index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
21,104
tfields.core
cleaned
Args: stale (bool): remove stale vertices duplicates (bool): replace duplicate vertices by originals Examples: >>> import numpy as np >>> import tfields >>> mp1 = tfields.TensorFields([[0, 1, 2], [3, 4, 5]], ... *zip([1,2,3,4,5], [6,7,8,9,0])) >>> mp2 = tfields.TensorFields([[0], [3]]) >>> tm = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,6,7]], ... maps=[mp1, mp2]) >>> c = tm.cleaned() >>> assert c.equal([[0., 0., 0.], ... [1., 1., 1.], ... [2., 2., 2.], ... [3., 3., 3.], ... [4., 4., 4.]]) >>> assert np.array_equal(c.maps[3], [[0, 1, 2], [0, 3, 4]]) >>> assert np.array_equal(c.maps[1], [[0], [0]]) Returns: copy of self without stale vertices and duplicat points (depending on arguments)
def cleaned(self, stale=True, duplicates=True): """ Args: stale (bool): remove stale vertices duplicates (bool): replace duplicate vertices by originals Examples: >>> import numpy as np >>> import tfields >>> mp1 = tfields.TensorFields([[0, 1, 2], [3, 4, 5]], ... *zip([1,2,3,4,5], [6,7,8,9,0])) >>> mp2 = tfields.TensorFields([[0], [3]]) >>> tm = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,6,7]], ... maps=[mp1, mp2]) >>> c = tm.cleaned() >>> assert c.equal([[0., 0., 0.], ... [1., 1., 1.], ... [2., 2., 2.], ... [3., 3., 3.], ... [4., 4., 4.]]) >>> assert np.array_equal(c.maps[3], [[0, 1, 2], [0, 3, 4]]) >>> assert np.array_equal(c.maps[1], [[0], [0]]) Returns: copy of self without stale vertices and duplicat points (depending on arguments) """ if not stale and not duplicates: inst = self.copy() if stale: # remove stale vertices i.e. those that are not referred by any # map remove_mask = self.stale() inst = self.removed(remove_mask) if duplicates: # pylint: disable=too-many-nested-blocks # remove duplicates in order to not have any artificial separations if not stale: # we have not yet made a copy but want to work on inst inst = self.copy() remove_mask = np.full(inst.shape[0], False, dtype=bool) duplicates = tfields.lib.util.duplicates(inst, axis=0) tensor_indices = np.arange(inst.shape[0]) duplicates_mask = duplicates != tensor_indices if duplicates_mask.any(): # redirect maps. Note: work on inst.maps instead of # self.maps in case stale vertices where removed keys = tensor_indices[duplicates_mask] values = duplicates[duplicates_mask] for map_dim in inst.maps: tfields.lib.sets.remap( inst.maps[map_dim], keys, values, inplace=True ) # mark duplicates for removal remove_mask[keys] = True if remove_mask.any(): # prevent another copy inst = inst.removed(remove_mask) return inst
(self, stale=True, duplicates=True)
21,105
tfields.core
closest
Args: other (Tensors): closest points to what? -> other **kwargs: forwarded to scipy.spatial.cKDTree.query Returns: array shape(len(self)): Indices of other points that are closest to own points Examples: >>> import tfields >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1], ... [1,0,1]]) >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]]) >>> p.closest(m) array([2, 3, 4])
def closest(self, other, **kwargs): """ Args: other (Tensors): closest points to what? -> other **kwargs: forwarded to scipy.spatial.cKDTree.query Returns: array shape(len(self)): Indices of other points that are closest to own points Examples: >>> import tfields >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1], ... [1,0,1]]) >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]]) >>> p.closest(m) array([2, 3, 4]) """ with other.tmp_transform(self.coord_sys): # balanced_tree option gives huge speedup! kd_tree = scipy.spatial.cKDTree( # noqa: E501 pylint: disable=no-member other, 1000, balanced_tree=False ) res = kd_tree.query(self, **kwargs) array = res[1] return array
(self, other, **kwargs)
21,106
tfields.core
contains
Inspired by a speed argument @ stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row Examples: >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]]) >>> p.contains([4,5,6]) True
def contains(self, other): """ Inspired by a speed argument @ stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row Examples: >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]]) >>> p.contains([4,5,6]) True """ return any(self.equal(other, return_bool=False).all(1))
(self, other)
21,107
tfields.core
copy
The standard ndarray copy does not copy slots. Correct for this. Examples: >>> import tfields >>> m = tfields.TensorMaps( ... [[1,2,3], [3,3,3], [0,0,0], [5,6,7]], ... [[1], [3], [0], [5]], ... maps=[ ... ([[0, 1, 2], [1, 2, 3]], [21, 42]), ... [[1]], ... [[0, 1, 2, 3]] ... ]) >>> mc = m.copy() >>> mc.equal(m) True >>> mc is m False >>> mc.fields is m.fields False >>> mc.fields[0] is m.fields[0] False >>> mc.maps[3].fields[0] is m.maps[3].fields[0] False
def copy(self, **kwargs): # pylint: disable=arguments-differ """ The standard ndarray copy does not copy slots. Correct for this. Examples: >>> import tfields >>> m = tfields.TensorMaps( ... [[1,2,3], [3,3,3], [0,0,0], [5,6,7]], ... [[1], [3], [0], [5]], ... maps=[ ... ([[0, 1, 2], [1, 2, 3]], [21, 42]), ... [[1]], ... [[0, 1, 2, 3]] ... ]) >>> mc = m.copy() >>> mc.equal(m) True >>> mc is m False >>> mc.fields is m.fields False >>> mc.fields[0] is m.fields[0] False >>> mc.maps[3].fields[0] is m.maps[3].fields[0] False """ if kwargs: raise NotImplementedError( "Copying with arguments {kwargs} not yet supported" ) # works with __reduce__ / __setstate__ return deepcopy(self)
(self, **kwargs)
21,108
tfields.core
cov_eig
Calculate the covariance eigenvectors with lenghts of eigenvalues Args: weights (np.array | int | None): index to scalars to weight with
def cov_eig(self, weights=None): """ Calculate the covariance eigenvectors with lenghts of eigenvalues Args: weights (np.array | int | None): index to scalars to weight with """ # weights = self.getNormedWeightedAreas(weights=weights) weights = self._weights(weights) cov = np.cov(self.T, ddof=0, aweights=weights) # calculate eigenvalues and eigenvectors of covariance evalfs, evecs = np.linalg.eigh(cov) idx = evalfs.argsort()[::-1] evalfs = evalfs[idx] evecs = evecs[:, idx] res = np.concatenate((evecs, evalfs.reshape(1, 3))) return res.T.reshape( 12, )
(self, weights=None)
21,109
tfields.mesh_3d
cut
cut method for Mesh3D. Args: expression (sympy logical expression | Mesh3D): sympy locical expression: Sympy expression that defines planes in 3D Mesh3D: A mesh3D will be interpreted as a template, i.e. a fast instruction of how to cut the triangles. It is the second part of the tuple, returned by a previous cut with a sympy locial expression with 'return_template=True'. We use the vertices and maps of the Mesh as the skelleton of the returned mesh. The fields are mapped according to indices in the template.maps[i].fields. coord_sys (coordinate system to cut in): at_intersection (str): instruction on what to do, when a cut will intersect a triangle. Options: 'remove' (Default) - remove the faces that are on the edge 'keep' - keep the faces that are on the edge 'split' - Create new triangles that make up the old one. return_template (bool): If True: return the template to redo the same cut fast Examples: define the cut >>> import numpy as np >>> import tfields >>> from sympy.abc import x,y,z >>> cut_expr = x > 1.5 >>> m = tfields.Mesh3D.grid((0, 3, 4), ... (0, 3, 4), ... (0, 0, 1)) >>> m.fields.append(tfields.Tensors(np.linspace(0, len(m) - 1, ... len(m)))) >>> m.maps[3].fields.append( ... tfields.Tensors(np.linspace(0, ... len(m.maps[3]) - 1, ... len(m.maps[3])))) >>> mNew = m.cut(cut_expr) >>> len(mNew) 8 >>> mNew.nfaces() 6 >>> float(mNew[:, 0].min()) 2.0 Cutting with the 'keep' option will leave triangles on the edge untouched: >>> m_keep = m.cut(cut_expr, at_intersection='keep') >>> float(m_keep[:, 0].min()) 1.0 >>> m_keep.nfaces() 12 Cutting with the 'split' option will create new triangles on the edge: >>> m_split = m.cut(cut_expr, at_intersection='split') >>> float(m_split[:, 0].min()) 1.5 >>> len(m_split) 15 >>> m_split.nfaces() 15 Cut with 'return_template=True' will return the exact same mesh but additionally an instruction to conduct the exact same cut fast (template) >>> m_split_2, template = m.cut(cut_expr, at_intersection='split', ... return_template=True) >>> m_split_template = m.cut(template) >>> assert m_split.equal(m_split_2, equal_nan=True) >>> assert m_split.equal(m_split_template, equal_nan=True) >>> assert len(template.fields) == 1 >>> assert len(m_split.fields) == 1 >>> assert len(m_split_template.fields) == 1 >>> assert m_split.fields[0].equal( ... list(range(8, 16)) + [np.nan] * 7, equal_nan=True) >>> assert m_split_template.fields[0].equal( ... list(range(8, 16)) + [np.nan] * 7, equal_nan=True) This seems irrelevant at first but consider, the map field or the tensor field changes: >>> m_altered_fields = m.copy() >>> m_altered_fields[0] += 42 >>> assert not m_split.equal(m_altered_fields.cut(template)) >>> assert tfields.Tensors(m_split).equal( ... m_altered_fields.cut(template)) >>> assert tfields.Tensors(m_split.maps[3]).equal( ... m_altered_fields.cut(template).maps[3]) The cut expression may be a sympy.BooleanFunction: >>> cut_expr_bool_fun = (x > 1.5) & (y < 1.5) & (y >0.2) & (z > -0.5) >>> m_split_bool = m.cut(cut_expr_bool_fun, ... at_intersection='split') Returns: copy of cut mesh * optional: template
def cut(self, *args, **kwargs): """ cut method for Mesh3D. Args: expression (sympy logical expression | Mesh3D): sympy locical expression: Sympy expression that defines planes in 3D Mesh3D: A mesh3D will be interpreted as a template, i.e. a fast instruction of how to cut the triangles. It is the second part of the tuple, returned by a previous cut with a sympy locial expression with 'return_template=True'. We use the vertices and maps of the Mesh as the skelleton of the returned mesh. The fields are mapped according to indices in the template.maps[i].fields. coord_sys (coordinate system to cut in): at_intersection (str): instruction on what to do, when a cut will intersect a triangle. Options: 'remove' (Default) - remove the faces that are on the edge 'keep' - keep the faces that are on the edge 'split' - Create new triangles that make up the old one. return_template (bool): If True: return the template to redo the same cut fast Examples: define the cut >>> import numpy as np >>> import tfields >>> from sympy.abc import x,y,z >>> cut_expr = x > 1.5 >>> m = tfields.Mesh3D.grid((0, 3, 4), ... (0, 3, 4), ... (0, 0, 1)) >>> m.fields.append(tfields.Tensors(np.linspace(0, len(m) - 1, ... len(m)))) >>> m.maps[3].fields.append( ... tfields.Tensors(np.linspace(0, ... len(m.maps[3]) - 1, ... len(m.maps[3])))) >>> mNew = m.cut(cut_expr) >>> len(mNew) 8 >>> mNew.nfaces() 6 >>> float(mNew[:, 0].min()) 2.0 Cutting with the 'keep' option will leave triangles on the edge untouched: >>> m_keep = m.cut(cut_expr, at_intersection='keep') >>> float(m_keep[:, 0].min()) 1.0 >>> m_keep.nfaces() 12 Cutting with the 'split' option will create new triangles on the edge: >>> m_split = m.cut(cut_expr, at_intersection='split') >>> float(m_split[:, 0].min()) 1.5 >>> len(m_split) 15 >>> m_split.nfaces() 15 Cut with 'return_template=True' will return the exact same mesh but additionally an instruction to conduct the exact same cut fast (template) >>> m_split_2, template = m.cut(cut_expr, at_intersection='split', ... return_template=True) >>> m_split_template = m.cut(template) >>> assert m_split.equal(m_split_2, equal_nan=True) >>> assert m_split.equal(m_split_template, equal_nan=True) >>> assert len(template.fields) == 1 >>> assert len(m_split.fields) == 1 >>> assert len(m_split_template.fields) == 1 >>> assert m_split.fields[0].equal( ... list(range(8, 16)) + [np.nan] * 7, equal_nan=True) >>> assert m_split_template.fields[0].equal( ... list(range(8, 16)) + [np.nan] * 7, equal_nan=True) This seems irrelevant at first but consider, the map field or the tensor field changes: >>> m_altered_fields = m.copy() >>> m_altered_fields[0] += 42 >>> assert not m_split.equal(m_altered_fields.cut(template)) >>> assert tfields.Tensors(m_split).equal( ... m_altered_fields.cut(template)) >>> assert tfields.Tensors(m_split.maps[3]).equal( ... m_altered_fields.cut(template).maps[3]) The cut expression may be a sympy.BooleanFunction: >>> cut_expr_bool_fun = (x > 1.5) & (y < 1.5) & (y >0.2) & (z > -0.5) >>> m_split_bool = m.cut(cut_expr_bool_fun, ... at_intersection='split') Returns: copy of cut mesh * optional: template """ return super().cut(*args, **kwargs)
(self, *args, **kwargs)
21,110
tfields.core
disjoint_map
Find the disjoint sets of map = self.maps[map_dim] As an example, this method is interesting for splitting a mesh consisting of seperate parts Args: map_dim (int): reference to map position used like: self.maps[map_dim] Returns: Tuple(int, List(List(int))): map description(tuple): see self.parts Examples: >>> import tfields >>> a = tfields.TensorMaps( ... [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], ... maps=[[[0, 1, 2], [0, 2, 3]]]) >>> b = a.copy() >>> b[:, 0] += 2 >>> m = tfields.TensorMaps.merged(a, b) >>> mp_description = m.disjoint_map(3) >>> parts = m.parts(mp_description) >>> aa, ba = parts >>> assert aa.maps[3].equal(ba.maps[3]) >>> assert aa.equal(a) >>> assert ba.equal(b)
def disjoint_map(self, map_dim): """ Find the disjoint sets of map = self.maps[map_dim] As an example, this method is interesting for splitting a mesh consisting of seperate parts Args: map_dim (int): reference to map position used like: self.maps[map_dim] Returns: Tuple(int, List(List(int))): map description(tuple): see self.parts Examples: >>> import tfields >>> a = tfields.TensorMaps( ... [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], ... maps=[[[0, 1, 2], [0, 2, 3]]]) >>> b = a.copy() >>> b[:, 0] += 2 >>> m = tfields.TensorMaps.merged(a, b) >>> mp_description = m.disjoint_map(3) >>> parts = m.parts(mp_description) >>> aa, ba = parts >>> assert aa.maps[3].equal(ba.maps[3]) >>> assert aa.equal(a) >>> assert ba.equal(b) """ maps_list = tfields.lib.sets.disjoint_group_indices(self.maps[map_dim]) return (map_dim, maps_list)
(self, map_dim)
21,111
tfields.mesh_3d
disjoint_parts
Returns: disjoint_parts(List(cls)), templates(List(cls)) >>> import tfields >>> a = tfields.Mesh3D( ... [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], ... maps=[[[0, 1, 2], [0, 2, 3]]]) >>> b = a.copy() >>> b[:, 0] += 2 >>> m = tfields.Mesh3D.merged(a, b) >>> parts = m.disjoint_parts() >>> aa, ba = parts >>> assert aa.maps[3].equal(ba.maps[3]) >>> assert aa.equal(a) >>> assert ba.equal(b)
def disjoint_parts(self, return_template=False): """ Returns: disjoint_parts(List(cls)), templates(List(cls)) >>> import tfields >>> a = tfields.Mesh3D( ... [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], ... maps=[[[0, 1, 2], [0, 2, 3]]]) >>> b = a.copy() >>> b[:, 0] += 2 >>> m = tfields.Mesh3D.merged(a, b) >>> parts = m.disjoint_parts() >>> aa, ba = parts >>> assert aa.maps[3].equal(ba.maps[3]) >>> assert aa.equal(a) >>> assert ba.equal(b) """ mp_description = self.disjoint_map(3) parts = self.parts(mp_description) if not return_template: return parts else: templates = [] for i, part in enumerate(parts): template = part.copy() template.maps[3].fields = [tfields.Tensors(mp_description[1][i])] templates.append(template) return parts, templates
(self, return_template=False)
21,112
tfields.core
distances
Args: other(Iterable) **kwargs: ... is forwarded to scipy.spatial.distance.cdist Examples: >>> import tfields >>> p = tfields.Tensors.grid((0, 2, 3j), ... (0, 2, 3j), ... (0, 0, 1j)) >>> p[4,2] = 1 >>> p.distances(p)[0,0] 0.0 >>> p.distances(p)[5,1] 1.4142135623730951 >>> p.distances([[0,1,2]])[-1][0] == 3 True
def distances(self, other, **kwargs): """ Args: other(Iterable) **kwargs: ... is forwarded to scipy.spatial.distance.cdist Examples: >>> import tfields >>> p = tfields.Tensors.grid((0, 2, 3j), ... (0, 2, 3j), ... (0, 0, 1j)) >>> p[4,2] = 1 >>> p.distances(p)[0,0] 0.0 >>> p.distances(p)[5,1] 1.4142135623730951 >>> p.distances([[0,1,2]])[-1][0] == 3 True """ if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys: other = other.copy() other.transform(self.coord_sys) return scipy.spatial.distance.cdist(self, other, **kwargs)
(self, other, **kwargs)
21,113
tfields.core
dot
Computes the n-d dot product between self and other defined as in `mathematica <https://reference.wolfram.com/legacy/v5/Built-inFunctions/ AdvancedDocumentation/LinearAlgebra/2.7.html>`_ by summing over the last dimension. When self and b are both one-dimensional vectors, this is just the "usual" dot product; when self and b are 2D matrices, this is matrix multiplication. Note: * This is not the same as the numpy.dot function. Examples: >>> import tfields >>> import numpy as np Scalar product by transposed dot product >>> a = tfields.Tensors([[4, 0, 4]]) >>> b = tfields.Tensors([[10, 0, 0.5]]) >>> c = a.t.dot(b) >>> assert c.equal([42]) >>> assert c.equal(np.dot(a[0], b[0])) >>> assert c.rank == 0 To get the angle between a and b you now just need >>> angle = np.arccos(c) Matrix vector multiplication >>> a = tfields.Tensors([[[1, 20, 0], [2, 18, 1], [1, 5, 10]]]) >>> b = tfields.Tensors([[1, 2, 3]]) >>> c = a.dot(b) >>> assert c.equal([[41,41,41]]) TODO: generalize dot product to inner # Matrix matrix multiplication can not be done like this. It requires # >>> a = tfields.Tensors([[[1, 8], [2, 4]]]) # >>> b = tfields.Tensors([[[1, 2], [1/2, 1/4]]]) # >>> c = a.dot(b) # >>> c # >>> assert c.equal([[[5, 4], [4, 5]]]) TODO: handle types, fields and maps (which fields etc to choose for the output?)
def dot(self, b, out=None): # pylint:disable=line-too-long """ Computes the n-d dot product between self and other defined as in `mathematica <https://reference.wolfram.com/legacy/v5/Built-inFunctions/ AdvancedDocumentation/LinearAlgebra/2.7.html>`_ by summing over the last dimension. When self and b are both one-dimensional vectors, this is just the "usual" dot product; when self and b are 2D matrices, this is matrix multiplication. Note: * This is not the same as the numpy.dot function. Examples: >>> import tfields >>> import numpy as np Scalar product by transposed dot product >>> a = tfields.Tensors([[4, 0, 4]]) >>> b = tfields.Tensors([[10, 0, 0.5]]) >>> c = a.t.dot(b) >>> assert c.equal([42]) >>> assert c.equal(np.dot(a[0], b[0])) >>> assert c.rank == 0 To get the angle between a and b you now just need >>> angle = np.arccos(c) Matrix vector multiplication >>> a = tfields.Tensors([[[1, 20, 0], [2, 18, 1], [1, 5, 10]]]) >>> b = tfields.Tensors([[1, 2, 3]]) >>> c = a.dot(b) >>> assert c.equal([[41,41,41]]) TODO: generalize dot product to inner # Matrix matrix multiplication can not be done like this. It requires # >>> a = tfields.Tensors([[[1, 8], [2, 4]]]) # >>> b = tfields.Tensors([[[1, 2], [1/2, 1/4]]]) # >>> c = a.dot(b) # >>> c # >>> assert c.equal([[[5, 4], [4, 5]]]) TODO: handle types, fields and maps (which fields etc to choose for the output?) """ if out is not None: raise NotImplementedError("performance feature 'out' not yet implemented") return Tensors(np.einsum("t...i,t...i->t...", self, b))
(self, b, out=None)
21,114
tfields.core
epsilon_neighbourhood
Returns: indices for those sets of points that lie within epsilon around the other Examples: Create mesh grid with one extra point that will have 8 neighbours within epsilon >>> import tfields >>> p = tfields.Tensors.grid((0, 1, 2j), ... (0, 1, 2j), ... (0, 1, 2j)) >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]]) >>> [len(en) for en in p.epsilon_neighbourhood(0.9)] [2, 2, 2, 2, 2, 2, 2, 2, 9]
def epsilon_neighbourhood(self, epsilon): """ Returns: indices for those sets of points that lie within epsilon around the other Examples: Create mesh grid with one extra point that will have 8 neighbours within epsilon >>> import tfields >>> p = tfields.Tensors.grid((0, 1, 2j), ... (0, 1, 2j), ... (0, 1, 2j)) >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]]) >>> [len(en) for en in p.epsilon_neighbourhood(0.9)] [2, 2, 2, 2, 2, 2, 2, 2, 9] """ indices = np.arange(self.shape[0]) dists = self.distances(self) # this takes long dists_in_epsilon = dists <= epsilon indices = [indices[die] for die in dists_in_epsilon] # this takes long return indices
(self, epsilon)
21,115
tfields.core
equal
Test, whether the instance has the same content as other. Args: other (iterable) optional: see TensorFields.equal Examples: >>> import tfields >>> maps = [tfields.TensorFields([[1]], [42])] >>> tm = tfields.TensorMaps(maps[0], maps=maps) # >>> assert tm.equal(tm) >>> cp = tm.copy() # >>> assert tm.equal(cp) >>> cp.maps[1].fields[0] = -42 >>> assert tm.maps[1].fields[0] == 42 >>> assert not tm.equal(cp)
def equal(self, other, **kwargs): """ Test, whether the instance has the same content as other. Args: other (iterable) optional: see TensorFields.equal Examples: >>> import tfields >>> maps = [tfields.TensorFields([[1]], [42])] >>> tm = tfields.TensorMaps(maps[0], maps=maps) # >>> assert tm.equal(tm) >>> cp = tm.copy() # >>> assert tm.equal(cp) >>> cp.maps[1].fields[0] = -42 >>> assert tm.maps[1].fields[0] == 42 >>> assert not tm.equal(cp) """ if not issubclass(type(other), Tensors): return super(TensorMaps, self).equal(other, **kwargs) with other.tmp_transform(self.coord_sys): mask = super(TensorMaps, self).equal(other, **kwargs) if issubclass(type(other), TensorMaps): mask &= self.maps.equal(other.maps, **kwargs) return mask
(self, other, **kwargs)
21,116
tfields.core
evalf
Args: expression (sympy logical expression) coord_sys (str): coord_sys to evalfuate the expression in. Returns: np.ndarray: mask of dtype bool with lenght of number of points in self. This array is True, where expression evalfuates True. Examples: >>> import tfields >>> import numpy as np >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> np.array_equal(p.evalf(x > 0), ... [True, True, True, False, True, False]) True >>> np.array_equal(p.evalf(x >= 0), ... [True, True, True, False, True, True]) True And combination >>> np.array_equal(p.evalf((x > 0) & (y < 3)), ... [True, False, True, False, True, False]) True Or combination >>> np.array_equal(p.evalf((x > 0) | (y > 3)), ... [True, True, True, False, True, False]) True
def evalf(self, expression=None, coord_sys=None): """ Args: expression (sympy logical expression) coord_sys (str): coord_sys to evalfuate the expression in. Returns: np.ndarray: mask of dtype bool with lenght of number of points in self. This array is True, where expression evalfuates True. Examples: >>> import tfields >>> import numpy as np >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> np.array_equal(p.evalf(x > 0), ... [True, True, True, False, True, False]) True >>> np.array_equal(p.evalf(x >= 0), ... [True, True, True, False, True, True]) True And combination >>> np.array_equal(p.evalf((x > 0) & (y < 3)), ... [True, False, True, False, True, False]) True Or combination >>> np.array_equal(p.evalf((x > 0) | (y > 3)), ... [True, True, True, False, True, False]) True """ coords = sympy.symbols("x y z") with self.tmp_transform(coord_sys or self.coord_sys): mask = tfields.evalf(np.array(self), expression, coords=coords) return mask
(self, expression=None, coord_sys=None)
21,117
tfields.mesh_3d
in_faces
Check whether points lie within triangles with Barycentric Technique see Triangles3D.in_triangles. If multiple requests are done on huge meshes, this can be hugely optimized by requesting the property self.tree or setting it to self.tree = <saved tree> before calling in_faces.
