index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
21,635
auto_gptq.modeling.auto
AutoGPTQForCausalLM
null
class AutoGPTQForCausalLM: def __init__(self): raise EnvironmentError( "AutoGPTQModelForCausalLM is designed to be instantiated\n" "using `AutoGPTQModelForCausalLM.from_pretrained` if want to quantize a pretrained model.\n" "using `AutoGPTQModelForCausalLM.from_quantized` if want to inference with quantized model." ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: str, quantize_config: BaseQuantizeConfig, max_memory: Optional[dict] = None, trust_remote_code: bool = False, **model_init_kwargs, ) -> BaseGPTQForCausalLM: model_type = check_and_get_model_type(pretrained_model_name_or_path, trust_remote_code) return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_pretrained( pretrained_model_name_or_path=pretrained_model_name_or_path, quantize_config=quantize_config, max_memory=max_memory, trust_remote_code=trust_remote_code, **model_init_kwargs, ) @classmethod def from_quantized( cls, model_name_or_path: Optional[str], device_map: Optional[Union[str, Dict[str, Union[str, int]]]] = None, max_memory: Optional[dict] = None, device: Optional[Union[str, int]] = None, low_cpu_mem_usage: bool = False, use_triton: bool = False, inject_fused_attention: bool = False, inject_fused_mlp: bool = False, use_cuda_fp16: bool = True, quantize_config: Optional[BaseQuantizeConfig] = None, model_basename: Optional[str] = None, use_safetensors: bool = True, trust_remote_code: bool = False, warmup_triton: bool = False, trainable: bool = False, disable_exllama: Optional[bool] = None, disable_exllamav2: bool = False, use_marlin: bool = False, **kwargs, ) -> BaseGPTQForCausalLM: # If disable_exllamav2 is True, we want to fall back on the exllama kernel and not the cuda/cuda_old ones. if disable_exllama is None: if disable_exllamav2: disable_exllama = False else: disable_exllama = True model_type = check_and_get_model_type(model_name_or_path, trust_remote_code) quant_func = GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_quantized # A static list of kwargs needed for huggingface_hub huggingface_kwargs = [ "cache_dir", "force_download", "proxies", "resume_download", "local_files_only", "use_auth_token", "revision", "subfolder", "_raise_exceptions_for_missing_entries", "_commit_hash", ] # TODO: do we need this filtering of kwargs? @PanQiWei is there a reason we can't just pass all kwargs? keywords = { key: kwargs[key] for key in list(signature(quant_func).parameters.keys()) + huggingface_kwargs if key in kwargs } return quant_func( model_name_or_path=model_name_or_path, device_map=device_map, max_memory=max_memory, device=device, low_cpu_mem_usage=low_cpu_mem_usage, use_triton=use_triton, inject_fused_attention=inject_fused_attention, inject_fused_mlp=inject_fused_mlp, use_cuda_fp16=use_cuda_fp16, quantize_config=quantize_config, model_basename=model_basename, use_safetensors=use_safetensors, trust_remote_code=trust_remote_code, warmup_triton=warmup_triton, trainable=trainable, disable_exllama=disable_exllama, disable_exllamav2=disable_exllamav2, use_marlin=use_marlin, **keywords, )
()
21,636
auto_gptq.modeling.auto
__init__
null
def __init__(self): raise EnvironmentError( "AutoGPTQModelForCausalLM is designed to be instantiated\n" "using `AutoGPTQModelForCausalLM.from_pretrained` if want to quantize a pretrained model.\n" "using `AutoGPTQModelForCausalLM.from_quantized` if want to inference with quantized model." )
(self)
21,637
auto_gptq.modeling._base
BaseQuantizeConfig
BaseQuantizeConfig(bits: int = 4, group_size: int = -1, damp_percent: float = 0.01, desc_act: bool = True, static_groups: bool = False, sym: bool = True, true_sequential: bool = True, is_marlin_format: bool = False, model_name_or_path: Optional[str] = None, model_file_base_name: Optional[str] = None, awq_gemm_checkpoint: Optional[bool] = False)
class BaseQuantizeConfig(PushToHubMixin): bits: int = field(default=4, metadata={"choices": [2, 3, 4, 8]}) group_size: int = field(default=-1) damp_percent: float = field(default=0.01) desc_act: bool = field(default=True) static_groups: bool = field(default=False) sym: bool = field(default=True) true_sequential: bool = field(default=True) is_marlin_format: bool = field(default=False) model_name_or_path: Optional[str] = field(default=None) model_file_base_name: Optional[str] = field(default=None) awq_gemm_checkpoint: Optional[bool] = field(default=False) def __post_init__(self): fields_info = fields(self) if self.bits not in fields_info[0].metadata["choices"]: raise ValueError(f"only support quantize to {fields_info[0].metadata['choices']} bits.") if self.group_size != -1 and self.group_size <= 0: raise ValueError("unless equal to -1, group_size must greater then 0.") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.") def save_pretrained(self, save_dir: str, **kwargs): with open(join(save_dir, "quantize_config.json"), "w", encoding="utf-8") as f: json.dump(self.to_dict(), f, indent=2) @classmethod def from_pretrained(cls, save_dir: str, **kwargs): # Parameters related to loading from Hugging Face Hub cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) commit_hash = kwargs.pop("_commit_hash", None) transformers_config = False for quantize_config_filename in [ "quantize_config.json", "quant_config.json", "config.json", ]: if os.path.isdir(save_dir): # Local resolved_config_file = join(save_dir, quantize_config_filename) else: # Remote resolved_config_file = cached_file( save_dir, quantize_config_filename, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, use_auth_token=use_auth_token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) if resolved_config_file is not None: if quantize_config_filename == "config.json": transformers_config = True break if resolved_config_file is None: raise ValueError( "No quantize_config.json, quant_config.json or config.json file was found in the model repository." ) field_names = [field.name for field in fields(cls)] with open(resolved_config_file, "r", encoding="utf-8") as f: args_from_json = json.load(f) if transformers_config: args_from_json = args_from_json["quantization_config"] filtered_args = {"awq_gemm_checkpoint": False} for key, val in args_from_json.items(): if key == "version" and val == "GEMM": filtered_args["awq_gemm_checkpoint"] = True elif key in field_names: filtered_args[key] = val elif key in SYNONYMS and SYNONYMS[key] in field_names: filtered_args[SYNONYMS[key]] = val else: logger.warning(f"ignoring unknown parameter in {quantize_config_filename}: {key}.") if filtered_args["awq_gemm_checkpoint"]: # AWQ does not reorder the rows. filtered_args["desc_act"] = False if "sym" not in args_from_json: logger.warning( f"The quantization configuration {quantize_config_filename} does not contain an entry `sym` (symetric quantization). This may result in silent errors." ) return cls(**filtered_args) def to_dict(self): return { "bits": self.bits, "group_size": self.group_size, "damp_percent": self.damp_percent, "desc_act": self.desc_act, "static_groups": self.static_groups, "sym": self.sym, "true_sequential": self.true_sequential, "model_name_or_path": self.model_name_or_path, "model_file_base_name": self.model_file_base_name, "is_marlin_format": self.is_marlin_format, "quant_method": "gptq", }
(bits: int = 4, group_size: int = -1, damp_percent: float = 0.01, desc_act: bool = True, static_groups: bool = False, sym: bool = True, true_sequential: bool = True, is_marlin_format: bool = False, model_name_or_path: Optional[str] = None, model_file_base_name: Optional[str] = None, awq_gemm_checkpoint: Optional[bool] = False) -> None
21,638
auto_gptq.modeling._base
__eq__
null
