPFILE("$SHLINK $SHLINKFLAGS $_SHLINK_TARGETS $_LIBDIRFLAGS $_LIBFLAGS $_PDB $_SHLINK_SOURCES")}') compositeShLinkAction = shlibLinkAction + regServerCheck ldmodLinkAction = SCons.Action.Action('${TEMPFILE("$LDMODULE $LDMODULEFLAGS $_LDMODULE_TARGETS $_LIBDIRFLAGS $_LIBFLAGS $_PDB $_LDMODULE_SOURCES")}') compositeLdmodAction = ldmodLinkAction + regServerCheck def generate(env): """Add Builders and construction variables for ar to an Environment.""" SCons.Tool.createSharedLibBuilder(env) SCons.Tool.createProgBuilder(env) env['SHLINK'] = '$LINK' env['SHLINKFLAGS'] = SCons.Util.CLVar('$LINKFLAGS /dll') env['_SHLINK_TARGETS'] = windowsShlinkTargets env['_SHLINK_SOURCES'] = windowsShlinkSources env['SHLINKCOM'] = compositeShLinkAction env.Append(SHLIBEMITTER = [windowsLibEmitter]) env['LINK'] = 'link' env['LINKFLAGS'] = SCons.Util.CLVar('/nologo') env['_PDB'] = pdbGenerator env['LINKCOM'] = '${TEMPFILE("$LINK $LINKFLAGS /OUT:$TARGET.windows $_LIBDIRFLAGS $_LIBFLAGS $_PDB $SOURCES.windows")}' env.Append(PROGEMITTER = [prog_emitter]) env['LIBDIRPREFIX']='/LIBPATH:' env['LIBDIRSUFFIX']='' env['LIBLINKPREFIX']='' env['LIBLINKSUFFIX']='$LIBSUFFIX' env['WIN32DEFPREFIX'] = '' env['WIN32DEFSUFFIX'] = '.def' env['WIN32_INSERT_DEF'] = 0 env['WINDOWSDEFPREFIX'] = '${WIN32DEFPREFIX}' env['WINDOWSDEFSUFFIX'] = '${WIN32DEFSUFFIX}' env['WINDOWS_INSERT_DEF'] = '${WIN32_INSERT_DEF}' env['WIN32EXPPREFIX'] = '' env['WIN32EXPSUFFIX'] = '.exp' env['WINDOWSEXPPREFIX'] = '${WIN32EXPPREFIX}' env['WINDOWSEXPSUFFIX'] = '${WIN32EXPSUFFIX}' env['WINDOWSSHLIBMANIFESTPREFIX'] = '' env['WINDOWSSHLIBMANIFESTSUFFIX'] = '${SHLIBSUFFIX}.manifest' env['WINDOWSPROGMANIFESTPREFIX'] = '' env['WINDOWSPROGMANIFESTSUFFIX'] = '${PROGSUFFIX}.manifest' env['REGSVRACTION'] = regServerCheck env['REGSVR'] = os.path.join(SCons.Platform.win32.get_system_root(),'System32','regsvr32') env['REGSVRFLAGS'] = '/s ' env['REGSVRCOM'] = '$REGSVR $REGSVRFLAGS ${TARGET.windows}' # Set-up ms tools paths for default version merge_default_version(env) # Loadable modules are on Windows the same as shared libraries, but they # are subject to different build parameters (LDMODULE* variables). # Therefore LDMODULE* variables correspond as much as possible to # SHLINK*/SHLIB* ones. SCons.Tool.createLoadableModuleBuilder(env) env['LDMODULE'] = '$SHLINK' env['LDMODULEPREFIX'] = '$SHLIBPREFIX' env['LDMODULESUFFIX'] = '$SHLIBSUFFIX' env['LDMODULEFLAGS'] = '$SHLINKFLAGS' env['_LDMODULE_TARGETS'] = _windowsLdmodTargets env['_LDMODULE_SOURCES'] = _windowsLdmodSources env['LDMODULEEMITTER'] = [ldmodEmitter] env['LDMODULECOM'] = compositeLdmodAction def exists(env): return msvs_exists() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
#!/usr/bin/env python """Yet another HTTP Server (YaHS) Provides simple decorator API to quickly create and test RESTful APIs """ __author__ = 'Tim Sullivan' __version__ = '1.1' __license__ = 'MIT' import sys import os import signal import socket import threading import ssl import logging import re import collections import inspect if sys.version_info >= (3,0): from urllib.parse import parse_qs else: from urlparse import parse_qs class Request: """Structure of an incoming HTTP request. Requests are created by the running HttpWorker threads and have a uri. 'handlers' register for request url patterns they're interested in. """ def __init__(self, method, uri, headers, get_query, address="127.0.0.1"): self.method = method # e.g GET, PUT, HEAD self.uri = uri # e.g /index.html self.headers = headers self.get_query = get_query # eg /couches/?orderby=lowestprice should be: {'orderby': 'lowestprice'} self.body = None # if a PUT/POST request this will contain the raw data self.remote_address = address def __str__(self): """ String representation of a Request """ return "Request: {} {}\nHeaders:\n{}\nQuerystring:\n{}\n".format( self.method, self.uri, self.headers, self.get_query) class Response: """Structure of a HTTP Response destined for the client. Handlers are responsible for returning a Request to the HttpWorker which gets sent to the client. """ def __init__(self): self.status_code = 200 self.status_message = "OK" self.headers = { 'Server': 'YaHS (Yet another HTTP Server) v1.0', 'Content-Type': "text/html", 'Access-Control-Allow-Origin': '*' # ruthless } self.body = b'' def send(self, client_socket): """Send the Response to the client socket provided. This method is called *Internally* and should not be used directly. """ client_socket.send("HTTP/1.1 {0} {1}\r\n".format(self.status_code, self.status_message).encode('utf-8')) self.headers['Content-Length'] = str(len(self.body)) for header in self.headers: client_socket.send((header + ": " + self.headers[header] + "\r\n").encode('utf-8')) client_socket.send(b'\r\n') if type(self.body) is str: self.body = self.body.encode('utf-8') client_socket.send(self.body) class HttpWorker(threading.Thread): """Process all the HTTP protocol work here in a Thread. :param: args expects (client_socket, client_address) from socket.accept() call """ def __init__(self, group=None, target=None, name=None, args=(), kwargs=None): # call 'super' constructor to init thread super(HttpWorker, self).__init__(group=group, target=target, name=name, args=args, kwargs=kwargs) # management fields self.keep_running = True self.client_socket = args[0] self.client_address = args[1] def run(self): """Process each client connection. Parses the request to create a Request object, gets a Response by finding a request handler that matches a regex. The response is then sent and the connection closed. This is run in a new thread for each request """ # parse http. Result is a new Request object request = self.parse_request() # generate a response by calling the handler which does the magic response = self.handle_request(request) # log the request and the response status to console self.audit_log(request, response) # send the response back to the client response.send(self.client_socket) # we're done... self.client_socket.shutdown(socket.SHUT_RDWR) self.client_socket.close() def parse_request(self): """Reads the tcp client socket to make a Request. :return: a Request object """ request = b'' data = b'' # if we had PUT or POST data build it here post_flag = False http_request = None while True: got_bytes = 0 new_data = self.client_socket.recv(8192) if len(new_data) == 0: break # got EOF meh # if the request has just started if not post_flag: for line in new_data.split(b'\n'): request += line + b'\n' # add linebreak back helps got_bytes += len(line) + 1 if len(line) <= 1: # assumed to reach /r/n/r/n request_lines = request.split(b'\r\n') request_speci = request_lines[0].decode().split() # eg ['GET', '/', 'HTTP/1.1'] request_headers = {} for header in request_lines[1:]: try: (var, val) = header.split(b': ') # split header key/value pairs into 2 components request_headers[var.decode()] = val.decode() except ValueError: pass # process querystring in request if any eg GET /?status=new&cake=lie # resulting uri variable should then have the querystring chopped off. # true keeps any blank values e.g /?egg get_query = parse_qs(request_speci[1].replace('/?', ''), True) # chop off querystring, e.g: /?status=new&cake=lie becomes / uri = request_speci[1].split('?')[0] # create an instance of a Request object http_request = Request(request_speci[0], uri, request_headers, get_query, address=self.client_address) if request_speci[0] == 'POST' or request_speci[0] == 'PUT': post_flag = True data += new_data[got_bytes:] if len(data) == int(http_request.headers['Content-Length']): logging.debug("Finished reading POST request") http_request.body = data return http_request else: # exit for, post flag is set, will continue reading post later on break else: return http_request else: # we have more POST/PUT data to process data += new_data if len(data) == int(http_request.headers['Content-Length']): http_request.body = data logging.debug("Finished reading large file") break elif len(data) >= int(http_request.headers['Content-Length']): logging.warning("Got more data from client than specified in Content-Length") # should return a bad request return http_request def handle_request(self, request): """Search the list of registered Request handlers which match an expression. Calls handler if found otherwise should send 404 request incoming Request object returns a Response destined for the client """ if request is None: logging.warning("Tried to handle a None Request") response = Response() response.status_code = 400 response.status_message = "Bad Request None Got It" return response logging.debug(request) # first check if we support that request method type i.e any registered handlers for it if request.method not in Server.handlers: response = Response() response.status_code = 400 response.status_message = 'Bad Request' response.body = "<h1>400 Bad Request</h1><p>The server could support your request</p>" return response # spin over the registered get handlers and call a match. O(n) where n is number of registered method handlers for urlpattern in Server.handlers[request.method]: match = urlpattern.match(request.uri) if match is not None: # found matching urlpatten. Get named regex back-reference values as args args = match.groupdict() # call our registered handler for that url with unpacked args func = Server.handlers[request.method][urlpattern] # awesomeness res = func(request, **args) if type(res) is str: response = Response() response.body = res return response elif res is None: response = Response() response.status_code = 204 response.status_message = 'No Content' logging.debug("Got a None response back from handler check return response exists?") return response return res # If we reached here then it's time for a 404 response = Response() response.status_code = 404 response.status_message = 'Not Found' response.body = "<h1>404 Not Found</h1><p>The server could not find a resource matching your request :(</p>" return response @staticmethod def audit_log(request, response): """Logs request and Response http status code destined for the client request The original Request they made response The actual Response destined for the client """ logging.info("{} {} Response: {}".format(request.method, request.uri, response.status_code)) class ListenerThread(threading.Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None): """ Create the server socket listener thread. args is required with (hostname, port, https_enabled) """ # call 'super' constructor to init thread super(ListenerThread, self).__init__(group=group, target=target, name=name, args=args, kwargs=kwargs) self.hostname = args[0] self.port = args[1] self.secure = args[2] self.socket = None if kwargs: if 'keyfile' in kwargs: self.key_file = kwargs['keyfile'] else: self.key_file = None if 'certfile' in kwargs: self.certificate_file = kwargs['certfile'] else: self.certificate_file = None else: self.key_file = None self.certificate_file = None self.setup_listening() def setup_listening(self): logging.info("Starting ListenerThread on {0}:{1}".format(self.hostname, self.port)) server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind((self.hostname, self.port)) server_socket.listen(5) self.socket = server_socket if self.secure: self.wrap_ssl() def run(self): logging.debug("Entering http server loop") while True: try: (client_socket, address) = self.socket.accept() logging.debug("Accepted connection from %s", address) # create a HttpWorker thread, passing in the client socket http_thread = HttpWorker(args=(client_socket, address)) http_thread.start() except ssl.SSLEOFError: # find this happening when browser issues warning and ends tcp stream logging.debug("Reached EOF when SSL connection was being accepted") continue except ssl.SSLError as err: logging.warning("Got a {} error: {}".format(err['library'], err['reason'])) continue def wrap_ssl(self): # Wrap socket in SSL. TODO look into using ssl.SSLContexts for better support of browsers try: logging.debug("Attempting to load private key at %s", self.key_file) logging.debug("Attempting to load certificates at %s", self.certificate_file) self.socket = ssl.wrap_socket(self.socket, server_side=True, certfile=self.certificate_file, keyfile=self.key_file) logging.debug("Certificates and server key loaded") except IOError as err: logging.warning("Could not find SSL certificate or private key file. Not starting ssl") logging.warning(err) self.socket.close() return class Server: """Server listens for secure and non-secure sockets. Spawns HttpWorker threads to handle the HTTP/1.1 protocol. handlers Dictionary mapping url patten regular expressions to event handler functions """ # Event Handling Structure for requests handlers = {} @staticmethod def handle(method, uri): """Decorator for registering Request handlers Takes a HTTP method as string such as 'GET' Takes a regex string to compile and register for events """ def request_handler_decorator(func): # build regular expression uri_expression = re.compile(uri) # update global handler dict dynamically as http methods are registered if method not in Server.handlers: logging.debug("Creating new handler structure for %s method type.", method) Server.handlers[method] = collections.OrderedDict() # order of regex key insertion matters Server.handlers[method][uri_expression] = func # add new function mapped to url regex return func return request_handler_decorator def __init__(self, hostname='localhost', port=4321, secure=False, keyfile=None, certfile=None): """Create a live running http server instance to go It will start listening on the specified port but won't run yet until start() is called. """ self.base_port = port self.hostname = hostname self.secure = secure self.key_file = keyfile self.certificate_file = certfile # Bind the signal handler: SIGINT is send to the process when CTRL-C is pressed signal.signal(signal.SIGINT, self.handle_shutdown) self.listener = ListenerThread(args=(self.hostname, self.base_port, False)) self.listener.daemon = True def handle_shutdown(self, signal_unused, frame_unused): """If the server receives a signal (e.g. Ctrl-C/Ctrl-Break), terminate gracefully """ logging.info("SIGINT Signal received; exiting gracefully...") sys.exit(0) def start(self): """Start the server mainloop. By now the server should have been inited and ready to enter the run loop. """ self.listener.start() if self.secure: key_dict = {'keyfile': self.key_file, 'certfile': self.certificate_file} secure_listener = ListenerThread(args=(self.hostname, self.base_port + 1, True), kwargs=key_dict) secure_listener.daemon = True secure_listener.start() return self def wait(self): """Helper to block main thread to keep process running. """ logging.info('Waiting for connections...') while self.listener.is_alive: self.listener.join(1) @Server.handle('GET', r'^/$') @Server.handle('GET', r'^/yahs/api/?$') def api_index(request): """Display the API index page for browsing loaded Request handlers. In conclusion, this is quite awesome. """ response = Response() body = "<h1>Welcome to YaHS! API Index</h1>" for method in Server.handlers: body += "<h2 style='color: #555;'>{}</h2>".format(method) for regex in Server.handlers[method]: body += "<ul>" func = Server.handlers[method][regex] module = inspect.getmodule(func) var_names = func.func_code.co_varnames[:func.func_code.co_argcount] body += "<li><strong>{}</strong> <pre>{}: <span style='color: #00a;'>def</span> {}{}</pre><em>{}</em></li>".format( regex.pattern, module.__name__, func.__name__, var_names, func.__doc__) body += "</ul>" response.body = body return response @Server.handle('GET', '^/apidocs/?$') def api_docs(request): body = """ <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>YaHS Live API Docs</title> <style type="text/css"> body {font-family: sans-serif; } .urlpattern { border: #ddd 1px solid; border-radius: 4px; box-shadow: 0px 1px 1px rgba(0, 0, 0, 0.1); margin-top: 1.5em;} .urlpattern header {color: #FFF; background-color: #1F5C99; height: 2em} .urlpattern div {padding: 1em; } .method-type { background-color: #143D66; font-weight: bold; padding: 0.4em; margin: 0.2em} </style> <body> <h2>YaHS Live API Docs</h2> """ for method in Server.handlers: for urlpattern in Server.handlers[method]: func = Server.handlers[method][urlpattern] module = inspect.getmodule(func) # var_names = func.func_code.co_varnames[:func.func_code.co_argcount] # python 2.7.x var_names = func.__code__.co_varnames[:func.__code__.co_argcount] # 3.4.x body += "<section class='urlpattern'>" body += "<header>" body += "<span class='method-type'>{}</span>".format(method) body += "<code>{}</code>".format(urlpattern.pattern) body += "</header>" body += "<div>{}</div>".format(func.__doc__) body += "</section>" body += "</body></html>" return body @Server.handle("GET", r'^/yahs/reload/?$') def reload_server(request): """Re-Load the server event handling module """ logging.warning("Reloading event handler modules") reloaded_modules = [] for method in Server.handlers: for regex in Server.handlers[method]: func = Server.handlers[method][regex] module = inspect.getmodule(func) if module.__name__ != "yahs": if module not in reloaded_modules: logging.info("Reloading {} module.".format(module.__name__)) reload(module) reloaded_modules.append(module) res = Response() res.body = "Server reloaded" return res @Server.handle('OPTIONS', '.') def handle_cors(request): """Ruthlessly handle anything that looks like a Cross Origin request. Just repeats back what the browser requested granting all. """ response = Response() response.headers['Access-Control-Allow-Origin'] = request.headers['Origin'] response.headers['Access-Control-Allow-Method'] = request.headers['Access-Control-Request-Method'] response.headers['Access-Control-Allow-Headers'] = request.headers['Access-Control-Request-Headers'] return response # main :) if __name__ == "__main__": if len(sys.argv) > 1: tcp_port = int(sys.argv[1]) server = Server(port=tcp_port) else: server = Server() # defaults to http://localhost:4321, https://localhost:4322 server.start().wait()
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os.path import time from ambari_commons import constants from resource_management.core import shell from resource_management.core.source import Template from resource_management.core.resources.system import File, Execute, Directory from resource_management.core.resources.service import Service from resource_management.libraries.functions import namenode_ha_utils from resource_management.libraries.functions.decorator import retry from resource_management.libraries.functions.format import format from resource_management.libraries.functions.check_process_status import check_process_status from resource_management.libraries.resources.execute_hadoop import ExecuteHadoop from resource_management.libraries.functions import Direction from ambari_commons import OSCheck, OSConst from ambari_commons.os_family_impl import OsFamilyImpl, OsFamilyFuncImpl from utils import get_dfsadmin_base_command from utils import set_up_zkfc_security if OSCheck.is_windows_family(): from resource_management.libraries.functions.windows_service_utils import check_windows_service_status from resource_management.core.exceptions import Fail from resource_management.core.logger import Logger from utils import service, safe_zkfc_op, is_previous_fs_image from setup_ranger_hdfs import setup_ranger_hdfs, create_ranger_audit_hdfs_directories import namenode_upgrade def wait_for_safemode_off(hdfs_binary, afterwait_sleep=0, execute_kinit=False, retries=115, sleep_seconds=10): """ During NonRolling (aka Express Upgrade), after starting NameNode, which is still in safemode, and then starting all of the DataNodes, we need for NameNode to receive all of the block reports and leave safemode. If HA is present, then this command will run individually on each NameNode, which checks for its own address. """ import params sleep_minutes = int(sleep_seconds * retries / 60) Logger.info("Waiting up to {0} minutes for the NameNode to leave Safemode...".format(sleep_minutes)) if params.security_enabled and execute_kinit: kinit_command = format("{params.kinit_path_local} -kt {params.hdfs_user_keytab} {params.hdfs_principal_name}") Execute(kinit_command, user=params.hdfs_user, logoutput=True) try: # Note, this fails if namenode_address isn't prefixed with "params." dfsadmin_base_command = get_dfsadmin_base_command(hdfs_binary, use_specific_namenode=True) is_namenode_safe_mode_off = dfsadmin_base_command + " -safemode get | grep 'Safe mode is OFF'" # Wait up to 30 mins Execute(is_namenode_safe_mode_off, tries=retries, try_sleep=sleep_seconds, user=params.hdfs_user, logoutput=True) # Wait a bit more since YARN still depends on block reports coming in. # Also saw intermittent errors with HBASE service check if it was done too soon. time.sleep(afterwait_sleep) except Fail: Logger.error("The NameNode is still in Safemode. Please be careful with commands that need Safemode OFF.") @OsFamilyFuncImpl(os_family=OsFamilyImpl.DEFAULT) def namenode(action=None, hdfs_binary=None, do_format=True, upgrade_type=None, upgrade_suspended=False, env=None): if action is None: raise Fail('"action" parameter is required for function namenode().') if action in ["start", "stop"] and hdfs_binary is None: raise Fail('"hdfs_binary" parameter is required for function namenode().') if action == "configure": import params #we need this directory to be present before any action(HA manual steps for #additional namenode) create_name_dirs(params.dfs_name_dir) # set up failover / secure zookeper ACLs, this feature is supported from HDP 2.6 ownwards set_up_zkfc_security(params) elif action == "start": Logger.info("Called service {0} with upgrade_type: {1}".format(action, str(upgrade_type))) setup_ranger_hdfs(upgrade_type=upgrade_type) import params File(params.exclude_file_path, content=Template("exclude_hosts_list.j2"), owner=params.hdfs_user, group=params.user_group ) if params.hdfs_include_file: File(params.include_file_path, content=Template("include_hosts_list.j2"), owner=params.hdfs_user, group=params.user_group ) pass if do_format and not params.hdfs_namenode_format_disabled: format_namenode() pass if params.dfs_ha_enabled and \ params.dfs_ha_namenode_standby is not None and \ (params.hostname == params.dfs_ha_namenode_standby or params.public_hostname == params.dfs_ha_namenode_standby): # if the current host is the standby NameNode in an HA deployment # run the bootstrap command, to start the NameNode in standby mode # this requires that the active NameNode is already up and running, # so this execute should be re-tried upon failure, up to a timeout success = bootstrap_standby_namenode(params) if not success: raise Fail("Could not bootstrap standby namenode") if upgrade_type == constants.UPGRADE_TYPE_ROLLING and params.dfs_ha_enabled: # Most likely, ZKFC is up since RU will initiate the failover command. However, if that failed, it would have tried # to kill ZKFC manually, so we need to start it if not already running. safe_zkfc_op(action, env) options = "" if upgrade_type == constants.UPGRADE_TYPE_ROLLING: if params.upgrade_direction == Direction.UPGRADE: options = "-rollingUpgrade started" elif params.upgrade_direction == Direction.DOWNGRADE: options = "-rollingUpgrade downgrade" elif upgrade_type == constants.UPGRADE_TYPE_NON_ROLLING: is_previous_image_dir = is_previous_fs_image() Logger.info("Previous file system image dir present is {0}".format(str(is_previous_image_dir))) if params.upgrade_direction == Direction.UPGRADE: options = "-rollingUpgrade started" elif params.upgrade_direction == Direction.DOWNGRADE: options = "-rollingUpgrade downgrade" elif upgrade_type == constants.UPGRADE_TYPE_HOST_ORDERED: # nothing special to do for HOU - should be very close to a normal restart pass elif upgrade_type is None and upgrade_suspended is True: # the rollingUpgrade flag must be passed in during a suspended upgrade when starting NN if os.path.exists(namenode_upgrade.get_upgrade_in_progress_marker()): options = "-rollingUpgrade started" else: Logger.info("The NameNode upgrade marker file {0} does not exist, yet an upgrade is currently suspended. " "Assuming that the upgrade of NameNode has not occurred yet.".format(namenode_upgrade.get_upgrade_in_progress_marker())) Logger.info("Options for start command are: {0}".format(options)) service( action="start", name="namenode", user=params.hdfs_user, options=options, create_pid_dir=True, create_log_dir=True ) if params.security_enabled: Execute(format("{kinit_path_local} -kt {hdfs_user_keytab} {hdfs_principal_name}"), user = params.hdfs_user) # ___Scenario___________|_Expected safemode state__|_Wait for safemode OFF____| # no-HA | ON -> OFF | Yes | # HA and active | ON -> OFF | Yes | # HA and standby | no change | No | # RU with HA on active | ON -> OFF | Yes | # RU with HA on standby | ON -> OFF | Yes | # EU with HA on active | ON -> OFF | No | # EU with HA on standby | ON -> OFF | No | # EU non-HA | ON -> OFF | No | # because we do things like create directories after starting NN, # the vast majority of the time this should be True - it should only # be False if this is HA and we are the Standby NN ensure_safemode_off = True # True if this is the only NameNode (non-HA) or if its the Active one in HA is_active_namenode = True if params.dfs_ha_enabled: Logger.info("Waiting for the NameNode to broadcast whether it is Active or Standby...") if is_this_namenode_active() is False: # we are the STANDBY NN is_active_namenode = False # we are the STANDBY NN and this restart is not part of an upgrade if upgrade_type is None: ensure_safemode_off = False # During an Express Upgrade, NameNode will not leave SafeMode until the DataNodes are started, # so always disable the Safemode check if upgrade_type == constants.UPGRADE_TYPE_NON_ROLLING: ensure_safemode_off = False # some informative logging separate from the above logic to keep things a little cleaner if ensure_safemode_off: Logger.info("Waiting for this NameNode to leave Safemode due to the following conditions: HA: {0}, isActive: {1}, upgradeType: {2}".format( params.dfs_ha_enabled, is_active_namenode, upgrade_type)) else: Logger.info("Skipping Safemode check due to the following conditions: HA: {0}, isActive: {1}, upgradeType: {2}".format( params.dfs_ha_enabled, is_active_namenode, upgrade_type)) # wait for Safemode to end if ensure_safemode_off: if params.rolling_restart and params.rolling_restart_safemode_exit_timeout: calculated_retries = int(params.rolling_restart_safemode_exit_timeout) / 30 wait_for_safemode_off(hdfs_binary, afterwait_sleep=30, retries=calculated_retries, sleep_seconds=30) else: wait_for_safemode_off(hdfs_binary) # Always run this on the "Active" NN unless Safemode has been ignored # in the case where safemode was ignored (like during an express upgrade), then # NN will be in SafeMode and cannot have directories created if is_active_namenode and ensure_safemode_off: create_hdfs_directories() create_ranger_audit_hdfs_directories() else: Logger.info("Skipping creation of HDFS directories since this is either not the Active NameNode or we did not wait for Safemode to finish.") elif action == "stop": import params service( action="stop", name="namenode", user=params.hdfs_user ) elif action == "status": import status_params check_process_status(status_params.namenode_pid_file) elif action == "decommission": decommission() @OsFamilyFuncImpl(os_family=OSConst.WINSRV_FAMILY) def namenode(action=None, hdfs_binary=None, do_format=True, upgrade_type=None, upgrade_suspended=False, env=None): if action is None: raise Fail('"action" parameter is required for function namenode().') if action in ["start", "stop"] and hdfs_binary is None: raise Fail('"hdfs_binary" parameter is required for function namenode().') if action == "configure": pass elif action == "start": import params #TODO: Replace with format_namenode() namenode_format_marker = os.path.join(params.hadoop_conf_dir,"NN_FORMATTED") if not os.path.exists(namenode_format_marker): hadoop_cmd = "cmd /C %s" % (os.path.join(params.hadoop_home, "bin", "hadoop.cmd")) Execute("%s namenode -format" % (hadoop_cmd), logoutput=True) open(namenode_format_marker, 'a').close() Service(params.namenode_win_service_name, action=action) elif action == "stop": import params Service(params.namenode_win_service_name, action=action) elif action == "status": import status_params check_windows_service_status(status_params.namenode_win_service_name) elif action == "decommission": decommission() def create_name_dirs(directories): import params dirs = directories.split(",") Directory(dirs, mode=0755, owner=params.hdfs_user, group=params.user_group, create_parents = True, cd_access="a", ) def create_hdfs_directories(): import params params.HdfsResource(params.hdfs_tmp_dir, type="directory", action="create_on_execute", owner=params.hdfs_user, mode=0777, ) params.HdfsResource(params.smoke_hdfs_user_dir, type="directory", action="create_on_execute", owner=params.smoke_user, mode=params.smoke_hdfs_user_mode, ) params.HdfsResource(None, action="execute", ) def format_namenode(force=None): import params old_mark_dir = params.namenode_formatted_old_mark_dirs mark_dir = params.namenode_formatted_mark_dirs dfs_name_dir = params.dfs_name_dir hdfs_user = params.hdfs_user hadoop_conf_dir = params.hadoop_conf_dir if not params.dfs_ha_enabled: if force: ExecuteHadoop('namenode -format', bin_dir=params.hadoop_bin_dir, conf_dir=hadoop_conf_dir, logoutput=True) else: if not is_namenode_formatted(params): Execute(format("hdfs --config {hadoop_conf_dir} namenode -format -nonInteractive"), user = params.hdfs_user, path = [params.hadoop_bin_dir], logoutput=True ) for m_dir in mark_dir: Directory(m_dir, create_parents = True ) else: if params.dfs_ha_namenode_active is not None and \ (params.hostname == params.dfs_ha_namenode_active or params.public_hostname == params.dfs_ha_namenode_active): # check and run the format command in the HA deployment scenario # only format the "active" namenode in an HA deployment if force: ExecuteHadoop('namenode -format', bin_dir=params.hadoop_bin_dir, conf_dir=hadoop_conf_dir, logoutput=True) else: nn_name_dirs = params.dfs_name_dir.split(',') if not is_namenode_formatted(params): try: Execute(format("hdfs --config {hadoop_conf_dir} namenode -format -nonInteractive"), user = params.hdfs_user, path = [params.hadoop_bin_dir], logoutput=True ) except Fail: # We need to clean-up mark directories, so we can re-run format next time. for nn_name_dir in nn_name_dirs: Execute(format("rm -rf {nn_name_dir}/*"), user = params.hdfs_user, ) raise for m_dir in mark_dir: Directory(m_dir, create_parents = True ) def is_namenode_formatted(params): old_mark_dirs = params.namenode_formatted_old_mark_dirs mark_dirs = params.namenode_formatted_mark_dirs nn_name_dirs = params.dfs_name_dir.split(',') marked = False # Check if name directories have been marked as formatted for mark_dir in mark_dirs: if os.path.isdir(mark_dir): marked = True Logger.info(format("{mark_dir} exists. Namenode DFS already formatted")) # Ensure that all mark dirs created for all name directories if marked: for mark_dir in mark_dirs: Directory(mark_dir, create_parents = True ) return marked # Move all old format markers to new place for old_mark_dir in old_mark_dirs: if os.path.isdir(old_mark_dir): for mark_dir in mark_dirs: Execute(('cp', '-ar', old_mark_dir, mark_dir), sudo = True ) marked = True Directory(old_mark_dir, action = "delete" ) elif os.path.isfile(old_mark_dir): for mark_dir in mark_dirs: Directory(mark_dir, create_parents = True, ) Directory(old_mark_dir, action = "delete" ) marked = True if marked: return True # Check if name dirs are not empty for name_dir in nn_name_dirs: code, out = shell.call(("ls", name_dir)) dir_exists_and_valid = bool(not code) if not dir_exists_and_valid: # situations if disk exists but is crashed at the moment (ls: reading directory ...: Input/output error) Logger.info(format("NameNode will not be formatted because the directory {name_dir} is missing or cannot be checked for content. {out}")) return True try: Execute(format("ls {name_dir} | wc -l | grep -q ^0$"), ) except Fail: Logger.info(format("NameNode will not be formatted since {name_dir} exists and contains content")) return True return False @OsFamilyFuncImpl(os_family=OsFamilyImpl.DEFAULT) def decommission(): import params hdfs_user = params.hdfs_user conf_dir = params.hadoop_conf_dir user_group = params.user_group nn_kinit_cmd = params.nn_kinit_cmd File(params.exclude_file_path, content=Template("exclude_hosts_list.j2"), owner=hdfs_user, group=user_group ) if params.hdfs_include_file: File(params.include_file_path, content=Template("include_hosts_list.j2"), owner=params.hdfs_user, group=params.user_group ) pass if not params.update_files_only: Execute(nn_kinit_cmd, user=hdfs_user ) if params.dfs_ha_enabled: # due to a bug in hdfs, refreshNodes will not run on both namenodes so we # need to execute each command scoped to a particular namenode nn_refresh_cmd = format('dfsadmin -fs hdfs://{namenode_rpc} -refreshNodes') else: nn_refresh_cmd = format('dfsadmin -fs {namenode_address} -refreshNodes') ExecuteHadoop(nn_refresh_cmd, user=hdfs_user, conf_dir=conf_dir, bin_dir=params.hadoop_bin_dir) @OsFamilyFuncImpl(os_family=OSConst.WINSRV_FAMILY) def decommission(): import params hdfs_user = params.hdfs_user conf_dir = params.hadoop_conf_dir File(params.exclude_file_path, content=Template("exclude_hosts_list.j2"), owner=hdfs_user ) if params.hdfs_include_file: File(params.include_file_path, content=Template("include_hosts_list.j2"), owner=params.hdfs_user ) pass if params.dfs_ha_enabled: # due to a bug in hdfs, refreshNodes will not run on both namenodes so we # need to execute each command scoped to a particular namenode nn_refresh_cmd = format('cmd /c hadoop dfsadmin -fs hdfs://{namenode_rpc} -refreshNodes') else: nn_refresh_cmd = format('cmd /c hadoop dfsadmin -fs {namenode_address} -refreshNodes') Execute(nn_refresh_cmd, user=hdfs_user) def bootstrap_standby_namenode(params, use_path=False): mark_dirs = params.namenode_bootstrapped_mark_dirs bin_path = os.path.join(params.hadoop_bin_dir, '') if use_path else "" try: iterations = 50 bootstrapped = False bootstrap_cmd = format("{bin_path}hdfs namenode -bootstrapStandby -nonInteractive") # Blue print based deployments start both NN in parallel and occasionally # the first attempt to bootstrap may fail. Depending on how it fails the # second attempt may not succeed (e.g. it may find the folder and decide that # bootstrap succeeded). The solution is to call with -force option but only # during initial start if params.command_phase == "INITIAL_START": # force bootstrap in INITIAL_START phase bootstrap_cmd = format("{bin_path}hdfs namenode -bootstrapStandby -nonInteractive -force") elif is_namenode_bootstrapped(params): # Once out of INITIAL_START phase bootstrap only if we couldnt bootstrap during cluster deployment return True Logger.info("Boostrapping standby namenode: %s" % (bootstrap_cmd)) for i in range(iterations): Logger.info('Try %d out of %d' % (i+1, iterations)) code, out = shell.call(bootstrap_cmd, logoutput=False, user=params.hdfs_user) if code == 0: Logger.info("Standby namenode bootstrapped successfully") bootstrapped = True break elif code == 5: Logger.info("Standby namenode already bootstrapped") bootstrapped = True break else: Logger.warning('Bootstrap standby namenode failed with %d error code. Will retry' % (code)) except Exception as ex: Logger.error('Bootstrap standby namenode threw an exception. Reason %s' %(str(ex))) if bootstrapped: for mark_dir in mark_dirs: Directory(mark_dir, create_parents = True ) return bootstrapped def is_namenode_bootstrapped(params): mark_dirs = params.namenode_bootstrapped_mark_dirs nn_name_dirs = params.dfs_name_dir.split(',') marked = False # Check if name directories have been marked as formatted for mark_dir in mark_dirs: if os.path.isdir(mark_dir): marked = True Logger.info(format("{mark_dir} exists. Standby Namenode already bootstrapped")) break # Ensure that all mark dirs created for all name directories if marked: for mark_dir in mark_dirs: Directory(mark_dir, create_parents = True ) return marked def find_timeout(): import params if isinstance(params.command_timeout, (int, long)): return params.command_timeout return int(params.command_timeout) @retry(sleep_time=5, backoff_factor=2, err_class=Fail, timeout_func=find_timeout) def is_this_namenode_active(): """ Gets whether the current NameNode is Active. This function will wait until the NameNode is listed as being either Active or Standby before returning a value. This is to ensure that that if the other NameNode is Active, we ensure that this NameNode has fully loaded and registered in the event that the other NameNode is going to be restarted. This prevents a situation where we detect the other NameNode as Active before this NameNode has fully booted. If the other Active NameNode is then restarted, there can be a loss of service if this NameNode has not entered Standby. """ import params # returns ([('nn1', 'c6401.ambari.apache.org:50070')], [('nn2', 'c6402.ambari.apache.org:50070')], []) # 0 1 2 # or # returns ([], [('nn1', 'c6401.ambari.apache.org:50070')], [('nn2', 'c6402.ambari.apache.org:50070')], []) # 0 1 2 # namenode_states = namenode_ha_utils.get_namenode_states(params.hdfs_site, params.security_enabled, params.hdfs_user, times=5, sleep_time=5, backoff_factor=2) # unwraps [('nn1', 'c6401.ambari.apache.org:50070')] active_namenodes = [] if len(namenode_states[0]) < 1 else namenode_states[0] # unwraps [('nn2', 'c6402.ambari.apache.org:50070')] standby_namenodes = [] if len(namenode_states[1]) < 1 else namenode_states[1] # check to see if this is the active NameNode for entry in active_namenodes: if params.namenode_id in entry: return True # if this is not the active NameNode, then we must wait for it to register as standby for entry in standby_namenodes: if params.namenode_id in entry: return False # this this point, this NameNode is neither active nor standby - we must wait to ensure it # enters at least one of these roles before returning a verdict - the annotation will catch # this failure and retry the fuction automatically raise Fail(format("The NameNode {namenode_id} is not listed as Active or Standby, waiting..."))
import difflib import filecmp import os.path import sys import tempfile import unittest def _get_parent_dir(path): """utility function to get parent dir """ return os.path.abspath(os.path.join(os.path.abspath(path), os.pardir)) root_dir = _get_parent_dir(_get_parent_dir(__file__)) test_dir = _get_parent_dir(__file__) gproj_dir = os.path.join(test_dir, 'gproject') sys.path.insert(0, root_dir+'/src') import guerilla_parser import guerilla_parser.util as grl_util default_gprojects = [ gproj_dir+'/1.4.14_01_default/1.4.14_01_default.gproject', gproj_dir+'/2.0.0a31_02_default/2.0.0a31_02_default.gproject' ] default_glayers = [ gproj_dir+'/1.4.14_01_default/1.4.14_01_default.glayer', gproj_dir+'/2.0.0a31_02_default/2.0.0a31_02_default.glayer' ] default_grendergraphs = [ gproj_dir+'/1.4.14_01_default/1.4.14_01_default.grendergraph', gproj_dir+'/2.0.0a31_02_default/2.0.0a31_02_default.grendergraph' ] gprojects = [ gproj_dir+'/1.4.13_01/1.4.13_01.gproject', gproj_dir+'/1.4.19_01_node_name/1.4.19_01.gproject', gproj_dir+'/1.4.19_01_anim/1.4.19_01_anim.gproject', gproj_dir+'/2.0.0a31_01/2.0.0a31_01.gproject', gproj_dir+'/2.0.7/2.0.7.gproject', gproj_dir+'/2.0.7/2.0.7_ref.gproject', # unsolvable even by Guerilla gproj_dir+'/2.1.0b19/2.1.0b19_archreference.gproject', gproj_dir+'/2.3.0b16/2.3.0b16.gproject', gproj_dir+'/2.3.0b16/texture_colorspace.gproject', gproj_dir+'/2.1.3/animmode_loop.gproject', ] all_gprojects = [f for f in default_gprojects] all_gprojects += [f for f in gprojects] all_gfiles = [f for f in all_gprojects] all_gfiles += [f for f in default_glayers] all_gfiles += [f for f in default_grendergraphs] # dynamic test pattern inspired from: # https://stackoverflow.com/questions/32899/how-to-generate-dynamic-parametrized-unit-tests-in-python # test pattern: # TestSequence: the main empty class # test_generator_<test_name> return a function to test given path # '-> test_<test_name> function that run the test def _gen_test_name(name, path): """Macro to properly generate test method name from given test `name` and file `path` :return: test name :rtype: str """ return 'test_{}_{}'.format(name, path.replace(test_dir, '') .replace('.', '_')) g_parsed = {} def test_generator_parse(path): def test_func(self): p = guerilla_parser.parse(path) g_parsed[path] = p return test_func def test_generator_path_to_node(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): """check returned path can be used to find node back """ # import cProfile, pstats, StringIO # pr = cProfile.Profile() # pr.enable() assert path in g_parsed p = g_parsed[path] with self.assertRaises(guerilla_parser.PathError) as _: p.path_to_node("BLAH") for node in p.nodes: self.assertIs(node, p.path_to_node(node.path)) for node in p._implicit_nodes: self.assertIs(node, p.path_to_node(node.path)) # pr.disable() # s = StringIO.StringIO() # sortby = 'cumulative' # ps = pstats.Stats(pr, stream=s).sort_stats(sortby) # ps.print_stats() # print(s.getvalue()) return test_func def test_generator_path_to_plug(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): """check returned path can be used to find plug back """ assert path in g_parsed p = g_parsed[path] with self.assertRaises(guerilla_parser.PathError) as _: p.path_to_plug("BLAH") for plug in p.plugs: self.assertIs(plug, p.path_to_plug(plug.path)) return test_func def test_generator_nodes(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): """check each node path is unique """ assert path in g_parsed p = g_parsed[path] # implicit nodes paths = set() for node in p._implicit_nodes: self.assertIsInstance(node, guerilla_parser.GuerillaNode) self.assertNotIn(node.path, paths) paths.add(node.path) # nodes paths = set() for node in p.nodes: self.assertIsInstance(node, guerilla_parser.GuerillaNode) self.assertNotIn(node.path, paths) paths.add(node.path) return test_func def test_generator_plugs(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): """check each plug path is unique """ assert path in g_parsed p = g_parsed[path] # plugs paths = set() for plug in p.plugs: self.assertIsInstance(plug, guerilla_parser.GuerillaPlug) self.assertNotIn(plug.path, paths) paths.add(plug.path) return test_func def test_generator_raises(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): assert path in g_parsed p = g_parsed[path] root_node = p.root with self.assertRaises(guerilla_parser.PathError): root_node.path with self.assertRaises(guerilla_parser.ChildError): root_node.get_child('TAGADAPOUETPOUET') with self.assertRaises(guerilla_parser.PathError): p.path_to_node('TAGADAPOUETPOUET') with self.assertRaises(guerilla_parser.PathError): grl_util.aov_node(p, 'RenderPass', 'Layer', 'TAGADAPOUETPOUET') return test_func def test_generator_child_unique(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): assert path in g_parsed p = g_parsed[path] for node in p.nodes: child_names = set() for child in node.children: self.assertNotIn(child.name, child_names) child_names.add(child.name) return test_func def test_generator_arch_ref(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): assert path in g_parsed p = g_parsed[path] for node in p.nodes: if node.type == 'ArchReference': # this plug must exists node.get_plug('ReferenceFileName') else: with self.assertRaises(KeyError): node.get_plug('ReferenceFileName') return test_func def test_generator_default_gprojects(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): assert path in g_parsed p = g_parsed[path] self.assertIsInstance(p, guerilla_parser.GuerillaParser) self.assertEqual(p.doc_format_rev, 19) doc = p.root self.assertEqual(doc.id, 1) self.assertEqual(doc.name, 'LUIDocument') self.assertEqual(doc.type, 'GADocument') self.assertEqual(doc.get_plug('AutoKey').value, True) self.assertEqual(doc.get_plug('InvertT').value, False) self.assertEqual(doc.get_plug('LastFrame').value, 50) self.assertEqual(doc.get_plug('Membership').value, "All") self.assertEqual(doc.get_plug('CurveWidthShape').value, 1.5) pref = doc.get_child('Preferences') self.assertEqual(pref.id, 2) self.assertEqual(pref.name, 'Preferences') self.assertEqual(pref.type, 'Preferences') self.assertEqual(pref.get_plug('LightAmbient').value, [0, 0, 0, 1]) self.assertEqual(pref.get_plug('LightSpecular').value, [0.5, 0.5, 0.5, 1]) self.assertEqual(pref.get_plug('SearchPathTexture').value, "") for node in p.nodes: for child in node.children: self.assertIs(node.get_child(child.name), child) for plug in node.plugs: self.assertIs(node.get_plug(plug.name), plug) # aov aov = grl_util.aov_node(p, 'RenderPass', 'Layer', 'Beauty') self.assertIsInstance(aov, guerilla_parser.GuerillaNode) self.assertEqual(aov.path, "|RenderPass|Layer|Input1") rp_iter = (n for n in p.nodes if n.type == 'RenderPass') for rp in rp_iter: rl_iter = (n for n in rp.children if n.type == 'RenderLayer') for rl in rl_iter: for aov in rl.children: self.assertEqual(aov.type, "LayerOut") aov_2 = grl_util.aov_node(p, rp.name, rl.name, aov.display_name) self.assertIs(aov, aov_2) # path to node for node in p.nodes: self.assertEqual(node, p.path_to_node(node.path)) return test_func def test_generator_aovs(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): """test render pass render layer and AOV particularities """ assert path in g_parsed p = g_parsed[path] aov = grl_util.aov_node(p, 'RenderPass', 'Layer', 'Beauty') self.assertIsInstance(aov, guerilla_parser.GuerillaNode) self.assertEqual(aov.path, "|RenderPass|Layer|Input1") rp_iter = (n for n in p.nodes if n.type == 'RenderPass') for rp in rp_iter: rl_iter = (n for n in rp.children if n.type == 'RenderLayer') for rl in rl_iter: for aov in rl.children: self.assertEqual(aov.type, "LayerOut") aov_2 = grl_util.aov_node(p, rp.name, rl.name, aov.display_name) self.assertIs(aov, aov_2) return test_func def test_generator_default_glayers(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): assert path in g_parsed p = g_parsed[path] root = p.root self.assertEqual(root.id, 1) self.assertEqual(root.name, 'RenderPass') self.assertEqual(root.type, 'RenderPass') self.assertEqual(root.get_plug('AutoBuildTextures').value, True) self.assertEqual(root.get_plug('BalanceReyesDistribution').value, False) self.assertEqual(root.get_plug('BrdfSamples').value, 16) self.assertEqual(root.get_plug('ColorMode').value, "multiply") self.assertEqual(root.get_plug('DeepCompression').value, 0.1) self.assertEqual(root.get_plug('DefaultSurfaceColor').value, [0.0, 0.0, 0.0]) return test_func class TestSequence(unittest.TestCase): pass for path in all_gfiles: test_name = _gen_test_name('001_parse', path) test = test_generator_parse(path) assert not hasattr(TestSequence, test_name), test_name setattr(TestSequence, test_name, test) test_name = _gen_test_name('path_to_node', path) test = test_generator_path_to_node(path) assert not hasattr(TestSequence, test_name), test_name setattr(TestSequence, test_name, test) test_name = _gen_test_name('path_to_plug', path) test = test_generator_path_to_plug(path) assert not hasattr(TestSequence, test_name), test_name setattr(TestSequence, test_name, test) test_name = _gen_test_name('nodes', path) test = test_generator_nodes(path) setattr(TestSequence, test_name, test) test_name = _gen_test_name('plugs', path) test = test_generator_plugs(path) setattr(TestSequence, test_name, test) test_name = _gen_test_name('raises', path) test = test_generator_raises(path) setattr(TestSequence, test_name, test) test_name = _gen_test_name('child_unique', path) test = test_generator_child_unique(path) setattr(TestSequence, test_name, test) test_name = _gen_test_name('arch_ref', path) test = test_generator_arch_ref(path) setattr(TestSequence, test_name, test) for path in default_gprojects: test_name = _gen_test_name('default_gproject', path) test = test_generator_default_gprojects(path) assert not hasattr(TestSequence, test_name) setattr(TestSequence, test_name, test) test_name = _gen_test_name('aovs', path) test = test_generator_aovs(path) assert not hasattr(TestSequence, test_name) setattr(TestSequence, test_name, test) for path in default_glayers: test_name = _gen_test_name('default_glayers', path) test = test_generator_default_glayers(path) assert not hasattr(TestSequence, test_name) setattr(TestSequence, test_name, test) def test_generator_set_plug_value(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): p = guerilla_parser.parse(path) node = p.path_to_node("|Preferences|RenderViewport") plug = node.get_plug("ColorMode") self.assertEqual(plug.value, 'multiply') p.set_plug_value([(plug, 'divide')]) self.assertEqual(plug.value, 'divide') return test_func class SetPlugValueTestCase(unittest.TestCase): pass for gproject in default_gprojects: test_name = _gen_test_name('set_plug_value', gproject) test = test_generator_set_plug_value(gproject) setattr(SetPlugValueTestCase, test_name, test) def test_generator_write_file(path): """Generate a function testing given `path`. :param path: gproject path to test :return: function """ def test_func(self): _, tmp_file = tempfile.mkstemp() os.close(_) p = guerilla_parser.parse( path, diagnose=False) p.write(tmp_file) # no change self.assertFalse(p.has_changed) self.assertTrue(filecmp.cmp(path, tmp_file)) node = p.path_to_node("|Preferences|RenderViewport") # get value plug = node.get_plug("ColorMode") self.assertEqual(plug.value, 'multiply') # set value p.set_plug_value([(plug, 'divide')]) self.assertEqual(plug.value, 'divide') p.write(tmp_file) # has changed self.assertTrue(p.has_changed) self.assertFalse(filecmp.cmp(path, tmp_file)) # get diff old = [] new = [] for c in difflib.ndiff(p.original_content, p.modified_content): if c.startswith("- "): old.append(c[2:]) continue if c.startswith("+ "): new.append(c[2:]) continue old = "".join(old) new = "".join(new) # no typo here! "i" is just considered has haven't been moved self.assertEqual(old, 'multply') self.assertEqual(new, 'dvide') os.remove(tmp_file) return test_func class WriteFileTestCase(unittest.TestCase): pass for gproject in default_gprojects: test_name = _gen_test_name('write_file', gproject) test = test_generator_write_file(gproject) setattr(WriteFileTestCase, test_name, test) class TestStringMethods(unittest.TestCase): def test_read(self): p = guerilla_parser.parse(default_gprojects[1]) self.assertIsInstance(p, guerilla_parser.GuerillaParser) self.assertEqual(p.doc_format_rev, 19) doc = p.root self.assertEqual(doc.id, 1) self.assertEqual(doc.name, 'LUIDocument') self.assertEqual(doc.type, 'GADocument') self.assertEqual(doc.get_plug('InternalDirectLighting').value, True) self.assertEqual(doc.get_plug('InvertT').value, False) self.assertEqual(doc.get_plug('LastFrame').value, 50) self.assertEqual(doc.get_plug('Membership').value, "All") self.assertEqual(doc.get_plug('CurveWidthShape').value, 1.5) pref = doc.get_child('Preferences') self.assertEqual(pref.id, 2) self.assertEqual(pref.name, 'Preferences') self.assertEqual(pref.type, 'Preferences') self.assertEqual(pref.get_plug('LightAmbient').value, [0, 0, 0, 1]) self.assertEqual(pref.get_plug('LightSpecular').value, [0.5, 0.5, 0.5, 1]) self.assertEqual(pref.get_plug('SearchPathTexture').value, "") for node in p.nodes: for child in node.children: self.assertIs(node.get_child(child.name), child) for plug in node.plugs: self.assertIs(node.get_plug(plug.name), plug) class TestArchReferenceMethods(unittest.TestCase): def test_read(self): p = guerilla_parser.parse(gprojects[6]) self.assertIsInstance(p, guerilla_parser.GuerillaParser) self.assertEqual(p.doc_format_rev, 19) doc = p.root self.assertEqual(doc.id, 1) self.assertEqual(doc.name, 'LUIDocument') self.assertEqual(doc.type, 'GADocument') foo_node = doc.get_child('foo') self.assertEqual(foo_node.type, 'ArchReference') self.assertEqual(foo_node.get_plug('ReferenceFileName').value, '/path/to/file.abc') ############################################################################### # Unique string test ############################################################################### class TestUniqueStringRegexes(unittest.TestCase): def test_read(self): cls = guerilla_parser.GuerillaParser for raw_str in ('"AttributePlug","$799","MetalProfile",4,types.metal,"$(LIBRARY)/ior/Gold/McPeak.yml"', ): match_arg = cls._CMD_CREATE_ARG_PARSE.match(raw_str) self.assertIsNotNone(match_arg) self.assertEqual(match_arg.group('type'), 'AttributePlug') self.assertEqual(match_arg.group('parent'), '$799') self.assertEqual(match_arg.group('name'), 'MetalProfile') rest = match_arg.group('rest') self.assertIsNotNone(match_arg) match_rest = cls._CREATE_PLUG_REST_PARSE.match(rest) self.assertIsNotNone(match_rest) self.assertEqual(match_rest.group('flag'), '4') self.assertEqual(match_rest.group('type'), 'types.metal') self.assertIsNone(match_rest.group('param')) self.assertEqual(match_rest.group('value'), '"$(LIBRARY)/ior/Gold/McPeak.yml"') #value = match_rest.group('value') if __name__ == '__main__': unittest.main()
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The American Gut Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from os.path import join, dirname, abspath, exists, isfile from os import environ from functools import partial import warnings from future import standard_library with standard_library.hooks(): from configparser import (ConfigParser, NoOptionError, Error as ConfigParser_Error) from amgut.lib.locale_data import available_locales # noqa class MissingConfigSection(ConfigParser_Error): """Exception when the config file is missing a required section""" def __init__(self, section): super(MissingConfigSection, self).__init__('Missing section(s): %r' % (section,)) self.section = section self.args = (section,) def _warn_on_extra(extra, set_type): extra = ', '.join(extra) if extra: warnings.warn("Extra %s found: %r" % (set_type, extra)) class ConfigurationManager(object): """Holds the configuration information Parameters ---------- conf_fp: str, optional Filepath to the configuration file. Default: ag_config.txt Attributes ---------- test_environment : bool Whether we are in a test environment or not base_data_dir : str Path to the base directorys where all data file are stored base_log_dir : str Path to the base directory where the log file will be written cookie_secret : str The secret used to secure user session cookies locale : str The locale user : str The postgres user password : str The postgres password for the previous user database : str The postgres database to connect to host : str The host where the database lives port : int The port used to connect to the postgres database in the previous host goodpassword : str The correct password for the test account badpassword : str The password used for testing on the test account redis_host : str The host on which redis is running redis_port : int The port that redis is running on redis_db_id : int The ID of the redis database smtp_host The host where the SMTP server lives smtp_ssl Whether or not SSL connection is required by SMTP host smtp_port The port the SMTP serveris running on smtp_user The username for connecting to the SMTP server smtp_password The password for connecting to the SMTP server Raises ------ IOError If the AG_CONFIG environment variable is set, but does not point to an existing file Notes ----- - The environment variable AG_CONFIG is checked for a path to the config file. If the environment variable is not set, the default config file is used. """ def __init__(self): conf_fp = environ.get('AG_CONFIG') or join(dirname(abspath(__file__)), '../ag_config.txt') if not isfile(conf_fp): raise IOError("The configuration file '%s' is not an " "existing file" % conf_fp) config = ConfigParser(defaults={ 'open_humans_client_id': '', 'open_humans_client_secret': '', 'open_humans_base_url': 'https://openhumans.org', }) self.defaults = set(config.defaults()) # Parse the configuration file with open(conf_fp, 'U') as conf_file: config.readfp(conf_file) _expected_sections = {'main', 'postgres', 'test', 'redis', 'email', 'thirdparty'} missing = _expected_sections - set(config.sections()) if missing: raise MissingConfigSection(', '.join(missing)) extra = set(config.sections()) - _expected_sections _warn_on_extra(extra, 'sections') self._get_main(config) self._get_postgres(config) self._get_test(config) self._get_redis(config) self._get_email(config) self._get_third_party(config) def get_settings(self): """Returns settings that should be stored in postgres settings table Returns ------- list of tuple Tuples are (parameter, argument) """ return [('test_environment', self.test_environment), ('base_data_dir', self.base_data_dir), ('locale', self.locale)] def _get_main(self, config): """Get the configuration of the main section""" expected_options = {'name', 'shorthand', 'test_environment', 'base_data_dir', 'locale', 'base_url', 'cookie_secret', 'error_email', 'sitebase'} _warn_on_extra(set(config.options('main')) - expected_options - self.defaults, 'main section option(s)') get = partial(config.get, 'main') getboolean = partial(config.getboolean, 'main') self.project_name = get('NAME') self.project_shorthand = get('SHORTHAND') self.test_environment = getboolean('TEST_ENVIRONMENT') self.base_data_dir = get('BASE_DATA_DIR') self.base_log_dir = get('BASE_LOG_DIR') self.base_url = get('BASE_URL') self.cookie_secret = get('COOKIE_SECRET') self.locale = get('LOCALE') self.error_email = get('ERROR_EMAIL') self.sitebase = get('SITEBASE') if not exists(self.base_data_dir): raise IOError("Directory %s does not exist!" % self.base_data_dir) if self.locale not in available_locales: raise ValueError("%s is not a recognized locale. Please select " "from %r" % (self.locale, available_locales)) def _get_postgres(self, config): """Get the configuration of the postgres section""" expected_options = {'user', 'password', 'database', 'host', 'port'} _warn_on_extra(set(config.options('postgres')) - expected_options - self.defaults, 'postgres section option(s)') get = partial(config.get, 'postgres') getint = partial(config.getint, 'postgres') self.user = get('USER') try: self.password = get('PASSWORD') except NoOptionError as e: if self.test_environment: self.password = None else: raise e self.database = get('DATABASE') self.host = get('HOST') self.port = getint('PORT') def _get_test(self, config): """Get the configuration of the test section""" expected_options = {'goodpassword', 'badpassword'} _warn_on_extra(set(config.options('test')) - expected_options - self.defaults, 'test section option(s)') get = partial(config.get, 'test') self.goodpassword = get('GOODPASSWORD') self.badpassword = get('BADPASSWORD') def _get_redis(self, config): """Get the configuration of the redis section""" expected_options = {'host', 'port', 'db_id'} _warn_on_extra(set(config.options('redis')) - expected_options - self.defaults, 'redis section option(s)') get = partial(config.get, 'redis') getint = partial(config.getint, 'redis') self.redis_host = get('HOST') self.redis_port = getint('PORT') self.redis_db_id = getint('DB_ID') def _get_email(self, config): get = partial(config.get, 'email') getint = partial(config.getint, 'email') getbool = partial(config.getboolean, 'email') self.smtp_host = get('HOST') self.smtp_ssl = getbool('SSL') self.smtp_port = getint('PORT') self.smtp_user = get('USERNAME') self.smtp_password = get('PASSWORD') def _get_third_party(self, config): get = partial(config.get, 'thirdparty') self.vioscreen_regcode = get('VIOSCREEN_REGCODE') self.vioscreen_cryptokey = get('VIOSCREEN_CRYPTOKEY') self.open_humans_base_url = get('OPEN_HUMANS_BASE_URL') self.open_humans_client_id = get('OPEN_HUMANS_CLIENT_ID') self.open_humans_client_secret = get('OPEN_HUMANS_CLIENT_SECRET') AMGUT_CONFIG = ConfigurationManager()
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2019, Dag Wieers (@dagwieers) <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: mso_schema_site_vrf_region_cidr short_description: Manage site-local VRF region CIDRs in schema template description: - Manage site-local VRF region CIDRs in schema template on Cisco ACI Multi-Site. author: - Dag Wieers (@dagwieers) version_added: '2.8' options: schema: description: - The name of the schema. type: str required: yes site: description: - The name of the site. type: str required: yes template: description: - The name of the template. type: str required: yes vrf: description: - The name of the VRF. type: str region: description: - The name of the region. type: str cidr: description: - The name of the region CIDR to manage. type: str aliases: [ ip ] primary: description: - Whether this is the primary CIDR. type: bool state: description: - Use C(present) or C(absent) for adding or removing. - Use C(query) for listing an object or multiple objects. type: str choices: [ absent, present, query ] default: present notes: - The ACI MultiSite PATCH API has a deficiency requiring some objects to be referenced by index. This can cause silent corruption on concurrent access when changing/removing on object as the wrong object may be referenced. This module is affected by this deficiency. seealso: - module: mso_schema_site_vrf_region - module: mso_schema_site_vrf_region_cidr_subnet - module: mso_schema_template_vrf extends_documentation_fragment: mso ''' EXAMPLES = r''' - name: Add a new site VRF region CIDR mso_schema_template_vrf_region_cidr: host: mso_host username: admin password: SomeSecretPassword schema: Schema1 site: Site1 template: Template1 vrf: VRF1 region: us-west-1 cidr: 14.14.14.1/24 state: present delegate_to: localhost - name: Remove a site VRF region CIDR mso_schema_template_vrf_region_cidr: host: mso_host username: admin password: SomeSecretPassword schema: Schema1 site: Site1 template: Template1 vrf: VRF1 region: us-west-1 cidr: 14.14.14.1/24 state: absent delegate_to: localhost - name: Query a specific site VRF region CIDR mso_schema_template_vrf_region_cidr: host: mso_host username: admin password: SomeSecretPassword schema: Schema1 site: Site1 template: Template1 vrf: VRF1 region: us-west-1 cidr: 14.14.14.1/24 state: query delegate_to: localhost register: query_result - name: Query all site VRF region CIDR mso_schema_template_vrf_region_cidr: host: mso_host username: admin password: SomeSecretPassword schema: Schema1 site: Site1 template: Template1 vrf: VRF1 region: us-west-1 state: query delegate_to: localhost register: query_result ''' RETURN = r''' ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.aci.mso import MSOModule, mso_argument_spec def main(): argument_spec = mso_argument_spec() argument_spec.update( schema=dict(type='str', required=True), site=dict(type='str', required=True), template=dict(type='str', required=True), vrf=dict(type='str', required=True), region=dict(type='str', required=True), cidr=dict(type='str', aliases=['ip']), # This parameter is not required for querying all objects primary=dict(type='bool'), state=dict(type='str', default='present', choices=['absent', 'present', 'query']), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=[ ['state', 'absent', ['cidr']], ['state', 'present', ['cidr']], ], ) schema = module.params['schema'] site = module.params['site'] template = module.params['template'] vrf = module.params['vrf'] region = module.params['region'] cidr = module.params['cidr'] primary = module.params['primary'] state = module.params['state'] mso = MSOModule(module) # Get schema_id schema_obj = mso.get_obj('schemas', displayName=schema) if not schema_obj: mso.fail_json(msg="Provided schema '{0}' does not exist".format(schema)) schema_path = 'schemas/{id}'.format(**schema_obj) schema_id = schema_obj['id'] # Get site site_id = mso.lookup_site(site) # Get site_idx sites = [(s['siteId'], s['templateName']) for s in schema_obj['sites']] if (site_id, template) not in sites: mso.fail_json(msg="Provided site/template '{0}-{1}' does not exist. Existing sites/templates: {2}".format(site, template, ', '.join(sites))) # Schema-access uses indexes site_idx = sites.index((site_id, template)) # Path-based access uses site_id-template site_template = '{0}-{1}'.format(site_id, template) # Get VRF vrf_ref = mso.vrf_ref(schema_id=schema_id, template=template, vrf=vrf) vrfs = [v['vrfRef'] for v in schema_obj['sites'][site_idx]['vrfs']] if vrf_ref not in vrfs: mso.fail_json(msg="Provided vrf '{0}' does not exist. Existing vrfs: {1}".format(vrf, ', '.join(vrfs))) vrf_idx = vrfs.index(vrf_ref) # Get Region regions = [r['name'] for r in schema_obj['sites'][site_idx]['vrfs'][vrf_idx]['regions']] if region not in regions: mso.fail_json(msg="Provided region '{0}' does not exist. Existing regions: {1}".format(region, ', '.join(regions))) region_idx = regions.index(region) # Get CIDR cidrs = [c['ip'] for c in schema_obj['sites'][site_idx]['vrfs'][vrf_idx]['regions'][region_idx]['cidrs']] if cidr is not None and cidr in cidrs: cidr_idx = cidrs.index(cidr) # FIXME: Changes based on index are DANGEROUS cidr_path = '/sites/{0}/vrfs/{1}/regions/{2}/cidrs/{3}'.format(site_template, vrf, region, cidr_idx) mso.existing = schema_obj['sites'][site_idx]['vrfs'][vrf_idx]['regions'][region_idx]['cidrs'][cidr_idx] if state == 'query': if cidr is None: mso.existing = schema_obj['sites'][site_idx]['vrfs'][vrf_idx]['regions'][region_idx]['cidrs'] elif not mso.existing: mso.fail_json(msg="CIDR IP '{cidr}' not found".format(cidr=cidr)) mso.exit_json() cidrs_path = '/sites/{0}/vrfs/{1}/regions/{2}/cidrs'.format(site_template, vrf, region) ops = [] mso.previous = mso.existing if state == 'absent': if mso.existing: mso.sent = mso.existing = {} ops.append(dict(op='remove', path=cidr_path)) elif state == 'present': if not mso.existing: if primary is None: primary = False payload = dict( ip=cidr, primary=primary, ) mso.sanitize(payload, collate=True) if mso.existing: ops.append(dict(op='replace', path=cidr_path, value=mso.sent)) else: ops.append(dict(op='add', path=cidrs_path + '/-', value=mso.sent)) mso.existing = mso.proposed if not module.check_mode: mso.request(schema_path, method='PATCH', data=ops) mso.exit_json() if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) 2014-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the pruning code. WARNING: This test uses 4GB of disk space. This test takes 30 mins or more (up to 2 hours) """ import os from test_framework.blocktools import create_coinbase from test_framework.messages import CBlock from test_framework.script import ( CScript, OP_NOP, OP_RETURN, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, ) # Rescans start at the earliest block up to 2 hours before a key timestamp, so # the manual prune RPC avoids pruning blocks in the same window to be # compatible with pruning based on key creation time. TIMESTAMP_WINDOW = 2 * 60 * 60 def mine_large_blocks(node, n): # Make a large scriptPubKey for the coinbase transaction. This is OP_RETURN # followed by 950k of OP_NOP. This would be non-standard in a non-coinbase # transaction but is consensus valid. # Set the nTime if this is the first time this function has been called. # A static variable ensures that time is monotonicly increasing and is therefore # different for each block created => blockhash is unique. if "nTimes" not in mine_large_blocks.__dict__: mine_large_blocks.nTime = 0 # Get the block parameters for the first block big_script = CScript([OP_RETURN] + [OP_NOP] * 950000) best_block = node.getblock(node.getbestblockhash()) height = int(best_block["height"]) + 1 mine_large_blocks.nTime = max(mine_large_blocks.nTime, int(best_block["time"])) + 1 previousblockhash = int(best_block["hash"], 16) for _ in range(n): # Build the coinbase transaction (with large scriptPubKey) coinbase_tx = create_coinbase(height) coinbase_tx.vin[0].nSequence = 2 ** 32 - 1 coinbase_tx.vout[0].scriptPubKey = big_script coinbase_tx.rehash() # Build the block block = CBlock() block.nVersion = best_block["version"] block.hashPrevBlock = previousblockhash block.nTime = mine_large_blocks.nTime block.nBits = int('207fffff', 16) block.nNonce = 0 block.vtx = [coinbase_tx] block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Submit to the node node.submitblock(block.serialize().hex()) previousblockhash = block.sha256 height += 1 mine_large_blocks.nTime += 1 def calc_usage(blockdir): return sum(os.path.getsize(blockdir + f) for f in os.listdir(blockdir) if os.path.isfile(os.path.join(blockdir, f))) / (1024. * 1024.) class PruneTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 6 self.supports_cli = False # Create nodes 0 and 1 to mine. # Create node 2 to test pruning. self.full_node_default_args = ["-maxreceivebuffer=20000", "-checkblocks=5"] # Create nodes 3 and 4 to test manual pruning (they will be re-started with manual pruning later) # Create nodes 5 to test wallet in prune mode, but do not connect self.extra_args = [ self.full_node_default_args, self.full_node_default_args, ["-maxreceivebuffer=20000", "-prune=550"], ["-maxreceivebuffer=20000"], ["-maxreceivebuffer=20000"], ["-prune=550"], ] self.rpc_timeout = 120 def setup_network(self): self.setup_nodes() self.prunedir = os.path.join(self.nodes[2].datadir, self.chain, 'blocks', '') self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.connect_nodes(0, 3) self.connect_nodes(0, 4) self.sync_blocks(self.nodes[0:5]) def setup_nodes(self): self.add_nodes(self.num_nodes, self.extra_args) self.start_nodes() if self.is_wallet_compiled(): self.import_deterministic_coinbase_privkeys() def create_big_chain(self): # Start by creating some coinbases we can spend later self.generate(self.nodes[1], 200, sync_fun=lambda: self.sync_blocks(self.nodes[0:2])) self.generate(self.nodes[0], 150, sync_fun=self.no_op) # Then mine enough full blocks to create more than 550MiB of data mine_large_blocks(self.nodes[0], 645) self.sync_blocks(self.nodes[0:5]) def test_invalid_command_line_options(self): self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune cannot be configured with a negative value.', extra_args=['-prune=-1'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune configured below the minimum of 550 MiB. Please use a higher number.', extra_args=['-prune=549'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -txindex.', extra_args=['-prune=550', '-txindex'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -coinstatsindex.', extra_args=['-prune=550', '-coinstatsindex'], ) def test_height_min(self): assert os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), "blk00000.dat is missing, pruning too early" self.log.info("Success") self.log.info(f"Though we're already using more than 550MiB, current usage: {calc_usage(self.prunedir)}") self.log.info("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this mine_large_blocks(self.nodes[0], 25) # Wait for blk00000.dat to be pruned self.wait_until(lambda: not os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), timeout=30) self.log.info("Success") usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def create_chain_with_staleblocks(self): # Create stale blocks in manageable sized chunks self.log.info("Mine 24 (stale) blocks on Node 1, followed by 25 (main chain) block reorg from Node 0, for 12 rounds") for _ in range(12): # Disconnect node 0 so it can mine a longer reorg chain without knowing about node 1's soon-to-be-stale chain # Node 2 stays connected, so it hears about the stale blocks and then reorg's when node0 reconnects self.disconnect_nodes(0, 1) self.disconnect_nodes(0, 2) # Mine 24 blocks in node 1 mine_large_blocks(self.nodes[1], 24) # Reorg back with 25 block chain from node 0 mine_large_blocks(self.nodes[0], 25) # Create connections in the order so both nodes can see the reorg at the same time self.connect_nodes(0, 1) self.connect_nodes(0, 2) self.sync_blocks(self.nodes[0:3]) self.log.info(f"Usage can be over target because of high stale rate: {calc_usage(self.prunedir)}") def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain height = self.nodes[1].getblockcount() self.log.info(f"Current block height: {height}") self.forkheight = height - 287 self.forkhash = self.nodes[1].getblockhash(self.forkheight) self.log.info(f"Invalidating block {self.forkhash} at height {self.forkheight}") self.nodes[1].invalidateblock(self.forkhash) # We've now switched to our previously mined-24 block fork on node 1, but that's not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(self.forkheight - 1) curhash = self.nodes[1].getblockhash(self.forkheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(self.forkheight - 1) assert self.nodes[1].getblockcount() == self.forkheight - 1 self.log.info(f"New best height: {self.nodes[1].getblockcount()}") # Disconnect node1 and generate the new chain self.disconnect_nodes(0, 1) self.disconnect_nodes(1, 2) self.log.info("Generating new longer chain of 300 more blocks") self.generate(self.nodes[1], 300, sync_fun=self.no_op) self.log.info("Reconnect nodes") self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.sync_blocks(self.nodes[0:3], timeout=120) self.log.info(f"Verify height on node 2: {self.nodes[2].getblockcount()}") self.log.info(f"Usage possibly still high because of stale blocks in block files: {calc_usage(self.prunedir)}") self.log.info("Mine 220 more large blocks so we have requisite history") mine_large_blocks(self.nodes[0], 220) self.sync_blocks(self.nodes[0:3], timeout=120) usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def reorg_back(self): # Verify that a block on the old main chain fork has been pruned away assert_raises_rpc_error(-1, "Block not available (pruned data)", self.nodes[2].getblock, self.forkhash) with self.nodes[2].assert_debug_log(expected_msgs=['block verification stopping at height', '(pruning, no data)']): self.nodes[2].verifychain(checklevel=4, nblocks=0) self.log.info(f"Will need to redownload block {self.forkheight}") # Verify that we have enough history to reorg back to the fork point # Although this is more than 288 blocks, because this chain was written more recently # and only its other 299 small and 220 large blocks are in the block files after it, # it is expected to still be retained self.nodes[2].getblock(self.nodes[2].getblockhash(self.forkheight)) first_reorg_height = self.nodes[2].getblockcount() curchainhash = self.nodes[2].getblockhash(self.mainchainheight) self.nodes[2].invalidateblock(curchainhash) goalbestheight = self.mainchainheight goalbesthash = self.mainchainhash2 # As of 0.10 the current block download logic is not able to reorg to the original chain created in # create_chain_with_stale_blocks because it doesn't know of any peer that's on that chain from which to # redownload its missing blocks. # Invalidate the reorg_test chain in node 0 as well, it can successfully switch to the original chain # because it has all the block data. # However it must mine enough blocks to have a more work chain than the reorg_test chain in order # to trigger node 2's block download logic. # At this point node 2 is within 288 blocks of the fork point so it will preserve its ability to reorg if self.nodes[2].getblockcount() < self.mainchainheight: blocks_to_mine = first_reorg_height + 1 - self.mainchainheight self.log.info(f"Rewind node 0 to prev main chain to mine longer chain to trigger redownload. Blocks needed: {blocks_to_mine}") self.nodes[0].invalidateblock(curchainhash) assert_equal(self.nodes[0].getblockcount(), self.mainchainheight) assert_equal(self.nodes[0].getbestblockhash(), self.mainchainhash2) goalbesthash = self.generate(self.nodes[0], blocks_to_mine, sync_fun=self.no_op)[-1] goalbestheight = first_reorg_height + 1 self.log.info("Verify node 2 reorged back to the main chain, some blocks of which it had to redownload") # Wait for Node 2 to reorg to proper height self.wait_until(lambda: self.nodes[2].getblockcount() >= goalbestheight, timeout=900) assert_equal(self.nodes[2].getbestblockhash(), goalbesthash) # Verify we can now have the data for a block previously pruned assert_equal(self.nodes[2].getblock(self.forkhash)["height"], self.forkheight) def manual_test(self, node_number, use_timestamp): # at this point, node has 995 blocks and has not yet run in prune mode self.start_node(node_number) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) assert_raises_rpc_error(-1, "Cannot prune blocks because node is not in prune mode", node.pruneblockchain, 500) # now re-start in manual pruning mode self.restart_node(node_number, extra_args=["-prune=1"]) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) def height(index): if use_timestamp: return node.getblockheader(node.getblockhash(index))["time"] + TIMESTAMP_WINDOW else: return index def prune(index): ret = node.pruneblockchain(height=height(index)) assert_equal(ret, node.getblockchaininfo()['pruneheight']) def has_block(index): return os.path.isfile(os.path.join(self.nodes[node_number].datadir, self.chain, "blocks", f"blk{index:05}.dat")) # should not prune because chain tip of node 3 (995) < PruneAfterHeight (1000) assert_raises_rpc_error(-1, "Blockchain is too short for pruning", node.pruneblockchain, height(500)) # Save block transaction count before pruning, assert value block1_details = node.getblock(node.getblockhash(1)) assert_equal(block1_details["nTx"], len(block1_details["tx"])) # mine 6 blocks so we are at height 1001 (i.e., above PruneAfterHeight) self.generate(node, 6, sync_fun=self.no_op) assert_equal(node.getblockchaininfo()["blocks"], 1001) # prune parameter in the future (block or timestamp) should raise an exception future_parameter = height(1001) + 5 if use_timestamp: assert_raises_rpc_error(-8, "Could not find block with at least the specified timestamp", node.pruneblockchain, future_parameter) else: assert_raises_rpc_error(-8, "Blockchain is shorter than the attempted prune height", node.pruneblockchain, future_parameter) # Pruned block should still know the number of transactions assert_equal(node.getblockheader(node.getblockhash(1))["nTx"], block1_details["nTx"]) # negative heights should raise an exception assert_raises_rpc_error(-8, "Negative block height", node.pruneblockchain, -10) # height=100 too low to prune first block file so this is a no-op prune(100) assert has_block(0), "blk00000.dat is missing when should still be there" # Does nothing node.pruneblockchain(height(0)) assert has_block(0), "blk00000.dat is missing when should still be there" # height=500 should prune first file prune(500) assert not has_block(0), "blk00000.dat is still there, should be pruned by now" assert has_block(1), "blk00001.dat is missing when should still be there" # height=650 should prune second file prune(650) assert not has_block(1), "blk00001.dat is still there, should be pruned by now" # height=1000 should not prune anything more, because tip-288 is in blk00002.dat. prune(1000) assert has_block(2), "blk00002.dat is still there, should be pruned by now" # advance the tip so blk00002.dat and blk00003.dat can be pruned (the last 288 blocks should now be in blk00004.dat) self.generate(node, 288, sync_fun=self.no_op) prune(1000) assert not has_block(2), "blk00002.dat is still there, should be pruned by now" assert not has_block(3), "blk00003.dat is still there, should be pruned by now" # stop node, start back up with auto-prune at 550 MiB, make sure still runs self.restart_node(node_number, extra_args=["-prune=550"]) self.log.info("Success") def wallet_test(self): # check that the pruning node's wallet is still in good shape self.log.info("Stop and start pruning node to trigger wallet rescan") self.restart_node(2, extra_args=["-prune=550"]) self.log.info("Success") # check that wallet loads successfully when restarting a pruned node after IBD. # this was reported to fail in #7494. self.log.info("Syncing node 5 to test wallet") self.connect_nodes(0, 5) nds = [self.nodes[0], self.nodes[5]] self.sync_blocks(nds, wait=5, timeout=300) self.restart_node(5, extra_args=["-prune=550"]) # restart to trigger rescan self.log.info("Success") def run_test(self): self.log.info("Warning! This test requires 4GB of disk space") self.log.info("Mining a big blockchain of 995 blocks") self.create_big_chain() # Chain diagram key: # * blocks on main chain # +,&,$,@ blocks on other forks # X invalidated block # N1 Node 1 # # Start by mining a simple chain that all nodes have # N0=N1=N2 **...*(995) # stop manual-pruning node with 995 blocks self.stop_node(3) self.stop_node(4) self.log.info("Check that we haven't started pruning yet because we're below PruneAfterHeight") self.test_height_min() # Extend this chain past the PruneAfterHeight # N0=N1=N2 **...*(1020) self.log.info("Check that we'll exceed disk space target if we have a very high stale block rate") self.create_chain_with_staleblocks() # Disconnect N0 # And mine a 24 block chain on N1 and a separate 25 block chain on N0 # N1=N2 **...*+...+(1044) # N0 **...**...**(1045) # # reconnect nodes causing reorg on N1 and N2 # N1=N2 **...*(1020) *...**(1045) # \ # +...+(1044) # # repeat this process until you have 12 stale forks hanging off the # main chain on N1 and N2 # N0 *************************...***************************(1320) # # N1=N2 **...*(1020) *...**(1045) *.. ..**(1295) *...**(1320) # \ \ \ # +...+(1044) &.. $...$(1319) # Save some current chain state for later use self.mainchainheight = self.nodes[2].getblockcount() # 1320 self.mainchainhash2 = self.nodes[2].getblockhash(self.mainchainheight) self.log.info("Check that we can survive a 288 block reorg still") self.reorg_test() # (1033, ) # Now create a 288 block reorg by mining a longer chain on N1 # First disconnect N1 # Then invalidate 1033 on main chain and 1032 on fork so height is 1032 on main chain # N1 **...*(1020) **...**(1032)X.. # \ # ++...+(1031)X.. # # Now mine 300 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@(1332) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # Reconnect nodes and mine 220 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # N2 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ *...**(1320) # \ \ # ++...++(1044) .. # # N0 ********************(1032) @@...@@@(1552) # \ # *...**(1320) self.log.info("Test that we can rerequest a block we previously pruned if needed for a reorg") self.reorg_back() # Verify that N2 still has block 1033 on current chain (@), but not on main chain (*) # Invalidate 1033 on current chain (@) on N2 and we should be able to reorg to # original main chain (*), but will require redownload of some blocks # In order to have a peer we think we can download from, must also perform this invalidation # on N0 and mine a new longest chain to trigger. # Final result: # N0 ********************(1032) **...****(1553) # \ # X@...@@@(1552) # # N2 **...*(1020) **...**(1032) **...****(1553) # \ \ # \ X@...@@@(1552) # \ # +.. # # N1 doesn't change because 1033 on main chain (*) is invalid self.log.info("Test manual pruning with block indices") self.manual_test(3, use_timestamp=False) self.log.info("Test manual pruning with timestamps") self.manual_test(4, use_timestamp=True) if self.is_wallet_compiled(): self.log.info("Test wallet re-scan") self.wallet_test() self.log.info("Test invalid pruning command line options") self.test_invalid_command_line_options() self.log.info("Done") if __name__ == '__main__': PruneTest().main()
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. '''Unit tests for grit.gather.rc''' import os import sys if __name__ == '__main__': sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '../..')) import unittest import StringIO from grit.gather import rc from grit import util class RcUnittest(unittest.TestCase): part_we_want = '''IDC_KLONKACC ACCELERATORS BEGIN "?", IDM_ABOUT, ASCII, ALT "/", IDM_ABOUT, ASCII, ALT END''' def testSectionFromFile(self): buf = '''IDC_SOMETHINGELSE BINGO BEGIN BLA BLA BLA BLA END %s IDC_KLONK BINGOBONGO BEGIN HONGO KONGO END ''' % self.part_we_want f = StringIO.StringIO(buf) out = rc.Section.FromFile(f, 'IDC_KLONKACC') self.failUnless(out.GetText() == self.part_we_want) out = rc.Section.FromFile(util.PathFromRoot(r'grit/testdata/klonk.rc'), 'IDC_KLONKACC', encoding='utf-16') out_text = out.GetText().replace('\t', '') out_text = out_text.replace(' ', '') self.part_we_want = self.part_we_want.replace(' ', '') self.failUnless(out_text.strip() == self.part_we_want.strip()) def testDialog(self): dlg = rc.Dialog('''IDD_ABOUTBOX DIALOGEX 22, 17, 230, 75 STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU CAPTION "About" FONT 8, "System", 0, 0, 0x0 BEGIN ICON IDI_KLONK,IDC_MYICON,14,9,20,20 LTEXT "klonk Version ""yibbee"" 1.0",IDC_STATIC,49,10,119,8, SS_NOPREFIX LTEXT "Copyright (C) 2005",IDC_STATIC,49,20,119,8 DEFPUSHBUTTON "OK",IDOK,195,6,30,11,WS_GROUP CONTROL "Jack ""Black"" Daniels",IDC_RADIO1,"Button", BS_AUTORADIOBUTTON,46,51,84,10 // try a line where the ID is on the continuation line LTEXT "blablablabla blablabla blablablablablablablabla blablabla", ID_SMURF, whatever... END ''') dlg.Parse() self.failUnless(len(dlg.GetTextualIds()) == 7) self.failUnless(len(dlg.GetCliques()) == 6) self.failUnless(dlg.GetCliques()[1].GetMessage().GetRealContent() == 'klonk Version "yibbee" 1.0') transl = dlg.Translate('en') self.failUnless(transl.strip() == dlg.GetText().strip()) def testAlternateSkeleton(self): dlg = rc.Dialog('''IDD_ABOUTBOX DIALOGEX 22, 17, 230, 75 STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU CAPTION "About" FONT 8, "System", 0, 0, 0x0 BEGIN LTEXT "Yipee skippy",IDC_STATIC,49,10,119,8, SS_NOPREFIX END ''') dlg.Parse() alt_dlg = rc.Dialog('''IDD_ABOUTBOX DIALOGEX 040704, 17, 230, 75 STYLE DS_SETFONT | DS_MODALFRAME | WS_CAPTION | WS_SYSMENU CAPTION "XXXXXXXXX" FONT 8, "System", 0, 0, 0x0 BEGIN LTEXT "XXXXXXXXXXXXXXXXX",IDC_STATIC,110978,10,119,8, SS_NOPREFIX END ''') alt_dlg.Parse() transl = dlg.Translate('en', skeleton_gatherer=alt_dlg) self.failUnless(transl.count('040704') and transl.count('110978')) self.failUnless(transl.count('Yipee skippy')) def testMenu(self): menu = rc.Menu('''IDC_KLONK MENU BEGIN POPUP "&File """ BEGIN MENUITEM "E&xit", IDM_EXIT MENUITEM "This be ""Klonk"" me like", ID_FILE_THISBE POPUP "gonk" BEGIN MENUITEM "Klonk && is ""good""", ID_GONK_KLONKIS END MENUITEM "This is a very long menu caption to try to see if we can make the ID go to a continuation line, blablabla blablabla bla blabla blablabla blablabla blablabla blablabla...", ID_FILE_THISISAVERYLONGMENUCAPTIONTOTRYTOSEEIFWECANMAKETHEIDGOTOACONTINUATIONLINE END POPUP "&Help" BEGIN MENUITEM "&About ...", IDM_ABOUT END END''') menu.Parse() self.failUnless(len(menu.GetTextualIds()) == 6) self.failUnless(len(menu.GetCliques()) == 1) self.failUnless(len(menu.GetCliques()[0].GetMessage().GetPlaceholders()) == 9) transl = menu.Translate('en') self.failUnless(transl.strip() == menu.GetText().strip()) def testVersion(self): version = rc.Version(''' VS_VERSION_INFO VERSIONINFO FILEVERSION 1,0,0,1 PRODUCTVERSION 1,0,0,1 FILEFLAGSMASK 0x3fL #ifdef _DEBUG FILEFLAGS 0x1L #else FILEFLAGS 0x0L #endif FILEOS 0x4L FILETYPE 0x2L FILESUBTYPE 0x0L BEGIN BLOCK "StringFileInfo" BEGIN BLOCK "040904e4" BEGIN VALUE "CompanyName", "TODO: <Company name>" VALUE "FileDescription", "TODO: <File description>" VALUE "FileVersion", "1.0.0.1" VALUE "LegalCopyright", "TODO: (c) <Company name>. All rights reserved." VALUE "InternalName", "res_format_test.dll" VALUE "OriginalFilename", "res_format_test.dll" VALUE "ProductName", "TODO: <Product name>" VALUE "ProductVersion", "1.0.0.1" END END BLOCK "VarFileInfo" BEGIN VALUE "Translation", 0x409, 1252 END END '''.strip()) version.Parse() self.failUnless(len(version.GetTextualIds()) == 1) self.failUnless(len(version.GetCliques()) == 4) transl = version.Translate('en') self.failUnless(transl.strip() == version.GetText().strip()) def testRegressionDialogBox(self): dialog = rc.Dialog(''' IDD_SIDEBAR_WEATHER_PANEL_PROPPAGE DIALOGEX 0, 0, 205, 157 STYLE DS_SETFONT | DS_FIXEDSYS | WS_CHILD FONT 8, "MS Shell Dlg", 400, 0, 0x1 BEGIN EDITTEXT IDC_SIDEBAR_WEATHER_NEW_CITY,3,27,112,14,ES_AUTOHSCROLL DEFPUSHBUTTON "Add Location",IDC_SIDEBAR_WEATHER_ADD,119,27,50,14 LISTBOX IDC_SIDEBAR_WEATHER_CURR_CITIES,3,48,127,89, LBS_NOINTEGRALHEIGHT | WS_VSCROLL | WS_TABSTOP PUSHBUTTON "Move Up",IDC_SIDEBAR_WEATHER_MOVE_UP,134,104,50,14 PUSHBUTTON "Move Down",IDC_SIDEBAR_WEATHER_MOVE_DOWN,134,121,50,14 PUSHBUTTON "Remove",IDC_SIDEBAR_WEATHER_DELETE,134,48,50,14 LTEXT "To see current weather conditions and forecasts in the USA, enter the zip code (example: 94043) or city and state (example: Mountain View, CA).", IDC_STATIC,3,0,199,25 CONTROL "Fahrenheit",IDC_SIDEBAR_WEATHER_FAHRENHEIT,"Button", BS_AUTORADIOBUTTON | WS_GROUP | WS_TABSTOP,3,144,51,10 CONTROL "Celsius",IDC_SIDEBAR_WEATHER_CELSIUS,"Button", BS_AUTORADIOBUTTON,57,144,38,10 END'''.strip()) dialog.Parse() self.failUnless(len(dialog.GetTextualIds()) == 10) def testRegressionDialogBox2(self): dialog = rc.Dialog(''' IDD_SIDEBAR_EMAIL_PANEL_PROPPAGE DIALOG DISCARDABLE 0, 0, 264, 220 STYLE WS_CHILD FONT 8, "MS Shell Dlg" BEGIN GROUPBOX "Email Filters",IDC_STATIC,7,3,250,190 LTEXT "Click Add Filter to create the email filter.",IDC_STATIC,16,41,130,9 PUSHBUTTON "Add Filter...",IDC_SIDEBAR_EMAIL_ADD_FILTER,196,38,50,14 PUSHBUTTON "Remove",IDC_SIDEBAR_EMAIL_REMOVE,196,174,50,14 PUSHBUTTON "", IDC_SIDEBAR_EMAIL_HIDDEN, 200, 178, 5, 5, NOT WS_VISIBLE LISTBOX IDC_SIDEBAR_EMAIL_LIST,16,60,230,108, LBS_NOINTEGRALHEIGHT | WS_VSCROLL | WS_TABSTOP LTEXT "You can prevent certain emails from showing up in the sidebar with a filter.", IDC_STATIC,16,18,234,18 END'''.strip()) dialog.Parse() self.failUnless('IDC_SIDEBAR_EMAIL_HIDDEN' in dialog.GetTextualIds()) def testRegressionMenuId(self): menu = rc.Menu(''' IDR_HYPERMENU_FOLDER MENU BEGIN POPUP "HyperFolder" BEGIN MENUITEM "Open Containing Folder", IDM_OPENFOLDER END END'''.strip()) menu.Parse() self.failUnless(len(menu.GetTextualIds()) == 2) def testRegressionNewlines(self): menu = rc.Menu(''' IDR_HYPERMENU_FOLDER MENU BEGIN POPUP "Hyper\\nFolder" BEGIN MENUITEM "Open Containing Folder", IDM_OPENFOLDER END END'''.strip()) menu.Parse() transl = menu.Translate('en') # Shouldn't find \\n (the \n shouldn't be changed to \\n) self.failUnless(transl.find('\\\\n') == -1) def testRegressionTabs(self): menu = rc.Menu(''' IDR_HYPERMENU_FOLDER MENU BEGIN POPUP "Hyper\\tFolder" BEGIN MENUITEM "Open Containing Folder", IDM_OPENFOLDER END END'''.strip()) menu.Parse() transl = menu.Translate('en') # Shouldn't find \\t (the \t shouldn't be changed to \\t) self.failUnless(transl.find('\\\\t') == -1) def testEscapeUnescape(self): original = 'Hello "bingo"\n How\\are\\you\\n?' escaped = rc.Section.Escape(original) self.failUnless(escaped == 'Hello ""bingo""\\n How\\\\are\\\\you\\\\n?') unescaped = rc.Section.UnEscape(escaped) self.failUnless(unescaped == original) def testRegressionPathsWithSlashN(self): original = '..\\\\..\\\\trs\\\\res\\\\nav_first.gif' unescaped = rc.Section.UnEscape(original) self.failUnless(unescaped == '..\\..\\trs\\res\\nav_first.gif') def testRegressionDialogItemsTextOnly(self): dialog = rc.Dialog('''IDD_OPTIONS_SEARCH DIALOGEX 0, 0, 280, 292 STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | DS_CENTER | WS_POPUP | WS_DISABLED | WS_CAPTION | WS_SYSMENU CAPTION "Search" FONT 8, "MS Shell Dlg", 400, 0, 0x1 BEGIN GROUPBOX "Select search buttons and options",-1,7,5,266,262 CONTROL "",IDC_OPTIONS,"SysTreeView32",TVS_DISABLEDRAGDROP | WS_BORDER | WS_TABSTOP | 0x800,16,19,248,218 LTEXT "Use Google site:",-1,26,248,52,8 COMBOBOX IDC_GOOGLE_HOME,87,245,177,256,CBS_DROPDOWNLIST | WS_VSCROLL | WS_TABSTOP PUSHBUTTON "Restore Defaults...",IDC_RESET,187,272,86,14 END''') dialog.Parse() translateables = [c.GetMessage().GetRealContent() for c in dialog.GetCliques()] self.failUnless('Select search buttons and options' in translateables) self.failUnless('Use Google site:' in translateables) def testAccelerators(self): acc = rc.Accelerators('''\ IDR_ACCELERATOR1 ACCELERATORS BEGIN "^C", ID_ACCELERATOR32770, ASCII, NOINVERT "^V", ID_ACCELERATOR32771, ASCII, NOINVERT VK_INSERT, ID_ACCELERATOR32772, VIRTKEY, CONTROL, NOINVERT END ''') acc.Parse() self.failUnless(len(acc.GetTextualIds()) == 4) self.failUnless(len(acc.GetCliques()) == 0) transl = acc.Translate('en') self.failUnless(transl.strip() == acc.GetText().strip()) def testRegressionEmptyString(self): dlg = rc.Dialog('''\ IDD_CONFIRM_QUIT_GD_DLG DIALOGEX 0, 0, 267, 108 STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | DS_CENTER | WS_POPUP | WS_CAPTION EXSTYLE WS_EX_TOPMOST CAPTION "Google Desktop" FONT 8, "MS Shell Dlg", 400, 0, 0x1 BEGIN DEFPUSHBUTTON "&Yes",IDYES,82,87,50,14 PUSHBUTTON "&No",IDNO,136,87,50,14 ICON 32514,IDC_STATIC,7,9,21,20 EDITTEXT IDC_TEXTBOX,34,7,231,60,ES_MULTILINE | ES_READONLY | NOT WS_BORDER CONTROL "", IDC_ENABLE_GD_AUTOSTART,"Button",BS_AUTOCHECKBOX | WS_TABSTOP,33,70,231,10 END''') dlg.Parse() def Check(): self.failUnless(transl.count('IDC_ENABLE_GD_AUTOSTART')) self.failUnless(transl.count('END')) transl = dlg.Translate('de', pseudo_if_not_available=True, fallback_to_english=True) Check() transl = dlg.Translate('de', pseudo_if_not_available=True, fallback_to_english=False) Check() transl = dlg.Translate('de', pseudo_if_not_available=False, fallback_to_english=True) Check() transl = dlg.Translate('de', pseudo_if_not_available=False, fallback_to_english=False) Check() transl = dlg.Translate('en', pseudo_if_not_available=True, fallback_to_english=True) Check() transl = dlg.Translate('en', pseudo_if_not_available=True, fallback_to_english=False) Check() transl = dlg.Translate('en', pseudo_if_not_available=False, fallback_to_english=True) Check() transl = dlg.Translate('en', pseudo_if_not_available=False, fallback_to_english=False) Check() if __name__ == '__main__': unittest.main()
# encoding: utf-8 # Copyright 2013 maker # License # encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'TicketRecord.updaterecord_ptr' db.add_column('services_ticketrecord', 'updaterecord_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['core.UpdateRecord'], unique=True, null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'TicketRecord.updaterecord_ptr' db.delete_column('services_ticketrecord', 'updaterecord_ptr_id') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.accessentity': { 'Meta': {'object_name': 'AccessEntity'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'core.comment': { 'Meta': {'object_name': 'Comment'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']", 'null': 'True', 'blank': 'True'}), 'body': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}) }, 'core.group': { 'Meta': {'ordering': "['name']", 'object_name': 'Group'}, 'accessentity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.AccessEntity']", 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['core.Group']"}) }, 'core.object': { 'Meta': {'object_name': 'Object'}, 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Comment']"}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'objects_created'", 'null': 'True', 'to': "orm['core.User']"}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'full_access': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_full_access'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'links': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'links_rel_+'", 'null': 'True', 'to': "orm['core.Object']"}), 'nuvius_resource': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'object_name': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'object_type': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'read_access': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_read_access'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'subscribers': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'subscriptions'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['core.Tag']", 'null': 'True', 'blank': 'True'}), 'trash': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']", 'null': 'True', 'blank': 'True'}) }, 'core.tag': { 'Meta': {'ordering': "['name']", 'object_name': 'Tag'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}) }, 'core.updaterecord': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'UpdateRecord'}, 'about': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Object']"}), 'author': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sent_updates'", 'null': 'True', 'to': "orm['core.User']"}), 'body': ('django.db.models.fields.TextField', [], {'default': "''", 'null': 'True', 'blank': 'True'}), 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_on_updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Comment']"}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'format_message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'format_strings': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'recipients': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'received_updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'record_type': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sent_updates'", 'null': 'True', 'to': "orm['core.Object']"}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}) }, 'core.user': { 'Meta': {'ordering': "['name']", 'object_name': 'User'}, 'accessentity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.AccessEntity']", 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'default_group': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'default_user_set'", 'null': 'True', 'to': "orm['core.AccessEntity']"}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_access': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'other_groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['core.Group']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'identities.contact': { 'Meta': {'ordering': "['name']", 'object_name': 'Contact', '_ormbases': ['core.Object']}, 'contact_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['identities.ContactType']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['identities.Contact']"}), 'related_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Group']", 'null': 'True', 'blank': 'True'}), 'related_user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.AccessEntity']", 'null': 'True', 'blank': 'True'}) }, 'identities.contactfield': { 'Meta': {'ordering': "['name']", 'object_name': 'ContactField', '_ormbases': ['core.Object']}, 'allowed_values': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'field_type': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'identities.contacttype': { 'Meta': {'ordering': "['name']", 'object_name': 'ContactType', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fields': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['identities.ContactField']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'messaging.emailbox': { 'Meta': {'ordering': "['last_updated']", 'object_name': 'EmailBox', '_ormbases': ['core.Object']}, 'email_name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'email_type': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'last_checked': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'server_name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'server_password': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'server_type': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'server_username': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'messaging.mailinglist': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'MailingList', '_ormbases': ['core.Object']}, 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'from_contact': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'from_contact_set'", 'to': "orm['identities.Contact']"}), 'members': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'members_set'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['identities.Contact']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'opt_in': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['messaging.Template']", 'null': 'True', 'blank': 'True'}) }, 'messaging.message': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'Message', '_ormbases': ['core.Object']}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['identities.Contact']"}), 'body': ('django.db.models.fields.TextField', [], {}), 'mlist': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'mlist'", 'null': 'True', 'to': "orm['messaging.MailingList']"}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'read_by': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'read_by_user'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'recipients': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'message_recipients'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['identities.Contact']"}), 'reply_to': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['messaging.Message']"}), 'stream': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'stream'", 'null': 'True', 'to': "orm['messaging.MessageStream']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'messaging.messagestream': { 'Meta': {'ordering': "['name', 'last_updated']", 'object_name': 'MessageStream', '_ormbases': ['core.Object']}, 'email_incoming': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'incoming'", 'null': 'True', 'to': "orm['messaging.EmailBox']"}), 'email_outgoing': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'outgoing'", 'null': 'True', 'to': "orm['messaging.EmailBox']"}), 'faulty': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'incoming_password': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'incoming_server_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'incoming_server_type': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'incoming_server_username': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'last_checked': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'outgoing_email': ('django.db.models.fields.EmailField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'outgoing_password': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'outgoing_server_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'outgoing_server_type': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'outgoing_server_username': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'messaging.template': { 'Meta': {'object_name': 'Template', '_ormbases': ['core.Object']}, 'body': ('django.db.models.fields.TextField', [], {}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'subject': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'services.service': { 'Meta': {'ordering': "['name']", 'object_name': 'Service', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['services.Service']"}) }, 'services.serviceagent': { 'Meta': {'ordering': "('related_user', '-active', 'occupied')", 'object_name': 'ServiceAgent', '_ormbases': ['core.Object']}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'available_from': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'available_to': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'occupied': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'related_user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']"}) }, 'services.servicelevelagreement': { 'Meta': {'ordering': "('name', 'client')", 'object_name': 'ServiceLevelAgreement', '_ormbases': ['core.Object']}, 'available_from': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'available_to': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'client': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'client_sla'", 'null': 'True', 'to': "orm['identities.Contact']"}), 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'provider': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'provider_sla'", 'to': "orm['identities.Contact']"}), 'response_time': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.Service']"}), 'uptime_rate': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, 'services.ticket': { 'Meta': {'ordering': "('-priority', 'reference')", 'object_name': 'Ticket', '_ormbases': ['core.Object']}, 'assigned': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['services.ServiceAgent']", 'null': 'True', 'blank': 'True'}), 'caller': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['identities.Contact']", 'null': 'True', 'blank': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['messaging.Message']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'priority': ('django.db.models.fields.IntegerField', [], {'default': '3'}), 'queue': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.TicketQueue']", 'null': 'True', 'blank': 'True'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'resolution': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.Service']", 'null': 'True', 'blank': 'True'}), 'sla': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.ServiceLevelAgreement']", 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.TicketStatus']"}), 'urgency': ('django.db.models.fields.IntegerField', [], {'default': '3'}) }, 'services.ticketqueue': { 'Meta': {'ordering': "('name', '-active', 'ticket_code')", 'object_name': 'TicketQueue', '_ormbases': ['core.Object']}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'default_service': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.Service']", 'null': 'True', 'blank': 'True'}), 'default_ticket_priority': ('django.db.models.fields.IntegerField', [], {'default': '3'}), 'default_ticket_status': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.TicketStatus']", 'null': 'True', 'blank': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'message_stream': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['messaging.MessageStream']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'next_queue': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'previous_set'", 'null': 'True', 'to': "orm['services.TicketQueue']"}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['services.TicketQueue']"}), 'ticket_code': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '8', 'null': 'True', 'blank': 'True'}), 'waiting_time': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'services.ticketrecord': { 'Meta': {'ordering': "['ticket']", 'object_name': 'TicketRecord', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {}), 'message': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['messaging.Message']", 'null': 'True', 'blank': 'True'}), 'notify': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'record_type': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'ticket': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['services.Ticket']"}), 'updaterecord_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.UpdateRecord']", 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, 'services.ticketstatus': { 'Meta': {'ordering': "('hidden', '-active', 'name')", 'object_name': 'TicketStatus', '_ormbases': ['core.Object']}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'hidden': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}) } } complete_apps = ['services']
from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4 import QtWebKit from renderers import MessageRenderer from qtx import ClickableQLabel, IdleTimer, RowPushButton, SpellTextEditor class AboutDialog(QtGui.QDialog): def __init__(self, mainFrame): super(AboutDialog, self).__init__(mainFrame) self._mainFrame = mainFrame self.setWindowTitle(self._mainFrame._("About {name}").format(name=self._mainFrame.NAME)) self._setupUI() def _website(self): QtGui.QDesktopServices.openUrl(QtCore.QUrl("http://{url}".format(url=self._mainFrame.DOMAIN))) def _setupUI(self): label = ClickableQLabel() label.setPixmap(QtGui.QPixmap(":/images/snakefire-big.png")) label.setAlignment(QtCore.Qt.AlignCenter) self.connect(label, QtCore.SIGNAL("clicked()"), self._website) urlLabel = QtGui.QLabel("<a href=\"http://{url}\">{name}</a>".format( url=self._mainFrame.DOMAIN, name=self._mainFrame.DOMAIN )) urlLabel.setOpenExternalLinks(True) websiteBox = QtGui.QHBoxLayout() websiteBox.addWidget(QtGui.QLabel(self._mainFrame._("Website:"))) websiteBox.addWidget(urlLabel) websiteBox.addStretch(1) twitterLabel = QtGui.QLabel("<a href=\"http://twitter.com/snakefirelinux\">@snakefirelinux</a>") twitterLabel.setOpenExternalLinks(True) twitterBox = QtGui.QHBoxLayout() twitterBox.addWidget(QtGui.QLabel(self._mainFrame._("Twitter:"))) twitterBox.addWidget(twitterLabel) twitterBox.addStretch(1) layout = QtGui.QVBoxLayout() layout.addWidget(label) layout.addStretch(0.5) layout.addWidget(QtGui.QLabel("<strong>{name} v{version}</strong>".format( name=self._mainFrame.NAME, version=self._mainFrame.VERSION ))) layout.addStretch(0.5) layout.addLayout(websiteBox) layout.addLayout(twitterBox) # Buttons self._okButton = QtGui.QPushButton(self._mainFrame._("&OK"), self) self.connect(self._okButton, QtCore.SIGNAL('clicked()'), self.close) # Main layout hbox = QtGui.QHBoxLayout() hbox.addStretch(1) hbox.addWidget(self._okButton) vbox = QtGui.QVBoxLayout() vbox.addLayout(layout) vbox.addLayout(hbox) self.setLayout(vbox) class AlertsDialog(QtGui.QDialog): def __init__(self, mainFrame): super(AlertsDialog, self).__init__(mainFrame) self._mainFrame = mainFrame self.setWindowTitle(self._mainFrame._("Alerts")) self._setupUI() def ok(self): self._save() self.close() def cancel(self): self.close() def add(self, match=None): row = self._table.rowCount() self._table.insertRow(row) column = QtGui.QTableWidgetItem() column.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsEditable) if match: column.setText(match['match']) self._table.setItem(row, 0, column) checkbox = QtGui.QCheckBox(self._table) checkbox.setChecked(match['regex'] if match else False) self._table.setCellWidget(row, 1, checkbox) button = RowPushButton(row, self._mainFrame._("Delete"), self._table) self.connect(button, QtCore.SIGNAL('clicked(int)'), self.delete) self._table.setCellWidget(row, 2, button) self._table.setCurrentCell(row, 0) def delete(self, row): self._table.removeRow(row) self.validate() def validate(self): isValid = True rowCount = self._table.rowCount() for i in range(rowCount): match = self._table.item(i, 0).text().trimmed() if match.isEmpty(): isValid = False break self._addButton.setEnabled(isValid) self._okButton.setEnabled(isValid) return isValid def _save(self): matches = [] for i in range(self._table.rowCount()): matches.append({ 'match': str(self._table.item(i, 0).text().trimmed()), 'regex': self._table.cellWidget(i, 1).isChecked() }) self._mainFrame.setSettings("matches", matches) alertsSettings = { "notify_ping": self._notifyOnPingField.isChecked(), "notify_inactive_tab": self._notifyOnInactiveTabField.isChecked(), "notify_blink": self._notifyBlinkField.isChecked(), "notify_notify": self._notifyNotifyField.isChecked() } self._mainFrame.setSettings("alerts", alertsSettings) def _setupUI(self): self._addButton = QtGui.QPushButton(self._mainFrame._("Add"), self) self.connect(self._addButton, QtCore.SIGNAL('clicked()'), self.add) addBox = QtGui.QHBoxLayout() addBox.addStretch(1) addBox.addWidget(self._addButton) headers = QtCore.QStringList() headers.append(QtCore.QString(self._mainFrame._("Search text"))) headers.append(QtCore.QString(self._mainFrame._("RegEx"))) headers.append(QtCore.QString(self._mainFrame._("Delete"))) self._table = QtGui.QTableWidget(self) self._table.setColumnCount(3) self._table.setHorizontalHeaderLabels(headers) self._table.resizeColumnsToContents() self._table.horizontalHeader().setResizeMode(0, QtGui.QHeaderView.Stretch) tableBox = QtGui.QVBoxLayout() tableBox.addWidget(self._table) tableBox.addLayout(addBox) # Options self._notifyOnPingField = QtGui.QCheckBox(self._mainFrame._("Alert me whenever I get a &direct message"), self) self._notifyOnInactiveTabField = QtGui.QCheckBox(self._mainFrame._("Notify me of every message sent while I'm &inactive"), self) optionsGrid = QtGui.QGridLayout() optionsGrid.addWidget(self._notifyOnPingField, 1, 0) optionsGrid.addWidget(self._notifyOnInactiveTabField, 2, 0) optionsGroupBox = QtGui.QGroupBox(self._mainFrame._("Alerts && Notifications")) optionsGroupBox.setLayout(optionsGrid) # Methods self._notifyBlinkField = QtGui.QCheckBox(self._mainFrame._("&Blink the systray icon when notifying"), self) self._notifyNotifyField = QtGui.QCheckBox(self._mainFrame._("Trigger a &Notification using the OS notification system"), self) methodsGrid = QtGui.QGridLayout() methodsGrid.addWidget(self._notifyBlinkField, 1, 0) methodsGrid.addWidget(self._notifyNotifyField, 2, 0) methodsGroupBox = QtGui.QGroupBox(self._mainFrame._("Notification methods")) methodsGroupBox.setLayout(methodsGrid) # Buttons self._okButton = QtGui.QPushButton(self._mainFrame._("&OK"), self) self._cancelButton = QtGui.QPushButton(self._mainFrame._("&Cancel"), self) self.connect(self._okButton, QtCore.SIGNAL('clicked()'), self.ok) self.connect(self._cancelButton, QtCore.SIGNAL('clicked()'), self.cancel) # Main layout hbox = QtGui.QHBoxLayout() hbox.addStretch(1) hbox.addWidget(self._okButton) hbox.addWidget(self._cancelButton) vbox = QtGui.QVBoxLayout() vbox.addLayout(tableBox) vbox.addWidget(optionsGroupBox) vbox.addWidget(methodsGroupBox) vbox.addLayout(hbox) self.setLayout(vbox) # Load settings alertsSettings = self._mainFrame.getSettings("alerts") matches = self._mainFrame.getSettings("matches") self._notifyOnPingField.setChecked(alertsSettings["notify_ping"]) self._notifyOnInactiveTabField.setChecked(alertsSettings["notify_inactive_tab"]) self._notifyBlinkField.setChecked(alertsSettings["notify_blink"]) self._notifyNotifyField.setChecked(alertsSettings["notify_notify"]) if matches: for match in matches: self.add(match) # Only connect to signal after adding rows self.connect(self._table, QtCore.SIGNAL('cellChanged(int,int)'), self.validate) self.validate() class OptionsDialog(QtGui.QDialog): def __init__(self, mainFrame): super(OptionsDialog, self).__init__(mainFrame) self._mainFrame = mainFrame self.setWindowTitle(self._mainFrame._("Settings")) self._setupUI() def ok(self): self._save() self.close() def cancel(self): self.close() def validate(self): isValid = ( not self._subdomainField.text().trimmed().isEmpty() and not self._usernameField.text().trimmed().isEmpty() and not self._passwordField.text().isEmpty() and ( not self._awayField.isChecked() or not self._awayMessageField.text().trimmed().isEmpty() ) ) self._okButton.setEnabled(isValid) awayChecked = self._awayField.isEnabled() and self._awayField.isChecked() self._awayTimeField.setEnabled(awayChecked) self._awayMessageField.setEnabled(awayChecked) self._awayTimeBetweenMessagesField.setEnabled(awayChecked) return isValid def _save(self): (themeSize, themeSizeOk) = self._themeSizeField.itemData(self._themeSizeField.currentIndex()).toInt() (awayTime, awayTimeOk) = self._awayTimeField.itemData(self._awayTimeField.currentIndex()).toInt() (awayTimeBetweenMessages, awayTimeBetweenMessagesOk) = self._awayTimeBetweenMessagesField.itemData(self._awayTimeBetweenMessagesField.currentIndex()).toInt() connectionSettings = { "subdomain": str(self._subdomainField.text().trimmed()), "user": str(self._usernameField.text().trimmed()), "password": str(self._passwordField.text()), "ssl": self._sslField.isChecked(), "connect": self._connectField.isChecked(), "join": self._joinField.isChecked() } programSettings = { "minimize": self._minimizeField.isChecked(), "spell_language": self._spellLanguageField.itemData(self._spellLanguageField.currentIndex()).toString(), "away": self._awayField.isChecked(), "away_time": awayTime if awayTimeOk else 10, "away_time_between_messages": awayTimeBetweenMessages if awayTimeBetweenMessagesOk else 5, "away_message": str(self._awayMessageField.text().trimmed()) } displaySettings = { "theme": self._themeField.itemData(self._themeField.currentIndex()).toString(), "size": themeSize if themeSizeOk else 100, "show_join_message": self._showJoinMessageField.isChecked(), "show_part_message": self._showPartMessageField.isChecked(), "show_message_timestamps": self._showMessageTimestampsField.isChecked(), } self._mainFrame.setSettings("connection", connectionSettings) self._mainFrame.setSettings("program", programSettings) self._mainFrame.setSettings("display", displaySettings) def _themeSelected(self): self._themePreview.settings().setUserStyleSheetUrl(QtCore.QUrl("qrc:/themes/{theme}.css".format( theme = self._themeField.itemData(self._themeField.currentIndex()).toString() ))) def _themeSizeSelected(self): (value, ok) = self._themeSizeField.itemData(self._themeSizeField.currentIndex()).toInt() if ok: self._themePreview.setTextSizeMultiplier(round(float(value) / 100, 1)) def _setupThemesUI(self, displaySettings): # Themes children = QtCore.QResource(':/themes').children() children.sort() currentIndex = None index = 0 for theme in children: themeName = str(theme.replace(QtCore.QRegExp('\.css$'), '')) self._themeField.addItem(themeName.replace('_', ' ').title(), themeName) if themeName == displaySettings["theme"]: currentIndex = index index += 1 if currentIndex is not None: self._themeField.setCurrentIndex(currentIndex) # Theme sizes currentIndex = None index = 0 for size in [ x for x in range(50, 160, 10) ]: self._themeSizeField.addItem("{n}%".format(n=size), size) if size == int(displaySettings["size"]): currentIndex = index index += 1 if currentIndex is not None: self._themeSizeField.setCurrentIndex(currentIndex) # Load preview content messages = [ MessageRenderer.MESSAGES['join'].format(user='John Doe', room='Snakefire'), MessageRenderer.MESSAGES['message_self'].format(time='3:33 pm', user='John Doe', message='Hey everyone!'), MessageRenderer.MESSAGES['message_self'].format(time='3:33 pm', user='John Doe', message='How are you all doing?'), MessageRenderer.MESSAGES['alert'].format(time='3:34 pm', user='Jane Doe', message='Hi John Doe! Nice to see you here'), MessageRenderer.MESSAGES['tweet'].format(url_user='#', user='@mgiglesias', url='#', message='Hello world from twitter :)'), MessageRenderer.MESSAGES['message_self'].format(time='3:35 pm', user='John Doe', message='Look at this method:'), MessageRenderer.MESSAGES['paste'].format(message='def hello(self):<br /> print "Hello World"'), MessageRenderer.MESSAGES['topic'].format(user='Jane Doe', topic='Testing Snakefire, and loving it'), MessageRenderer.MESSAGES['message'].format(time='3:36 pm', user='Jane Doe', message='Looks good. Now look at this upload:'), MessageRenderer.MESSAGES['message'].format(time='3:36 pm', user='Jane Doe', message = MessageRenderer.MESSAGES['upload'].format(url='#', name='my_upload.tar.gz') ) ] image = QtGui.QImage(":/icons/snakefire.png") buffer = QtCore.QBuffer() if buffer.open(QtCore.QIODevice.WriteOnly) and image.save(buffer, 'PNG'): messages.extend([ MessageRenderer.MESSAGES['message_self'].format(time='3:38 pm', user='John Doe', message='Look at this image:'), MessageRenderer.MESSAGES['message_self'].format(time='3:38 pm', user='John Doe', message=MessageRenderer.MESSAGES['image'].format( url = '#', type = 'image/png', data = buffer.data().toBase64().data(), name = 'image.png', url_md5 = '', js='', attribs = '' )) ]) messages.extend([ MessageRenderer.MESSAGES['leave'].format(user='Jane Doe', room='Snakefire'), MessageRenderer.MESSAGES['message_self'].format(time='3:37 pm', user='John Doe', message='I guess I am all alone now :('), ]) self._themePreview.page().mainFrame().setHtml("\n".join(messages)) self._themePreview.show() self._themeSelected() self._themeSizeSelected() self.connect(self._themeField, QtCore.SIGNAL("currentIndexChanged(const QString&)"), self._themeSelected) self.connect(self._themeSizeField, QtCore.SIGNAL("currentIndexChanged(const QString&)"), self._themeSizeSelected) def _setupUI(self): # Connection group self._subdomainField = QtGui.QLineEdit(self) self._usernameField = QtGui.QLineEdit(self) self._passwordField = QtGui.QLineEdit(self) self._passwordField.setEchoMode(QtGui.QLineEdit.Password) self._sslField = QtGui.QCheckBox(self._mainFrame._("Use &secure connection (SSL)"), self) self.connect(self._subdomainField, QtCore.SIGNAL('textChanged(QString)'), self.validate) self.connect(self._usernameField, QtCore.SIGNAL('textChanged(QString)'), self.validate) self.connect(self._passwordField, QtCore.SIGNAL('textChanged(QString)'), self.validate) connectionGrid = QtGui.QGridLayout() connectionGrid.addWidget(QtGui.QLabel(self._mainFrame._("Subdomain:"), self), 1, 0) connectionGrid.addWidget(self._subdomainField, 1, 1) connectionGrid.addWidget(QtGui.QLabel(self._mainFrame._("Username:"), self), 2, 0) connectionGrid.addWidget(self._usernameField, 2, 1) connectionGrid.addWidget(QtGui.QLabel(self._mainFrame._("Password:"), self), 3, 0) connectionGrid.addWidget(self._passwordField, 3, 1) connectionGrid.addWidget(self._sslField, 4, 0, 1, -1) connectionGroupBox = QtGui.QGroupBox(self._mainFrame._("Campfire connection")) connectionGroupBox.setLayout(connectionGrid) # Program group spellLanguages = { "": self._mainFrame._("No spell check") } if SpellTextEditor.canSpell(): for language in SpellTextEditor.languages(): spellLanguages[language] = language; self._connectField = QtGui.QCheckBox(self._mainFrame._("Automatically &connect when program starts"), self) self._joinField = QtGui.QCheckBox(self._mainFrame._("&Join last opened channels once connected"), self) self._minimizeField = QtGui.QCheckBox(self._mainFrame._("&Minimize to system tray if window is minimized, or closed"), self) self._spellLanguageField = QtGui.QComboBox(self) spellLanguageBox = QtGui.QHBoxLayout() spellLanguageBox.addWidget(QtGui.QLabel(self._mainFrame._("Spell checking:"), self)) spellLanguageBox.addWidget(self._spellLanguageField) spellLanguageBox.addStretch(1) programGrid = QtGui.QGridLayout() programGrid.addWidget(self._connectField, 1, 0) programGrid.addWidget(self._joinField, 2, 0) programGrid.addWidget(self._minimizeField, 3, 0) programGrid.addLayout(spellLanguageBox, 4, 0) programGroupBox = QtGui.QGroupBox(self._mainFrame._("Program settings")) programGroupBox.setLayout(programGrid) if not SpellTextEditor.canSpell(): self._spellLanguageField.setEnabled(False) # Away group awayTimes = { 5: self._mainFrame._("5 minutes"), 10: self._mainFrame._("10 minutes"), 15: self._mainFrame._("15 minutes"), 30: self._mainFrame._("30 minutes"), 45: self._mainFrame._("45 minutes"), 60: self._mainFrame._("1 hour"), 90: self._mainFrame._("1 and a half hours"), 120: self._mainFrame._("2 hours") } awayBetweenTimes = { 2: self._mainFrame._("2 minutes"), 5: self._mainFrame._("5 minutes"), 10: self._mainFrame._("10 minutes"), 15: self._mainFrame._("15 minutes"), 30: self._mainFrame._("30 minutes"), 45: self._mainFrame._("45 minutes"), 60: self._mainFrame._("1 hour") } self._awayField = QtGui.QCheckBox(self._mainFrame._("Set me as &away after idle time"), self) self._awayTimeField = QtGui.QComboBox(self) self._awayMessageField = QtGui.QLineEdit(self) self._awayTimeBetweenMessagesField = QtGui.QComboBox(self) if IdleTimer.supported(): self.connect(self._awayField, QtCore.SIGNAL('stateChanged(int)'), self.validate) self.connect(self._awayMessageField, QtCore.SIGNAL('textChanged(QString)'), self.validate) else: self._awayField.setEnabled(False) awayTimeBox = QtGui.QHBoxLayout() awayTimeBox.addWidget(QtGui.QLabel(self._mainFrame._("Idle Time:"), self)) awayTimeBox.addWidget(self._awayTimeField) awayTimeBox.addWidget(QtGui.QLabel(self._mainFrame._("Wait"), self)) awayTimeBox.addWidget(self._awayTimeBetweenMessagesField) awayTimeBox.addWidget(QtGui.QLabel(self._mainFrame._("before sending consecutive messages"), self)) awayTimeBox.addStretch(1) awayMessageBox = QtGui.QHBoxLayout() awayMessageBox.addWidget(QtGui.QLabel(self._mainFrame._("Message:"), self)) awayMessageBox.addWidget(self._awayMessageField) awayBox = QtGui.QVBoxLayout() awayBox.addWidget(self._awayField) awayBox.addLayout(awayTimeBox) awayBox.addLayout(awayMessageBox) awayGroupBox = QtGui.QGroupBox(self._mainFrame._("Away mode")) awayGroupBox.setLayout(awayBox) # Theme group self._themeField = QtGui.QComboBox(self) self._themeSizeField = QtGui.QComboBox(self) self._themePreview = QtWebKit.QWebView(self) self._themePreview.setMaximumHeight(300) themeSelectorBox = QtGui.QHBoxLayout() themeSelectorBox.addWidget(QtGui.QLabel(self._mainFrame._("Theme:"))) themeSelectorBox.addWidget(self._themeField) themeSelectorBox.addWidget(QtGui.QLabel(self._mainFrame._("Text size:"))) themeSelectorBox.addWidget(self._themeSizeField) themeSelectorBox.addStretch(1) themeSelectorBox.setContentsMargins(0, 0, 0, 0) themeSelectorBox.setSpacing(5) themeSelectorFrame = QtGui.QWidget() themeSelectorFrame.setLayout(themeSelectorBox) themeGrid = QtGui.QGridLayout() themeGrid.addWidget(themeSelectorFrame, 1, 0) themeGrid.addWidget(self._themePreview, 2, 0) themeGroupBox = QtGui.QGroupBox(self._mainFrame._("Theme")) themeGroupBox.setLayout(themeGrid) # Events group self._showJoinMessageField = QtGui.QCheckBox(self._mainFrame._("Show &join messages"), self) self._showPartMessageField = QtGui.QCheckBox(self._mainFrame._("Show p&art messages"), self) self._showMessageTimestampsField = QtGui.QCheckBox(self._mainFrame._("Show message &timestamps"), self) eventsGrid = QtGui.QGridLayout() eventsGrid.addWidget(self._showJoinMessageField, 1, 0) eventsGrid.addWidget(self._showPartMessageField, 2, 0) eventsGrid.addWidget(self._showMessageTimestampsField, 3, 0) eventsGroupBox = QtGui.QGroupBox(self._mainFrame._("Display events")) eventsGroupBox.setLayout(eventsGrid) # Options tab optionsBox = QtGui.QVBoxLayout() optionsBox.addWidget(connectionGroupBox) optionsBox.addWidget(programGroupBox) optionsBox.addWidget(awayGroupBox) optionsBox.addStretch(1) optionsFrame = QtGui.QWidget() optionsFrame.setLayout(optionsBox) # Display tab displayBox = QtGui.QVBoxLayout() displayBox.addWidget(themeGroupBox) displayBox.addWidget(eventsGroupBox) displayBox.addStretch(1) displayFrame = QtGui.QWidget() displayFrame.setLayout(displayBox) # Tabs tabs = QtGui.QTabWidget() tabs.setTabsClosable(False) tabs.addTab(optionsFrame, self._mainFrame._("&Program options")) tabs.addTab(displayFrame, self._mainFrame._("&Display options")) # Buttons self._okButton = QtGui.QPushButton(self._mainFrame._("&OK"), self) self._cancelButton = QtGui.QPushButton(self._mainFrame._("&Cancel"), self) self.connect(self._okButton, QtCore.SIGNAL('clicked()'), self.ok) self.connect(self._cancelButton, QtCore.SIGNAL('clicked()'), self.cancel) # Main layout hbox = QtGui.QHBoxLayout() hbox.addStretch(1) hbox.addWidget(self._okButton) hbox.addWidget(self._cancelButton) vbox = QtGui.QVBoxLayout() vbox.addWidget(tabs) vbox.addLayout(hbox) self.setLayout(vbox) # Load settings connectionSettings = self._mainFrame.getSettings("connection") programSettings = self._mainFrame.getSettings("program") displaySettings = self._mainFrame.getSettings("display") self._subdomainField.setText(connectionSettings["subdomain"]) self._usernameField.setText(connectionSettings["user"]) if connectionSettings["password"]: self._passwordField.setText(connectionSettings["password"]) self._sslField.setChecked(connectionSettings["ssl"]) self._connectField.setChecked(connectionSettings["connect"]) self._joinField.setChecked(connectionSettings["join"]) self._minimizeField.setChecked(programSettings["minimize"]) self._awayField.setChecked(programSettings["away"]) self._awayMessageField.setText(programSettings["away_message"]) self._showJoinMessageField.setChecked(displaySettings["show_join_message"]) self._showPartMessageField.setChecked(displaySettings["show_part_message"]) self._showMessageTimestampsField.setChecked(displaySettings["show_message_timestamps"]) self._setupThemesUI(displaySettings) currentIndex = None index = 0 spellLanguageKeys = spellLanguages.keys() spellLanguageKeys.sort() for value in spellLanguageKeys: self._spellLanguageField.addItem(spellLanguages[value], value) if value == programSettings["spell_language"]: currentIndex = index index += 1 if currentIndex is not None: self._spellLanguageField.setCurrentIndex(currentIndex) currentIndex = None index = 0 awayTimeKeys = awayTimes.keys() awayTimeKeys.sort() for value in awayTimeKeys: self._awayTimeField.addItem(awayTimes[value], value) if value == int(programSettings["away_time"]): currentIndex = index index += 1 if currentIndex is not None: self._awayTimeField.setCurrentIndex(currentIndex) currentIndex = None index = 0 awayBetweenTimeKeys = awayBetweenTimes.keys() awayBetweenTimeKeys.sort() for value in awayBetweenTimeKeys: self._awayTimeBetweenMessagesField.addItem(awayBetweenTimes[value], value) if value == int(programSettings["away_time_between_messages"]): currentIndex = index index += 1 if currentIndex is not None: self._awayTimeBetweenMessagesField.setCurrentIndex(currentIndex) self.validate()