def in_faces(self, points, delta, **kwargs): """ Check whether points lie within triangles with Barycentric Technique see Triangles3D.in_triangles. If multiple requests are done on huge meshes, this can be hugely optimized by requesting the property self.tree or setting it to self.tree = <saved tree> before calling in_faces. """ key = "mesh_tree" if hasattr(self, "_cache") and key in self._cache: log = logging.getLogger() log.info("Using cached decision tree to speed up point - face mapping.") indices = self.tree.in_faces(points, delta, **kwargs) else: indices = self.triangles().in_triangles(points, delta, **kwargs) return indices
(self, points, delta, **kwargs)
21,118
tfields.core
index
Args: tensor Returns: int: index of tensor occuring
def index(self, tensor, **kwargs): """ Args: tensor Returns: int: index of tensor occuring """ indices = self.indices(tensor, **kwargs) if not indices: return None if len(indices) == 1: return indices[0] raise ValueError("Multiple occurences of value {}".format(tensor))
(self, tensor, **kwargs)
21,119
tfields.core
indices
Returns: list of int: indices of tensor occuring Examples: Rank 1 Tensors >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6], ... [4.1, 5, 6]]) >>> p.indices([4,5,6]) array([1, 3]) >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1) array([1, 3, 4]) Rank 0 Tensors >>> p = tfields.Tensors([2, 3, 6, 3.01]) >>> p.indices(3) array([1]) >>> p.indices(3, rtol=1e-5, atol=1e-1) array([1, 3])
def indices(self, tensor, rtol=None, atol=None): """ Returns: list of int: indices of tensor occuring Examples: Rank 1 Tensors >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6], ... [4.1, 5, 6]]) >>> p.indices([4,5,6]) array([1, 3]) >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1) array([1, 3, 4]) Rank 0 Tensors >>> p = tfields.Tensors([2, 3, 6, 3.01]) >>> p.indices(3) array([1]) >>> p.indices(3, rtol=1e-5, atol=1e-1) array([1, 3]) """ self_array, other_array = np.asarray(self), np.asarray(tensor) if rtol is None and atol is None: equal_method = np.equal else: equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol) # NOQA # inspired by # https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array if self.rank == 0: indices = np.where(equal_method((self_array - other_array), 0))[0] elif self.rank == 1: indices = np.where( np.all(equal_method((self_array - other_array), 0), axis=1) )[0] else: raise NotImplementedError() return indices
(self, tensor, rtol=None, atol=None)
21,120
tfields.core
keep
Return copy of self with vertices where keep_condition is True Copy because self is immutable Examples: >>> import numpy as np >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.removed([True, True, True, False, False, False, False]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal(np.array([[0, 1, 2], [0, 1, 3]])) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0])
def keep(self, keep_condition): """ Return copy of self with vertices where keep_condition is True Copy because self is immutable Examples: >>> import numpy as np >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.removed([True, True, True, False, False, False, False]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal(np.array([[0, 1, 2], [0, 1, 3]])) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0]) """ keep_condition = np.array(keep_condition) return self[keep_condition]
(self, keep_condition)
21,121
tfields.core
main_axes
Returns: Main Axes eigen-vectors
def main_axes(self, weights=None): """ Returns: Main Axes eigen-vectors """ # weights = self.getNormedWeightedAreas(weights=weights) weights = self._weights(weights) mean = np.array(self).mean(axis=0) relative_coords = self - mean cov = np.cov(relative_coords.T, ddof=0, aweights=weights) # calculate eigenvalues and eigenvectors of covariance evalfs, evecs = np.linalg.eigh(cov) return (evecs * evalfs.T).T
(self, weights=None)
21,122
tfields.core
min_dists
Args: other(array | None): if None: closest distance to self **kwargs: memory_saving (bool): for very large array comparisons default False ... rest is forwarded to scipy.spatial.distance.cdist Returns: np.array: minimal distances of self to other Examples: >>> import tfields >>> import numpy as np >>> p = tfields.Tensors.grid((0, 2, 3), ... (0, 2, 3), ... (0, 0, 1)) >>> p[4,2] = 1 >>> dMin = p.min_dists() >>> expected = [1] * 9 >>> expected[4] = np.sqrt(2) >>> np.array_equal(dMin, expected) True >>> dMin2 = p.min_dists(memory_saving=True) >>> bool((dMin2 == dMin).all()) True
def min_dists(self, other=None, **kwargs): """ Args: other(array | None): if None: closest distance to self **kwargs: memory_saving (bool): for very large array comparisons default False ... rest is forwarded to scipy.spatial.distance.cdist Returns: np.array: minimal distances of self to other Examples: >>> import tfields >>> import numpy as np >>> p = tfields.Tensors.grid((0, 2, 3), ... (0, 2, 3), ... (0, 0, 1)) >>> p[4,2] = 1 >>> dMin = p.min_dists() >>> expected = [1] * 9 >>> expected[4] = np.sqrt(2) >>> np.array_equal(dMin, expected) True >>> dMin2 = p.min_dists(memory_saving=True) >>> bool((dMin2 == dMin).all()) True """ memory_saving = kwargs.pop("memory_saving", False) if other is None: other = self else: raise NotImplementedError( "Should be easy but make shure not to remove diagonal" ) try: if memory_saving: raise MemoryError() dists = self.distances(other, **kwargs) return dists[dists > 0].reshape(dists.shape[0], -1).min(axis=1) except MemoryError: min_dists = np.empty(self.shape[0]) for i, point in enumerate(np.array(other)): dists = self.distances([point], **kwargs) min_dists[i] = dists[dists > 0].reshape(-1).min() return min_dists
(self, other=None, **kwargs)
21,123
tfields.core
mirror
Reflect/Mirror the entries meeting <condition> at <coordinate> = 0 Args: coordinate (int): coordinate index Examples: >>> import tfields >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror(1) >>> assert p.equal([[1, -2, 3], [4, -5, 6], [1, -2, -6]]) multiple coordinates can be mirrored at the same time i.e. a point mirrorion would be >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror([0,2]) >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]]) You can give a condition as mask or as str. The mirroring will only be applied to the points meeting the condition. >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p.mirror([0, 2], y > 3) >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]]) True
def mirror(self, coordinate, condition=None): """ Reflect/Mirror the entries meeting <condition> at <coordinate> = 0 Args: coordinate (int): coordinate index Examples: >>> import tfields >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror(1) >>> assert p.equal([[1, -2, 3], [4, -5, 6], [1, -2, -6]]) multiple coordinates can be mirrored at the same time i.e. a point mirrorion would be >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror([0,2]) >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]]) You can give a condition as mask or as str. The mirroring will only be applied to the points meeting the condition. >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p.mirror([0, 2], y > 3) >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]]) True """ if condition is None: condition = np.array([True for i in range(len(self))]) elif isinstance(condition, sympy.Basic): condition = self.evalf(condition) if isinstance(coordinate, (list, tuple)): for coord in coordinate: self.mirror(coord, condition=condition) elif isinstance(coordinate, int): self[:, coordinate][condition] *= -1 else: raise TypeError()
(self, coordinate, condition=None)
21,124
tfields.core
moment
Returns: Moments of the distribution. Args: moment (int): n-th moment Examples: >>> import tfields Skalars >>> t = tfields.Tensors(range(1, 6)) >>> assert t.moment(1) == 0 >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5 >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2 Vectors >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6)))) >>> assert tfields.Tensors([0.5, 0.5]).equal( ... t.moment(1, weights=[-2, -1, 20, 1, 2])) >>> assert tfields.Tensors([1. , 0.5]).equal( ... t.moment(1, weights=list(zip([-2, -1, 10, 1, 2], ... [-2, -1, 20, 1, 2]))))
def moment(self, moment, weights=None): """ Returns: Moments of the distribution. Args: moment (int): n-th moment Examples: >>> import tfields Skalars >>> t = tfields.Tensors(range(1, 6)) >>> assert t.moment(1) == 0 >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5 >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2 Vectors >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6)))) >>> assert tfields.Tensors([0.5, 0.5]).equal( ... t.moment(1, weights=[-2, -1, 20, 1, 2])) >>> assert tfields.Tensors([1. , 0.5]).equal( ... t.moment(1, weights=list(zip([-2, -1, 10, 1, 2], ... [-2, -1, 20, 1, 2])))) """ array = tfields.lib.stats.moment(self, moment, weights=weights) if self.rank == 0: # scalar array = [array] return Tensors(array, coord_sys=self.coord_sys)
(self, moment, weights=None)
21,125
tfields.mesh_3d
nfaces
null
def nfaces(self): return self.faces.shape[0]
(self)
21,126
tfields.core
norm
Calculate the norm up to rank 2 Args: See numpy.linal.norm except redefinition in axis axis: by default omitting first axis Examples: >>> import tfields >>> a = tfields.Tensors([[1, 0, 0]]) >>> assert a.norm().equal([1])
def norm(self, ord=None, axis=None, keepdims=False): """ Calculate the norm up to rank 2 Args: See numpy.linal.norm except redefinition in axis axis: by default omitting first axis Examples: >>> import tfields >>> a = tfields.Tensors([[1, 0, 0]]) >>> assert a.norm().equal([1]) """ if axis is None: axis = tuple(range(self.ndim)[1:]) return Tensors(np.linalg.norm(self, ord=ord, axis=axis, keepdims=keepdims))
(self, ord=None, axis=None, keepdims=False)
21,127
tfields.core
normalized
Return the self / norm(self) Args: forwarded to :meth:norm Examples: >>> import tfields >>> a = tfields.Tensors([[1, 4, 3]]) >>> assert not a.norm().equal([1]) >>> a = a.normalized() >>> assert a.norm().equal([1]) >>> a = tfields.Tensors([[1, 0, 0], ... [0, 2, 0], ... [0, 0, 3]]) >>> assert a.norm().equal([1, 2, 3]) >>> a = a.normalized() >>> assert a.equal([ ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... ]) >>> assert a.norm().equal([1, 1, 1])
def normalized(self, *args, **kwargs): """ Return the self / norm(self) Args: forwarded to :meth:norm Examples: >>> import tfields >>> a = tfields.Tensors([[1, 4, 3]]) >>> assert not a.norm().equal([1]) >>> a = a.normalized() >>> assert a.norm().equal([1]) >>> a = tfields.Tensors([[1, 0, 0], ... [0, 2, 0], ... [0, 0, 3]]) >>> assert a.norm().equal([1, 2, 3]) >>> a = a.normalized() >>> assert a.equal([ ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... ]) >>> assert a.norm().equal([1, 1, 1]) """ # return np.divide(self.T, self.norm(*args, **kwargs)).T return np.divide(self, self.norm(*args, **kwargs)[:, None])
(self, *args, **kwargs)
21,128
tfields.core
parts
Args: *map_descriptions (Tuple(int, List(List(int)))): tuples of map_dim (int): reference to map position used like: self.maps[map_dim] map_indices_list (List(List(int))): each int refers to index in a map. Returns: List(cls): One TensorMaps or TensorMaps subclass per map_description
def parts(self, *map_descriptions): """ Args: *map_descriptions (Tuple(int, List(List(int)))): tuples of map_dim (int): reference to map position used like: self.maps[map_dim] map_indices_list (List(List(int))): each int refers to index in a map. Returns: List(cls): One TensorMaps or TensorMaps subclass per map_description """ parts = [] for map_description in map_descriptions: map_dim, map_indices_list = map_description for map_indices in map_indices_list: obj = self.copy() map_indices = set(map_indices) # for speed up map_delete_mask = np.array( [i not in map_indices for i in range(len(self.maps[map_dim]))] ) obj.maps[map_dim] = obj.maps[map_dim][~map_delete_mask] obj = obj.cleaned(duplicates=False) parts.append(obj) return parts
(self, *map_descriptions)
21,129
tfields.core
paths
Find the minimal amount of graphs building the original graph with maximum of two links per node i.e. "o-----o o-----o" " \ / \ /" "" \ / \ /"" "o--o--o o--o 8--o" | | | = | + + o o o / \ / \ / \ / \ o o o o where 8 is a duplicated node (one has two links and one has only one.) Examples: >>> import tfields Ascii figure above: >>> a = tfields.TensorMaps([[1, 0], [3, 0], [2, 2], [0, 4], [2, 4], ... [4, 4], [1, 6], [3, 6], [2, 2]], ... maps=[[[0, 2], [2, 4], [3, 4], [5, 4], ... [1, 8], [6, 4], [6, 7], [7, 4]]]) >>> paths = a.paths(2) >>> assert paths[0].equal([[ 1., 0.], ... [ 2., 2.], ... [ 2., 4.], ... [ 0., 4.]]) >>> assert paths[0].maps[4].equal([[ 0., 1., 2., 3.]]) >>> assert paths[1].equal([[ 4., 4.], ... [ 2., 4.], ... [ 1., 6.], ... [ 3., 6.], ... [ 2., 4.]]) >>> assert paths[2].equal([[ 3., 0.], ... [ 2., 2.]]) Note: The Longest path problem is a NP-hard problem.
def paths( self, map_dim ): # noqa: E501 pylint: disable=too-many-locals,too-many-branches,too-many-statements """ Find the minimal amount of graphs building the original graph with maximum of two links per node i.e. "o-----o o-----o" " \\ / \\ /" "" \\ / \\ /"" "o--o--o o--o 8--o" | | | = | + + o o o / \\ / \\ / \\ / \\ o o o o where 8 is a duplicated node (one has two links and one has only one.) Examples: >>> import tfields Ascii figure above: >>> a = tfields.TensorMaps([[1, 0], [3, 0], [2, 2], [0, 4], [2, 4], ... [4, 4], [1, 6], [3, 6], [2, 2]], ... maps=[[[0, 2], [2, 4], [3, 4], [5, 4], ... [1, 8], [6, 4], [6, 7], [7, 4]]]) >>> paths = a.paths(2) >>> assert paths[0].equal([[ 1., 0.], ... [ 2., 2.], ... [ 2., 4.], ... [ 0., 4.]]) >>> assert paths[0].maps[4].equal([[ 0., 1., 2., 3.]]) >>> assert paths[1].equal([[ 4., 4.], ... [ 2., 4.], ... [ 1., 6.], ... [ 3., 6.], ... [ 2., 4.]]) >>> assert paths[2].equal([[ 3., 0.], ... [ 2., 2.]]) Note: The Longest path problem is a NP-hard problem. """ obj = self.cleaned() flat_map = np.array(obj.maps[map_dim].flat) values, counts = np.unique(flat_map, return_counts=True) counts = dict(zip(values, counts)) # last is a helper last = np.full(max(flat_map) + 1, -3, dtype=int) duplicat_indices = [] d_index = len(obj) for i, val in enumerate(flat_map.copy()): if counts[val] > 2: # The first two occurences are uncritical if last[val] < -1: last[val] += 1 continue # Now we talk about nodes with more than two edges if last[val] == -1: # append a point and re-link duplicat_indices.append(val) flat_map[i] = d_index last[val] = d_index d_index += 1 else: # last occurence of val was a duplicate, so we use the same # value again. flat_map[i] = last[val] last[val] = -1 if duplicat_indices: duplicates = obj[duplicat_indices] obj = type(obj).merged(obj, duplicates) obj.maps = [flat_map.reshape(-1, *obj.maps[map_dim].shape[1:])] paths = obj.parts(obj.disjoint_map(map_dim)) # remove duplicate map entries and sort sorted_paths = [] for path in paths: # find start index values, counts = np.unique(path.maps[map_dim].flat, return_counts=True) first_node = None for value, count in zip(values, counts): if count == 1: first_node = value break edges = [list(edge) for edge in path.maps[map_dim]] if first_node is None: first_node = 0 # edges[0][0] path = path[list(range(len(path))) + [0]] found_first_node = False for edge in edges: if first_node in edge: if found_first_node: edge[edge.index(first_node)] = len(path) - 1 break found_first_node = True # follow the edges until you hit the end chain = [first_node] visited = set() n_edges = len(edges) node = first_node while len(visited) < n_edges: for i, edge in enumerate(edges): if i in visited: continue if node not in edge: continue # found edge visited.add(i) if edge.index(node) != 0: edge = list(reversed(edge)) chain.extend(edge[1:]) node = edge[-1] path = path[chain] path_map = Maps.to_map([sorted(chain)]) path.maps[dim(path_map)] = path_map sorted_paths.append(path) paths = sorted_paths return paths
(self, map_dim)
21,130
tfields.mesh_3d
planes
null
def planes(self): return self._planes
(self)
21,131
tfields.core
plot
Generic plotting method of TensorMaps. Args: *args: Depending on Positional arguments passed to the underlying :func:`rna.plotting.plot_tensor_map` function for arbitrary . dim (int): dimension of the plot representation (axes). map (int): index of the map to plot (default is 3). edgecolor (color): color of the edges (dim = 3)
def plot(self, *args, **kwargs): # pragma: no cover """ Generic plotting method of TensorMaps. Args: *args: Depending on Positional arguments passed to the underlying :func:`rna.plotting.plot_tensor_map` function for arbitrary . dim (int): dimension of the plot representation (axes). map (int): index of the map to plot (default is 3). edgecolor (color): color of the edges (dim = 3) """ scalars_demanded = ( "color" not in kwargs and "facecolors" not in kwargs and any(v in kwargs for v in ["vmin", "vmax", "cmap"]) ) map_ = self.maps[kwargs.pop("map", 3)] map_index = kwargs.pop("map_index", None if not scalars_demanded else 0) if map_index is not None: if not len(map_) == 0: kwargs["color"] = map_.fields[map_index] if map_.dim == 3: # TODO: Mesh plotting only for Mesh3D(). # Overload this function for Mesh3D() specifically. return rna.plotting.plot_mesh(self, *args, map_, **kwargs) return rna.plotting.plot_tensor_map(self, *args, map_, **kwargs)
(self, *args, **kwargs)
21,132
tfields.mesh_3d
project
Project the points of the tensor_field to a copy of the mesh and set the face values accord to the field to the maps field. If no field is present in tensor_field, the number of points in a mesh is counted. Args: tensor_field (Tensors | TensorFields) delta (float | None): forwarded to Mesh3D.in_faces merge_functions (callable): if multiple Tensors lie in the same face, they are mapped with the merge_function to one value point_face_assignment (np.array, dtype=int): array assigning each point to a face. Each entry position corresponds to a point of the tensor, each entry value is the index of the assigned face return_point_face_assignment (bool): if true, return the point_face_assignment Examples: >>> import tfields >>> import numpy as np >>> mp = tfields.TensorFields([[0,1,2],[2,3,0],[3,2,5],[5,4,3]], ... [1, 2, 3, 4]) >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,2,0], [1,2,0]], ... maps=[mp]) >>> points = tfields.Tensors([[0.5, 0.2, 0.0], ... [0.5, 0.02, 0.0], ... [0.5, 0.8, 0.0], ... [0.5, 0.8, 0.1]]) # not contained Projecting points onto the mesh gives the count >>> m_points = m.project(points, delta=0.01) >>> list(m_points.maps[3].fields[0]) [2, 1, 0, 0] TensorFields with arbitrary size are projected, combinging the fields automatically >>> fields = [tfields.Tensors([1,3,42, -1]), ... tfields.Tensors([[0,1,2], [2,3,4], [3,4,5], [-1] * 3]), ... tfields.Tensors([[[0, 0]] * 2, ... [[2, 2]] * 2, ... [[3, 3]] * 2, ... [[9, 9]] * 2])] >>> tf = tfields.TensorFields(points, *fields) >>> m_tf = m.project(tf, delta=0.01) >>> assert m_tf.maps[3].fields[0].equal([2, 42, np.nan, np.nan], equal_nan=True) >>> assert m_tf.maps[3].fields[1].equal([[1, 2, 3], ... [3, 4, 5], ... [np.nan] * 3, ... [np.nan] * 3], ... equal_nan=True) >>> assert m_tf.maps[3].fields[2].equal([[[1, 1]] * 2, ... [[3, 3]] * 2, ... [[np.nan, np.nan]] * 2, ... [[np.nan, np.nan]] * 2], ... equal_nan=True) Returning the calculated point_face_assignment can speed up multiple results >>> m_tf, point_face_assignment = m.project(tf, delta=0.01, ... return_point_face_assignment=True) >>> m_tf_fast = m.project(tf, delta=0.01, point_face_assignment=point_face_assignment) >>> assert m_tf.equal(m_tf_fast, equal_nan=True)
def project( self, tensor_field, delta=None, merge_functions=None, point_face_assignment=None, return_point_face_assignment=False, ): """ Project the points of the tensor_field to a copy of the mesh and set the face values accord to the field to the maps field. If no field is present in tensor_field, the number of points in a mesh is counted. Args: tensor_field (Tensors | TensorFields) delta (float | None): forwarded to Mesh3D.in_faces merge_functions (callable): if multiple Tensors lie in the same face, they are mapped with the merge_function to one value point_face_assignment (np.array, dtype=int): array assigning each point to a face. Each entry position corresponds to a point of the tensor, each entry value is the index of the assigned face return_point_face_assignment (bool): if true, return the point_face_assignment Examples: >>> import tfields >>> import numpy as np >>> mp = tfields.TensorFields([[0,1,2],[2,3,0],[3,2,5],[5,4,3]], ... [1, 2, 3, 4]) >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,2,0], [1,2,0]], ... maps=[mp]) >>> points = tfields.Tensors([[0.5, 0.2, 0.0], ... [0.5, 0.02, 0.0], ... [0.5, 0.8, 0.0], ... [0.5, 0.8, 0.1]]) # not contained Projecting points onto the mesh gives the count >>> m_points = m.project(points, delta=0.01) >>> list(m_points.maps[3].fields[0]) [2, 1, 0, 0] TensorFields with arbitrary size are projected, combinging the fields automatically >>> fields = [tfields.Tensors([1,3,42, -1]), ... tfields.Tensors([[0,1,2], [2,3,4], [3,4,5], [-1] * 3]), ... tfields.Tensors([[[0, 0]] * 2, ... [[2, 2]] * 2, ... [[3, 3]] * 2, ... [[9, 9]] * 2])] >>> tf = tfields.TensorFields(points, *fields) >>> m_tf = m.project(tf, delta=0.01) >>> assert m_tf.maps[3].fields[0].equal([2, 42, np.nan, np.nan], equal_nan=True) >>> assert m_tf.maps[3].fields[1].equal([[1, 2, 3], ... [3, 4, 5], ... [np.nan] * 3, ... [np.nan] * 3], ... equal_nan=True) >>> assert m_tf.maps[3].fields[2].equal([[[1, 1]] * 2, ... [[3, 3]] * 2, ... [[np.nan, np.nan]] * 2, ... [[np.nan, np.nan]] * 2], ... equal_nan=True) Returning the calculated point_face_assignment can speed up multiple results >>> m_tf, point_face_assignment = m.project(tf, delta=0.01, ... return_point_face_assignment=True) >>> m_tf_fast = m.project(tf, delta=0.01, point_face_assignment=point_face_assignment) >>> assert m_tf.equal(m_tf_fast, equal_nan=True) """ if not issubclass(type(tensor_field), tfields.Tensors): tensor_field = tfields.TensorFields(tensor_field) inst = self.copy() # setup empty map fields and collect fields n_faces = len(self.maps[3]) point_indices = np.arange(len(tensor_field)) if not hasattr(tensor_field, "fields") or len(tensor_field.fields) == 0: # if not fields is existing use int type fields and empty_map_fields # in order to generate a sum fields = [np.full(len(tensor_field), 1, dtype=int)] empty_map_fields = [tfields.Tensors(np.full(n_faces, 0, dtype=int))] if merge_functions is None: merge_functions = [np.sum] else: fields = tensor_field.fields empty_map_fields = [] for field in fields: cls = type(field) kwargs = {key: getattr(field, key) for key in cls.__slots__} shape = (n_faces,) + field.shape[1:] empty_map_fields.append(cls(np.full(shape, np.nan), **kwargs)) if merge_functions is None: merge_functions = [lambda x: np.mean(x, axis=0)] * len(fields) # build point_face_assignment if not given. if point_face_assignment is not None: if len(point_face_assignment) != len(tensor_field): raise ValueError("Template needs same lenght as tensor_field") else: point_face_assignment = self.in_faces(tensor_field, delta=delta) point_face_assignment_set = set(point_face_assignment) # merge the fields according to point_face_assignment map_fields = [] for field, map_field, merge_function in zip( fields, empty_map_fields, merge_functions ): for i, f_index in enumerate(point_face_assignment_set): if f_index == -1: # point could not be mapped continue point_in_face_indices = point_indices[point_face_assignment == f_index] res = field[point_in_face_indices] if len(res) == 1: map_field[f_index] = res else: map_field[f_index] = merge_function(res) map_fields.append(map_field) inst.maps[3].fields = map_fields if return_point_face_assignment: return inst, point_face_assignment return inst