import copy import json import logging import os from dataclasses import dataclass, field, fields from os.path import isdir, join from typing import Dict, List, Optional, Union import accelerate import huggingface_hub import torch import torch.nn as nn import transformers from accelerate.hooks import remove_hook_from_module from safetensors import safe_open from safetensors.torch import load_file as safe_load from safetensors.torch import save_file as safe_save from tqdm import tqdm from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel from transformers.modeling_utils import no_init_weights from transformers.utils.generic import ContextManagers from transformers.utils.hub import ( CommitOperationAdd, PushToHubMixin, cached_file, create_commit, create_repo, ) from ..nn_modules._fused_base import FusedBaseAttentionModule, FusedBaseMLPModule from ..nn_modules.qlinear import GeneralQuantLinear from ..quantization import GPTQ from ..utils.data_utils import collate_data from ..utils.import_utils import ( AUTOGPTQ_CUDA_AVAILABLE, EXLLAMA_KERNELS_AVAILABLE, EXLLAMAV2_KERNELS_AVAILABLE, MARLIN_AVAILABLE, QIGEN_AVAILABLE, TRITON_AVAILABLE, dynamically_import_QuantLinear, ) from ..utils.marlin_utils import ( _validate_marlin_compatibility, _validate_marlin_device_support, prepare_model_for_marlin_load, ) from ._const import CPU, CUDA_0, SUPPORTED_MODELS from ._utils import ( autogptq_post_init, find_layers, get_checkpoints, get_device, get_module_by_name_prefix, get_module_by_name_suffix, make_quant, make_sure_no_tensor_in_meta_device, move_to_device, pack_from_tensors, pack_model, preprocess_checkpoint_qigen, simple_dispatch_model, unpack_awq, ) logger = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) SYNONYMS = { "w_bit": "bits", "q_group_size": "group_size", } @dataclass class BaseQuantizeConfig(PushToHubMixin): bits: int = field(default=4, metadata={"choices": [2, 3, 4, 8]}) group_size: int = field(default=-1) damp_percent: float = field(default=0.01) desc_act: bool = field(default=True) static_groups: bool = field(default=False) sym: bool = field(default=True) true_sequential: bool = field(default=True) is_marlin_format: bool = field(default=False) model_name_or_path: Optional[str] = field(default=None) model_file_base_name: Optional[str] = field(default=None) awq_gemm_checkpoint: Optional[bool] = field(default=False) def __post_init__(self): fields_info = fields(self) if self.bits not in fields_info[0].metadata["choices"]: raise ValueError(f"only support quantize to {fields_info[0].metadata['choices']} bits.") if self.group_size != -1 and self.group_size <= 0: raise ValueError("unless equal to -1, group_size must greater then 0.") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.") def save_pretrained(self, save_dir: str, **kwargs): with open(join(save_dir, "quantize_config.json"), "w", encoding="utf-8") as f: json.dump(self.to_dict(), f, indent=2) @classmethod def from_pretrained(cls, save_dir: str, **kwargs): # Parameters related to loading from Hugging Face Hub cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) commit_hash = kwargs.pop("_commit_hash", None) transformers_config = False for quantize_config_filename in [ "quantize_config.json", "quant_config.json", "config.json", ]: if os.path.isdir(save_dir): # Local resolved_config_file = join(save_dir, quantize_config_filename) else: # Remote resolved_config_file = cached_file( save_dir, quantize_config_filename, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, use_auth_token=use_auth_token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) if resolved_config_file is not None: if quantize_config_filename == "config.json": transformers_config = True break if resolved_config_file is None: raise ValueError( "No quantize_config.json, quant_config.json or config.json file was found in the model repository." ) field_names = [field.name for field in fields(cls)] with open(resolved_config_file, "r", encoding="utf-8") as f: args_from_json = json.load(f) if transformers_config: args_from_json = args_from_json["quantization_config"] filtered_args = {"awq_gemm_checkpoint": False} for key, val in args_from_json.items(): if key == "version" and val == "GEMM": filtered_args["awq_gemm_checkpoint"] = True elif key in field_names: filtered_args[key] = val elif key in SYNONYMS and SYNONYMS[key] in field_names: filtered_args[SYNONYMS[key]] = val else: logger.warning(f"ignoring unknown parameter in {quantize_config_filename}: {key}.") if filtered_args["awq_gemm_checkpoint"]: # AWQ does not reorder the rows. filtered_args["desc_act"] = False if "sym" not in args_from_json: logger.warning( f"The quantization configuration {quantize_config_filename} does not contain an entry `sym` (symetric quantization). This may result in silent errors." ) return cls(**filtered_args) def to_dict(self): return { "bits": self.bits, "group_size": self.group_size, "damp_percent": self.damp_percent, "desc_act": self.desc_act, "static_groups": self.static_groups, "sym": self.sym, "true_sequential": self.true_sequential, "model_name_or_path": self.model_name_or_path, "model_file_base_name": self.model_file_base_name, "is_marlin_format": self.is_marlin_format, "quant_method": "gptq", }
(self, other)
21,640
auto_gptq.modeling._base
__post_init__
null
def __post_init__(self): fields_info = fields(self) if self.bits not in fields_info[0].metadata["choices"]: raise ValueError(f"only support quantize to {fields_info[0].metadata['choices']} bits.") if self.group_size != -1 and self.group_size <= 0: raise ValueError("unless equal to -1, group_size must greater then 0.") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.")
(self)
21,641
auto_gptq.modeling._base
__repr__
null
def __init__( self, model: PreTrainedModel, quantized: bool, quantize_config: BaseQuantizeConfig, is_triton_backend: bool = False, injected_fused_attention: bool = False, injected_fused_mlp: bool = False, trainable: bool = False, ): super().__init__() self.model = model self.model_type = self.model.config.model_type self._quantized = quantized self.quantize_config = quantize_config self.config = self.model.config self.is_triton_backend = is_triton_backend self.injected_fused_attention = injected_fused_attention self.injected_fused_mlp = injected_fused_mlp self.trainable = trainable
(self)
21,645
transformers.utils.hub
push_to_hub
Upload the {object_files} to the 🤗 Model Hub. Parameters: repo_id (`str`): The name of the repository you want to push your {object} to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload {object}"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights in safetensors format for safer serialization. revision (`str`, *optional*): Branch to push the uploaded files to. commit_description (`str`, *optional*): The description of the commit that will be created tags (`List[str]`, *optional*): List of tags to push on the Hub. Examples: ```python from transformers import {object_class} {object} = {object_class}.from_pretrained("google-bert/bert-base-cased") # Push the {object} to your namespace with the name "my-finetuned-bert". {object}.push_to_hub("my-finetuned-bert") # Push the {object} to an organization with the name "my-finetuned-bert". {object}.push_to_hub("huggingface/my-finetuned-bert") ```