# coding: utf-8 """ Copyright 2015 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems class PathStateChanged(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ PathStateChanged - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'sys_time': 'datetime', 'endpoint_a': 'str', 'endpoint_b': 'str', 'state': 'str', 'parent': 'str', 'type': 'str' } self.attribute_map = { 'sys_time': 'sysTime', 'endpoint_a': 'endpointA', 'endpoint_b': 'endpointB', 'state': 'state', 'parent': 'parent', 'type': 'type' } self._sys_time = None self._endpoint_a = None self._endpoint_b = None self._state = None self._parent = None self._type = None @property def sys_time(self): """ Gets the sys_time of this PathStateChanged. Time of notification :return: The sys_time of this PathStateChanged. :rtype: datetime """ return self._sys_time @sys_time.setter def sys_time(self, sys_time): """ Sets the sys_time of this PathStateChanged. Time of notification :param sys_time: The sys_time of this PathStateChanged. :type: datetime """ self._sys_time = sys_time @property def endpoint_a(self): """ Gets the endpoint_a of this PathStateChanged. One side of the path :return: The endpoint_a of this PathStateChanged. :rtype: str """ return self._endpoint_a @endpoint_a.setter def endpoint_a(self, endpoint_a): """ Sets the endpoint_a of this PathStateChanged. One side of the path :param endpoint_a: The endpoint_a of this PathStateChanged. :type: str """ self._endpoint_a = endpoint_a @property def endpoint_b(self): """ Gets the endpoint_b of this PathStateChanged. The other side of the path :return: The endpoint_b of this PathStateChanged. :rtype: str """ return self._endpoint_b @endpoint_b.setter def endpoint_b(self, endpoint_b): """ Sets the endpoint_b of this PathStateChanged. The other side of the path :param endpoint_b: The endpoint_b of this PathStateChanged. :type: str """ self._endpoint_b = endpoint_b @property def state(self): """ Gets the state of this PathStateChanged. New state of the path :return: The state of this PathStateChanged. :rtype: str """ return self._state @state.setter def state(self, state): """ Sets the state of this PathStateChanged. New state of the path :param state: The state of this PathStateChanged. :type: str """ allowed_values = ["inactive", "active", "created", "deleted"] if state not in allowed_values: raise ValueError( "Invalid value for `state`, must be one of {0}" .format(allowed_values) ) self._state = state @property def parent(self): """ Gets the parent of this PathStateChanged. The MAC address of the parent side of the path. This field only has a value for path activated notifications. :return: The parent of this PathStateChanged. :rtype: str """ return self._parent @parent.setter def parent(self, parent): """ Sets the parent of this PathStateChanged. The MAC address of the parent side of the path. This field only has a value for path activated notifications. :param parent: The parent of this PathStateChanged. :type: str """ self._parent = parent @property def type(self): """ Gets the type of this PathStateChanged. Notification type :return: The type of this PathStateChanged. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this PathStateChanged. Notification type :param type: The type of this PathStateChanged. :type: str """ allowed_values = ["netStarted", "pathStateChanged", "pathAlert", "moteStateChanged", "joinFailed", "pingResponse", "invalidMIC", "dataPacketReceived", "ipPacketReceived", "packetSent", "cmdFinished", "configChanged", "configLoaded", "alarmOpened", "alarmClosed", "deviceHealthReport", "neighborHealthReport", "discoveryHealthReport", "rawMoteNotification", "serviceChanged", "apStateChanged", "managerStarted", "managerStopping", "optPhase", "pathAlert", "moteTrace", "frameCapacity", "apGpsSyncChanged"] if type not in allowed_values: raise ValueError( "Invalid value for `type`, must be one of {0}" .format(allowed_values) ) self._type = type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
# Copyright (c) 2001-2008 Twisted Matrix Laboratories. # See LICENSE for details. import pickle, time, weakref, gc from twisted.trial import unittest, util from twisted.python import threadable, failure, context from twisted.internet import reactor, interfaces from twisted.internet.defer import Deferred # # See the end of this module for the remainder of the imports. # class Synchronization(object): failures = 0 def __init__(self, N, waiting): self.N = N self.waiting = waiting self.lock = threading.Lock() self.runs = [] def run(self): # This is the testy part: this is supposed to be invoked # serially from multiple threads. If that is actually the # case, we will never fail to acquire this lock. If it is # *not* the case, we might get here while someone else is # holding the lock. if self.lock.acquire(False): if not len(self.runs) % 5: time.sleep(0.0002) # Constant selected based on # empirical data to maximize the # chance of a quick failure if this # code is broken. self.lock.release() else: self.failures += 1 # This is just the only way I can think of to wake up the test # method. It doesn't actually have anything to do with the # test. self.lock.acquire() self.runs.append(None) if len(self.runs) == self.N: self.waiting.release() self.lock.release() synchronized = ["run"] threadable.synchronize(Synchronization) class ThreadPoolTestCase(unittest.TestCase): """ Test threadpools. """ def _waitForLock(self, lock): for i in xrange(1000000): if lock.acquire(False): break time.sleep(1e-5) else: self.fail("A long time passed without succeeding") def test_attributes(self): """ L{ThreadPool.min} and L{ThreadPool.max} are set to the values passed to L{ThreadPool.__init__}. """ pool = threadpool.ThreadPool(12, 22) self.assertEqual(pool.min, 12) self.assertEqual(pool.max, 22) def test_start(self): """ L{ThreadPool.start} creates the minimum number of threads specified. """ pool = threadpool.ThreadPool(0, 5) pool.start() self.addCleanup(pool.stop) self.assertEqual(len(pool.threads), 0) pool = threadpool.ThreadPool(3, 10) self.assertEqual(len(pool.threads), 0) pool.start() self.addCleanup(pool.stop) self.assertEqual(len(pool.threads), 3) def test_threadCreationArguments(self): """ Test that creating threads in the threadpool with application-level objects as arguments doesn't results in those objects never being freed, with the thread maintaining a reference to them as long as it exists. """ tp = threadpool.ThreadPool(0, 1) tp.start() self.addCleanup(tp.stop) # Sanity check - no threads should have been started yet. self.assertEqual(tp.threads, []) # Here's our function def worker(arg): pass # weakref needs an object subclass class Dumb(object): pass # And here's the unique object unique = Dumb() workerRef = weakref.ref(worker) uniqueRef = weakref.ref(unique) # Put some work in tp.callInThread(worker, unique) # Add an event to wait completion event = threading.Event() tp.callInThread(event.set) event.wait(self.getTimeout()) del worker del unique gc.collect() self.assertEquals(uniqueRef(), None) self.assertEquals(workerRef(), None) def test_threadCreationArgumentsCallInThreadWithCallback(self): """ As C{test_threadCreationArguments} above, but for callInThreadWithCallback. """ tp = threadpool.ThreadPool(0, 1) tp.start() self.addCleanup(tp.stop) # Sanity check - no threads should have been started yet. self.assertEqual(tp.threads, []) # this holds references obtained in onResult refdict = {} # name -> ref value onResultWait = threading.Event() onResultDone = threading.Event() resultRef = [] # result callback def onResult(success, result): onResultWait.wait(self.getTimeout()) refdict['workerRef'] = workerRef() refdict['uniqueRef'] = uniqueRef() onResultDone.set() resultRef.append(weakref.ref(result)) # Here's our function def worker(arg, test): return Dumb() # weakref needs an object subclass class Dumb(object): pass # And here's the unique object unique = Dumb() onResultRef = weakref.ref(onResult) workerRef = weakref.ref(worker) uniqueRef = weakref.ref(unique) # Put some work in tp.callInThreadWithCallback(onResult, worker, unique, test=unique) del worker del unique gc.collect() # let onResult collect the refs onResultWait.set() # wait for onResult onResultDone.wait(self.getTimeout()) self.assertEquals(uniqueRef(), None) self.assertEquals(workerRef(), None) # XXX There's a race right here - has onResult in the worker thread # returned and the locals in _worker holding it and the result been # deleted yet? del onResult gc.collect() self.assertEqual(onResultRef(), None) self.assertEqual(resultRef[0](), None) def test_persistence(self): """ Threadpools can be pickled and unpickled, which should preserve the number of threads and other parameters. """ pool = threadpool.ThreadPool(7, 20) self.assertEquals(pool.min, 7) self.assertEquals(pool.max, 20) # check that unpickled threadpool has same number of threads copy = pickle.loads(pickle.dumps(pool)) self.assertEquals(copy.min, 7) self.assertEquals(copy.max, 20) def _threadpoolTest(self, method): """ Test synchronization of calls made with C{method}, which should be one of the mechanisms of the threadpool to execute work in threads. """ # This is a schizophrenic test: it seems to be trying to test # both the callInThread()/dispatch() behavior of the ThreadPool as well # as the serialization behavior of threadable.synchronize(). It # would probably make more sense as two much simpler tests. N = 10 tp = threadpool.ThreadPool() tp.start() self.addCleanup(tp.stop) waiting = threading.Lock() waiting.acquire() actor = Synchronization(N, waiting) for i in xrange(N): method(tp, actor) self._waitForLock(waiting) self.failIf(actor.failures, "run() re-entered %d times" % (actor.failures,)) def test_dispatch(self): """ Call C{_threadpoolTest} with C{dispatch}. """ return self._threadpoolTest( lambda tp, actor: tp.dispatch(actor, actor.run)) test_dispatch.suppress = [util.suppress( message="dispatch\(\) is deprecated since Twisted 8.0, " "use callInThread\(\) instead", category=DeprecationWarning)] def test_callInThread(self): """ Call C{_threadpoolTest} with C{callInThread}. """ return self._threadpoolTest( lambda tp, actor: tp.callInThread(actor.run)) def test_callInThreadException(self): """ L{ThreadPool.callInThread} logs exceptions raised by the callable it is passed. """ class NewError(Exception): pass def raiseError(): raise NewError() tp = threadpool.ThreadPool(0, 1) tp.callInThread(raiseError) tp.start() tp.stop() errors = self.flushLoggedErrors(NewError) self.assertEqual(len(errors), 1) def test_callInThreadWithCallback(self): """ L{ThreadPool.callInThreadWithCallback} calls C{onResult} with a two-tuple of C{(True, result)} where C{result} is the value returned by the callable supplied. """ waiter = threading.Lock() waiter.acquire() results = [] def onResult(success, result): waiter.release() results.append(success) results.append(result) tp = threadpool.ThreadPool(0, 1) tp.callInThreadWithCallback(onResult, lambda : "test") tp.start() try: self._waitForLock(waiter) finally: tp.stop() self.assertTrue(results[0]) self.assertEqual(results[1], "test") def test_callInThreadWithCallbackExceptionInCallback(self): """ L{ThreadPool.callInThreadWithCallback} calls C{onResult} with a two-tuple of C{(False, failure)} where C{failure} represents the exception raised by the callable supplied. """ class NewError(Exception): pass def raiseError(): raise NewError() waiter = threading.Lock() waiter.acquire() results = [] def onResult(success, result): waiter.release() results.append(success) results.append(result) tp = threadpool.ThreadPool(0, 1) tp.callInThreadWithCallback(onResult, raiseError) tp.start() try: self._waitForLock(waiter) finally: tp.stop() self.assertFalse(results[0]) self.assertTrue(isinstance(results[1], failure.Failure)) self.assertTrue(issubclass(results[1].type, NewError)) def test_callInThreadWithCallbackExceptionInOnResult(self): """ L{ThreadPool.callInThreadWithCallback} logs the exception raised by C{onResult}. """ class NewError(Exception): pass waiter = threading.Lock() waiter.acquire() results = [] def onResult(success, result): results.append(success) results.append(result) raise NewError() tp = threadpool.ThreadPool(0, 1) tp.callInThreadWithCallback(onResult, lambda : None) tp.callInThread(waiter.release) tp.start() try: self._waitForLock(waiter) finally: tp.stop() errors = self.flushLoggedErrors(NewError) self.assertEqual(len(errors), 1) self.assertTrue(results[0]) self.assertEqual(results[1], None) def test_callbackThread(self): """ L{ThreadPool.callInThreadWithCallback} calls the function it is given and the C{onResult} callback in the same thread. """ threadIds = [] import thread event = threading.Event() def onResult(success, result): threadIds.append(thread.get_ident()) event.set() def func(): threadIds.append(thread.get_ident()) tp = threadpool.ThreadPool(0, 1) tp.callInThreadWithCallback(onResult, func) tp.start() self.addCleanup(tp.stop) event.wait(self.getTimeout()) self.assertEqual(len(threadIds), 2) self.assertEqual(threadIds[0], threadIds[1]) def test_callbackContext(self): """ The context L{ThreadPool.callInThreadWithCallback} is invoked in is shared by the context the callable and C{onResult} callback are invoked in. """ myctx = context.theContextTracker.currentContext().contexts[-1] myctx['testing'] = 'this must be present' contexts = [] event = threading.Event() def onResult(success, result): ctx = context.theContextTracker.currentContext().contexts[-1] contexts.append(ctx) event.set() def func(): ctx = context.theContextTracker.currentContext().contexts[-1] contexts.append(ctx) tp = threadpool.ThreadPool(0, 1) tp.callInThreadWithCallback(onResult, func) tp.start() self.addCleanup(tp.stop) event.wait(self.getTimeout()) self.assertEqual(len(contexts), 2) self.assertEqual(myctx, contexts[0]) self.assertEqual(myctx, contexts[1]) def test_existingWork(self): """ Work added to the threadpool before its start should be executed once the threadpool is started: this is ensured by trying to release a lock previously acquired. """ waiter = threading.Lock() waiter.acquire() tp = threadpool.ThreadPool(0, 1) tp.callInThread(waiter.release) # before start() tp.start() try: self._waitForLock(waiter) finally: tp.stop() def test_dispatchDeprecation(self): """ Test for the deprecation of the dispatch method. """ tp = threadpool.ThreadPool() tp.start() self.addCleanup(tp.stop) def cb(): return tp.dispatch(None, lambda: None) self.assertWarns(DeprecationWarning, "dispatch() is deprecated since Twisted 8.0, " "use callInThread() instead", __file__, cb) def test_dispatchWithCallbackDeprecation(self): """ Test for the deprecation of the dispatchWithCallback method. """ tp = threadpool.ThreadPool() tp.start() self.addCleanup(tp.stop) def cb(): return tp.dispatchWithCallback( None, lambda x: None, lambda x: None, lambda: None) self.assertWarns(DeprecationWarning, "dispatchWithCallback() is deprecated since Twisted 8.0, " "use twisted.internet.threads.deferToThread() instead.", __file__, cb) class RaceConditionTestCase(unittest.TestCase): def setUp(self): self.event = threading.Event() self.threadpool = threadpool.ThreadPool(0, 10) self.threadpool.start() def tearDown(self): del self.event self.threadpool.stop() del self.threadpool def test_synchronization(self): """ Test a race condition: ensure that actions run in the pool synchronize with actions run in the main thread. """ timeout = self.getTimeout() self.threadpool.callInThread(self.event.set) self.event.wait(timeout) self.event.clear() for i in range(3): self.threadpool.callInThread(self.event.wait) self.threadpool.callInThread(self.event.set) self.event.wait(timeout) if not self.event.isSet(): self.event.set() self.fail("Actions not synchronized") def test_singleThread(self): """ The submission of a new job to a thread pool in response to the C{onResult} callback does not cause a new thread to be added to the thread pool. This requires that the thread which calls C{onResult} to have first marked itself as available so that when the new job is queued, that thread may be considered to run it. This is desirable so that when only N jobs are ever being executed in the thread pool at once only N threads will ever be created. """ # Ensure no threads running self.assertEquals(self.threadpool.workers, 0) loopDeferred = Deferred() def onResult(success, counter): reactor.callFromThread(submit, counter) def submit(counter): if counter: self.threadpool.callInThreadWithCallback( onResult, lambda: counter - 1) else: loopDeferred.callback(None) def cbLoop(ignored): # Ensure there is only one thread running. self.assertEqual(self.threadpool.workers, 1) loopDeferred.addCallback(cbLoop) submit(10) return loopDeferred if interfaces.IReactorThreads(reactor, None) is None: for cls in ThreadPoolTestCase, RaceConditionTestCase: setattr(cls, 'skip', "No thread support, nothing to test here") else: import threading from twisted.python import threadpool
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.resource_variable_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import gc import os import pickle import numpy as np from tensorflow.core.framework import tensor_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import cpp_shape_inference_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import custom_gradient from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import list_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import momentum from tensorflow.python.training import saver from tensorflow.python.training import training_util from tensorflow.python.util import compat class ResourceVariableOpsTest(test_util.TensorFlowTestCase): def tearDown(self): gc.collect() # This will only contain uncollectable garbage, i.e. reference cycles # involving objects with __del__ defined. self.assertEqual(0, len(gc.garbage)) @test_util.run_deprecated_v1 def testHandleDtypeShapeMatch(self): with self.cached_session(): handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) with self.assertRaises(ValueError): resource_variable_ops.assign_variable_op( handle, constant_op.constant(0.0, dtype=dtypes.float32)).run() with self.assertRaises(ValueError): resource_variable_ops.assign_variable_op(handle, constant_op.constant( [0], dtype=dtypes.int32)).run() resource_variable_ops.assign_variable_op(handle, constant_op.constant( 0, dtype=dtypes.int32)).run() def testGPUInt64(self): if not context.context().num_gpus(): return with context.eager_mode(), context.device("gpu:0"): v = resource_variable_ops.ResourceVariable(1, dtype=dtypes.int64) self.assertAllEqual(1, v.numpy()) def testEagerNameNotIdentity(self): with context.eager_mode(): v0 = resource_variable_ops.ResourceVariable(1.0, name="a") v1 = resource_variable_ops.ResourceVariable(2.0, name="a") self.assertAllEqual(v0.numpy(), 1.0) self.assertAllEqual(v1.numpy(), 2.0) def testEagerNameNotNeeded(self): with context.eager_mode(): v0 = resource_variable_ops.ResourceVariable(1.0) self.assertAllEqual(v0.numpy(), 1.0) def testReadVariableDtypeMismatchEager(self): with context.eager_mode(): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1], name="foo") resource_variable_ops.assign_variable_op(handle, 1) with self.assertRaisesRegexp(errors.InvalidArgumentError, "Trying to read variable with wrong dtype. " "Expected float got int32."): _ = resource_variable_ops.read_variable_op(handle, dtype=dtypes.float32) def testEagerInitializedValue(self): with context.eager_mode(): variable = resource_variable_ops.ResourceVariable(1.0, name="eager-init") self.assertAllEqual(variable.numpy(), 1.0) self.assertAllEqual(variable.initialized_value().numpy(), 1.0) def testEagerBool(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable(False, name="bool_test") self.assertAllEqual(bool(v), False) def testEagerDeepCopy(self): with context.eager_mode(): init_value = np.ones((4, 4, 4)) variable = resource_variable_ops.ResourceVariable(init_value, name="init") copied_variable = copy.deepcopy(variable) copied_variable.assign(4 * np.ones((4, 4, 4))) # Copying the variable should create a new underlying tensor with distinct # values. self.assertFalse(np.allclose(variable.numpy(), copied_variable.numpy())) @test_util.run_deprecated_v1 def testGraphDeepCopy(self): with self.cached_session(): init_value = np.ones((4, 4, 4)) variable = resource_variable_ops.ResourceVariable(init_value, name="init") with self.assertRaises(NotImplementedError): copy.deepcopy(variable) @test_util.run_in_graph_and_eager_modes def testStridedSliceAssign(self): v = resource_variable_ops.ResourceVariable([1.0, 2.0]) self.evaluate(variables.global_variables_initializer()) self.evaluate(v[0].assign(2.0)) self.assertAllEqual(self.evaluate(v), [2.0, 2.0]) @test_util.run_in_graph_and_eager_modes def testVariableShape(self): v = resource_variable_ops.ResourceVariable([1., 1.]) self.assertAllEqual( tensor_util.constant_value( resource_variable_ops.variable_shape(v.handle)), [2]) @test_util.run_deprecated_v1 def testDifferentAssignGraph(self): with ops.Graph().as_default(): v = resource_variable_ops.ResourceVariable(1.0) ops.reset_default_graph() v.assign(2.0) # Note: this fails if we run convert_to_tensor on not the # variable graph. @test_util.run_deprecated_v1 def testFetchHandle(self): with self.cached_session(): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1], name="foo") self.assertGreater(len(handle.eval()), 0) @test_util.run_deprecated_v1 def testCachedValueReadBeforeWrite(self): with self.cached_session() as sess: v = resource_variable_ops.ResourceVariable(0.0, caching_device="cpu:0") self.evaluate(v.initializer) value, _ = sess.run([v, v.assign_add(1.0)]) self.assertAllEqual(value, 0.0) def testAssignVariableDtypeMismatchEager(self): with context.eager_mode(): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1], name="foo") resource_variable_ops.assign_variable_op( handle, constant_op.constant([1])) with self.assertRaisesRegexp(errors.InvalidArgumentError, "Trying to assign variable with wrong " "dtype. Expected int32 got float."): resource_variable_ops.assign_variable_op( handle, constant_op.constant([1.], dtype=dtypes.float32)) def testUnprintableHandle(self): with context.eager_mode(): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1], name="foo") self.assertIn("<unprintable>", str(handle)) self.assertIn("<unprintable>", repr(handle)) @test_util.run_in_graph_and_eager_modes def testDtypeSurvivesIdentity(self): handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) id_handle = array_ops.identity(handle) self.evaluate(resource_variable_ops.assign_variable_op( id_handle, constant_op.constant(0, dtype=dtypes.int32))) def testUnreadOpName(self): v = resource_variable_ops.ResourceVariable(1.0) self.assertNotEqual(v.name, v.assign_add(1.0).name) @test_util.run_in_graph_and_eager_modes def testCreateRead(self): handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) self.evaluate(resource_variable_ops.assign_variable_op( handle, constant_op.constant(1, dtype=dtypes.int32))) value = self.evaluate( resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)) self.assertAllEqual(1, value) @test_util.run_in_graph_and_eager_modes def testManyAssigns(self): handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) create = resource_variable_ops.assign_variable_op( handle, constant_op.constant(1, dtype=dtypes.int32)) with ops.control_dependencies([create]): first_read = resource_variable_ops.read_variable_op( handle, dtype=dtypes.int32) with ops.control_dependencies([first_read]): write = resource_variable_ops.assign_variable_op( handle, constant_op.constant(2, dtype=dtypes.int32)) with ops.control_dependencies([write]): second_read = resource_variable_ops.read_variable_op( handle, dtype=dtypes.int32) f, s = self.evaluate([first_read, second_read]) self.assertEqual(f, 1) self.assertEqual(s, 2) @test_util.run_in_graph_and_eager_modes def testAssignAdd(self): handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) self.evaluate(resource_variable_ops.assign_variable_op( handle, constant_op.constant(1, dtype=dtypes.int32))) self.evaluate(resource_variable_ops.assign_add_variable_op( handle, constant_op.constant(1, dtype=dtypes.int32))) read = self.evaluate( resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32)) self.assertEqual(read, 2) @test_util.run_in_graph_and_eager_modes def testScatterAdd(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_add( handle, [0], constant_op.constant([[2]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[3]]) @test_util.run_in_graph_and_eager_modes def testScatterSub(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_sub( handle, [0], constant_op.constant([[2]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[-1]]) @test_util.run_in_graph_and_eager_modes def testScatterMul(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_mul( handle, [0], constant_op.constant([[5]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[5]]) def testEagerPickle(self): with context.eager_mode(): tmp_dir = self.get_temp_dir() fname = os.path.join(tmp_dir, "var.pickle") with open(fname, "wb") as f: v = resource_variable_ops.ResourceVariable( 10.0, dtype=dtypes.float16, name="v") pickle.dump(v, f) with open(fname, "rb") as f: new_v = pickle.load(f) self.assertEqual(new_v.name, v.name) self.assertEqual(new_v.shape, v.shape) self.assertEqual(new_v.dtype, v.dtype) self.assertEqual(new_v.trainable, v.trainable) self.assertAllEqual(new_v.numpy(), v.numpy()) @test_util.run_in_graph_and_eager_modes def testScatterDiv(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_div( handle, [0], constant_op.constant([[3]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[2]]) def testUseResource(self): v = variables.VariableV1(1.0, use_resource=True) self.assertTrue(isinstance(v, resource_variable_ops.ResourceVariable)) def testEagerNoUseResource(self): with context.eager_mode(): v = variables.Variable(1.0) self.assertTrue(isinstance(v, resource_variable_ops.ResourceVariable)) @test_util.run_in_graph_and_eager_modes def testScatterMin(self): with ops.device("cpu:0"): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op(handle, constant_op.constant( [[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_min(handle, [0], constant_op.constant( [[3]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[3]]) def testMetagraph(self): with ops.Graph().as_default(): with variable_scope.variable_scope("foo", use_resource=True): a = variable_scope.get_variable("a", initializer=10.0) momentum.MomentumOptimizer( learning_rate=0.001, momentum=0.1).minimize( a, colocate_gradients_with_ops=True, global_step=training_util.get_or_create_global_step()) graph = ops.get_default_graph() meta_graph_def = saver.export_meta_graph(graph=graph) with ops.Graph().as_default(): saver.import_meta_graph(meta_graph_def, import_scope="") meta_graph_two = saver.export_meta_graph(graph=graph) self.assertEqual(meta_graph_def, meta_graph_two) @test_util.run_in_graph_and_eager_modes def testScatterMax(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_max( handle, [0], constant_op.constant([[3]], dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[6]]) @test_util.run_in_graph_and_eager_modes def testScatterAddScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_add( handle, [0], constant_op.constant(2, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[3]]) @test_util.run_in_graph_and_eager_modes def testScatterSubScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_sub( handle, [0], constant_op.constant(2, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[-1]]) @test_util.run_in_graph_and_eager_modes def testScatterMulScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[1]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_mul( handle, [0], constant_op.constant(5, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[5]]) @test_util.run_in_graph_and_eager_modes def testScatterDivScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_div( handle, [0], constant_op.constant(3, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[2]]) @test_util.run_in_graph_and_eager_modes def testScatterMinScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_min( handle, [0], constant_op.constant(3, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[3]]) @test_util.run_in_graph_and_eager_modes def testScatterMaxScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op( handle, constant_op.constant([[6]], dtype=dtypes.int32))) self.evaluate( resource_variable_ops.resource_scatter_max( handle, [0], constant_op.constant(3, dtype=dtypes.int32))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.int32) self.assertEqual(self.evaluate(read), [[6]]) @test_util.run_deprecated_v1 def testScatterUpdateString(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.string, shape=[1, 1]) self.evaluate(resource_variable_ops.assign_variable_op( handle, constant_op.constant([["a"]], dtype=dtypes.string))) self.evaluate(resource_variable_ops.resource_scatter_update( handle, [0], constant_op.constant([["b"]], dtype=dtypes.string))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.string) self.assertEqual(compat.as_bytes(self.evaluate(read)[0][0]), compat.as_bytes("b")) @test_util.run_deprecated_v1 def testScatterUpdateStringScalar(self): handle = resource_variable_ops.var_handle_op( dtype=dtypes.string, shape=[1, 1]) self.evaluate( resource_variable_ops.assign_variable_op(handle, constant_op.constant( [["a"]], dtype=dtypes.string))) self.evaluate( resource_variable_ops.resource_scatter_update(handle, [0], constant_op.constant( "b", dtype=dtypes.string))) read = resource_variable_ops.read_variable_op(handle, dtype=dtypes.string) self.assertEqual( compat.as_bytes(self.evaluate(read)[0][0]), compat.as_bytes("b")) # TODO(alive): get this to work in Eager mode. def testGPU(self): with test_util.use_gpu(): abc = variable_scope.get_variable( "abc", shape=[1], initializer=init_ops.ones_initializer(), use_resource=True) self.evaluate(variables.global_variables_initializer()) self.assertEqual( self.evaluate( resource_variable_ops.var_is_initialized_op(abc.handle)), True) def testScatterBool(self): with context.eager_mode(): ref = resource_variable_ops.ResourceVariable( [False, True, False], trainable=False) indices = math_ops.range(3) updates = constant_op.constant([True, True, True]) state_ops.scatter_update(ref, indices, updates) self.assertAllEqual(ref.read_value(), [True, True, True]) @test_util.run_in_graph_and_eager_modes def testConstraintArg(self): constraint = lambda x: x v = resource_variable_ops.ResourceVariable( initial_value=lambda: 1, constraint=constraint, name="var0") self.assertEqual(v.constraint, constraint) constraint = 0 with self.assertRaises(ValueError): v = resource_variable_ops.ResourceVariable( initial_value=lambda: 1, constraint=constraint, name="var1") # TODO(alive): how should this work in Eager mode? @test_util.run_deprecated_v1 def testInitFn(self): with self.cached_session(): v = resource_variable_ops.ResourceVariable( initial_value=lambda: 1, dtype=dtypes.float32) self.assertEqual(v.handle.op.colocation_groups(), v.initializer.inputs[1].op.colocation_groups()) def testHandleNumpy(self): with context.eager_mode(): with self.assertRaises(ValueError): resource_variable_ops.ResourceVariable( 1.0, name="handle-numpy").handle.numpy() def testCountUpTo(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable(0, name="upto") self.assertAllEqual(v.count_up_to(1), 0) with self.assertRaises(errors.OutOfRangeError): v.count_up_to(1) def testCountUpToFunction(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable(0, name="upto") self.assertAllEqual(state_ops.count_up_to(v, 1), 0) with self.assertRaises(errors.OutOfRangeError): state_ops.count_up_to(v, 1) @test_util.run_in_graph_and_eager_modes def testInitFnDtype(self): v = resource_variable_ops.ResourceVariable( initial_value=lambda: 1, dtype=dtypes.float32, name="var0") self.assertEqual(dtypes.float32, v.value().dtype) @test_util.run_in_graph_and_eager_modes def testInitFnNoDtype(self): v = resource_variable_ops.ResourceVariable(initial_value=lambda: 1, name="var2") self.assertEqual(dtypes.int32, v.value().dtype) @test_util.run_in_graph_and_eager_modes def testInitializeAllVariables(self): v = resource_variable_ops.ResourceVariable(1, dtype=dtypes.float32, name="var0") self.evaluate(variables.global_variables_initializer()) self.assertEqual(1.0, self.evaluate(v.value())) @test_util.run_in_graph_and_eager_modes def testOperatorOverload(self): v = resource_variable_ops.ResourceVariable(1.0, name="var0") self.evaluate(variables.global_variables_initializer()) self.assertEqual(2.0, self.evaluate(v + v)) @test_util.run_in_graph_and_eager_modes def testAssignMethod(self): v = resource_variable_ops.ResourceVariable(1.0, name="var0") self.evaluate(variables.global_variables_initializer()) self.evaluate(v.assign(2.0)) self.assertEqual(2.0, self.evaluate(v.value())) # Tests for the 'read_value' argument: assign_with_read = v.assign(3.0, read_value=True) self.assertEqual(3.0, self.evaluate(assign_with_read)) assign_without_read = v.assign(4.0, read_value=False) if context.executing_eagerly(): self.assertIsNone(assign_without_read) else: self.assertIsInstance(assign_without_read, ops.Operation) self.evaluate(assign_without_read) self.assertEqual(4.0, self.evaluate(v.value())) @test_util.run_in_graph_and_eager_modes def testLoad(self): v = resource_variable_ops.ResourceVariable(1.0, name="var0") self.evaluate(variables.global_variables_initializer()) v.load(2.0) self.assertEqual(2.0, self.evaluate(v.value())) def testShapePassedToGradient(self): with ops.Graph().as_default(): @custom_gradient.custom_gradient def differentiable_scatter_update(handle, indices, values): with ops.control_dependencies([ resource_variable_ops.resource_scatter_update( handle, indices, values)]): new_handle = array_ops.identity(handle) def grad(dresult): self.assertIsNotNone( tensor_util.constant_value(dresult.dense_shape)) return [dresult, None, None] return new_handle, grad var = variable_scope.get_variable( "foo", shape=[20], initializer=init_ops.zeros_initializer, dtype=dtypes.float64, use_resource=True) indices = math_ops.range(10) updates = math_ops.range(9, -1, -1, dtype=dtypes.float64) new_handle = differentiable_scatter_update(var.handle, indices, updates) gathered = resource_variable_ops.resource_gather( new_handle, indices, dtype=var.dtype) gradients_impl.gradients([gathered], [updates]) def testToFromProtoCachedValue(self): with ops.Graph().as_default(): v_def = resource_variable_ops.ResourceVariable( initial_value=constant_op.constant(3.0)).to_proto() v_prime = resource_variable_ops.ResourceVariable(variable_def=v_def) self.assertTrue(getattr(v_prime, "_cached_value", None) is None) other_v_def = resource_variable_ops.ResourceVariable( caching_device="cpu:0", initial_value=constant_op.constant(3.0)).to_proto() other_v_prime = resource_variable_ops.ResourceVariable( variable_def=other_v_def) self.assertTrue(other_v_prime._cached_value is not None) def testVariableDefInitializedInstances(self): with ops.Graph().as_default(), self.cached_session() as sess: v_def = resource_variable_ops.ResourceVariable( initial_value=constant_op.constant(3.0)).to_proto() with ops.Graph().as_default(), self.cached_session() as sess: # v describes a VariableDef-based variable without an initial value. v = resource_variable_ops.ResourceVariable(variable_def=v_def) self.assertEqual(3.0, self.evaluate(v.initialized_value())) # initialized_value should not rerun the initializer_op if the variable # has already been initialized elsewhere. self.evaluate(v.assign(1.0)) self.assertEqual(1.0, v.initialized_value().eval()) v_def.ClearField("initial_value_name") with ops.Graph().as_default(), self.cached_session() as sess: # Restoring a legacy VariableDef proto that does not have # initial_value_name set should still work. v = resource_variable_ops.ResourceVariable(variable_def=v_def) # We should also be able to re-export the variable to a new meta graph. self.assertProtoEquals(v_def, v.to_proto()) # But attempts to use initialized_value will result in errors. with self.assertRaises(ValueError): self.evaluate(v.initialized_value()) def testTrainableInProto(self): with ops.Graph().as_default(): non_trainable_variable = resource_variable_ops.ResourceVariable( trainable=False, initial_value=constant_op.constant(10.0)) self.assertEqual( False, resource_variable_ops.ResourceVariable( variable_def=non_trainable_variable.to_proto()) .trainable) trainable_variable = resource_variable_ops.ResourceVariable( trainable=True, initial_value=constant_op.constant(10.0)) self.assertEqual( True, resource_variable_ops.ResourceVariable( variable_def=trainable_variable.to_proto()) .trainable) @test_util.run_in_graph_and_eager_modes def testSparseRead(self): init_value = np.reshape(np.arange(np.power(4, 3)), (4, 4, 4)) v = resource_variable_ops.ResourceVariable( constant_op.constant(init_value, dtype=dtypes.int32), name="var3") self.evaluate(variables.global_variables_initializer()) value = self.evaluate(v.sparse_read([0, 3, 1, 2])) self.assertAllEqual(init_value[[0, 3, 1, 2], ...], value) @test_util.run_deprecated_v1 def testToFromProto(self): with self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) self.evaluate(variables.global_variables_initializer()) w = resource_variable_ops.ResourceVariable.from_proto(v.to_proto()) self.assertEquals(2, math_ops.add(w, 1).eval()) self.assertEquals(v._handle, w._handle) self.assertEquals(v._graph_element, w._graph_element) @test_util.run_in_graph_and_eager_modes def testAssignAddMethod(self): v = resource_variable_ops.ResourceVariable(1.0, name="var0") self.evaluate(variables.global_variables_initializer()) self.evaluate(v.assign_add(1.0)) self.assertEqual(2.0, self.evaluate(v.value())) # Tests for the 'read_value' argument: assign_with_read = v.assign_add(1.0, read_value=True) self.assertEqual(3.0, self.evaluate(assign_with_read)) assign_without_read = v.assign_add(1.0, read_value=False) if context.executing_eagerly(): self.assertIsNone(assign_without_read) else: self.assertIsInstance(assign_without_read, ops.Operation) self.evaluate(assign_without_read) self.assertEqual(4.0, self.evaluate(v.value())) @test_util.run_in_graph_and_eager_modes def testAssignSubMethod(self): v = resource_variable_ops.ResourceVariable(3.0, name="var0") self.evaluate(variables.global_variables_initializer()) self.evaluate(v.assign_sub(1.0)) self.assertEqual(2.0, self.evaluate(v.value())) # Tests for the 'read_value' argument: assign_with_read = v.assign_sub(1.0, read_value=True) self.assertEqual(1.0, self.evaluate(assign_with_read)) assign_without_read = v.assign_sub(1.0, read_value=False) if context.executing_eagerly(): self.assertIsNone(assign_without_read) else: self.assertIsInstance(assign_without_read, ops.Operation) self.evaluate(assign_without_read) self.assertEqual(0.0, self.evaluate(v.value())) @test_util.run_in_graph_and_eager_modes @test_util.run_v1_only("b/120545219") def testDestroyResource(self): v = resource_variable_ops.ResourceVariable(3.0, name="var0") self.evaluate(variables.global_variables_initializer()) self.assertEqual(3.0, self.evaluate(v.value())) self.evaluate(resource_variable_ops.destroy_resource_op(v.handle)) with self.assertRaises(errors.FailedPreconditionError): self.evaluate(v.value()) # Handle to a resource not actually created. handle = resource_variable_ops.var_handle_op(dtype=dtypes.int32, shape=[]) # Should raise no exception self.evaluate(resource_variable_ops.destroy_resource_op( handle, ignore_lookup_error=True)) @test_util.run_deprecated_v1 def testAssignDifferentShapes(self): with self.cached_session() as sess, variable_scope.variable_scope( "foo", use_resource=True): var = variable_scope.get_variable("x", shape=[1, 1], dtype=dtypes.float32) placeholder = array_ops.placeholder(dtypes.float32) assign = var.assign(placeholder) sess.run( [assign], feed_dict={placeholder: np.zeros(shape=[2, 2], dtype=np.float32)}) def testAssignDifferentShapesEager(self): with context.eager_mode(): with variable_scope.variable_scope("foo"): var = variable_scope.get_variable("x", shape=[1, 1], dtype=dtypes.float32) with self.assertRaisesRegexp(ValueError, "Shapes.*and.*are incompatible"): assign = var.assign(np.zeros(shape=[2, 2])) self.evaluate(assign) @test_util.run_deprecated_v1 def testDtypeAfterFromProto(self): v = resource_variable_ops.ResourceVariable(2.0) w = resource_variable_ops.ResourceVariable.from_proto(v.to_proto()) self.assertIsInstance(w.dtype, dtypes.DType) self.assertEqual(v.dtype, w.dtype) # TODO(alive): get caching to work in eager mode. @test_util.run_deprecated_v1 def testCachingDevice(self): with ops.device("/job:server/task:1"): v = resource_variable_ops.ResourceVariable( 2.0, caching_device="/job:localhost") self.assertEqual("/job:localhost", v.value().device) with self.assertRaises(ValueError): _ = v.value().op.get_attr("_class") with ops.colocate_with(v.op): w = resource_variable_ops.ResourceVariable( 2.0, caching_device="/job:localhost") self.assertEqual("/job:localhost", w.value().device) with self.assertRaises(ValueError): _ = w.value().op.get_attr("_class") @test_util.run_deprecated_v1 def testSharedName(self): with self.cached_session(): v = resource_variable_ops.ResourceVariable(300.0, name="var4") self.evaluate(variables.global_variables_initializer()) w = resource_variable_ops.var_handle_op( dtype=v.dtype.base_dtype, shape=v.get_shape(), shared_name="var4", # Needed in Eager since we get a unique container name by default. container=ops.get_default_graph()._container) w_read = resource_variable_ops.read_variable_op(w, v.dtype.base_dtype) self.assertEqual(300.0, self.evaluate(w_read)) x = resource_variable_ops.var_handle_op( dtype=v.dtype.base_dtype, shape=v.get_shape(), shared_name="var5", container=ops.get_default_graph()._container) with self.assertRaisesOpError("Resource .*/var5/.* does not exist"): resource_variable_ops.read_variable_op(x, v.dtype.base_dtype).eval() @test_util.run_deprecated_v1 def testSharedNameWithNamescope(self): with self.cached_session(): with ops.name_scope("foo"): v = resource_variable_ops.ResourceVariable(300.0, name="var6") self.assertEqual("foo/var6", v._shared_name) # pylint: disable=protected-access self.assertEqual("foo/var6:0", v.name) self.evaluate(variables.global_variables_initializer()) w = resource_variable_ops.var_handle_op( dtype=v.dtype.base_dtype, shape=v.get_shape(), shared_name="foo/var6", # Needed in Eager since we get a unique container name by default. container=ops.get_default_graph()._container) w_read = resource_variable_ops.read_variable_op(w, v.dtype.base_dtype) self.assertEqual(300.0, self.evaluate(w_read)) @test_util.run_in_graph_and_eager_modes def testShape(self): v = resource_variable_ops.ResourceVariable( name="var4", initial_value=array_ops.ones(shape=[10, 20, 35])) self.assertEqual("(10, 20, 35)", str(v.shape)) self.assertEqual("(10, 20, 35)", str(v.get_shape())) self.assertEqual("(10, 20, 35)", str(v.value().shape)) self.assertEqual("(3, 20, 35)", str(v.sparse_read([0, 1, 2]).shape)) if not context.executing_eagerly(): self.assertEqual( "<unknown>", str(v.sparse_read(array_ops.placeholder(dtypes.int32)).shape)) @test_util.run_deprecated_v1 def testSetInitialValue(self): with self.cached_session(): # Initialize variable with a value different from the initial value passed # in the constructor. v = resource_variable_ops.ResourceVariable(2.0) v.initializer.run(feed_dict={v.initial_value: 3.0}) self.assertEqual(3.0, v.value().eval()) @test_util.run_v1_only("b/120545219") def testControlFlowInitialization(self): """Expects an error if an initializer is in a control-flow scope.""" def cond(i, _): return i < 10 def body(i, _): zero = array_ops.zeros([], dtype=dtypes.int32) v = resource_variable_ops.ResourceVariable(initial_value=zero) return (i + 1, v.read_value()) with self.assertRaisesRegexp(ValueError, "inside a control-flow"): control_flow_ops.while_loop(cond, body, [0, 0]) def testVariableEager(self): with context.eager_mode(): init = array_ops.ones(shape=[10, 20, 35], dtype=dtypes.int32) constraint = lambda x: x with ops.name_scope("foo"): v = resource_variable_ops.ResourceVariable( name="var7", initial_value=init, caching_device="cpu:0", constraint=constraint) # Test properties self.assertEqual(dtypes.int32, v.dtype) self.assertEqual("foo/var7:0", v.name) self.assertAllEqual([10, 20, 35], v.shape.as_list()) self.assertTrue(isinstance(v.handle, ops.EagerTensor)) self.assertEqual(constraint, v.constraint) self.assertAllEqual(init.numpy(), v.read_value().numpy()) self.assertAllEqual(init.numpy(), v.value().numpy()) # Callable init. callable_init = lambda: init * 2 v2 = resource_variable_ops.ResourceVariable( initial_value=callable_init, name="var7") self.assertEqual("var7:0", v2.name) self.assertAllEqual(2 * init.numpy(), v2.read_value().numpy()) # Test assign_add. new_v2_val = v2.assign_add(v.read_value()) self.assertAllEqual(v.read_value().numpy() * 3, new_v2_val.numpy()) # Test assign_sub. new_v2_val = v2.assign_sub(v.read_value()) self.assertAllEqual(v.read_value().numpy() * 2, new_v2_val.numpy()) # Test assign. v2.assign(v.read_value()) self.assertAllEqual(v.read_value().numpy(), v2.read_value().numpy()) # Test load v2.load(2 * v.read_value()) self.assertAllEqual(2 * v.read_value().numpy(), v2.read_value().numpy()) # Test convert_to_tensor t = ops.convert_to_tensor(v) self.assertAllEqual(t.numpy(), v.read_value().numpy()) # Test operations self.assertAllEqual((v * 2).numpy(), (v + v).numpy()) def testContainerEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(initial_value=lambda: 1, name="same") with ops.container("different"): v2 = resource_variable_ops.ResourceVariable(initial_value=lambda: 0, name="same") v2.assign(2) self.assertEqual(1, v1.read_value().numpy()) self.assertEqual(2, v2.read_value().numpy()) def testDestruction(self): with context.eager_mode(): var = resource_variable_ops.ResourceVariable(initial_value=1.0, name="var8") var_handle = var._handle del var with self.assertRaisesRegexp(errors.NotFoundError, r"Resource .* does not exist."): resource_variable_ops.destroy_resource_op(var_handle, ignore_lookup_error=False) def testScatterUpdate(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name="update") state_ops.scatter_update(v, [1], [3.0]) self.assertAllEqual([1.0, 3.0], v.numpy()) def testScatterAddStateOps(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name="add") state_ops.scatter_add(v, [1], [3]) self.assertAllEqual([1.0, 5.0], v.numpy()) def testScatterSubStateOps(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name="sub") state_ops.scatter_sub(v, [1], [3]) self.assertAllEqual([1.0, -1.0], v.numpy()) def testScatterUpdateVariant(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable([ list_ops.empty_tensor_list( element_dtype=dtypes.float32, element_shape=[]) ]) v.scatter_update( ops.IndexedSlices( list_ops.tensor_list_from_tensor([1., 2.], element_shape=[]), 0)) self.assertAllEqual( list_ops.tensor_list_get_item(v[0], 0, element_dtype=dtypes.float32), 1.) def testGroupDoesntForceRead(self): with ops.Graph().as_default(): v = resource_variable_ops.ResourceVariable(1.0) assign = v.assign_add(1.0) g = control_flow_ops.group([assign]) self.assertEqual(g.control_inputs[0].type, "AssignAddVariableOp") def testScatterNdAddStateOps(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable( [1, 2, 3, 4, 5, 6, 7, 8], dtype=dtypes.float32, name="add") indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) expected = np.array([1, 13, 3, 14, 14, 6, 7, 20]) state_ops.scatter_nd_add(v, indices, updates) self.assertAllClose(expected, v.numpy()) def testScatterNdSubStateOps(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable( [1, 2, 3, 4, 5, 6, 7, 8], dtype=dtypes.float32, name="sub") indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) expected = np.array([1, -9, 3, -6, -4, 6, 7, -4]) state_ops.scatter_nd_sub(v, indices, updates) self.assertAllClose(expected, v.numpy()) def testScatterUpdateCast(self): with context.eager_mode(): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name="update") state_ops.scatter_update(v, [1], [3]) self.assertAllEqual([1.0, 3.0], v.numpy()) @test_util.run_in_graph_and_eager_modes def testScatterUpdateInvalidArgs(self): v = resource_variable_ops.ResourceVariable([0, 1, 2, 3], name="update") # The exact error and message differ between graph construction (where the # error is realized during shape inference at graph construction time) and # eager execution (where the error is realized during kernel execution). with self.assertRaisesRegexp(Exception, r"shape.*2.*3"): state_ops.scatter_update(v, [0, 1], [0, 1, 2]) @test_util.run_in_graph_and_eager_modes def testAssignIncompatibleShape(self): v = resource_variable_ops.ResourceVariable([0, 1, 2, 3]) self.evaluate(v.initializer) with self.assertRaisesRegexp(Exception, r"hapes must be equal"): self.assertAllEqual(self.evaluate(v.assign_add(1)), [1, 2, 3, 4]) @test_util.run_in_graph_and_eager_modes @test_util.run_v1_only("b/120545219") def testCopyToGraphUninitialized(self): v = resource_variable_ops.ResourceVariable([0, 1, 2, 3]) copy_to_graph = ops.Graph() with copy_to_graph.as_default(): # Intentionally testing v1 behavior copied = resource_variable_ops.copy_to_graph_uninitialized(v) self.assertEqual(v.name, copied.name) with self.session(copy_to_graph) as session: with self.assertRaises(errors.InvalidArgumentError): session.run(copied.initializer) def create_variant_shape_and_type_data(self): variant_shape_and_type_data = ( cpp_shape_inference_pb2.CppShapeInferenceResult.HandleData()) variant_shape_and_type_data.is_set = True stored_shape = tensor_shape.TensorShape([None, 4]).as_proto() stored_dtype = dtypes.float32.as_datatype_enum # NOTE(ebrevdo): shape_and_type lacks append() in some versions of protobuf. variant_shape_and_type_data.shape_and_type.extend([ cpp_shape_inference_pb2.CppShapeInferenceResult.HandleShapeAndType( shape=stored_shape, dtype=stored_dtype)]) return variant_shape_and_type_data @def_function.function def create_constant_variant(self, value): value = constant_op.constant( tensor_pb2.TensorProto( dtype=dtypes.variant.as_datatype_enum, tensor_shape=tensor_shape.TensorShape([]).as_proto(), variant_val=[ tensor_pb2.VariantTensorDataProto( # Match registration in variant_op_registry.cc type_name=b"int", metadata=np.array(value, dtype=np.int32).tobytes()) ])) return value # TODO(ebrevdo): Add run_in_graph_and_eager_modes once we can create # EagerTensor constants with TensorProto inputs. @test_util.run_in_graph_and_eager_modes() def testVariantInitializer(self): variant_shape_and_type_data = self.create_variant_shape_and_type_data() value = self.create_constant_variant(3) initializer = array_ops.fill([3], value) resource_variable_ops._set_handle_shapes_and_types( # pylint: disable=protected-access initializer, variant_shape_and_type_data, graph_mode=not context.executing_eagerly()) v = resource_variable_ops.ResourceVariable(initializer) read = array_ops.identity(v) read_variant_shape_and_type = ( resource_variable_ops.get_eager_safe_handle_data(read)) self.assertEqual( read_variant_shape_and_type, variant_shape_and_type_data) gather = v.sparse_read([0]) gather_variant_shape_and_type = ( resource_variable_ops.get_eager_safe_handle_data(gather)) self.assertEqual( gather_variant_shape_and_type, variant_shape_and_type_data) # Make sure initializer runs. if not context.executing_eagerly(): self.evaluate(v.initializer) self.evaluate(read.op) self.evaluate(gather.op) if __name__ == "__main__": test.main()
#!/bin/env python # Copyright (C) 2012,2013,2014,2015 Seven Watt <[email protected]> # <http://www.sevenwatt.com> # # This file is part of Plugwise-2-py. # # Plugwise-2-py is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Plugwise-2-py is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Plugwise-2-py. If not, see <http://www.gnu.org/licenses/>. # # The program is a major modification and extension to: # python-plugwise - written in 2011 by Sven Petai <[email protected]> # which itself is inspired by Plugwise-on-Linux (POL): # POL v0.2 - written in 2009 by Maarten Damen <http://www.maartendamen.com> # TODO: # - make communication channel concurrency safe # - return more reasonable responses than response message objects from the functions that don't do so yet # - make message construction syntax better. Fields should only be specified once and contain name so we can serialize response message to dict # - unit tests # - pairing # - support for older firmware versions import re import sys import time import math from datetime import datetime, timedelta import calendar import logging from serial.serialutil import SerialException from swutil.util import * from .protocol import * from .exceptions import * PULSES_PER_KW_SECOND = 468.9385193 DEFAULT_TIMEOUT = 1 class Stick(SerialComChannel): """provides interface to the Plugwise Stick""" def __init__(self, logger, port=0, timeout=DEFAULT_TIMEOUT): self.logger = logger SerialComChannel.__init__(self, port=port, timeout=timeout) self.unjoined = set() self.init() def init(self): """send init message to the stick""" msg = PlugwiseStatusRequest().serialize() self.send_msg(msg) resp = self.expect_response(PlugwiseStatusResponse) self.logger.debug(str(resp)) def send_msg(self, cmd): #log communication done in serialize function of message object. Could be too early! self.logger.debug("SEND %4d %s" % (len(cmd), repr(cmd))) self.write(cmd) resp = self.expect_response(PlugwiseAckResponse) success = False if resp.status.value == 0xC1: success = True return (success, resp.command_counter) def _recv_response(self, retry_timeout=5): await_response = True msg = "" retry_timeout += 1 while await_response: msg += self.readline() # if msg == b"": # logcomm("TOUT '' - <!> Timeout on serial port" ) # raise TimeoutException("Timeout while waiting for response from device") # #debug("read:"+repr(msg)+" with length "+str(len(msg))) # if (msg != b""): # if (msg[-1] != '\n'): # logcomm("lastbyte not 0A") # else: # logcomm("lastbyte is 0A") # try: # logcomm("last bytes: %04X %04X" % (ord(msg[-2]), ord(msg[-1]))) # except: # logcomm("last byte : %04X" % (ord(msg[-1]),)) # pass # logcomm("counter: %2d" % (retry_timeout,)) if (msg == b"") or (msg[-1] != '\n'): retry_timeout -= 1 if retry_timeout <= 0: if (msg != b""): logcomm("TOUT %4d %s - <!> Timeout on serial port" % ( len(msg), repr(msg))) else: logcomm("TOUT '' - <!> Timeout on serial port" ) raise TimeoutException("Timeout while waiting for response from device") else: continue header_start = msg.find(PlugwiseMessage.PACKET_HEADER5) if header_start < 0: header_start = msg.find(PlugwiseMessage.PACKET_HEADER) if header_start > 0: ### 2011 firmware seems to sometimes send extra \x83 byte before some of the ### response messages but there might a all kinds of chatter going on so just # look for our packet header. Due to protocol errors it might be in the middle of a response logcomm("DSTR %4d %s" % ( len(msg[:header_start]), repr(msg[:header_start]))) msg = msg[header_start:] if msg.find('#') >= 0: logcomm("DTRC %4d %s" % ( len(msg), repr(msg))) msg = "" elif len(msg)<22: # Ignore. It is too short to interpet as a message. # It may be part of Stick debug messages. logcomm("DSHR %4d %s" % ( len(msg), repr(msg))) msg = "" else: #message can be interpreted as response #perform logcomm after interpetation of response #logcomm("RECV %4d %s" % ( len(msg), repr(msg))) await_response = False return msg def is_in_sequence(self, resp, seqnr): if not seqnr is None and resp.command_counter != seqnr: self.logger.info("Out of sequence message. Expected seqnr %s, received seqnr %s" % (seqnr, resp.command_counter)) return False else: return True def expect_response(self, response_class, src_mac=None, seqnr=None, retry_timeout=5): resp = response_class(seqnr) # there's a lot of debug info flowing on the bus so it's # expected that we constantly get unexpected messages while 1: try: #readlen = len(resp) #debug("expecting to read "+str(readlen)+" bytes for msg. "+str(resp)) msg = self._recv_response(retry_timeout) resp.unserialize(msg) if self.is_in_sequence(resp, seqnr) and src_mac is None or src_mac == resp.mac: return resp except ProtocolError as reason: #retry to receive the response logcomm("RERR %4d %s - <!> protocol error: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [1]:"+str(reason)) except OutOfSequenceException as reason: #retry to receive the response logcomm("RERR %4d %s - <!> out of sequence: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [2]:"+str(reason)) except UnexpectedResponse as reason: #response could be an error status message #suppress error logging when expecting a response to ping in case circle is offline if str(reason) != "'expected response code 000E, received code 0000'": self.logger.info("unexpected response [1]:"+str(reason)) else: self.logger.debug("unexpected response [1]:"+str(reason)) if not issubclass(resp.__class__, PlugwiseAckResponse): #Could be an Ack or AckMac or AcqAssociation error code response when same seqnr try: if (len(msg) == 22 and msg[0:1] == b'\x05') or (len(msg) == 23 and msg[0:1] == b'\x83'): ackresp = PlugwiseAckResponse() ackresp.unserialize(msg) if self.is_in_sequence(ackresp, seqnr): return ackresp elif (len(msg) == 38 and msg[0:1] == b'\x05') or(len(msg) == 39 and msg[0:1] == b'\x83'): ackresp = PlugwiseAckMacResponse() ackresp.unserialize(msg) if self.is_in_sequence(ackresp, seqnr): return ackresp else: #it does not appear to be a proper Ack message #just retry to read next message logcomm("RERR %4d %s - <!> unexpected response error: %s" % ( len(msg), repr(msg), str(reason))) pass except ProtocolError as reason: #retry to receive the response logcomm("RERR %4d %s - <!> protocol error while interpreting as Ack: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [3]:"+str(reason)) except OutOfSequenceException as reason: #retry to receive the response logcomm("RERR %4d %s - <!> out of sequence while interpreting as Ack: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [4]:"+str(reason)) except UnexpectedResponse as reason: #response could be an error status message logcomm("RERR %4d %s - <!> unexpected response error while interpreting as Ack: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("unexpected response [2]:"+str(reason)) self.logger.info("TEST: %s" % (resp.function_code,)) if resp.function_code in ['0006', '0061']: #Could be an unsolicited AdvertiseNode or AcqAssociation response try: if resp.function_code == "0006": self.logger.info("entering unknown advertise MAC ") ackresp = PlugwiseAdvertiseNodeResponse() ackresp.unserialize(msg) self.logger.info("unknown advertise MAC %s" % str(ackresp.mac)) if ackresp.mac not in self.unjoined: self.unjoined.add(ackresp.mac) elif resp.function_code == "0061": ackresp = PlugwiseAckAssociationResponse() ackresp.unserialize(msg) self.logger.info("unknown MAC associating %s" % str(ackresp.mac)) else: #it does not appear to be a proper Ack message #just retry to read next message logcomm("RERR %4d %s - <!> unexpected response error: %s" % ( len(msg), repr(msg), str(reason))) pass except ProtocolError as reason: #retry to receive the response logcomm("RERR %4d %s - <!> protocol error while interpreting as Advertise: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [5]:"+str(reason)) except OutOfSequenceException as reason: #retry to receive the response logcomm("RERR %4d %s - <!> out of sequence while interpreting as Advertise: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("protocol error [6]:"+str(reason)) except UnexpectedResponse as reason: #response could be an error status message logcomm("RERR %4d %s - <!> unexpected response error while interpreting as Advertise: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("unexpected response [3]:"+str(reason)) else: logcomm("RERR %4d %s - <!> unexpected response error while expecting Ack: %s" % ( len(msg), repr(msg), str(reason))) self.logger.info("unexpected response [4]:"+str(reason)) def enable_joining(self, enabled): req = PlugwiseEnableJoiningRequest('', enabled) _, seqnr = self.send_msg(req.serialize()) self.expect_response(PlugwiseAckMacResponse) def join_node(self, newmac, permission): req = PlugwiseJoinNodeRequest(newmac, permission) _, seqnr = self.send_msg(req.serialize()) #No response other then normal ack #After this an unsollicted 0061 response from the circle may be received. def reset(self): type = 0 req = PlugwiseResetRequest(self.mac, type, 20) _, seqnr = self.send_msg(req.serialize()) resp = self.expect_response(PlugwiseAckMacResponse) return resp.status.value def status(self): req = PlugwiseStatusRequest(self.mac) _, seqnr = self.send_msg(req.serialize()) #TODO: There is a short and a long response to 0011. #The short reponse occurs when no cirlceplus is connected, and has two byte parameters. #The short repsonse is likely not properly handled (exception?) resp = self.expect_response(PlugwiseStatusResponse) return def find_circleplus(self): req = PlugwiseQueryCirclePlusRequest(self.mac) _, seqnr = self.send_msg(req.serialize()) #Receive the circle+ response, but possibly, only an end-protocol response is seen. success = False circleplusmac = None try: resp = self.expect_response(PlugwiseQueryCirclePlusResponse) success=True circleplusmac = resp.new_node_mac_id.value except (TimeoutException, SerialException) as reason: self.logger.info("Error: %s, %s" % (datetime.datetime.now().isoformat(), str(reason),)) return success,circleplusmac def connect_circleplus(self): req = PlugwiseConnectCirclePlusRequest(self.mac) _, seqnr = self.send_msg(req.serialize()) resp = self.expect_response(PlugwiseConnectCirclePlusResponse) return resp.existing.value, self.allowed.value class Circle(object): """provides interface to the Plugwise Plug & Plug+ devices """ def __init__(self, logger, mac, comchan, attr): """ will raise ValueError if mac doesn't look valid """ self.logger = logger mac = str(mac).upper() if self._validate_mac(mac) == False: raise ValueError("MAC address is in unexpected format: "+str(mac)) self.mac = sc(mac) #debug("self.mac %s" % (type(self.mac),)) #debug("mac %s" % (type(mac),)) self._comchan = comchan self.attr = attr self._devtype = None self.gain_a = None self.gain_b = None self.off_noise = None self.off_tot = None self.scheduleCRC = None self.schedule = None self.joined = False self.online = False self.initialized = False self.relay_state = '?' self.switch_state = '?' self.schedule_state = '?' if self.attr.get('always_on','False') != 'False': #self.relay_state = 'on' self.schedule_state = 'off' self.last_seen = calendar.timegm(datetime.datetime.utcnow().utctimetuple()) self.last_log = 0 self.last_log_idx = 0 self.last_log_ts = 0 self.power = [0, 0, 0, 0] self.power_ts = 0 self.interval=60 self.usage=True self.production=False self.reinit() def reinit(self): #self.get_info() called by _get_interval try: self._get_interval() self.online = True self.initialized = True except (ValueError, TimeoutException, SerialException, AttributeError) as reason: self.online = False self.initialized = False self.logger.info("OFFLINE Circle '%s' during initialization Error: %s" % (self.attr['name'], str(reason))) def get_status(self): retd = {} retd["mac"] = self.mac retd["type"] = self.type() retd["name"] = self.attr["name"] retd["location"] = self.attr["location"] retd["online"] = self.online retd["lastseen"] = self.last_seen retd["readonly"] = (self.attr['always_on'] != 'False') retd["switch"] = self.relay_state retd["switchreq"] = self.switch_state retd["schedule"] = self.schedule_state if self.schedule != None: retd["schedname"] = self.schedule.name else: retd["schedname"] = "" now = calendar.timegm(datetime.datetime.utcnow().utctimetuple()) tdelta = now - self.power_ts # if tdelta < 60: # retd["power"] = self.power[1] # 8-seconds value # elif tdelta < 10800: # retd["power"] = self.power[2] - self.power[3] # 1 hour value value # else: # retd["power"] = 0 # clear value retd["power1s"] = round(self.power[0], 3) retd["power8s"] = round(self.power[1], 3) retd["power1h"] = round(self.power[2] - self.power[3], 3) retd["powerts"] = self.power_ts retd["production"] = self.production retd["interval"] = self.interval return retd def dump_status(self): retd = {} for key in dir(self): ptr = getattr(self, key) if key == 'schedule' and not ptr == None: retd[key] = ptr.dump_status() continue #if isinstance(ptr, int): if not hasattr(ptr, '__call__') and not key[0] == '_': retd[key] = ptr return retd def _validate_mac(self, mac): if not re.match("^[A-F0-9]+$", mac): return False try: _ = int(mac, 16) except ValueError: return False return True def _expect_response(self, response_class, seqnr): retry_count = 1 retry_timeout = 5 #allow 5+1 seconds for timeout #instead of expected response a status message with correct seqnr may be received #the common case is the offline status 'E1' #it appears that in case of bad networks the expected response competes with #the offline status. Sometimes the proper response arrives just (<1s) after #the offline status. #the while loop is intended to deal with this situation. while retry_count >= 0: retry_count -= 1 try: resp = self._comchan.expect_response(response_class, self.mac, seqnr, retry_timeout) except (TimeoutException, SerialException) as reason: if self.online: self.logger.info("OFFLINE Circle '%s'." % (self.attr['name'],)) self.online = False raise TimeoutException("Timeout while waiting for response from circle '%s'" % (self.attr['name'],)) if not isinstance(resp, response_class): #error status returned if resp.status.value == 0xE1: self.logger.debug("Received an error status '%04X' from circle '%s' - Network slow or circle offline - Retry receive ..." % (resp.status.value, self.attr['name'])) retry_timeout = 1 #allow 1+1 seconds for timeout after an E1. else: self.logger.info("Received an error status '%04X' from circle '%s' with correct seqnr - Retry receive ..." % (resp.status.value, self.attr['name'])) else: ts_now = calendar.timegm(datetime.datetime.utcnow().utctimetuple()) if not self.online: self.logger.info("ONLINE Circle '%s' after %d seconds." % (self.attr['name'], ts_now - self.last_seen)) self.online = True #self.last_seen = (datetime.datetime.utcnow()-datetime.timedelta(seconds=time.timezone)).isoformat() self.last_seen = ts_now return resp #we only end here when multiple ack or ackmac messages are generated before the real response if self.online: self.logger.info("OFFLINE Circle '%s'." % (self.attr['name'],)) self.online = False #TODO: Replace timeout exception by more specific exception raise TimeoutException("Received multiple error messages from circle '%s'" % (self.attr['name'],)) def map_type(self, devtype): types = dict({0: 'stick', 1: 'circle+', 2: 'circle'}) return types[devtype] def _type(self): if self._devtype is None: self.get_info() return self._devtype def type(self): return self.map_type(self._type()) def pulse_correction(self, pulses, seconds=1): """correct pulse count with Circle specific calibration offsets @param pulses: pulse counter @param seconds: over how many seconds were the pulses counted """ self.logger.debug("PULSE: uncorrected: %.3f" % (pulses,)) if pulses == 0: return 0.0 if self.gain_a is None: self.calibrate() pulses /= float(seconds) corrected_pulses = seconds * (((((pulses + self.off_noise)**2) * self.gain_b) + ((pulses + self.off_noise) * self.gain_a)) + self.off_tot) self.logger.debug("PULSE: corrected: %.3f" % (pulses/seconds,)) self.logger.debug("PULSE: t corrected: %.3f" % (pulses,)) if (pulses > 0.0 and corrected_pulses < 0.0 or pulses < 0.0 and corrected_pulses > 0.0): return 0.0 return corrected_pulses def pulses_to_kWs(self, pulses): """converts the pulse count to kWs """ # pulses -> kWs kWs = pulses/PULSES_PER_KW_SECOND return kWs def watt_to_pulses(self, watt, seconds=1): """correct pulse count with Circle specific calibration offsets @param watt: power in watts to convert to pulses @param seconds: over how many seconds will the pulses be counted """ if watt == 0: return 0.0 if self.gain_a is None: self.calibrate() corr_pulses_1s = watt * PULSES_PER_KW_SECOND / 1000.0 raw_pulses_1s = (math.sqrt(self.gain_a**2.0 + 4.0 * self.gain_b * (corr_pulses_1s - self.off_tot)) - self.gain_a - 2.0 * self.gain_b * self.off_noise) / (2.0 * self.gain_b); if (corr_pulses_1s > 0.0 and raw_pulses_1s < 0.0 or corr_pulses_1s < 0.0 and raw_pulses_1s > 0.0): return 0.0 return seconds*raw_pulses_1s def calibrate(self): """fetch calibration info from the device """ msg = PlugwiseCalibrationRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) calibration_response = self._expect_response(PlugwiseCalibrationResponse, seqnr) retl = [] for x in ('gain_a', 'gain_b', 'off_noise', 'off_tot'): val = getattr(calibration_response, x).value retl.append(val) setattr(self, x, val) return retl def get_pulse_counters(self): """return pulse counters for 1s interval, 8s interval and for the current hour, both usage and production as a tuple """ msg = PlugwisePowerUsageRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwisePowerUsageResponse, seqnr) p1s, p8s, p1h, pp1h = resp.pulse_1s.value, resp.pulse_8s.value, resp.pulse_hour.value, resp.pulse_prod_hour.value if self.attr['production'] == 'False': pp1h = 0 return (p1s, p8s, p1h, pp1h) def get_power_usage(self): """returns power usage for the last second in Watts might raise ValueError if reading the pulse counters fails """ pulse_1s, pulse_8s, pulse_1h, pulse_prod_1h = self.get_pulse_counters() kw_1s = 1000*self.pulses_to_kWs(self.pulse_correction(pulse_1s)) self.logger.debug("POWER: 1s: %.3f" % (kw_1s,)) kw_8s = 1000*self.pulses_to_kWs(self.pulse_correction(pulse_8s, 8))/8.0 self.logger.debug("POWER: 8s: %.3f" % (kw_8s,)) kw_1h = 1000*self.pulses_to_kWs(self.pulse_correction(pulse_1h, 3600))/3600.0 self.logger.debug("POWER: 1h: %.3f" % (kw_1h,)) kw_p_1h = 1000*self.pulses_to_kWs(self.pulse_correction(pulse_prod_1h, 3600))/3600.0 self.logger.debug("POWER: prod 1h: %.3f" % (kw_p_1h,)) self.power = [kw_1s, kw_8s, kw_1h, kw_p_1h] self.power_ts = calendar.timegm(datetime.datetime.utcnow().utctimetuple()) #just return negative values. It is production return (kw_1s, kw_8s, kw_1h, kw_p_1h) def get_info(self): """fetch relay state & current logbuffer index info """ def map_hz(hz_raw): if hz_raw == 133: return 50 elif hz_raw == 197: return 60 def relay(state): states = dict({0: 'off', 1: 'on'}) return states[state] msg = PlugwiseInfoRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwiseInfoResponse, seqnr) retd = response_to_dict(resp) retd['hz'] = map_hz(retd['hz']) self._devtype = retd['type'] retd['type'] = self.map_type(retd['type']) retd['relay_state'] = relay(retd['relay_state']) self.relay_state = retd['relay_state'] if self.attr['always_on'] != 'False' and self.relay_state == 'off': return False return retd def get_clock(self): """fetch current time from the device """ msg = PlugwiseClockInfoRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwiseClockInfoResponse, seqnr) self.scheduleCRC = resp.scheduleCRC.value self.logger.debug("Circle %s get clock to %s" % (self.attr['name'], resp.time.value.isoformat())) return resp.time.value def set_clock(self, dt): """set clock to the value indicated by the datetime object dt """ self.logger.debug("Circle %s set clock to %s" % (self.attr['name'], dt.isoformat())) msg = PlugwiseClockSetRequest(self.mac, dt).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwiseAckMacResponse, seqnr) #status = '00D7' return dt def switch(self, on): """switch power on or off @param on: new state, boolean """ self.logger.info("API %s %s circle switch: %s" % (self.mac, self.attr["name"], 'on' if on else 'off',)) if not isinstance(on, bool): return False if self.attr['always_on'] != 'False' and on != True: return False req = PlugwiseSwitchRequest(self.mac, on) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseAckMacResponse, seqnr) if on == True: if resp.status.value != 0xD8: self.logger.info("Wrong switch status reply when switching on. expected '00D8', received '%04X'" % (resp.status.value,)) self.switch_state = 'on' self.relay_state = 'on' self.schedule_state = 'off' else: if resp.status.value != 0xDE: self.logger.info("Wrong switch status reply when switching off. expected '00DE', received '%04X'" % (resp.status.value,)) self.switch_state = 'off' self.relay_state = 'off' self.schedule_state = 'off' return def switch_on(self): self.switch(True) #status = '00D8' def switch_off(self): self.switch(False) #status = '00DE' def get_power_usage_history(self, log_buffer_index=None, start_dt=None): """Reads power usage information from the given log buffer address at the Circle. Each log buffer contains the power usage data for 4 intervals, some of which might not be filled yet. The intervals can contain values for usage, or values for both usage and production. Production values are negative, and have the same timestamp as their preceding usage value. The default is usage only with a 3600 sec = 1 hour interval. The interval and production can be set with set_log_interval(). @param log_buffer_index: index of the first log buffer to return. If None then current log buffer index is used @return: list of (datetime|None, average-watt-in-interval, watt-hours-in-this-interval) tuples. If the first tuple element is None it means this buffer isn't written yet and the second and third value are undefined in that case. """ if log_buffer_index is None: info_resp = self.get_info() log_buffer_index = info_resp['last_logaddr'] #the cur-pos may not be complete. if log_buffer_index > 0: log_buffer_index -= 1 log_req = PlugwisePowerBufferRequest(self.mac, log_buffer_index).serialize() _, seqnr = self._comchan.send_msg(log_req) resp = self._expect_response(PlugwisePowerBufferResponse, seqnr) intervals = [] dts = [] pulses = [] if start_dt is None: prev_dt = getattr(resp, "logdate1").value else: prev_dt = start_dt if prev_dt is None: self.logger.info("get_power_usage_history: empty first entry in power buffer") return [] prev2_dt = prev_dt both = False for i in range(0, 4): dt = getattr(resp, "logdate%d" % (i+1,)).value if not dt is None: dts.append(dt) pulses.append(getattr(resp, "pulses%d" % (i+1,)).value) if prev_dt == dts[i]: both = True intervals.append((dts[i]-prev2_dt).total_seconds()) else: intervals.append((dts[i]-prev_dt).total_seconds()) prev2_dt = prev_dt prev_dt = dts[i] retl = [] for i in range(0, len(dts)): #first two elements of interval may be zero. Derive intervals #try to get it from intervals within the four readings #otherwise assume 60 minutes. if intervals[i] == 0: if len(dts)>i+1 and dts[i] == dts[i+1]: if len(dts)>i+2: intervals[i] = (dts[i+2]-dts[i]).total_seconds() else: intervals[i]=3600 elif len(dts)>i+1: intervals[i] = (dts[i+1]-dts[i]).total_seconds() else: intervals[i]=3600 corrected_pulses = self.pulse_correction(pulses[i], intervals[i]) watt = self.pulses_to_kWs(corrected_pulses)/intervals[i]*1000 watthour = self.pulses_to_kWs(corrected_pulses)/3600*1000 retl.append((dts[i], watt, watthour)) return retl def get_power_usage_history_raw(self, log_buffer_index=None): """Reads the raw interpreted power usage information from the given log buffer address at the Circle. This function reads (check!) 64 bytes of memory. The function can be used to make a total memory dump of the circle, as increasing addresses causes a wrap around. @param log_buffer_index: index of the first log buffer to return. If None then current log buffer index is used @return: list of hexadecimal (single string?) bytes """ if log_buffer_index is None: info_resp = self.get_info() log_buffer_index = info_resp['last_logaddr'] log_req = PlugwisePowerBufferRequest(self.mac, log_buffer_index).serialize() _, seqnr = self._comchan.send_msg(log_req) resp = self._expect_response(PlugwisePowerBufferResponseRaw, seqnr) retl = getattr(resp, "raw").value return retl def set_log_interval(self, interval, production=False): """set log interval in minutes for usage and production @param interval: the loginterval in minutes. @param production: boolean to indicate logging for production. False: Usage logging only. True: Usage and Production logging. """ msg = PlugwiseLogIntervalRequest(self.mac, interval, interval if production else 0).serialize() _, seqnr = self._comchan.send_msg(msg) return self._expect_response(PlugwiseAckMacResponse, seqnr) #status = '00F8' def get_features(self): """fetch feature set """ msg = PlugwiseFeatureSetRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwiseFeatureSetResponse, seqnr) return resp.features.value def get_circleplus_datetime(self): """fetch current time from the circle+ """ msg = PlugwiseDateTimeInfoRequest(self.mac).serialize() _, seqnr = self._comchan.send_msg(msg) resp = self._expect_response(PlugwiseDateTimeInfoResponse, seqnr) dt = datetime.datetime.combine(resp.date.value, resp.time.value) return dt def set_circleplus_datetime(self, dt): """set circle+ clock to the value indicated by the datetime object dt """ msg = PlugwiseSetDateTimeRequest(self.mac, dt).serialize() _, seqnr = self._comchan.send_msg(msg) return self._expect_response(PlugwiseAckMacResponse, seqnr) #status = '00DF'=ack '00E7'=nack def define_schedule(self, name, scheddata, dst=0): self.logger.info("circle.define_schedule.") self.schedule = Schedule(name, scheddata, self.watt_to_pulses) self.schedule._dst_shift(dst) def undefine_schedule(self): self.schedule = None def load_schedule(self, dst=0): if not self.schedule._pulse is None: self.logger.info("circle.load_schedule. enter function") self.schedule._dst_shift(dst) #TODO: add test on inequality of CRC for idx in range(0,84): chunk = self.schedule._pulse[(8*idx):(8*idx+8)] req = PlugwisePrepareScheduleRequest(idx, chunk) _, seqnr = self._comchan.send_msg(req.serialize()) for idx in range(1,43): req = PlugwiseSendScheduleRequest(self.mac, idx) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseSendScheduleResponse, seqnr) self.logger.info("circle.load_schedule. exit function") def schedule_onoff(self, on): """switch schedule on or off @param on: new state, boolean """ self.logger.info("API %s %s circle schedule %s" % (self.mac, self.attr["name"], 'on' if on else 'off')) if not isinstance(on, bool): return False if self.attr['always_on'] != 'False': return False req = PlugwiseEnableScheduleRequest(self.mac, on) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseAckMacResponse, seqnr) if on == True: if resp.status.value != 0xE4: self.logger.info("Wrong schedule status reply when setting schedule on. expected '00E4', received '%04X'" % (resp.status.value,)) self.schedule_state = 'on' #update self.relay_state self.get_info() else: if resp.status.value != 0xE5: self.logger.info("Wrong schedule status reply when setting schedule off. expected '00E5', received '%04X'" % (resp.status.value,)) self.schedule_state = 'off' return def schedule_on(self): self.schedule_onoff(True) #status = '00E4' def schedule_off(self): self.schedule_onoff(False) #status = '00E5' def set_schedule_value(self, val): """Set complete schedule to a single value. @param val: -1=On 0=Off >0=StandbyKiller threshold in Watt """ #TODO: incorporate this in Schedule object val = self.watt_to_pulses(val) if val>=0 else val req = PlugwiseSetScheduleValueRequest(self.mac, val) _, seqnr = self._comchan.send_msg(req.serialize()) return self._expect_response(PlugwiseAckMacResponse, seqnr) #status = '00FA' def _get_interval(self): self.interval=60 self.usage=True self.production=False info = self.get_info() cur_idx = info['last_logaddr'] if cur_idx < 1: return log = self.get_power_usage_history(cur_idx) if len(log)<3: log = self.get_power_usage_history(cur_idx-1) + log if len(log)<3: self.logger.info("_get_interval: to few entries in power buffer to determine interval") return #self.logger.debug(log) interval = log[-1][0]-log[-2][0] self.usage=True if interval == timedelta(0): interval = log[-1][0]-log[-3][0] self.production=True self.interval = int(interval.total_seconds())/60 def ping(self): """ping circle """ req = PlugwisePingRequest(self.mac) _, seqnr = self._comchan.send_msg(req.serialize()) return self._expect_response(PlugwisePingResponse, seqnr) def read_node_table(self): #Needs to be called on Circle+ nodetable = [] for idx in range(0,64): req = PlugwiseAssociatedNodesRequest(self.mac, idx) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseAssociatedNodesResponse, seqnr) nodetable.append(resp.node_mac_id.value) return nodetable def remove_node(self, removemac): #Needs to be called on Circle+ req = PlugwiseRemoveNodeRequest(self.mac, removemac) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseRemoveNodeResponse, seqnr) return resp.status.value def reset(self): req = PlugwiseResetRequest(self.mac, self._type(), 20) _, seqnr = self._comchan.send_msg(req.serialize()) resp = self._expect_response(PlugwiseAckMacResponse, seqnr) return resp.status.value def response_to_dict(r): retd = {} for key in dir(r): ptr = getattr(r, key) if isinstance(ptr, BaseType): retd[key] = ptr.value return retd class Schedule(object): """Schedule for circles(+) to control timed On/Off/StandByKiller A value per 15 minutes 24/7, 672 values (int) in total -1 = On 0 = Off >0 = StandbyKiller threshold in Watt The objects can exist meaningful in the context of a circle only, as calibration data is required for conversion to pulses and CRC calculation """ def __init__(self, name, scheddata, convertor): """ ...... """ self.name = str(name) self.dst = 0 self._watt = scheddata self._pulse = list(int(convertor(i)) if i>=0 else i for i in self._watt) self._shift_day() self._hex = ''.join(("%04X" % int_to_uint(i,4)) for i in self._pulse) self.CRC = crc_fun(''.join(str(struct.pack('>h',i)) for i in self._pulse)) def dump_status(self): retd = {} retd['name'] = self.name retd['CRC'] = self.CRC retd['schedule'] = self._watt return retd def _shift_day(self): self.logger.info("circle.schedule._shift_day rotate left by one day") #rotate schedule a day to the left self._pulse = self._pulse[96:]+self._pulse[:96] #self.CRC = crc_fun(''.join(str(struct.pack('>h',i)) for i in self._pulse)) def _dst_shift(self, dst): if self.dst and not dst: self.logger.info("circle.schedule._dst_shift rotate right [end of DST]") #rotate schedule 4 quarters right (forward in time) self._pulse = self._pulse[-4:]+self._pulse[:-4] self.CRC = crc_fun(''.join(str(struct.pack('>h',i)) for i in self._pulse)) self.dst = 0 elif not self.dst and dst: self.logger.info("circle.schedule._dst_shift rotate left [start of DST]") #rotate schedule 4 quarters left (backward in time) self._pulse = self._pulse[4:]+self._pulse[:4] self.CRC = crc_fun(''.join(str(struct.pack('>h',i)) for i in self._pulse)) self.dst = 1
from .maybeerror import MaybeError as M from . import functions class ConsList(object): ''' A data structure that supports constant-time first/rest slicing. The input sequence is never copied or modified -- all the slicing does is increment a position counter and create a new wrapper. ''' def __init__(self, seq, start=0): self.seq = seq self.start = start def isEmpty(self): return self.start >= len(self.seq) def first(self): ''' Returns first element. Throws exception if empty. ''' if not self.isEmpty(): return self.seq[self.start] raise ValueError('cannot get first element of empty sequence') def rest(self): ''' Return ConsList of all but the first element. Throws exception if empty. ''' if not self.isEmpty(): return ConsList(self.seq, self.start + 1) raise ValueError('cannot get rest of empty sequence') def getAsList(self): ''' Return list of remaining elements. ''' return list(self.seq[self.start:]) def __eq__(self, other): try: return self.getAsList() == other.getAsList() except: return False def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return repr({ 'type': 'cons list', 'sequence': self.getAsList() }) class Parser(object): ''' A wrapper around a callable of type `[t] -> s -> ME e ([t], s, a)`, to create a `Parser e s (m t) a`. Run the parser using the `parse` method. ''' def __init__(self, parse): self.parse = parse def checkFunction(fName, actual): if not hasattr(actual, '__call__'): obj = { 'message' : 'type error', 'function': fName, 'expected': 'function', 'actual' : actual } raise TypeError(obj) # else: nothing to do def checkParser(fName, actual): if not isinstance(actual, Parser): obj = { 'message' : 'type error', 'function': fName, 'expected': 'Parser', 'actual' : actual } raise TypeError(obj) # else: nothing to do def result(value, rest, state): return {'result': value, 'rest': rest, 'state': state} def good(value, rest, state): return M.pure(result(value, rest, state)) def pure(x): ''' a -> Parser e s (m t) a ''' def f(xs, s): return good(x, xs, s) return Parser(f) # Parser e s (m t) a zero = Parser(functions.const_f(M.zero)) def error(e): ''' e -> Parser e s (m t) a ''' return Parser(functions.const_f(M.error(e))) def fmap(g, parser): ''' (a -> b) -> Parser e s (m t) a -> Parser e s (m t) b ''' checkParser('fmap', parser) checkFunction('fmap', g) def h(r): return result(g(r['result']), r['rest'], r['state']) def f(xs, s): return parser.parse(xs, s).fmap(h) return Parser(f) def bind(parser, g): ''' Parser e s (m t) a -> (a -> Parser e s (m t) b) -> Parser e s (m t) b ''' checkParser('bind', parser) checkFunction('bind', g) def f(xs, s): r = parser.parse(xs, s) val = r.value if r.status == 'success': return g(val['result']).parse(val['rest'], val['state']) else: return r return Parser(f) def check(predicate, parser): ''' (a -> Bool) -> Parser e s (m t) a -> Parser e s (m t) a ''' checkFunction('check', predicate) checkParser('check', parser) return bind(parser, lambda value: pure(value) if predicate(value) else zero) def update(f): ''' (m t -> m t) -> Parser e s (m t) (m t) ''' checkFunction('update', f) def g(xs, s): ys = f(xs) return good(ys, ys, s) return Parser(g) # Parser e s (m t) (m t) get = update(functions.id_f) # m t -> Parser e s (m t) a put = functions.compose(update, functions.const_f) def updateState(g): ''' (s -> s) -> Parser e s (m t) a ''' checkFunction('updateState', g) def f(xs, s): new_state = g(s) return good(new_state, xs, new_state) return Parser(f) # Parser e s (m t) s getState = updateState(functions.id_f) # s -> Parser e s (m t) a putState = functions.compose(updateState, functions.const_f) def many0(parser): ''' Parser e s (m t) a -> Parser e s (m t) [a] ''' checkParser('many0', parser) def f(xs, s): vals = [] tokens = xs state = s while True: r = parser.parse(tokens, state) if r.status == 'success': vals.append(r.value['result']) state = r.value['state'] tokens = r.value['rest'] elif r.status == 'failure': return good(vals, tokens, state) else: # must respect errors return r return Parser(f) def many1(parser): ''' Parser e s (m t) a -> Parser e s (m t) [a] ''' checkParser('many1', parser) return check(lambda x: len(x) > 0, many0(parser)) def seq(parsers): ''' [Parser e s (m t) a] -> Parser e s (m t) [a] ''' for (ix, p) in enumerate(parsers): checkParser('seq-{}'.format(ix), p) def f(xs, s): vals = [] state, tokens = s, xs for p in parsers: r = p.parse(tokens, state) if r.status == 'success': vals.append(r.value['result']) state = r.value['state'] tokens = r.value['rest'] else: return r return good(vals, tokens, state) return Parser(f) def appP(p, *parsers): ''' Parser e s (m t) (a -> ... -> z) -> Parser e s (m t) a -> ... -> Parser e s (m t) z ''' checkParser('appP', p) for (ix, parser) in enumerate(parsers): checkParser('appP-{}'.format(ix), parser) def g(f): return fmap(lambda args: f(*args), seq(parsers)) return bind(p, g) def app(f, *args): ''' (a -> ... -> z) -> Parser e s (m t) a -> ... -> Parser e s (m t) z ''' checkFunction('app', f) return appP(pure(f), *args) def seq2L(p1, p2): ''' Parser e s (m t) a -> Parser e s (m t) b -> Parser e s (m t) a ''' checkParser('seq2L', p1) checkParser('seq2L', p2) return app(functions.first, p1, p2) def seq2R(p1, p2): ''' Parser e s (m t) a -> Parser e s (m t) b -> Parser e s (m t) b ''' checkParser('seq2R', p1) checkParser('seq2R', p2) return app(functions.second, p1, p2) def repeat(count, parser): ''' Int -> Parser e s (m t) a -> Parser e s (m t) [a] ''' checkParser('repeat', parser) return seq(functions.replicate(count, parser)) def lookahead(parser): ''' Parser e s (m t) a -> Parser e s (m t) a ''' checkParser('lookahead', parser) def g(xs): def h(s): return app(lambda a, _1, _2: a, parser, put(xs), putState(s)) return bind(getState, h) return bind(get, g) def not0(parser): ''' Parser e s (m t) a -> Parser e s (m t) None ''' checkParser('not0', parser) def f(xs, s): r = parser.parse(xs, s) if r.status == 'error': return r elif r.status == 'success': return M.zero else: return good(None, xs, s) return Parser(f) def alt(parsers): ''' [Parser e s (m t) a] -> Parser e s (m t) a ''' for (ix, p) in enumerate(parsers): checkParser('alt-{}'.format(ix), p) def f(xs, s): r = M.zero for p in parsers: r = p.parse(xs, s) if r.status in ['success', 'error']: return r return r return Parser(f) def optional(parser, default=None): ''' Parser e s (m t) a -> a -> Parser e s (m t) a ''' checkParser('optional', parser) return alt([parser, pure(default)]) def catchError(parser, f): ''' Parser e s (m t) a -> (e -> Parser e s (m t) a) -> Parser e s (m t) a ''' checkFunction('catchError', f) checkParser('catchError', parser) def g(xs, s): v = parser.parse(xs, s) if v.status == 'error': return f(v.value).parse(xs, s) return v return Parser(g) def mapError(f, parser): ''' (e -> e) -> Parser e s (m t) a -> Parser e s (m t) a ''' checkFunction('mapError', f) checkParser('mapError', parser) return catchError(parser, functions.compose(error, f)) def commit(e, parser): ''' e -> Parser e s (m t) a -> Parser e s (m t) a ''' checkParser('commit', parser) return alt([parser, error(e)]) def addError(e, parser): ''' e -> Parser [e] s (m t) a -> Parser [e] s (m t) a assumes errors are lists ''' checkParser('addError', parser) return mapError(lambda es: functions.cons(e, es), parser) def sepBy1(parser, separator): ''' Parser e s (m t) a -> Parser e s (m t) b -> Parser e s (m t) (a, [(b, a)]) ''' checkParser('sepBy1', parser) checkParser('sepBy1', separator) return app(functions.pair, parser, many0(app(functions.pair, separator, parser))) def sepBy0(parser, separator): ''' Parser e s (m t) a -> Parser e s (m t) b -> Parser e s (m t) (Maybe (a, [(b, a)])) ''' checkParser('sepBy0', parser) checkParser('sepBy0', separator) return optional(sepBy1(parser, separator)) class Itemizer(object): def __init__(self, f): ''' f :: t -> s -> s ''' checkFunction('Itemizer', f) self.f = f self.item = self._item() def _item(self): ''' Parser e s (m t) t ''' def g(xs, s): if xs.isEmpty(): return M.zero first, rest = xs.first(), xs.rest() return good(first, rest, self.f(first, s)) return Parser(g) def satisfy(self, pred): ''' (t -> Bool) -> Parser e s (m t) t ''' checkFunction('satisfy', pred) return check(pred, self.item) def literal(self, x): ''' Eq t => t -> Parser e s (m t) t ''' return self.satisfy(lambda y: x == y) def not1(self, parser): ''' Parser e s (m t) a -> Parser e s (m t) t ''' checkParser('not1', parser) return seq2R(not0(parser), self.item) def string(self, elems): ''' Eq t => [t] -> Parser e s (m t) [t] ''' matcher = seq(list(map(self.literal, elems))) return seq2R(matcher, pure(elems)) def oneOf(self, elems): c_set = set(elems) return self.satisfy(lambda x: x in c_set) # doesn't do anything to the state basic = Itemizer(functions.second) # assumes the state is a 2-tuple of integers (line, column) position = Itemizer(functions.updatePosition) # assumes that state is an integer -- how many tokens have been consumed count = Itemizer(lambda _, s: s + 1) def run(parser, input_string, state=(1,1)): ''' Run a parser given the token input and state. ''' return parser.parse(ConsList(input_string), state)
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Product.sku' db.add_column('shop_product', 'sku', self.gf('cartridge.shop.fields.SKUField')(max_length=20, unique=True, null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Product.sku' db.delete_column('shop_product', 'sku') models = { 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'generic.assignedkeyword': { 'Meta': {'ordering': "('_order',)", 'object_name': 'AssignedKeyword'}, '_order': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'keyword': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'assignments'", 'to': "orm['generic.Keyword']"}), 'object_pk': ('django.db.models.fields.IntegerField', [], {}) }, 'generic.keyword': { 'Meta': {'object_name': 'Keyword'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}) }, 'generic.rating': { 'Meta': {'object_name': 'Rating'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_pk': ('django.db.models.fields.IntegerField', [], {}), 'value': ('django.db.models.fields.IntegerField', [], {}) }, 'pages.page': { 'Meta': {'ordering': "('titles',)", 'object_name': 'Page'}, '_order': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'content_model': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'expiry_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'gen_description': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_footer': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'in_navigation': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'keywords': ('mezzanine.generic.fields.KeywordsField', [], {'object_id_field': "'object_pk'", 'to': "orm['generic.AssignedKeyword']", 'frozen_by_south': 'True'}), 'keywords_string': ('django.db.models.fields.CharField', [], {'max_length': '500', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['pages.Page']"}), 'publish_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'short_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'titles': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}) }, 'shop.cart': { 'Meta': {'object_name': 'Cart'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}) }, 'shop.cartitem': { 'Meta': {'object_name': 'CartItem'}, 'cart': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'items'", 'to': "orm['shop.Cart']"}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'quantity': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'sku': ('cartridge.shop.fields.SKUField', [], {'max_length': '20'}), 'total_price': ('cartridge.shop.fields.MoneyField', [], {'default': "'0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'unit_price': ('cartridge.shop.fields.MoneyField', [], {'default': "'0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'shop.category': { 'Meta': {'ordering': "('_order',)", 'object_name': 'Category', '_ormbases': ['pages.Page']}, 'combined': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'content': ('mezzanine.core.fields.RichTextField', [], {}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'product_options'", 'blank': 'True', 'to': "orm['shop.ProductOption']"}), 'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'price_max': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'price_min': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['shop.Product']", 'symmetrical': 'False', 'blank': 'True'}), 'sale': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['shop.Sale']", 'null': 'True', 'blank': 'True'}) }, 'shop.discountcode': { 'Meta': {'object_name': 'DiscountCode'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'discountcode_related'", 'blank': 'True', 'to': "orm['shop.Category']"}), 'code': ('cartridge.shop.fields.DiscountCodeField', [], {'unique': 'True', 'max_length': '20'}), 'discount_deduct': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'discount_exact': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'discount_percent': ('cartridge.shop.fields.PercentageField', [], {'null': 'True', 'max_digits': '5', 'decimal_places': '2', 'blank': 'True'}), 'free_shipping': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'min_purchase': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['shop.Product']", 'symmetrical': 'False', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'uses_remaining': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'valid_from': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'valid_to': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, 'shop.order': { 'Meta': {'ordering': "('-id',)", 'object_name': 'Order'}, 'additional_instructions': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'billing_detail_city': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_detail_country': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_detail_email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'billing_detail_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_detail_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_detail_phone': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'billing_detail_postcode': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'billing_detail_state': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_detail_street': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'discount_code': ('cartridge.shop.fields.DiscountCodeField', [], {'max_length': '20', 'blank': 'True'}), 'discount_total': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_total': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'shipping_detail_city': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_detail_country': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_detail_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_detail_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_detail_phone': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'shipping_detail_postcode': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'shipping_detail_state': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_detail_street': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_total': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'shipping_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'null': 'True', 'blank': 'True'}), 'total': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'transaction_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'user_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'shop.orderitem': { 'Meta': {'object_name': 'OrderItem'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'items'", 'to': "orm['shop.Order']"}), 'quantity': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'sku': ('cartridge.shop.fields.SKUField', [], {'max_length': '20'}), 'total_price': ('cartridge.shop.fields.MoneyField', [], {'default': "'0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'unit_price': ('cartridge.shop.fields.MoneyField', [], {'default': "'0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}) }, 'shop.product': { 'Meta': {'object_name': 'Product'}, 'available': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['shop.Category']", 'symmetrical': 'False', 'blank': 'True'}), 'content': ('mezzanine.core.fields.RichTextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'expiry_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'gen_description': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'keywords': ('mezzanine.generic.fields.KeywordsField', [], {'object_id_field': "'object_pk'", 'to': "orm['generic.AssignedKeyword']", 'frozen_by_south': 'True'}), 'keywords_string': ('django.db.models.fields.CharField', [], {'max_length': '500', 'blank': 'True'}), 'num_in_stock': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'publish_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'rating': ('mezzanine.generic.fields.RatingField', [], {'object_id_field': "'object_pk'", 'to': "orm['generic.Rating']", 'frozen_by_south': 'True'}), 'rating_average': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'rating_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'related_products': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'related_products_rel_+'", 'blank': 'True', 'to': "orm['shop.Product']"}), 'sale_from': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sale_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'sale_price': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'sale_to': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'short_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'sku': ('cartridge.shop.fields.SKUField', [], {'max_length': '20', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'unit_price': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'upsell_products': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'upsell_products_rel_+'", 'blank': 'True', 'to': "orm['shop.Product']"}) }, 'shop.productaction': { 'Meta': {'unique_together': "(('product', 'timestamp'),)", 'object_name': 'ProductAction'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'actions'", 'to': "orm['shop.Product']"}), 'timestamp': ('django.db.models.fields.IntegerField', [], {}), 'total_cart': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_purchase': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'shop.productimage': { 'Meta': {'ordering': "('_order',)", 'object_name': 'ProductImage'}, '_order': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'file': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'images'", 'to': "orm['shop.Product']"}) }, 'shop.productoption': { 'Meta': {'object_name': 'ProductOption'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('cartridge.shop.fields.OptionField', [], {'max_length': '50', 'null': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {}) }, 'shop.productvariation': { 'Meta': {'ordering': "('-default',)", 'object_name': 'ProductVariation'}, 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['shop.ProductImage']", 'null': 'True', 'blank': 'True'}), 'num_in_stock': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'option1': ('cartridge.shop.fields.OptionField', [], {'max_length': '50', 'null': 'True'}), 'option2': ('cartridge.shop.fields.OptionField', [], {'max_length': '50', 'null': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'variations'", 'to': "orm['shop.Product']"}), 'sale_from': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sale_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'sale_price': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'sale_to': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sku': ('cartridge.shop.fields.SKUField', [], {'max_length': '20', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'unit_price': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}) }, 'shop.sale': { 'Meta': {'object_name': 'Sale'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'sale_related'", 'blank': 'True', 'to': "orm['shop.Category']"}), 'discount_deduct': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'discount_exact': ('cartridge.shop.fields.MoneyField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'discount_percent': ('cartridge.shop.fields.PercentageField', [], {'null': 'True', 'max_digits': '5', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['shop.Product']", 'symmetrical': 'False', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'valid_from': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'valid_to': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['shop']
''' Created on Apr 8, 2014 @author: cmills ''' from tasr_test import TASRTestCase import unittest import time import tasr.app from tasr import AvroSchemaRepository from tasr.group import InvalidGroupException APP = tasr.app.TASR_APP APP.set_config_mode('local') HOST_PORT = r'%s:%s' % (APP.config.host, APP.config.port) try: import redis # note we use port 5379 (instead of 6379) in prod, so we test against that R_TEST = redis.StrictRedis(host=APP.config.redis_host, port=APP.config.redis_port, db=0) R_TEST.keys('no_match_pattern') # should throw exception if no redis HASR_LOCAL_REDIS = True except ImportError: HASR_LOCAL_REDIS = False class TestTASR(TASRTestCase): def setUp(self): self.event_type = "gold" fix_rel_path = "schemas/%s.avsc" % (self.event_type) self.avsc_file = TASRTestCase.get_fixture_file(fix_rel_path, "r") self.schema_str = self.avsc_file.read() self.schema_version = 0 self.asr = None if HASR_LOCAL_REDIS: self.asr = AvroSchemaRepository(host=APP.config.redis_host, port=APP.config.redis_port) # clear out all the keys before beginning -- careful! self.asr.redis.flushdb() else: self.fail(u'No Redis on %s:%s' % (APP.config.redis_host, APP.config.redis_port)) def tearDown(self): if HASR_LOCAL_REDIS: # clear out any added data self.asr.redis.flushdb() # registration tests def test_register_group(self): '''register_group() - error case''' self.asr.register_group(self.event_type) def test_register_group_fail_for_invalid_group(self): '''register_group() - error case''' try: self.asr.register_group("%s-B" % self.event_type) self.fail(u'Should have thrown an InvalidGroupException.') except InvalidGroupException: pass def test_register_schema(self): '''register_schema() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) self.assertFalse(rs == None, u'Failed to register_schema schema') dif = long(time.time()) - rs.current_version_timestamp(self.event_type) self.assertTrue(dif <= 1, 'crazy timestamp') def test_register_fail_for_empty_schema(self): '''register_schema() - error case''' try: self.asr.register_schema(self.event_type, None) self.fail(u'Should have thrown a ValueError.') except ValueError: pass def test_register_fail_for_invalid_schema(self): '''register_schema() - error case''' try: self.asr.register_schema(self.event_type, "%s }" % self.schema_str) self.fail(u'Should have raised a ValueError.') except ValueError: pass def test_register_fail_for_invalid_group(self): '''register_schema() - error case''' try: self.asr.register_schema("%s-B" % self.event_type, self.schema_str) self.fail(u'Should have thrown an InvalidGroupException.') except InvalidGroupException: pass def test_reg_and_rereg(self): '''register_schema() - re-reg of current shouldn't change versions''' rs = self.asr.register_schema(self.event_type, self.schema_str) re_rs = self.asr.register_schema(self.event_type, self.schema_str) self.assertEqual(rs, re_rs, u'Re-registered schema different.') def test_reg_1_schema_for_2_topics(self): '''register_schema() - same schema for two topics''' rs = self.asr.register_schema(self.event_type, self.schema_str) get_rs = self.asr.get_latest_schema_for_group(self.event_type) self.assertEqual(rs, get_rs, u'Recovered registered schema unequal.') alt_topic = 'bob' rs2 = self.asr.register_schema(alt_topic, self.schema_str) get_rs2 = self.asr.get_latest_schema_for_group(alt_topic) self.assertEqual(rs2, get_rs2, u'Recovered reg schema unequal.') self.assertEqual(get_rs, get_rs2, u'Recovered reg schema unequal.') # retrieval tests def test_lookup(self): '''lookup_group() - as expected''' self.assertFalse(self.asr.lookup_group(self.event_type), 'Group should not be registered yet.') self.asr.register_schema(self.event_type, self.schema_str) self.assertTrue(self.asr.lookup_group(self.event_type), 'Group should be registered.') def test_get_latest_for_topic(self): '''get_latest_schema_for_group() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) rs2 = self.asr.get_latest_schema_for_group(self.event_type) self.assertEqual(rs, rs2, u'Recovered registered schema unequal.') def test_get_latest_fail_for_missing_topic(self): '''get_latest_schema_for_group() - error case''' rs = self.asr.get_latest_schema_for_group(self.event_type) self.assertEqual(None, rs, 'expected None back for missing topic') def test_reg_then_reg_new_and_get_latest_for_topic(self): '''get_latest_schema_for_group() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) # modify the namespace in the schema to ensure a non-whitespace change schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.alt', 1) rs2 = self.asr.register_schema(self.event_type, schema_str_2) self.assertNotEqual(rs, rs2, u'Modded schema unexpectedly equal') # should have two versions of the gold schema now, so grab the latest latest_schema = self.asr.get_latest_schema_for_group(self.event_type) latest_schema_str = latest_schema.canonical_schema_str self.assertNotEqual(rs.canonical_schema_str, latest_schema_str, u'Latest schema equal to earlier version') self.assertEqual(rs2.canonical_schema_str, latest_schema_str, u'Latest schema unequal to later version') def test_reg_50_then_get_for_topic_and_version(self): '''get_schema_for_group_and_version() - as expected''' rs_list = [] for v in range(1, 50): ver_schema_str = self.schema_str.replace('tagged.events', 'tagged.events.%s' % v, 1) rs_list.append(self.asr.register_schema(self.event_type, ver_schema_str)) for v in range(1, 50): re_rs = self.asr.get_schema_for_group_and_version(self.event_type, v) self.assertEqual(rs_list[v - 1], re_rs, u'retrieved schema unequal.') def test_get_for_topic_and_version_fail_for_missing_version(self): '''get_schema_for_group_and_version() - error case''' self.asr.register_schema(self.event_type, self.schema_str) rs = self.asr.get_schema_for_group_and_version(self.event_type, 2) self.assertEqual(None, rs, 'expected None back for missing topic') def test_get_for_id(self): '''schema_for_id_str() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) rs.version = None rs.topic = None self.assertEqual(rs, self.asr.get_schema_for_id_str(rs.md5_id), u'MD5 ID retrieved unequal registered schema') self.assertEqual(rs, self.asr.get_schema_for_id_str(rs.sha256_id), u'SHA256 ID retrieved unequal registered schema') def test_get_first_for_id(self): '''schema_for_id_str() - with non-sequential re-registration''' rs = self.asr.register_schema(self.event_type, self.schema_str) # modify the namespace in the schema to ensure a non-whitespace change schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.alt', 1) rs2 = self.asr.register_schema(self.event_type, schema_str_2) self.assertNotEqual(rs, rs2, u'Modded schema unexpectedly equal') # now pull the first by id and assert equality to _rs re_rs = self.asr.get_schema_for_id_str(rs.md5_id) self.assertEqual(rs, re_rs, u'MD5 ID retrieved unequal reg schema') self.assertEqual(rs, self.asr.get_schema_for_id_str(rs.sha256_id), u'SHA256 ID retrieved unequal registered schema') def test_get_for_schema_str(self): '''schema_for_schema_str() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) re_rs = self.asr.get_schema_for_schema_str(self.schema_str) self.assertEqual(rs, re_rs, u'Schema str retrieved unequal reg schema') def test_get_for_schema_str_fail_for_bad_schema(self): '''schema_for_schema_str() - error case''' self.asr.register_schema(self.event_type, self.schema_str) try: self.asr.get_schema_for_schema_str("%s }" % self.schema_str) self.fail(u'Should have got raised a ValueError') except ValueError: pass def test_get_latest_versions_for_topic(self): '''get_latest_schema_versions_for_group() - pull the most recent 2 when there are 3.''' rs1 = self.asr.register_schema(self.event_type, self.schema_str) schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.2', 1) rs2 = self.asr.register_schema(self.event_type, schema_str_2) schema_str_3 = self.schema_str.replace('tagged.events', 'tagged.events.3', 1) rs3 = self.asr.register_schema(self.event_type, schema_str_3) rs_list = self.asr.get_latest_schema_versions_for_group(self.event_type, 2) self.assertEqual(2, len(rs_list), 'Expected a list of length 2.') self.assertEqual(rs2, rs_list[0], 'Expecting RS2 as first entry.') self.assertEqual(rs3, rs_list[1], 'Expecting RS3 as second entry.') # now test getting all the versions rs_list = self.asr.get_latest_schema_versions_for_group(self.event_type, -1) self.assertEqual(3, len(rs_list), 'Expected a list of length 2.') self.assertEqual(rs1, rs_list[0], 'Expecting RS1 as first entry.') self.assertEqual(rs2, rs_list[1], 'Expecting RS2 as second entry.') self.assertEqual(rs3, rs_list[2], 'Expecting RS3 as third entry.') def test_legacy_topic_list_matches_vid_list(self): '''Check that the old topic.* list matches the vid.* list with multiple schema versions for a group registered''' self.asr.register_schema(self.event_type, self.schema_str) schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.2', 1) self.asr.register_schema(self.event_type, schema_str_2) schema_str_3 = self.schema_str.replace('tagged.events', 'tagged.events.3', 1) self.asr.register_schema(self.event_type, schema_str_3) for ver in range(1, 3): t_val = self.asr.redis.lindex('topic.%s' % self.event_type, ver) v_val = self.asr.redis.lindex('vid.%s' % self.event_type, ver) self.assertEqual(t_val, v_val, 'Mismatch at index %s' % ver) def test_get_all_groups(self): '''get_all_groups() - as expected''' self.assertEqual(0, len(self.asr.get_all_groups()), 'should not be any topics yet') self.asr.register_schema(self.event_type, self.schema_str) groups = self.asr.get_all_groups() self.assertEqual(1, len(groups), 'should have 1') self.assertEqual(self.event_type, groups[0].name, 'expected group missing') schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.alt', 1) # reg another version -- should not increase number of groups self.asr.register_schema(self.event_type, schema_str_2) groups = self.asr.get_all_groups() self.assertEqual(1, len(groups), 'should still have 1 group') def test_get_active_groups(self): '''get_active_groups() - as expected''' self.assertEqual(0, len(self.asr.get_all_groups()), 'should not be any groups yet') self.assertEqual(0, len(self.asr.get_active_groups()), 'should not be any groups yet') # reg the group without a schema -- active count should still be 0 self.asr.register_group(self.event_type) self.assertEqual(1, len(self.asr.get_all_groups()), 'should have 1') self.assertEqual(0, len(self.asr.get_active_groups()), 'should not be any ACTIVE groups yet') # now reg a schema for the group self.asr.register_schema(self.event_type, self.schema_str) self.assertEqual(1, len(self.asr.get_all_groups()), 'should have 1') self.assertEqual(1, len(self.asr.get_active_groups()), 'should be 1') def test_multi_version_for_topic(self): '''get_versions_for_id_str_and_group() - as expected''' rs = self.asr.register_schema(self.event_type, self.schema_str) # modify the namespace in the schema to ensure a non-whitespace change schema_str_2 = self.schema_str.replace('tagged.events', 'tagged.events.alt', 1) self.asr.register_schema(self.event_type, schema_str_2) # now re-register_schema the original schema, which should become version 3 rs3 = self.asr.register_schema(self.event_type, self.schema_str) self.assertEqual(rs.sha256_id, rs3.sha256_id, u'Unequal SHA256 IDs on re-reg!') self.assertNotEqual(rs, rs3, u'Expected different versions for topic.') vlist = self.asr.get_versions_for_id_str_and_group(rs3.sha256_id, self.event_type) self.assertEqual(2, len(vlist), u'Expected two entry version list.') self.assertEqual(1, vlist[0], u'Expected first version to be 1.') self.assertEqual(3, vlist[1], u'Expected second version to be 3.') # deletion tests def test_delete_group(self): '''Test that a group delete works.''' self.asr.register_schema(self.event_type, self.schema_str) self.assertTrue(self.asr.lookup_group(self.event_type), 'Group should be registered.') self.asr.delete_group(self.event_type) self.assertFalse(self.asr.lookup_group(self.event_type), 'Group should not be registered any more.') def test_delete_group_with_cross_registered_schema(self): '''Test that deleting a group with a schema version that is also registered to a second group does not delete the still needed schema version.''' alt_group_name = 'bob' self.asr.register_schema(self.event_type, self.schema_str) self.asr.register_schema(alt_group_name, self.schema_str) self.assertTrue(self.asr.lookup_group(self.event_type), 'Group should be registered.') self.assertTrue(self.asr.lookup_group(alt_group_name), 'Group should be registered.') self.asr.delete_group(self.event_type) self.assertFalse(self.asr.lookup_group(self.event_type), 'Group should not be registered any more.') self.assertTrue(self.asr.lookup_group(alt_group_name), 'Group should be registered.') if __name__ == "__main__": SUITE = unittest.TestLoader().loadTestsFromTestCase(TestTASR) unittest.TextTestRunner(verbosity=2).run(SUITE)
#!/bin/sh # sudoku3.py # SudokuSolver # # Created by joe yuan on 3/6/11. # Copyright 2011 __MyCompanyName__. All rights reserved. import time import sys def rowbyrow(): d = [] for i in range(9): x = INPUT_PROCESS(i) d.append(x) for k,i in enumerate(d): for j,c in enumerate(i): d[k][j] = int(c) return d def INPUT_PROCESS(i,u=False): while not u: x = INPUT(i) x, u = input_check(x,i) return x def INPUT(i): x = list(raw_input("Row " + str(i+1) + ":\n")) if ''.join(p for p in x) in ["Q","quit","q","Quit","QUIT"]: sys.exit(1) print(x) return x def input_check(x,i,u=False): while not u: x, u = entry_check(x,i) x, c = length_check(x,i) return x, u def length_check(x,i): while len(x) != 9: print("Invalid entry. Please enter the 9 entries from the indicated row using zeroes for blank entries:") x = INPUT(i) x, c = input_error(x,i) return x, c def entry_check(x,i,c = False,u = True): for p in x: try: h = int(p) except ValueError: print("Invalid entry. Each space must be an integer 0-9.") u = False return x,u return x, u def input_error(x,i): c = raw_input("Is this correct? (y/n)\n") while c == "n": print("Please input the row again: ") x = INPUT(i) x,c = input_check(x,i) return x,c def puzzprint(n): print '+ - - - + - - - + - - - +' for p in range(3): print '|', for i in range(3): print n[p][i], print '|', for i in range(3,6): print n[p][i], print '|', for i in range(6,9): print n[p][i], print '|' print '+ - - - + - - - + - - - +' for p in range(3,6): print '|', for i in range(3): print n[p][i], print '|', for i in range(3,6): print n[p][i], print '|', for i in range(6,9): print n[p][i], print '|' print '+ - - - + - - - + - - - +' for p in range(6,9): print '|', for i in range(3): print n[p][i], print '|', for i in range(3,6): print n[p][i], print '|', for i in range(6,9): print n[p][i], print '|' print '+ - - - + - - - + - - - +' ### Transforms def transpose(n): """Takes a list-style Matrix and gives back the transpose""" d = [[n[j][i] for j in range(len(n[0]))] for i in range(len(n))] return d def box(n): d = [[] for i in range(len(n))] m = 0 for Q in range(len(n)): if 18 <= m < 27: if 24 <= m < 27: for i in range(6,9): m = m + 1 for c in range(6,9): d[Q].append(n[i][c]) elif 21 <= m < 24: for i in range(3,6): m = m + 1 for c in range(6,9): d[Q].append(n[i][c]) elif 18 <= m < 21: for i in range(3): m = m + 1 for c in range(6,9): d[Q].append(n[i][c]) elif 9 <= m < 18: if 15 <= m < 18: for i in range(6,9): m = m + 1 for c in range(3,6): d[Q].append(n[i][c]) elif 12 <= m < 15: for i in range(3,6): m = m + 1 for c in range(3,6): d[Q].append(n[i][c]) elif 9 <= m < 12: for i in range(3): m = m + 1 for c in range(3,6): d[Q].append(n[i][c]) elif m < 9: if 6 <= m < 9: for i in range(6,9): m = m + 1 for c in range(3): d[Q].append(n[i][c]) elif 3 <= m < 6: for i in range(3,6): m = m + 1 for c in range(3): d[Q].append(n[i][c]) elif m < 3: for i in range(3): m = m + 1 for c in range(3): d[Q].append(n[i][c]) return d ### useful functions def ld(x, y): pos = [i for i in x if i not in y] return pos def solved(n): # Checks if each position has been made into an integer d = 0 for i in n: for c in i: if not type(c) == int: d = d + 1 if d == 0: return True else: return False def linecheck(n): for k,i in enumerate(n): for j,c in enumerate(i): if type(c) == list: n[k][j] = ld(c,i) return n def single(puzzle): # Goes line by line finding variables then tests each possibility in a # list of variables then takes each possibility and checks to see # if that is the only variable spot in which that possibility appears. for line_index, line in enumerate(puzzle): for variable_index, variable1 in enumerate(line): if type(variable1) == list: for possibility in variable1: count = 0 for variable2 in line: if type(variable2) == list: if possibility in variable2: count = count + 1 if count > 1: break if count == 1: puzzle[line_index][variable_index] = possibility break return puzzle def confirm(n): # replaces the variables that have been knocked down to one possibility for k,i in enumerate(n): for j,c in enumerate(i): if type(c) == list: if len(c) == 1: n[k][j] = int(c[0]) return n def step(n): # checks lines, eliminating variables and singularities n = linecheck(n) n = single(n) n = confirm(n) return n def rc(n): # column then row for w in range(2): n = transpose(n) n = step(n) return n def boxxy(n): # box n = box(n) n = step(n) n = box(box(n)) return n def solve(n): n = rc(n) n = boxxy(n) n = confirm(n) return n def var(n,t=0): # Gives coordinates for spot with the least number of variables. vc = [] v = [] for x1,line in enumerate(n): for x2,nums in enumerate(line): if type(nums) == list: vc.append([len(nums),[x1,x2]]) if len(nums) == 2: return [len(nums),[x1,x2]] vc.sort() m = vc[t] return m def bruteforce1(n,xfs): # First Brute force, this method does not incude a backtracking # function as it is the first place for a source of error. # Finds the variable with the lowest number of possiblities # cycles through the variables until the correct one has been found. m = var(n) for i in range(m[0]): n[m[1][0]][m[1][1]] = n[m[1][0]][m[1][1]][i] u = False while not solved(n): n1 = n n = solve(n) if bfcondition(n): # Backtrack: error raised n = xfs[-1] m = var(n) break if n == n1: n2 = failsafe(n) xfs.append(n2) n, u = bruteforce2(n,xfs) if solved(n): break m = var(n) if solved(n): break return n def bruteforce2(n,xfs): # Finds the variable with the lowest number of possiblities # cycles through the variables until the correct one has been found. m = var(n) for i in range(m[0]): n[m[1][0]][m[1][1]] = n[m[1][0]][m[1][1]][i] u = False while not solved(n): n1 = n n = solve(n) if bfcondition(n): # backtrack: error raised n = xfs[-1] m = var(n) break elif n == n1: # New forced solution needed n2 = failsafe(n) xfs.append(n2) n, u = bruteforce2(n,xfs) if solved(n): break elif bfcondition(n): n = xfs[-1] m = var(n) break if u: break if solved(n): break if solved(n): return n, True elif not bfcondition(n): f = xfs[-1] xfs.pop() return f, False else: return n, True def bfcondition(n): for i in n: for c in i: if c == []: return True for i in n: for c in i: if type(c) == int: if i.count(c) > 1: return True for i in box(n): for c in i: if type(c) == int: if i.count(c) > 1: return True for i in transpose(n): for c in i: if type(c) == int: if i.count(c) > 1: return True return False def failsafe(n): # Recreates list from scratch so that the failsafe does not get redefined later. n1 = [i for i in n] return n1 def puzzle_setup(x,v): xc = [i for i in range(1,10)] if v: print "Here's your puzzle:\n" puzzprint(x) xgrid = [] for i in range(9): dc = [] for i in range(9): dc.append(xc) xgrid.append(dc) for i in range(9): for p,c in enumerate(x[i]): if c != 0: xgrid[i][p] = c return xgrid def solve_puzzle(xgrid,v=False): xgrid = puzzle_setup(xgrid,v) start = time.clock() t = 0 while not solved(xgrid): xgrid1 = failsafe(xgrid) xgrid = solve(xgrid) if xgrid == xgrid1: xgrid2 = failsafe(xgrid) xfs = [xgrid2] xgrid = bruteforce1(xgrid,xfs) end = time.clock() t = end - start return t,xgrid ### RUNNING PORTION ### if __name__ == "__main__": print("Welcome!") print("This program solves Sudoku problems \n") print("Enter the digits in your puzzle row by row.") print("At anytime hitting enter is ok instead of typing yes(y).\n") print("Typing quit during the input process will end the program.") print("Type a digit for a digit and a 0 (zero) for a blank entry: ") exit = "y" while exit != "n": x = rowbyrow() t,xgrid = solve_puzzle(x) print "You're puzzle has been solved!\n" print "It took " + str(t) + " secs." puzzprint(xgrid) print '\n' exit = raw_input("Another puzzle? (y/n): ")
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import shlex import unittest from pants.option.arg_splitter import (ArgSplitter, NoGoalHelp, OptionsHelp, UnknownGoalHelp, VersionHelp) from pants.option.scope import ScopeInfo def task(scope): return ScopeInfo(scope, ScopeInfo.TASK) def intermediate(scope): return ScopeInfo(scope, ScopeInfo.INTERMEDIATE) def subsys(scope): return ScopeInfo(scope, ScopeInfo.SUBSYSTEM) class ArgSplitterTest(unittest.TestCase): _known_scope_infos = [intermediate('compile'), task('compile.java'), task('compile.scala'), subsys('jvm'), subsys('jvm.test.junit'), subsys('reporting'), intermediate('test'), task('test.junit')] def _split(self, args_str, expected_goals, expected_scope_to_flags, expected_target_specs, expected_passthru=None, expected_passthru_owner=None, expected_is_help=False, expected_help_advanced=False, expected_help_all=False): expected_passthru = expected_passthru or [] splitter = ArgSplitter(ArgSplitterTest._known_scope_infos) args = shlex.split(args_str) goals, scope_to_flags, target_specs, passthru, passthru_owner = splitter.split_args(args) self.assertEquals(expected_goals, goals) self.assertEquals(expected_scope_to_flags, scope_to_flags) self.assertEquals(expected_target_specs, target_specs) self.assertEquals(expected_passthru, passthru) self.assertEquals(expected_passthru_owner, passthru_owner) self.assertEquals(expected_is_help, splitter.help_request is not None) self.assertEquals(expected_help_advanced, (isinstance(splitter.help_request, OptionsHelp) and splitter.help_request.advanced)) self.assertEquals(expected_help_all, (isinstance(splitter.help_request, OptionsHelp) and splitter.help_request.all_scopes)) def _split_help(self, args_str, expected_goals, expected_scope_to_flags, expected_target_specs, expected_help_advanced=False, expected_help_all=False): self._split(args_str, expected_goals, expected_scope_to_flags, expected_target_specs, expected_passthru=None, expected_passthru_owner=None, expected_is_help=True, expected_help_advanced=expected_help_advanced, expected_help_all=expected_help_all) def _split_version_request(self, args_str): splitter = ArgSplitter(ArgSplitterTest._known_scope_infos) splitter.split_args(shlex.split(args_str)) self.assertTrue(isinstance(splitter.help_request, VersionHelp)) def _split_unknown_goal(self, args_str, unknown_goals): splitter = ArgSplitter(ArgSplitterTest._known_scope_infos) splitter.split_args(shlex.split(args_str)) self.assertTrue(isinstance(splitter.help_request, UnknownGoalHelp)) self.assertSetEqual(set(unknown_goals), set(splitter.help_request.unknown_goals)) def _split_no_goal(self, args_str): splitter = ArgSplitter(ArgSplitterTest._known_scope_infos) splitter.split_args(shlex.split(args_str)) self.assertTrue(isinstance(splitter.help_request, NoGoalHelp)) def test_basic_arg_splitting(self): # Various flag combos. self._split('./pants --compile-java-long-flag -f compile -g compile.java -x test.junit -i ' 'src/java/org/pantsbuild/foo src/java/org/pantsbuild/bar:baz', ['compile', 'test'], { '': ['-f'], 'compile.java': ['--long-flag', '-x'], 'compile': ['-g'], 'test.junit': ['-i'] }, ['src/java/org/pantsbuild/foo', 'src/java/org/pantsbuild/bar:baz']) self._split('./pants -farg --fff=arg compile --gg-gg=arg-arg -g test.junit --iii ' '--compile-java-long-flag src/java/org/pantsbuild/foo src/java/org/pantsbuild/bar:baz', ['compile', 'test'], { '': ['-farg', '--fff=arg'], 'compile': ['--gg-gg=arg-arg', '-g'], 'test.junit': ['--iii'], 'compile.java': ['--long-flag'], }, ['src/java/org/pantsbuild/foo', 'src/java/org/pantsbuild/bar:baz']) def test_distinguish_goals_from_target_specs(self): self._split('./pants compile test foo::', ['compile', 'test'], {'': [], 'compile': [], 'test': []}, ['foo::']) self._split('./pants compile test foo::', ['compile', 'test'], {'': [], 'compile': [], 'test': []}, ['foo::']) self._split('./pants compile test:test', ['compile'], {'': [], 'compile': []}, ['test:test']) self._split('./pants test test:test', ['test'], {'': [], 'test': []}, ['test:test']) self._split('./pants test ./test', ['test'], {'': [], 'test': []}, ['./test']) self._split('./pants test //test', ['test'], {'': [], 'test': []}, ['//test']) def test_descoping_qualified_flags(self): self._split('./pants compile test --compile-java-bar --no-test-junit-baz foo/bar', ['compile', 'test'], {'': [], 'compile': [], 'compile.java': ['--bar'], 'test': [], 'test.junit': ['--no-baz']}, ['foo/bar']) # Qualified flags don't count as explicit goals. self._split('./pants compile --test-junit-bar foo/bar', ['compile'], {'': [], 'compile': [], 'test.junit': ['--bar']}, ['foo/bar']) def test_passthru_args(self): self._split('./pants test foo/bar -- -t arg', ['test'], {'': [], 'test': []}, ['foo/bar'], expected_passthru=['-t', 'arg'], expected_passthru_owner='test') self._split('./pants -farg --fff=arg compile --gg-gg=arg-arg -g test.junit --iii ' '--compile-java-long-flag src/java/org/pantsbuild/foo ' 'src/java/org/pantsbuild/bar:baz ' '-- passthru1 passthru2', ['compile', 'test'], { '': ['-farg', '--fff=arg'], 'compile': ['--gg-gg=arg-arg', '-g'], 'compile.java': ['--long-flag'], 'test.junit': ['--iii'] }, ['src/java/org/pantsbuild/foo', 'src/java/org/pantsbuild/bar:baz'], expected_passthru=['passthru1', 'passthru2'], expected_passthru_owner='test.junit') def test_subsystem_flags(self): # Global subsystem flag in global scope. self._split('./pants --jvm-options=-Dbar=baz test foo:bar', ['test'], {'': [], 'jvm': ['--options=-Dbar=baz'], 'test': []}, ['foo:bar']) # Qualified task subsystem flag in global scope. self._split('./pants --jvm-test-junit-options=-Dbar=baz test foo:bar', ['test'], {'': [], 'jvm.test.junit': ['--options=-Dbar=baz'], 'test': []}, ['foo:bar']) # Unqualified task subsystem flag in task scope. # Note that this exposes a small problem: You can't set an option on the cmd-line if that # option's name begins with any subsystem scope. For example, if test.junit has some option # named --jvm-foo, then it cannot be set on the cmd-line, because the ArgSplitter will assume # it's an option --foo on the jvm subsystem. self._split('./pants test.junit --jvm-options=-Dbar=baz foo:bar', ['test'], {'': [], 'jvm.test.junit': ['--options=-Dbar=baz'], 'test.junit': []}, ['foo:bar']) # Global-only flag in task scope. self._split('./pants test.junit --reporting-template-dir=path foo:bar', ['test'], {'': [], 'reporting': ['--template-dir=path'], 'test.junit': []}, ['foo:bar']) def test_help_detection(self): self._split_help('./pants', [], {'': []}, []) self._split_help('./pants goal', [], {'': []}, []) self._split_help('./pants -f', [], {'': ['-f']}, []) self._split_help('./pants goal -f', [], {'': ['-f']}, []) self._split_help('./pants help', [], {'': []}, []) self._split_help('./pants goal help', [], {'': []}, []) self._split_help('./pants -h', [], {'': []}, []) self._split_help('./pants goal -h', [], {'': []}, []) self._split_help('./pants --help', [], {'': []}, []) self._split_help('./pants goal --help', [], {'': []}, []) self._split_help('./pants help compile -x', ['compile'], {'': [], 'compile': ['-x']}, []) self._split_help('./pants help compile -x', ['compile'], {'': [], 'compile': ['-x']}, []) self._split_help('./pants compile -h', ['compile'], {'': [], 'compile': []}, []) self._split_help('./pants compile --help test', ['compile', 'test'], {'': [], 'compile': [], 'test': []}, []) self._split_help('./pants test src/foo/bar:baz -h', ['test'], {'': [], 'test': []}, ['src/foo/bar:baz']) self._split_help('./pants help-advanced', [], {'': []}, [], True, False) self._split_help('./pants help-all', [], {'': []}, [], False, True) self._split_help('./pants --help-advanced', [], {'': []}, [], True, False) self._split_help('./pants --help-all', [], {'': []}, [], False, True) self._split_help('./pants --help --help-advanced', [], {'': []}, [], True, False) self._split_help('./pants --help-advanced --help', [], {'': []}, [], True, False) self._split_help('./pants --help --help-all', [], {'': []}, [], False, True) self._split_help('./pants --help-all --help --help-advanced', [], {'': []}, [], True, True) self._split_help('./pants help --help-advanced', [], {'': []}, [], True, False) self._split_help('./pants help-advanced --help-all', [], {'': []}, [], True, True) self._split_help('./pants compile --help-advanced test', ['compile', 'test'], {'': [], 'compile': [], 'test': []}, [], True, False) self._split_help('./pants help-advanced compile', ['compile'], {'': [], 'compile': []}, [], True, False) self._split_help('./pants compile help-all test --help', ['compile', 'test'], {'': [], 'compile': [], 'test': []}, [], False, True) def test_version_request_detection(self): self._split_version_request('./pants -v') self._split_version_request('./pants -V') self._split_version_request('./pants --version') # A version request supercedes anything else. self._split_version_request('./pants --version compile --foo --bar path/to/target') def test_unknown_goal_detection(self): self._split_unknown_goal('./pants foo', ['foo']) self._split_unknown_goal('./pants compile foo', ['foo']) self._split_unknown_goal('./pants foo bar baz:qux', ['foo', 'bar']) self._split_unknown_goal('./pants foo compile bar baz:qux', ['foo', 'bar']) def test_no_goal_detection(self): self._split_no_goal('./pants foo/bar:baz')
# -*- coding: utf-8 -*- """The extractor class definitions. An extractor is a class used to extract information from "raw" data. """ import copy import pysigscan from dfvfs.helpers import file_system_searcher from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.lib import errors as dfvfs_errors from dfvfs.resolver import resolver as path_spec_resolver from plaso.engine import logger from plaso.lib import errors from plaso.parsers import interface as parsers_interface from plaso.parsers import manager as parsers_manager class EventExtractor(object): """Event extractor. An event extractor extracts events from event sources. """ _PARSE_RESULT_FAILURE = 1 _PARSE_RESULT_SUCCESS = 2 _PARSE_RESULT_UNSUPPORTED = 3 def __init__(self, parser_filter_expression=None): """Initializes an event extractor. Args: parser_filter_expression (Optional[str]): parser filter expression, where None represents all parsers and plugins. A parser filter expression is a comma separated value string that denotes which parsers and plugins should be used. See filters/parser_filter.py for details of the expression syntax. """ super(EventExtractor, self).__init__() self._file_scanner = None self._filestat_parser = None self._formats_with_signatures = None self._mft_parser = None self._non_sigscan_parser_names = None self._parsers = None self._parsers_profiler = None self._usnjrnl_parser = None self._InitializeParserObjects( parser_filter_expression=parser_filter_expression) def _CheckParserCanProcessFileEntry(self, parser, file_entry): """Determines if a parser can process a file entry. Args: file_entry (dfvfs.FileEntry): file entry. parser (BaseParser): parser. Returns: bool: True if the file entry can be processed by the parser object. """ for filter_object in parser.FILTERS: if filter_object.Match(file_entry): return True return False def _GetSignatureMatchParserNames(self, file_object): """Determines if a file-like object matches one of the known signatures. Args: file_object (file): file-like object whose contents will be checked for known signatures. Returns: list[str]: parser names for which the contents of the file-like object matches their known signatures. """ parser_names = [] scan_state = pysigscan.scan_state() self._file_scanner.scan_file_object(scan_state, file_object) for scan_result in iter(scan_state.scan_results): format_specification = ( self._formats_with_signatures.GetSpecificationBySignature( scan_result.identifier)) if format_specification.identifier not in parser_names: parser_names.append(format_specification.identifier) return parser_names def _InitializeParserObjects(self, parser_filter_expression=None): """Initializes the parser objects. Args: parser_filter_expression (Optional[str]): parser filter expression, where None represents all parsers and plugins. A parser filter expression is a comma separated value string that denotes which parsers and plugins should be used. See filters/parser_filter.py for details of the expression syntax. """ self._formats_with_signatures, non_sigscan_parser_names = ( parsers_manager.ParsersManager.GetFormatsWithSignatures( parser_filter_expression=parser_filter_expression)) self._non_sigscan_parser_names = [] for parser_name in non_sigscan_parser_names: if parser_name not in ('filestat', 'usnjrnl'): self._non_sigscan_parser_names.append(parser_name) self._file_scanner = parsers_manager.ParsersManager.CreateSignatureScanner( self._formats_with_signatures) self._parsers = parsers_manager.ParsersManager.GetParserObjects( parser_filter_expression=parser_filter_expression) active_parser_names = ', '.join(sorted(self._parsers.keys())) logger.debug('Active parsers: {0:s}'.format(active_parser_names)) self._filestat_parser = self._parsers.get('filestat', None) if 'filestat' in self._parsers: del self._parsers['filestat'] self._mft_parser = self._parsers.get('mft', None) self._usnjrnl_parser = self._parsers.get('usnjrnl', None) if 'usnjrnl' in self._parsers: del self._parsers['usnjrnl'] def _ParseDataStreamWithParser( self, parser_mediator, parser, file_entry, data_stream_name): """Parses a data stream of a file entry with a specific parser. Args: parser_mediator (ParserMediator): parser mediator. parser (BaseParser): parser. file_entry (dfvfs.FileEntry): file entry. data_stream_name (str): data stream name. Raises: RuntimeError: if the file-like object is missing. """ file_object = file_entry.GetFileObject(data_stream_name=data_stream_name) if not file_object: raise RuntimeError('Unable to retrieve file-like object from file entry.') try: self._ParseFileEntryWithParser( parser_mediator, parser, file_entry, file_object=file_object) finally: file_object.close() def _ParseFileEntryWithParser( self, parser_mediator, parser, file_entry, file_object=None): """Parses a file entry with a specific parser. Args: parser_mediator (ParserMediator): parser mediator. parser (BaseParser): parser. file_entry (dfvfs.FileEntry): file entry. file_object (Optional[file]): file-like object to parse. If not set the parser will use the parser mediator to open the file entry's default data stream as a file-like object. Returns: int: parse result which is _PARSE_RESULT_FAILURE if the file entry could not be parsed, _PARSE_RESULT_SUCCESS if the file entry successfully was parsed or _PARSE_RESULT_UNSUPPORTED when UnableToParseFile was raised. Raises: TypeError: if parser object is not a supported parser type. """ if not isinstance(parser, ( parsers_interface.FileEntryParser, parsers_interface.FileObjectParser)): raise TypeError('Unsupported parser object type.') parser_mediator.ClearParserChain() reference_count = ( parser_mediator.resolver_context.GetFileObjectReferenceCount( file_entry.path_spec)) parser_mediator.SampleStartTiming(parser.NAME) try: if isinstance(parser, parsers_interface.FileEntryParser): parser.Parse(parser_mediator) elif isinstance(parser, parsers_interface.FileObjectParser): parser.Parse(parser_mediator, file_object) result = self._PARSE_RESULT_SUCCESS # We catch IOError so we can determine the parser that generated the error. except (IOError, dfvfs_errors.BackEndError) as exception: display_name = parser_mediator.GetDisplayName(file_entry) logger.warning( '{0:s} unable to parse file: {1:s} with error: {2!s}'.format( parser.NAME, display_name, exception)) result = self._PARSE_RESULT_FAILURE except errors.UnableToParseFile as exception: display_name = parser_mediator.GetDisplayName(file_entry) logger.debug( '{0:s} unable to parse file: {1:s} with error: {2!s}'.format( parser.NAME, display_name, exception)) result = self._PARSE_RESULT_UNSUPPORTED finally: parser_mediator.SampleStopTiming(parser.NAME) parser_mediator.SampleMemoryUsage(parser.NAME) new_reference_count = ( parser_mediator.resolver_context.GetFileObjectReferenceCount( file_entry.path_spec)) if reference_count != new_reference_count: display_name = parser_mediator.GetDisplayName(file_entry) logger.warning(( '[{0:s}] did not explicitly close file-object for file: ' '{1:s}.').format(parser.NAME, display_name)) return result def _ParseFileEntryWithParsers( self, parser_mediator, parser_names, file_entry, file_object=None): """Parses a file entry with a specific parsers. Args: parser_mediator (ParserMediator): parser mediator. parser_names (list[str]): names of parsers. file_entry (dfvfs.FileEntry): file entry. file_object (Optional[file]): file-like object to parse. If not set the parser will use the parser mediator to open the file entry's default data stream as a file-like object. Returns: int: parse result which is _PARSE_RESULT_FAILURE if the file entry could not be parsed, _PARSE_RESULT_SUCCESS if the file entry successfully was parsed or _PARSE_RESULT_UNSUPPORTED when UnableToParseFile was raised or no names of parser were provided. Raises: RuntimeError: if the parser object is missing. """ parse_results = self._PARSE_RESULT_UNSUPPORTED for parser_name in parser_names: parser = self._parsers.get(parser_name, None) if not parser: raise RuntimeError( 'Parser object missing for parser: {0:s}'.format(parser_name)) if parser.FILTERS: if not self._CheckParserCanProcessFileEntry(parser, file_entry): parse_results = self._PARSE_RESULT_SUCCESS continue display_name = parser_mediator.GetDisplayName(file_entry) logger.debug(( '[ParseFileEntryWithParsers] parsing file: {0:s} with parser: ' '{1:s}').format(display_name, parser_name)) parse_result = self._ParseFileEntryWithParser( parser_mediator, parser, file_entry, file_object=file_object) if parse_result == self._PARSE_RESULT_FAILURE: return self._PARSE_RESULT_FAILURE if parse_result == self._PARSE_RESULT_SUCCESS: parse_results = self._PARSE_RESULT_SUCCESS return parse_results def ParseDataStream(self, parser_mediator, file_entry, data_stream_name): """Parses a data stream of a file entry with the enabled parsers. Args: parser_mediator (ParserMediator): parser mediator. file_entry (dfvfs.FileEntry): file entry. data_stream_name (str): data stream name. Raises: RuntimeError: if the file-like object or the parser object is missing. """ file_object = file_entry.GetFileObject(data_stream_name=data_stream_name) if not file_object: raise RuntimeError( 'Unable to retrieve file-like object from file entry.') try: parser_names = self._GetSignatureMatchParserNames(file_object) parse_with_non_sigscan_parsers = True if parser_names: parse_result = self._ParseFileEntryWithParsers( parser_mediator, parser_names, file_entry, file_object=file_object) if parse_result in ( self._PARSE_RESULT_FAILURE, self._PARSE_RESULT_SUCCESS): parse_with_non_sigscan_parsers = False if parse_with_non_sigscan_parsers: self._ParseFileEntryWithParsers( parser_mediator, self._non_sigscan_parser_names, file_entry, file_object=file_object) finally: file_object.close() def ParseFileEntryMetadata(self, parser_mediator, file_entry): """Parses the file entry metadata such as file system data. Args: parser_mediator (ParserMediator): parser mediator. file_entry (dfvfs.FileEntry): file entry. """ if self._filestat_parser: self._ParseFileEntryWithParser( parser_mediator, self._filestat_parser, file_entry) def ParseMetadataFile( self, parser_mediator, file_entry, data_stream_name): """Parses a metadata file. Args: parser_mediator (ParserMediator): parser mediator. file_entry (dfvfs.FileEntry): file entry. data_stream_name (str): data stream name. """ parent_path_spec = getattr(file_entry.path_spec, 'parent', None) filename_upper = file_entry.name.upper() if (self._mft_parser and parent_path_spec and filename_upper in ('$MFT', '$MFTMIRR') and not data_stream_name): self._ParseDataStreamWithParser( parser_mediator, self._mft_parser, file_entry, '') elif (self._usnjrnl_parser and parent_path_spec and filename_upper == '$USNJRNL' and data_stream_name == '$J'): # To be able to ignore the sparse data ranges the UsnJrnl parser # needs to read directly from the volume. volume_file_object = path_spec_resolver.Resolver.OpenFileObject( parent_path_spec, resolver_context=parser_mediator.resolver_context) try: self._ParseFileEntryWithParser( parser_mediator, self._usnjrnl_parser, file_entry, file_object=volume_file_object) finally: volume_file_object.close() class PathSpecExtractor(object): """Path specification extractor. A path specification extractor extracts path specification from a source directory, file or storage media device or image. """ _MAXIMUM_DEPTH = 255 def _ExtractPathSpecs( self, path_spec, find_specs=None, recurse_file_system=True, resolver_context=None): """Extracts path specification from a specific source. Args: path_spec (dfvfs.PathSpec): path specification. find_specs (Optional[list[dfvfs.FindSpec]]): find specifications used in path specification extraction. recurse_file_system (Optional[bool]): True if extraction should recurse into a file system. resolver_context (Optional[dfvfs.Context]): resolver context. Yields: dfvfs.PathSpec: path specification of a file entry found in the source. """ file_entry = None try: file_entry = path_spec_resolver.Resolver.OpenFileEntry( path_spec, resolver_context=resolver_context) except ( dfvfs_errors.AccessError, dfvfs_errors.BackEndError, dfvfs_errors.PathSpecError) as exception: logger.error('Unable to open file entry with error: {0!s}'.format( exception)) if not file_entry: logger.warning('Unable to open: {0:s}'.format(path_spec.comparable)) elif (not file_entry.IsDirectory() and not file_entry.IsFile() and not file_entry.IsDevice()): logger.warning(( 'Source path specification not a device, file or directory.\n' '{0:s}').format(path_spec.comparable)) elif file_entry.IsFile(): yield path_spec else: for extracted_path_spec in self._ExtractPathSpecsFromFileSystem( path_spec, find_specs=find_specs, recurse_file_system=recurse_file_system, resolver_context=resolver_context): yield extracted_path_spec def _ExtractPathSpecsFromDirectory(self, file_entry, depth=0): """Extracts path specification from a directory. Args: file_entry (dfvfs.FileEntry): file entry that refers to the directory. depth (Optional[int]): current depth where 0 represents the file system root. Yields: dfvfs.PathSpec: path specification of a file entry found in the directory. Raises: MaximumRecursionDepth: when the maximum recursion depth is reached. """ if depth >= self._MAXIMUM_DEPTH: raise errors.MaximumRecursionDepth('Maximum recursion depth reached.') # Need to do a breadth-first search otherwise we'll hit the Python # maximum recursion depth. sub_directories = [] for sub_file_entry in file_entry.sub_file_entries: try: if not sub_file_entry.IsAllocated() or sub_file_entry.IsLink(): continue except dfvfs_errors.BackEndError as exception: logger.warning( 'Unable to process file: {0:s} with error: {1!s}'.format( sub_file_entry.path_spec.comparable.replace( '\n', ';'), exception)) continue # For TSK-based file entries only, ignore the virtual /$OrphanFiles # directory. if sub_file_entry.type_indicator == dfvfs_definitions.TYPE_INDICATOR_TSK: if file_entry.IsRoot() and sub_file_entry.name == '$OrphanFiles': continue if sub_file_entry.IsDirectory(): sub_directories.append(sub_file_entry) for path_spec in self._ExtractPathSpecsFromFile(sub_file_entry): yield path_spec for sub_file_entry in sub_directories: try: for path_spec in self._ExtractPathSpecsFromDirectory( sub_file_entry, depth=(depth + 1)): yield path_spec except ( IOError, dfvfs_errors.AccessError, dfvfs_errors.BackEndError, dfvfs_errors.PathSpecError) as exception: logger.warning('{0!s}'.format(exception)) def _ExtractPathSpecsFromFile(self, file_entry): """Extracts path specification from a file. Args: file_entry (dfvfs.FileEntry): file entry that refers to the file. Yields: dfvfs.PathSpec: path specification of a file entry found in the file. """ produced_main_path_spec = False for data_stream in file_entry.data_streams: # Make a copy so we don't make the changes on a path specification # directly. Otherwise already produced path specifications can be # altered in the process. path_spec = copy.deepcopy(file_entry.path_spec) if data_stream.name: setattr(path_spec, 'data_stream', data_stream.name) yield path_spec if not data_stream.name: produced_main_path_spec = True if not produced_main_path_spec: yield file_entry.path_spec def _ExtractPathSpecsFromFileSystem( self, path_spec, find_specs=None, recurse_file_system=True, resolver_context=None): """Extracts path specification from a file system within a specific source. Args: path_spec (dfvfs.PathSpec): path specification of the root of the file system. find_specs (Optional[list[dfvfs.FindSpec]]): find specifications used in path specification extraction. recurse_file_system (Optional[bool]): True if extraction should recurse into a file system. resolver_context (Optional[dfvfs.Context]): resolver context. Yields: dfvfs.PathSpec: path specification of a file entry found in the file system. """ file_system = None try: file_system = path_spec_resolver.Resolver.OpenFileSystem( path_spec, resolver_context=resolver_context) except ( dfvfs_errors.AccessError, dfvfs_errors.BackEndError, dfvfs_errors.PathSpecError) as exception: logger.error('Unable to open file system with error: {0!s}'.format( exception)) if file_system: try: if find_specs: searcher = file_system_searcher.FileSystemSearcher( file_system, path_spec) for extracted_path_spec in searcher.Find(find_specs=find_specs): yield extracted_path_spec elif recurse_file_system: file_entry = file_system.GetFileEntryByPathSpec(path_spec) if file_entry: for extracted_path_spec in self._ExtractPathSpecsFromDirectory( file_entry): yield extracted_path_spec else: yield path_spec except ( dfvfs_errors.AccessError, dfvfs_errors.BackEndError, dfvfs_errors.PathSpecError) as exception: logger.warning('{0!s}'.format(exception)) finally: file_system.Close() def ExtractPathSpecs( self, path_specs, find_specs=None, recurse_file_system=True, resolver_context=None): """Extracts path specification from a specific source. Args: path_specs (Optional[list[dfvfs.PathSpec]]): path specifications. find_specs (Optional[list[dfvfs.FindSpec]]): find specifications used in path specification extraction. recurse_file_system (Optional[bool]): True if extraction should recurse into a file system. resolver_context (Optional[dfvfs.Context]): resolver context. Yields: dfvfs.PathSpec: path specification of a file entry found in the source. """ for path_spec in path_specs: for extracted_path_spec in self._ExtractPathSpecs( path_spec, find_specs=find_specs, recurse_file_system=recurse_file_system, resolver_context=resolver_context): yield extracted_path_spec
# # This file is part of python-dbusx. Python-dbusx is free software # available under the terms of the MIT license. See the file "LICENSE" that # was provided together with this source file for the licensing terms. # # Copyright (c) 2012-2013 the python-dbusx authors. See the file "AUTHORS" # for a complete list. import dbusx import dbusx.util import time import threading class Connection(dbusx.ConnectionBase): """A connection to the D-BUS. This class represents a connection to a desktop bus (D-BUS). It has two constructors. The default constructor `Connection()` will create a new private connection. An alternate constructor `Connection.get()` is available that create a connection that is shared with other users of libdbus (Python and non-Python) in the current process. To connect to a D-BUS instance, you need to specify its address to one of the constructors or to the :meth:`open` method. The most common D-BUS instances are the system and session bus. To connect to these buses, you can use the special constants dbusx.BUS_SYSTEM and dbusx.BUS_SESSION as the address, respectively. To connect to another bus, specify the address as a string. By default, this class will use the event loop provided by the package `looping.tulip`. This provides a good basic event loop based on the Python built-in select/poll/epoll/kqueue multiplexers. The event loop can be overrided by passing a different one to one of the constructors. It is your responsiblity to make sure the event loop is run. You can also use an event loop that is external to dbusx. In this case, you need to specify the parameter `install_event_loop=False` toathe constructor. """ def __init__(self, address): """Create a new private connection. If *address* is provided, the connection will opened to the specified address. """ super(Connection, self).__init__(address) self.context = None self._registered = False self._signal_handlers = [] self.logger = dbusx.util.getLogger('dbusx.Connection', context=str(self)) self.local = self._local() def __str__(self): s = 'Connection(address=%s, shared=%s)' % (self.address, self.shared) return s def proxy(self, service, path, interfaces=None): """Return a proxy for an object on the D-BUS. The *service* argument specifies the bus name of the remote object and *path* specifies its path. The *interfaces* argument, if provided, specifies the interface search path used when resolving methods. You only need to provide this if the object exposes methods or signals with the same name on multiple interfaces. """ return dbusx.Proxy(self, service, path, interfaces) def publish(self, instance, path): """Publish a Python object instance on the D-BUS. The *instance* parameter can be a :class:`dbusx.Object` instance, or any other instance. In the latter case, the object is automatically wrapped to an Object instance using :meth:`dbusx.Object.wrap`. The *path* parameter specifies the path to publish this object at. It may contain a trailing '*' to indicate that the object will also handle all paths below the indicated path. """ if not isinstance(instance, dbusx.Object): instance = dbusx.Object.wrap(instance) instance.register(self, path) fallback = path.endswith('*') path = path.rstrip('/*') self.register_object_path(path, instance._process, fallback) def remove(self, path): """Remove a published Python object. An object should have been previously published at *path* using :meth:`publish`. An error will be raised if this is not the case. """ path = path.rstrip('/*') self.unregister_object_path(path) def call_method(self, service, path, interface, method, signature=None, args=None, no_reply=False, callback=None, timeout=None): """Call the method *method* on the interface *interface* of the remote object at bus name *service* at path *path*. If *signature* is specified, it must be a D-BUS signature string describing the input arguments of the method. In this case, *args* must be a tuple containing the argument values. If *callback* is not provided, this method performs a synchronous method call. It will block until a reply is received. The return value is a tuple containing the the return values of the remote method. In case of an error, a :class:`dbusx.Error` instance is raised. The actual message of the response is available in the :attr:`reply` attribute. Subsequent calls will overwrite this attribute. If *callback* is provided, this method performs an asynchronous method call. The method call message will be queued, after which this method will return immediately. There is no return value. At a later time, when the message is sent out and a reply is received, the callback will be called with two parameters: the connection and the message. In case of an error, this message will have the type `dbusx.MESSAGE_TYPE_ERROR`. The internal :class:`PendingCall` instance that is used to track the response is available at the :attr:`pending` attribute. Subsequent calls will overwrite this attribute. The *no_reply* argument will set a flag in the D-BUS message indicating that no reply is required. In this case, a synchronous method call will still block, but only until the message has been sent out. An asynchronous method call will never block. The *timeout* parameter specifies the timeout in seconds to wait for a reply. The timeout may be an int or float. If no timeout is provided, a suitable default timeout is used. If no response is received within the timeout, a "org.freedesktop.DBus.Error.Timeout" error is generated. """ message = dbusx.Message(dbusx.MESSAGE_TYPE_METHOD_CALL, no_reply=no_reply, destination=service, path=path, interface=interface, member=method) if signature is not None: message.set_args(signature, args) if callback is not None: # Fire a callback for the reply. Note that this requires event # loop integration otherwise the callback will never be called. self.send_with_reply(message, callback, timeout) elif no_reply: # No reply needed but block until flushed self.send(message) if not self.loop: self.flush() else: # Block for the reply replies = [] def callback(message): replies.append(message) self.send_with_reply(message, callback, timeout) if timeout is not None: end_time = time.time() + timeout while not replies: secs = None if timeout is None else end_time - time.time() if self.loop: if self.dispatch_status == dbusx.DISPATCH_DATA_REMAINS: self.dispatch() else: self.loop.run_once(secs) else: self.read_write_dispatch(secs) assert len(replies) == 1 reply = replies[0] assert reply.type in (dbusx.MESSAGE_TYPE_METHOD_RETURN, dbusx.MESSAGE_TYPE_ERROR) assert reply.reply_serial == message.serial return reply def connect_to_signal(self, service, path, interface, signal, callback): """Install a signal handler for the signal *signal* that is raised on *interface* by the remote object at bus name *service* and path *path*. The *callback* argument must be a callable Python object. When a matching signal arrives, the callback is called with two arguments: the connection on which the signal was received, and the D-BUS message containing the signal. """ if not self._registered: self.add_filter(self._signal_handler) self._registered = True self._signal_handlers.append((service, path, interface, signal, callback)) # Call the "AddMatch" method on the D-BUS so that the signal specified # will get routed to us. Signals are normally sent out as multicast # messages and therefore an explicit route is required. # NOTE: It is OK to do this multiple times for the same signal. message = dbusx.Message(dbusx.MESSAGE_TYPE_METHOD_CALL, no_reply=True, destination=dbusx.SERVICE_DBUS, path=dbusx.PATH_DBUS, interface=dbusx.INTERFACE_DBUS, member='AddMatch') rule = "type='signal'" rule += ",sender='%s'" % service rule += ",path='%s'" % path rule += ",interface='%s'" % interface rule += ",member='%s'" % signal message.set_args('s', (rule,)) self.send(message) def _signal_handler(self, connection, message): """Filter handler that is used to call signal handlers that are registered with connect_to_signal(). """ log = self.logger if connection is not self: log.error('_signal_handler: connection is not self??') return False if message.type != dbusx.MESSAGE_TYPE_SIGNAL: return False for service,path,interface,signal,callback in self._signal_handlers: if message.sender != service \ or message.path != path \ or message.interface != interface \ or message.member != signal: continue try: self._spawn(callback, message) except Exception as e: log.error('exception in signal handler', exc_info=True) # Allow others to see this signal as well return False def _spawn(self, function, *args): """Helper to spawn a function in a new context. By default this just executes function(*args), but it can be reimplemented by subclasses to add different spawning behavior. """ return function(*args) def _local(self): """Helper to return a context-local storage object. This method must work in tandem with :meth:`_spawn()` so that the object implements local storage for the type of context implemented. """ return threading.local()
# -*- coding: utf-8 -*- from __future__ import absolute_import import mock from django.core.urlresolvers import reverse from exam import fixture from social_auth.models import UserSocialAuth from sentry.models import UserOption, LostPasswordHash, User from sentry.testutils import TestCase class AppearanceSettingsTest(TestCase): @fixture def path(self): return reverse('sentry-account-settings-appearance') def test_requires_authentication(self): self.assertRequiresAuthentication(self.path) def test_does_use_template(self): self.login_as(self.user) resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/appearance.html') def test_does_save_settings(self): self.login_as(self.user) resp = self.client.post(self.path, { 'language': 'en', 'stacktrace_order': '2', 'clock_24_hours': True }) assert resp.status_code == 302 options = UserOption.objects.get_all_values(user=self.user, project=None) assert options.get('language') == 'en' assert options.get('stacktrace_order') == '2' assert options.get('clock_24_hours') is True class SettingsTest(TestCase): @fixture def path(self): return reverse('sentry-account-settings') def params(self, without=()): params = { 'username': 'foobar', 'email': '[email protected]', 'name': 'Foo bar', } return dict((k, v) for k, v in params.iteritems() if k not in without) def test_requires_authentication(self): self.assertRequiresAuthentication(self.path) def test_renders_with_required_context(self): self.login_as(self.user) resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed('sentry/account/settings.html') assert 'form' in resp.context def test_requires_email(self): self.login_as(self.user) resp = self.client.post(self.path, self.params(without=['email'])) assert resp.status_code == 200 self.assertTemplateUsed('sentry/account/settings.html') assert 'form' in resp.context assert 'email' in resp.context['form'].errors def test_requires_name(self): self.login_as(self.user) resp = self.client.post(self.path, self.params(without=['name'])) assert resp.status_code == 200 self.assertTemplateUsed('sentry/account/settings.html') assert 'form' in resp.context assert 'name' in resp.context['form'].errors def test_minimum_valid_params(self): self.login_as(self.user) params = self.params() resp = self.client.post(self.path, params) assert resp.status_code == 302 user = User.objects.get(id=self.user.id) assert user.name == params['name'] assert user.email == params['email'] def test_can_change_password(self): self.login_as(self.user) params = self.params() params['new_password'] = 'foobar' resp = self.client.post(self.path, params) assert resp.status_code == 302 user = User.objects.get(id=self.user.id) assert user.check_password('foobar') class NotificationSettingsTest(TestCase): @fixture def path(self): return reverse('sentry-account-settings-notifications') def params(self, without=()): params = { 'alert_email': '[email protected]', } return dict((k, v) for k, v in params.iteritems() if k not in without) def test_requires_authentication(self): self.assertRequiresAuthentication(self.path) def test_renders_with_required_context(self): user = self.create_user('[email protected]') organization = self.create_organization() team = self.create_team(organization=organization) project = self.create_project(organization=organization, team=team) team2 = self.create_team(organization=organization) self.create_project(organization=organization, team=team2) self.create_member(organization=organization, user=user, teams=[project.team]) self.login_as(user) resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed('sentry/account/notifications.html') assert 'form' in resp.context assert len(resp.context['project_forms']) == 1 def test_valid_params(self): self.login_as(self.user) params = self.params() resp = self.client.post(self.path, params) assert resp.status_code == 302 options = UserOption.objects.get_all_values(user=self.user, project=None) assert options.get('alert_email') == '[email protected]' class ListIdentitiesTest(TestCase): @fixture def path(self): return reverse('sentry-account-settings-identities') def test_requires_authentication(self): self.assertRequiresAuthentication(self.path) def test_renders_with_required_context(self): self.login_as(self.user) UserSocialAuth.objects.create(user=self.user, provider='github') resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed('sentry/account/identities.html') assert 'identity_list' in resp.context assert 'AUTH_PROVIDERS' in resp.context class RecoverPasswordTest(TestCase): @fixture def path(self): return reverse('sentry-account-recover') def test_renders_with_required_context(self): resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/recover/index.html') assert 'form' in resp.context def test_invalid_username(self): resp = self.client.post(self.path, { 'user': 'nonexistent' }) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/recover/index.html') assert 'form' in resp.context assert 'user' in resp.context['form'].errors @mock.patch('sentry.models.LostPasswordHash.send_recover_mail') def test_valid_username(self, send_recover_mail): resp = self.client.post(self.path, { 'user': self.user.username }) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/recover/sent.html') assert 'email' in resp.context send_recover_mail.assert_called_once_with() class RecoverPasswordConfirmTest(TestCase): def setUp(self): super(RecoverPasswordConfirmTest, self).setUp() self.password_hash = LostPasswordHash.objects.create(user=self.user) @fixture def path(self): return reverse('sentry-account-recover-confirm', args=[self.user.id, self.password_hash.hash]) def test_valid_token(self): resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/recover/confirm.html') def test_invalid_token(self): resp = self.client.get(reverse('sentry-account-recover-confirm', args=[1, 'adfadsf'])) assert resp.status_code == 200 self.assertTemplateUsed(resp, 'sentry/account/recover/failure.html') def test_change_password(self): resp = self.client.post(self.path, { 'password': 'bar', 'confirm_password': 'bar' }) assert resp.status_code == 302 user = User.objects.get(id=self.user.id) assert user.check_password('bar')
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple tests for util.""" import numpy as np import pyarrow as pa import tensorflow as tf from tensorflow_model_analysis import constants from tensorflow_model_analysis import types from tensorflow_model_analysis.utils import util from tensorflow_metadata.proto.v0 import schema_pb2 class UtilTest(tf.test.TestCase): def testToTensorValueFromTFSparseTensor(self): original = tf.SparseTensor( values=[0.5, -1., 0.5, -1.], indices=[[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]], dense_shape=[2, 100, 3]) sparse_value = util.to_tensor_value(original) self.assertAllClose(sparse_value.values, original.values.numpy()) self.assertAllClose(sparse_value.indices, original.indices.numpy()) self.assertAllClose(sparse_value.dense_shape, original.dense_shape.numpy()) def testToTensorValueFromTFV1SparseTensorValue(self): original = tf.compat.v1.SparseTensorValue( values=np.array([0.5, -1., 0.5, -1.]), indices=np.array([[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]]), dense_shape=np.array([2, 100, 3])) sparse_value = util.to_tensor_value(original) self.assertAllClose(sparse_value.values, original.values) self.assertAllClose(sparse_value.indices, original.indices) self.assertAllClose(sparse_value.dense_shape, original.dense_shape) def testToTensorValueFromTFRaggedTensor(self): original = tf.RaggedTensor.from_nested_row_splits( [3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1], [[0, 3, 6], [0, 2, 3, 4, 5, 5, 8], [0, 2, 3, 3, 6, 9, 10, 11, 13]]) ragged_value = util.to_tensor_value(original) self.assertAllClose(ragged_value.values, original.flat_values.numpy()) self.assertLen(ragged_value.nested_row_splits, 3) original_nested_row_splits = original.nested_row_splits self.assertAllClose(ragged_value.nested_row_splits[0], original_nested_row_splits[0].numpy()) self.assertAllClose(ragged_value.nested_row_splits[1], original_nested_row_splits[1].numpy()) self.assertAllClose(ragged_value.nested_row_splits[2], original_nested_row_splits[2].numpy()) def testToTensorValueFromTFRaggedTensorUsingRowLengths(self): original = tf.RaggedTensor.from_nested_row_lengths( [3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1], [[3, 3], [2, 1, 1, 1, 0, 3], [2, 1, 0, 3, 3, 1, 1, 2]]) ragged_value = util.to_tensor_value(original) self.assertAllClose(ragged_value.values, original.flat_values.numpy()) self.assertLen(ragged_value.nested_row_splits, 3) original_nested_row_splits = original.nested_row_splits self.assertAllClose(ragged_value.nested_row_splits[0], original_nested_row_splits[0].numpy()) self.assertAllClose(ragged_value.nested_row_splits[1], original_nested_row_splits[1].numpy()) self.assertAllClose(ragged_value.nested_row_splits[2], original_nested_row_splits[2].numpy()) def testToTensorValueFromTFV1RaggedTensorValue(self): ragged_value = util.to_tensor_value( tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=tf.compat.v1.ragged.