(self, tensor_field, delta=None, merge_functions=None, point_face_assignment=None, return_point_face_assignment=False)
21,134
tfields.mesh_3d
remove_faces
Remove faces where face_delete_mask is True
def remove_faces(self, face_delete_mask): """ Remove faces where face_delete_mask is True """ face_delete_mask = np.array(face_delete_mask, dtype=bool) self.faces = self.faces[~face_delete_mask] self.faces.fields = self.faces.fields[~face_delete_mask]
(self, face_delete_mask)
21,135
tfields.core
removed
Return copy of self without vertices where remove_condition is True Copy because self is immutable Examples: >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.keep([False, False, False, True, True, True, True]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal([[0, 1, 2], [0, 1, 3]]) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0])
def removed(self, remove_condition): """ Return copy of self without vertices where remove_condition is True Copy because self is immutable Examples: >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.keep([False, False, False, True, True, True, True]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal([[0, 1, 2], [0, 1, 3]]) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0]) """ remove_condition = np.array(remove_condition) return self[~remove_condition]
(self, remove_condition)
21,137
tfields.core
stale
Returns: Mask for all vertices that are stale i.e. are not refered by maps Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors( ... [[0, 0, 0], [0, 0, 1], [0, -1, 0], [4, 4, 4]]) >>> tm = tfields.TensorMaps( ... vectors, ... maps=[[[0, 1, 2], [0, 1, 2]], [[1, 1], [2, 2]]]) >>> assert np.array_equal(tm.stale(), [False, False, False, True])
def stale(self): """ Returns: Mask for all vertices that are stale i.e. are not refered by maps Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors( ... [[0, 0, 0], [0, 0, 1], [0, -1, 0], [4, 4, 4]]) >>> tm = tfields.TensorMaps( ... vectors, ... maps=[[[0, 1, 2], [0, 1, 2]], [[1, 1], [2, 2]]]) >>> assert np.array_equal(tm.stale(), [False, False, False, True]) """ stale_mask = np.full(self.shape[0], False, dtype=bool) used = set(ind for mp in self.maps.values() for ind in mp.flatten()) for i in range(self.shape[0]): if i not in used: stale_mask[i] = True return stale_mask
(self)
21,138
tfields.mesh_3d
template
'Manual' way to build a template that can be used with self.cut Returns: Mesh3D: template (see cut), can be used as template to retrieve sub_mesh from self instance Examples: >>> import tfields >>> from sympy.abc import y >>> mp = tfields.TensorFields([[0,1,2],[2,3,0],[3,2,5],[5,4,3]], ... [1, 2, 3, 4]) >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,2,0], [1,2,0]], ... maps=[mp]) >>> m_cut = m.cut(y < 1.5, at_intersection='split') >>> template = m.template(m_cut) >>> assert m_cut.equal(m.cut(template)) TODO: fields template not yet implemented
def template(self, sub_mesh): """ 'Manual' way to build a template that can be used with self.cut Returns: Mesh3D: template (see cut), can be used as template to retrieve sub_mesh from self instance Examples: >>> import tfields >>> from sympy.abc import y >>> mp = tfields.TensorFields([[0,1,2],[2,3,0],[3,2,5],[5,4,3]], ... [1, 2, 3, 4]) >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,2,0], [1,2,0]], ... maps=[mp]) >>> m_cut = m.cut(y < 1.5, at_intersection='split') >>> template = m.template(m_cut) >>> assert m_cut.equal(m.cut(template)) TODO: fields template not yet implemented """ cents = tfields.Tensors(sub_mesh.centroids()) face_indices = self.in_faces(cents, delta=None) inst = sub_mesh.copy() if inst.maps: inst.maps[3].fields = [tfields.Tensors(face_indices, dim=1)] else: inst.maps = [ tfields.TensorFields([], tfields.Tensors([], dim=1), dim=3, dtype=int) ] return inst
(self, sub_mesh)
21,139
tfields.core
tmp_transform
Temporarily change the coord_sys to another coord_sys and change it back at exit This method is for cleaner code only. No speed improvements go with this. Args: see transform Examples: >>> import tfields >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL) >>> with p.tmp_transform(tfields.bases.CYLINDER): ... assert p.coord_sys == tfields.bases.CYLINDER >>> assert p.coord_sys == tfields.bases.SPHERICAL
@classmethod def _from_dict(cls, content: dict): type_ = content.get("type") assert type_ == cls.__name__ return _from_dict(content)
(self, coord_sys)
21,140
tfields.core
to_segment
For circular (close into themself after <periodicity>) coordinates at index <coordinate> assume <num_segments> segments and transform all values to segment number <segment> Args: segment (int): segment index (starting at 0) num_segments (int): number of segments coordinate (int): coordinate index periodicity (float): after what lenght, the coordiante repeats offset (float): offset in the mapping coord_sys (str or sympy.CoordinateSystem): in which coord sys the transformation should be done Examples: >>> import tfields >>> import numpy as np >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1], ... [6, 2 * np.pi / 5 * 3, 1]], ... coord_sys='cylinder') >>> p = tfields.Points3D(pStart) >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(p[:, 1], [0, 0]) >>> p2 = tfields.Points3D(pStart) >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)
def to_segment( # pylint: disable=too-many-arguments self, segment, num_segments, coordinate, periodicity=2 * np.pi, offset=0.0, coord_sys=None, ): """ For circular (close into themself after <periodicity>) coordinates at index <coordinate> assume <num_segments> segments and transform all values to segment number <segment> Args: segment (int): segment index (starting at 0) num_segments (int): number of segments coordinate (int): coordinate index periodicity (float): after what lenght, the coordiante repeats offset (float): offset in the mapping coord_sys (str or sympy.CoordinateSystem): in which coord sys the transformation should be done Examples: >>> import tfields >>> import numpy as np >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1], ... [6, 2 * np.pi / 5 * 3, 1]], ... coord_sys='cylinder') >>> p = tfields.Points3D(pStart) >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(p[:, 1], [0, 0]) >>> p2 = tfields.Points3D(pStart) >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2) """ if segment > num_segments - 1: raise ValueError("Segment {0} not existent.".format(segment)) if coord_sys is None: coord_sys = self.coord_sys with self.tmp_transform(coord_sys): # map all values to first segment self[:, coordinate] = ( (self[:, coordinate] - offset) % (periodicity / num_segments) + offset + segment * periodicity / num_segments )
(self, segment, num_segments, coordinate, periodicity=6.283185307179586, offset=0.0, coord_sys=None)
21,141
tfields.core
transform
Args: coord_sys (str) Examples: >>> import numpy as np >>> import tfields CARTESIAN to SPHERICAL >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], ... [0, 0, 1], [0, 0, 0]]) >>> t.transform('spherical') r >>> assert t[0, 0] == 3 phi >>> assert t[1, 1] == 0. >>> assert t[2, 1] == 0. theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1) >>> assert round(t[1, 2], 10) == round(0, 10) >>> assert t[2, 2] == -np.pi / 2 >>> assert t[3, 2] == np.pi / 2 theta is defined 0 for R == 0 >>> assert t[4, 0] == 0. >>> assert t[4, 2] == 0. CARTESIAN to CYLINDER >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], ... [-1, 0, 1], [0, 0, 0]]) >>> t_cyl = tCart.copy() >>> t_cyl.transform('cylinder') >>> assert t_cyl.coord_sys == 'cylinder' R >>> assert t_cyl[0, 0] == 5 >>> assert t_cyl[1, 0] == 1 >>> assert t_cyl[2, 0] == 1 >>> assert t_cyl[4, 0] == 0 Phi >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10) >>> assert t_cyl[1, 1] == 0 >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10) >>> assert t_cyl[1, 1] == 0 Z >>> assert t_cyl[0, 2] == 42 >>> assert t_cyl[2, 2] == -1 >>> t_cyl.transform('cartesian') >>> assert t_cyl.coord_sys == 'cartesian' >>> assert round(t_cyl[0, 0], 10) == 3
def transform(self, coord_sys, **kwargs): """ Args: coord_sys (str) Examples: >>> import numpy as np >>> import tfields CARTESIAN to SPHERICAL >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], ... [0, 0, 1], [0, 0, 0]]) >>> t.transform('spherical') r >>> assert t[0, 0] == 3 phi >>> assert t[1, 1] == 0. >>> assert t[2, 1] == 0. theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1) >>> assert round(t[1, 2], 10) == round(0, 10) >>> assert t[2, 2] == -np.pi / 2 >>> assert t[3, 2] == np.pi / 2 theta is defined 0 for R == 0 >>> assert t[4, 0] == 0. >>> assert t[4, 2] == 0. CARTESIAN to CYLINDER >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], ... [-1, 0, 1], [0, 0, 0]]) >>> t_cyl = tCart.copy() >>> t_cyl.transform('cylinder') >>> assert t_cyl.coord_sys == 'cylinder' R >>> assert t_cyl[0, 0] == 5 >>> assert t_cyl[1, 0] == 1 >>> assert t_cyl[2, 0] == 1 >>> assert t_cyl[4, 0] == 0 Phi >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10) >>> assert t_cyl[1, 1] == 0 >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10) >>> assert t_cyl[1, 1] == 0 Z >>> assert t_cyl[0, 2] == 42 >>> assert t_cyl[2, 2] == -1 >>> t_cyl.transform('cartesian') >>> assert t_cyl.coord_sys == 'cartesian' >>> assert round(t_cyl[0, 0], 10) == 3 """ if self.rank == 0 or any(s == 0 for s in self.shape): # scalar or empty self.coord_sys = coord_sys # pylint: disable=attribute-defined-outside-init return if self.coord_sys == coord_sys: # already correct return tfields.bases.transform(self, self.coord_sys, coord_sys, **kwargs) # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys) self.coord_sys = coord_sys # pylint: disable=attribute-defined-outside-init
(self, coord_sys, **kwargs)
21,142
tfields.core
transform_field
Transform the field to the coordinate system of choice. NOTE: This is not yet any way generic!!! Have a look at Einsteinpy and actual status of sympy for further implementation
def transform_field(self, coord_sys, field_index=0): """ Transform the field to the coordinate system of choice. NOTE: This is not yet any way generic!!! Have a look at Einsteinpy and actual status of sympy for further implementation """ self.fields[field_index].transform(coord_sys, position=self)
(self, coord_sys, field_index=0)
21,143
tfields.mesh_3d
triangles
Cached method to retrieve the triangles, belonging to this mesh Examples: >>> import tfields >>> mesh = tfields.Mesh3D.grid((0, 1, 3), (1, 2, 3), (2, 3, 3)) >>> assert mesh.triangles() is mesh.triangles()
def triangles(self): """ Cached method to retrieve the triangles, belonging to this mesh Examples: >>> import tfields >>> mesh = tfields.Mesh3D.grid((0, 1, 3), (1, 2, 3), (2, 3, 3)) >>> assert mesh.triangles() is mesh.triangles() """ return self._triangles
(self)
21,144
tfields.bounding_box
Node
This class allows to increase the performance with cuts in x,y and z direction An extension to arbitrary cuts might be possible in the future Args: parent: Parent node of self mesh: Mesh corresponding to the node cut_expr: Cut that determines the seperation in left and right node cuts: List of cuts for the children nodes Attrs: parent (Node) remaining_cuts (dict): key specifies dimension, value the cuts that are still not done cut_expr (dict): part of parents remaining_cuts. The dimension defines what is meant by left and right Examples: >>> import tfields >>> mesh = tfields.Mesh3D.grid((5.6, 6.2, 3), ... (-0.25, 0.25, 4), ... (-1, 1, 10)) >>> cuts = {'x': [5.7, 6.1], ... 'y': [-0.2, 0, 0.2], ... 'z': [-0.5, 0.5]} >>> tree = tfields.bounding_box.Node(mesh, ... cuts, ... at_intersection='keep') >>> leaves = tree.leaves() >>> leaves = tfields.bounding_box.Node.sort_leaves(leaves) >>> meshes = [leaf.mesh for leaf in leaves] >>> templates = [leaf.template for leaf in leaves] >>> special_leaf = tree.find_leaf([5.65, -0.21, 0])
class Node(object): """ This class allows to increase the performance with cuts in x,y and z direction An extension to arbitrary cuts might be possible in the future Args: parent: Parent node of self mesh: Mesh corresponding to the node cut_expr: Cut that determines the seperation in left and right node cuts: List of cuts for the children nodes Attrs: parent (Node) remaining_cuts (dict): key specifies dimension, value the cuts that are still not done cut_expr (dict): part of parents remaining_cuts. The dimension defines what is meant by left and right Examples: >>> import tfields >>> mesh = tfields.Mesh3D.grid((5.6, 6.2, 3), ... (-0.25, 0.25, 4), ... (-1, 1, 10)) >>> cuts = {'x': [5.7, 6.1], ... 'y': [-0.2, 0, 0.2], ... 'z': [-0.5, 0.5]} >>> tree = tfields.bounding_box.Node(mesh, ... cuts, ... at_intersection='keep') >>> leaves = tree.leaves() >>> leaves = tfields.bounding_box.Node.sort_leaves(leaves) >>> meshes = [leaf.mesh for leaf in leaves] >>> templates = [leaf.template for leaf in leaves] >>> special_leaf = tree.find_leaf([5.65, -0.21, 0]) """ def __init__( self, mesh, cuts, coord_sys=None, at_intersection="split", delta=0.0, parent=None, box=None, internal_template=None, cut_expr=None, ): self.parent = parent # initialize self.mesh = copy.deepcopy(mesh) if self.is_root(): cuts = copy.deepcopy(cuts) # dicts are mutable self.remaining_cuts = cuts logging.debug(cuts) self.delta = delta if box is None: vertices = np.array(self.mesh) self.box = { "x": [min(vertices[:, 0]) - delta, max(vertices[:, 0]) + delta], "y": [min(vertices[:, 1]) - delta, max(vertices[:, 1]) + delta], "z": [min(vertices[:, 2]) - delta, max(vertices[:, 2]) + delta], } else: self.box = box self.left = None self.right = None self.at_intersection = at_intersection self._internal_template = internal_template if self.is_leaf(): self._template = None if self.is_root(): self._trim_to_box() self.cut_expr = cut_expr self.left_template = None self.right_template = None self.coord_sys = coord_sys # start the splitting process self._build() def _build(self): if not self.is_last_cut(): self._choose_next_cut() self._split() def is_leaf(self): if self.left is None and self.right is None: return True else: return False def is_root(self): if self.parent is None: return True else: return False def is_last_cut(self): for key in self.remaining_cuts: if len(self.remaining_cuts[key]) != 0: return False return True def in_box(self, point): x, y, z = point for key in ["x", "y", "z"]: value = locals()[key] if value < self.box[key][0] or self.box[key][1] < value: return False return True @property def root(self): if self.is_root: return self return self.parent.root @classmethod def sort_leaves(cls, leaves_list): """ sorting the leaves first in x, then y, then z direction """ sorted_leaves = sorted( leaves_list, key=lambda x: (x.box["x"][1], x.box["y"][1], x.box["z"][1]) ) return sorted_leaves def _trim_to_box(self): # 6 cuts to remove outer part of the box x, y, z = sympy.symbols("x y z") eps = 0.0000000001 x_cut = (float(self.box["x"][0] - eps) <= x) & ( x <= float(self.box["x"][1] + eps) ) y_cut = (float(self.box["y"][0] - eps) <= y) & ( y <= float(self.box["y"][1] + eps) ) z_cut = (float(self.box["z"][0] - eps) <= z) & ( z <= float(self.box["z"][1] + eps) ) section_cut = x_cut & y_cut & z_cut self.mesh, self._internal_template = self.mesh.cut( section_cut, at_intersection=self.at_intersection, return_template=True ) def leaves(self): """ Recursive function to create a list of all leaves Returns: list: of all leaves descending from this node """ if self.is_leaf(): return [self] else: if self.left is not None: leftLeaves = self.left.leaves() else: leftLeaves = [] if self.right is not None: rightLeaves = self.right.leaves() else: rightLeaves = [] return tfields.lib.util.flatten(leftLeaves + rightLeaves) def find_leaf(self, point, _in_recursion=False): """ Returns: Node / None: Node: leaf note, containinig point None: point outside root box """ x, y, z = point if self.is_root(): if not self.in_box(point): return None else: if not _in_recursion: raise RuntimeError("Only root node can search for all leaves") if self.is_leaf(): return self if len(self.cut_expr) > 1: raise ValueError("cut_expr is too long") key = list(self.cut_expr)[0] value = locals()[key] if value <= self.cut_expr[key]: return self.left.find_leaf(point, _in_recursion=True) return self.right.find_leaf(point, _in_recursion=True) def _split(self): """ Split the node in two new nodes, if there is no cut_expr set and remaing cuts exist. """ if self.cut_expr is None and self.remaining_cuts is None: raise RuntimeError( "Cannot split the mesh without cut_expr and" "remaining_cuts" ) else: # create cut expression x, y, z = sympy.symbols("x y z") if "x" in self.cut_expr: left_cut_expression = x <= self.cut_expr["x"] right_cut_expression = x >= self.cut_expr["x"] key = "x" elif "y" in self.cut_expr: left_cut_expression = y <= self.cut_expr["y"] right_cut_expression = y >= self.cut_expr["y"] key = "y" elif "z" in self.cut_expr: left_cut_expression = z <= self.cut_expr["z"] right_cut_expression = z >= self.cut_expr["z"] key = "z" else: raise KeyError() # split the cuts into left / right left_cuts = self.remaining_cuts.copy() right_cuts = self.remaining_cuts.copy() left_cuts[key] = [ value for value in self.remaining_cuts[key] if value <= self.cut_expr[key] ] right_cuts[key] = [ value for value in self.remaining_cuts[key] if value > self.cut_expr[key] ] left_box = copy.deepcopy(self.box) right_box = copy.deepcopy(self.box) left_box[key][1] = self.cut_expr[key] right_box[key][0] = self.cut_expr[key] # actually cut! left_mesh, self.left_template = self.mesh.cut( left_cut_expression, at_intersection=self.at_intersection, return_template=True, ) right_mesh, self.right_template = self.mesh.cut( right_cut_expression, at_intersection=self.at_intersection, return_template=True, ) # two new Nodes self.left = Node( left_mesh, left_cuts, parent=self, internal_template=self.left_template, cut_expr=None, coord_sys=self.coord_sys, at_intersection=self.at_intersection, box=left_box, ) self.right = Node( right_mesh, right_cuts, parent=self, internal_template=self.right_template, cut_expr=None, coord_sys=self.coord_sys, at_intersection=self.at_intersection, box=right_box, ) def _choose_next_cut(self): """ Set self.cut_expr by choosing the dimension with the most remaining cuts. Remove that cut from remaining cuts """ largest = 0 for key in self.remaining_cuts: if len(self.remaining_cuts[key]) > largest: largest = len(self.remaining_cuts[key]) largest_key = key median = sorted(self.remaining_cuts[largest_key])[ int(0.5 * (len(self.remaining_cuts[largest_key]) - 1)) ] # pop median cut from remaining cuts self.remaining_cuts[largest_key] = [ x for x in self.remaining_cuts[largest_key] if x != median ] self.cut_expr = {largest_key: median} def _convert_map_index(self, index): """ Recursively getting the map fields index from root Args: index (int): map field index on leaf (index with respect to parent node, not to root) Returns: int: map field index """ if self.is_root(): return index else: return_value = self.parent._convert_map_index( self.parent._internal_template.maps[3].fields[0][int(index)] ) return return_value def _convert_field_index(self, index): """ Recursively getting the fields index from root Args: index (int): field index on leaf (index with respect to parent node, not to root) Returns: int: field index """ if self.is_root(): return index else: return_value = self.parent._convert_field_index( self.parent._internal_template.fields[0][int(index)] ) return return_value @property def template(self): """ Get the global template for a leaf. This can be applied to the root mesh with the cut method to retrieve exactly this leaf mesh again. Returns: tfields.Mesh3D: mesh with first scalars as an instruction on how to build this cut (scalars point to faceIndices on mother mesh). Can be used with Mesh3D.cut """ if not self.is_leaf(): raise RuntimeError("Only leaf nodes can return a template") if self._template is None: template = self._internal_template.copy() template_field = [] if template.fields: for idx in template.fields[0]: template_field.append(self._convert_field_index(idx)) template.fields = [tfields.Tensors(template_field, dim=1, dtype=int)] template_map_field = [] if len(template.maps[3]) > 0: for idx in template.maps[3].fields[0]: template_map_field.append(self._convert_map_index(idx)) template.maps[3].fields = [ tfields.Tensors(template_map_field, dim=1, dtype=int) ] self._template = template return self._template
(mesh, cuts, coord_sys=None, at_intersection='split', delta=0.0, parent=None, box=None, internal_template=None, cut_expr=None)
21,145
tfields.bounding_box
__init__
null
def __init__( self, mesh, cuts, coord_sys=None, at_intersection="split", delta=0.0, parent=None, box=None, internal_template=None, cut_expr=None, ): self.parent = parent # initialize self.mesh = copy.deepcopy(mesh) if self.is_root(): cuts = copy.deepcopy(cuts) # dicts are mutable self.remaining_cuts = cuts logging.debug(cuts) self.delta = delta if box is None: vertices = np.array(self.mesh) self.box = { "x": [min(vertices[:, 0]) - delta, max(vertices[:, 0]) + delta], "y": [min(vertices[:, 1]) - delta, max(vertices[:, 1]) + delta], "z": [min(vertices[:, 2]) - delta, max(vertices[:, 2]) + delta], } else: self.box = box self.left = None self.right = None self.at_intersection = at_intersection self._internal_template = internal_template if self.is_leaf(): self._template = None if self.is_root(): self._trim_to_box() self.cut_expr = cut_expr self.left_template = None self.right_template = None self.coord_sys = coord_sys # start the splitting process self._build()
(self, mesh, cuts, coord_sys=None, at_intersection='split', delta=0.0, parent=None, box=None, internal_template=None, cut_expr=None)
21,146
tfields.bounding_box
_build
null
def _build(self): if not self.is_last_cut(): self._choose_next_cut() self._split()
(self)
21,147
tfields.bounding_box
_choose_next_cut
Set self.cut_expr by choosing the dimension with the most remaining cuts. Remove that cut from remaining cuts
def _choose_next_cut(self): """ Set self.cut_expr by choosing the dimension with the most remaining cuts. Remove that cut from remaining cuts """ largest = 0 for key in self.remaining_cuts: if len(self.remaining_cuts[key]) > largest: largest = len(self.remaining_cuts[key]) largest_key = key median = sorted(self.remaining_cuts[largest_key])[ int(0.5 * (len(self.remaining_cuts[largest_key]) - 1)) ] # pop median cut from remaining cuts self.remaining_cuts[largest_key] = [ x for x in self.remaining_cuts[largest_key] if x != median ] self.cut_expr = {largest_key: median}
(self)
21,148
tfields.bounding_box
_convert_field_index
Recursively getting the fields index from root Args: index (int): field index on leaf (index with respect to parent node, not to root) Returns: int: field index
def _convert_field_index(self, index): """ Recursively getting the fields index from root Args: index (int): field index on leaf (index with respect to parent node, not to root) Returns: int: field index """ if self.is_root(): return index else: return_value = self.parent._convert_field_index( self.parent._internal_template.fields[0][int(index)] ) return return_value
(self, index)
21,149
tfields.bounding_box
_convert_map_index
Recursively getting the map fields index from root Args: index (int): map field index on leaf (index with respect to parent node, not to root) Returns: int: map field index
def _convert_map_index(self, index): """ Recursively getting the map fields index from root Args: index (int): map field index on leaf (index with respect to parent node, not to root) Returns: int: map field index """ if self.is_root(): return index else: return_value = self.parent._convert_map_index( self.parent._internal_template.maps[3].fields[0][int(index)] ) return return_value
(self, index)
21,150
tfields.bounding_box
_split
Split the node in two new nodes, if there is no cut_expr set and remaing cuts exist.