def push_to_hub( self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, max_shard_size: Optional[Union[int, str]] = "5GB", create_pr: bool = False, safe_serialization: bool = True, revision: str = None, commit_description: str = None, tags: Optional[List[str]] = None, **deprecated_kwargs, ) -> str: """ Upload the {object_files} to the 🤗 Model Hub. Parameters: repo_id (`str`): The name of the repository you want to push your {object} to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload {object}"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights in safetensors format for safer serialization. revision (`str`, *optional*): Branch to push the uploaded files to. commit_description (`str`, *optional*): The description of the commit that will be created tags (`List[str]`, *optional*): List of tags to push on the Hub. Examples: ```python from transformers import {object_class} {object} = {object_class}.from_pretrained("google-bert/bert-base-cased") # Push the {object} to your namespace with the name "my-finetuned-bert". {object}.push_to_hub("my-finetuned-bert") # Push the {object} to an organization with the name "my-finetuned-bert". {object}.push_to_hub("huggingface/my-finetuned-bert") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) if repo_path_or_name is not None: # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer # repo_id from the folder path, if it exists. warnings.warn( "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " "`repo_id` instead.", FutureWarning, ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." ) if os.path.isdir(repo_path_or_name): # repo_path: infer repo_id from the path repo_id = repo_id.split(os.path.sep)[-1] working_dir = repo_id else: # repo_name: use it as repo_id repo_id = repo_path_or_name working_dir = repo_id.split("/")[-1] else: # Repo_id is passed correctly: infer working_dir from it working_dir = repo_id.split("/")[-1] # Deprecation warning will be sent after for repo_url and organization repo_url = deprecated_kwargs.pop("repo_url", None) organization = deprecated_kwargs.pop("organization", None) repo_id = self._create_repo( repo_id, private=private, token=token, repo_url=repo_url, organization=organization ) # Create a new empty model card and eventually tag it model_card = create_and_tag_model_card( repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors ) if use_temp_dir is None: use_temp_dir = not os.path.isdir(working_dir) with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: files_timestamps = self._get_files_timestamps(work_dir) # Save all files. self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) # Update model card if needed: model_card.save(os.path.join(work_dir, "README.md")) return self._upload_modified_files( work_dir, repo_id, files_timestamps, commit_message=commit_message, token=token, create_pr=create_pr, revision=revision, commit_description=commit_description, )
(self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Union[bool, str, NoneType] = None, max_shard_size: Union[int, str, NoneType] = '5GB', create_pr: bool = False, safe_serialization: bool = True, revision: Optional[str] = None, commit_description: Optional[str] = None, tags: Optional[List[str]] = None, **deprecated_kwargs) -> str
21,646
auto_gptq.modeling._base
save_pretrained
null
def save_pretrained(self, save_dir: str, **kwargs): with open(join(save_dir, "quantize_config.json"), "w", encoding="utf-8") as f: json.dump(self.to_dict(), f, indent=2)
(self, save_dir: str, **kwargs)
21,647
auto_gptq.modeling._base
to_dict
null
def to_dict(self): return { "bits": self.bits, "group_size": self.group_size, "damp_percent": self.damp_percent, "desc_act": self.desc_act, "static_groups": self.static_groups, "sym": self.sym, "true_sequential": self.true_sequential, "model_name_or_path": self.model_name_or_path, "model_file_base_name": self.model_file_base_name, "is_marlin_format": self.is_marlin_format, "quant_method": "gptq", }
(self)
21,648
auto_gptq.utils.exllama_utils
exllama_set_max_input_length
This method does not necessarily require `model` to inherit from BaseGPTQForCausalLM. When using the exllama backend with act-order, it is necessary to initialize a buffer that depends on the maximum expected input length. In case the default used (EXLLAMA_DEFAULT_MAX_INPUT_LENGTH) is too short, this method can be called to extend the buffer size without reloading the whole model.
def exllama_set_max_input_length(model, max_input_length: int): """ This method does not necessarily require `model` to inherit from BaseGPTQForCausalLM. When using the exllama backend with act-order, it is necessary to initialize a buffer that depends on the maximum expected input length. In case the default used (EXLLAMA_DEFAULT_MAX_INPUT_LENGTH) is too short, this method can be called to extend the buffer size without reloading the whole model. """ # The import is set here to avoid a global import. Arguably this is quite ugly, it would be better to have lazy loading. from exllama_kernels import cleanup_buffers_cuda, prepare_buffers if not model.quantize_config.desc_act: raise ValueError( "The method exllama_set_max_input_length should be called only when using the exllama backend **with act-order**." ) uses_exllama = False for name, submodule in model.named_modules(): if isinstance(submodule, ExllamaQuantLinear): uses_exllama = True if not uses_exllama: raise ValueError( f"The function exllama_set_max_input_length was called, but the model (instance of {model.__class__.__name__}) does not use the exllama backend for GPTQ. An other implementation is used (exllamav2, cuda, cuda-old, triton) and that the call to exllama_set_max_input_length is unnecessary. Please remove the call to exllama_set_max_input_length or use the exllama v1 backend." ) device_to_buffers_size = {} for device, buffers in model.device_to_buffers.items(): device_to_buffers_size[device] = { "max_dq_buffer_size": buffers["max_dq_buffer_size"], "max_inner_outer_dim": buffers["max_inner_outer_dim"], } # For an unknown reason calling just `del model.device_to_buffers` raises an AttributeError. for key in list(model.device_to_buffers.keys()): del model.device_to_buffers[key] model.device_to_buffers = None del model.device_to_buffers gc.collect() torch.cuda.empty_cache() cleanup_buffers_cuda() device_to_buffers = {} for device, buffers_size in device_to_buffers_size.items(): # The temp_state buffer is required to reorder X in the act-order case. # The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill. device_to_buffers[device] = { "temp_state": torch.zeros( (max_input_length, buffers_size["max_inner_outer_dim"]), dtype=torch.float16, device=device, ), "temp_dq": torch.zeros( (1, buffers_size["max_dq_buffer_size"]), dtype=torch.float16, device=device, ), "max_dq_buffer_size": buffers_size["max_dq_buffer_size"], "max_inner_outer_dim": buffers_size["max_inner_outer_dim"], } prepare_buffers( device, device_to_buffers[device]["temp_state"], device_to_buffers[device]["temp_dq"], ) # Buffers need to be persistent to avoid any bug. model.device_to_buffers = device_to_buffers return model
(model, max_input_length: int)
21,649
auto_gptq.utils.peft_utils
get_gptq_peft_model
null
def get_gptq_peft_model( model: BaseGPTQForCausalLM, peft_config: PeftConfig = None, model_id: str = None, adapter_name: str = "default", auto_find_all_linears: bool = True, train_mode: bool = False, ): if train_mode and not model.trainable: model.enable_trainable_mode() if train_mode and not peft_config: raise ValueError("peft_config not specified when in train mode.") if not train_mode and not model_id: raise ValueError("model_id(where to load adapters) not specified when in inference mode.") if model.fused_attn_module_type is not None and not model.injected_fused_attention: peft_types = [PeftType.LORA.value, PeftType.ADALORA.value] warnings.warn( f"You can just ignore this warning if the peft type you use isn't in {peft_types}.\n" f"{model.__class__.__name__} supports injecting fused attention but not enables this time. " "If you are training adapters, you must also disable fused attention injection when loading quantized " "base model at inference time, otherwise adapters may not be added to base model properly. " "If you are loading adapters to do inference, you can reference to adapter's config file to check " "whether the adapters are trained using base model that not enable fused attention injection." ) if model.injected_fused_mlp: raise NotImplementedError( "GPTQ model that enables fused mlp injection is not supported to integrate with peft." ) if train_mode: peft_type = peft_config.peft_type if not isinstance(peft_type, str): peft_type = peft_type.value if peft_type in [PeftType.LORA.value, PeftType.ADALORA.value]: if auto_find_all_linears: peft_config.target_modules = find_all_linear_names(model, ignore_lm_head=True) if peft_type == PeftType.LORA.value and not isinstance(peft_config, GPTQLoraConfig): peft_config = GPTQLoraConfig(**peft_config.to_dict()) if peft_type == PeftType.ADALORA.value and not isinstance(peft_config, GPTQAdaLoraConfig): peft_config = GPTQAdaLoraConfig(**peft_config.to_dict()) peft_config.injected_fused_attention = model.injected_fused_attention peft_config.injected_fused_mlp = model.injected_fused_mlp if peft_type == PeftType.ADAPTION_PROMPT.value: if peft_config.adapter_layers > model.config.num_hidden_layers: warnings.warn( f"model has only {model.config.num_hidden_layers} layers " f"but adapter_layers is set to {peft_config.adapter_layers}, " f"will reset value to {model.config.num_hidden_layers}." ) peft_config.adapter_layers = model.config.num_hidden_layers if model.injected_fused_attention: raise NotImplementedError( "model with fused attention injected isn't supported to use ADAPTION_PROMPT peft type yet." ) with hijack_peft_mappings(): try: if train_mode: peft_model = get_peft_model(model.model, peft_config, adapter_name=adapter_name) else: peft_model = PeftModel.from_pretrained(model.model, model_id, adapter_name) except: raise raise NotImplementedError( f"{model.__class__.__name__} not support {peft_config.peft_type.value} peft type yet." ) return peft_model