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1]), row_splits=np.array([0, 2, 3, 3, 6, 9, 10, 11, 13])), row_splits=np.array([0, 2, 3, 4, 5, 5, 8])), row_splits=np.array([0, 3, 6]))) self.assertAllClose(ragged_value.values, np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1])) self.assertLen(ragged_value.nested_row_splits, 3) self.assertAllClose(ragged_value.nested_row_splits[0], np.array([0, 3, 6])) self.assertAllClose(ragged_value.nested_row_splits[1], np.array([0, 2, 3, 4, 5, 5, 8])) self.assertAllClose(ragged_value.nested_row_splits[2], np.array([0, 2, 3, 3, 6, 9, 10, 11, 13])) def testToTensorValueFromNumpy(self): self.assertAllClose(util.to_tensor_value([1, 2, 3]), np.array([1, 2, 3])) self.assertAllClose( util.to_tensor_value(np.array([1, 2, 3])), np.array([1, 2, 3])) def testToTensorValueFromTFTensor(self): self.assertAllClose( util.to_tensor_value(tf.constant([1, 2, 3])), np.array([1, 2, 3])) def testToTFSparseTensorFromSparseTensorValue(self): original = types.SparseTensorValue( values=np.array([0.5, -1., 0.5, -1.]), indices=np.array([[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]]), dense_shape=np.array([2, 100, 3])) sparse_tensor = util.to_tensorflow_tensor(original) self.assertAllClose(sparse_tensor.values.numpy(), original.values) self.assertAllClose(sparse_tensor.indices.numpy(), original.indices) self.assertAllClose(sparse_tensor.dense_shape.numpy(), original.dense_shape) def testToTFRaggedTensorFromRaggedTensorValue(self): original = types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1]), nested_row_splits=[ np.array([0, 3, 6]), np.array([0, 2, 3, 4, 5, 5, 8]), np.array([0, 2, 3, 3, 6, 9, 10, 11, 13]) ]) ragged_tensor = util.to_tensorflow_tensor(original) self.assertAllClose(ragged_tensor.flat_values.numpy(), original.values) self.assertLen(ragged_tensor.nested_row_splits, 3) self.assertAllClose(ragged_tensor.nested_row_splits[0].numpy(), original.nested_row_splits[0]) self.assertAllClose(ragged_tensor.nested_row_splits[1].numpy(), original.nested_row_splits[1]) self.assertAllClose(ragged_tensor.nested_row_splits[2].numpy(), original.nested_row_splits[2]) def testToTFTensorFromNumpy(self): self.assertAllClose( util.to_tensorflow_tensor(np.array([1, 2, 3])).numpy(), np.array([1, 2, 3])) def testToFromTensorValues(self): tensor_values = { 'features': { 'feature_1': np.array([1, 2, 3]), 'feature_2': types.SparseTensorValue( values=np.array([0.5, -1., 0.5, -1.]), indices=np.array([[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]]), dense_shape=np.array([2, 100, 3])), 'feature_3': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1]), nested_row_splits=[ np.array([0, 3, 6]), np.array([0, 2, 3, 4, 5, 5, 8]), np.array([0, 2, 3, 3, 6, 9, 10, 11, 13]) ]) }, 'labels': np.array([1]) } actual = util.to_tensor_values(util.to_tensorflow_tensors(tensor_values)) self.assertAllClose(actual, tensor_values) def testToFromTensorValuesWithSpecs(self): sparse_value = types.SparseTensorValue( values=np.array([0.5, -1., 0.5, -1.], dtype=np.float32), indices=np.array([[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]]), dense_shape=np.array([2, 100, 3])) ragged_value = types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1], dtype=np.float32), nested_row_splits=[ np.array([0, 3, 6]), np.array([0, 2, 3, 4, 5, 5, 8]), np.array([0, 2, 3, 3, 6, 9, 10, 11, 13]) ]) tensor_values = { 'features': { 'feature_1': np.array([1, 2, 3], dtype=np.float32), 'feature_2': sparse_value, 'feature_3': ragged_value, 'ignored_feature': np.array([1, 2, 3]) }, 'labels': np.array([1], dtype=np.float32), 'ignored': np.array([2]) } specs = { 'features': { 'feature_1': tf.TensorSpec([3], dtype=tf.float32), 'feature_2': tf.SparseTensorSpec(shape=[2, 100, 3], dtype=tf.float32), 'feature_3': tf.RaggedTensorSpec( shape=[2, None, None, None], dtype=tf.float32) }, 'labels': tf.TensorSpec([1], dtype=tf.float32) } actual = util.to_tensor_values( util.to_tensorflow_tensors(tensor_values, specs)) expected = { 'features': { 'feature_1': np.array([1, 2, 3], dtype=np.float32), 'feature_2': sparse_value, 'feature_3': ragged_value }, 'labels': np.array([1], dtype=np.float32) } self.assertAllClose(actual, expected) def testToTensorflowTensorsRaisesIncompatibleSpecError(self): with self.assertRaisesRegex(ValueError, '.* is not compatible with .*'): util.to_tensorflow_tensors( {'features': { 'feature_1': np.array([1, 2, 3], dtype=np.int64) }}, {'features': { 'feature_1': tf.TensorSpec([1], dtype=tf.float32) }}) def testToTensorflowTensorsRaisesUnknownKeyError(self): with self.assertRaisesRegex(ValueError, '.* not found in .*'): util.to_tensorflow_tensors( {'features': { 'feature_1': np.array([1, 2, 3], dtype=np.float32) }}, { 'features': { 'missing_feature': tf.TensorSpec([1], dtype=tf.float32) } }) def testRecordBatchToTensorValues(self): record_batch = pa.record_batch( [pa.array([[1], [2], [3]]), pa.array([[0], [1], [1]])], ['feature_1', 'feature_2']) actual = util.record_batch_to_tensor_values(record_batch) expected = { 'feature_1': np.array([1, 2, 3]), 'feature_2': np.array([0, 1, 1]) } self.assertAllClose(actual, expected) def testRecordBatchToTensorValuesWithTensorRepresentation(self): record_batch = pa.record_batch( [pa.array([[1, 2], [2, 3], [3, 4]]), pa.array([[0], [1], [1]])], ['feature_1', 'feature_2']) tensor_representation = schema_pb2.TensorRepresentation() tensor_representation.dense_tensor.column_name = 'feature_1' tensor_representation.dense_tensor.shape.dim.append( schema_pb2.FixedShape.Dim(size=2)) actual = util.record_batch_to_tensor_values( record_batch, {'feature_1': tensor_representation}) expected = { 'feature_1': np.array([[1, 2], [2, 3], [3, 4]]), 'feature_2': np.array([0, 1, 1]) } self.assertAllClose(actual, expected) def testBatchSizeWithTensorValues(self): tensor_values = { 'feature_1': np.array([1, 2], dtype=np.float32), 'feature_2': types.SparseTensorValue( values=np.array([0.5, -1., 0.5, -1.], dtype=np.float32), indices=np.array([[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]]), dense_shape=np.array([2, 100, 3])), 'feature_3': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1], dtype=np.float32), nested_row_splits=[ np.array([0, 3, 6]), np.array([0, 2, 3, 4, 5, 5, 8]), np.array([0, 2, 3, 3, 6, 9, 10, 11, 13]) ]), } self.assertEqual(util.batch_size(tensor_values), 2) def testBatchSizeWithTFTensors(self): tensor_values = { 'feature_1': tf.constant([1, 2]), 'feature_2': tf.SparseTensor( values=[0.5, -1., 0.5, -1.], indices=[[0, 3, 1], [0, 20, 0], [1, 3, 1], [1, 20, 0]], dense_shape=[2, 100, 3]), 'feature_3': tf.RaggedTensor.from_nested_row_lengths( [3, 1, 4, 1, 5, 9, 2, 7, 1, 8, 8, 2, 1], [[3, 3], [2, 1, 1, 1, 0, 3], [2, 1, 0, 3, 3, 1, 1, 2]]), } self.assertEqual(util.batch_size(tensor_values), 2) def testBatchSizeError(self): with self.assertRaisesRegex(ValueError, 'Batch sizes have differing values.*'): util.batch_size({ 'feature_1': np.array([1, 2, 3], dtype=np.int64), 'feature_2': np.array([1, 2], dtype=np.int64) }) def testUniqueKey(self): self.assertEqual('key', util.unique_key('key', ['key1', 'key2'])) self.assertEqual('key1_1', util.unique_key('key1', ['key1', 'key2'])) self.assertEqual('key1_2', util.unique_key('key1', ['key1', 'key1_1'])) def testUniqueKeyWithUpdateKeys(self): keys = ['key1', 'key2'] util.unique_key('key1', keys, update_keys=True) self.assertEqual(['key1', 'key2', 'key1_1'], keys) def testCompoundKey(self): self.assertEqual('a_b', util.compound_key(['a_b'])) self.assertEqual('a__b', util.compound_key(['a', 'b'])) self.assertEqual('a__b____c__d', util.compound_key(['a', 'b__c', 'd'])) def testGetByKeys(self): self.assertEqual([1], util.get_by_keys({'labels': [1]}, ['labels'])) def testGetByKeysMissingAndDefault(self): self.assertEqual('a', util.get_by_keys({}, ['labels'], default_value='a')) self.assertEqual( 'a', util.get_by_keys({'labels': {}}, ['labels'], default_value='a')) def testGetByKeysMissingAndOptional(self): self.assertIsNone(util.get_by_keys({}, ['labels'], optional=True)) self.assertIsNone( util.get_by_keys({'labels': {}}, ['labels'], optional=True)) def testGetByKeysMissingAndNonOptional(self): with self.assertRaisesRegex(ValueError, 'not found'): util.get_by_keys({}, ['labels']) with self.assertRaisesRegex(ValueError, 'not found'): util.get_by_keys({'labels': {}}, ['labels']) def testGetByKeysWitMultiLevel(self): self.assertEqual([1], util.get_by_keys({'predictions': { 'output': [1] }}, ['predictions', 'output'])) self.assertEqual([1], util.get_by_keys( {'predictions': { 'model': { 'output': [1], }, }}, ['predictions', 'model', 'output'])) def testGetByKeysWithPrefix(self): self.assertEqual({ 'all_classes': ['a', 'b'], 'probabilities': [1] }, util.get_by_keys( { 'predictions': { 'output/all_classes': ['a', 'b'], 'output/probabilities': [1], }, }, ['predictions', 'output'])) self.assertEqual({ 'all_classes': ['a', 'b'], 'probabilities': [1] }, util.get_by_keys( { 'predictions': { 'model': { 'output/all_classes': ['a', 'b'], 'output/probabilities': [1], }, }, }, ['predictions', 'model', 'output'])) def testGetByKeysMissingSecondaryKey(self): with self.assertRaisesRegex(ValueError, 'not found'): util.get_by_keys({'predictions': { 'missing': [1] }}, ['predictions', 'output']) def testIncludeFilter(self): got = util.include_filter( include={ 'b': {}, 'c': { 'c2': { 'c21': {} } }, 'e': { 'e2': { 'e21': {} } } }, target={ 'a': 1, 'b': { 'b2': 2 }, 'c': { 'c2': { 'c21': 3, 'c22': 4 } }, 'd': { 'd2': 4 }, 'e': { 'e2': { 'e22': {} } } }) self.assertEqual(got, { 'b': { 'b2': 2 }, 'c': { 'c2': { 'c21': 3 } }, 'e': { 'e2': {} } }) def testExcludeFilter(self): got = util.exclude_filter( exclude={ 'b': {}, 'c': { 'c2': { 'c21': {} } } }, target={ 'a': 1, 'b': { 'b2': 2 }, 'c': { 'c2': { 'c21': 3, 'c22': 4 } }, 'd': { 'd2': 4 } }) self.assertEqual(got, {'a': 1, 'c': {'c2': {'c22': 4}}, 'd': {'d2': 4}}) def testMergeFilters(self): filter1 = { 'features': { 'feature_1': {}, 'feature_2': {}, }, 'labels': {}, 'example_weights': { 'model1': {}, }, 'predictions': { 'model1': { 'output1': {}, }, 'model2': { 'output1': {} } }, 'attributions': { 'model1': {} }, } filter2 = { 'features': { 'feature_2': {}, 'feature_3': {}, }, 'labels': { 'model1': {}, 'model2': {}, }, 'example_weights': { 'model2': {}, }, 'predictions': { 'model1': { 'output2': {}, }, 'model2': { 'output1': {}, 'output2': {}, } }, 'attributions': { 'model1': { 'output1': { 'feature1': {} }, }, }, } merged = util.merge_filters(filter1, filter2) self.assertEqual( merged, { 'features': { 'feature_1': {}, 'feature_2': {}, 'feature_3': {}, }, 'labels': {}, 'example_weights': { 'model1': {}, 'model2': {}, }, 'predictions': { 'model1': { 'output1': {}, 'output2': {}, }, 'model2': { 'output1': {}, 'output2': {}, } }, 'attributions': { 'model1': {}, }, }) def testKwargsOnly(self): @util.kwargs_only def fn(a, b, c, d=None, e=5): if d is None: d = 100 if e is None: e = 1000 return a + b + c + d + e self.assertEqual(1 + 2 + 3 + 100 + 5, fn(a=1, b=2, c=3)) self.assertEqual(1 + 2 + 3 + 100 + 1000, fn(a=1, b=2, c=3, e=None)) with self.assertRaisesRegex(TypeError, 'keyword-arguments only'): fn(1, 2, 3) with self.assertRaisesRegex(TypeError, 'with c specified'): fn(a=1, b=2, e=5) # pylint: disable=no-value-for-parameter with self.assertRaisesRegex(TypeError, 'with extraneous kwargs'): fn(a=1, b=2, c=3, f=11) # pylint: disable=unexpected-keyword-arg def testGetFeaturesFromExtracts(self): self.assertEqual( {'a': np.array([1])}, util.get_features_from_extracts({ constants.FEATURES_PREDICTIONS_LABELS_KEY: types.FeaturesPredictionsLabels( input_ref=0, features={'a': np.array([1])}, predictions={}, labels={}) }), ) self.assertEqual( {'a': np.array([1])}, util.get_features_from_extracts( {constants.FEATURES_KEY: { 'a': np.array([1]) }}), ) self.assertEqual({}, util.get_features_from_extracts({})) def testMergeExtracts(self): extracts = [ { 'features': { 'feature_1': np.array([1.0, 2.0]), 'feature_2': np.array([1.0, 2.0]), 'feature_3': types.SparseTensorValue( values=np.array([1]), indices=np.array([[0, 1]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]), 'feature_5': types.SparseTensorValue( values=np.array([1]), indices=np.array([[0, 1]]), dense_shape=np.array([1, 3])), }, 'labels': np.array([1.0]), 'example_weights': np.array(0.0), 'predictions': { 'model1': np.array([0.1, 0.2]), 'model2': np.array([0.1, 0.2]) }, '_slice_key_types': [()] }, { 'features': { 'feature_1': np.array([3.0, 4.0]), 'feature_2': np.array([3.0, 4.0]), 'feature_3': types.SparseTensorValue( values=np.array([2]), indices=np.array([[0, 2]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]), 'feature_5': types.SparseTensorValue( values=np.array([2]), indices=np.array([[0, 2]]), dense_shape=np.array([1, 4])), }, 'labels': np.array([0.0]), 'example_weights': np.array(0.5), 'predictions': { 'model1': np.array([0.3, 0.4]), 'model2': np.array([0.3, 0.4]) }, '_slice_key_types': [()] }, { 'features': { 'feature_1': np.array([5.0, 6.0]), 'feature_2': np.array([5.0, 6.0]), 'feature_3': types.SparseTensorValue( values=np.array([3]), indices=np.array([[0, 0]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]), 'feature_5': types.SparseTensorValue( values=np.array([3]), indices=np.array([[0, 3]]), dense_shape=np.array([1, 5])), }, 'labels': np.array([1.0]), 'example_weights': np.array(1.0), 'predictions': { 'model1': np.array([0.5, 0.6]), 'model2': np.array([0.5, 0.6]) }, '_slice_key_types': [()] }, ] expected = { 'features': { 'feature_1': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), 'feature_2': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), 'feature_3': types.SparseTensorValue( values=np.array([1, 2, 3]), indices=np.array([[0, 0, 1], [1, 0, 2], [2, 0, 0]]), dense_shape=np.array([3, 1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([ 3, 1, 4, 1, 5, 9, 2, 6, 3, 1, 4, 1, 5, 9, 2, 6, 3, 1, 4, 1, 5, 9, 2, 6 ]), nested_row_splits=[ np.array([0, 5, 10, 15]), np.array([ 0, 4, 4, 7, 8, 8, 12, 12, 15, 16, 16, 20, 20, 23, 24, 24 ]) ]), 'feature_5': types.SparseTensorValue( values=np.array([1, 2, 3]), indices=np.array([[0, 0, 1], [1, 0, 2], [2, 0, 3]]), dense_shape=np.array([3, 1, 5])), }, 'labels': np.array([1.0, 0.0, 1.0]), 'example_weights': np.array([0.0, 0.5, 1.0]), 'predictions': { 'model1': np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]), 'model2': np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]) }, '_slice_key_types': np.array([(), (), ()]) } self.assertAllClose(util.merge_extracts(extracts), expected) def testSplitExtracts(self): extracts = { 'features': { 'feature_1': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), 'feature_2': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), 'feature_3': types.SparseTensorValue( values=np.array([1, 2, 3]), indices=np.array([[0, 0, 1], [1, 0, 2], [2, 0, 0]]), dense_shape=np.array([3, 1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([ 3, 1, 4, 1, 5, 9, 2, 6, 3, 1, 4, 1, 5, 9, 2, 6, 3, 1, 4, 1, 5, 9, 2, 6 ]), nested_row_splits=[ np.array([0, 5, 10, 15]), np.array([ 0, 4, 4, 7, 8, 8, 12, 12, 15, 16, 16, 20, 20, 23, 24, 24 ]) ]) }, 'labels': np.array([1.0, 0.0, 1.0]), 'example_weights': np.array([0.0, 0.5, 1.0]), 'predictions': { 'model1': np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]), 'model2': np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]) }, 'empty': None, 'multi_level_empty': { 'empty': None, 'next_level': { 'empty': None }, }, '_slice_key_types': np.array([(), (), ()]) } expected = [ { 'features': { 'feature_1': np.array([1.0, 2.0]), 'feature_2': np.array([1.0, 2.0]), 'feature_3': types.SparseTensorValue( values=np.array([1]), indices=np.array([[0, 1]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]) }, 'labels': np.array([1.0]), 'example_weights': np.array([0.0]), 'predictions': { 'model1': np.array([0.1, 0.2]), 'model2': np.array([0.1, 0.2]) }, '_slice_key_types': np.array([()]) }, { 'features': { 'feature_1': np.array([3.0, 4.0]), 'feature_2': np.array([3.0, 4.0]), 'feature_3': types.SparseTensorValue( values=np.array([2]), indices=np.array([[0, 2]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]) }, 'labels': np.array([0.0]), 'example_weights': np.array([0.5]), 'predictions': { 'model1': np.array([0.3, 0.4]), 'model2': np.array([0.3, 0.4]) }, '_slice_key_types': np.array([()]) }, { 'features': { 'feature_1': np.array([5.0, 6.0]), 'feature_2': np.array([5.0, 6.0]), 'feature_3': types.SparseTensorValue( values=np.array([3]), indices=np.array([[0, 0]]), dense_shape=np.array([1, 3])), 'feature_4': types.RaggedTensorValue( values=np.array([3, 1, 4, 1, 5, 9, 2, 6]), nested_row_splits=[np.array([0, 4, 4, 7, 8, 8])]) }, 'labels': np.array([1.0]), 'example_weights': np.array([1.0]), 'predictions': { 'model1': np.array([0.5, 0.6]), 'model2': np.array([0.5, 0.6]) }, '_slice_key_types': np.array([()]) }, ] splits = util.split_extracts(extracts) self.assertLen(splits, 3) # Verify empty and delete since None can't be compared with assertAllClose for i in range(3): self.assertIn('empty', splits[i]) self.assertIsNone(splits[i]['empty']) del splits[i]['empty'] self.assertIn('multi_level_empty', splits[i]) self.assertIn('empty', splits[i]['multi_level_empty']) self.assertIsNone(splits[i]['multi_level_empty']['empty']) self.assertIn('next_level', splits[i]['multi_level_empty']) self.assertIn('empty', splits[i]['multi_level_empty']['next_level']) self.assertIsNone(splits[i]['multi_level_empty']['next_level']['empty']) del splits[i]['multi_level_empty'] self.assertAllClose(splits, expected) if __name__ == '__main__': tf.compat.v1.enable_v2_behavior() tf.test.main()
""" WSGI Middleware apps that haven't gotten around to being extracted to their own modules. """ import logging import time import urllib from tiddlyweb.model.policy import UserRequiredError, ForbiddenError from tiddlyweb.store import Store from tiddlyweb.web.http import HTTP403, HTTP302 from tiddlyweb.web.util import server_base_url from tiddlyweb import __version__ as VERSION class Header(object): """ If REQUEST_METHOD is HEAD, change it to GET and consume the output for lower requests. """ def __init__(self, application): self.application = application def __call__(self, environ, start_response): if environ['REQUEST_METHOD'] == 'HEAD': environ['REQUEST_METHOD'] = 'GET' _ = self.application(environ, start_response) return [] else: return self.application(environ, start_response) class HTMLPresenter(object): """ Take the core app output, if tiddlyweb.title is set in environ and we appear to be using a browser, add some HTML framework. """ def __init__(self, application): self.application = application def __call__(self, environ, start_response): output = self.application(environ, start_response) if self._needs_title(environ): def wrapped_output(output): yield self._header(environ) for item in output: yield item yield self._footer(environ) return return wrapped_output(output) return output def _needs_title(self, environ): """ Determine if we are outputting html to a browser. """ return ('tiddlyweb.title' in environ and 'Mozilla' in environ.get('HTTP_USER_AGENT', '')) def _header(self, environ): """ Wrap the HTML in an HTML header. """ css = '' if environ['tiddlyweb.config'].get('css_uri', ''): css = '<link rel="stylesheet" href="%s" type="text/css" />' % \ environ['tiddlyweb.config']['css_uri'] try: links = '\n'.join(environ['tiddlyweb.links']) except KeyError: links = '' header_extra = self.header_extra(environ) return """ <html> <head> <title>TiddlyWeb - %s</title> %s %s </head> <body> <div id="header"> <h1>%s</h1> %s </div> <div id="content"> """ % (environ['tiddlyweb.title'], css, links, environ['tiddlyweb.title'], header_extra) def _footer(self, environ): """ Wrap the HTML with an HTML footer. """ footer_extra = self.footer_extra(environ) return """ </div> <div id="footer"> %s <div id="badge">This is <a href="http://tiddlyweb.com/">TiddlyWeb</a> %s</div> <div id="usergreet">User %s.</div> </div> </body> </html> """ % (footer_extra, VERSION, environ['tiddlyweb.usersign']['name']) def header_extra(self, environ): """ Override this in plugins to add to the header. """ return '' def footer_extra(self, environ): """ Override this in plugins to add to the footer. """ return '' class SimpleLog(object): """ WSGI Middleware to write a very simple log to stdout. Borrowed from Paste Translogger """ format = ('%(REMOTE_ADDR)s - %(REMOTE_USER)s [%(time)s] ' '"%(REQUEST_METHOD)s %(REQUEST_URI)s %(HTTP_VERSION)s" ' '%(status)s %(bytes)s "%(HTTP_REFERER)s" "%(HTTP_USER_AGENT)s"') def __init__(self, application): self.application = application def __call__(self, environ, start_response): logger = logging.getLogger() if logger.isEnabledFor(logging.INFO): return self._log_app(environ, start_response) else: return self.application(environ, start_response) def _log_app(self, environ, start_response): req_uri = urllib.quote(environ.get('SCRIPT_NAME', '') + environ.get('PATH_INFO', '')) if environ.get('QUERY_STRING'): req_uri += '?' + environ['QUERY_STRING'] def replacement_start_response(status, headers, exc_info=None): """ We need to gaze at the content-length, if set, to write log info. """ size = None for name, value in headers: if name.lower() == 'content-length': size = value self.write_log(environ, req_uri, status, size) return start_response(status, headers, exc_info) return self.application(environ, replacement_start_response) def write_log(self, environ, req_uri, status, size): """ Print the log info out in a formatted form to logging.info. This is rather more complex than desirable because there is a mix of str and unicode in the gathered data and we need to make it acceptable for output. """ environ['REMOTE_USER'] = None try: environ['REMOTE_USER'] = environ['tiddlyweb.usersign']['name'] except KeyError: pass if size is None: size = '-' log_format = { 'REMOTE_ADDR': environ.get('REMOTE_ADDR') or '-', 'REMOTE_USER': environ.get('REMOTE_USER') or '-', 'REQUEST_METHOD': environ['REQUEST_METHOD'], 'REQUEST_URI': req_uri, 'HTTP_VERSION': environ.get('SERVER_PROTOCOL'), 'time': time.strftime('%d/%b/%Y:%H:%M:%S ', time.localtime()), 'status': status.split(None, 1)[0], 'bytes': size, 'HTTP_REFERER': environ.get('HTTP_REFERER', '-'), 'HTTP_USER_AGENT': environ.get('HTTP_USER_AGENT', '-'), } for key, value in log_format.items(): try: log_format[key] = value.encode('utf-8', 'replace') except UnicodeDecodeError: log_format[key] = value message = self.format % log_format logging.info(message) class StoreSet(object): """ WSGI Middleware that sets our choice of Store (tiddlyweb.store) in the environment. """ def __init__(self, application): self.application = application def __call__(self, environ, start_response): database = Store(environ['tiddlyweb.config']['server_store'][0], environ['tiddlyweb.config']['server_store'][1], environ) environ['tiddlyweb.store'] = database return self.application(environ, start_response) class EncodeUTF8(object): """ WSGI Middleware to ensure that the content we send out the pipe is encoded as UTF-8. Within the application content is _unicode_ (i.e. not encoded). """ def __init__(self, application): self.application = application def __call__(self, environ, start_response): return (_encoder(output) for output in self.application(environ, start_response)) def _encoder(string): """ Take a potentially unicode string and encode it as UTF-8. """ # if we are currently unicode, encode to utf-8 if type(string) == unicode: string = string.encode('utf-8') return string class PermissionsExceptor(object): """ Trap permissions exceptions and turn them into HTTP exceptions so the errors are propagated to client code. """ def __init__(self, application): self.application = application def __call__(self, environ, start_response): try: output = self.application(environ, start_response) return output except ForbiddenError, exc: raise HTTP403(exc) except UserRequiredError, exc: # We only send to the challenger on a GET # request. Otherwise we're in for major confusion # on dealing with redirects and the like in # scripts and javascript, where follow # behavior is inconsistent. if environ['REQUEST_METHOD'] == 'GET': url = _challenge_url(environ) raise HTTP302(url) raise HTTP403(exc) def _challenge_url(environ): """ Generate the URL of the challenge system so that GET requests are redirected to the right place. """ script_name = environ.get('SCRIPT_NAME', '') query_string = environ.get('QUERY_STRING', None) redirect = script_name if query_string: redirect += '?%s' % query_string redirect = urllib.quote(redirect, safe='') return '%s/challenge?tiddlyweb_redirect=%s' % ( server_base_url(environ), redirect)
# Copyright 2013 Josh Durgin # Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import mock from oslo_config import cfg from oslo_serialization import jsonutils from six.moves import urllib import webob from webob import exc from nova.api.openstack.compute import assisted_volume_snapshots \ as assisted_snaps_v21 from nova.api.openstack.compute.legacy_v2.contrib import \ assisted_volume_snapshots as assisted_snaps_v2 from nova.api.openstack.compute.legacy_v2.contrib import volumes from nova.api.openstack.compute import volumes as volumes_v21 from nova.api.openstack import extensions from nova.compute import api as compute_api from nova.compute import flavors from nova import context from nova import db from nova import exception from nova import objects from nova import test from nova.tests.unit.api.openstack import fakes from nova.tests.unit import fake_block_device from nova.tests.unit import fake_instance from nova.volume import cinder CONF = cfg.CONF CONF.import_opt('password_length', 'nova.utils') FAKE_UUID = 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' FAKE_UUID_A = '00000000-aaaa-aaaa-aaaa-000000000000' FAKE_UUID_B = 'bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb' FAKE_UUID_C = 'cccccccc-cccc-cccc-cccc-cccccccccccc' FAKE_UUID_D = 'dddddddd-dddd-dddd-dddd-dddddddddddd' IMAGE_UUID = 'c905cedb-7281-47e4-8a62-f26bc5fc4c77' def fake_get_instance(self, context, instance_id, want_objects=False, expected_attrs=None): return fake_instance.fake_instance_obj(context, **{'uuid': instance_id}) def fake_get_volume(self, context, id): return {'id': 'woot'} def fake_attach_volume(self, context, instance, volume_id, device): pass def fake_detach_volume(self, context, instance, volume): pass def fake_swap_volume(self, context, instance, old_volume_id, new_volume_id): pass def fake_create_snapshot(self, context, volume, name, description): return {'id': 123, 'volume_id': 'fakeVolId', 'status': 'available', 'volume_size': 123, 'created_at': '2013-01-01 00:00:01', 'display_name': 'myVolumeName', 'display_description': 'myVolumeDescription'} def fake_delete_snapshot(self, context, snapshot_id): pass def fake_compute_volume_snapshot_delete(self, context, volume_id, snapshot_id, delete_info): pass def fake_compute_volume_snapshot_create(self, context, volume_id, create_info): pass def fake_bdms_get_all_by_instance(context, instance_uuid, use_slave=False): return [fake_block_device.FakeDbBlockDeviceDict( {'id': 1, 'instance_uuid': instance_uuid, 'device_name': '/dev/fake0', 'delete_on_termination': 'False', 'source_type': 'volume', 'destination_type': 'volume', 'snapshot_id': None, 'volume_id': FAKE_UUID_A, 'volume_size': 1}), fake_block_device.FakeDbBlockDeviceDict( {'id': 2, 'instance_uuid': instance_uuid, 'device_name': '/dev/fake1', 'delete_on_termination': 'False', 'source_type': 'volume', 'destination_type': 'volume', 'snapshot_id': None, 'volume_id': FAKE_UUID_B, 'volume_size': 1})] class BootFromVolumeTest(test.TestCase): def setUp(self): super(BootFromVolumeTest, self).setUp() self.stubs.Set(compute_api.API, 'create', self._get_fake_compute_api_create()) fakes.stub_out_nw_api(self.stubs) self._block_device_mapping_seen = None self._legacy_bdm_seen = True self.flags( osapi_compute_extension=[ 'nova.api.openstack.compute.contrib.select_extensions'], osapi_compute_ext_list=['Volumes', 'Block_device_mapping_v2_boot']) def _get_fake_compute_api_create(self): def _fake_compute_api_create(cls, context, instance_type, image_href, **kwargs): self._block_device_mapping_seen = kwargs.get( 'block_device_mapping') self._legacy_bdm_seen = kwargs.get('legacy_bdm') inst_type = flavors.get_flavor_by_flavor_id(2) resv_id = None return ([{'id': 1, 'display_name': 'test_server', 'uuid': FAKE_UUID, 'instance_type': inst_type, 'access_ip_v4': '1.2.3.4', 'access_ip_v6': 'fead::1234', 'image_ref': IMAGE_UUID, 'user_id': 'fake', 'project_id': 'fake', 'created_at': datetime.datetime(2010, 10, 10, 12, 0, 0), 'updated_at': datetime.datetime(2010, 11, 11, 11, 0, 0), 'progress': 0, 'fixed_ips': [] }], resv_id) return _fake_compute_api_create def test_create_root_volume(self): body = dict(server=dict( name='test_server', imageRef=IMAGE_UUID, flavorRef=2, min_count=1, max_count=1, block_device_mapping=[dict( volume_id='1', device_name='/dev/vda', virtual='root', delete_on_termination=False, )] )) req = fakes.HTTPRequest.blank('/v2/fake/os-volumes_boot') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['content-type'] = 'application/json' res = req.get_response(fakes.wsgi_app( init_only=('os-volumes_boot', 'servers'))) self.assertEqual(res.status_int, 202) server = jsonutils.loads(res.body)['server'] self.assertEqual(FAKE_UUID, server['id']) self.assertEqual(CONF.password_length, len(server['adminPass'])) self.assertEqual(len(self._block_device_mapping_seen), 1) self.assertTrue(self._legacy_bdm_seen) self.assertEqual(self._block_device_mapping_seen[0]['volume_id'], '1') self.assertEqual(self._block_device_mapping_seen[0]['device_name'], '/dev/vda') def test_create_root_volume_bdm_v2(self): body = dict(server=dict( name='test_server', imageRef=IMAGE_UUID, flavorRef=2, min_count=1, max_count=1, block_device_mapping_v2=[dict( source_type='volume', uuid='1', device_name='/dev/vda', boot_index=0, delete_on_termination=False, )] )) req = fakes.HTTPRequest.blank('/v2/fake/os-volumes_boot') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['content-type'] = 'application/json' res = req.get_response(fakes.wsgi_app( init_only=('os-volumes_boot', 'servers'))) self.assertEqual(res.status_int, 202) server = jsonutils.loads(res.body)['server'] self.assertEqual(FAKE_UUID, server['id']) self.assertEqual(CONF.password_length, len(server['adminPass'])) self.assertEqual(len(self._block_device_mapping_seen), 1) self.assertFalse(self._legacy_bdm_seen) self.assertEqual(self._block_device_mapping_seen[0]['volume_id'], '1') self.assertEqual(self._block_device_mapping_seen[0]['boot_index'], 0) self.assertEqual(self._block_device_mapping_seen[0]['device_name'], '/dev/vda') class VolumeApiTestV21(test.NoDBTestCase): url_prefix = '/v2/fake' def setUp(self): super(VolumeApiTestV21, self).setUp() fakes.stub_out_networking(self.stubs) fakes.stub_out_rate_limiting(self.stubs) self.stubs.Set(cinder.API, "delete", fakes.stub_volume_delete) self.stubs.Set(cinder.API, "get", fakes.stub_volume_get) self.stubs.Set(cinder.API, "get_all", fakes.stub_volume_get_all) self.flags( osapi_compute_extension=[ 'nova.api.openstack.compute.contrib.select_extensions'], osapi_compute_ext_list=['Volumes']) self.context = context.get_admin_context() self.app = self._get_app() def _get_app(self): return fakes.wsgi_app_v21() def test_volume_create(self): self.stubs.Set(cinder.API, "create", fakes.stub_volume_create) vol = {"size": 100, "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1"} body = {"volume": vol} req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') req.method = 'POST' req.body = jsonutils.dumps(body) req.headers['content-type'] = 'application/json' resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) resp_dict = jsonutils.loads(resp.body) self.assertIn('volume', resp_dict) self.assertEqual(resp_dict['volume']['size'], vol['size']) self.assertEqual(resp_dict['volume']['displayName'], vol['display_name']) self.assertEqual(resp_dict['volume']['displayDescription'], vol['display_description']) self.assertEqual(resp_dict['volume']['availabilityZone'], vol['availability_zone']) def _test_volume_create_bad(self, cinder_exc, api_exc): def fake_volume_create(self, context, size, name, description, snapshot, **param): raise cinder_exc self.stubs.Set(cinder.API, "create", fake_volume_create) vol = {"size": '#$?', "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1"} body = {"volume": vol} req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') self.assertRaises(api_exc, volumes.VolumeController().create, req, body=body) @mock.patch.object(cinder.API, 'get_snapshot') @mock.patch.object(cinder.API, 'create') def test_volume_create_bad_snapshot_id(self, mock_create, mock_get): vol = {"snapshot_id": '1'} body = {"volume": vol} mock_get.side_effect = exception.SnapshotNotFound(snapshot_id='1') req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') self.assertRaises(webob.exc.HTTPNotFound, volumes.VolumeController().create, req, body=body) def test_volume_create_bad_input(self): self._test_volume_create_bad(exception.InvalidInput(reason='fake'), webob.exc.HTTPBadRequest) def test_volume_create_bad_quota(self): self._test_volume_create_bad(exception.OverQuota(overs='fake'), webob.exc.HTTPForbidden) def test_volume_index(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) def test_volume_detail(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/detail') resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) def test_volume_show(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/123') resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) def test_volume_show_no_volume(self): self.stubs.Set(cinder.API, "get", fakes.stub_volume_notfound) req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/456') resp = req.get_response(self.app) self.assertEqual(resp.status_int, 404) self.assertIn('Volume 456 could not be found.', resp.body) def test_volume_delete(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/123') req.method = 'DELETE' resp = req.get_response(self.app) self.assertEqual(resp.status_int, 202) def test_volume_delete_no_volume(self): self.stubs.Set(cinder.API, "delete", fakes.stub_volume_notfound) req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/456') req.method = 'DELETE' resp = req.get_response(self.app) self.assertEqual(resp.status_int, 404) self.assertIn('Volume 456 could not be found.', resp.body) class VolumeApiTestV2(VolumeApiTestV21): def setUp(self): super(VolumeApiTestV2, self).setUp() self.flags( osapi_compute_extension=[ 'nova.api.openstack.compute.contrib.select_extensions'], osapi_compute_ext_list=['Volumes']) self.context = context.get_admin_context() self.app = self._get_app() def _get_app(self): return fakes.wsgi_app() class VolumeAttachTestsV21(test.NoDBTestCase): validation_error = exception.ValidationError def setUp(self): super(VolumeAttachTestsV21, self).setUp() self.stubs.Set(db, 'block_device_mapping_get_all_by_instance', fake_bdms_get_all_by_instance) self.stubs.Set(compute_api.API, 'get', fake_get_instance) self.stubs.Set(cinder.API, 'get', fake_get_volume) self.context = context.get_admin_context() self.expected_show = {'volumeAttachment': {'device': '/dev/fake0', 'serverId': FAKE_UUID, 'id': FAKE_UUID_A, 'volumeId': FAKE_UUID_A }} self._set_up_controller() def _set_up_controller(self): self.attachments = volumes_v21.VolumeAttachmentController() def test_show(self): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.show(req, FAKE_UUID, FAKE_UUID_A) self.assertEqual(self.expected_show, result) @mock.patch.object(compute_api.API, 'get', side_effect=exception.InstanceNotFound(instance_id=FAKE_UUID)) def test_show_no_instance(self, mock_mr): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_A) @mock.patch.object(objects.BlockDeviceMappingList, 'get_by_instance_uuid', return_value=None) def test_show_no_bdms(self, mock_mr): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_A) def test_show_bdms_no_mountpoint(self): FAKE_UUID_NOTEXIST = '00000000-aaaa-aaaa-aaaa-aaaaaaaaaaaa' req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_NOTEXIST) def test_detach(self): self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.delete(req, FAKE_UUID, FAKE_UUID_A) # NOTE: on v2.1, http status code is set as wsgi_code of API # method instead of status_int in a response object. if isinstance(self.attachments, volumes_v21.VolumeAttachmentController): status_int = self.attachments.delete.wsgi_code else: status_int = result.status_int self.assertEqual(202, status_int) def test_detach_vol_not_found(self): self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_C) @mock.patch('nova.objects.BlockDeviceMapping.is_root', new_callable=mock.PropertyMock) def test_detach_vol_root(self, mock_isroot): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context mock_isroot.return_value = True self.assertRaises(exc.HTTPForbidden, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_A) def test_detach_volume_from_locked_server(self): def fake_detach_volume_from_locked_server(self, context, instance, volume): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume_from_locked_server) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_A) def test_attach_volume(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual(result['volumeAttachment']['id'], '00000000-aaaa-aaaa-aaaa-000000000000') @mock.patch.object(compute_api.API, 'attach_volume', return_value='/dev/myfake') def test_attach_volume_with_auto_device(self, mock_attach): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': None}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual(result['volumeAttachment']['id'], '00000000-aaaa-aaaa-aaaa-000000000000') self.assertEqual(result['volumeAttachment']['device'], '/dev/myfake') def test_attach_volume_to_locked_server(self): def fake_attach_volume_to_locked_server(self, context, instance, volume_id, device=None): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume_to_locked_server) body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_bad_id(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = { 'volumeAttachment': { 'device': None, 'volumeId': 'TESTVOLUME', } } req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_without_volumeId(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = { 'volumeAttachment': { 'device': None } } req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_with_extra_arg(self): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake', 'extra': 'extra_arg'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) def _test_swap(self, attachments, uuid=FAKE_UUID_A, fake_func=None, body=None): fake_func = fake_func or fake_swap_volume self.stubs.Set(compute_api.API, 'swap_volume', fake_func) body = body or {'volumeAttachment': {'volumeId': FAKE_UUID_B}} req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'PUT' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context return attachments.update(req, FAKE_UUID, uuid, body=body) def test_swap_volume_for_locked_server(self): def fake_swap_volume_for_locked_server(self, context, instance, old_volume, new_volume): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.assertRaises(webob.exc.HTTPConflict, self._test_swap, self.attachments, fake_func=fake_swap_volume_for_locked_server) def test_swap_volume(self): result = self._test_swap(self.attachments) # NOTE: on v2.1, http status code is set as wsgi_code of API # method instead of status_int in a response object. if isinstance(self.attachments, volumes_v21.VolumeAttachmentController): status_int = self.attachments.update.wsgi_code else: status_int = result.status_int self.assertEqual(202, status_int) def test_swap_volume_no_attachment(self): self.assertRaises(exc.HTTPNotFound, self._test_swap, self.attachments, FAKE_UUID_C) def test_swap_volume_without_volumeId(self): body = {'volumeAttachment': {'device': '/dev/fake'}} self.assertRaises(self.validation_error, self._test_swap, self.attachments, body=body) def test_swap_volume_with_extra_arg(self): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} self.assertRaises(self.validation_error, self._test_swap, self.attachments, body=body) class VolumeAttachTestsV2(VolumeAttachTestsV21): validation_error = webob.exc.HTTPBadRequest def _set_up_controller(self): ext_mgr = extensions.ExtensionManager() ext_mgr.extensions = {'os-volume-attachment-update'} self.attachments = volumes.VolumeAttachmentController(ext_mgr) ext_mgr_no_update = extensions.ExtensionManager() ext_mgr_no_update.extensions = {} self.attachments_no_update = volumes.VolumeAttachmentController( ext_mgr_no_update) def test_swap_volume_no_extension(self): self.assertRaises(webob.exc.HTTPBadRequest, self._test_swap, self.attachments_no_update) @mock.patch.object(compute_api.API, 'attach_volume', return_value=[]) def test_attach_volume_with_extra_arg(self, mock_attach): # NOTE(gmann): V2 does not perform strong input validation # so volume is attached successfully even with extra arg in # request body. body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake', 'extra': 'extra_arg'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dumps({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual(result['volumeAttachment']['id'], '00000000-aaaa-aaaa-aaaa-000000000000') def test_swap_volume_with_extra_arg(self): # NOTE(gmann): V2 does not perform strong input validation. # Volume is swapped successfully even with extra arg in # request body. So 'pass' this test for V2. pass class CommonBadRequestTestCase(object): resource = None entity_name = None controller_cls = None kwargs = {} bad_request = exc.HTTPBadRequest """ Tests of places we throw 400 Bad Request from """ def setUp(self): super(CommonBadRequestTestCase, self).setUp() self.controller = self.controller_cls() def _bad_request_create(self, body): req = fakes.HTTPRequest.blank('/v2/fake/' + self.resource) req.method = 'POST' kwargs = self.kwargs.copy() kwargs['body'] = body self.assertRaises(self.bad_request, self.controller.create, req, **kwargs) def test_create_no_body(self): self._bad_request_create(body=None) def test_create_missing_volume(self): body = {'foo': {'a': 'b'}} self._bad_request_create(body=body) def test_create_malformed_entity(self): body = {self.entity_name: 'string'} self._bad_request_create(body=body) class BadRequestVolumeTestCaseV21(CommonBadRequestTestCase, test.NoDBTestCase): resource = 'os-volumes' entity_name = 'volume' controller_cls = volumes_v21.VolumeController bad_request = exception.ValidationError class BadRequestVolumeTestCaseV2(BadRequestVolumeTestCaseV21): controller_cls = volumes.VolumeController bad_request = exc.HTTPBadRequest class BadRequestAttachmentTestCase(CommonBadRequestTestCase, test.NoDBTestCase): resource = 'servers/' + FAKE_UUID + '/os-volume_attachments' entity_name = 'volumeAttachment' controller_cls = volumes.VolumeAttachmentController kwargs = {'server_id': FAKE_UUID} class BadRequestSnapshotTestCaseV21(CommonBadRequestTestCase, test.NoDBTestCase): resource = 'os-snapshots' entity_name = 'snapshot' controller_cls = volumes_v21.SnapshotController bad_request = exception.ValidationError class BadRequestSnapshotTestCaseV2(BadRequestSnapshotTestCaseV21): controller_cls = volumes.SnapshotController bad_request = exc.HTTPBadRequest class AssistedSnapshotCreateTestCaseV21(test.NoDBTestCase): assisted_snaps = assisted_snaps_v21 bad_request = exception.ValidationError def setUp(self): super(AssistedSnapshotCreateTestCaseV21, self).setUp() self.controller = \ self.assisted_snaps.AssistedVolumeSnapshotsController() self.stubs.Set(compute_api.API, 'volume_snapshot_create', fake_compute_volume_snapshot_create) def test_assisted_create(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') body = {'snapshot': {'volume_id': '1', 'create_info': {'type': 'qcow2', 'new_file': 'new_file', 'snapshot_id': 'snapshot_id'}}} req.method = 'POST' self.controller.create(req, body=body) def test_assisted_create_missing_create_info(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') body = {'snapshot': {'volume_id': '1'}} req.method = 'POST' self.assertRaises(self.bad_request, self.controller.create, req, body=body) class AssistedSnapshotCreateTestCaseV2(AssistedSnapshotCreateTestCaseV21): assisted_snaps = assisted_snaps_v2 bad_request = webob.exc.HTTPBadRequest class AssistedSnapshotDeleteTestCaseV21(test.NoDBTestCase): assisted_snaps = assisted_snaps_v21 def _check_status(self, expected_status, res, controller_method): self.assertEqual(expected_status, controller_method.wsgi_code) def setUp(self): super(AssistedSnapshotDeleteTestCaseV21, self).setUp() self.controller = \ self.assisted_snaps.AssistedVolumeSnapshotsController() self.stubs.Set(compute_api.API, 'volume_snapshot_delete', fake_compute_volume_snapshot_delete) def test_assisted_delete(self): params = { 'delete_info': jsonutils.dumps({'volume_id': '1'}), } req = fakes.HTTPRequest.blank( '/v2/fake/os-assisted-volume-snapshots?%s' % urllib.parse.urlencode(params)) req.method = 'DELETE' result = self.controller.delete(req, '5') self._check_status(204, result, self.controller.delete) def test_assisted_delete_missing_delete_info(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, '5') class AssistedSnapshotDeleteTestCaseV2(AssistedSnapshotDeleteTestCaseV21): assisted_snaps = assisted_snaps_v2 def _check_status(self, expected_status, res, controller_method): self.assertEqual(expected_status, res.status_int) class TestAssistedVolumeSnapshotsPolicyEnforcementV21(test.NoDBTestCase): def setUp(self): super(TestAssistedVolumeSnapshotsPolicyEnforcementV21, self).setUp() self.controller = ( assisted_snaps_v21.AssistedVolumeSnapshotsController()) self.req = fakes.HTTPRequest.blank('') def test_create_assisted_volumes_snapshots_policy_failed(self): rule_name = "os_compute_api:os-assisted-volume-snapshots:create" self.policy.set_rules({rule_name: "project:non_fake"}) body = {'snapshot': {'volume_id': '1', 'create_info': {'type': 'qcow2', 'new_file': 'new_file', 'snapshot_id': 'snapshot_id'}}} exc = self.assertRaises( exception.PolicyNotAuthorized, self.controller.create, self.req, body=body) self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) def test_delete_assisted_volumes_snapshots_policy_failed(self): rule_name = "os_compute_api:os-assisted-volume-snapshots:delete" self.policy.set_rules({rule_name: "project:non_fake"}) exc = self.assertRaises( exception.PolicyNotAuthorized, self.controller.delete, self.req, '5') self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) class TestVolumeAttachPolicyEnforcementV21(test.NoDBTestCase): def setUp(self): super(TestVolumeAttachPolicyEnforcementV21, self).setUp() self.controller = volumes_v21.VolumeAttachmentController() self.req = fakes.HTTPRequest.blank('') def _common_policy_check(self, rules, rule_name, func, *arg, **kwarg): self.policy.set_rules(rules) exc = self.assertRaises( exception.PolicyNotAuthorized, func, *arg, **kwarg) self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) def test_index_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes-attachments:index" rules = {rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.index, self.req, FAKE_UUID) def test_show_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:show": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.show, self.req, FAKE_UUID, FAKE_UUID_A) rule_name = "os_compute_api:os-volumes-attachments:show" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.show, self.req, FAKE_UUID, FAKE_UUID_A) def test_create_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:create": "@", rule_name: "project:non_fake"} body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} self._common_policy_check(rules, rule_name, self.controller.create, self.req, FAKE_UUID, body=body) rule_name = "os_compute_api:os-volumes-attachments:create" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.create, self.req, FAKE_UUID, body=body) def test_update_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:update": "@", rule_name: "project:non_fake"} body = {'volumeAttachment': {'volumeId': FAKE_UUID_B}} self._common_policy_check(rules, rule_name, self.controller.update, self.req, FAKE_UUID, FAKE_UUID_A, body=body) rule_name = "os_compute_api:os-volumes-attachments:update" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.update, self.req, FAKE_UUID, FAKE_UUID_A, body=body) def test_delete_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:delete": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.delete, self.req, FAKE_UUID, FAKE_UUID_A) rule_name = "os_compute_api:os-volumes-attachments:delete" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.delete, self.req, FAKE_UUID, FAKE_UUID_A)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Unit tests for the API endpoint""" import datetime import httplib import random import StringIO import boto from boto.ec2 import regioninfo from boto import exception as boto_exc import webob from nova import block_device from nova import context from nova import exception from nova import test from nova.api import auth from nova.api import ec2 from nova.api.ec2 import apirequest from nova.api.ec2 import cloud from nova.api.ec2 import ec2utils class FakeHttplibSocket(object): """a fake socket implementation for httplib.HTTPResponse, trivial""" def __init__(self, response_string): self.response_string = response_string self._buffer = StringIO.StringIO(response_string) def makefile(self, _mode, _other): """Returns the socket's internal buffer""" return self._buffer class FakeHttplibConnection(object): """A fake httplib.HTTPConnection for boto to use requests made via this connection actually get translated and routed into our WSGI app, we then wait for the response and turn it back into the httplib.HTTPResponse that boto expects. """ def __init__(self, app, host, is_secure=False): self.app = app self.host = host def request(self, method, path, data, headers): req = webob.Request.blank(path) req.method = method req.body = data req.headers = headers req.headers['Accept'] = 'text/html' req.host = self.host # Call the WSGI app, get the HTTP response resp = str(req.get_response(self.app)) # For some reason, the response doesn't have "HTTP/1.0 " prepended; I # guess that's a function the web server usually provides. resp = "HTTP/1.0 %s" % resp self.sock = FakeHttplibSocket(resp) self.http_response = httplib.HTTPResponse(self.sock) # NOTE(vish): boto is accessing private variables for some reason self._HTTPConnection__response = self.http_response self.http_response.begin() def getresponse(self): return self.http_response def getresponsebody(self): return self.sock.response_string def close(self): """Required for compatibility with boto/tornado""" pass class XmlConversionTestCase(test.TestCase): """Unit test api xml conversion""" def test_number_conversion(self): conv = ec2utils._try_convert self.assertEqual(conv('None'), None) self.assertEqual(conv('True'), True) self.assertEqual(conv('TRUE'), True) self.assertEqual(conv('true'), True) self.assertEqual(conv('False'), False) self.assertEqual(conv('FALSE'), False) self.assertEqual(conv('false'), False) self.assertEqual(conv('0'), 0) self.assertEqual(conv('42'), 42) self.assertEqual(conv('3.14'), 3.14) self.assertEqual(conv('-57.12'), -57.12) self.assertEqual(conv('0x57'), 0x57) self.assertEqual(conv('-0x57'), -0x57) self.assertEqual(conv('-'), '-') self.assertEqual(conv('-0'), 0) self.assertEqual(conv('0.0'), 0.0) self.assertEqual(conv('1e-8'), 0.0) self.assertEqual(conv('-1e-8'), 0.0) self.assertEqual(conv('0xDD8G'), '0xDD8G') self.assertEqual(conv('0XDD8G'), '0XDD8G') self.assertEqual(conv('-stringy'), '-stringy') self.assertEqual(conv('stringy'), 'stringy') self.assertEqual(conv('add'), 'add') self.assertEqual(conv('remove'), 'remove') self.assertEqual(conv(''), '') class Ec2utilsTestCase(test.TestCase): def test_ec2_id_to_id(self): self.assertEqual(ec2utils.ec2_id_to_id('i-0000001e'), 30) self.assertEqual(ec2utils.ec2_id_to_id('ami-1d'), 29) self.assertEqual(ec2utils.ec2_id_to_id('snap-0000001c'), 28) self.assertEqual(ec2utils.ec2_id_to_id('vol-0000001b'), 27) def test_bad_ec2_id(self): self.assertRaises(exception.InvalidEc2Id, ec2utils.ec2_id_to_id, 'badone') def test_id_to_ec2_id(self): self.assertEqual(ec2utils.id_to_ec2_id(30), 'i-0000001e') self.assertEqual(ec2utils.id_to_ec2_id(29, 'ami-%08x'), 'ami-0000001d') self.assertEqual(ec2utils.id_to_ec2_snap_id(28), 'snap-0000001c') self.assertEqual(ec2utils.id_to_ec2_vol_id(27), 'vol-0000001b') def test_dict_from_dotted_str(self): in_str = [('BlockDeviceMapping.1.DeviceName', '/dev/sda1'), ('BlockDeviceMapping.1.Ebs.SnapshotId', 'snap-0000001c'), ('BlockDeviceMapping.1.Ebs.VolumeSize', '80'), ('BlockDeviceMapping.1.Ebs.DeleteOnTermination', 'false'), ('BlockDeviceMapping.2.DeviceName', '/dev/sdc'), ('BlockDeviceMapping.2.VirtualName', 'ephemeral0')] expected_dict = { 'block_device_mapping': { '1': {'device_name': '/dev/sda1', 'ebs': {'snapshot_id': 'snap-0000001c', 'volume_size': 80, 'delete_on_termination': False}}, '2': {'device_name': '/dev/sdc', 'virtual_name': 'ephemeral0'}}} out_dict = ec2utils.dict_from_dotted_str(in_str) self.assertDictMatch(out_dict, expected_dict) def test_properties_root_defice_name(self): mappings = [{"device": "/dev/sda1", "virtual": "root"}] properties0 = {'mappings': mappings} properties1 = {'root_device_name': '/dev/sdb', 'mappings': mappings} root_device_name = block_device.properties_root_device_name( properties0) self.assertEqual(root_device_name, '/dev/sda1') root_device_name = block_device.properties_root_device_name( properties1) self.assertEqual(root_device_name, '/dev/sdb') def test_mapping_prepend_dev(self): mappings = [ {'virtual': 'ami', 'device': 'sda1'}, {'virtual': 'root', 'device': '/dev/sda1'}, {'virtual': 'swap', 'device': 'sdb1'}, {'virtual': 'swap', 'device': '/dev/sdb2'}, {'virtual': 'ephemeral0', 'device': 'sdc1'}, {'virtual': 'ephemeral1', 'device': '/dev/sdc1'}] expected_result = [ {'virtual': 'ami', 'device': 'sda1'}, {'virtual': 'root', 'device': '/dev/sda1'}, {'virtual': 'swap', 'device': '/dev/sdb1'}, {'virtual': 'swap', 'device': '/dev/sdb2'}, {'virtual': 'ephemeral0', 'device': '/dev/sdc1'}, {'virtual': 'ephemeral1', 'device': '/dev/sdc1'}] self.assertDictListMatch(block_device.mappings_prepend_dev(mappings), expected_result) class ApiEc2TestCase(test.TestCase): """Unit test for the cloud controller on an EC2 API""" def setUp(self): super(ApiEc2TestCase, self).setUp() self.host = '127.0.0.1' # NOTE(vish): skipping the Authorizer roles = ['sysadmin', 'netadmin'] ctxt = context.RequestContext('fake', 'fake', roles=roles) self.app = auth.InjectContext(ctxt, ec2.Requestify(ec2.Authorizer(ec2.Executor()), 'nova.api.ec2.cloud.CloudController')) def expect_http(self, host=None, is_secure=False, api_version=None): """Returns a new EC2 connection""" self.ec2 = boto.connect_ec2( aws_access_key_id='fake', aws_secret_access_key='fake', is_secure=False, region=regioninfo.RegionInfo(None, 'test', self.host), port=8773, path='/services/Cloud') if api_version: self.ec2.APIVersion = api_version self.mox.StubOutWithMock(self.ec2, 'new_http_connection') self.http = FakeHttplibConnection( self.app, '%s:8773' % (self.host), False) # pylint: disable=E1103 if boto.Version >= '2': self.ec2.new_http_connection(host or '%s:8773' % (self.host), is_secure).AndReturn(self.http) else: self.ec2.new_http_connection(host, is_secure).AndReturn(self.http) return self.http def test_return_valid_isoformat(self): """ Ensure that the ec2 api returns datetime in xs:dateTime (which apparently isn't datetime.isoformat()) NOTE(ken-pepple): https://bugs.launchpad.net/nova/+bug/721297 """ conv = apirequest._database_to_isoformat # sqlite database representation with microseconds time_to_convert = datetime.datetime.strptime( "2011-02-21 20:14:10.634276", "%Y-%m-%d %H:%M:%S.%f") self.assertEqual( conv(time_to_convert), '2011-02-21T20:14:10.634Z') # mysqlite database representation time_to_convert = datetime.datetime.strptime( "2011-02-21 19:56:18", "%Y-%m-%d %H:%M:%S") self.assertEqual( conv(time_to_convert), '2011-02-21T19:56:18.000Z') def test_xmlns_version_matches_request_version(self): self.expect_http(api_version='2010-10-30') self.mox.ReplayAll() # Any request should be fine self.ec2.get_all_instances() self.assertTrue(self.ec2.APIVersion in self.http.getresponsebody(), 'The version in the xmlns of the response does ' 'not match the API version given in the request.') def test_describe_instances(self): """Test that, after creating a user and a project, the describe instances call to the API works properly""" self.expect_http() self.mox.ReplayAll() self.assertEqual(self.ec2.get_all_instances(), []) def test_terminate_invalid_instance(self): """Attempt to terminate an invalid instance""" self.expect_http() self.mox.ReplayAll() self.assertRaises(boto_exc.EC2ResponseError, self.ec2.terminate_instances, "i-00000005") def test_get_all_key_pairs(self): """Test that, after creating a user and project and generating a key pair, that the API call to list key pairs works properly""" self.expect_http() self.mox.ReplayAll() keyname = "".join(random.choice("sdiuisudfsdcnpaqwertasd") for x in range(random.randint(4, 8))) # NOTE(vish): create depends on pool, so call helper directly cloud._gen_key(context.get_admin_context(), 'fake', keyname) rv = self.ec2.get_all_key_pairs() results = [k for k in rv if k.name == keyname] self.assertEquals(len(results), 1) def test_create_duplicate_key_pair(self): """Test that, after successfully generating a keypair, requesting a second keypair with the same name fails sanely""" self.expect_http() self.mox.ReplayAll() keyname = "".join(random.choice("sdiuisudfsdcnpaqwertasd") for x in range(random.randint(4, 8))) # NOTE(vish): create depends on pool, so call helper directly self.ec2.create_key_pair('test') try: self.ec2.create_key_pair('test') except boto_exc.EC2ResponseError, e: if e.code == 'KeyPairExists': pass else: self.fail("Unexpected EC2ResponseError: %s " "(expected KeyPairExists)" % e.code) else: self.fail('Exception not raised.') def test_get_all_security_groups(self): """Test that we can retrieve security groups""" self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() self.assertEquals(len(rv), 1) self.assertEquals(rv[0].name, 'default') def test_create_delete_security_group(self): """Test that we can create a security group""" self.expect_http() self.mox.ReplayAll() security_group_name = "".join(random.choice("sdiuisudfsdcnpaqwertasd") for x in range(random.randint(4, 8))) self.ec2.create_security_group(security_group_name, 'test group') self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() self.assertEquals(len(rv), 2) self.assertTrue(security_group_name in [group.name for group in rv]) self.expect_http() self.mox.ReplayAll() self.ec2.delete_security_group(security_group_name) def test_group_name_valid_chars_security_group(self): """ Test that we sanely handle invalid security group names. API Spec states we should only accept alphanumeric characters, spaces, dashes, and underscores. """ self.expect_http() self.mox.ReplayAll() # Test block group_name of non alphanumeric characters, spaces, # dashes, and underscores. security_group_name = "aa #^% -=99" self.assertRaises(boto_exc.EC2ResponseError, self.ec2.create_security_group, security_group_name, 'test group') def test_group_name_valid_length_security_group(self): """Test that we sanely handle invalid security group names. API Spec states that the length should not exceed 255 chars """ self.expect_http() self.mox.ReplayAll() # Test block group_name > 255 chars security_group_name = "".join(random.choice("poiuytrewqasdfghjklmnbvc") for x in range(random.randint(256, 266))) self.assertRaises(boto_exc.EC2ResponseError, self.ec2.create_security_group, security_group_name, 'test group') def test_authorize_revoke_security_group_cidr(self): """ Test that we can add and remove CIDR based rules to a security group """ self.expect_http() self.mox.ReplayAll() security_group_name = "".join(random.choice("sdiuisudfsdcnpaqwertasd") for x in range(random.randint(4, 8))) group = self.ec2.create_security_group(security_group_name, 'test group') self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.authorize('tcp', 80, 81, '0.0.0.0/0') group.authorize('icmp', -1, -1, '0.0.0.0/0') group.authorize('udp', 80, 81, '0.0.0.0/0') group.authorize('tcp', 1, 65535, '0.0.0.0/0') group.authorize('udp', 1, 65535, '0.0.0.0/0') group.authorize('icmp', 1, 0, '0.0.0.0/0') group.authorize('icmp', 0, 1, '0.0.0.0/0') group.authorize('icmp', 0, 0, '0.0.0.0/0') def _assert(message, *args): try: group.authorize(*args) except boto_exc.EC2ResponseError as e: self.assertEqual(e.status, 400, 'Expected status to be 400') self.assertIn(message, e.error_message, e.error_message) else: raise self.failureException, 'EC2ResponseError not raised' # Invalid CIDR address _assert('Invalid CIDR', 'tcp', 80, 81, '0.0.0.0/0444') # Missing ports _assert('Not enough parameters', 'tcp', '0.0.0.0/0') # from port cannot be greater than to port _assert('Invalid port range', 'tcp', 100, 1, '0.0.0.0/0') # For tcp, negative values are not allowed _assert('Invalid port range', 'tcp', -1, 1, '0.0.0.0/0') # For tcp, valid port range 1-65535 _assert('Invalid port range', 'tcp', 1, 65599, '0.0.0.0/0') # Invalid Cidr for ICMP type _assert('Invalid CIDR', 'icmp', -1, -1, '0.0.444.0/4') # Invalid protocol _assert('An unknown error has occurred', 'xyz', 1, 14, '0.0.0.0/0') # Invalid port _assert('An unknown error has occurred', 'tcp', " ", "81", '0.0.0.0/0') # Invalid icmp port _assert('An unknown error has occurred', 'icmp', " ", "81", '0.0.0.0/0') # Invalid CIDR Address _assert('Invalid CIDR', 'icmp', -1, -1, '0.0.0.0') # Invalid CIDR Address _assert('Invalid CIDR', 'icmp', -1, -1, '0.0.0.0/') # Invalid Cidr ports _assert('Invalid port range', 'icmp', 1, 256, '0.0.0.0/0') self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() group = [grp for grp in rv if grp.name == security_group_name][0] self.assertEquals(len(group.rules), 8) self.assertEquals(int(group.rules[0].from_port), 80) self.assertEquals(int(group.rules[0].to_port), 81) self.assertEquals(len(group.rules[0].grants), 1) self.assertEquals(str(group.rules[0].grants[0]), '0.0.0.0/0') self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.revoke('tcp', 80, 81, '0.0.0.0/0') group.revoke('icmp', -1, -1, '0.0.0.0/0') group.revoke('udp', 80, 81, '0.0.0.0/0') group.revoke('tcp', 1, 65535, '0.0.0.0/0') group.revoke('udp', 1, 65535, '0.0.0.0/0') group.revoke('icmp', 1, 0, '0.0.0.0/0') group.revoke('icmp', 0, 1, '0.0.0.0/0') group.revoke('icmp', 0, 0, '0.0.0.0/0') self.expect_http() self.mox.ReplayAll() self.ec2.delete_security_group(security_group_name) self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 rv = self.ec2.get_all_security_groups() self.assertEqual(len(rv), 1) self.assertEqual(rv[0].name, 'default') def test_authorize_revoke_security_group_cidr_v6(self): """ Test that we can add and remove CIDR based rules to a security group for IPv6 """ self.expect_http() self.mox.ReplayAll() security_group_name = "".join(random.choice("sdiuisudfsdcnpaqwertasd") for x in range(random.randint(4, 8))) group = self.ec2.create_security_group(security_group_name, 'test group') self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.authorize('tcp', 80, 81, '::/0') self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() group = [grp for grp in rv if grp.name == security_group_name][0] self.assertEquals(len(group.rules), 1) self.assertEquals(int(group.rules[0].from_port), 80) self.assertEquals(int(group.rules[0].to_port), 81) self.assertEquals(len(group.rules[0].grants), 1) self.assertEquals(str(group.rules[0].grants[0]), '::/0') self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.revoke('tcp', 80, 81, '::/0') self.expect_http() self.mox.ReplayAll() self.ec2.delete_security_group(security_group_name) self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 rv = self.ec2.get_all_security_groups() self.assertEqual(len(rv), 1) self.assertEqual(rv[0].name, 'default') def test_authorize_revoke_security_group_foreign_group(self): """ Test that we can grant and revoke another security group access to a security group """ self.expect_http() self.mox.ReplayAll() rand_string = 'sdiuisudfsdcnpaqwertasd' security_group_name = "".join(random.choice(rand_string) for x in range(random.randint(4, 8))) other_security_group_name = "".join(random.choice(rand_string) for x in range(random.randint(4, 8))) group = self.ec2.create_security_group(security_group_name, 'test group') self.expect_http() self.mox.ReplayAll() other_group = self.ec2.create_security_group(other_security_group_name, 'some other group') self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.authorize(src_group=other_group) self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() # I don't bother checkng that we actually find it here, # because the create/delete unit test further up should # be good enough for that. for group in rv: if group.name == security_group_name: self.assertEquals(len(group.rules), 3) self.assertEquals(len(group.rules[0].grants), 1) self.assertEquals(str(group.rules[0].grants[0]), '%s-%s' % (other_security_group_name, 'fake')) self.expect_http() self.mox.ReplayAll() rv = self.ec2.get_all_security_groups() for group in rv: if group.name == security_group_name: self.expect_http() self.mox.ReplayAll() group.connection = self.ec2 group.revoke(src_group=other_group) self.expect_http() self.mox.ReplayAll() self.ec2.delete_security_group(security_group_name) self.ec2.delete_security_group(other_security_group_name)
from epynet import Network, epanet2 from nose.tools import assert_equal, assert_almost_equal import pandas as pd class TestGeneratedNetwork(object): @classmethod def setup_class(self): self.network = Network() @classmethod def teadown(self): self.network.ep.ENclose() def test00_build_network(self): network = self.network network.ep.ENsettimeparam(epanet2.EN_DURATION, 10*3600) # add nodes reservoir = network.add_reservoir('in',0,30) reservoir.elevation = 10 pattern_values = [1,2,3,4,5,4,3,2,1,1] pattern = network.add_pattern('1',pattern_values) junctions = {'2':(10,30,0), '3':(20,30,0), '4':(30,30,1), '5':(30,20,1), '6':(30,10,1), '7':(40,10,1), '8':(40,20,1), '9':(40,30,1), '10':(50,30,1)} links = {'1':('in','2'), '3':('3','4'), '4':('4','5'), '5':('5','6'), '6':('6','7'), '7':('7','8'), '8':('8','9'), '10':('5','8'), '11':('4','9'), '12':('9','11')} for uid, coord in junctions.items(): node = network.add_junction(uid, coord[0], coord[1], elevation=0, basedemand=coord[2]) node.pattern = pattern tank = network.add_tank('11',40,40, diameter=50, maxlevel=20, minlevel=0, tanklevel=10) for uid, coord in links.items(): link = network.add_pipe(uid, coord[0], coord[1], diameter=100, length=100, roughness=0.1) valve = network.add_valve('9','prv','9','10', diameter=100, setting=5) pump = network.add_pump('2','2','3', speed=1) curve = network.add_curve('1',[(100,50)]) pump.curve = curve network.nodes['4'].elevation = 5 network.links['11'].diameter = 150 network.links['11'].minorloss = 0.1 network.solve() def test01_network(self): # test0 node count assert_equal(len(self.network.nodes),11) # test0 link count assert_equal(len(self.network.links),12) # test0 reservoir count assert_equal(len(self.network.reservoirs),1) # test0 valve count assert_equal(len(self.network.valves),1) # test0 pump count assert_equal(len(self.network.pumps),1) # test0 tank count assert_equal(len(self.network.tanks),1) def test02_link(self): # test0 the properties of a single link link = self.network.links['11'] # pipe index and uid assert_equal(link.uid,'11') # from/to node assert_equal(link.from_node.uid,'4') assert_equal(link.to_node.uid,'9') def test03_pipe(self): # test0 the properties of a single pipe pipe = self.network.links['11'] # check type assert_equal(pipe.link_type,'pipe') assert_almost_equal(pipe.length,100,2) assert_almost_equal(pipe.diameter,150,2) assert_almost_equal(pipe.roughness,0.1,2) assert_almost_equal(pipe.minorloss,0.1,2) # flow assert_almost_equal(pipe.flow,87.92,2) # direction assert_almost_equal(pipe.velocity,1.38,2) # status assert_equal(pipe.status,1) # headloss assert_almost_equal(pipe.headloss,1.29,2) # upstream/downstream node assert_equal(pipe.upstream_node.uid,'4') assert_equal(pipe.downstream_node.uid,'9') def test04_pump(self): pump = self.network.pumps['2'] # check type assert_equal(pump.link_type,'pump') assert_equal(pump.speed,1.0) assert_almost_equal(pump.flow,109.67,2) # change speed pump.speed = 1.5 assert_equal(pump.speed,1.5) # resolve network self.network.solve() assert_almost_equal(pump.flow,164.5,2) # revert speed pump.speed = 1.0 self.network.solve() def test05_valve(self): valve = self.network.valves['9'] # check type assert_equal(valve.link_type,'valve') # check valve type assert_equal(valve.valve_type,'PRV') # valve settings assert_equal(valve.setting,5) assert_almost_equal(valve.downstream_node.pressure,5,2) # change setting valve.setting = 10 assert_equal(valve.setting,10) self.network.solve() assert_almost_equal(valve.downstream_node.pressure,10,2) def test06_node(self): node = self.network.nodes['4'] # uid assert_equal(node.uid,'4') # coordinates #coordinates = node.coordinates # dont test these for created networks #assert_almost_equal(coordinates[0],2103.02,2) #assert_almost_equal(coordinates[1],5747.69,2) # links assert_equal(len(node.links),3) # up and downstream links assert_equal(len(node.downstream_links),2) assert_equal(len(node.upstream_links),1) # inflow assert_equal(round(node.inflow,2),109.67) # outflow assert_equal(round(node.outflow,2),round(node.inflow,2)-node.demand) # elevation assert_equal(node.elevation,5) # head assert_equal(round(node.head,2),25.13) def test07_junction(self): junction = self.network.junctions['4'] assert_equal(round(junction.basedemand,2),1) assert_equal(round(junction.demand,2),1) def test08_tank(self): tank = self.network.tanks['11'] assert_equal(tank.diameter,50) assert_equal(round(tank.initvolume,2),19634.95) assert_equal(tank.minvolume,0) assert_equal(tank.minlevel,0) assert_equal(tank.maxlevel,20) assert_equal(round(tank.volume,2),19634.95) assert_equal(round(tank.maxvolume),2*round(tank.volume)) def test09_time(self): junction = self.network.junctions['4'] self.network.solve(3600) assert_equal(round(junction.demand,2),2) self.network.solve(7200) assert_equal(round(junction.demand,2),3) def test10_collections(self): # collection attributes as pandas Series assert_almost_equal(self.network.pipes.flow.mean(),46.78,2) assert_almost_equal(self.network.pipes.diameter.max(),150,2) assert_almost_equal(self.network.pipes.velocity.min(),0.105,2) assert_equal(self.network.valves.setting.mean(),10) assert_almost_equal(self.network.junctions.demand.mean(),2.33,2) # filtering and slicing collections assert_equal(len(self.network.pipes[self.network.pipes.velocity > 3]),3) assert_equal(len(self.network.nodes[self.network.nodes.pressure < 20]),5) #increase the size of all pipes self.network.pipes.diameter += 500 assert_almost_equal(self.network.pipes.diameter.mean(),605,2) self.network.pipes.diameter -= 500 self.network.solve() # resize pipes, and recalculate velocity self.network.pipes[self.network.pipes.velocity > 3].diameter += 100 self.network.solve() assert_equal(len(self.network.pipes[self.network.pipes.velocity > 3]),0) def test11_timeseries(self): # run network self.network.run() # check return types # should return Series assert(isinstance(self.network.pipes['1'].velocity, pd.Series)) # should return Dataframe assert(isinstance(self.network.pipes.velocity, pd.DataFrame)) # timeseries operations # pipe 1 max velocity assert_almost_equal(self.network.pipes['1'].velocity.mean(),1.66,2) # all day mean velocity assert_almost_equal(self.network.pipes.velocity.mean().mean(),1.14,2) # test revert to steady state calculation self.network.solve() print(type(self.network.pipes['1'].velocity)) assert(isinstance(self.network.pipes['1'].velocity, float)) assert(isinstance(self.network.pipes.velocity, pd.Series)) def test12_deletion(self): # Delete node self.network.delete_node('10') assert_equal(len(self.network.nodes), 10) assert_equal(len(self.network.links), 11) assert_equal(len(self.network.valves), 0) self.network.solve() assert_almost_equal(self.network.junctions['9'].pressure, 11.21, 2) # Delete Tank self.network.delete_node('11') assert_equal(len(self.network.tanks), 0) assert_equal(len(self.network.links), 10) self.network.solve() assert_almost_equal(self.network.junctions['9'].pressure, 76.60, 2) # Delete link self.network.delete_link('7') assert_equal(len(self.network.links), 9) self.network.solve() assert_almost_equal(self.network.pipes['6'].flow, 1) # delete pump self.network.delete_link('2') assert_equal(len(self.network.pumps), 0) # add link instead self.network.add_pipe('R2', '2', '3', diameter=200, length=100, roughness=0.1) self.network.solve() assert_almost_equal(self.network.junctions['9'].pressure, 9.99, 2)
import os import pandas as pd import pytest import pickle import numpy as np import string import dask import dask.dataframe as dd from dask.threaded import get as threaded_get from dask.multiprocessing import get as mp_get from dask.dataframe.shuffle import (shuffle, partitioning_index, rearrange_by_column, rearrange_by_divisions, maybe_buffered_partd) from dask.async import get_sync from dask.dataframe.utils import assert_eq, make_meta dsk = {('x', 0): pd.DataFrame({'a': [1, 2, 3], 'b': [1, 4, 7]}, index=[0, 1, 3]), ('x', 1): pd.DataFrame({'a': [4, 5, 6], 'b': [2, 5, 8]}, index=[5, 6, 8]), ('x', 2): pd.DataFrame({'a': [7, 8, 9], 'b': [3, 6, 9]}, index=[9, 9, 9])} meta = make_meta({'a': 'i8', 'b': 'i8'}, index=pd.Index([], 'i8')) d = dd.DataFrame(dsk, 'x', meta, [0, 4, 9, 9]) full = d.compute() shuffle_func = shuffle # conflicts with keyword argument @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_shuffle(shuffle): s = shuffle_func(d, d.b, shuffle=shuffle) assert isinstance(s, dd.DataFrame) assert s.npartitions == d.npartitions x = get_sync(s.dask, (s._name, 0)) y = get_sync(s.dask, (s._name, 1)) assert not (set(x.b) & set(y.b)) # disjoint assert set(s.dask).issuperset(d.dask) assert shuffle_func(d, d.b)._name == shuffle_func(d, d.b)._name def test_default_partitions(): assert shuffle(d, d.b).npartitions == d.npartitions def test_shuffle_npartitions_task(): df = pd.DataFrame({'x': np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=10) s = shuffle(ddf, ddf.x, shuffle='tasks', npartitions=17, max_branch=4) sc = s.compute(get=get_sync) assert s.npartitions == 17 assert set(s.dask).issuperset(set(ddf.dask)) assert len(sc) == len(df) assert list(s.columns) == list(df.columns) assert (set(map(tuple, sc.values.tolist())) == set(map(tuple, df.values.tolist()))) @pytest.mark.parametrize('method', ['disk', 'tasks']) def test_index_with_non_series(method): from dask.dataframe.tests.test_multi import list_eq list_eq(shuffle(d, d.b, shuffle=method), shuffle(d, 'b', shuffle=method)) @pytest.mark.parametrize('method', ['disk', 'tasks']) def test_index_with_dataframe(method): res1 = shuffle(d, d[['b']], shuffle=method).compute() res2 = shuffle(d, ['b'], shuffle=method).compute() res3 = shuffle(d, 'b', shuffle=method).compute() assert sorted(res1.values.tolist()) == sorted(res2.values.tolist()) assert sorted(res1.values.tolist()) == sorted(res3.values.tolist()) @pytest.mark.parametrize('method', ['disk', 'tasks']) def test_shuffle_from_one_partition_to_one_other(method): df = pd.DataFrame({'x': [1, 2, 3]}) a = dd.from_pandas(df, 1) for i in [1, 2]: b = shuffle(a, 'x', npartitions=i, shuffle=method) assert len(a.compute(get=get_sync)) == len(b.compute(get=get_sync)) @pytest.mark.parametrize('method', ['disk', 'tasks']) def test_shuffle_empty_partitions(method): df = pd.DataFrame({'x': [1, 2, 3] * 10}) ddf = dd.from_pandas(df, npartitions=3) s = shuffle(ddf, ddf.x, npartitions=6, shuffle=method) parts = s._get(s.dask, s._keys()) for p in parts: assert s.columns == p.columns df2 = pd.DataFrame({'i32': np.array([1, 2, 3] * 3, dtype='int32'), 'f32': np.array([None, 2.5, 3.5] * 3, dtype='float32'), 'cat': pd.Series(['a', 'b', 'c'] * 3).astype('category'), 'obj': pd.Series(['d', 'e', 'f'] * 3), 'bool': np.array([True, False, True] * 3), 'dt': pd.Series(pd.date_range('20130101', periods=9)), 'dt_tz': pd.Series(pd.date_range('20130101', periods=9, tz='US/Eastern')), 'td': pd.Series(pd.timedelta_range('2000', periods=9))}) def test_partitioning_index(): res = partitioning_index(df2.i32, 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 assert (partitioning_index(df2.i32, 3) == partitioning_index(df2.i32, 3)).all() res = partitioning_index(df2[['i32']], 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 res = partitioning_index(df2[['cat', 'bool', 'f32']], 2) assert ((0 <= res) & (res < 2)).all() res = partitioning_index(df2.index, 4) assert ((res < 4) & (res >= 0)).all() assert len(np.unique(res)) > 1 def test_partitioning_index_categorical_on_values(): df = pd.DataFrame({'a': list(string.ascii_letters), 'b': [1, 2, 3, 4] * 13}) df.a = df.a.astype('category') df2 = df.copy() df2.a = df2.a.cat.set_categories(list(reversed(df2.a.cat.categories))) res = partitioning_index(df.a, 5) res2 = partitioning_index(df2.a, 5) assert (res == res2).all() res = partitioning_index(df, 5) res2 = partitioning_index(df2, 5) assert (res == res2).all() @pytest.mark.parametrize('npartitions', [1, 4, 7, pytest.mark.slow(23)]) def test_set_partition_tasks(npartitions): df = pd.DataFrame({'x': np.random.random(100), 'y': np.random.random(100) // 0.2}, index=np.random.random(100)) ddf = dd.from_pandas(df, npartitions=npartitions) assert_eq(df.set_index('x'), ddf.set_index('x', shuffle='tasks')) assert_eq(df.set_index('y'), ddf.set_index('y', shuffle='tasks')) assert_eq(df.set_index(df.x), ddf.set_index(ddf.x, shuffle='tasks')) assert_eq(df.set_index(df.x + df.y), ddf.set_index(ddf.x + ddf.y, shuffle='tasks')) assert_eq(df.set_index(df.x + 1), ddf.set_index(ddf.x + 1, shuffle='tasks')) assert_eq(df.set_index(df.index), ddf.set_index(ddf.index, shuffle='tasks')) @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_index_self_index(shuffle): df = pd.DataFrame({'x': np.random.random(100), 'y': np.random.random(100) // 0.2}, index=np.random.random(100)) a = dd.from_pandas(df, npartitions=4) b = a.set_index(a.index, shuffle=shuffle) assert a is b assert_eq(b, df.set_index(df.index)) @pytest.mark.parametrize('shuffle', ['tasks']) def test_set_partition_names(shuffle): df = pd.DataFrame({'x': np.random.random(100), 'y': np.random.random(100) // 0.2}, index=np.random.random(100)) ddf = dd.from_pandas(df, npartitions=4) assert (set(ddf.set_index('x', shuffle=shuffle).dask) == set(ddf.set_index('x', shuffle=shuffle).dask)) assert (set(ddf.set_index('x', shuffle=shuffle).dask) != set(ddf.set_index('y', shuffle=shuffle).dask)) assert (set(ddf.set_index('x', max_branch=4, shuffle=shuffle).dask) != set(ddf.set_index('x', max_branch=3, shuffle=shuffle).dask)) assert (set(ddf.set_index('x', drop=True, shuffle=shuffle).dask) != set(ddf.set_index('x', drop=False, shuffle=shuffle).dask)) @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_partition_tasks_2(shuffle): df = dd.demo.make_timeseries( '2000', '2004', {'value': float, 'name': str, 'id': int}, freq='2H', partition_freq='1M', seed=1) df2 = df.set_index('name', shuffle=shuffle) df2.value.sum().compute(get=get_sync) @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_partition_tasks_3(shuffle): df = pd.DataFrame(np.random.random((10, 2)), columns=['x', 'y']) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf.set_index('x', shuffle=shuffle, max_branch=2, npartitions=ddf.npartitions) df2 = df.set_index('x') assert_eq(df2, ddf2) assert ddf2.npartitions == ddf.npartitions @pytest.mark.parametrize('shuffle', ['tasks', 'disk']) def test_shuffle_sort(shuffle): df = pd.DataFrame({'x': [1, 2, 3, 2, 1], 'y': [9, 8, 7, 1, 5]}) ddf = dd.from_pandas(df, npartitions=3) df2 = df.set_index('x').sort_index() ddf2 = ddf.set_index('x', shuffle=shuffle) assert_eq(ddf2.loc[2:3], df2.loc[2:3]) @pytest.mark.parametrize('shuffle', ['tasks', 'disk']) @pytest.mark.parametrize('get', [threaded_get, mp_get]) def test_rearrange(shuffle, get): df = pd.DataFrame({'x': np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(y=ddf.x % 4) result = rearrange_by_column(ddf2, 'y', max_branch=32, shuffle=shuffle) assert result.npartitions == ddf.npartitions assert set(ddf.dask).issubset(result.dask) # Every value in exactly one partition a = result.compute(get=get) parts = get(result.dask, result._keys()) for i in a.y.drop_duplicates(): assert sum(i in part.y for part in parts) == 1 def test_rearrange_by_column_with_narrow_divisions(): from dask.dataframe.tests.test_multi import list_eq A = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': [1, 1, 2, 2, 3, 4]}) a = dd.repartition(A, [0, 4, 5]) df = rearrange_by_divisions(a, 'x', (0, 2, 5)) list_eq(df, a) def test_maybe_buffered_partd(): import partd f = maybe_buffered_partd() p1 = f() assert isinstance(p1.partd, partd.Buffer) f2 = pickle.loads(pickle.dumps(f)) assert not f2.buffer p2 = f2() assert isinstance(p2.partd, partd.File) def test_set_index_with_explicit_divisions(): df = pd.DataFrame({'x': [4, 1, 2, 5]}, index=[10, 20, 30, 40]) ddf = dd.from_pandas(df, npartitions=2) def throw(*args, **kwargs): raise Exception() with dask.set_options(get=throw): ddf2 = ddf.set_index('x', divisions=[1, 3, 5]) df2 = df.set_index('x') assert_eq(ddf2, df2) @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_index_reduces_partitions_small(shuffle): df = pd.DataFrame({'x': np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=50) ddf2 = ddf.set_index('x', shuffle=shuffle, npartitions='auto') assert ddf2.npartitions < 10 @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_index_reduces_partitions_large(shuffle): n = 2**24 df = pd.DataFrame({'x': np.random.random(n), 'y': np.random.random(n), 'z': np.random.random(n)}) ddf = dd.from_pandas(df, npartitions=50, name='x', sort=False) ddf2 = ddf.set_index('x', shuffle=shuffle, npartitions='auto') assert 1 < ddf2.npartitions < 20 @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_index_doesnt_increase_partitions(shuffle): n = 2**24 df = pd.DataFrame({'x': np.random.random(n), 'y': np.random.random(n), 'z': np.random.random(n)}) ddf = dd.from_pandas(df, npartitions=2, name='x', sort=False) ddf2 = ddf.set_index('x', shuffle=shuffle, npartitions='auto') assert ddf2.npartitions <= ddf.npartitions @pytest.mark.parametrize('shuffle', ['disk', 'tasks']) def test_set_index_detects_sorted_data(shuffle): df = pd.DataFrame({'x': range(100), 'y': range(100)}) ddf = dd.from_pandas(df, npartitions=10, name='x', sort=False) ddf2 = ddf.set_index('x', shuffle=shuffle) assert len(ddf2.dask) < ddf.npartitions * 4 def test_temporary_directory(): df = pd.DataFrame({'x': np.random.random(100), 'y': np.random.random(100), 'z': np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=10, name='x', sort=False) with dask.set_options(temporary_directory=os.getcwd(), get=dask.multiprocessing.get): ddf2 = ddf.set_index('x', shuffle='disk') ddf2.compute() assert any(fn.endswith('.partd') for fn in os.listdir(os.getcwd()))
from __future__ import absolute_import import six from datetime import datetime, timedelta import pytest from django.db.models import ProtectedError from django.utils import timezone from sentry import tagstore from sentry.models import ( Group, GroupRedirect, GroupSnooze, GroupStatus, Release, get_group_with_redirect ) from sentry.testutils import TestCase class GroupTest(TestCase): def test_is_resolved(self): group = self.create_group(status=GroupStatus.RESOLVED) assert group.is_resolved() group.status = GroupStatus.IGNORED assert not group.is_resolved() group.status = GroupStatus.UNRESOLVED assert not group.is_resolved() group.last_seen = timezone.now() - timedelta(hours=12) group.project.update_option('sentry:resolve_age', 24) assert not group.is_resolved() group.project.update_option('sentry:resolve_age', 1) assert group.is_resolved() def test_get_oldest_latest_event_no_events(self): group = self.create_group() assert group.get_latest_event() is None assert group.get_oldest_event() is None def test_get_oldest_latest_events(self): group = self.create_group() for i in range(0, 3): self.create_event( event_id=six.text_type(i), group=group, datetime=datetime(2013, 8, 13, 3, 8, i), ) assert group.get_latest_event().event_id == '2' assert group.get_oldest_event().event_id == '0' def test_get_oldest_latest_identical_timestamps(self): group = self.create_group() for i in range(0, 3): self.create_event( event_id=six.text_type(i), group=group, datetime=datetime(2013, 8, 13, 3, 8, 50), ) assert group.get_latest_event().event_id == '2' assert group.get_oldest_event().event_id == '0' def test_get_oldest_latest_almost_identical_timestamps(self): group = self.create_group() self.create_event( event_id='0', group=group, datetime=datetime(2013, 8, 13, 3, 8, 0), # earliest ) for i in range(1, 3): self.create_event( event_id=six.text_type(i), group=group, datetime=datetime(2013, 8, 13, 3, 8, 30), # all in the middle ) self.create_event( event_id='3', group=group, datetime=datetime(2013, 8, 13, 3, 8, 59), # latest ) assert group.get_latest_event().event_id == '3' assert group.get_oldest_event().event_id == '0' def test_is_ignored_with_expired_snooze(self): group = self.create_group( status=GroupStatus.IGNORED, ) GroupSnooze.objects.create( group=group, until=timezone.now() - timedelta(minutes=1), ) assert not group.is_ignored() def test_status_with_expired_snooze(self): group = self.create_group( status=GroupStatus.IGNORED, ) GroupSnooze.objects.create( group=group, until=timezone.now() - timedelta(minutes=1), ) assert group.get_status() == GroupStatus.UNRESOLVED def test_deleting_release_does_not_delete_group(self): project = self.create_project() release = Release.objects.create( version='a', organization_id=project.organization_id, ) release.add_project(project) group = self.create_group( project=project, first_release=release, ) with pytest.raises(ProtectedError): release.delete() group = Group.objects.get(id=group.id) assert group.first_release == release def test_save_truncate_message(self): assert len(self.create_group(message='x' * 300).message) == 255 assert self.create_group(message='\nfoo\n ').message == 'foo' assert self.create_group(message='foo').message == 'foo' assert self.create_group(message='').message == '' def test_get_group_with_redirect(self): group = self.create_group() assert get_group_with_redirect(group.id) == (group, False) duplicate_id = self.create_group().id Group.objects.filter(id=duplicate_id).delete() GroupRedirect.objects.create( group_id=group.id, previous_group_id=duplicate_id, ) assert get_group_with_redirect(duplicate_id) == (group, True) # We shouldn't end up in a case where the redirect points to a bad # reference, but testing this path for completeness. group.delete() with pytest.raises(Group.DoesNotExist): get_group_with_redirect(duplicate_id) def test_invalid_shared_id(self): with pytest.raises(Group.DoesNotExist): Group.from_share_id('adc7a5b902184ce3818046302e94f8ec') def test_qualified_share_id(self): project = self.create_project(name='foo bar') group = self.create_group(project=project, short_id=project.next_short_id()) short_id = group.qualified_short_id assert short_id.startswith('FOO-BAR-') group2 = Group.objects.by_qualified_short_id(group.organization.id, short_id) assert group2 == group def test_first_last_release(self): project = self.create_project() release = Release.objects.create( version='a', organization_id=project.organization_id, ) release.add_project(project) group = self.create_group( project=project, first_release=release, ) tagstore.create_group_tag_value( project_id=project.id, group_id=group.id, environment_id=self.environment.id, key='sentry:release', value=release.version ) assert group.first_release == release assert group.get_first_release() == release.version assert group.get_last_release() == release.version def test_first_release_from_tag(self): project = self.create_project() release = Release.objects.create( version='a', organization_id=project.organization_id, ) release.add_project(project) group = self.create_group( project=project, ) tagstore.create_group_tag_value( project_id=project.id, group_id=group.id, environment_id=self.environment.id, key='sentry:release', value=release.version ) assert group.first_release is None assert group.get_first_release() == release.version assert group.get_last_release() == release.version def test_first_last_release_miss(self): project = self.create_project() release = Release.objects.create( version='a', organization_id=project.organization_id, ) release.add_project(project) group = self.create_group( project=project, ) assert group.first_release is None assert group.get_first_release() is None assert group.get_last_release() is None def test_get_email_subject(self): project = self.create_project() group = self.create_group(project=project) assert group.get_email_subject() == '%s - %s' % (group.qualified_short_id, group.title)
#!/usr/bin/env python3 # Copyright (c) 2009-2019 The Bitcoin Core developers # Copyright (c) 2014-2019 The DigiByte Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test digibyted with different proxy configuration. Test plan: - Start digibyted's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on digibyted side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create digibyteds that connect to them - Manipulate the digibyteds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import DigiByteTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(DigiByteTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert isinstance(cmd, Socks5Command) # Note: digibyted's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert isinstance(cmd, Socks5Command) # Note: digibyted's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("digibyteostk4e4re.onion:8333", "onetry") cmd = proxies[2].queue.get() assert isinstance(cmd, Socks5Command) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"digibyteostk4e4re.onion") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert isinstance(cmd, Socks5Command) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
"""Test UniFi config flow.""" import socket from unittest.mock import patch import aiounifi from homeassistant import config_entries, data_entry_flow, setup from homeassistant.components.unifi.config_flow import async_discover_unifi from homeassistant.components.unifi.const import ( CONF_ALLOW_BANDWIDTH_SENSORS, CONF_ALLOW_UPTIME_SENSORS, CONF_BLOCK_CLIENT, CONF_CONTROLLER, CONF_DETECTION_TIME, CONF_DPI_RESTRICTIONS, CONF_IGNORE_WIRED_BUG, CONF_POE_CLIENTS, CONF_SITE_ID, CONF_SSID_FILTER, CONF_TRACK_CLIENTS, CONF_TRACK_DEVICES, CONF_TRACK_WIRED_CLIENTS, DOMAIN as UNIFI_DOMAIN, ) from homeassistant.config_entries import SOURCE_REAUTH, SOURCE_USER from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, CONF_VERIFY_SSL, CONTENT_TYPE_JSON, ) from .test_controller import setup_unifi_integration from tests.common import MockConfigEntry CLIENTS = [{"mac": "00:00:00:00:00:01"}] DEVICES = [ { "board_rev": 21, "device_id": "mock-id", "ip": "10.0.1.1", "last_seen": 0, "mac": "00:00:00:00:01:01", "model": "U7PG2", "name": "access_point", "state": 1, "type": "uap", "version": "4.0.80.10875", "wlan_overrides": [ { "name": "SSID 3", "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, { "name": "", "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, { "radio": "na", "radio_name": "wifi1", "wlan_id": "012345678910111213141516", }, ], } ] WLANS = [ {"name": "SSID 1"}, {"name": "SSID 2", "name_combine_enabled": False, "name_combine_suffix": "_IOT"}, ] DPI_GROUPS = [ { "_id": "5ba29dd8e3c58f026e9d7c4a", "name": "Default", "site_id": "5ba29dd4e3c58f026e9d7c38", }, ] async def test_flow_works(hass, aioclient_mock, mock_discovery): """Test config flow.""" mock_discovery.return_value = "1" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" assert result["data_schema"]({CONF_USERNAME: "", CONF_PASSWORD: ""}) == { CONF_HOST: "unifi", CONF_USERNAME: "", CONF_PASSWORD: "", CONF_PORT: 443, CONF_VERIFY_SSL: False, } aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"desc": "Site name", "name": "site_id", "role": "admin", "_id": "1"} ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "Site name" assert result["data"] == { CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_SITE_ID: "site_id", CONF_VERIFY_SSL: True, CONF_CONTROLLER: { CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_SITE_ID: "site_id", CONF_VERIFY_SSL: True, }, } async def test_flow_works_negative_discovery(hass, aioclient_mock, mock_discovery): """Test config flow with a negative outcome of async_discovery_unifi.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" assert result["data_schema"]({CONF_USERNAME: "", CONF_PASSWORD: ""}) == { CONF_HOST: "", CONF_USERNAME: "", CONF_PASSWORD: "", CONF_PORT: 443, CONF_VERIFY_SSL: False, } async def test_flow_multiple_sites(hass, aioclient_mock): """Test config flow works when finding multiple sites.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"name": "default", "role": "admin", "desc": "site name", "_id": "1"}, {"name": "site2", "role": "admin", "desc": "site2 name", "_id": "2"}, ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "site" assert result["data_schema"]({"site": "1"}) assert result["data_schema"]({"site": "2"}) async def test_flow_raise_already_configured(hass, aioclient_mock): """Test config flow aborts since a connected config entry already exists.""" await setup_unifi_integration(hass, aioclient_mock) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.clear_requests() aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"desc": "Site name", "name": "site_id", "role": "admin", "_id": "1"} ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "already_configured" async def test_flow_aborts_configuration_updated(hass, aioclient_mock): """Test config flow aborts since a connected config entry already exists.""" entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"host": "1.2.3.4", "site": "office"}, unique_id="2" ) entry.add_to_hass(hass) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"host": "1.2.3.4", "site": "site_id"}, unique_id="1" ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"desc": "Site name", "name": "site_id", "role": "admin", "_id": "1"} ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) with patch("homeassistant.components.unifi.async_setup_entry"): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "configuration_updated" async def test_flow_fails_user_credentials_faulty(hass, aioclient_mock): """Test config flow.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) with patch("aiounifi.Controller.login", side_effect=aiounifi.errors.Unauthorized): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "faulty_credentials"} async def test_flow_fails_controller_unavailable(hass, aioclient_mock): """Test config flow.""" result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" aioclient_mock.get("https://1.2.3.4:1234", status=302) with patch("aiounifi.Controller.login", side_effect=aiounifi.errors.RequestError): result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "username", CONF_PASSWORD: "password", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "service_unavailable"} async def test_reauth_flow_update_configuration(hass, aioclient_mock): """Verify reauth flow can update controller configuration.""" config_entry = await setup_unifi_integration(hass, aioclient_mock) controller = hass.data[UNIFI_DOMAIN][config_entry.entry_id] controller.available = False result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": SOURCE_REAUTH}, data=config_entry, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == SOURCE_USER aioclient_mock.clear_requests() aioclient_mock.get("https://1.2.3.4:1234", status=302) aioclient_mock.post( "https://1.2.3.4:1234/api/login", json={"data": "login successful", "meta": {"rc": "ok"}}, headers={"content-type": CONTENT_TYPE_JSON}, ) aioclient_mock.get( "https://1.2.3.4:1234/api/self/sites", json={ "data": [ {"desc": "Site name", "name": "site_id", "role": "admin", "_id": "1"} ], "meta": {"rc": "ok"}, }, headers={"content-type": CONTENT_TYPE_JSON}, ) result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_HOST: "1.2.3.4", CONF_USERNAME: "new_name", CONF_PASSWORD: "new_pass", CONF_PORT: 1234, CONF_VERIFY_SSL: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "reauth_successful" assert config_entry.data[CONF_HOST] == "1.2.3.4" assert config_entry.data[CONF_USERNAME] == "new_name" assert config_entry.data[CONF_PASSWORD] == "new_pass" async def test_advanced_option_flow(hass, aioclient_mock): """Test advanced config flow options.""" config_entry = await setup_unifi_integration( hass, aioclient_mock, clients_response=CLIENTS, devices_response=DEVICES, wlans_response=WLANS, dpigroup_response=DPI_GROUPS, dpiapp_response=[], ) result = await hass.config_entries.options.async_init( config_entry.entry_id, context={"show_advanced_options": True} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "device_tracker" assert set( result["data_schema"].schema[CONF_SSID_FILTER].options.keys() ).intersection(("SSID 1", "SSID 2", "SSID 2_IOT", "SSID 3")) result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_TRACK_CLIENTS: False, CONF_TRACK_WIRED_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_SSID_FILTER: ["SSID 1", "SSID 2_IOT", "SSID 3"], CONF_DETECTION_TIME: 100, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "client_control" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], CONF_POE_CLIENTS: False, CONF_DPI_RESTRICTIONS: False, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "statistics_sensors" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_ALLOW_BANDWIDTH_SENSORS: True, CONF_ALLOW_UPTIME_SENSORS: True, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_TRACK_CLIENTS: False, CONF_TRACK_WIRED_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_SSID_FILTER: ["SSID 1", "SSID 2_IOT", "SSID 3"], CONF_DETECTION_TIME: 100, CONF_IGNORE_WIRED_BUG: False, CONF_POE_CLIENTS: False, CONF_DPI_RESTRICTIONS: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], CONF_ALLOW_BANDWIDTH_SENSORS: True, CONF_ALLOW_UPTIME_SENSORS: True, } async def test_simple_option_flow(hass, aioclient_mock): """Test simple config flow options.""" config_entry = await setup_unifi_integration( hass, aioclient_mock, clients_response=CLIENTS, wlans_response=WLANS, dpigroup_response=DPI_GROUPS, dpiapp_response=[], ) result = await hass.config_entries.options.async_init( config_entry.entry_id, context={"show_advanced_options": False} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "simple_options" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_TRACK_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_TRACK_CLIENTS: False, CONF_TRACK_DEVICES: False, CONF_BLOCK_CLIENT: [CLIENTS[0]["mac"]], } async def test_form_ssdp(hass): """Test we get the form with ssdp source.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} context = next( flow["context"] for flow in hass.config_entries.flow.async_progress() if flow["flow_id"] == result["flow_id"] ) assert context["title_placeholders"] == { "host": "192.168.208.1", "site": "default", } async def test_form_ssdp_aborts_if_host_already_exists(hass): """Test we abort if the host is already configured.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"host": "192.168.208.1", "site": "site_id"}, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_form_ssdp_aborts_if_serial_already_exists(hass): """Test we abort if the serial is already configured.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"controller": {"host": "1.2.3.4", "site": "site_id"}}, unique_id="e0:63:da:20:14:a9", ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://192.168.208.1:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_form_ssdp_gets_form_with_ignored_entry(hass): """Test we can still setup if there is an ignored entry.""" await setup.async_setup_component(hass, "persistent_notification", {}) entry = MockConfigEntry( domain=UNIFI_DOMAIN, data={"not_controller_key": None}, source=config_entries.SOURCE_IGNORE, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( UNIFI_DOMAIN, context={"source": config_entries.SOURCE_SSDP}, data={ "friendlyName": "UniFi Dream Machine New", "modelDescription": "UniFi Dream Machine Pro", "ssdp_location": "http://1.2.3.4:41417/rootDesc.xml", "serialNumber": "e0:63:da:20:14:a9", }, ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} context = next( flow["context"] for flow in hass.config_entries.flow.async_progress() if flow["flow_id"] == result["flow_id"] ) assert context["title_placeholders"] == { "host": "1.2.3.4", "site": "default", } async def test_discover_unifi_positive(hass): """Verify positive run of UniFi discovery.""" with patch("socket.gethostbyname", return_value=True): assert await async_discover_unifi(hass) async def test_discover_unifi_negative(hass): """Verify negative run of UniFi discovery.""" with patch("socket.gethostbyname", side_effect=socket.gaierror): assert await async_discover_unifi(hass) is None
# # Secret Labs' Regular Expression Engine # # various symbols used by the regular expression engine. # run this script to update the _sre include files! # # Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved. # # See the sre.py file for information on usage and redistribution. # """Internal support module for sre""" # update when constants are added or removed MAGIC = 20140917 from _sre import MAXREPEAT, MAXGROUPS # SRE standard exception (access as sre.error) # should this really be here? class error(Exception): def __init__(self, msg, pattern=None, pos=None): self.msg = msg self.pattern = pattern self.pos = pos if pattern is not None and pos is not None: msg = '%s at position %d' % (msg, pos) if isinstance(pattern, str): newline = '\n' else: newline = b'\n' self.lineno = pattern.count(newline, 0, pos) + 1 self.colno = pos - pattern.rfind(newline, 0, pos) if newline in pattern: msg = '%s (line %d, column %d)' % (msg, self.lineno, self.colno) else: self.lineno = self.colno = None super().__init__(msg) class _NamedIntConstant(int): def __new__(cls, value, name): self = super(_NamedIntConstant, cls).__new__(cls, value) self.name = name return self def __str__(self): return self.name __repr__ = __str__ MAXREPEAT = _NamedIntConstant(MAXREPEAT, 'MAXREPEAT') def _makecodes(names): names = names.strip().split() items = [_NamedIntConstant(i, name) for i, name in enumerate(names)] globals().update({item.name: item for item in items}) return items # operators # failure=0 success=1 (just because it looks better that way :-) OPCODES = _makecodes(""" FAILURE SUCCESS ANY ANY_ALL ASSERT ASSERT_NOT AT BRANCH CALL CATEGORY CHARSET BIGCHARSET GROUPREF GROUPREF_EXISTS GROUPREF_IGNORE IN IN_IGNORE INFO JUMP LITERAL LITERAL_IGNORE MARK MAX_UNTIL MIN_UNTIL NOT_LITERAL NOT_LITERAL_IGNORE NEGATE RANGE REPEAT REPEAT_ONE SUBPATTERN MIN_REPEAT_ONE RANGE_IGNORE MIN_REPEAT MAX_REPEAT """) del OPCODES[-2:] # remove MIN_REPEAT and MAX_REPEAT # positions ATCODES = _makecodes(""" AT_BEGINNING AT_BEGINNING_LINE AT_BEGINNING_STRING AT_BOUNDARY AT_NON_BOUNDARY AT_END AT_END_LINE AT_END_STRING AT_LOC_BOUNDARY AT_LOC_NON_BOUNDARY AT_UNI_BOUNDARY AT_UNI_NON_BOUNDARY """) # categories CHCODES = _makecodes(""" CATEGORY_DIGIT CATEGORY_NOT_DIGIT CATEGORY_SPACE CATEGORY_NOT_SPACE CATEGORY_WORD CATEGORY_NOT_WORD CATEGORY_LINEBREAK CATEGORY_NOT_LINEBREAK CATEGORY_LOC_WORD CATEGORY_LOC_NOT_WORD CATEGORY_UNI_DIGIT CATEGORY_UNI_NOT_DIGIT CATEGORY_UNI_SPACE CATEGORY_UNI_NOT_SPACE CATEGORY_UNI_WORD CATEGORY_UNI_NOT_WORD CATEGORY_UNI_LINEBREAK CATEGORY_UNI_NOT_LINEBREAK """) # replacement operations for "ignore case" mode OP_IGNORE = { GROUPREF: GROUPREF_IGNORE, IN: IN_IGNORE, LITERAL: LITERAL_IGNORE, NOT_LITERAL: NOT_LITERAL_IGNORE, RANGE: RANGE_IGNORE, } AT_MULTILINE = { AT_BEGINNING: AT_BEGINNING_LINE, AT_END: AT_END_LINE } AT_LOCALE = { AT_BOUNDARY: AT_LOC_BOUNDARY, AT_NON_BOUNDARY: AT_LOC_NON_BOUNDARY } AT_UNICODE = { AT_BOUNDARY: AT_UNI_BOUNDARY, AT_NON_BOUNDARY: AT_UNI_NON_BOUNDARY } CH_LOCALE = { CATEGORY_DIGIT: CATEGORY_DIGIT, CATEGORY_NOT_DIGIT: CATEGORY_NOT_DIGIT, CATEGORY_SPACE: CATEGORY_SPACE, CATEGORY_NOT_SPACE: CATEGORY_NOT_SPACE, CATEGORY_WORD: CATEGORY_LOC_WORD, CATEGORY_NOT_WORD: CATEGORY_LOC_NOT_WORD, CATEGORY_LINEBREAK: CATEGORY_LINEBREAK, CATEGORY_NOT_LINEBREAK: CATEGORY_NOT_LINEBREAK } CH_UNICODE = { CATEGORY_DIGIT: CATEGORY_UNI_DIGIT, CATEGORY_NOT_DIGIT: CATEGORY_UNI_NOT_DIGIT, CATEGORY_SPACE: CATEGORY_UNI_SPACE, CATEGORY_NOT_SPACE: CATEGORY_UNI_NOT_SPACE, CATEGORY_WORD: CATEGORY_UNI_WORD, CATEGORY_NOT_WORD: CATEGORY_UNI_NOT_WORD, CATEGORY_LINEBREAK: CATEGORY_UNI_LINEBREAK, CATEGORY_NOT_LINEBREAK: CATEGORY_UNI_NOT_LINEBREAK } # flags SRE_FLAG_TEMPLATE = 1 # template mode (disable backtracking) SRE_FLAG_IGNORECASE = 2 # case insensitive SRE_FLAG_LOCALE = 4 # honour system locale SRE_FLAG_MULTILINE = 8 # treat target as multiline string SRE_FLAG_DOTALL = 16 # treat target as a single string SRE_FLAG_UNICODE = 32 # use unicode "locale" SRE_FLAG_VERBOSE = 64 # ignore whitespace and comments SRE_FLAG_DEBUG = 128 # debugging SRE_FLAG_ASCII = 256 # use ascii "locale" # flags for INFO primitive SRE_INFO_PREFIX = 1 # has prefix SRE_INFO_LITERAL = 2 # entire pattern is literal (given by prefix) SRE_INFO_CHARSET = 4 # pattern starts with character from given set if __name__ == "__main__": def dump(f, d, prefix): items = sorted(d) for item in items: f.write("#define %s_%s %d\n" % (prefix, item, item)) with open("sre_constants.h", "w") as f: f.write("""\ /* * Secret Labs' Regular Expression Engine * * regular expression matching engine * * NOTE: This file is generated by sre_constants.py. If you need * to change anything in here, edit sre_constants.py and run it. * * Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved. * * See the _sre.c file for information on usage and redistribution. */ """) f.write("#define SRE_MAGIC %d\n" % MAGIC) dump(f, OPCODES, "SRE_OP") dump(f, ATCODES, "SRE") dump(f, CHCODES, "SRE") f.write("#define SRE_FLAG_TEMPLATE %d\n" % SRE_FLAG_TEMPLATE) f.write("#define SRE_FLAG_IGNORECASE %d\n" % SRE_FLAG_IGNORECASE) f.write("#define SRE_FLAG_LOCALE %d\n" % SRE_FLAG_LOCALE) f.write("#define SRE_FLAG_MULTILINE %d\n" % SRE_FLAG_MULTILINE) f.write("#define SRE_FLAG_DOTALL %d\n" % SRE_FLAG_DOTALL) f.write("#define SRE_FLAG_UNICODE %d\n" % SRE_FLAG_UNICODE) f.write("#define SRE_FLAG_VERBOSE %d\n" % SRE_FLAG_VERBOSE) f.write("#define SRE_FLAG_DEBUG %d\n" % SRE_FLAG_DEBUG) f.write("#define SRE_FLAG_ASCII %d\n" % SRE_FLAG_ASCII) f.write("#define SRE_INFO_PREFIX %d\n" % SRE_INFO_PREFIX) f.write("#define SRE_INFO_LITERAL %d\n" % SRE_INFO_LITERAL) f.write("#define SRE_INFO_CHARSET %d\n" % SRE_INFO_CHARSET) print("done")
# # Created as part of the StratusLab project (http://stratuslab.eu), # co-funded by the European Commission under the Grant Agreement # INFSO-RI-261552." # # Copyright (c) 2011, SixSq Sarl # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import re import shutil import time import xml.etree.ElementTree as ET import requests from stratuslab import Exceptions from stratuslab import Defaults from stratuslab.Util import appendOrReplaceInFile, execute, fileAppendContent, \ fileGetContent, filePutContent, scp, sshCmd, set_stdouterr import stratuslab.Util as Util from stratuslab.system.PackageInfo import PackageInfo from stratuslab.system import Systems from stratuslab.Exceptions import ExecutionException class BaseSystem(object): os = '' caRepoName = 'CAs' voIdCardUrl = 'http://operations-portal.egi.eu/xml/voIDCard/public/all/true' vomsesDir = '/etc/grid-security/vomsdir' def __init__(self): self._set_stdouterr() self.extraRepos = {} self.packages = {} self.packages.update({'opennebula' : PackageInfo('one-3.2-StratusLab')}) self.installPackagesErrorMsgs = [] self.repoFileNamePattern = '/etc/%s' self.certificateAuthorityPackages = '' self.certificateAuthorityRepo = '' self.workOnFrontend() self.oneDbUsername = None self.oneDbPassword = None self.qemuConf = '/etc/libvirt/qemu.conf' self.shareType = Defaults.SHARE_TYPE def init(self): self._setOneHome() def _set_stdouterr(self): set_stdouterr(self) # ------------------------------------------- # Packages manager and related # ------------------------------------------- def addRepositories(self, packages): pass def updatePackageManager(self): pass def installWebServer(self): pass def installPackages(self, packages): if len(packages) < 1: return self.addRepositories(packages) packages_versioned = [] for package in packages: packages_versioned.append( self.getPackageWithVersionForInstall(package)) cmd = '%s %s' % (self.installCmd, ' '.join(packages_versioned)) rc, output = self._executeWithOutput(cmd, shell=True) if rc != 0: raise ExecutionException('Failed to install: %s\n%s' % \ (', '.join(packages_versioned), output)) Util.printDetail(output, self.verboseLevel, Util.VERBOSE_LEVEL_DETAILED) def getPackageWithVersionForInstall(self, package): try: self.packages[package] except KeyError: return package else: if self.packages[package].packageVersion: return '%s%s%s*' % (self.packages[package].packageName, self._getPackageAndVersionSeparator(), self.packages[package].packageVersion) else: return self.packages[package].packageName def _getPackageAndVersionSeparator(self): return Systems.getPackageAndVersionSeparatorBasedOnOs(self.os) def installNodePackages(self, packages): if len(packages) > 0: rc, output = self._nodeShell('%s %s' % (self.installCmd, ' '.join(packages)), withOutput=True) if rc != 0: raise Exceptions.ExecutionException('Error installing packages: %s\n%s' % \ (packages, output)) for err in self.installPackagesErrorMsgs: if re.search(err, output, re.M): raise Exceptions.ExecutionException('Error installing packages: %s\n%s' % \ (packages, output)) def installFrontendDependencies(self): self.addRepositories(self.frontendDeps) self.updatePackageManager() self.installPackages(self.frontendDeps) def installNodeDependencies(self): self.installNodePackages(self.nodeDeps) def installHypervisor(self): self.installNodePackages(self.hypervisorDeps.get(self.hypervisor)) def _updatePackageAndRepoInfo(self, packageName, repoName, repoConf): self.packages[packageName] = PackageInfo(packageName, repository=repoName) self.extraRepos[repoName] = {'content' : repoConf, 'filename' : self.repoFileNamePattern % repoName} def getPackageName(self, package): return self.packages[package].packageName def getPackageConfigFileName(self, package): return self.packages[package].configFile def getPackageInitdScriptName(self, package): return self.packages[package].initdScriptName def getPakcageRepositoryName(self, package): return self.packages[package].repository def getPakcageRepositoryConfig(self, package): repoName = self.getPakcageRepositoryName(package) return self.extraRepos[repoName] def getIsPackageInstalledCommand(self, package): pass def isPackageInstalled(self, package): cmd = self.getIsPackageInstalledCommand(package) rc, output = self._executeWithOutput(cmd, shell=True) if rc != 0: Util.printDetail(output) return False return True def startService(self, service): return self._operationOnService(service, 'start') def stopService(self, service): return self._operationOnService(service, 'stop') def restartService(self, service): return self._operationOnService(service, 'restart') def _operationOnService(self, service, operation): cmd = ['service', service, operation] rc, output = self._executeWithOutput(cmd) if rc != 0: Util.printDetail(output) return rc def startCloudSystem(self): self.stopService('oned') if self.startService('oned'): Util.printError("ONE failed to start") Util.printDetail('Waiting for ONE to finish starting') time.sleep(10) def enableServiceOnBoot(self, service, level='3'): return 0 # ------------------------------------------- # ONE admin creation # ------------------------------------------- def createCloudGroup(self, groupname, gid): self.oneGroup = groupname self.oneGid = gid self.executeCmd(['groupadd', '-g', self.oneGid, self.oneGroup]) def createCloudAdmin(self): # see below... # self.createDirsCmd(os.path.dirname(self.oneHome)) self.executeCmd(['useradd', '-g', self.oneGroup, '-u', self.oneUid, self.oneUsername, '-s', '/bin/bash', '-p', self.onePassword, '--create-home', '--expiredate ""', '--inactive -1']) # hack to reset the value of self.oneHome # the code assumes that the account exists before initializing this class # this is not the case as it is created by installing the one package self.oneHome = None self._setOneHome() # ------------------------------------------- # ONE admin env config and related # ------------------------------------------- def configureCloudAdminEnv(self, ONeDPort, stratuslabLocation): self.ONeDPort = ONeDPort self.appendOrReplaceInFileCmd('%s/.bashrc' % self.oneHome, 'export ONE_LOCATION', 'export ONE_LOCATION=%s' % self.oneHome) self.appendOrReplaceInFileCmd('%s/.bashrc' % self.oneHome, 'export ONE_XMLRPC', 'export ONE_XMLRPC=http://localhost:%s/RPC2' % self.ONeDPort) self.appendOrReplaceInFileCmd('%s/.bashrc' % self.oneHome, 'export PATH', 'export PATH=%s/bin:%s' % (self.oneHome, os.getenv('PATH'))) if stratuslabLocation: self.appendOrReplaceInFileCmd('%s/.bashrc' % self.oneHome, 'export STRATUSLAB_LOCATION', 'export STRATUSLAB_LOCATION=%s' % stratuslabLocation) self.filePutContentsCmd('%s/.bash_login' % self.oneHome, '[ -f ~/.bashrc ] && source ~/.bashrc') self.setOwnerCmd('%s/.bash_login' % self.oneHome) # Hack to always load .bashrc self.executeCmd(['sed -i \'s/\[ -z \\\"\$PS1\\\" \\] \\&\\& ' 'return/#&/\' %s/.bashrc' % self.oneHome], shell=True) def configureCloudAdminSshKeys(self): keyFileName = '%s/.ssh/id_rsa' % self.oneHome if os.path.exists(keyFileName): Util.printDetail('Key file %s already exists, skipping this step' % keyFileName) return self.createDirsCmd(os.path.dirname(keyFileName)) self.setOwnerCmd(os.path.dirname(keyFileName)) self.executeCmd(['ssh-keygen -f %s -N "" -q' % keyFileName], shell=True) self.setOwnerCmd(keyFileName) self.setOwnerCmd('%s.pub' % keyFileName) self.copyCmd('%s.pub' % keyFileName, '%s/.ssh/authorized_keys' % self.oneHome) self.setOwnerCmd('%s/.ssh/authorized_keys' % self.oneHome) self._configureCloudAdminSsh() def configureCloudAdminSshKeysNode(self): self.createDirsCmd('%s/.ssh/' % self.oneHome) self.setOwnerCmd('%s/.ssh/' % self.oneHome) # FIXME: why ssh key-pair from the Frontend is pushed to the Node? # ssh-keygen on the Node should be used to generate the user # specific ssh key-pair on that machine. oneKey = fileGetContent('%s/.ssh/id_rsa' % self.oneHome) self._filePutContentAsOneAdmin('%s/.ssh/id_rsa' % self.oneHome, oneKey) oneKeyPub = fileGetContent('%s/.ssh/id_rsa.pub' % self.oneHome) self._filePutContentAsOneAdmin('%s/.ssh/authorized_keys' % self.oneHome, oneKeyPub) self.chmodCmd('%s/.ssh/id_rsa' % self.oneHome, 0600) self._configureCloudAdminSsh() def _configureCloudAdminSsh(self): confFile = '%s/.ssh/config' % self.oneHome self.appendOrReplaceInFileCmd(confFile, '^Host.*$', 'Host *') self.appendOrReplaceInFileCmd(confFile, '^StrictHost.*$', 'StrictHostKeyChecking no') self.setOwnerCmd(confFile) self.chmodCmd(confFile, 0600) def configureCloudAdminAccount(self): # hack to reset the value of self.oneHome # the code assumes that the account exists before initializing this class # this is not the case as it is created by installing the one package self.oneHome = None self._setOneHome() oneAuthFile = '%s/.one/one_auth' % self.oneHome self.appendOrReplaceInFileCmd(oneAuthFile, self.oneUsername, '%s:%s' % (self.oneUsername, self.onePassword)) os.environ['ONE_AUTH'] = oneAuthFile self.addCloudAdminToExtraGroups() self.configureCloudAdminSudoFrontend() def addCloudAdminToExtraGroups(self): if Util.isTrueConfVal(self.persistentDisk) and self.persistentDiskStorage == 'lvm': self._addCloudAdminToExtraGroup(self.persistentDiskLvmDevfilesGroup) def _addCloudAdminToExtraGroup(self, group): self.executeCmd(['usermod', '-aG', group, self.oneUsername]) def configureCloudAdminSudoFrontend(self): commands = ['/sbin/lvs', '/var/lib/stratuslab/python/stratuslab/tm/TMMakeVFAT.py'] self._configureCloudAdminSudo(commands) def configureCloudAdminSudoNode(self): commands = ['/bin/chmod'] self._configureCloudAdminSudo(commands) def _configureCloudAdminSudo(self, commands): Util.printDetail("Configuring sudo rights for '%s'" % self.oneUsername) for cmd in commands: replace = '%s ALL = NOPASSWD: %s' % (self.oneUsername, cmd) self.appendOrReplaceInFileCmd('/etc/sudoers', '%s' % replace, replace) replace = 'Defaults:%s !requiretty' % self.oneUsername self.appendOrReplaceInFileCmd('/etc/sudoers', '%s' % replace, replace) replace = 'Defaults:%s !requiretty' % 'root' self.appendOrReplaceInFileCmd('/etc/sudoers', '%s' % replace, replace) def _setOneHome(self): if not self.oneHome: self.oneHome = os.path.expanduser('~' + self.oneUsername) # ------------------------------------------- # Persistent disks # ------------------------------------------- def configureCloudAdminPdiskNode(self): pdiskAttach = '/usr/sbin/attach-persistent-disk.sh' pdiskDetach = '/usr/sbin/detach-persistent-disk.sh' if Util.isFalseConfVal(getattr(self, 'persistentDisks', False)): self.executeCmd('"[ -f %(pd)s ] || { touch %(pd)s; chmod +x %(pd)s; }"' % {'pd':pdiskDetach}, shell=True) return Util.printDetail("Configuring persistent disks management for " "'%s' user." % self.oneUsername) line = 'oneadmin ALL = NOPASSWD: %s, %s' % (pdiskAttach, pdiskDetach) self.appendOrReplaceInFileCmd('/etc/sudoers', '^%s.*persistent-disk.*$' % self.oneUsername, line) # ------------------------------------------- # File sharing configuration # ------------------------------------------- def configureNewNfsServer(self, mountPoint, networkAddr, networkMask): self.createDirsCmd(mountPoint) self.appendOrReplaceInFileCmd('/etc/exports', '%s .*' % mountPoint, '%s %s/%s(rw,async,no_subtree_check,no_root_squash)' % (mountPoint, networkAddr, networkMask)) self.executeCmd(['exportfs', '-a']) def configureExistingNfsShare(self, shareLocation, mountPoint): self.createDirsCmd(mountPoint) self.appendOrReplaceInFileCmd('/etc/fstab', '%s .*' % shareLocation, '%s %s nfs soft,intr,rsize=32768,wsize=32768,rw 0 0' % ( shareLocation, mountPoint)) self.executeCmd(['mount', '-a']) def configureSshServer(self): pass def configureSshClient(self, sharedDir): self.createDirsCmd(sharedDir) self.setOwnerCmd(sharedDir) # ------------------------------------------- # Hypervisor configuration # ------------------------------------------- def configureHypervisor(self): if self.hypervisor == 'xen': self._configureXen() elif self.hypervisor == 'kvm': self._configureKvm() def _configureKvm(self): self.executeCmd(['modprobe', 'kvm_intel']) self.executeCmd(['modprobe', 'kvm_amd']) # seen a case when permission of /dev/kvm were 0600 self.executeCmd(['chmod', '0666', '/dev/kvm']) if self.shareType == 'nfs': self._configureQemuUserOnFrontend() def _configureQemuUserOnFrontend(self): """Add qemu user on Fronted with the same UID and GID as on the node being configured. Add qemu user to 'cloud' group both on Frontend and the node. """ if self.shareType != 'nfs': return user = group = 'qemu' getUidGidCmd = "getent passwd %s" Util.printDetail("Configuring '%s' user on Frontend as shared filesystem setup requested." % user) def getUidGidFromNode(user): rc, output = self._nodeShell(getUidGidCmd % user, withOutput=True) if rc != 0: Util.printError("Error getting '%s' user UID/GID from Node.\n%s" % (user,output)) return _extractUidGidFromGetentPasswdOutput(output) def _extractUidGidFromGetentPasswdOutput(output): uid, gid = output.split(':')[2:4] # uid, gid if not all([uid, gid]): Util.printError("Error extracting '%s' user UID/GID from output.\n%s" % (user,output)) return uid, gid uidNode, gidNode = getUidGidFromNode(user) rc, output = self._executeWithOutput((getUidGidCmd % uidNode).split()) if rc == 0: uidLocal, gidLocal = _extractUidGidFromGetentPasswdOutput(output) Util.printDetail("User with UID:%s/GID:%s already configured on Frontend." % (uidLocal, gidLocal), verboseLevel=self.verboseLevel) if gidNode != gidLocal: Util.printError("Frontend user '%s' GID:%s doesn't match GID:%s on Node %s." % (gidLocal, user, gidNode, self.nodeAddr)) else: self._execute(['groupadd', '-g', gidNode, '-r', group]) self._execute(['useradd', '-r', '-u', uidNode, '-g', group, '-d', '/', '-s', '/sbin/nologin', '-c', '"%s user"'%user, user]) # Instruct libvirt to run VMs with GID of ONE group. self.appendOrReplaceInFileCmd(self.qemuConf, '^group.*$', 'group = "%s"' % self.oneGroup) # TODO: check why this didn't work # # Add the user to ONE admin group. Directory with the images on # # shared Frontend is restricted to ONE admin user. # cmd = ['usermod', '-aG', self.oneGroup, user] # self._execute(cmd) # self._nodeShell(cmd) def _configureXen(self): self.appendOrReplaceInFileCmd('/etc/sudoers', self.oneUsername, '%s ALL=(ALL) NOPASSWD: /usr/sbin/xm *' % self.oneUsername) self.appendOrReplaceInFileCmd('/etc/sudoers', self.oneUsername, '%s ALL=(ALL) NOPASSWD: /usr/sbin/xentop *' % self.oneUsername) self.executeCmd(['sed -i -E \'s/Defaults[[:space:]]+requiretty/#&/\'' ' /etc/sudoers']) def configureLibvirt(self): libvirtConf = '/etc/libvirt/libvirtd.conf' self.appendOrReplaceInFileCmd(libvirtConf, '^unix_sock_group.*$', 'unix_sock_group = "cloud"') self.appendOrReplaceInFileCmd(libvirtConf, '^unix_sock_ro_perms.*$', 'unix_sock_ro_perms = "0777"') self.appendOrReplaceInFileCmd(libvirtConf, '^unix_sock_rw_perms.*$', 'unix_sock_rw_perms = "0770"') self.appendOrReplaceInFileCmd(libvirtConf, '^auth_unix_ro.*$', 'auth_unix_ro = "none"') self.appendOrReplaceInFileCmd(libvirtConf, '^auth_unix_rw.*$', 'auth_unix_rw = "none"') self.appendOrReplaceInFileCmd(self.qemuConf, '^vnc_listen.*$', 'vnc_listen = "0.0.0.0"') def startLibvirt(self): rc, output = self.executeCmd('service libvirtd restart'.split(), withOutput=True) if rc != 0: Util.printError('Could not start libvirt.\n%s' % output) # ------------------------------------------- # Front-end related methods # ------------------------------------------- def execute(self, commandAndArgsList, **kwargs): return self._execute(commandAndArgsList, **kwargs) def _execute(self, commandAndArgsList, **kwargs): stdout = kwargs.get('stdout', self.stdout) stderr = kwargs.get('stderr', self.stderr) if kwargs.has_key('stdout'): del kwargs['stdout'] if kwargs.has_key('stderr'): del kwargs['stderr'] return execute(commandAndArgsList, stdout=stdout, stderr=stderr, verboseLevel=self.verboseLevel, verboseThreshold=Util.VERBOSE_LEVEL_DETAILED, **kwargs) def _executeWithOutput(self, command, **kwargs): kwargs['withOutput'] = True return self._execute(command, **kwargs) def _setCloudAdminOwner(self, path): os.chown(path, int(self.oneUid), int(self.oneGid)) def _createDirs(self, path): if not os.path.isdir(path) and not os.path.isfile(path): os.makedirs(path) def _copy(self, src, dst): if os.path.isfile(src): shutil.copy(src, dst) else: shutil.copytree(src, dst) def _remove(self, path): if os.path.isfile(path): os.remove(path) else: shutil.rmtree(path) # ------------------------------------------- # Node related methods # ------------------------------------------- def _nodeShell(self, command, **kwargs): stdout = kwargs.get('stdout', self.stdout) stderr = kwargs.get('stderr', self.stderr) if kwargs.has_key('stdout'): del kwargs['stdout'] if kwargs.has_key('stderr'): del kwargs['stderr'] if isinstance(command, list): command = ' '.join(command) return sshCmd(command, self.nodeAddr, sshKey=self.nodePrivateKey, stdout=stdout, stderr=stderr, verboseLevel=self.verboseLevel, verboseThreshold=Util.VERBOSE_LEVEL_DETAILED, **kwargs) def _nodeCopy(self, source, dest, **kwargs): stdout = kwargs.get('stdout', self.stdout) stderr = kwargs.get('stderr', self.stderr) if kwargs.has_key('stdout'): del kwargs['stdout'] if kwargs.has_key('stderr'): del kwargs['stderr'] return scp(source, 'root@%s:%s' % (self.nodeAddr, dest), self.nodePrivateKey, stdout=stdout, stderr=stderr, verboseLevel=self.verboseLevel, verboseThreshold=Util.VERBOSE_LEVEL_DETAILED, **kwargs) def _remoteSetCloudAdminOwner(self, path): self._nodeShell(['chown %s:%s %s' % (self.oneUid, self.oneGid, path)]) def _remoteCreateDirs(self, path): self._nodeShell('mkdir -p %s' % path) def _remoteAppendOrReplaceInFile(self, filename, search, replace): res = self._nodeShell(['grep', '"%s"'%search, filename]) replace = Util.escapeDoubleQuotes(replace) if self._patternExists(res): rc, output = self._nodeShell('"sed -i \'s|%s|%s|\' %s"' % (search, replace, filename), withOutput=True, shell=True) if rc != 0: Util.printError("Failed to modify %s.\n%s" % (filename, output)) else: self._remoteFileAppendContents(filename, replace) def _patternExists(self, returnCode): return returnCode == 0 def _remoteCopyFile(self, src, dest): self._nodeShell(['cp -rf %s %s' % (src, dest)]) def _remoteRemove(self, path): self._nodeShell(['rm -rf %s' % path]) def _remoteFilePutContents(self, filename, data): data = Util.escapeDoubleQuotes(data, times=4) rc, output = self._nodeShell('"echo \\"%s\\" > %s"' % (data, filename), withOutput=True, shell=True) if rc != 0: Util.printError("Failed to write to %s\n%s" % (filename, output)) def _remoteFileAppendContents(self, filename, data): data = Util.escapeDoubleQuotes(data, times=4) rc, output = self._nodeShell('"echo \\"%s\\" >> %s"' % (data, filename), withOutput=True, shell=True) if rc != 0: Util.printError("Failed to append to %s\n%s" % (filename, output)) def _filePutContentAsOneAdmin(self, filename, content): self.filePutContentsCmd(filename, content) self.setOwnerCmd(filename) def _remoteChmod(self, path, mode): return self._nodeShell('chmod %o %s' % (mode, path)) def _remoteFileExists(self, path): return self._nodeShell('ls %s' % path, sshQuiet=True) == 0 # ------------------------------------------- # General # ------------------------------------------- def setNodeAddr(self, nodeAddr): self.nodeAddr = nodeAddr def setNodePrivateKey(self, privateKey): self.nodePrivateKey = privateKey def workOnFrontend(self): self.appendOrReplaceInFileCmd = appendOrReplaceInFile self.setOwnerCmd = self._setCloudAdminOwner self.executeCmd = self._execute self.executeCmdWithOutput = self._executeWithOutput self.createDirsCmd = self._createDirs self.filePutContentsCmd = filePutContent self.fileAppendContentsCmd = fileAppendContent self.chmodCmd = os.chmod self.copyCmd = self._copy self.duplicateCmd = self._copy self.removeCmd = self._remove def workOnNode(self): self.appendOrReplaceInFileCmd = self._remoteAppendOrReplaceInFile self.setOwnerCmd = self._remoteSetCloudAdminOwner self.executeCmd = self._nodeShell self.duplicateCmd = self._remoteCopyFile self.createDirsCmd = self._remoteCreateDirs self.filePutContentsCmd = self._remoteFilePutContents self.fileAppendContentsCmd = self._remoteFileAppendContents self.chmodCmd = self._remoteChmod self.copyCmd = self._nodeCopy self.removeCmd = self._remoteRemove def configureQuarantine(self): filename = os.path.join(Defaults.ETC_DIR, 'quarantine.cfg') search = '^PERIOD.*$' replace = 'PERIOD=%(quarantinePeriod)s' % self.__dict__ Util.appendOrReplaceInFile(filename, search, replace) def configureCloudProxyService(self): self.installPackages(['stratuslab-one-proxy', 'stratuslab-nginx-load']) self._configureProxyDefaultUsers() self._restartJetty() def _configureProxyDefaultUsers(self): self._configureProxyDefaultUsersUsernamePassword() def _configureProxyDefaultUsersUsernamePassword(self): filename = Defaults.AUTHN_CONFIG_FILE search = self.oneUsername replace = '%(oneUsername)s=%(proxyOneadminPassword)s,cloud-access' % self.__dict__ Util.appendOrReplaceInFile(filename, search, replace) def _restartJetty(self): self.executeCmd('/etc/init.d/one-proxy restart'.split(' ')) # ------------------------------------------- # Firewall # ------------------------------------------- # TODO: extract Firewall class from the code below DEFAULT_FIREWALL_TABLE = 'filter' # redefine in sub-class to point to required file FILE_FIREWALL_RULES = '/etc/sysconfig/iptables' IP_TABLES_LIST = ['filter','nat','mangle','raw'] def _configureNetworkInterface(self, device, ip, netmask): pass def configureFirewall(self): self._loadNetfilterModules() self._configureFirewallForProxy() self._configureFirewallNat() self._persistFirewallRules() def _configureFirewallForProxy(self): port = str(self.onePort) rules = ({'table':'filter', 'rule' :'-A INPUT -s 127.0.0.1 -p tcp -m tcp --dport %s -j ACCEPT' % port}, {'table':'filter', 'rule' :'-A INPUT -p tcp -m tcp --dport %s -j REJECT --reject-with icmp-port-unreachable' % port}) if not self._isSetFirewallRulesAll(rules): self._setFirewallRulesAll(rules) def _configureFirewallNat(self): if self.nat.lower() in ['false', 'no', 'off', '0', '']: return None self._configureFirewallNatNetworking() networkWithMask = '%s/%s' % (self.natNetwork, self.natNetmask) rules = ({'table':'nat', 'rule':'-A POSTROUTING -s %s -d ! %s -j MASQUERADE' % ((networkWithMask,)*2)}, {'table':'filter', 'rule':'-A FORWARD -d %s -m state --state RELATED,ESTABLISHED -j ACCEPT' % networkWithMask}, {'table':'filter', 'rule':'-A FORWARD -d %s -j ACCEPT' % networkWithMask}) if not self._isSetFirewallRulesAll(rules): self._setFirewallRulesAll(rules) def _configureFirewallNatNetworking(self): self._enableIpForwarding() device = self.natNetworkInterface ip = getattr(self, 'natGateway', '') if not ip: ip = Util.gatewayIpFromNetAddress(self.natNetwork) self._configureVirtualNetInterface(device, ip, self.natNetmask) @staticmethod def enableIpForwarding(): Util.printDetail('Enabling packets forwarding.') file(FILE_IPFORWARD_HOT_ENABLE, 'w').write('1') appendOrReplaceInFile(FILE_IPFORWARD_PERSIST, 'net.ipv4.ip_forward', 'net.ipv4.ip_forward = 1') def _enableIpForwarding(self): return BaseSystem.enableIpForwarding() def _configureVirtualNetInterface(self, device, ip, netmask): device = device + ':privlan' Util.printDetail('Configuring network interface %s.' % device) self._configureNetworkInterface(device, ip, netmask) Util.printDetail('Starting network interface %s.' % device) self.executeCmd(['ifup', device]) def _persistFirewallRules(self): self._saveFirewallRules(self.FILE_FIREWALL_RULES) def _loadNetfilterModules(self): # just in case if kernel modules were not yet loaded devNull = open(os.path.devnull, 'w') for table in self.IP_TABLES_LIST: cmd = 'iptables -nL -t %s' % table self.executeCmd(cmd.split(), stdout=devNull) devNull.close() def _saveFirewallRules(self, filename): # back-up self.executeCmd(('cp -fp %s %s.LAST'%((filename,)*2)).split(' ')) _,output = self.executeCmdWithOutput(['iptables-save']) Util.printDetail('Saving firewall rules to %s.' % filename) filePutContent(filename, output) os.chmod(filename, 0600) def _isSetFirewallRulesAll(self, rules): tables = dict.fromkeys([r.get('table', self.DEFAULT_FIREWALL_TABLE) for r in rules]).keys() currentRules = self._getFirewallRulesPerTable(tables) for ruleSpec in rules: if not self._isSetFirewallRule(currentRules, ruleSpec): return False return True def _getFirewallRulesPerTable(self, tables=IP_TABLES_LIST): rules = {} for table in tables: rc, output = self.executeCmdWithOutput(('iptables-save -t %s' % table).split(' ')) if rc != 0: raise Exceptions.ExecutionException('iptables-save reported an error:\n%s'% output) rules.update({table:output}) return rules def _isSetFirewallRule(self, currentRules, ruleSpec): rule, table = self._getRuleAndTableFromRuleSpec(ruleSpec) rulesInTable = currentRules[table] if re.search(rule, rulesInTable, re.M): return True return False def _setFirewallRulesAll(self, rules): self._deleteFirewallRulesAllGiven(rules) for ruleSpec in rules: self._setFirewallRule(ruleSpec) def _deleteFirewallRulesAllGiven(self, rules): for ruleSpec in rules: self._deleteFirewallRule(ruleSpec) def _deleteFirewallRule(self, ruleSpec): rule, table = self._getRuleAndTableFromRuleSpec(ruleSpec) rule = '-D %s' % rule[3:] # remove action; leave chain and rule self.executeCmd(('iptables -t %s %s' % (table,rule)).split(' ')) def _setFirewallRule(self, ruleSpec): rule, table = self._getRuleAndTableFromRuleSpec(ruleSpec) self.executeCmd(('iptables -t %s %s' % (table,rule)).split(' ')) def _getRuleAndTableFromRuleSpec(self, ruleSpec): return ruleSpec['rule'], \ ruleSpec.get('table', self.DEFAULT_FIREWALL_TABLE) # ------------------------------------------- # sendmail # ------------------------------------------- def installSendmail(self): package = 'sendmail' if getattr(self, 'smtpHost', 'localhost') == 'localhost': self.installPackages([self.getPackageName(package)]) else: Util.printDetail('Skipping installation of %s' % package) # ------------------------------------------- # CA # ------------------------------------------- def installCAs(self): def _isCertificateAuthority(): return Util.isTrueConfVal(getattr(self, 'certificateAuthority', False)) if not _isCertificateAuthority(): Util.printDetail('Requested not to install CAs.') else: self._installCAs() self._installFetchCrl() self._enableFetchCrl() self._installVomsFiles() def _enableFetchCrl(self): pass def _installCAs(self): packages = [] if self.certificateAuthorityPackages and self.certificateAuthorityRepo: caPackages = map(lambda x: x.strip(), self.certificateAuthorityPackages.split(',')) packages.extend(caPackages) repoConf = '\n'.join([line.strip() for line in self.certificateAuthorityRepo.strip().split('\n')]) repoName = self.caRepoName for package in packages: self._updatePackageAndRepoInfo(package, repoName, repoConf) else: packages.append(self.getPackageName('CA')) self.installPackages(packages) for package in packages: if not self.isPackageInstalled(package): Util.printError('Failed to install %s.' % package) def installOpenNebula(self): Util.printDetail('Installing OpenNebula') self.installPackages([self.getPackageName('opennebula')]) def _installFetchCrl(self): package = self.getPackageName('fetch-crl') self.installPackages([package]) if not self.isPackageInstalled(package): Util.printError('Failed to install %s.' % package) def _installVomsFiles(self): r = requests.get(self.voIdCardUrl) if r.status_code == requests.codes.ok: if not os.path.exists(self.vomsesDir): try: os.mkdir(self.vomsesDir) except Exception as e: Util.printError('could not create ' + vomsesDir) vo_data = ET.fromstring(r.text) for idcard in vo_data: voname = idcard.attrib['Name'] vopath = os.path.join(self.vomsesDir, voname) if not os.path.exists(vopath): try: os.mkdir(vopath) except Exception as e: Util.printError('could not create ' + vopath) for server in idcard.findall('./gLiteConf/VOMSServers/VOMS_Server'): hostname = server.find('hostname') dn = server.find('X509Cert/DN') ca_dn = server.find('X509Cert/CA_DN') if hostname is not None and dn is not None and ca_dn is not None: contents = '%s\n%s\n' % (dn.text, ca_dn.text) path = os.path.join(vopath, hostname.text + '.lsc') try: with open(path, 'w') as f: f.write(contents) except Exception as e: Util.printError('could not create file ' + path) else: Util.printError('error retrieving VO ID card data from ' + self.voIdCardUrl) # ------------------------------------------- # DHCP server # ------------------------------------------- NET_TYPES_DHCP = ['OnePublicNetwork', 'OneLocalNetwork'] def configureDhcpServer(self): def _dhcpDefined(): return Util.isTrueConfVal(getattr(self, 'dhcp', 'False')) def _dhcpNetTypesDefined(): return any([Util.isTrueConfVal(getattr(self, self._assembleDhcpAttributeName(v), 'False')) for v in self.NET_TYPES_DHCP]) if not _dhcpDefined(): return elif not _dhcpNetTypesDefined(): return Util.printStep('Configuring DHCP service') self._installDhcp() self._confgureDhcp() self._startDhcp() def _assembleDhcpAttributeName(self, postfix): DHCP_PARAMETER_PREFIX = 'dhcp' return '%s%s' % (DHCP_PARAMETER_PREFIX, postfix) def _installDhcp(self): Util.printDetail('Installing DHCP server.') dhcpPackage = self.getPackageName('dhcp') self.installPackages([dhcpPackage]) if not self.isPackageInstalled(dhcpPackage): Util.printError('Failed to install %s.' % dhcpPackage) def _confgureDhcp(self): def _isAllDhcpGroupsDefined(_groups): return all(_groups.values()) def _getConfGlobals(): _globals = """ ddns-update-style none; ignore unknown-clients; ignore bootp; """ if hasattr(self, 'dhcpNtpServers') and self.dhcpNtpServers: _globals += 'option ntp-servers %s;\n' % self.dhcpNtpServers return _globals def _getConfSubnets(): subnetTemplate = """ subnet %(subnet)s netmask %(netmask)s { option routers %(routers)s; } """ subnet = '' # All net types are defined together with NATing. Assuming NATing for # Local net type. Need to create a shared network. if Util.isTrueConfVal(self.nat) and _isAllDhcpGroupsDefined(dhcpGroups): subnet = """ shared-network StratusLab-LAN { """ for _type in self.NET_TYPES_DHCP: subnet += subnetTemplate % { 'subnet' : getattr(self, self._assembleDhcpAttributeName('%sSubnet' % _type)), 'netmask' : getattr(self, self._assembleDhcpAttributeName('%sNetmask' % _type)), 'routers' : getattr(self, self._assembleDhcpAttributeName('%sRouters' % _type))} subnet += "}\n" elif Util.isTrueConfVal(self.nat) and dhcpGroups['OneLocalNetwork']: subnet = """ shared-network StratusLab-LAN { """ # main interface subnet += """ subnet %(subnet)s netmask %(netmask)s { } """ % {'subnet' : self.dhcpSubnet, 'netmask' : self.dhcpNetmask} # virtual interface natGateway = getattr(self, 'natGateway', '') if not natGateway: natGateway = Util.gatewayIpFromNetAddress(self.natNetwork) subnet += subnetTemplate % {'subnet' : self.natNetwork, 'netmask' : self.natNetmask, 'routers' : natGateway} subnet += "}\n" elif dhcpGroups['OnePublicNetwork']: # main interface subnet += """ subnet %(subnet)s netmask %(netmask)s { } """ % {'subnet' : self.dhcpSubnet, 'netmask' : self.dhcpNetmask} elif dhcpGroups['OneLocalNetwork']: # virtual interface subnet = subnetTemplate % { 'subnet' : self.dhcpOneLocalNetworkSubnet, 'netmask' : self.dhcpOneLocalNetworkNetmask, 'routers' : self.dhcpOneLocalNetworkRouters} else: Util.printWarning('Invalid parameters combination to configure DHCP.') return subnet def _getConfGroups(): groupHeadTemplate = """ group { option broadcast-address %(broadcast)s; option subnet-mask %(netmask)s; option routers %(routers)s; option domain-name "%(domainName)s"; option domain-name-servers %(nameservers)s; """ hostTemplate = """ host %(type)s-vm%(id)s { hardware ethernet %(mac)s; fixed-address %(ip)s; max-lease-time %(leaseTime)s; } """ groups = '' for _type,ipsMacs in dhcpGroups.items(): if not ipsMacs: continue groups += groupHeadTemplate % \ {'broadcast' : getattr(self, self._assembleDhcpAttributeName('%sBroadcast' % _type)), 'netmask' : getattr(self, self._assembleDhcpAttributeName('%sNetmask' % _type)), 'routers' : getattr(self, self._assembleDhcpAttributeName('%sRouters' % _type)), 'domainName' : getattr(self, self._assembleDhcpAttributeName('%sDomainName' % _type)), 'nameservers' : getattr(self, self._assembleDhcpAttributeName('%sDomainNameServers' % _type))} hosts = '' for i,ipMac in enumerate(ipsMacs): hosts += hostTemplate % {'type' : _type.lower(), 'id' : str(i), 'mac' : ipMac[1], 'ip' : ipMac[0], 'leaseTime' : self.dhcpLeaseTime} groups += hosts groups += '}\n' return groups Util.printDetail('Configuring DHCP server.') _NOTHING = [] dhcpGroups = dict.fromkeys(self.NET_TYPES_DHCP, _NOTHING) for netType in self.NET_TYPES_DHCP: if Util.isTrueConfVal(getattr(self, self._assembleDhcpAttributeName(netType), False)): dhcpGroups[netType] = self.__getIpMacTuplesForNetworkType(netType) if not any(dhcpGroups.values()): Util.printError('When configuring DHCP %s networks IP/MAC pairs should be given.' % ','.join(self.NET_TYPES_DHCP)) content = _getConfGlobals() + \ _getConfSubnets() + \ _getConfGroups() confFile = self.getPackageConfigFileName('dhcp') Util.filePutContent(confFile, content) def __getIpMacTuplesForNetworkType(self, _type): if _type not in self.NET_TYPES_DHCP: Util.printError('Expected one of: %s. Got %s'%(','.join(self.NET_TYPES_DHCP),_type)) _type = _type.replace(_type[0], _type[0].lower(), 1) ips = [x for x in getattr(self, '%sAddr'%_type).split()] macs = [x for x in getattr(self, '%sMac'%_type).split()] if len(ips) != len(macs): Util.printError('%s network: number of IPs should match number of MACs.'%_type) return zip(ips, macs) def _startDhcp(self): Util.printDetail('(Re)Starting DHCP server.') serviceName = self.packages['dhcp'].initdScriptName rc = self.restartService(serviceName) if rc != 0: Util.printError('Failed to (re)start DHCP service.') # ------------------------------------------- # DB # ------------------------------------------- def configureDatabase(self): if self.oneDbHost in ['localhost', '127.0.0.1']: Util.printDetail('Installing MySQL server.') mysqlPackage = self.getPackageName('MySQLServer') self.installPackages([mysqlPackage]) Util.printDetail('Starting MySQL server.') mysqlService = self.getPackageInitdScriptName('MySQLServer') self.startService(mysqlService) Util.printDetail('Changing db root password') self._configureRootDbUser(self.oneDbRootPassword) Util.printDetail('Creating oneadmin db account') self._configureDbUser(self.oneDbUsername, self.oneDbPassword) else: Util.printDetail('Skipping MySQL installation/configuration. It is assumed to be configured on %s' % self.oneDbHost) def _configureRootDbUser(self, password): rc, output = self._execute(["/usr/bin/mysqladmin", "-uroot", "password", "%s" % password], withOutput=True) if rc != 0: Util.printWarning("Couldn't set root password. Already set?\n%s" % output) def _configureDbUser(self, username, password): mysqlCommand = "/usr/bin/mysql -uroot -p%s" % self.oneDbRootPassword userCreate = "CREATE USER '%s'@'localhost' IDENTIFIED BY '%s'" % (username, password) userGrant = "GRANT CREATE, DROP, SELECT, INSERT, DELETE, UPDATE, INDEX ON opennebula.* TO '%s'@'localhost'" % username rc, output = self._execute("%s -e \"%s\"" % (mysqlCommand, userCreate), withOutput=True, shell=True) if rc != 0: Util.printWarning("Couldn't create user '%s'. Already exists?\n%s" % (username, output)) rc, output = self._execute("%s -e \"%s\"" % (mysqlCommand, userGrant), withOutput=True, shell=True) if rc != 0: Util.printError("Error granting permission for user '%s'.\n%s" % (username, output)) # ------------------------------------------- # Bridge # ------------------------------------------- def configureBridgeRemotely(self): def doNotConfigureBridge(): return Util.isFalseConfVal(getattr(self, 'nodeBridgeConfigure', True)) if doNotConfigureBridge(): Util.printDetail('Asked not to configure bridge') return checkBridgeCmd = '"brctl show | grep ^%s.*%s$"' % \ (self.nodeBridgeName, self.nodeNetworkInterface) rc, output = self._nodeShell(checkBridgeCmd, withOutput=True, shell=True) if rc == 0: Util.printDetail('Bridge already configured') return else: Util.printDetail('Bridge is NOT configured. %s' % output) configureBridgeCmd = 'nohup "brctl addbr %(bridge)s; sleep 10; ifconfig %(interf)s 0.0.0.0; sleep 10; brctl addif %(bridge)s %(interf)s; sleep 10; dhclient %(bridge)s"' % \ {'bridge' : self.nodeBridgeName, 'interf' : self.nodeNetworkInterface} rc, output = self._nodeShell(configureBridgeCmd, withOutput=True, shell=True) if rc != 0: Util.printDetail('Failed to configure bridge.\n%s' % output) else: sleepTime = 5 Util.printDetail('Sleeping %i sec for the bridge one the node to come up.' % sleepTime) time.sleep(sleepTime) Util.printDetail('Testing connection to the node.') rc, output = self._nodeShell('true', withOutput=True) if rc == 0: Util.printDetail('OK.') else: Util.printError('Could not connect to the node after attempt to configre bridge.\n%s' % output) Util.printDetail('Testing if bridge was configured.') rc, output = self._nodeShell(checkBridgeCmd, withOutput=True, shell=True) if rc == 0: Util.printDetail('OK.') self._persistRemoteBridgeConfig(self.nodeNetworkInterface, self.nodeBridgeName) return else: Util.printError('Bridge was not configured.\n%s' % output) def _persistRemoteBridgeConfig(self): pass def _writeToFilesRemote(self, listOfFileNameContentTuples): tmpFilename = tempfile.mktemp() for remoteFilename, content in listOfFileNameContentTuples: Util.filePutContent(tmpFilename, content) self._nodeCopy(tmpFilename, remoteFilename) try: os.unlink(tmpFilename) except: pass FILE_IPFORWARD_HOT_ENABLE = '/proc/sys/net/ipv4/ip_forward' FILE_IPFORWARD_PERSIST = '/etc/sysctl.conf' def enableIpForwarding(): return BaseSystem.enableIpForwarding()
#!/usr/bin/env python # Author: Willem Thiart <[email protected]> # Copyright: Willem Thiart 2014 import locale import re from docutils import nodes, writers from docutils.core import publish_cmdline, default_description import codecs import collections import subprocess try: locale.setlocale(locale.LC_ALL, '') except: pass class Dotted(object): def __init__(self, s): self.s = s def __repr__(self): return repr(self.s) def __str__(self): return str(self.s) def _cmp(self, b): from itertools import izip_longest lines = [] for a, b in izip_longest(self.s.splitlines(), b.splitlines()): if b: def dotcompare(a, b): dots = i = j = 0 while True: try: c1 = a[i] except (IndexError, TypeError): c1 = '' try: c2 = b[j] except (IndexError, TypeError): c2 = '' if 3 == dots: i += 1 if c1 == '' and c2 == '': break if c1 == '.': dots += 1 i += 1 elif c1 == c2 and c1 != '.': dots = 0 i += 1 elif 3 == dots: pass elif c1 != c2: i += 1 j += 1 yield c1 continue j += 1 yield c2 lines.append(u"".join(dotcompare(a, b))) else: lines.append(a) self.s = u"\n".join(filter(lambda x: x is not None, lines)) return cmp(self.s, b) def __cmp__(self, other): return self._cmp(other) def __lt__(self, other): return self._cmp(other) < 0 def __le__(self, other): return self._cmp(other) <= 0 def __eq__(self, other): return self._cmp(other) == 0 def __ne__(self, other): return self._cmp(other) != 0 def __gt__(self, other): return 0 < self._cmp(other) def __ge__(self, other): return 0 <= self._cmp(other) def pythonify_title(title): mapping = { '+': 'plus', ' ': '_', '=': 'equals', } for k, v in mapping.items(): title = title.replace(k, v) return ''.join(e for e in title if e.isalnum() or e == '_').lower() def run(cmd): try: output = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True, executable='/bin/bash') except subprocess.CalledProcessError as e: output = e.output output = output.decode('utf-8').strip().replace('\r', '') return output.replace('\t', ' ' * 4) class RstTstWriter(writers.Writer): supported = ('manpage',) """Formats this writer supports.""" output = None """Final translated form of `document`.""" def __init__(self): writers.Writer.__init__(self) self.translator_class = Translator self.current_test = 'default' def translate(self): visitor = self.translator_class(self.document) self.document.walkabout(visitor) self.output = visitor.astext() filename = 'test_{0}.py'.format(self.document.settings._source.lower().replace('.rst', '')) f = codecs.open(filename, 'w', 'utf-8') f.write(u"""# -*- coding: utf-8 -*- from rsttst.core import run, Dotted """) for i, block in enumerate(visitor.blocks): if 'ignore' in block.classes: continue title = i if hasattr(block, 'title'): title = block.title f.write(u'def test_{0}():\n'.format(title)) text_in = block.input.astext() text_in = re.sub(r'\\(\S)', r'\\\\\1', text_in) f.write(u' output = run(u"""{0}""")\n'.format(text_in)) text_out = block.output.astext() text_out = re.sub(r'\\(\S)', r'\\\\\1', text_out) text_out = text_out.replace('"""', '\\"""').strip() if 'dotted' in block.classes: f.write(u' expected = Dotted(u"""{0}""")\n'.format(text_out)) f.write(u' cmp(output, expected)\n') f.write(u' expected = u"{0}".format(expected)\n') f.write(u' assert output == expected\n') else: f.write(u' assert output == u"""{0}"""\n'.format(text_out)) f.write(u'\n') f.write(u'if __name__ == "__main__": pass\n') class Block(object): pass class Translator(nodes.NodeVisitor): """""" words_and_spaces = re.compile(r'\S+| +|\n') possibly_a_roff_command = re.compile(r'\.\w') document_start = """Tests generated from reStructuredText.""" def __init__(self, document): nodes.NodeVisitor.__init__(self, document) self.blocks = [] self.current_block = None self.current_title = None self.titles = collections.defaultdict(lambda: 0) def astext(self): return '' def visit_Text(self, node): pass def depart_Text(self, node): pass def visit_address(self, node): pass def depart_address(self, node): pass def visit_admonition(self, node, name=None): pass def depart_admonition(self, node): pass def visit_attention(self, node): pass def visit_docinfo_item(self, node, name): pass def depart_docinfo_item(self, node): pass def visit_author(self, node): pass def visit_authors(self, node): pass def depart_authors(self, node): pass def visit_block_quote(self, node): pass def depart_block_quote(self, node): pass def visit_bullet_list(self, node): pass def depart_bullet_list(self, node): pass def visit_caption(self, node): pass def depart_caption(self, node): pass def visit_caution(self, node): pass def visit_citation(self, node): pass def depart_citation(self, node): pass def visit_citation_reference(self, node): pass def visit_classifier(self, node): pass def depart_classifier(self, node): pass def visit_colspec(self, node): pass def depart_colspec(self, node): pass def write_colspecs(self): pass def visit_comment(self, node, sub=None): pass def visit_contact(self, node): pass def visit_container(self, node): pass def depart_container(self, node): pass def visit_compound(self, node): pass def depart_compound(self, node): pass def visit_copyright(self, node): pass def visit_danger(self, node): pass def visit_date(self, node): pass def visit_decoration(self, node): pass def depart_decoration(self, node): pass def visit_definition(self, node): pass def depart_definition(self, node): pass def visit_definition_list(self, node): pass def depart_definition_list(self, node): pass def visit_definition_list_item(self, node): pass def depart_definition_list_item(self, node): pass def visit_description(self, node): pass def depart_description(self, node): pass def visit_docinfo(self, node): pass def depart_docinfo(self, node): pass def visit_doctest_block(self, node): pass def depart_doctest_block(self, node): pass def visit_document(self, node): pass def depart_document(self, node): pass def visit_emphasis(self, node): pass def depart_emphasis(self, node): pass def visit_entry(self, node): pass def depart_entry(self, node): pass def visit_enumerated_list(self, node): pass def depart_enumerated_list(self, node): pass def visit_error(self, node): pass def visit_field(self, node): pass def depart_field(self, node): pass def visit_field_body(self, node): pass def depart_field_body(self, node): pass def visit_field_list(self, node): pass def depart_field_list(self, node): pass def visit_field_name(self, node): pass def depart_field_name(self, node): pass def visit_figure(self, node): pass def depart_figure(self, node): pass def visit_footer(self, node): pass def depart_footer(self, node): pass def visit_footnote(self, node): pass def depart_footnote(self, node): pass def footnote_backrefs(self, node): pass def visit_footnote_reference(self, node): pass def depart_footnote_reference(self, node): pass def visit_generated(self, node): pass def depart_generated(self, node): pass def visit_header(self, node): pass def depart_header(self, node): pass def visit_hint(self, node): pass def visit_inline(self, node): pass def depart_inline(self, node): pass def visit_subscript(self, node): pass def depart_subscript(self, node): pass def visit_superscript(self, node): pass def depart_superscript(self, node): pass def visit_attribution(self, node): pass def depart_attribution(self, node): pass def visit_image(self, node): pass def depart_image(self, node): pass def visit_important(self, node): pass def visit_label(self, node): pass def depart_label(self, node): pass def visit_legend(self, node): pass def depart_legend(self, node): pass def visit_line_block(self, node): pass def depart_line_block(self, node): pass def visit_line(self, node): pass def depart_line(self, node): pass def visit_list_item(self, node): pass def depart_list_item(self, node): pass def visit_literal(self, node): pass def depart_literal(self, node): pass def visit_literal_block(self, node): if not self.current_block: self.current_block = Block() self.current_block.input = node self.current_block.classes = set(node.attributes['classes']) self.blocks.append(self.current_block) title = self.current_title self.titles[title] += 1 if 1 < self.titles[title]: title = '{0}__{1}'.format(title, self.titles[title]) self.current_block.title = title if 'ignore' in self.current_block.classes: self.current_block = None else: self.current_block.classes |= set(node.attributes['classes']) self.current_block.output = node self.current_block = None def depart_literal_block(self, node): pass def visit_math(self, node): pass def depart_math(self, node): pass def visit_math_block(self, node): pass def depart_math_block(self, node): pass def visit_meta(self, node): pass def depart_meta(self, node): pass def visit_note(self, node): pass def indent(self, by=0.5): pass def dedent(self): pass def visit_option_list(self, node): pass def depart_option_list(self, node): pass def visit_option_list_item(self, node): pass def depart_option_list_item(self, node): pass def visit_option_group(self, node): pass def depart_option_group(self, node): pass def visit_option(self, node): pass def depart_option(self, node): pass def visit_option_string(self, node): pass def depart_option_string(self, node): pass def visit_option_argument(self, node): pass def depart_option_argument(self, node): pass def visit_organization(self, node): pass def depart_organization(self, node): pass def first_child(self, node): pass def visit_paragraph(self, node): pass def depart_paragraph(self, node): pass def visit_problematic(self, node): pass def depart_problematic(self, node): pass def visit_raw(self, node): pass def visit_reference(self, node): pass def depart_reference(self, node): pass def visit_revision(self, node): pass def visit_row(self, node): pass def depart_row(self, node): pass def visit_section(self, node): pass def depart_section(self, node): pass def visit_status(self, node): pass def visit_strong(self, node): pass def depart_strong(self, node): pass def visit_substitution_definition(self, node): pass def visit_substitution_reference(self, node): pass def visit_subtitle(self, node): pass def depart_subtitle(self, node): pass def visit_system_message(self, node): pass def depart_system_message(self, node): pass def visit_table(self, node): pass def depart_table(self, node): pass def visit_target(self, node): pass def depart_target(self, node): pass def visit_tbody(self, node): pass def depart_tbody(self, node): pass def visit_term(self, node): pass def depart_term(self, node): pass def visit_tgroup(self, node): pass def depart_tgroup(self, node): pass def visit_thead(self, node): pass def depart_thead(self, node): pass def visit_tip(self, node): pass def visit_title(self, node): title = pythonify_title(node.astext()) self.current_title = title def depart_title(self, node): pass def visit_title_reference(self, node): pass def depart_title_reference(self, node): pass def visit_topic(self, node): pass def depart_topic(self, node): pass def visit_sidebar(self, node): pass def depart_sidebar(self, node): pass def visit_rubric(self, node): pass def depart_rubric(self, node): pass def visit_transition(self, node): pass def depart_transition(self, node): pass def visit_version(self, node): pass def visit_warning(self, node): pass def unimplemented_visit(self, node): pass def main(): description = ("Generates test code. " + default_description) publish_cmdline(writer=RstTstWriter(), description=description) if __name__ == '__main__': main() # vim: set fileencoding=utf-8 et ts=4 ai :