def _split(self): """ Split the node in two new nodes, if there is no cut_expr set and remaing cuts exist. """ if self.cut_expr is None and self.remaining_cuts is None: raise RuntimeError( "Cannot split the mesh without cut_expr and" "remaining_cuts" ) else: # create cut expression x, y, z = sympy.symbols("x y z") if "x" in self.cut_expr: left_cut_expression = x <= self.cut_expr["x"] right_cut_expression = x >= self.cut_expr["x"] key = "x" elif "y" in self.cut_expr: left_cut_expression = y <= self.cut_expr["y"] right_cut_expression = y >= self.cut_expr["y"] key = "y" elif "z" in self.cut_expr: left_cut_expression = z <= self.cut_expr["z"] right_cut_expression = z >= self.cut_expr["z"] key = "z" else: raise KeyError() # split the cuts into left / right left_cuts = self.remaining_cuts.copy() right_cuts = self.remaining_cuts.copy() left_cuts[key] = [ value for value in self.remaining_cuts[key] if value <= self.cut_expr[key] ] right_cuts[key] = [ value for value in self.remaining_cuts[key] if value > self.cut_expr[key] ] left_box = copy.deepcopy(self.box) right_box = copy.deepcopy(self.box) left_box[key][1] = self.cut_expr[key] right_box[key][0] = self.cut_expr[key] # actually cut! left_mesh, self.left_template = self.mesh.cut( left_cut_expression, at_intersection=self.at_intersection, return_template=True, ) right_mesh, self.right_template = self.mesh.cut( right_cut_expression, at_intersection=self.at_intersection, return_template=True, ) # two new Nodes self.left = Node( left_mesh, left_cuts, parent=self, internal_template=self.left_template, cut_expr=None, coord_sys=self.coord_sys, at_intersection=self.at_intersection, box=left_box, ) self.right = Node( right_mesh, right_cuts, parent=self, internal_template=self.right_template, cut_expr=None, coord_sys=self.coord_sys, at_intersection=self.at_intersection, box=right_box, )
(self)
21,151
tfields.bounding_box
_trim_to_box
null
def _trim_to_box(self): # 6 cuts to remove outer part of the box x, y, z = sympy.symbols("x y z") eps = 0.0000000001 x_cut = (float(self.box["x"][0] - eps) <= x) & ( x <= float(self.box["x"][1] + eps) ) y_cut = (float(self.box["y"][0] - eps) <= y) & ( y <= float(self.box["y"][1] + eps) ) z_cut = (float(self.box["z"][0] - eps) <= z) & ( z <= float(self.box["z"][1] + eps) ) section_cut = x_cut & y_cut & z_cut self.mesh, self._internal_template = self.mesh.cut( section_cut, at_intersection=self.at_intersection, return_template=True )
(self)
21,152
tfields.bounding_box
find_leaf
Returns: Node / None: Node: leaf note, containinig point None: point outside root box
def find_leaf(self, point, _in_recursion=False): """ Returns: Node / None: Node: leaf note, containinig point None: point outside root box """ x, y, z = point if self.is_root(): if not self.in_box(point): return None else: if not _in_recursion: raise RuntimeError("Only root node can search for all leaves") if self.is_leaf(): return self if len(self.cut_expr) > 1: raise ValueError("cut_expr is too long") key = list(self.cut_expr)[0] value = locals()[key] if value <= self.cut_expr[key]: return self.left.find_leaf(point, _in_recursion=True) return self.right.find_leaf(point, _in_recursion=True)
(self, point, _in_recursion=False)
21,153
tfields.bounding_box
in_box
null
def in_box(self, point): x, y, z = point for key in ["x", "y", "z"]: value = locals()[key] if value < self.box[key][0] or self.box[key][1] < value: return False return True
(self, point)
21,154
tfields.bounding_box
is_last_cut
null
def is_last_cut(self): for key in self.remaining_cuts: if len(self.remaining_cuts[key]) != 0: return False return True
(self)
21,155
tfields.bounding_box
is_leaf
null
def is_leaf(self): if self.left is None and self.right is None: return True else: return False
(self)
21,156
tfields.bounding_box
is_root
null
def is_root(self): if self.parent is None: return True else: return False
(self)
21,157
tfields.bounding_box
leaves
Recursive function to create a list of all leaves Returns: list: of all leaves descending from this node
def leaves(self): """ Recursive function to create a list of all leaves Returns: list: of all leaves descending from this node """ if self.is_leaf(): return [self] else: if self.left is not None: leftLeaves = self.left.leaves() else: leftLeaves = [] if self.right is not None: rightLeaves = self.right.leaves() else: rightLeaves = [] return tfields.lib.util.flatten(leftLeaves + rightLeaves)
(self)
21,158
tfields.planes_3d
Planes3D
Point-NormVector representaion of planes Examples: >>> import tfields >>> points = [[0, 1, 0]] >>> norms = [[0, 0, 1]] >>> plane = tfields.Planes3D(points, norms) >>> plane.symbolic()[0] Plane(Point3D(0, 1, 0), (0, 0, 1))
class Planes3D(tfields.TensorFields): """ Point-NormVector representaion of planes Examples: >>> import tfields >>> points = [[0, 1, 0]] >>> norms = [[0, 0, 1]] >>> plane = tfields.Planes3D(points, norms) >>> plane.symbolic()[0] Plane(Point3D(0, 1, 0), (0, 0, 1)) """ def symbolic(self): """ Returns: list: list with sympy.Plane objects """ return [ sympy.Plane(point, normal_vector=vector) for point, vector in zip(self, self.fields[0]) ] def plot(self, **kwargs): # pragma: no cover """ forward to Mesh3D plotting """ artists = [] centers = np.array(self) norms = np.array(self.fields[0]) for i in range(len(self)): artists.append(rna.plotting.plot_plane(centers[i], norms[i], **kwargs)) return artists
(tensors, *fields, **kwargs)
21,161
tfields.core
__getitem__
In addition to the usual, also slice fields Examples: >>> import tfields >>> import numpy as np >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = tfields.TensorFields( ... vectors, ... [42, 21, 10.5], ... [1, 2, 3], ... [[0, 0], [-1, -1], [-2, -2]]) Slicing >>> sliced = scalar_field[2:] >>> assert isinstance(sliced, tfields.TensorFields) >>> assert isinstance(sliced.fields[0], tfields.Tensors) >>> assert sliced.fields[0].equal([10.5]) Picking >>> picked = scalar_field[1] >>> assert np.array_equal(picked, [0, 0, 1]) >>> assert np.array_equal(picked.fields[0], 21) Masking >>> masked = scalar_field[np.array([True, False, True])] >>> assert masked.equal([[0, 0, 0], [0, -1, 0]]) >>> assert masked.fields[0].equal([42, 10.5]) >>> assert masked.fields[1].equal([1, 3]) Iteration >>> _ = [point for point in scalar_field]
def __getitem__(self, index): """ In addition to the usual, also slice fields Examples: >>> import tfields >>> import numpy as np >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = tfields.TensorFields( ... vectors, ... [42, 21, 10.5], ... [1, 2, 3], ... [[0, 0], [-1, -1], [-2, -2]]) Slicing >>> sliced = scalar_field[2:] >>> assert isinstance(sliced, tfields.TensorFields) >>> assert isinstance(sliced.fields[0], tfields.Tensors) >>> assert sliced.fields[0].equal([10.5]) Picking >>> picked = scalar_field[1] >>> assert np.array_equal(picked, [0, 0, 1]) >>> assert np.array_equal(picked.fields[0], 21) Masking >>> masked = scalar_field[np.array([True, False, True])] >>> assert masked.equal([[0, 0, 0], [0, -1, 0]]) >>> assert masked.fields[0].equal([42, 10.5]) >>> assert masked.fields[1].equal([1, 3]) Iteration >>> _ = [point for point in scalar_field] """ item = super().__getitem__(index) try: if issubclass(type(item), TensorFields): if isinstance(index, tuple): index = index[0] if item.fields: # circumvent the setter here. with self._bypass_setters("fields", demand_existence=False): item.fields = [ field.__getitem__(index) for field in item.fields ] except IndexError as err: # noqa: F841 pylint: disable=possibly-unused-variable warnings.warn( "Index error occured for field.__getitem__. Error " "message: {err}".format(**locals()) ) return item
(self, index)
21,163
tfields.core
__new__
null
def __new__(cls, tensors, *fields, **kwargs): rigid = kwargs.pop("rigid", True) obj = super(TensorFields, cls).__new__(cls, tensors, **kwargs) if issubclass(type(tensors), TensorFields): obj.fields = tensors.fields elif not fields: obj.fields = [] if fields: # (over)write fields obj.fields = fields if rigid: olen = len(obj) field_lengths = [len(f) for f in obj.fields] if not all(flen == olen for flen in field_lengths): raise ValueError( "Length of base ({olen}) should be the same as" " the length of all fields ({field_lengths}).".format(**locals()) ) return obj
(cls, tensors, *fields, **kwargs)
21,170
tfields.core
_cut_sympy
null
def _cut_sympy(self, expression): if len(self) == 0: return self.copy() mask = self.evalf(expression) # coord_sys is handled by tmp_transform mask.astype(bool) inst = self[mask].copy() # template indices = np.arange(len(self))[mask] template = tfields.TensorFields(np.empty((len(indices), 0)), indices) return inst, template
(self, expression)
21,171
tfields.core
_cut_template
In principle, what we do is returning self[template.fields[0]] If the templates tensors is given (has no dimension 0), 0))), we switch to only extruding the field entries according to the indices provided by template.fields[0]. This allows the template to define additional points, extending the object it should cut. This becomes relevant for Mesh3D when adding vertices at the edge of the cut is necessary.
def _cut_template(self, template): """ In principle, what we do is returning self[template.fields[0]] If the templates tensors is given (has no dimension 0), 0))), we switch to only extruding the field entries according to the indices provided by template.fields[0]. This allows the template to define additional points, extending the object it should cut. This becomes relevant for Mesh3D when adding vertices at the edge of the cut is necessary. """ # Redirect fields fields = [] if template.fields and issubclass(type(self), TensorFields): template_field = np.array(template.fields[0]) if len(self) > 0: # if new vertices have been created in the template, it is in principle unclear # what fields we have to refer to. Thus in creating the template, we gave np.nan. # To make it fast, we replace nan with 0 as a dummy and correct the field entries # afterwards with np.nan. nan_mask = np.isnan(template_field) template_field[nan_mask] = 0 # dummy reference to index 0. template_field = template_field.astype(int) for field in self.fields: projected_field = field[template_field] projected_field[nan_mask] = np.nan # correction for nan fields.append(projected_field) if dim(template) == 0: # for speed circumvent __getitem__ of the complexer subclasses tensors = Tensors(self)[template.fields[0]] else: tensors = template return type(self)(tensors, *fields)
(self, template)
21,182
tfields.core
cut
Extract a part of the object according to the logic given by <expression>. Args: expression (sympy logical expression|tfields.TensorFields): logical expression which will be evaluated. use symbols x, y and z. If tfields.TensorFields or subclass is given, the expression refers to a template. coord_sys (str): coord_sys to evaluate the expression in. Only active for template expression Examples: >>> import tfields >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> p.cut(x > 0).equal([[1, 2, 3], ... [4, 5, 6], ... [1, 2, -6], ... [1, 0, -1]]) True combinations of cuts >>> cut_expression = (x > 0) & (z < 0) >>> combi_cut = p.cut(cut_expression) >>> combi_cut.equal([[1, 2, -6], [1, 0, -1]]) True Templates can be used to speed up the repeated cuts on the same underlying tensor with the same expression but new fields. First let us cut a but request the template on return: >>> field1 = list(range(len(p))) >>> tf = tfields.TensorFields(p, field1) >>> tf_cut, template = tf.cut(cut_expression, ... return_template=True) Now repeat the cut with a new field: >>> field2 = p >>> tf.fields.append(field2) >>> tf_template_cut = tf.cut(template) >>> tf_template_cut.equal(combi_cut) True >>> tf_template_cut.fields[0].equal([2, 4]) True >>> tf_template_cut.fields[1].equal(combi_cut) True Returns: copy of self with cut applied [optional: template - requires <return_template> switch]
def cut(self, expression, coord_sys=None, return_template=False, **kwargs): """ Extract a part of the object according to the logic given by <expression>. Args: expression (sympy logical expression|tfields.TensorFields): logical expression which will be evaluated. use symbols x, y and z. If tfields.TensorFields or subclass is given, the expression refers to a template. coord_sys (str): coord_sys to evaluate the expression in. Only active for template expression Examples: >>> import tfields >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> p.cut(x > 0).equal([[1, 2, 3], ... [4, 5, 6], ... [1, 2, -6], ... [1, 0, -1]]) True combinations of cuts >>> cut_expression = (x > 0) & (z < 0) >>> combi_cut = p.cut(cut_expression) >>> combi_cut.equal([[1, 2, -6], [1, 0, -1]]) True Templates can be used to speed up the repeated cuts on the same underlying tensor with the same expression but new fields. First let us cut a but request the template on return: >>> field1 = list(range(len(p))) >>> tf = tfields.TensorFields(p, field1) >>> tf_cut, template = tf.cut(cut_expression, ... return_template=True) Now repeat the cut with a new field: >>> field2 = p >>> tf.fields.append(field2) >>> tf_template_cut = tf.cut(template) >>> tf_template_cut.equal(combi_cut) True >>> tf_template_cut.fields[0].equal([2, 4]) True >>> tf_template_cut.fields[1].equal(combi_cut) True Returns: copy of self with cut applied [optional: template - requires <return_template> switch] """ with self.tmp_transform(coord_sys or self.coord_sys): if issubclass(type(expression), TensorFields): template = expression obj = self._cut_template(template) else: obj, template = self._cut_sympy(expression, **kwargs) if return_template: return obj, template return obj
(self, expression, coord_sys=None, return_template=False, **kwargs)
21,186
tfields.core
equal
Test, whether the instance has the same content as other. Args: other (iterable) **kwargs: see Tensors.equal
def equal(self, other, **kwargs): # pylint: disable=arguments-differ """ Test, whether the instance has the same content as other. Args: other (iterable) **kwargs: see Tensors.equal """ if not issubclass(type(other), Tensors): return super(TensorFields, self).equal(other, **kwargs) with other.tmp_transform(self.coord_sys): mask = super(TensorFields, self).equal(other, **kwargs) if issubclass(type(other), TensorFields): if len(self.fields) != len(other.fields): mask &= False else: for i, field in enumerate(self.fields): mask &= field.equal(other.fields[i], **kwargs) return mask
(self, other, **kwargs)
21,196
tfields.planes_3d
plot
forward to Mesh3D plotting
def plot(self, **kwargs): # pragma: no cover """ forward to Mesh3D plotting """ artists = [] centers = np.array(self) norms = np.array(self.fields[0]) for i in range(len(self)): artists.append(rna.plotting.plot_plane(centers[i], norms[i], **kwargs)) return artists
(self, **kwargs)
21,199
tfields.planes_3d
symbolic
Returns: list: list with sympy.Plane objects
def symbolic(self): """ Returns: list: list with sympy.Plane objects """ return [ sympy.Plane(point, normal_vector=vector) for point, vector in zip(self, self.fields[0]) ]
(self)
21,204
tfields.points_3d
Points3D
Points3D is a general class for 3D Point operations and storage. Points are stored in np.arrays of shape (len, 3). Thus the three coordinates of the Points stay close. Args: points3DInstance -> copy constructor [points3DInstance1, points3DInstance2, ...] -> coord_sys are correctly treated list of coordinates (see examples) Kwargs: coord_sys (str): Use tfields.bases.CARTESIAN -> x, y, z Use tfields.bases.CYLINDER -> r, phi, z Use tfields.bases.SPHERICAL -> r, phi, theta Examples: Initializing with 3 vectors >>> import tfields >>> import numpy as np >>> p1 = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> assert p1.equal([[1., 2., 3.], ... [4., 5., 6.], ... [1., 2., -6.]]) Initializing with listof coordinates >>> p2 = tfields.Points3D(np.array([[1., 2., 3., 4, 5,], ... [4., 5., 6., 7, 8], ... [1, 2, -6, -1, 0]]).T) >>> assert p2.equal( ... [[ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.]], atol=1e-8) >>> p2.transform(tfields.bases.CYLINDER) >>> assert p2.equal( ... [[ 4.12310563, 1.32581766, 1.], ... [ 5.38516481, 1.19028995, 2.], ... [ 6.70820393, 1.10714872, -6.], ... [ 8.06225775, 1.05165021, -1.], ... [ 9.43398113, 1.01219701, 0.]], atol=1e-8) Copy constructor with one instance preserves coord_sys of instance >>> assert tfields.Points3D(p2).coord_sys == p2.coord_sys Unless you specify other: >>> assert tfields.Points3D(p2, ... coord_sys=tfields.bases.CARTESIAN).equal( ... [[ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.]], atol=1e-8) Copy constructor with many instances chooses majority of coordinates systems to avoid much transformation >>> assert tfields.Points3D.merged(p1, p2, p1).equal( ... [[ 1., 2., 3.], ... [ 4., 5., 6.], ... [ 1., 2., -6.], ... [ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.], ... [ 1., 2., 3.], ... [ 4., 5., 6.], ... [ 1., 2., -6.]], atol=1e-8) >>> p1.transform(tfields.bases.CYLINDER) unless specified other. Here it is specified >>> assert tfields.Points3D.merged( ... p1, p2, coord_sys=tfields.bases.CYLINDER).equal( ... [[ 2.23606798, 1.10714872, 3. ], ... [ 6.40312424, 0.89605538, 6. ], ... [ 2.23606798, 1.10714872, -6. ], ... [ 4.12310563, 1.32581766, 1. ], ... [ 5.38516481, 1.19028995, 2. ], ... [ 6.70820393, 1.10714872, -6. ], ... [ 8.06225775, 1.05165021, -1. ], ... [ 9.43398113, 1.01219701, 0. ]], atol=1e-8) Shape is always (..., 3) >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], ... [1, 2, -6], [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> p.shape (6, 3) Empty array will create an ndarray of the form (0, 3) >>> tfields.Points3D([]) Points3D([], shape=(0, 3), dtype=float64) Use it as np.ndarrays -> masking etc. is inherited >>> mask = np.array([True, False, True, False, False, True]) >>> mp = p[mask].copy() Copy constructor >>> assert mp.equal( ... [[ 1., 2., 3.], ... [ 1., 2., -6.], ... [ 0., 1., -1.]]) >>> assert tfields.Points3D(mp).equal( ... [[ 1., 2., 3.], ... [ 1., 2., -6.], ... [ 0., 1., -1.]]) Coordinate system is implemented. Default is cartesian >>> p_cart = p.copy() >>> p.transform(tfields.bases.CYLINDER) >>> assert p.equal( ... tfields.Points3D([[2.236, 1.107, 3.], ... [6.403, 0.896, 6.], ... [2.236, 1.107, -6.], ... [7.071, -2.356, -5.], ... [1. , 0. , -1.], ... [1. , 1.571, -1.]], ... coord_sys=tfields.bases.CYLINDER), ... atol=1e-3) >>> p.transform(tfields.bases.CARTESIAN) >>> assert p.equal(p_cart, atol=1e-15)
class Points3D(tfields.Tensors): # pylint: disable=R0904 """ Points3D is a general class for 3D Point operations and storage. Points are stored in np.arrays of shape (len, 3). Thus the three coordinates of the Points stay close. Args: points3DInstance -> copy constructor [points3DInstance1, points3DInstance2, ...] -> coord_sys are correctly treated list of coordinates (see examples) Kwargs: coord_sys (str): Use tfields.bases.CARTESIAN -> x, y, z Use tfields.bases.CYLINDER -> r, phi, z Use tfields.bases.SPHERICAL -> r, phi, theta Examples: Initializing with 3 vectors >>> import tfields >>> import numpy as np >>> p1 = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> assert p1.equal([[1., 2., 3.], ... [4., 5., 6.], ... [1., 2., -6.]]) Initializing with listof coordinates >>> p2 = tfields.Points3D(np.array([[1., 2., 3., 4, 5,], ... [4., 5., 6., 7, 8], ... [1, 2, -6, -1, 0]]).T) >>> assert p2.equal( ... [[ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.]], atol=1e-8) >>> p2.transform(tfields.bases.CYLINDER) >>> assert p2.equal( ... [[ 4.12310563, 1.32581766, 1.], ... [ 5.38516481, 1.19028995, 2.], ... [ 6.70820393, 1.10714872, -6.], ... [ 8.06225775, 1.05165021, -1.], ... [ 9.43398113, 1.01219701, 0.]], atol=1e-8) Copy constructor with one instance preserves coord_sys of instance >>> assert tfields.Points3D(p2).coord_sys == p2.coord_sys Unless you specify other: >>> assert tfields.Points3D(p2, ... coord_sys=tfields.bases.CARTESIAN).equal( ... [[ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.]], atol=1e-8) Copy constructor with many instances chooses majority of coordinates systems to avoid much transformation >>> assert tfields.Points3D.merged(p1, p2, p1).equal( ... [[ 1., 2., 3.], ... [ 4., 5., 6.], ... [ 1., 2., -6.], ... [ 1., 4., 1.], ... [ 2., 5., 2.], ... [ 3., 6., -6.], ... [ 4., 7., -1.], ... [ 5., 8., 0.], ... [ 1., 2., 3.], ... [ 4., 5., 6.], ... [ 1., 2., -6.]], atol=1e-8) >>> p1.transform(tfields.bases.CYLINDER) unless specified other. Here it is specified >>> assert tfields.Points3D.merged( ... p1, p2, coord_sys=tfields.bases.CYLINDER).equal( ... [[ 2.23606798, 1.10714872, 3. ], ... [ 6.40312424, 0.89605538, 6. ], ... [ 2.23606798, 1.10714872, -6. ], ... [ 4.12310563, 1.32581766, 1. ], ... [ 5.38516481, 1.19028995, 2. ], ... [ 6.70820393, 1.10714872, -6. ], ... [ 8.06225775, 1.05165021, -1. ], ... [ 9.43398113, 1.01219701, 0. ]], atol=1e-8) Shape is always (..., 3) >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], ... [1, 2, -6], [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> p.shape (6, 3) Empty array will create an ndarray of the form (0, 3) >>> tfields.Points3D([]) Points3D([], shape=(0, 3), dtype=float64) Use it as np.ndarrays -> masking etc. is inherited >>> mask = np.array([True, False, True, False, False, True]) >>> mp = p[mask].copy() Copy constructor >>> assert mp.equal( ... [[ 1., 2., 3.], ... [ 1., 2., -6.], ... [ 0., 1., -1.]]) >>> assert tfields.Points3D(mp).equal( ... [[ 1., 2., 3.], ... [ 1., 2., -6.], ... [ 0., 1., -1.]]) Coordinate system is implemented. Default is cartesian >>> p_cart = p.copy() >>> p.transform(tfields.bases.CYLINDER) >>> assert p.equal( ... tfields.Points3D([[2.236, 1.107, 3.], ... [6.403, 0.896, 6.], ... [2.236, 1.107, -6.], ... [7.071, -2.356, -5.], ... [1. , 0. , -1.], ... [1. , 1.571, -1.]], ... coord_sys=tfields.bases.CYLINDER), ... atol=1e-3) >>> p.transform(tfields.bases.CARTESIAN) >>> assert p.equal(p_cart, atol=1e-15) """ def __new__(cls, tensors, **kwargs): if not issubclass(type(tensors), Points3D): kwargs["dim"] = 3 return super(Points3D, cls).__new__(cls, tensors, **kwargs) def balls(self, radius, spacing=(5, 3)): """ Args: radius (float): radius of spheres spacing (tuple of int): n_phi, n_theta Returns: tfields.Mesh3D: Builds a sphere around each point with a resolution defined by spacing and given radius """ sphere = tfields.Mesh3D.grid( (radius, radius, 1), (-np.pi, np.pi, spacing[0]), (-np.pi / 2, np.pi / 2, spacing[1]), coord_sys="spherical", ) sphere.transform("cartesian") balls = [] with self.tmp_transform("cartesian"): for point in self: ball = sphere.copy() ball += point balls.append(ball) return tfields.Mesh3D.merged(*balls)
(tensors, **kwargs)
21,208
tfields.points_3d
__new__
null
def __new__(cls, tensors, **kwargs): if not issubclass(type(tensors), Points3D): kwargs["dim"] = 3 return super(Points3D, cls).__new__(cls, tensors, **kwargs)
(cls, tensors, **kwargs)
21,212
tfields.core
_args
null
def _args(self): return (np.array(self),)
(self)
21,216
tfields.core
_kwargs
null
def _kwargs(self): return dict((attr, getattr(self, attr)) for attr in self._iter_slots())
(self)
21,221
tfields.core
_weights
transformer method for weights inputs. Args: weights (np.ndarray | None): If weights is None, use np.ones Otherwise just pass the weights. rigid (bool): demand equal weights and tensor length Returns: weight array
def _weights(self, weights, rigid=True): """ transformer method for weights inputs. Args: weights (np.ndarray | None): If weights is None, use np.ones Otherwise just pass the weights. rigid (bool): demand equal weights and tensor length Returns: weight array """ # set weights to 1.0 if weights is None if weights is None: weights = np.ones(len(self)) if rigid: if not len(weights) == len(self): raise ValueError("Equal number of weights as tensors demanded.") return weights
(self, weights, rigid=True)
21,222
tfields.points_3d
balls
Args: radius (float): radius of spheres spacing (tuple of int): n_phi, n_theta Returns: tfields.Mesh3D: Builds a sphere around each point with a resolution defined by spacing and given radius