(model: auto_gptq.modeling._base.BaseGPTQForCausalLM, peft_config: Optional[peft.config.PeftConfig] = None, model_id: Optional[str] = None, adapter_name: str = 'default', auto_find_all_linears: bool = True, train_mode: bool = False)
21,654
magic_filter.attrdict
AttrDict
A wrapper over dict which where element can be accessed as regular attributes
class AttrDict(Dict[KT, VT]): """ A wrapper over dict which where element can be accessed as regular attributes """ def __init__(self, *args: Any, **kwargs: Any) -> None: super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self # type: ignore
(*args: Any, **kwargs: Any) -> None
21,655
magic_filter.attrdict
__init__
null
def __init__(self, *args: Any, **kwargs: Any) -> None: super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self # type: ignore
(self, *args: Any, **kwargs: Any) -> NoneType
21,656
magic_filter.magic
MagicFilter
null
class MagicFilter: __slots__ = ("_operations",) def __init__(self, operations: Tuple[BaseOperation, ...] = ()) -> None: self._operations = operations # An instance of MagicFilter cannot be used as an iterable object because objects # with a __getitem__ method can be endlessly iterated, which is not the desired behavior. __iter__ = None @classmethod def ilter(cls, magic: "MagicFilter") -> Callable[[Any], Any]: @wraps(magic.resolve) def wrapper(value: Any) -> Any: return magic.resolve(value) return wrapper @classmethod def _new(cls: Type[MagicT], operations: Tuple[BaseOperation, ...]) -> MagicT: return cls(operations=operations) def _extend(self: MagicT, operation: BaseOperation) -> MagicT: return self._new(self._operations + (operation,)) def _replace_last(self: MagicT, operation: BaseOperation) -> MagicT: return self._new(self._operations[:-1] + (operation,)) def _exclude_last(self: MagicT) -> MagicT: return self._new(self._operations[:-1]) def _resolve(self, value: Any, operations: Optional[Tuple[BaseOperation, ...]] = None) -> Any: initial_value = value if operations is None: operations = self._operations rejected = False for index, operation in enumerate(operations): if rejected and not operation.important: continue try: value = operation.resolve(value=value, initial_value=initial_value) except SwitchModeToAll: return all(self._resolve(value=item, operations=operations[index + 1 :]) for item in value) except SwitchModeToAny: return any(self._resolve(value=item, operations=operations[index + 1 :]) for item in value) except RejectOperations: rejected = True value = None continue rejected = False return value def __bool__(self) -> bool: return True def resolve(self: MagicT, value: Any) -> Any: return self._resolve(value=value) def __getattr__(self: MagicT, item: Any) -> MagicT: if item.startswith("_"): raise AttributeError(f"{type(self).__name__!r} object has no attribute {item!r}") return self._extend(GetAttributeOperation(name=item)) attr_ = __getattr__ def __getitem__(self: MagicT, item: Any) -> MagicT: if isinstance(item, MagicFilter): return self._extend(SelectorOperation(inner=item)) return self._extend(GetItemOperation(key=item)) def __len__(self) -> int: raise TypeError(f"Length can't be taken using len() function. Use {type(self).__name__}.len() instead.") def __eq__(self: MagicT, other: Any) -> MagicT: # type: ignore return self._extend(ComparatorOperation(right=other, comparator=operator.eq)) def __ne__(self: MagicT, other: Any) -> MagicT: # type: ignore return self._extend(ComparatorOperation(right=other, comparator=operator.ne)) def __lt__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.lt)) def __gt__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.gt)) def __le__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.le)) def __ge__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.ge)) def __invert__(self: MagicT) -> MagicT: if ( self._operations and isinstance(self._operations[-1], ImportantFunctionOperation) and self._operations[-1].function == operator.not_ ): return self._exclude_last() return self._extend(ImportantFunctionOperation(function=operator.not_)) def __call__(self: MagicT, *args: Any, **kwargs: Any) -> MagicT: return self._extend(CallOperation(args=args, kwargs=kwargs)) def __and__(self: MagicT, other: Any) -> MagicT: if isinstance(other, MagicFilter): return self._extend(CombinationOperation(right=other, combinator=and_op)) return self._extend(CombinationOperation(right=other, combinator=operator.and_)) def __rand__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.and_)) def __or__(self: MagicT, other: Any) -> MagicT: if isinstance(other, MagicFilter): return self._extend(ImportantCombinationOperation(right=other, combinator=or_op)) return self._extend(ImportantCombinationOperation(right=other, combinator=operator.or_)) def __ror__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.or_)) def __xor__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.xor)) def __rxor__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.xor)) def __rshift__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.rshift)) def __rrshift__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.rshift)) def __lshift__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.lshift)) def __rlshift__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.lshift)) def __add__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.add)) def __radd__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.add)) def __sub__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.sub)) def __rsub__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.sub)) def __mul__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.mul)) def __rmul__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.mul)) def __truediv__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.truediv)) def __rtruediv__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.truediv)) def __floordiv__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.floordiv)) def __rfloordiv__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.floordiv)) def __mod__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.mod)) def __rmod__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.mod)) def __matmul__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.matmul)) def __rmatmul__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.matmul)) def __pow__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.pow)) def __rpow__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.pow)) def __pos__(self: MagicT) -> MagicT: return self._extend(FunctionOperation(function=operator.pos)) def __neg__(self: MagicT) -> MagicT: return self._extend(FunctionOperation(function=operator.neg)) def is_(self: MagicT, value: Any) -> MagicT: return self._extend(CombinationOperation(right=value, combinator=operator.is_)) def is_not(self: MagicT, value: Any) -> MagicT: return self._extend(CombinationOperation(right=value, combinator=operator.is_not)) def in_(self: MagicT, iterable: Union[Container[Any], MagicT]) -> MagicT: return self._extend(FunctionOperation(in_op, iterable)) def not_in(self: MagicT, iterable: Union[Container[Any], MagicT]) -> MagicT: return self._extend(FunctionOperation(not_in_op, iterable)) def contains(self: MagicT, value: Any) -> MagicT: return self._extend(FunctionOperation(contains_op, value)) def not_contains(self: MagicT, value: Any) -> MagicT: return self._extend(FunctionOperation(not_contains_op, value)) def len(self: MagicT) -> MagicT: return self._extend(FunctionOperation(len)) def regexp( self: MagicT, pattern: Union[str, Pattern[str]], *, mode: Optional[str] = None, search: Optional[bool] = None, flags: Union[int, re.RegexFlag] = 0, ) -> MagicT: if search is not None: warn( "Param 'search' is deprecated, use 'mode' instead.", DeprecationWarning, ) if mode is not None: msg = "Can't pass both 'search' and 'mode' params." raise ParamsConflict(msg) mode = RegexpMode.SEARCH if search else RegexpMode.MATCH if mode is None: mode = RegexpMode.MATCH if isinstance(pattern, str): pattern = re.compile(pattern, flags=flags) regexp_func = getattr(pattern, mode) return self._extend(FunctionOperation(regexp_func)) def func(self: MagicT, func: Callable[[Any], Any], *args: Any, **kwargs: Any) -> MagicT: return self._extend(FunctionOperation(func, *args, **kwargs)) def cast(self: MagicT, func: Callable[[Any], Any]) -> MagicT: return self._extend(CastOperation(func)) def extract(self: MagicT, magic: "MagicT") -> MagicT: return self._extend(ExtractOperation(magic))
(operations: Tuple[magic_filter.operations.base.BaseOperation, ...] = ()) -> None
21,657
magic_filter.magic
__add__
null
def __add__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.add))
(self: ~MagicT, other: Any) -> ~MagicT
21,658
magic_filter.magic
__and__
null
def __and__(self: MagicT, other: Any) -> MagicT: if isinstance(other, MagicFilter): return self._extend(CombinationOperation(right=other, combinator=and_op)) return self._extend(CombinationOperation(right=other, combinator=operator.and_))
(self: ~MagicT, other: Any) -> ~MagicT
21,659
magic_filter.magic
__bool__
null
def __bool__(self) -> bool: return True
(self) -> bool
21,660
magic_filter.magic
__call__
null
def __call__(self: MagicT, *args: Any, **kwargs: Any) -> MagicT: return self._extend(CallOperation(args=args, kwargs=kwargs))
(self: ~MagicT, *args: Any, **kwargs: Any) -> ~MagicT
21,661
magic_filter.magic
__eq__
null
def __eq__(self: MagicT, other: Any) -> MagicT: # type: ignore return self._extend(ComparatorOperation(right=other, comparator=operator.eq))
(self: ~MagicT, other: Any) -> ~MagicT
21,662
magic_filter.magic
__floordiv__
null
def __floordiv__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.floordiv))
(self: ~MagicT, other: Any) -> ~MagicT
21,663
magic_filter.magic
__ge__
null
def __ge__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.ge))
(self: ~MagicT, other: Any) -> ~MagicT
21,664
magic_filter.magic
__getattr__
null
def __getattr__(self: MagicT, item: Any) -> MagicT: if item.startswith("_"): raise AttributeError(f"{type(self).__name__!r} object has no attribute {item!r}") return self._extend(GetAttributeOperation(name=item))
(self: ~MagicT, item: Any) -> ~MagicT
21,665
magic_filter.magic
__getitem__
null
def __getitem__(self: MagicT, item: Any) -> MagicT: if isinstance(item, MagicFilter): return self._extend(SelectorOperation(inner=item)) return self._extend(GetItemOperation(key=item))
(self: ~MagicT, item: Any) -> ~MagicT
21,666
magic_filter.magic
__gt__
null
def __gt__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.gt))
(self: ~MagicT, other: Any) -> ~MagicT
21,667
magic_filter.magic
__init__
null
def __init__(self, operations: Tuple[BaseOperation, ...] = ()) -> None: self._operations = operations
(self, operations: Tuple[magic_filter.operations.base.BaseOperation, ...] = ()) -> NoneType
21,668
magic_filter.magic
__invert__
null
def __invert__(self: MagicT) -> MagicT: if ( self._operations and isinstance(self._operations[-1], ImportantFunctionOperation) and self._operations[-1].function == operator.not_ ): return self._exclude_last() return self._extend(ImportantFunctionOperation(function=operator.not_))
(self: ~MagicT) -> ~MagicT
21,669
magic_filter.magic
__le__
null
def __le__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.le))
(self: ~MagicT, other: Any) -> ~MagicT
21,670
magic_filter.magic
__len__
null
def __len__(self) -> int: raise TypeError(f"Length can't be taken using len() function. Use {type(self).__name__}.len() instead.")
(self) -> int
21,671
magic_filter.magic
__lshift__
null
def __lshift__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.lshift))
(self: ~MagicT, other: Any) -> ~MagicT
21,672
magic_filter.magic
__lt__
null
def __lt__(self: MagicT, other: Any) -> MagicT: return self._extend(ComparatorOperation(right=other, comparator=operator.lt))
(self: ~MagicT, other: Any) -> ~MagicT
21,673
magic_filter.magic
__matmul__
null
def __matmul__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.matmul))
(self: ~MagicT, other: Any) -> ~MagicT
21,674
magic_filter.magic
__mod__
null
def __mod__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.mod))
(self: ~MagicT, other: Any) -> ~MagicT
21,675
magic_filter.magic
__mul__
null
def __mul__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.mul))
(self: ~MagicT, other: Any) -> ~MagicT
21,676
magic_filter.magic
__ne__
null
def __ne__(self: MagicT, other: Any) -> MagicT: # type: ignore return self._extend(ComparatorOperation(right=other, comparator=operator.ne))
(self: ~MagicT, other: Any) -> ~MagicT
21,677
magic_filter.magic
__neg__
null
def __neg__(self: MagicT) -> MagicT: return self._extend(FunctionOperation(function=operator.neg))
(self: ~MagicT) -> ~MagicT
21,678
magic_filter.magic
__or__
null
def __or__(self: MagicT, other: Any) -> MagicT: if isinstance(other, MagicFilter): return self._extend(ImportantCombinationOperation(right=other, combinator=or_op)) return self._extend(ImportantCombinationOperation(right=other, combinator=operator.or_))
(self: ~MagicT, other: Any) -> ~MagicT
21,679
magic_filter.magic
__pos__
null
def __pos__(self: MagicT) -> MagicT: return self._extend(FunctionOperation(function=operator.pos))
(self: ~MagicT) -> ~MagicT
21,680
magic_filter.magic
__pow__
null
def __pow__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.pow))
(self: ~MagicT, other: Any) -> ~MagicT
21,681
magic_filter.magic
__radd__
null
def __radd__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.add))
(self: ~MagicT, other: Any) -> ~MagicT
21,682
magic_filter.magic
__rand__
null
def __rand__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.and_))
(self: ~MagicT, other: Any) -> ~MagicT
21,683
magic_filter.magic
__rfloordiv__
null
def __rfloordiv__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.floordiv))
(self: ~MagicT, other: Any) -> ~MagicT
21,684
magic_filter.magic
__rlshift__
null
def __rlshift__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.lshift))
(self: ~MagicT, other: Any) -> ~MagicT
21,685
magic_filter.magic
__rmatmul__
null
def __rmatmul__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.matmul))
(self: ~MagicT, other: Any) -> ~MagicT
21,686
magic_filter.magic
__rmod__
null
def __rmod__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.mod))
(self: ~MagicT, other: Any) -> ~MagicT
21,687
magic_filter.magic
__rmul__
null
def __rmul__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.mul))
(self: ~MagicT, other: Any) -> ~MagicT
21,688
magic_filter.magic
__ror__
null
def __ror__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.or_))
(self: ~MagicT, other: Any) -> ~MagicT
21,689
magic_filter.magic
__rpow__
null
def __rpow__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.pow))
(self: ~MagicT, other: Any) -> ~MagicT
21,690
magic_filter.magic
__rrshift__
null
def __rrshift__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.rshift))
(self: ~MagicT, other: Any) -> ~MagicT
21,691
magic_filter.magic
__rshift__
null
def __rshift__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.rshift))