import re from Vintageous import PluginLogger from Vintageous.vi.utils import modes from Vintageous.vi import cmd_base from Vintageous.plugins import plugins from Vintageous.vi import variables _logger = PluginLogger(__name__) class mapping_scopes: """ Scopes for mappings. """ DEFAULT = 0 USER = 1 PLUGIN = 2 NAME_SPACE = 3 LEADER = 4 LOCAL_LEADER = 5 class seqs: """ Vim's built-in key sequences plus Sublime Text 3 staple commands. These are the sequences of key presses known to Vintageous. Any other sequence pressed will be treated as 'unmapped'. """ A = 'a' ALT_CTRL_P = '<C-M-p>' AMPERSAND = '&' AW = 'aw' B = 'b' BACKSPACE = '<bs>' G_BIG_C = 'gC' GC = 'gc' GCC = 'gcc' GE = 'ge' G_BIG_E = 'gE' UP = '<up>' DOWN = '<down>' LEFT = '<left>' RIGHT = '<right>' HOME = '<home>' END = '<end>' BACKTICK = '`' BIG_A = 'A' SPACE = '<space>' BIG_B = 'B' CTRL_E = '<C-e>' CTRL_Y = '<C-y>' BIG_C = 'C' BIG_D = 'D' GH = 'gh' G_BIG_H = 'gH' BIG_E = 'E' BIG_F = 'F' BIG_G = 'G' CTRL_0 = '<C-0>' CTRL_1 = '<C-1>' CTRL_2 = '<C-2>' CTRL_3 = '<C-3>' CTRL_4 = '<C-4>' CTRL_5 = '<C-5>' CTRL_6 = '<C-6>' CTRL_7 = '<C-7>' CTRL_8 = '<C-8>' CTRL_9 = '<C-9>' CTRL_C = '<C-c>' CTRL_ENTER = '<C-cr>' CTRL_SHIFT_B = '<C-S-b>' CTRL_SHIFT_ENTER = '<C-S-cr>' CTRL_DOT = '<C-.>' CTRL_SHIFT_DOT = '<C-S-.>' CTRL_LEFT_SQUARE_BRACKET = '<C-[>' CTRL_W = '<C-w>' CTRL_W_Q = '<C-w>q' CTRL_W_V = '<C-w>v' CTRL_W_L = '<C-w>l' CTRL_W_BIG_L = '<C-w>L' CTRL_K = '<C-k>' CTRL_K_CTRL_B = '<C-k><C-b>' CTRL_BIG_F = '<C-F>' CTRL_BIG_P = '<C-P>' CTRL_W_H = '<C-w>h' CTRL_X = '<C-x>' CTRL_X_CTRL_L = '<C-x><C-l>' Q = 'q' AT = '@' CTRL_W_BIG_H = '<C-w>H' BIG_H = 'H' G_BIG_J = 'gJ' CTRL_R= '<C-r>' CTRL_R_EQUAL = '<C-r>=' CTRL_A = '<C-a>' CTRL_I = '<C-i>' CTRL_O = '<C-o>' CTRL_X = '<C-x>' Z = 'z' Z_ENTER = 'z<cr>' ZT = 'zt' ZZ = 'zz' Z_MINUS = 'z-' ZB = 'zb' BIG_I = 'I' BIG_Z_BIG_Z = 'ZZ' BIG_Z_BIG_Q = 'ZQ' GV = 'gv' BIG_J = 'J' BIG_K = 'K' BIG_L = 'L' BIG_M = 'M' BIG_N = 'N' BIG_O = 'O' BIG_P = 'P' BIG_Q = 'Q' BIG_R = 'R' BIG_S = 'S' BIG_T = 'T' BIG_U = 'U' BIG_V = 'V' BIG_W = 'W' BIG_X = 'X' BIG_Y = 'Y' BIG_Z = 'Z' C = 'c' CC = 'cc' COLON = ':' COMMA = ',' CTRL_D = '<C-d>' CTRL_F12 = '<C-f12>' CTRL_L = '<C-l>' CTRL_B = '<C-b>' CTRL_F = '<C-f>' CTRL_G = '<C-g>' CTRL_P = '<C-p>' CTRL_U = '<C-u>' CTRL_V = '<C-v>' D = 'd' DD = 'dd' DOLLAR = '$' DOT = '.' DOUBLE_QUOTE = '"' E = 'e' ENTER = '<cr>' # Or rather <Enter>? SHIFT_ENTER = '<S-cr>' EQUAL = '=' EQUAL_EQUAL = '==' ESC = '<esc>' F = 'f' F1 = '<f1>' F10 = '<f10>' F11 = '<f11>' F12 = '<f12>' F13 = '<f13>' F14 = '<f14>' F15 = '<f15>' F2 = '<f2>' F3 = '<f3>' SHIFT_F2 = '<S-f2>' SHIFT_F3 = '<S-f3>' SHIFT_F4 = '<S-f4>' F4 = '<f4>' F5 = '<f5>' F6 = '<f6>' F7 = '<f7>' F8 = '<f8>' F9 = '<f9>' CTRL_F2 = '<C-f2>' CTRL_SHIFT_F2 = '<C-S-f2>' G = 'g' G_BIG_D = 'gD' G_BIG_U = 'gU' G_BIG_U_BIG_U = 'gUU' G_BIG_U_G_BIG_U = 'gUgU' G_TILDE = 'g~' G_TILDE_G_TILDE = 'g~g~' G_TILDE_TILDE = 'g~~' G_UNDERSCORE = 'g_' GD = 'gd' GG = 'gg' GJ = 'gj' GK = 'gk' GQ = 'gq' GT = 'gt' G_BIG_T = 'gT' GM = 'gm' GU = 'gu' GUGU = 'gugu' GUU = 'guu' GREATER_THAN = '>' GREATER_THAN_GREATER_THAN = '>>' H = 'h' HAT = '^' I = 'i' J = 'j' K = 'k' L = 'l' LEFT_BRACE = '{' LEFT_SQUARE_BRACKET = '[' LEFT_PAREN = '(' LESS_THAN = '<lt>' LESS_THAN_LESS_THAN = '<lt><lt>' MINUS = '-' M = 'm' N = 'n' O = 'o' P = 'p' PLUS = '+' OCTOTHORP = '#' PAGE_DOWN = 'pagedown' PAGE_UP = 'pageup' PERCENT = '%' PIPE = '|' QUESTION_MARK = '?' QUOTE = "'" QUOTE_QUOTE = "''" R = 'r' RIGHT_BRACE = '}' RIGHT_SQUARE_BRACKET = ']' RIGHT_PAREN = ')' S = 's' SEMICOLON = ';' SHIFT_CTRL_F12 = '<C-S-f12>' SHIFT_F11 = '<S-f11>' SLASH = '/' STAR = '*' T = 't' TAB = '<tab>' TILDE = '~' U = 'u' UNDERSCORE = '_' V = 'v' W = 'w' X = 'x' Y = 'y' YY = 'yy' ZERO = '0' def seq_to_command(state, seq, mode=None): """ Returns the command definition mapped to @seq, or a 'missing' command if none is found. @mode Forces the use of this mode instead of the global state's. """ mode = mode or state.mode _logger.info('[seq_to_command] state/seq: {0}/{1}'.format(mode, seq)) command = None if state.mode in plugins.mappings: command = plugins.mappings[mode].get(seq, None) if not command and state.mode in mappings: command = mappings[mode].get(seq, cmd_base.ViMissingCommandDef()) return command elif command: return command return cmd_base.ViMissingCommandDef() # Mappings 'key sequence' ==> 'command definition' # # 'key sequence' is a sequence of key presses. # mappings = { modes.INSERT: {}, modes.NORMAL: {}, modes.VISUAL: {}, modes.OPERATOR_PENDING: {}, modes.VISUAL_LINE: {}, modes.VISUAL_BLOCK: {}, modes.SELECT: {}, '_missing': dict(name='_missing') } # TODO: Add a timeout for ambiguous cmd_base. # Key sequence to command mapping. Mappings are set by the user. # # Returns a partial definition containing the user-pressed keys so that we # can replay the command exactly as it was typed in. user_mappings = { # 'jkl': dict(name='dd', type=cmd_types.USER), } EOF = -2 class key_names: """ Names of special keys. """ BACKSPACE = '<bs>' CR = '<cr>' DOWN = '<down>' END = '<end>' ENTER = '<enter>' ESC = '<esc>' HOME = '<home>' LEFT = '<left>' LESS_THAN = '<lt>' RIGHT = '<right>' SPACE = '<sp>' SPACE_LONG = '<space>' TAB = '<tab>' UP = '<up>' F1 = '<f1>' F2 = '<f2>' F3 = '<f3>' F4 = '<f4>' F5 = '<f5>' F6 = '<f6>' F7 = '<f7>' F8 = '<f8>' F9 = '<f9>' F10 = '<f10>' F11 = '<f11>' F12 = '<f12>' F13 = '<f13>' F14 = '<f14>' F15 = '<f15>' Leader = '<leader>' as_list = [ BACKSPACE, CR, DOWN, END, ENTER, ESC, HOME, LEFT, LESS_THAN, RIGHT, SPACE, SPACE_LONG, TAB, UP, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, Leader, ] max_len = len('<space>') # TODO: detect counts, registers, marks... class KeySequenceTokenizer(object): """ Takes in a sequence of key names and tokenizes it. """ def __init__(self, source): """ @source A sequence of key names in Vim notation. """ self.idx = -1 self.source = source self.in_named_key = False def consume(self): self.idx += 1 if self.idx >= len(self.source): self.idx -= -1 return EOF return self.source[self.idx] def peek_one(self): if (self.idx + 1) >= len(self.source): return EOF return self.source[self.idx + 1] def is_named_key(self, key): return key.lower() in key_names.as_list def sort_modifiers(self, modifiers): """ Ensures consistency in the order of modifier letters according to: c > m > s """ if len(modifiers) == 6: modifiers = 'c-m-s-' elif len(modifiers) > 2: if modifiers.startswith('s-') and modifiers.endswith('c-'): modifiers = 'c-s-' elif modifiers.startswith('s-') and modifiers.endswith('m-'): modifiers = 'm-s-' elif modifiers.startswith('m-') and modifiers.endswith('c-'): modifiers = 'c-m-' return modifiers def long_key_name(self): self.in_named_key = True key_name = '' modifiers = '' while True: c = self.consume() if c == EOF: raise ValueError("expected '>' at index {0}".format(self.idx)) elif (c.lower() in ('c', 's', 'm')) and (self.peek_one() == '-'): if c.lower() in modifiers.lower(): raise ValueError('invalid modifier sequence: {0}'.format(self.source)) modifiers += c + self.consume() elif c == '>' and self.peek_one() == '>': modifiers = self.sort_modifiers(modifiers.lower()) if len(key_name) == 0: return '<' + modifiers.upper() + self.consume() + '>' else: raise ValueError('wrong key {0}'.format(key_name)) elif c == '>': modifiers = self.sort_modifiers(modifiers.lower()) if len(key_name) == 1: if not modifiers: raise ValueError('wrong sequence {0}'.format(self.source)) return '<' + modifiers.upper() + key_name + '>' elif self.is_named_key('<' + key_name + '>'): self.in_named_key = False return '<' + modifiers.upper() + key_name.lower() + '>' else: raise ValueError("'{0}' is not a known key".format(key_name)) else: key_name += c def tokenize_one(self): c = self.consume() if c == '<': return self._expand_vars(self.long_key_name()) else: return c def iter_tokenize(self): while True: token = self.tokenize_one() if token == EOF: break yield token def _expand_vars(self, c): return variables.get(c) if variables.is_key_name(c) else c def to_bare_command_name(seq): """ Strips register and count data from @seq. """ # Special case. if seq == '0': return seq new_seq = re.sub(r'^(?:".)?(?:[1-9]+)?', '', seq) # Account for d2d and similar sequences. new_seq = list(KeySequenceTokenizer(new_seq).iter_tokenize()) return ''.join(k for k in new_seq if not k.isdigit()) def assign(seq, modes, *args, **kwargs): """ Registers a 'key sequence' to 'command' mapping with Vintageous. The registered key sequence must be known to Vintageous. The registered command must be a ViMotionDef or ViOperatorDef. The decorated class is instantiated with `*args` and `**kwargs`. @keys A list of (`mode:tuple`, `sequence:string`) pairs to map the decorated class to. """ def inner(cls): for mode in modes: mappings[mode][seq] = cls(*args, **kwargs) return cls return inner
from django.conf import settings from eulxml import xmlmap from eulxml.xmlmap import teimap from lxml import etree import os ''' :class:`eulxml.xmlmap.XmlObject` subclasses for dealing with TEI, particularly for the TEI facsimile used for positional OCR data for readux pages and for generating annotated TEI for export. ''' class TeiBase(teimap.Tei): 'Base class for all TEI objects, with all namespaces' ROOT_NS = teimap.TEI_NAMESPACE ROOT_NAMESPACES = { 'tei' : ROOT_NS, 'xml': 'http://www.w3.org/XML/1998/namespace', 'xlink': 'http://www.w3.org/TR/xlink/', } class Graphic(TeiBase): 'TEI Graphic' ROOT_NAME = 'graphic' #: url url = xmlmap.StringField('@url') #: rend rend = xmlmap.StringField('@rend') class Zone(TeiBase): 'XmlObject for a zone in a TEI facsimile document' ROOT_NAME = 'zone' #: xml id id = xmlmap.StringField('@xml:id') #: n attribute n = xmlmap.StringField('@n') #: type attribute type = xmlmap.StringField('@type') #: upper left x coord ulx = xmlmap.FloatField('@ulx') #: upper left y coord uly = xmlmap.FloatField('@uly') #: lower right x coord lrx = xmlmap.FloatField('@lrx') #: lower right y coord lry = xmlmap.FloatField('@lry') #: xlink href href = xmlmap.StringField('@xlink:href') #: text content text = xmlmap.StringField('tei:line|tei:w') #: list of word zones contained in this zone (e.g., within a textLine zone) word_zones = xmlmap.NodeListField('.//tei:zone[@type="string"]', 'self') #: nearest preceding sibling word zone (e.g., previous word in this line), if any) preceding = xmlmap.NodeField('preceding-sibling::tei:zone[1]', 'self') #: nearest ancestor zone parent = xmlmap.NodeField('ancestor::tei:zone[1]', 'self') #: containing page page = xmlmap.NodeField('ancestor::tei:surface[@type="page"]', 'self') # not exactly a zone, but same attributes we care about (type, id, ulx/y, lrx/y) #: list of graphic elements (i.e. page images) graphics = xmlmap.NodeListField('tei:graphic', Graphic) # convenience mappings to specific sizes of page image #: full size image (tei:graphic with type "full") full_image = xmlmap.NodeField('tei:graphic[@type="full"]', Graphic) #: page size image (tei:graphic with type "page") page_image = xmlmap.NodeField('tei:graphic[@type="page"]', Graphic) #: thumbnail image (tei:graphic with type "thumbnail") thumbnail = xmlmap.NodeField('tei:graphic[@type="thumbnail"]', Graphic) #: small thumbnail image (tei:graphic with type "small-thumbnail") small_thumbnail = xmlmap.NodeField('tei:graphic[@type="small-thumbnail"]', Graphic) #: image info as provided by IIIF (tei:graphic with type "info") image_info = xmlmap.NodeField('tei:graphic[@type="info"]', Graphic) @property def width(self): 'zone width' return self.lrx - self.ulx @property def height(self): 'zone height' return self.lry - self.uly @property def avg_height(self): '''Calculated average height of word zones in the current zone (i.e. in a text line)''' if self.word_zones: word_heights = [w.height for w in self.word_zones] return sum(word_heights) / float(len(word_heights)) class Ref(TeiBase): 'Tei reference' ROOT_NAME = 'ref' #: target target = xmlmap.StringField('@target') #: type type = xmlmap.StringField('@type') #: text text = xmlmap.StringField('text()') class BiblStruct(TeiBase): 'Structured Bibliographic citation' # minimal mappings for now ROOT_NAME = 'BiblStruct' #: xml id id = xmlmap.StringField('@xml:id') #: corresp corresp = xmlmap.StringField('@corresp') #: type type = xmlmap.StringField('@type') class AnnotationWorksCited(TeiBase): milestone = xmlmap.NodeField('preceding-sibling::tei:milestone', xmlmap.XmlObject) ref_list = xmlmap.NodeField( 'parent::tei:list[contains(tei:item/tei:anchor/@xml:id, "zotero")]', xmlmap.XmlObject) class Note(TeiBase): 'Tei Note, used here to contain an annotation' ROOT_NAME = 'note' #: xml id id = xmlmap.StringField('@xml:id') #: responsibility resp = xmlmap.StringField('@resp') #: target target = xmlmap.StringField('@target') #: type type = xmlmap.StringField('@type') #: ana attribute, e.g. for tag identifiers ana = xmlmap.StringField('@ana') #: xlink href href = xmlmap.StringField('@xlink:href') #: list of paragraphs as strings paragraphs = xmlmap.StringListField('tei:p') #: code for the markdown used in the original annotation markdown = xmlmap.StringField('tei:code[@lang="markdown"]') #: links to related pages related_pages = xmlmap.NodeListField('tei:ref[@type="related page"]', Ref) #: list of bibliographic citations/works cited citations = xmlmap.NodeListField('tei:listBibl/tei:biblStruct', BiblStruct) # in-text citation generated from markdown; these fields # are mapped so they can be removed from the annotated tei document works_cited = xmlmap.NodeField( 'tei:head[text() = "Works Cited"]', xmlmap.XmlObject) zotero_items = xmlmap.NodeField( 'tei:list[contains(tei:item/tei:anchor/@xml:id, "zotero")]', xmlmap.XmlObject) works_cited_milestone = xmlmap.NodeField( 'tei:milestone[following-sibling::tei:head/text() = "Works Cited"]', xmlmap.XmlObject) # mapped to remove empty list bibl element list_bibl = xmlmap.NodeField('tei:listBibl', xmlmap.XmlObject) class Bibl(TeiBase): 'TEI Bibl, with mappings for digital edition and pdf urls' #: type type = xmlmap.StringField('@type') #: title title = xmlmap.StringField('tei:title') #: author authors = xmlmap.StringListField('tei:author') #: date date = xmlmap.StringField('tei:date') #: url to digital edition url = xmlmap.StringField('tei:ref[@type="digital-edition"]/@target') #: url to pdf of digital edition pdf_url = xmlmap.StringField('tei:ref[@type="pdf"]/@target') class PublicationStatement(TeiBase): 'Publication statement, with mapping for readux distributor' #: descriptive statement (paragraph) desc = xmlmap.StringField('tei:p') #: date in human-readable display format date = xmlmap.DateField('tei:date', '%B %d, %Y') #: normalized date date_normal = xmlmap.DateField('tei:date/@when', '%Y-%m-%d') #: readux distributor reference (includes ref with target of readux.library.emory.edu) distributor_readux = xmlmap.StringField('tei:distributor[@xml:id="readux"]/tei:ref[@target="http://readux.library.emory.edu"]') class Facsimile(TeiBase): '''Extension of :class:`eulxml.xmlmap.teimap.TEI` to provide access to TEI facsimile elements''' #: local xsd schema XSD_SCHEMA = 'file://%s' % os.path.join(os.path.abspath(os.path.dirname(__file__)), 'schema', 'TEIPageView.xsd') # NOTE: using absolute path for schema to avoid path issues when # building documentation on readthedocs.org ROOT_NAME = 'TEI' xmlschema = etree.XMLSchema(etree.parse(XSD_SCHEMA)) # NOTE: not using xmlmap.loadSchema because it doesn't correctly load # referenced files in the same directory #: surface with type page, as :class:`Zone` page = xmlmap.NodeField('tei:facsimile/tei:surface[@type="page"]', Zone) #: list of pages (surface with type page) page_list = xmlmap.NodeListField('tei:facsimile/tei:surface[@type="page"]', Zone) # NOTE: tei facsimile could include illustrations, but ignoring those for now #: list of zones with type textLine or line as :class:`Zone` lines = xmlmap.NodeListField('tei:facsimile//tei:zone[@type="textLine" or @type="line"]', Zone) #: list of word zones (type string) as :class:`Zone` word_zones = xmlmap.NodeListField('tei:facsimile//tei:zone[@type="string"]', Zone) #: publication statment distributor distributor = xmlmap.StringField('tei:teiHeader/tei:fileDesc/tei:publicationStmt/tei:distributor') #: publication statmnt as :class:`PublicationStatement` pubstmt = xmlmap.NodeField('tei:teiHeader/tei:fileDesc/tei:publicationStmt', PublicationStatement) #: encoding description encoding_desc = xmlmap.NodeField('tei:teiHeader/tei:encodingDesc', xmlmap.XmlObject) #: source description for the original volume original_source = xmlmap.NodeField('tei:teiHeader/tei:fileDesc/tei:sourceDesc/tei:bibl[@type="original"]', Bibl) #: source description for the readux digital edition digital_source = xmlmap.NodeField('tei:teiHeader/tei:fileDesc/tei:sourceDesc/tei:bibl[@type="digital"]', Bibl) class Name(TeiBase): 'Tei NAME, with id attribute and value' ROOT_NAME = 'name' #: xml id id = xmlmap.StringField('@xml:id') #: full name value = xmlmap.StringField('.') class Interp(TeiBase, teimap.TeiInterp): # extend eulxml.xmlmap.teimap version because it does not include # the xml namespace for setting xml:id ROOT_NAME = 'interp' value = xmlmap.StringField('.') class InterpGroup(teimap.TeiInterpGroup): # extend eulxml.xmlmap.teimap version to map our local interp interp = xmlmap.NodeListField("tei:interp", Interp) class AnnotatedFacsimile(Facsimile): '''Annotated Tei facsimile, with mappings needed to generate TEI with annotations. ''' #: main tei title main_title = xmlmap.StringField('tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title[@type="full"]/tei:title[@type="main"]') #: tei subtitle (e.g., annotated edition) subtitle = xmlmap.StringField('tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title[@type="full"]/tei:title[@type="sub"]') #: responsibility statement text responsibility = xmlmap.StringField('tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:respStmt/tei:resp') #: responsibility statement names responsible_names = xmlmap.NodeListField('tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:respStmt/tei:name', Name) # additional mappings for annotation data #: list of annotations at body/div[@type="annotations"]/note[@type="annotation"], as :class:`Note` annotations = xmlmap.NodeListField('tei:text/tei:body/tei:div[@type="annotations"]/tei:note[@type="annotation"]', Note) #: list of bibliographic citations/works cited citations = xmlmap.NodeListField('tei:text/tei:body/tei:div[@type="works-cited"]/tei:listBibl/tei:biblStruct', BiblStruct) #: list of bibliographic citation ids citation_ids = xmlmap.StringListField('tei:text/tei:body/tei:div[@type="works-cited"]/tei:listBibl/tei:biblStruct/@xml:id') #: annotation tags, as :class:`~eulxml.xmlmap.teimap.TeiInterpGroup` tags = xmlmap.NodeField('tei:text/tei:back/tei:interpGrp[@type="tags"]', InterpGroup) def page_id_by_xlink(self, link): results = self.node.xpath('//tei:surface[@type="page"][@xlink:href="%s"]/@xml:id' \ % link, namespaces=self.ROOT_NAMESPACES) if results: return results[0] class Anchor(TeiBase): 'TEI Anchor, for marking start and end of text annotation highlights' ROOT_NAME = 'anchor' #: xml id id = xmlmap.StringField('@xml:id') #: type type = xmlmap.StringField('@type') #: next attribute next = xmlmap.StringField('@next')
#!/usr/bin/env jython # SenSafety.MidTerm.CEPengine provides the Esper based complex event processing # engine for the mid-term SenSafety demo. # Main.py registers the query lists defined in this module. # Query lists are returned by functions that accept configurable parameters. # Marc de Lignie, Politie IV-organisatie # October 7, 2014 import java.lang import time, urllib, urllib2 ANOMALOUS_SOUND = 'Anomalous_Sound' #ToDo: use in query SOUNDGROUP = 'SoundGroup' #ToDo: use in query COUNTSOUNDS = 'CountSounds' #ToDo: use in query FACECOUNT = 'Facecount' AVGFACECOUNT = 'AvgFacecount' BUSY = 'Busy' TILT = 'Tilt' CONTACT = 'Contact' # WebMonitor URLs URL_SOUND = 'http://localhost:8555/SenSafety_MidTerm/eventdb/sound' URL_FACE = 'http://localhost:8555/SenSafety_MidTerm/eventdb/face' URL_TILT = 'http://localhost:8555/SenSafety_MidTerm/eventdb/tilt' URL_ACTIVITY = 'http://localhost:8555/SenSafety_MidTerm/eventdb/activity' class QueryFacecount(object): def __init__(self, twindow): self.twindow = twindow def getResultEvent(self): return (AVGFACECOUNT, { 'timestamp': java.lang.String, # ISO 8601 'mac': java.lang.String, 'avgfacecount': java.lang.Double }) def getQueries(self): return [' '.join(['insert into AvgFacecount', # For further analysis 'select cam as mac, avg(facecount) as avgfacecount', 'from %s.win:time_batch(%i sec)'%(FACECOUNT,self.twindow), 'group by cam'] )] #, 'select * from %s' % FACECOUNT] # For the terminal def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'Facecount event passed through CEPengine:\n',str(item)[0:160] # Post to Web monitor (correct timestamp bug in facecount agent) event = { 'mac': item['mac'], 'timestamp': time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime(time.time())), 'facecount': round(item['avgfacecount'],2) } urllib2.urlopen(URL_FACE, urllib.urlencode(event)) class QueryAnomalousSound(object): def getResultEvent(self): return (SOUNDGROUP, { 'timestamp': java.lang.String, 'mac': java.lang.String, 'soundlevel': java.lang.String }) def getQueries(self): return [ 'insert into SoundGroup\ select s1.timestamp as timestamp, s1.mac as mac,\ s1.soundlevel as soundlevel\ from pattern[every s1=Anomalous_Sound() ->\ timer:interval(2 sec) and not s2=Anomalous_Sound(s1.mac=s2.mac)]' ] def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'Anomalous sound event passed through CEPengine:\n', \ str(item)[:160] # Post to Web monitor urllib2.urlopen(URL_SOUND, urllib.urlencode(item)) class QueryCountSounds(object): def __init__(self, twindow): self.twindow = twindow def getResultEvent(self): return (COUNTSOUNDS, { 'mac': java.lang.String, 'nsg': java.lang.Long } ) def getQueries(self): return [' '.join(['insert into CountSounds', 'select mac, count(soundlevel) as nsg', 'from SoundGroup.win:time_batch(%i sec)'% self.twindow, 'group by mac']) ] def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'CountSounds event passed through CEPengine:\n', \ str(item)[:160] # Not needed by Web monitor class QueryBusy(object): # Query is specifiek voor twee sound sensors en 1 facecount sensor. # AvgFacecount and CountSounds are almost synchronous # # It should be possible to simplify the pattern by replacing "->" # with "and" + using a different time window control, # but I am in a hurry now def __init__(self, ilpclient, level): self._level = level self._ilpclient = ilpclient def getResultEvent(self): return (BUSY, { 'timestamp': java.lang.String, # ISO 8601 'avgfacecount': java.lang.Double, 'nsg1': java.lang.Long, 'nsg2': java.lang.Long, 'busylevel': java.lang.Double }) def getQueries(self): return [' '.join(['insert into Busy', 'select a.avgfacecount as avgfacecount,', 'cs1.nsg as nsg1, cs2.nsg as nsg2,', '(2*a.avgfacecount+1)*(1+cs1.nsg)*(1+cs2.nsg) as busylevel', 'from pattern[(every a=AvgFacecount ->', 'cs1=CountSounds where timer:within(20 sec)->', 'cs2=CountSounds(cs1.mac!=cs2.mac) where timer:within(4 sec))', 'or (every cs1=CountSounds ->', 'a=AvgFacecount where timer:within(20 sec)->', 'cs2=CountSounds(cs1.mac!=cs2.mac) where timer:within(4 sec))', 'or (every cs1=CountSounds ->', 'cs2=CountSounds(cs1.mac!=cs2.mac) where timer:within(4 sec) ->', 'a=AvgFacecount where timer:within(20 sec))]' # Level comparison moved to listener #,'where (2*a.avgfacecount+1)*(1+cs1.nsg)*(1+cs2.nsg) > %i'%self.level ]) ] def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'Busy event passed through CEPengine:\n', \ str(item)[:160] if item['busylevel'] > self._level: self._ilpclient.busy(True) eventtype = 'busy' else: self._ilpclient.busy(False) eventtype = 'quiet' # Post to Web monitor eventdata = { 'eventtype': eventtype, 'timestamp': time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime(time.time())), 'busylevel': round(item['busylevel'], 1), 'facecount': round(item['avgfacecount'], 3), 'soundlevel': round((1+item['nsg1'])*(1+item['nsg2']), 3) } urllib2.urlopen(URL_ACTIVITY, urllib.urlencode(eventdata)) class QueryTilt(object): def __init__(self, ilpclient): self._ilpclient = ilpclient def getQueries(self): return ['select * from %s' % TILT] def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'Tilt event passed through CEPengine:\n', str(item)[:320] # Post to Web monitor eventdata = { 'sensor_id': item['sensor_id'], 'timestamp': time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime(time.time())), # 'timestamp': item['timestamp'], 'event': item['event'], 'state': item['state']} urllib2.urlopen(URL_TILT, urllib.urlencode(eventdata)) if item['event'] == 'MOTIONSTART': self._ilpclient.tilt() """ Not for MidTerm event class QueryContact(object): # For now: just print incoming events after passing through the cep engine def getQueries(self): return ['select * from %s' % CONTACT] def listener(self, data_new, data_old): if not isinstance(data_new, list): data_new = [data_new] for item in data_new: print 'Contact event passed through CEPengine:\n', str(item)[:320] """
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """LSTM Block Cell ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.contrib.rnn.python.kernel_tests import benchmarking from tensorflow.contrib.rnn.python.ops import lstm_ops from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_bitwise_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test block_lstm = lstm_ops._block_lstm # pylint: disable=protected-access class _MaskedRandomUniformInitializer(init_ops.RandomUniform): """Initializer for uniform dist tensors with trailing bits zeroed-out. Allow returning tensors with last few mantissa bits set to 0. This potentially helps avoid getting into precision issues when testing low precision (float16) computation. """ def __init__(self, minval=0, maxval=None, seed=None, dtype=dtypes.float16, num_valid_mantissa_bits=4): """Constructor. Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed: A Python integer. Used to create random seeds. See `tf.compat.v1.set_random_seed` for behavior. dtype: The data type. Only supports tf.float16 for now. num_valid_mantissa_bits: number of non-zero mantissa bits, default to 4. Raises: ValueError: An error if `dtype` is not tf.float16. """ if dtype not in (dtypes.float16,): raise ValueError("dtype: %s not supported" % dtype.name) super(_MaskedRandomUniformInitializer, self).__init__( minval=minval, maxval=maxval, seed=seed, dtype=dtype) self._num_mantissa_bits = 10 self._num_valid_mantissa_bits = num_valid_mantissa_bits def __call__(self, shape, dtype=dtypes.float16, partition_info=None): if dtype and dtype != dtypes.float16: raise ValueError("dtype: %s not supported" % dtype.name) res = super(_MaskedRandomUniformInitializer, self).__call__( shape, dtype, partition_info) # get uint16 view of the underlying buffer. res = gen_array_ops.bitcast(res, dtypes.uint16) # mask the last `shift` mantissa bits. shift = self._num_mantissa_bits - self._num_valid_mantissa_bits mask = (0xffff >> shift) << shift res = gen_bitwise_ops.bitwise_and(res, mask) # restore float16 view. return gen_array_ops.bitcast(res, dtype) def _get_initializer(init_bound, dtype, seed): if dtype == dtypes.float16: return _MaskedRandomUniformInitializer( -init_bound, init_bound, dtype=dtype, seed=seed) else: return init_ops.random_uniform_initializer( -init_bound, init_bound, dtype=dtype, seed=seed) def blocks_match(sess, use_peephole, dtype=dtypes.float32, cell_clip=None): batch_size = 2 input_size = 3 cell_size = 4 sequence_length = 4 inputs = [] for _ in range(sequence_length): inp = ops.convert_to_tensor( np.random.randn(batch_size, input_size), dtype=dtype) inputs.append(inp) stacked_inputs = array_ops.stack(inputs) init_bound = 1e-1 if dtype == dtypes.float16 else 1e-2 initializer = _get_initializer(init_bound, dtype=dtype, seed=19890212) with variable_scope.variable_scope("test", initializer=initializer): # magic naming so that the cells pick up these variables and reuse them if use_peephole: wci = variable_scope.get_variable( "rnn/lstm_cell/w_i_diag", shape=[cell_size], dtype=dtype) wcf = variable_scope.get_variable( "rnn/lstm_cell/w_f_diag", shape=[cell_size], dtype=dtype) wco = variable_scope.get_variable( "rnn/lstm_cell/w_o_diag", shape=[cell_size], dtype=dtype) w = variable_scope.get_variable( "rnn/lstm_cell/kernel", shape=[input_size + cell_size, cell_size * 4], dtype=dtype) b = variable_scope.get_variable( "rnn/lstm_cell/bias", shape=[cell_size * 4], dtype=dtype, initializer=init_ops.zeros_initializer()) basic_cell = rnn_cell.LSTMCell( cell_size, use_peepholes=use_peephole, cell_clip=cell_clip, dtype=dtype, state_is_tuple=True, reuse=True) basic_outputs_op, basic_state_op = rnn.static_rnn( basic_cell, inputs, dtype=dtype) if use_peephole: _, _, _, _, _, _, block_outputs_op = block_lstm( ops.convert_to_tensor(sequence_length, dtype=dtypes.int64), inputs, w, b, wci=wci, wcf=wcf, wco=wco, cell_clip=cell_clip, use_peephole=True) else: _, _, _, _, _, _, block_outputs_op = block_lstm( ops.convert_to_tensor(sequence_length, dtype=dtypes.int64), inputs, w, b, cell_clip=cell_clip) fused_cell = lstm_ops.LSTMBlockFusedCell( cell_size, cell_clip=cell_clip, use_peephole=use_peephole, reuse=True, name="rnn/lstm_cell") fused_outputs_op, fused_state_op = fused_cell(stacked_inputs, dtype=dtype) sess.run([variables.global_variables_initializer()]) basic_outputs, basic_state = sess.run([basic_outputs_op, basic_state_op[0]]) basic_grads = sess.run(gradients_impl.gradients(basic_outputs_op, inputs)) xs = [w, b] if use_peephole: xs += [wci, wcf, wco] basic_wgrads = sess.run(gradients_impl.gradients(basic_outputs_op, xs)) block_outputs = sess.run(block_outputs_op) block_grads = sess.run(gradients_impl.gradients(block_outputs_op, inputs)) block_wgrads = sess.run(gradients_impl.gradients(block_outputs_op, xs)) xs = [w, b] if use_peephole: xs += [wci, wcf, wco] fused_outputs, fused_state = sess.run([fused_outputs_op, fused_state_op[0]]) fused_grads = sess.run(gradients_impl.gradients(fused_outputs_op, inputs)) fused_wgrads = sess.run(gradients_impl.gradients(fused_outputs_op, xs)) return (basic_state, fused_state, basic_outputs, block_outputs, fused_outputs, basic_grads, block_grads, fused_grads, basic_wgrads, block_wgrads, fused_wgrads) class LSTMBlockCellTest(test.TestCase, parameterized.TestCase): TEST_CASES = ({ "testcase_name": "Fp32", "dtype": dtypes.float32, "rtol": 1e-6, "atol": 1e-6 }, { "testcase_name": "Fp16", "dtype": dtypes.float16, "rtol": 8e-3, "atol": 8e-4 }) def testNoneDimsWithDynamicRNN(self): with self.session(use_gpu=True, graph=ops.Graph()) as sess: batch_size = 4 num_steps = 5 input_dim = 6 cell_size = 7 cell = lstm_ops.LSTMBlockCell(cell_size) x = array_ops.placeholder(dtypes.float32, shape=(None, None, input_dim)) output, _ = rnn.dynamic_rnn( cell, x, time_major=True, dtype=dtypes.float32) sess.run(variables.global_variables_initializer()) feed = {} feed[x] = np.random.randn(num_steps, batch_size, input_dim) sess.run(output, feed) def testLSTMBlockCell(self): with self.session(use_gpu=True, graph=ops.Graph()) as sess: with variable_scope.variable_scope( "root", initializer=init_ops.constant_initializer(0.5)): x = array_ops.zeros([1, 2]) m0 = array_ops.zeros([1, 2]) m1 = array_ops.zeros([1, 2]) m2 = array_ops.zeros([1, 2]) m3 = array_ops.zeros([1, 2]) g, ((out_m0, out_m1), (out_m2, out_m3)) = rnn_cell.MultiRNNCell( [lstm_ops.LSTMBlockCell(2) for _ in range(2)], state_is_tuple=True)(x, ((m0, m1), (m2, m3))) sess.run([variables.global_variables_initializer()]) res = sess.run([g, out_m0, out_m1, out_m2, out_m3], { x.name: np.array([[1., 1.]]), m0.name: 0.1 * np.ones([1, 2]), m1.name: 0.1 * np.ones([1, 2]), m2.name: 0.1 * np.ones([1, 2]), m3.name: 0.1 * np.ones([1, 2]) }) self.assertEqual(len(res), 5) self.assertAllClose(res[0], [[0.24024698, 0.24024698]]) # These numbers are from testBasicLSTMCell and only test c/h. self.assertAllClose(res[1], [[0.68967271, 0.68967271]]) self.assertAllClose(res[2], [[0.44848421, 0.44848421]]) self.assertAllClose(res[3], [[0.39897051, 0.39897051]]) self.assertAllClose(res[4], [[0.24024698, 0.24024698]]) def testCompatibleNames(self): with self.session(use_gpu=True, graph=ops.Graph()): cell = rnn_cell.LSTMCell(10) pcell = rnn_cell.LSTMCell(10, use_peepholes=True) inputs = [array_ops.zeros([4, 5])] * 6 rnn.static_rnn(cell, inputs, dtype=dtypes.float32, scope="basic") rnn.static_rnn(pcell, inputs, dtype=dtypes.float32, scope="peephole") basic_names = { v.name: v.get_shape() for v in variables.trainable_variables() } with self.session(use_gpu=True, graph=ops.Graph()): cell = lstm_ops.LSTMBlockCell(10) pcell = lstm_ops.LSTMBlockCell(10, use_peephole=True) inputs = [array_ops.zeros([4, 5])] * 6 rnn.static_rnn(cell, inputs, dtype=dtypes.float32, scope="basic") rnn.static_rnn(pcell, inputs, dtype=dtypes.float32, scope="peephole") block_names = { v.name: v.get_shape() for v in variables.trainable_variables() } with self.session(use_gpu=True, graph=ops.Graph()): cell = lstm_ops.LSTMBlockFusedCell(10) pcell = lstm_ops.LSTMBlockFusedCell(10, use_peephole=True) inputs = array_ops.stack([array_ops.zeros([4, 5])] * 6) cell(inputs, dtype=dtypes.float32, scope="basic/lstm_cell") pcell(inputs, dtype=dtypes.float32, scope="peephole/lstm_cell") fused_names = { v.name: v.get_shape() for v in variables.trainable_variables() } self.assertEqual(basic_names, block_names) self.assertEqual(basic_names, fused_names) def testLSTMBasicToBlockCell(self): with self.session(use_gpu=True) as sess: x = array_ops.zeros([1, 2]) x_values = np.random.randn(1, 2) m0_val = 0.1 * np.ones([1, 2]) m1_val = -0.1 * np.ones([1, 2]) m2_val = -0.2 * np.ones([1, 2]) m3_val = 0.2 * np.ones([1, 2]) initializer = init_ops.random_uniform_initializer( -0.01, 0.01, seed=19890212) with variable_scope.variable_scope("basic", initializer=initializer): m0 = array_ops.zeros([1, 2]) m1 = array_ops.zeros([1, 2]) m2 = array_ops.zeros([1, 2]) m3 = array_ops.zeros([1, 2]) g, ((out_m0, out_m1), (out_m2, out_m3)) = rnn_cell.MultiRNNCell( [rnn_cell.BasicLSTMCell(2, state_is_tuple=True) for _ in range(2)], state_is_tuple=True)(x, ((m0, m1), (m2, m3))) sess.run([variables.global_variables_initializer()]) basic_res = sess.run([g, out_m0, out_m1, out_m2, out_m3], { x.name: x_values, m0.name: m0_val, m1.name: m1_val, m2.name: m2_val, m3.name: m3_val }) with variable_scope.variable_scope("block", initializer=initializer): m0 = array_ops.zeros([1, 2]) m1 = array_ops.zeros([1, 2]) m2 = array_ops.zeros([1, 2]) m3 = array_ops.zeros([1, 2]) g, ((out_m0, out_m1), (out_m2, out_m3)) = rnn_cell.MultiRNNCell( [lstm_ops.LSTMBlockCell(2) for _ in range(2)], state_is_tuple=True)(x, ((m0, m1), (m2, m3))) sess.run([variables.global_variables_initializer()]) block_res = sess.run([g, out_m0, out_m1, out_m2, out_m3], { x.name: x_values, m0.name: m0_val, m1.name: m1_val, m2.name: m2_val, m3.name: m3_val }) self.assertEqual(len(basic_res), len(block_res)) for basic, block in zip(basic_res, block_res): self.assertAllClose(basic, block) def testLSTMBasicToBlockCellPeeping(self): with self.session(use_gpu=True) as sess: x = array_ops.zeros([1, 2]) x_values = np.random.randn(1, 2) m0_val = 0.1 * np.ones([1, 2]) m1_val = -0.1 * np.ones([1, 2]) m2_val = -0.2 * np.ones([1, 2]) m3_val = 0.2 * np.ones([1, 2]) initializer = init_ops.random_uniform_initializer( -0.01, 0.01, seed=19890212) with variable_scope.variable_scope("basic", initializer=initializer): m0 = array_ops.zeros([1, 2]) m1 = array_ops.zeros([1, 2]) m2 = array_ops.zeros([1, 2]) m3 = array_ops.zeros([1, 2]) g, ((out_m0, out_m1), (out_m2, out_m3)) = rnn_cell.MultiRNNCell( [ rnn_cell.LSTMCell(2, use_peepholes=True, state_is_tuple=True) for _ in range(2) ], state_is_tuple=True)(x, ((m0, m1), (m2, m3))) sess.run([variables.global_variables_initializer()]) basic_res = sess.run([g, out_m0, out_m1, out_m2, out_m3], { x.name: x_values, m0.name: m0_val, m1.name: m1_val, m2.name: m2_val, m3.name: m3_val }) with variable_scope.variable_scope("block", initializer=initializer): m0 = array_ops.zeros([1, 2]) m1 = array_ops.zeros([1, 2]) m2 = array_ops.zeros([1, 2]) m3 = array_ops.zeros([1, 2]) g, ((out_m0, out_m1), (out_m2, out_m3)) = rnn_cell.MultiRNNCell( [lstm_ops.LSTMBlockCell(2, use_peephole=True) for _ in range(2)], state_is_tuple=True)(x, ((m0, m1), (m2, m3))) sess.run([variables.global_variables_initializer()]) block_res = sess.run([g, out_m0, out_m1, out_m2, out_m3], { x.name: x_values, m0.name: m0_val, m1.name: m1_val, m2.name: m2_val, m3.name: m3_val }) self.assertEqual(len(basic_res), len(block_res)) for basic, block in zip(basic_res, block_res): self.assertAllClose(basic, block) def LSTMBasicToBlockTestHelper(self, dtype=dtypes.float32, use_peephole=False, cell_clip=None, rtol=1e-6, atol=1e-6): with self.session(use_gpu=True, graph=ops.Graph()) as sess: (basic_state, fused_state, basic_outputs, block_outputs, fused_outputs, basic_grads, block_grads, fused_grads, basic_wgrads, block_wgrads, fused_wgrads) = blocks_match( sess, use_peephole=use_peephole, dtype=dtype, cell_clip=cell_clip) self.assertAllClose(basic_outputs, block_outputs, rtol=rtol, atol=atol) self.assertAllClose(basic_grads, block_grads, rtol=rtol, atol=atol) for basic, block in zip(basic_wgrads, block_wgrads): self.assertAllClose(basic, block, rtol=rtol, atol=atol) self.assertAllClose(basic_outputs, fused_outputs, rtol=rtol, atol=atol) self.assertAllClose(basic_state, fused_state, rtol=rtol, atol=atol) self.assertAllClose(basic_grads, fused_grads, rtol=rtol, atol=atol) for basic, fused in zip(basic_wgrads, fused_wgrads): self.assertAllClose(basic, fused, rtol=rtol, atol=atol) @parameterized.named_parameters(*TEST_CASES) def testLSTMBasicToBlock(self, dtype, rtol, atol): self.LSTMBasicToBlockTestHelper( dtype, use_peephole=False, rtol=rtol, atol=atol) @parameterized.named_parameters(*TEST_CASES) def testLSTMBasicToBlockPeeping(self, dtype, rtol, atol): self.LSTMBasicToBlockTestHelper( dtype, use_peephole=True, rtol=rtol, atol=atol) @parameterized.named_parameters(*TEST_CASES) def testLSTMBasicToBlockCellClip(self, dtype, rtol, atol): self.LSTMBasicToBlockTestHelper( dtype, use_peephole=True, cell_clip=0.5, rtol=rtol, atol=atol) def testLSTMFusedSequenceLengths(self): """Verify proper support for sequence lengths in LSTMBlockFusedCell.""" with self.session(use_gpu=True) as sess: batch_size = 3 input_size = 4 cell_size = 5 max_sequence_length = 6 inputs = [] for _ in range(max_sequence_length): inp = ops.convert_to_tensor( np.random.randn(batch_size, input_size), dtype=dtypes.float32) inputs.append(inp) seq_lengths = constant_op.constant([3, 4, 5]) cell_inputs = array_ops.stack(inputs) initializer = init_ops.random_uniform_initializer( -0.01, 0.01, seed=19890213) with variable_scope.variable_scope("lstm_cell", initializer=initializer): # magic naming so that the cells pick up these variables and reuse them variable_scope.get_variable( "kernel", shape=[input_size + cell_size, cell_size * 4], dtype=dtypes.float32) variable_scope.get_variable( "bias", shape=[cell_size * 4], dtype=dtypes.float32, initializer=init_ops.zeros_initializer()) cell = lstm_ops.LSTMBlockFusedCell( cell_size, cell_clip=0, use_peephole=False, reuse=True, name="lstm_cell") fused_outputs_op, fused_state_op = cell( cell_inputs, dtype=dtypes.float32, sequence_length=seq_lengths) cell_vars = [ v for v in variables.trainable_variables() if v.name.endswith("kernel") or v.name.endswith("bias") ] # Verify that state propagation works if we turn our sequence into # tiny (single-time) subsequences, i.e. unfuse the cell unfused_outputs_op = [] state = None with variable_scope.variable_scope( variable_scope.get_variable_scope(), reuse=True): for i, inp in enumerate(inputs): lengths = [int(i < l) for l in seq_lengths.eval()] output, state = cell( array_ops.expand_dims(inp, 0), initial_state=state, dtype=dtypes.float32, sequence_length=lengths) unfused_outputs_op.append(output[0]) unfused_outputs_op = array_ops.stack(unfused_outputs_op) sess.run([variables.global_variables_initializer()]) unfused_outputs, unfused_state = sess.run([unfused_outputs_op, state[0]]) unfused_grads = sess.run( gradients_impl.gradients(unfused_outputs_op, inputs)) unfused_wgrads = sess.run( gradients_impl.gradients(unfused_outputs_op, cell_vars)) fused_outputs, fused_state = sess.run( [fused_outputs_op, fused_state_op[0]]) fused_grads = sess.run(gradients_impl.gradients(fused_outputs_op, inputs)) fused_wgrads = sess.run( gradients_impl.gradients(fused_outputs_op, cell_vars)) self.assertAllClose(fused_outputs, unfused_outputs) self.assertAllClose(fused_state, unfused_state) self.assertAllClose(fused_grads, unfused_grads) for fused, unfused in zip(fused_wgrads, unfused_wgrads): self.assertAllClose(fused, unfused, rtol=1e-6, atol=1e-6) #### Benchmarking. class BenchmarkLSTMBlock(test.Benchmark): def benchmarkLSTMBlockCellFpropWithDynamicRNN(self): print("BlockLSTMCell forward propagation via dynamic_rnn().") print("--------------------------------------------------------------") print("LSTMBlockCell Seconds per inference.") print("batch_size,cell_size,input_size,time_steps,use_gpu,wall_time") iters = 10 for config in benchmarking.dict_product({ "batch_size": [1, 8, 13, 32, 67, 128], "cell_size": [128, 250, 512, 650, 1024, 1350], "time_steps": [40], "use_gpu": [True, False], "dtype": ["float32", "float16"], }): dtype = dtypes.float32 if config["dtype"] == "float32" else dtypes.float16 with ops.Graph().as_default(): with benchmarking.device(use_gpu=config["use_gpu"]): inputs = variable_scope.get_variable( "x", dtype=dtype, shape=[ config["time_steps"], config["batch_size"], config["cell_size"] ]) cell = lstm_ops.LSTMBlockCell(config["cell_size"], dtype=dtype) outputs = rnn.dynamic_rnn(cell, inputs, time_major=True, dtype=dtype) init_op = variables.global_variables_initializer() with session.Session() as sess: sess.run(init_op) wall_time = benchmarking.seconds_per_run(outputs, sess, iters) # Print to stdout. If the TEST_REPORT_FILE_PREFIX environment variable # is set, this will produce a copy-paste-able CSV file. print(",".join( map(str, [ config["dtype"], config["batch_size"], config["cell_size"], config["cell_size"], config["time_steps"], config["use_gpu"], wall_time ]))) benchmark_name_template = "_".join([ "LSTMBlockCell_fprop", "DT_%(dtype)s", "BS%(batch_size)i", "CS%(cell_size)i", "IS%(cell_size)i", "TS%(time_steps)i", "gpu_%(use_gpu)s" ]) self.report_benchmark( name=benchmark_name_template % config, iters=iters, wall_time=wall_time, extras=config) def benchmarkLSTMBlockCellBpropWithDynamicRNN(self): print("BlockLSTMCell backward propagation via dynamic_rnn().") print("--------------------------------------------------------------") print("LSTMBlockCell Seconds per inference.") print("batch_size,cell_size,input_size,time_steps,use_gpu,wall_time") iters = 10 for config in benchmarking.dict_product({ "batch_size": [1, 8, 13, 32, 67, 128], "cell_size": [128, 250, 512, 650, 1024, 1350], "time_steps": [40], "use_gpu": [True, False], "dtype": ["float32", "float16"], }): dtype = dtypes.float32 if config["dtype"] == "float32" else dtypes.float16 with ops.Graph().as_default(): with benchmarking.device(use_gpu=config["use_gpu"]): time_steps = config["time_steps"] batch_size = config["batch_size"] cell_size = input_size = config["cell_size"] inputs = variable_scope.get_variable( "x", [time_steps, batch_size, cell_size], trainable=False, dtype=dtype) with variable_scope.variable_scope( "rnn", reuse=variable_scope.AUTO_REUSE): w = variable_scope.get_variable( "rnn/lstm_cell/kernel", shape=[input_size + cell_size, cell_size * 4], dtype=dtype) b = variable_scope.get_variable( "rnn/lstm_cell/bias", shape=[cell_size * 4], dtype=dtype, initializer=init_ops.zeros_initializer()) cell = lstm_ops.LSTMBlockCell(cell_size, dtype=dtype) outputs = rnn.dynamic_rnn( cell, inputs, time_major=True, dtype=dtype) grads = gradients_impl.gradients(outputs, [inputs, w, b]) init_op = variables.global_variables_initializer() with session.Session() as sess: sess.run(init_op) wall_time = benchmarking.seconds_per_run(grads, sess, iters) # Print to stdout. If the TEST_REPORT_FILE_PREFIX environment variable # is set, this will produce a copy-paste-able CSV file. print(",".join( map(str, [ config["dtype"], batch_size, cell_size, cell_size, time_steps, config["use_gpu"], wall_time ]))) benchmark_name_template = "_".join([ "LSTMBlockCell_bprop", "DT_%(dtype)s", "BS%(batch_size)i", "CS%(cell_size)i", "IS%(cell_size)i", "TS%(time_steps)i", "gpu_%(use_gpu)s" ]) self.report_benchmark( name=benchmark_name_template % config, iters=iters, wall_time=wall_time, extras=config) if __name__ == "__main__": test.main()
#!/usr/bin/env python """Class for finding Youtube influencers""" __author__ = "Peter J Usherwood" __python_version__ = "3.6" import pandas as pd import csv import json import os from scipy.stats import percentileofscore import progressbar from usherwood_ds.data_imports.youtube_api.api_class import YoutubeAPI from usherwood_ds.data_imports.youtube_import import create_youtube_user_df, create_youtube_comment_df import warnings warnings.filterwarnings('ignore') YT_SIZE = 300000000 def interests_identification(handles=None, similar_videos=None, max_comments_per_similar_influencer_video=-1, save_path='', TOP_X_CONNECTED=2000, api_credentials=None): """ Run the analysis to find the top amplifying accounts on Youtube, good for identifying interests or quick influencer analysis. For full influencer analysis use the influencers_identification function as it calculates engagement scores :param handles: List of Youtube handles :param similar_videos: List of similar influencer video ids :param max_comments_per_similar_influencer_video: Int, when search similar videos cap num comments retrieved to give a rough cap on TM size :param save_path: path of where save the dataframes to :param TOP_X_CONNECTED: Int, take the top_x_connect influencers :param api_credentials: Dict, api credentials """ if api_credentials is None: with open(os.path.join(os.path.dirname(__file__), "data_imports/api_credentials.json"), 'r') as openfile: api_credentials = json.load(openfile) api = YoutubeAPI(api_credentials=api_credentials) if not handles: print('Getting TM from similar influencers') tm_ids = retrieve_similar_influencer_auidence(api, save_path=save_path, video_ids=similar_videos, num_comments=max_comments_per_similar_influencer_video) print('Fortifying target market') target_market, TM_SIZE = fortify_tm_without_engamements(tm_ids=tm_ids, save_path=save_path, api=api) print('Getting sphere of influence') influencers = get_sphere_of_influence(target_market, save_path=save_path, api=api) print('Fortifying sphere of influence and getting amplification') influencers = get_amplification_influencers(influencers=influencers, api=api, TM_SIZE=TM_SIZE, TOP_X_CONNECTED=TOP_X_CONNECTED, save_path=save_path) print('Done') return target_market, influencers def retrieve_similar_influencer_auidence(api, save_path='', video_ids=['tUtLHo7UQMM'], num_comments=-1): # max comments = [] for video_id in video_ids: comments += api.get_video_comments(video_id, num_comments=num_comments) print(str(len(comments)), 'comments found.') parsed_comments = [] for comment in comments: parsed_comments += [api.parse_comment_to_youtube_comment(comment)] df_comments = create_youtube_comment_df(parsed_comments) target_market_ids = pd.DataFrame(df_comments['Youtube Author ID'].value_counts().index, columns=['Youtube Channel ID']) target_market_ids.to_csv(save_path + 'TM.csv', encoding='utf-8', quoting=csv.QUOTE_ALL, index=False) return target_market_ids def fortify_tm_without_engamements(tm_ids, api, save_path=''): """ fortify the tm with user info without engagement measures :param tm_ids: List of Youtube channel ids :param api: YoutubeAPI instance :param save_path: path of where save the dataframes to :return: target_market - pandas df of fortified Youtube users """ channels = [] for idx in tm_ids['Youtube Channel ID'].tolist(): json_response = api.fortify_channel(channel_id=idx, fortify_with='snippet,statistics') if json_response.pop('found', True) is not False: channels.append(json_response) TM_SIZE = len(channels) print(TM_SIZE) target_market_arr = [] for user in channels: target_market_arr += [api.parse_user_to_youtube_user(user)] target_market = create_youtube_user_df(target_market_arr) target_market.to_csv(save_path + 'TM.csv', encoding='utf-8', quoting=csv.QUOTE_ALL, index=False) return target_market, TM_SIZE def get_sphere_of_influence(target_market, api, save_path=''): """ Get the people the target market are following and rank by the most connected :param target_market: :param api: YoutubeAPI instance :param save_path: path of where save the dataframes to :return: partially populated influencers df """ sphere = [] with progressbar.ProgressBar(max_value=len(target_market['Youtube Author ID'])) as bar: for i, user_id in enumerate(target_market['Youtube Author ID'].values.tolist()): subscription_jsons = api.get_user_subscriptions(youtube_author_id=user_id) for sub in subscription_jsons: sphere += [sub['snippet']['resourceId']['channelId']] bar.update(i) influencers = pd.DataFrame(pd.Series(sphere).value_counts()).reset_index().rename( columns={'index': 'Youtube Author ID', 0: 'TM Amplification'}) influencers.to_csv(save_path + 'Influencers.csv', encoding='utf-8', quoting=csv.QUOTE_ALL, index=False) return influencers def get_amplification_influencers(TM_SIZE, api, TOP_X_CONNECTED=2000, save_path='', influencers=None, load_from_disk=False, load_path='', inc_tiers=True, tiers=[1500, 5000, 20000, 100000]): """ Fortify the influencers df for the top_x_connected influencers :param influencers: influencers df output from get_sphere_of_influence :param TM_SIZE: Int, the size of the target market :param TOP_X_CONNECTED: Int, take the top_x_connect influencers :param save_path: path of where save the dataframes to :param load_from_disk: Bool, load previously ran influencer sdata from disk :param load_path: Str, path to the saved data if it is to be loaded, files must be named TM.csv and Influencers.csv :param inc_tiers: Bool, divide rankings by number of followers :param tiers: List, ascending list of integers as the upper boundaries of follower numbers per tier, a final tier will be added for uses with more followers than your last divide :return: partially populated influencers df """ if load_from_disk: influencers = pd.read_csv(load_path + 'Influencers.csv') influencers = influencers[:TOP_X_CONNECTED] influencers_jsons = [] with progressbar.ProgressBar(max_value=len(influencers['Youtube Author ID'])) as bar: for i, idx in enumerate(influencers['Youtube Author ID'].values.tolist()): influencers_jsons += [api.fortify_channel(channel_id=idx, fortify_with='snippet,statistics')] bar.update(i) influencers_arr = [] for user in influencers_jsons: influencers_arr += [api.parse_user_to_youtube_user(user)] influencers_fort = create_youtube_user_df(influencers_arr) influencers_fort['Youtube Author ID'] = influencers_fort['Youtube Author ID'] influencers = influencers_fort.merge(influencers, how='inner', on='Youtube Author ID') influencers['Amplification Index'] = influencers[['Subscriber Count', 'TM Amplification']].apply( lambda x: (x[1] / TM_SIZE) * (TM_SIZE / x[0]), axis=1) influencers.sort_values(by='Amplification Index', inplace=True, ascending=False) influencers['Tier'] = 0 tiers = tiers.copy() tiers = [0] + tiers + [9999999999] for tier_ix in range(len(tiers) - 1): sub = influencers[(influencers['Subscriber Count'] >= tiers[tier_ix]) & (influencers['Subscriber Count'] < tiers[tier_ix + 1])] arr = sorted(sub['Amplification Index'].values) influencers.ix[sub.index, 'Amplification Index'] = sub['Amplification Index']. \ apply(lambda e: percentileofscore(arr, e)).values influencers.ix[sub.index, 'Tier'] = tier_ix + 1 influencers.reset_index(drop=True, inplace=True) influencers.to_csv(save_path + 'Influencers.csv', encoding='utf-8', quoting=csv.QUOTE_ALL, index=False) return influencers
# Copyright 2015 Chelsio Communications Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import os import shutil import StringIO import tempfile import mock from oslo_utils import timeutils from cinder import context from cinder.openstack.common import fileutils from cinder import test from cinder import utils from cinder.volume import configuration as conf from cinder.volume.targets import cxt class TestCxtAdmDriver(test.TestCase): def __init__(self, *args, **kwargs): super(TestCxtAdmDriver, self).__init__(*args, **kwargs) self.configuration = conf.Configuration(None) self.configuration.append_config_values = mock.Mock(return_value=0) self.configuration.iscsi_ip_address = '10.9.8.7' self.cxt_subdir = cxt.CxtAdm.cxt_subdir self.fake_id_1 = 'ed2c1fd4-5fc0-11e4-aa15-123b93f75cba' self.fake_id_2 = 'ed2c2222-5fc0-11e4-aa15-123b93f75cba' self.target = cxt.CxtAdm(root_helper=utils.get_root_helper(), configuration=self.configuration) self.fake_volume = 'volume-83c2e877-feed-46be-8435-77884fe55b45' self.testvol_1 =\ {'project_id': self.fake_id_1, 'name': 'testvol', 'size': 1, 'id': self.fake_id_2, 'volume_type_id': None, 'provider_location': '10.9.8.7:3260 ' 'iqn.2010-10.org.openstack:' 'volume-%s 0' % self.fake_id_2, 'provider_auth': 'CHAP stack-1-a60e2611875f40199931f2' 'c76370d66b 2FE0CQ8J196R', 'provider_geometry': '512 512', 'created_at': timeutils.utcnow(), 'host': 'fake_host@lvm#lvm'} self.expected_iscsi_properties = \ {'auth_method': 'CHAP', 'auth_password': '2FE0CQ8J196R', 'auth_username': 'stack-1-a60e2611875f40199931f2c76370d66b', 'encrypted': False, 'logical_block_size': '512', 'physical_block_size': '512', 'target_discovered': False, 'target_iqn': 'iqn.2010-10.org.openstack:volume-%s' % self.fake_id_2, 'target_lun': 0, 'target_portal': '10.10.7.1:3260', 'volume_id': self.fake_id_2} self.fake_iscsi_scan =\ ('\n' 'TARGET: iqn.2010-10.org.openstack:%s, id=1, login_ip=0\n' # noqa ' [email protected]:3260,timeout=0\n' ' TargetDevice=/dev/stack-volumes-lvmdriver-1/%s,BLK,PROD=CHISCSI Target,SN=0N0743000000000,ID=0D074300000000000000000,WWN=:W00743000000000\n' # noqa % (self.fake_volume, self.fake_volume)) def setUp(self): super(TestCxtAdmDriver, self).setUp() self.fake_base_dir = tempfile.mkdtemp() self.fake_volumes_dir = os.path.join(self.fake_base_dir, self.cxt_subdir) fileutils.ensure_tree(self.fake_volumes_dir) self.addCleanup(self._cleanup) self.exec_patcher = mock.patch.object(utils, 'execute') self.mock_execute = self.exec_patcher.start() self.addCleanup(self.exec_patcher.stop) def _cleanup(self): if os.path.exists(self.fake_base_dir): shutil.rmtree(self.fake_base_dir) @mock.patch('cinder.utils.execute') def test_get_target(self, mock_execute): mock_execute.return_value = (self.fake_iscsi_scan, None) with mock.patch.object(self.target, '_get_volumes_dir') as mock_get: mock_get.return_value = self.fake_volumes_dir self.assertEqual('1', self.target._get_target( 'iqn.2010-10.org.openstack:volume-83c2e877-feed-46be-8435-77884fe55b45' # noqa )) self.assertTrue(mock_execute.called) def test_get_target_chap_auth(self): tmp_file = StringIO.StringIO() tmp_file.write( 'target:\n' ' TargetName=iqn.2010-10.org.openstack:volume-83c2e877-feed-46be-8435-77884fe55b45\n' # noqa ' TargetDevice=/dev/stack-volumes-lvmdriver-1/volume-83c2e877-feed-46be-8435-77884fe55b45\n' # noqa ' [email protected]:3260\n' ' AuthMethod=CHAP\n' ' Auth_CHAP_Policy=Oneway\n' ' Auth_CHAP_Initiator="otzLy2UYbYfnP4zXLG5z":"234Zweo38VGBBvrpK9nt"\n' # noqa ) tmp_file.seek(0) test_vol = ('iqn.2010-10.org.openstack:' 'volume-83c2e877-feed-46be-8435-77884fe55b45') expected = ('otzLy2UYbYfnP4zXLG5z', '234Zweo38VGBBvrpK9nt') with mock.patch('__builtin__.open') as mock_open: ctx = context.get_admin_context() mock_open.return_value = contextlib.closing(tmp_file) self.assertEqual(expected, self.target._get_target_chap_auth(ctx, test_vol)) self.assertTrue(mock_open.called) def test_get_target_chap_auth_negative(self): test_vol =\ 'iqn.2010-10.org.openstack:'\ 'volume-83c2e877-feed-46be-8435-77884fe55b45' with mock.patch('__builtin__.open') as mock_open: e = IOError() e.errno = 123 mock_open.side_effect = e ctxt = context.get_admin_context() self.assertRaises(IOError, self.target._get_target_chap_auth, ctxt, test_vol) mock_open.side_effect = StandardError() self.assertRaises(StandardError, self.target._get_target_chap_auth, ctxt, test_vol) @mock.patch('cinder.volume.targets.cxt.CxtAdm._get_target', return_value=1) @mock.patch('cinder.utils.execute') def test_create_iscsi_target(self, mock_execute, mock_get_targ): mock_execute.return_value = ('', '') with mock.patch.object(self.target, '_get_volumes_dir') as mock_get: mock_get.return_value = self.fake_volumes_dir test_vol = 'iqn.2010-10.org.openstack:'\ 'volume-83c2e877-feed-46be-8435-77884fe55b45' self.assertEqual( 1, self.target.create_iscsi_target( test_vol, 1, 0, self.fake_volumes_dir)) self.assertTrue(mock_get.called) self.assertTrue(mock_execute.called) self.assertTrue(mock_get_targ.called) @mock.patch('cinder.volume.targets.cxt.CxtAdm._get_target', return_value=1) @mock.patch('cinder.utils.execute') def test_create_iscsi_target_already_exists(self, mock_execute, mock_get_targ): mock_execute.return_value = ('fake out', 'fake err') with mock.patch.object(self.target, '_get_volumes_dir') as mock_get: mock_get.return_value = self.fake_volumes_dir test_vol = 'iqn.2010-10.org.openstack:'\ 'volume-83c2e877-feed-46be-8435-77884fe55b45' self.assertEqual( 1, self.target.create_iscsi_target( test_vol, 1, 0, self.fake_volumes_dir)) self.assertTrue(mock_get.called) self.assertTrue(mock_get_targ.called) self.assertTrue(mock_execute.called) @mock.patch('cinder.volume.targets.cxt.CxtAdm._get_target', return_value=1) @mock.patch('cinder.utils.execute') @mock.patch('cinder.volume.utils.generate_password', return_value="P68eE7u9eFqDGexd28DQ") @mock.patch('cinder.volume.utils.generate_username', return_value="QZJbisGmn9AL954FNF4D") def test_create_export(self, mock_user, mock_pass, mock_execute, mock_get_targ): mock_execute.return_value = ('', '') with mock.patch.object(self.target, '_get_volumes_dir') as mock_get: mock_get.return_value = self.fake_volumes_dir expected_result = {'location': '10.9.8.7:3260,1 ' 'iqn.2010-10.org.openstack:testvol 0', 'auth': 'CHAP ' 'QZJbisGmn9AL954FNF4D P68eE7u9eFqDGexd28DQ'} ctxt = context.get_admin_context() self.assertEqual(expected_result, self.target.create_export(ctxt, self.testvol_1, self.fake_volumes_dir)) self.assertTrue(mock_get.called) self.assertTrue(mock_execute.called) @mock.patch('cinder.volume.targets.cxt.CxtAdm._get_target_chap_auth') def test_ensure_export(self, mock_get_chap): fake_creds = ('asdf', 'qwert') mock_get_chap.return_value = fake_creds ctxt = context.get_admin_context() with mock.patch.object(self.target, 'create_iscsi_target'): self.target.ensure_export(ctxt, self.testvol_1, self.fake_volumes_dir) self.target.create_iscsi_target.assert_called_once_with( 'iqn.2010-10.org.openstack:testvol', 1, 0, self.fake_volumes_dir, fake_creds, check_exit_code=False, old_name=None)
from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation, NearTestCase setOutDir(__name__) import unittest from reportlab.pdfgen.canvas import Canvas from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfbase import pdfutils from reportlab.platypus.paragraph import Paragraph from reportlab.lib.styles import ParagraphStyle from reportlab.graphics.shapes import Drawing, String, Ellipse import re import codecs textPat = re.compile(r'\([^(]*\)') #test sentences testCp1252 = 'copyright %s trademark %s registered %s ReportLab! Ol%s!' % (chr(169), chr(153),chr(174), chr(0xe9)) testUni = unicode(testCp1252, 'cp1252') testUTF8 = testUni.encode('utf-8') # expected result is octal-escaped text in the PDF expectedCp1252 = pdfutils._escape(testCp1252) def extractText(pdfOps): """Utility to rip out the PDF text within a block of PDF operators. PDF will show a string draw as something like "(Hello World) Tj" i.e. text is in curved brackets. Crude and dirty, probably fails on escaped brackets. """ found = textPat.findall(pdfOps) #chop off '(' and ')' return map(lambda x:x[1:-1], found) def subsetToUnicode(ttf, subsetCodeStr): """Return unicode string represented by given subsetCode string as found when TrueType font rendered to PDF, ttf must be the font object that was used.""" # This relies on TTFont internals and uses the first document # and subset it finds subset = ttf.state.values()[0].subsets[0] chrs = [] for codeStr in subsetCodeStr.split('\\'): if codeStr: chrs.append(unichr(subset[int(codeStr[1:], 8)])) return u''.join(chrs) class TextEncodingTestCase(NearTestCase): """Tests of expected Unicode and encoding behaviour """ def setUp(self): self.vera = TTFont("Vera", "Vera.ttf") pdfmetrics.registerFont(self.vera) self.styNormal = ParagraphStyle(name='Helvetica', fontName='Helvetica-Oblique') self.styTrueType = ParagraphStyle(name='TrueType', fontName='Vera') def testStringWidth(self): msg = 'Hello World' self.assertNear(pdfmetrics.stringWidth(msg, 'Courier', 10),66.0) self.assertNear(pdfmetrics.stringWidth(msg, 'Helvetica', 10),51.67) self.assertNear(pdfmetrics.stringWidth(msg, 'Times-Roman', 10),50.27) self.assertNear(pdfmetrics.stringWidth(msg, 'Vera', 10),57.7685546875) uniMsg1 = u"Hello World" self.assertNear(pdfmetrics.stringWidth(uniMsg1, 'Courier', 10),66.0) self.assertNear(pdfmetrics.stringWidth(uniMsg1, 'Helvetica', 10),51.67) self.assertNear(pdfmetrics.stringWidth(uniMsg1, 'Times-Roman', 10),50.27) self.assertNear(pdfmetrics.stringWidth(uniMsg1, 'Vera', 10),57.7685546875) # Courier are all 600 ems wide. So if one 'measures as utf8' one will # get a wrong width as extra characters are seen self.assertEquals(len(testCp1252),52) self.assertNear(pdfmetrics.stringWidth(testCp1252, 'Courier', 10, 'cp1252'),312.0) # the test string has 5 more bytes and so "measures too long" if passed to # a single-byte font which treats it as a single-byte string. self.assertEquals(len(testUTF8),57) self.assertNear(pdfmetrics.stringWidth(testUTF8, 'Courier', 10),312.0) self.assertEquals(len(testUni),52) self.assertNear(pdfmetrics.stringWidth(testUni, 'Courier', 10),312.0) # now try a TrueType font. Should be able to accept Unicode or UTF8 self.assertNear(pdfmetrics.stringWidth(testUTF8, 'Vera', 10),279.809570313) self.assertNear(pdfmetrics.stringWidth(testUni, 'Vera', 10),279.809570313) def testUtf8Canvas(self): """Verify canvas declared as utf8 autoconverts. This assumes utf8 input. It converts to the encoding of the underlying font, so both text lines APPEAR the same.""" c = Canvas(outputfile('test_pdfbase_encodings_utf8.pdf')) c.drawString(100,700, testUTF8) # Set a font with UTF8 encoding c.setFont('Vera', 12) # This should pass the UTF8 through unchanged c.drawString(100,600, testUTF8) # and this should convert from Unicode to UTF8 c.drawString(100,500, testUni) # now add a paragraph in Latin-1 in the latin-1 style p = Paragraph(testUTF8, style=self.styNormal, encoding="utf-8") w, h = p.wrap(150, 100) p.drawOn(c, 100, 400) #3 c.rect(100,300,w,h) # now add a paragraph in UTF-8 in the UTF-8 style p2 = Paragraph(testUTF8, style=self.styTrueType, encoding="utf-8") w, h = p2.wrap(150, 100) p2.drawOn(c, 300, 400) #4 c.rect(100,300,w,h) # now add a paragraph in Unicode in the latin-1 style p3 = Paragraph(testUni, style=self.styNormal) w, h = p3.wrap(150, 100) p3.drawOn(c, 100, 300) c.rect(100,300,w,h) # now add a paragraph in Unicode in the UTF-8 style p4 = Paragraph(testUni, style=self.styTrueType) p4.wrap(150, 100) p4.drawOn(c, 300, 300) c.rect(300,300,w,h) # now a graphic d1 = Drawing(400,50) d1.add(Ellipse(200,25,200,12.5, fillColor=None)) d1.add(String(200,25,testUTF8, textAnchor='middle', encoding='utf-8')) d1.drawOn(c, 100, 150) # now a graphic in utf8 d2 = Drawing(400,50) d2.add(Ellipse(200,25,200,12.5, fillColor=None)) d2.add(String(200,25,testUTF8, fontName='Vera', textAnchor='middle', encoding='utf-8')) d2.drawOn(c, 100, 100) # now a graphic in Unicode with T1 font d3 = Drawing(400,50) d3.add(Ellipse(200,25,200,12.5, fillColor=None)) d3.add(String(200,25,testUni, textAnchor='middle')) d3.drawOn(c, 100, 50) # now a graphic in Unicode with TT font d4 = Drawing(400,50) d4.add(Ellipse(200,25,200,12.5, fillColor=None)) d4.add(String(200,25,testUni, fontName='Vera', textAnchor='middle')) d4.drawOn(c, 100, 0) extracted = extractText(c.getCurrentPageContent()) self.assertEquals(extracted[0], expectedCp1252) self.assertEquals(extracted[1], extracted[2]) #self.assertEquals(subsetToUnicode(self.vera, extracted[1]), testUni) c.save() class FontEncodingTestCase(unittest.TestCase): """Make documents with custom encodings of Type 1 built-in fonts. Nothing really to do with character encodings; this is about hacking the font itself""" def test0(self): "Make custom encodings of standard fonts" # make a custom encoded font. c = Canvas(outputfile('test_pdfbase_encodings.pdf')) c.setPageCompression(0) c.setFont('Helvetica', 12) c.drawString(100, 700, 'The text below should be in a custom encoding in which all vowels become "z"') # invent a new language where vowels are replaced with letter 'z' zenc = pdfmetrics.Encoding('EncodingWithoutVowels', 'WinAnsiEncoding') for ch in 'aeiou': zenc[ord(ch)] = 'z' for ch in 'AEIOU': zenc[ord(ch)] = 'Z' pdfmetrics.registerEncoding(zenc) # now we can make a font based on this encoding # AR hack/workaround: the name of the encoding must be a Python codec! f = pdfmetrics.Font('FontWithoutVowels', 'Helvetica-Oblique', 'EncodingWithoutVowels') pdfmetrics.registerFont(f) c.setFont('FontWithoutVowels', 12) c.drawString(125, 675, "The magic word is squamish ossifrage") # now demonstrate adding a Euro to MacRoman, which lacks one c.setFont('Helvetica', 12) c.drawString(100, 650, "MacRoman encoding lacks a Euro. We'll make a Mac font with the Euro at #219:") # WinAnsi Helvetica pdfmetrics.registerFont(pdfmetrics.Font('Helvetica-WinAnsi', 'Helvetica-Oblique', 'WinAnsiEncoding')) c.setFont('Helvetica-WinAnsi', 12) c.drawString(125, 625, 'WinAnsi with Euro: character 128 = "\200"') pdfmetrics.registerFont(pdfmetrics.Font('MacHelvNoEuro', 'Helvetica-Oblique', 'MacRomanEncoding')) c.setFont('MacHelvNoEuro', 12) c.drawString(125, 600, 'Standard MacRoman, no Euro: Character 219 = "\333"') # oct(219)=0333 # now make our hacked encoding euroMac = pdfmetrics.Encoding('MacWithEuro', 'MacRomanEncoding') euroMac[219] = 'Euro' pdfmetrics.registerEncoding(euroMac) pdfmetrics.registerFont(pdfmetrics.Font('MacHelvWithEuro', 'Helvetica-Oblique', 'MacWithEuro')) c.setFont('MacHelvWithEuro', 12) c.drawString(125, 575, 'Hacked MacRoman with Euro: Character 219 = "\333"') # oct(219)=0333 # now test width setting with and without _rl_accel - harder # make an encoding where 'm' becomes 'i' c.setFont('Helvetica', 12) c.drawString(100, 500, "Recode 'm' to 'i' and check we can measure widths. Boxes should surround letters.") sample = 'Mmmmm. ' * 6 + 'Mmmm' c.setFont('Helvetica-Oblique',12) c.drawString(125, 475, sample) w = c.stringWidth(sample, 'Helvetica-Oblique', 12) c.rect(125, 475, w, 12) narrowEnc = pdfmetrics.Encoding('m-to-i') narrowEnc[ord('m')] = 'i' narrowEnc[ord('M')] = 'I' pdfmetrics.registerEncoding(narrowEnc) pdfmetrics.registerFont(pdfmetrics.Font('narrow', 'Helvetica-Oblique', 'm-to-i')) c.setFont('narrow', 12) c.drawString(125, 450, sample) w = c.stringWidth(sample, 'narrow', 12) c.rect(125, 450, w, 12) c.setFont('Helvetica', 12) c.drawString(100, 400, "Symbol & Dingbats fonts - check we still get valid PDF in StandardEncoding") c.setFont('Symbol', 12) c.drawString(100, 375, 'abcdefghijklmn') c.setFont('ZapfDingbats', 12) c.drawString(300, 375, 'abcdefghijklmn') c.save() def makeSuite(): return makeSuiteForClasses( TextEncodingTestCase, #FontEncodingTestCase - nobbled for now due to old stuff which needs removing. ) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) printLocation()
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test fee estimation code # from test_framework import BitcoinTestFramework from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * # Construct 2 trivial P2SH's and the ScriptSigs that spend them # So we can create many many transactions without needing to spend # time signing. P2SH_1 = "2MySexEGVzZpRgNQ1JdjdP5bRETznm3roQ2" # P2SH of "OP_1 OP_DROP" P2SH_2 = "2NBdpwq8Aoo1EEKEXPNrKvr5xQr3M9UfcZA" # P2SH of "OP_2 OP_DROP" # Associated ScriptSig's to spend satisfy P2SH_1 and P2SH_2 # 4 bytes of OP_TRUE and push 2-byte redeem script of "OP_1 OP_DROP" or "OP_2 OP_DROP" SCRIPT_SIG = ["0451025175", "0451025275"] def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) def small_txpuzzle_randfee(from_node, conflist, unconflist, amount, min_fee, fee_increment): ''' Create and send a transaction with a random fee. The transaction pays to a trival P2SH script, and assumes that its inputs are of the same form. The function takes a list of confirmed outputs and unconfirmed outputs and attempts to use the confirmed list first for its inputs. It adds the newly created outputs to the unconfirmed list. Returns (raw transaction, fee) ''' # It's best to exponentially distribute our random fees # because the buckets are exponentially spaced. # Exponentially distributed from 1-128 * fee_increment rand_fee = float(fee_increment)*(1.1892**random.randint(0,28)) # Total fee ranges from min_fee to min_fee + 127*fee_increment fee = min_fee - fee_increment + satoshi_round(rand_fee) inputs = [] total_in = Decimal("0.00000000") while total_in <= (amount + fee) and len(conflist) > 0: t = conflist.pop(0) total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]} ) if total_in <= amount + fee: while total_in <= (amount + fee) and len(unconflist) > 0: t = unconflist.pop(0) total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]} ) if total_in <= amount + fee: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount+fee, total_in)) outputs = {} outputs[P2SH_1] = total_in - amount - fee outputs[P2SH_2] = amount rawtx = from_node.createrawtransaction(inputs, outputs) # Createrawtransaction constructions a transaction that is ready to be signed # These transactions don't need to be signed, but we still have to insert the ScriptSig # that will satisfy the ScriptPubKey. completetx = rawtx[0:10] inputnum = 0 for inp in inputs: completetx += rawtx[10+82*inputnum:82+82*inputnum] completetx += SCRIPT_SIG[inp["vout"]] completetx += rawtx[84+82*inputnum:92+82*inputnum] inputnum += 1 completetx += rawtx[10+82*inputnum:] txid = from_node.sendrawtransaction(completetx, True) unconflist.append({ "txid" : txid, "vout" : 0 , "amount" : total_in - amount - fee}) unconflist.append({ "txid" : txid, "vout" : 1 , "amount" : amount}) return (completetx, fee) def split_inputs(from_node, txins, txouts, initial_split = False): ''' We need to generate a lot of very small inputs so we can generate a ton of transactions and they will have low priority. This function takes an input from txins, and creates and sends a transaction which splits the value into 2 outputs which are appended to txouts. ''' prevtxout = txins.pop() inputs = [] outputs = {} inputs.append({ "txid" : prevtxout["txid"], "vout" : prevtxout["vout"] }) half_change = satoshi_round(prevtxout["amount"]/2) rem_change = prevtxout["amount"] - half_change - Decimal("0.00001000") outputs[P2SH_1] = half_change outputs[P2SH_2] = rem_change rawtx = from_node.createrawtransaction(inputs, outputs) # If this is the initial split we actually need to sign the transaction # Otherwise we just need to insert the property ScriptSig if (initial_split) : completetx = from_node.signrawtransaction(rawtx)["hex"] else : completetx = rawtx[0:82] + SCRIPT_SIG[prevtxout["vout"]] + rawtx[84:] txid = from_node.sendrawtransaction(completetx, True) txouts.append({ "txid" : txid, "vout" : 0 , "amount" : half_change}) txouts.append({ "txid" : txid, "vout" : 1 , "amount" : rem_change}) def check_estimates(node, fees_seen, max_invalid, print_estimates = True): ''' This function calls estimatefee and verifies that the estimates meet certain invariants. ''' all_estimates = [ node.estimatefee(i) for i in range(1,26) ] if print_estimates: print([str(all_estimates[e-1]) for e in [1,2,3,6,15,25]]) delta = 1.0e-6 # account for rounding error last_e = max(fees_seen) for e in filter(lambda x: x >= 0, all_estimates): # Estimates should be within the bounds of what transactions fees actually were: if float(e)+delta < min(fees_seen) or float(e)-delta > max(fees_seen): raise AssertionError("Estimated fee (%f) out of range (%f,%f)" %(float(e), min(fees_seen), max(fees_seen))) # Estimates should be monotonically decreasing if float(e)-delta > last_e: raise AssertionError("Estimated fee (%f) larger than last fee (%f) for lower number of confirms" %(float(e),float(last_e))) last_e = e valid_estimate = False invalid_estimates = 0 for e in all_estimates: if e >= 0: valid_estimate = True else: invalid_estimates += 1 # Once we're at a high enough confirmation count that we can give an estimate # We should have estimates for all higher confirmation counts if valid_estimate and e < 0: raise AssertionError("Invalid estimate appears at higher confirm count than valid estimate") # Check on the expected number of different confirmation counts # that we might not have valid estimates for if invalid_estimates > max_invalid: raise AssertionError("More than (%d) invalid estimates"%(max_invalid)) return all_estimates class EstimateFeeTest(BitcoinTestFramework): def setup_network(self): ''' We'll setup the network to have 3 nodes that all mine with different parameters. But first we need to use one node to create a lot of small low priority outputs which we will use to generate our transactions. ''' self.nodes = [] # Use node0 to mine blocks for input splitting self.nodes.append(start_node(0, self.options.tmpdir, ["-maxorphantx=1000", "-relaypriority=0", "-whitelist=127.0.0.1"])) print("This test is time consuming, please be patient") print("Splitting inputs to small size so we can generate low priority tx's") self.txouts = [] self.txouts2 = [] # Split a coinbase into two transaction puzzle outputs split_inputs(self.nodes[0], self.nodes[0].listunspent(0), self.txouts, True) # Mine while (len(self.nodes[0].getrawmempool()) > 0): self.nodes[0].generate(1) # Repeatedly split those 2 outputs, doubling twice for each rep # Use txouts to monitor the available utxo, since these won't be tracked in wallet reps = 0 while (reps < 5): #Double txouts to txouts2 while (len(self.txouts)>0): split_inputs(self.nodes[0], self.txouts, self.txouts2) while (len(self.nodes[0].getrawmempool()) > 0): self.nodes[0].generate(1) #Double txouts2 to txouts while (len(self.txouts2)>0): split_inputs(self.nodes[0], self.txouts2, self.txouts) while (len(self.nodes[0].getrawmempool()) > 0): self.nodes[0].generate(1) reps += 1 print("Finished splitting") # Now we can connect the other nodes, didn't want to connect them earlier # so the estimates would not be affected by the splitting transactions # Node1 mines small blocks but that are bigger than the expected transaction rate, # and allows free transactions. # NOTE: the CreateNewBlock code starts counting block size at 1,000 bytes, # (17k is room enough for 110 or so transactions) self.nodes.append(start_node(1, self.options.tmpdir, ["-blockprioritysize=1500", "-blockmaxsize=18000", "-maxorphantx=1000", "-relaypriority=0", "-debug=estimatefee"])) connect_nodes(self.nodes[1], 0) # Node2 is a stingy miner, that # produces too small blocks (room for only 70 or so transactions) node2args = ["-blockprioritysize=0", "-blockmaxsize=12000", "-maxorphantx=1000", "-relaypriority=0"] self.nodes.append(start_node(2, self.options.tmpdir, node2args)) connect_nodes(self.nodes[0], 2) connect_nodes(self.nodes[2], 1) self.is_network_split = False self.sync_all() def transact_and_mine(self, numblocks, mining_node): min_fee = Decimal("0.00001") # We will now mine numblocks blocks generating on average 100 transactions between each block # We shuffle our confirmed txout set before each set of transactions # small_txpuzzle_randfee will use the transactions that have inputs already in the chain when possible # resorting to tx's that depend on the mempool when those run out for i in range(numblocks): random.shuffle(self.confutxo) for j in range(random.randrange(100-50,100+50)): from_index = random.randint(1,2) (txhex, fee) = small_txpuzzle_randfee(self.nodes[from_index], self.confutxo, self.memutxo, Decimal("0.005"), min_fee, min_fee) tx_kbytes = (len(txhex)/2)/1000.0 self.fees_per_kb.append(float(fee)/tx_kbytes) sync_mempools(self.nodes[0:3],.1) mined = mining_node.getblock(mining_node.generate(1)[0],True)["tx"] sync_blocks(self.nodes[0:3],.1) #update which txouts are confirmed newmem = [] for utx in self.memutxo: if utx["txid"] in mined: self.confutxo.append(utx) else: newmem.append(utx) self.memutxo = newmem def run_test(self): self.fees_per_kb = [] self.memutxo = [] self.confutxo = self.txouts # Start with the set of confirmed txouts after splitting print("Checking estimates for 1/2/3/6/15/25 blocks") print("Creating transactions and mining them with a huge block size") # Create transactions and mine 20 big blocks with node 0 such that the mempool is always emptied self.transact_and_mine(30, self.nodes[0]) check_estimates(self.nodes[1], self.fees_per_kb, 1) print("Creating transactions and mining them with a block size that can't keep up") # Create transactions and mine 30 small blocks with node 2, but create txs faster than we can mine self.transact_and_mine(20, self.nodes[2]) check_estimates(self.nodes[1], self.fees_per_kb, 3) print("Creating transactions and mining them at a block size that is just big enough") # Generate transactions while mining 40 more blocks, this time with node1 # which mines blocks with capacity just above the rate that transactions are being created self.transact_and_mine(40, self.nodes[1]) check_estimates(self.nodes[1], self.fees_per_kb, 2) # Finish by mining a normal-sized block: while len(self.nodes[1].getrawmempool()) > 0: self.nodes[1].generate(1) sync_blocks(self.nodes[0:3],.1) print("Final estimates after emptying mempools") check_estimates(self.nodes[1], self.fees_per_kb, 2) if __name__ == '__main__': EstimateFeeTest().main()
from __future__ import print_function, division from sympy.core import S, sympify, diff from sympy.core.function import Function, ArgumentIndexError from sympy.core.relational import Eq from sympy.core.logic import fuzzy_not from sympy.polys.polyerrors import PolynomialError from sympy.functions.elementary.complexes import im, sign from sympy.functions.elementary.piecewise import Piecewise ############################################################################### ################################ DELTA FUNCTION ############################### ############################################################################### class DiracDelta(Function): """ The DiracDelta function and its derivatives. DiracDelta function has the following properties: 1) ``diff(Heaviside(x),x) = DiracDelta(x)`` 2) ``integrate(DiracDelta(x-a)*f(x),(x,-oo,oo)) = f(a)`` and ``integrate(DiracDelta(x-a)*f(x),(x,a-e,a+e)) = f(a)`` 3) ``DiracDelta(x) = 0`` for all ``x != 0`` 4) ``DiracDelta(g(x)) = Sum_i(DiracDelta(x-x_i)/abs(g'(x_i)))`` Where ``x_i``-s are the roots of ``g`` Derivatives of ``k``-th order of DiracDelta have the following property: 5) ``DiracDelta(x,k) = 0``, for all ``x != 0`` See Also ======== Heaviside simplify, is_simple sympy.functions.special.tensor_functions.KroneckerDelta References ========== .. [1] http://mathworld.wolfram.com/DeltaFunction.html """ is_real = True def fdiff(self, argindex=1): if argindex == 1: #I didn't know if there is a better way to handle default arguments k = 0 if len(self.args) > 1: k = self.args[1] return self.func(self.args[0], k + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg, k=0): k = sympify(k) if not k.is_Integer or k.is_negative: raise ValueError("Error: the second argument of DiracDelta must be \ a non-negative integer, %s given instead." % (k,)) arg = sympify(arg) if arg is S.NaN: return S.NaN if arg.is_positive or arg.is_negative: return S.Zero def simplify(self, x): """simplify(self, x) Compute a simplified representation of the function using property number 4. x can be: - a symbol Examples ======== >>> from sympy import DiracDelta >>> from sympy.abc import x, y >>> DiracDelta(x*y).simplify(x) DiracDelta(x)/Abs(y) >>> DiracDelta(x*y).simplify(y) DiracDelta(y)/Abs(x) >>> DiracDelta(x**2 + x - 2).simplify(x) DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3 See Also ======== is_simple, Directdelta """ from sympy.polys.polyroots import roots if not self.args[0].has(x) or (len(self.args) > 1 and self.args[1] != 0 ): return self try: argroots = roots(self.args[0], x) result = 0 valid = True darg = abs(diff(self.args[0], x)) for r, m in argroots.items(): if r.is_real is not False and m == 1: result += self.func(x - r)/darg.subs(x, r) else: # don't handle non-real and if m != 1 then # a polynomial will have a zero in the derivative (darg) # at r valid = False break if valid: return result except PolynomialError: pass return self def is_simple(self, x): """is_simple(self, x) Tells whether the argument(args[0]) of DiracDelta is a linear expression in x. x can be: - a symbol Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.abc import x, y >>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True >>> DiracDelta(x**2+x-2).is_simple(x) False >>> DiracDelta(cos(x)).is_simple(x) False See Also ======== simplify, Directdelta """ p = self.args[0].as_poly(x) if p: return p.degree() == 1 return False @staticmethod def _latex_no_arg(printer): return r'\delta' def _sage_(self): import sage.all as sage return sage.dirac_delta(self.args[0]._sage_()) ############################################################################### ############################## HEAVISIDE FUNCTION ############################# ############################################################################### class Heaviside(Function): """Heaviside Piecewise function Heaviside function has the following properties [*]_: 1) ``diff(Heaviside(x),x) = DiracDelta(x)`` ``( 0, if x < 0`` 2) ``Heaviside(x) = < ( undefined if x==0 [*]`` ``( 1, if x > 0`` .. [*] Regarding to the value at 0, Mathematica defines ``H(0) = 1``, but Maple uses ``H(0) = undefined`` See Also ======== DiracDelta References ========== .. [1] http://mathworld.wolfram.com/HeavisideStepFunction.html """ is_real = True def fdiff(self, argindex=1): if argindex == 1: # property number 1 return DiracDelta(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg is S.NaN: return S.NaN elif fuzzy_not(im(arg).is_zero): raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) ) elif arg.is_negative: return S.Zero elif arg.is_positive: return S.One def _eval_rewrite_as_Piecewise(self, arg): if arg.is_real: return Piecewise((1, arg > 0), (S(1)/2, Eq(arg, 0)), (0, True)) def _eval_rewrite_as_sign(self, arg): if arg.is_real: return (sign(arg)+1)/2 def _sage_(self): import sage.all as sage return sage.heaviside(self.args[0]._sage_())
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import getpass import os import uuid from cgroupspy import trees import psutil from airflow.task_runner.base_task_runner import BaseTaskRunner from airflow.utils.helpers import reap_process_group class CgroupTaskRunner(BaseTaskRunner): """ Runs the raw Airflow task in a cgroup that has containment for memory and cpu. It uses the resource requirements defined in the task to construct the settings for the cgroup. Note that this task runner will only work if the Airflow user has root privileges, e.g. if the airflow user is called `airflow` then the following entries (or an even less restrictive ones) are needed in the sudoers file (replacing /CGROUPS_FOLDER with your system's cgroups folder, e.g. '/sys/fs/cgroup/'): airflow ALL= (root) NOEXEC: /bin/chown /CGROUPS_FOLDER/memory/airflow/* airflow ALL= (root) NOEXEC: !/bin/chown /CGROUPS_FOLDER/memory/airflow/*..* airflow ALL= (root) NOEXEC: !/bin/chown /CGROUPS_FOLDER/memory/airflow/* * airflow ALL= (root) NOEXEC: /bin/chown /CGROUPS_FOLDER/cpu/airflow/* airflow ALL= (root) NOEXEC: !/bin/chown /CGROUPS_FOLDER/cpu/airflow/*..* airflow ALL= (root) NOEXEC: !/bin/chown /CGROUPS_FOLDER/cpu/airflow/* * airflow ALL= (root) NOEXEC: /bin/chmod /CGROUPS_FOLDER/memory/airflow/* airflow ALL= (root) NOEXEC: !/bin/chmod /CGROUPS_FOLDER/memory/airflow/*..* airflow ALL= (root) NOEXEC: !/bin/chmod /CGROUPS_FOLDER/memory/airflow/* * airflow ALL= (root) NOEXEC: /bin/chmod /CGROUPS_FOLDER/cpu/airflow/* airflow ALL= (root) NOEXEC: !/bin/chmod /CGROUPS_FOLDER/cpu/airflow/*..* airflow ALL= (root) NOEXEC: !/bin/chmod /CGROUPS_FOLDER/cpu/airflow/* * """ def __init__(self, local_task_job): super(CgroupTaskRunner, self).__init__(local_task_job) self.process = None self._finished_running = False self._cpu_shares = None self._mem_mb_limit = None self._created_cpu_cgroup = False self._created_mem_cgroup = False self._cur_user = getpass.getuser() def _create_cgroup(self, path): """ Create the specified cgroup. :param path: The path of the cgroup to create. E.g. cpu/mygroup/mysubgroup :return: the Node associated with the created cgroup. :rtype: cgroupspy.nodes.Node """ node = trees.Tree().root path_split = path.split(os.sep) for path_element in path_split: name_to_node = {x.name: x for x in node.children} if path_element not in name_to_node: self.log.debug("Creating cgroup %s in %s", path_element, node.path) node = node.create_cgroup(path_element) else: self.log.debug( "Not creating cgroup %s in %s since it already exists", path_element, node.path ) node = name_to_node[path_element] return node def _delete_cgroup(self, path): """ Delete the specified cgroup. :param path: The path of the cgroup to delete. E.g. cpu/mygroup/mysubgroup """ node = trees.Tree().root path_split = path.split("/") for path_element in path_split: name_to_node = {x.name: x for x in node.children} if path_element not in name_to_node: self.log.warning("Cgroup does not exist: %s", path) return else: node = name_to_node[path_element] # node is now the leaf node parent = node.parent self.log.debug("Deleting cgroup %s/%s", parent, node.name) parent.delete_cgroup(node.name) def start(self): # Use bash if it's already in a cgroup cgroups = self._get_cgroup_names() if cgroups["cpu"] != "/" or cgroups["memory"] != "/": self.log.debug( "Already running in a cgroup (cpu: %s memory: %s) so not " "creating another one", cgroups.get("cpu"), cgroups.get("memory") ) self.process = self.run_command(['bash', '-c'], join_args=True) return # Create a unique cgroup name cgroup_name = "airflow/{}/{}".format(datetime.datetime.utcnow(). strftime("%Y-%m-%d"), str(uuid.uuid1())) self.mem_cgroup_name = "memory/{}".format(cgroup_name) self.cpu_cgroup_name = "cpu/{}".format(cgroup_name) # Get the resource requirements from the task task = self._task_instance.task resources = task.resources cpus = resources.cpus.qty self._cpu_shares = cpus * 1024 self._mem_mb_limit = resources.ram.qty # Create the memory cgroup mem_cgroup_node = self._create_cgroup(self.mem_cgroup_name) self._created_mem_cgroup = True if self._mem_mb_limit > 0: self.log.debug( "Setting %s with %s MB of memory", self.mem_cgroup_name, self._mem_mb_limit ) mem_cgroup_node.controller.limit_in_bytes = self._mem_mb_limit * 1024 * 1024 # Create the CPU cgroup cpu_cgroup_node = self._create_cgroup(self.cpu_cgroup_name) self._created_cpu_cgroup = True if self._cpu_shares > 0: self.log.debug( "Setting %s with %s CPU shares", self.cpu_cgroup_name, self._cpu_shares ) cpu_cgroup_node.controller.shares = self._cpu_shares # Start the process w/ cgroups self.log.debug( "Starting task process with cgroups cpu,memory: %s", cgroup_name ) self.process = self.run_command( ['cgexec', '-g', 'cpu,memory:{}'.format(cgroup_name)] ) def return_code(self): return_code = self.process.poll() # TODO(plypaul) Monitoring the the control file in the cgroup fs is better than # checking the return code here. The PR to use this is here: # https://github.com/plypaul/airflow/blob/e144e4d41996300ffa93947f136eab7785b114ed/airflow/contrib/task_runner/cgroup_task_runner.py#L43 # but there were some issues installing the python butter package and # libseccomp-dev on some hosts for some reason. # I wasn't able to track down the root cause of the package install failures, but # we might want to revisit that approach at some other point. if return_code == 137: self.log.warning("Task failed with return code of 137. This may indicate " "that it was killed due to excessive memory usage. " "Please consider optimizing your task or using the " "resources argument to reserve more memory for your task") return return_code def terminate(self): if self.process and psutil.pid_exists(self.process.pid): reap_process_group(self.process.pid, self.log) def on_finish(self): # Let the OOM watcher thread know we're done to avoid false OOM alarms self._finished_running = True # Clean up the cgroups if self._created_mem_cgroup: self._delete_cgroup(self.mem_cgroup_name) if self._created_cpu_cgroup: self._delete_cgroup(self.cpu_cgroup_name) def _get_cgroup_names(self): """ :return: a mapping between the subsystem name to the cgroup name :rtype: dict[str, str] """ with open("/proc/self/cgroup") as f: lines = f.readlines() d = {} for line in lines: line_split = line.rstrip().split(":") subsystem = line_split[1] group_name = line_split[2] d[subsystem] = group_name return d
from npyscreen import BoxBasic, MultiLineEdit, FormBaseNew, MultiLine, notify_confirm import curses import weakref class LogForm(FormBaseNew): def create(self): self.log = self.add(LogView, max_height=self.lines-15, name="Messages", scroll_exit=True) self.optionBox = self.add(FixTextBox, name="Options", editable=False, scroll_exit=True, value="test", max_width=30, rely=self.lines-13) self.optionBox.value = "Press ^L to return" self.infoBox = self.add(InfoBox, name="Information", scroll_exit=True, max_width=self.columns-36, relx=33, rely=self.lines-13) self.add_handlers({"^L": self.show_last, "^Q": self.exit}) def appendMessage(self, msg, info): self.log.addLogMessage(msg, info) def exit(self, *args, **keywords): self.parentApp.change_form(None) def show_last(self, *args, **keywords): self.parentApp.switchFormPrevious() class LogView(MultiLine): infoValues = [] def addLogMessage(self,msg,info): self.values.insert(0,'{0}: {1}'.format(len(self.values), msg)) self.infoValues.insert(0,str(info)) self.value = 0 self.when_value_edited() def when_value_edited(self): try: self.display() infoMsg = self.infoValues[self.value] except: infoMsg = "" try: self.parent.infoBox.value=infoMsg self.parent.infoBox.display() except: notify_confirm(infoMsg) class FixTextBox(BoxBasic): _contained_widget = MultiLineEdit def __init__(self, screen, *args, **keywords): super(FixTextBox, self).__init__(screen, *args, **keywords) self.make_contained_widget() def make_contained_widget(self): self._my_widgets = [] self._my_widgets.append(self._contained_widget(self.parent, rely=self.rely+1, relx = self.relx+2, max_width=self.width-4, max_height=self.height-2, )) self.entry_widget = weakref.proxy(self._my_widgets[0]) def update(self, clear=True): if self.hidden and clear: self.clear() return False elif self.hidden: return False super(FixTextBox, self).update(clear=clear) for w in self._my_widgets: w.update(clear=clear) def edit(self): self.editing=False self.display() #self.entry_widget.edit() #self.value = self.textarea.value self.how_exited = self.entry_widget.how_exited self.editing=False self.display() def get_value(self): if hasattr(self, 'entry_widget'): return self.entry_widget.value elif hasattr(self, '__tmp_value'): return self.__tmp_value else: return None def set_value(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.value = value else: # probably trying to set the value before the textarea is initialised self.__tmp_value = value def del_value(self): del self.entry_widget.value value = property(get_value, set_value, del_value) def get_values(self): if hasattr(self, 'entry_widget'): return self.entry_widget.values elif hasattr(self, '__tmp_value'): return self.__tmp_values else: return None def set_values(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.values = value elif hasattr(self, '__tmp_value'): # probably trying to set the value before the textarea is initialised self.__tmp_values = value def del_values(self): del self.entry_widget.value values = property(get_values, set_values, del_values) def get_editable(self): return False # if hasattr(self, 'entry_widget'): # return False # return self.entry_widget.editable # else: # return None def set_editable(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.editable = value elif hasattr(self, '__tmp_value'): # probably trying to set the value before the textarea is initialised self.__tmp_values = value def del_editable(self): del self.entry_widget.editable editable = property(get_editable, set_editable, del_editable) class InfoBox(BoxBasic): _contained_widget = MultiLineEdit def __init__(self, screen, *args, **keywords): super(InfoBox, self).__init__(screen, *args, **keywords) self.make_contained_widget() def make_contained_widget(self): self._my_widgets = [] self._my_widgets.append(self._contained_widget(self.parent, rely=self.rely+1, relx = self.relx+2, max_width=self.width-4, max_height=self.height-2, )) self.entry_widget = weakref.proxy(self._my_widgets[0]) def update(self, clear=True): if self.hidden and clear: self.clear() return False elif self.hidden: return False super(InfoBox, self).update(clear=clear) for w in self._my_widgets: w.update(clear=clear) def edit(self): self.editing=True self.display() self.entry_widget.edit() #self.value = self.textarea.value self.how_exited = self.entry_widget.how_exited self.editing=False self.display() def get_value(self): if hasattr(self, 'entry_widget'): return self.entry_widget.value elif hasattr(self, '__tmp_value'): return self.__tmp_value else: return None def set_value(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.value = value else: # probably trying to set the value before the textarea is initialised self.__tmp_value = value def del_value(self): del self.entry_widget.value value = property(get_value, set_value, del_value) def get_values(self): if hasattr(self, 'entry_widget'): return self.entry_widget.values elif hasattr(self, '__tmp_value'): return self.__tmp_values else: return None def set_values(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.values = value elif hasattr(self, '__tmp_value'): # probably trying to set the value before the textarea is initialised self.__tmp_values = value def del_values(self): del self.entry_widget.value values = property(get_values, set_values, del_values) def get_editable(self): if hasattr(self, 'entry_widget'): # return False return self.entry_widget.editable else: return None def set_editable(self, value): if hasattr(self, 'entry_widget'): self.entry_widget.editable = value elif hasattr(self, '__tmp_value'): # probably trying to set the value before the textarea is initialised self.__tmp_values = value def del_editable(self): del self.entry_widget.editable editable = property(get_editable, set_editable, del_editable)
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.ads.googleads.v9.resources.types import detail_placement_view from google.ads.googleads.v9.services.types import detail_placement_view_service from .transports.base import ( DetailPlacementViewServiceTransport, DEFAULT_CLIENT_INFO, ) from .transports.grpc import DetailPlacementViewServiceGrpcTransport class DetailPlacementViewServiceClientMeta(type): """Metaclass for the DetailPlacementViewService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[DetailPlacementViewServiceTransport]] _transport_registry["grpc"] = DetailPlacementViewServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[DetailPlacementViewServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class DetailPlacementViewServiceClient( metaclass=DetailPlacementViewServiceClientMeta ): """Service to fetch Detail Placement views.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: DetailPlacementViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: DetailPlacementViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> DetailPlacementViewServiceTransport: """Return the transport used by the client instance. Returns: DetailPlacementViewServiceTransport: The transport used by the client instance. """ return self._transport def __enter__(self): return self def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close() @staticmethod def detail_placement_view_path( customer_id: str, ad_group_id: str, base64_placement: str, ) -> str: """Return a fully-qualified detail_placement_view string.""" return "customers/{customer_id}/detailPlacementViews/{ad_group_id}~{base64_placement}".format( customer_id=customer_id, ad_group_id=ad_group_id, base64_placement=base64_placement, ) @staticmethod def parse_detail_placement_view_path(path: str) -> Dict[str, str]: """Parse a detail_placement_view path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/detailPlacementViews/(?P<ad_group_id>.+?)~(?P<base64_placement>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[str, DetailPlacementViewServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the detail placement view service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.DetailPlacementViewServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. if os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") not in ( "true", "false", ): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) use_client_cert = ( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") == "true" ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, DetailPlacementViewServiceTransport): # transport is a DetailPlacementViewServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = DetailPlacementViewServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_detail_placement_view( self, request: Union[ detail_placement_view_service.GetDetailPlacementViewRequest, dict ] = None, *, resource_name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> detail_placement_view.DetailPlacementView: r"""Returns the requested Detail Placement view in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Args: request (Union[google.ads.googleads.v9.services.types.GetDetailPlacementViewRequest, dict]): The request object. Request message for [DetailPlacementViewService.GetDetailPlacementView][google.ads.googleads.v9.services.DetailPlacementViewService.GetDetailPlacementView]. resource_name (:class:`str`): Required. The resource name of the Detail Placement view to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v9.resources.types.DetailPlacementView: A view with metrics aggregated by ad group and URL or YouTube video. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a detail_placement_view_service.GetDetailPlacementViewRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, detail_placement_view_service.GetDetailPlacementViewRequest ): request = detail_placement_view_service.GetDetailPlacementViewRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_detail_placement_view ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("DetailPlacementViewServiceClient",)
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow-related utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import numpy as np import six from tensorflow.python.data.experimental.ops import cardinality from tensorflow.python.eager import context from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.framework import type_spec from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils import tf_contextlib from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import ragged_tensor_value from tensorflow.python.util import nest from tensorflow.python.util import object_identity def is_tensor_or_tensor_list(v): v = nest.flatten(v) if v and isinstance(v[0], ops.Tensor): return True else: return False def get_reachable_from_inputs(inputs, targets=None): """Returns the set of tensors/ops reachable from `inputs`. Stops if all targets have been found (target is optional). Only valid in Symbolic mode, not Eager mode. Args: inputs: List of tensors. targets: List of tensors. Returns: A set of tensors reachable from the inputs (includes the inputs themselves). """ inputs = nest.flatten(inputs, expand_composites=True) reachable = object_identity.ObjectIdentitySet(inputs) if targets: remaining_targets = object_identity.ObjectIdentitySet(nest.flatten(targets)) queue = inputs[:] while queue: x = queue.pop() if isinstance(x, tuple(_user_convertible_tensor_types)): # Can't find consumers of user-specific types. continue if isinstance(x, ops.Operation): outputs = x.outputs[:] or [] outputs += x._control_outputs # pylint: disable=protected-access elif isinstance(x, variables.Variable): try: outputs = [x.op] except AttributeError: # Variables can be created in an Eager context. outputs = [] elif tensor_util.is_tensor(x): outputs = x.consumers() else: raise TypeError('Expected Operation, Variable, or Tensor, got ' + str(x)) for y in outputs: if y not in reachable: reachable.add(y) if targets: remaining_targets.discard(y) queue.insert(0, y) if targets and not remaining_targets: return reachable return reachable # This function needs access to private functions of `nest`. # pylint: disable=protected-access def map_structure_with_atomic(is_atomic_fn, map_fn, nested): """Maps the atomic elements of a nested structure. Arguments: is_atomic_fn: A function that determines if an element of `nested` is atomic. map_fn: The function to apply to atomic elements of `nested`. nested: A nested structure. Returns: The nested structure, with atomic elements mapped according to `map_fn`. Raises: ValueError: If an element that is neither atomic nor a sequence is encountered. """ if is_atomic_fn(nested): return map_fn(nested) # Recursively convert. if not nest.is_nested(nested): raise ValueError( 'Received non-atomic and non-sequence element: {}'.format(nested)) if nest._is_mapping(nested): values = [nested[k] for k in nest._sorted(nested)] elif nest._is_attrs(nested): values = _astuple(nested) else: values = nested mapped_values = [ map_structure_with_atomic(is_atomic_fn, map_fn, ele) for ele in values ] return nest._sequence_like(nested, mapped_values) def get_shapes(tensors): """Gets shapes from tensors.""" return nest.map_structure(lambda x: x.shape, tensors) # pylint: enable=protected-access def convert_shapes(input_shape, to_tuples=True): """Converts nested shape representations to desired format. Performs: TensorShapes -> tuples if `to_tuples=True`. tuples of int or None -> TensorShapes if `to_tuples=False`. Valid objects to be converted are: - TensorShapes - tuples with elements of type int or None. - ints - None Arguments: input_shape: A nested structure of objects to be converted to TensorShapes. to_tuples: If `True`, converts all TensorShape to tuples. Otherwise converts all tuples representing shapes to TensorShapes. Returns: Nested structure of shapes in desired format. Raises: ValueError: when the input tensor shape can't be converted to tuples, eg unknown tensor shape. """ def _is_shape_component(value): return value is None or isinstance(value, (int, tensor_shape.Dimension)) def _is_atomic_shape(input_shape): # Ex: TensorShape or (None, 10, 32) or 5 or `None` if _is_shape_component(input_shape): return True if isinstance(input_shape, tensor_shape.TensorShape): return True if (isinstance(input_shape, (tuple, list)) and all(_is_shape_component(ele) for ele in input_shape)): return True return False def _convert_shape(input_shape): input_shape = tensor_shape.TensorShape(input_shape) if to_tuples: input_shape = tuple(input_shape.as_list()) return input_shape return map_structure_with_atomic(_is_atomic_shape, _convert_shape, input_shape) class ListWrapper(object): """A wrapper for lists to be treated as elements for `nest`.""" def __init__(self, list_to_wrap): self._list = list_to_wrap def as_list(self): return self._list def convert_inner_node_data(nested, wrap=False): """Either wraps or unwraps innermost node data lists in `ListWrapper` objects. Arguments: nested: A nested data structure. wrap: If `True`, wrap innermost lists in `ListWrapper` objects. If `False`, unwraps `ListWrapper` objects into lists. Returns: Structure of same type as nested, with lists wrapped/unwrapped. """ def _is_serialized_node_data(nested): # Node data can be of form `[layer_name, node_id, tensor_id]` or # `[layer_name, node_id, tensor_id, kwargs]`. if (isinstance(nested, list) and (len(nested) in [3, 4]) and isinstance(nested[0], six.string_types)): return True return False def _is_atomic_nested(nested): """Returns `True` if `nested` is a list representing node data.""" if isinstance(nested, ListWrapper): return True if _is_serialized_node_data(nested): return True return not nest.is_nested(nested) def _convert_object_or_list(nested): """Convert b/t `ListWrapper` object and list representations.""" if wrap: if isinstance(nested, ListWrapper): return nested if _is_serialized_node_data(nested): return ListWrapper(nested) return nested else: if isinstance(nested, ListWrapper): return nested.as_list() return nested return map_structure_with_atomic(_is_atomic_nested, _convert_object_or_list, nested) def shape_type_conversion(fn): """Decorator that handles tuple/TensorShape conversion. Used in `compute_output_shape` and `build`. Arguments: fn: function to wrap. Returns: Wrapped function. """ def wrapper(instance, input_shape): # Pass shapes as tuples to `fn` # This preserves compatibility with external Keras. if input_shape is not None: input_shape = convert_shapes(input_shape, to_tuples=True) output_shape = fn(instance, input_shape) # Return shapes from `fn` as TensorShapes. if output_shape is not None: output_shape = convert_shapes(output_shape, to_tuples=False) return output_shape return wrapper def are_all_symbolic_tensors(tensors): return all(map(is_symbolic_tensor, tensors)) _user_convertible_tensor_types = set() def is_extension_type(tensor): """Returns whether a tensor is of an ExtensionType. github.com/tensorflow/community/pull/269 Currently it works by checking if `tensor` is a `CompositeTensor` instance, but this will be changed to use an appropriate extensiontype protocol check once ExtensionType is made public. Arguments: tensor: An object to test Returns: True if the tensor is an extension type object, false if not. """ return isinstance(tensor, composite_tensor.CompositeTensor) def is_symbolic_tensor(tensor): """Returns whether a tensor is symbolic (from a TF graph) or an eager tensor. A Variable can be seen as either: it is considered symbolic when we are in a graph scope, and eager when we are in an eager scope. Arguments: tensor: A tensor instance to test. Returns: True for symbolic tensors, False for eager tensors. """ if isinstance(tensor, ops.Tensor): return hasattr(tensor, 'graph') elif is_extension_type(tensor): component_tensors = nest.flatten(tensor, expand_composites=True) return any(hasattr(t, 'graph') for t in component_tensors) elif isinstance(tensor, variables.Variable): # Variables that are output of a Keras Layer in Functional API mode # should be considered symbolic. # TODO(omalleyt): We need a better way to check this in order to # enable `run_eagerly=True` for Models containing Layers that # return Variables as outputs. return (getattr(tensor, '_keras_history', False) or not context.executing_eagerly()) elif isinstance(tensor, tuple(_user_convertible_tensor_types)): tensor = ops.convert_to_tensor_or_composite(tensor) return is_symbolic_tensor(tensor) else: return False def register_symbolic_tensor_type(cls): """Allows users to specify types regarded as symbolic `Tensor`s. Used in conjunction with `tf.register_tensor_conversion_function`, calling `tf.keras.utils.register_symbolic_tensor_type(cls)` allows non-`Tensor` objects to be plumbed through Keras layers. Example: ```python # One-time setup. class Foo(object): def __init__(self, input_): self._input = input_ def value(self): return tf.constant(42.) tf.register_tensor_conversion_function( Foo, lambda x, *args, **kwargs: x.value()) tf.keras.utils.register_symbolic_tensor_type(Foo) # User-land. layer = tf.keras.layers.Lambda(lambda input_: Foo(input_)) ``` Arguments: cls: A `class` type which shall be regarded as a symbolic `Tensor`. """ global _user_convertible_tensor_types _user_convertible_tensor_types.add(cls) def type_spec_from_value(value): """Grab type_spec without converting array-likes to tensors.""" if is_extension_type(value): return value._type_spec # pylint: disable=protected-access # Get a TensorSpec for array-like data without # converting the data to a Tensor if hasattr(value, 'shape') and hasattr(value, 'dtype'): return tensor_spec.TensorSpec(value.shape, value.dtype) else: return type_spec.type_spec_from_value(value) def is_ragged(tensor): """Returns true if `tensor` is a ragged tensor or ragged tensor value.""" return isinstance( tensor, (ragged_tensor.RaggedTensor, ragged_tensor_value.RaggedTensorValue)) def is_tensor_or_variable(x): return tensor_util.is_tensor(x) or isinstance(x, variables.Variable) def assert_no_legacy_layers(layers): """Prevent tf.layers.Layers from being used with Keras. Certain legacy layers inherit from their keras analogs; however they are not supported with keras and can lead to subtle and hard to diagnose bugs. Args: layers: A list of layers to check Raises: TypeError: If any elements of layers are tf.layers.Layers """ # isinstance check for tf.layers.Layer introduces a circular dependency. legacy_layers = [l for l in layers if getattr(l, '_is_legacy_layer', None)] if legacy_layers: layer_str = '\n'.join(' ' + str(l) for l in legacy_layers) raise TypeError( 'The following are legacy tf.layers.Layers:\n{}\nTo use keras as a ' 'framework (for instance using the Network, Model, or Sequential ' 'classes), please use the tf.keras.layers implementation instead. ' '(Or, if writing custom layers, subclass from tf.keras.layers rather ' 'than tf.layers)'.format(layer_str)) @tf_contextlib.contextmanager def maybe_init_scope(layer): """Open an `init_scope` if in V2 mode and using the keras graph. Arguments: layer: The Layer/Model that is currently active. Yields: None """ # Don't open an init_scope in V1 mode or when using legacy tf.layers. if (ops.executing_eagerly_outside_functions() and getattr(layer, '_keras_style', True)): with ops.init_scope(): yield else: yield @tf_contextlib.contextmanager def graph_context_for_symbolic_tensors(*args, **kwargs): """Returns graph context manager if any of the inputs is a symbolic tensor.""" if any(is_symbolic_tensor(v) for v in list(args) + list(kwargs.values())): with K.get_graph().as_default(): yield else: yield def dataset_is_infinite(dataset): """True if the passed dataset is infinite.""" if ops.executing_eagerly_outside_functions(): return math_ops.equal( cardinality.cardinality(dataset), cardinality.INFINITE) else: dataset_size = K.get_session().run(cardinality.cardinality(dataset)) return dataset_size == cardinality.INFINITE def get_tensor_spec(t, dynamic_batch=False, name=None): """Returns a `TensorSpec` given a single `Tensor` or `TensorSpec`.""" # pylint: disable=protected-access if isinstance(t, type_spec.TypeSpec): spec = t elif is_extension_type(t): # TODO(b/148821952): Should these specs have a name attr? spec = t._type_spec elif (hasattr(t, '_keras_history') and hasattr(t._keras_history[0], '_type_spec')): return t._keras_history[0]._type_spec elif hasattr(t, 'shape') and hasattr(t, 'dtype'): spec = tensor_spec.TensorSpec(shape=t.shape, dtype=t.dtype, name=name) else: return None # Allow non-Tensors to pass through. if not dynamic_batch: return spec dynamic_batch_spec = copy.deepcopy(spec) # RaggedTensorSpec only has a private _shape. shape = dynamic_batch_spec._shape.as_list() if shape: shape[0] = None dynamic_batch_spec._shape = tensor_shape.TensorShape(shape) return dynamic_batch_spec # pylint: enable=protected-access def to_numpy_or_python_type(tensors): """Converts a structure of `Tensor`s to `NumPy` arrays or Python scalar types. For each tensor, it calls `tensor.numpy()`. If the result is a scalar value, it converts it to a Python type, such as a float or int, by calling `result.item()`. Numpy scalars are converted, as Python types are often more convenient to deal with. This is especially useful for bfloat16 Numpy scalars, which don't support as many operations as other Numpy values. Args: tensors: A structure of tensors. Returns: `tensors`, but scalar tensors are converted to Python types and non-scalar tensors are converted to Numpy arrays. """ def _to_single_numpy_or_python_type(t): if isinstance(t, ops.Tensor): x = t.numpy() return x.item() if np.ndim(x) == 0 else x return t # Don't turn ragged or sparse tensors to NumPy. return nest.map_structure(_to_single_numpy_or_python_type, tensors) def _astuple(attrs): """Converts the given attrs to tuple non-recursively.""" cls = type(attrs) fields = getattr(cls, '__attrs_attrs__', None) if fields is None: raise ValueError('%r is not an attrs-decorated class.' % cls) values = [] for field in fields: values.append(getattr(attrs, field.name)) return tuple(values)
from SimPEG.utils import ndgrid, mkvc, sdiag import discretize import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm def casing_currents(j, mesh, model_parameters): """ Compute the current (A) within the casing :param numpy.ndarray j: current density :param discretize.BaseMesh mesh: the discretize mesh which the casing is on :param casingSimulations.model.BaseCasingParametersMixin: a model with casing :return: :code:`(ix_casing, iz_casing)` """ casing_a = model_parameters.casing_a casing_b = model_parameters.casing_b casing_z = model_parameters.casing_z IxCasing = {} IzCasing = {} casing_faces_x = ( (mesh.gridFx[:, 0] >= casing_a) & (mesh.gridFx[:, 0] <= casing_b) & (mesh.gridFx[:, 2] <= casing_z[1]) & (mesh.gridFx[:, 2] >= casing_z[0]) ) casing_faces_y = np.zeros(mesh.nFy, dtype=bool) casing_faces_z = ( (mesh.gridFz[:, 0] >= casing_a) & (mesh.gridFz[:, 0] <= casing_b) & (mesh.gridFz[:, 2] <= casing_z[1]) & (mesh.gridFz[:, 2] >= casing_z[0]) ) jA = sdiag(mesh.area) * j jACasing = sdiag( np.hstack([casing_faces_x, casing_faces_y, casing_faces_z]) ) * jA jxCasing = jACasing[:mesh.nFx, :].reshape( mesh.vnFx[0], mesh.vnFx[1], mesh.vnFx[2], order='F' ) jzCasing = jACasing[mesh.nFx + mesh.nFy:, :].reshape( mesh.vnFz[0], mesh.vnFz[1], mesh.vnFz[2], order='F' ) ixCasing = jxCasing.sum(0).sum(0) izCasing = jzCasing.sum(0).sum(0) ix_inds = (mesh.vectorCCz > casing_z[0]) & (mesh.vectorCCz < casing_z[1]) z_ix = mesh.vectorCCz[ix_inds] iz_inds = (mesh.vectorNz > casing_z[0]) & (mesh.vectorNz < casing_z[1]) z_iz = mesh.vectorNz[iz_inds] return {"x": (z_ix, ixCasing[ix_inds]), "z": (z_iz, izCasing[iz_inds])} def casing_charges(charge, mesh, model_parameters): casing_inds = ( (mesh.gridCC[:, 0] >= -model_parameters.casing_b-mesh.hx.min()) & (mesh.gridCC[:, 0] <= model_parameters.casing_b+mesh.hx.min()) & (mesh.gridCC[:, 2] < model_parameters.casing_z[1]) & (mesh.gridCC[:, 2] > model_parameters.casing_z[0]) ) charge[~casing_inds] = 0. charge = charge.reshape(mesh.vnC, order='F').sum(0).sum(0) z_inds = ( (mesh.vectorCCz > model_parameters.casing_z[0]) & (mesh.vectorCCz < model_parameters.casing_z[1]) ) z = mesh.vectorCCz[z_inds] return z, charge[z_inds] def plotCurrentDensity( mesh, fields_j, saveFig=False, figsize=(4, 5), fontsize=12, csx=5., csz=5., xmax=1000., zmin=0., zmax=-1200., real_or_imag='real', mirror=False, ax=None, fig=None, clim=None ): csx, ncx = csx, np.ceil(xmax/csx) csz, ncz = csz, np.ceil((zmin-zmax)/csz) if mirror is True: xlim = [-xmax, xmax] x0 = [-xmax, -csx/2., zmax] ncx *= 2. else: xlim = [0., xmax] x0 = [0, -csx/2., zmax] ylim = [zmax, zmin] # define the tensor mesh meshcart = discretize.TensorMesh( [[(csx, ncx)], [(csx, 1)], [(csz, ncz)]], x0 ) projF = mesh.getInterpolationMatCartMesh(meshcart, 'F') jcart = projF*fields_j jcart = getattr(jcart, real_or_imag) if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) if saveFig is True: # this looks obnoxious inline, but nice in the saved png f = meshcart.plotSlice( jcart, normal='Y', vType='F', view='vec', pcolorOpts={ 'norm': LogNorm(), 'cmap': plt.get_cmap('viridis') }, streamOpts={'arrowsize': 6, 'color': 'k'}, ax=ax ) else: f = meshcart.plotSlice( jcart, normal='Y', vType='F', view='vec', pcolorOpts={ 'norm': LogNorm(), 'cmap': plt.get_cmap('viridis') }, ax=ax ) plt.colorbar( f[0], label='{} current density (A/m$^2$)'.format( real_or_imag ) ) if clim is not None: f.set_clim(clim) ax.set_ylim(ylim) ax.set_xlim(xlim) # ax.set_title('Current Density') ax.set_xlabel('radius (m)', fontsize=fontsize) ax.set_ylabel('z (m)', fontsize=fontsize) if saveFig is True: fig.savefig('primaryCurrents', dpi=300, bbox_inches='tight') return ax def plot_currents_over_freq( IxCasing, IzCasing, modelParameters, mesh, mur=1, subtract=None, real_or_imag='real', ax=None, xlim=[-1100., 0.], logScale=True, srcinds=[0], ylim_0=None, ylim_1=None ): print("mu = {} mu_0".format(mur)) ixCasing = IxCasing[mur] izCasing = IzCasing[mur] if ax is None: fig, ax = plt.subplots(2, 1, figsize=(10, 8)) for a in ax: a.grid( which='both', linestyle='-', linewidth=0.4, color=[0.8, 0.8, 0.8], alpha=0.5 ) # getattr(a, 'semilogy' if logScale is True else 'plot')( # [modelParameters.src_a[2], modelParameters.src_a[2]], [1e-14, 1], color=[0.3, 0.3, 0.3] # ) a.set_xlim(xlim) a.invert_xaxis() col = ['b', 'g', 'r', 'c', 'm', 'y'] pos_linestyle = ['-', '-'] neg_linestyle = ['--', '--'] leg = [] for i, f in enumerate(modelParameters.freqs): for srcind in srcinds: # src = survey.getSrcByFreq(survey.freqs[freqind])[srcind] # j = mkvc(fields[mur][src, 'j'].copy()) Iind = i + srcind*len(modelParameters.freqs) Ix, Iz = ixCasing[Iind].copy(), izCasing[Iind].copy() if subtract is not None: Ix += -IxCasing[subtract][Iind].copy() Iz += -IzCasing[subtract][Iind].copy() Ix_plt = getattr(Ix, real_or_imag) Iz_plt = getattr(Iz, real_or_imag) if logScale is True: ax0 = ax[0].semilogy( mesh.vectorNz, Iz_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} Hz".format(f) ) ax[0].semilogy( mesh.vectorNz, -Iz_plt, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( mesh.vectorCCz, Ix_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( mesh.vectorCCz, -Ix_plt, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) else: ax0 = ax[0].plot( mesh.vectorNz, Iz_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} Hz".format(f) ) ax[1].plot( mesh.vectorCCz, Ix_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) leg.append(ax0) if ylim_0 is not None: ax[0].set_ylim(ylim_0) if ylim_1 is not None: ax[1].set_ylim(ylim_1) ax[0].legend(bbox_to_anchor=[1.25, 1]) # plt.show() return ax # plot current density over mu def plot_currents_over_mu( IxCasing, IzCasing, modelParameters, mesh, freqind=0, real_or_imag='real', subtract=None, ax=None, fig=None, logScale=True, srcinds=[0], ylim_0=None, ylim_1=None ): print("{} Hz".format(modelParameters.freqs[freqind])) if ax is None: fig, ax = plt.subplots(2, 1, figsize=(10, 8)) for a in ax: a.grid( which='both', linestyle='-', linewidth=0.4, color=[0.8, 0.8, 0.8], alpha=0.5 ) # getattr(a, 'semilogy' if logScale is True else 'plot')( # [modelParameters.src_a[2], modelParameters.src_a[2]], [1e-14, 1], color=[0.3, 0.3, 0.3] # ) a.set_xlim([-1100., 0.]) # a.set_ylim([1e-3, 1.]) a.invert_xaxis() col = ['b', 'g', 'r', 'c', 'm', 'y'] pos_linestyle = ['-', '-'] neg_linestyle = ['--', '--'] leg = [] for i, mur in enumerate(modelParameters.muModels): for srcind in srcinds: Iind = i + srcind*len(modelParameters.freqs) ixCasing = IxCasing[mur] izCasing = IzCasing[mur] Ix, Iz = ixCasing[Iind].copy(), izCasing[Iind].copy() if subtract is not None: Ix = Ix - IxCasing[subtract][Iind] Iz = Iz - IzCasing[subtract][Iind] Iz_plt = getattr(Iz, real_or_imag) Ix_plt = getattr(Ix, real_or_imag) if logScale is True: ax0 = ax[0].semilogy( mesh.vectorNz, Iz_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[0].semilogy( mesh.vectorNz, -Iz_plt, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( mesh.vectorCCz, Ix_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( mesh.vectorCCz, -Ix_plt, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) else: ax0 = ax[0].plot( mesh.vectorNz, Iz_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[1].plot( mesh.vectorCCz, Ix_plt, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) leg.append(ax0) if ylim_0 is not None: ax[0].set_ylim(ylim_0) if ylim_1 is not None: ax[1].set_ylim(ylim_1) ax[0].legend(bbox_to_anchor=[1.25, 1]) # plt.show() return ax # plot over mu def plot_j_over_mu_z( modelParameters, fields, mesh, survey, freqind=0, r=1., xlim=[-1100., 0.], real_or_imag='real', subtract=None, ax=None, logScale=True, srcinds=[0], ylim_0=None, ylim_1=None, fig=None ): print("{} Hz".format(modelParameters.freqs[freqind])) x_plt = np.r_[r] z_plt = np.linspace(xlim[0], xlim[1], int(xlim[1]-xlim[0])) XYZ = ndgrid(x_plt, np.r_[0], z_plt) Pfx = mesh.getInterpolationMat(XYZ, 'Fx') Pfz = mesh.getInterpolationMat(XYZ, 'Fz') Pc = mesh.getInterpolationMat(XYZ, 'CC') Zero = sp.csr_matrix(Pc.shape) Pcx, Pcz = sp.hstack([Pc, Zero]), sp.hstack([Zero, Pc]) if ax is None: fig, ax = plt.subplots(2, 1, figsize=(10, 8)) for a in ax: a.grid( which='both', linestyle='-', linewidth=0.4, color=[0.8, 0.8, 0.8], alpha=0.5 ) # getattr(a, 'semilogy' if logScale is True else 'plot')( # [modelParameters.src_a[2], modelParameters.src_a[2]], [1e-14, 1], color=[0.3, 0.3, 0.3] # ) a.set_xlim(xlim) a.invert_xaxis() col = ['b', 'g', 'r', 'c', 'm', 'y'] pos_linestyle = ['-', '-'] neg_linestyle = ['--', '--'] leg = [] for i, mur in enumerate(modelParameters.muModels): for srcind in srcinds: src = survey.getSrcByFreq(survey.freqs[freqind])[srcind] j = mkvc(fields[mur][src, 'j'].copy()) if subtract is not None: j = j - mkvc( fields[subtract][src, 'j'].copy() ) if real_or_imag == 'real': j = j.real else: j = j.imag jx, jz = Pfx * j, Pfz * j if logScale is True: ax0 = ax[0].semilogy( z_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[0].semilogy( z_plt, -jz, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( z_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( z_plt, -jx, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) else: ax0 = ax[0].plot( z_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[1].plot( z_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) leg.append(ax0) if ylim_0 is not None: ax[0].set_ylim(ylim_0) if ylim_1 is not None: ax[1].set_ylim(ylim_1) ax[0].legend(bbox_to_anchor=[1.25, 1]) return ax # plot over mu def plot_j_over_freq_z( modelParameters, fields, mesh, survey, mur=1., r=1., xlim=[-1100., 0.], real_or_imag='real', subtract=None, ax=None, logScale=True, srcinds=[0], ylim_0=None, ylim_1=None, fig=None ): print("mu = {} mu_0".format(mur)) x_plt = np.r_[r] z_plt = np.linspace(xlim[0], xlim[1], int(xlim[1]-xlim[0])) XYZ = ndgrid(x_plt, np.r_[0], z_plt) Pfx = mesh.getInterpolationMat(XYZ, 'Fx') Pfz = mesh.getInterpolationMat(XYZ, 'Fz') Pc = mesh.getInterpolationMat(XYZ, 'CC') Zero = sp.csr_matrix(Pc.shape) Pcx, Pcz = sp.hstack([Pc, Zero]), sp.hstack([Zero, Pc]) if ax is None: fig, ax = plt.subplots(2, 1, figsize=(10, 8)) for a in ax: a.grid( which='both', linestyle='-', linewidth=0.4, color=[0.8, 0.8, 0.8], alpha=0.5 ) a.set_xlim(xlim) a.invert_xaxis() col = ['b', 'g', 'r', 'c', 'm', 'y'] pos_linestyle = ['-', '-'] neg_linestyle = ['--', '--'] leg = [] for i, freq in enumerate(modelParameters.freqs): for srcind in srcinds: src = survey.getSrcByFreq(freq)[srcind] j = mkvc(fields[mur][src, 'j'].copy()) if subtract is not None: j = j - mkvc( fields[subtract][src, 'j'].copy() ) if real_or_imag == 'real': j = j.real else: j = j.imag jx, jz = Pfx * j, Pfz * j if logScale is True: ax0 = ax[0].semilogy( z_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} Hz".format(freq) ) ax[0].semilogy( z_plt, -jz, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( z_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) ax[1].semilogy( z_plt, -jx, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) else: ax0 = ax[0].plot( z_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[1].plot( z_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ) ) leg.append(ax0) if ylim_0 is not None: ax[0].set_ylim(ylim_0) if ylim_1 is not None: ax[1].set_ylim(ylim_1) ax[0].legend(bbox_to_anchor=[1.25, 1]) return ax # plot over mu def plot_j_over_mu_x( modelParameters, fields, mesh, survey, srcind=0, mur=1, z=-950., real_or_imag='real', subtract=None, xlim=[0., 2000.], logScale=True, srcinds=[0], ylim_0=None, ylim_1=None, ax=None, fig=None ): print("mu = {} mu_0".format(mur)) x_plt = np.linspace(xlim[0], xlim[1], xlim[1]) z_plt = np.r_[z] XYZ = ndgrid(x_plt, np.r_[0], z_plt) Pfx = mesh.getInterpolationMat(XYZ, 'Fx') Pfz = mesh.getInterpolationMat(XYZ, 'Fz') Pc = mesh.getInterpolationMat(XYZ, 'CC') Zero = sp.csr_matrix(Pc.shape) Pcx, Pcz = sp.hstack([Pc, Zero]), sp.hstack([Zero, Pc]) if ax is None: fig, ax = plt.subplots(2, 1, figsize=(10, 8)) for a in ax: a.grid( which='both', linestyle='-', linewidth=0.4, color=[0.8, 0.8, 0.8], alpha=0.5 ) # a.semilogy([src_a[2], src_a[2]], [1e-14, 1], color=[0.3, 0.3, 0.3]) a.set_xlim(xlim) # a.invert_xaxis() col = ['b', 'g', 'r', 'c', 'm', 'y'] pos_linestyle = ['-', '-'] neg_linestyle = ['--', '--'] leg = [] for i, f in enumerate(modelParameters.freqs): for srcind in srcinds: src = survey.getSrcByFreq(survey.freqs[freqind])[srcind] j = mkvc(fields[mur][src, 'j'].copy()) if subtract is not None: j = j - mkvc( fields[subtract][src, 'j'].copy() ) if real_or_imag == 'real': j = j.real else: j = j.imag jx, jz = Pfx * j, Pfz * j if logScale is True: if np.any(jz > 0): ax0 = ax[0].semilogy( x_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) if np.any(jz < 0): ax[0].semilogy( x_plt, -jz, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) if np.any(jx > 0): ax[1].semilogy(x_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] )) if np.any(jx < 0): ax[1].semilogy( x_plt, -jx, '{linestyle}{color}'.format( linestyle=neg_linestyle[srcind], color=col[i] ) ) else: ax0 = ax[0].plot( x_plt, jz, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] ), label="{} $\mu_0$".format(mur) ) ax[1].semilogy(x_plt, jx, '{linestyle}{color}'.format( linestyle=pos_linestyle[srcind], color=col[i] )) leg.append(ax0) if ylim_0 is not None: ax[0].set_ylim(ylim_0) if ylim_1 is not None: ax[1].set_ylim(ylim_1) ax[0].legend(bbox_to_anchor=[1.25, 1]) return ax