def balls(self, radius, spacing=(5, 3)): """ Args: radius (float): radius of spheres spacing (tuple of int): n_phi, n_theta Returns: tfields.Mesh3D: Builds a sphere around each point with a resolution defined by spacing and given radius """ sphere = tfields.Mesh3D.grid( (radius, radius, 1), (-np.pi, np.pi, spacing[0]), (-np.pi / 2, np.pi / 2, spacing[1]), coord_sys="spherical", ) sphere.transform("cartesian") balls = [] with self.tmp_transform("cartesian"): for point in self: ball = sphere.copy() ball += point balls.append(ball) return tfields.Mesh3D.merged(*balls)
(self, radius, spacing=(5, 3))
21,231
tfields.core
equal
Evaluate, whether the instance has the same content as other. Args: optional: rtol (float) atol (float) equal_nan (bool) see numpy.isclose
def equal( self, other, rtol=None, atol=None, equal_nan=False, return_bool=True ): # noqa: E501 pylint: disable=too-many-arguments """ Evaluate, whether the instance has the same content as other. Args: optional: rtol (float) atol (float) equal_nan (bool) see numpy.isclose """ if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys: other = other.copy() other.transform(self.coord_sys) self_array, other_array = np.asarray(self), np.asarray(other) if rtol is None and atol is None: mask = self_array == other_array if equal_nan: both_nan = np.isnan(self_array) & np.isnan(other_array) mask[both_nan] = both_nan[both_nan] else: if rtol is None: rtol = 0.0 if atol is None: atol = 0.0 mask = np.isclose( self_array, other_array, rtol=rtol, atol=atol, equal_nan=equal_nan ) if return_bool: return bool(np.all(mask)) return mask
(self, other, rtol=None, atol=None, equal_nan=False, return_bool=True)
21,241
tfields.core
plot
Generic plotting method of Tensors. Forwarding to rna.plotting.plot_tensor
def plot(self, *args, **kwargs): """ Generic plotting method of Tensors. Forwarding to rna.plotting.plot_tensor """ artist = rna.plotting.plot_tensor( self, *args, **kwargs ) # pylint: disable=no-member return artist
(self, *args, **kwargs)
21,247
tfields.core
TensorFields
Discrete Tensor Field Args: tensors (array): base tensors *fields (array): multiple fields assigned to one base tensor. Fields themself are also of type tensor **kwargs: rigid (bool): demand equal field and tensor lenght ... : see tfields.Tensors Examples: >>> import tfields >>> from tfields import Tensors, TensorFields >>> scalars = Tensors([0, 1, 2]) >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = TensorFields(vectors, scalars) >>> scalar_field.rank 1 >>> scalar_field.fields[0].rank 0 >>> vectorField = TensorFields(vectors, vectors) >>> vectorField.fields[0].rank 1 >>> vectorField.fields[0].dim 3 >>> multiField = TensorFields(vectors, scalars, vectors) >>> multiField.fields[0].dim 1 >>> multiField.fields[1].dim 3 Empty initialization >>> empty_field = TensorFields([], dim=3) >>> assert empty_field.shape == (0, 3) >>> assert empty_field.fields == [] Directly initializing with lists or arrays >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]], ... [1, 6], [2, 7]) >>> assert len(vec_field_raw.fields) == 2 Copying >>> cp = TensorFields(vectorField) >>> assert vectorField.equal(cp) Copying takes care of coord_sys >>> cp.transform(tfields.bases.CYLINDER) >>> cp_cyl = TensorFields(cp) >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER Copying with changing type >>> tcp = TensorFields(vectorField, dtype=int) >>> assert vectorField.equal(tcp) >>> assert tcp.dtype == int Raises: TypeError: >>> import tfields >>> tfields.TensorFields([1, 2, 3], [3]) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Length of base (3) should be the same as the length of all fields ([1]). This error can be suppressed by setting rigid=False >>> loose = tfields.TensorFields([1, 2, 3], [3], rigid=False) >>> assert len(loose) != 1
class TensorFields(Tensors): """ Discrete Tensor Field Args: tensors (array): base tensors *fields (array): multiple fields assigned to one base tensor. Fields themself are also of type tensor **kwargs: rigid (bool): demand equal field and tensor lenght ... : see tfields.Tensors Examples: >>> import tfields >>> from tfields import Tensors, TensorFields >>> scalars = Tensors([0, 1, 2]) >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = TensorFields(vectors, scalars) >>> scalar_field.rank 1 >>> scalar_field.fields[0].rank 0 >>> vectorField = TensorFields(vectors, vectors) >>> vectorField.fields[0].rank 1 >>> vectorField.fields[0].dim 3 >>> multiField = TensorFields(vectors, scalars, vectors) >>> multiField.fields[0].dim 1 >>> multiField.fields[1].dim 3 Empty initialization >>> empty_field = TensorFields([], dim=3) >>> assert empty_field.shape == (0, 3) >>> assert empty_field.fields == [] Directly initializing with lists or arrays >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]], ... [1, 6], [2, 7]) >>> assert len(vec_field_raw.fields) == 2 Copying >>> cp = TensorFields(vectorField) >>> assert vectorField.equal(cp) Copying takes care of coord_sys >>> cp.transform(tfields.bases.CYLINDER) >>> cp_cyl = TensorFields(cp) >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER Copying with changing type >>> tcp = TensorFields(vectorField, dtype=int) >>> assert vectorField.equal(tcp) >>> assert tcp.dtype == int Raises: TypeError: >>> import tfields >>> tfields.TensorFields([1, 2, 3], [3]) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Length of base (3) should be the same as the length of all fields ([1]). This error can be suppressed by setting rigid=False >>> loose = tfields.TensorFields([1, 2, 3], [3], rigid=False) >>> assert len(loose) != 1 """ __slots__ = ["coord_sys", "name", "fields"] __slot_setters__ = [tfields.bases.get_coord_system_name, None, as_fields] def __new__(cls, tensors, *fields, **kwargs): rigid = kwargs.pop("rigid", True) obj = super(TensorFields, cls).__new__(cls, tensors, **kwargs) if issubclass(type(tensors), TensorFields): obj.fields = tensors.fields elif not fields: obj.fields = [] if fields: # (over)write fields obj.fields = fields if rigid: olen = len(obj) field_lengths = [len(f) for f in obj.fields] if not all(flen == olen for flen in field_lengths): raise ValueError( "Length of base ({olen}) should be the same as" " the length of all fields ({field_lengths}).".format(**locals()) ) return obj def _args(self) -> tuple: return super()._args() + tuple(self.fields) def _kwargs(self) -> dict: content = super()._kwargs() content.pop("fields") # instantiated via _args return content def __getitem__(self, index): """ In addition to the usual, also slice fields Examples: >>> import tfields >>> import numpy as np >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = tfields.TensorFields( ... vectors, ... [42, 21, 10.5], ... [1, 2, 3], ... [[0, 0], [-1, -1], [-2, -2]]) Slicing >>> sliced = scalar_field[2:] >>> assert isinstance(sliced, tfields.TensorFields) >>> assert isinstance(sliced.fields[0], tfields.Tensors) >>> assert sliced.fields[0].equal([10.5]) Picking >>> picked = scalar_field[1] >>> assert np.array_equal(picked, [0, 0, 1]) >>> assert np.array_equal(picked.fields[0], 21) Masking >>> masked = scalar_field[np.array([True, False, True])] >>> assert masked.equal([[0, 0, 0], [0, -1, 0]]) >>> assert masked.fields[0].equal([42, 10.5]) >>> assert masked.fields[1].equal([1, 3]) Iteration >>> _ = [point for point in scalar_field] """ item = super().__getitem__(index) try: if issubclass(type(item), TensorFields): if isinstance(index, tuple): index = index[0] if item.fields: # circumvent the setter here. with self._bypass_setters("fields", demand_existence=False): item.fields = [ field.__getitem__(index) for field in item.fields ] except IndexError as err: # noqa: F841 pylint: disable=possibly-unused-variable warnings.warn( "Index error occured for field.__getitem__. Error " "message: {err}".format(**locals()) ) return item def __setitem__(self, index, item): """ In addition to the usual, also slice fields Examples: >>> import tfields >>> import numpy as np >>> original = tfields.TensorFields( ... [[0, 0, 0], [0, 0, 1], [0, -1, 0]], ... [42, 21, 10.5], [1, 2, 3]) >>> obj = tfields.TensorFields( ... [[0, 0, 0], [0, 0, np.nan], ... [0, -1, 0]], [42, 22, 10.5], [1, -1, 3]) >>> slice_obj = obj.copy() >>> assert not obj.equal(original) >>> obj[1] = original[1] >>> assert obj[:2].equal(original[:2]) >>> assert not slice_obj.equal(original) >>> slice_obj[:] = original[:] >>> assert slice_obj.equal(original) """ super(TensorFields, self).__setitem__(index, item) if issubclass(type(item), TensorFields): if isinstance(index, slice): for i, field in enumerate(item.fields): self.fields[i].__setitem__(index, field) elif isinstance(index, tuple): for i, field in enumerate(item.fields): self.fields[i].__setitem__(index[0], field) else: for i, field in enumerate(item.fields): self.fields[i].__setitem__(index, field) @classmethod def merged(cls, *objects, **kwargs): if not all(isinstance(o, cls) for o in objects): # Note: could allow if all map_fields are none raise TypeError( "Merge constructor only accepts {cls} instances." "Got objects of types {types} instead.".format( cls=cls, types=[type(o) for o in objects], ) ) return_value = super(TensorFields, cls).merged(*objects, **kwargs) return_templates = kwargs.get("return_templates", False) if return_templates: inst, templates = return_value else: inst, templates = (return_value, None) fields = [] if all(len(obj.fields) == len(objects[0].fields) for obj in objects): for fld_idx in range(len(objects[0].fields)): field = tfields.Tensors.merged( *[obj.fields[fld_idx] for obj in objects] ) fields.append(field) inst = cls.__new__(cls, inst, *fields) if return_templates: # pylint: disable=no-else-return return inst, templates else: return inst def transform_field(self, coord_sys, field_index=0): """ Transform the field to the coordinate system of choice. NOTE: This is not yet any way generic!!! Have a look at Einsteinpy and actual status of sympy for further implementation """ self.fields[field_index].transform(coord_sys, position=self) @property def names(self): """ Retrive the names of the fields as a list Examples: >>> import tfields >>> s = tfields.Tensors([1,2,3], name=1.) >>> tf = tfields.TensorFields(s, *[s]*10) >>> assert len(tf.names) == 10 >>> assert set(tf.names) == {1.} >>> tf.names = range(10) >>> tf.names [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ return [f.name for f in self.fields] @names.setter def names(self, names): if not len(names) == len(self.fields): raise ValueError( "len(names) ({0}) != len(fields) ({1})".format( len(names), len(self.fields) ) ) for i, name in enumerate(names): self.fields[i].name = name def equal(self, other, **kwargs): # pylint: disable=arguments-differ """ Test, whether the instance has the same content as other. Args: other (iterable) **kwargs: see Tensors.equal """ if not issubclass(type(other), Tensors): return super(TensorFields, self).equal(other, **kwargs) with other.tmp_transform(self.coord_sys): mask = super(TensorFields, self).equal(other, **kwargs) if issubclass(type(other), TensorFields): if len(self.fields) != len(other.fields): mask &= False else: for i, field in enumerate(self.fields): mask &= field.equal(other.fields[i], **kwargs) return mask def _weights(self, weights, rigid=True): """ Expansion of Tensors._weights with integer inputs Args: weights (np.ndarray | int | None): if weights is int: use field at index <weights> else: see Tensors._weights """ if isinstance(weights, int): weights = self.fields[weights] return super(TensorFields, self)._weights(weights, rigid=rigid) def plot(self, *args, **kwargs): """ Generic plotting method of TensorFields. Args: field_index: index of the field to plot (as quiver by default) normalize: If True, normalize the field vectors to show only the direction color: additional str argument 'norm' added. If color="norm", color with the norm. """ field_index = kwargs.pop("field_index", None) field_args = ["normalize"] if field_index is None: for field_arg in field_args: if field_arg in kwargs: kwargs.pop(field_arg) LOGGER.warning("Unused option %s", field_arg) artist = super(TensorFields, self).plot(*args, **kwargs) else: normalize_field = kwargs.pop("normalize", False) color = kwargs.get("color", None) field = self.fields[field_index].copy() # this tranfomration is compmlicated. Transforming the field is not yet understood # if self.dim == field.dim: # field.transform(self.coord_sys) # else: # logging.debug( # "Careful: Plotting tensors with field of" # "different dimension. No coord_sys check performed." # ) if color == "norm": norm = field.norm() kwargs["color"] = norm if normalize_field: field = field.normalized() if field.dim <= 3: artist = ( rna.plotting.plot_tensor( # noqa: E501 pylint: disable=no-member self, *args, field, **kwargs ) ) else: raise NotImplementedError( "Field of dimension {field.dim}".format(**locals()) ) return artist
(tensors, *fields, **kwargs)
21,285
tfields.core
plot
Generic plotting method of TensorFields. Args: field_index: index of the field to plot (as quiver by default) normalize: If True, normalize the field vectors to show only the direction color: additional str argument 'norm' added. If color="norm", color with the norm.
def plot(self, *args, **kwargs): """ Generic plotting method of TensorFields. Args: field_index: index of the field to plot (as quiver by default) normalize: If True, normalize the field vectors to show only the direction color: additional str argument 'norm' added. If color="norm", color with the norm. """ field_index = kwargs.pop("field_index", None) field_args = ["normalize"] if field_index is None: for field_arg in field_args: if field_arg in kwargs: kwargs.pop(field_arg) LOGGER.warning("Unused option %s", field_arg) artist = super(TensorFields, self).plot(*args, **kwargs) else: normalize_field = kwargs.pop("normalize", False) color = kwargs.get("color", None) field = self.fields[field_index].copy() # this tranfomration is compmlicated. Transforming the field is not yet understood # if self.dim == field.dim: # field.transform(self.coord_sys) # else: # logging.debug( # "Careful: Plotting tensors with field of" # "different dimension. No coord_sys check performed." # ) if color == "norm": norm = field.norm() kwargs["color"] = norm if normalize_field: field = field.normalized() if field.dim <= 3: artist = ( rna.plotting.plot_tensor( # noqa: E501 pylint: disable=no-member self, *args, field, **kwargs ) ) else: raise NotImplementedError( "Field of dimension {field.dim}".format(**locals()) ) return artist
(self, *args, **kwargs)
21,292
tfields.tensor_grid
TensorGrid
A Tensor Grid is a TensorField which is aware of it's grid nature, which is order of iteration (iter-order) over the base vectors (base_vectors). Args: *base_vectors (tuple): indices of the axes which should be iterated **kwargs: num (np.array): same as np.linspace 'num' iter_order (np.array): index order of building the grid. further: see TensorFields class
class TensorGrid(TensorFields): """ A Tensor Grid is a TensorField which is aware of it's grid nature, which is order of iteration (iter-order) over the base vectors (base_vectors). Args: *base_vectors (tuple): indices of the axes which should be iterated **kwargs: num (np.array): same as np.linspace 'num' iter_order (np.array): index order of building the grid. further: see TensorFields class """ __slots__ = ["coord_sys", "name", "fields", "base_vectors", "num", "iter_order"] __slot_setters__ = TensorFields.__slot_setters__ + [ None, None, None, ] def __new__(cls, tensors, *fields, **kwargs): if isinstance(tensors, TensorGrid): default_base_vectors = tensors.base_vectors default_num = tensors.num default_iter_order = tensors.iter_order else: default_base_vectors = kwargs.pop("base_vectors", None) default_num = None default_iter_order = None base_vectors = kwargs.pop("base_vectors", default_base_vectors) num = kwargs.pop("num", default_num) iter_order = kwargs.pop("iter_order", default_iter_order) obj = super(TensorGrid, cls).__new__(cls, tensors, *fields, **kwargs) if len(base_vectors) == 3: base_vectors = tuple(tuple(bv) for bv in base_vectors) base_vectors = grid.ensure_complex(*base_vectors) if ( isinstance(base_vectors, (tuple, list)) and base_vectors and len(base_vectors[0]) == 3 ): if num is None: num = np.array([int(bv[2].imag) for bv in base_vectors], dtype=int) base_vectors = np.transpose([[bv[0], bv[1]] for bv in base_vectors]) # base_vectors base_vectors = Tensors(base_vectors, coord_sys=obj.coord_sys) if len(base_vectors) != 2: raise ValueError( f"base_vectors must be of lenght 2. Lenght is {len(base_vectors)}." ) obj.base_vectors = base_vectors # num if num is None: num = np.array([1 for _ in range(base_vectors.dim)]) else: num = np.array(num, dtype=int) obj.num = num # iter_order if iter_order is None: iter_order = np.arange(base_vectors.dim) else: iter_order = np.array(iter_order, dtype=int) obj.iter_order = iter_order if isinstance(tensors, TensorGrid): if (obj.num != tensors.num).all() or ( obj.is_empty() and not obj.base_vectors.equal(tensors.base_vectors) ): # copy constructor with shape change return obj.empty(*obj.base_num_tuples(), iter_order=iter_order) if (obj.iter_order != tensors.iter_order).all(): # iter_order was changed in copy constructor obj.iter_order = ( tensors.iter_order ) # set to 'default_iter_order' and change later obj.change_iter_order(iter_order) return obj def __getitem__(self, index): if not self.is_empty(): return super().__getitem__(index) item = self.explicit() if not util.is_full_slice(index, item.shape): # downgrade to TensorFields item = TensorFields(item) return item.__getitem__(index) @classmethod # pylint:disable=arguments-differ def grid(cls, *base_vectors, tensors=None, fields=None, **kwargs): """ Build the grid (explicitly) from base vectors Args: explicit args: see __new__ **kwargs: see TensorFields """ iter_order = kwargs.pop("iter_order", np.arange(len(base_vectors))) if tensors is None: tensors = TensorFields.grid(*base_vectors, iter_order=iter_order, **kwargs) obj = cls(tensors, base_vectors=base_vectors, iter_order=iter_order, **kwargs) if fields: # pylint:disable=attribute-defined-outside-init obj.fields = fields return obj @classmethod def empty(cls, *base_vectors, **kwargs): """ Build the grid (implicitly) from base vectors """ base_vectors = grid.ensure_complex(*base_vectors) bv_lengths = [int(bv[2].imag) for bv in base_vectors] tensors = np.empty(shape=(np.prod(bv_lengths), 0)) return cls.grid(*base_vectors, tensors=tensors, **kwargs) @classmethod def merged(cls, *objects, **kwargs): if "base_vectors" not in kwargs: base_vectors = None for obj in objects: if base_vectors is None: base_vectors = obj.base_vectors else: if not all( ((a == b).all() for a, b in zip(base_vectors, obj.base_vectors)) ): raise NotImplementedError("Non-alligned base vectors") kwargs.setdefault("base_vectors", base_vectors) merge = super().merged(*objects, **kwargs) return merge def base_num_tuples(self): """ Returns the grid style base_vectors + num tuples """ return tuple( (bv[0], bv[1], complex(0, n)) for bv, n in zip(self.base_vectors.T, self.num) ) @property def rank(self): if self.is_empty(): return 1 return super().rank def is_empty(self): """ Check if the object is an implicit grid (base points are empty but base_vectors and iter order can be used to build the explicit grid's base points). """ return 0 in self.shape def explicit(self): """ Build the grid explicitly (e.g. after changing base_vector, iter_order or init with empty) """ kwargs = { attr: getattr(self, attr) for attr in self.__slots__ if attr not in ("base_vectors", "num", "coord_sys") } base_num_tuples = self.base_num_tuples() kwargs["coord_sys"] = self.base_vectors.coord_sys obj = self.grid(*base_num_tuples, **kwargs) obj.transform(self.coord_sys) return obj def change_iter_order(self, iter_order): """ Transform the iter order """ field_swap_indices = grid.change_iter_order( # pylint:disable=access-member-before-definition self.num, self.iter_order, iter_order, ) for field in self.fields: field[:] = field[field_swap_indices] # pylint:disable=attribute-defined-outside-init self.iter_order = iter_order self[:] = self.explicit()
(tensors, *fields, **kwargs)
21,295
tfields.tensor_grid
__getitem__
null
def __getitem__(self, index): if not self.is_empty(): return super().__getitem__(index) item = self.explicit() if not util.is_full_slice(index, item.shape): # downgrade to TensorFields item = TensorFields(item) return item.__getitem__(index)
(self, index)
21,297
tfields.tensor_grid
__new__
null
def __new__(cls, tensors, *fields, **kwargs): if isinstance(tensors, TensorGrid): default_base_vectors = tensors.base_vectors default_num = tensors.num default_iter_order = tensors.iter_order else: default_base_vectors = kwargs.pop("base_vectors", None) default_num = None default_iter_order = None base_vectors = kwargs.pop("base_vectors", default_base_vectors) num = kwargs.pop("num", default_num) iter_order = kwargs.pop("iter_order", default_iter_order) obj = super(TensorGrid, cls).__new__(cls, tensors, *fields, **kwargs) if len(base_vectors) == 3: base_vectors = tuple(tuple(bv) for bv in base_vectors) base_vectors = grid.ensure_complex(*base_vectors) if ( isinstance(base_vectors, (tuple, list)) and base_vectors and len(base_vectors[0]) == 3 ): if num is None: num = np.array([int(bv[2].imag) for bv in base_vectors], dtype=int) base_vectors = np.transpose([[bv[0], bv[1]] for bv in base_vectors]) # base_vectors base_vectors = Tensors(base_vectors, coord_sys=obj.coord_sys) if len(base_vectors) != 2: raise ValueError( f"base_vectors must be of lenght 2. Lenght is {len(base_vectors)}." ) obj.base_vectors = base_vectors # num if num is None: num = np.array([1 for _ in range(base_vectors.dim)]) else: num = np.array(num, dtype=int) obj.num = num # iter_order if iter_order is None: iter_order = np.arange(base_vectors.dim) else: iter_order = np.array(iter_order, dtype=int) obj.iter_order = iter_order if isinstance(tensors, TensorGrid): if (obj.num != tensors.num).all() or ( obj.is_empty() and not obj.base_vectors.equal(tensors.base_vectors) ): # copy constructor with shape change return obj.empty(*obj.base_num_tuples(), iter_order=iter_order) if (obj.iter_order != tensors.iter_order).all(): # iter_order was changed in copy constructor obj.iter_order = ( tensors.iter_order ) # set to 'default_iter_order' and change later obj.change_iter_order(iter_order) return obj
(cls, tensors, *fields, **kwargs)
21,312
tfields.tensor_grid
base_num_tuples
Returns the grid style base_vectors + num tuples
def base_num_tuples(self): """ Returns the grid style base_vectors + num tuples """ return tuple( (bv[0], bv[1], complex(0, n)) for bv, n in zip(self.base_vectors.T, self.num) )
(self)
21,313
tfields.tensor_grid
change_iter_order
Transform the iter order
def change_iter_order(self, iter_order): """ Transform the iter order """ field_swap_indices = grid.change_iter_order( # pylint:disable=access-member-before-definition self.num, self.iter_order, iter_order, ) for field in self.fields: field[:] = field[field_swap_indices] # pylint:disable=attribute-defined-outside-init self.iter_order = iter_order self[:] = self.explicit()
(self, iter_order)
21,324
tfields.tensor_grid
explicit
Build the grid explicitly (e.g. after changing base_vector, iter_order or init with empty)
def explicit(self): """ Build the grid explicitly (e.g. after changing base_vector, iter_order or init with empty) """ kwargs = { attr: getattr(self, attr) for attr in self.__slots__ if attr not in ("base_vectors", "num", "coord_sys") } base_num_tuples = self.base_num_tuples() kwargs["coord_sys"] = self.base_vectors.coord_sys obj = self.grid(*base_num_tuples, **kwargs) obj.transform(self.coord_sys) return obj
(self)
21,327
tfields.tensor_grid
is_empty
Check if the object is an implicit grid (base points are empty but base_vectors and iter order can be used to build the explicit grid's base points).