(self: ~MagicT, other: Any) -> ~MagicT
21,692
magic_filter.magic
__rsub__
null
def __rsub__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.sub))
(self: ~MagicT, other: Any) -> ~MagicT
21,693
magic_filter.magic
__rtruediv__
null
def __rtruediv__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.truediv))
(self: ~MagicT, other: Any) -> ~MagicT
21,694
magic_filter.magic
__rxor__
null
def __rxor__(self: MagicT, other: Any) -> MagicT: return self._extend(RCombinationOperation(left=other, combinator=operator.xor))
(self: ~MagicT, other: Any) -> ~MagicT
21,695
magic_filter.magic
__sub__
null
def __sub__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.sub))
(self: ~MagicT, other: Any) -> ~MagicT
21,696
magic_filter.magic
__truediv__
null
def __truediv__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.truediv))
(self: ~MagicT, other: Any) -> ~MagicT
21,697
magic_filter.magic
__xor__
null
def __xor__(self: MagicT, other: Any) -> MagicT: return self._extend(CombinationOperation(right=other, combinator=operator.xor))
(self: ~MagicT, other: Any) -> ~MagicT
21,698
magic_filter.magic
_exclude_last
null
def _exclude_last(self: MagicT) -> MagicT: return self._new(self._operations[:-1])
(self: ~MagicT) -> ~MagicT
21,699
magic_filter.magic
_extend
null
def _extend(self: MagicT, operation: BaseOperation) -> MagicT: return self._new(self._operations + (operation,))
(self: ~MagicT, operation: magic_filter.operations.base.BaseOperation) -> ~MagicT
21,700
magic_filter.magic
_replace_last
null
def _replace_last(self: MagicT, operation: BaseOperation) -> MagicT: return self._new(self._operations[:-1] + (operation,))
(self: ~MagicT, operation: magic_filter.operations.base.BaseOperation) -> ~MagicT
21,701
magic_filter.magic
_resolve
null
def _resolve(self, value: Any, operations: Optional[Tuple[BaseOperation, ...]] = None) -> Any: initial_value = value if operations is None: operations = self._operations rejected = False for index, operation in enumerate(operations): if rejected and not operation.important: continue try: value = operation.resolve(value=value, initial_value=initial_value) except SwitchModeToAll: return all(self._resolve(value=item, operations=operations[index + 1 :]) for item in value) except SwitchModeToAny: return any(self._resolve(value=item, operations=operations[index + 1 :]) for item in value) except RejectOperations: rejected = True value = None continue rejected = False return value
(self, value: Any, operations: Optional[Tuple[magic_filter.operations.base.BaseOperation, ...]] = None) -> Any
21,703
magic_filter.magic
cast
null
def cast(self: MagicT, func: Callable[[Any], Any]) -> MagicT: return self._extend(CastOperation(func))
(self: ~MagicT, func: Callable[[Any], Any]) -> ~MagicT
21,704
magic_filter.magic
contains
null
def contains(self: MagicT, value: Any) -> MagicT: return self._extend(FunctionOperation(contains_op, value))
(self: ~MagicT, value: Any) -> ~MagicT
21,705
magic_filter.magic
extract
null
def extract(self: MagicT, magic: "MagicT") -> MagicT: return self._extend(ExtractOperation(magic))
(self: ~MagicT, magic: ~MagicT) -> ~MagicT
21,706
magic_filter.magic
func
null
def func(self: MagicT, func: Callable[[Any], Any], *args: Any, **kwargs: Any) -> MagicT: return self._extend(FunctionOperation(func, *args, **kwargs))
(self: ~MagicT, func: Callable[[Any], Any], *args: Any, **kwargs: Any) -> ~MagicT
21,707
magic_filter.magic
in_
null
def in_(self: MagicT, iterable: Union[Container[Any], MagicT]) -> MagicT: return self._extend(FunctionOperation(in_op, iterable))
(self: ~MagicT, iterable: Union[Container[Any], ~MagicT]) -> ~MagicT
21,708
magic_filter.magic
is_
null
def is_(self: MagicT, value: Any) -> MagicT: return self._extend(CombinationOperation(right=value, combinator=operator.is_))
(self: ~MagicT, value: Any) -> ~MagicT
21,709
magic_filter.magic
is_not
null
def is_not(self: MagicT, value: Any) -> MagicT: return self._extend(CombinationOperation(right=value, combinator=operator.is_not))
(self: ~MagicT, value: Any) -> ~MagicT
21,710
magic_filter.magic
len
null
def len(self: MagicT) -> MagicT: return self._extend(FunctionOperation(len))
(self: ~MagicT) -> ~MagicT
21,711
magic_filter.magic
not_contains
null
def not_contains(self: MagicT, value: Any) -> MagicT: return self._extend(FunctionOperation(not_contains_op, value))
(self: ~MagicT, value: Any) -> ~MagicT
21,712
magic_filter.magic
not_in
null
def not_in(self: MagicT, iterable: Union[Container[Any], MagicT]) -> MagicT: return self._extend(FunctionOperation(not_in_op, iterable))
(self: ~MagicT, iterable: Union[Container[Any], ~MagicT]) -> ~MagicT
21,713
magic_filter.magic
regexp
null
def regexp( self: MagicT, pattern: Union[str, Pattern[str]], *, mode: Optional[str] = None, search: Optional[bool] = None, flags: Union[int, re.RegexFlag] = 0, ) -> MagicT: if search is not None: warn( "Param 'search' is deprecated, use 'mode' instead.", DeprecationWarning, ) if mode is not None: msg = "Can't pass both 'search' and 'mode' params." raise ParamsConflict(msg) mode = RegexpMode.SEARCH if search else RegexpMode.MATCH if mode is None: mode = RegexpMode.MATCH if isinstance(pattern, str): pattern = re.compile(pattern, flags=flags) regexp_func = getattr(pattern, mode) return self._extend(FunctionOperation(regexp_func))
(self: ~MagicT, pattern: Union[str, Pattern[str]], *, mode: Optional[str] = None, search: Optional[bool] = None, flags: Union[int, re.RegexFlag] = 0) -> ~MagicT
21,714
magic_filter.magic
resolve
null
def resolve(self: MagicT, value: Any) -> Any: return self._resolve(value=value)
(self: ~MagicT, value: Any) -> Any
21,715
magic_filter.magic
RegexpMode
null
class RegexpMode: SEARCH = "search" MATCH = "match" FINDALL = "findall" FINDITER = "finditer" FULLMATCH = "fullmatch"
()
21,722
basicauth
DecodeError
null
class DecodeError(Exception): pass
null
21,723
basicauth
EncodeError
null
class EncodeError(Exception): pass
null
21,725
base64
b64encode
Encode the bytes-like object s using Base64 and return a bytes object. Optional altchars should be a byte string of length 2 which specifies an alternative alphabet for the '+' and '/' characters. This allows an application to e.g. generate url or filesystem safe Base64 strings.
def b64encode(s, altchars=None): """Encode the bytes-like object s using Base64 and return a bytes object. Optional altchars should be a byte string of length 2 which specifies an alternative alphabet for the '+' and '/' characters. This allows an application to e.g. generate url or filesystem safe Base64 strings. """ encoded = binascii.b2a_base64(s, newline=False) if altchars is not None: assert len(altchars) == 2, repr(altchars) return encoded.translate(bytes.maketrans(b'+/', altchars)) return encoded
(s, altchars=None)
21,726
basicauth
decode
Decode an encrypted HTTP basic authentication string. Returns a tuple of the form (username, password), and raises a DecodeError exception if nothing could be decoded.
def decode(encoded_str): """Decode an encrypted HTTP basic authentication string. Returns a tuple of the form (username, password), and raises a DecodeError exception if nothing could be decoded. """ split = encoded_str.strip().split(' ') # If split is only one element, try to decode the username and password # directly. if len(split) == 1: try: username, password = b64decode(split[0]).decode().split(':', 1) except: raise DecodeError # If there are only two elements, check the first and ensure it says # 'basic' so that we know we're about to decode the right thing. If not, # bail out. elif len(split) == 2: if split[0].strip().lower() == 'basic': try: username, password = b64decode(split[1]).decode().split(':', 1) except: raise DecodeError else: raise DecodeError # If there are more than 2 elements, something crazy must be happening. # Bail. else: raise DecodeError return unquote(username), unquote(password)
(encoded_str)
21,727
basicauth
encode
Returns an HTTP basic authentication encrypted string given a valid username and password.