# -*- coding: utf-8 -*- """ Created on Thu Jul 16 11:19:03 2015 @author: ibackus """ import warnings import logging import os import glob import fnmatch import numpy as np import pynbody as pb SimArray = pb.array.SimArray import logging def configparser(fname,ftype='auto'): """ -------------------------------------------------- parameters = configparser(fname,ftype='auto') Tries to parse ChaNGa configuration files ftype can be 'auto', 'param', or 'director'. If auto, config parser will try to determine the filetype on its own. returns: dictionary 'parameters'. The keys are the names of the parameters and the values are the values defined in the file fname -------------------------------------------------- """ types = np.array(['param','director']) ftype = ftype.lower() param = {} if ftype == 'auto': # Try using extension to determine file type a = fname.split('.') ftype = a[-1].lower() if np.sum(types == ftype) == 0: # Could not find file type print ('Could not determine config filetype...exiting') return param # Try to determine filetype # -------------------------------------------------- # Parse param file # -------------------------------------------------- if ftype == 'param': farray = np.genfromtxt(fname,delimiter='=',dtype=None) for n in range(len(farray)): param[farray[n,0].strip()] = str2num(farray[n,1].strip()) # -------------------------------------------------- # Parse director file # -------------------------------------------------- elif ftype == 'director': f = open(fname,'r') f.seek(0) for line in f: a = line.strip().split() if len(a) == 1: # we're dealing with a flag param[a[0]] = str2num(a[0]) elif len(a) > 1: param[a[0]] = str2num(a[1:]) else: # This is an empty line pass f.close() # -------------------------------------------------- # Throw warning, return 'param' as empty # -------------------------------------------------- else: warnings.warn('Still cannot determine filetype.') return param def logparser(fname, verbose=False): """ Parses a ChaNGa log file to find run-time parameters. Also returns the header under the key 'header' Parameters ---------- fname : str Filename of the log file to open verbose : bool (optional) If True, prints all the parameters Returns ------- param : dict Dictionary of the parameters See Also -------- configparser """ header = [] with open(fname,'r') as f: # Parse until finding parameters found = False while not found: line = f.readline().strip() if line[0] != '#': raise RuntimeError, 'Could not find parameters' line = line.strip('#').strip() if line == 'Parameters:': found = True else: header.append(line) # Now read in parameters done = False param = {'header': header} while not done: line = f.readline().strip() if line[0] != '#': raise RuntimeError, 'Expected # at beginning of line: ' + line if ':' not in line: done = True else: line = line.strip('#').strip() k, v = line.split(': ') v = str2num(v) param[k] = v if verbose: print k, v return param def configsave(param,filename,ftype='auto'): """ -------------------------------------------------- Saves parameters defined by param (see configparser) to filename. Possible ftypes are 'director' and 'param'. If set to auto, configsave tries to guess file type from the extension. -------------------------------------------------- """ f = open(filename,'w') ftype = ftype.lower() if ftype == 'auto': # Try to figure out filetype a = filename.split('.') ftype = a[-1].lower() if ftype == 'param': pars = sorted(param.iteritems()) for n in range(len(pars)): f.write('{0:25s}= {1}\n'.format(pars[n][0],pars[n][1])) elif ftype == 'director': values = param.values() keys = param.keys() for n in range(len(keys)): outstr = keys[n] if outstr == values[n]: # We just have a flag pass elif isinstance(values[n],(float,int,str)): outstr = outstr + ' {0}'.format(values[n]) else: outstr = outstr + ' ' + ' '.join(map(str,values[n])) f.write('{0}\n'.format(outstr)) else: #no file type warnings.warn('no such filetype {0}\nCould not save'.format(ftype)) f.close() def units_from_param(param): """ Figures out the simulation units from a .param file **ARGUMENTS** param : str or param dict (see configparser) Simulation .param file or param dict loaded by configparser Can also be a list or numpy array of these in which case a list of units dicts is returned **RETURNS** units : dict A dictionary of the units used in the simulation, returned as pynbody units """ # Define function to load the units from a given param def _load_units(param): # Load param if necessary if isinstance(param, str): param = configparser(param, 'param') # Universal G G = pb.units.G # Load units dKpcUnit = param['dKpcUnit'] dMsolUnit = param['dMsolUnit'] # Set up pynbody units m_unit = pb.units.Unit('{0} Msol'.format(dMsolUnit)) l_unit = pb.units.Unit('{0} kpc'.format(dKpcUnit)) t_unit = (l_unit**3/(G*m_unit))**(1,2) # Convert the time unit to something sensible years = t_unit.in_units('yr') t_unit = pb.units.Unit('{0} yr'.format(years)) # Return outdict = {'l_unit':l_unit, 'm_unit':m_unit, 't_unit':t_unit} return outdict # Iterate over param if necessary if isinstance(param, (list, np.ndarray)): outlist = [] for par in param: outlist.append(_load_units(par)) return outlist else: # Not iterable return _load_units(param) def strip_units(x): """ Removes the units from a SimArray and returns as a numpy array. Note that x is copied so that it is not destroyed x can be a single SimArray or a tuple or list of SimArrays If any of the inputs are single number, they are returned as a number USAGE: array = strip_units(SimArray) array1, array2, ... = strip_units([SimArray1, SimArray2, ...]) """ if isinstance(x, (tuple,list)): # loop through and assign output x_out = [] for x_i in x: x_i = np.asarray(x_i) if np.prod(x_i.shape) == 1: # There is only one element in x_i. Make sure to return it as # a number (not an array) if np.sum(x_i.shape) == 0: # This is a zero dimensional SimArray x_out.append(x_i.tolist()) else: # This is 1 dimensional SimArray x_out.append(x_i[0]) else: #This is a multi-element SimArray x_out.append(np.asarray(x_i.tolist())) else: x = np.asarray(x) if np.prod(x.shape) == 1: # There is only one element in x_i. Return as a number if np.sum(x.shape) == 0: # This is a 0 dimensional SimArray x_out = x.tolist() else: # This a 1 dimensional SimArray x_out = x[0] else: x_out = np.asarray(x.tolist()) return x_out def set_units(x, units): """ Sets the units of x to units. If x has units, they are ignored. Does not destroy/alter x USAGE: SimArray = set_units(x, units) SimArray1, SimArray2, ... = set_units([x1, x2, ...], units) SimArray1, SimArray2, ... = set_units([x1, x2, ...], [units1, units2, ...]) """ if isinstance(x, (tuple,list)): x_out = [] if not isinstance(units, (tuple, list)): units = [units]*len(x) for i in range(len(x)): x_i = x[i] if pb.units.has_units(x_i): x_i_array = strip_units(x_i) x_out.append(SimArray(x_i_array, units[i])) else: x_out.append(SimArray(x_i, units[i])) else: if pb.units.has_units(x): x_array = strip_units(x) x_out = SimArray(x_array, units) else: x_out = SimArray(x, units) return x_out def match_units(x, y): """ Matches the units of x to y and returns x and y in the same units. IF x and y don't have units, they are unchanged IF one of x or y has units, the unitless quantity is returned as a SimArray (see pb.array.SimArray) with the units of the other quantity. IF both have units, then an attempt is made to convert x into the units of y. If this is not possible, an error is raised, for example if x is in units of 'au' and y is in units of 'Msol' x, y can be: scalar, array, SimArray, pynbody unit (eg pb.units.G), or a unit string (eg 'Msol a**-2') *** RETURNS *** x, y are returned as a tuple """ # ---------------------------------------------- # Check if either is a string # ---------------------------------------------- if isinstance(x, str): x = SimArray(1.0, x) if isinstance(y,str): y = SimArray(1.0, y) # ---------------------------------------------- # Check if one is a pynbody unit # ---------------------------------------------- # If one is a named unit (eg pb.units.G), convert to SimArray if isinstance(x, pb.units.UnitBase): x = SimArray(1.0, x) if isinstance(y, pb.units.UnitBase): y = SimArray(1.0, y) # ---------------------------------------------- # Check the units # ---------------------------------------------- # If both have units, try to convert x to the units of y if (pb.units.has_units(x)) & (pb.units.has_units(y)): x_out = (x.in_units(y.units)) y_out = y # If only x has units, make y a SimArray with the units of x elif (pb.units.has_units(x)): y_out = SimArray(y, x.units) x_out = x # If only y has units, make x a SimArray with the units of y elif (pb.units.has_units(y)): x_out = SimArray(x, y.units) y_out = y # Otherwise, neither has units else: x_out = x y_out = y # Try to copy so that changing x_out, y_out will not change x,y try: x_out = x_out.copy() except AttributeError: pass try: y_out = y_out.copy() except AttributeError: pass return x_out, y_out def findfiles(filefilter='*', basedir='.'): """ Recursively find files according to filefilter ** ARGUMENTS ** filefilter : str Filter for finding files. ie, '*.jpg' or 'file.txt' basedir : str Base directory to search. Default is the current directory ** RETURNS ** files : list A list of the full path to all files matching filefilter """ matches = [] for root, dirnames, filenames in os.walk(basedir): for filename in fnmatch.filter(filenames, filefilter): fname = os.path.join(root, filename) fname = os.path.realpath(fname) matches.append(fname) return matches def pbverbosity(cmd=None): """ Changes and returns pynbody verbosity. Works for different versions of pynbody. **ARGUMENTS** cmd -If None (default) current verbosity level is returned, nothing is done -If 'off', pynbody is silenced -If 'on', pynbody verbosity is set on -If something else, cmd is assumed to be a verbosity level **RETURNS** current_verbosity pynbody verbosity level before any changes were made **EXAMPLES** *Toggle pynbody verbosity* current_verbosity = pbverbosity('off') ... do stuff ... pbverbosity(current_verbosity) """ # ----------------------------- # Get current verbosity level # ----------------------------- if hasattr(pb, 'logger'): # As of v0.30, pynbody uses python's logging to handle verbosity useLogger = True logger = logging.getLogger('pynbody') current_verbosity = logger.getEffectiveLevel() else: # For pynbody version < 0.3, verbosity is handled in the config useLogger = False current_verbosity = pb.config['verbose'] # ----------------------------- # Change verbosity # ----------------------------- if cmd is None: # Don't change verbosity. just return the current verbosity pass elif cmd == 'off': # Toggle verbosity off if useLogger: logger.setLevel(logging.ERROR) else: pb.config['verbose'] = False elif cmd == 'on': # Toggle verbosity on if useLogger: logger.setLevel(logging.DEBUG) else: pb.config['verbose'] = True else: # Set verbosity to the verbosity level specified by cmd if useLogger: logger.setLevel(cmd) else: pb.config['verbose'] = cmd # Return the verbosity level before any changes were made return current_verbosity def str2num(string): """ -------------------------------------------------- Tries to see if 'string' is a number If 'string' is a string, returns: int(string) for integers float(string) for floats 'string' otherwise If 'string' is a float or an integer, returns: string If none of the above, treats it like a list or tuple and returns for each entry of 'string' a float,int, or str as required. Returns as a list -------------------------------------------------- """ if isinstance(string,int): output = string elif isinstance(string,float): output = string elif not isinstance(string,str): output = [] for a in string: try: output.append(int(a)) except: try: output.append(float(a)) except: output.append(a) if len(output) == 1: output = output[0] else: output = string try: output = int(string) except: try: output = float(string) except: pass return output def get_module_names(fname): """ An import utility that returns the module names in the directory of file. Ignores filenames beginning with an underscore. Parameters ---------- fname : str Filename Returns ------- modulenames : list A list of the modules """ directory = os.path.dirname(os.path.realpath(fname)) searchstr = os.path.join(directory, '*.py') fullpaths = glob.glob(searchstr) fnames = [] for fullpath in fullpaths: f = os.path.split(fullpath)[-1] if f[0] is not '_': fnames.append(fullpath) modulenames = [] for fname in fnames: modulename = os.path.split(os.path.splitext(fname)[0])[-1] modulenames.append(modulename) return modulenames
""" @package antlr3.tree @brief ANTLR3 runtime package, treewizard module A utility module to create ASTs at runtime. See <http://www.antlr.org/wiki/display/~admin/2007/07/02/Exploring+Concept+of+TreeWizard> for an overview. Note that the API of the Python implementation is slightly different. """ # begin[licence] # # [The "BSD licence"] # Copyright (c) 2005-2008 Terence Parr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # end[licence] from antlr3.constants import INVALID_TOKEN_TYPE from antlr3.tokens import CommonToken from antlr3.tree import CommonTree, CommonTreeAdaptor def computeTokenTypes(tokenNames): """ Compute a dict that is an inverted index of tokenNames (which maps int token types to names). """ if tokenNames is None: return {} return dict((name, type) for type, name in enumerate(tokenNames)) ## token types for pattern parser EOF = -1 BEGIN = 1 END = 2 ID = 3 ARG = 4 PERCENT = 5 COLON = 6 DOT = 7 class TreePatternLexer(object): def __init__(self, pattern): ## The tree pattern to lex like "(A B C)" self.pattern = pattern ## Index into input string self.p = -1 ## Current char self.c = None ## How long is the pattern in char? self.n = len(pattern) ## Set when token type is ID or ARG self.sval = None self.error = False self.consume() __idStartChar = frozenset( 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_' ) __idChar = __idStartChar | frozenset('0123456789') def nextToken(self): self.sval = "" while self.c != EOF: if self.c in (' ', '\n', '\r', '\t'): self.consume() continue if self.c in self.__idStartChar: self.sval += self.c self.consume() while self.c in self.__idChar: self.sval += self.c self.consume() return ID if self.c == '(': self.consume() return BEGIN if self.c == ')': self.consume() return END if self.c == '%': self.consume() return PERCENT if self.c == ':': self.consume() return COLON if self.c == '.': self.consume() return DOT if self.c == '[': # grab [x] as a string, returning x self.consume() while self.c != ']': if self.c == '\\': self.consume() if self.c != ']': self.sval += '\\' self.sval += self.c else: self.sval += self.c self.consume() self.consume() return ARG self.consume() self.error = True return EOF return EOF def consume(self): self.p += 1 if self.p >= self.n: self.c = EOF else: self.c = self.pattern[self.p] class TreePatternParser(object): def __init__(self, tokenizer, wizard, adaptor): self.tokenizer = tokenizer self.wizard = wizard self.adaptor = adaptor self.ttype = tokenizer.nextToken() # kickstart def pattern(self): if self.ttype == BEGIN: return self.parseTree() elif self.ttype == ID: node = self.parseNode() if self.ttype == EOF: return node return None # extra junk on end return None def parseTree(self): if self.ttype != BEGIN: return None self.ttype = self.tokenizer.nextToken() root = self.parseNode() if root is None: return None while self.ttype in (BEGIN, ID, PERCENT, DOT): if self.ttype == BEGIN: subtree = self.parseTree() self.adaptor.addChild(root, subtree) else: child = self.parseNode() if child is None: return None self.adaptor.addChild(root, child) if self.ttype != END: return None self.ttype = self.tokenizer.nextToken() return root def parseNode(self): # "%label:" prefix label = None if self.ttype == PERCENT: self.ttype = self.tokenizer.nextToken() if self.ttype != ID: return None label = self.tokenizer.sval self.ttype = self.tokenizer.nextToken() if self.ttype != COLON: return None self.ttype = self.tokenizer.nextToken() # move to ID following colon # Wildcard? if self.ttype == DOT: self.ttype = self.tokenizer.nextToken() wildcardPayload = CommonToken(0, ".") node = WildcardTreePattern(wildcardPayload) if label is not None: node.label = label return node # "ID" or "ID[arg]" if self.ttype != ID: return None tokenName = self.tokenizer.sval self.ttype = self.tokenizer.nextToken() if tokenName == "nil": return self.adaptor.nil() text = tokenName # check for arg arg = None if self.ttype == ARG: arg = self.tokenizer.sval text = arg self.ttype = self.tokenizer.nextToken() # create node treeNodeType = self.wizard.getTokenType(tokenName) if treeNodeType == INVALID_TOKEN_TYPE: return None node = self.adaptor.createFromType(treeNodeType, text) if label is not None and isinstance(node, TreePattern): node.label = label if arg is not None and isinstance(node, TreePattern): node.hasTextArg = True return node class TreePattern(CommonTree): """ When using %label:TOKENNAME in a tree for parse(), we must track the label. """ def __init__(self, payload): CommonTree.__init__(self, payload) self.label = None self.hasTextArg = None def toString(self): if self.label is not None: return '%' + self.label + ':' + CommonTree.toString(self) else: return CommonTree.toString(self) class WildcardTreePattern(TreePattern): pass class TreePatternTreeAdaptor(CommonTreeAdaptor): """This adaptor creates TreePattern objects for use during scan()""" def createWithPayload(self, payload): return TreePattern(payload) class TreeWizard(object): """ Build and navigate trees with this object. Must know about the names of tokens so you have to pass in a map or array of token names (from which this class can build the map). I.e., Token DECL means nothing unless the class can translate it to a token type. In order to create nodes and navigate, this class needs a TreeAdaptor. This class can build a token type -> node index for repeated use or for iterating over the various nodes with a particular type. This class works in conjunction with the TreeAdaptor rather than moving all this functionality into the adaptor. An adaptor helps build and navigate trees using methods. This class helps you do it with string patterns like "(A B C)". You can create a tree from that pattern or match subtrees against it. """ def __init__(self, adaptor=None, tokenNames=None, typeMap=None): if adaptor is None: self.adaptor = CommonTreeAdaptor() else: self.adaptor = adaptor if typeMap is None: self.tokenNameToTypeMap = computeTokenTypes(tokenNames) else: if tokenNames is not None: raise ValueError("Can't have both tokenNames and typeMap") self.tokenNameToTypeMap = typeMap def getTokenType(self, tokenName): """Using the map of token names to token types, return the type.""" try: return self.tokenNameToTypeMap[tokenName] except KeyError: return INVALID_TOKEN_TYPE def create(self, pattern): """ Create a tree or node from the indicated tree pattern that closely follows ANTLR tree grammar tree element syntax: (root child1 ... child2). You can also just pass in a node: ID Any node can have a text argument: ID[foo] (notice there are no quotes around foo--it's clear it's a string). nil is a special name meaning "give me a nil node". Useful for making lists: (nil A B C) is a list of A B C. """ tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, self.adaptor) return parser.pattern() def index(self, tree): """Walk the entire tree and make a node name to nodes mapping. For now, use recursion but later nonrecursive version may be more efficient. Returns a dict int -> list where the list is of your AST node type. The int is the token type of the node. """ m = {} self._index(tree, m) return m def _index(self, t, m): """Do the work for index""" if t is None: return ttype = self.adaptor.getType(t) elements = m.get(ttype) if elements is None: m[ttype] = elements = [] elements.append(t) for i in range(self.adaptor.getChildCount(t)): child = self.adaptor.getChild(t, i) self._index(child, m) def find(self, tree, what): """Return a list of matching token. what may either be an integer specifzing the token type to find or a string with a pattern that must be matched. """ if isinstance(what, (int, long)): return self._findTokenType(tree, what) elif isinstance(what, basestring): return self._findPattern(tree, what) else: raise TypeError("'what' must be string or integer") def _findTokenType(self, t, ttype): """Return a List of tree nodes with token type ttype""" nodes = [] def visitor(tree, parent, childIndex, labels): nodes.append(tree) self.visit(t, ttype, visitor) return nodes def _findPattern(self, t, pattern): """Return a List of subtrees matching pattern.""" subtrees = [] # Create a TreePattern from the pattern tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() # don't allow invalid patterns if (tpattern is None or tpattern.isNil() or isinstance(tpattern, WildcardTreePattern)): return None rootTokenType = tpattern.getType() def visitor(tree, parent, childIndex, label): if self._parse(tree, tpattern, None): subtrees.append(tree) self.visit(t, rootTokenType, visitor) return subtrees def visit(self, tree, what, visitor): """Visit every node in tree matching what, invoking the visitor. If what is a string, it is parsed as a pattern and only matching subtrees will be visited. The implementation uses the root node of the pattern in combination with visit(t, ttype, visitor) so nil-rooted patterns are not allowed. Patterns with wildcard roots are also not allowed. If what is an integer, it is used as a token type and visit will match all nodes of that type (this is faster than the pattern match). The labels arg of the visitor action method is never set (it's None) since using a token type rather than a pattern doesn't let us set a label. """ if isinstance(what, (int, long)): self._visitType(tree, None, 0, what, visitor) elif isinstance(what, basestring): self._visitPattern(tree, what, visitor) else: raise TypeError("'what' must be string or integer") def _visitType(self, t, parent, childIndex, ttype, visitor): """Do the recursive work for visit""" if t is None: return if self.adaptor.getType(t) == ttype: visitor(t, parent, childIndex, None) for i in range(self.adaptor.getChildCount(t)): child = self.adaptor.getChild(t, i) self._visitType(child, t, i, ttype, visitor) def _visitPattern(self, tree, pattern, visitor): """ For all subtrees that match the pattern, execute the visit action. """ # Create a TreePattern from the pattern tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() # don't allow invalid patterns if (tpattern is None or tpattern.isNil() or isinstance(tpattern, WildcardTreePattern)): return rootTokenType = tpattern.getType() def rootvisitor(tree, parent, childIndex, labels): labels = {} if self._parse(tree, tpattern, labels): visitor(tree, parent, childIndex, labels) self.visit(tree, rootTokenType, rootvisitor) def parse(self, t, pattern, labels=None): """ Given a pattern like (ASSIGN %lhs:ID %rhs:.) with optional labels on the various nodes and '.' (dot) as the node/subtree wildcard, return true if the pattern matches and fill the labels Map with the labels pointing at the appropriate nodes. Return false if the pattern is malformed or the tree does not match. If a node specifies a text arg in pattern, then that must match for that node in t. """ tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() return self._parse(t, tpattern, labels) def _parse(self, t1, tpattern, labels): """ Do the work for parse. Check to see if the tpattern fits the structure and token types in t1. Check text if the pattern has text arguments on nodes. Fill labels map with pointers to nodes in tree matched against nodes in pattern with labels. """ # make sure both are non-null if t1 is None or tpattern is None: return False # check roots (wildcard matches anything) if not isinstance(tpattern, WildcardTreePattern): if self.adaptor.getType(t1) != tpattern.getType(): return False # if pattern has text, check node text if (tpattern.hasTextArg and self.adaptor.getText(t1) != tpattern.getText()): return False if tpattern.label is not None and labels is not None: # map label in pattern to node in t1 labels[tpattern.label] = t1 # check children n1 = self.adaptor.getChildCount(t1) n2 = tpattern.getChildCount() if n1 != n2: return False for i in range(n1): child1 = self.adaptor.getChild(t1, i) child2 = tpattern.getChild(i) if not self._parse(child1, child2, labels): return False return True def equals(self, t1, t2, adaptor=None): """ Compare t1 and t2; return true if token types/text, structure match exactly. The trees are examined in their entirety so that (A B) does not match (A B C) nor (A (B C)). """ if adaptor is None: adaptor = self.adaptor return self._equals(t1, t2, adaptor) def _equals(self, t1, t2, adaptor): # make sure both are non-null if t1 is None or t2 is None: return False # check roots if adaptor.getType(t1) != adaptor.getType(t2): return False if adaptor.getText(t1) != adaptor.getText(t2): return False # check children n1 = adaptor.getChildCount(t1) n2 = adaptor.getChildCount(t2) if n1 != n2: return False for i in range(n1): child1 = adaptor.getChild(t1, i) child2 = adaptor.getChild(t2, i) if not self._equals(child1, child2, adaptor): return False return True
## 1. Equal interval scales ## car_speeds = [10,20,30,50,20] earthquake_intensities = [2,7,4,5,8] mean_car_speed = sum(car_speeds)/len(car_speeds) mean_earthquake_intensities = sum(earthquake_intensities)/len(earthquake_intensities) ## 2. Discrete and continuous scales ## day_numbers = [1,2,3,4,5,6,7] snail_crawl_length = [.5,2,5,10,1,.25,4] cars_in_parking_lot = [5,6,4,2,1,7,8] import matplotlib.pyplot as plt plt.plot(day_numbers,snail_crawl_length) plt.show() plt.plot(day_numbers,cars_in_parking_lot) plt.show() ## 3. Scale starting points ## fahrenheit_degrees = [32, 64, 78, 102] yearly_town_population = [100,102,103,110,105,120] population_zero = yearly_town_population degrees_zero = [f + 459.67 for f in fahrenheit_degrees] ## 4. Ordinal scales ## # Results from our survey on how many cigarettes people smoke per day survey_responses = ["none", "some", "a lot", "none", "a few", "none", "none"] survey_scale = ["none", "a few", "some", "a lot"] survey_numbers = [survey_scale.index(response) for response in survey_responses] average_smoking = sum(survey_numbers) / len(survey_numbers) ## 5. Categorical scales ## # Let's say that these lists are both columns in a matrix. Index 0 in both is the first row, and so on. gender = ["male", "female", "female", "male", "male", "female"] savings = [1200, 5000, 3400, 2400, 2800, 4100] male_count = 0 female_count = 0 m_c = 0 f_c = 0 for i in range(len(gender)): if gender[i] == 'male': male_count += savings[i] m_c +=1 elif gender[i] == 'female': female_count += savings[i] f_c +=1 male_savings = male_count/m_c female_savings = female_count/f_c ## 6. Frequency histograms ## # Let's say that we watch cars drive by, and measure average speed in miles per hour average_speed = [10, 20, 25, 27, 28, 22, 15, 18, 17] import matplotlib.pyplot as plt plt.hist(average_speed) plt.show() # Let's say we measure student test scores, from 0-100 student_scores = [15, 80, 95, 100, 45, 75, 65] plt.hist(student_scores) plt.show() ## 7. Histogram bins ## average_speed = [10, 20, 25, 27, 28, 22, 15, 18, 17] import matplotlib.pyplot as plt plt.hist(average_speed, bins=6) plt.show() # As you can see, the values in the list are counted into the nearest bin. # If we have less bins, each bin will have a higher count (because it's showing all of the values that fall into it) # With more bins, the counts are less, because each bin contains less values. plt.hist(average_speed, bins=4) plt.show() plt.hist(average_speed, bins=2) plt.show() ## 8. Skew ## # Some numpy arrays are already loaded in, and we'll make some plots with them. # The arrays contain student test scores from an exam, on a 0-100 scale. import matplotlib.pyplot as plt # See how there is a long slope to the left? # The data is concentrated in the right part of the distribution, but some people also scored poorly. # This plot is negatively skewed. plt.hist(test_scores_negative) plt.show() # This plot has a long slope to the right. # Most students did poorly, but a few did really well. # This is positively skewed. plt.hist(test_scores_positive) plt.show() # This plot has no skew either way -- most of the values are in the center, and there is no long slope either way. # Is is an unskewed distribution. plt.hist(test_scores_normal) plt.show() # We can test how skewed a distribution is using the skew function. # A positive value means positive skew, a negative value means negative skew, and close to zero means no skew. from scipy.stats import skew from scipy.stats import skew positive_skew = skew(test_scores_positive) negative_skew = skew(test_scores_negative) no_skew = skew(test_scores_normal) ## 9. Kurtosis ## import matplotlib.pyplot as plt # This plot is short, making it platykurtic # See how the values are distributed pretty evenly, and there isn't a huge cluster in the middle? # Students had a wide variation in their performance plt.hist(test_scores_platy) plt.show() # This plot is tall, and is leptokurtic # Most students did very similarly to the others plt.hist(test_scores_lepto) plt.show() # This plot is in between, and is mesokurtic plt.hist(test_scores_meso) plt.show() # We can measure kurtosis with the kurtosis function # Negative values indicate platykurtic distributions, positive values indicate leptokurtic distributions, and values close to 0 are mesokurtic from scipy.stats import kurtosis kurt_platy = kurtosis(test_scores_platy) kurt_lepto = kurtosis(test_scores_lepto) kurt_meso = kurtosis(test_scores_meso) ## 10. Modality ## import matplotlib.pyplot as plt # This plot has one mode, making it unimodal plt.hist(test_scores_uni) plt.show() # This plot has two peaks, and is bimodal # This could happen if one group of students learned the material, and one learned something else, for example. plt.hist(test_scores_bi) plt.show() # More than one peak means that the plot is multimodal # We can't easily measure the modality of a plot, like we can with kurtosis or skew. # Often, the best way to detect multimodality is to observe the plot. plt.hist(test_scores_multi) plt.show() ## 11. Measures of central tendency ## import matplotlib.pyplot as plt # We're going to put a line over our plot that shows the mean. # This is the same histogram we plotted for skew a few screens ago plt.hist(test_scores_normal) # We can use the .mean() method of a numpy array to compute the mean mean_test_score = test_scores_normal.mean() # The axvline function will plot a vertical line over an existing plot plt.axvline(mean_test_score) # Now we can show the plot and clear the figure plt.show() # When we plot test_scores_negative, a very negatively skewed distribution, we see that the mean is pulled to the left by the small values there. # The mean can be changed easily by very large or very small values. # This can make it misleading with distributions that are very skewed, when we expect the mean to be the center. plt.hist(test_scores_negative) plt.axvline(test_scores_negative.mean()) plt.show() # We can do the same with the positive side # See how the very high values pull the mean to the right more than you would expect? plt.hist(test_scores_positive) plt.axvline(test_scores_positive.mean()) plt.show() mean_normal = sum(test_scores_normal)/len(test_scores_normal) mean_negative = sum(test_scores_negative)/len(test_scores_negative) mean_positive = sum(test_scores_positive)/len(test_scores_positive) ## 12. The median ## # Let's plot the mean and median side by side in a negatively skewed distribution. # Sadly, arrays don't have a nice median method, so we have to use a numpy function to compute it. import numpy import matplotlib.pyplot as plt # Plot the histogram plt.hist(test_scores_negative) # Compute the median median = numpy.median(test_scores_negative) # Plot the median in blue (the color argument of "b" means blue) plt.axvline(median, color="b") # Plot the mean in red plt.axvline(test_scores_negative.mean(), color="r") # See how the median is further to the right than the mean? # It's less sensitive to outliers, and isn't pulled to the left. plt.show() plt.hist(test_scores_positive) p_median = numpy.median(test_scores_positive) plt.axvline(p_median,color = 'b') plt.axvline(test_scores_positive.mean(),color = 'r') plt.show() ## 14. Cleaning missing data ## import pandas f = "titanic_survival.csv" titanic_survival = pandas.read_csv(f) # Luckily, pandas dataframes have a method that can drop rows that have missing data # Let's look at how big the dataframe is first print(titanic_survival.shape) # There were 1310 passengers on the titanic, according to our data # Now let's drop any row with missing data # The dropna method on dataframes will do this for us # Any row with any missing values will be removed new_titanic_survival = titanic_survival.dropna() # Hmm, it looks like we were too zealous with dropping rows with na values # We now have no rows in our dataframe # This is because some of the later columns, which aren't immediately relevant to our analysis, have a lot of missing values print(new_titanic_survival.shape) # We can use the subset keyword argument to the dropna method to only drop rows if there are na values in certain columns # This will drop any row where the embarkation port (where people boarded the Titanic), or cabin number is missing new_titanic_survival = titanic_survival.dropna(subset=["embarked", "cabin"]) # This is much better -- we have removed only the rows that we need to remove. print(new_titanic_survival.shape) new_titanic_survival = titanic_survival.dropna(subset=['age','sex']) print(new_titanic_survival.shape) ## 15. Plotting age ## # The cleaned up data has been loaded into the new_titanic_survival variable import matplotlib.pyplot as plt import numpy plt.hist(new_titanic_survival['age']) p_median = numpy.median(new_titanic_survival['age']) plt.axvline(p_median,color = 'b') plt.axvline(new_titanic_survival['age'].mean(),color = 'r') plt.show() ## 16. Calculating indices for age ## from scipy.stats import skew,kurtosis mean_age = new_titanic_survival['age'].mean() median_age = numpy.median(new_titanic_survival['age']) skew_age = skew(new_titanic_survival['age']) kurtosis_age = kurtosis(new_titanic_survival['age'])
from __future__ import division, print_function import numpy as np import numpy.ctypeslib as npc from ctypes import cast, POINTER, Structure, c_int, c_float, c_double c_float_p = POINTER(c_float) c_double_p = POINTER(c_double) from .vl_ctypes import LIB, c_to_np_types from .utils import as_float_image np_float = c_to_np_types[c_float] np_double = c_to_np_types[c_double] class VLDsiftKeypoint(Structure): _fields_ = [ ('x', c_double), ('y', c_double), ('s', c_double), ('norm', c_double), ] class VLDsiftDescriptorGeometry(Structure): _fields_ = [ ('numBinT', c_int), ('numBinX', c_int), ('numBinY', c_int), ('binSizeX', c_int), ('binSizeY', c_int), ] class VLDsiftFilter(Structure): _fields_ = [ ('imWidth', c_int), ('imHeight', c_int), ('stepX', c_int), ('stepY', c_int), ('boundMinX', c_int), ('boundMinY', c_int), ('boundMaxX', c_int), ('boundMaxY', c_int), ('geom', VLDsiftDescriptorGeometry), ('useFlatWindow', c_int), ('windowSize', c_double), ('numFrames', c_int), ('descrSize', c_int), ('frames', POINTER(VLDsiftKeypoint)), ('descrs', c_float_p), ('numBinAlloc', c_int), ('numFrameAlloc', c_int), ('numGradAlloc', c_int), ('grads', POINTER(c_float_p)), ('convTmp1', c_float_p), ('convTmp2', c_float_p), ] VLDsiftFilter_p = POINTER(VLDsiftFilter) ### functions in the shared object # most of the utility functions are actually inlined and so not in the so... vl_dsift_new = LIB['vl_dsift_new'] vl_dsift_new.restype = VLDsiftFilter_p vl_dsift_new.argtypes = [c_int, c_int] vl_dsift_new_basic = LIB['vl_dsift_new_basic'] vl_dsift_new_basic.restype = VLDsiftFilter_p vl_dsift_new_basic.argtypes = [c_int, c_int, c_int, c_int] vl_dsift_delete = LIB['vl_dsift_delete'] vl_dsift_delete.restype = None vl_dsift_delete.argtypes = [VLDsiftFilter_p] vl_dsift_process = LIB['vl_dsift_process'] vl_dsift_process.restype = None vl_dsift_process.argtypes = [VLDsiftFilter_p, npc.ndpointer(dtype=np_float)] _vl_dsift_update_buffers = LIB['_vl_dsift_update_buffers'] _vl_dsift_update_buffers.restype = None _vl_dsift_update_buffers.argtypes = [VLDsiftFilter_p] # near-direct port of the c function # should be vectorized, if we were going to call it more than once... def vl_dsift_transpose_descriptor(dest, src, num_bin_t, num_bin_x, num_bin_y): for y in xrange(num_bin_y): for x in xrange(num_bin_x): offset = num_bin_t * (x + y * num_bin_x) offsetT = num_bin_t * (y + x * num_bin_x) for t in xrange(num_bin_t): tT = num_bin_t // 4 - t dest[offsetT + (tT + num_bin_t) % num_bin_t] = src[offset + t] def vl_dsift(data, fast=False, norm=False, bounds=None, size=3, step=1, window_size=None, float_descriptors=False, verbose=False, matlab_style=True): ''' Dense sift descriptors from an image. Returns: frames: num_frames x (2 or 3) matrix of x, y, (norm) descrs: num_frames x 128 matrix of descriptors ''' if not matlab_style: import warnings warnings.warn("matlab_style=False gets different results than matlab, " "not sure why or how incorrect they are.") order = 'F' if matlab_style else 'C' data = as_float_image(data, dtype=np.float32, order=order) if data.ndim != 2: raise TypeError("data should be a 2d array") if window_size is not None: assert np.isscalar(window_size) and window_size >= 0 # construct the dsift object M, N = data.shape dsift_p = vl_dsift_new_basic(M, N, step, size) try: dsift = dsift_p.contents # set parameters if bounds is not None: if matlab_style: y0, x0, y1, x1 = bounds # transposed else: x0, y0, x1, y1 = bounds dsift.boundMinX = int(max(x0, 0)) dsift.boundMinY = int(max(y0, 0)) dsift.boundMaxX = int(min(x1, M - 1)) dsift.boundMaxY = int(min(y1, N - 1)) _vl_dsift_update_buffers(dsift_p) dsift.useFlatWindow = fast if window_size is not None: dsift.windowSize = window_size # get calculated parameters descr_size = dsift.descrSize num_frames = dsift.numFrames geom = dsift.geom if verbose: pr = lambda *a, **k: print('vl_dsift:', *a, **k) pr("image size [W, H] = [{}, {}]".format(N, M)) x0 = dsift.boundMinX + 1 y0 = dsift.boundMinY + 1 x1 = dsift.boundMaxX + 1 y1 = dsift.boundMaxY + 1 bound_args = [y0, x0, y1, x1] if matlab_style else [x0, y0, x1, y1] pr("bounds: [minX,minY,maxX,maxY] = [{}, {}, {}, {}]" .format(*bound_args)) pr("subsampling steps: stepX={}, stepY={}".format( dsift.stepX, dsift.stepY)) pr("num bins: [numBinT, numBinX, numBinY] = [{}, {}, {}]" .format(geom.numBinT, geom.numBinX, geom.numBinY)) pr("descriptor size: {}".format(descr_size)) pr("bin sizes: [binSizeX, binSizeY] = [{}, {}]".format( geom.binSizeX, geom.binSizeY)) pr("flat window: {}".format(bool(fast))) pr("window size: {}".format(dsift.windowSize)) pr("num of features: {}".format(num_frames)) # do the actual processing vl_dsift_process(dsift_p, data) # copy frames' locations, norms out # the frames are a structure of just 4 doubles (VLDsiftKeypoint), # which luckily looks exactly like an array of doubles. :) # NOTE: this might be platform/compiler-dependent...but it works with # the provided binaries on os x, at least frames_p = cast(dsift.frames, c_double_p) frames_p_a = npc.as_array(frames_p, shape=(num_frames, 4)) cols = [1, 0] if matlab_style else [0, 1] if norm: cols.append(3) frames = np.require(frames_p_a[:, cols], requirements=['C', 'O']) # copy descriptors into a new array descrs_p = npc.as_array(dsift.descrs, shape=(num_frames, descr_size)) descrs = descrs_p * 512 assert descrs.flags.owndata np.minimum(descrs, 255, out=descrs) if not float_descriptors: descrs = descrs.astype(np.uint8) # TODO: smarter about copying? if matlab_style: new_order = np.empty(descr_size, dtype=int) vl_dsift_transpose_descriptor(new_order, np.arange(descr_size), geom.numBinT, geom.numBinX, geom.numBinY) descrs = descrs[:, new_order] # the old, super-slow way: ## # gross pointer arithmetic to get the relevant descriptor ## descrs_addr = addressof(descrs.contents) ## descrs_step = descr_size * sizeof(c_float) ## ## for k in range(num_frames): ## out_frames[:2, k] = [frames[k].y + 1, frames[k].x + 1] ## if norm: # there's an implied / 2 in norm, because of clipping ## out_frames[2, k] = frames[k].norm ## ## # gross pointer arithmetic to get the relevant descriptor ## the_descr = cast(descrs_addr + k * descrs_step, c_float_p) ## transposed = vl_dsift_transpose_descriptor( ## the_descr, ## geom.numBinT, geom.numBinX, geom.numBinY) ## out_descrs[:, k] = np.minimum(512. * transposed, 255.) return frames, descrs finally: vl_dsift_delete(dsift_p)
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import sys import eventlet eventlet.monkey_patch() import netaddr from oslo.config import cfg from neutron.agent.common import config from neutron.agent.linux import dhcp from neutron.agent.linux import external_process from neutron.agent.linux import interface from neutron.agent.linux import ovs_lib # noqa from neutron.agent import rpc as agent_rpc from neutron.common import config as common_config from neutron.common import constants from neutron.common import exceptions from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.common import utils from neutron import context from neutron import manager from neutron.openstack.common import importutils from neutron.openstack.common import log as logging from neutron.openstack.common import loopingcall from neutron.openstack.common import service from neutron import service as neutron_service LOG = logging.getLogger(__name__) class DhcpAgent(manager.Manager): OPTS = [ cfg.IntOpt('resync_interval', default=5, help=_("Interval to resync.")), cfg.StrOpt('dhcp_driver', default='neutron.agent.linux.dhcp.Dnsmasq', help=_("The driver used to manage the DHCP server.")), cfg.BoolOpt('enable_isolated_metadata', default=False, help=_("Support Metadata requests on isolated networks.")), cfg.BoolOpt('enable_metadata_network', default=False, help=_("Allows for serving metadata requests from a " "dedicated network. Requires " "enable_isolated_metadata = True")), cfg.IntOpt('num_sync_threads', default=4, help=_('Number of threads to use during sync process.')), cfg.StrOpt('metadata_proxy_socket', default='$state_path/metadata_proxy', help=_('Location of Metadata Proxy UNIX domain ' 'socket')), ] def __init__(self, host=None): super(DhcpAgent, self).__init__(host=host) self.needs_resync_reasons = [] self.conf = cfg.CONF self.cache = NetworkCache() self.root_helper = config.get_root_helper(self.conf) self.dhcp_driver_cls = importutils.import_class(self.conf.dhcp_driver) ctx = context.get_admin_context_without_session() self.plugin_rpc = DhcpPluginApi(topics.PLUGIN, ctx, self.conf.use_namespaces) # create dhcp dir to store dhcp info dhcp_dir = os.path.dirname("/%s/dhcp/" % self.conf.state_path) if not os.path.isdir(dhcp_dir): os.makedirs(dhcp_dir, 0o755) self.dhcp_version = self.dhcp_driver_cls.check_version() self._populate_networks_cache() def _populate_networks_cache(self): """Populate the networks cache when the DHCP-agent starts.""" try: existing_networks = self.dhcp_driver_cls.existing_dhcp_networks( self.conf, self.root_helper ) for net_id in existing_networks: net = dhcp.NetModel(self.conf.use_namespaces, {"id": net_id, "subnets": [], "ports": []}) self.cache.put(net) except NotImplementedError: # just go ahead with an empty networks cache LOG.debug( _("The '%s' DHCP-driver does not support retrieving of a " "list of existing networks"), self.conf.dhcp_driver ) def after_start(self): self.run() LOG.info(_("DHCP agent started")) def run(self): """Activate the DHCP agent.""" self.sync_state() self.periodic_resync() def call_driver(self, action, network, **action_kwargs): """Invoke an action on a DHCP driver instance.""" LOG.debug(_('Calling driver for network: %(net)s action: %(action)s'), {'net': network.id, 'action': action}) try: # the Driver expects something that is duck typed similar to # the base models. driver = self.dhcp_driver_cls(self.conf, network, self.root_helper, self.dhcp_version, self.plugin_rpc) getattr(driver, action)(**action_kwargs) return True except exceptions.Conflict: # No need to resync here, the agent will receive the event related # to a status update for the network LOG.warning(_('Unable to %(action)s dhcp for %(net_id)s: there is ' 'a conflict with its current state; please check ' 'that the network and/or its subnet(s) still exist.') % {'net_id': network.id, 'action': action}) except Exception as e: self.schedule_resync(e) if (isinstance(e, n_rpc.RemoteError) and e.exc_type == 'NetworkNotFound' or isinstance(e, exceptions.NetworkNotFound)): LOG.warning(_("Network %s has been deleted."), network.id) else: LOG.exception(_('Unable to %(action)s dhcp for %(net_id)s.') % {'net_id': network.id, 'action': action}) def schedule_resync(self, reason): """Schedule a resync for a given reason.""" self.needs_resync_reasons.append(reason) @utils.synchronized('dhcp-agent') def sync_state(self): """Sync the local DHCP state with Neutron.""" LOG.info(_('Synchronizing state')) pool = eventlet.GreenPool(cfg.CONF.num_sync_threads) known_network_ids = set(self.cache.get_network_ids()) try: active_networks = self.plugin_rpc.get_active_networks_info() active_network_ids = set(network.id for network in active_networks) for deleted_id in known_network_ids - active_network_ids: try: self.disable_dhcp_helper(deleted_id) except Exception as e: self.schedule_resync(e) LOG.exception(_('Unable to sync network state on deleted ' 'network %s'), deleted_id) for network in active_networks: pool.spawn(self.safe_configure_dhcp_for_network, network) pool.waitall() LOG.info(_('Synchronizing state complete')) except Exception as e: self.schedule_resync(e) LOG.exception(_('Unable to sync network state.')) @utils.exception_logger() def _periodic_resync_helper(self): """Resync the dhcp state at the configured interval.""" while True: eventlet.sleep(self.conf.resync_interval) if self.needs_resync_reasons: # be careful to avoid a race with additions to list # from other threads reasons = self.needs_resync_reasons self.needs_resync_reasons = [] for r in reasons: LOG.debug(_("resync: %(reason)s"), {"reason": r}) self.sync_state() def periodic_resync(self): """Spawn a thread to periodically resync the dhcp state.""" eventlet.spawn(self._periodic_resync_helper) def safe_get_network_info(self, network_id): try: network = self.plugin_rpc.get_network_info(network_id) if not network: LOG.warn(_('Network %s has been deleted.'), network_id) return network except Exception as e: self.schedule_resync(e) LOG.exception(_('Network %s info call failed.'), network_id) def enable_dhcp_helper(self, network_id): """Enable DHCP for a network that meets enabling criteria.""" network = self.safe_get_network_info(network_id) if network: self.configure_dhcp_for_network(network) @utils.exception_logger() def safe_configure_dhcp_for_network(self, network): try: self.configure_dhcp_for_network(network) except (exceptions.NetworkNotFound, RuntimeError): LOG.warn(_('Network %s may have been deleted and its resources ' 'may have already been disposed.'), network.id) def configure_dhcp_for_network(self, network): if not network.admin_state_up: return for subnet in network.subnets: if subnet.enable_dhcp: if self.call_driver('enable', network): if (self.conf.use_namespaces and self.conf.enable_isolated_metadata): self.enable_isolated_metadata_proxy(network) self.cache.put(network) break def disable_dhcp_helper(self, network_id): """Disable DHCP for a network known to the agent.""" network = self.cache.get_network_by_id(network_id) if network: if (self.conf.use_namespaces and self.conf.enable_isolated_metadata): self.disable_isolated_metadata_proxy(network) if self.call_driver('disable', network): self.cache.remove(network) def refresh_dhcp_helper(self, network_id): """Refresh or disable DHCP for a network depending on the current state of the network. """ old_network = self.cache.get_network_by_id(network_id) if not old_network: # DHCP current not running for network. return self.enable_dhcp_helper(network_id) network = self.safe_get_network_info(network_id) if not network: return old_cidrs = set(s.cidr for s in old_network.subnets if s.enable_dhcp) new_cidrs = set(s.cidr for s in network.subnets if s.enable_dhcp) if new_cidrs and old_cidrs == new_cidrs: self.call_driver('reload_allocations', network) self.cache.put(network) elif new_cidrs: if self.call_driver('restart', network): self.cache.put(network) else: self.disable_dhcp_helper(network.id) @utils.synchronized('dhcp-agent') def network_create_end(self, context, payload): """Handle the network.create.end notification event.""" network_id = payload['network']['id'] self.enable_dhcp_helper(network_id) @utils.synchronized('dhcp-agent') def network_update_end(self, context, payload): """Handle the network.update.end notification event.""" network_id = payload['network']['id'] if payload['network']['admin_state_up']: self.enable_dhcp_helper(network_id) else: self.disable_dhcp_helper(network_id) @utils.synchronized('dhcp-agent') def network_delete_end(self, context, payload): """Handle the network.delete.end notification event.""" self.disable_dhcp_helper(payload['network_id']) @utils.synchronized('dhcp-agent') def subnet_update_end(self, context, payload): """Handle the subnet.update.end notification event.""" network_id = payload['subnet']['network_id'] self.refresh_dhcp_helper(network_id) # Use the update handler for the subnet create event. subnet_create_end = subnet_update_end @utils.synchronized('dhcp-agent') def subnet_delete_end(self, context, payload): """Handle the subnet.delete.end notification event.""" subnet_id = payload['subnet_id'] network = self.cache.get_network_by_subnet_id(subnet_id) if network: self.refresh_dhcp_helper(network.id) @utils.synchronized('dhcp-agent') def port_update_end(self, context, payload): """Handle the port.update.end notification event.""" updated_port = dhcp.DictModel(payload['port']) network = self.cache.get_network_by_id(updated_port.network_id) if network: self.cache.put_port(updated_port) self.call_driver('reload_allocations', network) # Use the update handler for the port create event. port_create_end = port_update_end @utils.synchronized('dhcp-agent') def port_delete_end(self, context, payload): """Handle the port.delete.end notification event.""" port = self.cache.get_port_by_id(payload['port_id']) if port: network = self.cache.get_network_by_id(port.network_id) self.cache.remove_port(port) self.call_driver('reload_allocations', network) def enable_isolated_metadata_proxy(self, network): # The proxy might work for either a single network # or all the networks connected via a router # to the one passed as a parameter neutron_lookup_param = '--network_id=%s' % network.id meta_cidr = netaddr.IPNetwork(dhcp.METADATA_DEFAULT_CIDR) has_metadata_subnet = any(netaddr.IPNetwork(s.cidr) in meta_cidr for s in network.subnets) if (self.conf.enable_metadata_network and has_metadata_subnet): router_ports = [port for port in network.ports if (port.device_owner == constants.DEVICE_OWNER_ROUTER_INTF)] if router_ports: # Multiple router ports should not be allowed if len(router_ports) > 1: LOG.warning(_("%(port_num)d router ports found on the " "metadata access network. Only the port " "%(port_id)s, for router %(router_id)s " "will be considered"), {'port_num': len(router_ports), 'port_id': router_ports[0].id, 'router_id': router_ports[0].device_id}) neutron_lookup_param = ('--router_id=%s' % router_ports[0].device_id) def callback(pid_file): metadata_proxy_socket = cfg.CONF.metadata_proxy_socket proxy_cmd = ['neutron-ns-metadata-proxy', '--pid_file=%s' % pid_file, '--metadata_proxy_socket=%s' % metadata_proxy_socket, neutron_lookup_param, '--state_path=%s' % self.conf.state_path, '--metadata_port=%d' % dhcp.METADATA_PORT] proxy_cmd.extend(config.get_log_args( cfg.CONF, 'neutron-ns-metadata-proxy-%s.log' % network.id)) return proxy_cmd pm = external_process.ProcessManager( self.conf, network.id, self.root_helper, network.namespace) pm.enable(callback) def disable_isolated_metadata_proxy(self, network): pm = external_process.ProcessManager( self.conf, network.id, self.root_helper, network.namespace) pm.disable() class DhcpPluginApi(n_rpc.RpcProxy): """Agent side of the dhcp rpc API. API version history: 1.0 - Initial version. 1.1 - Added get_active_networks_info, create_dhcp_port, and update_dhcp_port methods. """ BASE_RPC_API_VERSION = '1.1' def __init__(self, topic, context, use_namespaces): super(DhcpPluginApi, self).__init__( topic=topic, default_version=self.BASE_RPC_API_VERSION) self.context = context self.host = cfg.CONF.host self.use_namespaces = use_namespaces def get_active_networks_info(self): """Make a remote process call to retrieve all network info.""" networks = self.call(self.context, self.make_msg('get_active_networks_info', host=self.host)) return [dhcp.NetModel(self.use_namespaces, n) for n in networks] def get_network_info(self, network_id): """Make a remote process call to retrieve network info.""" network = self.call(self.context, self.make_msg('get_network_info', network_id=network_id, host=self.host)) if network: return dhcp.NetModel(self.use_namespaces, network) def get_dhcp_port(self, network_id, device_id): """Make a remote process call to get the dhcp port.""" port = self.call(self.context, self.make_msg('get_dhcp_port', network_id=network_id, device_id=device_id, host=self.host)) if port: return dhcp.DictModel(port) def create_dhcp_port(self, port): """Make a remote process call to create the dhcp port.""" port = self.call(self.context, self.make_msg('create_dhcp_port', port=port, host=self.host)) if port: return dhcp.DictModel(port) def update_dhcp_port(self, port_id, port): """Make a remote process call to update the dhcp port.""" port = self.call(self.context, self.make_msg('update_dhcp_port', port_id=port_id, port=port, host=self.host)) if port: return dhcp.DictModel(port) def release_dhcp_port(self, network_id, device_id): """Make a remote process call to release the dhcp port.""" return self.call(self.context, self.make_msg('release_dhcp_port', network_id=network_id, device_id=device_id, host=self.host)) def release_port_fixed_ip(self, network_id, device_id, subnet_id): """Make a remote process call to release a fixed_ip on the port.""" return self.call(self.context, self.make_msg('release_port_fixed_ip', network_id=network_id, subnet_id=subnet_id, device_id=device_id, host=self.host)) class NetworkCache(object): """Agent cache of the current network state.""" def __init__(self): self.cache = {} self.subnet_lookup = {} self.port_lookup = {} def get_network_ids(self): return self.cache.keys() def get_network_by_id(self, network_id): return self.cache.get(network_id) def get_network_by_subnet_id(self, subnet_id): return self.cache.get(self.subnet_lookup.get(subnet_id)) def get_network_by_port_id(self, port_id): return self.cache.get(self.port_lookup.get(port_id)) def put(self, network): if network.id in self.cache: self.remove(self.cache[network.id]) self.cache[network.id] = network for subnet in network.subnets: self.subnet_lookup[subnet.id] = network.id for port in network.ports: self.port_lookup[port.id] = network.id def remove(self, network): del self.cache[network.id] for subnet in network.subnets: del self.subnet_lookup[subnet.id] for port in network.ports: del self.port_lookup[port.id] def put_port(self, port): network = self.get_network_by_id(port.network_id) for index in range(len(network.ports)): if network.ports[index].id == port.id: network.ports[index] = port break else: network.ports.append(port) self.port_lookup[port.id] = network.id def remove_port(self, port): network = self.get_network_by_port_id(port.id) for index in range(len(network.ports)): if network.ports[index] == port: del network.ports[index] del self.port_lookup[port.id] break def get_port_by_id(self, port_id): network = self.get_network_by_port_id(port_id) if network: for port in network.ports: if port.id == port_id: return port def get_state(self): net_ids = self.get_network_ids() num_nets = len(net_ids) num_subnets = 0 num_ports = 0 for net_id in net_ids: network = self.get_network_by_id(net_id) num_subnets += len(network.subnets) num_ports += len(network.ports) return {'networks': num_nets, 'subnets': num_subnets, 'ports': num_ports} class DhcpAgentWithStateReport(DhcpAgent): def __init__(self, host=None): super(DhcpAgentWithStateReport, self).__init__(host=host) self.state_rpc = agent_rpc.PluginReportStateAPI(topics.PLUGIN) self.agent_state = { 'binary': 'neutron-dhcp-agent', 'host': host, 'topic': topics.DHCP_AGENT, 'configurations': { 'dhcp_driver': cfg.CONF.dhcp_driver, 'use_namespaces': cfg.CONF.use_namespaces, 'dhcp_lease_duration': cfg.CONF.dhcp_lease_duration}, 'start_flag': True, 'agent_type': constants.AGENT_TYPE_DHCP} report_interval = cfg.CONF.AGENT.report_interval self.use_call = True if report_interval: self.heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) self.heartbeat.start(interval=report_interval) def _report_state(self): try: self.agent_state.get('configurations').update( self.cache.get_state()) ctx = context.get_admin_context_without_session() self.state_rpc.report_state(ctx, self.agent_state, self.use_call) self.use_call = False except AttributeError: # This means the server does not support report_state LOG.warn(_("Neutron server does not support state report." " State report for this agent will be disabled.")) self.heartbeat.stop() self.run() return except Exception: LOG.exception(_("Failed reporting state!")) return if self.agent_state.pop('start_flag', None): self.run() def agent_updated(self, context, payload): """Handle the agent_updated notification event.""" self.schedule_resync(_("Agent updated: %(payload)s") % {"payload": payload}) LOG.info(_("agent_updated by server side %s!"), payload) def after_start(self): LOG.info(_("DHCP agent started")) def register_options(): cfg.CONF.register_opts(DhcpAgent.OPTS) config.register_interface_driver_opts_helper(cfg.CONF) config.register_use_namespaces_opts_helper(cfg.CONF) config.register_agent_state_opts_helper(cfg.CONF) config.register_root_helper(cfg.CONF) cfg.CONF.register_opts(dhcp.OPTS) cfg.CONF.register_opts(interface.OPTS) def main(): register_options() common_config.init(sys.argv[1:]) config.setup_logging(cfg.CONF) server = neutron_service.Service.create( binary='neutron-dhcp-agent', topic=topics.DHCP_AGENT, report_interval=cfg.CONF.AGENT.report_interval, manager='neutron.agent.dhcp_agent.DhcpAgentWithStateReport') service.launch(server).wait()
import pandas as pd # smart frame functions (to make dataframes themselves 'smart') def is_smart_frame(df): return hasattr(df, '__sf_is_smart_frame') def make_df_smart(df, suffix): try: if is_smart_frame(df): print('WHOA THIS DATAFRAME IS ALREADY SMART') return df except: pass # okay, so it isn't already a 'smart' frame. df.__sf_suffix = suffix df.__sf_foreign_keys = dict() df.__sf_is_smart_frame = True df._metadata.append('__sf_suffix') df._metadata.append('__sf_foreign_keys') df._metadata.append('__sf_is_smart_frame') return df def suffix(smart_df): return smart_df.__sf_suffix def fkeys(smart_df): # foreign key return smart_df.__sf_foreign_keys def get_fkey_for_dfid(smart_df, target_df_id): return fkeys(smart_df)[target_df_id] def get_fkey(smart_df, target_df): return get_fkey_for_dfid(smart_df, id(target_df)) def add_fkey_for_dfid(smart_df, target_df_id, fkey): fkeys(smart_df)[target_df_id] = fkey def add_fkey(smart_df, target_df, fkey): # gets id and passes along add_fkey_for_dfid(smart_df, id(target_df), fkey) def sf_has_target(smart_df, target_df): if id(target_df) in fkeys(smart_df): return True return False class DataframeSmartMerger(object): def __init__(self): self._smart_frames = dict() self._names_of_dfs_known_to_be_smart = dict() self._smart_frames_which_have_a_foreign_key_for_this_dfid = dict() def add(self, df, name, suffix=None): print('adding dataframe ' + name) if not suffix: suffix = name df_id = id(df) # print('df {} has id {}'.format(name, df_id)) if name in self._smart_frames: print('WARNING: Overwriting known smart frame!!!!!') # TODO: fix up all references and/or disallow this self._smart_frames[name] = make_df_smart(df, suffix) self._names_of_dfs_known_to_be_smart[id(df)] = name # print('Adding smart frame ' + name + ' with id ' + str(id(df))) # this just gets a dataframe by name def __getitem__(self, name): return self._smart_frames[name] def __iter__(self): return iter(self._smart_frames.keys()) def _convert_to_name(self, df_or_name): # if it isn't a name, it's a dataframe and can be reverse-lookuped try: return self._names_of_dfs_known_to_be_smart[id(df_or_name)] except: return df_or_name # it needs to already be a name if it's not a dataframe def _get_best_printable_name(self, df): # this might already be a name try: # first guess is that it's a dataframe return self.get_known_name(df) except: try: # next guess is that it's an id return self._names_of_dfs_known_to_be_smart[df] except: # last guess is that it is a dataframe that we don't know about # print('couldnt return known name of id ' + str(id(df))) return str(id(df)) def _get_smart_frame(self, df): # this might be a name, or it might be an actual dataframe df_name = self._convert_to_name(df) try: return self._smart_frames[df_name] except KeyError: return None def _get_df_if_known_name(self, df): try: return self._smart_frames[df] except: # hopefully this is already a dataframe return df def _add_reverse_smart_merge(self, df_id, smart_frame): df_name = self._get_best_printable_name(df_id) if df_id not in self._smart_frames_which_have_a_foreign_key_for_this_dfid: # print('creating reverse lookup smart frame list for ' + df_name) self._smart_frames_which_have_a_foreign_key_for_this_dfid[df_id] = list() # print('noting that df {} is known (a foreign key is possessed) by smart frame {}'.format( # df_name, # self._get_best_printable_name(smart_frame.df))) sf_list = self._smart_frames_which_have_a_foreign_key_for_this_dfid[df_id] sf_id = id(smart_frame) contains = False for item in sf_list: iid = id(item) if iid == sf_id: contains = True if contains: self._smart_frames_which_have_a_foreign_key_for_this_dfid[df_id].append(smart_frame) else: # it's possible that two dataframes which can both be merged # into the same other dataframe may get merged together. # if this happens, there will be two foreign keys for a single # dataframe. # we don't need to record two instances of this, because we're just # a convenience for notifying that other dataframe that the new # merged dataframe exists and that it knows how to merge into it. # Since they presumably shared the exact same key name, one of those # key names will have been destroyed by the merge process, # leaving the other one to be merged into. # I *believe* that only adding one suffix at merge time # should always preserve a valid foreign key for these sorts of # situations. However, in cases where two foreign keys share # the same name but don't refer to the same table, this will # cause breakage. In this case, which is of course based on # unfortunate data naming that could potentially be avoided, # we could maybe check every time we do a merge to see if # the columns have been renamed. If they have been renamed, # we could add a new foreign key record to all SmartFrames # with the new merged name. But for now we'll leave this as-is. # print("WARNING - this smart frame {} has already been added for df {}".format( # self._get_best_printable_name(smart_frame), df_name)) pass # Registering a smart merge means declaring that the first dataframe # has a foreign key that corresponds to the primary index of other_df. # Smart merges will be performed between dataframes based on these declarations. # Since the merge is performed by definition on the primary key of one dataframe, # it is not currently supported to have more than one column that is a foreign # key for a given other dataframe. Future versions may or may not support this # additional semantic. # NB: These may be names or dataframes, but the first one at least must # be a known smart frame, or this will fail. def register_smart_merge(self, df, foreign_key, other_df): smart_frame = self._get_smart_frame(df) other_df = self._get_df_if_known_name(other_df) # if it's just a name but we already know about it self._register_smart_merge(smart_frame, foreign_key, id(other_df)) def _register_smart_merge(self, smart_frame, foreign_key, df_id): # print('I declare that df ' + self._get_best_printable_name(smart_frame.df) # + ' has an attribute ' + foreign_key + ' that allows it to join to ' # + self._get_best_printable_name(df_id) + '\'s primary key') add_fkey_for_dfid(smart_frame, df_id, foreign_key) self._add_reverse_smart_merge(df_id, smart_frame) def get_known_names(self): return self._smart_frames.keys() def get_known_name(self, df): return self._names_of_dfs_known_to_be_smart[id(df)] # As long as one of these is a dataframe or dataframe name that is known # by the DataFrameBrowser, and as long as that smart frame has a # registered smart merge for the other dataframe, this should return # a merged dataframe. def smart_merge(self, df1, df2, name_callback=None, id_callback=None, suffix_callback=None, preferred_df_to_suffix=None): if df1 is None or df1 is None: # just die immediately. it's not worth dealing with this later self[df1] self[df2] # when we get to a merge, we assume unless told otherwise that # the caller wants df columns with matching names to be suffixed # only in the names of df2. if preferred_df_to_suffix is None or (id(preferred_df_to_suffix) != id(df1) and id(preferred_df_to_suffix) != id(df2)): preferred_df_to_suffix = df2 smart_frame_1 = self._get_smart_frame(df1) smart_frame_2 = self._get_smart_frame(df2) # we expect df1 to be a smart frame and therefore possibly the foreign key holder if smart_frame_2 is not None and smart_frame_1 is None: # print('### performing swap, because df1 is not "smart" at all') # if it isn't a smart frame at all, but df2 is, we swap temp = smart_frame_1 smart_frame_1 = smart_frame_2 smart_frame_2 = temp elif smart_frame_1 is None and smart_frame_2 is None: # TODO: we don't even have a smart frame. use new smart frame callbacks! # (for now, we just die by trying and failing to 'get' df1) print(df1, df2) print('we can\'t find either of these as smart frames') self._smart_frames[self.get_name(df1)] # EARLY DEATH # # at this point we have ensured that at least one smart frame (smart_frame_1) exists # # Therefore we should not be using 'df1' anymore df1 = None if smart_frame_2 is not None: # df2 may have been a known name instead of a df, so assign the actual dataframe df2 = smart_frame_2 # we give preference to the first smart frame, if there are two if sf_has_target(smart_frame_1, df2): smart_frame_w_fkey = smart_frame_1 df_w_primkey = df2 if smart_frame_2 is not None: smart_frame_w_primkey = smart_frame_2 elif smart_frame_2 is not None and sf_has_target(smart_frame_2, smart_frame_1): smart_frame_w_fkey = smart_frame_2 smart_frame_w_primkey = smart_frame_1 df_w_primkey = smart_frame_w_primkey else: # we don't know how to merge these either direction # TODO: so perform 'merge clarification callback' # (but for now we just raise an exception) print('we dont know how to merge these in either direction') get_fkey(smart_frame_1, df2) # EARLY DEATH # get shortcut names for easier printing df_w_primkey_name = self._get_best_printable_name(df_w_primkey) df_w_fkey_name = self._get_best_printable_name(smart_frame_w_fkey) # # past here, we should not refer to anything except in terms of w_primkey and w_fkey # smart_frame_1 = None smart_frame_2 = None df2 = None # this would be the place to precheck column names and do my own # column renaming. and then we'd need a reverse-lookup by foreign key # in the smart frames, so that we can add the updated foreign key. # and maybe also check to see if this already has the one, # because if it does we should eliminate the duplicate column. # but is it really a duplicate? maybe not... # now that we KNOW which direction to merge and how, so DO MERGE! foreign_key = get_fkey(smart_frame_w_fkey, df_w_primkey) # print('### merging {} with {}\'s primary key using fkey {}'.format( # df_w_fkey_name, df_w_primkey_name, foreign_key)) if id(preferred_df_to_suffix) == id(smart_frame_w_fkey): merged = smart_frame_w_fkey.merge(df_w_primkey, left_on=foreign_key, right_index=True, suffixes=(suffix(smart_frame_w_fkey), '')) elif id(preferred_df_to_suffix) == id(df_w_primkey) and is_smart_frame(df_w_primkey): merged = smart_frame_w_fkey.merge(df_w_primkey, left_on=foreign_key, right_index=True, suffixes=('', suffix(df_w_primkey))) else: merged = smart_frame_w_fkey.merge(df_w_primkey, left_on=foreign_key, right_index=True, suffixes=(suffix(smart_frame_w_fkey), suffix(df_w_primkey))) # now we need to do bookkeeping and record any new known smart merges # add the new merged dataframe as a smart frame, since it's based on at least one smart frame merged_name = df_w_fkey_name + '+' + df_w_primkey_name self.add(merged, merged_name) merged_smart_frame = self._get_smart_frame(merged_name) # print('add available foreign keys of foreign_key df to merged df smart frame') # add available foreign keys of component dfs to merged df for df_id in fkeys(smart_frame_w_fkey).keys(): fkey = fkeys(smart_frame_w_fkey)[df_id] if fkey == foreign_key: continue # we just merged on this, so it can't be merged on for the new df self._register_smart_merge(merged_smart_frame, fkey, df_id) # print('add available foreign keys of primary key df to merged df') if smart_frame_w_primkey is not None: for df_id in fkeys(smart_frame_w_primkey).keys(): fkey = fkeys(smart_frame_w_primkey)[df_id] # we shouldn't have reuse in here, because we didn't use these self._register_smart_merge(merged_smart_frame, fkey, df_id) # now add available foreign keys of smart frames # that know how to merge into the component dfs merged_id = id(merged) df_primkey_id = id(df_w_primkey) # print('STEP TWO {}'.format(df_primkey_id)) # print('add available foreign keys of smart frames that know how to merge into the primkey df') if df_primkey_id in self._smart_frames_which_have_a_foreign_key_for_this_dfid: smart_frames_which_know_this_df_id = self._smart_frames_which_have_a_foreign_key_for_this_dfid[df_primkey_id] for smart_frame in smart_frames_which_know_this_df_id: the_fkey = get_fkey_for_dfid(smart_frame, df_primkey_id) if the_fkey == foreign_key: # print('skipping fkey {} possessed by {} because it disappeared in this merge'.format( # the_fkey, self._get_best_printable_name(smart_frame))) continue self._register_smart_merge(smart_frame, the_fkey, merged_id) df_fkey_id = id(smart_frame_w_fkey) # print('add available foreign keys of smart frames that know how to merge into the foreignkey df') if df_fkey_id in self._smart_frames_which_have_a_foreign_key_for_this_dfid: smart_frames_which_know_this_df_id = self._smart_frames_which_have_a_foreign_key_for_this_dfid[df_fkey_id] for smart_frame in smart_frames_which_know_this_df_id: the_fkey = get_fkey_for_dfid(smart_frame, df_fkey_id) if the_fkey == foreign_key: # print('skipping fkey {} possessed by {} because it disappeared in this merge'.format( # the_fkey, self._get_best_printable_name(smart_frame))) continue self._register_smart_merge(smart_frame, the_fkey, merged_id) return merged
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2020 EMBL - European Bioinformatics Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rest_framework_json_api import serializers from rest_framework_mongoengine import serializers as m_serializers from emgapi import fields as emg_fields from . import models as m_models class GoTermSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:goterms-detail', lookup_field='accession', ) def get_analysis(self, obj): return None class Meta: model = m_models.GoTerm fields = '__all__' class InterproIdentifierSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:interproidentifier-detail', lookup_field='accession', ) def get_analysis(self, obj): return None class Meta: model = m_models.InterproIdentifier fields = '__all__' class KeggModuleSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:keggmodules-detail', lookup_field='accession', ) class Meta: model = m_models.KeggModule fields = '__all__' class PfamSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:pfam-detail', lookup_field='accession', ) class Meta: model = m_models.PfamEntry fields = '__all__' class KeggOrthologSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:kegg-orthologs-detail', lookup_field='accession', ) class Meta: model = m_models.KeggOrtholog fields = '__all__' class GenomePropertySerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:genome-properties-detail', lookup_field='accession', ) class Meta: model = m_models.GenomeProperty fields = '__all__' class AntiSmashGeneClusterSerializer(m_serializers.DocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:antismash-gene-clusters-detail', lookup_field='accession', ) class Meta: model = m_models.AntiSmashGeneCluster fields = '__all__' class GoTermRetriveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:goterms-detail', lookup_field='accession', ) count = serializers.IntegerField(required=False) class Meta: model = m_models.GoTerm fields = '__all__' class InterproIdentifierRetriveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:interproidentifier-detail', lookup_field='accession', ) count = serializers.IntegerField(required=False) class Meta: model = m_models.InterproIdentifier fields = '__all__' class KeggModuleRetrieveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:keggmodules-detail', lookup_field='accession', ) completeness = serializers.FloatField(required=True) matching_kos = serializers.ListField() missing_kos = serializers.ListField() class Meta: model = m_models.KeggModule fields = '__all__' class PfamRetrieveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:pfam-detail', lookup_field='accession', ) count = serializers.IntegerField(required=True) class Meta: model = m_models.PfamEntry fields = '__all__' class KeggOrthologRetrieveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:kegg-orthologs-detail', lookup_field='accession', ) count = serializers.IntegerField(required=True) class Meta: model = m_models.KeggOrtholog fields = '__all__' class GenomePropertyRetrieveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:genome-properties-detail', lookup_field='accession', ) presence = serializers.CharField(source="get_presence_display", required=True) class Meta: model = m_models.GenomeProperty fields = '__all__' class AntiSmashGeneClusterRetrieveSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='emgapi_v1:antismash-gene-clusters-detail', lookup_field='accession', ) count = serializers.IntegerField(required=True) class Meta: model = m_models.AntiSmashGeneCluster fields = '__all__' class OrganismSerializer(m_serializers.DynamicDocumentSerializer, serializers.HyperlinkedModelSerializer): url = emg_fields.OrganismHyperlinkedIdentityField( view_name='emgapi_v1:organisms-children-list', lookup_field='lineage', ) class Meta: model = m_models.Organism exclude = ( 'id', 'ancestors', ) class OrganismRetriveSerializer(OrganismSerializer): count = serializers.IntegerField(required=False) class Meta: model = m_models.Organism exclude = ( 'id', 'ancestors', ) class AnalysisJobContigSerializer(m_serializers.DocumentSerializer): class Meta: model = m_models.AnalysisJobContig exclude = ( 'cogs', 'keggs', 'pfams', 'gos', 'interpros', 'kegg_modules', 'as_geneclusters' )
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.ops.special_math_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class LBetaTest(tf.test.TestCase): _use_gpu = False def test_one_dimensional_arg(self): # Should evaluate to 1 and 1/2. x_one = [1, 1.] x_one_half = [2, 1.] with self.test_session(use_gpu=self._use_gpu): self.assertAllClose(1, tf.exp(tf.lbeta(x_one)).eval()) self.assertAllClose(0.5, tf.exp(tf.lbeta(x_one_half)).eval()) self.assertEqual([], tf.lbeta(x_one).get_shape()) def test_one_dimensional_arg_dynamic_alloc(self): # Should evaluate to 1 and 1/2. x_one = [1, 1.] x_one_half = [2, 1.] with self.test_session(use_gpu=self._use_gpu): ph = tf.placeholder(tf.float32) beta_ph = tf.exp(tf.lbeta(ph)) self.assertAllClose(1, beta_ph.eval(feed_dict={ph: x_one})) self.assertAllClose(0.5, beta_ph.eval(feed_dict={ph: x_one_half})) def test_two_dimensional_arg(self): # Should evaluate to 1/2. x_one_half = [[2, 1.], [2, 1.]] with self.test_session(use_gpu=self._use_gpu): self.assertAllClose([0.5, 0.5], tf.exp(tf.lbeta(x_one_half)).eval()) self.assertEqual((2,), tf.lbeta(x_one_half).get_shape()) def test_two_dimensional_arg_dynamic_alloc(self): # Should evaluate to 1/2. x_one_half = [[2, 1.], [2, 1.]] with self.test_session(use_gpu=self._use_gpu): ph = tf.placeholder(tf.float32) beta_ph = tf.exp(tf.lbeta(ph)) self.assertAllClose([0.5, 0.5], beta_ph.eval(feed_dict={ph: x_one_half})) def test_two_dimensional_proper_shape(self): # Should evaluate to 1/2. x_one_half = [[2, 1.], [2, 1.]] with self.test_session(use_gpu=self._use_gpu): self.assertAllClose([0.5, 0.5], tf.exp(tf.lbeta(x_one_half)).eval()) self.assertEqual((2,), tf.shape(tf.lbeta(x_one_half)).eval()) self.assertEqual(tf.TensorShape([2]), tf.lbeta(x_one_half).get_shape()) def test_complicated_shape(self): with self.test_session(use_gpu=self._use_gpu): x = tf.convert_to_tensor(np.random.rand(3, 2, 2)) self.assertAllEqual((3, 2), tf.shape(tf.lbeta(x)).eval()) self.assertEqual(tf.TensorShape([3, 2]), tf.lbeta(x).get_shape()) def test_length_1_last_dimension_results_in_one(self): # If there is only one coefficient, the formula still works, and we get one # as the answer, always. x_a = [5.5] x_b = [0.1] with self.test_session(use_gpu=self._use_gpu): self.assertAllClose(1, tf.exp(tf.lbeta(x_a)).eval()) self.assertAllClose(1, tf.exp(tf.lbeta(x_b)).eval()) self.assertEqual((), tf.lbeta(x_a).get_shape()) def test_empty_rank2_or_greater_input_gives_empty_output(self): with self.test_session(use_gpu=self._use_gpu): self.assertAllEqual([], tf.lbeta([[]]).eval()) self.assertEqual((0,), tf.lbeta([[]]).get_shape()) self.assertAllEqual([[]], tf.lbeta([[[]]]).eval()) self.assertEqual((1, 0), tf.lbeta([[[]]]).get_shape()) def test_empty_rank2_or_greater_input_gives_empty_output_dynamic_alloc(self): with self.test_session(use_gpu=self._use_gpu): ph = tf.placeholder(tf.float32) self.assertAllEqual([], tf.lbeta(ph).eval(feed_dict={ph: [[]]})) self.assertAllEqual([[]], tf.lbeta(ph).eval(feed_dict={ph: [[[]]]})) def test_empty_rank1_input_raises_value_error(self): with self.test_session(use_gpu=self._use_gpu): with self.assertRaisesRegexp(ValueError, 'rank'): tf.lbeta([]) def test_empty_rank1_dynamic_alloc_input_raises_op_error(self): with self.test_session(use_gpu=self._use_gpu): ph = tf.placeholder(tf.float32) with self.assertRaisesOpError('rank'): tf.lbeta(ph).eval(feed_dict={ph: []}) class LBetaTestGpu(LBetaTest): _use_gpu = True class EinsumTest(tf.test.TestCase): # standard cases simple_cases = [ 'ij,jk->ik', 'ijk,jklm->il', 'ij,jk,kl->il', 'ijk->i', ] # where axes are not in order misordered_cases = [ 'ji,kj->ik', 'ikl,kji->kl', 'klj,lki->ij', ] # more than two arguments multiarg_cases = [ 'ijk,ijl,ikl->i', 'i,ijk,j->k', 'ij,ij,jk,kl->il', ] invalid_cases = [ # bad formats 'ijk ijk', 'ij,jk,kl' 'ij->', # axis in output that does not exist 'ij,jk->im', # incorrect number of dimensions 'ij,jkl->kl', ] dim_mismatch_cases = [ ('ijk,jkl->il', [(2,3,4), (3,5,6)]), ] def test_simple(self): for case in self.simple_cases: self.run_test(case) def test_misordered(self): for case in self.misordered_cases: self.run_test(case) def test_multiarg(self): for case in self.multiarg_cases: self.run_test(case) def test_invalid(self): for axes in self.invalid_cases: result = None inputs = [ tf.placeholder(tf.float32, shape=(3,4)), tf.placeholder(tf.float32, shape=(3,4)), ] try: result = tf.einsum(axes, *inputs) except AssertionError as e: print(e) assert result is None, \ "An exception should have been thrown." def test_dim_mismatch(self): for axes, input_shapes in self.dim_mismatch_cases: inputs = [ tf.placeholder(tf.float32, shape=shape) for shape in input_shapes ] result = None try: result = tf.einsum(axes, *inputs) except AssertionError: pass assert result is None, "An exception should have been thrown." def run_test(self, axes): all_axes = {ax: np.random.randint(4, 12) for ax in axes if ax.isalpha()} input_vals = [] input_axes, _, _ = axes.partition('->') for idx in input_axes.split(','): shape = [all_axes[ax] for ax in idx] input_vals.append(np.random.random(shape)) input_tensors = [tf.constant(val) for val in input_vals] output_tensor = tf.einsum(axes, *input_tensors) with self.test_session(): output_value = output_tensor.eval() correct_value = np.einsum(axes, *input_vals) err = np.abs(correct_value - output_value).max() print(axes, err) assert err < 1e-8 if __name__ == '__main__': tf.test.main()
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import zlib from tensorflow.contrib.data.python.ops import dataset_ops from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.lib.io import python_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test from tensorflow.python.util import compat class TextLineDatasetTest(test.TestCase): def _lineText(self, f, l): return compat.as_bytes("%d: %d" % (f, l)) def _createFiles(self, num_files, num_lines, crlf=False, compression_type=None): filenames = [] for i in range(num_files): fn = os.path.join(self.get_temp_dir(), "text_line.%d.txt" % i) filenames.append(fn) contents = [] for j in range(num_lines): contents.append(self._lineText(i, j)) # Always include a newline after the record unless it is # at the end of the file, in which case we include it sometimes. if j + 1 != num_lines or i == 0: contents.append(b"\r\n" if crlf else b"\n") contents = b"".join(contents) if not compression_type: with open(fn, "wb") as f: f.write(contents) elif compression_type == "GZIP": with gzip.GzipFile(fn, "wb") as f: f.write(contents) elif compression_type == "ZLIB": contents = zlib.compress(contents) with open(fn, "wb") as f: f.write(contents) else: raise ValueError("Unsupported compression_type", compression_type) return filenames def _testTextLineDataset(self, compression_type=None): test_filenames = self._createFiles( 2, 5, crlf=True, compression_type=compression_type) filenames = array_ops.placeholder(dtypes.string, shape=[None]) num_epochs = array_ops.placeholder(dtypes.int64, shape=[]) batch_size = array_ops.placeholder(dtypes.int64, shape=[]) repeat_dataset = dataset_ops.TextLineDataset( filenames, compression_type=compression_type).repeat(num_epochs) batch_dataset = repeat_dataset.batch(batch_size) iterator = dataset_ops.Iterator.from_structure(batch_dataset.output_types) init_op = iterator.make_initializer(repeat_dataset) init_batch_op = iterator.make_initializer(batch_dataset) get_next = iterator.get_next() with self.test_session() as sess: # Basic test: read from file 0. sess.run(init_op, feed_dict={filenames: [test_filenames[0]], num_epochs: 1}) for i in range(5): self.assertEqual(self._lineText(0, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from file 1. sess.run(init_op, feed_dict={filenames: [test_filenames[1]], num_epochs: 1}) for i in range(5): self.assertEqual(self._lineText(1, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from both files. sess.run(init_op, feed_dict={filenames: test_filenames, num_epochs: 1}) for j in range(2): for i in range(5): self.assertEqual(self._lineText(j, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test repeated iteration through both files. sess.run(init_op, feed_dict={filenames: test_filenames, num_epochs: 10}) for _ in range(10): for j in range(2): for i in range(5): self.assertEqual(self._lineText(j, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test batched and repeated iteration through both files. sess.run(init_batch_op, feed_dict={filenames: test_filenames, num_epochs: 10, batch_size: 5}) for _ in range(10): self.assertAllEqual([self._lineText(0, i) for i in range(5)], sess.run(get_next)) self.assertAllEqual([self._lineText(1, i) for i in range(5)], sess.run(get_next)) def testTextLineDatasetNoCompression(self): self._testTextLineDataset() def testTextLineDatasetGzipCompression(self): self._testTextLineDataset(compression_type="GZIP") def testTextLineDatasetZlibCompression(self): self._testTextLineDataset(compression_type="ZLIB") class FixedLengthRecordReaderTest(test.TestCase): def setUp(self): super(FixedLengthRecordReaderTest, self).setUp() self._num_files = 2 self._num_records = 7 self._header_bytes = 5 self._record_bytes = 3 self._footer_bytes = 2 def _record(self, f, r): return compat.as_bytes(str(f * 2 + r) * self._record_bytes) def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "fixed_length_record.%d.txt" % i) filenames.append(fn) with open(fn, "wb") as f: f.write(b"H" * self._header_bytes) for j in range(self._num_records): f.write(self._record(i, j)) f.write(b"F" * self._footer_bytes) return filenames def testFixedLengthRecordDataset(self): test_filenames = self._createFiles() filenames = array_ops.placeholder(dtypes.string, shape=[None]) num_epochs = array_ops.placeholder(dtypes.int64, shape=[]) batch_size = array_ops.placeholder(dtypes.int64, shape=[]) repeat_dataset = (dataset_ops.FixedLengthRecordDataset( filenames, self._record_bytes, self._header_bytes, self._footer_bytes) .repeat(num_epochs)) batch_dataset = repeat_dataset.batch(batch_size) iterator = dataset_ops.Iterator.from_structure(batch_dataset.output_types) init_op = iterator.make_initializer(repeat_dataset) init_batch_op = iterator.make_initializer(batch_dataset) get_next = iterator.get_next() with self.test_session() as sess: # Basic test: read from file 0. sess.run(init_op, feed_dict={filenames: [test_filenames[0]], num_epochs: 1}) for i in range(self._num_records): self.assertEqual(self._record(0, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from file 1. sess.run(init_op, feed_dict={filenames: [test_filenames[1]], num_epochs: 1}) for i in range(self._num_records): self.assertEqual(self._record(1, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Basic test: read from both files. sess.run(init_op, feed_dict={filenames: test_filenames, num_epochs: 1}) for j in range(self._num_files): for i in range(self._num_records): self.assertEqual(self._record(j, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test repeated iteration through both files. sess.run(init_op, feed_dict={filenames: test_filenames, num_epochs: 10}) for _ in range(10): for j in range(self._num_files): for i in range(self._num_records): self.assertEqual(self._record(j, i), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test batched and repeated iteration through both files. sess.run(init_batch_op, feed_dict={filenames: test_filenames, num_epochs: 10, batch_size: self._num_records}) for _ in range(10): for j in range(self._num_files): self.assertAllEqual([self._record(j, i) for i in range(self._num_records)], sess.run(get_next)) class TFRecordDatasetTest(test.TestCase): def setUp(self): super(TFRecordDatasetTest, self).setUp() self._num_files = 2 self._num_records = 7 self.test_filenames = self._createFiles() self.filenames = array_ops.placeholder(dtypes.string, shape=[None]) self.num_epochs = array_ops.placeholder_with_default( constant_op.constant(1, dtypes.int64), shape=[]) self.compression_type = array_ops.placeholder_with_default("", shape=[]) self.batch_size = array_ops.placeholder(dtypes.int64, shape=[]) repeat_dataset = dataset_ops.TFRecordDataset( self.filenames, self.compression_type).repeat(self.num_epochs) batch_dataset = repeat_dataset.batch(self.batch_size) iterator = dataset_ops.Iterator.from_structure(batch_dataset.output_types) self.init_op = iterator.make_initializer(repeat_dataset) self.init_batch_op = iterator.make_initializer(batch_dataset) self.get_next = iterator.get_next() def _record(self, f, r): return compat.as_bytes("Record %d of file %d" % (r, f)) def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i) filenames.append(fn) writer = python_io.TFRecordWriter(fn) for j in range(self._num_records): writer.write(self._record(i, j)) writer.close() return filenames def testReadOneEpoch(self): with self.test_session() as sess: # Basic test: read from file 0. sess.run(self.init_op, feed_dict={self.filenames: [self.test_filenames[0]], self.num_epochs: 1}) for i in range(self._num_records): self.assertAllEqual(self._record(0, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) # Basic test: read from file 1. sess.run(self.init_op, feed_dict={self.filenames: [self.test_filenames[1]], self.num_epochs: 1}) for i in range(self._num_records): self.assertAllEqual(self._record(1, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) # Basic test: read from both files. sess.run(self.init_op, feed_dict={self.filenames: self.test_filenames, self.num_epochs: 1}) for j in range(self._num_files): for i in range(self._num_records): self.assertAllEqual(self._record(j, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) def testReadTenEpochs(self): with self.test_session() as sess: sess.run(self.init_op, feed_dict={self.filenames: self.test_filenames, self.num_epochs: 10}) for _ in range(10): for j in range(self._num_files): for i in range(self._num_records): self.assertAllEqual(self._record(j, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) def testReadTenEpochsOfBatches(self): with self.test_session() as sess: sess.run(self.init_batch_op, feed_dict={self.filenames: self.test_filenames, self.num_epochs: 10, self.batch_size: self._num_records}) for _ in range(10): for j in range(self._num_files): values = sess.run(self.get_next) self.assertAllEqual([self._record(j, i) for i in range(self._num_records)], values) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) def testReadZlibFiles(self): zlib_files = [] for i, fn in enumerate(self.test_filenames): with open(fn, "rb") as f: cdata = zlib.compress(f.read()) zfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.z" % i) with open(zfn, "wb") as f: f.write(cdata) zlib_files.append(zfn) with self.test_session() as sess: sess.run(self.init_op, feed_dict={self.filenames: zlib_files, self.compression_type: "ZLIB"}) for j in range(self._num_files): for i in range(self._num_records): self.assertAllEqual(self._record(j, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) def testReadGzipFiles(self): gzip_files = [] for i, fn in enumerate(self.test_filenames): with open(fn, "rb") as f: gzfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.gz" % i) with gzip.GzipFile(gzfn, "wb") as gzf: gzf.write(f.read()) gzip_files.append(gzfn) with self.test_session() as sess: sess.run(self.init_op, feed_dict={self.filenames: gzip_files, self.compression_type: "GZIP"}) for j in range(self._num_files): for i in range(self._num_records): self.assertAllEqual(self._record(j, i), sess.run(self.get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(self.get_next) class ReadBatchFeaturesTest(test.TestCase): def setUp(self): super(ReadBatchFeaturesTest, self).setUp() self._num_files = 2 self._num_records = 7 self.test_filenames = self._createFiles() def _read_batch_features(self, filenames, num_epochs, batch_size): self.filenames = filenames self.num_epochs = num_epochs self.batch_size = batch_size return dataset_ops.read_batch_features( file_pattern=self.filenames, batch_size=self.batch_size, features={ "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), "keywords": parsing_ops.VarLenFeature(dtypes.string) }, reader=dataset_ops.TFRecordDataset, randomize_input=False, num_epochs=self.num_epochs) def _record(self, f, r): example = example_pb2.Example(features=feature_pb2.Features( feature={ "file": feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=[f])), "record": feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=[r])), "keywords": feature_pb2.Feature(bytes_list=feature_pb2.BytesList( value=self._get_keywords(f, r))) })) return example.SerializeToString() def _get_keywords(self, f, r): num_keywords = 1 + (f + r) % 2 keywords = [] for index in range(num_keywords): keywords.append(compat.as_bytes("keyword%d" % index)) return keywords def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i) filenames.append(fn) writer = python_io.TFRecordWriter(fn) for j in range(self._num_records): writer.write(self._record(i, j)) writer.close() return filenames def _next_actual_batch(self, sess): file_op = self.outputs["file"] keywords_indices_op = self.outputs["keywords"].indices keywords_values_op = self.outputs["keywords"].values keywords_dense_shape_op = self.outputs["keywords"].dense_shape record_op = self.outputs["record"] return sess.run([ file_op, keywords_indices_op, keywords_values_op, keywords_dense_shape_op, record_op ]) def _next_expected_batch(self, file_indices, batch_size, num_epochs): def _next_record(file_indices): for j in file_indices: for i in range(self._num_records): yield j, i file_batch = [] keywords_batch_indices = [] keywords_batch_values = [] keywords_batch_max_len = 0 record_batch = [] batch_index = 0 for _ in range(num_epochs): for record in _next_record(file_indices): f = record[0] r = record[1] file_batch.append(f) record_batch.append(r) keywords = self._get_keywords(f, r) keywords_batch_values.extend(keywords) keywords_batch_indices.extend([[batch_index, i] for i in range(len(keywords))]) batch_index += 1 keywords_batch_max_len = max(keywords_batch_max_len, len(keywords)) if len(file_batch) == batch_size: yield [ file_batch, keywords_batch_indices, keywords_batch_values, [batch_size, keywords_batch_max_len], record_batch ] file_batch = [] keywords_batch_indices = [] keywords_batch_values = [] keywords_batch_max_len = 0 record_batch = [] batch_index = 0 if file_batch: yield [ file_batch, keywords_batch_indices, keywords_batch_values, [len(file_batch), keywords_batch_max_len], record_batch ] def _verify_records(self, sess, batch_size, file_index=None, num_epochs=1): if file_index is not None: file_indices = [file_index] else: file_indices = range(self._num_files) for expected_batch in self._next_expected_batch(file_indices, batch_size, num_epochs): actual_batch = self._next_actual_batch(sess) for i in range(len(expected_batch)): self.assertAllEqual(expected_batch[i], actual_batch[i]) def testRead(self): for batch_size in [1, 2]: for num_epochs in [1, 10]: with ops.Graph().as_default(): with self.test_session(graph=ops.get_default_graph()) as sess: # Basic test: read from file 0. self.outputs = self._read_batch_features( filenames=self.test_filenames[0], num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, 0, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) with ops.Graph().as_default(): with self.test_session(graph=ops.get_default_graph()) as sess: # Basic test: read from file 1. self.outputs = self._read_batch_features( filenames=self.test_filenames[1], num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, 1, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) with ops.Graph().as_default(): with self.test_session(graph=ops.get_default_graph()) as sess: # Basic test: read from both files. self.outputs = self._read_batch_features( filenames=self.test_filenames, num_epochs=num_epochs, batch_size=batch_size) self._verify_records(sess, batch_size, num_epochs=num_epochs) with self.assertRaises(errors.OutOfRangeError): self._next_actual_batch(sess) def testReadWithEquivalentDataset(self): # TODO(mrry): Add support for tf.SparseTensor as a Dataset component. features = { "file": parsing_ops.FixedLenFeature([], dtypes.int64), "record": parsing_ops.FixedLenFeature([], dtypes.int64), } dataset = (dataset_ops.TFRecordDataset(self.test_filenames) .map(lambda x: parsing_ops.parse_single_example(x, features)) .repeat(10) .batch(2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer next_element = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for file_batch, _, _, _, record_batch in self._next_expected_batch( range(self._num_files), 2, 10): actual_batch = sess.run(next_element) self.assertAllEqual(file_batch, actual_batch["file"]) self.assertAllEqual(record_batch, actual_batch["record"]) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) if __name__ == "__main__": test.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import redis import connection from scrapy.http import Request from scrapy.spider import Spider from unittest import TestCase from dupefilter import RFPDupeFilter from queue import SpiderQueue, SpiderPriorityQueue, SpiderStack from scheduler import Scheduler # allow test settings from environment REDIS_HOST = os.environ.get('REDIST_HOST', 'localhost') REDIS_PORT = int(os.environ.get('REDIS_PORT', 6379)) class DupeFilterTest(TestCase): def setUp(self): self.server = redis.Redis(REDIS_HOST, REDIS_PORT) self.key = 'scrapy_redis:tests:dupefilter:' self.df = RFPDupeFilter(self.server, self.key) def tearDown(self): self.server.delete(self.key) def test_dupe_filter(self): req = Request('http://example.com') self.assertFalse(self.df.request_seen(req)) self.assertTrue(self.df.request_seen(req)) self.df.close('nothing') class QueueTestMixin(object): queue_cls = None def setUp(self): self.spider = Spider('myspider') self.key = 'scrapy_redis:tests:%s:queue' % self.spider.name self.server = redis.Redis(REDIS_HOST, REDIS_PORT) self.q = self.queue_cls(self.server, Spider('myspider'), self.key) def tearDown(self): self.server.delete(self.key) def test_clear(self): self.assertEqual(len(self.q), 0) for i in range(10): # XXX: can't use same url for all requests as SpiderPriorityQueue # uses redis' set implemention and we will end with only one # request in the set and thus failing the test. It should be noted # that when using SpiderPriorityQueue it acts as a request # duplication filter whenever the serielized requests are the same. # This might be unwanted on repetitive requests to the same page # even with dont_filter=True flag. req = Request('http://example.com/?page=%s' % i) self.q.push(req) self.assertEqual(len(self.q), 10) self.q.clear() self.assertEqual(len(self.q), 0) class SpiderQueueTest(QueueTestMixin, TestCase): queue_cls = SpiderQueue def test_queue(self): req1 = Request('http://example.com/page1') req2 = Request('http://example.com/page2') self.q.push(req1) self.q.push(req2) out1 = self.q.pop() out2 = self.q.pop() self.assertEqual(out1.url, req1.url) self.assertEqual(out2.url, req2.url) class SpiderPriorityQueueTest(QueueTestMixin, TestCase): queue_cls = SpiderPriorityQueue def test_queue(self): req1 = Request('http://example.com/page1', priority=100) req2 = Request('http://example.com/page2', priority=50) req3 = Request('http://example.com/page2', priority=200) self.q.push(req1) self.q.push(req2) self.q.push(req3) out1 = self.q.pop() out2 = self.q.pop() out3 = self.q.pop() self.assertEqual(out1.url, req3.url) self.assertEqual(out2.url, req1.url) self.assertEqual(out3.url, req2.url) class SpiderStackTest(QueueTestMixin, TestCase): queue_cls = SpiderStack def test_queue(self): req1 = Request('http://example.com/page1') req2 = Request('http://example.com/page2') self.q.push(req1) self.q.push(req2) out1 = self.q.pop() out2 = self.q.pop() self.assertEqual(out1.url, req2.url) self.assertEqual(out2.url, req1.url) class SchedulerTest(TestCase): def setUp(self): self.server = redis.Redis(REDIS_HOST, REDIS_PORT) self.key_prefix = 'scrapy_redis:tests:' self.queue_key = self.key_prefix + '%(spider)s:requests' self.dupefilter_key = self.key_prefix + '%(spider)s:dupefilter' self.idle_before_close = 0 self.scheduler = Scheduler(self.server, False, self.queue_key, SpiderQueue, self.dupefilter_key, self.idle_before_close) def tearDown(self): for key in self.server.keys(self.key_prefix): self.server.delete(key) def test_scheduler(self): # default no persist self.assertFalse(self.scheduler.persist) spider = Spider('myspider') self.scheduler.open(spider) self.assertEqual(len(self.scheduler), 0) req = Request('http://example.com') self.scheduler.enqueue_request(req) self.assertTrue(self.scheduler.has_pending_requests()) self.assertEqual(len(self.scheduler), 1) # dupefilter in action self.scheduler.enqueue_request(req) self.assertEqual(len(self.scheduler), 1) out = self.scheduler.next_request() self.assertEqual(out.url, req.url) self.assertFalse(self.scheduler.has_pending_requests()) self.assertEqual(len(self.scheduler), 0) self.scheduler.close('finish') def test_scheduler_persistent(self): messages = [] spider = Spider('myspider') spider.log = lambda *args, **kwargs: messages.append([args, kwargs]) self.scheduler.persist = True self.scheduler.open(spider) self.assertEqual(messages, []) self.scheduler.enqueue_request(Request('http://example.com/page1')) self.scheduler.enqueue_request(Request('http://example.com/page2')) self.assertTrue(self.scheduler.has_pending_requests()) self.scheduler.close('finish') self.scheduler.open(spider) self.assertEqual(messages, [ [('Resuming crawl (2 requests scheduled)',), {}], ]) self.assertEqual(len(self.scheduler), 2) self.scheduler.persist = False self.scheduler.close('finish') self.assertEqual(len(self.scheduler), 0) class ConnectionTest(TestCase): def setUp(self): pass def tearDown(self): pass # We can get a connection from just REDIS_URL. def test_redis_url(self): settings = dict( REDIS_URL = 'redis://foo:bar@localhost:9001/42' ) server = connection.from_settings(settings) connect_args = server.connection_pool.connection_kwargs self.assertEqual(connect_args['host'], 'localhost') self.assertEqual(connect_args['port'], 9001) self.assertEqual(connect_args['password'], 'bar') self.assertEqual(connect_args['db'], 42) # We can get a connection from REDIS_HOST/REDIS_PORT. def test_redis_host_port(self): settings = dict( REDIS_HOST = 'localhost', REDIS_PORT = 9001 ) server = connection.from_settings(settings) connect_args = server.connection_pool.connection_kwargs self.assertEqual(connect_args['host'], 'localhost') self.assertEqual(connect_args['port'], 9001) # REDIS_URL takes precedence over REDIS_HOST/REDIS_PORT. def test_redis_url_precedence(self): settings = dict( REDIS_HOST = 'baz', REDIS_PORT = 1337, REDIS_URL = 'redis://foo:bar@localhost:9001/42' ) server = connection.from_settings(settings) connect_args = server.connection_pool.connection_kwargs self.assertEqual(connect_args['host'], 'localhost') self.assertEqual(connect_args['port'], 9001) self.assertEqual(connect_args['password'], 'bar') self.assertEqual(connect_args['db'], 42) # We fallback to REDIS_HOST/REDIS_PORT if REDIS_URL is None. def test_redis_host_port_fallback(self): settings = dict( REDIS_HOST = 'baz', REDIS_PORT = 1337, REDIS_URL = None ) server = connection.from_settings(settings) connect_args = server.connection_pool.connection_kwargs self.assertEqual(connect_args['host'], 'baz') self.assertEqual(connect_args['port'], 1337) # We use default values for REDIS_HOST/REDIS_PORT. def test_redis_default(self): settings = dict() server = connection.from_settings(settings) connect_args = server.connection_pool.connection_kwargs self.assertEqual(connect_args['host'], 'localhost') self.assertEqual(connect_args['port'], 6379)
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Build input pipelines that span TPU pods for optimal performance. It's common to batch sequences according to their length. Unfortunately, a naive scaling of such an input pipeline across a pod will result in each host choosing the sequence length bucket independently. Concretely, host A may select sequences of a short length, while host B may select sequences of a very long length. Because every step involves a blocking all-reduce phase, host A must wait for host B. The input pipeline designed within synchronizes the hosts such that they all select a sequence length bucket of the same length, resulting in up to 50% performance improvements across large TPU pod slices. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import tensorflow as tf from tensorflow.python.data.ops import multi_device_iterator_ops from mlperf_compliance import mlperf_log import async_checkpoint import estimator as nmt_estimator import low_level_runner from utils import vocab_utils def create_train_runner(hparams, num_workers): params = {} steps_per_epoch = int(hparams.num_examples_per_epoch/hparams.batch_size) return low_level_runner.TrainLowLevelRunner( iterations=steps_per_epoch, hparams=hparams, per_host_v1=True) def train_fn(hparams, num_workers): """Copy of train function from estimator.py.""" # TODO: Merge improvements into the original. # pylint: disable=protected-access hparams.tgt_sos_id, hparams.tgt_eos_id = nmt_estimator._get_tgt_sos_eos_id( hparams) model_fn = nmt_estimator.make_model_fn(hparams) def print_log(): mlperf_log.gnmt_print(key=mlperf_log.TRAIN_LOOP) mlperf_log.gnmt_print(key=mlperf_log.TRAIN_EPOCH, value=0) mlperf_log.gnmt_print(key=mlperf_log.INPUT_SIZE, value=hparams.num_examples_per_epoch) if hparams.use_tpu_low_level_api: runner = create_train_runner(hparams, num_workers) mlperf_log.gnmt_print(key=mlperf_log.RUN_START) input_fn = DistributedPipeline(hparams, num_workers) runner.initialize(input_fn, {}) runner.build_model(model_fn, {}) print_log() runner.train(0, hparams.num_train_steps) return 0.0 # cluster = tf.contrib.cluster_resolver.TPUClusterResolver(hparams.tpu_name) # cluster_spec = cluster.cluster_spec() # print('cluster_spec: %s' % cluster_spec) # num_workers = cluster_spec.num_tasks('tpu_worker') # print('num_workers: %s' % num_workers) pipeline = DistributedPipeline(hparams, num_workers) print_log() if hparams.use_tpu: run_config = nmt_estimator._get_tpu_run_config(hparams, True) estimator = tf.contrib.tpu.TPUEstimator( model_fn=model_fn, config=run_config, use_tpu=hparams.use_tpu, train_batch_size=hparams.batch_size, eval_batch_size=hparams.batch_size, predict_batch_size=hparams.infer_batch_size) else: raise ValueError("Distributed input pipeline only supported on TPUs.") hooks = [pipeline] if hparams.use_async_checkpoint: hooks.append( async_checkpoint.AsyncCheckpointSaverHook( checkpoint_dir=hparams.out_dir, save_steps=int( hparams.num_examples_per_epoch / hparams.batch_size))) estimator.train( input_fn=pipeline, max_steps=hparams.num_train_steps, hooks=hooks) # Return value is not used return 0.0 def train_and_eval_with_low_level_api(hparams, num_workers): """Train and evaluation function.""" # pylint: disable=protected-access hparams.tgt_sos_id, hparams.tgt_eos_id = 1, 2 model_fn = nmt_estimator.make_model_fn(hparams) train_runner = create_train_runner(hparams, num_workers) eval_runner = nmt_estimator.create_eval_runner(hparams, model_fn) mlperf_log.gnmt_print(key=mlperf_log.RUN_START) train_input_fn = DistributedPipeline(hparams, num_workers) train_runner.initialize(train_input_fn, {}) train_runner.build_model(model_fn, {}) eval_input_fn = nmt_estimator.make_input_fn( hparams, tf.contrib.learn.ModeKeys.INFER) params = { "infer_batch_size": int(hparams.infer_batch_size / hparams.num_shards) } eval_runner.initialize(eval_input_fn, params) eval_runner.build_model(model_fn, params) score = 0.0 mlperf_log.gnmt_print(key=mlperf_log.TRAIN_LOOP) mlperf_log.gnmt_print(key=mlperf_log.EVAL_TARGET, value=hparams.target_bleu) current_step = 0 for i in range(hparams.max_train_epochs): mlperf_log.gnmt_print(key=mlperf_log.TRAIN_EPOCH, value=i) tf.logging.info("Start training epoch %d", i) mlperf_log.gnmt_print( key=mlperf_log.INPUT_SIZE, value=hparams.num_examples_per_epoch) steps_per_epoch = int(hparams.num_examples_per_epoch / hparams.batch_size) train_runner.train(current_step, steps_per_epoch) mlperf_log.gnmt_print( key=mlperf_log.TRAIN_CHECKPOINT, value=("Under " + hparams.out_dir)) tf.logging.info("End training epoch %d", i) mlperf_log.gnmt_print(key=mlperf_log.EVAL_START) predictions = list(eval_runner.predict()) current_step = current_step + steps_per_epoch score = nmt_estimator.get_metric(hparams, predictions, current_step) tf.logging.info("Score after epoch %d: %f", i, score) mlperf_log.gnmt_print(key=mlperf_log.EVAL_ACCURACY, value={"value": score, "epoch": i}) mlperf_log.gnmt_print(key=mlperf_log.EVAL_STOP, value=i) if score >= hparams.target_bleu: mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": True}) return score mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": False}) return score def train_and_eval_fn(hparams, num_workers): """Train and evaluation function.""" # pylint: disable=protected-access mlperf_log.gnmt_print(key=mlperf_log.RUN_START) hparams.tgt_sos_id, hparams.tgt_eos_id = 1, 2 model_fn = nmt_estimator.make_model_fn(hparams) pipeline = DistributedPipeline(hparams, num_workers) run_config = nmt_estimator._get_tpu_run_config(hparams) estimator = tf.contrib.tpu.TPUEstimator( model_fn=model_fn, config=run_config, use_tpu=hparams.use_tpu, train_batch_size=hparams.batch_size, eval_batch_size=hparams.batch_size, predict_batch_size=hparams.infer_batch_size) score = 0.0 mlperf_log.gnmt_print(key=mlperf_log.TRAIN_LOOP) mlperf_log.gnmt_print(key=mlperf_log.EVAL_TARGET, value=hparams.target_bleu) for i in range(hparams.max_train_epochs): mlperf_log.gnmt_print(key=mlperf_log.TRAIN_EPOCH, value=i) tf.logging.info("Start training epoch %d", i) mlperf_log.gnmt_print( key=mlperf_log.INPUT_SIZE, value=hparams.num_examples_per_epoch) steps_per_epoch = int(hparams.num_examples_per_epoch / hparams.batch_size) max_steps = steps_per_epoch * (i + 1) estimator.train(input_fn=pipeline, max_steps=max_steps, hooks=[pipeline]) mlperf_log.gnmt_print( key=mlperf_log.TRAIN_CHECKPOINT, value=("Under " + hparams.out_dir)) tf.logging.info("End training epoch %d", i) mlperf_log.gnmt_print(key=mlperf_log.EVAL_START) score = nmt_estimator.get_metric_from_estimator(hparams, estimator) tf.logging.info("Score after epoch %d: %f", i, score) mlperf_log.gnmt_print(key=mlperf_log.EVAL_ACCURACY, value={"value": score, "epoch": i}) mlperf_log.gnmt_print(key=mlperf_log.EVAL_STOP, value=i) if score >= hparams.target_bleu: mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": True}) return score mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": False}) return score class DistributedPipeline(tf.train.SessionRunHook): """DistributedPipeline encapsulates constructing the distributed pipeline. We use a class because we need to construct the pipeline in a graph managed by [TPU]Estimator. As a result, we cannot pre-construct it using a normal function, as Estimator wants to manage the graph itself. We use a class because we need to capture the initializer and pass it to the train call to TPUEstimator while simultaneously passing ourselves as the input function. """ def __init__(self, hparams, num_hosts): """Constructs a DistributedPipeline. Args: hparams: The hparams object for this model. num_hosts: The number of hosts in the slice of the TPU pod. Throws: ValueError: If the passed values are invalid. """ self._hparams = hparams self._num_hosts = num_hosts self._iterator = None self._outputs = None global_batch_size = hparams.batch_size if global_batch_size % num_hosts != 0: raise ValueError( "global_batch_size (%s) must be a multiple of num_hosts (%s)" % (global_batch_size, num_hosts)) def after_create_session(self, session, coord): del coord start = time.time() session.run(self._iterator.initializer) tf.logging.info("Initialized multi-host dataset iterators in %d seconds", time.time() - start) def __call__(self, params): if not self._outputs: self._iterator = _make_distributed_pipeline(self._hparams, self._num_hosts) self._outputs = self._iterator.get_next() if "context" in params: current_host = params["context"].current_input_fn_deployment()[1] elif "dataset_index" in params: current_host = params["dataset_index"] else: raise ValueError('Expect "context" or "dataset_index" in params.') return self._outputs[current_host] def _make_distributed_pipeline(hparams, num_hosts): """Makes the distributed input pipeline. make_distributed_pipeline must be used in the PER_HOST_V1 configuration. Note: we return both the input function and the hook because MultiDeviceIterator is not compatible with Estimator / TPUEstimator. Args: hparams: The hyperparameters to use. num_hosts: The number of hosts we're running across. Returns: A MultiDeviceIterator. """ # TODO: Merge with the original copy in iterator_utils.py. # pylint: disable=g-long-lambda,line-too-long global_batch_size = hparams.batch_size if global_batch_size % num_hosts != 0: raise ValueError( "global_batch_size (%s) must be a multiple of num_hosts (%s)" % (global_batch_size, num_hosts)) # Optionally choose from `choose_buckets` buckets simultaneously. if hparams.choose_buckets: window_batch_size = int(global_batch_size / hparams.choose_buckets) else: window_batch_size = global_batch_size per_host_batch_size = global_batch_size / num_hosts output_buffer_size = global_batch_size * 100 resolver = low_level_runner.get_resolver(hparams) assert resolver job_name = resolver.get_job_name() or "tpu_worker" with tf.device("/job:%s/task:0/cpu:0" % job_name): # From estimator.py src_file = "%s.%s" % (hparams.train_prefix, hparams.src) tgt_file = "%s.%s" % (hparams.train_prefix, hparams.tgt) src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) src_dataset = tf.data.TextLineDataset(src_file).prefetch(output_buffer_size) tgt_dataset = tf.data.TextLineDataset(tgt_file).prefetch(output_buffer_size) mlperf_log.gnmt_print( key=mlperf_log.INPUT_BATCH_SIZE, value=global_batch_size) mlperf_log.gnmt_print( key=mlperf_log.TRAIN_HP_MAX_SEQ_LEN, value=hparams.src_max_len) # Define local variables that are parameters in iterator_utils.make_input_fn sos = hparams.sos eos = hparams.eos random_seed = hparams.random_seed num_buckets = hparams.num_buckets src_max_len = hparams.src_max_len tgt_max_len = hparams.tgt_max_len num_parallel_calls = 100 # constant in iterator_utils.py skip_count = None # constant in estimator.py reshuffle_each_iteration = True # constant in estimator.py use_char_encode = hparams.use_char_encode filter_oversized_sequences = True # constant in estimator.py # From iterator_utils.py if use_char_encode: src_eos_id = vocab_utils.EOS_CHAR_ID else: src_eos_id = tf.cast(src_vocab_table.lookup(tf.constant(eos)), tf.int32) tgt_sos_id = tf.cast(tgt_vocab_table.lookup(tf.constant(sos)), tf.int32) tgt_eos_id = tf.cast(tgt_vocab_table.lookup(tf.constant(eos)), tf.int32) src_tgt_dataset = tf.data.Dataset.zip((src_dataset, tgt_dataset)) mlperf_log.gnmt_print(key=mlperf_log.INPUT_SHARD, value=1) if skip_count is not None: src_tgt_dataset = src_tgt_dataset.skip(skip_count) def map_fn_1(src, tgt): src = tf.string_split([src]).values tgt = tf.string_split([tgt]).values src_size = tf.size(src) tgt_size = tf.size(tgt) size_ok_bool = tf.logical_and(src_size > 0, tgt_size > 0) if filter_oversized_sequences: oversized = tf.logical_and(src_size < src_max_len, tgt_size < tgt_max_len) size_ok_bool = tf.logical_and(size_ok_bool, oversized) if src_max_len: src = src[:src_max_len] if tgt_max_len: tgt = tgt[:tgt_max_len] return (src, tgt, size_ok_bool) src_tgt_bool_dataset = src_tgt_dataset.map( map_fn_1, num_parallel_calls=num_parallel_calls) src_tgt_bool_dataset = src_tgt_bool_dataset.filter( lambda src, tgt, filter_bool: filter_bool) def map_fn_2(src, tgt, unused_filter_bool): if use_char_encode: src = tf.reshape(vocab_utils.tokens_to_bytes(src), [-1]) tgt = tf.cast(tgt_vocab_table.lookup(tgt), tf.int32) else: src = tf.cast(src_vocab_table.lookup(src), tf.int32) tgt = tf.cast(tgt_vocab_table.lookup(tgt), tf.int32) # Create a tgt_input prefixed with <sos> and a tgt_output suffixed with <eos>. tgt_in = tf.concat(([tgt_sos_id], tgt), 0) tgt_out = tf.concat((tgt, [tgt_eos_id]), 0) # Add in sequence lengths. if use_char_encode: src_len = tf.to_int32(tf.size(src) / vocab_utils.DEFAULT_CHAR_MAXLEN) else: src_len = tf.size(src) tgt_len = tf.size(tgt_in) return src, tgt_in, tgt_out, src_len, tgt_len # Convert the word strings to ids. Word strings that are not in the # vocab get the lookup table's default_value integer. mlperf_log.gnmt_print(key=mlperf_log.PREPROC_TOKENIZE_TRAINING) src_tgt_dataset = src_tgt_bool_dataset.map( map_fn_2, num_parallel_calls=num_parallel_calls) src_tgt_dataset = src_tgt_dataset.prefetch(output_buffer_size) src_tgt_dataset = src_tgt_dataset.cache() src_tgt_dataset = src_tgt_dataset.shuffle( output_buffer_size, random_seed, reshuffle_each_iteration).repeat() # Bucket by source sequence length (buckets for lengths 0-9, 10-19, ...) def batching_func(x): return x.padded_batch( window_batch_size, # The first three entries are the source and target line rows; # these have unknown-length vectors. The last two entries are # the source and target row sizes; these are scalars. padded_shapes=( tf.TensorShape([src_max_len]), # src tf.TensorShape([tgt_max_len]), # tgt_input tf.TensorShape([tgt_max_len]), # tgt_output tf.TensorShape([]), # src_len tf.TensorShape([])), # tgt_len # Pad the source and target sequences with eos tokens. # (Though notice we don't generally need to do this since # later on we will be masking out calculations past the true sequence. padding_values=( src_eos_id, # src tgt_eos_id, # tgt_input tgt_eos_id, # tgt_output 0, # src_len -- unused 0), # For TPU, must set drop_remainder to True or batch size will be None drop_remainder=True) # tgt_len -- unused def key_func(unused_1, unused_2, unused_3, src_len, tgt_len): """Calculate bucket_width by maximum source sequence length.""" # Pairs with length [0, bucket_width) go to bucket 0, length # [bucket_width, 2 * bucket_width) go to bucket 1, etc. Pairs with length # over ((num_bucket-1) * bucket_width) words all go into the last bucket. if src_max_len: bucket_width = (src_max_len + num_buckets - 1) // num_buckets else: bucket_width = 10 # Bucket sentence pairs by the length of their source sentence and target # sentence. bucket_id = tf.maximum(src_len // bucket_width, tgt_len // bucket_width) return tf.to_int64(tf.minimum(num_buckets, bucket_id)) def reduce_func(unused_key, windowed_data): return batching_func(windowed_data) if num_buckets > 1: batched_dataset = src_tgt_dataset.apply( tf.contrib.data.group_by_window( key_func=key_func, reduce_func=reduce_func, window_size=window_batch_size)) else: batched_dataset = batching_func(src_tgt_dataset) batched_dataset = batched_dataset.map( lambda src, tgt_in, tgt_out, source_size, tgt_in_size: ( {"source": src, "target_input": tgt_in, "target_output": tgt_out, "source_sequence_length": source_size, "target_sequence_length": tgt_in_size})) re_batched_dataset = batched_dataset.apply(tf.contrib.data.unbatch()).batch( int(per_host_batch_size), drop_remainder=True) output_devices = [ "/job:%s/task:%d/cpu:0" % (job_name, i) for i in range(num_hosts) ] options = tf.data.Options() options.experimental_numa_aware = True options.experimental_filter_fusion = True options.experimental_map_and_filter_fusion = True re_batched_dataset = re_batched_dataset.with_options(options) multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator( dataset=re_batched_dataset, devices=output_devices, max_buffer_size=10, prefetch_buffer_size=10, source_device=("/job:%s/task:0/cpu:0" % job_name)) return multi_device_iterator
# -*- coding: utf-8 -*- """ Document Library """ module = "doc" #============================================================================== resourcename = "document" tablename = "doc_document" table = db.define_table(tablename, Field("name", length=128, notnull=True, unique=True, label=T("Name")), Field("file", "upload", autodelete=True,), Field("url", label=T("URL")), person_id(label=T("Author")), organisation_id(), location_id(), Field("date", "date"), comments(), Field("entered", "boolean", label=T("Entered")), Field("checksum", readable=False, writable=False), migrate=migrate, *s3_meta_fields()) table.name.requires = [IS_NOT_EMPTY(), IS_NOT_ONE_OF(db, "%s.name" % tablename)] def shn_file_represent( file, table): if file: return A(table.file.retrieve(file)[0], _href=URL(r=request, f="download", args=[file])) else: return NONE table.file.represent = lambda file, table=table: shn_file_represent(file, table) table.url.represent = lambda url: url and A(url,_href=url) or NONE table.url.requires = [IS_NULL_OR(IS_URL()), IS_NULL_OR(IS_NOT_ONE_OF(db, "%s.url" % tablename))] table.person_id.comment = shn_person_comment(T("Author"), T("The Author of this Document (optional)")) table.location_id.readable = table.location_id.writable = False table.entered.comment = DIV( _class="tooltip", _title="%s|%s" % (T("Entered"), T("Has data from this Reference Document been entered into Sahana?"))) # ----------------------------------------------------------------------------- def document_represent(id): if not id: return NONE represent = shn_get_db_field_value(db = db, table = "doc_document", field = "name", look_up = id) #File #Website #Person return A ( represent, _href = URL(r=request, c="doc", f="document", args = [id], extension = ""), _target = "blank" ) DOCUMENT = T("Reference Document") ADD_DOCUMENT = T("Add Reference Document") document_comment = DIV( A( ADD_DOCUMENT, _class="colorbox", _href=URL(r=request, c="doc", f="document", args="create", vars=dict(format="popup")), _target="top", _title=T("If you need to add a new document then you can click here to attach one."), ), DIV( _class="tooltip", _title="%s|%s" % (DOCUMENT, T("A Reference Document such as a file, URL or contact person to verify this data. You can type the 1st few characters of the document name to link to an existing document.")), #T("Add a Reference Document such as a file, URL or contact person to verify this data. If you do not enter a Reference Document, your email will be displayed instead."), ), #SPAN( I( T("If you do not enter a Reference Document, your email will be displayed to allow this data to be verified.") ), # _style = "color:red" # ) ) # CRUD Strings LIST_DOCUMENTS = T("List Documents") s3.crud_strings[tablename] = Storage( title_create = ADD_DOCUMENT, title_display = T("Document Details"), title_list = LIST_DOCUMENTS, title_update = T("Edit Document"), title_search = T("Search Documents"), subtitle_create = T("Add New Document"), subtitle_list = DOCUMENT, label_list_button = LIST_DOCUMENTS, label_create_button = ADD_DOCUMENT, label_delete_button = T("Delete Document"), msg_record_created = T("Document added"), msg_record_modified = T("Document updated"), msg_record_deleted = T("Document deleted"), msg_list_empty = T("No Documents found")) document_id = S3ReusableField("document_id", table, requires = IS_NULL_OR(IS_ONE_OF(db, "doc_document.id", document_represent, orderby="doc_document.name")), represent = document_represent, label = DOCUMENT, comment = document_comment, ondelete = "RESTRICT", widget = S3AutocompleteWidget(request, module, resourcename) ) def document_onvalidation(form): import cgi table = db.doc_document doc = form.vars.file url = form.vars.url if not hasattr(doc, "file"): id = request.post_vars.id if id: record = db(table.id == id).select(table.file, limitby=(0, 1)).first() if record: doc = record.file if not hasattr(doc, "file") and not doc and not url: form.errors.file = \ form.errors.url = T("Either file upload or document URL required.") if isinstance(doc, cgi.FieldStorage) and doc.filename: f = doc.file form.vars.checksum = docChecksum(f.read()) f.seek(0) if form.vars.checksum is not None: result = db(table.checksum == form.vars.checksum).select(table.name, limitby=(0, 1)).first() if result: doc_name = result.name form.errors["file"] = "%s %s" % (T("This file already exists on the server as"), doc_name) return s3xrc.model.configure(table, mark_required=["file"], onvalidation=document_onvalidation) #============================================================================== resourcename = "image" tablename = "doc_image" table = db.define_table(tablename, Field("name", length=128, notnull=True, unique=True), Field("image", "upload", autodelete=True), # Web2Py r2867+ includes this functionality by default #Field("image", "upload", autodelete=True, widget=S3UploadWidget.widget), Field("url"), person_id(), organisation_id(), location_id(), Field("date", "date"), comments(), Field("checksum", readable=False, writable=False), migrate=migrate, *s3_meta_fields()) table.name.requires = [IS_NOT_EMPTY(), IS_NOT_ONE_OF(db, "%s.name" % tablename)] table.name.label = T("Name") table.url.requires = IS_NULL_OR(IS_URL()) table.url.label = T("URL") table.person_id.label = T("Person") # upload folder needs to be visible to the download() function as well as the upload table.image.uploadfolder = os.path.join(request.folder, "uploads/images") IMAGE_EXTENSIONS = ["png", "PNG", "jpg", "JPG", "jpeg", "JPEG", "gif", "GIF", "tif", "TIF", "tiff", "TIFF", "bmp", "BMP", "raw", "RAW"] table.image.requires = IS_IMAGE(extensions=(IMAGE_EXTENSIONS)) #table.image.requires = IS_EMPTY_OR(IS_IMAGE(extensions=(IMAGE_EXTENSIONS))) table.image.represent = lambda image: image and \ DIV(A(IMG(_src=URL(r=request, c="default", f="download", args=image), _height=60, _alt=T("View Image")), _href=URL(r=request, c="default", f="download", args=image))) or \ T("No Image") ADD_IMAGE = T("Add Photo") image_id = S3ReusableField("image_id", db.doc_image, requires = IS_NULL_OR(IS_ONE_OF(db, "doc_image.id", "%(name)s")), represent = lambda id: (id and [DIV(A(IMG(_src=URL(r=request, c="default", f="download", args=db(db.doc_image.id == id).select(db.doc_image.image, limitby=(0, 1)).first().image), _height=40), _class="zoom", _href="#zoom-media_image-%s" % id), DIV(IMG(_src=URL(r=request, c="default", f="download", args=db(db.doc_image.id == id).select(db.doc_image.image, limitby=(0, 1)).first().image), _width=600), _id="zoom-media_image-%s" % id, _class="hidden"))] or [""])[0], label = T("Image"), comment = DIV(A(ADD_IMAGE, _class="colorbox", _href=URL(r=request, c="doc", f="image", args="create", vars=dict(format="popup")), _target="top", _title=ADD_IMAGE), DIV( _class="tooltip", _title="%s|%s" % (ADD_IMAGE, T("Upload an image, such as a photo")))), ondelete = "RESTRICT" ) # CRUD Strings LIST_IMAGES = T("List Photos") s3.crud_strings[tablename] = Storage( title_create = ADD_IMAGE, title_display = T("Photo Details"), title_list = LIST_IMAGES, title_update = T("Edit Photo"), title_search = T("Search Photos"), subtitle_create = T("Add New Photo"), subtitle_list = T("Photo"), label_list_button = LIST_IMAGES, label_create_button = ADD_IMAGE, label_delete_button = T("Delete Photo"), msg_record_created = T("Photo added"), msg_record_modified = T("Photo updated"), msg_record_deleted = T("Photo deleted"), msg_list_empty = T("No Photos found")) def image_onvalidation(form): import cgi table = db.doc_image img = form.vars.image if not hasattr(img, "file"): id = request.post_vars.id if id: record = db(table.id == id).select(table.image, limitby=(0, 1)).first() if record: img = record.image if isinstance(img, cgi.FieldStorage) and img.filename: f = img.file form.vars.checksum = docChecksum(f.read()) f.seek(0) if form.vars.checksum is not None: result = db(table.checksum == form.vars.checksum).select(table.name, limitby=(0, 1)).first() if result: image_name = result.name form.errors["image"] = "%s %s" % (T("This file already exists on the server as"), image_name) return s3xrc.model.configure(table, onvalidation=image_onvalidation) #==============================================================================
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of the Keras training engine related to plain array data. """ # pylint: disable=protected-access from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.keras import backend as K from tensorflow.python.keras import callbacks as cbks from tensorflow.python.keras.distribute import distributed_training_utils from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.utils.generic_utils import make_batches from tensorflow.python.keras.utils.generic_utils import slice_arrays from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest try: from scipy.sparse import issparse # pylint: disable=g-import-not-at-top except ImportError: issparse = None def model_iteration(model, inputs, targets=None, sample_weights=None, batch_size=None, epochs=1, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, mode=ModeKeys.TRAIN, validation_in_fit=False, prepared_feed_values_from_dataset=False, steps_name='steps', **kwargs): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Arguments: model: Keras Model instance. inputs: Either a list or dictionary of arrays, or a dataset instance. targets: List/dictionary of input arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment). callbacks: List of callbacks to be called during training val_inputs: Either a list or dictionary of arrays, or a dataset instance. val_targets: List/dictionary of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. validation_freq: Only relevant if validation data is provided. Integer or `collections_abc.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. validation_in_fit: if true, then this method is invoked from within training iteration (for validation). In the case where `val_inputs` is a dataset, this flag indicates that its iterator and feed values are already created so should properly reuse resources. prepared_feed_values_from_dataset: if True, `inputs` is a list of feed tensors returned from `_prepare_feed_values` call on the validation dataset, so do not call it again on `inputs`. Should only be used for inline validation (i.e., only if `validation_in_fit` is also True). steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ # Backwards compatibility. if 'steps' in kwargs: steps_per_epoch = kwargs.pop('steps') if kwargs: raise TypeError('Unknown arguments: %s' % (kwargs,)) # In case we were passed a dataset, we extract symbolic tensors from it. reset_dataset_after_each_epoch = False input_iterator = None is_dataset = isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)) # TODO(fchollet): consider moving `steps_per_epoch` inference to # _standardize_user_data and set reset_dataset_after_each_epoch as an # attribute on the dataset instance. if is_dataset: if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils.infer_steps_for_dataset( model, inputs, steps_per_epoch, epochs=epochs, steps_name=steps_name) input_iterator = _get_iterator(inputs, model._distribution_strategy) # Enter tf.distribute.Strategy scope. if model._distribution_strategy: scope = distributed_training_utils.distributed_scope( strategy=model._distribution_strategy, learning_phase=(1 if mode == ModeKeys.TRAIN else 0)) scope.__enter__() use_steps = is_dataset or steps_per_epoch is not None do_validation = val_inputs is not None # Convert Eager Tensors to NumPy arrays to support batching/shuffling. inputs, targets, sample_weights = training_utils. \ convert_eager_tensors_to_numpy((inputs, targets, sample_weights)) # Prepare input data. inputs = input_iterator or inputs if validation_in_fit and prepared_feed_values_from_dataset: # When invoking validation in training loop, avoid creating iterator and # list of feed values for the same validation dataset multiple times (which # essentially would call `iterator.get_next()` that slows down execution and # leads to OOM errors eventually. ins = inputs else: ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode) # `ins` is a function when a distribute strategy is used in Eager mode. In # that case `is_dataset` is True. The code branches that have requirements # about the type of `ins` do not trigger in the distributed case. if not is_dataset: num_samples_or_steps = _get_num_samples_or_steps(ins, batch_size, steps_per_epoch) else: num_samples_or_steps = steps_per_epoch # Update sample_weight_mode of the model if sample_weights is specified by the # user. We need to call this function after we have a handle on the inputs # (both numpy arrays and datasets) in order to determine if the user has # specified sample_weights. _update_sample_weight_mode(model, mode, ins) # Get step function and loop type. As part of building the execution # function we recompile the metrics based on the updated # sample_weight_mode value. f = _make_execution_function(model, mode) # Prepare validation data. Hold references to the iterator and the input list # to properly reinitialize and reuse in multiple validation passes. val_iterator = None if isinstance(val_inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): if validation_steps is None: # Because we pass an iterator feed instead of a Dataset to the eval # model_iteration() call, it will not trigger the dataset-input path # that determines the number of steps required. To avoid this issue, # set validation_steps here if validation_steps is None. validation_steps = training_utils.infer_steps_for_dataset( model, val_inputs, validation_steps, epochs=epochs, steps_name='validation_steps') val_iterator = _get_iterator(val_inputs, model._distribution_strategy) val_inputs = _prepare_feed_values( model, val_iterator, val_targets, val_sample_weights, ModeKeys.TEST) # Get num steps for printing. val_samples_or_steps = validation_steps else: # Get num samples for printing. val_samples_or_steps = val_inputs and nest.flatten( val_inputs)[0].shape[0] or None if mode == ModeKeys.TRAIN and verbose: _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset) # Configure callbacks. count_mode = 'steps' if use_steps else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, verbose=0, # Handle ProgBarLogger separately in this loop. mode=mode) # TODO(omalleyt): Handle ProgBar as part of Callbacks once hooks are ready. progbar = training_utils.get_progbar( model, count_mode, mode != ModeKeys.PREDICT) progbar.params = callbacks.params progbar.params['verbose'] = verbose # Find beforehand arrays that need sparse-to-dense conversion. if issparse is not None and not use_steps: indices_for_conversion_to_dense = [] feed = _get_model_feed(model, mode) for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)): if issparse(input_data) and not K.is_sparse(feed_tensor): indices_for_conversion_to_dense.append(i) # Select aggregation method. if mode == ModeKeys.PREDICT: aggregator = training_utils.OutputsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) else: aggregator = training_utils.MetricsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) if model._compile_distribution: distributed_training_utils._copy_weights_to_distributed_model(model, mode) callbacks.model.stop_training = False callbacks._call_begin_hook(mode) progbar.on_train_begin() initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode) for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch epoch_logs = {} if mode != ModeKeys.PREDICT: # Collecting and resetting metrics has non-zero cost and will needlessly # slow down model.predict. model.reset_metrics() if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) progbar.on_epoch_begin(epoch, epoch_logs) if use_steps: # Step-wise loop. if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_logs = {'batch': step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', step, batch_logs) progbar.on_batch_begin(step, batch_logs) # Get outputs. try: # `ins` can be callable in tf.distribute.Strategy + eager case. if not callable(ins) or ( model._distribution_strategy and not distributed_training_utils.is_distributing_by_cloning(model)): actual_inputs = ins else: actual_inputs = ins() batch_outs = f(actual_inputs) except errors.OutOfRangeError: if is_dataset: # The dataset passed by the user ran out of batches. # Now we know the cardinality of the dataset. # If steps_per_epoch was specified, then running out of data is # unexpected, so we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( 'Your dataset ran out of data; interrupting training. ' 'Make sure that your dataset can generate at least ' '`%s * epochs` batches (in this case, %d batches). ' 'You may need to use the repeat() function when ' 'building your dataset.' % (steps_name, steps_per_epoch * epochs)) elif step > 0: steps_per_epoch = step aggregator.steps = steps_per_epoch if mode == ModeKeys.TRAIN: progbar.params['steps'] = steps_per_epoch progbar.progbar.target = steps_per_epoch else: # We ran out of batches while the user passed an iterator (legacy). callbacks.model.stop_training = True logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your iterator ' 'can generate at least `%s * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % (steps_name, steps_per_epoch * epochs)) break if not isinstance(batch_outs, list): batch_outs = [batch_outs] if model._distribution_strategy: batch_outs = distributed_training_utils._per_replica_aggregate_batch( model._distribution_strategy, batch_outs, model, mode) # Aggregate results. if step == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', step, batch_logs) progbar.on_batch_end(step, batch_logs) step += 1 if callbacks.model.stop_training: break else: # Sample-wise loop. index_array = np.arange(num_samples_or_steps) if shuffle == 'batch': index_array = training_utils.batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_samples_or_steps, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] # Slice into a batch. if len(batches) == 1: # If we only have one batch, do not slice. This takes care of # composite tensors in non-Dataset modes; we currently don't support # slicing them. # TODO(b/133517906): Add slicing support. ins_batch = ins else: try: if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') # Sparse to dense conversion. if issparse is not None: for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() # Callbacks batch_begin. batch_logs = {'batch': batch_index, 'size': len(batch_ids)} callbacks._call_batch_hook(mode, 'begin', batch_index, batch_logs) progbar.on_batch_begin(batch_index, batch_logs) # Get outputs. batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] # Aggregate results. if batch_index == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs, batch_start, batch_end) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs) progbar.on_batch_end(batch_index, batch_logs) if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = cbks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every `validation_freq` epochs during training. if (do_validation and training_utils.should_run_validation(validation_freq, epoch) and not callbacks.model.stop_training): if model._compile_distribution: # Since we create a new clone from the original model we need to copy # the weights back to the original model before we can run validation. distributed_training_utils._copy_weights_to_original_model( model, ModeKeys.TRAIN) val_results = model_iteration( model, val_inputs, targets=val_targets, sample_weights=val_sample_weights, batch_size=batch_size, steps_per_epoch=validation_steps, callbacks=callbacks, verbose=0, mode=ModeKeys.TEST, validation_in_fit=True, prepared_feed_values_from_dataset=(val_iterator is not None), steps_name='validation_steps') if not isinstance(val_results, list): val_results = [val_results] epoch_logs = cbks.make_logs( model, epoch_logs, val_results, mode, prefix='val_') if val_iterator and epoch < epochs - 1: _reinitialize_iterator(val_iterator, model._distribution_strategy) if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) progbar.on_epoch_end(epoch, epoch_logs) # Reinitialize dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: _reinitialize_iterator(input_iterator, model._distribution_strategy) model._successful_loop_finish = True callbacks._call_end_hook(mode) if model._distribution_strategy: if model._compile_distribution: # TODO(priyag, psv): Copy back metrics to the original model as well? distributed_training_utils._copy_weights_to_original_model(model, mode) scope.__exit__(None, None, None) if mode == ModeKeys.TRAIN: return model.history return results def _get_model_feed(model, mode): if mode == ModeKeys.PREDICT: feed = model._feed_inputs else: feed = ( model._feed_inputs + model._feed_targets + model._feed_sample_weights) return feed def _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset): increment = 'steps' if is_dataset else 'samples' msg = 'Train on {0} {increment}'.format( num_samples_or_steps, increment=increment) if val_samples_or_steps: msg += ', validate on {0} {increment}'.format( val_samples_or_steps, increment=increment) print(msg) def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch): """Returns total number of samples (when training in batch mode) or steps.""" if steps_per_epoch: return steps_per_epoch return training_utils.check_num_samples(ins, batch_size, steps_per_epoch, 'steps_per_epoch') def _prepare_feed_values(model, inputs, targets, sample_weights, mode): """Prepare feed values to the model execution function. Arguments: model: Model to prepare feed values for. inputs: List or dict of model inputs. targets: Optional list of model targets. sample_weights: Optional list of sample weight arrays. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. Returns: Feed values for the model in the given mode. """ if model._distribution_strategy: if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): inputs = distributed_training_utils.get_iterator( inputs, model._distribution_strategy) def get_distributed_inputs(): return distributed_training_utils._prepare_feed_values( model, inputs, targets, sample_weights, mode) # In the eager case, we want to call the input method per step, so return # a lambda from here that can be called. Note that this is applicable only # in Distribution Strategy case as it follows the same code path for both # eager and graph modes. # TODO(priyag,omalleyt): Either we should move the training DS with # OwnedIterator to use training_generator code path, or figure out how to # set a symbolic Iterator out of a Dataset when in eager mode. if context.executing_eagerly(): return get_distributed_inputs else: return get_distributed_inputs() if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2, iterator_ops.Iterator)): inputs, targets, sample_weights = model._standardize_user_data( inputs, extract_tensors_from_dataset=True) inputs = training_utils.ModelInputs(inputs).as_list() targets = list(targets or []) sample_weights = list(sample_weights or []) ins = inputs + targets + sample_weights if mode == ModeKeys.TRAIN and not isinstance(K.symbolic_learning_phase(), int): ins += [True] # Add learning phase value. return ins def _get_iterator(inputs, distribution_strategy=None): if distribution_strategy: return distributed_training_utils.get_iterator( inputs, distribution_strategy) return training_utils.get_iterator(inputs) def _reinitialize_iterator(iterator, distribution_strategy=None): if distribution_strategy: distributed_training_utils.initialize_iterator( iterator, distribution_strategy) else: training_utils.initialize_iterator(iterator) def _make_execution_function(model, mode): """Makes function to run one step of model execution.""" if model._distribution_strategy: return distributed_training_utils._make_execution_function(model, mode) return model._make_execution_function(mode) def _update_sample_weight_mode(model, mode, inputs): """Updates the sample_weight_mode of a given model.""" # Add a quick return to prevent us from calling model._feed_targets that # accesses certain model properties that may not be set in the `PREDICT` mode. if mode == ModeKeys.PREDICT: return sample_weights = None # `inputs` is the model's inputs + targets + sample_weights + # learning phase placeholder if specified. To update the sample_weight_mode # we need to determine if the user has passed sample weights as part of the # input. if not callable(inputs): sample_weights = inputs[len(model._feed_inputs) + len(model._feed_targets):] has_learning_phase_pl = (mode == ModeKeys.TRAIN and not isinstance(K.symbolic_learning_phase(), int)) if has_learning_phase_pl: sample_weights = sample_weights[:-1] model._update_sample_weight_modes(sample_weights=sample_weights) # Call the DistributionStrategy specific function to update the # sample_weight_mode on the model. if model._distribution_strategy: distributed_training_utils._update_sample_weight_modes(model, mode, sample_weights) # For backwards compatibility for internal users of these loops. fit_loop = functools.partial(model_iteration, mode=ModeKeys.TRAIN) test_loop = functools.partial( model_iteration, mode=ModeKeys.TEST, shuffle=False) predict_loop = functools.partial( model_iteration, mode=ModeKeys.PREDICT, shuffle=False) class ArrayLikeTrainingLoop(training_utils.TrainingLoop): """TrainingLoop that handle inputs like array. This is the default handler for most of the input data types, includes symbolic tensors or Numpy array-like, Datasets and iterators in graph mode (since they generate symbolic tensors). This Function is used to handle model with `run_eagerly` = False. """ def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=True, steps_name='steps_per_epoch', steps=steps_per_epoch, validation_split=validation_split, shuffle=shuffle) if validation_data: val_x, val_y, val_sample_weights = model._prepare_validation_data( validation_data, batch_size, validation_steps) elif validation_split and 0. < validation_split < 1.: (x, y, sample_weights, val_x, val_y, val_sample_weights) = training_utils.split_training_and_validation_data( x, y, sample_weights, validation_split) else: if validation_steps: raise ValueError('`validation_steps` should not be specified if ' '`validation_data` is None.') val_x, val_y, val_sample_weights = None, None, None return fit_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_x, val_targets=val_y, val_sample_weights=val_sample_weights, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, steps_name='steps_per_epoch') def evaluate(self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, check_steps=True, steps_name='steps', steps=steps) return test_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def predict(self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, _, _ = model._standardize_user_data( x, check_steps=True, steps_name='steps', steps=steps) return predict_loop( model, x, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks)