def is_empty(self): """ Check if the object is an implicit grid (base points are empty but base_vectors and iter order can be used to build the explicit grid's base points). """ return 0 in self.shape
(self)
21,341
tfields.core
TensorMaps
Args: tensors: see Tensors class *fields (Tensors): see TensorFields class **kwargs: coord_sys ('str'): see Tensors class maps (array-like): indices indicating a connection between the tensors at the respective index positions Examples: >>> import tfields >>> scalars = tfields.Tensors([0, 1, 2]) >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]), ... tfields.TensorFields([[1], [2]], [-42, -21])] >>> mesh = tfields.TensorMaps(vectors, scalars, ... maps=maps) >>> assert isinstance(mesh.maps, tfields.Maps) >>> assert len(mesh.maps) == 2 >>> assert mesh.equal(tfields.TensorFields(vectors, scalars)) Copy constructor >>> mesh_copy = tfields.TensorMaps(mesh) Copying takes care of coord_sys >>> mesh_copy.transform(tfields.bases.CYLINDER) >>> mesh_cp_cyl = tfields.TensorMaps(mesh_copy) >>> assert mesh_cp_cyl.coord_sys == tfields.bases.CYLINDER
class TensorMaps(TensorFields): """ Args: tensors: see Tensors class *fields (Tensors): see TensorFields class **kwargs: coord_sys ('str'): see Tensors class maps (array-like): indices indicating a connection between the tensors at the respective index positions Examples: >>> import tfields >>> scalars = tfields.Tensors([0, 1, 2]) >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]), ... tfields.TensorFields([[1], [2]], [-42, -21])] >>> mesh = tfields.TensorMaps(vectors, scalars, ... maps=maps) >>> assert isinstance(mesh.maps, tfields.Maps) >>> assert len(mesh.maps) == 2 >>> assert mesh.equal(tfields.TensorFields(vectors, scalars)) Copy constructor >>> mesh_copy = tfields.TensorMaps(mesh) Copying takes care of coord_sys >>> mesh_copy.transform(tfields.bases.CYLINDER) >>> mesh_cp_cyl = tfields.TensorMaps(mesh_copy) >>> assert mesh_cp_cyl.coord_sys == tfields.bases.CYLINDER """ __slots__ = ["coord_sys", "name", "fields", "maps"] __slot_setters__ = [ tfields.bases.get_coord_system_name, None, as_fields, as_maps, ] def __new__(cls, tensors, *fields, **kwargs): if issubclass(type(tensors), TensorMaps): default_maps = tensors.maps else: default_maps = {} maps = Maps(kwargs.pop("maps", default_maps)) obj = super(TensorMaps, cls).__new__(cls, tensors, *fields, **kwargs) obj.maps = maps return obj def __getitem__(self, index): """ In addition to the usual, also slice fields Examples: >>> import tfields >>> import numpy as np >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0], ... [1, 1, 1], [-1, -1, -1]]) >>> maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], [2, 3, 4]], ... [[1, 2], [3, 4], [5, 6]]), ... tfields.TensorFields([[0], [1], [2], [3], [4]])] >>> mesh = tfields.TensorMaps(vectors, ... [42, 21, 10.5, 1, 1], ... [1, 2, 3, 3, 3], ... maps=maps) Slicing >>> sliced = mesh[2:] >>> assert isinstance(sliced, tfields.TensorMaps) >>> assert isinstance(sliced.fields[0], tfields.Tensors) >>> assert isinstance(sliced.maps[3], tfields.TensorFields) >>> assert sliced.fields[0].equal([10.5, 1, 1]) >>> assert sliced.maps[3].equal([[0, 1, 2]]) >>> assert sliced.maps[3].fields[0].equal([[5, 6]]) Picking >>> picked = mesh[1] >>> assert np.array_equal(picked, [0, 0, 1]) >>> assert np.array_equal(picked.maps[3], np.empty((0, 3))) >>> assert np.array_equal(picked.maps[1], [[0]]) Masking >>> masked = mesh[np.array([True, False, True, True, True])] >>> assert masked.equal([[0, 0, 0], [0, -1, 0], ... [1, 1, 1], [-1, -1, -1]]) >>> assert masked.fields[0].equal([42, 10.5, 1, 1]) >>> assert masked.fields[1].equal([1, 3, 3, 3]) >>> assert masked.maps[3].equal([[1, 2, 3]]) >>> assert masked.maps[1].equal([[0], [1], [2], [3]]) Iteration >>> _ = [vertex for vertex in mesh] """ item = super(TensorMaps, self).__getitem__(index) if issubclass(type(item), TensorMaps): # pylint: disable=too-many-nested-blocks if isinstance(index, tuple): index = index[0] if item.maps: item.maps = Maps(item.maps) indices = np.arange(len(self)) keep_indices = indices[index] if isinstance(keep_indices, (int, np.integer)): keep_indices = [keep_indices] delete_indices = set(indices).difference(set(keep_indices)) # correct all maps that contain deleted indices for map_dim in self.maps: # build mask, where the map should be deleted map_delete_mask = np.full( (len(self.maps[map_dim]),), False, dtype=bool ) for i, map_ in enumerate( # pylint: disable=invalid-name self.maps[map_dim] ): for node_index in map_: if node_index in delete_indices: map_delete_mask[i] = True break map_mask = ~map_delete_mask # build the correction counters move_up_counter = np.zeros(self.maps[map_dim].shape, dtype=int) for delete_index in delete_indices: move_up_counter[self.maps[map_dim] > delete_index] -= 1 item.maps[map_dim] = (self.maps[map_dim] + move_up_counter)[ map_mask ] return item @classmethod def merged( cls, *objects, **kwargs ): # pylint: disable=too-many-locals,too-many-branches if not all(isinstance(o, cls) for o in objects): # Note: could allow if all face_fields are none raise TypeError( "Merge constructor only accepts {cls} instances.".format(**locals()) ) tensor_lengths = [len(o) for o in objects] cum_tensor_lengths = [sum(tensor_lengths[:i]) for i in range(len(objects))] return_value = super().merged(*objects, **kwargs) return_templates = kwargs.get("return_templates", False) if return_templates: inst, templates = return_value else: inst, templates = (return_value, None) dim_maps_dict = {} # {dim: {i: map_} for i, obj in enumerate(objects): for dimension, map_ in obj.maps.items(): map_ = map_ + cum_tensor_lengths[i] if dimension not in dim_maps_dict: dim_maps_dict[dimension] = {} dim_maps_dict[dimension][i] = map_ maps = [] template_maps_list = [[] for i in range(len(objects))] for dimension in sorted(dim_maps_dict): # sort by object index dim_maps = [ dim_maps_dict[dimension][i] for i in range(len(objects)) if i in dim_maps_dict[dimension] ] return_value = TensorFields.merged( *dim_maps, return_templates=return_templates, ) if return_templates: ( map_, # pylint: disable=invalid-name dimension_map_templates, ) = return_value for i in range(len(objects)): template_maps_list[i].append( (dimension, dimension_map_templates[i]) ) else: map_ = return_value # pylint: disable=invalid-name maps.append(map_) inst.maps = maps if return_templates: # pylint: disable=no-else-return for i, template_maps in enumerate(template_maps_list): # template maps will not have dimensions according to their # tensors which are indices templates[i] = tfields.TensorMaps( templates[i], maps=Maps(template_maps) ) return inst, templates else: return inst def _cut_template(self, template): """ Args: template (tfields.TensorMaps) Examples: >>> import tfields >>> import numpy as np Build mesh >>> mmap = tfields.TensorFields([[0, 1, 2], [0, 3, 4]], ... [[42, 21], [-42, -21]]) >>> m = tfields.Mesh3D([[0]*3, [1]*3, [2]*3, [3]*3, [4]*3], ... [0.0, 0.1, 0.2, 0.3, 0.4], ... [0.0, -0.1, -0.2, -0.3, -0.4], ... maps=[mmap]) Build template >>> tmap = tfields.TensorFields([[0, 3, 4], [0, 1, 2]], ... [1, 0]) >>> t = tfields.Mesh3D([[0]*3, [-1]*3, [-2]*3, [-3]*3, [-4]*3], ... [1, 0, 3, 2, 4], ... maps=[tmap]) Use template as instruction to make a fast cut >>> res = m._cut_template(t) >>> assert np.array_equal(res.fields, ... [[0.1, 0.0, 0.3, 0.2, 0.4], ... [-0.1, 0.0, -0.3, -0.2, -0.4]]) >>> assert np.array_equal(res.maps[3].fields[0], ... [[-42, -21], [42, 21]]) """ inst = super()._cut_template(template) # this will set maps=Maps({}) # Redirect maps and their fields if template.fields: # bulk was cut so we need to correct the map references. index_lut = np.full(len(self), np.nan) # float type index_lut[template.fields[0]] = np.arange(len(template.fields[0])) for map_dim, map_ in self.maps.items(): map_ = map_._cut_template( # pylint: disable=protected-access template.maps[map_dim] ) if template.fields: # correct map_ = Maps.to_map( # pylint: disable=invalid-name index_lut[map_], *map_.fields ) inst.maps[map_dim] = map_ return inst def equal(self, other, **kwargs): """ Test, whether the instance has the same content as other. Args: other (iterable) optional: see TensorFields.equal Examples: >>> import tfields >>> maps = [tfields.TensorFields([[1]], [42])] >>> tm = tfields.TensorMaps(maps[0], maps=maps) # >>> assert tm.equal(tm) >>> cp = tm.copy() # >>> assert tm.equal(cp) >>> cp.maps[1].fields[0] = -42 >>> assert tm.maps[1].fields[0] == 42 >>> assert not tm.equal(cp) """ if not issubclass(type(other), Tensors): return super(TensorMaps, self).equal(other, **kwargs) with other.tmp_transform(self.coord_sys): mask = super(TensorMaps, self).equal(other, **kwargs) if issubclass(type(other), TensorMaps): mask &= self.maps.equal(other.maps, **kwargs) return mask def stale(self): """ Returns: Mask for all vertices that are stale i.e. are not refered by maps Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors( ... [[0, 0, 0], [0, 0, 1], [0, -1, 0], [4, 4, 4]]) >>> tm = tfields.TensorMaps( ... vectors, ... maps=[[[0, 1, 2], [0, 1, 2]], [[1, 1], [2, 2]]]) >>> assert np.array_equal(tm.stale(), [False, False, False, True]) """ stale_mask = np.full(self.shape[0], False, dtype=bool) used = set(ind for mp in self.maps.values() for ind in mp.flatten()) for i in range(self.shape[0]): if i not in used: stale_mask[i] = True return stale_mask def cleaned(self, stale=True, duplicates=True): """ Args: stale (bool): remove stale vertices duplicates (bool): replace duplicate vertices by originals Examples: >>> import numpy as np >>> import tfields >>> mp1 = tfields.TensorFields([[0, 1, 2], [3, 4, 5]], ... *zip([1,2,3,4,5], [6,7,8,9,0])) >>> mp2 = tfields.TensorFields([[0], [3]]) >>> tm = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,6,7]], ... maps=[mp1, mp2]) >>> c = tm.cleaned() >>> assert c.equal([[0., 0., 0.], ... [1., 1., 1.], ... [2., 2., 2.], ... [3., 3., 3.], ... [4., 4., 4.]]) >>> assert np.array_equal(c.maps[3], [[0, 1, 2], [0, 3, 4]]) >>> assert np.array_equal(c.maps[1], [[0], [0]]) Returns: copy of self without stale vertices and duplicat points (depending on arguments) """ if not stale and not duplicates: inst = self.copy() if stale: # remove stale vertices i.e. those that are not referred by any # map remove_mask = self.stale() inst = self.removed(remove_mask) if duplicates: # pylint: disable=too-many-nested-blocks # remove duplicates in order to not have any artificial separations if not stale: # we have not yet made a copy but want to work on inst inst = self.copy() remove_mask = np.full(inst.shape[0], False, dtype=bool) duplicates = tfields.lib.util.duplicates(inst, axis=0) tensor_indices = np.arange(inst.shape[0]) duplicates_mask = duplicates != tensor_indices if duplicates_mask.any(): # redirect maps. Note: work on inst.maps instead of # self.maps in case stale vertices where removed keys = tensor_indices[duplicates_mask] values = duplicates[duplicates_mask] for map_dim in inst.maps: tfields.lib.sets.remap( inst.maps[map_dim], keys, values, inplace=True ) # mark duplicates for removal remove_mask[keys] = True if remove_mask.any(): # prevent another copy inst = inst.removed(remove_mask) return inst def removed(self, remove_condition): """ Return copy of self without vertices where remove_condition is True Copy because self is immutable Examples: >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.keep([False, False, False, True, True, True, True]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal([[0, 1, 2], [0, 1, 3]]) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0]) """ remove_condition = np.array(remove_condition) return self[~remove_condition] def keep(self, keep_condition): """ Return copy of self with vertices where keep_condition is True Copy because self is immutable Examples: >>> import numpy as np >>> import tfields >>> m = tfields.TensorMaps( ... [[0,0,0], [1,1,1], [2,2,2], [0,0,0], ... [3,3,3], [4,4,4], [5,5,5]], ... maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], ... [3, 4, 5], [3, 4, 1], ... [3, 4, 6]], ... [1, 3, 5, 7, 9], ... [2, 4, 6, 8, 0])]) >>> c = m.removed([True, True, True, False, False, False, False]) >>> c.equal([[0, 0, 0], ... [3, 3, 3], ... [4, 4, 4], ... [5, 5, 5]]) True >>> assert c.maps[3].equal(np.array([[0, 1, 2], [0, 1, 3]])) >>> assert c.maps[3].fields[0].equal([5, 9]) >>> assert c.maps[3].fields[1].equal([6, 0]) """ keep_condition = np.array(keep_condition) return self[keep_condition] def parts(self, *map_descriptions): """ Args: *map_descriptions (Tuple(int, List(List(int)))): tuples of map_dim (int): reference to map position used like: self.maps[map_dim] map_indices_list (List(List(int))): each int refers to index in a map. Returns: List(cls): One TensorMaps or TensorMaps subclass per map_description """ parts = [] for map_description in map_descriptions: map_dim, map_indices_list = map_description for map_indices in map_indices_list: obj = self.copy() map_indices = set(map_indices) # for speed up map_delete_mask = np.array( [i not in map_indices for i in range(len(self.maps[map_dim]))] ) obj.maps[map_dim] = obj.maps[map_dim][~map_delete_mask] obj = obj.cleaned(duplicates=False) parts.append(obj) return parts def disjoint_map(self, map_dim): """ Find the disjoint sets of map = self.maps[map_dim] As an example, this method is interesting for splitting a mesh consisting of seperate parts Args: map_dim (int): reference to map position used like: self.maps[map_dim] Returns: Tuple(int, List(List(int))): map description(tuple): see self.parts Examples: >>> import tfields >>> a = tfields.TensorMaps( ... [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]], ... maps=[[[0, 1, 2], [0, 2, 3]]]) >>> b = a.copy() >>> b[:, 0] += 2 >>> m = tfields.TensorMaps.merged(a, b) >>> mp_description = m.disjoint_map(3) >>> parts = m.parts(mp_description) >>> aa, ba = parts >>> assert aa.maps[3].equal(ba.maps[3]) >>> assert aa.equal(a) >>> assert ba.equal(b) """ maps_list = tfields.lib.sets.disjoint_group_indices(self.maps[map_dim]) return (map_dim, maps_list) def paths( self, map_dim ): # noqa: E501 pylint: disable=too-many-locals,too-many-branches,too-many-statements """ Find the minimal amount of graphs building the original graph with maximum of two links per node i.e. "o-----o o-----o" " \\ / \\ /" "" \\ / \\ /"" "o--o--o o--o 8--o" | | | = | + + o o o / \\ / \\ / \\ / \\ o o o o where 8 is a duplicated node (one has two links and one has only one.) Examples: >>> import tfields Ascii figure above: >>> a = tfields.TensorMaps([[1, 0], [3, 0], [2, 2], [0, 4], [2, 4], ... [4, 4], [1, 6], [3, 6], [2, 2]], ... maps=[[[0, 2], [2, 4], [3, 4], [5, 4], ... [1, 8], [6, 4], [6, 7], [7, 4]]]) >>> paths = a.paths(2) >>> assert paths[0].equal([[ 1., 0.], ... [ 2., 2.], ... [ 2., 4.], ... [ 0., 4.]]) >>> assert paths[0].maps[4].equal([[ 0., 1., 2., 3.]]) >>> assert paths[1].equal([[ 4., 4.], ... [ 2., 4.], ... [ 1., 6.], ... [ 3., 6.], ... [ 2., 4.]]) >>> assert paths[2].equal([[ 3., 0.], ... [ 2., 2.]]) Note: The Longest path problem is a NP-hard problem. """ obj = self.cleaned() flat_map = np.array(obj.maps[map_dim].flat) values, counts = np.unique(flat_map, return_counts=True) counts = dict(zip(values, counts)) # last is a helper last = np.full(max(flat_map) + 1, -3, dtype=int) duplicat_indices = [] d_index = len(obj) for i, val in enumerate(flat_map.copy()): if counts[val] > 2: # The first two occurences are uncritical if last[val] < -1: last[val] += 1 continue # Now we talk about nodes with more than two edges if last[val] == -1: # append a point and re-link duplicat_indices.append(val) flat_map[i] = d_index last[val] = d_index d_index += 1 else: # last occurence of val was a duplicate, so we use the same # value again. flat_map[i] = last[val] last[val] = -1 if duplicat_indices: duplicates = obj[duplicat_indices] obj = type(obj).merged(obj, duplicates) obj.maps = [flat_map.reshape(-1, *obj.maps[map_dim].shape[1:])] paths = obj.parts(obj.disjoint_map(map_dim)) # remove duplicate map entries and sort sorted_paths = [] for path in paths: # find start index values, counts = np.unique(path.maps[map_dim].flat, return_counts=True) first_node = None for value, count in zip(values, counts): if count == 1: first_node = value break edges = [list(edge) for edge in path.maps[map_dim]] if first_node is None: first_node = 0 # edges[0][0] path = path[list(range(len(path))) + [0]] found_first_node = False for edge in edges: if first_node in edge: if found_first_node: edge[edge.index(first_node)] = len(path) - 1 break found_first_node = True # follow the edges until you hit the end chain = [first_node] visited = set() n_edges = len(edges) node = first_node while len(visited) < n_edges: for i, edge in enumerate(edges): if i in visited: continue if node not in edge: continue # found edge visited.add(i) if edge.index(node) != 0: edge = list(reversed(edge)) chain.extend(edge[1:]) node = edge[-1] path = path[chain] path_map = Maps.to_map([sorted(chain)]) path.maps[dim(path_map)] = path_map sorted_paths.append(path) paths = sorted_paths return paths def plot(self, *args, **kwargs): # pragma: no cover """ Generic plotting method of TensorMaps. Args: *args: Depending on Positional arguments passed to the underlying :func:`rna.plotting.plot_tensor_map` function for arbitrary . dim (int): dimension of the plot representation (axes). map (int): index of the map to plot (default is 3). edgecolor (color): color of the edges (dim = 3) """ scalars_demanded = ( "color" not in kwargs and "facecolors" not in kwargs and any(v in kwargs for v in ["vmin", "vmax", "cmap"]) ) map_ = self.maps[kwargs.pop("map", 3)] map_index = kwargs.pop("map_index", None if not scalars_demanded else 0) if map_index is not None: if not len(map_) == 0: kwargs["color"] = map_.fields[map_index] if map_.dim == 3: # TODO: Mesh plotting only for Mesh3D(). # Overload this function for Mesh3D() specifically. return rna.plotting.plot_mesh(self, *args, map_, **kwargs) return rna.plotting.plot_tensor_map(self, *args, map_, **kwargs)
(tensors, *fields, **kwargs)
21,346
tfields.core
__new__
null
def __new__(cls, tensors, *fields, **kwargs): if issubclass(type(tensors), TensorMaps): default_maps = tensors.maps else: default_maps = {} maps = Maps(kwargs.pop("maps", default_maps)) obj = super(TensorMaps, cls).__new__(cls, tensors, *fields, **kwargs) obj.maps = maps return obj
(cls, tensors, *fields, **kwargs)
21,354
tfields.core
_cut_template
Args: template (tfields.TensorMaps) Examples: >>> import tfields >>> import numpy as np Build mesh >>> mmap = tfields.TensorFields([[0, 1, 2], [0, 3, 4]], ... [[42, 21], [-42, -21]]) >>> m = tfields.Mesh3D([[0]*3, [1]*3, [2]*3, [3]*3, [4]*3], ... [0.0, 0.1, 0.2, 0.3, 0.4], ... [0.0, -0.1, -0.2, -0.3, -0.4], ... maps=[mmap]) Build template >>> tmap = tfields.TensorFields([[0, 3, 4], [0, 1, 2]], ... [1, 0]) >>> t = tfields.Mesh3D([[0]*3, [-1]*3, [-2]*3, [-3]*3, [-4]*3], ... [1, 0, 3, 2, 4], ... maps=[tmap]) Use template as instruction to make a fast cut >>> res = m._cut_template(t) >>> assert np.array_equal(res.fields, ... [[0.1, 0.0, 0.3, 0.2, 0.4], ... [-0.1, 0.0, -0.3, -0.2, -0.4]]) >>> assert np.array_equal(res.maps[3].fields[0], ... [[-42, -21], [42, 21]])
def _cut_template(self, template): """ Args: template (tfields.TensorMaps) Examples: >>> import tfields >>> import numpy as np Build mesh >>> mmap = tfields.TensorFields([[0, 1, 2], [0, 3, 4]], ... [[42, 21], [-42, -21]]) >>> m = tfields.Mesh3D([[0]*3, [1]*3, [2]*3, [3]*3, [4]*3], ... [0.0, 0.1, 0.2, 0.3, 0.4], ... [0.0, -0.1, -0.2, -0.3, -0.4], ... maps=[mmap]) Build template >>> tmap = tfields.TensorFields([[0, 3, 4], [0, 1, 2]], ... [1, 0]) >>> t = tfields.Mesh3D([[0]*3, [-1]*3, [-2]*3, [-3]*3, [-4]*3], ... [1, 0, 3, 2, 4], ... maps=[tmap]) Use template as instruction to make a fast cut >>> res = m._cut_template(t) >>> assert np.array_equal(res.fields, ... [[0.1, 0.0, 0.3, 0.2, 0.4], ... [-0.1, 0.0, -0.3, -0.2, -0.4]]) >>> assert np.array_equal(res.maps[3].fields[0], ... [[-42, -21], [42, 21]]) """ inst = super()._cut_template(template) # this will set maps=Maps({}) # Redirect maps and their fields if template.fields: # bulk was cut so we need to correct the map references. index_lut = np.full(len(self), np.nan) # float type index_lut[template.fields[0]] = np.arange(len(template.fields[0])) for map_dim, map_ in self.maps.items(): map_ = map_._cut_template( # pylint: disable=protected-access template.maps[map_dim] ) if template.fields: # correct map_ = Maps.to_map( # pylint: disable=invalid-name index_lut[map_], *map_.fields ) inst.maps[map_dim] = map_ return inst
(self, template)
21,393
tfields.core
Tensors
Set of tensors with the same basis. Args: tensors: np.ndarray or AbstractNdarray subclass **kwargs: name: optional - custom name, can be anything Examples: >>> import numpy as np >>> import tfields Initialize a scalar range >>> scalars = tfields.Tensors([0, 1, 2]) >>> scalars.rank == 0 True Initialize vectors >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> vectors.rank == 1 True >>> vectors.dim == 3 True >>> assert vectors.coord_sys == 'cartesian' Initialize the Levi-Zivita Tensor >>> matrices = tfields.Tensors([[[0, 0, 0], [0, 0, 1], [0, -1, 0]], ... [[0, 0, -1], [0, 0, 0], [1, 0, 0]], ... [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]]) >>> matrices.shape == (3, 3, 3) True >>> matrices.rank == 2 True >>> matrices.dim == 3 True Initializing in different start coordinate system >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], ... coord_sys='cylinder') >>> assert cyl.coord_sys == 'cylinder' >>> cyl.transform('cartesian') >>> assert cyl.coord_sys == 'cartesian' >>> cart = cyl >>> assert round(cart[0, 0], 10) == 3. >>> assert round(cart[0, 1], 10) == 4. >>> assert cart[0, 2] == 42 Initialize with copy constructor keeps the coordinate system >>> with vectors.tmp_transform('cylinder'): ... vect_cyl = tfields.Tensors(vectors) ... assert vect_cyl.coord_sys == vectors.coord_sys >>> assert vect_cyl.coord_sys == 'cylinder' You can demand a special dimension. >>> _ = tfields.Tensors([[1, 2, 3]], dim=3) >>> _ = tfields.Tensors([[1, 2, 3]], dim=2) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Incorrect dimension: 3 given, 2 demanded. The dimension argument (dim) becomes necessary if you want to initialize an empty array >>> _ = tfields.Tensors([]) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Empty tensors need dimension parameter 'dim'. >>> tfields.Tensors([], dim=7) Tensors([], shape=(0, 7), dtype=float64)