def encode(username, password): """Returns an HTTP basic authentication encrypted string given a valid username and password. """ if ':' in username: raise EncodeError username_password = f'{quote(username)}:{quote(password)}' return f'Basic {b64encode(username_password.encode()).decode()}'
(username, password)
21,729
urllib.parse
unquote
Replace %xx escapes by their single-character equivalent. The optional encoding and errors parameters specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode() method. By default, percent-encoded sequences are decoded with UTF-8, and invalid sequences are replaced by a placeholder character. unquote('abc%20def') -> 'abc def'.
def unquote(string, encoding='utf-8', errors='replace'): """Replace %xx escapes by their single-character equivalent. The optional encoding and errors parameters specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode() method. By default, percent-encoded sequences are decoded with UTF-8, and invalid sequences are replaced by a placeholder character. unquote('abc%20def') -> 'abc def'. """ if isinstance(string, bytes): return unquote_to_bytes(string).decode(encoding, errors) if '%' not in string: string.split return string if encoding is None: encoding = 'utf-8' if errors is None: errors = 'replace' bits = _asciire.split(string) res = [bits[0]] append = res.append for i in range(1, len(bits), 2): append(unquote_to_bytes(bits[i]).decode(encoding, errors)) append(bits[i + 1]) return ''.join(res)
(string, encoding='utf-8', errors='replace')
21,730
aiosocks.errors
InvalidServerReply
null
class InvalidServerReply(SocksError): pass
null
21,731
aiosocks.errors
InvalidServerVersion
null
class InvalidServerVersion(SocksError): pass
null
21,732
aiosocks.errors
LoginAuthenticationFailed
null
class LoginAuthenticationFailed(SocksError): pass
null
21,733
aiosocks.errors
NoAcceptableAuthMethods
null
class NoAcceptableAuthMethods(SocksError): pass
null
21,734
aiosocks.helpers
Socks4Addr
null
class Socks4Addr(SocksAddr): pass
(host, port=1080)
21,736
aiosocks.helpers
__new__
null
def __new__(cls, host, port=1080): if host is None: raise ValueError('None is not allowed as host value') if port is None: port = 1080 # default socks server port return super().__new__(cls, host, port)
(cls, host, port=1080)
21,739
collections
_replace
Return a new SocksServer object replacing specified fields with new values
def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', ['x', 'y']) >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) typename = _sys.intern(str(typename)) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = f'_{index}' seen.add(name) for name in [typename] + field_names: if type(name) is not str: raise TypeError('Type names and field names must be strings') if not name.isidentifier(): raise ValueError('Type names and field names must be valid ' f'identifiers: {name!r}') if _iskeyword(name): raise ValueError('Type names and field names cannot be a ' f'keyword: {name!r}') seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: ' f'{name!r}') if name in seen: raise ValueError(f'Encountered duplicate field name: {name!r}') seen.add(name) field_defaults = {} if defaults is not None: defaults = tuple(defaults) if len(defaults) > len(field_names): raise TypeError('Got more default values than field names') field_defaults = dict(reversed(list(zip(reversed(field_names), reversed(defaults))))) # Variables used in the methods and docstrings field_names = tuple(map(_sys.intern, field_names)) num_fields = len(field_names) arg_list = ', '.join(field_names) if num_fields == 1: arg_list += ',' repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')' tuple_new = tuple.__new__ _dict, _tuple, _len, _map, _zip = dict, tuple, len, map, zip # Create all the named tuple methods to be added to the class namespace namespace = { '_tuple_new': tuple_new, '__builtins__': {}, '__name__': f'namedtuple_{typename}', } code = f'lambda _cls, {arg_list}: _tuple_new(_cls, ({arg_list}))' __new__ = eval(code, namespace) __new__.__name__ = '__new__' __new__.__doc__ = f'Create new instance of {typename}({arg_list})' if defaults is not None: __new__.__defaults__ = defaults @classmethod def _make(cls, iterable): result = tuple_new(cls, iterable) if _len(result) != num_fields: raise TypeError(f'Expected {num_fields} arguments, got {len(result)}') return result _make.__func__.__doc__ = (f'Make a new {typename} object from a sequence ' 'or iterable') def _replace(self, /, **kwds): result = self._make(_map(kwds.pop, field_names, self)) if kwds: raise ValueError(f'Got unexpected field names: {list(kwds)!r}') return result _replace.__doc__ = (f'Return a new {typename} object replacing specified ' 'fields with new values') def __repr__(self): 'Return a nicely formatted representation string' return self.__class__.__name__ + repr_fmt % self def _asdict(self): 'Return a new dict which maps field names to their values.' return _dict(_zip(self._fields, self)) def __getnewargs__(self): 'Return self as a plain tuple. Used by copy and pickle.' return _tuple(self) # Modify function metadata to help with introspection and debugging for method in ( __new__, _make.__func__, _replace, __repr__, _asdict, __getnewargs__, ): method.__qualname__ = f'{typename}.{method.__name__}' # Build-up the class namespace dictionary # and use type() to build the result class class_namespace = { '__doc__': f'{typename}({arg_list})', '__slots__': (), '_fields': field_names, '_field_defaults': field_defaults, '__new__': __new__, '_make': _make, '_replace': _replace, '__repr__': __repr__, '_asdict': _asdict, '__getnewargs__': __getnewargs__, '__match_args__': field_names, } for index, name in enumerate(field_names): doc = _sys.intern(f'Alias for field number {index}') class_namespace[name] = _tuplegetter(index, doc) result = type(typename, (tuple,), class_namespace) # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. if module is None: try: module = _sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass if module is not None: result.__module__ = module return result
(self, /, **kwds)
21,740
aiosocks.helpers
Socks4Auth
null
class Socks4Auth(namedtuple('Socks4Auth', ['login', 'encoding'])): def __new__(cls, login, encoding='utf-8'): if login is None: raise ValueError('None is not allowed as login value') return super().__new__(cls, login.encode(encoding), encoding)
(login, encoding='utf-8')
21,742
aiosocks.helpers
__new__
null
def __new__(cls, login, encoding='utf-8'): if login is None: raise ValueError('None is not allowed as login value') return super().__new__(cls, login.encode(encoding), encoding)
(cls, login, encoding='utf-8')
21,745
collections
_replace
Return a new Socks4Auth object replacing specified fields with new values
def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', ['x', 'y']) >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) typename = _sys.intern(str(typename)) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = f'_{index}' seen.add(name) for name in [typename] + field_names: if type(name) is not str: raise TypeError('Type names and field names must be strings') if not name.isidentifier(): raise ValueError('Type names and field names must be valid ' f'identifiers: {name!r}') if _iskeyword(name): raise ValueError('Type names and field names cannot be a ' f'keyword: {name!r}') seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: ' f'{name!r}') if name in seen: raise ValueError(f'Encountered duplicate field name: {name!r}') seen.add(name) field_defaults = {} if defaults is not None: defaults = tuple(defaults) if len(defaults) > len(field_names): raise TypeError('Got more default values than field names') field_defaults = dict(reversed(list(zip(reversed(field_names), reversed(defaults))))) # Variables used in the methods and docstrings field_names = tuple(map(_sys.intern, field_names)) num_fields = len(field_names) arg_list = ', '.join(field_names) if num_fields == 1: arg_list += ',' repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')' tuple_new = tuple.