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that the system configuration methods work properly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import context from tensorflow.python.framework import config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.platform import test def reset_eager(fn): def wrapper(*args, **kwargs): try: return fn(*args, **kwargs) finally: del context._context context._context = context.Context() ops.enable_eager_execution() return wrapper class ConfigTest(test.TestCase): @test_util.run_gpu_only @reset_eager def testDevicePolicy(self): self.assertEqual(context.DEVICE_PLACEMENT_SILENT, context.context().device_policy) # If no op has been executed we should be able to set the device policy as # well as any init-time configs. config.set_intra_op_parallelism_threads(1) config.set_device_policy('silent') config.set_intra_op_parallelism_threads(2) # Excute a dummy op to ensure that the context has been initialized constant_op.constant(1) def copy_tensor(dtype=dtypes.int32): cpu_tensor = constant_op.constant(1, dtype=dtype) gpu_tensor = cpu_tensor.gpu() self.assertAllEqual(cpu_tensor + gpu_tensor, 2.0) config.set_device_policy('silent') self.assertEqual(config.get_device_policy(), 'silent') self.assertEqual(context.DEVICE_PLACEMENT_SILENT, context.context().device_policy) copy_tensor() config.set_device_policy('silent_for_int32') self.assertEqual(config.get_device_policy(), 'silent_for_int32') self.assertEqual(context.DEVICE_PLACEMENT_SILENT_FOR_INT32, context.context().device_policy) with self.assertRaisesRegexp(errors.InvalidArgumentError, 'Tensors on conflicting devices'): copy_tensor(dtypes.float32) copy_tensor() config.set_device_policy('warn') self.assertEqual(config.get_device_policy(), 'warn') self.assertEqual(context.DEVICE_PLACEMENT_WARN, context.context().device_policy) copy_tensor() config.set_device_policy('explicit') self.assertEqual(config.get_device_policy(), 'explicit') self.assertEqual(context.DEVICE_PLACEMENT_EXPLICIT, context.context().device_policy) with self.assertRaisesRegexp(errors.InvalidArgumentError, 'Tensors on conflicting devices'): copy_tensor() config.set_device_policy(None) self.assertEqual(config.get_device_policy(), 'silent') @reset_eager def testExecutionMode(self): self.assertTrue(config.get_synchronous_execution()) self.assertEqual(context.SYNC, context.context().execution_mode) # If no op has been executed we should be able to set the execution mode as # well as any init-time configs. config.set_intra_op_parallelism_threads(1) config.set_synchronous_execution(False) config.set_intra_op_parallelism_threads(2) config.set_synchronous_execution(True) self.assertTrue(config.get_synchronous_execution()) self.assertEqual(context.SYNC, context.context().execution_mode) config.set_synchronous_execution(False) self.assertFalse(config.get_synchronous_execution()) self.assertEqual(context.ASYNC, context.context().execution_mode) @reset_eager def testGpuPerProcessMemoryFraction(self): config.set_gpu_per_process_memory_fraction(0.5) self.assertEqual( config.get_gpu_per_process_memory_fraction(), context.context().gpu_per_process_memory_fraction) constant_op.constant(1) with self.assertRaises(RuntimeError): config.set_gpu_per_process_memory_fraction(0.5) @reset_eager def testGpuPerProcessMemoryGrowth(self): self.assertFalse(config.get_gpu_per_process_memory_growth()) config.set_gpu_per_process_memory_growth(True) self.assertTrue(config.get_gpu_per_process_memory_growth()) self.assertEqual( config.get_gpu_per_process_memory_growth(), context.context().gpu_per_process_memory_growth) config.set_gpu_per_process_memory_growth(False) self.assertFalse(config.get_gpu_per_process_memory_growth()) self.assertEqual( config.get_gpu_per_process_memory_growth(), context.context().gpu_per_process_memory_growth) constant_op.constant(1) with self.assertRaises(RuntimeError): config.set_gpu_per_process_memory_growth(True) @reset_eager def testIntraOpParallelismThreads(self): config.set_intra_op_parallelism_threads(10) self.assertEqual( config.get_intra_op_parallelism_threads(), context.context().intra_op_parallelism_threads) constant_op.constant(1) with self.assertRaises(RuntimeError): config.set_intra_op_parallelism_threads(1) @reset_eager def testInterOpParallelismThreads(self): config.set_inter_op_parallelism_threads(10) self.assertEqual( config.get_inter_op_parallelism_threads(), context.context().inter_op_parallelism_threads) constant_op.constant(1) with self.assertRaises(RuntimeError): config.set_inter_op_parallelism_threads(1) @reset_eager def testEnableSoftPlacement(self): self.assertEqual(config.get_soft_device_placement(), False) config.set_soft_device_placement(True) self.assertEqual(config.get_soft_device_placement(), True) self.assertEqual( config.get_soft_device_placement(), context.context().soft_device_placement) config.set_soft_device_placement(False) self.assertEqual(config.get_soft_device_placement(), False) self.assertEqual( config.get_soft_device_placement(), context.context().soft_device_placement) constant_op.constant(1) with self.assertRaises(RuntimeError): config.set_soft_device_placement(True) with self.assertRaises(RuntimeError): config.set_soft_device_placement(False) @reset_eager def testLogDevicePlacement(self): self.assertEqual(context.get_log_device_placement(), False) context.set_log_device_placement(True) self.assertEqual(context.get_log_device_placement(), True) self.assertEqual( context.get_log_device_placement(), context.context().log_device_placement) context.set_log_device_placement(False) self.assertEqual(context.get_log_device_placement(), False) self.assertEqual( context.get_log_device_placement(), context.context().log_device_placement) constant_op.constant(1) with self.assertRaises(RuntimeError): context.set_log_device_placement(True) with self.assertRaises(RuntimeError): context.set_log_device_placement(False) if __name__ == '__main__': ops.enable_eager_execution() test.main()
""" Allow to create a user in a database. Contain a model class for users and a manager for this model. :copyright: (c) 2017 by Ol'ha Leskovs'ka """ from django.contrib.auth.base_user import BaseUserManager from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.core.mail import send_mail from django.db import models from django.utils.translation import ugettext_lazy as _ import permissions class UserManager(BaseUserManager): """Manage creation of users in a database.""" def _create_user(self, email, name, password, **extra_fields): """Create, save and return a user. Arguments: email - user's email name - user's name password - user's password extra_fields - any other fields Return a User object. """ if not email: raise ValueError('Users must have an email address') email = self.normalize_email(email) user = self.model(email=email, name=name, **extra_fields) user.set_password(password) user.save(using=self._db) user.set_permissions(extra_fields.get('role')) return user def create_user(self, email, name, password, **extra_fields): """Create and save an ordinary user with the given email, name and password. Arguments: email - user's email name - user's name password - user's password extra_fields - any other fields """ extra_fields.setdefault('role', User.ROLE_USER) extra_fields.setdefault('is_superuser', False) return self._create_user(email, name, password, **extra_fields) def create_superuser(self, email, name, password, **extra_fields): """Create and save a superuser with the given email, name and password. Arguments: email - user's email name - user's name password - user's password extra_fields - any other fields """ extra_fields.setdefault('role', User.ROLE_ADMIN) extra_fields.setdefault('is_superuser', True) extra_fields.setdefault('is_staff', True) if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(email, name, password, **extra_fields) class User(AbstractBaseUser, PermissionsMixin): """Implement a fully featured User model and handle users data in DB. Extend AbstractBaseUser class with such fields as status and avatar. The email is used as the name when users login. """ STATUS_ACTIVE = 0 STATUS_DELETED = 1 STATUS_BANNED = 2 STATUS_UNAUTHORIZED = 3 USER_STATUSES = ( (STATUS_ACTIVE, 'active'), (STATUS_DELETED, 'deleted'), (STATUS_BANNED, 'banned'), (STATUS_UNAUTHORIZED, 'unauthorized'), ) ROLE_ADMIN = 0 ROLE_MANAGER = 1 ROLE_SUB_MANAGER = 2 ROLE_USER = 3 USER_ROLES = ( (ROLE_ADMIN, 'Admin'), (ROLE_MANAGER, 'Manager'), (ROLE_SUB_MANAGER, 'Sub-manager'), (ROLE_USER, 'User'), ) name = models.CharField(max_length=50, default='', help_text=_('50 characters or fewer.')) email = models.EmailField(_('email address'), unique=True, default='', error_messages={'unique': _('A user with such ' 'email already ' 'exists.'), }) password = models.CharField(max_length=128, default='', help_text=_('Your password cannot be too ' 'similar to your other personal ' 'information.<br /> Your password' ' must contain at least 8 ' 'characters.<br /> Your password ' 'cannot be a commonly used ' 'password.<br /> Your password ' 'cannot be entirely numeric.')) phone = models.CharField(max_length=12, blank=True, null=True, unique=True, help_text=_('Use just numbers: ' ''''380931234567''')) avatar = models.ImageField(upload_to='user_images', blank=True, null=True) role = models.IntegerField(choices=USER_ROLES, default=ROLE_USER, null=False) status = models.IntegerField(choices=USER_STATUSES, default=STATUS_ACTIVE, null=False) is_staff = models.BooleanField(default=False,) is_active = models.BooleanField(default=True, blank=True) parent = models.ForeignKey("self", null=True, blank=True) objects = UserManager() USERNAME_FIELD = 'email' # A list of the field names that will be prompted for when creating # a user via the createsuperuser management command REQUIRED_FIELDS = ['name'] class Meta(): """Give some options (metadata) attached to the model.""" db_table = 'users' permissions = ( ('read_user', 'Can read information about user'), ) def set_is_active(self, status): """Set is_active according to user's status. Argument: status - user's status """ if self.role == User.ROLE_ADMIN: if not self.last_active_admin(): self.is_active = (status == User.STATUS_ACTIVE) else: self.is_active = True self.status = User.STATUS_ACTIVE else: self.is_active = (status == User.STATUS_ACTIVE) def set_is_staff(self, role): """Set is_staff according to user's role. Argument: Argument: role - user's role """ self.is_staff = (role != User.ROLE_USER) def get_short_name(self): """Return the user's email""" # The user is identified by the email address return self.email def get_full_name(self): """Return the user's name and email""" return self.name + " " + self.email def email_to_user(self, subject, message, sender=None, **kwargs): """Send an email to the user Arguments: subject - theme of the letter message - message of the email sender - sender/author of the email **kwargs - other arguments """ send_mail(subject, message, sender, [self.email], **kwargs) def delete(self, *args, **kwargs): """Block the user instead of dropping. Put is_active into False and change status. Don't delete the last admin """ if self.role == User.ROLE_ADMIN: if not self.last_active_admin(): self.is_active = False self.status = User.STATUS_DELETED self.save() else: self.is_active = False self.status = User.STATUS_DELETED self.save() def last_active_admin(self): """Return True if it is the last active admin.""" number = User.objects.filter(role=User.ROLE_ADMIN, is_active=True).count() if number > 1: return False else: return True def set_permissions(self, role): """Set user_permissions according to user's role. Argument: role - user's role """ if role == User.ROLE_ADMIN: for perm in permissions.admin_permissions(): self.user_permissions.add(perm) elif role == User.ROLE_MANAGER: for perm in permissions.manager_permissions(): self.user_permissions.add(perm) elif role == User.ROLE_SUB_MANAGER: for perm in permissions.sub_manager_permissions(): self.user_permissions.add(perm) else: for perm in permissions.user_permissions(): self.user_permissions.add(perm)
""" This file demonstrates writing tests using the unittest module. These will pass when you run "manage.py test". Replace this with more appropriate tests for your application. """ from contextlib import contextmanager from unittest import skip from corehq.apps.fixtures.models import FixtureDataType, FixtureTypeField from corehq.apps.receiverwrapper.exceptions import IgnoreDocument from couchdbkit import ResourceNotFound from custom.dhis2.const import ORG_UNIT_FIXTURES, REGISTER_CHILD_XMLNS, CASE_TYPE from custom.dhis2.models import Dhis2OrgUnit, JsonApiRequest, JsonApiError, Dhis2Api, Dhis2ApiQueryError, \ FixtureManager from custom.dhis2.payload_generators import FormRepeaterDhis2EventPayloadGenerator from custom.dhis2.tasks import fetch_cases, fetch_org_units from django.test import TestCase from django.test.testcases import SimpleTestCase from mock import patch, Mock, MagicMock from couchforms.models import XFormInstance DOMAIN = 'sheel-wvlanka-test' SETTINGS = { 'dhis2_enabled': False, 'dhis2_host': '', 'dhis2_username': '', 'dhis2_password': '', 'dhis2_top_org_unit_name': None } @contextmanager def fixture_type_context(): fixture_type = FixtureDataType( domain=DOMAIN, tag='dhis2_org_unit', fields=[FixtureTypeField(field_name='id', properties=[]), FixtureTypeField(field_name='name', properties=[])] ) fixture_type.save() try: yield fixture_type finally: fixture_type.delete() @contextmanager def org_unit_context(): org_unit = Dhis2OrgUnit(id='QXOOG2Foong', name='Somerset West', parent_id=None) org_unit.save() try: yield org_unit finally: try: org_unit.delete() except ResourceNotFound: pass @contextmanager def response_context(): response_mock = Mock() response_mock.status_code = 200 response_mock.json.return_value = {'spam': True} yield response_mock @contextmanager def growth_monitoring_forms_context(): forms_data = [ { 'child_first_name': 'Foo', 'dhis2_te_inst_id': '', # Not enrolled 'dhis2_processed': '' # Not processed }, { 'child_first_name': 'Bar', 'dhis2_te_inst_id': '123', # Enrolled 'dhis2_processed': '' # Not processed }, { 'child_first_name': 'Baz', 'dhis2_te_inst_id': '456', # Enrolled 'dhis2_processed': '' # Not processed } ] forms = [] for data in forms_data: form = XFormInstance(domain=DOMAIN, form=data) form.save() forms.append(form) yield forms class JsonApiRequestTest(SimpleTestCase): def test_json_or_error_returns(self): """ JsonApiRequest.json_or_error should return a status code and JSON on success """ with response_context() as response_mock: data = JsonApiRequest.json_or_error(response_mock) self.assertEqual(data, {'spam': True}) def test_json_or_error_raises_404(self): """ JsonApiRequest.json_or_error should raise an error on HTTP status 404 """ response_mock = Mock() response_mock.url = 'http://nowhere.example.com' response_mock.status_code = 404 response_mock.text = 'Where?' with self.assertRaisesMessage( JsonApiError, 'API request to http://nowhere.example.com failed with HTTP status 404: Where?'): JsonApiRequest.json_or_error(response_mock) def test_json_or_error_raises_500(self): """ JsonApiRequest.json_or_error should raise an error on HTTP status 500 """ response_mock = Mock() response_mock.url = 'http://broken.example.com' response_mock.status_code = 500 response_mock.text = 'Oops!' with self.assertRaisesMessage( JsonApiError, 'API request to http://broken.example.com failed with HTTP status 500: Oops!'): JsonApiRequest.json_or_error(response_mock) def test_get_calls_requests(self): """ JsonApiRequest.get should call requests.get and return the JSON result """ with patch('requests.get') as requests_mock, \ response_context() as response_mock: requests_mock.return_value = response_mock request = JsonApiRequest('http://www.example.com', 'admin', 's3cr3t') data = request.get('ham/eggs') requests_mock.assert_called_with( 'http://www.example.com/api/ham/eggs', headers={'Accept': 'application/json'}, auth=('admin', 's3cr3t')) self.assertEqual(data, {'spam': True}) def test_post_calls_requests(self): """ JsonApiRequest.post should call requests.post and return the JSON result """ with patch('requests.post') as requests_mock, \ response_context() as response_mock: requests_mock.return_value = response_mock request = JsonApiRequest('http://www.example.com', 'admin', 's3cr3t') data = request.post('ham/eggs', {'ham': True}) requests_mock.assert_called_with( 'http://www.example.com/api/ham/eggs', '{"ham": true}', headers={'Content-type': 'application/json', 'Accept': 'application/json'}, auth=('admin', 's3cr3t')) self.assertEqual(data, {'spam': True}) def test_put_calls_requests(self): """ JsonApiRequest.put should call requests.get and return the JSON result """ with patch('requests.put') as requests_mock, \ response_context() as response_mock: requests_mock.return_value = response_mock request = JsonApiRequest('http://www.example.com', 'admin', 's3cr3t') data = request.put('ham/eggs', {'ham': True}) requests_mock.assert_called_with( 'http://www.example.com/api/ham/eggs', '{"ham": true}', headers={'Content-type': 'application/json', 'Accept': 'application/json'}, auth=('admin', 's3cr3t')) self.assertEqual(data, {'spam': True}) class Dhis2ApiTest(SimpleTestCase): def test__fetch_tracked_entity_attributes(self): """ _fetch_tracked_entity_attributes should extend _tracked_entity_attributes """ te_attrs = {'trackedEntityAttributes': [ {'name': 'ham', 'id': 'deadbeef'}, {'name': 'spam', 'id': 'c0ffee'}, ]} dhis2_api = Dhis2Api('http://example.com/dhis', 'user', 'p4ssw0rd') dhis2_api._request.get = Mock(return_value=te_attrs) keys_before = set(dhis2_api._tracked_entity_attributes.keys()) dhis2_api._fetch_tracked_entity_attributes() keys_after = set(dhis2_api._tracked_entity_attributes.keys()) fetched = keys_after - keys_before self.assertIn('ham', fetched) self.assertIn('spam', fetched) @skip('Finish writing this test') def test_add_te_inst(self): pass @skip('Finish writing this test') def test_update_te_inst(self): pass @skip('Requires settings for live DHIS2 server') def test_get_top_org_unit_settings(self): """ get_top_org_unit should return the name and ID of the org unit specified in settings """ if not SETTINGS['dhis2_top_org_unit_name']: self.skipTest('An org unit is not set in settings.py') dhis2_api = Dhis2Api(SETTINGS['dhis2_host'], SETTINGS['dhis2_username'], SETTINGS['dhis2_password']) org_unit = dhis2_api.get_top_org_unit() self.assertEqual(org_unit['name'], SETTINGS['dhis2_top_org_unit_name']) self.assertTrue(bool(org_unit['id'])) @skip('Requires settings for live DHIS2 server') def test_get_top_org_unit(self): """ get_top_org_unit should return the name and ID of the top org unit """ # TODO: Make sure get_top_org_unit navigates up tree of org units dhis2_api = Dhis2Api(SETTINGS['dhis2_host'], SETTINGS['dhis2_username'], SETTINGS['dhis2_password']) org_unit = dhis2_api.get_top_org_unit() self.assertTrue(bool(org_unit['name'])) self.assertTrue(bool(org_unit['id'])) def test_get_resource_id(self): """ get_resource_id should query the API for the details of a named resource, and return the ID """ if not SETTINGS['dhis2_enabled']: self.skipTest('DHIS2 is not configured') resources = {'Knights': [ {'name': 'Michael Palin', 'id': 'c0ffee'}, ]} dhis2_api = Dhis2Api(SETTINGS['dhis2_host'], SETTINGS['dhis2_username'], SETTINGS['dhis2_password']) dhis2_api._request.get = Mock(return_value=('foo', resources)) result = dhis2_api.get_resource_id('Knights', 'Who Say "Ni!"') dhis2_api._request.get.assert_called_with('Knights', params={'links': 'false', 'query': 'Who Say "Ni!"'}) self.assertEqual(result, 'c0ffee') def test_get_resource_id_none(self): """ get_resource_id should return None if none found """ if not SETTINGS['dhis2_enabled']: self.skipTest('DHIS2 is not configured') resources = {'Knights': []} dhis2_api = Dhis2Api(SETTINGS['dhis2_host'], SETTINGS['dhis2_username'], SETTINGS['dhis2_password']) dhis2_api._request.get = Mock(return_value=('foo', resources)) result = dhis2_api.get_resource_id('Knights', 'Who Say "Ni!"') self.assertIsNone(result) def test_get_resource_id_raises(self): """ get_resource_id should raise Dhis2ApiQueryError if multiple found """ if not SETTINGS['dhis2_enabled']: self.skipTest('DHIS2 is not configured') resources = {'Knights': [ {'name': 'Michael Palin', 'id': 'c0ffee'}, {'name': 'John Cleese', 'id': 'deadbeef'} ]} dhis2_api = Dhis2Api(SETTINGS['dhis2_host'], SETTINGS['dhis2_username'], SETTINGS['dhis2_password']) dhis2_api._request.get = Mock(return_value=('foo', resources)) with self.assertRaises(Dhis2ApiQueryError): dhis2_api.get_resource_id('Knights', 'Who Say "Ni!"') @skip('Finish writing this test') def test_form_to_event(self): form = XFormInstance( domain='Foo', form={ 'name': '' } ) @skip('Finish writing this test') def test_entities_to_dicts(self): pass class FixtureManagerTest(SimpleTestCase): pass class Dhis2OrgUnitTest(TestCase): def test_save(self): """ Dhis2OrgUnit.save should save a FixtureDataItem """ # with fixture_type_context(), \ # patch('corehq.apps.fixtures.models.FixtureDataItem') as data_item_patch, \ # patch('couchdbkit.schema.base.DocumentBase.save') as save_patch: # data_item_mock = Mock() # data_item_mock.save.return_value = None # data_item_mock.get_id = '123' # data_item_patch.return_value = data_item_mock # # org_unit = Dhis2OrgUnit(id='QXOOG2Foong', name='Somerset West', parent_id=None) # id_ = org_unit.save() # # data_item_patch.assert_called() # data_item_mock.save.assert_called() # Which one gets called. Why? # save_patch.assert_called() # self.assertEqual(id_, '123') # self.assertEqual(org_unit._fixture_id, '123') # TODO: Figure out why mocks above don't work. # In the meantime ... with fixture_type_context(): Dhis2OrgUnit.objects = FixtureManager(Dhis2OrgUnit, DOMAIN, ORG_UNIT_FIXTURES) org_unit = Dhis2OrgUnit(id='QXOOG2Foong', name='Somerset West', parent_id=None) id_ = org_unit.save() self.assertIsNotNone(id_) self.assertIsNotNone(org_unit._fixture_id) def test_delete_dhis2_org_unit_does_nothing(self): """ Dhis2OrgUnit.delete should do nothing if it's not saved """ with fixture_type_context(), \ patch('corehq.apps.fixtures.models.FixtureDataItem.get') as mock_get: data_item_mock = Mock() mock_get.return_value = data_item_mock Dhis2OrgUnit.objects = FixtureManager(Dhis2OrgUnit, DOMAIN, ORG_UNIT_FIXTURES) org_unit = Dhis2OrgUnit(id='QXOOG2Foong', name='Somerset West', parent_id=None) org_unit.delete() self.assertFalse(mock_get.called) self.assertFalse(data_item_mock.delete.called) def test_delete_dhis2_org_unit_deletes(self): """ Dhis2OrgUnit.delete should delete if it's saved """ with fixture_type_context(), \ patch('corehq.apps.fixtures.models.FixtureDataItem') as data_item_patch, \ patch('couchdbkit.schema.base.DocumentBase.get') as get_patch: data_item_mock = Mock() data_item_mock.get_id.return_value = '123' data_item_patch.return_value = data_item_mock doc_mock = Mock() get_patch.return_value = data_item_mock Dhis2OrgUnit.objects = FixtureManager(Dhis2OrgUnit, DOMAIN, ORG_UNIT_FIXTURES) org_unit = Dhis2OrgUnit(id='QXOOG2Foong', name='Somerset West', parent_id=None) org_unit.save() org_unit.delete() doc_mock.get.assert_called() data_item_mock.delete.assert_called() class TaskTest(SimpleTestCase): def setUp(self): # TODO: Enable DHIS2 pass @skip('Fix mocks') def test_fetch_org_units_dict_comps(self): """ sync_org_units should create dictionaries of CCHQ and DHIS2 org units """ with patch('custom.dhis2.models.Dhis2Api.gen_org_units') as gen_org_units_patch, \ patch('custom.dhis2.models.FixtureManager.all') as objects_all_patch: ou_dict = {'id': '1', 'name': 'Sri Lanka'} ou_obj = type('OrgUnit', (object,), ou_dict) # An object with attributes the same as ou_dict items gen_org_units_patch.side_effect = lambda: (d for d in [ou_dict]) # Generates org unit dicts objects_all_patch.side_effect = lambda: (o for o in [ou_obj]) # Generates org unit objects fetch_org_units() gen_org_units_patch.assert_called() objects_all_patch.assert_called() # TODO: No point in running this test if Dhis2OrgUnit patch doesn't work -- nothing to assert @skip('Fix mocks') def test_fetch_org_units_adds(self): """ sync_org_units should add new org units """ with fixture_type_context(), \ patch('custom.dhis2.models.Dhis2Api.gen_org_units') as gen_org_units_patch, \ patch('custom.dhis2.models.FixtureManager.all') as objects_all_patch, \ patch('custom.dhis2.models.Dhis2OrgUnit') as org_unit_patch: ou_dict = {'id': '1', 'name': 'Sri Lanka'} gen_org_units_patch.side_effect = lambda: (d for d in [ou_dict]) objects_all_patch.side_effect = lambda: (o for o in []) fetch_org_units() org_unit_patch.__init__.assert_called_with(id='1', name='Sri Lanka') org_unit_patch.save.assert_called() @skip('Fix mocks') def test_fetch_org_units_deletes(self): """ sync_org_units should delete old org units """ with patch('custom.dhis2.models.Dhis2Api.gen_org_units') as gen_org_units_patch, \ patch('custom.dhis2.models.FixtureManager.all') as objects_all_patch: delete_mock = Mock() ou_obj = type('OrgUnit', (object,), {'id': '1', 'name': 'Sri Lanka', 'delete': delete_mock}) gen_org_units_patch.side_effect = lambda: (d for d in []) objects_all_patch.side_effect = lambda: (o for o in [ou_obj]) fetch_org_units() delete_mock.assert_called() @skip('Fix mocks') def test_fetch_cases(self): with patch('custom.dhis2.tasks.get_children_only_theirs') as only_theirs_mock, \ patch('custom.dhis2.tasks.pull_child_entities') as pull_mock, \ patch('custom.dhis2.tasks.gen_children_only_ours') as only_ours_mock, \ patch('custom.dhis2.tasks.push_child_entities') as push_mock: foo = object() bar = object() only_theirs_mock.return_value = foo only_ours_mock.return_value = bar fetch_cases() only_theirs_mock.assert_called() pull_mock.assert_called_with(DOMAIN, foo) only_ours_mock.assert_called_with(DOMAIN) push_mock.assert_called_with(bar) class PayloadGeneratorTest(SimpleTestCase): def test_get_payload_ignores_unknown_form(self): """ get_payload should raise IgnoreDocument on unknown form XMLNS """ form_mock = {'xmlns': 'unknown', 'domain': 'test-domain'} payload_generator = FormRepeaterDhis2EventPayloadGenerator(None) with self.assertRaises(IgnoreDocument): payload_generator.get_payload(None, form_mock) @patch('custom.dhis2.payload_generators.push_case') @patch('casexml.apps.case.xform.cases_referenced_by_xform') @patch('custom.dhis2.payload_generators.Dhis2Settings') def test_get_payload_ignores_registration(self, Dhis2SettingsPatch, cases_referenced_by_xform, push_case): """ get_payload should raise IgnoreDocument given a registration form """ case_mock = Mock() case_mock.type = CASE_TYPE cases_referenced_by_xform.return_value = [case_mock] class Settings(object): dhis2 = {'host': 'foo', 'username': 'foo', 'password': 'foo', 'top_org_unit_name': 'foo'} Dhis2SettingsPatch.for_domain.return_value = Settings() form_mock = MagicMock() form_mock.__getitem__.return_value = REGISTER_CHILD_XMLNS payload_generator = FormRepeaterDhis2EventPayloadGenerator(None) with self.assertRaises(IgnoreDocument): payload_generator.get_payload(None, form_mock)
# -*- coding: utf-8 -*- """ TraceView API library :copyright: (c) 2016 by Daniel Riti. :license: MIT, see LICENSE for more details. """ __title__ = 'traceview' __version__ = '0.7.0' __author__ = 'Daniel Riti' __license__ = 'MIT' from .annotation import Annotation from .api import Api from .app import App, Assign from .discovery import Action, Browser, Controller, Domain from .discovery import Layer, Metric, Region from .host import Host, Instrumentation from .error import Rate from .latency import Client, Server from .organization import Organization from .total_request import TotalRequests class TraceView(object): """ The :class:`TraceView <TraceView>` object. Provides access to TraceView API resources. :param api_key: The TraceView API access key. :param func formatter: (optional) Function to format API results. See the module :mod:`traceview.formatters`. Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') """ def __init__(self, api_key, formatter=None): self._api = Api(api_key, after_request=formatter) self._actions = Action(self._api) self._annotation = Annotation(self._api) self._apps = App(self._api) self._assign = Assign(self._api) self._browsers = Browser(self._api) self._controllers = Controller(self._api) self._domains = Domain(self._api) self._error_rates = Rate(self._api) self._hosts = Host(self._api) self._instrumentation = Instrumentation(self._api) self._layers = Layer(self._api) self._metrics = Metric(self._api) self._organization = Organization(self._api) self._regions = Region(self._api) #: Get :py:class:`Client <traceview.latency.Client>` latency information. self.client = Client(self._api) #: Get :py:class:`Server <traceview.latency.Server>` latency information. self.server = Server(self._api) #: Get :py:class:`TotalRequests <traceview.total_request.TotalRequests>` information. self.total_requests = TotalRequests(self._api) def actions(self): """ Get all actions that have been traced. :return: all actions traced. :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.actions() [u'admin', u'products', u'blog', u'settings', u'logout'] """ return self._actions.get() def annotation(self, message, *args, **kwargs): """ Create an annotation. Annotations are used to log arbitrary events into TraceView, which are used to understand the correlation between system events (i.e. code release, server restarts, etc) and performance trends. :param str message: The annotation message. :param str appname: (optional) The application to associate the annotation with. :param str hostname: (optional) The host to associate the annotation with. :param str username: (optional) The user name to associate the annotation with. :param str layer: (optional) The layer name to associate the annotation with. :param str time: (optional) The time to associate the annotation with, in seconds since the epoch. Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.annotation('Code deployed', appname='production_web') """ self._annotation.create(message, *args, **kwargs) def annotations(self, appname=None, *args, **kwargs): """ Get annotations. Annotations are used to log arbitrary events into TraceView, which are used to understand the correlation between system events (i.e. code release, server restarts, etc) and performance trends. The default time window is one week. :param str appname: (optional) The application name to filter annotations by. :param str time_start: (optional) The start time for the time window, in milliseconds since the epoch. :param str time_end: (optional) The end time for the time window, in milliseconds since the epoch. :rtype: list Usage:: >>> import pprint >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> pprint.pprint(tv.annotations(appname='production_web')) [{u'app': 3, u'host': u'prod-web.example.com', u'id': 123, u'message': u'Code deployed', u'time': 1409685758, u'username': u'dan'}, ... ] """ return self._annotation.get(app=appname, *args, **kwargs) def apps(self): """ Get all available applications. :return: all available applications :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.apps() [u'Default', u'flask_app'] """ return self._apps.get() def assign(self, hostname, appname, *args, **kwargs): """ Assign a host to an existing application. Please note that you cannot join host names to the `Default` application, as all hosts start there. :param str hostname: The host name to assign to the application. :param str appname: The existing application name. :param str layer: (optional) The layer name to assign to the application. Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.assign(hostname='web-app-1234', appname='production_web') """ self._assign.update(hostname, appname, *args, **kwargs) def browsers(self): """ Get all browsers used by end users. :return: all browsers used by end users :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.browsers() [u'Chrome', u'Firefox', u'Links', u'Safari', u'Wii'] """ return self._browsers.get() def controllers(self): """ Get all controllers that have been traced. :return: all controllers traced :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.controllers() [u'admin', u'products', u'blog', u'settings', u'logout'] """ return self._controllers.get() def delete(self, host_id, *args, **kwargs): """ .. deprecated:: 0.6.0 Use :func:`delete_host <traceview.TraceView.delete_host>` instead. Delete an existing host. :param str host_id: The id of the host to delete. :return: indicates if host was successfully deleted. :rtype: boolean Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.delete(host_id='123') True """ return self.delete_host(host_id, *args, **kwargs) def delete_host(self, host_id, *args, **kwargs): """ Delete an existing host. :param int host_id: The id of the host to delete. :return: indicates if host was successfully deleted. :rtype: boolean Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.delete_host(host_id=123) True """ return self._hosts.delete(host_id, *args, **kwargs) def delete_app(self, app_name, *args, **kwargs): """ Delete an existing app. :param str app_name: The name of the app to delete. :return: indicates if app was successfully deleted. :rtype: boolean Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.delete_app(app_name='APP_123') True """ return self._apps.delete(app_name, *args, **kwargs) def domains(self): """ Get all domains that have been traced. :return: all domains traced :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.domains() [u'example.com', u'www.example.com', u'mail.example.com'] """ return self._domains.get() def error_rates(self, app, *args, **kwargs): """ Get the error rate for an application. Each item in the items list is a pair of values (timestamp, error_rate). The error rate describes the number of traces with one or more errors, per total number of traces. :param str app: The application name. :return: timeseries data of the application's error rate :rtype: dict Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.error_rates('Default') {u'fields': u'timestamp,error_rate', u'items': [[1399082880.0, 0], [1399082910.0, 0], ...]} """ return self._error_rates.get(app, *args, **kwargs) def hosts(self, appname=None, *args, **kwargs): """ Get all hosts that have been traced. :param str appname: (optional) The application name to filter hosts by. :return: all hosts traced :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.hosts() [{u'last_trace': None, u'last_heartbeat': 1429033545, u'first_heartbeat': 1428060977, u'name': u'ip-127-0-0-1', u'id': 12345}, { ... }] """ return self._hosts.get(app=appname) def instrumentation(self, host_id): """ Get instrumentation version information for a host. :param str host_id: The id of the host. :return: instrumentation version information for a host :rtype: list Usage:: >>> import pprint >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> pprint.pprint(tv.instrumentation(host_id=1)) [{u'name': u'tracelyzer', u'release_date': 1374537600, u'update_required': True, u'version': u'1.1.1'}, ... ] """ return self._instrumentation.get(host_id) def layers(self, app, *args, **kwargs): """ Get all recent layers for an application. The default time window for reported layers is 1 day. :param str app: The app name to list layers. :param int since_time: (optional) The start of the time window as a UTC timestamp in milliseconds. :return: all available apps :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.layers('Default') [u'PHP', u'cURL', u'lighttpd', u'php_mysql', u'php_mysqli'] """ return self._layers.get(app, *args, **kwargs) def licenses(self): """ Get the current number of hosts reporting traces and the number of hosts licensed to the organization. :return: licensing information for organization. :rtype: dict Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.licenses() {u'hosts_used': 5, u'hosts_limit': 10} """ return self._organization.licenses() def metrics(self): """ Get all available host metrics that have been collected. :return: all avaiable host metrics being collected. :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.metrics() [u'cpu_user_frac:all', u'load', u'mem_apps', u'mem_cached', u'mem_swap', u'mem_totalused', ... ] """ return self._metrics.get() def organization(self): """ Get organization information. :return: organization information :rtype: dict Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.organization() {u'fullname': u'the example organization', u'name': u'example'} """ return self._organization.get() def regions(self): """ Get all geographical region codes of end users. Regions codes are ISO 3166-1 and ISO 3166-2 codes for all regions collected in RUM. Currently, country codes (ISO-3166-1) are available worldwide, and state codes (ISO-3166-2) are available in the US and Canada. :return: all geographical region codes of end users :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.regions() [u'CA', u'CA-BC', u'MX', u'RU', u'US', u'US-RI', ...] """ return self._regions.get() def users(self): """ Get user information. :return: user information :rtype: list Usage:: >>> import traceview >>> tv = traceview.TraceView('API KEY HERE') >>> tv.users() [{u'admin': True, u'name': u'Jane Doe', u'email': u'[email protected]'}, { ... }] """ return self._organization.users()
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for binary_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function def make_binary_op_tests(options, binary_operator, allow_fully_quantize=False, expected_tf_failures=0, test_parameters=None): """Make a set of tests to do binary ops with and without broadcast.""" if test_parameters is None: test_parameters = [] test_parameters = test_parameters + [ # Avoid creating all combinations to keep the test size small. { "dtype": [tf.float32, tf.int32], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [True], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[5]], "input_shape_2": [[5]], "activation": [False, True], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32, tf.int32, tf.int64], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[3]], "activation": [True, False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32, tf.int32], "input_shape_1": [[3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [True, False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[]], "input_shape_2": [[]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[0]], "input_shape_2": [[1]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [False], "fully_quantize": [True], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[5]], "input_shape_2": [[5]], "activation": [False], "fully_quantize": [True], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[3]], "activation": [False], "fully_quantize": [True], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [False], "fully_quantize": [True], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[]], "input_shape_2": [[]], "activation": [False], "fully_quantize": [True], "dynamic_range_quantize": [False], }, { "dtype": [tf.float32], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [True], }, { "dtype": [tf.float32], "input_shape_1": [[5]], "input_shape_2": [[5]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [True], }, { "dtype": [tf.float32], "input_shape_1": [[1, 3, 4, 3]], "input_shape_2": [[3]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [True], }, { "dtype": [tf.float32], "input_shape_1": [[3]], "input_shape_2": [[1, 3, 4, 3]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [True], }, { "dtype": [tf.float32], "input_shape_1": [[]], "input_shape_2": [[]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [True], }, ] # float64 types are supported via flex only. if options.run_with_flex and options.use_experimental_converter: test_parameters = test_parameters + [ { "dtype": [tf.float64], "input_shape_1": [[7]], "input_shape_2": [[7]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, ] # High dimension broadcasting support in MLIR converter. if options.use_experimental_converter: test_parameters = test_parameters + [ { "dtype": [tf.float32], "input_shape_1": [[8, 7, 6, 5, 4, 3, 2, 1]], "input_shape_2": [[4, 3, 2, 1]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False], }, ] # test_parameters include fully_quantize option only when # allow_fully_quantize is True. if not allow_fully_quantize: test_parameters = [ test_parameter for test_parameter in test_parameters if True not in test_parameter["fully_quantize"] ] def build_graph(parameters): """Builds the graph given the current parameters.""" input1 = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input1", shape=parameters["input_shape_1"]) input2 = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input2", shape=parameters["input_shape_2"]) out = binary_operator(input1, input2) # TODO(karimnosseir): Update condition after moving to new converter. if parameters["activation"] and (not options.use_experimental_converter or (parameters["dtype"] != tf.int32 and parameters["dtype"] != tf.int64)): out = tf.nn.relu(out) return [input1, input2], [out] def build_inputs(parameters, sess, inputs, outputs): """Builds operand inputs for op.""" if allow_fully_quantize: input1 = create_tensor_data( parameters["dtype"], parameters["input_shape_1"], min_value=-1, max_value=1) input2 = create_tensor_data( parameters["dtype"], parameters["input_shape_2"], min_value=-1, max_value=1) else: input1 = create_tensor_data(parameters["dtype"], parameters["input_shape_1"]) input2 = create_tensor_data(parameters["dtype"], parameters["input_shape_2"]) return [input1, input2], sess.run( outputs, feed_dict={ inputs[0]: input1, inputs[1]: input2 }) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=expected_tf_failures) def make_binary_op_tests_func(binary_operator): """Return a function that does a test on a binary operator.""" return lambda options: make_binary_op_tests(options, binary_operator) @register_make_test_function() def make_add_tests(options): make_binary_op_tests(options, tf.add, allow_fully_quantize=True) @register_make_test_function() def make_div_tests(options): """Make zip tests for div op with 5D case.""" test_parameters = [ { "dtype": [tf.float32], "input_shape_1": [[1, 3, 3, 3, 3]], "input_shape_2": [[3]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False, True], }, ] make_binary_op_tests( options, tf.compat.v1.div, test_parameters=test_parameters) @register_make_test_function() def make_sub_tests(options): """Make zip tests for sub op with additional cases.""" test_parameters = [ { "dtype": [tf.float32], "input_shape_1": [[1, 3, 3, 3, 3]], "input_shape_2": [[3]], "activation": [False], "fully_quantize": [False], "dynamic_range_quantize": [False, True], }, ] make_binary_op_tests( options, tf.subtract, allow_fully_quantize=True, test_parameters=test_parameters) @register_make_test_function() def make_mul_tests(options): make_binary_op_tests(options, tf.multiply, allow_fully_quantize=True) @register_make_test_function() def make_pow_tests(options): make_binary_op_tests(options, tf.pow, expected_tf_failures=7) @register_make_test_function() def make_floor_div_tests(options): make_binary_op_tests(options, tf.math.floordiv) @register_make_test_function() def make_floor_mod_tests(options): make_binary_op_tests(options, tf.math.floormod) @register_make_test_function() def make_squared_difference_tests(options): make_binary_op_tests(options, tf.math.squared_difference, allow_fully_quantize=True)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_unregister_request( resource_provider_namespace: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}/unregister') path_format_arguments = { "resourceProviderNamespace": _SERIALIZER.url("resource_provider_namespace", resource_provider_namespace, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_register_at_management_group_scope_request( resource_provider_namespace: str, group_id: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/providers/Microsoft.Management/managementGroups/{groupId}/providers/{resourceProviderNamespace}/register') path_format_arguments = { "resourceProviderNamespace": _SERIALIZER.url("resource_provider_namespace", resource_provider_namespace, 'str'), "groupId": _SERIALIZER.url("group_id", group_id, 'str', max_length=90, min_length=1), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_register_request( resource_provider_namespace: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}/register') path_format_arguments = { "resourceProviderNamespace": _SERIALIZER.url("resource_provider_namespace", resource_provider_namespace, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_list_request( subscription_id: str, *, top: Optional[int] = None, expand: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/providers') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if top is not None: query_parameters['$top'] = _SERIALIZER.query("top", top, 'int') if expand is not None: query_parameters['$expand'] = _SERIALIZER.query("expand", expand, 'str') query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_list_at_tenant_scope_request( *, top: Optional[int] = None, expand: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/providers') # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if top is not None: query_parameters['$top'] = _SERIALIZER.query("top", top, 'int') if expand is not None: query_parameters['$expand'] = _SERIALIZER.query("expand", expand, 'str') query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_request( resource_provider_namespace: str, subscription_id: str, *, expand: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}') path_format_arguments = { "resourceProviderNamespace": _SERIALIZER.url("resource_provider_namespace", resource_provider_namespace, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = _SERIALIZER.query("expand", expand, 'str') query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_at_tenant_scope_request( resource_provider_namespace: str, *, expand: Optional[str] = None, **kwargs: Any ) -> HttpRequest: api_version = "2021-01-01" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/providers/{resourceProviderNamespace}') path_format_arguments = { "resourceProviderNamespace": _SERIALIZER.url("resource_provider_namespace", resource_provider_namespace, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = _SERIALIZER.query("expand", expand, 'str') query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) class ProvidersOperations(object): """ProvidersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.resource.resources.v2021_01_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def unregister( self, resource_provider_namespace: str, **kwargs: Any ) -> "_models.Provider": """Unregisters a subscription from a resource provider. :param resource_provider_namespace: The namespace of the resource provider to unregister. :type resource_provider_namespace: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Provider, or the result of cls(response) :rtype: ~azure.mgmt.resource.resources.v2021_01_01.models.Provider :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Provider"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_unregister_request( resource_provider_namespace=resource_provider_namespace, subscription_id=self._config.subscription_id, template_url=self.unregister.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Provider', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized unregister.metadata = {'url': '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}/unregister'} # type: ignore @distributed_trace def register_at_management_group_scope( self, resource_provider_namespace: str, group_id: str, **kwargs: Any ) -> None: """Registers a management group with a resource provider. :param resource_provider_namespace: The namespace of the resource provider to register. :type resource_provider_namespace: str :param group_id: The management group ID. :type group_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_register_at_management_group_scope_request( resource_provider_namespace=resource_provider_namespace, group_id=group_id, template_url=self.register_at_management_group_scope.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) register_at_management_group_scope.metadata = {'url': '/providers/Microsoft.Management/managementGroups/{groupId}/providers/{resourceProviderNamespace}/register'} # type: ignore @distributed_trace def register( self, resource_provider_namespace: str, **kwargs: Any ) -> "_models.Provider": """Registers a subscription with a resource provider. :param resource_provider_namespace: The namespace of the resource provider to register. :type resource_provider_namespace: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Provider, or the result of cls(response) :rtype: ~azure.mgmt.resource.resources.v2021_01_01.models.Provider :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Provider"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_register_request( resource_provider_namespace=resource_provider_namespace, subscription_id=self._config.subscription_id, template_url=self.register.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Provider', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized register.metadata = {'url': '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}/register'} # type: ignore @distributed_trace def list( self, top: Optional[int] = None, expand: Optional[str] = None, **kwargs: Any ) -> Iterable["_models.ProviderListResult"]: """Gets all resource providers for a subscription. :param top: The number of results to return. If null is passed returns all deployments. :type top: int :param expand: The properties to include in the results. For example, use &$expand=metadata in the query string to retrieve resource provider metadata. To include property aliases in response, use $expand=resourceTypes/aliases. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ProviderListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.resource.resources.v2021_01_01.models.ProviderListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ProviderListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, top=top, expand=expand, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, top=top, expand=expand, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ProviderListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers'} # type: ignore @distributed_trace def list_at_tenant_scope( self, top: Optional[int] = None, expand: Optional[str] = None, **kwargs: Any ) -> Iterable["_models.ProviderListResult"]: """Gets all resource providers for the tenant. :param top: The number of results to return. If null is passed returns all providers. :type top: int :param expand: The properties to include in the results. For example, use &$expand=metadata in the query string to retrieve resource provider metadata. To include property aliases in response, use $expand=resourceTypes/aliases. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ProviderListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.resource.resources.v2021_01_01.models.ProviderListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ProviderListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_at_tenant_scope_request( top=top, expand=expand, template_url=self.list_at_tenant_scope.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_at_tenant_scope_request( top=top, expand=expand, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ProviderListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_at_tenant_scope.metadata = {'url': '/providers'} # type: ignore @distributed_trace def get( self, resource_provider_namespace: str, expand: Optional[str] = None, **kwargs: Any ) -> "_models.Provider": """Gets the specified resource provider. :param resource_provider_namespace: The namespace of the resource provider. :type resource_provider_namespace: str :param expand: The $expand query parameter. For example, to include property aliases in response, use $expand=resourceTypes/aliases. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Provider, or the result of cls(response) :rtype: ~azure.mgmt.resource.resources.v2021_01_01.models.Provider :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Provider"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( resource_provider_namespace=resource_provider_namespace, subscription_id=self._config.subscription_id, expand=expand, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Provider', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/{resourceProviderNamespace}'} # type: ignore @distributed_trace def get_at_tenant_scope( self, resource_provider_namespace: str, expand: Optional[str] = None, **kwargs: Any ) -> "_models.Provider": """Gets the specified resource provider at the tenant level. :param resource_provider_namespace: The namespace of the resource provider. :type resource_provider_namespace: str :param expand: The $expand query parameter. For example, to include property aliases in response, use $expand=resourceTypes/aliases. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Provider, or the result of cls(response) :rtype: ~azure.mgmt.resource.resources.v2021_01_01.models.Provider :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Provider"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_at_tenant_scope_request( resource_provider_namespace=resource_provider_namespace, expand=expand, template_url=self.get_at_tenant_scope.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Provider', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_at_tenant_scope.metadata = {'url': '/providers/{resourceProviderNamespace}'} # type: ignore
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """A Web interface to beets.""" from __future__ import division, absolute_import, print_function from beets.plugins import BeetsPlugin from beets import ui from beets import util import beets.library import flask from flask import g from werkzeug.routing import BaseConverter, PathConverter import os from unidecode import unidecode import json import base64 # Utilities. def _rep(obj, expand=False): """Get a flat -- i.e., JSON-ish -- representation of a beets Item or Album object. For Albums, `expand` dictates whether tracks are included. """ out = dict(obj) if isinstance(obj, beets.library.Item): if app.config.get('INCLUDE_PATHS', False): out['path'] = util.displayable_path(out['path']) else: del out['path'] # Filter all bytes attributes and convert them to strings. for key, value in out.items(): if isinstance(out[key], bytes): out[key] = base64.b64encode(value).decode('ascii') # Get the size (in bytes) of the backing file. This is useful # for the Tomahawk resolver API. try: out['size'] = os.path.getsize(util.syspath(obj.path)) except OSError: out['size'] = 0 return out elif isinstance(obj, beets.library.Album): del out['artpath'] if expand: out['items'] = [_rep(item) for item in obj.items()] return out def json_generator(items, root, expand=False): """Generator that dumps list of beets Items or Albums as JSON :param root: root key for JSON :param items: list of :class:`Item` or :class:`Album` to dump :param expand: If true every :class:`Album` contains its items in the json representation :returns: generator that yields strings """ yield '{"%s":[' % root first = True for item in items: if first: first = False else: yield ',' yield json.dumps(_rep(item, expand=expand)) yield ']}' def is_expand(): """Returns whether the current request is for an expanded response.""" return flask.request.args.get('expand') is not None def resource(name): """Decorates a function to handle RESTful HTTP requests for a resource. """ def make_responder(retriever): def responder(ids): entities = [retriever(id) for id in ids] entities = [entity for entity in entities if entity] if len(entities) == 1: return flask.jsonify(_rep(entities[0], expand=is_expand())) elif entities: return app.response_class( json_generator(entities, root=name), mimetype='application/json' ) else: return flask.abort(404) responder.__name__ = 'get_{0}'.format(name) return responder return make_responder def resource_query(name): """Decorates a function to handle RESTful HTTP queries for resources. """ def make_responder(query_func): def responder(queries): return app.response_class( json_generator( query_func(queries), root='results', expand=is_expand() ), mimetype='application/json' ) responder.__name__ = 'query_{0}'.format(name) return responder return make_responder def resource_list(name): """Decorates a function to handle RESTful HTTP request for a list of resources. """ def make_responder(list_all): def responder(): return app.response_class( json_generator(list_all(), root=name, expand=is_expand()), mimetype='application/json' ) responder.__name__ = 'all_{0}'.format(name) return responder return make_responder def _get_unique_table_field_values(model, field, sort_field): """ retrieve all unique values belonging to a key from a model """ if field not in model.all_keys() or sort_field not in model.all_keys(): raise KeyError with g.lib.transaction() as tx: rows = tx.query('SELECT DISTINCT "{0}" FROM "{1}" ORDER BY "{2}"' .format(field, model._table, sort_field)) return [row[0] for row in rows] class IdListConverter(BaseConverter): """Converts comma separated lists of ids in urls to integer lists. """ def to_python(self, value): ids = [] for id in value.split(','): try: ids.append(int(id)) except ValueError: pass return ids def to_url(self, value): return ','.join(value) class QueryConverter(PathConverter): """Converts slash separated lists of queries in the url to string list. """ def to_python(self, value): return value.split('/') def to_url(self, value): return ','.join(value) class EverythingConverter(PathConverter): regex = '.*?' # Flask setup. app = flask.Flask(__name__) app.url_map.converters['idlist'] = IdListConverter app.url_map.converters['query'] = QueryConverter app.url_map.converters['everything'] = EverythingConverter @app.before_request def before_request(): g.lib = app.config['lib'] # Items. @app.route('/item/<idlist:ids>') @resource('items') def get_item(id): return g.lib.get_item(id) @app.route('/item/') @app.route('/item/query/') @resource_list('items') def all_items(): return g.lib.items() @app.route('/item/<int:item_id>/file') def item_file(item_id): item = g.lib.get_item(item_id) # On Windows under Python 2, Flask wants a Unicode path. On Python 3, it # *always* wants a Unicode path. if os.name == 'nt': item_path = util.syspath(item.path) else: item_path = util.py3_path(item.path) try: unicode_item_path = util.text_string(item.path) except (UnicodeDecodeError, UnicodeEncodeError): unicode_item_path = util.displayable_path(item.path) base_filename = os.path.basename(unicode_item_path) try: # Imitate http.server behaviour base_filename.encode("latin-1", "strict") except UnicodeEncodeError: safe_filename = unidecode(base_filename) else: safe_filename = base_filename response = flask.send_file( item_path, as_attachment=True, attachment_filename=safe_filename ) response.headers['Content-Length'] = os.path.getsize(item_path) return response @app.route('/item/query/<query:queries>') @resource_query('items') def item_query(queries): return g.lib.items(queries) @app.route('/item/path/<everything:path>') def item_at_path(path): query = beets.library.PathQuery('path', path.encode('utf-8')) item = g.lib.items(query).get() if item: return flask.jsonify(_rep(item)) else: return flask.abort(404) @app.route('/item/values/<string:key>') def item_unique_field_values(key): sort_key = flask.request.args.get('sort_key', key) try: values = _get_unique_table_field_values(beets.library.Item, key, sort_key) except KeyError: return flask.abort(404) return flask.jsonify(values=values) # Albums. @app.route('/album/<idlist:ids>') @resource('albums') def get_album(id): return g.lib.get_album(id) @app.route('/album/') @app.route('/album/query/') @resource_list('albums') def all_albums(): return g.lib.albums() @app.route('/album/query/<query:queries>') @resource_query('albums') def album_query(queries): return g.lib.albums(queries) @app.route('/album/<int:album_id>/art') def album_art(album_id): album = g.lib.get_album(album_id) if album and album.artpath: return flask.send_file(album.artpath.decode()) else: return flask.abort(404) @app.route('/album/values/<string:key>') def album_unique_field_values(key): sort_key = flask.request.args.get('sort_key', key) try: values = _get_unique_table_field_values(beets.library.Album, key, sort_key) except KeyError: return flask.abort(404) return flask.jsonify(values=values) # Artists. @app.route('/artist/') def all_artists(): with g.lib.transaction() as tx: rows = tx.query("SELECT DISTINCT albumartist FROM albums") all_artists = [row[0] for row in rows] return flask.jsonify(artist_names=all_artists) # Library information. @app.route('/stats') def stats(): with g.lib.transaction() as tx: item_rows = tx.query("SELECT COUNT(*) FROM items") album_rows = tx.query("SELECT COUNT(*) FROM albums") return flask.jsonify({ 'items': item_rows[0][0], 'albums': album_rows[0][0], }) # UI. @app.route('/') def home(): return flask.render_template('index.html') # Plugin hook. class WebPlugin(BeetsPlugin): def __init__(self): super(WebPlugin, self).__init__() self.config.add({ 'host': u'127.0.0.1', 'port': 8337, 'cors': '', 'cors_supports_credentials': False, 'reverse_proxy': False, 'include_paths': False, }) def commands(self): cmd = ui.Subcommand('web', help=u'start a Web interface') cmd.parser.add_option(u'-d', u'--debug', action='store_true', default=False, help=u'debug mode') def func(lib, opts, args): args = ui.decargs(args) if args: self.config['host'] = args.pop(0) if args: self.config['port'] = int(args.pop(0)) app.config['lib'] = lib # Normalizes json output app.config['JSONIFY_PRETTYPRINT_REGULAR'] = False app.config['INCLUDE_PATHS'] = self.config['include_paths'] # Enable CORS if required. if self.config['cors']: self._log.info(u'Enabling CORS with origin: {0}', self.config['cors']) from flask_cors import CORS app.config['CORS_ALLOW_HEADERS'] = "Content-Type" app.config['CORS_RESOURCES'] = { r"/*": {"origins": self.config['cors'].get(str)} } CORS( app, supports_credentials=self.config[ 'cors_supports_credentials' ].get(bool) ) # Allow serving behind a reverse proxy if self.config['reverse_proxy']: app.wsgi_app = ReverseProxied(app.wsgi_app) # Start the web application. app.run(host=self.config['host'].as_str(), port=self.config['port'].get(int), debug=opts.debug, threaded=True) cmd.func = func return [cmd] class ReverseProxied(object): '''Wrap the application in this middleware and configure the front-end server to add these headers, to let you quietly bind this to a URL other than / and to an HTTP scheme that is different than what is used locally. In nginx: location /myprefix { proxy_pass http://192.168.0.1:5001; proxy_set_header Host $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Scheme $scheme; proxy_set_header X-Script-Name /myprefix; } From: http://flask.pocoo.org/snippets/35/ :param app: the WSGI application ''' def __init__(self, app): self.app = app def __call__(self, environ, start_response): script_name = environ.get('HTTP_X_SCRIPT_NAME', '') if script_name: environ['SCRIPT_NAME'] = script_name path_info = environ['PATH_INFO'] if path_info.startswith(script_name): environ['PATH_INFO'] = path_info[len(script_name):] scheme = environ.get('HTTP_X_SCHEME', '') if scheme: environ['wsgi.url_scheme'] = scheme return self.app(environ, start_response)
# -*- coding: utf-8 -*- import healpy as hp import numpy as np from mocpy import MOC from math import log from .lvc_skymap import LVCskymap import time from .aladinSAMP import AladinScriptCommands aladin = AladinScriptCommands() class MOC_confidence_region(object): """Multi-Order coverage map (MOC) of sky areas enclosed within a contour plot at a given confidence level.""" def read_prob(self, infile): """Reading healpix skymap. Input parameters ---------------- infile : string LVC probability sky localization in healpix format Return ------- hpx : list 1D array of values (probability stored in each pixel) """ hpx = hp.read_map(infile, verbose = False) return hpx def ipixs_in_percentage(self, hpx, percentage): """Finding the ipix indices confined in a given percentage. Input parameters ---------------- hpx : numpy array 1D array of values (probability stored in each pixel) percentage : float fractional percentage from 0 to 1 Return ------- ipixs : numpy array indices of pixels """ # ranked the healpix pixels from most probable to least, and finally counted how many # pixels summed to a given total probability. # see https://arxiv.org/pdf/1404.5623.pdf cumsum = np.sort(hpx)[::-1].cumsum() how_many_ipixs, cut_percentage = min(enumerate(cumsum), key = lambda x: abs(x[1] - percentage)) del(cumsum) index = np.arange(0, len(hpx)) hpx_index = np.c_[hpx, index] sort = hpx_index[hpx_index[:, 0].argsort()[::-1]] ipixs = sort[0:how_many_ipixs, [1]].astype(int) return ipixs ## def __ipix_box(self, ra_vertices, dec_vertices): ## """Return the ipix inside a polygon.""" ## ## ## TO BE COMPLETED ## ## NSIDE=512 # fixed nside resolution ## theta = 0.5 * np.pi - np.deg2rad(dec_vertices) ## phi = np.deg2rad(ra_vertices) ## xyz = hp.ang2vec(theta, phi) ## ipix_poly = hp.query_polygon(NSIDE, xyz) ## ## return ipix_poly, NSIDE def ipix_in_box(self, ra, dec, width, height): """Return the probability inside a box.""" self.lvc_skymap = LVCskymap() v1_ra, v2_ra, v3_ra, v4_ra, v1_dec, v2_dec, v3_dec, v4_dec = self.lvc_skymap.vertices( ra, dec, width, height) ra_vertices, dec_vertices = ( [v1_ra, v2_ra, v4_ra, v3_ra], [v1_dec, v2_dec, v4_dec, v3_dec]) ipix_fov_box, NSIDE = self.__ipix_box(ra_vertices, dec_vertices) return ipix_fov_box, NSIDE def ipix_within_circle(self, ra_vertices, dec_vertices): pass def sky_coords(self, ipixs, nside): """Converting the ipix into right ascension and declination in degrees Return ------- contour_ipix : list sky coords in degrees """ # from index to polar coordinates theta, phi = hp.pix2ang(nside, ipixs) # converting these to right ascension and declination in degrees ra = np.rad2deg(phi) dec = np.rad2deg(0.5 * np.pi - theta) # creating an astropy.table with RA[deg] and DEC[deg] #contour_ipix = Table([ra, dec], names = ('RA[deg]', 'DEC[deg]'), # meta = {'ipix': 'ipix table'}) return ra, dec def moc_order(self, nside): """Setting MOC order. Return ------- moc_order : int """ order = int(log( nside, 2)) return order def create_moc(self): """Creating a MOC map from the contour_ipix table.""" self.moc = MOC.from_table(self.contour_ipix, 'RA[deg]', 'DEC[deg]', self.moc_order) return self.moc def write_moc(self, percentage, short_name): """Writing MOC file in fits format. Input parameters ---------------- percentage : float fractional percentage from 0 to 1 converted into a string short_name : str file output """ return self.moc.write(short_name + '_MOC_' + str(percentage), format = 'fits') def contour_plot(self, infile, percentage, short_name=''): """Creating/Writing a MOC contour region at a fixed level of probability. Input parameters --------------- infile : string LVC probability sky localization in healpix format percentage : float fractional percentage from 0 to 1 """ self.read_skymap(infile) self.ipixs_in_percentage(percentage) self.sky_coords() self.moc_order() self.create_moc() return self.write_moc(percentage, short_name) def contour_default(self, _from, _to, _step, skymap=""): """Creating & Showing MOC plots (from 10% to 90% in step of 10%) in a folder.""" colors=["#ff0000","#ffaa00 ","#aaff00","#00ff00","#00ffa9", "#00a9ff","#0000ff","#aa00ff","#ff00aa"] # skymap viewer color #short_name = skymap suffix = skymap[0:] aladin.md('MOC' + suffix) # creating a stack folder aladin.remove('MOC' + suffix + '~1') # removing multiple copy of the folder for i, color in zip(np.arange(_from, _to, _step),colors): aladin.cmoc((i/100.0), skymap,'moc'+str(i/100.0) + suffix) time.sleep(1) # random break to organize the aladin planes plane = 'moc'+str(i/100.0) + suffix aladin.set_color(plane, color) aladin.set_moc('moc'+str(i/100.0)+ suffix) aladin.mv('moc'+str(i/100.0)+ suffix,'MOC' + suffix)
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for common attention.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_layers import tensorflow as tf class CommonAttentionTest(tf.test.TestCase): def testDotProductAttention(self): x = np.random.rand(5, 7, 12, 32) y = np.random.rand(5, 7, 12, 32) with self.test_session() as session: a = common_attention.dot_product_attention( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), None) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 7, 12, 32)) def testMaskedLocalAttention1D(self): q = np.array([[[[1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]]]]) k = np.array([[[[1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]]]]) v = np.ones((1, 1, 8, 1)) with self.test_session() as session: q_ = tf.constant(q, dtype=tf.float32) k_ = tf.constant(k, dtype=tf.float32) v_ = tf.constant(v, dtype=tf.float32) y = common_attention.masked_local_attention_1d( q_, k_, v_, block_length=tf.constant(2)) res = session.run(y) self.assertEqual(res.shape, (1, 1, 8, 1)) def testLocalUnmaskedAttention1D(self): x = np.random.rand(5, 4, 25, 16) y = np.random.rand(5, 4, 25, 16) with self.test_session() as session: a = common_attention.local_attention_1d( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), block_length=4, filter_width=3) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 4, 25, 16)) def testLocalUnmaskedAttention1DMatchingBlockLength(self): x = np.random.rand(5, 4, 25, 16) y = np.random.rand(5, 4, 25, 16) with self.test_session() as session: a = common_attention.local_attention_1d( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), block_length=5, filter_width=3) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 4, 25, 16)) def testLocalUnmaskedAttention2D(self): x = np.random.rand(5, 4, 25, 25, 16) y = np.random.rand(5, 4, 25, 25, 16) with self.test_session() as session: a = common_attention.local_attention_2d( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), query_shape=(4, 4), memory_flange=(3, 3)) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 4, 25, 25, 16)) def testLocalUnmaskedAttention2DMatchingBlockLength(self): x = np.random.rand(5, 4, 25, 25, 16) y = np.random.rand(5, 4, 25, 25, 16) with self.test_session() as session: a = common_attention.local_attention_2d( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), query_shape=(5, 5), memory_flange=(3, 3)) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 4, 25, 25, 16)) def testMultiheadSelfAttentionMemoryEfficient(self): num_heads = 4 io_size = 16 batch = 2 length = 7 head_size = 5 x = np.random.rand(batch, length, io_size) dy = np.random.rand(batch, length, io_size) with self.test_session() as session: x = tf.to_float(x) dy = tf.to_float(dy) bias = common_attention.attention_bias_lower_triangle(length) wqkv = tf.get_variable( "wqkv", [num_heads, 1, io_size, 3 * head_size], initializer=tf.random_normal_initializer(stddev=io_size**-0.5)) wo = tf.get_variable( "wo", [num_heads, 1, head_size, io_size], initializer=tf.random_normal_initializer( stddev=(head_size * num_heads)**-0.5)) norm_scale, norm_bias = common_layers.layer_norm_vars(io_size) y = common_attention.multihead_self_attention_memory_efficient( x, bias, num_heads, head_size=head_size, forget=False, test_vars=(wqkv, wo, norm_scale, norm_bias)) y_forget = common_attention.multihead_self_attention_memory_efficient( x, bias, num_heads, head_size=head_size, forget=True, test_vars=(wqkv, wo, norm_scale, norm_bias)) dx, dwqkv, dwo, dnorm_scale, dnorm_bias = tf.gradients( ys=[y], xs=[x, wqkv, wo, norm_scale, norm_bias], grad_ys=[dy]) dx_f, dwqkv_f, dwo_f, dnorm_scale_f, dnorm_bias_f = tf.gradients( ys=[y_forget], xs=[x, wqkv, wo, norm_scale, norm_bias], grad_ys=[dy]) session.run(tf.global_variables_initializer()) (y, y_forget, dx, dwqkv, dwo, dnorm_scale, dnorm_bias, dx_f, dwqkv_f, dwo_f, dnorm_scale_f, dnorm_bias_f) = session.run( [y, y_forget, dx, dwqkv, dwo, dnorm_scale, dnorm_bias, dx_f, dwqkv_f, dwo_f, dnorm_scale_f, dnorm_bias_f]) self.assertAllClose(y, y_forget) self.assertAllClose(dwo, dwo_f) self.assertAllClose(dwqkv, dwqkv_f) self.assertAllClose(dnorm_scale, dnorm_scale_f) self.assertAllClose(dnorm_bias, dnorm_bias_f) self.assertAllClose(dx, dx_f) def test2dGatherAndScatterInvertibility(self): """2d gather and scatter invertibility test.""" batch_size = 2 num_heads = 2 height = 4 width = 6 depth = 8 query_shape = (2, 3) x = np.random.rand(batch_size, num_heads, height, width, depth) with self.test_session() as session: x_indices = common_attention.gather_indices_2d( x, query_shape, query_shape) gathered_x = common_attention.gather_blocks_2d(x, x_indices) x_shape = tf.constant([batch_size, num_heads, height, width, depth]) scattered_x = common_attention.scatter_blocks_2d( gathered_x, x_indices, x_shape) session.run(tf.global_variables_initializer()) res = session.run(scattered_x) self.assertAllClose(x, res) def test2dBlockRasterScanMask(self): """Testing the 2d block raster scan mask.""" query_shape = (2, 3) memory_flange = (2, 1) with self.test_session() as session: mask = common_attention.make_2d_block_raster_mask( query_shape, memory_flange) res = session.run(mask) correct_mask = np.array( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]]) self.assertAllClose(correct_mask, res) def test2dGather(self): """Testing 2d index gather and block gather functions.""" batch_size = 2 num_heads = 2 height = 4 width = 6 depth = 8 query_shape = (2, 3) x = np.random.rand(batch_size, num_heads, height, width, depth) y = np.reshape(x, (batch_size, num_heads, -1, depth)) correct_indices = [[0, 1, 2, 6, 7, 8], [3, 4, 5, 9, 10, 11], [12, 13, 14, 18, 19, 20], [15, 16, 17, 21, 22, 23]] correct_gathered_x = [[[y[0, 0, correct_indices[0]], y[0, 0, correct_indices[1]], y[0, 0, correct_indices[2]], y[0, 0, correct_indices[3]]], [y[0, 1, correct_indices[0]], y[0, 1, correct_indices[1]], y[0, 1, correct_indices[2]], y[0, 1, correct_indices[3]]]], [[y[1, 0, correct_indices[0]], y[1, 0, correct_indices[1]], y[1, 0, correct_indices[2]], y[1, 0, correct_indices[3]]], [y[1, 1, correct_indices[0]], y[1, 1, correct_indices[1]], y[1, 1, correct_indices[2]], y[1, 1, correct_indices[3]]]]] with self.test_session() as session: x_indices = common_attention.gather_indices_2d( x, query_shape, query_shape) gathered_x = common_attention.gather_blocks_2d(x, x_indices) x_indices, gathered_x = session.run([x_indices, gathered_x]) self.assertAllEqual(correct_indices, x_indices) self.assertAllClose(correct_gathered_x, gathered_x) def testGetMemoryRegion(self): """Testing the function that gathers the flanged memory region.""" np.set_printoptions(threshold=np.inf) batch_size = 2 num_heads = 2 height = 4 width = 6 depth = 3 query_shape = (2, 3) memory_flange = (1, 1) x = np.random.rand(batch_size, num_heads, height, width, depth) y = np.reshape(x, (batch_size, num_heads, -1, depth)) zeros = np.zeros((depth), dtype=np.float32) five_zeros = np.array([zeros]*5) seven_zeros = np.array([zeros]*7) two_zeros = np.array([zeros]*2) zeros = np.array([zeros]) correct_x_flange = [[[seven_zeros, np.concatenate((five_zeros, y[0, 0, [2, 8]]), axis=0), np.concatenate((zeros, y[0, 0, [6, 7, 8, 9]], two_zeros), axis=0), np.concatenate((y[0, 0, [8, 9, 10, 11]], zeros, y[0, 0, [14, 20]]), axis=0)], [seven_zeros, np.concatenate((five_zeros, y[0, 1, [2, 8]]), axis=0), np.concatenate((zeros, y[0, 1, [6, 7, 8, 9]], two_zeros), axis=0), np.concatenate((y[0, 1, [8, 9, 10, 11]], zeros, y[0, 1, [14, 20]]), axis=0)]], [[seven_zeros, np.concatenate((five_zeros, y[1, 0, [2, 8]]), axis=0), np.concatenate((zeros, y[1, 0, [6, 7, 8, 9]], two_zeros), axis=0), np.concatenate((y[1, 0, [8, 9, 10, 11]], zeros, y[1, 0, [14, 20]]), axis=0)], [seven_zeros, np.concatenate((five_zeros, y[1, 1, [2, 8]]), axis=0), np.concatenate((zeros, y[1, 1, [6, 7, 8, 9]], two_zeros), axis=0), np.concatenate((y[1, 1, [8, 9, 10, 11]], zeros, y[1, 1, [14, 20]]), axis=0)]]] correct_x_flange = np.array(correct_x_flange) correct_x_center = [[[y[0, 0, [0, 1, 2, 6, 7, 8]], y[0, 0, [3, 4, 5, 9, 10, 11]], y[0, 0, [12, 13, 14, 18, 19, 20]], y[0, 0, [15, 16, 17, 21, 22, 23]]], [y[0, 1, [0, 1, 2, 6, 7, 8]], y[0, 1, [3, 4, 5, 9, 10, 11]], y[0, 1, [12, 13, 14, 18, 19, 20]], y[0, 1, [15, 16, 17, 21, 22, 23]]]], [[y[1, 0, [0, 1, 2, 6, 7, 8]], y[1, 0, [3, 4, 5, 9, 10, 11]], y[1, 0, [12, 13, 14, 18, 19, 20]], y[1, 0, [15, 16, 17, 21, 22, 23]]], [y[1, 1, [0, 1, 2, 6, 7, 8]], y[1, 1, [3, 4, 5, 9, 10, 11]], y[1, 1, [12, 13, 14, 18, 19, 20]], y[1, 1, [15, 16, 17, 21, 22, 23]]]]] correct_x_center = np.array(correct_x_center) with self.test_session() as session: x_indices = common_attention.gather_indices_2d( x, query_shape, query_shape) x_flange, x_center = common_attention.get_memory_region( tf.constant(x, dtype=tf.float32), query_shape, memory_flange, x_indices) session.run(tf.global_variables_initializer()) [x_flange, x_center] = session.run([x_flange, x_center]) self.assertAllClose(correct_x_flange, x_flange) self.assertAllClose(correct_x_center, x_center) def testGetShiftedCenterBlocks(self): """Testing the function that gathers the flanged memory region.""" np.set_printoptions(threshold=np.inf) batch_size = 2 num_heads = 2 height = 4 width = 6 depth = 3 query_shape = (2, 3) x = np.random.rand(batch_size, num_heads, height, width, depth) y = np.reshape(x, (batch_size, num_heads, -1, depth)) zeros = np.zeros((depth), dtype=np.float32) zeros = np.array([zeros]) correct_gathered_x = [[[np.concatenate((zeros, y[0, 0, [0, 1, 2, 6, 7]]), axis=0), np.concatenate((zeros, y[0, 0, [3, 4, 5, 9, 10]]), axis=0), np.concatenate((zeros, y[0, 0, [12, 13, 14, 18, 19]]), axis=0), np.concatenate((zeros, y[0, 0, [15, 16, 17, 21, 22]]), axis=0)], [np.concatenate((zeros, y[0, 1, [0, 1, 2, 6, 7]]), axis=0), np.concatenate((zeros, y[0, 1, [3, 4, 5, 9, 10]]), axis=0), np.concatenate((zeros, y[0, 1, [12, 13, 14, 18, 19]]), axis=0), np.concatenate((zeros, y[0, 1, [15, 16, 17, 21, 22]]), axis=0)]], [[np.concatenate((zeros, y[1, 0, [0, 1, 2, 6, 7]]), axis=0), np.concatenate((zeros, y[1, 0, [3, 4, 5, 9, 10]]), axis=0), np.concatenate((zeros, y[1, 0, [12, 13, 14, 18, 19]]), axis=0), np.concatenate((zeros, y[1, 0, [15, 16, 17, 21, 22]]), axis=0)], [np.concatenate((zeros, y[1, 1, [0, 1, 2, 6, 7]]), axis=0), np.concatenate((zeros, y[1, 1, [3, 4, 5, 9, 10]]), axis=0), np.concatenate((zeros, y[1, 1, [12, 13, 14, 18, 19]]), axis=0), np.concatenate((zeros, y[1, 1, [15, 16, 17, 21, 22]]), axis=0)]]] correct_gathered_x = np.array(correct_gathered_x) with self.test_session() as session: x_indices = common_attention.gather_indices_2d( x, query_shape, query_shape) gathered_x = common_attention.get_shifted_center_blocks( tf.constant(x, dtype=tf.float32), x_indices) session.run(tf.global_variables_initializer()) x_indices, gathered_x = session.run([x_indices, gathered_x]) self.assertAllClose(correct_gathered_x, gathered_x) def testDotProductAttentionRelative(self): x = np.random.rand(5, 7, 12, 32) y = np.random.rand(5, 7, 12, 32) with self.test_session() as session: a = common_attention.dot_product_attention_relative( tf.constant(x, dtype=tf.float32), tf.constant(y, dtype=tf.float32), tf.constant(y, dtype=tf.float32), None, max_relative_position=3) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (5, 7, 12, 32)) def testBiasBatchCoordinates(self): """Testing the batch cooridnates mask.""" q = tf.constant([0, 0, 1, 1, 1, 1, 2, 2, 2], dtype=tf.int32) q = tf.expand_dims(q, axis=-1) k = tf.constant([0, 0, 0, 2, 2, 3, 3, 3], dtype=tf.int32) k = tf.expand_dims(k, axis=-1) ground_truth = np.array([ [0, 0, 0, 1, 1, 1, 1, 1], # 0 [0, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], # 1 (just masked) [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 1], # 2 [1, 1, 1, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 1], ], np.float32) * -1e9 bias = common_attention.attention_bias_coordinates(q, k) with self.test_session() as session: session.run(tf.global_variables_initializer()) self.assertAllClose( bias.eval(), ground_truth, ) def testBiasFuture(self): """Testing the sequence order mask.""" q = tf.constant([0, 1, 2, 3, 0, 1, 2, 0, 1], dtype=tf.int32) q = tf.expand_dims(q, axis=-1) k = tf.constant([0, 1, 2, 3, 4, 0, 1, 2], dtype=tf.int32) k = tf.expand_dims(k, axis=-1) ground_truth = np.array([ [0, 1, 1, 1, 1, 0, 1, 1], # 0 [0, 0, 1, 1, 1, 0, 0, 1], # 1 [0, 0, 0, 1, 1, 0, 0, 0], # 2 [0, 0, 0, 0, 1, 0, 0, 0], # 3 [0, 1, 1, 1, 1, 0, 1, 1], # 0 [0, 0, 1, 1, 1, 0, 0, 1], # 1 [0, 0, 0, 1, 1, 0, 0, 0], # 2 [0, 1, 1, 1, 1, 0, 1, 1], # 0 [0, 0, 1, 1, 1, 0, 0, 1], # 1 ], np.float32) * -1e9 bias = common_attention.attention_bias_future(q, k) with self.test_session() as session: session.run(tf.global_variables_initializer()) self.assertAllClose( bias.eval(), ground_truth, ) if __name__ == "__main__": tf.test.main()
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import json import uuid import six from keystoneclient.auth import token_endpoint from keystoneclient import exceptions from keystoneclient import session from keystoneclient.tests.unit.v3 import client_fixtures from keystoneclient.tests.unit.v3 import utils from keystoneclient.v3 import client class KeystoneClientTest(utils.TestCase): def test_unscoped_init(self): token = client_fixtures.unscoped_token() self.stub_auth(json=token) c = client.Client(user_domain_name=token.user_domain_name, username=token.user_name, password='password', auth_url=self.TEST_URL) self.assertIsNotNone(c.auth_ref) self.assertFalse(c.auth_ref.domain_scoped) self.assertFalse(c.auth_ref.project_scoped) self.assertEqual(token.user_id, c.auth_user_id) self.assertFalse(c.has_service_catalog()) self.assertEqual(token.user_id, c.get_user_id(session=None)) self.assertIsNone(c.get_project_id(session=None)) def test_domain_scoped_init(self): token = client_fixtures.domain_scoped_token() self.stub_auth(json=token) c = client.Client(user_id=token.user_id, password='password', domain_name=token.domain_name, auth_url=self.TEST_URL) self.assertIsNotNone(c.auth_ref) self.assertTrue(c.auth_ref.domain_scoped) self.assertFalse(c.auth_ref.project_scoped) self.assertEqual(token.user_id, c.auth_user_id) self.assertEqual(token.domain_id, c.auth_domain_id) def test_project_scoped_init(self): token = client_fixtures.project_scoped_token() self.stub_auth(json=token), c = client.Client(user_id=token.user_id, password='password', user_domain_name=token.user_domain_name, project_name=token.project_name, auth_url=self.TEST_URL) self.assertIsNotNone(c.auth_ref) self.assertFalse(c.auth_ref.domain_scoped) self.assertTrue(c.auth_ref.project_scoped) self.assertEqual(token.user_id, c.auth_user_id) self.assertEqual(token.project_id, c.auth_tenant_id) self.assertEqual(token.user_id, c.get_user_id(session=None)) self.assertEqual(token.project_id, c.get_project_id(session=None)) def test_auth_ref_load(self): token = client_fixtures.project_scoped_token() self.stub_auth(json=token) c = client.Client(user_id=token.user_id, password='password', project_id=token.project_id, auth_url=self.TEST_URL) cache = json.dumps(c.auth_ref) new_client = client.Client(auth_ref=json.loads(cache)) self.assertIsNotNone(new_client.auth_ref) self.assertFalse(new_client.auth_ref.domain_scoped) self.assertTrue(new_client.auth_ref.project_scoped) self.assertEqual(token.user_name, new_client.username) self.assertIsNone(new_client.password) self.assertEqual(new_client.management_url, 'http://admin:35357/v3') def test_auth_ref_load_with_overridden_arguments(self): new_auth_url = 'https://newkeystone.com/v3' user_id = uuid.uuid4().hex user_name = uuid.uuid4().hex project_id = uuid.uuid4().hex first = client_fixtures.project_scoped_token(user_id=user_id, user_name=user_name, project_id=project_id) second = client_fixtures.project_scoped_token(user_id=user_id, user_name=user_name, project_id=project_id) self.stub_auth(json=first) self.stub_auth(json=second, base_url=new_auth_url) c = client.Client(user_id=user_id, password='password', project_id=project_id, auth_url=self.TEST_URL) cache = json.dumps(c.auth_ref) new_client = client.Client(auth_ref=json.loads(cache), auth_url=new_auth_url) self.assertIsNotNone(new_client.auth_ref) self.assertFalse(new_client.auth_ref.domain_scoped) self.assertTrue(new_client.auth_ref.project_scoped) self.assertEqual(new_auth_url, new_client.auth_url) self.assertEqual(user_name, new_client.username) self.assertIsNone(new_client.password) self.assertEqual(new_client.management_url, 'http://admin:35357/v3') def test_trust_init(self): token = client_fixtures.trust_token() self.stub_auth(json=token) c = client.Client(user_domain_name=token.user_domain_name, username=token.user_name, password='password', auth_url=self.TEST_URL, trust_id=token.trust_id) self.assertIsNotNone(c.auth_ref) self.assertFalse(c.auth_ref.domain_scoped) self.assertFalse(c.auth_ref.project_scoped) self.assertEqual(token.trust_id, c.auth_ref.trust_id) self.assertEqual(token.trustee_user_id, c.auth_ref.trustee_user_id) self.assertEqual(token.trustor_user_id, c.auth_ref.trustor_user_id) self.assertTrue(c.auth_ref.trust_scoped) self.assertEqual(token.user_id, c.auth_user_id) def test_init_err_no_auth_url(self): self.assertRaises(exceptions.AuthorizationFailure, client.Client, username='exampleuser', password='password') def _management_url_is_updated(self, fixture, **kwargs): second = copy.deepcopy(fixture) first_url = 'http://admin:35357/v3' second_url = "http://secondurl:%d/v3'" for entry in second['token']['catalog']: if entry['type'] == 'identity': entry['endpoints'] = [{ 'url': second_url % 5000, 'region': 'RegionOne', 'interface': 'public' }, { 'url': second_url % 5000, 'region': 'RegionOne', 'interface': 'internal' }, { 'url': second_url % 35357, 'region': 'RegionOne', 'interface': 'admin' }] self.stub_auth(response_list=[{'json': fixture}, {'json': second}]) cl = client.Client(username='exampleuser', password='password', auth_url=self.TEST_URL, **kwargs) self.assertEqual(cl.management_url, first_url) cl.authenticate() self.assertEqual(cl.management_url, second_url % 35357) def test_management_url_is_updated_with_project(self): self._management_url_is_updated(client_fixtures.project_scoped_token(), project_name='exampleproject') def test_management_url_is_updated_with_domain(self): self._management_url_is_updated(client_fixtures.domain_scoped_token(), domain_name='exampledomain') def test_client_with_region_name_passes_to_service_catalog(self): # NOTE(jamielennox): this is deprecated behaviour that should be # removed ASAP, however must remain compatible. self.deprecations.expect_deprecations() self.stub_auth(json=client_fixtures.auth_response_body()) cl = client.Client(username='exampleuser', password='password', project_name='exampleproject', auth_url=self.TEST_URL, region_name='North') self.assertEqual(cl.service_catalog.url_for(service_type='image'), 'http://glance.north.host/glanceapi/public') cl = client.Client(username='exampleuser', password='password', project_name='exampleproject', auth_url=self.TEST_URL, region_name='South') self.assertEqual(cl.service_catalog.url_for(service_type='image'), 'http://glance.south.host/glanceapi/public') def test_client_without_auth_params(self): self.assertRaises(exceptions.AuthorizationFailure, client.Client, project_name='exampleproject', auth_url=self.TEST_URL) def test_client_params(self): opts = {'auth': token_endpoint.Token('a', 'b'), 'connect_retries': 50, 'endpoint_override': uuid.uuid4().hex, 'interface': uuid.uuid4().hex, 'region_name': uuid.uuid4().hex, 'service_name': uuid.uuid4().hex, 'user_agent': uuid.uuid4().hex, } sess = session.Session() cl = client.Client(session=sess, **opts) for k, v in six.iteritems(opts): self.assertEqual(v, getattr(cl._adapter, k)) self.assertEqual('identity', cl._adapter.service_type) self.assertEqual((3, 0), cl._adapter.version)
from enum import Enum import string from io import IOBase from ..errors import * # # Constants # Node = None class Node: links = None token_type = None verify = None def __init__(self, links:[(Node, "func"),] = None, token_type = None, verify = None): links = links or [] self.links = links self.token_type = token_type self.verify = verify def evaluate(self, character): out = [] for target, condition in self.links: if condition(character): out.append(target) return out def getToken(self, start, stop, value): if self.verify is not None: value = self.verify(value) assert self.token_type is not None return Token(self.token_type, start, stop, value) def __repr__(self): return "Node(token:{})".format(self.token_type, self.links) Tokens = Enum("Tokens", [ "newline", "identifier", "const_kwd", "ref_kwd", "def_kwd", "end_kwd", "return_kwd", "class_kwd", "new_kwd", "as_kwd", "module_kwd", "loop_kwd", "while_kwd", "for_kwd", "in_kwd", "break_kwd", "self_kwd", "if_kwd", "elif_kwd", "else_kwd", "import_kwd", "pragma_kwd", "true_kwd", "false_kwd", "string", "format_string", "integer", "group_start", "group_end", "typeof", "returns", "dot", "comma", "assign", "addition", "subtraction", "multiplication", "integer_division", "mod", "division", "equality", "inequality", "smaller_than", "smaller_than_or_equal_to", "greater_than", "greater_than_or_equal_to", "logical_negation", "logical_and", "logical_or", "function", ]) TREE = Node() # Ignore whitespace WHITESPACE = set(" \t") TREE.links.append((TREE, lambda c: c in WHITESPACE)) # Newlines NEWLINE_CHAR = "\n" newline_node = Node(token_type=Tokens.newline) TREE.links.append((newline_node, lambda c: c == NEWLINE_CHAR)) # Comments COMMENT_CHAR = "#" node = Node() TREE.links.append((node, lambda c: c == COMMENT_CHAR)) node.links.append((node, lambda c: c != NEWLINE_CHAR)) node.links.append((newline_node, lambda c: c == NEWLINE_CHAR or c is None)) # Strings FORMAT_STRING_CHAR = "\"" FORMAT_STRING_ESCAPE_CHAR = "\\" node = Node() TREE.links.append((node, lambda c: c == FORMAT_STRING_CHAR)) node.links.append((node, lambda c: c != FORMAT_STRING_CHAR and c != FORMAT_STRING_ESCAPE_CHAR)) escape = Node() node.links.append((escape, lambda c: c == FORMAT_STRING_ESCAPE_CHAR)) escape.links.append((node, lambda c: True)) end_node = Node(token_type=Tokens.format_string, verify=lambda s: s[1:-1]) node.links.append((end_node, lambda c: c == FORMAT_STRING_CHAR)) # WYSIWYG Strings WYSIWYG_STRING_CHAR = "`" node = Node() TREE.links.append((node, lambda c: c == WYSIWYG_STRING_CHAR)) node.links.append((node, lambda c: c != WYSIWYG_STRING_CHAR)) end_node = Node(token_type=Tokens.string, verify=lambda s: s[1:-1]) node.links.append((end_node, lambda c: c == WYSIWYG_STRING_CHAR)) # Direct maps # Must be ordered by length for duplicated characters DIRECT_MAP = [ # Operators ("+", Tokens.addition), ("-", Tokens.subtraction), ("*", Tokens.multiplication), ("//", Tokens.integer_division), ("/", Tokens.division), ("%", Tokens.mod), ("==", Tokens.equality), ("!=", Tokens.inequality), ("<=", Tokens.smaller_than_or_equal_to), ("<", Tokens.smaller_than), (">=", Tokens.greater_than_or_equal_to), (">", Tokens.greater_than), ("!", Tokens.logical_negation), ("&&", Tokens.logical_and), ("||", Tokens.logical_or), ("=>", Tokens.function), # Instructions ("(", Tokens.group_start), (")", Tokens.group_end), (":", Tokens.typeof), ("->", Tokens.returns), (",", Tokens.comma), ("=", Tokens.assign), (".", Tokens.dot), # Keywords ("const", Tokens.const_kwd), ("ref", Tokens.ref_kwd), ("def", Tokens.def_kwd), ("end", Tokens.end_kwd), ("return", Tokens.return_kwd), ("class", Tokens.class_kwd), ("new", Tokens.new_kwd), ("as", Tokens.as_kwd), ("module", Tokens.module_kwd), ("loop", Tokens.loop_kwd), ("while", Tokens.while_kwd), ("for", Tokens.for_kwd), ("in", Tokens.in_kwd), ("break", Tokens.break_kwd), ("self", Tokens.self_kwd), ("elif", Tokens.elif_kwd), ("if", Tokens.if_kwd), ("else", Tokens.else_kwd), ("import", Tokens.import_kwd), ("pragma", Tokens.pragma_kwd), # Constants ("true", Tokens.true_kwd), ("false", Tokens.false_kwd), ] for value, token_type in DIRECT_MAP: node = TREE for char in value: next_node = Node() node.links.append((next_node, lambda c, char=char: c == char)) node = next_node node.token_type = token_type # Identifiers WORD_CHARACTERS = set(string.ascii_letters + "_") WORD_CHARACTERS_AFTER = WORD_CHARACTERS | set(string.digits) node = Node(token_type=Tokens.identifier) TREE.links.append((node, lambda c: c in WORD_CHARACTERS)) end_node = Node(token_type=Tokens.identifier) node.links.append((end_node, lambda c: c in WORD_CHARACTERS_AFTER)) end_node.links.append((end_node, lambda c: c in WORD_CHARACTERS_AFTER)) # Numbers DIGIT_CHARACTERS = set(string.digits) node = Node(token_type=Tokens.integer) TREE.links.append((node, lambda c: c in DIGIT_CHARACTERS)) underscore_node = Node() node.links.append((underscore_node, lambda c: c == "_")) end_node = Node(token_type=Tokens.integer) underscore_node.links.append((end_node, lambda c: c in DIGIT_CHARACTERS)) node.links.append((end_node, lambda c: c in DIGIT_CHARACTERS)) end_node.links.append((underscore_node, lambda c: c == "_")) end_node.links.append((end_node, lambda c: c in DIGIT_CHARACTERS)) # # Lexer # class Token: def __init__(self, type:Tokens, start:int, end:int, data:str = None): self.type = type self.start = start self.end = end self.data = data def __repr__(self): if self.data is None: return str(self.type) return "{}({})".format(self.type, self.data) class Lexer: source = None current = None position = 0 def __init__(self, source:IOBase): self.source = source self.next() # Read the next character into current def next(self): self.current = self.source.read(1) self.position += 1 # # Lexing Methods # # Lex a single token def lex(self): token_start = self.position - 1 token_data = "" current_nodes = [TREE] while True: next_nodes = [] for node in current_nodes: next_nodes += node.evaluate(self.current) if len(next_nodes) == 0: if len(current_nodes) > 0: return self.outputNode(current_nodes, token_start, token_data) raise InternalError("Zero current nodes in lex tree.") elif len(next_nodes) == 1 and next_nodes[0] is TREE: # Restart token_start = self.position token_data = "" current_nodes = [TREE] else: token_data += self.current if not self.current: return None self.next() current_nodes = next_nodes def outputNode(self, nodes, start, data): for node in nodes: if node.token_type is not None: return node.getToken(start, self.position - 1, data) elif node is TREE and not self.current: return None raise SyntaxError(message="Unexpected character").add(content=self.current, tokens=[Token(None, self.position - 1, self.position)], source=self.source)
from auth_helper import * from bulk_service_manager_helper import * from output_helper import * # You must provide credentials in auth_helper.py. def main(authorization_data): try: # The Bing Merchant Center Store Id cannot be retrieved via the Bulk service, # so we'll use the Campaign Management service i.e., the GetBMCStoresByCustomerId service operation below. # Get a list of all Bing Merchant Center stores associated with your CustomerId. output_status_message("-----\nGetBMCStoresByCustomerId:") stores=campaign_service.GetBMCStoresByCustomerId()['BMCStore'] if stores is None: output_status_message( "You do not have any BMC stores registered for CustomerId {0}.".format(authorization_data.customer_id) ) sys.exit(0) upload_entities=[] # Create a Shopping campaign with product conditions. bulk_campaign=BulkCampaign() bulk_campaign.client_id='YourClientIdGoesHere' campaign=set_elements_to_none(campaign_service.factory.create('Campaign')) campaign.BudgetType='DailyBudgetStandard' campaign.CampaignType=['Shopping'] campaign.DailyBudget=50 languages=campaign_service.factory.create('ns3:ArrayOfstring') languages.string.append('All') campaign.Languages=languages campaign.Name="Women's Shoes " + strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) settings=campaign_service.factory.create('ArrayOfSetting') setting=set_elements_to_none(campaign_service.factory.create('ShoppingSetting')) setting.Priority=0 setting.SalesCountryCode ='US' setting.StoreId=stores[0].Id settings.Setting.append(setting) campaign.Settings=settings campaign.TimeZone='PacificTimeUSCanadaTijuana' campaign.Id=CAMPAIGN_ID_KEY bulk_campaign.campaign=campaign upload_entities.append(bulk_campaign) # Optionally, you can create a ProductScope criterion that will be associated with your Microsoft Shopping campaign. # You'll also be able to add more specific product conditions for each ad group. bulk_campaign_product_scope=BulkCampaignProductScope() bulk_campaign_product_scope.status='Active' campaign_criterion=set_elements_to_none(campaign_service.factory.create('CampaignCriterion')) product_scope=set_elements_to_none(campaign_service.factory.create('ProductScope')) conditions=campaign_service.factory.create('ArrayOfProductCondition') condition_new=campaign_service.factory.create('ProductCondition') condition_new.Operand='Condition' condition_new.Attribute='New' conditions.ProductCondition.append(condition_new) condition_custom_label_0=campaign_service.factory.create('ProductCondition') condition_custom_label_0.Operand='CustomLabel0' condition_custom_label_0.Attribute='MerchantDefinedCustomLabel' conditions.ProductCondition.append(condition_custom_label_0) product_scope.Conditions=conditions campaign_criterion.CampaignId=CAMPAIGN_ID_KEY campaign_criterion.Criterion=product_scope bulk_campaign_product_scope.biddable_campaign_criterion=campaign_criterion upload_entities.append(bulk_campaign_product_scope) # Create the ad group that will have the product partitions. bulk_ad_group=BulkAdGroup() bulk_ad_group.campaign_id=CAMPAIGN_ID_KEY ad_group=set_elements_to_none(campaign_service.factory.create('AdGroup')) ad_group.Id=AD_GROUP_ID_KEY ad_group.Name="Product Categories" ad_group.Status='Paused' end_date=campaign_service.factory.create('Date') end_date.Day=31 end_date.Month=12 end_date.Year=strftime("%Y", gmtime()) ad_group.EndDate=end_date cpc_bid=campaign_service.factory.create('Bid') cpc_bid.Amount=0.09 ad_group.CpcBid=cpc_bid bulk_ad_group.ad_group=ad_group upload_entities.append(bulk_ad_group) #Create a product ad. You must add at least one product ad to the ad group. #The product ad identifier can be used for reporting analytics. #Use Merchant Promotions if you want tags to appear at the bottom of your product ad #as "special offer" links, helping to increase customer engagement. For details #on Merchant Promotions see https://help.bingads.microsoft.com/#apex/3/en/56805/0. bulk_product_ad=BulkProductAd() bulk_product_ad.ad_group_id=AD_GROUP_ID_KEY ads=campaign_service.factory.create('ArrayOfAd') product_ad=set_elements_to_none(campaign_service.factory.create('ProductAd')) product_ad.Type='Product' bulk_product_ad.ad=product_ad upload_entities.append(bulk_product_ad) output_status_message("-----\nAdding the campaign, product scope, ad group, and ad...") download_entities=write_entities_and_upload_file( bulk_service_manager=bulk_service_manager, upload_entities=upload_entities) output_status_message("Upload results:") # Write the upload output campaign_results=[] campaign_product_scope_results=[] ad_group_results=[] product_ad_results=[] for entity in download_entities: if isinstance(entity, BulkCampaign): campaign_results.append(entity) output_bulk_campaigns([entity]) if isinstance(entity, BulkCampaignProductScope): campaign_product_scope_results.append(entity) output_bulk_campaign_product_scopes([entity]) if isinstance(entity, BulkAdGroup): ad_group_results.append(entity) output_bulk_ad_groups([entity]) if isinstance(entity, BulkProductAd): product_ad_results.append(entity) output_bulk_product_ads([entity]) ad_group_id=ad_group_results.pop(0).ad_group.Id # Bid all products helper=ProductPartitionHelper(ad_group_id) root_condition=set_elements_to_none(campaign_service.factory.create('ProductCondition')) root_condition.Operand='All' root_condition.Attribute=None root=helper.add_unit( None, root_condition, 0.35, False, "root" ) output_status_message("-----\nApplying only the root as a Unit with a bid...") apply_bulk_product_partition_actions_results=apply_bulk_product_partition_actions(helper.partition_actions) product_partitions=get_bulk_ad_group_product_partition_tree(ad_group_id) output_status_message("The ad group's product partition only has a tree root node:") output_bulk_product_partitions(product_partitions) # Let's update the bid of the root Unit we just added. updated_root=get_node_by_client_id(apply_bulk_product_partition_actions_results, "root") fixed_bid=set_elements_to_none(campaign_service.factory.create('FixedBid')) fixed_bid.Amount=0.45 updated_root.ad_group_criterion.CriterionBid=fixed_bid helper=ProductPartitionHelper(ad_group_id) helper.update_partition(updated_root) output_status_message("-----\nUpdating the bid for the tree root node...") apply_bulk_product_partition_actions_results=apply_bulk_product_partition_actions(helper.partition_actions) product_partitions=get_bulk_ad_group_product_partition_tree(ad_group_id) output_status_message("Updated the bid for the tree root node:") output_bulk_product_partitions(product_partitions) # Initialize and overwrite any existing tree root, and build a product partition group tree structure in multiple steps. # You could build the entire tree in a single call since there are less than 20,000 nodes; however, # we will build it in steps to demonstrate how to use the results from bulk upload to update the tree. helper=ProductPartitionHelper(ad_group_id) # Check whether a root node exists already. existing_root=get_node_by_client_id(apply_bulk_product_partition_actions_results, "root") if existing_root is not None: existing_root.client_id="deletedroot" helper.delete_partition(existing_root) root_condition=campaign_service.factory.create('ProductCondition') root_condition.Operand='All' root_condition.Attribute=None root=helper.add_subdivision( None, root_condition, "root" ) #The direct children of any node must have the same Operand. #For this example we will use CategoryL1 nodes as children of the root. #For a list of valid CategoryL1 through CategoryL5 values, see the Bing Category Taxonomy: #https://go.microsoft.com/fwlink?LinkId=507666 animals_condition=campaign_service.factory.create('ProductCondition') animals_condition.Operand='CategoryL1' animals_condition.Attribute='Animals & Pet Supplies' animals_subdivision=helper.add_subdivision( root, animals_condition, "animals_subdivision" ) #If you use a CategoryL2 node, it must be a descendant (child or later) of a CategoryL1 node. #In other words you cannot have a CategoryL2 node as parent of a CategoryL1 node. #For this example we will a CategoryL2 node as child of the CategoryL1 Animals & Pet Supplies node. pet_supplies_condition=campaign_service.factory.create('ProductCondition') pet_supplies_condition.Operand='CategoryL2' pet_supplies_condition.Attribute='Pet Supplies' pet_supplies_subdivision=helper.add_subdivision( animals_subdivision, pet_supplies_condition, "pet_supplies_subdivision" ) brand_a_condition=campaign_service.factory.create('ProductCondition') brand_a_condition.Operand='Brand' brand_a_condition.Attribute='Brand A' brand_a=helper.add_unit( pet_supplies_subdivision, brand_a_condition, 0.35, False, "brand_a" ) #If you won't bid on Brand B, set the helper method's bidAmount to '0' and isNegative to True. #The helper method will create a NegativeAdGroupCriterion and apply the condition. brand_b_condition=campaign_service.factory.create('ProductCondition') brand_b_condition.Operand='Brand' brand_b_condition.Attribute='Brand B' brand_b=helper.add_unit( pet_supplies_subdivision, brand_b_condition, 0, True, "brand_b" ) other_brands_condition=campaign_service.factory.create('ProductCondition') other_brands_condition.Operand='Brand' other_brands_condition.Attribute=None other_brands=helper.add_unit( pet_supplies_subdivision, other_brands_condition, 0.35, False, "other_brands" ) other_pet_supplies_condition=campaign_service.factory.create('ProductCondition') other_pet_supplies_condition.Operand='CategoryL2' other_pet_supplies_condition.Attribute=None other_pet_supplies=helper.add_unit( animals_subdivision, other_pet_supplies_condition, 0.35, False, "other_pet_supplies" ) electronics_condition=campaign_service.factory.create('ProductCondition') electronics_condition.Operand='CategoryL1' electronics_condition.Attribute='Electronics' electronics=helper.add_unit( root, electronics_condition, 0.35, False, "electronics" ) other_categoryL1_condition=campaign_service.factory.create('ProductCondition') other_categoryL1_condition.Operand='CategoryL1' other_categoryL1_condition.Attribute=None other_categoryL1=helper.add_unit( root, other_categoryL1_condition, 0.35, False, "other_categoryL1" ) output_status_message("-----\nApplying product partitions to the ad group...") apply_bulk_product_partition_actions_results=apply_bulk_product_partition_actions(helper.partition_actions) product_partitions=get_bulk_ad_group_product_partition_tree(ad_group_id) #The product partition group tree now has 9 nodes. #All other (Root Node) #| #+-- Animals & Pet Supplies (CategoryL1) #| | #| +-- Pet Supplies (CategoryL2) #| | | #| | +-- Brand A #| | | #| | +-- Brand B #| | | #| | +-- All other (Brand) #| | #| +-- All other (CategoryL2) #| #+-- Electronics (CategoryL1) #| #+-- All other (CategoryL1) output_status_message("The product partition group tree now has 9 nodes:") output_bulk_product_partitions(product_partitions) #Let's replace the Electronics (CategoryL1) node created above with an Electronics (CategoryL1) node that #has children i.e. Brand C (Brand), Brand D (Brand), and All other (Brand) as follows: #Electronics (CategoryL1) #| #+-- Brand C (Brand) #| #+-- Brand D (Brand) #| #+-- All other (Brand) helper=ProductPartitionHelper(ad_group_id) #To replace a node we must know its Id and its ParentCriterionId. In this case the parent of the node #we are replacing is All other (Root Node), and was created at Index 1 of the previous ApplyProductPartitionActions call. #The node that we are replacing is Electronics (CategoryL1), and was created at Index 8. root_id=get_node_by_client_id(apply_bulk_product_partition_actions_results, "root").ad_group_criterion.Id electronics.ad_group_criterion.Id=get_node_by_client_id(apply_bulk_product_partition_actions_results, "electronics").ad_group_criterion.Id helper.delete_partition(electronics) parent=BulkAdGroupProductPartition() parent.ad_group_criterion=set_elements_to_none(campaign_service.factory.create('BiddableAdGroupCriterion')) parent.ad_group_criterion.Id=root_id electronics_subdivision_condition=campaign_service.factory.create('ProductCondition') electronics_subdivision_condition.Operand='CategoryL1' electronics_subdivision_condition.Attribute='Electronics' electronics_subdivision=helper.add_subdivision( parent, electronics_subdivision_condition, "electronics_subdivision" ) brand_c_condition=campaign_service.factory.create('ProductCondition') brand_c_condition.Operand='Brand' brand_c_condition.Attribute='Brand C' brand_c=helper.add_unit( electronics_subdivision, brand_c_condition, 0.35, False, "brand_c" ) brand_d_condition=campaign_service.factory.create('ProductCondition') brand_d_condition.Operand='Brand' brand_d_condition.Attribute='Brand D' brand_d=helper.add_unit( electronics_subdivision, brand_d_condition, 0.35, False, "brand_d" ) other_electronics_brands_condition=campaign_service.factory.create('ProductCondition') other_electronics_brands_condition.Operand='Brand' other_electronics_brands_condition.Attribute=None other_electronics_brands=helper.add_unit( electronics_subdivision, other_electronics_brands_condition, 0.35, False, "other_electronics_brands" ) output_status_message( "-----\nUpdating the product partition group to refine Electronics (CategoryL1) with 3 child nodes..." ) apply_bulk_product_partition_actions_results=apply_bulk_product_partition_actions(helper.partition_actions) product_partitions=get_bulk_ad_group_product_partition_tree(ad_group_id) #The product partition group tree now has 12 nodes, including the children of Electronics (CategoryL1): #All other (Root Node) #| #+-- Animals & Pet Supplies (CategoryL1) #| | #| +-- Pet Supplies (CategoryL2) #| | | #| | +-- Brand A #| | | #| | +-- Brand B #| | | #| | +-- All other (Brand) #| | #| +-- All other (CategoryL2) #| #+-- Electronics (CategoryL1) #| | #| +-- Brand C (Brand) #| | #| +-- Brand D (Brand) #| | #| +-- All other (Brand) #| #+-- All other (CategoryL1) output_status_message( "The product partition group tree now has 12 nodes, including the children of Electronics (CategoryL1):" ) output_bulk_product_partitions(product_partitions) # Delete the campaign and everything it contains e.g., ad groups and ads. upload_entities=[] for campaign_result in campaign_results: campaign_result.campaign.Status='Deleted' upload_entities.append(campaign_result) output_status_message("-----\nDeleting the campaign and everything it contains e.g., ad groups and ads...") download_entities=write_entities_and_upload_file( bulk_service_manager=bulk_service_manager, upload_entities=upload_entities) output_status_message("Upload results:") for entity in download_entities: if isinstance(entity, BulkCampaign): output_bulk_campaigns([entity]) except WebFault as ex: output_webfault_errors(ex) except Exception as ex: output_status_message(ex) def apply_bulk_product_partition_actions(upload_entities): download_entities=write_entities_and_upload_file( bulk_service_manager=bulk_service_manager, upload_entities=upload_entities) output_status_message("Upload results:") bulk_ad_group_product_partitions=[] for entity in download_entities: if isinstance(entity, BulkAdGroupProductPartition): bulk_ad_group_product_partitions.append(entity) output_bulk_ad_group_product_partitions([entity]) return bulk_ad_group_product_partitions def get_bulk_ad_group_product_partition_tree(ad_group_id): download_parameters=DownloadParameters( download_entities=[ 'AdGroupProductPartitions' ], result_file_directory=FILE_DIRECTORY, result_file_name=DOWNLOAD_FILE_NAME, overwrite_result_file=True, last_sync_time_in_utc=None ) download_entities=download_file( bulk_service_manager=bulk_service_manager, download_parameters=download_parameters) bulk_ad_group_product_partitions=[] for entity in download_entities: if isinstance(entity, BulkAdGroupProductPartition) and entity.ad_group_criterion is not None and entity.ad_group_criterion.AdGroupId == ad_group_id: bulk_ad_group_product_partitions.append(entity) return bulk_ad_group_product_partitions def get_node_by_client_id(product_partitions, client_id=None): """ Returns the root node of a tree. This operation assumes that a complete product partition tree is provided for one ad group. The node that has null ParentCriterionId is the root node. :param product_partitions: The list of BulkAdGroupProductPartition that make up the product partition tree. :type product_partitions: BulkAdGroupProductPartition[] :return: The BulkAdGroupProductPartition corresponding to the specified Client Id. :rtype: BulkAdGroupProductPartition """ client_node=None for product_partition in product_partitions: if product_partition.client_id == client_id: client_node=product_partition break return client_node class ProductPartitionHelper: """ Helper class used to maintain a list of product partition actions for an ad group. The list of partition actions can be uploaded to the Bulk service. """ def __init__(self, ad_group_id): """ Initialize an instance of this class. :param ad_group_id: Each criterion is associated with the same ad group. :type ad_group_id: long """ self._ad_group_id=ad_group_id self._reference_id=-1 self._partition_actions=[] @property def partition_actions(self): """ The list of BulkAdGroupProductPartition that can be uploaded to the Bulk service :rtype: BulkAdGroupProductPartition[] """ return self._partition_actions def add_subdivision(self, parent, condition, client_id=None): """ Sets the Add action for a new BiddableAdGroupCriterion corresponding to the specified ProductCondition, and adds it to the helper's list of BulkAdGroupProductPartition. :param parent: The parent of the product partition subdivision that you want to add. :type parent: BulkAdGroupProductPartition :param condition: The condition or product filter for the new product partition. :type condition: ProductCondition :param client_id: The Client Id in the bulk upload file corresponding to the product partition. :type client_id: string :return: The BulkAdGroupProductPartition that was added to the list of partition_actions. :rtype: BulkAdGroupProductPartition """ biddable_ad_group_criterion=set_elements_to_none(campaign_service.factory.create('BiddableAdGroupCriterion')) product_partition=set_elements_to_none(campaign_service.factory.create('ProductPartition')) # If the root node is a unit, it would not have a parent product_partition.ParentCriterionId=parent.ad_group_criterion.Id if parent is not None and parent.ad_group_criterion is not None else None product_partition.Condition=condition product_partition.PartitionType='Subdivision' biddable_ad_group_criterion.Criterion=product_partition biddable_ad_group_criterion.CriterionBid=None biddable_ad_group_criterion.AdGroupId=self._ad_group_id biddable_ad_group_criterion.Status=None if hasattr(biddable_ad_group_criterion, 'EditorialStatus'): biddable_ad_group_criterion.EditorialStatus=None biddable_ad_group_criterion.Id=self._reference_id self._reference_id=self._reference_id self._reference_id-=1 partition_action=BulkAdGroupProductPartition() partition_action.client_id=client_id partition_action.ad_group_criterion=biddable_ad_group_criterion self._partition_actions.append(partition_action) return partition_action def add_unit(self, parent, condition, bid_amount, is_negative=False, client_id=None): """ Sets the Add action for a new AdGroupCriterion corresponding to the specified ProductCondition, and adds it to the helper's list of BulkAdGroupProductPartition. :param parent: The parent of the product partition unit that you want to add. :type parent: BulkAdGroupProductPartition :param condition: The condition or product filter for the new product partition. :type condition: ProductCondition :param bid_amount: The bid amount for the new product partition. :type bid_amount: double :param is_negative: (Optional) Indicates whether or not to add a NegativeAdGroupCriterion. The default value is False, in which case a BiddableAdGroupCriterion will be added. :type is_negative: bool :param client_id: The Client Id in the bulk upload file corresponding to the product partition. :type client_id: string :return: The BulkAdGroupProductPartition that was added to the list of partition_actions. :rtype: BulkAdGroupProductPartition """ ad_group_criterion=None if is_negative: ad_group_criterion=set_elements_to_none(campaign_service.factory.create('NegativeAdGroupCriterion')) else: ad_group_criterion=set_elements_to_none(campaign_service.factory.create('BiddableAdGroupCriterion')) fixed_bid=set_elements_to_none(campaign_service.factory.create('FixedBid')) fixed_bid.Amount=bid_amount ad_group_criterion.CriterionBid=fixed_bid ad_group_criterion.AdGroupId=self._ad_group_id if hasattr(ad_group_criterion, 'EditorialStatus'): ad_group_criterion.EditorialStatus=None ad_group_criterion.Status=None product_partition=set_elements_to_none(campaign_service.factory.create('ProductPartition')) # If the root node is a unit, it would not have a parent product_partition.ParentCriterionId=parent.ad_group_criterion.Id if parent is not None and parent.ad_group_criterion is not None else None product_partition.Condition=condition product_partition.PartitionType='Unit' ad_group_criterion.Criterion=product_partition partition_action=BulkAdGroupProductPartition() partition_action.client_id=client_id partition_action.ad_group_criterion=ad_group_criterion self._partition_actions.append(partition_action) return partition_action def delete_partition(self, bulk_ad_group_product_partition): """ Sets the Delete action for the specified AdGroupCriterion, and adds it to the helper's list of BulkAdGroupProductPartition. :param bulk_ad_group_product_partition: The BulkAdGroupProductPartition whose product partition you want to delete. :type bulk_ad_group_product_partition: BulkAdGroupProductPartition """ if bulk_ad_group_product_partition is not None and bulk_ad_group_product_partition.ad_group_criterion is not None: bulk_ad_group_product_partition.ad_group_criterion.AdGroupId=self._ad_group_id bulk_ad_group_product_partition.ad_group_criterion.Status='Deleted' if hasattr(bulk_ad_group_product_partition.ad_group_criterion, 'EditorialStatus'): bulk_ad_group_product_partition.ad_group_criterion.EditorialStatus=None self._partition_actions.append(bulk_ad_group_product_partition) def update_partition(self, bulk_ad_group_product_partition): """ Sets the Update action for the specified BiddableAdGroupCriterion, and adds it to the helper's list of BulkAdGroupProductPartition. You can only update the CriterionBid and DestinationUrl elements of the BiddableAdGroupCriterion. When working with product partitions, youu cannot update the Criterion (ProductPartition). To update a ProductPartition, you must delete the existing node (delete_partition) and add a new one (add_unit or add_subdivision) during the same upload. :param bulk_ad_group_product_partition: The BulkAdGroupProductPartition to update. :type bulk_ad_group_product_partition: BulkAdGroupProductPartition """ if bulk_ad_group_product_partition is not None and bulk_ad_group_product_partition.ad_group_criterion is not None: bulk_ad_group_product_partition.ad_group_criterion.AdGroupId=self._ad_group_id bulk_ad_group_product_partition.ad_group_criterion.Status=None if hasattr(bulk_ad_group_product_partition.ad_group_criterion, 'EditorialStatus'): bulk_ad_group_product_partition.ad_group_criterion.EditorialStatus=None self._partition_actions.append(bulk_ad_group_product_partition) # Main execution if __name__ == '__main__': print("Loading the web service client proxies...") authorization_data=AuthorizationData( account_id=None, customer_id=None, developer_token=DEVELOPER_TOKEN, authentication=None, ) bulk_service_manager=BulkServiceManager( authorization_data=authorization_data, poll_interval_in_milliseconds=5000, environment=ENVIRONMENT, ) campaign_service=ServiceClient( service='CampaignManagementService', version=13, authorization_data=authorization_data, environment=ENVIRONMENT, ) authenticate(authorization_data) main(authorization_data)
import itertools import os import re from docutils import nodes from docutils.parsers.rst import Directive from docutils.statemachine import ViewList from sphinx import addnodes from sphinx.directives import ObjectDescription, Directive from sphinx.domains import Domain, ObjType from sphinx.domains.python import PyObject from sphinx.locale import l_, _ from sphinx.roles import XRefRole from sphinx.util.nodes import make_refnode from sphinx.util.nodes import nested_parse_with_titles from sphinx.util.nodes import set_source_info from sphinx.domains import python as python_domain import salt class Event(PyObject): ''' Document Salt events ''' domain = 'salt' class LiterateCoding(Directive): ''' Auto-doc SLS files using literate-style comment/code separation ''' has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = False def parse_file(self, fpath): ''' Read a file on the file system (relative to salt's base project dir) :returns: A file-like object. :raises IOError: If the file cannot be found or read. ''' sdir = os.path.abspath(os.path.join(os.path.dirname(salt.__file__), os.pardir)) with open(os.path.join(sdir, fpath), 'rb') as f: return f.readlines() def parse_lit(self, lines): ''' Parse a string line-by-line delineating comments and code :returns: An tuple of boolean/list-of-string pairs. True designates a comment; False designates code. ''' comment_char = '#' # TODO: move this into a directive option comment = re.compile(r'^\s*{0}[ \n]'.format(comment_char)) section_test = lambda val: bool(comment.match(val)) sections = [] for is_doc, group in itertools.groupby(lines, section_test): if is_doc: text = [comment.sub('', i).rstrip('\r\n') for i in group] else: text = [i.rstrip('\r\n') for i in group] sections.append((is_doc, text)) return sections def run(self): try: lines = self.parse_lit(self.parse_file(self.arguments[0])) except IOError as exc: document = self.state.document return [document.reporter.warning(str(exc), line=self.lineno)] node = nodes.container() node['classes'] = ['lit-container'] node.document = self.state.document enum = nodes.enumerated_list() enum['classes'] = ['lit-docs'] node.append(enum) # make first list item list_item = nodes.list_item() list_item['classes'] = ['lit-item'] for is_doc, line in lines: if is_doc and line == ['']: continue section = nodes.section() if is_doc: section['classes'] = ['lit-annotation'] nested_parse_with_titles(self.state, ViewList(line), section) else: section['classes'] = ['lit-content'] code = '\n'.join(line) literal = nodes.literal_block(code, code) literal['language'] = 'yaml' set_source_info(self, literal) section.append(literal) list_item.append(section) # If we have a pair of annotation/content items, append the list # item and create a new list item if len(list_item.children) == 2: enum.append(list_item) list_item = nodes.list_item() list_item['classes'] = ['lit-item'] # Non-semantic div for styling bg = nodes.container() bg['classes'] = ['lit-background'] node.append(bg) return [node] class LiterateFormula(LiterateCoding): ''' Customizations to handle finding and parsing SLS files ''' def parse_file(self, sls_path): ''' Given a typical Salt SLS path (e.g.: apache.vhosts.standard), find the file on the file system and parse it ''' config = self.state.document.settings.env.config formulas_dirs = config.formulas_dirs fpath = sls_path.replace('.', '/') name_options = ( '{0}.sls'.format(fpath), os.path.join(fpath, 'init.sls') ) paths = [os.path.join(fdir, fname) for fname in name_options for fdir in formulas_dirs] for i in paths: try: with open(i, 'rb') as f: return f.readlines() except IOError: pass raise IOError("Could not find sls file '{0}'".format(sls_path)) class CurrentFormula(Directive): domain = 'salt' has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = False option_spec = {} def run(self): env = self.state.document.settings.env modname = self.arguments[0].strip() if modname == 'None': env.temp_data['salt:formula'] = None else: env.temp_data['salt:formula'] = modname return [] class Formula(Directive): domain = 'salt' has_content = True required_arguments = 1 def run(self): env = self.state.document.settings.env formname = self.arguments[0].strip() env.temp_data['salt:formula'] = formname if 'noindex' in self.options: return [] env.domaindata['salt']['formulas'][formname] = ( env.docname, self.options.get('synopsis', ''), self.options.get('platform', ''), 'deprecated' in self.options) targetnode = nodes.target('', '', ids=['module-' + formname], ismod=True) self.state.document.note_explicit_target(targetnode) indextext = u'{0}-formula)'.format(formname) inode = addnodes.index(entries=[('single', indextext, 'module-' + formname, '')]) return [targetnode, inode] class State(Directive): domain = 'salt' has_content = True required_arguments = 1 def run(self): env = self.state.document.settings.env statename = self.arguments[0].strip() if 'noindex' in self.options: return [] targetnode = nodes.target('', '', ids=['module-' + statename], ismod=True) self.state.document.note_explicit_target(targetnode) formula = env.temp_data.get('salt:formula') indextext = u'{1} ({0}-formula)'.format(formula, statename) inode = addnodes.index(entries=[ ('single', indextext, 'module-{0}'.format(statename), ''), ]) return [targetnode, inode] class SLSXRefRole(XRefRole): pass class SaltModuleIndex(python_domain.PythonModuleIndex): name = 'modindex' localname = l_('Salt Module Index') shortname = l_('all salt modules') class SaltDomain(python_domain.PythonDomain): name = 'salt' label = 'Salt' data_version = 2 object_types = python_domain.PythonDomain.object_types object_types.update({ 'state': ObjType(l_('state'), 'state'), }) directives = python_domain.PythonDomain.directives directives.update({ 'event': Event, 'state': State, 'formula': LiterateFormula, 'currentformula': CurrentFormula, 'saltconfig': LiterateCoding, }) roles = python_domain.PythonDomain.roles roles.update({ 'formula': SLSXRefRole(), }) initial_data = python_domain.PythonDomain.initial_data initial_data.update({ 'formulas': {}, }) indices = [ SaltModuleIndex, ] def resolve_xref(self, env, fromdocname, builder, type, target, node, contnode): if type == 'formula' and target in self.data['formulas']: doc, _, _, _ = self.data['formulas'].get(target, (None, None)) if doc: return make_refnode(builder, fromdocname, doc, target, contnode, target) else: super(SaltDomain, self).resolve_xref(env, fromdocname, builder, type, target, node, contnode) # Monkey-patch the Python domain remove the python module index python_domain.PythonDomain.indices = [] def setup(app): app.add_domain(SaltDomain) formulas_path = 'templates/formulas' formulas_dir = os.path.join(os.path.abspath(os.path.dirname(salt.__file__)), formulas_path) app.add_config_value('formulas_dirs', [formulas_dir], 'env') app.add_crossref_type(directivename="conf_master", rolename="conf_master", indextemplate="pair: %s; conf/master") app.add_crossref_type(directivename="conf_minion", rolename="conf_minion", indextemplate="pair: %s; conf/minion") app.add_crossref_type(directivename="conf_log", rolename="conf_log", indextemplate="pair: %s; conf/logging")
# # # Copyright (C) 2012 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Script to prepare a node for joining a cluster. """ import os import os.path import optparse import sys import logging from ganeti import cli from ganeti import constants from ganeti import errors from ganeti import pathutils from ganeti import utils from ganeti import ht from ganeti import ssh from ganeti.tools import common _SSH_KEY_LIST_ITEM = \ ht.TAnd(ht.TIsLength(3), ht.TItems([ ht.TElemOf(constants.SSHK_ALL), ht.Comment("public")(ht.TNonEmptyString), ht.Comment("private")(ht.TNonEmptyString), ])) _SSH_KEY_LIST = ht.TListOf(_SSH_KEY_LIST_ITEM) _DATA_CHECK = ht.TStrictDict(False, True, { constants.SSHS_CLUSTER_NAME: ht.TNonEmptyString, constants.SSHS_NODE_DAEMON_CERTIFICATE: ht.TNonEmptyString, constants.SSHS_SSH_HOST_KEY: _SSH_KEY_LIST, constants.SSHS_SSH_ROOT_KEY: _SSH_KEY_LIST, constants.SSHS_SSH_AUTHORIZED_KEYS: ht.TDictOf(ht.TNonEmptyString, ht.TListOf(ht.TNonEmptyString)), }) class JoinError(errors.GenericError): """Local class for reporting errors. """ def ParseOptions(): """Parses the options passed to the program. @return: Options and arguments """ program = os.path.basename(sys.argv[0]) parser = optparse.OptionParser(usage="%prog [--dry-run]", prog=program) parser.add_option(cli.DEBUG_OPT) parser.add_option(cli.VERBOSE_OPT) parser.add_option(cli.DRY_RUN_OPT) (opts, args) = parser.parse_args() return common.VerifyOptions(parser, opts, args) def _UpdateKeyFiles(keys, dry_run, keyfiles): """Updates SSH key files. @type keys: sequence of tuple; (string, string, string) @param keys: Keys to write, tuples consist of key type (L{constants.SSHK_ALL}), public and private key @type dry_run: boolean @param dry_run: Whether to perform a dry run @type keyfiles: dict; (string as key, tuple with (string, string) as values) @param keyfiles: Mapping from key types (L{constants.SSHK_ALL}) to file names; value tuples consist of public key filename and private key filename """ assert set(keyfiles) == constants.SSHK_ALL for (kind, private_key, public_key) in keys: (private_file, public_file) = keyfiles[kind] logging.debug("Writing %s ...", private_file) utils.WriteFile(private_file, data=private_key, mode=0600, backup=True, dry_run=dry_run) logging.debug("Writing %s ...", public_file) utils.WriteFile(public_file, data=public_key, mode=0644, backup=True, dry_run=dry_run) def UpdateSshDaemon(data, dry_run, _runcmd_fn=utils.RunCmd, _keyfiles=None): """Updates SSH daemon's keys. Unless C{dry_run} is set, the daemon is restarted at the end. @type data: dict @param data: Input data @type dry_run: boolean @param dry_run: Whether to perform a dry run """ keys = data.get(constants.SSHS_SSH_HOST_KEY) if not keys: return if _keyfiles is None: _keyfiles = constants.SSH_DAEMON_KEYFILES logging.info("Updating SSH daemon key files") _UpdateKeyFiles(keys, dry_run, _keyfiles) if dry_run: logging.info("This is a dry run, not restarting SSH daemon") else: result = _runcmd_fn([pathutils.DAEMON_UTIL, "reload-ssh-keys"], interactive=True) if result.failed: raise JoinError("Could not reload SSH keys, command '%s'" " had exitcode %s and error %s" % (result.cmd, result.exit_code, result.output)) def UpdateSshRoot(data, dry_run, _homedir_fn=None): """Updates root's SSH keys. Root's C{authorized_keys} file is also updated with new public keys. @type data: dict @param data: Input data @type dry_run: boolean @param dry_run: Whether to perform a dry run """ authorized_keys = data.get(constants.SSHS_SSH_AUTHORIZED_KEYS) (auth_keys_file, _) = \ ssh.GetAllUserFiles(constants.SSH_LOGIN_USER, mkdir=True, _homedir_fn=_homedir_fn) if dry_run: logging.info("This is a dry run, not replacing the SSH keys.") else: common.GenerateRootSshKeys(error_fn=JoinError, _homedir_fn=_homedir_fn) if authorized_keys: if dry_run: logging.info("This is a dry run, not modifying %s", auth_keys_file) else: all_authorized_keys = [] for keys in authorized_keys.values(): all_authorized_keys += keys ssh.AddAuthorizedKeys(auth_keys_file, all_authorized_keys) def Main(): """Main routine. """ opts = ParseOptions() utils.SetupToolLogging(opts.debug, opts.verbose) try: data = common.LoadData(sys.stdin.read(), _DATA_CHECK) # Check if input data is correct common.VerifyClusterName(data, JoinError) common.VerifyCertificateSoft(data, JoinError) # Update SSH files UpdateSshDaemon(data, opts.dry_run) UpdateSshRoot(data, opts.dry_run) logging.info("Setup finished successfully") except Exception, err: # pylint: disable=W0703 logging.debug("Caught unhandled exception", exc_info=True) (retcode, message) = cli.FormatError(err) logging.error(message) return retcode else: return constants.EXIT_SUCCESS
# -*- encoding: utf-8 -*- # # Copyright (c) 2014, OVH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Except as contained in this notice, the name of OVH and or its trademarks # (and among others RunAbove) shall not be used in advertising or otherwise to # promote the sale, use or other dealings in this Software without prior # written authorization from OVH. import unittest import mock import json import runabove class TestInstance(unittest.TestCase): instance_id = '8c687d5d-a1c7-4670-aca8-65acfb23ab44' answer_list = '''[ { "instanceId": "8c687d5d-a1c7-4670-aca8-65acfb23ab44", "name": "Test1", "ip": "192.168.0.1", "flavorId": "ab35df0e-4632-48b2-b6a5-c1f1d922bd43", "imageId": "82a56d09-882d-48cc-82ce-eef59820879f", "keyName": "", "status": "ACTIVE", "created": "2014-06-01T09:13:15Z", "region": "BHS-1" }, { "instanceId": "6736e98e-d40c-408d-8198-8a20d21124f3", "name": "Test2", "ip": "192.168.0.1", "flavorId": "ab35df0e-4632-48b2-b6a5-c1f1d922bd43", "imageId": "6915107b-e40d-4fd7-95f5-5e2bd5c106d3", "keyName": "MyTestKey", "status": "ACTIVE", "created": "2014-06-20T10:10:38Z", "region": "BHS-1" } ]''' answer_one = '''{ "instanceId": "8c687d5d-a1c7-4670-aca8-65acfb23ab44", "name": "Test", "ipv4": "192.168.0.3", "created": "2014-06-01T09:13:15Z", "status": "ACTIVE", "flavor": { "id": "ab35df0e-4632-48b2-b6a5-c1f1d922bd43", "disk": 240, "name": "pci2.d.c1", "ram": 16384, "vcpus": 6, "region": "BHS-1", "type": "ra.sb" }, "image": { "id": "82a56d09-882d-48cc-82ce-eef59820879f", "name": "Debian 7", "region": "BHS-1", "visibility": "public" }, "sshKey": null, "region": "BHS-1" }''' answer_one_without_flavor_nor_image_nor_key = '''{ "instanceId": "8c687d5d-a1c7-4670-aca8-65acfb23ab44", "name": "Test", "ipv4": "192.168.0.3", "created": "2014-06-01T09:13:15Z", "status": "ACTIVE", "flavor": null, "image": null, "sshKey": null, "region": "BHS-1" }''' answer_create_with_key = '''{ "instanceId": "8c687d5d-a1c7-4670-aca8-65acfb23ab44", "name": "Test", "ipv4": "", "created": "2014-07-02T14:02:39Z", "status": "BUILD", "flavor": { "id": "4245b91e-d9cf-4c9d-a109-f6a32da8a5cc", "disk": 240, "name": "pci2.d.r1", "ram": 28672, "vcpus": 4, "region": "BHS-1" }, "image": { "id": "82a56d09-882d-48cc-82ce-eef59820879f", "name": "Debian 7", "region": "BHS-1" }, "sshKey": { "publicKey": "ssh-rsa very-strong-key key-comment", "name": "MyTestKey", "fingerPrint": "aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa", "region": "BHS-1" }, "region": "BHS-1" }''' answer_create_without_key = '''{ "instanceId": "8c687d5d-a1c7-4670-aca8-65acfb23ab44", "name": "Test", "ipv4": "", "created": "2014-07-02T14:02:39Z", "status": "BUILD", "flavor": { "id": "4245b91e-d9cf-4c9d-a109-f6a32da8a5cc", "disk": 240, "name": "pci2.d.r1", "ram": 28672, "vcpus": 4, "region": "BHS-1" }, "image": { "id": "82a56d09-882d-48cc-82ce-eef59820879f", "name": "Debian 7", "region": "BHS-1" }, "sshKey": null, "region": "BHS-1" }''' @mock.patch('runabove.wrapper_api') @mock.patch('runabove.client') def setUp(self, mock_wrapper, mock_client): self.mock_wrapper = mock_wrapper self.instances = runabove.instance.InstanceManager(mock_wrapper, mock_client) def test_base_path(self): self.assertEqual(self.instances.basepath, '/instance') def test_list(self): self.mock_wrapper.get.return_value = json.loads(self.answer_list) instance_list = self.instances.list() self.mock_wrapper.get.assert_called_once_with( self.instances.basepath ) self.assertIsInstance(instance_list, list) self.assertTrue(len(instance_list) > 0) def test_get_by_id(self): self.mock_wrapper.encode_for_api.return_value = self.instance_id self.mock_wrapper.get.return_value = json.loads(self.answer_one) instance = self.instances.get_by_id(self.instance_id) self.mock_wrapper.get.assert_called_once_with( self.instances.basepath + '/' + self.instance_id ) self.assertIsInstance(instance, runabove.instance.Instance) def test_get_by_id_without_flavor_nor_image_nor_key(self): answer = self.answer_one_without_flavor_nor_image_nor_key self.mock_wrapper.encode_for_api.return_value = self.instance_id self.mock_wrapper.get.return_value = json.loads(answer) instance = self.instances.get_by_id(self.instance_id) self.mock_wrapper.get.assert_called_once_with( self.instances.basepath + '/' + self.instance_id ) self.assertIsInstance(instance, runabove.instance.Instance) def test_create_with_key(self): name = "Test" image_id = "82a56d09-882d-48cc-82ce-eef59820879f" flavor_id = "4245b91e-d9cf-4c9d-a109-f6a32da8a5cc" region_name = "BHS-1" public_key = "ssh-rsa very-strong-key key-comment" content = { 'flavorId': flavor_id, 'imageId': image_id, 'name': name, 'region': region_name, 'sshKeyName': public_key } self.mock_wrapper.post.return_value = json.loads( self.answer_create_with_key ) self.mock_wrapper.get.return_value = json.loads( self.answer_create_with_key ) self.mock_wrapper.encode_for_api.return_value = self.instance_id instance = self.instances.create( region_name, name, flavor_id, image_id, public_key ) self.mock_wrapper.post.assert_called_once_with( self.instances.basepath, content ) self.mock_wrapper.get.assert_called_once_with( self.instances.basepath + '/' + self.instance_id ) def test_create_without_key(self): name = "Test" image_id = "82a56d09-882d-48cc-82ce-eef59820879f" flavor_id = "4245b91e-d9cf-4c9d-a109-f6a32da8a5cc" region_name = "BHS-1" content = { 'flavorId': flavor_id, 'imageId': image_id, 'name': name, 'region': region_name } self.mock_wrapper.post.return_value = json.loads( self.answer_create_without_key ) self.mock_wrapper.get.return_value = json.loads( self.answer_create_without_key ) self.mock_wrapper.encode_for_api.return_value = self.instance_id self.instances.create( region_name, name, flavor_id, image_id ) self.mock_wrapper.post.assert_called_once_with( self.instances.basepath, content ) self.mock_wrapper.get.assert_called_once_with( self.instances.basepath + '/' + self.instance_id ) def test_rename_vm(self): name = 'MyTestInstanceWithNewName' self.mock_wrapper.encode_for_api.return_value = self.instance_id content = {"name": name} self.instances.rename(self.instance_id, name) self.mock_wrapper.put.assert_called_once_with( self.instances.basepath + '/' + self.instance_id, content ) def test_delete(self): self.mock_wrapper.encode_for_api.return_value = self.instance_id self.instances.delete(self.instance_id) self.mock_wrapper.delete.assert_called_once_with( self.instances.basepath + '/' + self.instance_id ) def test_load_vnc(self): url = "https://vnc-url" self.mock_wrapper.get.return_value = json.loads('''{ "type": "novnc", "url": "%s" }''' % url) vnc = self.instances._load_vnc(self.instance_id) self.mock_wrapper.get.assert_called_once_with( self.instances.basepath + '/' + self.instance_id + '/vnc' ) self.assertEqual(vnc, url) class TestInstanceObject(unittest.TestCase): @mock.patch('runabove.instance.InstanceManager') def setUp(self, mock_instances): self.mock_instances = mock_instances self.instance = runabove.instance.Instance( self.mock_instances, '9c687d5d-a1c7-4670-aca8-65acfb23ab44', 'MyTestInstance', '192.168.0.1', 'BHS-1', 'fc4c428d-c88b-4027-b35d-2ca176a8bd1a', 'b37437ea-e8de-474b-9628-54f563a3fd1e', 'MyTestKey', 'ACTIVE', '2014-07-01T09:13:15Z' ) def test_delete_object(self): self.instance.delete() self.mock_instances.delete.assert_called_once_with(self.instance) def test_rename_object(self): name = 'MyTestInstanceWithNewName' self.instance.rename(name) self.mock_instances.rename.assert_called_once_with(self.instance, name) def test_get_vnc_link(self): self.instance.vnc self.mock_instances.vnc.assert_called_once() def test_get_flavor_not_in_cache(self): self.instance.flavor self.mock_instances._handler.flavors.get_by_id.assert_called_once_with( self.instance._flavor_id ) def test_get_flavor_none(self): self.instance._flavor = False res = self.instance.flavor self.assertEquals(res, None) def test_get_flavor_404(self): self.mock_instances._handler.flavors.get_by_id.side_effect=\ runabove.exception.ResourceNotFoundError res = self.instance.flavor self.mock_instances._handler.flavors.get_by_id.assert_called_once_with( self.instance._flavor_id ) self.assertEquals(res, None) def test_get_image_not_in_cache(self): self.instance.image self.mock_instances._handler.images.get_by_id.assert_called_once_with( self.instance._image_id ) def test_get_image_none(self): self.instance._image = False res = self.instance.image self.assertEquals(res, None) def test_get_image_404(self): self.mock_instances._handler.images.get_by_id.side_effect=\ runabove.exception.ResourceNotFoundError res = self.instance.image self.mock_instances._handler.images.get_by_id.assert_called_once_with( self.instance._image_id ) self.assertEquals(res, None) def test_get_ssh_key(self): self.instance.ssh_key self.mock_instances._handler.ssh_keys.get_by_name.\ assert_called_once_with( self.instance.region, self.instance._ssh_key_name ) def test_get_ssh_key_empty(self): self.instance._ssh_key_name = None self.assertEqual(self.instance.ssh_key, None) def test_get_ips(self): self.instance.ips self.mock_instances.get_by_id.assert_called_once_with( self.instance.id ) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import logging from saml2.mdstore import MetadataStore, name from saml2 import BINDING_HTTP_REDIRECT, BINDING_SOAP, BINDING_HTTP_POST from saml2.config import SPConfig, IdPConfig, Config from py.test import raises from saml2 import root_logger from pathutils import dotname, full_path sp1 = { "entityid": "urn:mace:umu.se:saml:roland:sp", "service": { "sp": { "endpoints": { "assertion_consumer_service": [ "http://lingon.catalogix.se:8087/"], }, "name": "test", "idp": { "urn:mace:example.com:saml:roland:idp": { 'single_sign_on_service': {'urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect': 'http://localhost:8088/sso/'}}, } } }, "key_file": full_path("test.key"), "cert_file": full_path("test.pem"), "metadata": { "local": [full_path("metadata.xml"), full_path("urn-mace-swami.se-swamid-test-1.0-metadata.xml")], }, "virtual_organization": { "coip": { "nameid_format": "urn:oasis:names:tc:SAML:2.0:nameid-format:transient", "common_identifier": "eduPersonPrincipalName", "attribute_auth": [ "https://coip-test.sunet.se/idp/shibboleth", ] } }, "attribute_map_dir": full_path("attributemaps"), "only_use_keys_in_metadata": True, } sp2 = { "entityid": "urn:mace:umu.se:saml:roland:sp", "name": "Rolands SP", "service": { "sp": { "endpoints": { "assertion_consumer_service": [ "http://lingon.catalogix.se:8087/"], }, "required_attributes": ["surName", "givenName", "mail"], "optional_attributes": ["title"], "idp": { "": "https://example.com/saml2/idp/SSOService.php", } } }, #"xmlsec_binary" : "/opt/local/bin/xmlsec1", } IDP1 = { "entityid": "urn:mace:umu.se:saml:roland:idp", "name": "Rolands IdP", "service": { "idp": { "endpoints": { "single_sign_on_service": ["http://localhost:8088/"], }, "policy": { "default": { "attribute_restrictions": { "givenName": None, "surName": None, "eduPersonAffiliation": ["(member|staff)"], "mail": [".*@example.com"], } }, "urn:mace:umu.se:saml:roland:sp": None }, } }, #"xmlsec_binary" : "/usr/local/bin/xmlsec1", } IDP2 = { "entityid": "urn:mace:umu.se:saml:roland:idp", "name": "Rolands IdP", "service": { "idp": { "endpoints": { "single_sign_on_service": ["http://localhost:8088/"], "single_logout_service": [ ("http://localhost:8088/", BINDING_HTTP_REDIRECT)], }, "policy": { "default": { "attribute_restrictions": { "givenName": None, "surName": None, "eduPersonAffiliation": ["(member|staff)"], "mail": [".*@example.com"], } }, "urn:mace:umu.se:saml:roland:sp": None }, } }, #"xmlsec_binary" : "/usr/local/bin/xmlsec1", } PDP = { "entityid": "http://example.org/pysaml2/pdp", "name": "Rolands PdP", "service": { "pdp": { "endpoints": { "authz_service": [("http://example.org/pysaml2/pdp/authz", BINDING_SOAP)], }, } }, "key_file": full_path("test.key"), "cert_file": full_path("test.pem"), "organization": { "name": "Exempel AB", "display_name": [("Exempel AB", "se"), ("Example Co.", "en")], "url": "http://www.example.com/roland", }, "contact_person": [{ "given_name": "John", "sur_name": "Smith", "email_address": ["[email protected]"], "contact_type": "technical", }, ], } ECP_SP = { "entityid": "urn:mace:umu.se:saml:roland:ecpsp", "name": "Rolands ECP_SP", "service": { "sp": { "endpoints": { "assertion_consumer_service": [ "http://lingon.catalogix.se:8087/"], }, "ecp": { "130.239.": "http://example.com/idp", } } }, #"xmlsec_binary" : "/opt/local/bin/xmlsec1", } def _eq(l1, l2): return set(l1) == set(l2) def test_1(): c = SPConfig().load(sp1) c.context = "sp" print c assert c._sp_endpoints assert c._sp_name assert c._sp_idp md = c.metadata assert isinstance(md, MetadataStore) assert len(c._sp_idp) == 1 assert c._sp_idp.keys() == ["urn:mace:example.com:saml:roland:idp"] assert c._sp_idp.values() == [{'single_sign_on_service': { 'urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect': 'http://localhost:8088/sso/'}}] assert c.only_use_keys_in_metadata def test_2(): c = SPConfig().load(sp2) c.context = "sp" print c assert c._sp_endpoints assert c.getattr("endpoints", "sp") assert c._sp_idp assert c._sp_optional_attributes assert c.name assert c._sp_required_attributes assert len(c._sp_idp) == 1 assert c._sp_idp.keys() == [""] assert c._sp_idp.values() == [ "https://example.com/saml2/idp/SSOService.php"] assert c.only_use_keys_in_metadata is True def test_minimum(): minimum = { "entityid": "urn:mace:example.com:saml:roland:sp", "service": { "sp": { "endpoints": { "assertion_consumer_service": ["http://sp.example.org/"], }, "name": "test", "idp": { "": "https://example.com/idp/SSOService.php", }, } }, #"xmlsec_binary" : "/usr/local/bin/xmlsec1", } c = SPConfig().load(minimum) c.context = "sp" assert c is not None def test_idp_1(): c = IdPConfig().load(IDP1) c.context = "idp" print c assert c.endpoint("single_sign_on_service")[0] == 'http://localhost:8088/' attribute_restrictions = c.getattr("policy", "idp").get_attribute_restriction("") assert attribute_restrictions["edupersonaffiliation"][0].match("staff") def test_idp_2(): c = IdPConfig().load(IDP2) c.context = "idp" print c assert c.endpoint("single_logout_service", BINDING_SOAP) == [] assert c.endpoint("single_logout_service", BINDING_HTTP_REDIRECT) == ["http://localhost:8088/"] attribute_restrictions = c.getattr("policy", "idp").get_attribute_restriction("") assert attribute_restrictions["edupersonaffiliation"][0].match("staff") def test_wayf(): c = SPConfig().load_file("server_conf") c.context = "sp" idps = c.metadata.with_descriptor("idpsso") ent = idps.values()[0] assert name(ent) == 'Example Co.' assert name(ent, "se") == 'Exempel AB' c.setup_logger() assert root_logger.level != logging.NOTSET assert root_logger.level == logging.INFO assert len(root_logger.handlers) == 1 assert isinstance(root_logger.handlers[0], logging.handlers.RotatingFileHandler) handler = root_logger.handlers[0] assert handler.backupCount == 5 try: assert handler.maxBytes == 100000 except AssertionError: assert handler.maxBytes == 500000 assert handler.mode == "a" assert root_logger.name == "saml2" assert root_logger.level == 20 def test_conf_syslog(): c = SPConfig().load_file("server_conf_syslog") c.context = "sp" # otherwise the logger setting is not changed root_logger.level = logging.NOTSET root_logger.handlers = [] print c.logger c.setup_logger() assert root_logger.level != logging.NOTSET assert root_logger.level == logging.INFO assert len(root_logger.handlers) == 1 assert isinstance(root_logger.handlers[0], logging.handlers.SysLogHandler) handler = root_logger.handlers[0] print handler.__dict__ assert handler.facility == "local3" assert handler.address == ('localhost', 514) if sys.version >= (2, 7): assert handler.socktype == 2 else: pass assert root_logger.name == "saml2" assert root_logger.level == 20 #noinspection PyUnresolvedReferences def test_3(): cnf = Config() cnf.load_file(dotname("sp_1_conf")) assert cnf.entityid == "urn:mace:example.com:saml:roland:sp" assert cnf.debug == 1 assert cnf.key_file == full_path("test.key") assert cnf.cert_file == full_path("test.pem") #assert cnf.xmlsec_binary == "/usr/local/bin/xmlsec1" assert cnf.accepted_time_diff == 60 assert cnf.secret == "0123456789" assert cnf.metadata is not None assert cnf.attribute_converters is not None def test_sp(): cnf = SPConfig() cnf.load_file(dotname("sp_1_conf")) assert cnf.endpoint("assertion_consumer_service") == \ ["http://lingon.catalogix.se:8087/"] def test_dual(): cnf = Config().load_file(dotname("idp_sp_conf")) spe = cnf.getattr("endpoints", "sp") idpe = cnf.getattr("endpoints", "idp") assert spe assert idpe assert spe != idpe def test_ecp(): cnf = SPConfig() cnf.load(ECP_SP) assert cnf.endpoint("assertion_consumer_service") == \ ["http://lingon.catalogix.se:8087/"] eid = cnf.ecp_endpoint("130.239.16.3") assert eid == "http://example.com/idp" eid = cnf.ecp_endpoint("130.238.20.20") assert eid is None def test_assertion_consumer_service(): c = IdPConfig() c.load_file(dotname("idp_conf")) c.context = "idp" c.metadata.load("local", full_path("InCommon-metadata.xml")) entity_id = "https://www.zimride.com/shibboleth" acs = c.metadata.assertion_consumer_service(entity_id) assert len(acs) == 1 assert acs[0][ "location"] == 'https://www.zimride.com/Shibboleth.sso/SAML2/POST' if __name__ == "__main__": test_idp_1()
""" Serializers for Stone data types. Currently, only JSON is officially supported, but there's an experimental msgpack integration. If possible, serializers should be kept separate from the RPC format. This module should be dropped into a project that requires the use of Stone. In the future, this could be imported from a pre-installed Python package, rather than being added to a project. """ from __future__ import absolute_import, unicode_literals import base64 import collections import datetime import functools import json import re import six import time try: from . import stone_base as bb # noqa: F401 # pylint: disable=unused-import from . import stone_validators as bv except (ImportError, SystemError, ValueError): # Catch errors raised when importing a relative module when not in a package. # This makes testing this file directly (outside of a package) easier. import stone_validators as bb # type: ignore # noqa: F401 # pylint: disable=unused-import import stone_validators as bv # type: ignore _MYPY = False if _MYPY: import typing # noqa: F401 # pylint: disable=import-error,unused-import,useless-suppression # ------------------------------------------------------------------------ class CallerPermissionsInterface(object): @property def permissions(self): """ Returns the list of permissions this caller has access to. """ raise NotImplementedError class CallerPermissionsDefault(CallerPermissionsInterface): @property def permissions(self): return [] # ------------------------------------------------------------------------ class StoneEncoderInterface(object): """ Interface defining a stone object encoder. """ def encode(self, validator, value): # type: (bv.Validator, typing.Any) -> typing.Any """ Validate ``value`` using ``validator`` and return the encoding. Args: validator: the ``stone_validators.Validator`` used to validate ``value`` value: the object to encode Returns: The encoded object. This is implementation-defined. Raises: stone_validators.ValidationError: Raised if ``value`` (or one of its sub-values). """ raise NotImplementedError # ------------------------------------------------------------------------ class StoneSerializerBase(StoneEncoderInterface): def __init__(self, caller_permissions, alias_validators): # type: (CallerPermissionsInterface, typing.Mapping[bv.Validator, typing.Callable[[typing.Any], None]]) -> None # noqa: E501 """ Constructor, `obviously <http://www.geekalerts.com/ew-hand-sanitizer/>`. Args: caller_permissions (list): The list of raw-string caller permissions with which to serialize. alias_validators (``typing.Mapping``, optional): A mapping of custom validation callables in the format ``{stone_validators.Validator: typing.Callable[[typing.Any], None], ...}``. These callables must raise a ``stone_validators.ValidationError`` on failure. Defaults to ``None``. """ self.caller_permissions = (caller_permissions if caller_permissions else CallerPermissionsDefault()) self._alias_validators = {} # type: typing.Dict[bv.Validator, typing.Callable[[typing.Any], None]] # noqa: E501 if alias_validators is not None: self._alias_validators.update(alias_validators) @property def alias_validators(self): """ A ``typing.Mapping`` of custom validation callables in the format ``{stone_validators.Validator: typing.Callable[typing.Any], ...}``. """ return self._alias_validators def encode(self, validator, value): return self.encode_sub(validator, value) def encode_sub(self, validator, value): # type: (bv.Validator, typing.Any) -> typing.Any """ Callback intended to be called by other ``encode`` methods to delegate encoding of sub-values. Arguments have the same semantics as with the ``encode`` method. """ if isinstance(validator, bv.List): # Because Lists are mutable, we always validate them during # serialization validate_f = validator.validate encode_f = self.encode_list elif isinstance(validator, bv.Map): # Also validate maps during serialization because they are also mutable validate_f = validator.validate encode_f = self.encode_map elif isinstance(validator, bv.Nullable): validate_f = validator.validate encode_f = self.encode_nullable elif isinstance(validator, bv.Primitive): validate_f = validator.validate encode_f = self.encode_primitive elif isinstance(validator, bv.Struct): if isinstance(validator, bv.StructTree): if self.caller_permissions.permissions: def validate_with_permissions(val): validator.validate_with_permissions(val, self.caller_permissions) validate_f = validate_with_permissions else: validate_f = validator.validate encode_f = self.encode_struct_tree else: # Fields are already validated on assignment if self.caller_permissions.permissions: def validate_with_permissions(val): validator.validate_with_permissions(val, self.caller_permissions) validate_f = validate_with_permissions else: validate_f = validator.validate_type_only encode_f = self.encode_struct elif isinstance(validator, bv.Union): # Fields are already validated on assignment validate_f = validator.validate_type_only encode_f = self.encode_union else: raise bv.ValidationError('Unsupported data type {}'.format(type(validator).__name__)) validate_f(value) return encode_f(validator, value) def encode_list(self, validator, value): # type: (bv.List, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.List``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_map(self, validator, value): # type: (bv.Map, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.Map``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_nullable(self, validator, value): # type: (bv.Nullable, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.Nullable``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_primitive(self, validator, value): # type: (bv.Primitive, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.Primitive``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_struct(self, validator, value): # type: (bv.Struct, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.Struct``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_struct_tree(self, validator, value): # type: (bv.StructTree, typing.Any) -> typing.Any """ Callback for serializing a ``stone_validators.StructTree``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError def encode_union(self, validator, value): # type: (bv.Union, bb.Union) -> typing.Any """ Callback for serializing a ``stone_validators.Union``. Arguments have the same semantics as with the ``encode`` method. """ raise NotImplementedError # ------------------------------------------------------------------------ class StoneToPythonPrimitiveSerializer(StoneSerializerBase): def __init__(self, caller_permissions, alias_validators, for_msgpack, old_style, should_redact): # type: (CallerPermissionsInterface, typing.Mapping[bv.Validator, typing.Callable[[typing.Any], None]], bool, bool, bool) -> None # noqa: E501 """ Args: alias_validators (``typing.Mapping``, optional): Passed to ``StoneSerializer.__init__``. Defaults to ``None``. for_msgpack (bool, optional): See the like-named property. Defaults to ``False``. old_style (bool, optional): See the like-named property. Defaults to ``False``. should_redact (bool, optional): Whether to perform redaction on marked fields. Defaults to ``False``. """ super(StoneToPythonPrimitiveSerializer, self).__init__( caller_permissions, alias_validators=alias_validators) self._for_msgpack = for_msgpack self._old_style = old_style self.should_redact = should_redact @property def for_msgpack(self): """ EXPERIMENTAL: A flag associated with the serializer indicating whether objects produced by the ``encode`` method should be encoded for msgpack. """ return self._for_msgpack @property def old_style(self): """ A flag associated with the serializer indicating whether objects produced by the ``encode`` method should be encoded according to Dropbox's old or new API styles. """ return self._old_style def encode_sub(self, validator, value): if self.should_redact and hasattr(validator, '_redact'): if isinstance(value, list): return [validator._redact.apply(v) for v in value] elif isinstance(value, dict): return {k: validator._redact.apply(v) for k, v in value.items()} else: return validator._redact.apply(value) # Encode value normally return super(StoneToPythonPrimitiveSerializer, self).encode_sub(validator, value) def encode_list(self, validator, value): validated_value = validator.validate(value) return [self.encode_sub(validator.item_validator, value_item) for value_item in validated_value] def encode_map(self, validator, value): validated_value = validator.validate(value) return { self.encode_sub(validator.key_validator, key): self.encode_sub(validator.value_validator, value) for key, value in validated_value.items() } def encode_nullable(self, validator, value): if value is None: return None return self.encode_sub(validator.validator, value) def encode_primitive(self, validator, value): if validator in self.alias_validators: self.alias_validators[validator](value) if isinstance(validator, bv.Void): return None elif isinstance(validator, bv.Timestamp): return _strftime(value, validator.format) elif isinstance(validator, bv.Bytes): if self.for_msgpack: return value else: return base64.b64encode(value).decode('ascii') elif isinstance(validator, bv.Integer) \ and isinstance(value, bool): # bool is sub-class of int so it passes Integer validation, # but we want the bool to be encoded as ``0`` or ``1``, rather # than ``False`` or ``True``, respectively return int(value) else: return value def encode_struct(self, validator, value): # Skip validation of fields with primitive data types because # they've already been validated on assignment d = collections.OrderedDict() # type: typing.Dict[str, typing.Any] all_fields = validator.definition._all_fields_ for extra_permission in self.caller_permissions.permissions: all_fields_name = '_all_{}_fields_'.format(extra_permission) all_fields = all_fields + getattr(validator.definition, all_fields_name, []) for field_name, field_validator in all_fields: try: field_value = getattr(value, field_name) except AttributeError as exc: raise bv.ValidationError(exc.args[0]) presence_key = '_%s_present' % field_name if field_value is not None \ and getattr(value, presence_key): # Only serialize struct fields that have been explicitly # set, even if there is a default try: d[field_name] = self.encode_sub(field_validator, field_value) except bv.ValidationError as exc: exc.add_parent(field_name) raise return d def encode_struct_tree(self, validator, value): assert type(value) in validator.definition._pytype_to_tag_and_subtype_, \ '%r is not a serializable subtype of %r.' % (type(value), validator.definition) tags, subtype = validator.definition._pytype_to_tag_and_subtype_[type(value)] assert len(tags) == 1, tags assert not isinstance(subtype, bv.StructTree), \ 'Cannot serialize type %r because it enumerates subtypes.' % subtype.definition if self.old_style: d = { tags[0]: self.encode_struct(subtype, value), } else: d = collections.OrderedDict() d['.tag'] = tags[0] d.update(self.encode_struct(subtype, value)) return d def encode_union(self, validator, value): if value._tag is None: raise bv.ValidationError('no tag set') if not validator.definition._is_tag_present(value._tag, self.caller_permissions): raise bv.ValidationError( "caller does not have access to '{}' tag".format(value._tag)) field_validator = validator.definition._get_val_data_type(value._tag, self.caller_permissions) is_none = isinstance(field_validator, bv.Void) \ or (isinstance(field_validator, bv.Nullable) and value._value is None) def encode_sub(sub_validator, sub_value, parent_tag): try: encoded_val = self.encode_sub(sub_validator, sub_value) except bv.ValidationError as exc: exc.add_parent(parent_tag) raise else: return encoded_val if self.old_style: if field_validator is None: return value._tag elif is_none: return value._tag else: encoded_val = encode_sub(field_validator, value._value, value._tag) return {value._tag: encoded_val} elif is_none: return {'.tag': value._tag} else: encoded_val = encode_sub(field_validator, value._value, value._tag) if isinstance(field_validator, bv.Nullable): # We've already checked for the null case above, # so now we're only interested in what the # wrapped validator is field_validator = field_validator.validator if isinstance(field_validator, bv.Struct) \ and not isinstance(field_validator, bv.StructTree): d = collections.OrderedDict() # type: typing.Dict[str, typing.Any] d['.tag'] = value._tag d.update(encoded_val) return d else: return collections.OrderedDict(( ('.tag', value._tag), (value._tag, encoded_val), )) # ------------------------------------------------------------------------ class StoneToJsonSerializer(StoneToPythonPrimitiveSerializer): def encode(self, validator, value): return json.dumps(super(StoneToJsonSerializer, self).encode(validator, value)) # -------------------------------------------------------------- # JSON Encoder # # These interfaces are preserved for backward compatibility and symmetry with deserialization # functions. def json_encode(data_type, obj, caller_permissions=None, alias_validators=None, old_style=False, should_redact=False): """Encodes an object into JSON based on its type. Args: data_type (Validator): Validator for obj. obj (object): Object to be serialized. caller_permissions (list): The list of raw-string caller permissions with which to serialize. alias_validators (Optional[Mapping[bv.Validator, Callable[[], None]]]): Custom validation functions. These must raise bv.ValidationError on failure. Returns: str: JSON-encoded object. This function will also do additional validation that wasn't done by the objects themselves: 1. The passed in obj may not have been validated with data_type yet. 2. If an object that should be a Struct was assigned to a field, its type has been validated, but the presence of all required fields hasn't been. 3. If an object that should be a Union was assigned to a field, whether or not a tag has been set has not been validated. 4. A list may have passed validation initially, but been mutated since. Example of serializing a struct to JSON: struct FileRef path String rev String > fr = FileRef() > fr.path = 'a/b/c' > fr.rev = '1234' > JsonEncoder.encode(fr) "{'path': 'a/b/c', 'rev': '1234'}" Example of serializing a union to JSON: union UploadMode add overwrite update FileRef > um = UploadMode() > um.set_add() > JsonEncoder.encode(um) '"add"' > um.update = fr > JsonEncoder.encode(um) "{'update': {'path': 'a/b/c', 'rev': '1234'}}" """ for_msgpack = False serializer = StoneToJsonSerializer( caller_permissions, alias_validators, for_msgpack, old_style, should_redact) return serializer.encode(data_type, obj) def json_compat_obj_encode(data_type, obj, caller_permissions=None, alias_validators=None, old_style=False, for_msgpack=False, should_redact=False): """Encodes an object into a JSON-compatible dict based on its type. Args: data_type (Validator): Validator for obj. obj (object): Object to be serialized. caller_permissions (list): The list of raw-string caller permissions with which to serialize. Returns: An object that when passed to json.dumps() will produce a string giving the JSON-encoded object. See json_encode() for additional information about validation. """ serializer = StoneToPythonPrimitiveSerializer( caller_permissions, alias_validators, for_msgpack, old_style, should_redact) return serializer.encode(data_type, obj) # -------------------------------------------------------------- # JSON Decoder class PythonPrimitiveToStoneDecoder(object): def __init__(self, caller_permissions, alias_validators, for_msgpack, old_style, strict): self.caller_permissions = (caller_permissions if caller_permissions else CallerPermissionsDefault()) self.alias_validators = alias_validators self.strict = strict self._old_style = old_style self._for_msgpack = for_msgpack @property def for_msgpack(self): """ EXPERIMENTAL: A flag associated with the serializer indicating whether objects produced by the ``encode`` method should be encoded for msgpack. """ return self._for_msgpack @property def old_style(self): """ A flag associated with the serializer indicating whether objects produced by the ``encode`` method should be encoded according to Dropbox's old or new API styles. """ return self._old_style def json_compat_obj_decode_helper(self, data_type, obj): """ See json_compat_obj_decode() for argument descriptions. """ if isinstance(data_type, bv.StructTree): return self.decode_struct_tree(data_type, obj) elif isinstance(data_type, bv.Struct): return self.decode_struct(data_type, obj) elif isinstance(data_type, bv.Union): if self.old_style: return self.decode_union_old(data_type, obj) else: return self.decode_union(data_type, obj) elif isinstance(data_type, bv.List): return self.decode_list( data_type, obj) elif isinstance(data_type, bv.Map): return self.decode_map( data_type, obj) elif isinstance(data_type, bv.Nullable): return self.decode_nullable( data_type, obj) elif isinstance(data_type, bv.Primitive): # Set validate to false because validation will be done by the # containing struct or union when the field is assigned. return self.make_stone_friendly(data_type, obj, False) else: raise AssertionError('Cannot handle type %r.' % data_type) def decode_struct(self, data_type, obj): """ The data_type argument must be a Struct. See json_compat_obj_decode() for argument descriptions. """ if obj is None and data_type.has_default(): return data_type.get_default() elif not isinstance(obj, dict): raise bv.ValidationError('expected object, got %s' % bv.generic_type_name(obj)) all_fields = data_type.definition._all_fields_ for extra_permission in self.caller_permissions.permissions: all_extra_fields = '_all_{}_fields_'.format(extra_permission) all_fields = all_fields + getattr(data_type.definition, all_extra_fields, []) if self.strict: all_field_names = data_type.definition._all_field_names_ for extra_permission in self.caller_permissions.permissions: all_extra_field_names = '_all_{}_field_names_'.format(extra_permission) all_field_names = all_field_names.union( getattr(data_type.definition, all_extra_field_names, {})) for key in obj: if (key not in all_field_names and not key.startswith('.tag')): raise bv.ValidationError("unknown field '%s'" % key) ins = data_type.definition() self.decode_struct_fields(ins, all_fields, obj) # Check that all required fields have been set. data_type.validate_fields_only_with_permissions(ins, self.caller_permissions) return ins def decode_struct_fields(self, ins, fields, obj): """ Args: ins: An instance of the class representing the data type being decoded. The object will have its fields set. fields: A tuple of (field_name: str, field_validator: Validator) obj (dict): JSON-compatible dict that is being decoded. strict (bool): See :func:`json_compat_obj_decode`. Returns: None: `ins` has its fields set based on the contents of `obj`. """ for name, field_data_type in fields: if name in obj: try: v = self.json_compat_obj_decode_helper(field_data_type, obj[name]) setattr(ins, name, v) except bv.ValidationError as e: e.add_parent(name) raise elif field_data_type.has_default(): setattr(ins, name, field_data_type.get_default()) def decode_union(self, data_type, obj): """ The data_type argument must be a Union. See json_compat_obj_decode() for argument descriptions. """ val = None if isinstance(obj, six.string_types): # Handles the shorthand format where the union is serialized as only # the string of the tag. tag = obj if data_type.definition._is_tag_present(tag, self.caller_permissions): val_data_type = data_type.definition._get_val_data_type( tag, self.caller_permissions) if not isinstance(val_data_type, (bv.Void, bv.Nullable)): raise bv.ValidationError( "expected object for '%s', got symbol" % tag) if tag == data_type.definition._catch_all: raise bv.ValidationError( "unexpected use of the catch-all tag '%s'" % tag) elif not self.strict and data_type.definition._catch_all: tag = data_type.definition._catch_all else: raise bv.ValidationError("unknown tag '%s'" % tag) elif isinstance(obj, dict): tag, val = self.decode_union_dict( data_type, obj) else: raise bv.ValidationError("expected string or object, got %s" % bv.generic_type_name(obj)) return data_type.definition(tag, val) def decode_union_dict(self, data_type, obj): if '.tag' not in obj: raise bv.ValidationError("missing '.tag' key") tag = obj['.tag'] if not isinstance(tag, six.string_types): raise bv.ValidationError( 'tag must be string, got %s' % bv.generic_type_name(tag)) if not data_type.definition._is_tag_present(tag, self.caller_permissions): if not self.strict and data_type.definition._catch_all: return data_type.definition._catch_all, None else: raise bv.ValidationError("unknown tag '%s'" % tag) if tag == data_type.definition._catch_all: raise bv.ValidationError( "unexpected use of the catch-all tag '%s'" % tag) val_data_type = data_type.definition._get_val_data_type(tag, self.caller_permissions) if isinstance(val_data_type, bv.Nullable): val_data_type = val_data_type.validator nullable = True else: nullable = False if isinstance(val_data_type, bv.Void): if self.strict: # In strict mode, ensure there are no extraneous keys set. In # non-strict mode, we accept that other keys may be set due to a # change of the void type to another. if tag in obj: if obj[tag] is not None: raise bv.ValidationError('expected null, got %s' % bv.generic_type_name(obj[tag])) for key in obj: if key != tag and key != '.tag': raise bv.ValidationError("unexpected key '%s'" % key) val = None elif isinstance(val_data_type, (bv.Primitive, bv.List, bv.StructTree, bv.Union, bv.Map)): if tag in obj: raw_val = obj[tag] try: val = self.json_compat_obj_decode_helper(val_data_type, raw_val) except bv.ValidationError as e: e.add_parent(tag) raise else: # Check no other keys if nullable: val = None else: raise bv.ValidationError("missing '%s' key" % tag) for key in obj: if key != tag and key != '.tag': raise bv.ValidationError("unexpected key '%s'" % key) elif isinstance(val_data_type, bv.Struct): if nullable and len(obj) == 1: # only has a .tag key val = None else: # assume it's not null raw_val = obj try: val = self.json_compat_obj_decode_helper(val_data_type, raw_val) except bv.ValidationError as e: e.add_parent(tag) raise else: assert False, type(val_data_type) return tag, val def decode_union_old(self, data_type, obj): """ The data_type argument must be a Union. See json_compat_obj_decode() for argument descriptions. """ val = None if isinstance(obj, six.string_types): # Union member has no associated value tag = obj if data_type.definition._is_tag_present(tag, self.caller_permissions): val_data_type = data_type.definition._get_val_data_type(tag, self.caller_permissions) if not isinstance(val_data_type, (bv.Void, bv.Nullable)): raise bv.ValidationError( "expected object for '%s', got symbol" % tag) else: if not self.strict and data_type.definition._catch_all: tag = data_type.definition._catch_all else: raise bv.ValidationError("unknown tag '%s'" % tag) elif isinstance(obj, dict): # Union member has value if len(obj) != 1: raise bv.ValidationError('expected 1 key, got %s' % len(obj)) tag = list(obj)[0] raw_val = obj[tag] if data_type.definition._is_tag_present(tag, self.caller_permissions): val_data_type = data_type.definition._get_val_data_type(tag, self.caller_permissions) if isinstance(val_data_type, bv.Nullable) and raw_val is None: val = None elif isinstance(val_data_type, bv.Void): if raw_val is None or not self.strict: # If raw_val is None, then this is the more verbose # representation of a void union member. If raw_val isn't # None, then maybe the spec has changed, so check if we're # in strict mode. val = None else: raise bv.ValidationError('expected null, got %s' % bv.generic_type_name(raw_val)) else: try: val = self.json_compat_obj_decode_helper(val_data_type, raw_val) except bv.ValidationError as e: e.add_parent(tag) raise else: if not self.strict and data_type.definition._catch_all: tag = data_type.definition._catch_all else: raise bv.ValidationError("unknown tag '%s'" % tag) else: raise bv.ValidationError("expected string or object, got %s" % bv.generic_type_name(obj)) return data_type.definition(tag, val) def decode_struct_tree(self, data_type, obj): """ The data_type argument must be a StructTree. See json_compat_obj_decode() for argument descriptions. """ subtype = self.determine_struct_tree_subtype(data_type, obj) return self.decode_struct(subtype, obj) def determine_struct_tree_subtype(self, data_type, obj): """ Searches through the JSON-object-compatible dict using the data type definition to determine which of the enumerated subtypes `obj` is. """ if '.tag' not in obj: raise bv.ValidationError("missing '.tag' key") if not isinstance(obj['.tag'], six.string_types): raise bv.ValidationError('expected string, got %s' % bv.generic_type_name(obj['.tag']), parent='.tag') # Find the subtype the tags refer to full_tags_tuple = (obj['.tag'],) if full_tags_tuple in data_type.definition._tag_to_subtype_: subtype = data_type.definition._tag_to_subtype_[full_tags_tuple] if isinstance(subtype, bv.StructTree): raise bv.ValidationError("tag '%s' refers to non-leaf subtype" % ('.'.join(full_tags_tuple))) return subtype else: if self.strict: # In strict mode, the entirety of the tag hierarchy should # point to a known subtype. raise bv.ValidationError("unknown subtype '%s'" % '.'.join(full_tags_tuple)) else: # If subtype was not found, use the base. if data_type.definition._is_catch_all_: return data_type else: raise bv.ValidationError( "unknown subtype '%s' and '%s' is not a catch-all" % ('.'.join(full_tags_tuple), data_type.definition.__name__)) def decode_list(self, data_type, obj): """ The data_type argument must be a List. See json_compat_obj_decode() for argument descriptions. """ if not isinstance(obj, list): raise bv.ValidationError( 'expected list, got %s' % bv.generic_type_name(obj)) return [ self.json_compat_obj_decode_helper(data_type.item_validator, item) for item in obj] def decode_map(self, data_type, obj): """ The data_type argument must be a Map. See json_compat_obj_decode() for argument descriptions. """ if not isinstance(obj, dict): raise bv.ValidationError( 'expected dict, got %s' % bv.generic_type_name(obj)) return { self.json_compat_obj_decode_helper(data_type.key_validator, key): self.json_compat_obj_decode_helper(data_type.value_validator, value) for key, value in obj.items() } def decode_nullable(self, data_type, obj): """ The data_type argument must be a Nullable. See json_compat_obj_decode() for argument descriptions. """ if obj is not None: return self.json_compat_obj_decode_helper(data_type.validator, obj) else: return None def make_stone_friendly(self, data_type, val, validate): """ Convert a Python object to a type that will pass validation by its validator. Validation by ``alias_validators`` is performed even if ``validate`` is false. """ if isinstance(data_type, bv.Timestamp): try: ret = datetime.datetime.strptime(val, data_type.format) except (TypeError, ValueError) as e: raise bv.ValidationError(e.args[0]) elif isinstance(data_type, bv.Bytes): if self.for_msgpack: if isinstance(val, six.text_type): ret = val.encode('utf-8') else: ret = val else: try: ret = base64.b64decode(val) except TypeError: raise bv.ValidationError('invalid base64-encoded bytes') elif isinstance(data_type, bv.Void): if self.strict and val is not None: raise bv.ValidationError("expected null, got value") return None else: if validate: if self.caller_permissions.permissions: data_type.validate_with_permissions(val, self.caller_permissions) else: data_type.validate(val) ret = val if self.alias_validators is not None and data_type in self.alias_validators: self.alias_validators[data_type](ret) return ret def json_decode(data_type, serialized_obj, caller_permissions=None, alias_validators=None, strict=True, old_style=False): """Performs the reverse operation of json_encode. Args: data_type (Validator): Validator for serialized_obj. serialized_obj (str): The JSON string to deserialize. caller_permissions (list): The list of raw-string caller permissions with which to serialize. alias_validators (Optional[Mapping[bv.Validator, Callable[[], None]]]): Custom validation functions. These must raise bv.ValidationError on failure. strict (bool): If strict, then unknown struct fields will raise an error, and unknown union variants will raise an error even if a catch all field is specified. strict should only be used by a recipient of serialized JSON if it's guaranteed that its Stone specs are at least as recent as the senders it receives messages from. Returns: The returned object depends on the input data_type. - Boolean -> bool - Bytes -> bytes - Float -> float - Integer -> long - List -> list - Map -> dict - Nullable -> None or its wrapped type. - String -> unicode (PY2) or str (PY3) - Struct -> An instance of its definition attribute. - Timestamp -> datetime.datetime - Union -> An instance of its definition attribute. """ try: deserialized_obj = json.loads(serialized_obj) except ValueError: raise bv.ValidationError('could not decode input as JSON') else: return json_compat_obj_decode( data_type, deserialized_obj, caller_permissions=caller_permissions, alias_validators=alias_validators, strict=strict, old_style=old_style) def json_compat_obj_decode(data_type, obj, caller_permissions=None, alias_validators=None, strict=True, old_style=False, for_msgpack=False): """ Decodes a JSON-compatible object based on its data type into a representative Python object. Args: data_type (Validator): Validator for serialized_obj. obj: The JSON-compatible object to decode based on data_type. caller_permissions (list): The list of raw-string caller permissions with which to serialize. strict (bool): If strict, then unknown struct fields will raise an error, and unknown union variants will raise an error even if a catch all field is specified. See json_decode() for more. Returns: See json_decode(). """ decoder = PythonPrimitiveToStoneDecoder(caller_permissions, alias_validators, for_msgpack, old_style, strict) if isinstance(data_type, bv.Primitive): return decoder.make_stone_friendly( data_type, obj, True) else: return decoder.json_compat_obj_decode_helper( data_type, obj) # Adapted from: # http://code.activestate.com/recipes/306860-proleptic-gregorian-dates-and-strftime-before-1900/ # Remove the unsupposed "%s" command. But don't do it if there's an odd # number of %s before the s because those are all escaped. Can't simply # remove the s because the result of %sY should be %Y if %s isn't # supported, not the 4 digit year. _ILLEGAL_S = re.compile(r'((^|[^%])(%%)*%s)') def _findall(text, substr): # Also finds overlaps sites = [] i = 0 while 1: j = text.find(substr, i) if j == -1: break sites.append(j) i = j + 1 return sites # Every 28 years the calendar repeats, except through century leap years # where it's 6 years. But only if you're using the Gregorian calendar. ;) def _strftime(dt, fmt): try: return dt.strftime(fmt) except ValueError: if not six.PY2 or dt.year > 1900: raise if _ILLEGAL_S.search(fmt): raise TypeError("This strftime implementation does not handle %s") year = dt.year # For every non-leap year century, advance by 6 years to get into the # 28-year repeat cycle delta = 2000 - year off = 6 * (delta // 100 + delta // 400) year = year + off # Move to around the year 2000 year = year + ((2000 - year) // 28) * 28 timetuple = dt.timetuple() s1 = time.strftime(fmt, (year,) + timetuple[1:]) sites1 = _findall(s1, str(year)) s2 = time.strftime(fmt, (year + 28,) + timetuple[1:]) sites2 = _findall(s2, str(year + 28)) sites = [] for site in sites1: if site in sites2: sites.append(site) s = s1 syear = '%4d' % (dt.year,) for site in sites: s = s[:site] + syear + s[site + 4:] return s try: import msgpack except ImportError: pass else: msgpack_compat_obj_encode = functools.partial(json_compat_obj_encode, for_msgpack=True) def msgpack_encode(data_type, obj): return msgpack.dumps( msgpack_compat_obj_encode(data_type, obj), encoding='utf-8') msgpack_compat_obj_decode = functools.partial(json_compat_obj_decode, for_msgpack=True) def msgpack_decode( data_type, serialized_obj, alias_validators=None, strict=True): # We decode everything as utf-8 because we want all object keys to be # unicode. Otherwise, we need to do a lot more refactoring to make # json/msgpack share the same code. We expect byte arrays to fail # decoding, but when they don't, we have to convert them to bytes. deserialized_obj = msgpack.loads( serialized_obj, encoding='utf-8', unicode_errors='ignore') return msgpack_compat_obj_decode( data_type, deserialized_obj, alias_validators, strict)
# Write the benchmarking functions here. # See "Writing benchmarks" in the asv docs for more information. # sequence based similarity measures from py_stringmatching.similarity_measure.affine import Affine from py_stringmatching.similarity_measure.bag_distance import BagDistance from py_stringmatching.similarity_measure.editex import Editex from py_stringmatching.similarity_measure.hamming_distance import HammingDistance from py_stringmatching.similarity_measure.jaro import Jaro from py_stringmatching.similarity_measure.jaro_winkler import JaroWinkler from py_stringmatching.similarity_measure.levenshtein import Levenshtein from py_stringmatching.similarity_measure.needleman_wunsch import NeedlemanWunsch from py_stringmatching.similarity_measure.smith_waterman import SmithWaterman # token based similarity measures from py_stringmatching.similarity_measure.cosine import Cosine from py_stringmatching.similarity_measure.dice import Dice from py_stringmatching.similarity_measure.jaccard import Jaccard from py_stringmatching.similarity_measure.overlap_coefficient import OverlapCoefficient from py_stringmatching.similarity_measure.soft_tfidf import SoftTfIdf from py_stringmatching.similarity_measure.tfidf import TfIdf from py_stringmatching.similarity_measure.tversky_index import TverskyIndex # hybrid similarity measures from py_stringmatching.similarity_measure.generalized_jaccard import GeneralizedJaccard from py_stringmatching.similarity_measure.monge_elkan import MongeElkan #phonetic similarity measures from py_stringmatching.similarity_measure.soundex import Soundex from . import _short_string_1, _long_string_1, _medium_string_1, _short_string_2, _long_string_2, _medium_string_2 from . import _small_num_tokens_wi_rep, _small_num_tokens_wo_rep, _med_num_tokens_wi_rep, _med_num_tokens_wo_rep, \ _large_num_tokens_wi_rep, _large_num_tokens_wo_rep, _long_hamm_string1, _long_hamm_string2 class TimeAffine: def setup(self): self.affine = Affine() def time_short_short(self): self.affine.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.affine.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.affine.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.affine.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.affine.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.affine.get_raw_score(_medium_string_1, _long_string_1) class TimeJaro: def setup(self): self.jaro = Jaro() def time_short_short(self): self.jaro.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.jaro.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.jaro.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.jaro.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.jaro.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.jaro.get_raw_score(_medium_string_1, _long_string_1) class TimeJaroWinkler: def setup(self): self.jaro_winkler = JaroWinkler() def time_short_short(self): self.jaro_winkler.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.jaro_winkler.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.jaro_winkler.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.jaro_winkler.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.jaro_winkler.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.jaro_winkler.get_raw_score(_medium_string_1, _long_string_1) class TimeHammingDistance: def setup(self): self.hamming_distance = HammingDistance() def time_short_short(self): self.hamming_distance.get_raw_score(_short_string_1, _short_string_1) def time_medium_medium(self): self.hamming_distance.get_raw_score(_medium_string_1, _medium_string_1) def time_long_long(self): self.hamming_distance.get_raw_score(_long_hamm_string1, _long_hamm_string2) # def time_short_medium(self): # self.hamming_distance.get_raw_score(_short_string_1, _medium_string_1) # # def time_short_long(self): # self.hamming_distance.get_raw_score(_short_string_1, _long_string_1) # # def time_medium_long(self): # self.hamming_distance.get_raw_score(_medium_string_1, _long_string_1) class TimeEditex: def setup(self): self.editex = Editex() def time_short_short(self): self.editex.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.editex.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.editex.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.editex.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.editex.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.editex.get_raw_score(_medium_string_1, _long_string_1) class TimeLevenshtein: def setup(self): self.levenshtein = Levenshtein() def time_short_short(self): self.levenshtein.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.levenshtein.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.levenshtein.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.levenshtein.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.levenshtein.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.levenshtein.get_raw_score(_medium_string_1, _long_string_1) class TimeBagDistance: def setup(self): self.bag_distance = BagDistance() def time_short_short(self): self.bag_distance.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.bag_distance.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.bag_distance.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.bag_distance.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.bag_distance.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.bag_distance.get_raw_score(_medium_string_1, _long_string_1) class TimeNeedlemanWunsch: def setup(self): self.needleman_wunsch = NeedlemanWunsch() def time_short_short(self): self.needleman_wunsch.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.needleman_wunsch.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.needleman_wunsch.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.needleman_wunsch.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.needleman_wunsch.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.needleman_wunsch.get_raw_score(_medium_string_1, _long_string_1) class TimeSmithWaterman: def setup(self): self.smith_waterman = SmithWaterman() def time_short_short(self): self.smith_waterman.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.smith_waterman.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.smith_waterman.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.smith_waterman.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.smith_waterman.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.smith_waterman.get_raw_score(_medium_string_1, _long_string_1) class TimeSoundex: def setup(self): self.soundex = Soundex() def time_short_short(self): self.soundex.get_raw_score(_short_string_1, _short_string_2) def time_medium_medium(self): self.soundex.get_raw_score(_medium_string_1, _medium_string_2) def time_long_long(self): self.soundex.get_raw_score(_long_string_1, _long_string_2) def time_short_medium(self): self.soundex.get_raw_score(_short_string_1, _medium_string_1) def time_short_long(self): self.soundex.get_raw_score(_short_string_1, _long_string_1) def time_medium_long(self): self.soundex.get_raw_score(_medium_string_1, _long_string_1) class TimeCosine: def setup(self): self.cosine = Cosine() def time_small_small_wo_rep(self): self.cosine.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.cosine.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.cosine.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.cosine.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.cosine.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.cosine.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.cosine.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.cosine.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.cosine.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.cosine.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.cosine.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.cosine.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeDice: def setup(self): self.dice = Dice() def time_small_small_wo_rep(self): self.dice.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.dice.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.dice.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.dice.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.dice.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.dice.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.dice.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.dice.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.dice.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.dice.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.dice.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.dice.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeJaccard: def setup(self): self.jaccard = Jaccard() def time_small_small_wo_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.jaccard.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.jaccard.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.jaccard.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.jaccard.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.jaccard.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.jaccard.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.jaccard.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeGeneralizedJaccard: def setup(self): self.generalized_jaccard = GeneralizedJaccard() def time_small_small_wo_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.generalized_jaccard.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.generalized_jaccard.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.generalized_jaccard.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.generalized_jaccard.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.generalized_jaccard.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.generalized_jaccard.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.generalized_jaccard.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeOverlap: def setup(self): self.ov_coeff = OverlapCoefficient() def time_small_small_wo_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.ov_coeff.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.ov_coeff.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.ov_coeff.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.ov_coeff.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.ov_coeff.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.ov_coeff.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.ov_coeff.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeMongeElkan: def setup(self): self.monge_elkan = MongeElkan() def time_small_small_wo_rep(self): self.monge_elkan.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.monge_elkan.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.monge_elkan.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.monge_elkan.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.monge_elkan.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.monge_elkan.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.monge_elkan.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.monge_elkan.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) class TimeTfIdf: def setup(self): self.tfidf = TfIdf() self.tfidf_with_dampen = TfIdf(dampen=True) corpus_list = [_small_num_tokens_wo_rep, _small_num_tokens_wi_rep, _med_num_tokens_wi_rep, _med_num_tokens_wo_rep, _large_num_tokens_wo_rep, _large_num_tokens_wi_rep] self.tfidf_with_corpus = TfIdf(corpus_list) self.tfidf_with_corpus_dampen = TfIdf(corpus_list, dampen=True) def time_small_small_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep_no_corpus_no_dampen(self): self.tfidf.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) # dampen - true def time_small_small_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep_no_corpus(self): self.tfidf_with_dampen.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) # corpus list - true def time_small_small_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep_no_dampen(self): self.tfidf_with_corpus.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) # corpus list - true, dampen_true def time_small_small_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.tfidf_with_corpus_dampen.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) class TimeSoftTfIdf: def setup(self): self.soft_tfidf = SoftTfIdf() corpus_list = [_small_num_tokens_wo_rep, _small_num_tokens_wi_rep, _med_num_tokens_wi_rep, _med_num_tokens_wo_rep, _large_num_tokens_wo_rep, _large_num_tokens_wi_rep] self.soft_tfidf_with_corpus = SoftTfIdf(corpus_list) # no corpus list def time_small_small_wo_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wo_rep, _small_num_tokens_wo_rep) def time_small_small_wi_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wi_rep, _small_num_tokens_wi_rep) def time_medium_medium_wo_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_med_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_medium_medium_wi_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_med_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_large_large_wo_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_large_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_large_large_wi_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_large_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_small_medium_wo_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wo_rep, _med_num_tokens_wo_rep) def time_small_medium_wi_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wi_rep, _med_num_tokens_wi_rep) def time_small_large_wo_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_small_large_wi_rep_no_corpus(self): self.soft_tfidf.get_raw_score(_small_num_tokens_wi_rep, _large_num_tokens_wi_rep) def time_medium_large_wo_rep(self): self.soft_tfidf_with_corpus.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep) def time_medium_large_wi_rep(self): self.soft_tfidf_with_corpus.get_raw_score(_med_num_tokens_wo_rep, _large_num_tokens_wo_rep)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.experimental.group_by_window()`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.data.experimental.ops import grouping from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import string_ops from tensorflow.python.platform import test # NOTE(mrry): These tests are based on the tests in bucket_ops_test.py. # Currently, they use a constant batch size, though should be made to use a # different batch size per key. @test_util.run_all_in_graph_and_eager_modes class GroupByWindowTest(test_base.DatasetTestBase): def _dynamicPad(self, bucket, window, window_size): # TODO(mrry): To match `tf.contrib.training.bucket()`, implement a # generic form of padded_batch that pads every component # dynamically and does not rely on static shape information about # the arguments. return dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensors(bucket), window.padded_batch( 32, (tensor_shape.TensorShape([]), tensor_shape.TensorShape( [None]), tensor_shape.TensorShape([3]))))) def testSingleBucket(self): def _map_fn(v): return (v, array_ops.fill([v], v), array_ops.fill([3], string_ops.as_string(v))) input_dataset = dataset_ops.Dataset.from_tensor_slices( math_ops.range(32)).map(_map_fn) bucketed_dataset = input_dataset.apply( grouping.group_by_window( lambda x, y, z: 0, lambda k, bucket: self._dynamicPad(k, bucket, 32), 32)) get_next = self.getNext(bucketed_dataset) which_bucket, bucketed_values = self.evaluate(get_next()) self.assertEqual(0, which_bucket) expected_scalar_int = np.arange(32, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31)).astype(np.int64) for i in range(32): expected_unk_int64[i, :i] = i expected_vec3_str = np.vstack(3 * [np.arange(32).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values[0]) self.assertAllEqual(expected_unk_int64, bucketed_values[1]) self.assertAllEqual(expected_vec3_str, bucketed_values[2]) def testEvenOddBuckets(self): def _map_fn(v): return (v, array_ops.fill([v], v), array_ops.fill([3], string_ops.as_string(v))) input_dataset = dataset_ops.Dataset.from_tensor_slices( math_ops.range(64)).map(_map_fn) bucketed_dataset = input_dataset.apply( grouping.group_by_window( lambda x, y, z: math_ops.cast(x % 2, dtypes.int64), lambda k, bucket: self._dynamicPad(k, bucket, 32), 32)) get_next = self.getNext(bucketed_dataset) # Get two minibatches (one containing even values, one containing odds) which_bucket_even, bucketed_values_even = self.evaluate(get_next()) which_bucket_odd, bucketed_values_odd = self.evaluate(get_next()) # Count number of bucket_tensors. self.assertEqual(3, len(bucketed_values_even)) self.assertEqual(3, len(bucketed_values_odd)) # Ensure bucket 0 was used for all minibatch entries. self.assertAllEqual(0, which_bucket_even) self.assertAllEqual(1, which_bucket_odd) # Test the first bucket outputted, the events starting at 0 expected_scalar_int = np.arange(0, 32 * 2, 2, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31 * 2)).astype(np.int64) for i in range(0, 32): expected_unk_int64[i, :2 * i] = 2 * i expected_vec3_str = np.vstack( 3 * [np.arange(0, 32 * 2, 2).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values_even[0]) self.assertAllEqual(expected_unk_int64, bucketed_values_even[1]) self.assertAllEqual(expected_vec3_str, bucketed_values_even[2]) # Test the second bucket outputted, the odds starting at 1 expected_scalar_int = np.arange(1, 32 * 2 + 1, 2, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31 * 2 + 1)).astype(np.int64) for i in range(0, 32): expected_unk_int64[i, :2 * i + 1] = 2 * i + 1 expected_vec3_str = np.vstack( 3 * [np.arange(1, 32 * 2 + 1, 2).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values_odd[0]) self.assertAllEqual(expected_unk_int64, bucketed_values_odd[1]) self.assertAllEqual(expected_vec3_str, bucketed_values_odd[2]) def testEvenOddBucketsFilterOutAllOdd(self): def _map_fn(v): return { "x": v, "y": array_ops.fill([v], v), "z": array_ops.fill([3], string_ops.as_string(v)) } def _dynamic_pad_fn(bucket, window, _): return dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensors(bucket), window.padded_batch( 32, { "x": tensor_shape.TensorShape([]), "y": tensor_shape.TensorShape([None]), "z": tensor_shape.TensorShape([3]) }))) input_dataset = dataset_ops.Dataset.from_tensor_slices(math_ops.range( 128)).map(_map_fn).filter(lambda d: math_ops.equal(d["x"] % 2, 0)) bucketed_dataset = input_dataset.apply( grouping.group_by_window( lambda d: math_ops.cast(d["x"] % 2, dtypes.int64), lambda k, bucket: _dynamic_pad_fn(k, bucket, 32), 32)) get_next = self.getNext(bucketed_dataset) # Get two minibatches ([0, 2, ...] and [64, 66, ...]) which_bucket0, bucketed_values_even0 = self.evaluate(get_next()) which_bucket1, bucketed_values_even1 = self.evaluate(get_next()) # Ensure that bucket 1 was completely filtered out self.assertAllEqual(0, which_bucket0) self.assertAllEqual(0, which_bucket1) self.assertAllEqual( np.arange(0, 64, 2, dtype=np.int64), bucketed_values_even0["x"]) self.assertAllEqual( np.arange(64, 128, 2, dtype=np.int64), bucketed_values_even1["x"]) def testDynamicWindowSize(self): components = np.arange(100).astype(np.int64) # Key fn: even/odd # Reduce fn: batches of 5 # Window size fn: even=5, odd=10 def window_size_func(key): window_sizes = constant_op.constant([5, 10], dtype=dtypes.int64) return window_sizes[key] dataset = dataset_ops.Dataset.from_tensor_slices(components).apply( grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(20), None, window_size_func)) get_next = self.getNext(dataset) with self.assertRaises(errors.OutOfRangeError): batches = 0 while True: result = self.evaluate(get_next()) is_even = all(x % 2 == 0 for x in result) is_odd = all(x % 2 == 1 for x in result) self.assertTrue(is_even or is_odd) expected_batch_size = 5 if is_even else 10 self.assertEqual(expected_batch_size, result.shape[0]) batches += 1 self.assertEqual(batches, 15) def testSimple(self): components = np.random.randint(100, size=(200,)).astype(np.int64) dataset = dataset_ops.Dataset.from_tensor_slices( components).map(lambda x: x * x).apply( grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(4), 4)) get_next = self.getNext(dataset) counts = [] with self.assertRaises(errors.OutOfRangeError): while True: result = self.evaluate(get_next()) self.assertTrue( all(x % 2 == 0 for x in result) or all(x % 2 == 1) for x in result) counts.append(result.shape[0]) self.assertEqual(len(components), sum(counts)) num_full_batches = len([c for c in counts if c == 4]) self.assertGreaterEqual(num_full_batches, 24) self.assertTrue(all(c == 4 for c in counts[:num_full_batches])) def testImmediateOutput(self): components = np.array( [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0], dtype=np.int64) dataset = dataset_ops.Dataset.from_tensor_slices(components).repeat( -1).apply( grouping.group_by_window(lambda x: x % 3, lambda _, xs: xs.batch(4), 4)) get_next = self.getNext(dataset) # The input is infinite, so this test demonstrates that: # 1. We produce output without having to consume the entire input, # 2. Different buckets can produce output at different rates, and # 3. For deterministic input, the output is deterministic. for _ in range(3): self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1, 1, 1, 1], self.evaluate(get_next())) self.assertAllEqual([2, 2, 2, 2], self.evaluate(get_next())) self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) def testSmallGroups(self): components = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0], dtype=np.int64) dataset = dataset_ops.Dataset.from_tensor_slices(components).apply( grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(4), 4)) get_next = self.getNext(dataset) self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1, 1, 1, 1], self.evaluate(get_next())) # The small outputs at the end are deterministically produced in key # order. self.assertAllEqual([0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1], self.evaluate(get_next())) def testEmpty(self): dataset = dataset_ops.Dataset.range(4).apply( grouping.group_by_window(lambda _: 0, lambda _, xs: xs, 0)) get_next = self.getNext(dataset) with self.assertRaisesRegexp( errors.InvalidArgumentError, "Window size must be greater than zero, but got 0."): print(self.evaluate(get_next())) def testReduceFuncError(self): components = np.random.randint(100, size=(200,)).astype(np.int64) def reduce_func(_, xs): # Introduce an incorrect padded shape that cannot (currently) be # detected at graph construction time. return xs.padded_batch( 4, padded_shapes=(tensor_shape.TensorShape([]), constant_op.constant([5], dtype=dtypes.int64) * -1)) dataset = dataset_ops.Dataset.from_tensor_slices( components).map(lambda x: (x, ops.convert_to_tensor([x * x]))).apply( grouping.group_by_window(lambda x, _: x % 2, reduce_func, 32)) get_next = self.getNext(dataset) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) def testConsumeWindowDatasetMoreThanOnce(self): components = np.random.randint(50, size=(200,)).astype(np.int64) def reduce_func(key, window): # Apply two different kinds of padding to the input: tight # padding, and quantized (to a multiple of 10) padding. return dataset_ops.Dataset.zip(( window.padded_batch( 4, padded_shapes=tensor_shape.TensorShape([None])), window.padded_batch( 4, padded_shapes=ops.convert_to_tensor([(key + 1) * 10])), )) dataset = dataset_ops.Dataset.from_tensor_slices( components ).map(lambda x: array_ops.fill([math_ops.cast(x, dtypes.int32)], x)).apply( grouping.group_by_window( lambda x: math_ops.cast(array_ops.shape(x)[0] // 10, dtypes.int64), reduce_func, 4)) get_next = self.getNext(dataset) counts = [] with self.assertRaises(errors.OutOfRangeError): while True: tight_result, multiple_of_10_result = self.evaluate(get_next()) self.assertEqual(0, multiple_of_10_result.shape[1] % 10) self.assertAllEqual(tight_result, multiple_of_10_result[:, :tight_result.shape[1]]) counts.append(tight_result.shape[0]) self.assertEqual(len(components), sum(counts)) if __name__ == "__main__": test.main()
#!/usr/bin/python3 # # Average bandwidth monitoring script. Run periodically via NM db.sync to # enforce a soft limit on daily bandwidth usage for each slice. If a # slice is found to have transmitted 80% of its daily byte limit usage, # its instantaneous rate will be capped at the bytes remaning in the limit # over the time remaining in the recording period. # # Two separate limits are enforced, one for destinations exempt from # the node bandwidth cap (i.e. Internet2), and the other for all other destinations. # # Mark Huang <[email protected]> # Andy Bavier <[email protected]> # Faiyaz Ahmed <[email protected]> # Copyright (C) 2004-2008 The Trustees of Princeton University # import os import sys import time import pickle import socket import copy import threading import plnode.bwlimit as bwlimit import logger import tools import database from config import Config priority = 20 # Defaults # Set DEBUG to True if you don't want to send emails DEBUG = False # Set ENABLE to False to setup buckets, but not limit. ENABLE = True DB_FILE = "/var/lib/nodemanager/bwmon.pickle" # Constants seconds_per_day = 24 * 60 * 60 bits_per_byte = 8 dev_default = tools.get_default_if() # Burst to line rate (or node cap). Set by NM. in KBit/s default_MaxRate = int(bwlimit.get_bwcap(dev_default) / 1000) default_Maxi2Rate = int(bwlimit.bwmax / 1000) # 5.4 Gbyte per day. 5.4 * 1024 k * 1024M * 1024G # 5.4 Gbyte per day max allowed transfered per recording period # 5.4 Gbytes per day is aprox 512k/s for 24hrs (approx because original math was wrong # but its better to keep a higher byte total and keep people happy than correct # the problem and piss people off. # default_MaxKByte = 5662310 # -- 6/1/09 # llp wants to double these, so we use the following # 1mbit * 24hrs * 60mins * 60secs = bits/day # 1000000 * 24 * 60 * 60 / (1024 * 8) default_MaxKByte = 10546875 # 16.4 Gbyte per day max allowed transfered per recording period to I2 # default_Maxi2KByte = 17196646 # -- 6/1/09 # 3Mb/s for 24hrs a day (30.17 gigs) default_Maxi2KByte = 31640625 # Default share quanta default_Share = 1 # Average over 1 day period = 1 * seconds_per_day # Message template template = \ """ The slice %(slice)s has transmitted more than %(bytes)s from %(hostname)s to %(class)s destinations since %(since)s. Its maximum %(class)s burst rate will be capped at %(new_maxrate)s/s until %(until)s. Please reduce the average %(class)s transmission rate of the slice to %(limit)s per %(period)s. """.lstrip() footer = \ """ %(date)s %(hostname)s bwcap %(slice)s """.lstrip() def format_bytes(bytes, si = True): """ Formats bytes into a string """ if si: kilo = 1000. else: # Officially, a kibibyte kilo = 1024. if bytes >= (kilo * kilo * kilo): return "%.1f GB" % (bytes / (kilo * kilo * kilo)) elif bytes >= 1000000: return "%.1f MB" % (bytes / (kilo * kilo)) elif bytes >= 1000: return "%.1f KB" % (bytes / kilo) else: return "%.0f bytes" % bytes def format_period(seconds): """ Formats a period in seconds into a string """ if seconds == (24 * 60 * 60): return "day" elif seconds == (60 * 60): return "hour" elif seconds > (24 * 60 * 60): return "%.1f days" % (seconds / 24. / 60. / 60.) elif seconds > (60 * 60): return "%.1f hours" % (seconds / 60. / 60.) elif seconds > (60): return "%.1f minutes" % (seconds / 60.) else: return "%.0f seconds" % seconds def slicemail(slice, subject, body): ''' Front end to sendmail. Sends email to slice alias with given subject and body. ''' config = Config() sendmail = os.popen("/usr/sbin/sendmail -N never -t -f%s" % config.PLC_MAIL_SUPPORT_ADDRESS, "w") # Parsed from MyPLC config to = [config.PLC_MAIL_MOM_LIST_ADDRESS] if slice is not None and slice != "root": to.append(config.PLC_MAIL_SLICE_ADDRESS.replace("SLICE", slice)) header = {'from': "%s Support <%s>" % (config.PLC_NAME, config.PLC_MAIL_SUPPORT_ADDRESS), 'to': ", ".join(to), 'version': sys.version.split(" ")[0], 'subject': subject} # Write headers sendmail.write( """ Content-type: text/plain From: %(from)s Reply-To: %(from)s To: %(to)s X-Mailer: Python/%(version)s Subject: %(subject)s """.lstrip() % header) # Write body sendmail.write(body) # Done sendmail.close() class Slice: """ Stores the last recorded bandwidth parameters of a slice. xid - slice context/VServer ID name - slice name time - beginning of recording period in UNIX seconds bytes - low bandwidth bytes transmitted at the beginning of the recording period i2bytes - high bandwidth bytes transmitted at the beginning of the recording period (for I2 -F) MaxKByte - total volume of data allowed ThreshKbyte - After thresh, cap node to (maxkbyte - bytes)/(time left in period) Maxi2KByte - same as MaxKByte, but for i2 Threshi2Kbyte - same as Threshi2KByte, but for i2 MaxRate - max_rate slice attribute. Maxi2Rate - max_exempt_rate slice attribute. Share - Used by Sirius to loan min rates Sharei2 - Used by Sirius to loan min rates for i2 self.emailed - did slice recv email during this recording period """ def __init__(self, xid, name, rspec): self.xid = xid self.name = name self.time = 0 self.bytes = 0 self.i2bytes = 0 self.MaxRate = default_MaxRate self.MinRate = bwlimit.bwmin // 1000 self.Maxi2Rate = default_Maxi2Rate self.Mini2Rate = bwlimit.bwmin // 1000 self.MaxKByte = default_MaxKByte self.ThreshKByte = int(.8 * self.MaxKByte) self.Maxi2KByte = default_Maxi2KByte self.Threshi2KByte = int(.8 * self.Maxi2KByte) self.Share = default_Share self.Sharei2 = default_Share self.emailed = False self.capped = False self.updateSliceTags(rspec) bwlimit.set( xid=self.xid, dev=dev_default, minrate=self.MinRate * 1000, maxrate=self.MaxRate * 1000, maxexemptrate=self.Maxi2Rate * 1000, minexemptrate=self.Mini2Rate * 1000, share=self.Share) def __repr__(self): return self.name def updateSliceTags(self, rspec): ''' Use respects from GetSlivers to PLC to populate slice object. Also do some sanity checking. ''' # Sanity check plus policy decision for MinRate: # Minrate cant be greater than 25% of MaxRate or NodeCap. MinRate = int(rspec.get("net_min_rate", bwlimit.bwmin // 1000)) if MinRate > int(.25 * default_MaxRate): MinRate = int(.25 * default_MaxRate) if MinRate != self.MinRate: self.MinRate = MinRate logger.log("bwmon: Updating %s: Min Rate = %s" %(self.name, self.MinRate)) MaxRate = int(rspec.get('net_max_rate', default_MaxRate)) if MaxRate != self.MaxRate: self.MaxRate = MaxRate logger.log("bwmon: Updating %s: Max Rate = %s" %(self.name, self.MaxRate)) Mini2Rate = int(rspec.get('net_i2_min_rate', bwlimit.bwmin // 1000)) if Mini2Rate != self.Mini2Rate: self.Mini2Rate = Mini2Rate logger.log("bwmon: Updating %s: Min i2 Rate = %s" %(self.name, self.Mini2Rate)) Maxi2Rate = int(rspec.get('net_i2_max_rate', default_Maxi2Rate)) if Maxi2Rate != self.Maxi2Rate: self.Maxi2Rate = Maxi2Rate logger.log("bwmon: Updating %s: Max i2 Rate = %s" %(self.name, self.Maxi2Rate)) MaxKByte = int(rspec.get('net_max_kbyte', default_MaxKByte)) if MaxKByte != self.MaxKByte: self.MaxKByte = MaxKByte logger.log("bwmon: Updating %s: Max KByte lim = %s" %(self.name, self.MaxKByte)) Maxi2KByte = int(rspec.get('net_i2_max_kbyte', default_Maxi2KByte)) if Maxi2KByte != self.Maxi2KByte: self.Maxi2KByte = Maxi2KByte logger.log("bwmon: Updating %s: Max i2 KByte = %s" %(self.name, self.Maxi2KByte)) ThreshKByte = int(rspec.get('net_thresh_kbyte', (MaxKByte * .8))) if ThreshKByte != self.ThreshKByte: self.ThreshKByte = ThreshKByte logger.log("bwmon: Updating %s: Thresh KByte = %s" %(self.name, self.ThreshKByte)) Threshi2KByte = int(rspec.get('net_i2_thresh_kbyte', (Maxi2KByte * .8))) if Threshi2KByte != self.Threshi2KByte: self.Threshi2KByte = Threshi2KByte logger.log("bwmon: Updating %s: i2 Thresh KByte = %s" %(self.name, self.Threshi2KByte)) Share = int(rspec.get('net_share', default_Share)) if Share != self.Share: self.Share = Share logger.log("bwmon: Updating %s: Net Share = %s" %(self.name, self.Share)) Sharei2 = int(rspec.get('net_i2_share', default_Share)) if Sharei2 != self.Sharei2: self.Sharei2 = Sharei2 logger.log("bwmon: Updating %s: Net i2 Share = %s" %(self.name, self.i2Share)) def reset(self, runningrates, rspec): """ Begin a new recording period. Remove caps by restoring limits to their default values. """ # Cache share for later comparison self.Share = runningrates.get('share', 1) # Query Node Manager for max rate overrides self.updateSliceTags(rspec) # Reset baseline time self.time = time.time() # Reset baseline byte coutns self.bytes = runningrates.get('usedbytes', 0) self.i2bytes = runningrates.get('usedi2bytes', 0) # Reset email self.emailed = False # Reset flag self.capped = False # Reset rates. maxrate = self.MaxRate * 1000 minrate = self.MinRate * 1000 maxi2rate = self.Maxi2Rate * 1000 mini2rate = self.Mini2Rate * 1000 if (maxrate != runningrates.get('maxrate', 0)) or \ (minrate != runningrates.get('maxrate', 0)) or \ (maxi2rate != runningrates.get('maxexemptrate', 0)) or \ (mini2rate != runningrates.get('minexemptrate', 0)) or \ (self.Share != runningrates.get('share', 0)): logger.log("bwmon: %s reset to %s/%s" % \ (self.name, bwlimit.format_tc_rate(maxrate), bwlimit.format_tc_rate(maxi2rate))) bwlimit.set(xid = self.xid, dev = dev_default, minrate = self.MinRate * 1000, maxrate = self.MaxRate * 1000, maxexemptrate = self.Maxi2Rate * 1000, minexemptrate = self.Mini2Rate * 1000, share = self.Share) def notify(self, new_maxrate, new_maxexemptrate, usedbytes, usedi2bytes): """ Notify the slice it's being capped. """ # Prepare message parameters from the template message = "" params = {'slice': self.name, 'hostname': socket.gethostname(), 'since': time.asctime(time.gmtime(self.time)) + " GMT", 'until': time.asctime(time.gmtime(self.time + period)) + " GMT", 'date': time.asctime(time.gmtime()) + " GMT", 'period': format_period(period)} if new_maxrate != (self.MaxRate * 1000): # Format template parameters for low bandwidth message params['class'] = "low bandwidth" params['bytes'] = format_bytes(usedbytes - self.bytes) params['limit'] = format_bytes(self.MaxKByte * 1024) params['new_maxrate'] = bwlimit.format_tc_rate(new_maxrate) # Cap low bandwidth burst rate message += template % params logger.log("bwmon: ** %(slice)s %(class)s capped at %(new_maxrate)s/s " % params) if new_maxexemptrate != (self.Maxi2Rate * 1000): # Format template parameters for high bandwidth message params['class'] = "high bandwidth" params['bytes'] = format_bytes(usedi2bytes - self.i2bytes) params['limit'] = format_bytes(self.Maxi2KByte * 1024) params['new_maxrate'] = bwlimit.format_tc_rate(new_maxexemptrate) message += template % params logger.log("bwmon: ** %(slice)s %(class)s capped at %(new_maxrate)s/s " % params) # Notify slice if self.emailed == False: subject = "pl_mom capped bandwidth of slice %(slice)s on %(hostname)s" % params if DEBUG: logger.log("bwmon: "+ subject) logger.log("bwmon: "+ message + (footer % params)) else: self.emailed = True logger.log("bwmon: Emailing %s" % self.name) slicemail(self.name, subject, message + (footer % params)) def update(self, runningrates, rspec): """ Update byte counts and check if byte thresholds have been exceeded. If exceeded, cap to remaining bytes in limit over remaining time in period. Recalculate every time module runs. """ # cache share for later comparison runningrates['share'] = self.Share # Query Node Manager for max rate overrides self.updateSliceTags(rspec) usedbytes = runningrates['usedbytes'] usedi2bytes = runningrates['usedi2bytes'] # Check limits. if usedbytes >= (self.bytes + (self.ThreshKByte * 1024)): sum = self.bytes + (self.ThreshKByte * 1024) maxbyte = self.MaxKByte * 1024 bytesused = usedbytes - self.bytes timeused = int(time.time() - self.time) # Calcuate new rate. in bit/s new_maxrate = int(((maxbyte - bytesused) * 8) / (period - timeused)) # Never go under MinRate if new_maxrate < (self.MinRate * 1000): new_maxrate = self.MinRate * 1000 # State information. I'm capped. self.capped += True else: # Sanity Check new_maxrate = self.MaxRate * 1000 self.capped += False if usedi2bytes >= (self.i2bytes + (self.Threshi2KByte * 1024)): maxi2byte = self.Maxi2KByte * 1024 i2bytesused = usedi2bytes - self.i2bytes timeused = int(time.time() - self.time) # Calcuate New Rate. new_maxi2rate = int(((maxi2byte - i2bytesused) * 8) /(period - timeused)) # Never go under MinRate if new_maxi2rate < (self.Mini2Rate * 1000): new_maxi2rate = self.Mini2Rate * 1000 # State information. I'm capped. self.capped += True else: # Sanity new_maxi2rate = self.Maxi2Rate * 1000 self.capped += False # Check running values against newly calculated values so as not to run tc # unnecessarily if (runningrates['maxrate'] != new_maxrate) or \ (runningrates['minrate'] != self.MinRate * 1000) or \ (runningrates['maxexemptrate'] != new_maxi2rate) or \ ('minexemptrate' in runningrates and runningrates['minexemptrate'] != self.Mini2Rate * 1000) or \ (runningrates['share'] != self.Share): # Apply parameters bwlimit.set(xid = self.xid, dev = dev_default, minrate = self.MinRate * 1000, maxrate = new_maxrate, minexemptrate = self.Mini2Rate * 1000, maxexemptrate = new_maxi2rate, share = self.Share) # Notify slice if self.capped == True: self.notify(new_maxrate, new_maxi2rate, usedbytes, usedi2bytes) def gethtbs(root_xid, default_xid): """ Return dict {xid: {*rates}} of running htbs as reported by tc that have names. Turn off HTBs without names. """ livehtbs = {} for params in bwlimit.get(dev = dev_default): (xid, share, minrate, maxrate, minexemptrate, maxexemptrate, usedbytes, usedi2bytes) = params name = bwlimit.get_slice(xid) if (name is None) \ and (xid != root_xid) \ and (xid != default_xid): # Orphaned (not associated with a slice) class name = "%d?" % xid logger.log("bwmon: Found orphaned HTB %s. Removing." %name) bwlimit.off(xid, dev = dev_default) livehtbs[xid] = {'share': share, 'minrate': minrate, 'maxrate': maxrate, 'maxexemptrate': maxexemptrate, 'minexemptrate': minexemptrate, 'usedbytes': usedbytes, 'name': name, 'usedi2bytes': usedi2bytes} return livehtbs def sync(nmdbcopy): """ Syncs tc, db, and bwmon.pickle. Then, starts new slices, kills old ones, and updates byte accounts for each running slice. Sends emails and caps those that went over their limit. """ # Defaults global DB_FILE, \ period, \ default_MaxRate, \ default_Maxi2Rate, \ default_MaxKByte, \ default_Maxi2KByte, \ default_Share, \ dev_default # All slices names = [] # In case the limits have changed. default_MaxRate = int(bwlimit.get_bwcap(dev_default) / 1000) default_Maxi2Rate = int(bwlimit.bwmax / 1000) # Incase default isn't set yet. if default_MaxRate == -1: default_MaxRate = 1000000 # xxx $Id$ # with svn we used to have a trick to detect upgrades of this file # this has gone with the move to git, without any noticeable effect on operations though try: f = open(DB_FILE, "r+") logger.verbose("bwmon: Loading %s" % DB_FILE) (version, slices, deaddb) = pickle.load(f) f.close() # Check version of data file if version != "$Id$": logger.log("bwmon: Not using old version '%s' data file %s" % (version, DB_FILE)) raise Exception except Exception: version = "$Id$" slices = {} deaddb = {} # Get/set special slice IDs root_xid = bwlimit.get_xid("root") default_xid = bwlimit.get_xid("default") # Since root is required for sanity, its not in the API/plc database, so pass {} # to use defaults. if root_xid not in list(slices.keys()): slices[root_xid] = Slice(root_xid, "root", {}) slices[root_xid].reset({}, {}) # Used by bwlimit. pass {} since there is no rspec (like above). if default_xid not in list(slices.keys()): slices[default_xid] = Slice(default_xid, "default", {}) slices[default_xid].reset({}, {}) live = {} # Get running slivers that should be on this node (from plc). {xid: name} # db keys on name, bwmon keys on xid. db doesnt have xid either. for plcSliver in list(nmdbcopy.keys()): live[bwlimit.get_xid(plcSliver)] = nmdbcopy[plcSliver] logger.verbose("bwmon: Found %s instantiated slices" % list(live.keys()).__len__()) logger.verbose("bwmon: Found %s slices in dat file" % list(slices.values()).__len__()) # Get actual running values from tc. # Update slice totals and bandwidth. {xid: {values}} kernelhtbs = gethtbs(root_xid, default_xid) logger.verbose("bwmon: Found %s running HTBs" % list(kernelhtbs.keys()).__len__()) # The dat file has HTBs for slices, but the HTBs aren't running nohtbslices = set(slices.keys()) - set(kernelhtbs.keys()) logger.verbose( "bwmon: Found %s slices in dat but not running." % nohtbslices.__len__()) # Reset tc counts. for nohtbslice in nohtbslices: if nohtbslice in live: slices[nohtbslice].reset( {}, live[nohtbslice]['_rspec'] ) else: logger.log("bwmon: Removing abondoned slice %s from dat." % nohtbslice) del slices[nohtbslice] # The dat file doesnt have HTB for the slice but kern has HTB slicesnodat = set(kernelhtbs.keys()) - set(slices.keys()) logger.verbose( "bwmon: Found %s slices with HTBs but not in dat" % slicesnodat.__len__()) for slicenodat in slicesnodat: # But slice is running if slicenodat in live: # init the slice. which means start accounting over since kernel # htb was already there. slices[slicenodat] = Slice(slicenodat, live[slicenodat]['name'], live[slicenodat]['_rspec']) # Get new slices. # Slices in GetSlivers but not running HTBs newslicesxids = set(live.keys()) - set(kernelhtbs.keys()) logger.verbose("bwmon: Found %s new slices" % newslicesxids.__len__()) # Setup new slices for newslice in newslicesxids: # Delegated slices dont have xids (which are uids) since they haven't been # instantiated yet. if newslice != None and ('_rspec' in live[newslice]) == True: # Check to see if we recently deleted this slice. if live[newslice]['name'] not in list(deaddb.keys()): logger.log( "bwmon: new slice %s" % live[newslice]['name'] ) # _rspec is the computed rspec: NM retrieved data from PLC, computed loans # and made a dict of computed values. slices[newslice] = Slice(newslice, live[newslice]['name'], live[newslice]['_rspec']) slices[newslice].reset( {}, live[newslice]['_rspec'] ) # Double check time for dead slice in deaddb is within 24hr recording period. elif (time.time() <= (deaddb[live[newslice]['name']]['slice'].time + period)): deadslice = deaddb[live[newslice]['name']] logger.log("bwmon: Reinstantiating deleted slice %s" % live[newslice]['name']) slices[newslice] = deadslice['slice'] slices[newslice].xid = newslice # Start the HTB newvals = {"maxrate": deadslice['slice'].MaxRate * 1000, "minrate": deadslice['slice'].MinRate * 1000, "maxexemptrate": deadslice['slice'].Maxi2Rate * 1000, "usedbytes": deadslice['htb']['usedbytes'] * 1000, "usedi2bytes": deadslice['htb']['usedi2bytes'], "share":deadslice['htb']['share']} slices[newslice].reset(newvals, live[newslice]['_rspec']) # Bring up to date slices[newslice].update(newvals, live[newslice]['_rspec']) # Since the slice has been reinitialed, remove from dead database. del deaddb[deadslice['slice'].name] del newvals else: logger.log("bwmon: Slice %s doesn't have xid. Skipping." % live[newslice]['name']) # Move dead slices that exist in the pickle file, but # aren't instantiated by PLC into the dead dict until # recording period is over. This is to avoid the case where a slice is dynamically created # and destroyed then recreated to get around byte limits. deadxids = set(slices.keys()) - set(live.keys()) logger.verbose("bwmon: Found %s dead slices" % (deadxids.__len__() - 2)) for deadxid in deadxids: if deadxid == root_xid or deadxid == default_xid: continue logger.log("bwmon: removing dead slice %s " % deadxid) if deadxid in slices and deadxid in kernelhtbs: # add slice (by name) to deaddb logger.log("bwmon: Saving bandwidth totals for %s." % slices[deadxid].name) deaddb[slices[deadxid].name] = {'slice': slices[deadxid], 'htb': kernelhtbs[deadxid]} del slices[deadxid] if deadxid in kernelhtbs: logger.verbose("bwmon: Removing HTB for %s." % deadxid) bwlimit.off(deadxid, dev = dev_default) # Clean up deaddb for deadslice in list(deaddb.keys()): if (time.time() >= (deaddb[deadslice]['slice'].time + period)): logger.log("bwmon: Removing dead slice %s from dat." \ % deaddb[deadslice]['slice'].name) del deaddb[deadslice] # Get actual running values from tc since we've added and removed buckets. # Update slice totals and bandwidth. {xid: {values}} kernelhtbs = gethtbs(root_xid, default_xid) logger.verbose("bwmon: now %s running HTBs" % list(kernelhtbs.keys()).__len__()) # Update all byte limites on all slices for (xid, slice) in slices.items(): # Monitor only the specified slices if xid == root_xid or xid == default_xid: continue if names and name not in names: continue if (time.time() >= (slice.time + period)) or \ (kernelhtbs[xid]['usedbytes'] < slice.bytes) or \ (kernelhtbs[xid]['usedi2bytes'] < slice.i2bytes): # Reset to defaults every 24 hours or if it appears # that the byte counters have overflowed (or, more # likely, the node was restarted or the HTB buckets # were re-initialized). slice.reset(kernelhtbs[xid], live[xid]['_rspec']) elif ENABLE: logger.verbose("bwmon: Updating slice %s" % slice.name) # Update byte counts slice.update(kernelhtbs[xid], live[xid]['_rspec']) logger.verbose("bwmon: Saving %s slices in %s" % (list(slices.keys()).__len__(), DB_FILE)) f = open(DB_FILE, "w") pickle.dump((version, slices, deaddb), f) f.close() # doesnt use generic default interface because this runs as its own thread. # changing the config variable will not have an effect since GetSlivers: pass def getDefaults(nmdbcopy): ''' Get defaults from default slice's slice attributes. ''' status = True # default slice dfltslice = nmdbcopy.get(Config().PLC_SLICE_PREFIX+"_default") if dfltslice: if dfltslice['rspec']['net_max_rate'] == -1: allOff() status = False return status def allOff(): """ Turn off all slice HTBs """ # Get/set special slice IDs root_xid = bwlimit.get_xid("root") default_xid = bwlimit.get_xid("default") kernelhtbs = gethtbs(root_xid, default_xid) if len(kernelhtbs): logger.log("bwmon: Disabling all running HTBs.") for htb in list(kernelhtbs.keys()): bwlimit.off(htb, dev = dev_default) lock = threading.Event() def run(): """ When run as a thread, wait for event, lock db, deep copy it, release it, run bwmon.GetSlivers(), then go back to waiting. """ logger.verbose("bwmon: Thread started") while True: lock.wait() logger.verbose("bwmon: Event received. Running.") database.db_lock.acquire() nmdbcopy = copy.deepcopy(database.db) database.db_lock.release() try: if getDefaults(nmdbcopy) and len(bwlimit.tc("class show dev %s" % dev_default)) > 0: # class show to check if net:InitNodeLimit:bwlimit.init has run. sync(nmdbcopy) else: logger.log("bwmon: BW limits DISABLED.") except: logger.log_exc("bwmon failed") lock.clear() def start(*args): tools.as_daemon_thread(run) def GetSlivers(*args): logger.verbose ("bwmon: triggering dummy GetSlivers") pass
############################################################################### ## ## Copyright 2011-2013 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### import os, json, binascii, time, textwrap from twisted.python import log from twisted.internet import reactor # for versions import autobahn import autobahntestsuite from autobahn.websocket import WebSocketProtocol, \ WebSocketServerFactory, \ WebSocketServerProtocol, \ WebSocketClientFactory, \ WebSocketClientProtocol, \ connectWS from case import Case, \ Cases, \ CaseCategories, \ CaseSubCategories, \ CaseBasename from caseset import CaseSet from autobahn.util import utcnow from report import CSS_COMMON, \ CSS_DETAIL_REPORT, \ CSS_MASTER_REPORT, \ JS_MASTER_REPORT def binLogData(data, maxlen = 64): ellipses = " ..." if len(data) > maxlen - len(ellipses): dd = binascii.b2a_hex(data[:maxlen]) + ellipses else: dd = binascii.b2a_hex(data) return dd def asciiLogData(data, maxlen = 64, replace = False): ellipses = " ..." try: if len(data) > maxlen - len(ellipses): dd = data[:maxlen] + ellipses else: dd = data return dd.decode('utf8', errors = 'replace' if replace else 'strict') except: return '0x' + binLogData(data, maxlen) class FuzzingProtocol: """ Common mixin-base class for fuzzing server and client protocols. """ MAX_WIRE_LOG_DATA = 256 def connectionMade(self): attrs = ['case', 'runCase', 'caseAgent', 'caseStarted'] for attr in attrs: if not hasattr(self, attr): setattr(self, attr, None) #self.case = None #self.runCase = None #self.caseAgent = None #self.caseStarted = None self.caseStart = 0 self.caseEnd = 0 ## wire log ## self.createWirelog = True self.wirelog = [] ## stats for octets and frames ## self.createStats = True self.rxOctetStats = {} self.rxFrameStats = {} self.txOctetStats = {} self.txFrameStats = {} def connectionLost(self, reason): if self.runCase: self.runCase.onConnectionLost(self.failedByMe) self.caseEnd = time.time() caseResult = {"case": self.case, "id": self.factory.CaseSet.caseClasstoId(self.Case), "description": self.Case.DESCRIPTION, "expectation": self.Case.EXPECTATION, "agent": self.caseAgent, "started": self.caseStarted, "duration": int(round(1000. * (self.caseEnd - self.caseStart))), # case execution time in ms "reportTime": self.runCase.reportTime, # True/False switch to control report output of duration "reportCompressionRatio": self.runCase.reportCompressionRatio, "behavior": self.runCase.behavior, "behaviorClose": self.runCase.behaviorClose, "expected": self.runCase.expected, "expectedClose": self.runCase.expectedClose, "received": self.runCase.received, "result": self.runCase.result, "resultClose": self.runCase.resultClose, "wirelog": self.wirelog, "createWirelog": self.createWirelog, "closedByMe": self.closedByMe, "failedByMe": self.failedByMe, "droppedByMe": self.droppedByMe, "wasClean": self.wasClean, "wasNotCleanReason": self.wasNotCleanReason, "wasServerConnectionDropTimeout": self.wasServerConnectionDropTimeout, "wasOpenHandshakeTimeout": self.wasOpenHandshakeTimeout, "wasCloseHandshakeTimeout": self.wasCloseHandshakeTimeout, "localCloseCode": self.localCloseCode, "localCloseReason": self.localCloseReason, "remoteCloseCode": self.remoteCloseCode, "remoteCloseReason": self.remoteCloseReason, "isServer": self.factory.isServer, "createStats": self.createStats, "rxOctetStats": self.rxOctetStats, "rxFrameStats": self.rxFrameStats, "txOctetStats": self.txOctetStats, "txFrameStats": self.txFrameStats, "httpRequest": self.http_request_data, "httpResponse": self.http_response_data, "trafficStats": self.runCase.trafficStats.__json__() if self.runCase.trafficStats else None} def cleanBin(e_old): e_new = [] for t in e_old: if t[0] == 'message': e_new.append((t[0], asciiLogData(t[1]), t[2])) elif t[0] in ['ping', 'pong']: e_new.append((t[0], asciiLogData(t[1]))) elif t[0] == 'timeout': e_new.append(t) else: print t raise Exception("unknown part type %s" % t[0]) return e_new for k in caseResult['expected']: e_old = caseResult['expected'][k] caseResult['expected'][k] = cleanBin(e_old) caseResult['received'] = cleanBin(caseResult['received']) ## now log the case results ## self.factory.logCase(caseResult) # parent's connectionLost does useful things WebSocketProtocol.connectionLost(self,reason) def enableWirelog(self, enable): if enable != self.createWirelog: self.createWirelog = enable self.wirelog.append(("WLM", enable)) def logRxOctets(self, data): if self.createStats: l = len(data) self.rxOctetStats[l] = self.rxOctetStats.get(l, 0) + 1 if self.createWirelog: self.wirelog.append(("RO", (len(data), binLogData(data)))) def logTxOctets(self, data, sync): if self.createStats: l = len(data) self.txOctetStats[l] = self.txOctetStats.get(l, 0) + 1 if self.createWirelog: self.wirelog.append(("TO", (len(data), binLogData(data)), sync)) def logRxFrame(self, frameHeader, payload): if self.createStats: self.rxFrameStats[frameHeader.opcode] = self.rxFrameStats.get(frameHeader.opcode, 0) + 1 if self.createWirelog: p = ''.join(payload) self.wirelog.append(("RF", (len(p), asciiLogData(p)), frameHeader.opcode, frameHeader.fin, frameHeader.rsv, frameHeader.mask is not None, binascii.b2a_hex(frameHeader.mask) if frameHeader.mask else None)) def logTxFrame(self, frameHeader, payload, repeatLength, chopsize, sync): if self.createStats: self.txFrameStats[frameHeader.opcode] = self.txFrameStats.get(frameHeader.opcode, 0) + 1 if self.createWirelog: self.wirelog.append(("TF", (len(payload), asciiLogData(payload)), frameHeader.opcode, frameHeader.fin, frameHeader.rsv, binascii.b2a_hex(frameHeader.mask) if frameHeader.mask else None, repeatLength, chopsize, sync)) def executeContinueLater(self, fun, tag): if self.state != WebSocketProtocol.STATE_CLOSED: self.wirelog.append(("CTE", tag)) fun() else: pass # connection already gone def continueLater(self, delay, fun, tag = None): self.wirelog.append(("CT", delay, tag)) reactor.callLater(delay, self.executeContinueLater, fun, tag) def executeKillAfter(self): if self.state != WebSocketProtocol.STATE_CLOSED: self.wirelog.append(("KLE", )) self.failConnection() else: pass # connection already gone def killAfter(self, delay): self.wirelog.append(("KL", delay)) reactor.callLater(delay, self.executeKillAfter) def executeCloseAfter(self): if self.state != WebSocketProtocol.STATE_CLOSED: self.wirelog.append(("TIE", )) self.sendClose() else: pass # connection already gone def closeAfter(self, delay): self.wirelog.append(("TI", delay)) reactor.callLater(delay, self.executeCloseAfter) def onOpen(self): if self.runCase: cc_id = self.factory.CaseSet.caseClasstoId(self.runCase.__class__) if self.factory.CaseSet.checkAgentCaseExclude(self.factory.specExcludeAgentCases, self.caseAgent, cc_id): print "Skipping test case %s for agent %s by test configuration!" % (cc_id, self.caseAgent) self.runCase = None self.sendClose() return else: self.caseStart = time.time() self.runCase.onOpen() elif self.path == "/updateReports": self.factory.createReports() self.sendClose() elif self.path == "/getCaseCount": self.sendMessage(json.dumps(len(self.factory.specCases))) self.sendClose() elif self.path == "/getCaseStatus": def sendResults(results): self.sendMessage(json.dumps({ 'behavior':results['behavior'] })) self.sendClose() self.factory.addResultListener(self.caseAgent, self.factory.CaseSet.caseClasstoId(self.Case), sendResults) elif self.path == "/getCaseInfo": self.sendMessage(json.dumps({ 'id': self.factory.CaseSet.caseClasstoId(self.Case), 'description': self.factory.CaseSet.caseClassToPrettyDescription(self.Case), })) self.sendClose() else: pass def onPong(self, payload): if self.runCase: self.runCase.onPong(payload) else: if self.debug: log.msg("Pong received: " + payload) def onClose(self, wasClean, code, reason): if self.runCase: self.runCase.onClose(wasClean, code, reason) else: if self.debug: log.msg("Close received: %s - %s" % (code, reason)) def onMessage(self, msg, binary): if self.runCase: self.runCase.onMessage(msg, binary) else: if binary: raise Exception("binary command message") else: try: obj = json.loads(msg) except: raise Exception("could not parse command") ## send one frame as specified ## if obj[0] == "sendframe": pl = obj[1].get("payload", "") self.sendFrame(opcode = obj[1]["opcode"], payload = pl.encode("UTF-8"), fin = obj[1].get("fin", True), rsv = obj[1].get("rsv", 0), mask = obj[1].get("mask", None), payload_len = obj[1].get("payload_len", None), chopsize = obj[1].get("chopsize", None), sync = obj[1].get("sync", False)) ## send multiple frames as specified ## elif obj[0] == "sendframes": frames = obj[1] for frame in frames: pl = frame.get("payload", "") self.sendFrame(opcode = frame["opcode"], payload = pl.encode("UTF-8"), fin = frame.get("fin", True), rsv = frame.get("rsv", 0), mask = frame.get("mask", None), payload_len = frame.get("payload_len", None), chopsize = frame.get("chopsize", None), sync = frame.get("sync", False)) ## send close ## elif obj[0] == "close": spec = obj[1] self.sendClose(spec.get("code", None), spec.get("reason", None)) ## echo argument ## elif obj[0] == "echo": spec = obj[1] self.sendFrame(opcode = 1, payload = spec.get("payload", ""), payload_len = spec.get("payload_len", None)) else: raise Exception("fuzzing peer received unknown command" % obj[0]) class FuzzingFactory: """ Common mixin-base class for fuzzing server and client protocol factory. """ MAX_CASE_PICKLE_LEN = 1000 def __init__(self, outdir): self.repeatAgentRowPerSubcategory = True self.outdir = outdir self.agents = {} self.cases = {} self.resultListeners = {} def logCase(self, caseResults): """ Called from FuzzingProtocol instances when case has been finished to store case results. """ agent = caseResults["agent"] case = caseResults["id"] ## index by agent->case ## if not self.agents.has_key(agent): self.agents[agent] = {} self.agents[agent][case] = caseResults ## index by case->agent ## if not self.cases.has_key(case): self.cases[case] = {} self.cases[case][agent] = caseResults if (agent, case) in self.resultListeners: callback = self.resultListeners.pop((agent, case)) callback(caseResults) def addResultListener(self, agent, caseId, resultsCallback): if agent in self.agents and caseId in self.agents[agent]: resultsCallback(self.agents[agent][caseId]) else: self.resultListeners[(agent,caseId)] = resultsCallback def createReports(self, produceHtml = True, produceJson = True): """ Create reports from all data stored for test cases which have been executed. """ ## create output directory when non-existent ## if not os.path.exists(self.outdir): os.makedirs(self.outdir) ## create master report ## if produceHtml: self.createMasterReportHTML(self.outdir) if produceJson: self.createMasterReportJSON(self.outdir) ## create case detail reports ## for agentId in self.agents: for caseId in self.agents[agentId]: if produceHtml: self.createAgentCaseReportHTML(agentId, caseId, self.outdir) if produceJson: self.createAgentCaseReportJSON(agentId, caseId, self.outdir) def cleanForFilename(self, str): """ Clean a string for use as filename. """ s0 = ''.join([c if c in "abcdefghjiklmnopqrstuvwxyz0123456789" else " " for c in str.strip().lower()]) s1 = s0.strip() s2 = s1.replace(' ', '_') return s2 def makeAgentCaseReportFilename(self, agentId, caseId, ext): """ Create filename for case detail report from agent and case. """ c = caseId.replace('.', '_') return self.cleanForFilename(agentId) + "_case_" + c + "." + ext def limitString(self, s, limit, indicator = " ..."): ss = str(s) if len(ss) > limit - len(indicator): return ss[:limit - len(indicator)] + indicator else: return ss def createMasterReportJSON(self, outdir): """ Create report master JSON file. :param outdir: Directory where to create file. :type outdir: str :returns: str -- Name of created file. """ res = {} for agentId in self.agents: if not res.has_key(agentId): res[agentId] = {} for caseId in self.agents[agentId]: case = self.agents[agentId][caseId] c = {} report_filename = self.makeAgentCaseReportFilename(agentId, caseId, ext = 'json') c["behavior"] = case["behavior"] c["behaviorClose"] = case["behaviorClose"] c["remoteCloseCode"] = case["remoteCloseCode"] c["duration"] = case["duration"] c["reportfile"] = report_filename res[agentId][caseId] = c report_filename = "index.json" f = open(os.path.join(outdir, report_filename), 'w') f.write(json.dumps(res, sort_keys = True, indent = 3, separators = (',', ': '))) f.close() def createMasterReportHTML(self, outdir): """ Create report master HTML file. :param outdir: Directory where to create file. :type outdir: str :returns: str -- Name of created file. """ ## open report file in create / write-truncate mode ## report_filename = "index.html" f = open(os.path.join(outdir, report_filename), 'w') ## write HTML ## f.write('<!DOCTYPE html>\n') f.write('<html>\n') f.write(' <head>\n') f.write(' <meta charset="utf-8" />\n') f.write(' <style lang="css">%s</style>\n' % CSS_COMMON) f.write(' <style lang="css">%s</style>\n' % CSS_MASTER_REPORT) f.write(' <script language="javascript">%s</script>\n' % JS_MASTER_REPORT % {"agents_cnt": len(self.agents.keys())}) f.write(' </head>\n') f.write(' <body>\n') f.write(' <a href="#"><div id="toggle_button" class="unselectable" onclick="toggleClose();">Toggle Details</div></a>\n') f.write(' <a name="top"></a>\n') f.write(' <br/>\n') ## top logos f.write(' <center><a href="http://autobahn.ws/testsuite" title="Autobahn WebSockets Testsuite"><img src="http://autobahn.ws/static/img/ws_protocol_test_report.png" border="0" width="820" height="46" alt="Autobahn WebSockets Testsuite Report"></img></a></center>\n') f.write(' <center><a href="http://autobahn.ws" title="Autobahn WebSockets"> <img src="http://autobahn.ws/static/img/ws_protocol_test_report_autobahn.png" border="0" width="300" height="68" alt="Autobahn WebSockets"> </img></a></center>\n') ## write report header ## f.write(' <div id="master_report_header" class="block">\n') f.write(' <p id="intro">Summary report generated on %s (UTC) by <a href="%s">Autobahn WebSockets Testsuite</a> v%s/v%s.</p>\n' % (utcnow(), "http://autobahn.ws/testsuite", autobahntestsuite.version, autobahn.version)) f.write(""" <table id="case_outcome_desc"> <tr> <td class="case_ok">Pass</td> <td class="outcome_desc">Test case was executed and passed successfully.</td> </tr> <tr> <td class="case_non_strict">Non-Strict</td> <td class="outcome_desc">Test case was executed and passed non-strictly. A non-strict behavior is one that does not adhere to a SHOULD-behavior as described in the protocol specification or a well-defined, canonical behavior that appears to be desirable but left open in the protocol specification. An implementation with non-strict behavior is still conformant to the protocol specification.</td> </tr> <tr> <td class="case_failed">Fail</td> <td class="outcome_desc">Test case was executed and failed. An implementation which fails a test case - other than a performance/limits related one - is non-conforming to a MUST-behavior as described in the protocol specification.</td> </tr> <tr> <td class="case_info">Info</td> <td class="outcome_desc">Informational test case which detects certain implementation behavior left unspecified by the spec but nevertheless potentially interesting to implementors.</td> </tr> <tr> <td class="case_missing">Missing</td> <td class="outcome_desc">Test case is missing, either because it was skipped via the test suite configuration or deactivated, i.e. because the implementation does not implement the tested feature or breaks during running the test case.</td> </tr> </table> """) f.write(' </div>\n') ## write big agent/case report table ## f.write(' <table id="agent_case_results">\n') ## sorted list of agents for which test cases where run ## agentList = sorted(self.agents.keys()) ## create list ordered list of case Ids ## cl = [] for c in Cases: t = self.CaseSet.caseClasstoIdTuple(c) cl.append((t, self.CaseSet.caseIdTupletoId(t))) cl = sorted(cl) caseList = [] for c in cl: caseList.append(c[1]) lastCaseCategory = None lastCaseSubCategory = None for caseId in caseList: caseCategoryIndex = caseId.split('.')[0] caseCategory = CaseCategories.get(caseCategoryIndex, "Misc") caseSubCategoryIndex = '.'.join(caseId.split('.')[:2]) caseSubCategory = CaseSubCategories.get(caseSubCategoryIndex, None) ## Category/Agents row ## if caseCategory != lastCaseCategory or (self.repeatAgentRowPerSubcategory and caseSubCategory != lastCaseSubCategory): f.write(' <tr class="case_category_row">\n') f.write(' <td class="case_category">%s %s</td>\n' % (caseCategoryIndex, caseCategory)) for agentId in agentList: f.write(' <td class="agent close_flex" colspan="2">%s</td>\n' % agentId) f.write(' </tr>\n') lastCaseCategory = caseCategory lastCaseSubCategory = None ## Subcategory row ## if caseSubCategory != lastCaseSubCategory: f.write(' <tr class="case_subcategory_row">\n') f.write(' <td class="case_subcategory" colspan="%d">%s %s</td>\n' % (len(agentList) * 2 + 1, caseSubCategoryIndex, caseSubCategory)) f.write(' </tr>\n') lastCaseSubCategory = caseSubCategory ## Cases row ## f.write(' <tr class="agent_case_result_row">\n') f.write(' <td class="case"><a href="#case_desc_%s">Case %s</a></td>\n' % (caseId.replace('.', '_'), caseId)) ## Case results ## for agentId in agentList: if self.agents[agentId].has_key(caseId): case = self.agents[agentId][caseId] if case["behavior"] != Case.UNIMPLEMENTED: agent_case_report_file = self.makeAgentCaseReportFilename(agentId, caseId, ext = 'html') if case["behavior"] == Case.OK: td_text = "Pass" td_class = "case_ok" elif case["behavior"] == Case.NON_STRICT: td_text = "Non-Strict" td_class = "case_non_strict" elif case["behavior"] == Case.NO_CLOSE: td_text = "No Close" td_class = "case_no_close" elif case["behavior"] == Case.INFORMATIONAL: td_text = "Info" td_class = "case_info" else: td_text = "Fail" td_class = "case_failed" if case["behaviorClose"] == Case.OK: ctd_text = "%s" % str(case["remoteCloseCode"]) ctd_class = "case_ok" elif case["behaviorClose"] == Case.FAILED_BY_CLIENT: ctd_text = "%s" % str(case["remoteCloseCode"]) ctd_class = "case_almost" elif case["behaviorClose"] == Case.WRONG_CODE: ctd_text = "%s" % str(case["remoteCloseCode"]) ctd_class = "case_non_strict" elif case["behaviorClose"] == Case.UNCLEAN: ctd_text = "Unclean" ctd_class = "case_failed" elif case["behaviorClose"] == Case.INFORMATIONAL: ctd_text = "%s" % str(case["remoteCloseCode"]) ctd_class = "case_info" else: ctd_text = "Fail" ctd_class = "case_failed" detail = "" if case["reportTime"]: detail += "%d ms" % case["duration"] if case["reportCompressionRatio"] and case["trafficStats"] is not None: crIn = case["trafficStats"]["incomingCompressionRatio"] crOut = case["trafficStats"]["outgoingCompressionRatio"] detail += " [%s/%s]" % ("%.3f" % crIn if crIn is not None else "-", "%.3f" % crOut if crOut is not None else "-") if detail != "": f.write(' <td class="%s"><a href="%s">%s</a><br/><span class="case_duration">%s</span></td><td class="close close_hide %s"><span class="close_code">%s</span></td>\n' % (td_class, agent_case_report_file, td_text, detail, ctd_class, ctd_text)) else: f.write(' <td class="%s"><a href="%s">%s</a></td><td class="close close_hide %s"><span class="close_code">%s</span></td>\n' % (td_class, agent_case_report_file, td_text, ctd_class, ctd_text)) else: f.write(' <td class="case_unimplemented close_flex" colspan="2">Unimplemented</td>\n') else: f.write(' <td class="case_missing close_flex" colspan="2">Missing</td>\n') f.write(" </tr>\n") f.write(" </table>\n") f.write(" <br/><hr/>\n") ## Case descriptions ## f.write(' <div id="test_case_descriptions">\n') for caseId in caseList: CCase = self.CaseSet.CasesById[caseId] f.write(' <br/>\n') f.write(' <a name="case_desc_%s"></a>\n' % caseId.replace('.', '_')) f.write(' <h2>Case %s</h2>\n' % caseId) f.write(' <a class="up" href="#top">Up</a>\n') f.write(' <p class="case_text_block case_desc"><b>Case Description</b><br/><br/>%s</p>\n' % CCase.DESCRIPTION) f.write(' <p class="case_text_block case_expect"><b>Case Expectation</b><br/><br/>%s</p>\n' % CCase.EXPECTATION) f.write(' </div>\n') f.write(" <br/><hr/>\n") ## end of HTML ## f.write(" </body>\n") f.write("</html>\n") ## close created HTML file and return filename ## f.close() return report_filename def createAgentCaseReportJSON(self, agentId, caseId, outdir): """ Create case detail report JSON file. :param agentId: ID of agent for which to generate report. :type agentId: str :param caseId: ID of case for which to generate report. :type caseId: str :param outdir: Directory where to create file. :type outdir: str :returns: str -- Name of created file. """ if not self.agents.has_key(agentId): raise Exception("no test data stored for agent %s" % agentId) if not self.agents[agentId].has_key(caseId): raise Exception("no test data stored for case %s with agent %s" % (caseId, agentId)) ## get case to generate report for ## case = self.agents[agentId][caseId] ## open report file in create / write-truncate mode ## report_filename = self.makeAgentCaseReportFilename(agentId, caseId, ext = 'json') f = open(os.path.join(outdir, report_filename), 'w') f.write(json.dumps(case, sort_keys = True, indent = 3, separators = (',', ': '))) f.close() def createAgentCaseReportHTML(self, agentId, caseId, outdir): """ Create case detail report HTML file. :param agentId: ID of agent for which to generate report. :type agentId: str :param caseId: ID of case for which to generate report. :type caseId: str :param outdir: Directory where to create file. :type outdir: str :returns: str -- Name of created file. """ if not self.agents.has_key(agentId): raise Exception("no test data stored for agent %s" % agentId) if not self.agents[agentId].has_key(caseId): raise Exception("no test data stored for case %s with agent %s" % (caseId, agentId)) ## get case to generate report for ## case = self.agents[agentId][caseId] ## open report file in create / write-truncate mode ## report_filename = self.makeAgentCaseReportFilename(agentId, caseId, ext = 'html') f = open(os.path.join(outdir, report_filename), 'w') ## write HTML ## f.write('<!DOCTYPE html>\n') f.write('<html>\n') f.write(' <head>\n') f.write(' <meta charset="utf-8" />\n') f.write(' <style lang="css">%s</style>\n' % CSS_COMMON) f.write(' <style lang="css">%s</style>\n' % CSS_DETAIL_REPORT) f.write(' </head>\n') f.write(' <body>\n') f.write(' <a name="top"></a>\n') f.write(' <br/>\n') ## top logos f.write(' <center><a href="http://autobahn.ws/testsuite" title="Autobahn WebSockets Testsuite"><img src="http://autobahn.ws/static/img/ws_protocol_test_report.png" border="0" width="820" height="46" alt="Autobahn WebSockets Testsuite Report"></img></a></center>\n') f.write(' <center><a href="http://autobahn.ws" title="Autobahn WebSockets"> <img src="http://autobahn.ws/static/img/ws_protocol_test_report_autobahn.png" border="0" width="300" height="68" alt="Autobahn WebSockets"> </img></a></center>\n') f.write(' <br/>\n') ## Case Summary ## if case["behavior"] == Case.OK: style = "case_ok" text = "Pass" elif case["behavior"] == Case.NON_STRICT: style = "case_non_strict" text = "Non-Strict" elif case["behavior"] == Case.INFORMATIONAL: style = "case_info" text = "Informational" else: style = "case_failed" text = "Fail" f.write(' <p class="case %s">%s - <span style="font-size: 1.3em;"><b>Case %s</b></span> : %s - <span style="font-size: 0.9em;"><b>%d</b> ms @ %s</a></p>\n' % (style, case["agent"], caseId, text, case["duration"], case["started"])) ## Case Description, Expectation, Outcome, Case Closing Behavior ## f.write(' <p class="case_text_block case_desc"><b>Case Description</b><br/><br/>%s</p>\n' % case["description"]) f.write(' <p class="case_text_block case_expect"><b>Case Expectation</b><br/><br/>%s</p>\n' % case["expectation"]) f.write(""" <p class="case_text_block case_outcome"> <b>Case Outcome</b><br/><br/>%s<br/><br/> <i>Expected:</i><br/><span class="case_pickle">%s</span><br/><br/> <i>Observed:</i><br><span class="case_pickle">%s</span> </p>\n""" % (case.get("result", ""), self.limitString(case.get("expected", ""), FuzzingFactory.MAX_CASE_PICKLE_LEN), self.limitString(case.get("received", ""), FuzzingFactory.MAX_CASE_PICKLE_LEN))) f.write(' <p class="case_text_block case_closing_beh"><b>Case Closing Behavior</b><br/><br/>%s (%s)</p>\n' % (case.get("resultClose", ""), case.get("behaviorClose", ""))) f.write(" <br/><hr/>\n") ## Opening Handshake ## f.write(' <h2>Opening Handshake</h2>\n') f.write(' <pre class="http_dump">%s</pre>\n' % case["httpRequest"].strip()) f.write(' <pre class="http_dump">%s</pre>\n' % case["httpResponse"].strip()) f.write(" <br/><hr/>\n") ## Closing Behavior ## cbv = [("isServer", "True, iff I (the fuzzer) am a server, and the peer is a client."), ("closedByMe", "True, iff I have initiated closing handshake (that is, did send close first)."), ("failedByMe", "True, iff I have failed the WS connection (i.e. due to protocol error). Failing can be either by initiating closing handshake or brutal drop TCP."), ("droppedByMe", "True, iff I dropped the TCP connection."), ("wasClean", "True, iff full WebSockets closing handshake was performed (close frame sent and received) _and_ the server dropped the TCP (which is its responsibility)."), ("wasNotCleanReason", "When wasClean == False, the reason what happened."), ("wasServerConnectionDropTimeout", "When we are a client, and we expected the server to drop the TCP, but that didn't happen in time, this gets True."), ("wasOpenHandshakeTimeout", "When performing the opening handshake, but the peer did not finish in time, this gets True."), ("wasCloseHandshakeTimeout", "When we initiated a closing handshake, but the peer did not respond in time, this gets True."), ("localCloseCode", "The close code I sent in close frame (if any)."), ("localCloseReason", "The close reason I sent in close frame (if any)."), ("remoteCloseCode", "The close code the peer sent me in close frame (if any)."), ("remoteCloseReason", "The close reason the peer sent me in close frame (if any).") ] f.write(' <h2>Closing Behavior</h2>\n') f.write(' <table>\n') f.write(' <tr class="stats_header"><td>Key</td><td class="left">Value</td><td class="left">Description</td></tr>\n') for c in cbv: f.write(' <tr class="stats_row"><td>%s</td><td class="left">%s</td><td class="left">%s</td></tr>\n' % (c[0], case[c[0]], c[1])) f.write(' </table>') f.write(" <br/><hr/>\n") ## Wire Statistics ## f.write(' <h2>Wire Statistics</h2>\n') if not case["createStats"]: f.write(' <p style="margin-left: 40px; color: #f00;"><i>Statistics for octets/frames disabled!</i></p>\n') else: ## octet stats ## for statdef in [("Received", case["rxOctetStats"]), ("Transmitted", case["txOctetStats"])]: f.write(' <h3>Octets %s by Chop Size</h3>\n' % statdef[0]) f.write(' <table>\n') stats = statdef[1] total_cnt = 0 total_octets = 0 f.write(' <tr class="stats_header"><td>Chop Size</td><td>Count</td><td>Octets</td></tr>\n') for s in sorted(stats.keys()): f.write(' <tr class="stats_row"><td>%d</td><td>%d</td><td>%d</td></tr>\n' % (s, stats[s], s * stats[s])) total_cnt += stats[s] total_octets += s * stats[s] f.write(' <tr class="stats_total"><td>Total</td><td>%d</td><td>%d</td></tr>\n' % (total_cnt, total_octets)) f.write(' </table>\n') ## frame stats ## for statdef in [("Received", case["rxFrameStats"]), ("Transmitted", case["txFrameStats"])]: f.write(' <h3>Frames %s by Opcode</h3>\n' % statdef[0]) f.write(' <table>\n') stats = statdef[1] total_cnt = 0 f.write(' <tr class="stats_header"><td>Opcode</td><td>Count</td></tr>\n') for s in sorted(stats.keys()): f.write(' <tr class="stats_row"><td>%d</td><td>%d</td></tr>\n' % (s, stats[s])) total_cnt += stats[s] f.write(' <tr class="stats_total"><td>Total</td><td>%d</td></tr>\n' % (total_cnt)) f.write(' </table>\n') f.write(" <br/><hr/>\n") ## Wire Log ## f.write(' <h2>Wire Log</h2>\n') if not case["createWirelog"]: f.write(' <p style="margin-left: 40px; color: #f00;"><i>Wire log after handshake disabled!</i></p>\n') f.write(' <div id="wirelog">\n') wl = case["wirelog"] i = 0 for t in wl: if t[0] == "RO": prefix = "RX OCTETS" css_class = "wirelog_rx_octets" elif t[0] == "TO": prefix = "TX OCTETS" if t[2]: css_class = "wirelog_tx_octets_sync" else: css_class = "wirelog_tx_octets" elif t[0] == "RF": prefix = "RX FRAME " css_class = "wirelog_rx_frame" elif t[0] == "TF": prefix = "TX FRAME " if t[8] or t[7] is not None: css_class = "wirelog_tx_frame_sync" else: css_class = "wirelog_tx_frame" elif t[0] in ["CT", "CTE", "KL", "KLE", "TI", "TIE", "WLM"]: pass else: raise Exception("logic error (unrecognized wire log row type %s - row %s)" % (t[0], str(t))) if t[0] in ["RO", "TO", "RF", "TF"]: payloadLen = t[1][0] lines = textwrap.wrap(t[1][1], 100) if t[0] in ["RO", "TO"]: if len(lines) > 0: f.write(' <pre class="%s">%03d %s: %s</pre>\n' % (css_class, i, prefix, lines[0])) for ll in lines[1:]: f.write(' <pre class="%s">%s%s</pre>\n' % (css_class, (2+4+len(prefix))*" ", ll)) else: if t[0] == "RF": if t[6]: mmask = binascii.b2a_hex(t[6]) else: mmask = str(t[6]) f.write(' <pre class="%s">%03d %s: OPCODE=%s, FIN=%s, RSV=%s, PAYLOAD-LEN=%s, MASKED=%s, MASK=%s</pre>\n' % (css_class, i, prefix, str(t[2]), str(t[3]), str(t[4]), payloadLen, str(t[5]), mmask)) elif t[0] == "TF": f.write(' <pre class="%s">%03d %s: OPCODE=%s, FIN=%s, RSV=%s, PAYLOAD-LEN=%s, MASK=%s, PAYLOAD-REPEAT-LEN=%s, CHOPSIZE=%s, SYNC=%s</pre>\n' % (css_class, i, prefix, str(t[2]), str(t[3]), str(t[4]), payloadLen, str(t[5]), str(t[6]), str(t[7]), str(t[8]))) else: raise Exception("logic error") for ll in lines: f.write(' <pre class="%s">%s%s</pre>\n' % (css_class, (2+4+len(prefix))*" ", ll.encode('utf8'))) elif t[0] == "WLM": if t[1]: f.write(' <pre class="wirelog_delay">%03d WIRELOG ENABLED</pre>\n' % (i)) else: f.write(' <pre class="wirelog_delay">%03d WIRELOG DISABLED</pre>\n' % (i)) elif t[0] == "CT": f.write(' <pre class="wirelog_delay">%03d DELAY %f sec for TAG %s</pre>\n' % (i, t[1], t[2])) elif t[0] == "CTE": f.write(' <pre class="wirelog_delay">%03d DELAY TIMEOUT on TAG %s</pre>\n' % (i, t[1])) elif t[0] == "KL": f.write(' <pre class="wirelog_kill_after">%03d FAIL CONNECTION AFTER %f sec</pre>\n' % (i, t[1])) elif t[0] == "KLE": f.write(' <pre class="wirelog_kill_after">%03d FAILING CONNECTION</pre>\n' % (i)) elif t[0] == "TI": f.write(' <pre class="wirelog_kill_after">%03d CLOSE CONNECTION AFTER %f sec</pre>\n' % (i, t[1])) elif t[0] == "TIE": f.write(' <pre class="wirelog_kill_after">%03d CLOSING CONNECTION</pre>\n' % (i)) else: raise Exception("logic error (unrecognized wire log row type %s - row %s)" % (t[0], str(t))) i += 1 if case["droppedByMe"]: f.write(' <pre class="wirelog_tcp_closed_by_me">%03d TCP DROPPED BY ME</pre>\n' % i) else: f.write(' <pre class="wirelog_tcp_closed_by_peer">%03d TCP DROPPED BY PEER</pre>\n' % i) f.write(' </div>\n') f.write(" <br/><hr/>\n") ## end of HTML ## f.write(" </body>\n") f.write("</html>\n") ## close created HTML file and return filename ## f.close() return report_filename class FuzzingServerProtocol(FuzzingProtocol, WebSocketServerProtocol): def connectionMade(self): WebSocketServerProtocol.connectionMade(self) FuzzingProtocol.connectionMade(self) def connectionLost(self, reason): WebSocketServerProtocol.connectionLost(self, reason) FuzzingProtocol.connectionLost(self, reason) def onConnect(self, connectionRequest): if self.debug: log.msg("connection received from %s speaking WebSockets protocol %d - upgrade request for host '%s', path '%s', params %s, origin '%s', protocols %s, headers %s" % (connectionRequest.peerstr, connectionRequest.version, connectionRequest.host, connectionRequest.path, str(connectionRequest.params), connectionRequest.origin, str(connectionRequest.protocols), str(connectionRequest.headers))) if connectionRequest.params.has_key("agent"): if len(connectionRequest.params["agent"]) > 1: raise Exception("multiple agents specified") self.caseAgent = connectionRequest.params["agent"][0] else: #raise Exception("no agent specified") self.caseAgent = None if connectionRequest.params.has_key("case"): if len(connectionRequest.params["case"]) > 1: raise Exception("multiple test cases specified") try: self.case = int(connectionRequest.params["case"][0]) except: raise Exception("invalid test case ID %s" % connectionRequest.params["case"][0]) if self.case: if self.case >= 1 and self.case <= len(self.factory.specCases): self.Case = self.factory.CaseSet.CasesById[self.factory.specCases[self.case - 1]] if connectionRequest.path == "/runCase": self.runCase = self.Case(self) else: raise Exception("case %s not found" % self.case) if connectionRequest.path == "/runCase": if not self.runCase: raise Exception("need case to run") if not self.caseAgent: raise Exception("need agent to run case") self.caseStarted = utcnow() print "Running test case ID %s for agent %s from peer %s" % (self.factory.CaseSet.caseClasstoId(self.Case), self.caseAgent, connectionRequest.peerstr) elif connectionRequest.path == "/updateReports": if not self.caseAgent: raise Exception("need agent to update reports for") print "Updating reports, requested by peer %s" % connectionRequest.peerstr elif connectionRequest.path == "/getCaseInfo": if not self.Case: raise Exception("need case to get info") elif connectionRequest.path == "/getCaseStatus": if not self.Case: raise Exception("need case to get status") if not self.caseAgent: raise Exception("need agent to get status") elif connectionRequest.path == "/getCaseCount": pass else: print "Entering direct command mode for peer %s" % connectionRequest.peerstr self.path = connectionRequest.path return None class FuzzingServerFactory(FuzzingFactory, WebSocketServerFactory): protocol = FuzzingServerProtocol def __init__(self, spec, debug = False): WebSocketServerFactory.__init__(self, debug = debug, debugCodePaths = debug) FuzzingFactory.__init__(self, spec.get("outdir", "./reports/clients/")) # needed for wire log / stats self.logOctets = True self.logFrames = True ## WebSocket session parameters ## self.setSessionParameters(url = spec["url"], protocols = spec.get("protocols", []), server = "AutobahnTestSuite/%s-%s" % (autobahntestsuite.version, autobahn.version)) ## WebSocket protocol options ## self.setProtocolOptions(**spec.get("options", {})) self.spec = spec self.CaseSet = CaseSet(CaseBasename, Cases, CaseCategories, CaseSubCategories) self.specCases = self.CaseSet.parseSpecCases(self.spec) self.specExcludeAgentCases = self.CaseSet.parseExcludeAgentCases(self.spec) print "Autobahn WebSockets %s/%s Fuzzing Server (Port %d%s)" % (autobahntestsuite.version, autobahn.version, self.port, ' TLS' if self.isSecure else '') print "Ok, will run %d test cases for any clients connecting" % len(self.specCases) print "Cases = %s" % str(self.specCases) class FuzzingClientProtocol(FuzzingProtocol, WebSocketClientProtocol): def connectionMade(self): FuzzingProtocol.connectionMade(self) WebSocketClientProtocol.connectionMade(self) self.caseStarted = utcnow() print "Running test case ID %s for agent %s from peer %s" % (self.factory.CaseSet.caseClasstoId(self.Case), self.caseAgent, self.peerstr) def connectionLost(self, reason): WebSocketClientProtocol.connectionLost(self, reason) FuzzingProtocol.connectionLost(self, reason) class FuzzingClientFactory(FuzzingFactory, WebSocketClientFactory): protocol = FuzzingClientProtocol def __init__(self, spec, debug = False): WebSocketClientFactory.__init__(self, debug = debug, debugCodePaths = debug) FuzzingFactory.__init__(self, spec.get("outdir", "./reports/servers/")) # needed for wire log / stats self.logOctets = True self.logFrames = True self.spec = spec self.CaseSet = CaseSet(CaseBasename, Cases, CaseCategories, CaseSubCategories) self.specCases = self.CaseSet.parseSpecCases(self.spec) self.specExcludeAgentCases = self.CaseSet.parseExcludeAgentCases(self.spec) print "Autobahn Fuzzing WebSocket Client (Autobahn Version %s / Autobahn Testsuite Version %s)" % (autobahntestsuite.version, autobahn.version) print "Ok, will run %d test cases against %d servers" % (len(self.specCases), len(spec["servers"])) print "Cases = %s" % str(self.specCases) print "Servers = %s" % str([x["url"] + "@" + x["agent"] for x in spec["servers"]]) self.currServer = -1 if self.nextServer(): if self.nextCase(): connectWS(self) def buildProtocol(self, addr): proto = FuzzingClientProtocol() proto.factory = self proto.caseAgent = self.agent proto.case = self.currentCaseIndex proto.Case = Cases[self.currentCaseIndex - 1] proto.runCase = proto.Case(proto) return proto def nextServer(self): self.currSpecCase = -1 self.currServer += 1 if self.currServer < len(self.spec["servers"]): ## run tests for next server ## server = self.spec["servers"][self.currServer] ## agent (=server) string for reports ## self.agent = server.get("agent", "UnknownServer") ## WebSocket session parameters ## self.setSessionParameters(url = server["url"], origin = server.get("origin", None), protocols = server.get("protocols", []), useragent = "AutobahnTestSuite/%s-%s" % (autobahntestsuite.version, autobahn.version)) ## WebSocket protocol options ## self.resetProtocolOptions() # reset to defaults self.setProtocolOptions(**self.spec.get("options", {})) # set spec global options self.setProtocolOptions(**server.get("options", {})) # set server specific options return True else: return False def nextCase(self): self.currSpecCase += 1 if self.currSpecCase < len(self.specCases): self.currentCaseId = self.specCases[self.currSpecCase] self.currentCaseIndex = self.CaseSet.CasesIndices[self.currentCaseId] return True else: return False def clientConnectionLost(self, connector, reason): if self.nextCase(): connector.connect() else: if self.nextServer(): if self.nextCase(): connectWS(self) else: self.createReports() reactor.stop() def clientConnectionFailed(self, connector, reason): print "Connection to %s failed (%s)" % (self.spec["servers"][self.currServer]["url"], reason.getErrorMessage()) if self.nextServer(): if self.nextCase(): connectWS(self) else: self.createReports() reactor.stop()
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import keyword_only from pyspark.sql import DataFrame from pyspark.ml.util import * from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaParams from pyspark.ml.param.shared import * __all__ = ["FPGrowth", "FPGrowthModel", "PrefixSpan"] class _FPGrowthParams(HasPredictionCol): """ Params for :py:class:`FPGrowth` and :py:class:`FPGrowthModel`. .. versionadded:: 3.0.0 """ itemsCol = Param(Params._dummy(), "itemsCol", "items column name", typeConverter=TypeConverters.toString) minSupport = Param( Params._dummy(), "minSupport", "Minimal support level of the frequent pattern. [0.0, 1.0]. " + "Any pattern that appears more than (minSupport * size-of-the-dataset) " + "times will be output in the frequent itemsets.", typeConverter=TypeConverters.toFloat) numPartitions = Param( Params._dummy(), "numPartitions", "Number of partitions (at least 1) used by parallel FP-growth. " + "By default the param is not set, " + "and partition number of the input dataset is used.", typeConverter=TypeConverters.toInt) minConfidence = Param( Params._dummy(), "minConfidence", "Minimal confidence for generating Association Rule. [0.0, 1.0]. " + "minConfidence will not affect the mining for frequent itemsets, " + "but will affect the association rules generation.", typeConverter=TypeConverters.toFloat) def __init__(self, *args): super(_FPGrowthParams, self).__init__(*args) self._setDefault(minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction") def getItemsCol(self): """ Gets the value of itemsCol or its default value. """ return self.getOrDefault(self.itemsCol) def getMinSupport(self): """ Gets the value of minSupport or its default value. """ return self.getOrDefault(self.minSupport) def getNumPartitions(self): """ Gets the value of :py:attr:`numPartitions` or its default value. """ return self.getOrDefault(self.numPartitions) def getMinConfidence(self): """ Gets the value of minConfidence or its default value. """ return self.getOrDefault(self.minConfidence) class FPGrowthModel(JavaModel, _FPGrowthParams, JavaMLWritable, JavaMLReadable): """ Model fitted by FPGrowth. .. versionadded:: 2.2.0 """ @since("3.0.0") def setItemsCol(self, value): """ Sets the value of :py:attr:`itemsCol`. """ return self._set(itemsCol=value) @since("3.0.0") def setMinConfidence(self, value): """ Sets the value of :py:attr:`minConfidence`. """ return self._set(minConfidence=value) @since("3.0.0") def setPredictionCol(self, value): """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) @property @since("2.2.0") def freqItemsets(self): """ DataFrame with two columns: * `items` - Itemset of the same type as the input column. * `freq` - Frequency of the itemset (`LongType`). """ return self._call_java("freqItemsets") @property @since("2.2.0") def associationRules(self): """ DataFrame with four columns: * `antecedent` - Array of the same type as the input column. * `consequent` - Array of the same type as the input column. * `confidence` - Confidence for the rule (`DoubleType`). * `lift` - Lift for the rule (`DoubleType`). """ return self._call_java("associationRules") class FPGrowth(JavaEstimator, _FPGrowthParams, JavaMLWritable, JavaMLReadable): r""" A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in Li et al., PFP: Parallel FP-Growth for Query Recommendation [LI2008]_. PFP distributes computation in such a way that each worker executes an independent group of mining tasks. The FP-Growth algorithm is described in Han et al., Mining frequent patterns without candidate generation [HAN2000]_ .. [LI2008] https://doi.org/10.1145/1454008.1454027 .. [HAN2000] https://doi.org/10.1145/335191.335372 .. note:: null values in the feature column are ignored during fit(). .. note:: Internally `transform` `collects` and `broadcasts` association rules. >>> from pyspark.sql.functions import split >>> data = (spark.read ... .text("data/mllib/sample_fpgrowth.txt") ... .select(split("value", "\s+").alias("items"))) >>> data.show(truncate=False) +------------------------+ |items | +------------------------+ |[r, z, h, k, p] | |[z, y, x, w, v, u, t, s]| |[s, x, o, n, r] | |[x, z, y, m, t, s, q, e]| |[z] | |[x, z, y, r, q, t, p] | +------------------------+ ... >>> fp = FPGrowth(minSupport=0.2, minConfidence=0.7) >>> fpm = fp.fit(data) >>> fpm.setPredictionCol("newPrediction") FPGrowthModel... >>> fpm.freqItemsets.show(5) +---------+----+ | items|freq| +---------+----+ | [s]| 3| | [s, x]| 3| |[s, x, z]| 2| | [s, z]| 2| | [r]| 3| +---------+----+ only showing top 5 rows ... >>> fpm.associationRules.show(5) +----------+----------+----------+----+------------------+ |antecedent|consequent|confidence|lift| support| +----------+----------+----------+----+------------------+ | [t, s]| [y]| 1.0| 2.0|0.3333333333333333| | [t, s]| [x]| 1.0| 1.5|0.3333333333333333| | [t, s]| [z]| 1.0| 1.2|0.3333333333333333| | [p]| [r]| 1.0| 2.0|0.3333333333333333| | [p]| [z]| 1.0| 1.2|0.3333333333333333| +----------+----------+----------+----+------------------+ only showing top 5 rows ... >>> new_data = spark.createDataFrame([(["t", "s"], )], ["items"]) >>> sorted(fpm.transform(new_data).first().newPrediction) ['x', 'y', 'z'] >>> model_path = temp_path + "/fpm_model" >>> fpm.save(model_path) >>> model2 = FPGrowthModel.load(model_path) >>> fpm.transform(data).take(1) == model2.transform(data).take(1) True .. versionadded:: 2.2.0 """ @keyword_only def __init__(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ __init__(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ super(FPGrowth, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.fpm.FPGrowth", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.2.0") def setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ kwargs = self._input_kwargs return self._set(**kwargs) def setItemsCol(self, value): """ Sets the value of :py:attr:`itemsCol`. """ return self._set(itemsCol=value) def setMinSupport(self, value): """ Sets the value of :py:attr:`minSupport`. """ return self._set(minSupport=value) def setNumPartitions(self, value): """ Sets the value of :py:attr:`numPartitions`. """ return self._set(numPartitions=value) def setMinConfidence(self, value): """ Sets the value of :py:attr:`minConfidence`. """ return self._set(minConfidence=value) def setPredictionCol(self, value): """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) def _create_model(self, java_model): return FPGrowthModel(java_model) class PrefixSpan(JavaParams): """ A parallel PrefixSpan algorithm to mine frequent sequential patterns. The PrefixSpan algorithm is described in J. Pei, et al., PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth (see <a href="https://doi.org/10.1109/ICDE.2001.914830">here</a>). This class is not yet an Estimator/Transformer, use :py:func:`findFrequentSequentialPatterns` method to run the PrefixSpan algorithm. @see <a href="https://en.wikipedia.org/wiki/Sequential_Pattern_Mining">Sequential Pattern Mining (Wikipedia)</a> >>> from pyspark.ml.fpm import PrefixSpan >>> from pyspark.sql import Row >>> df = sc.parallelize([Row(sequence=[[1, 2], [3]]), ... Row(sequence=[[1], [3, 2], [1, 2]]), ... Row(sequence=[[1, 2], [5]]), ... Row(sequence=[[6]])]).toDF() >>> prefixSpan = PrefixSpan() >>> prefixSpan.getMaxLocalProjDBSize() 32000000 >>> prefixSpan.getSequenceCol() 'sequence' >>> prefixSpan.setMinSupport(0.5) PrefixSpan... >>> prefixSpan.setMaxPatternLength(5) PrefixSpan... >>> prefixSpan.findFrequentSequentialPatterns(df).sort("sequence").show(truncate=False) +----------+----+ |sequence |freq| +----------+----+ |[[1]] |3 | |[[1], [3]]|2 | |[[2]] |3 | |[[2, 1]] |3 | |[[3]] |2 | +----------+----+ ... .. versionadded:: 2.4.0 """ minSupport = Param(Params._dummy(), "minSupport", "The minimal support level of the " + "sequential pattern. Sequential pattern that appears more than " + "(minSupport * size-of-the-dataset) times will be output. Must be >= 0.", typeConverter=TypeConverters.toFloat) maxPatternLength = Param(Params._dummy(), "maxPatternLength", "The maximal length of the sequential pattern. Must be > 0.", typeConverter=TypeConverters.toInt) maxLocalProjDBSize = Param(Params._dummy(), "maxLocalProjDBSize", "The maximum number of items (including delimiters used in the " + "internal storage format) allowed in a projected database before " + "local processing. If a projected database exceeds this size, " + "another iteration of distributed prefix growth is run. " + "Must be > 0.", typeConverter=TypeConverters.toInt) sequenceCol = Param(Params._dummy(), "sequenceCol", "The name of the sequence column in " + "dataset, rows with nulls in this column are ignored.", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, sequenceCol="sequence"): """ __init__(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, \ sequenceCol="sequence") """ super(PrefixSpan, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.fpm.PrefixSpan", self.uid) self._setDefault(minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, sequenceCol="sequence") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.4.0") def setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, sequenceCol="sequence"): """ setParams(self, minSupport=0.1, maxPatternLength=10, maxLocalProjDBSize=32000000, \ sequenceCol="sequence") """ kwargs = self._input_kwargs return self._set(**kwargs) @since("3.0.0") def setMinSupport(self, value): """ Sets the value of :py:attr:`minSupport`. """ return self._set(minSupport=value) @since("3.0.0") def getMinSupport(self): """ Gets the value of minSupport or its default value. """ return self.getOrDefault(self.minSupport) @since("3.0.0") def setMaxPatternLength(self, value): """ Sets the value of :py:attr:`maxPatternLength`. """ return self._set(maxPatternLength=value) @since("3.0.0") def getMaxPatternLength(self): """ Gets the value of maxPatternLength or its default value. """ return self.getOrDefault(self.maxPatternLength) @since("3.0.0") def setMaxLocalProjDBSize(self, value): """ Sets the value of :py:attr:`maxLocalProjDBSize`. """ return self._set(maxLocalProjDBSize=value) @since("3.0.0") def getMaxLocalProjDBSize(self): """ Gets the value of maxLocalProjDBSize or its default value. """ return self.getOrDefault(self.maxLocalProjDBSize) @since("3.0.0") def setSequenceCol(self, value): """ Sets the value of :py:attr:`sequenceCol`. """ return self._set(sequenceCol=value) @since("3.0.0") def getSequenceCol(self): """ Gets the value of sequenceCol or its default value. """ return self.getOrDefault(self.sequenceCol) @since("2.4.0") def findFrequentSequentialPatterns(self, dataset): """ Finds the complete set of frequent sequential patterns in the input sequences of itemsets. :param dataset: A dataframe containing a sequence column which is `ArrayType(ArrayType(T))` type, T is the item type for the input dataset. :return: A `DataFrame` that contains columns of sequence and corresponding frequency. The schema of it will be: - `sequence: ArrayType(ArrayType(T))` (T is the item type) - `freq: Long` .. versionadded:: 2.4.0 """ self._transfer_params_to_java() jdf = self._java_obj.findFrequentSequentialPatterns(dataset._jdf) return DataFrame(jdf, dataset.sql_ctx) if __name__ == "__main__": import doctest import pyspark.ml.fpm from pyspark.sql import SparkSession globs = pyspark.ml.fpm.__dict__.copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder\ .master("local[2]")\ .appName("ml.fpm tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark import tempfile temp_path = tempfile.mkdtemp() globs['temp_path'] = temp_path try: (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() finally: from shutil import rmtree try: rmtree(temp_path) except OSError: pass if failure_count: sys.exit(-1)
# Block Breaker Game # Chapter 9 import sys, time, random, math, pygame from pygame.locals import * from MyLibrary import * levels = ( (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), ) # this function increments the level def goto_next_level(): global level, levels level += 1 if level > len(levels) - 1: level = 0 load_level() # this function updates the blocks in play def update_blocks(): global block_group, waiting if len(block_group) == 0: # all blocks gone? goto_next_level() waiting = True block_group.update(ticks, 50) # this function sets up the blocks for the level def load_level(): global level, block, block_image, block_group, levels block_image = pygame.image.load("blocks.png").convert_alpha() block_group.empty() # reset block group for bx in range(0, 12): for by in range(0, 10): block = MySprite() block.set_image(block_image, 58, 28, 4) x = 40 + bx * (block.frame_width + 1) y = 60 + by * (block.frame_height + 1) block.position = x, y # read blocks from level data num = levels[level][by * 12 + bx] block.first_frame = num - 1 block.last_frame = num - 1 if num > 0: # 0 is blank block_group.add(block) print(len(block_group)) # this function initializes the game def game_init(): global screen, font, timer global paddle_group, block_group, ball_group global paddle, block_image, block, ball pygame.init() screen = pygame.display.set_mode((800, 600)) pygame.display.set_caption("Block Breaker Game") font = pygame.font.Font(None, 36) pygame.mouse.set_visible(False) timer = pygame.time.Clock() # create sprite groups paddle_group = pygame.sprite.Group() block_group = pygame.sprite.Group() ball_group = pygame.sprite.Group() # create the paddle sprite paddle = MySprite() paddle.load("paddle.png") paddle.position = 400, 540 paddle_group.add(paddle) # create ball sprite ball = MySprite() ball.load("ball.png") ball.position = 400, 300 ball_group.add(ball) # this function moves the paddle def move_paddle(): global movex, movey, keys, waiting paddle_group.update(ticks, 50) if keys[K_SPACE]: if waiting: waiting = False reset_ball() elif keys[K_LEFT]: paddle.velocity.x = -10.0 elif keys[K_RIGHT]: paddle.velocity.x = 10.0 else: if movex < -2: paddle.velocity.x = movex elif movex > 2: paddle.velocity.x = movex else: paddle.velocity.x = 0 paddle.X += paddle.velocity.x if paddle.X < 0: paddle.X = 0 elif paddle.X > 710: paddle.X = 710 # this function resets the ball's velocity def reset_ball(): ball.velocity = Point(4.5, -7.0) # this function moves the ball def move_ball(): global waiting, ball, game_over, lives # move the ball ball_group.update(ticks, 50) if waiting: ball.X = paddle.X + 40 ball.Y = paddle.Y - 20 ball.X += ball.velocity.x ball.Y += ball.velocity.y if ball.X < 0: ball.X = 0 ball.velocity.x *= -1 elif ball.X > 780: ball.X = 780 ball.velocity.x *= -1 if ball.Y < 0: ball.Y = 0 ball.velocity.y *= -1 elif ball.Y > 580: # missed paddle waiting = True lives -= 1 if lives < 1: game_over = True # this function test for collision between ball and paddle def collision_ball_paddle(): if pygame.sprite.collide_rect(ball, paddle): ball.velocity.y = -abs(ball.velocity.y) bx = ball.X + 8 by = ball.Y + 8 px = paddle.X + paddle.frame_width / 2 py = paddle.Y + paddle.frame_height / 2 if bx < px: # left side of paddle? ball.velocity.x = -abs(ball.velocity.x) else: # right side of paddle? ball.velocity.x = abs(ball.velocity.x) # this function tests for collision between ball and blocks def collision_ball_blocks(): global score, block_group, ball hit_block = pygame.sprite.spritecollideany(ball, block_group) if hit_block != None: score += 10 block_group.remove(hit_block) bx = ball.X + 8 by = ball.Y + 8 # hit middle of block from above or below? if hit_block.X + 5 < bx < hit_block.X + hit_block.frame_width - 5: if by < hit_block.Y + hit_block.frame_height / 2: # above? ball.velocity.y = -abs(ball.velocity.y) else: # below? ball.velocity.y = abs(ball.velocity.y) # hit left side of block? elif bx < hit_block.X + 5: ball.velocity.x = -abs(ball.velocity.x) # hit right side of block? elif bx > hit_block.X + hit_block.frame_width - 5: ball.velocity.x = abs(ball.velocity.x) # handle any other situation else: ball.velocity.y *= -1 # main program begins game_init() game_over = False waiting = True score = 0 lives = 3 level = 0 load_level() # repeating loop while True: timer.tick(30) ticks = pygame.time.get_ticks() # handle events for event in pygame.event.get(): if event.type == QUIT: sys.exit() elif event.type == MOUSEMOTION: movex, movey = event.rel elif event.type == MOUSEBUTTONUP: if waiting: waiting = False reset_ball() elif event.type == KEYUP: if event.key == K_RETURN: goto_next_level() # handle key presses keys = pygame.key.get_pressed() if keys[K_ESCAPE]: sys.exit() # do updates if not game_over: update_blocks() move_paddle() move_ball() collision_ball_paddle() collision_ball_blocks() # do drawing screen.fill((50, 50, 100)) block_group.draw(screen) ball_group.draw(screen) paddle_group.draw(screen) print_text(font, 0, 0, "SCORE " + str(score)) print_text(font, 200, 0, "LEVEL " + str(level + 1)) print_text(font, 400, 0, "BLOCKS " + str(len(block_group))) print_text(font, 670, 0, "BALLS " + str(lives)) if game_over: print_text(font, 300, 380, "G A M E O V E R") pygame.display.update()
#!/usr/bin/python ''' The MIT License (MIT) Copyright (c) 2016 Charles Lin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' #Main method run script for processing of THMYCN data #folder is changed to prevent any horrific genome clashing #See README for additional information on downloading and installing dependencies #========================================================================== #=============================DEPENDENCIES================================= #========================================================================== import sys, os # Get the script's full local path whereAmI = os.path.dirname(os.path.realpath(__file__)) pipeline_dir = '/storage/cylin/home/cl6/pipeline/' sys.path.append(whereAmI) sys.path.append(pipeline_dir) import pipeline_dfci import utils import string import numpy import os import re from collections import defaultdict import subprocess #========================================================================== #============================PARAMETERS==================================== #========================================================================== projectName = 'mycn' genome ='mm9' annotFile = '%s/annotation/%s_refseq.ucsc' % (pipeline_dir,genome) #project folders projectFolder = '/storage/cylin/grail/projects/mycn_resub/%s/thmycn/' % (projectName) #PATH TO YOUR PROJECT FOLDER hg19_projectFolder ='/storage/cylin/grail/projects/mycn_resub/%s/' % (projectName) #PATH TO YOUR PROJECT FOLDER projectFolder = utils.formatFolder(projectFolder,True) #standard folder names gffFolder ='%sgff_mm9/' % (projectFolder) macsFolder = '%smacsFolder_mm9/' % (projectFolder) macsEnrichedFolder = '%smacsEnriched_mm9/' % (projectFolder) mappedEnrichedFolder = '%smappedEnriched_mm9/' % (projectFolder) mappedFolder = '%smappedFolder_mm9/' % (projectFolder) wiggleFolder = '%swiggles_mm9/' % (projectFolder) metaFolder = '%smeta_mm9/' % (projectFolder) metaRoseFolder = '%smeta_rose_mm9/' % (projectFolder) roseFolder = '%srose_mm9/' % (projectFolder) fastaFolder = '%sfasta_mm9/' % (projectFolder) bedFolder = '%sbed_mm9/' % (projectFolder) figuresFolder = '%sfigures_mm9/' % (projectFolder) geneListFolder = '%sgeneListFolder_mm9/' % (projectFolder) bedFolder = '%sbeds_mm9/' % (projectFolder) signalFolder = '%ssignalTables_mm9/' % (projectFolder) tableFolder = '%stables_mm9/' % (projectFolder) genePlotFolder = '%sgene_plot_mm9/' % (projectFolder) #mask Files #genomeDirectory genomeDirectory = '/grail/genomes/Mus_musculus/UCSC/mm9/Sequence/Chromosomes/' #making folders folderList = [gffFolder,macsFolder,macsEnrichedFolder,mappedEnrichedFolder,mappedFolder,wiggleFolder,metaFolder,metaRoseFolder,roseFolder,fastaFolder,figuresFolder,geneListFolder,bedFolder,signalFolder,tableFolder,genePlotFolder] for folder in folderList: pipeline_dfci.formatFolder(folder,True) #========================================================================== #============================LIST OF DATAFILES============================= #========================================================================== #this project will utilize multiple datatables #data tables are organized largely by type/system #some data tables overlap for ease of analysis #ChIP-Seq mouse_dataFile = '%sdata_tables_mm9/THMYCN_TABLE.txt' % (projectFolder) #========================================================================== #===========================MAIN METHOD==================================== #========================================================================== def main(): print('main analysis for MYCN project') print('changing directory to project folder') os.chdir(projectFolder) print('\n\n') print('#======================================================================') print('#======================I, LOADING DATA ANNOTATION======================') print('#======================================================================') print('\n\n') #This section sanity checks each data table and makes sure both bam and .bai files are accessible #for ChIP-Seq pipeline_dfci.summary(mouse_dataFile) print('\n\n') print('#======================================================================') print('#============II. MAKING A BED OUT OF HG19 FIGURE REGIONS===============') print('#======================================================================') print('\n\n') hg19_gff_path = '%sgff/HG19_NB_FIGURE_GENES.gff' % (hg19_projectFolder) hg19_gff = utils.parseTable(hg19_gff_path,'\t') print(hg19_gff) hg19_bed = utils.gffToBed(hg19_gff) print(hg19_bed) hg19_bed_path = '%sbeds/HG19_NB_FIGURE_GENES.bed' % (hg19_projectFolder) utils.unParseTable(hg19_bed,hg19_bed_path,'\t') #need to manually lift this over to mm9 #https://genome.ucsc.edu/cgi-bin/hgLiftOver mm9_bed_path = '%sMM9_NB_FIGURE_GENES_LIFTOVER.bed' % (bedFolder) mm9_gff_path = '%sMM9_NB_FIGURE_GENES_LIFTOVER.gff' % (gffFolder) mm9_gff = utils.bedToGFF(mm9_bed_path) #now add some additional manual regions added_gff_regions = [ ['chr12','TWIST1_ENHANCER','TWIST1_ENHANCER',34639818,34656263,'','-','','TWIST1_ENHANCER'], ['chr11','NPM1_PROMOTER_2','NPM1_PROMOTER_2',33049820,33065883,'','+','','NPM1_PROMOTER_2'], ['chr6','GATA2_ENHANCER','GATA2_ENHANCER',88135802,88159867,'','+','','GATA2_ENHANCER'], ['chr7','PHOX2A','PHOX2A',108964211,108974610,'','+','','PHOX2A'], ['chr15','LET7B','LET7B',85497440,85538754,'','+','','LET7B',], ['chr10','LIN28B','LIN28B',45161233,45217227,'','-','','LIN28B'], ] mm9_gff_full = mm9_gff+added_gff_regions utils.unParseTable(mm9_gff_full,mm9_gff_path,'\t') print('\n\n') print('#======================================================================') print('#=======================III. PLOTTING DATA IN MOUSE====================') print('#======================================================================') print('\n\n') #plot mouse regions plot_mouse_genes(mouse_dataFile,mm9_gff_path) #========================================================================== #===================SPECIFIC FUNCTIONS FOR ANALYSIS======================== #========================================================================== #specific functions written for this analysis #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~PLOTTING FOR SHEP ON SYSTEM~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def plot_mouse_genes(mouse_dataFile,mouse_figure_gff_path): ''' plots all varieties and iterations of tracks @ lifted over mouse regions ''' #first establish the plot folder plotFolder = utils.formatFolder('%sTHMYCN/' % (genePlotFolder),True) plot_prefix = 'MM9_NB_FIGURE_GENES_LIFTOVER' #we also have to set the extension properly between datasets #go by data file dataDict = pipeline_dfci.loadDataTable(mouse_dataFile) names_list = dataDict.keys() #initial check for consistency of read lengths # for name in names_list: # bam = utils.Bam(dataDict[name]['bam']) # read_length = bam.getReadLengths()[0] # bam_extension = 200-read_length # print('For dataset %s in %s using an extension of %s' % (name,mouse_dataFile,bam_extension)) # sys.exit() bam = utils.Bam(dataDict[names_list[0]]['bam']) read_length = bam.getReadLengths()[0] bam_extension = 200-read_length print('For datasets in %s using an extension of %s' % (mouse_dataFile,bam_extension)) #first do individuals for plot_group in ['_MYCN','H3K27AC']: plotList = [name for name in dataDict.keys() if name.upper().count(plot_group) > 0] print(plotList) if plot_group == '_MYCN': plotName = '%s_THMYCN%s' % (plot_prefix,plot_group) else: plotName = '%s_THMYCN_%s' % (plot_prefix,plot_group) print(plotName) pipeline_dfci.callBatchPlot(mouse_dataFile,mouse_figure_gff_path,plotName,plotFolder,plotList,uniform=True,bed ='',plotType= 'MULTIPLE',extension=bam_extension,multiPage = False,debug=False,nameString = '',rpm=True,rxGenome = '') #now as metas #we only have 3 good k27ac and 3 good mycn datasets plotList = ['CG_H3K27Ac', 'SCG_H3K27Ac', 'THMYCN1_H3K27Ac', 'THMYCN_139423_H3K27Ac', 'THMYCN_139076_H3K27Ac', 'THMYCN2_MYCN', 'THMYCN_139076_MYCN', 'THMYCN_139423_MYCN', ] groupString = 'CG_,SCG,H3K27AC,H3K27AC,H3K27AC,MYCN,MYCN,MYCN' plotName = '%s_THMYCN_META_RELATIVE' % (plot_prefix) pipeline_dfci.callBatchPlot(mouse_dataFile,mouse_figure_gff_path,plotName,plotFolder,plotList,uniform=False,bed ='',plotType= 'MERGE',extension=bam_extension,multiPage = False,debug=False,nameString = groupString,rpm=True,rxGenome = '') plotName = '%s_THMYCN_META_UNIFORM' % (plot_prefix) pipeline_dfci.callBatchPlot(mouse_dataFile,mouse_figure_gff_path,plotName,plotFolder,plotList,uniform=True,bed ='',plotType= 'MERGE',extension=bam_extension,multiPage = False,debug=False,nameString = groupString,rpm=True,rxGenome = '') #========================================================================== #==================================THE END================================= #========================================================================== if __name__=="__main__": main()