__new__ _dict, _tuple, _len, _map, _zip = dict, tuple, len, map, zip # Create all the named tuple methods to be added to the class namespace namespace = { '_tuple_new': tuple_new, '__builtins__': {}, '__name__': f'namedtuple_{typename}', } code = f'lambda _cls, {arg_list}: _tuple_new(_cls, ({arg_list}))' __new__ = eval(code, namespace) __new__.__name__ = '__new__' __new__.__doc__ = f'Create new instance of {typename}({arg_list})' if defaults is not None: __new__.__defaults__ = defaults @classmethod def _make(cls, iterable): result = tuple_new(cls, iterable) if _len(result) != num_fields: raise TypeError(f'Expected {num_fields} arguments, got {len(result)}') return result _make.__func__.__doc__ = (f'Make a new {typename} object from a sequence ' 'or iterable') def _replace(self, /, **kwds): result = self._make(_map(kwds.pop, field_names, self)) if kwds: raise ValueError(f'Got unexpected field names: {list(kwds)!r}') return result _replace.__doc__ = (f'Return a new {typename} object replacing specified ' 'fields with new values') def __repr__(self): 'Return a nicely formatted representation string' return self.__class__.__name__ + repr_fmt % self def _asdict(self): 'Return a new dict which maps field names to their values.' return _dict(_zip(self._fields, self)) def __getnewargs__(self): 'Return self as a plain tuple. Used by copy and pickle.' return _tuple(self) # Modify function metadata to help with introspection and debugging for method in ( __new__, _make.__func__, _replace, __repr__, _asdict, __getnewargs__, ): method.__qualname__ = f'{typename}.{method.__name__}' # Build-up the class namespace dictionary # and use type() to build the result class class_namespace = { '__doc__': f'{typename}({arg_list})', '__slots__': (), '_fields': field_names, '_field_defaults': field_defaults, '__new__': __new__, '_make': _make, '_replace': _replace, '__repr__': __repr__, '_asdict': _asdict, '__getnewargs__': __getnewargs__, '__match_args__': field_names, } for index, name in enumerate(field_names): doc = _sys.intern(f'Alias for field number {index}') class_namespace[name] = _tuplegetter(index, doc) result = type(typename, (tuple,), class_namespace) # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. if module is None: try: module = _sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass if module is not None: result.__module__ = module return result
(self, /, **kwds)
21,746
aiosocks.protocols
Socks4Protocol
null
class Socks4Protocol(BaseSocksProtocol): def __init__(self, proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=True, loop=None, ssl=False, server_hostname=None, negotiate_done_cb=None, reader_limit=DEFAULT_LIMIT): proxy_auth = proxy_auth or Socks4Auth('') if not isinstance(proxy, Socks4Addr): raise ValueError('Invalid proxy format') if not isinstance(proxy_auth, Socks4Auth): raise ValueError('Invalid proxy_auth format') super().__init__(proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=remote_resolve, loop=loop, ssl=ssl, server_hostname=server_hostname, reader_limit=reader_limit, negotiate_done_cb=negotiate_done_cb) async def socks_request(self, cmd): # prepare destination addr/port host, port = self._dst_host, self._dst_port port_bytes = struct.pack(b'>H', port) include_hostname = False try: host_bytes = socket.inet_aton(host) except socket.error: if self._remote_resolve: host_bytes = bytes([c.NULL, c.NULL, c.NULL, 0x01]) include_hostname = True else: # it's not an IP number, so it's probably a DNS name. family, host = await self._get_dst_addr() host_bytes = socket.inet_aton(host) # build and send connect command req = [c.SOCKS_VER4, cmd, port_bytes, host_bytes, self._auth.login, c.NULL] if include_hostname: req += [self._dst_host.encode('idna'), c.NULL] self.write_request(req) # read/process result resp = await self.read_response(8) if resp[0] != c.NULL: raise InvalidServerReply('SOCKS4 proxy server sent invalid data') if resp[1] != c.SOCKS4_GRANTED: error = c.SOCKS4_ERRORS.get(resp[1], 'Unknown error') raise SocksError('[Errno {0:#04x}]: {1}'.format(resp[1], error)) binded = socket.inet_ntoa(resp[4:]), struct.unpack('>H', resp[2:4])[0] return (host, port), binded
(proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=True, loop=None, ssl=False, server_hostname=None, negotiate_done_cb=None, reader_limit=65536)
21,747
asyncio.streams
__del__
null
def __del__(self): # Prevent reports about unhandled exceptions. # Better than self._closed._log_traceback = False hack try: closed = self._closed except AttributeError: pass # failed constructor else: if closed.done() and not closed.cancelled(): closed.exception()
(self)
21,748
aiosocks.protocols
__init__
null
def __init__(self, proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=True, loop=None, ssl=False, server_hostname=None, negotiate_done_cb=None, reader_limit=DEFAULT_LIMIT): proxy_auth = proxy_auth or Socks4Auth('') if not isinstance(proxy, Socks4Addr): raise ValueError('Invalid proxy format') if not isinstance(proxy_auth, Socks4Auth): raise ValueError('Invalid proxy_auth format') super().__init__(proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=remote_resolve, loop=loop, ssl=ssl, server_hostname=server_hostname, reader_limit=reader_limit, negotiate_done_cb=negotiate_done_cb)
(self, proxy, proxy_auth, dst, app_protocol_factory, waiter, remote_resolve=True, loop=None, ssl=False, server_hostname=None, negotiate_done_cb=None, reader_limit=65536)
21,749
asyncio.streams
_drain_helper
null
def connection_lost(self, exc): self._connection_lost = True # Wake up the writer(s) if currently paused. if not self._paused: return for waiter in self._drain_waiters: if not waiter.done(): if exc is None: waiter.set_result(None) else: waiter.set_exception(exc)
(self)
21,750
asyncio.streams
_get_close_waiter
null
def _get_close_waiter(self, stream): return self._closed
(self, stream)
21,751
aiosocks.protocols
_get_dst_addr
null
def write_request(self, request): bdata = bytearray() for item in request: if isinstance(item, int): bdata.append(item) elif isinstance(item, (bytearray, bytes)): bdata += item else: raise ValueError('Unsupported item') self._stream_writer.write(bdata)
(self)
21,752
aiosocks.protocols
connection_lost
null
def connection_lost(self, exc): if self._negotiate_done and self._app_protocol is not self: self._loop.call_soon(self._app_protocol.connection_lost, exc) super().connection_lost(exc)
(self, exc)
21,753
aiosocks.protocols
connection_made
null
def connection_made(self, transport): # connection_made is called if self._transport: return super().connection_made(transport) self._transport = transport
(self, transport)
21,754
aiosocks.protocols
data_received
null
def data_received(self, data): if self._negotiate_done and self._app_protocol is not self: self._app_protocol.data_received(data) else: super().data_received(data)
(self, data)
21,755
aiosocks.protocols
eof_received
null
def eof_received(self): if self._negotiate_done and self._app_protocol is not self: self._app_protocol.eof_received() super().eof_received()
(self)
21,756
aiosocks.protocols
negotiate
null
def __init__(self, proxy, proxy_auth, dst, app_protocol_factory, waiter, *, remote_resolve=True, loop=None, ssl=False, server_hostname=None, negotiate_done_cb=None, reader_limit=DEFAULT_LIMIT): if not isinstance(dst, (tuple, list)) or len(dst) != 2: raise ValueError( 'Invalid dst format, tuple("dst_host", dst_port))' ) self._proxy = proxy self._auth = proxy_auth self._dst_host, self._dst_port = dst self._remote_resolve = remote_resolve self._waiter = waiter self._ssl = ssl self._server_hostname = server_hostname self._negotiate_done_cb = negotiate_done_cb self._loop = loop or asyncio.get_event_loop() self._transport = None self._negotiate_done = False self._proxy_peername = None self._proxy_sockname = None if app_protocol_factory: self._app_protocol = app_protocol_factory() else: self._app_protocol = self reader = asyncio.StreamReader(loop=self._loop, limit=reader_limit) super().__init__(stream_reader=reader, client_connected_cb=self.negotiate, loop=self._loop)
(self, reader, writer)
21,757
aiosocks.protocols
pause_writing
null
def pause_writing(self): if self._negotiate_done and self._app_protocol is not self: self._app_protocol.pause_writing() else: super().pause_writing()
(self)