# The StringAccessor class defined below is an adaptation of the # pandas string methods source code (see pd.core.strings) # For reference, here is a copy of the pandas copyright notice: # (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team # All rights reserved. # Copyright (c) 2008-2011 AQR Capital Management, LLC # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the copyright holder nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import codecs import re import textwrap import numpy as np from .computation import apply_ufunc _cpython_optimized_encoders = ( "utf-8", "utf8", "latin-1", "latin1", "iso-8859-1", "mbcs", "ascii", ) _cpython_optimized_decoders = _cpython_optimized_encoders + ("utf-16", "utf-32") def _is_str_like(x): return isinstance(x, str) or isinstance(x, bytes) class StringAccessor: """Vectorized string functions for string-like arrays. Similar to pandas, fields can be accessed through the `.str` attribute for applicable DataArrays. >>> da = xr.DataArray(["some", "text", "in", "an", "array"]) >>> ds.str.len() <xarray.DataArray (dim_0: 5)> array([4, 4, 2, 2, 5]) Dimensions without coordinates: dim_0 """ __slots__ = ("_obj",) def __init__(self, obj): self._obj = obj def _apply(self, f, dtype=None): # TODO handling of na values ? if dtype is None: dtype = self._obj.dtype g = np.vectorize(f, otypes=[dtype]) return apply_ufunc(g, self._obj, dask="parallelized", output_dtypes=[dtype]) def len(self): """ Compute the length of each element in the array. Returns ------- lengths array : array of int """ return self._apply(len, dtype=int) def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def get(self, i): """ Extract element from indexable in each element in the array. Parameters ---------- i : int Position of element to extract. default : optional Value for out-of-range index. If not specified (None) defaults to an empty string. Returns ------- items : array of objects """ obj = slice(-1, None) if i == -1 else slice(i, i + 1) return self._apply(lambda x: x[obj]) def slice(self, start=None, stop=None, step=None): """ Slice substrings from each element in the array. Parameters ---------- start : int, optional Start position for slice operation. stop : int, optional Stop position for slice operation. step : int, optional Step size for slice operation. Returns ------- sliced strings : same type as values """ s = slice(start, stop, step) f = lambda x: x[s] return self._apply(f) def slice_replace(self, start=None, stop=None, repl=""): """ Replace a positional slice of a string with another value. Parameters ---------- start : int, optional Left index position to use for the slice. If not specified (None), the slice is unbounded on the left, i.e. slice from the start of the string. stop : int, optional Right index position to use for the slice. If not specified (None), the slice is unbounded on the right, i.e. slice until the end of the string. repl : str, optional String for replacement. If not specified, the sliced region is replaced with an empty string. Returns ------- replaced : same type as values """ repl = self._obj.dtype.type(repl) def f(x): if len(x[start:stop]) == 0: local_stop = start else: local_stop = stop y = self._obj.dtype.type("") if start is not None: y += x[:start] y += repl if stop is not None: y += x[local_stop:] return y return self._apply(f) def capitalize(self): """ Convert strings in the array to be capitalized. Returns ------- capitalized : same type as values """ return self._apply(lambda x: x.capitalize()) def lower(self): """ Convert strings in the array to lowercase. Returns ------- lowerd : same type as values """ return self._apply(lambda x: x.lower()) def swapcase(self): """ Convert strings in the array to be swapcased. Returns ------- swapcased : same type as values """ return self._apply(lambda x: x.swapcase()) def title(self): """ Convert strings in the array to titlecase. Returns ------- titled : same type as values """ return self._apply(lambda x: x.title()) def upper(self): """ Convert strings in the array to uppercase. Returns ------- uppered : same type as values """ return self._apply(lambda x: x.upper()) def isalnum(self): """ Check whether all characters in each string are alphanumeric. Returns ------- isalnum : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isalnum(), dtype=bool) def isalpha(self): """ Check whether all characters in each string are alphabetic. Returns ------- isalpha : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isalpha(), dtype=bool) def isdecimal(self): """ Check whether all characters in each string are decimal. Returns ------- isdecimal : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isdecimal(), dtype=bool) def isdigit(self): """ Check whether all characters in each string are digits. Returns ------- isdigit : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isdigit(), dtype=bool) def islower(self): """ Check whether all characters in each string are lowercase. Returns ------- islower : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.islower(), dtype=bool) def isnumeric(self): """ Check whether all characters in each string are numeric. Returns ------- isnumeric : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isnumeric(), dtype=bool) def isspace(self): """ Check whether all characters in each string are spaces. Returns ------- isspace : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isspace(), dtype=bool) def istitle(self): """ Check whether all characters in each string are titlecase. Returns ------- istitle : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.istitle(), dtype=bool) def isupper(self): """ Check whether all characters in each string are uppercase. Returns ------- isupper : array of bool Array of boolean values with the same shape as the original array. """ return self._apply(lambda x: x.isupper(), dtype=bool) def count(self, pat, flags=0): """ Count occurrences of pattern in each string of the array. This function is used to count the number of times a particular regex pattern is repeated in each of the string elements of the :class:`~xarray.DatArray`. Parameters ---------- pat : str Valid regular expression. flags : int, default 0, meaning no flags Flags for the `re` module. For a complete list, `see here <https://docs.python.org/3/howto/regex.html#compilation-flags>`_. Returns ------- counts : array of int """ pat = self._obj.dtype.type(pat) regex = re.compile(pat, flags=flags) f = lambda x: len(regex.findall(x)) return self._apply(f, dtype=int) def startswith(self, pat): """ Test if the start of each string element matches a pattern. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. Returns ------- startswith : array of bool An array of booleans indicating whether the given pattern matches the start of each string element. """ pat = self._obj.dtype.type(pat) f = lambda x: x.startswith(pat) return self._apply(f, dtype=bool) def endswith(self, pat): """ Test if the end of each string element matches a pattern. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. Returns ------- endswith : array of bool A Series of booleans indicating whether the given pattern matches the end of each string element. """ pat = self._obj.dtype.type(pat) f = lambda x: x.endswith(pat) return self._apply(f, dtype=bool) def pad(self, width, side="left", fillchar=" "): """ Pad strings in the array up to width. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with character defined in `fillchar`. side : {'left', 'right', 'both'}, default 'left' Side from which to fill resulting string. fillchar : str, default ' ' Additional character for filling, default is whitespace. Returns ------- filled : same type as values Array with a minimum number of char in each element. """ width = int(width) fillchar = self._obj.dtype.type(fillchar) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if side == "left": f = lambda s: s.rjust(width, fillchar) elif side == "right": f = lambda s: s.ljust(width, fillchar) elif side == "both": f = lambda s: s.center(width, fillchar) else: # pragma: no cover raise ValueError("Invalid side") return self._apply(f) def center(self, width, fillchar=" "): """ Filling left and right side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values """ return self.pad(width, side="both", fillchar=fillchar) def ljust(self, width, fillchar=" "): """ Filling right side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values """ return self.pad(width, side="right", fillchar=fillchar) def rjust(self, width, fillchar=" "): """ Filling left side of strings in the array with an additional character. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar`` fillchar : str Additional character for filling, default is whitespace Returns ------- filled : same type as values """ return self.pad(width, side="left", fillchar=fillchar) def zfill(self, width): """ Pad strings in the array by prepending '0' characters. Strings in the array are padded with '0' characters on the left of the string to reach a total string length `width`. Strings in the array with length greater or equal to `width` are unchanged. Parameters ---------- width : int Minimum length of resulting string; strings with length less than `width` be prepended with '0' characters. Returns ------- filled : same type as values """ return self.pad(width, side="left", fillchar="0") def contains(self, pat, case=True, flags=0, regex=True): """ Test if pattern or regex is contained within a string of the array. Return boolean array based on whether a given pattern or regex is contained within a string of the array. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Flags to pass through to the re module, e.g. re.IGNORECASE. regex : bool, default True If True, assumes the pat is a regular expression. If False, treats the pat as a literal string. Returns ------- contains : array of bool An array of boolean values indicating whether the given pattern is contained within the string of each element of the array. """ pat = self._obj.dtype.type(pat) if regex: if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if regex.groups > 0: # pragma: no cover raise ValueError("This pattern has match groups.") f = lambda x: bool(regex.search(x)) else: if case: f = lambda x: pat in x else: uppered = self._obj.str.upper() return uppered.str.contains(pat.upper(), regex=False) return self._apply(f, dtype=bool) def match(self, pat, case=True, flags=0): """ Determine if each string matches a regular expression. Parameters ---------- pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns ------- matched : array of bool """ if not case: flags |= re.IGNORECASE pat = self._obj.dtype.type(pat) regex = re.compile(pat, flags=flags) f = lambda x: bool(regex.match(x)) return self._apply(f, dtype=bool) def strip(self, to_strip=None, side="both"): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from left and/or right sides. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. side : {'left', 'right', 'both'}, default 'left' Side from which to strip. Returns ------- stripped : same type as values """ if to_strip is not None: to_strip = self._obj.dtype.type(to_strip) if side == "both": f = lambda x: x.strip(to_strip) elif side == "left": f = lambda x: x.lstrip(to_strip) elif side == "right": f = lambda x: x.rstrip(to_strip) else: # pragma: no cover raise ValueError("Invalid side") return self._apply(f) def lstrip(self, to_strip=None): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from the left side. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- stripped : same type as values """ return self.strip(to_strip, side="left") def rstrip(self, to_strip=None): """ Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the array from the right side. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- stripped : same type as values """ return self.strip(to_strip, side="right") def wrap(self, width, **kwargs): """ Wrap long strings in the array to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as :class:`textwrap.TextWrapper`. Parameters ---------- width : int Maximum line-width expand_tabs : bool, optional If true, tab characters will be expanded to spaces (default: True) replace_whitespace : bool, optional If true, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True) drop_whitespace : bool, optional If true, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True) break_long_words : bool, optional If true, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width. (default: True) break_on_hyphens : bool, optional If true, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words. (default: True) Returns ------- wrapped : same type as values """ tw = textwrap.TextWrapper(width=width) f = lambda x: "\n".join(tw.wrap(x)) return self._apply(f) def translate(self, table): """ Map all characters in the string through the given mapping table. Parameters ---------- table : dict A a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. :meth:`str.maketrans` is a helper function for making translation tables. Returns ------- translated : same type as values """ f = lambda x: x.translate(table) return self._apply(f) def repeat(self, repeats): """ Duplicate each string in the array. Parameters ---------- repeats : int Number of repetitions. Returns ------- repeated : same type as values Array of repeated string objects. """ f = lambda x: repeats * x return self._apply(f) def find(self, sub, start=0, end=None, side="left"): """ Return lowest or highest indexes in each strings in the array where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index side : {'left', 'right'}, default 'left' Starting side for search. Returns ------- found : array of integer values """ sub = self._obj.dtype.type(sub) if side == "left": method = "find" elif side == "right": method = "rfind" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return self._apply(f, dtype=int) def rfind(self, sub, start=0, end=None): """ Return highest indexes in each strings in the array where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : array of integer values """ return self.find(sub, start=start, end=end, side="right") def index(self, sub, start=0, end=None, side="left"): """ Return lowest or highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.find`` except instead of returning -1, it raises a ValueError when the substring is not found. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index side : {'left', 'right'}, default 'left' Starting side for search. Returns ------- found : array of integer values """ sub = self._obj.dtype.type(sub) if side == "left": method = "index" elif side == "right": method = "rindex" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return self._apply(f, dtype=int) def rindex(self, sub, start=0, end=None): """ Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.rfind`` except instead of returning -1, it raises a ValueError when the substring is not found. Parameters ---------- sub : str Substring being searched start : int Left edge index end : int Right edge index Returns ------- found : array of integer values """ return self.index(sub, start=start, end=end, side="right") def replace(self, pat, repl, n=-1, case=None, flags=0, regex=True): """ Replace occurrences of pattern/regex in the array with some string. Parameters ---------- pat : string or compiled regex String can be a character sequence or regular expression. repl : string or callable Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See :func:`re.sub`. n : int, default -1 (all) Number of replacements to make from start case : boolean, default None - If True, case sensitive (the default if `pat` is a string) - Set to False for case insensitive - Cannot be set if `pat` is a compiled regex flags : int, default 0 (no flags) - re module flags, e.g. re.IGNORECASE - Cannot be set if `pat` is a compiled regex regex : boolean, default True - If True, assumes the passed-in pattern is a regular expression. - If False, treats the pattern as a literal string - Cannot be set to False if `pat` is a compiled regex or `repl` is a callable. Returns ------- replaced : same type as values A copy of the object with all matching occurrences of `pat` replaced by `repl`. """ if not (_is_str_like(repl) or callable(repl)): # pragma: no cover raise TypeError("repl must be a string or callable") if _is_str_like(pat): pat = self._obj.dtype.type(pat) if _is_str_like(repl): repl = self._obj.dtype.type(repl) is_compiled_re = isinstance(pat, type(re.compile(""))) if regex: if is_compiled_re: if (case is not None) or (flags != 0): raise ValueError( "case and flags cannot be set" " when pat is a compiled regex" ) else: # not a compiled regex # set default case if case is None: case = True # add case flag, if provided if case is False: flags |= re.IGNORECASE if is_compiled_re or len(pat) > 1 or flags or callable(repl): n = n if n >= 0 else 0 compiled = re.compile(pat, flags=flags) f = lambda x: compiled.sub(repl=repl, string=x, count=n) else: f = lambda x: x.replace(pat, repl, n) else: if is_compiled_re: raise ValueError( "Cannot use a compiled regex as replacement " "pattern with regex=False" ) if callable(repl): raise ValueError( "Cannot use a callable replacement when " "regex=False" ) f = lambda x: x.replace(pat, repl, n) return self._apply(f) def decode(self, encoding, errors="strict"): """ Decode character string in the array using indicated encoding. Parameters ---------- encoding : str errors : str, optional Returns ------- decoded : same type as values """ if encoding in _cpython_optimized_decoders: f = lambda x: x.decode(encoding, errors) else: decoder = codecs.getdecoder(encoding) f = lambda x: decoder(x, errors)[0] return self._apply(f, dtype=np.str_) def encode(self, encoding, errors="strict"): """ Encode character string in the array using indicated encoding. Parameters ---------- encoding : str errors : str, optional Returns ------- encoded : same type as values """ if encoding in _cpython_optimized_encoders: f = lambda x: x.encode(encoding, errors) else: encoder = codecs.getencoder(encoding) f = lambda x: encoder(x, errors)[0] return self._apply(f, dtype=np.bytes_)
# # Copyright 2012 New Dream Network, LLC (DreamHost) # Copyright 2013 IBM Corp. # Copyright 2013 eNovance <[email protected]> # Copyright Ericsson AB 2013. All rights reserved # Copyright 2014 Hewlett-Packard Company # Copyright 2015 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import jsonschema from oslo_log import log from oslo_utils import timeutils import pecan from pecan import rest from wsme import types as wtypes import wsmeext.pecan as wsme_pecan from ceilometer.alarm.storage import models as alarm_models from ceilometer.api.controllers.v2 import alarms from ceilometer.api.controllers.v2 import base from ceilometer.api.controllers.v2 import samples from ceilometer.api.controllers.v2 import utils as v2_utils from ceilometer.api import rbac from ceilometer.i18n import _ from ceilometer import storage from ceilometer import utils LOG = log.getLogger(__name__) class ComplexQuery(base.Base): """Holds a sample query encoded in json.""" filter = wtypes.text "The filter expression encoded in json." orderby = wtypes.text "List of single-element dicts for specifying the ordering of the results." limit = int "The maximum number of results to be returned." @classmethod def sample(cls): return cls(filter='{"and": [{"and": [{"=": ' + '{"counter_name": "cpu_util"}}, ' + '{">": {"counter_volume": 0.23}}, ' + '{"<": {"counter_volume": 0.26}}]}, ' + '{"or": [{"and": [{">": ' + '{"timestamp": "2013-12-01T18:00:00"}}, ' + '{"<": ' + '{"timestamp": "2013-12-01T18:15:00"}}]}, ' + '{"and": [{">": ' + '{"timestamp": "2013-12-01T18:30:00"}}, ' + '{"<": ' + '{"timestamp": "2013-12-01T18:45:00"}}]}]}]}', orderby='[{"counter_volume": "ASC"}, ' + '{"timestamp": "DESC"}]', limit=42 ) def _list_to_regexp(items, regexp_prefix=""): regexp = ["^%s$" % item for item in items] regexp = regexp_prefix + "|".join(regexp) return regexp class ValidatedComplexQuery(object): complex_operators = ["and", "or"] order_directions = ["asc", "desc"] simple_ops = ["=", "!=", "<", ">", "<=", "=<", ">=", "=>", "=~"] regexp_prefix = "(?i)" complex_ops = _list_to_regexp(complex_operators, regexp_prefix) simple_ops = _list_to_regexp(simple_ops, regexp_prefix) order_directions = _list_to_regexp(order_directions, regexp_prefix) timestamp_fields = ["timestamp", "state_timestamp"] def __init__(self, query, db_model, additional_name_mapping=None, metadata_allowed=False): additional_name_mapping = additional_name_mapping or {} self.name_mapping = {"user": "user_id", "project": "project_id"} self.name_mapping.update(additional_name_mapping) valid_keys = db_model.get_field_names() valid_keys = list(valid_keys) + list(self.name_mapping.keys()) valid_fields = _list_to_regexp(valid_keys) if metadata_allowed: valid_filter_fields = valid_fields + "|^metadata\.[\S]+$" else: valid_filter_fields = valid_fields schema_value = { "oneOf": [{"type": "string"}, {"type": "number"}, {"type": "boolean"}], "minProperties": 1, "maxProperties": 1} schema_value_in = { "type": "array", "items": {"oneOf": [{"type": "string"}, {"type": "number"}]}, "minItems": 1} schema_field = { "type": "object", "patternProperties": {valid_filter_fields: schema_value}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} schema_field_in = { "type": "object", "patternProperties": {valid_filter_fields: schema_value_in}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} schema_leaf_in = { "type": "object", "patternProperties": {"(?i)^in$": schema_field_in}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} schema_leaf_simple_ops = { "type": "object", "patternProperties": {self.simple_ops: schema_field}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} schema_and_or_array = { "type": "array", "items": {"$ref": "#"}, "minItems": 2} schema_and_or = { "type": "object", "patternProperties": {self.complex_ops: schema_and_or_array}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} schema_not = { "type": "object", "patternProperties": {"(?i)^not$": {"$ref": "#"}}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1} self.schema = { "oneOf": [{"$ref": "#/definitions/leaf_simple_ops"}, {"$ref": "#/definitions/leaf_in"}, {"$ref": "#/definitions/and_or"}, {"$ref": "#/definitions/not"}], "minProperties": 1, "maxProperties": 1, "definitions": {"leaf_simple_ops": schema_leaf_simple_ops, "leaf_in": schema_leaf_in, "and_or": schema_and_or, "not": schema_not}} self.orderby_schema = { "type": "array", "items": { "type": "object", "patternProperties": {valid_fields: {"type": "string", "pattern": self.order_directions}}, "additionalProperties": False, "minProperties": 1, "maxProperties": 1}} self.original_query = query def validate(self, visibility_field): """Validates the query content and does the necessary conversions.""" if self.original_query.filter is wtypes.Unset: self.filter_expr = None else: try: self.filter_expr = json.loads(self.original_query.filter) self._validate_filter(self.filter_expr) except (ValueError, jsonschema.exceptions.ValidationError) as e: raise base.ClientSideError( _("Filter expression not valid: %s") % e) self._replace_isotime_with_datetime(self.filter_expr) self._convert_operator_to_lower_case(self.filter_expr) self._normalize_field_names_for_db_model(self.filter_expr) self._force_visibility(visibility_field) if self.original_query.orderby is wtypes.Unset: self.orderby = None else: try: self.orderby = json.loads(self.original_query.orderby) self._validate_orderby(self.orderby) except (ValueError, jsonschema.exceptions.ValidationError) as e: raise base.ClientSideError( _("Order-by expression not valid: %s") % e) self._convert_orderby_to_lower_case(self.orderby) self._normalize_field_names_in_orderby(self.orderby) self.limit = (None if self.original_query.limit is wtypes.Unset else self.original_query.limit) self.limit = v2_utils.enforce_limit(self.limit) @staticmethod def _convert_orderby_to_lower_case(orderby): for orderby_field in orderby: utils.lowercase_values(orderby_field) def _normalize_field_names_in_orderby(self, orderby): for orderby_field in orderby: self._replace_field_names(orderby_field) def _traverse_postorder(self, tree, visitor): op = list(tree.keys())[0] if op.lower() in self.complex_operators: for i, operand in enumerate(tree[op]): self._traverse_postorder(operand, visitor) if op.lower() == "not": self._traverse_postorder(tree[op], visitor) visitor(tree) def _check_cross_project_references(self, own_project_id, visibility_field): """Do not allow other than own_project_id.""" def check_project_id(subfilter): op, value = list(subfilter.items())[0] if (op.lower() not in self.complex_operators and list(value.keys())[0] == visibility_field and value[visibility_field] != own_project_id): raise base.ProjectNotAuthorized(value[visibility_field]) self._traverse_postorder(self.filter_expr, check_project_id) def _force_visibility(self, visibility_field): """Force visibility field. If the tenant is not admin insert an extra "and <visibility_field>=<tenant's project_id>" clause to the query. """ authorized_project = rbac.get_limited_to_project(pecan.request.headers) is_admin = authorized_project is None if not is_admin: self._restrict_to_project(authorized_project, visibility_field) self._check_cross_project_references(authorized_project, visibility_field) def _restrict_to_project(self, project_id, visibility_field): restriction = {"=": {visibility_field: project_id}} if self.filter_expr is None: self.filter_expr = restriction else: self.filter_expr = {"and": [restriction, self.filter_expr]} def _replace_isotime_with_datetime(self, filter_expr): def replace_isotime(subfilter): op, value = list(subfilter.items())[0] if op.lower() not in self.complex_operators: field = list(value.keys())[0] if field in self.timestamp_fields: date_time = self._convert_to_datetime(subfilter[op][field]) subfilter[op][field] = date_time self._traverse_postorder(filter_expr, replace_isotime) def _normalize_field_names_for_db_model(self, filter_expr): def _normalize_field_names(subfilter): op, value = list(subfilter.items())[0] if op.lower() not in self.complex_operators: self._replace_field_names(value) self._traverse_postorder(filter_expr, _normalize_field_names) def _replace_field_names(self, subfilter): field, value = list(subfilter.items())[0] if field in self.name_mapping: del subfilter[field] subfilter[self.name_mapping[field]] = value if field.startswith("metadata."): del subfilter[field] subfilter["resource_" + field] = value def _convert_operator_to_lower_case(self, filter_expr): self._traverse_postorder(filter_expr, utils.lowercase_keys) @staticmethod def _convert_to_datetime(isotime): try: date_time = timeutils.parse_isotime(isotime) date_time = date_time.replace(tzinfo=None) return date_time except ValueError: LOG.exception(_("String %s is not a valid isotime") % isotime) msg = _('Failed to parse the timestamp value %s') % isotime raise base.ClientSideError(msg) def _validate_filter(self, filter_expr): jsonschema.validate(filter_expr, self.schema) def _validate_orderby(self, orderby_expr): jsonschema.validate(orderby_expr, self.orderby_schema) class QuerySamplesController(rest.RestController): """Provides complex query possibilities for samples.""" @wsme_pecan.wsexpose([samples.Sample], body=ComplexQuery) def post(self, body): """Define query for retrieving Sample data. :param body: Query rules for the samples to be returned. """ rbac.enforce('query_sample', pecan.request) sample_name_mapping = {"resource": "resource_id", "meter": "counter_name", "type": "counter_type", "unit": "counter_unit", "volume": "counter_volume"} query = ValidatedComplexQuery(body, storage.models.Sample, sample_name_mapping, metadata_allowed=True) query.validate(visibility_field="project_id") conn = pecan.request.storage_conn return [samples.Sample.from_db_model(s) for s in conn.query_samples(query.filter_expr, query.orderby, query.limit)] class QueryAlarmHistoryController(rest.RestController): """Provides complex query possibilities for alarm history.""" @wsme_pecan.wsexpose([alarms.AlarmChange], body=ComplexQuery) def post(self, body): """Define query for retrieving AlarmChange data. :param body: Query rules for the alarm history to be returned. """ rbac.enforce('query_alarm_history', pecan.request) query = ValidatedComplexQuery(body, alarm_models.AlarmChange) query.validate(visibility_field="on_behalf_of") conn = pecan.request.alarm_storage_conn return [alarms.AlarmChange.from_db_model(s) for s in conn.query_alarm_history(query.filter_expr, query.orderby, query.limit)] class QueryAlarmsController(rest.RestController): """Provides complex query possibilities for alarms.""" history = QueryAlarmHistoryController() @wsme_pecan.wsexpose([alarms.Alarm], body=ComplexQuery) def post(self, body): """Define query for retrieving Alarm data. :param body: Query rules for the alarms to be returned. """ rbac.enforce('query_alarm', pecan.request) query = ValidatedComplexQuery(body, alarm_models.Alarm) query.validate(visibility_field="project_id") conn = pecan.request.alarm_storage_conn return [alarms.Alarm.from_db_model(s) for s in conn.query_alarms(query.filter_expr, query.orderby, query.limit)]
"""CherryPy is a pythonic, object-oriented HTTP framework. CherryPy consists of not one, but four separate API layers. The APPLICATION LAYER is the simplest. CherryPy applications are written as a tree of classes and methods, where each branch in the tree corresponds to a branch in the URL path. Each method is a 'page handler', which receives GET and POST params as keyword arguments, and returns or yields the (HTML) body of the response. The special method name 'index' is used for paths that end in a slash, and the special method name 'default' is used to handle multiple paths via a single handler. This layer also includes: * the 'exposed' attribute (and cherrypy.expose) * cherrypy.quickstart() * _cp_config attributes * cherrypy.tools (including cherrypy.session) * cherrypy.url() The ENVIRONMENT LAYER is used by developers at all levels. It provides information about the current request and response, plus the application and server environment, via a (default) set of top-level objects: * cherrypy.request * cherrypy.response * cherrypy.engine * cherrypy.server * cherrypy.tree * cherrypy.config * cherrypy.thread_data * cherrypy.log * cherrypy.HTTPError, NotFound, and HTTPRedirect * cherrypy.lib The EXTENSION LAYER allows advanced users to construct and share their own plugins. It consists of: * Hook API * Tool API * Toolbox API * Dispatch API * Config Namespace API Finally, there is the CORE LAYER, which uses the core API's to construct the default components which are available at higher layers. You can think of the default components as the 'reference implementation' for CherryPy. Megaframeworks (and advanced users) may replace the default components with customized or extended components. The core API's are: * Application API * Engine API * Request API * Server API * WSGI API These API's are described in the `CherryPy specification <https://bitbucket.org/cherrypy/cherrypy/wiki/CherryPySpec>`_. """ __version__ = "3.5.0" from cherrypy._cpcompat import urljoin as _urljoin, urlencode as _urlencode from cherrypy._cpcompat import basestring, unicodestr, set from cherrypy._cperror import HTTPError, HTTPRedirect, InternalRedirect from cherrypy._cperror import NotFound, CherryPyException, TimeoutError from cherrypy import _cpdispatch as dispatch from cherrypy import _cptools tools = _cptools.default_toolbox Tool = _cptools.Tool from cherrypy import _cprequest from cherrypy.lib import httputil as _httputil from cherrypy import _cptree tree = _cptree.Tree() from cherrypy._cptree import Application from cherrypy import _cpwsgi as wsgi from cherrypy import process try: from cherrypy.process import win32 engine = win32.Win32Bus() engine.console_control_handler = win32.ConsoleCtrlHandler(engine) del win32 except ImportError: engine = process.bus # Timeout monitor. We add two channels to the engine # to which cherrypy.Application will publish. engine.listeners['before_request'] = set() engine.listeners['after_request'] = set() class _TimeoutMonitor(process.plugins.Monitor): def __init__(self, bus): self.servings = [] process.plugins.Monitor.__init__(self, bus, self.run) def before_request(self): self.servings.append((serving.request, serving.response)) def after_request(self): try: self.servings.remove((serving.request, serving.response)) except ValueError: pass def run(self): """Check timeout on all responses. (Internal)""" for req, resp in self.servings: resp.check_timeout() engine.timeout_monitor = _TimeoutMonitor(engine) engine.timeout_monitor.subscribe() engine.autoreload = process.plugins.Autoreloader(engine) engine.autoreload.subscribe() engine.thread_manager = process.plugins.ThreadManager(engine) engine.thread_manager.subscribe() engine.signal_handler = process.plugins.SignalHandler(engine) class _HandleSignalsPlugin(object): """Handle signals from other processes based on the configured platform handlers above.""" def __init__(self, bus): self.bus = bus def subscribe(self): """Add the handlers based on the platform""" if hasattr(self.bus, "signal_handler"): self.bus.signal_handler.subscribe() if hasattr(self.bus, "console_control_handler"): self.bus.console_control_handler.subscribe() engine.signals = _HandleSignalsPlugin(engine) from cherrypy import _cpserver server = _cpserver.Server() server.subscribe() def quickstart(root=None, script_name="", config=None): """Mount the given root, start the builtin server (and engine), then block. root: an instance of a "controller class" (a collection of page handler methods) which represents the root of the application. script_name: a string containing the "mount point" of the application. This should start with a slash, and be the path portion of the URL at which to mount the given root. For example, if root.index() will handle requests to "http://www.example.com:8080/dept/app1/", then the script_name argument would be "/dept/app1". It MUST NOT end in a slash. If the script_name refers to the root of the URI, it MUST be an empty string (not "/"). config: a file or dict containing application config. If this contains a [global] section, those entries will be used in the global (site-wide) config. """ if config: _global_conf_alias.update(config) tree.mount(root, script_name, config) engine.signals.subscribe() engine.start() engine.block() from cherrypy._cpcompat import threadlocal as _local class _Serving(_local): """An interface for registering request and response objects. Rather than have a separate "thread local" object for the request and the response, this class works as a single threadlocal container for both objects (and any others which developers wish to define). In this way, we can easily dump those objects when we stop/start a new HTTP conversation, yet still refer to them as module-level globals in a thread-safe way. """ request = _cprequest.Request(_httputil.Host("127.0.0.1", 80), _httputil.Host("127.0.0.1", 1111)) """ The request object for the current thread. In the main thread, and any threads which are not receiving HTTP requests, this is None.""" response = _cprequest.Response() """ The response object for the current thread. In the main thread, and any threads which are not receiving HTTP requests, this is None.""" def load(self, request, response): self.request = request self.response = response def clear(self): """Remove all attributes of self.""" self.__dict__.clear() serving = _Serving() class _ThreadLocalProxy(object): __slots__ = ['__attrname__', '__dict__'] def __init__(self, attrname): self.__attrname__ = attrname def __getattr__(self, name): child = getattr(serving, self.__attrname__) return getattr(child, name) def __setattr__(self, name, value): if name in ("__attrname__", ): object.__setattr__(self, name, value) else: child = getattr(serving, self.__attrname__) setattr(child, name, value) def __delattr__(self, name): child = getattr(serving, self.__attrname__) delattr(child, name) def _get_dict(self): child = getattr(serving, self.__attrname__) d = child.__class__.__dict__.copy() d.update(child.__dict__) return d __dict__ = property(_get_dict) def __getitem__(self, key): child = getattr(serving, self.__attrname__) return child[key] def __setitem__(self, key, value): child = getattr(serving, self.__attrname__) child[key] = value def __delitem__(self, key): child = getattr(serving, self.__attrname__) del child[key] def __contains__(self, key): child = getattr(serving, self.__attrname__) return key in child def __len__(self): child = getattr(serving, self.__attrname__) return len(child) def __nonzero__(self): child = getattr(serving, self.__attrname__) return bool(child) # Python 3 __bool__ = __nonzero__ # Create request and response object (the same objects will be used # throughout the entire life of the webserver, but will redirect # to the "serving" object) request = _ThreadLocalProxy('request') response = _ThreadLocalProxy('response') # Create thread_data object as a thread-specific all-purpose storage class _ThreadData(_local): """A container for thread-specific data.""" thread_data = _ThreadData() # Monkeypatch pydoc to allow help() to go through the threadlocal proxy. # Jan 2007: no Googleable examples of anyone else replacing pydoc.resolve. # The only other way would be to change what is returned from type(request) # and that's not possible in pure Python (you'd have to fake ob_type). def _cherrypy_pydoc_resolve(thing, forceload=0): """Given an object or a path to an object, get the object and its name.""" if isinstance(thing, _ThreadLocalProxy): thing = getattr(serving, thing.__attrname__) return _pydoc._builtin_resolve(thing, forceload) try: import pydoc as _pydoc _pydoc._builtin_resolve = _pydoc.resolve _pydoc.resolve = _cherrypy_pydoc_resolve except ImportError: pass from cherrypy import _cplogging class _GlobalLogManager(_cplogging.LogManager): """A site-wide LogManager; routes to app.log or global log as appropriate. This :class:`LogManager<cherrypy._cplogging.LogManager>` implements cherrypy.log() and cherrypy.log.access(). If either function is called during a request, the message will be sent to the logger for the current Application. If they are called outside of a request, the message will be sent to the site-wide logger. """ def __call__(self, *args, **kwargs): """Log the given message to the app.log or global log as appropriate. """ # Do NOT use try/except here. See # https://bitbucket.org/cherrypy/cherrypy/issue/945 if hasattr(request, 'app') and hasattr(request.app, 'log'): log = request.app.log else: log = self return log.error(*args, **kwargs) def access(self): """Log an access message to the app.log or global log as appropriate. """ try: return request.app.log.access() except AttributeError: return _cplogging.LogManager.access(self) log = _GlobalLogManager() # Set a default screen handler on the global log. log.screen = True log.error_file = '' # Using an access file makes CP about 10% slower. Leave off by default. log.access_file = '' def _buslog(msg, level): log.error(msg, 'ENGINE', severity=level) engine.subscribe('log', _buslog) # Helper functions for CP apps # def expose(func=None, alias=None): """Expose the function, optionally providing an alias or set of aliases.""" def expose_(func): func.exposed = True if alias is not None: if isinstance(alias, basestring): parents[alias.replace(".", "_")] = func else: for a in alias: parents[a.replace(".", "_")] = func return func import sys import types if isinstance(func, (types.FunctionType, types.MethodType)): if alias is None: # @expose func.exposed = True return func else: # func = expose(func, alias) parents = sys._getframe(1).f_locals return expose_(func) elif func is None: if alias is None: # @expose() parents = sys._getframe(1).f_locals return expose_ else: # @expose(alias="alias") or # @expose(alias=["alias1", "alias2"]) parents = sys._getframe(1).f_locals return expose_ else: # @expose("alias") or # @expose(["alias1", "alias2"]) parents = sys._getframe(1).f_locals alias = func return expose_ def popargs(*args, **kwargs): """A decorator for _cp_dispatch (cherrypy.dispatch.Dispatcher.dispatch_method_name). Optional keyword argument: handler=(Object or Function) Provides a _cp_dispatch function that pops off path segments into cherrypy.request.params under the names specified. The dispatch is then forwarded on to the next vpath element. Note that any existing (and exposed) member function of the class that popargs is applied to will override that value of the argument. For instance, if you have a method named "list" on the class decorated with popargs, then accessing "/list" will call that function instead of popping it off as the requested parameter. This restriction applies to all _cp_dispatch functions. The only way around this restriction is to create a "blank class" whose only function is to provide _cp_dispatch. If there are path elements after the arguments, or more arguments are requested than are available in the vpath, then the 'handler' keyword argument specifies the next object to handle the parameterized request. If handler is not specified or is None, then self is used. If handler is a function rather than an instance, then that function will be called with the args specified and the return value from that function used as the next object INSTEAD of adding the parameters to cherrypy.request.args. This decorator may be used in one of two ways: As a class decorator: @cherrypy.popargs('year', 'month', 'day') class Blog: def index(self, year=None, month=None, day=None): #Process the parameters here; any url like #/, /2009, /2009/12, or /2009/12/31 #will fill in the appropriate parameters. def create(self): #This link will still be available at /create. Defined functions #take precedence over arguments. Or as a member of a class: class Blog: _cp_dispatch = cherrypy.popargs('year', 'month', 'day') #... The handler argument may be used to mix arguments with built in functions. For instance, the following setup allows different activities at the day, month, and year level: class DayHandler: def index(self, year, month, day): #Do something with this day; probably list entries def delete(self, year, month, day): #Delete all entries for this day @cherrypy.popargs('day', handler=DayHandler()) class MonthHandler: def index(self, year, month): #Do something with this month; probably list entries def delete(self, year, month): #Delete all entries for this month @cherrypy.popargs('month', handler=MonthHandler()) class YearHandler: def index(self, year): #Do something with this year #... @cherrypy.popargs('year', handler=YearHandler()) class Root: def index(self): #... """ # Since keyword arg comes after *args, we have to process it ourselves # for lower versions of python. handler = None handler_call = False for k, v in kwargs.items(): if k == 'handler': handler = v else: raise TypeError( "cherrypy.popargs() got an unexpected keyword argument '{0}'" .format(k) ) import inspect if handler is not None \ and (hasattr(handler, '__call__') or inspect.isclass(handler)): handler_call = True def decorated(cls_or_self=None, vpath=None): if inspect.isclass(cls_or_self): # cherrypy.popargs is a class decorator cls = cls_or_self setattr(cls, dispatch.Dispatcher.dispatch_method_name, decorated) return cls # We're in the actual function self = cls_or_self parms = {} for arg in args: if not vpath: break parms[arg] = vpath.pop(0) if handler is not None: if handler_call: return handler(**parms) else: request.params.update(parms) return handler request.params.update(parms) # If we are the ultimate handler, then to prevent our _cp_dispatch # from being called again, we will resolve remaining elements through # getattr() directly. if vpath: return getattr(self, vpath.pop(0), None) else: return self return decorated def url(path="", qs="", script_name=None, base=None, relative=None): """Create an absolute URL for the given path. If 'path' starts with a slash ('/'), this will return (base + script_name + path + qs). If it does not start with a slash, this returns (base + script_name [+ request.path_info] + path + qs). If script_name is None, cherrypy.request will be used to find a script_name, if available. If base is None, cherrypy.request.base will be used (if available). Note that you can use cherrypy.tools.proxy to change this. Finally, note that this function can be used to obtain an absolute URL for the current request path (minus the querystring) by passing no args. If you call url(qs=cherrypy.request.query_string), you should get the original browser URL (assuming no internal redirections). If relative is None or not provided, request.app.relative_urls will be used (if available, else False). If False, the output will be an absolute URL (including the scheme, host, vhost, and script_name). If True, the output will instead be a URL that is relative to the current request path, perhaps including '..' atoms. If relative is the string 'server', the output will instead be a URL that is relative to the server root; i.e., it will start with a slash. """ if isinstance(qs, (tuple, list, dict)): qs = _urlencode(qs) if qs: qs = '?' + qs if request.app: if not path.startswith("/"): # Append/remove trailing slash from path_info as needed # (this is to support mistyped URL's without redirecting; # if you want to redirect, use tools.trailing_slash). pi = request.path_info if request.is_index is True: if not pi.endswith('/'): pi = pi + '/' elif request.is_index is False: if pi.endswith('/') and pi != '/': pi = pi[:-1] if path == "": path = pi else: path = _urljoin(pi, path) if script_name is None: script_name = request.script_name if base is None: base = request.base newurl = base + script_name + path + qs else: # No request.app (we're being called outside a request). # We'll have to guess the base from server.* attributes. # This will produce very different results from the above # if you're using vhosts or tools.proxy. if base is None: base = server.base() path = (script_name or "") + path newurl = base + path + qs if './' in newurl: # Normalize the URL by removing ./ and ../ atoms = [] for atom in newurl.split('/'): if atom == '.': pass elif atom == '..': atoms.pop() else: atoms.append(atom) newurl = '/'.join(atoms) # At this point, we should have a fully-qualified absolute URL. if relative is None: relative = getattr(request.app, "relative_urls", False) # See http://www.ietf.org/rfc/rfc2396.txt if relative == 'server': # "A relative reference beginning with a single slash character is # termed an absolute-path reference, as defined by <abs_path>..." # This is also sometimes called "server-relative". newurl = '/' + '/'.join(newurl.split('/', 3)[3:]) elif relative: # "A relative reference that does not begin with a scheme name # or a slash character is termed a relative-path reference." old = url(relative=False).split('/')[:-1] new = newurl.split('/') while old and new: a, b = old[0], new[0] if a != b: break old.pop(0) new.pop(0) new = (['..'] * len(old)) + new newurl = '/'.join(new) return newurl # import _cpconfig last so it can reference other top-level objects from cherrypy import _cpconfig # Use _global_conf_alias so quickstart can use 'config' as an arg # without shadowing cherrypy.config. config = _global_conf_alias = _cpconfig.Config() config.defaults = { 'tools.log_tracebacks.on': True, 'tools.log_headers.on': True, 'tools.trailing_slash.on': True, 'tools.encode.on': True } config.namespaces["log"] = lambda k, v: setattr(log, k, v) config.namespaces["checker"] = lambda k, v: setattr(checker, k, v) # Must reset to get our defaults applied. config.reset() from cherrypy import _cpchecker checker = _cpchecker.Checker() engine.subscribe('start', checker)
import inspect as _inspect import sys as _sys import unittest as _unittest try: import wrapt as _wrapt except ImportError as e: _wrapt = None _wrapt_error = e import bes.trace as _bes_trace def skip_if_missing_wrapt(obj): if _wrapt is None: return _unittest.skip(str(_wrapt_error))(obj) return obj def skip_if_python_version_less_than(version): skip = _sys.version_info < version def decorator(obj): if skip: return _unittest.skip(str(_wrapt_error))(obj) return obj return decorator class Logger (object): def __init__(self): self.messages = [] def __call__(self, *args, **kwargs): self.messages.append({'args': args, 'kwargs': kwargs}) class TraceTestCase (_unittest.TestCase): def test_trace(self): logger = Logger() @_bes_trace.trace(logger=logger) def foo(*args, **kwargs): logger('running') foo(1, 'a', b=3) self.assertEqual( logger.messages, [ { 'args': (), 'kwargs': { 'action': 'start', 'type': 'foo', }, }, { 'args': ( 'running', ), 'kwargs': {}, }, { 'args': (), 'kwargs': { 'action': 'complete', 'type': 'foo', }, }, ]) def test_with_arguments(self): logger = Logger() @_bes_trace.trace(logger=logger, a=1) def foo(*args, **kwargs): logger('running') foo(1, 'a', b=3) self.assertEqual( logger.messages, [ { 'args': (), 'kwargs': { 'a': 1, 'action': 'start', 'type': 'foo', }, }, { 'args': ( 'running', ), 'kwargs': {}, }, { 'args': (), 'kwargs': { 'a': 1, 'action': 'complete', 'type': 'foo', }, }, ]) def test_with_explicit_type(self): logger = Logger() @_bes_trace.trace(type='my-type', logger=logger, a=1) def foo(*args, **kwargs): logger('running') foo(1, 'a', b=3) self.assertEqual( logger.messages, [ { 'args': (), 'kwargs': { 'a': 1, 'action': 'start', 'type': 'my-type', }, }, { 'args': ( 'running', ), 'kwargs': {}, }, { 'args': (), 'kwargs': { 'a': 1, 'action': 'complete', 'type': 'my-type', }, }, ]) def test_with_error(self): logger = Logger() @_bes_trace.trace(logger=logger, a=1) def foo(*args, **kwargs): raise ValueError('dying') self.assertRaises(ValueError, foo, 1, 'a', b=3) self.assertEqual( logger.messages, [ { 'args': (), 'kwargs': { 'a': 1, 'action': 'start', 'type': 'foo', }, }, { 'args': (), 'kwargs': { 'a': 1, 'action': 'error', 'error': 'dying', 'type': 'foo', }, }, ]) def test_name(self): @_bes_trace.trace() def foo(*args, **kwargs): return 1 self.assertEqual(foo.__name__, 'foo') def test_doc(self): @_bes_trace.trace() def foo(*args, **kwargs): 'A test method' return 1 self.assertEqual(foo.__doc__, 'A test method') @skip_if_python_version_less_than(version=(3, 3)) def test_signature(self): @_bes_trace.trace() def foo(a, b=3, *args, **kwargs): 'A test method' return 1 if hasattr(_inspect, 'signature'): # Python >= 3.3 signature = _inspect.signature(foo) self.assertEqual( str(signature), '(a, b=3, *args, **kwargs)') else: if hasattr(_inspect, 'getfullargspec'): # Python 3 argspec = _inspect.getfullargspec(foo) self.assertEqual(argspec.varkw, 'kwargs') self.assertEqual(argspec.kwonlyargs, []) self.assertEqual(argspec.kwonlydefaults, None) self.assertEqual(argspec.annotations, {}) else: # Python 2 argspec = _inspect.getargspec(foo) self.assertEqual(argspec.keywords, 'kwargs') self.assertEqual(argspec.args, ['a', 'b']) self.assertEqual(argspec.varargs, 'args') self.assertEqual(argspec.defaults, (3,)) @skip_if_missing_wrapt def test_code(self): @_bes_trace.trace() def foo(a, b=3, *args, **kwargs): """A test method""" return 1 * 2 + 3 source = _inspect.getsource(foo) self.assertEqual( source, '\n'.join([ ' @_bes_trace.trace()', ' def foo(a, b=3, *args, **kwargs):', ' """A test method"""', ' return 1 * 2 + 3', '', ]))
import collections import datetime import re import click import pygal import app.filter import app.input class Burndown(): def __init__(self, sprint, commitment, report, issues, customfield): self.sprint = sprint self.commitment = commitment self.report = report self.issues = issues self.timeline = collections.OrderedDict() self.customfield = customfield self.faulty = {} self.start = datetime.datetime.strptime( sprint['startDate'], '%d/%b/%y %I:%M %p' ) self.end = datetime.datetime.strptime( sprint['endDate'], '%d/%b/%y %I:%M %p' ) start = self.start.replace(hour=0, minute=0, second=0, microsecond=0) day = datetime.timedelta(days=1) while start <= self.end: self.timeline[start.strftime('%Y-%m-%d')] = { 'date': start, 'ideal': commitment, 'completed': 0, 'unplanned': 0 } start += day self.calculate() def _calculate_completed(self): changes = {} completed = self.commitment # closed issues for key in self.report.completed: if 'Story' != self.issues[key].fields.issuetype.name: continue resolution = self._get_resolution_date( self.issues[key].changelog.histories ) if not self.start <= resolution <= self.end: continue estimation = getattr(self.issues[key].fields, self.customfield) if estimation is None: self.faulty[key] = 'Estimation missing' change = resolution.strftime('%Y-%m-%d') if change not in changes: changes[change] = 0 changes[change] += int(estimation or 0) # decreased story points for key in self.report.all: if 'Story' != self.issues[key].fields.issuetype.name: continue status = self.issues[key].fields.status.name for history in self.issues[key].changelog.histories: for item in history.items: created = datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) if not (self.start <= created <= self.end): continue if 'status' == item.field: status = item.toString if 'Open' == status: continue if ('Story Points' == item.field and item.fromString is not None): estimationFrom = int(item.fromString or 0) estimationTo = int(item.toString or 0) diff = estimationTo - estimationFrom if diff > 0: continue change = created.strftime('%Y-%m-%d') if change not in changes: changes[change] = 0 changes[change] += abs(diff) for date, entry in self.timeline.items(): if date in changes: completed -= changes[date] entry['completed'] = completed def _calculate_ideal(self): items = self.timeline.items() ideal = self.commitment step = ideal / (len(items) - 1) for date, entry in self.timeline.items(): entry['ideal'] = ideal ideal -= step entry['ideal'] = 0 def _calculate_unplanned(self): changes = {} unplanned = self.commitment # added for key in self.report.added: if 'Story' != self.issues[key].fields.issuetype.name: continue for date in self._get_added_dates( self.issues[key].changelog.histories): estimation = self._get_estimation_from_date( date, self.issues[key].changelog.histories ) if estimation is None: estimation = getattr( self.issues[key].fields, self.customfield ) if estimation is None: self.faulty[key] = 'Estimation missing' change = date.strftime('%Y-%m-%d') if change not in changes: changes[change] = 0 changes[change] += int(estimation or 0) # punted for key in self.report.punted: if 'Story' != self.issues[key].fields.issuetype.name: continue for date in self._get_punted_dates( self.issues[key].changelog.histories): resolution = self._get_resolution_date( self.issues[key].changelog.histories ) if resolution and not self.start <= resolution <= self.end: continue estimation = self._get_estimation_from_date( date, self.issues[key].changelog.histories ) if estimation is None: estimation = getattr( self.issues[key].fields, self.customfield ) if estimation is None: self.faulty[key] = 'Estimation missing' change = date.strftime('%Y-%m-%d') if change not in changes: changes[change] = 0 changes[change] -= int(estimation or 0) # decreased/increased story points for key in self.report.all: if 'Story' != self.issues[key].fields.issuetype.name: continue status = self.issues[key].fields.status.name for history in self.issues[key].changelog.histories: for item in history.items: created = datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) if not (self.start <= created <= self.end): continue if 'status' == item.field: status = item.toString if ('Story Points' == item.field and item.fromString is not None): estimationFrom = int(item.fromString or 0) estimationTo = int(item.toString or 0) diff = estimationTo - estimationFrom if 'Open' != status and diff < 0: continue change = created.strftime('%Y-%m-%d') if change not in changes: changes[change] = 0 changes[change] += diff for date, entry in self.timeline.items(): if date in changes: unplanned += changes[date] entry['unplanned'] = unplanned def _get_added_dates(self, histories): dates = [] for history in histories: for item in history.items: created = datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) if not (self.start <= created <= self.end): continue if ('Sprint' == item.field and str(self.sprint['id']) in str(item.to).replace(' ', '').split(',')): dates.append(created) return dates def _get_estimation_from_date(self, date, histories): before = None after = None for history in histories: for item in history.items: created = datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) if 'Story Points' == item.field and item.toString: if created <= date: before = int(item.toString) if created > date: after = int(item.toString) if after: return after return before def _get_punted_dates(self, histories): dates = [] for history in histories: for item in history.items: created = datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) if not (self.start <= created <= self.end): continue if 'Sprint' != item.field and str(self.sprint['id']): continue current_sprint = str(self.sprint['id']) from_sprint = str(getattr(item, 'from')) to_sprint = str(getattr(item, 'to')) if from_sprint and current_sprint not in from_sprint: continue if current_sprint not in to_sprint: dates.append(created) return dates def _get_resolution_date(self, histories): for history in reversed(histories): for item in history.items: if 'resolution' == item.field and 'Done' == item.toString: return datetime.datetime.strptime( re.sub(r'\..*$', '', history.created), '%Y-%m-%dT%H:%M:%S' ) def calculate(self): self._calculate_ideal() self._calculate_completed() self._calculate_unplanned() def get_timeline(self): dates = [] ideal = [] completed = [] unplanned = [] now = datetime.datetime.now() for date, entry in self.timeline.items(): dates.append(entry['date'].strftime('%Y-%m-%d')) ideal.append(entry['ideal']) if entry['date'] <= now: completed.append(entry['completed']) unplanned.append(entry['unplanned']) return { 'dates': dates, 'ideal': ideal, 'completed': completed, 'unplanned': unplanned } @click.command() @click.argument('output', type=click.File('wb')) @click.pass_obj def burndown(obj, output=None): session = obj jira, customfield = (session.jira, session.customfield) try: board, sprints = app.input.for_board(jira) id = app.input.for_sprint(jira, board, sprints) except Exception as e: click.secho(str(e), fg='red') exit(1) click.echo('Fetching sprint report: ', nl=False) sprint = jira.sprint_info(board, id) report = jira.sprint_report(board, id) if not sprint or not report or not report.all: click.secho('Nothing found for sprint ID {0}'.format(id), fg='red') exit(1) click.secho('OK', fg='green') labels = app.input.for_labels() issues, report = app.filter.for_labels(jira, report, labels) commitment = click.prompt('Enter commitment', type=click.INT) burndown = Burndown( sprint, commitment, report, issues, customfield ) timeline = burndown.get_timeline() velocity = commitment - timeline['completed'][-1] for key, message in burndown.faulty.items(): click.echo('{0} is faulty: {1}'.format(key, message)) if 'CLOSED' == sprint['state']: click.echo('Velocity: {0}'.format(velocity)) click.echo('Writing SVG to {0}'.format(output.name)) style = pygal.style.Style( background='transparent', colors=('#b4b4b4', '#00b400', '#b40000'), foreground='#000000', foreground_strong='#000000', foreground_subtle='#000000', plot_background='transparent', ) chart = pygal.Line( interpolate='hermite', style=style, x_label_rotation=90 ) chart.title = 'Burndown, {0}'.format(sprint['name']) chart.x_title = 'Dates' chart.x_labels = timeline['dates'] chart.y_title = 'Story Points' chart.add('Ideal', timeline['ideal']) chart.add('Completed', timeline['completed']) chart.add('Unplanned', timeline['unplanned']) chart.value_formatter = lambda x: "%d" % x output.write(chart.render()) click.echo('Done!')
"""Sensor for checking the status of London air.""" from datetime import timedelta import logging import requests import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import HTTP_OK import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle _LOGGER = logging.getLogger(__name__) CONF_LOCATIONS = "locations" SCAN_INTERVAL = timedelta(minutes=30) AUTHORITIES = [ "Barking and Dagenham", "Bexley", "Brent", "Camden", "City of London", "Croydon", "Ealing", "Enfield", "Greenwich", "Hackney", "Haringey", "Harrow", "Havering", "Hillingdon", "Islington", "Kensington and Chelsea", "Kingston", "Lambeth", "Lewisham", "Merton", "Redbridge", "Richmond", "Southwark", "Sutton", "Tower Hamlets", "Wandsworth", "Westminster", ] URL = ( "http://api.erg.kcl.ac.uk/AirQuality/Hourly/" "MonitoringIndex/GroupName=London/Json" ) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_LOCATIONS, default=AUTHORITIES): vol.All( cv.ensure_list, [vol.In(AUTHORITIES)] ) } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the London Air sensor.""" data = APIData() data.update() sensors = [] for name in config.get(CONF_LOCATIONS): sensors.append(AirSensor(name, data)) add_entities(sensors, True) class APIData: """Get the latest data for all authorities.""" def __init__(self): """Initialize the AirData object.""" self.data = None # Update only once in scan interval. @Throttle(SCAN_INTERVAL) def update(self): """Get the latest data from TFL.""" response = requests.get(URL, timeout=10) if response.status_code != HTTP_OK: _LOGGER.warning("Invalid response from API") else: self.data = parse_api_response(response.json()) class AirSensor(Entity): """Single authority air sensor.""" ICON = "mdi:cloud-outline" def __init__(self, name, APIdata): """Initialize the sensor.""" self._name = name self._api_data = APIdata self._site_data = None self._state = None self._updated = None @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._state @property def site_data(self): """Return the dict of sites data.""" return self._site_data @property def icon(self): """Icon to use in the frontend, if any.""" return self.ICON @property def device_state_attributes(self): """Return other details about the sensor state.""" attrs = {} attrs["updated"] = self._updated attrs["sites"] = len(self._site_data) attrs["data"] = self._site_data return attrs def update(self): """Update the sensor.""" self._api_data.update() self._site_data = self._api_data.data[self._name] self._updated = self._site_data[0]["updated"] sites_status = [] for site in self._site_data: if site["pollutants_status"] != "no_species_data": sites_status.append(site["pollutants_status"]) if sites_status: self._state = max(set(sites_status), key=sites_status.count) else: self._state = None def parse_species(species_data): """Iterate over list of species at each site.""" parsed_species_data = [] quality_list = [] for species in species_data: if species["@AirQualityBand"] != "No data": species_dict = {} species_dict["description"] = species["@SpeciesDescription"] species_dict["code"] = species["@SpeciesCode"] species_dict["quality"] = species["@AirQualityBand"] species_dict["index"] = species["@AirQualityIndex"] species_dict[ "summary" ] = f"{species_dict['code']} is {species_dict['quality']}" parsed_species_data.append(species_dict) quality_list.append(species_dict["quality"]) return parsed_species_data, quality_list def parse_site(entry_sites_data): """Iterate over all sites at an authority.""" authority_data = [] for site in entry_sites_data: site_data = {} species_data = [] site_data["updated"] = site["@BulletinDate"] site_data["latitude"] = site["@Latitude"] site_data["longitude"] = site["@Longitude"] site_data["site_code"] = site["@SiteCode"] site_data["site_name"] = site["@SiteName"].split("-")[-1].lstrip() site_data["site_type"] = site["@SiteType"] if isinstance(site["Species"], dict): species_data = [site["Species"]] else: species_data = site["Species"] parsed_species_data, quality_list = parse_species(species_data) if not parsed_species_data: parsed_species_data.append("no_species_data") site_data["pollutants"] = parsed_species_data if quality_list: site_data["pollutants_status"] = max( set(quality_list), key=quality_list.count ) site_data["number_of_pollutants"] = len(quality_list) else: site_data["pollutants_status"] = "no_species_data" site_data["number_of_pollutants"] = 0 authority_data.append(site_data) return authority_data def parse_api_response(response): """Parse return dict or list of data from API.""" data = dict.fromkeys(AUTHORITIES) for authority in AUTHORITIES: for entry in response["HourlyAirQualityIndex"]["LocalAuthority"]: if entry["@LocalAuthorityName"] == authority: if isinstance(entry["Site"], dict): entry_sites_data = [entry["Site"]] else: entry_sites_data = entry["Site"] data[authority] = parse_site(entry_sites_data) return data
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for model evaluation. Compare the results of some models with other programs. """ import pickle import pytest import numpy as np from numpy.testing import utils from .example_models import models_1D, models_2D from .. import fitting, models from ..core import FittableModel from ..polynomial import PolynomialBase from ... import units as u from ...utils import minversion from ...tests.helper import assert_quantity_allclose from ...utils import NumpyRNGContext try: import scipy from scipy import optimize # pylint: disable=W0611 HAS_SCIPY = True except ImportError: HAS_SCIPY = False HAS_SCIPY_14 = HAS_SCIPY and minversion(scipy, "0.14") @pytest.mark.skipif('not HAS_SCIPY') def test_custom_model(amplitude=4, frequency=1): def sine_model(x, amplitude=4, frequency=1): """ Model function """ return amplitude * np.sin(2 * np.pi * frequency * x) def sine_deriv(x, amplitude=4, frequency=1): """ Jacobian of model function, e.g. derivative of the function with respect to the *parameters* """ da = np.sin(2 * np.pi * frequency * x) df = 2 * np.pi * x * amplitude * np.cos(2 * np.pi * frequency * x) return np.vstack((da, df)) SineModel = models.custom_model(sine_model, fit_deriv=sine_deriv) x = np.linspace(0, 4, 50) sin_model = SineModel() y = sin_model.evaluate(x, 5., 2.) y_prime = sin_model.fit_deriv(x, 5., 2.) np.random.seed(0) data = sin_model(x) + np.random.rand(len(x)) - 0.5 fitter = fitting.LevMarLSQFitter() model = fitter(sin_model, x, data) assert np.all((np.array([model.amplitude.value, model.frequency.value]) - np.array([amplitude, frequency])) < 0.001) def test_custom_model_init(): @models.custom_model def SineModel(x, amplitude=4, frequency=1): """Model function""" return amplitude * np.sin(2 * np.pi * frequency * x) sin_model = SineModel(amplitude=2., frequency=0.5) assert sin_model.amplitude == 2. assert sin_model.frequency == 0.5 def test_custom_model_defaults(): @models.custom_model def SineModel(x, amplitude=4, frequency=1): """Model function""" return amplitude * np.sin(2 * np.pi * frequency * x) sin_model = SineModel() assert SineModel.amplitude.default == 4 assert SineModel.frequency.default == 1 assert sin_model.amplitude == 4 assert sin_model.frequency == 1 def test_custom_model_bounding_box(): """Test bounding box evaluation for a 3D model""" def ellipsoid(x, y, z, x0=13, y0=10, z0=8, a=4, b=3, c=2, amp=1): rsq = ((x - x0) / a) ** 2 + ((y - y0) / b) ** 2 + ((z - z0) / c) ** 2 val = (rsq < 1) * amp return val class Ellipsoid3D(models.custom_model(ellipsoid)): @property def bounding_box(self): return ((self.z0 - self.c, self.z0 + self.c), (self.y0 - self.b, self.y0 + self.b), (self.x0 - self.a, self.x0 + self.a)) model = Ellipsoid3D() bbox = model.bounding_box zlim, ylim, xlim = bbox dz, dy, dx = np.diff(bbox) / 2 z1, y1, x1 = np.mgrid[slice(zlim[0], zlim[1] + 1), slice(ylim[0], ylim[1] + 1), slice(xlim[0], xlim[1] + 1)] z2, y2, x2 = np.mgrid[slice(zlim[0] - dz, zlim[1] + dz + 1), slice(ylim[0] - dy, ylim[1] + dy + 1), slice(xlim[0] - dx, xlim[1] + dx + 1)] arr = model(x2, y2, z2) sub_arr = model(x1, y1, z1) # check for flux agreement assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * 1e-7 class Fittable2DModelTester: """ Test class for all two dimensional parametric models. Test values have to be defined in example_models.py. It currently test the model with different input types, evaluates the model at different positions and assures that it gives the correct values. And tests if the model works with non-linear fitters. This can be used as a base class for user defined model testing. """ def setup_class(self): self.N = 100 self.M = 100 self.eval_error = 0.0001 self.fit_error = 0.1 self.x = 5.3 self.y = 6.7 self.x1 = np.arange(1, 10, .1) self.y1 = np.arange(1, 10, .1) self.y2, self.x2 = np.mgrid[:10, :8] def test_input2D(self, model_class, test_parameters): """Test model with different input types.""" model = create_model(model_class, test_parameters) model(self.x, self.y) model(self.x1, self.y1) model(self.x2, self.y2) def test_eval2D(self, model_class, test_parameters): """Test model values add certain given points""" model = create_model(model_class, test_parameters) x = test_parameters['x_values'] y = test_parameters['y_values'] z = test_parameters['z_values'] assert np.all((np.abs(model(x, y) - z) < self.eval_error)) def test_bounding_box2D(self, model_class, test_parameters): """Test bounding box evaluation""" model = create_model(model_class, test_parameters) # testing setter model.bounding_box = ((-5, 5), (-5, 5)) assert model.bounding_box == ((-5, 5), (-5, 5)) model.bounding_box = None with pytest.raises(NotImplementedError): model.bounding_box # test the exception of dimensions don't match with pytest.raises(ValueError): model.bounding_box = (-5, 5) del model.bounding_box try: bbox = model.bounding_box except NotImplementedError: pytest.skip("Bounding_box is not defined for model.") ylim, xlim = bbox dy, dx = np.diff(bbox)/2 y1, x1 = np.mgrid[slice(ylim[0], ylim[1] + 1), slice(xlim[0], xlim[1] + 1)] y2, x2 = np.mgrid[slice(ylim[0] - dy, ylim[1] + dy + 1), slice(xlim[0] - dx, xlim[1] + dx + 1)] arr = model(x2, y2) sub_arr = model(x1, y1) # check for flux agreement assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * 1e-7 @pytest.mark.skipif('not HAS_SCIPY') def test_fitter2D(self, model_class, test_parameters): """Test if the parametric model works with the fitter.""" x_lim = test_parameters['x_lim'] y_lim = test_parameters['y_lim'] parameters = test_parameters['parameters'] model = create_model(model_class, test_parameters) if isinstance(parameters, dict): parameters = [parameters[name] for name in model.param_names] if "log_fit" in test_parameters: if test_parameters['log_fit']: x = np.logspace(x_lim[0], x_lim[1], self.N) y = np.logspace(y_lim[0], y_lim[1], self.N) else: x = np.linspace(x_lim[0], x_lim[1], self.N) y = np.linspace(y_lim[0], y_lim[1], self.N) xv, yv = np.meshgrid(x, y) np.random.seed(0) # add 10% noise to the amplitude noise = np.random.rand(self.N, self.N) - 0.5 data = model(xv, yv) + 0.1 * parameters[0] * noise fitter = fitting.LevMarLSQFitter() new_model = fitter(model, xv, yv, data) params = [getattr(new_model, name) for name in new_model.param_names] fixed = [param.fixed for param in params] expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed]) fitted = np.array([param.value for param in params if not param.fixed]) utils.assert_allclose(fitted, expected, atol=self.fit_error) @pytest.mark.skipif('not HAS_SCIPY') def test_deriv_2D(self, model_class, test_parameters): """ Test the derivative of a model by fitting with an estimated and analytical derivative. """ x_lim = test_parameters['x_lim'] y_lim = test_parameters['y_lim'] if model_class.fit_deriv is None: pytest.skip("Derivative function is not defined for model.") if issubclass(model_class, PolynomialBase): pytest.skip("Skip testing derivative of polynomials.") if "log_fit" in test_parameters: if test_parameters['log_fit']: x = np.logspace(x_lim[0], x_lim[1], self.N) y = np.logspace(y_lim[0], y_lim[1], self.M) else: x = np.linspace(x_lim[0], x_lim[1], self.N) y = np.linspace(y_lim[0], y_lim[1], self.M) xv, yv = np.meshgrid(x, y) try: model_with_deriv = create_model(model_class, test_parameters, use_constraints=False, parameter_key='deriv_initial') model_no_deriv = create_model(model_class, test_parameters, use_constraints=False, parameter_key='deriv_initial') model = create_model(model_class, test_parameters, use_constraints=False, parameter_key='deriv_initial') except KeyError: model_with_deriv = create_model(model_class, test_parameters, use_constraints=False) model_no_deriv = create_model(model_class, test_parameters, use_constraints=False) model = create_model(model_class, test_parameters, use_constraints=False) # add 10% noise to the amplitude rsn = np.random.RandomState(1234567890) amplitude = test_parameters['parameters'][0] n = 0.1 * amplitude * (rsn.rand(self.M, self.N) - 0.5) data = model(xv, yv) + n fitter_with_deriv = fitting.LevMarLSQFitter() new_model_with_deriv = fitter_with_deriv(model_with_deriv, xv, yv, data) fitter_no_deriv = fitting.LevMarLSQFitter() new_model_no_deriv = fitter_no_deriv(model_no_deriv, xv, yv, data, estimate_jacobian=True) utils.assert_allclose(new_model_with_deriv.parameters, new_model_no_deriv.parameters, rtol=0.1) class Fittable1DModelTester: """ Test class for all one dimensional parametric models. Test values have to be defined in example_models.py. It currently test the model with different input types, evaluates the model at different positions and assures that it gives the correct values. And tests if the model works with non-linear fitters. This can be used as a base class for user defined model testing. """ def setup_class(self): self.N = 100 self.M = 100 self.eval_error = 0.0001 self.fit_error = 0.1 self.x = 5.3 self.y = 6.7 self.x1 = np.arange(1, 10, .1) self.y1 = np.arange(1, 10, .1) self.y2, self.x2 = np.mgrid[:10, :8] def test_input1D(self, model_class, test_parameters): """Test model with different input types.""" model = create_model(model_class, test_parameters) model(self.x) model(self.x1) model(self.x2) def test_eval1D(self, model_class, test_parameters): """ Test model values at certain given points """ model = create_model(model_class, test_parameters) x = test_parameters['x_values'] y = test_parameters['y_values'] utils.assert_allclose(model(x), y, atol=self.eval_error) def test_bounding_box1D(self, model_class, test_parameters): """Test bounding box evaluation""" model = create_model(model_class, test_parameters) # testing setter model.bounding_box = (-5, 5) model.bounding_box = None with pytest.raises(NotImplementedError): model.bounding_box del model.bounding_box # test exception if dimensions don't match with pytest.raises(ValueError): model.bounding_box = 5 try: bbox = model.bounding_box except NotImplementedError: pytest.skip("Bounding_box is not defined for model.") if isinstance(model, models.Lorentz1D): rtol = 0.01 # 1% agreement is enough due to very extended wings ddx = 0.1 # Finer sampling to "integrate" flux for narrow peak else: rtol = 1e-7 ddx = 1 dx = np.diff(bbox) / 2 x1 = np.mgrid[slice(bbox[0], bbox[1] + 1, ddx)] x2 = np.mgrid[slice(bbox[0] - dx, bbox[1] + dx + 1, ddx)] arr = model(x2) sub_arr = model(x1) # check for flux agreement assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * rtol @pytest.mark.skipif('not HAS_SCIPY') def test_fitter1D(self, model_class, test_parameters): """ Test if the parametric model works with the fitter. """ x_lim = test_parameters['x_lim'] parameters = test_parameters['parameters'] model = create_model(model_class, test_parameters) if isinstance(parameters, dict): parameters = [parameters[name] for name in model.param_names] if "log_fit" in test_parameters: if test_parameters['log_fit']: x = np.logspace(x_lim[0], x_lim[1], self.N) else: x = np.linspace(x_lim[0], x_lim[1], self.N) np.random.seed(0) # add 10% noise to the amplitude relative_noise_amplitude = 0.01 data = ((1 + relative_noise_amplitude * np.random.randn(len(x))) * model(x)) fitter = fitting.LevMarLSQFitter() new_model = fitter(model, x, data) # Only check parameters that were free in the fit params = [getattr(new_model, name) for name in new_model.param_names] fixed = [param.fixed for param in params] expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed]) fitted = np.array([param.value for param in params if not param.fixed]) utils.assert_allclose(fitted, expected, atol=self.fit_error) @pytest.mark.skipif('not HAS_SCIPY') def test_deriv_1D(self, model_class, test_parameters): """ Test the derivative of a model by comparing results with an estimated derivative. """ x_lim = test_parameters['x_lim'] if model_class.fit_deriv is None: pytest.skip("Derivative function is not defined for model.") if issubclass(model_class, PolynomialBase): pytest.skip("Skip testing derivative of polynomials.") if "log_fit" in test_parameters: if test_parameters['log_fit']: x = np.logspace(x_lim[0], x_lim[1], self.N) else: x = np.linspace(x_lim[0], x_lim[1], self.N) parameters = test_parameters['parameters'] model_with_deriv = create_model(model_class, test_parameters, use_constraints=False) model_no_deriv = create_model(model_class, test_parameters, use_constraints=False) # add 10% noise to the amplitude rsn = np.random.RandomState(1234567890) n = 0.1 * parameters[0] * (rsn.rand(self.N) - 0.5) data = model_with_deriv(x) + n fitter_with_deriv = fitting.LevMarLSQFitter() new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data) fitter_no_deriv = fitting.LevMarLSQFitter() new_model_no_deriv = fitter_no_deriv(model_no_deriv, x, data, estimate_jacobian=True) utils.assert_allclose(new_model_with_deriv.parameters, new_model_no_deriv.parameters, atol=0.15) def create_model(model_class, test_parameters, use_constraints=True, parameter_key='parameters'): """Create instance of model class.""" constraints = {} if issubclass(model_class, PolynomialBase): return model_class(**test_parameters[parameter_key]) elif issubclass(model_class, FittableModel): if "requires_scipy" in test_parameters and not HAS_SCIPY: pytest.skip("SciPy not found") if use_constraints: if 'constraints' in test_parameters: constraints = test_parameters['constraints'] return model_class(*test_parameters[parameter_key], **constraints) @pytest.mark.parametrize(('model_class', 'test_parameters'), sorted(models_1D.items(), key=lambda x: str(x[0]))) class TestFittable1DModels(Fittable1DModelTester): pass @pytest.mark.parametrize(('model_class', 'test_parameters'), sorted(models_2D.items(), key=lambda x: str(x[0]))) class TestFittable2DModels(Fittable2DModelTester): pass def test_ShiftModel(): # Shift by a scalar m = models.Shift(42) assert m(0) == 42 utils.assert_equal(m([1, 2]), [43, 44]) # Shift by a list m = models.Shift([42, 43], n_models=2) utils.assert_equal(m(0), [42, 43]) utils.assert_equal(m([1, 2], model_set_axis=False), [[43, 44], [44, 45]]) def test_ScaleModel(): # Scale by a scalar m = models.Scale(42) assert m(0) == 0 utils.assert_equal(m([1, 2]), [42, 84]) # Scale by a list m = models.Scale([42, 43], n_models=2) utils.assert_equal(m(0), [0, 0]) utils.assert_equal(m([1, 2], model_set_axis=False), [[42, 84], [43, 86]]) def test_voigt_model(): """ Currently just tests that the model peaks at its origin. Regression test for https://github.com/astropy/astropy/issues/3942 """ m = models.Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9) x = np.arange(0, 10, 0.01) y = m(x) assert y[500] == y.max() # y[500] is right at the center def test_model_instance_repr(): m = models.Gaussian1D(1.5, 2.5, 3.5) assert repr(m) == '<Gaussian1D(amplitude=1.5, mean=2.5, stddev=3.5)>' @pytest.mark.skipif("not HAS_SCIPY_14") def test_tabular_interp_1d(): """ Test Tabular1D model. """ points = np.arange(0, 5) values = [1., 10, 2, 45, -3] LookupTable = models.tabular_model(1) model = LookupTable(points=points, lookup_table=values) xnew = [0., .7, 1.4, 2.1, 3.9] ans1 = [1., 7.3, 6.8, 6.3, 1.8] utils.assert_allclose(model(xnew), ans1) # Test evaluate without passing `points`. model = LookupTable(lookup_table=values) utils.assert_allclose(model(xnew), ans1) # Test bounds error. xextrap = [0., .7, 1.4, 2.1, 3.9, 4.1] with pytest.raises(ValueError): model(xextrap) # test extrapolation and fill value model = LookupTable(lookup_table=values, bounds_error=False, fill_value=None) utils.assert_allclose(model(xextrap), [1., 7.3, 6.8, 6.3, 1.8, -7.8]) # Test unit support xnew = xnew * u.nm ans1 = ans1 * u.nJy model = LookupTable(points=points*u.nm, lookup_table=values*u.nJy) assert_quantity_allclose(model(xnew), ans1) assert_quantity_allclose(model(xnew.to(u.nm)), ans1) assert model.bounding_box == (0 * u.nm, 4 * u.nm) # Test fill value unit conversion and unitless input on table with unit model = LookupTable([1, 2, 3], [10, 20, 30] * u.nJy, bounds_error=False, fill_value=1e-33*(u.W / (u.m * u.m * u.Hz))) assert_quantity_allclose(model(np.arange(5)), [100, 10, 20, 30, 100] * u.nJy) @pytest.mark.skipif("not HAS_SCIPY_14") def test_tabular_interp_2d(): table = np.array([ [-0.04614432, -0.02512547, -0.00619557, 0.0144165, 0.0297525], [-0.04510594, -0.03183369, -0.01118008, 0.01201388, 0.02496205], [-0.05464094, -0.02804499, -0.00960086, 0.01134333, 0.02284104], [-0.04879338, -0.02539565, -0.00440462, 0.01795145, 0.02122417], [-0.03637372, -0.01630025, -0.00157902, 0.01649774, 0.01952131]]) points = np.arange(0, 5) points = (points, points) xnew = np.array([0., .7, 1.4, 2.1, 3.9]) LookupTable = models.tabular_model(2) model = LookupTable(points, table) znew = model(xnew, xnew) result = np.array( [-0.04614432, -0.03450009, -0.02241028, -0.0069727, 0.01938675]) utils.assert_allclose(znew, result, atol=1e-7) # test 2D arrays as input a = np.arange(12).reshape((3, 4)) y, x = np.mgrid[:3, :4] t = models.Tabular2D(lookup_table=a) r = t(y, x) utils.assert_allclose(a, r) with pytest.raises(ValueError): model = LookupTable(points=([1.2, 2.3], [1.2, 6.7], [3, 4])) with pytest.raises(ValueError): model = LookupTable(lookup_table=[1, 2, 3]) with pytest.raises(NotImplementedError): model = LookupTable(n_models=2) with pytest.raises(ValueError): model = LookupTable(([1, 2], [3, 4]), [5, 6]) with pytest.raises(ValueError): model = LookupTable(([1, 2] * u.m, [3, 4]), [[5, 6], [7, 8]]) with pytest.raises(ValueError): model = LookupTable(points, table, bounds_error=False, fill_value=1*u.Jy) # Test unit support points = points[0] * u.nm points = (points, points) xnew = xnew * u.nm model = LookupTable(points, table * u.nJy) result = result * u.nJy assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7*u.nJy) xnew = xnew.to(u.m) assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7*u.nJy) bbox = (0 * u.nm, 4 * u.nm) bbox = (bbox, bbox) assert model.bounding_box == bbox @pytest.mark.skipif("not HAS_SCIPY_14") def test_tabular_nd(): a = np.arange(24).reshape((2, 3, 4)) x, y, z = np.mgrid[:2, :3, :4] tab = models.tabular_model(3) t = tab(lookup_table=a) result = t(x, y, z) utils.assert_allclose(a, result) with pytest.raises(ValueError): models.tabular_model(0) def test_with_bounding_box(): """ Test the option to evaluate a model respecting its bunding_box. """ p = models.Polynomial2D(2) & models.Polynomial2D(2) m = models.Mapping((0, 1, 0, 1)) | p with NumpyRNGContext(1234567): m.parameters = np.random.rand(12) m.bounding_box = ((3, 9), (1, 8)) x, y = np.mgrid[:10, :10] a, b = m(x, y) aw, bw = m(x, y, with_bounding_box=True) ind = (~np.isnan(aw)).nonzero() utils.assert_allclose(a[ind], aw[ind]) utils.assert_allclose(b[ind], bw[ind]) aw, bw = m(x, y, with_bounding_box=True, fill_value=1000) ind = (aw != 1000).nonzero() utils.assert_allclose(a[ind], aw[ind]) utils.assert_allclose(b[ind], bw[ind]) # test the order of bbox is not reversed for 1D models p = models.Polynomial1D(1, c0=12, c1=2.3) p.bounding_box = (0, 5) assert(p(1) == p(1, with_bounding_box=True))
from django.db.models.sql import compiler from datetime import datetime import re from django.db.models.base import Model REV_ODIR = { 'ASC': 'DESC', 'DESC': 'ASC' } SQL_SERVER_8_LIMIT_QUERY = \ """SELECT * FROM ( SELECT TOP %(limit)s * FROM ( %(orig_sql)s ORDER BY %(ord)s ) AS %(table)s ORDER BY %(rev_ord)s ) AS %(table)s ORDER BY %(ord)s""" SQL_SERVER_8_NO_LIMIT_QUERY = \ """SELECT * FROM %(table)s WHERE %(key)s NOT IN ( %(orig_sql)s ORDER BY %(ord)s )""" # Strategies for handling limit+offset emulation: USE_ROW_NUMBER = 0 # For SQL Server >= 2005 USE_TOP_HMARK = 1 # For SQL Server 2000 when both limit and offset are provided USE_TOP_LMARK = 2 # For SQL Server 2000 when offset but no limit is provided class SQLCompiler(compiler.SQLCompiler): def resolve_columns(self, row, fields=()): index_start = len(self.query.extra_select.keys()) values = [self.query.convert_values(v, None, connection=self.connection) for v in row[:index_start]] for value, field in map(None, row[index_start:], fields): values.append(self.query.convert_values(value, field, connection=self.connection)) return tuple(values) """ use django as_sql with editing limit """ def as_sql(self, with_limits=True, with_col_aliases=False): """ Creates the SQL for this query. Returns the SQL string and list of parameters. If 'with_limits' is False, any limit/offset information is not included in the query. """ do_offset = with_limits and (self.query.high_mark is not None or self.query.low_mark != 0) if not do_offset: return super(SQLCompiler, self).as_sql(with_limits=False, with_col_aliases=with_col_aliases) select_re = re.compile('^SELECT[ ]+(DISTINCT\s)?') query, params = super(SQLCompiler, self).as_sql(with_limits=False, with_col_aliases=with_col_aliases) m = select_re.match(query) if with_limits and m != None: num = None insert = None if self.query.high_mark is not None: num = self.query.high_mark - self.query.low_mark if num <= 0: return None, None insert = 'TOP %d' % num if insert is not None: if m.groups()[0] != None: query = select_re.sub('SELECT DISTINCT %s ' % insert, query) else: query = select_re.sub('SELECT %s ' % insert, query) return query, params class SQLInsertCompiler(compiler.SQLInsertCompiler, SQLCompiler): def as_sql_legacy(self): # We don't need quote_name_unless_alias() here, since these are all # going to be column names (so we can avoid the extra overhead). qn = self.connection.ops.quote_name opts = self.query.model._meta returns_id = bool(self.return_id and self.connection.features.can_return_id_from_insert) if returns_id: result = ['SET NOCOUNT ON'] else: result = [] result.append('INSERT INTO %s' % qn(opts.db_table)) result.append('(%s)' % ', '.join([qn(c) for c in self.query.columns])) values = [self.placeholder(*v) for v in self.query.values] result.append('VALUES (%s)' % ', '.join(values)) if returns_id: result.append(';\nSELECT SCOPE_IDENTITY()') params = self.query.params sql = ' '.join(result) meta = self.query.get_meta() if meta.has_auto_field: # db_column is None if not explicitly specified by model field auto_field_column = meta.auto_field.db_column or meta.auto_field.column if auto_field_column in self.query.columns: quoted_table = self.connection.ops.quote_name(meta.db_table) if returns_id: sql = "SET NOCOUNT ON" else: sql = "" if len(self.query.columns) == 1 and not params: sql += "INSERT INTO %s DEFAULT VALUES" % quoted_table else: sql += "SET IDENTITY_INSERT %s ON;\n%s;\nSET IDENTITY_INSERT %s OFF" % \ (quoted_table, sql, quoted_table) if returns_id: sql += '\n;SELECT SCOPE_IDENTITY()' return sql, params def as_sql(self): from django.db.models.fields import DateTimeField from django.db.models.fields import DateField """ using django as_sql() with exclude Datetime field with None value which is nullable """ # return super(SQLInsertCompiler, self).as_sql() qn = self.connection.ops.quote_name opts = self.query.model._meta result = ['INSERT INTO %s' % qn(opts.db_table)] has_fields = bool(self.query.fields) preset_fields = self.query.fields if has_fields else [opts.pk] fields = [] if len(self.query.objs) == 1: # check only one row insert # multi-row pass # so multi-row rows will crash for field in preset_fields: # if not isinstance(field, (DateField, DateTimeField)): # fields.append(field) if field.get_db_prep_save( getattr(self.query.objs[0], field.attname) if self.query.raw else field.pre_save(self.query.objs[0], True), connection=self.connection) is not None: fields.append(field) elif field.blank is not True: fields.append(field) else: fields = preset_fields result.append('(%s)' % ', '.join([qn(f.column) for f in fields])) if has_fields: params = values = [ [ f.get_db_prep_save(getattr(obj, f.attname) if self.query.raw else f.pre_save(obj, True), connection=self.connection) for f in fields ] for obj in self.query.objs ] else: values = [[self.connection.ops.pk_default_value()] for obj in self.query.objs] params = [[]] fields = [None] can_bulk = (not any(hasattr(field, "get_placeholder") for field in fields) and not self.return_id and self.connection.features.has_bulk_insert) if can_bulk: placeholders = [["%s"] * len(fields)] else: placeholders = [ [self.placeholder(field, v) for field, v in zip(fields, val)] for val in values ] # Oracle Spatial needs to remove some values due to #10888 params = self.connection.ops.modify_insert_params(placeholders, params) if self.return_id and self.connection.features.can_return_id_from_insert: params = params[0] col = "%s.%s" % (qn(opts.db_table), qn(opts.pk.column)) result.append("VALUES (%s)" % ", ".join(placeholders[0])) r_fmt, r_params = self.connection.ops.return_insert_id() # Skip empty r_fmt to allow subclasses to customize behaviour for # 3rd party backends. Refs #19096. if r_fmt: result.append(r_fmt % col) params += r_params return [(" ".join(result), tuple(params))] if can_bulk: result.append(self.connection.ops.bulk_insert_sql(fields, len(values))) return [(" ".join(result), tuple([v for val in values for v in val]))] else: return [ (" ".join(result + ["VALUES (%s)" % ", ".join(p)]), vals) for p, vals in zip(placeholders, params) ] class SQLDeleteCompiler(compiler.SQLDeleteCompiler, SQLCompiler): pass class SQLUpdateCompiler(compiler.SQLUpdateCompiler, SQLCompiler): def as_sql(self): """ Copy of django UpdateCommpiler as_sql need cheack datetime field """ self.pre_sql_setup() if not self.query.values: return '', () table = self.query.tables[0] qn = self.quote_name_unless_alias result = ['UPDATE %s' % qn(table)] result.append('SET') values, update_params = [], [] for field, model, val in self.query.values: if hasattr(val, 'prepare_database_save'): val = val.prepare_database_save(field) else: val = field.get_db_prep_save(val, connection=self.connection) # Getting the placeholder for the field. if hasattr(field, 'get_placeholder'): placeholder = field.get_placeholder(val, self.connection) else: placeholder = '%s' if hasattr(val, 'evaluate'): val = SQLEvaluator(val, self.query, allow_joins=False) name = field.column if hasattr(val, 'as_sql'): sql, params = val.as_sql(qn, self.connection) values.append('%s = %s' % (qn(name), sql)) update_params.extend(params) elif val is not None: values.append('%s = %s' % (qn(name), placeholder)) update_params.append(val) else: values.append('%s = NULL' % qn(name)) if not values: return '', () result.append(', '.join(values)) where, params = self.query.where.as_sql(qn=qn, connection=self.connection) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(update_params + params) class SQLAggregateCompiler(compiler.SQLAggregateCompiler, SQLCompiler): pass class SQLDateCompiler(compiler.SQLDateCompiler, SQLCompiler): pass
from __future__ import absolute_import from __future__ import division from __future__ import print_function import gym import numpy as np import pickle import unittest import ray from ray.rllib.agents.ppo import PPOTrainer from ray.rllib.policy.rnn_sequencing import chop_into_sequences, \ add_time_dimension from ray.rllib.models import ModelCatalog from ray.rllib.models.tf.misc import linear, normc_initializer from ray.rllib.models.model import Model from ray.tune.registry import register_env from ray.rllib.utils import try_import_tf tf = try_import_tf() class LSTMUtilsTest(unittest.TestCase): def testBasic(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] agent_ids = [1, 1, 1, 1, 1, 1, 1, 1] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] f_pad, s_init, seq_lens = chop_into_sequences(eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4) self.assertEqual([f.tolist() for f in f_pad], [ [101, 102, 103, 0, 201, 202, 203, 204, 205, 0, 0, 0], [[101], [102], [103], [0], [201], [202], [203], [204], [205], [0], [0], [0]], ]) self.assertEqual([s.tolist() for s in s_init], [[209, 109, 105]]) self.assertEqual(seq_lens.tolist(), [3, 4, 1]) def testBatchId(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] batch_ids = [1, 1, 2, 2, 3, 3, 4, 4] agent_ids = [1, 1, 1, 1, 1, 1, 1, 1] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] _, _, seq_lens = chop_into_sequences(eps_ids, batch_ids, agent_ids, f, s, 4) self.assertEqual(seq_lens.tolist(), [2, 1, 1, 2, 2]) def testMultiAgent(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] agent_ids = [1, 1, 2, 1, 1, 2, 2, 3] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] f_pad, s_init, seq_lens = chop_into_sequences( eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4, dynamic_max=False) self.assertEqual(seq_lens.tolist(), [2, 1, 2, 2, 1]) self.assertEqual(len(f_pad[0]), 20) self.assertEqual(len(s_init[0]), 5) def testDynamicMaxLen(self): eps_ids = [5, 2, 2] agent_ids = [2, 2, 2] f = [[1, 1, 1]] s = [[1, 1, 1]] f_pad, s_init, seq_lens = chop_into_sequences(eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4) self.assertEqual([f.tolist() for f in f_pad], [[1, 0, 1, 1]]) self.assertEqual([s.tolist() for s in s_init], [[1, 1]]) self.assertEqual(seq_lens.tolist(), [1, 2]) class RNNSpyModel(Model): capture_index = 0 def _build_layers_v2(self, input_dict, num_outputs, options): # Previously, a new class object was created during # deserialization and this `capture_index` # variable would be refreshed between class instantiations. # This behavior is no longer the case, so we manually refresh # the variable. RNNSpyModel.capture_index = 0 def spy(sequences, state_in, state_out, seq_lens): if len(sequences) == 1: return 0 # don't capture inference inputs # TF runs this function in an isolated context, so we have to use # redis to communicate back to our suite ray.experimental.internal_kv._internal_kv_put( "rnn_spy_in_{}".format(RNNSpyModel.capture_index), pickle.dumps({ "sequences": sequences, "state_in": state_in, "state_out": state_out, "seq_lens": seq_lens }), overwrite=True) RNNSpyModel.capture_index += 1 return 0 features = input_dict["obs"] cell_size = 3 last_layer = add_time_dimension(features, self.seq_lens) # Setup the LSTM cell lstm = tf.nn.rnn_cell.BasicLSTMCell(cell_size, state_is_tuple=True) self.state_init = [ np.zeros(lstm.state_size.c, np.float32), np.zeros(lstm.state_size.h, np.float32) ] # Setup LSTM inputs if self.state_in: c_in, h_in = self.state_in else: c_in = tf.placeholder( tf.float32, [None, lstm.state_size.c], name="c") h_in = tf.placeholder( tf.float32, [None, lstm.state_size.h], name="h") self.state_in = [c_in, h_in] # Setup LSTM outputs state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in) lstm_out, lstm_state = tf.nn.dynamic_rnn( lstm, last_layer, initial_state=state_in, sequence_length=self.seq_lens, time_major=False, dtype=tf.float32) self.state_out = list(lstm_state) spy_fn = tf.py_func( spy, [ last_layer, self.state_in, self.state_out, self.seq_lens, ], tf.int64, stateful=True) # Compute outputs with tf.control_dependencies([spy_fn]): last_layer = tf.reshape(lstm_out, [-1, cell_size]) logits = linear(last_layer, num_outputs, "action", normc_initializer(0.01)) return logits, last_layer class DebugCounterEnv(gym.Env): def __init__(self): self.action_space = gym.spaces.Discrete(2) self.observation_space = gym.spaces.Box(0, 100, (1, )) self.i = 0 def reset(self): self.i = 0 return [self.i] def step(self, action): self.i += 1 return [self.i], self.i % 3, self.i >= 15, {} class RNNSequencing(unittest.TestCase): def testSimpleOptimizerSequencing(self): ModelCatalog.register_custom_model("rnn", RNNSpyModel) register_env("counter", lambda _: DebugCounterEnv()) ppo = PPOTrainer( env="counter", config={ "num_workers": 0, "sample_batch_size": 10, "train_batch_size": 10, "sgd_minibatch_size": 10, "vf_share_layers": True, "simple_optimizer": True, "num_sgd_iter": 1, "model": { "custom_model": "rnn", "max_seq_len": 4, "state_shape": [3, 3], }, }) ppo.train() ppo.train() batch0 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_0")) self.assertEqual( batch0["sequences"].tolist(), [[[0], [1], [2], [3]], [[4], [5], [6], [7]], [[8], [9], [0], [0]]]) self.assertEqual(batch0["seq_lens"].tolist(), [4, 4, 2]) self.assertEqual(batch0["state_in"][0][0].tolist(), [0, 0, 0]) self.assertEqual(batch0["state_in"][1][0].tolist(), [0, 0, 0]) self.assertGreater(abs(np.sum(batch0["state_in"][0][1])), 0) self.assertGreater(abs(np.sum(batch0["state_in"][1][1])), 0) self.assertTrue( np.allclose(batch0["state_in"][0].tolist()[1:], batch0["state_out"][0].tolist()[:-1])) self.assertTrue( np.allclose(batch0["state_in"][1].tolist()[1:], batch0["state_out"][1].tolist()[:-1])) batch1 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_1")) self.assertEqual(batch1["sequences"].tolist(), [ [[10], [11], [12], [13]], [[14], [0], [0], [0]], [[0], [1], [2], [3]], [[4], [0], [0], [0]], ]) self.assertEqual(batch1["seq_lens"].tolist(), [4, 1, 4, 1]) self.assertEqual(batch1["state_in"][0][2].tolist(), [0, 0, 0]) self.assertEqual(batch1["state_in"][1][2].tolist(), [0, 0, 0]) self.assertGreater(abs(np.sum(batch1["state_in"][0][0])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][0])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][0][1])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][1])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][0][3])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][3])), 0) def testMinibatchSequencing(self): ModelCatalog.register_custom_model("rnn", RNNSpyModel) register_env("counter", lambda _: DebugCounterEnv()) ppo = PPOTrainer( env="counter", config={ "shuffle_sequences": False, # for deterministic testing "num_workers": 0, "sample_batch_size": 20, "train_batch_size": 20, "sgd_minibatch_size": 10, "vf_share_layers": True, "simple_optimizer": False, "num_sgd_iter": 1, "model": { "custom_model": "rnn", "max_seq_len": 4, "state_shape": [3, 3], }, }) ppo.train() ppo.train() # first epoch: 20 observations get split into 2 minibatches of 8 # four observations are discarded batch0 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_0")) batch1 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_1")) if batch0["sequences"][0][0][0] > batch1["sequences"][0][0][0]: batch0, batch1 = batch1, batch0 # sort minibatches self.assertEqual(batch0["seq_lens"].tolist(), [4, 4]) self.assertEqual(batch1["seq_lens"].tolist(), [4, 3]) self.assertEqual(batch0["sequences"].tolist(), [ [[0], [1], [2], [3]], [[4], [5], [6], [7]], ]) self.assertEqual(batch1["sequences"].tolist(), [ [[8], [9], [10], [11]], [[12], [13], [14], [0]], ]) # second epoch: 20 observations get split into 2 minibatches of 8 # four observations are discarded batch2 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_2")) batch3 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_3")) if batch2["sequences"][0][0][0] > batch3["sequences"][0][0][0]: batch2, batch3 = batch3, batch2 self.assertEqual(batch2["seq_lens"].tolist(), [4, 4]) self.assertEqual(batch3["seq_lens"].tolist(), [2, 4]) self.assertEqual(batch2["sequences"].tolist(), [ [[5], [6], [7], [8]], [[9], [10], [11], [12]], ]) self.assertEqual(batch3["sequences"].tolist(), [ [[13], [14], [0], [0]], [[0], [1], [2], [3]], ]) if __name__ == "__main__": ray.init(num_cpus=4) unittest.main(verbosity=2)
#!/usr/bin/env python r"""Training a sentiment analysis binary classifier on the IMDB dataset, with or without pretrained GloVe word embeddings. Downloading and extracting the various models and datasets involved is done in parallel, along with running various make files and scripts. """ from __future__ import print_function from builtins import zip from collections import MutableSequence, Sequence import fnmatch import functools from inspect import isgenerator from multiprocessing import Pool import os from os import getcwd, listdir, mkdir, path try: from subprocess import DEVNULL except ImportError: DEVNULL = open(os.devnull, 'wb') import shlex import six import subprocess import sys import tarfile try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock import zipfile from keras import layers, models from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer import numpy as np import wget __author__ = 'Gregory Giecold' __copyright__ = 'Copyright 2017-2022 Gregory Giecold and contributors' __credit__ = 'Gregory Giecold' __status__ = 'beta' __version__ = '0.1.0' __all__ = ['build_model', 'download_extract', 'get_imdb_data', 'tokenize_data', 'track_train'] def track_train(func): @functools.wraps(func) def wrapper(*args, **kwargs): train_flag = kwargs.pop('train_flag', None) if train_flag is not None: wrapper.has_been_trained = train_flag return func(*args, **kwargs) wrapper.has_been_trained = False return wrapper def download_extract(url, odir): assert isinstance(url, six.string_types) if url.endswith('.gz'): fname = wget.download(url, out=path.dirname(odir), bar=None) with tarfile.open(fname, 'r') as th: th.extractall(path.dirname(odir)) subprocess.check_call(['rm', '{}'.format(path.split(url)[-1])], stdout=DEVNULL, stderr=subprocess.PIPE, cwd=path.dirname(odir)) elif url.endswith('GloVe-1.2.zip'): fname = wget.download(url, out=path.dirname(odir), bar=wget.bar_thermometer) with zipfile.ZipFile(fname, 'r', zipfile.ZIP_DEFLATED) as zh: for file in zh.filelist: name = file.filename permissions = 0777 file.external_attr = permissions ofile = path.join(path.dirname(odir), name) if name.endswith('/'): mkdir(ofile, permissions) else: fh = os.open(ofile, os.O_CREAT | os.O_WRONLY, permissions) os.write(fh, zh.read(name)) os.close(fh) commands = ('rm {}'.format(path.split(url)[-1]), 'make', './demo.sh') directories = (path.dirname(odir), odir, odir) shell_flags = (False, False, True) for cmd, cdir, flag in zip(commands, directories, shell_flags): subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cdir, shell=flag) elif url.endswith('.zip'): fname = wget.download(url, out=path.dirname(odir)) with zipfile.ZipFile(fname, 'r') as zh: zh.extractall(odir) subprocess.check_call(['rm', '{}'.format(path.split(url)[-1])], stdout=DEVNULL, stderr=subprocess.PIPE, cwd=path.dirname(odir)) def download_extract_unpack(args): return download_extract(*args) def get_imdb_data(odir, train_flag=True): assert path.isdir(odir) assert isinstance(train_flag, bool) labels, texts = list(), list() for category in ('neg', 'pos'): subdir = path.join(odir, 'train' if train_flag else 'test', category) for fname in fnmatch.filter(listdir(subdir), '*.txt'): labels.append(0 if category == 'neg' else 1) with open(path.join(subdir, fname), 'r') as fh: texts.append(fh.read()) return labels, texts def tokenize_data(tokenizer, odir, num_words, num_training_samples=20000, num_validation_samples=10000, max_words_per_text=100): @track_train def helper(train_flag=True): labels, texts = get_imdb_data(odir, train_flag) labels = np.asarray(labels) try: if isinstance(texts, (MutableSequence, Sequence)): texts = list(texts) else: assert isgenerator(texts) except Exception: raise if train_flag: tokenizer.fit_on_texts(texts) data = tokenizer.texts_to_sequences(texts) data = pad_sequences(data, maxlen=max_words_per_text) return labels, data labels, data = helper() idx = np.arange(data.shape[0]) np.random.shuffle(idx) data = data[idx] labels = labels[idx] x_train = data[:num_training_samples] y_train = labels[:num_training_samples] x_val = data[ num_training_samples:num_training_samples + num_validation_samples ] y_val = labels[ num_training_samples:num_training_samples + num_validation_samples ] y_test, x_test = helper(False) return (x_train, y_train), (x_val, y_val), (x_test, y_test) def build_model(pretrained_embedding=True, odir=None, tokenizer=None, num_words=10000, embedding_dimension=100, max_words_per_text=100): if pretrained_embedding: assert embedding_dimension in (50, 100, 200, 300) model = models.Sequential() model.add(layers.Embedding( num_words, embedding_dimension, input_length=max_words_per_text) ) model.add(layers.Flatten()) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.summary() if pretrained_embedding: assert (odir is not None) and path.isdir(odir) assert (tokenizer is not None) and isinstance(tokenizer, Tokenizer) embedding_dict = dict() fname = path.join( odir, 'glove.6B.{embedding_dimension}d.txt'.format(**locals()) ) with open(fname, 'r') as fh: for line in fh: tmp = line.split() k, v = tmp[0], tmp[1:] embedding_dict[k] = np.asarray(v, dtype='float32') embedding_matrix = np.zeros((num_words, embedding_dimension)) for k, v in tokenizer.word_index.iteritems(): word_embedding = embedding_dict.get(k) if v < num_words and word_embedding is not None: embedding_matrix[v] = word_embedding model.layers[0].set_weights([embedding_matrix]) model.layers[0].trainable = False model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) return model def main(): odir = path.join(path.dirname(getcwd()), 'data') imdb_dir = path.join(odir, 'aclImdb') glove_code_dir = path.join(odir, 'GloVe-1.2') pretrained_glove_embedding_dir = path.join(odir, 'glove.6B') dirs, urls = list(), list() if not path.isdir(glove_code_dir): dirs.append(glove_code_dir) urls.append('https://nlp.stanford.edu/software/GloVe-1.2.zip') if not path.isdir(pretrained_glove_embedding_dir): dirs.append(pretrained_glove_embedding_dir) urls.append('http://nlp.stanford.edu/data/glove.6B.zip') if not path.isdir(imdb_dir): dirs.append(imdb_dir) urls.append( 'https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz' ) pool = Pool() if sys.version_info.major == 3: pool.starmap(download_extract, zip(urls, dirs)) else: pool.map(download_extract_unpack, zip(urls, dirs)) num_words = 10000 tokenizer = Tokenizer(num_words=num_words) (x_train, y_train), (x_val, y_val), (x_test, y_test) = tokenize_data( tokenizer, imdb_dir, num_words) for pretrained in (True, False): model = build_model(pretrained, pretrained_glove_embedding_dir, tokenizer) history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val), verbose=0) scores = model.evaluate(x_test, y_test, verbose=0) print("\nTest results for the model " "{} pretrained GloVe word embeddings: ".format( 'with' if pretrained else 'without')) print("loss={scores[0]}, accuracy={scores[1]}\n".format(**locals())) # The model with pretrained embedding vectors will display a lower # test accuracy, due to having overfitted the training samples. model.save_weights('{}glove_model.hy'.format( 'pretrained_' if pretrained else '')) if __name__ == '__main__': main()
#!/usr/bin/env python # Copyright 2016 DIANA-HEP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # "Public" methods; what we want to attach to the Histogram as a mix-in. from __future__ import absolute_import import math # python 2/3 compatibility fixes # from histogrammar.util import * class HistogramMethods(object): def plotbokeh(self, glyphType="line", glyphSize=1, fillColor="red", lineColor="black", lineAlpha=1, fillAlpha=0.1, lineDash='solid'): # glyphs from bokeh.models.glyphs import Rect, Line from bokeh.models.renderers import GlyphRenderer from bokeh.models.markers import (Circle, Cross, Diamond, Square, Triangle) # data from bokeh.models import ColumnDataSource # Parameters of the histogram lo = self.low hi = self.high num = self.num bin_width = (hi-lo)/num x = list() center = lo for _ in range(num): x.append(center+bin_width/2) center += bin_width y = self.numericalValues ci = [2.*v for v in self.confidenceIntervalValues()] source = ColumnDataSource(data=dict(x=x, y=y, ci=ci)) glyph = None if glyphType == "square": glyph = Square( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "diamond": glyph = Diamond( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "cross": glyph = Cross( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "triangle": glyph = Triangle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "circle": glyph = Circle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "rect": glyph = Rect( x='x', y='y', width=bin_width, height=0.1, fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) elif glyphType == "errors": glyph = Rect( x='x', y='y', width=bin_width, height='ci', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) elif glyphType == "histogram": h = y y = [yy/2 for yy in y] source = ColumnDataSource(dict(x=x, y=y, h=h)) glyph = Rect( x='x', y='y', width=bin_width, height='h', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) else: glyph = Line( x='x', y='y', line_color=lineColor, line_alpha=lineAlpha, line_width=glyphSize, line_dash=lineDash) return GlyphRenderer(glyph=glyph, data_source=source) class SparselyHistogramMethods(object): def plotbokeh(self, glyphType="line", glyphSize=1, fillColor="red", lineColor="black", lineAlpha=1, fillAlpha=0.1, lineDash='solid'): # glyphs from bokeh.models.glyphs import Rect, Line from bokeh.models.renderers import GlyphRenderer from bokeh.models.markers import (Circle, Cross, Diamond, Square, Triangle) # data from bokeh.models import ColumnDataSource # Parameters of the histogram lo = self.low hi = self.high num = self.numFilled bin_width = (hi-lo)/num x = list() center = lo for _ in range(num): x.append(center+bin_width/2) center += bin_width y = [v.entries for _, v in sorted(self.bins.items())] source = ColumnDataSource(data=dict(x=x, y=y)) glyph = None if glyphType == "square": glyph = Square( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "diamond": glyph = Diamond( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "cross": glyph = Cross( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "triangle": glyph = Triangle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "circle": glyph = Circle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "rect": glyph = Rect( x='x', y='y', width=bin_width, height=0.1, fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) elif glyphType == "errors": ci = [2.*v for v in self.confidenceIntervalValues()] source = ColumnDataSource(data=dict(x=x, y=y, ci=ci)) glyph = Rect( x='x', y='y', width=bin_width, height='ci', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) elif glyphType == "histogram": h = y y = [yy/2 for yy in y] source = ColumnDataSource(dict(x=x, y=y, h=h)) glyph = Rect( x='x', y='y', width=bin_width, height='h', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) else: glyph = Line( x='x', y='y', line_color=lineColor, line_alpha=lineAlpha, line_width=glyphSize, line_dash=lineDash) return GlyphRenderer(glyph=glyph, data_source=source) class CategorizeHistogramMethods(object): pass class IrregularlyHistogramMethods(object): pass class CentrallyHistogramMethods(object): pass class ProfileMethods(object): def plotbokeh(self, glyphType="line", glyphSize=1, fillColor="red", lineColor="black", lineAlpha=1, fillAlpha=0.1, lineDash='solid'): # glyphs from bokeh.models.glyphs import Rect, Line from bokeh.models.renderers import GlyphRenderer from bokeh.models.markers import (Circle, Cross, Diamond, Square, Triangle) # data from bokeh.models import ColumnDataSource # Parameters of the histogram lo = self.low hi = self.high num = self.num bin_width = (hi-lo)/num x = list() y = list() center = lo for v in self.values: if not math.isnan(v.mean): y.append(v.mean) x.append(center+bin_width/2) center += bin_width source = ColumnDataSource(data=dict(x=x, y=y)) glyph = None if glyphType == "square": glyph = Square( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "diamond": glyph = Diamond( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "cross": glyph = Cross( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "triangle": glyph = Triangle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "circle": glyph = Circle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "histogram": w = [bin_width for _ in x] h = y y = [yy/2 for yy in y] source = ColumnDataSource(dict(x=x, y=y, w=w, h=h)) glyph = Rect( x='x', y='y', width='w', height='h', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) else: glyph = Line( x='x', y='y', line_color=lineColor, line_alpha=lineAlpha, line_width=glyphSize, line_dash=lineDash) return GlyphRenderer(glyph=glyph, data_source=source) class SparselyProfileMethods(object): pass class ProfileErrMethods(object): def plotbokeh(self, glyphType="line", glyphSize=1, fillColor="red", lineColor="black", lineAlpha=1, fillAlpha=0.1, lineDash='solid'): # glyphs from bokeh.models.glyphs import Rect, Line from bokeh.models.renderers import GlyphRenderer from bokeh.models.markers import (Circle, Cross, Diamond, Square, Triangle) # data from bokeh.models import ColumnDataSource from math import sqrt # Parameters of the histogram lo = self.low hi = self.high num = self.num bin_width = (hi-lo)/num x = list() y = list() center = lo for v in self.values: if not math.isnan(v.mean): y.append(v.mean) x.append(center+bin_width/2) center += bin_width source = ColumnDataSource(data=dict(x=x, y=y)) glyph = None if glyphType == "square": glyph = Square( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "diamond": glyph = Diamond( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "cross": glyph = Cross( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "triangle": glyph = Triangle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "circle": glyph = Circle( x='x', y='y', line_color=lineColor, fill_color=fillColor, line_alpha=lineAlpha, size=glyphSize, line_dash=lineDash) elif glyphType == "errors": w = [bin_width for _ in x] h = [sqrt(v.variance/v.entries) if v.entries > 0 else 0.0 for v in self.values] source = ColumnDataSource(dict(x=x, y=y, w=w, h=h)) glyph = Rect( x='x', y='y', width='w', height='h', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) elif glyphType == "histogram": w = [bin_width for _ in x] h = y y = [yy/2 for yy in y] source = ColumnDataSource(dict(x=x, y=y, w=w, h=h)) glyph = Rect( x='x', y='y', width='w', height='h', fill_alpha=fillAlpha, line_color=lineColor, fill_color=fillColor) else: glyph = Line( x='x', y='y', line_color=lineColor, line_alpha=lineAlpha, line_width=glyphSize, line_dash=lineDash) return GlyphRenderer(glyph=glyph, data_source=source) class SparselyProfileErrMethods(object): pass class StackedHistogramMethods(object): nMaxStacked = 10 glyphTypeDefaults = ["circle"]*nMaxStacked glyphSizeDefaults = [1]*nMaxStacked fillColorDefaults = ["red"]*nMaxStacked lineColorDefaults = ["red"]*nMaxStacked lineAlphaDefaults = [1]*nMaxStacked fillAlphaDefaults = [0.1]*nMaxStacked lineDashDefaults = ["solid"]*nMaxStacked def plotbokeh(self, glyphTypes=glyphTypeDefaults, glyphSizes=glyphSizeDefaults, fillColors=fillColorDefaults, lineColors=lineColorDefaults, lineAlphas=lineAlphaDefaults, fillAlphas=fillAlphaDefaults, lineDashes=lineDashDefaults): nChildren = len(self.children)-1 assert len(glyphSizes) >= nChildren assert len(glyphTypes) >= nChildren assert len(fillColors) >= nChildren assert len(lineColors) >= nChildren assert len(lineAlphas) >= nChildren assert len(fillAlphas) >= nChildren assert len(lineDashes) >= nChildren stackedGlyphs = list() # for ichild, p in enumerate(self.children,start=1): for ichild in range(nChildren): stackedGlyphs.append(self.children[ichild+1].plotbokeh(glyphTypes[ichild], glyphSizes[ichild], fillColors[ichild], lineColors[ichild], lineAlphas[ichild], fillAlphas[ichild], lineDashes[ichild])) return stackedGlyphs class PartitionedHistogramMethods(object): pass class FractionedHistogramMethods(object): pass class TwoDimensionallyHistogramMethods(object): pass class SparselyTwoDimensionallyHistogramMethods(object): pass class IrregularlyTwoDimensionallyHistogramMethods(object): pass class CentrallyTwoDimensionallyHistogramMethods(object): pass def plot(xLabel='x', yLabel='y', *args): from bokeh.models import DataRange1d, Plot, LinearAxis from bokeh.models import PanTool, WheelZoomTool xdr = DataRange1d() ydr = DataRange1d() plot = Plot(x_range=xdr, y_range=ydr, min_border=80) extra = list() if not isinstance(xLabel, str) and not isinstance(yLabel, str): extra.append(xLabel) extra.append(yLabel) xLabel = 'x' yLabel = 'y' elif not isinstance(xLabel, str): extra.append(xLabel) xLabel = 'x' elif not isinstance(yLabel, str): extra.append(yLabel) yLabel = 'y' args = extra+list(args) for renderer in args: if not isinstance(renderer, list): plot.renderers.append(renderer) else: plot.renderers.extend(renderer) # axes xaxis = LinearAxis(axis_label=xLabel) plot.add_layout(xaxis, 'below') yaxis = LinearAxis(axis_label=yLabel) plot.add_layout(yaxis, 'left') # add grid to the plot # plot.add_layout(Grid(dimension=0, ticker=xaxis.ticker)) # plot.add_layout(Grid(dimension=1, ticker=yaxis.ticker)) # interactive tools plot.add_tools(PanTool(), WheelZoomTool()) # , SaveTool()) return plot def save(plot, fname): # SaveTool https://github.com/bokeh/bokeh/blob/118b6a765ee79232b1fef0e82ed968a9dbb0e17f/examples/models/line.py from bokeh.io import save, output_file output_file(fname) save(plot) def view(plot, show=False): from bokeh.plotting import curdoc from bokeh.client import push_session if show: session = push_session(curdoc()) session.show(plot) else: curdoc().add_root(plot)
""" Wrap the internal caffe C++ module (_caffe.so) with a clean, Pythonic interface. """ from collections import OrderedDict try: from itertools import izip_longest except: from itertools import zip_longest as izip_longest import numpy as np from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \ RMSPropSolver, AdaDeltaSolver, AdamSolver import caffe.io import six # We directly update methods from Net here (rather than using composition or # inheritance) so that nets created by caffe (e.g., by SGDSolver) will # automatically have the improved interface. @property def _Net_blobs(self): """ An OrderedDict (bottom to top, i.e., input to output) of network blobs indexed by name """ return OrderedDict(zip(self._blob_names, self._blobs)) @property def _Net_blob_loss_weights(self): """ An OrderedDict (bottom to top, i.e., input to output) of network blob loss weights indexed by name """ return OrderedDict(zip(self._blob_names, self._blob_loss_weights)) @property def _Net_params(self): """ An OrderedDict (bottom to top, i.e., input to output) of network parameters indexed by name; each is a list of multiple blobs (e.g., weights and biases) """ return OrderedDict([(name, lr.blobs) for name, lr in zip(self._layer_names, self.layers) if len(lr.blobs) > 0]) @property def _Net_inputs(self): return [list(self.blobs.keys())[i] for i in self._inputs] @property def _Net_outputs(self): return [list(self.blobs.keys())[i] for i in self._outputs] def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): """ Forward pass: prepare inputs and run the net forward. Parameters ---------- blobs : list of blobs to return in addition to output blobs. kwargs : Keys are input blob names and values are blob ndarrays. For formatting inputs for Caffe, see Net.preprocess(). If None, input is taken from data layers. start : optional name of layer at which to begin the forward pass end : optional name of layer at which to finish the forward pass (inclusive) Returns ------- outs : {blob name: blob ndarray} dict. """ if blobs is None: blobs = [] if start is not None: start_ind = list(self._layer_names).index(start) else: start_ind = 0 if end is not None: end_ind = list(self._layer_names).index(end) outputs = set([end] + blobs) else: end_ind = len(self.layers) - 1 outputs = set(self.outputs + blobs) if kwargs: if set(kwargs.keys()) != set(self.inputs): raise Exception('Input blob arguments do not match net inputs.') # Set input according to defined shapes and make arrays single and # C-contiguous as Caffe expects. for in_, blob in six.iteritems(kwargs): if blob.shape[0] != self.blobs[in_].shape[0]: raise Exception('Input is not batch sized') self.blobs[in_].data[...] = blob self._forward(start_ind, end_ind) # Unpack blobs to extract return {out: self.blobs[out].data for out in outputs} def _Net_backward(self, diffs=None, start=None, end=None, **kwargs): """ Backward pass: prepare diffs and run the net backward. Parameters ---------- diffs : list of diffs to return in addition to bottom diffs. kwargs : Keys are output blob names and values are diff ndarrays. If None, top diffs are taken from forward loss. start : optional name of layer at which to begin the backward pass end : optional name of layer at which to finish the backward pass (inclusive) Returns ------- outs: {blob name: diff ndarray} dict. """ if diffs is None: diffs = [] if start is not None: start_ind = list(self._layer_names).index(start) else: start_ind = len(self.layers) - 1 if end is not None: end_ind = list(self._layer_names).index(end) outputs = set([end] + diffs) else: end_ind = 0 outputs = set(self.inputs + diffs) if kwargs: if set(kwargs.keys()) != set(self.outputs): raise Exception('Top diff arguments do not match net outputs.') # Set top diffs according to defined shapes and make arrays single and # C-contiguous as Caffe expects. for top, diff in six.iteritems(kwargs): if diff.shape[0] != self.blobs[top].shape[0]: raise Exception('Diff is not batch sized') self.blobs[top].diff[...] = diff self._backward(start_ind, end_ind) # Unpack diffs to extract return {out: self.blobs[out].diff for out in outputs} def _Net_forward_all(self, blobs=None, **kwargs): """ Run net forward in batches. Parameters ---------- blobs : list of blobs to extract as in forward() kwargs : Keys are input blob names and values are blob ndarrays. Refer to forward(). Returns ------- all_outs : {blob name: list of blobs} dict. """ # Collect outputs from batches all_outs = {out: [] for out in set(self.outputs + (blobs or []))} for batch in self._batch(kwargs): outs = self.forward(blobs=blobs, **batch) for out, out_blob in six.iteritems(outs): all_outs[out].extend(out_blob.copy()) # Package in ndarray. for out in all_outs: all_outs[out] = np.asarray(all_outs[out]) # Discard padding. pad = len(six.next(six.itervalues(all_outs))) - len(six.next(six.itervalues(kwargs))) if pad: for out in all_outs: all_outs[out] = all_outs[out][:-pad] return all_outs def _Net_forward_backward_all(self, blobs=None, diffs=None, **kwargs): """ Run net forward + backward in batches. Parameters ---------- blobs: list of blobs to extract as in forward() diffs: list of diffs to extract as in backward() kwargs: Keys are input (for forward) and output (for backward) blob names and values are ndarrays. Refer to forward() and backward(). Prefilled variants are called for lack of input or output blobs. Returns ------- all_blobs: {blob name: blob ndarray} dict. all_diffs: {blob name: diff ndarray} dict. """ # Batch blobs and diffs. all_outs = {out: [] for out in set(self.outputs + (blobs or []))} all_diffs = {diff: [] for diff in set(self.inputs + (diffs or []))} forward_batches = self._batch({in_: kwargs[in_] for in_ in self.inputs if in_ in kwargs}) backward_batches = self._batch({out: kwargs[out] for out in self.outputs if out in kwargs}) # Collect outputs from batches (and heed lack of forward/backward batches). for fb, bb in izip_longest(forward_batches, backward_batches, fillvalue={}): batch_blobs = self.forward(blobs=blobs, **fb) batch_diffs = self.backward(diffs=diffs, **bb) for out, out_blobs in six.iteritems(batch_blobs): all_outs[out].extend(out_blobs.copy()) for diff, out_diffs in six.iteritems(batch_diffs): all_diffs[diff].extend(out_diffs.copy()) # Package in ndarray. for out, diff in zip(all_outs, all_diffs): all_outs[out] = np.asarray(all_outs[out]) all_diffs[diff] = np.asarray(all_diffs[diff]) # Discard padding at the end and package in ndarray. pad = len(six.next(six.itervalues(all_outs))) - len(six.next(six.itervalues(kwargs))) if pad: for out, diff in zip(all_outs, all_diffs): all_outs[out] = all_outs[out][:-pad] all_diffs[diff] = all_diffs[diff][:-pad] return all_outs, all_diffs def _Net_set_input_arrays(self, data, labels): """ Set input arrays of the in-memory MemoryDataLayer. (Note: this is only for networks declared with the memory data layer.) """ if labels.ndim == 1: labels = np.ascontiguousarray(labels[:, np.newaxis, np.newaxis, np.newaxis]) return self._set_input_arrays(data, labels) def _Net_batch(self, blobs): """ Batch blob lists according to net's batch size. Parameters ---------- blobs: Keys blob names and values are lists of blobs (of any length). Naturally, all the lists should have the same length. Yields ------ batch: {blob name: list of blobs} dict for a single batch. """ num = len(six.next(six.itervalues(blobs))) batch_size = six.next(six.itervalues(self.blobs)).shape[0] remainder = num % batch_size num_batches = num // batch_size # Yield full batches. for b in range(num_batches): i = b * batch_size yield {name: blobs[name][i:i + batch_size] for name in blobs} # Yield last padded batch, if any. if remainder > 0: padded_batch = {} for name in blobs: padding = np.zeros((batch_size - remainder,) + blobs[name].shape[1:]) padded_batch[name] = np.concatenate([blobs[name][-remainder:], padding]) yield padded_batch class _Net_IdNameWrapper: """ A simple wrapper that allows the ids propery to be accessed as a dict indexed by names. Used for top and bottom names """ def __init__(self, net, func): self.net, self.func = net, func def __getitem__(self, name): # Map the layer name to id ids = self.func(self.net, list(self.net._layer_names).index(name)) # Map the blob id to name id_to_name = list(self.net.blobs) return [id_to_name[i] for i in ids] # Attach methods to Net. Net.blobs = _Net_blobs Net.blob_loss_weights = _Net_blob_loss_weights Net.params = _Net_params Net.forward = _Net_forward Net.backward = _Net_backward Net.forward_all = _Net_forward_all Net.forward_backward_all = _Net_forward_backward_all Net.set_input_arrays = _Net_set_input_arrays Net._batch = _Net_batch Net.inputs = _Net_inputs Net.outputs = _Net_outputs Net.top_names = property(lambda n: _Net_IdNameWrapper(n, Net._top_ids)) Net.bottom_names = property(lambda n: _Net_IdNameWrapper(n, Net._bottom_ids))
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Timothy Berkelbach <[email protected]> # '''PP with numeric integration. See also pyscf/pbc/gto/pesudo/pp_int.py For GTH/HGH PPs, see: Goedecker, Teter, Hutter, PRB 54, 1703 (1996) Hartwigsen, Goedecker, and Hutter, PRB 58, 3641 (1998) ''' import numpy as np import scipy.linalg import scipy.special from pyscf import lib from pyscf.gto import mole from pyscf.pbc.gto.pseudo import pp_int def get_alphas(cell): '''alpha parameters from the non-divergent Hartree+Vloc G=0 term. See ewald.pdf Returns: alphas : (natm,) ndarray ''' return get_alphas_gth(cell) def get_alphas_gth(cell): '''alpha parameters for the local GTH pseudopotential.''' G0 = np.zeros((1,3)) return -get_gth_vlocG(cell, G0) def get_vlocG(cell, Gv=None): '''Local PP kernel in G space: Vloc(G) Returns: (natm, ngrids) ndarray ''' if Gv is None: Gv = cell.Gv vlocG = get_gth_vlocG(cell, Gv) return vlocG def get_gth_vlocG(cell, Gv): '''Local part of the GTH pseudopotential. See MH (4.79). Args: Gv : (ngrids,3) ndarray Returns: (natm, ngrids) ndarray ''' vlocG = pp_int.get_gth_vlocG_part1(cell, Gv) # Add the C1, C2, C3, C4 contributions G2 = np.einsum('ix,ix->i', Gv, Gv) for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] rloc, nexp, cexp = pp[1:3+1] G2_red = G2 * rloc**2 cfacs = 0 if nexp >= 1: cfacs += cexp[0] if nexp >= 2: cfacs += cexp[1] * (3 - G2_red) if nexp >= 3: cfacs += cexp[2] * (15 - 10*G2_red + G2_red**2) if nexp >= 4: cfacs += cexp[3] * (105 - 105*G2_red + 21*G2_red**2 - G2_red**3) vlocG[ia,:] -= (2*np.pi)**(3/2.)*rloc**3*np.exp(-0.5*G2_red) * cfacs return vlocG def get_projG(cell, kpt=np.zeros(3)): '''PP weight and projector for the nonlocal PP in G space. Returns: hs : list( list( np.array( , ) ) ) - hs[atm][l][i,j] projs : list( list( list( list( np.array(ngrids) ) ) ) ) - projs[atm][l][m][i][ngrids] ''' return get_gth_projG(cell, kpt+cell.Gv) def get_gth_projG(cell, Gvs): r'''G space projectors from the FT of the real-space projectors. \int e^{iGr} p_j^l(r) Y_{lm}^*(theta,phi) = i^l p_j^l(G) Y_{lm}^*(thetaG, phiG) See MH Eq.(4.80) ''' Gs,thetas,phis = cart2polar(Gvs) hs = [] projs = [] for ia in range(cell.natm): symb = cell.atom_symbol(ia) pp = cell._pseudo[symb] nproj_types = pp[4] h_ia = [] proj_ia = [] for l,proj in enumerate(pp[5:]): rl, nl, hl = proj h_ia.append( np.array(hl) ) proj_ia_l = [] for m in range(-l,l+1): projG_ang = Ylm(l,m,thetas,phis).conj() proj_ia_lm = [] for i in range(nl): projG_radial = projG_li(Gs,l,i,rl) proj_ia_lm.append( (1j)**l * projG_radial*projG_ang ) proj_ia_l.append(proj_ia_lm) proj_ia.append(proj_ia_l) hs.append(h_ia) projs.append(proj_ia) return hs, projs def projG_li(G, l, i, rl): G = np.array(G) G_red = G*rl # MH Eq. (4.81) return ( _qli(G_red,l,i) * np.pi**(5/4.) * G**l * np.sqrt(rl**(2*l+3)) / np.exp(0.5*G_red**2) ) def _qli(x,l,i): # MH Eqs. (4.82)-(4.93) :: beware typos! # Mathematica formulas: # p[l_, i_, r_] = Sqrt[2] r^(l + 2 (i - 1)) Exp[-r^2/(2 R^2)]/(R^(l + (4 i - 1)/2) Sqrt[Gamma[l + (4 i - 1)/2]]) # pG[l_, i_, G_] = Integrate[p[l, i, r] 4 Pi r^2 SphericalBesselJ[l, G r], {r, 0, Infinity}] # qG[l_, i_, G_] := pG[l, i, G]/(Pi^(5/4) G^l Sqrt[R^(2 l + 3)]/Exp[(G R)^2/2]) # FullSimplify[qG[4, 3, G], R > 0 && G > 0] sqrt = np.sqrt if l==0 and i==0: return 4*sqrt(2.) elif l==0 and i==1: return 8*sqrt(2/15.)*(3-x**2) # MH & GTH (right) #return sqrt(8*2/15.)*(3-x**2) # HGH (wrong) elif l==0 and i==2: #return 16/3.*sqrt(2/105.)*(15-20*x**2+4*x**4) # MH (wrong) return 16/3.*sqrt(2/105.)*(15-10*x**2+x**4) # HGH (right) elif l==1 and i==0: return 8*sqrt(1/3.) elif l==1 and i==1: return 16*sqrt(1/105.)*(5-x**2) elif l==1 and i==2: #return 32/3.*sqrt(1/1155.)*(35-28*x**2+4*x**4) # MH (wrong) return 32/3.*sqrt(1/1155.)*(35-14*x**2+x**4) # HGH (right) elif l==2 and i==0: return 8*sqrt(2/15.) elif l==2 and i==1: return 16/3.*sqrt(2/105.)*(7-x**2) elif l==2 and i==2: #return 32/3.*sqrt(2/15015.)*(63-36*x**2+4*x**4) # MH (wrong I think) return 32/3.*sqrt(2/15015.)*(63-18*x**2+x**4) # TCB elif l==3 and i==0: return 16*sqrt(1/105.) elif l==3 and i==1: return 32/3.*sqrt(1/1155.)*(9-x**2) elif l==3 and i==2: return 64/45.*sqrt(1/1001.)*(99-22*x**2+x**4) elif l==4 and i==0: return 16/3.*sqrt(2/105.) elif l==4 and i==1: return 32/3.*sqrt(2/15015.)*(11-x**2) elif l==4 and i==2: return 64/45.*sqrt(2/17017.)*(143-26*x**2+x**4) else: print("*** WARNING *** l =", l, ", i =", i, "not yet implemented for NL PP!") return 0. def Ylm_real(l,m,theta,phi): '''Real spherical harmonics, if desired.''' Ylabsm = Ylm(l,np.abs(m),theta,phi) if m < 0: return np.sqrt(2.) * Ylabsm.imag elif m > 0: return np.sqrt(2.) * Ylabsm.real else: # m == 0 return Ylabsm.real def Ylm(l,m,theta,phi): ''' Spherical harmonics; returns a complex number Note the "convention" for theta and phi: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.special.sph_harm.html ''' #return scipy.special.sph_harm(m=m,n=l,theta=phi,phi=theta) return scipy.special.sph_harm(m,l,phi,theta) def cart2polar(rvec): # The rows of rvec are the 3-component vectors # i.e. rvec is N x 3 x,y,z = rvec.T r = lib.norm(rvec, axis=1) # theta is the polar angle, 0 < theta < pi # catch possible 0/0 theta = np.arccos(z/(r+1e-200)) # phi is the azimuthal angle, 0 < phi < 2pi (or -pi < phi < pi) phi = np.arctan2(y,x) return r, theta, phi def get_pp(cell, kpt=np.zeros(3)): '''Get the periodic pseudotential nuc-el AO matrix ''' from pyscf.pbc import tools coords = cell.get_uniform_grids() aoR = cell.pbc_eval_gto('GTOval', coords, kpt=kpt) nao = cell.nao_nr() SI = cell.get_SI() vlocG = get_vlocG(cell) vpplocG = -np.sum(SI * vlocG, axis=0) vpplocG[0] = np.sum(get_alphas(cell)) # from get_jvloc_G0 function # vpploc evaluated in real-space vpplocR = tools.ifft(vpplocG, cell.mesh).real vpploc = np.dot(aoR.T.conj(), vpplocR.reshape(-1,1)*aoR) # vppnonloc evaluated in reciprocal space aokG = tools.fftk(np.asarray(aoR.T, order='C'), cell.mesh, np.exp(-1j*np.dot(coords, kpt))).T ngrids = len(aokG) fakemol = mole.Mole() fakemol._atm = np.zeros((1,mole.ATM_SLOTS), dtype=np.int32) fakemol._bas = np.zeros((1,mole.BAS_SLOTS), dtype=np.int32) ptr = mole.PTR_ENV_START fakemol._env = np.zeros(ptr+10) fakemol._bas[0,mole.NPRIM_OF ] = 1 fakemol._bas[0,mole.NCTR_OF ] = 1 fakemol._bas[0,mole.PTR_EXP ] = ptr+3 fakemol._bas[0,mole.PTR_COEFF] = ptr+4 Gv = np.asarray(cell.Gv+kpt) G_rad = lib.norm(Gv, axis=1) vppnl = np.zeros((nao,nao), dtype=np.complex128) for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: hl = np.asarray(hl) fakemol._bas[0,mole.ANG_OF] = l fakemol._env[ptr+3] = .5*rl**2 fakemol._env[ptr+4] = rl**(l+1.5)*np.pi**1.25 pYlm_part = fakemol.eval_gto('GTOval', Gv) pYlm = np.empty((nl,l*2+1,ngrids)) for k in range(nl): qkl = _qli(G_rad*rl, l, k) pYlm[k] = pYlm_part.T * qkl # pYlm is real SPG_lmi = np.einsum('g,nmg->nmg', SI[ia].conj(), pYlm) SPG_lm_aoG = np.einsum('nmg,gp->nmp', SPG_lmi, aokG) tmp = np.einsum('ij,jmp->imp', hl, SPG_lm_aoG) vppnl += np.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp) vppnl *= (1./ngrids**2) if aoR.dtype == np.double: return vpploc.real + vppnl.real else: return vpploc + vppnl def get_jvloc_G0(cell, kpt=np.zeros(3)): '''Get the (separately divergent) Hartree + Vloc G=0 contribution. ''' ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpt) return 1./cell.vol * np.sum(get_alphas(cell)) * ovlp
import os import yaml import copy import types import ciw.dists from .network import * def get_distribution(dist): """ For use when parameters are read in from a .yml file. Returns instances of the distribution classes that correspond to the indicator string in the .yml file. """ if dist[0] == 'Uniform': return ciw.dists.Uniform(dist[1], dist[2]) if dist[0] == 'Deterministic': return ciw.dists.Deterministic(dist[1]) if dist[0] == 'Triangular': return ciw.dists.Triangular(dist[1], dist[2], dist[3]) if dist[0] == 'Exponential': return ciw.dists.Exponential(dist[1]) if dist[0] == 'Gamma': return ciw.dists.Gamma(dist[1], dist[2]) if dist[0] == 'Normal': return ciw.dists.Normal(dist[1], dist[2]) if dist[0] == 'Lognormal': return ciw.dists.Lognormal(dist[1], dist[2]) if dist[0] == 'Weibull': return ciw.dists.Weibull(dist[1], dist[2]) if dist[0] == 'Pmf': return ciw.dists.Pmf(dist[1], dist[2]) if dist[0] == 'NoArrivals': return ciw.dists.NoArrivals() return ciw.dists.Distribution() def create_network(arrival_distributions=None, baulking_functions=None, class_change_matrices=None, number_of_servers=None, priority_classes=None, queue_capacities=None, service_distributions=None, routing=None, batching_distributions=None, ps_thresholds=None, server_priority_functions=None): """ Takes in kwargs, creates dictionary. """ if arrival_distributions == None or number_of_servers == None or service_distributions == None: raise ValueError('arrival_distributions, service_distributions and number_of_servers are required arguments.') params = { 'arrival_distributions': arrival_distributions, 'number_of_servers': number_of_servers, 'service_distributions': service_distributions } if baulking_functions != None: params['baulking_functions'] = baulking_functions if class_change_matrices != None: params['class_change_matrices'] = class_change_matrices if priority_classes != None: params['priority_classes'] = priority_classes if queue_capacities != None: params['queue_capacities'] = queue_capacities if routing != None: params['routing'] = routing if batching_distributions != None: params['batching_distributions'] = batching_distributions if ps_thresholds != None: params['ps_thresholds'] = ps_thresholds if server_priority_functions != None: params['server_priority_functions'] = server_priority_functions return create_network_from_dictionary(params) def load_parameters(directory_name): """ Loads the .yml file parameters to a dictionary. """ root = os.getcwd() directory = os.path.join(root, directory_name) parameter_file_name = directory parameter_file = open(parameter_file_name, 'r') parameters = yaml.load(parameter_file, Loader=yaml.FullLoader) parameter_file.close() return parameters def create_network_from_yml(directory_name): """ Creates a Network object form a yaml file. """ params_input = load_parameters(directory_name) params = fill_out_dictionary(params_input) for clss in params['arrival_distributions']: dists = [] for dist in params['arrival_distributions'][clss]: dists.append(get_distribution(dist)) params['arrival_distributions'][clss] = dists for clss in params['service_distributions']: dists = [] for dist in params['service_distributions'][clss]: dists.append(get_distribution(dist)) params['service_distributions'][clss] = dists validify_dictionary(params) return create_network_from_dictionary(params) def create_network_from_dictionary(params_input): """ Creates a Network object from a parameters dictionary. """ params = fill_out_dictionary(params_input) validify_dictionary(params) # Then make the Network object arrivals = [params['arrival_distributions']['Class ' + str(clss)] for clss in range(len(params['arrival_distributions']))] services = [params['service_distributions']['Class ' + str(clss)] for clss in range(len(params['service_distributions']))] if all(isinstance(f, types.FunctionType) for f in params['routing']): routing = params['routing'] else: routing = [params['routing']['Class ' + str(clss)] for clss in range(len(params['routing']))] priorities = [params['priority_classes']['Class ' + str(clss)] for clss in range(len(params['priority_classes']))] baulking_functions = [params['baulking_functions']['Class ' + str(clss)] for clss in range(len(params['baulking_functions']))] batches = [params['batching_distributions']['Class ' + str(clss)] for clss in range(len(params['batching_distributions']))] number_of_classes = params['number_of_classes'] number_of_nodes = params['number_of_nodes'] queueing_capacities = [float(i) if i == "Inf" else i for i in params['queue_capacities']] class_change_matrices = params.get('class_change_matrices', {'Node ' + str(nd + 1): None for nd in range(number_of_nodes)}) number_of_servers, schedules, nodes, classes, preempts = [], [], [], [], [] for c in params['number_of_servers']: if isinstance(c, (tuple, list)): if isinstance(c, tuple): s = c[0] p = c[1] if isinstance(c, list): s = c p = False number_of_servers.append('schedule') schedules.append(s) preempts.append(p) elif c == 'Inf': number_of_servers.append(float(c)) schedules.append(None) preempts.append(False) else: number_of_servers.append(c) schedules.append(None) preempts.append(False) for nd in range(number_of_nodes): nodes.append(ServiceCentre( number_of_servers[nd], queueing_capacities[nd], class_change_matrices['Node ' + str(nd + 1)], schedules[nd], preempts[nd], params['ps_thresholds'][nd], params['server_priority_functions'][nd])) for clss in range(number_of_classes): if all(isinstance(f, types.FunctionType) for f in params['routing']): classes.append(CustomerClass( arrivals[clss], services[clss], routing, priorities[clss], baulking_functions[clss], batches[clss])) else: classes.append(CustomerClass( arrivals[clss], services[clss], routing[clss], priorities[clss], baulking_functions[clss], batches[clss])) n = Network(nodes, classes) if all(isinstance(f, types.FunctionType) for f in params['routing']): n.process_based = True else: n.process_based = False return n def fill_out_dictionary(params_input): """ Fills out the parameters dictionary with the default values of the optional arguments. """ params = copy.deepcopy(params_input) if isinstance(params['arrival_distributions'], list): arr_dists = params['arrival_distributions'] params['arrival_distributions'] = {'Class 0': arr_dists} if isinstance(params['service_distributions'], list): srv_dists = params['service_distributions'] params['service_distributions'] = {'Class 0': srv_dists} if 'routing' in params: if all(isinstance(f, list) for f in params['routing']): rtng_mat = params['routing'] params['routing'] = {'Class 0': rtng_mat} if 'baulking_functions' in params: if isinstance(params['baulking_functions'], list): blk_fncs = params['baulking_functions'] params['baulking_functions'] = {'Class 0': blk_fncs} if 'batching_distributions' in params: if isinstance(params['batching_distributions'], list): btch_dists = params['batching_distributions'] params['batching_distributions'] = {'Class 0': btch_dists} default_dict = { 'name': 'Simulation', 'routing': {'Class ' + str(i): [[0.0]] for i in range(len(params['arrival_distributions']))}, 'number_of_nodes': len(params['number_of_servers']), 'number_of_classes': len(params['arrival_distributions']), 'queue_capacities': [float('inf') for _ in range(len( params['number_of_servers']))], 'priority_classes': {'Class ' + str(i): 0 for i in range(len(params['arrival_distributions']))}, 'baulking_functions': {'Class ' + str(i): [ None for _ in range(len(params['number_of_servers']))] for i in range(len(params['arrival_distributions']))}, 'batching_distributions': {'Class ' + str(i): [ ciw.dists.Deterministic(1) for _ in range( len(params['number_of_servers']))] for i in range( len(params['arrival_distributions']))}, 'ps_thresholds': [1 for _ in range(len( params['number_of_servers']))], 'server_priority_functions' : [ None for _ in range(len(params['number_of_servers'])) ] } for a in default_dict: params[a] = params.get(a, default_dict[a]) return params def validify_dictionary(params): """ Raises errors if there is something wrong with the parameters dictionary. """ if all(isinstance(f, types.FunctionType) for f in params['routing']): consistant_num_classes = ( params['number_of_classes'] == len(params['arrival_distributions']) == len(params['service_distributions']) == len(params['batching_distributions'])) else: consistant_num_classes = ( params['number_of_classes'] == len(params['arrival_distributions']) == len(params['service_distributions']) == len(params['routing']) == len(params['batching_distributions'])) if not consistant_num_classes: raise ValueError('Ensure consistant number of classes is used throughout.') if all(isinstance(f, types.FunctionType) for f in params['routing']): consistant_class_names = ( set(params['arrival_distributions']) == set(params['service_distributions']) == set(params['batching_distributions']) == set(['Class ' + str(i) for i in range(params['number_of_classes'])])) else: consistant_class_names = ( set(params['arrival_distributions']) == set(params['service_distributions']) == set(params['routing']) == set(params['batching_distributions']) == set(['Class ' + str(i) for i in range(params['number_of_classes'])])) if not consistant_class_names: raise ValueError('Ensure correct names for customer classes.') if all(isinstance(f, types.FunctionType) for f in params['routing']): num_nodes_count = [ params['number_of_nodes']] + [ len(obs) for obs in params['arrival_distributions'].values()] + [ len(obs) for obs in params['service_distributions'].values()] + [ len(obs) for obs in params['batching_distributions'].values()] + [ len(params['routing'])] + [ len(params['number_of_servers'])] + [ len(params['queue_capacities'])] else: num_nodes_count = [ params['number_of_nodes']] + [ len(obs) for obs in params['arrival_distributions'].values()] + [ len(obs) for obs in params['service_distributions'].values()] + [ len(obs) for obs in params['routing'].values()] + [ len(obs) for obs in params['batching_distributions'].values()] + [ len(row) for row in [obs for obs in params['routing'].values()][0]] + [ len(params['number_of_servers'])] + [ len(params['queue_capacities'])] if len(set(num_nodes_count)) != 1: raise ValueError('Ensure consistant number of nodes is used throughout.') if not all(isinstance(f, types.FunctionType) for f in params['routing']): for clss in params['routing'].values(): for row in clss: if sum(row) > 1.0 or min(row) < 0.0 or max(row) > 1.0: raise ValueError('Ensure that routing matrix is valid.') neg_numservers = any([(isinstance(obs, int) and obs < 0) for obs in params['number_of_servers']]) valid_capacities = all([((isinstance(obs, int) and obs >= 0) or obs==float('inf') or obs=='Inf') for obs in params['queue_capacities']]) if neg_numservers: raise ValueError('Number of servers must be positive integers.') if not valid_capacities: raise ValueError('Queue capacities must be positive integers or zero.') if 'class_change_matrices' in params: num_nodes = len(params['class_change_matrices']) == params['number_of_nodes'] node_names = set(params['class_change_matrices']) == set(['Node ' + str(i+1) for i in range(params['number_of_nodes'])]) if not (num_nodes and node_names): raise ValueError('Ensure correct nodes used in class_change_matrices.') for nd in params['class_change_matrices'].values(): for row in nd: if sum(row) > 1.0 or min(row) < 0.0 or max(row) > 1.0: raise ValueError('Ensure that class change matrix is valid.') for n in params['number_of_servers']: if isinstance(n, str) and n != 'Inf': if n not in params: raise ValueError('No schedule ' + str(n) + ' defined.')