class Tensors(AbstractNdarray): # pylint: disable=too-many-public-methods """ Set of tensors with the same basis. Args: tensors: np.ndarray or AbstractNdarray subclass **kwargs: name: optional - custom name, can be anything Examples: >>> import numpy as np >>> import tfields Initialize a scalar range >>> scalars = tfields.Tensors([0, 1, 2]) >>> scalars.rank == 0 True Initialize vectors >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> vectors.rank == 1 True >>> vectors.dim == 3 True >>> assert vectors.coord_sys == 'cartesian' Initialize the Levi-Zivita Tensor >>> matrices = tfields.Tensors([[[0, 0, 0], [0, 0, 1], [0, -1, 0]], ... [[0, 0, -1], [0, 0, 0], [1, 0, 0]], ... [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]]) >>> matrices.shape == (3, 3, 3) True >>> matrices.rank == 2 True >>> matrices.dim == 3 True Initializing in different start coordinate system >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], ... coord_sys='cylinder') >>> assert cyl.coord_sys == 'cylinder' >>> cyl.transform('cartesian') >>> assert cyl.coord_sys == 'cartesian' >>> cart = cyl >>> assert round(cart[0, 0], 10) == 3. >>> assert round(cart[0, 1], 10) == 4. >>> assert cart[0, 2] == 42 Initialize with copy constructor keeps the coordinate system >>> with vectors.tmp_transform('cylinder'): ... vect_cyl = tfields.Tensors(vectors) ... assert vect_cyl.coord_sys == vectors.coord_sys >>> assert vect_cyl.coord_sys == 'cylinder' You can demand a special dimension. >>> _ = tfields.Tensors([[1, 2, 3]], dim=3) >>> _ = tfields.Tensors([[1, 2, 3]], dim=2) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Incorrect dimension: 3 given, 2 demanded. The dimension argument (dim) becomes necessary if you want to initialize an empty array >>> _ = tfields.Tensors([]) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Empty tensors need dimension parameter 'dim'. >>> tfields.Tensors([], dim=7) Tensors([], shape=(0, 7), dtype=float64) """ __slots__ = ["coord_sys", "name"] __slot_defaults__ = ["cartesian"] __slot_setters__ = [tfields.bases.get_coord_system_name] def __new__(cls, tensors, **kwargs): # pylint: disable=too-many-branches dtype = kwargs.pop("dtype", None) order = kwargs.pop("order", None) dim_ = kwargs.pop("dim", None) # copy constructor extracts the kwargs from tensors if issubclass(type(tensors), Tensors): if dim_ is not None: dim_ = tensors.dim coord_sys = kwargs.pop("coord_sys", tensors.coord_sys) tensors = tensors.copy() tensors.transform(coord_sys) kwargs["coord_sys"] = coord_sys kwargs["name"] = kwargs.pop("name", tensors.name) if dtype is None: dtype = tensors.dtype else: if dtype is None: if hasattr(tensors, "dtype"): dtype = tensors.dtype else: dtype = np.float64 # demand iterable structure try: len(tensors) except TypeError as err: raise TypeError( "Iterable structure necessary." " Got {tensors}".format(**locals()) ) from err # process empty inputs if len(tensors) == 0: if issubclass(type(tensors), tfields.Tensors): tensors = np.empty(tensors.shape, dtype=tensors.dtype) elif dim_ is not None: tensors = np.empty((0, dim_)) if issubclass(type(tensors), np.ndarray): # np.empty pass elif hasattr(tensors, "shape"): dim_ = dim_(tensors) else: raise ValueError("Empty tensors need dimension parameter 'dim'.") tensors = np.asarray(tensors, dtype=dtype, order=order) obj = tensors.view(cls) if dim_ is not None: if dim_ != obj.dim: raise ValueError( "Incorrect dimension: {obj.dim} given," " {dim_} demanded.".format(**locals()) ) # update kwargs with defaults from slots cls._update_slot_kwargs(kwargs) # set kwargs to slots attributes # pylint:disable=consider-using-dict-items for attr in kwargs: if attr not in cls._iter_slots(): raise AttributeError( "Keyword argument {attr} not accepted " "for class {cls}".format(**locals()) ) setattr(obj, attr, kwargs[attr]) return obj def __iter__(self): """ Forwarding iterations to the bulk array. Otherwise __getitem__ would kick in and slow down imensely. Examples: >>> import tfields >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> scalar_field = tfields.TensorFields( ... vectors, [42, 21, 10.5], [1, 2, 3]) >>> [(point.rank, point.dim) for point in scalar_field] [(0, 1), (0, 1), (0, 1)] """ for index in range(len(self)): yield super(Tensors, self).__getitem__(index).view(Tensors) @classmethod def _load_txt(cls, path, set_header: bool = False, **load_kwargs): """ Factory method Given a path to a txt file, construct the object Args: path: see :meth:`Tensors.load` set_header: if True, set the header to the `name` attribute (the type of the name attribute will be a list of strings (header separated by delimiter) ) **loadkwargs: see :meth:`np.loadtxt` """ load_txt_keys = [ k for k, v in inspect.signature(np.loadtxt).parameters.items() if v.default is not inspect._empty # pylint:disable=protected-access ] load_txt_kwargs = {} for key in load_txt_keys: if key in load_kwargs: load_txt_kwargs[key] = load_kwargs.pop(key) # use the same defaults as np.savetxt load_txt_kwargs.setdefault("comments", "# ") # default is "#" comments = load_txt_kwargs.get("comments") load_txt_kwargs.setdefault("delimiter", " ") skiprows = 0 header = [] with open(rna.path.resolve(path)) as file_: while True: line = file_.readline() if line.startswith(comments): header.append(line.lstrip(comments).rstrip("\n")) else: file_.seek(0) break skiprows += 1 load_txt_kwargs["skiprows"] = max(skiprows, load_txt_kwargs.pop("skiprows", 0)) arr = np.loadtxt(path, **load_txt_kwargs) obj = cls(arr, **load_kwargs) i = 0 for key, line in zip(cls._iter_slots(), header): slot, rest = line.split(": ") tpe, val_str = rest.split(" = ") if tpe == "NoneType": val = None else: tpe = __builtins__[tpe] val = tpe(val_str) setattr(obj, slot, val) i += 1 header = header[i:] if set_header: obj.name = ( obj.name, header, ) # pylint:disable=attribute-defined-outside-init return obj def _save_txt(self, path, **kwargs): """ Save as text file. Args: **kwargs passed to np.savetxt. """ header = kwargs.get("header", []) if isinstance(header, dict): header = [ f"{key}: {type(value).__name__} = {value}" for key, value in header.items() ] if isinstance(header, list): # statictyping like attribute saving header = [ f"{key}: {type(getattr(self, key)).__name__} = {getattr(self, key)}" for key in self._iter_slots() ] + header kwargs["header"] = "\n".join(header) np.savetxt(path, self, **kwargs) @classmethod def merged(cls, *objects, **kwargs): """ Factory method Merges all input arguments to one object Args: return_templates (bool): return the templates which can be used together with cut to retrieve the original objects dim (int): **kwargs: passed to cls Examples: >>> import numpy as np >>> import tfields >>> import tfields.bases The new object with turn out in the most frequent coordinate system if not specified explicitly >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]]) >>> vec_b = tfields.Tensors([[5, 4, 1]], ... coord_sys=tfields.bases.cylinder) >>> vec_c = tfields.Tensors([[4, 2, 3]], ... coord_sys=tfields.bases.cylinder) >>> merge = tfields.Tensors.merged( ... vec_a, vec_b, vec_c, [[2, 0, 1]]) >>> assert merge.coord_sys == 'cylinder' >>> assert merge.equal([[0, 0, 0], ... [0, 0, 1], ... [1, -np.pi / 2, 0], ... [5, 4, 1], ... [4, 2, 3], ... [2, 0, 1]]) Merge also shifts the maps to still refer to the same tensors >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]]) >>> tm_b = tm_a.copy() >>> assert tm_a.coord_sys == 'cylinder' >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b) >>> assert tm_merge.coord_sys == 'cylinder' >>> assert tm_merge.maps[3].equal([[0, 1, 2], ... list(range(len(merge), ... len(merge) + 3, ... 1))]) >>> obj_list = [tfields.Tensors([[1, 2, 3]], ... coord_sys=tfields.bases.CYLINDER), ... tfields.Tensors([[3] * 3]), ... tfields.Tensors([[5, 1, 3]])] >>> merge2 = tfields.Tensors.merged( ... *obj_list, coord_sys=tfields.bases.CARTESIAN) >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.], ... [3, 3, 3], [5, 1, 3]], atol=1e-8) The return_templates argument allows to retrieve a template which can be used with the cut method. >>> merge, templates = tfields.Tensors.merged( ... vec_a, vec_b, vec_c, return_templates=True) >>> assert merge.cut(templates[0]).equal(vec_a) >>> assert merge.cut(templates[1]).equal(vec_b) >>> assert merge.cut(templates[2]).equal(vec_c) """ # get most frequent coord_sys or predefined coord_sys coord_sys = kwargs.get("coord_sys", None) return_templates = kwargs.pop("return_templates", False) if coord_sys is None: bases = [] for tensors in objects: try: bases.append(tensors.coord_sys) except AttributeError: pass if bases: # get most frequent coord_sys coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0] kwargs["coord_sys"] = coord_sys else: default = cls.__slot_defaults__[cls.__slots__.index("coord_sys")] kwargs["coord_sys"] = default # transform all raw inputs to cls type with correct coord_sys. Also # automatically make a copy of those instances that are of the correct # type already. objects = [cls.__new__(cls, t, **kwargs) for t in objects] # check rank and dimension equality if not len(set(t.rank for t in objects)) == 1: raise TypeError("Tensors must have the same rank for merging.") if not len(set(t.dim for t in objects)) == 1: raise TypeError("Tensors must have the same dimension for merging.") # merge all objects remaining_objects = objects[1:] or [] tensors = objects[0] for i, obj in enumerate(remaining_objects): tensors = np.append(tensors, obj, axis=0) if len(tensors) == 0 and not kwargs.get("dim", None): # if you can not determine the tensor dimension, search for the # first object with some entries kwargs["dim"] = dim(objects[0]) inst = cls.__new__(cls, tensors, **kwargs) if not return_templates: # pylint: disable=no-else-return return inst else: tensor_lengths = [len(o) for o in objects] cum_tensor_lengths = [sum(tensor_lengths[:i]) for i in range(len(objects))] templates = [ tfields.TensorFields( np.empty((len(obj), 0)), np.arange(tensor_lengths[i]) + cum_tensor_lengths[i], ) for i, obj in enumerate(objects) ] return inst, templates @classmethod def grid(cls, *base_vectors, **kwargs): """ Args: *base_vectors (Iterable): base coordinates. The amount of base vectors defines the dimension **kwargs: iter_order (list): order in which the iteration will be done. Frequency rises with position in list. default is [0, 1, 2] iteration will be done like:: for v0 in base_vectors[iter_order[0]]: for v1 in base_vectors[iter_order[1]]: for v2 in base_vectors[iter_order[2]]: coords0.append(locals()['v%i' % iter_order[0]]) coords1.append(locals()['v%i' % iter_order[1]]) coords2.append(locals()['v%i' % iter_order[2]]) Examples: Initilaize using the mgrid notation >>> import numpy as np >>> import tfields >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j)) >>> mgrid.equal([[0, 3, 6], ... [0, 3, 7], ... [0, 4, 6], ... [0, 4, 7], ... [1, 3, 6], ... [1, 3, 7], ... [1, 4, 6], ... [1, 4, 7]]) True Lists or arrays are accepted also. Furthermore, the iteration order can be changed >>> lins = tfields.Tensors.grid( ... np.linspace(3, 4, 2), np.linspace(0, 1, 2), ... np.linspace(6, 7, 2), iter_order=[1, 0, 2]) >>> lins.equal([[3, 0, 6], ... [3, 0, 7], ... [4, 0, 6], ... [4, 0, 7], ... [3, 1, 6], ... [3, 1, 7], ... [4, 1, 6], ... [4, 1, 7]]) True >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2), ... np.linspace(3, 4, 2), ... np.linspace(6, 7, 2), ... iter_order=[2, 0, 1]) >>> lins2.equal([[0, 3, 6], ... [0, 4, 6], ... [1, 3, 6], ... [1, 4, 6], ... [0, 3, 7], ... [0, 4, 7], ... [1, 3, 7], ... [1, 4, 7]]) True When given the coord_sys argument, the grid is performed in the given coorinate system: >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2), ... np.linspace(np.pi/2, np.pi/2, 1), ... np.linspace(4, 4, 1), ... iter_order=[2, 0, 1], ... coord_sys=tfields.bases.CYLINDER) >>> assert lins3.coord_sys == 'cylinder' >>> lins3.transform('cartesian') >>> assert np.array_equal(lins3[:, 1], [4, 9]) """ cls_kwargs = { attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__ } inst = cls.__new__( cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs ) return inst @property def rank(self): """ Tensor rank """ return rank(self) @property def dim(self): """ Manifold dimension """ return dim(self) def transform(self, coord_sys, **kwargs): """ Args: coord_sys (str) Examples: >>> import numpy as np >>> import tfields CARTESIAN to SPHERICAL >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], ... [0, 0, 1], [0, 0, 0]]) >>> t.transform('spherical') r >>> assert t[0, 0] == 3 phi >>> assert t[1, 1] == 0. >>> assert t[2, 1] == 0. theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1) >>> assert round(t[1, 2], 10) == round(0, 10) >>> assert t[2, 2] == -np.pi / 2 >>> assert t[3, 2] == np.pi / 2 theta is defined 0 for R == 0 >>> assert t[4, 0] == 0. >>> assert t[4, 2] == 0. CARTESIAN to CYLINDER >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], ... [-1, 0, 1], [0, 0, 0]]) >>> t_cyl = tCart.copy() >>> t_cyl.transform('cylinder') >>> assert t_cyl.coord_sys == 'cylinder' R >>> assert t_cyl[0, 0] == 5 >>> assert t_cyl[1, 0] == 1 >>> assert t_cyl[2, 0] == 1 >>> assert t_cyl[4, 0] == 0 Phi >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10) >>> assert t_cyl[1, 1] == 0 >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10) >>> assert t_cyl[1, 1] == 0 Z >>> assert t_cyl[0, 2] == 42 >>> assert t_cyl[2, 2] == -1 >>> t_cyl.transform('cartesian') >>> assert t_cyl.coord_sys == 'cartesian' >>> assert round(t_cyl[0, 0], 10) == 3 """ if self.rank == 0 or any(s == 0 for s in self.shape): # scalar or empty self.coord_sys = coord_sys # pylint: disable=attribute-defined-outside-init return if self.coord_sys == coord_sys: # already correct return tfields.bases.transform(self, self.coord_sys, coord_sys, **kwargs) # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys) self.coord_sys = coord_sys # pylint: disable=attribute-defined-outside-init @contextmanager def tmp_transform(self, coord_sys): """ Temporarily change the coord_sys to another coord_sys and change it back at exit This method is for cleaner code only. No speed improvements go with this. Args: see transform Examples: >>> import tfields >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL) >>> with p.tmp_transform(tfields.bases.CYLINDER): ... assert p.coord_sys == tfields.bases.CYLINDER >>> assert p.coord_sys == tfields.bases.SPHERICAL """ base_before = self.coord_sys if base_before == coord_sys: yield else: self.transform(coord_sys) yield self.transform(base_before) def mirror(self, coordinate, condition=None): """ Reflect/Mirror the entries meeting <condition> at <coordinate> = 0 Args: coordinate (int): coordinate index Examples: >>> import tfields >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror(1) >>> assert p.equal([[1, -2, 3], [4, -5, 6], [1, -2, -6]]) multiple coordinates can be mirrored at the same time i.e. a point mirrorion would be >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]]) >>> p.mirror([0,2]) >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]]) You can give a condition as mask or as str. The mirroring will only be applied to the points meeting the condition. >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p.mirror([0, 2], y > 3) >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]]) True """ if condition is None: condition = np.array([True for i in range(len(self))]) elif isinstance(condition, sympy.Basic): condition = self.evalf(condition) if isinstance(coordinate, (list, tuple)): for coord in coordinate: self.mirror(coord, condition=condition) elif isinstance(coordinate, int): self[:, coordinate][condition] *= -1 else: raise TypeError() def to_segment( # pylint: disable=too-many-arguments self, segment, num_segments, coordinate, periodicity=2 * np.pi, offset=0.0, coord_sys=None, ): """ For circular (close into themself after <periodicity>) coordinates at index <coordinate> assume <num_segments> segments and transform all values to segment number <segment> Args: segment (int): segment index (starting at 0) num_segments (int): number of segments coordinate (int): coordinate index periodicity (float): after what lenght, the coordiante repeats offset (float): offset in the mapping coord_sys (str or sympy.CoordinateSystem): in which coord sys the transformation should be done Examples: >>> import tfields >>> import numpy as np >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1], ... [6, 2 * np.pi / 5 * 3, 1]], ... coord_sys='cylinder') >>> p = tfields.Points3D(pStart) >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(p[:, 1], [0, 0]) >>> p2 = tfields.Points3D(pStart) >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10) >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2) """ if segment > num_segments - 1: raise ValueError("Segment {0} not existent.".format(segment)) if coord_sys is None: coord_sys = self.coord_sys with self.tmp_transform(coord_sys): # map all values to first segment self[:, coordinate] = ( (self[:, coordinate] - offset) % (periodicity / num_segments) + offset + segment * periodicity / num_segments ) def equal( self, other, rtol=None, atol=None, equal_nan=False, return_bool=True ): # noqa: E501 pylint: disable=too-many-arguments """ Evaluate, whether the instance has the same content as other. Args: optional: rtol (float) atol (float) equal_nan (bool) see numpy.isclose """ if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys: other = other.copy() other.transform(self.coord_sys) self_array, other_array = np.asarray(self), np.asarray(other) if rtol is None and atol is None: mask = self_array == other_array if equal_nan: both_nan = np.isnan(self_array) & np.isnan(other_array) mask[both_nan] = both_nan[both_nan] else: if rtol is None: rtol = 0.0 if atol is None: atol = 0.0 mask = np.isclose( self_array, other_array, rtol=rtol, atol=atol, equal_nan=equal_nan ) if return_bool: return bool(np.all(mask)) return mask def contains(self, other): """ Inspired by a speed argument @ stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row Examples: >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]]) >>> p.contains([4,5,6]) True """ return any(self.equal(other, return_bool=False).all(1)) def indices(self, tensor, rtol=None, atol=None): """ Returns: list of int: indices of tensor occuring Examples: Rank 1 Tensors >>> import tfields >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6], ... [4.1, 5, 6]]) >>> p.indices([4,5,6]) array([1, 3]) >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1) array([1, 3, 4]) Rank 0 Tensors >>> p = tfields.Tensors([2, 3, 6, 3.01]) >>> p.indices(3) array([1]) >>> p.indices(3, rtol=1e-5, atol=1e-1) array([1, 3]) """ self_array, other_array = np.asarray(self), np.asarray(tensor) if rtol is None and atol is None: equal_method = np.equal else: equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol) # NOQA # inspired by # https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array if self.rank == 0: indices = np.where(equal_method((self_array - other_array), 0))[0] elif self.rank == 1: indices = np.where( np.all(equal_method((self_array - other_array), 0), axis=1) )[0] else: raise NotImplementedError() return indices def index(self, tensor, **kwargs): """ Args: tensor Returns: int: index of tensor occuring """ indices = self.indices(tensor, **kwargs) if not indices: return None if len(indices) == 1: return indices[0] raise ValueError("Multiple occurences of value {}".format(tensor)) def moment(self, moment, weights=None): """ Returns: Moments of the distribution. Args: moment (int): n-th moment Examples: >>> import tfields Skalars >>> t = tfields.Tensors(range(1, 6)) >>> assert t.moment(1) == 0 >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5 >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2 Vectors >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6)))) >>> assert tfields.Tensors([0.5, 0.5]).equal( ... t.moment(1, weights=[-2, -1, 20, 1, 2])) >>> assert tfields.Tensors([1. , 0.5]).equal( ... t.moment(1, weights=list(zip([-2, -1, 10, 1, 2], ... [-2, -1, 20, 1, 2])))) """ array = tfields.lib.stats.moment(self, moment, weights=weights) if self.rank == 0: # scalar array = [array] return Tensors(array, coord_sys=self.coord_sys) def closest(self, other, **kwargs): """ Args: other (Tensors): closest points to what? -> other **kwargs: forwarded to scipy.spatial.cKDTree.query Returns: array shape(len(self)): Indices of other points that are closest to own points Examples: >>> import tfields >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1], ... [1,0,1]]) >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]]) >>> p.closest(m) array([2, 3, 4]) """ with other.tmp_transform(self.coord_sys): # balanced_tree option gives huge speedup! kd_tree = scipy.spatial.cKDTree( # noqa: E501 pylint: disable=no-member other, 1000, balanced_tree=False ) res = kd_tree.query(self, **kwargs) array = res[1] return array def evalf(self, expression=None, coord_sys=None): """ Args: expression (sympy logical expression) coord_sys (str): coord_sys to evalfuate the expression in. Returns: np.ndarray: mask of dtype bool with lenght of number of points in self. This array is True, where expression evalfuates True. Examples: >>> import tfields >>> import numpy as np >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> np.array_equal(p.evalf(x > 0), ... [True, True, True, False, True, False]) True >>> np.array_equal(p.evalf(x >= 0), ... [True, True, True, False, True, True]) True And combination >>> np.array_equal(p.evalf((x > 0) & (y < 3)), ... [True, False, True, False, True, False]) True Or combination >>> np.array_equal(p.evalf((x > 0) | (y > 3)), ... [True, True, True, False, True, False]) True """ coords = sympy.symbols("x y z") with self.tmp_transform(coord_sys or self.coord_sys): mask = tfields.evalf(np.array(self), expression, coords=coords) return mask def _cut_sympy(self, expression): if len(self) == 0: return self.copy() mask = self.evalf(expression) # coord_sys is handled by tmp_transform mask.astype(bool) inst = self[mask].copy() # template indices = np.arange(len(self))[mask] template = tfields.TensorFields(np.empty((len(indices), 0)), indices) return inst, template def _cut_template(self, template): """ In principle, what we do is returning self[template.fields[0]] If the templates tensors is given (has no dimension 0), 0))), we switch to only extruding the field entries according to the indices provided by template.fields[0]. This allows the template to define additional points, extending the object it should cut. This becomes relevant for Mesh3D when adding vertices at the edge of the cut is necessary. """ # Redirect fields fields = [] if template.fields and issubclass(type(self), TensorFields): template_field = np.array(template.fields[0]) if len(self) > 0: # if new vertices have been created in the template, it is in principle unclear # what fields we have to refer to. Thus in creating the template, we gave np.nan. # To make it fast, we replace nan with 0 as a dummy and correct the field entries # afterwards with np.nan. nan_mask = np.isnan(template_field) template_field[nan_mask] = 0 # dummy reference to index 0. template_field = template_field.astype(int) for field in self.fields: projected_field = field[template_field] projected_field[nan_mask] = np.nan # correction for nan fields.append(projected_field) if dim(template) == 0: # for speed circumvent __getitem__ of the complexer subclasses tensors = Tensors(self)[template.fields[0]] else: tensors = template return type(self)(tensors, *fields) def cut(self, expression, coord_sys=None, return_template=False, **kwargs): """ Extract a part of the object according to the logic given by <expression>. Args: expression (sympy logical expression|tfields.TensorFields): logical expression which will be evaluated. use symbols x, y and z. If tfields.TensorFields or subclass is given, the expression refers to a template. coord_sys (str): coord_sys to evaluate the expression in. Only active for template expression Examples: >>> import tfields >>> import sympy >>> x, y, z = sympy.symbols('x y z') >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> p.cut(x > 0).equal([[1, 2, 3], ... [4, 5, 6], ... [1, 2, -6], ... [1, 0, -1]]) True combinations of cuts >>> cut_expression = (x > 0) & (z < 0) >>> combi_cut = p.cut(cut_expression) >>> combi_cut.equal([[1, 2, -6], [1, 0, -1]]) True Templates can be used to speed up the repeated cuts on the same underlying tensor with the same expression but new fields. First let us cut a but request the template on return: >>> field1 = list(range(len(p))) >>> tf = tfields.TensorFields(p, field1) >>> tf_cut, template = tf.cut(cut_expression, ... return_template=True) Now repeat the cut with a new field: >>> field2 = p >>> tf.fields.append(field2) >>> tf_template_cut = tf.cut(template) >>> tf_template_cut.equal(combi_cut) True >>> tf_template_cut.fields[0].equal([2, 4]) True >>> tf_template_cut.fields[1].equal(combi_cut) True Returns: copy of self with cut applied [optional: template - requires <return_template> switch] """ with self.tmp_transform(coord_sys or self.coord_sys): if issubclass(type(expression), TensorFields): template = expression obj = self._cut_template(template) else: obj, template = self._cut_sympy(expression, **kwargs) if return_template: return obj, template return obj def distances(self, other, **kwargs): """ Args: other(Iterable) **kwargs: ... is forwarded to scipy.spatial.distance.cdist Examples: >>> import tfields >>> p = tfields.Tensors.grid((0, 2, 3j), ... (0, 2, 3j), ... (0, 0, 1j)) >>> p[4,2] = 1 >>> p.distances(p)[0,0] 0.0 >>> p.distances(p)[5,1] 1.4142135623730951 >>> p.distances([[0,1,2]])[-1][0] == 3 True """ if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys: other = other.copy() other.transform(self.coord_sys) return scipy.spatial.distance.cdist(self, other, **kwargs) def min_dists(self, other=None, **kwargs): """ Args: other(array | None): if None: closest distance to self **kwargs: memory_saving (bool): for very large array comparisons default False ... rest is forwarded to scipy.spatial.distance.cdist Returns: np.array: minimal distances of self to other Examples: >>> import tfields >>> import numpy as np >>> p = tfields.Tensors.grid((0, 2, 3), ... (0, 2, 3), ... (0, 0, 1)) >>> p[4,2] = 1 >>> dMin = p.min_dists() >>> expected = [1] * 9 >>> expected[4] = np.sqrt(2) >>> np.array_equal(dMin, expected) True >>> dMin2 = p.min_dists(memory_saving=True) >>> bool((dMin2 == dMin).all()) True """ memory_saving = kwargs.pop("memory_saving", False) if other is None: other = self else: raise NotImplementedError( "Should be easy but make shure not to remove diagonal" ) try: if memory_saving: raise MemoryError() dists = self.distances(other, **kwargs) return dists[dists > 0].reshape(dists.shape[0], -1).min(axis=1) except MemoryError: min_dists = np.empty(self.shape[0]) for i, point in enumerate(np.array(other)): dists = self.distances([point], **kwargs) min_dists[i] = dists[dists > 0].reshape(-1).min() return min_dists def epsilon_neighbourhood(self, epsilon): """ Returns: indices for those sets of points that lie within epsilon around the other Examples: Create mesh grid with one extra point that will have 8 neighbours within epsilon >>> import tfields >>> p = tfields.Tensors.grid((0, 1, 2j), ... (0, 1, 2j), ... (0, 1, 2j)) >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]]) >>> [len(en) for en in p.epsilon_neighbourhood(0.9)] [2, 2, 2, 2, 2, 2, 2, 2, 9] """ indices = np.arange(self.shape[0]) dists = self.distances(self) # this takes long dists_in_epsilon = dists <= epsilon indices = [indices[die] for die in dists_in_epsilon] # this takes long return indices def _weights(self, weights, rigid=True): """ transformer method for weights inputs. Args: weights (np.ndarray | None): If weights is None, use np.ones Otherwise just pass the weights. rigid (bool): demand equal weights and tensor length Returns: weight array """ # set weights to 1.0 if weights is None if weights is None: weights = np.ones(len(self)) if rigid: if not len(weights) == len(self): raise ValueError("Equal number of weights as tensors demanded.") return weights def cov_eig(self, weights=None): """ Calculate the covariance eigenvectors with lenghts of eigenvalues Args: weights (np.array | int | None): index to scalars to weight with """ # weights = self.getNormedWeightedAreas(weights=weights) weights = self._weights(weights) cov = np.cov(self.T, ddof=0, aweights=weights) # calculate eigenvalues and eigenvectors of covariance evalfs, evecs = np.linalg.eigh(cov) idx = evalfs.argsort()[::-1] evalfs = evalfs[idx] evecs = evecs[:, idx] res = np.concatenate((evecs, evalfs.reshape(1, 3))) return res.T.reshape( 12, ) def main_axes(self, weights=None): """ Returns: Main Axes eigen-vectors """ # weights = self.getNormedWeightedAreas(weights=weights) weights = self._weights(weights) mean = np.array(self).mean(axis=0) relative_coords = self - mean cov = np.cov(relative_coords.T, ddof=0, aweights=weights) # calculate eigenvalues and eigenvectors of covariance evalfs, evecs = np.linalg.eigh(cov) return (evecs * evalfs.T).T @property # pylint:disable=invalid-name def t(self): """ Same as self.T but for tensor dimension only. Keeping the order of stacked tensors. Examples: >>> import tfields >>> a = tfields.Tensors([[[1,2,3,4],[5,6,7,8]]]) >>> assert a.t.equal([a[0].T]) """ return self.transpose(0, *range(self.ndim)[-1:0:-1]) def dot(self, b, out=None): # pylint:disable=line-too-long """ Computes the n-d dot product between self and other defined as in `mathematica <https://reference.wolfram.com/legacy/v5/Built-inFunctions/ AdvancedDocumentation/LinearAlgebra/2.7.html>`_ by summing over the last dimension. When self and b are both one-dimensional vectors, this is just the "usual" dot product; when self and b are 2D matrices, this is matrix multiplication. Note: * This is not the same as the numpy.dot function. Examples: >>> import tfields >>> import numpy as np Scalar product by transposed dot product >>> a = tfields.Tensors([[4, 0, 4]]) >>> b = tfields.Tensors([[10, 0, 0.5]]) >>> c = a.t.dot(b) >>> assert c.equal([42]) >>> assert c.equal(np.dot(a[0], b[0])) >>> assert c.rank == 0 To get the angle between a and b you now just need >>> angle = np.arccos(c) Matrix vector multiplication >>> a = tfields.Tensors([[[1, 20, 0], [2, 18, 1], [1, 5, 10]]]) >>> b = tfields.Tensors([[1, 2, 3]]) >>> c = a.dot(b) >>> assert c.equal([[41,41,41]]) TODO: generalize dot product to inner # Matrix matrix multiplication can not be done like this. It requires # >>> a = tfields.Tensors([[[1, 8], [2, 4]]]) # >>> b = tfields.Tensors([[[1, 2], [1/2, 1/4]]]) # >>> c = a.dot(b) # >>> c # >>> assert c.equal([[[5, 4], [4, 5]]]) TODO: handle types, fields and maps (which fields etc to choose for the output?) """ if out is not None: raise NotImplementedError("performance feature 'out' not yet implemented") return Tensors(np.einsum("t...i,t...i->t...", self, b)) # pylint:disable=redefined-builtin def norm(self, ord=None, axis=None, keepdims=False): """ Calculate the norm up to rank 2 Args: See numpy.linal.norm except redefinition in axis axis: by default omitting first axis Examples: >>> import tfields >>> a = tfields.Tensors([[1, 0, 0]]) >>> assert a.norm().equal([1]) """ if axis is None: axis = tuple(range(self.ndim)[1:]) return Tensors(np.linalg.norm(self, ord=ord, axis=axis, keepdims=keepdims)) def normalized(self, *args, **kwargs): """ Return the self / norm(self) Args: forwarded to :meth:norm Examples: >>> import tfields >>> a = tfields.Tensors([[1, 4, 3]]) >>> assert not a.norm().equal([1]) >>> a = a.normalized() >>> assert a.norm().equal([1]) >>> a = tfields.Tensors([[1, 0, 0], ... [0, 2, 0], ... [0, 0, 3]]) >>> assert a.norm().equal([1, 2, 3]) >>> a = a.normalized() >>> assert a.equal([ ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1], ... ]) >>> assert a.norm().equal([1, 1, 1]) """ # return np.divide(self.T, self.norm(*args, **kwargs)).T return np.divide(self, self.norm(*args, **kwargs)[:, None]) def plot(self, *args, **kwargs): """ Generic plotting method of Tensors. Forwarding to rna.plotting.plot_tensor """ artist = rna.plotting.plot_tensor( self, *args, **kwargs ) # pylint: disable=no-member return artist
(tensors, **kwargs)
21,397
tfields.core
__new__
null
def __new__(cls, tensors, **kwargs): # pylint: disable=too-many-branches dtype = kwargs.pop("dtype", None) order = kwargs.pop("order", None) dim_ = kwargs.pop("dim", None) # copy constructor extracts the kwargs from tensors if issubclass(type(tensors), Tensors): if dim_ is not None: dim_ = tensors.dim coord_sys = kwargs.pop("coord_sys", tensors.coord_sys) tensors = tensors.copy() tensors.transform(coord_sys) kwargs["coord_sys"] = coord_sys kwargs["name"] = kwargs.pop("name", tensors.name) if dtype is None: dtype = tensors.dtype else: if dtype is None: if hasattr(tensors, "dtype"): dtype = tensors.dtype else: dtype = np.float64 # demand iterable structure try: len(tensors) except TypeError as err: raise TypeError( "Iterable structure necessary." " Got {tensors}".format(**locals()) ) from err # process empty inputs if len(tensors) == 0: if issubclass(type(tensors), tfields.Tensors): tensors = np.empty(tensors.shape, dtype=tensors.dtype) elif dim_ is not None: tensors = np.empty((0, dim_)) if issubclass(type(tensors), np.ndarray): # np.empty pass elif hasattr(tensors, "shape"): dim_ = dim_(tensors) else: raise ValueError("Empty tensors need dimension parameter 'dim'.") tensors = np.asarray(tensors, dtype=dtype, order=order) obj = tensors.view(cls) if dim_ is not None: if dim_ != obj.dim: raise ValueError( "Incorrect dimension: {obj.dim} given," " {dim_} demanded.".format(**locals()) ) # update kwargs with defaults from slots cls._update_slot_kwargs(kwargs) # set kwargs to slots attributes # pylint:disable=consider-using-dict-items for attr in kwargs: if attr not in cls._iter_slots(): raise AttributeError( "Keyword argument {attr} not accepted " "for class {cls}".format(**locals()) ) setattr(obj, attr, kwargs[attr]) return obj
(cls, tensors, **kwargs)
21,435
tfields.triangles_3d
Triangles3D
Points3D child restricted to n * 3 Points. Three Points always group together to one triangle. Args: tensors (Iterable | tfields.TensorFields) *fields (Iterable | tfields.Tensors): Fields with the same length as tensors **kwargs: passed to base class Attributes: see :class:`~tfields.TensorFields` Examples: >>> import tfields >>> t = tfields.Triangles3D([[1,2,3], [3,3,3], [0,0,0]]) You can add fields to each triangle >>> t = tfields.Triangles3D(t, tfields.Tensors([42])) >>> assert t.fields[0].equal([42])
class Triangles3D(tfields.TensorFields): # pylint: disable=R0904 """ Points3D child restricted to n * 3 Points. Three Points always group together to one triangle. Args: tensors (Iterable | tfields.TensorFields) *fields (Iterable | tfields.Tensors): Fields with the same length as tensors **kwargs: passed to base class Attributes: see :class:`~tfields.TensorFields` Examples: >>> import tfields >>> t = tfields.Triangles3D([[1,2,3], [3,3,3], [0,0,0]]) You can add fields to each triangle >>> t = tfields.Triangles3D(t, tfields.Tensors([42])) >>> assert t.fields[0].equal([42]) """ def __new__(cls, tensors, *fields, **kwargs): kwargs["dim"] = 3 kwargs["rigid"] = False obj = super(Triangles3D, cls).__new__(cls, tensors, *fields, **kwargs) if not len(obj) % 3 == 0: warnings.warn( "Input object of size({0}) has no divider 3 and" " does not describe triangles.".format(len(obj)) ) return obj def ntriangles(self): """ Returns: int: number of triangles """ return len(self) // 3 def _to_triangles_mask(self, mask): mask = np.array(mask) mask = mask.reshape((self.ntriangles(), 3)) mask = mask.all(axis=1) return mask def __getitem__(self, index): """ In addition to the usual, also slice fields Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors(np.array([range(30)] * 3).T) >>> triangles = tfields.Triangles3D(vectors, range(10)) >>> assert np.array_equal(triangles[3:6], ... [[3] * 3, ... [4] * 3, ... [5] * 3]) >>> assert triangles[3:6].fields[0][0] == 1 """ item = super(tfields.TensorFields, self).__getitem__(index) try: # __iter__ will try except __getitem__(i) until IndexError if issubclass(type(item), Triangles3D): # block int, float, ... if len(item) % 3 != 0: item = tfields.Tensors(item) elif item.fields: # build triangle index / indices / mask when possible tri_index = None if isinstance(index, tuple): index = index[0] if isinstance(index, int): pass elif isinstance(index, slice): start = index.start or 0 stop = index.stop or len(self) step = index.step if start % 3 == 0 and (stop - start) % 3 == 0 and step is None: tri_index = slice(start // 3, stop // 3) else: try: tri_index = self._to_triangles_mask(index) except ValueError: pass # apply triangle index to fields if tri_index is not None: item.fields = [ field.__getitem__(tri_index) for field in item.fields ] else: item = tfields.Tensors(item) except IndexError as err: logging.warning( "Index error occured for field.__getitem__. Error message: %s", err ) return item def _save_stl(self, path, **kwargs): """ Save the object to a stl file """ import stl shape = stl.Mesh(np.zeros(self.ntriangles(), dtype=stl.Mesh.dtype)) shape.vectors = self.bulk.reshape((self.ntriangles(), 3, 3)) shape.save(path, **kwargs) @classmethod def _load_stl(cls, path): """ Factory method Given a path to a stl file, construct the object """ import stl.mesh triangles = stl.mesh.Mesh.from_file(path) obj = cls(triangles.vectors.reshape(-1, 3)) return obj @classmethod def merged(cls, *objects, **kwargs): with warnings.catch_warnings(): warnings.filterwarnings("ignore") obj = super(Triangles3D, cls).merged(*objects, **kwargs) if not len(obj) % 3 == 0: warnings.warn( "Input object of size({0}) has no divider 3 and" " does not describe triangles.".format(len(obj)) ) return obj def evalf(self, expression=None, coord_sys=None): """ Triangle3D implementation Examples: >>> from sympy.abc import x >>> import numpy as np >>> import tfields >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1,0,-1], [0,1,-1], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> mask = t.evalf(x >= 0) >>> assert np.array_equal(t[mask], ... tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) Returns: np.array: mask which is True, where expression evaluates True """ mask = super(Triangles3D, self).evalf(expression, coord_sys=coord_sys) mask = self._to_triangles_mask(mask) mask = np.array([mask] * 3).T.reshape((len(self))) return mask def cut(self, expression, coord_sys=None): """ Default cut method for Triangles3D Examples: >>> import sympy >>> import numpy as np >>> import tfields >>> x, y, z = sympy.symbols('x y z') >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1, 0, -1], [0, 1, -1], ... [-5, -5, -5], [1, 0, -1], [0, 1, -1]]) >>> tc = t.cut(x >= 0) >>> assert tc.equal(tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) >>> t.fields.append(tfields.Tensors([1,2,3])) >>> tc2 = t.cut(x >= 0) >>> assert np.array_equal(tc2.fields[-1], np.array([2.])) """ # mask = self.evalf(expression, coord_sys=coord_sys) # inst = self[mask].copy() # return inst return super().cut(expression, coord_sys) def mesh(self): """ Returns: tfields.Mesh3D """ mp = tfields.TensorFields(np.arange(len(self)).reshape((-1, 3)), *self.fields) mesh = tfields.Mesh3D(self, maps=[mp]) return mesh.cleaned(stale=False) # stale vertices can not occure here @cached_property() def _areas(self): """ Cached method to retrieve areas of triangles """ transform = np.eye(3) return self.areas(transform=transform) def areas(self, transform=None): """ Calculate area with "heron's formula" Args: transform (np.ndarray): optional transformation matrix The triangle points are transformed with transform if given before calclulating the area Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[1,0,0], [0,0,1], [0,0,0]], ... faces=[[0, 1, 2]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [0,0,0], [0,0,1]], ... faces=[[0, 1, 2], [1, 2, 3]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [1,1,0], [0,0,1], [1,0,1]], ... faces=[[0, 1, 2], [0, 3, 4]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5])) """ if transform is None: return self._areas else: indices = range(self.ntriangles()) aIndices = [i * 3 for i in indices] bIndices = [i * 3 + 1 for i in indices] cIndices = [i * 3 + 2 for i in indices] # define 3 vectors building the triangle, transform it back and take their norm if not np.array_equal(transform, np.eye(3)): a = np.linalg.norm( np.linalg.solve( transform.T, (self[aIndices, :] - self[bIndices, :]).T ), axis=0, ) b = np.linalg.norm( np.linalg.solve( transform.T, (self[aIndices, :] - self[cIndices, :]).T ), axis=0, ) c = np.linalg.norm( np.linalg.solve( transform.T, (self[bIndices, :] - self[cIndices, :]).T ), axis=0, ) else: a = np.linalg.norm(self[aIndices, :] - self[bIndices, :], axis=1) b = np.linalg.norm(self[aIndices, :] - self[cIndices, :], axis=1) c = np.linalg.norm(self[bIndices, :] - self[cIndices, :], axis=1) # sort by length for numerical stability lengths = np.concatenate( (a.reshape(-1, 1), b.reshape(-1, 1), c.reshape(-1, 1)), axis=1 ) lengths.sort() a, b, c = lengths.T return 0.25 * np.sqrt( (a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c)) ) def corners(self): """ Returns: three np.arrays with corner points of triangles """ indices = range(self.ntriangles()) aIndices = [i * 3 for i in indices] bIndices = [i * 3 + 1 for i in indices] cIndices = [i * 3 + 2 for i in indices] a = self.bulk[aIndices, :] b = self.bulk[bIndices, :] c = self.bulk[cIndices, :] return a, b, c def circumcenters(self): """ Semi baricentric method to calculate circumcenter points of the triangles Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert np.allclose( ... m.triangles().circumcenters(), ... [[0.5, 0.5, 0.0], ... [-0.5, 0.5, 0.0], ... [0.0, 0.0, 0.0], ... [1.0 / 3, 1.0 / 3, 1.0 / 3]]) """ pointA, pointB, pointC = self.corners() a = np.linalg.norm( pointC - pointB, axis=1 ) # side length of side opposite to pointA b = np.linalg.norm(pointC - pointA, axis=1) c = np.linalg.norm(pointB - pointA, axis=1) bary1 = a**2 * (b**2 + c**2 - a**2) bary2 = b**2 * (a**2 + c**2 - b**2) bary3 = c**2 * (a**2 + b**2 - c**2) matrices = np.concatenate((pointA, pointB, pointC), axis=1).reshape( pointA.shape + (3,) ) # transpose the inner matrix matrices = np.einsum("...ji", matrices) vectors = np.array((bary1, bary2, bary3)).T # matrix vector product for matrices and vectors P = np.einsum("...ji,...i", matrices, vectors) P /= vectors.sum(axis=1).reshape((len(vectors), 1)) return tfields.Points3D(P) @cached_property() def _centroids(self): """ this version is faster but takes much more ram also. So much that i get memory error with a 32 GB RAM """ nT = self.ntriangles() mat = np.ones((1, 3)) / 3.0 # matrix product calculatesq center of all triangles return tfields.Points3D( np.dot(mat, self.reshape(nT, 3, 3))[0], coord_sys=self.coord_sys ) """ Old version: pointA, pointB, pointC = self.corners() return Points3D(1. / 3 * (pointA + pointB + pointC)), coord_sys=self.coord_sys This versioin was slightly slower (110 % of new version) Memory usage of new version is better for a factor of 4 or so. Not really reliable method of measurement """ def centroids(self): """ Returns: :func:`~tfields.Triangles3D._centroids` Examples: >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert m.triangles().centroids().equal( ... [[1./3, 1./3, 0.], ... [-1./3, 1./3, 0.], ... [0., 0., 1./3], ... [1./3, 1./3, 1./3]]) """ return self._centroids def edges(self): """ Retrieve two of the three edge vectors Returns: two np.ndarrays: vectors ab and ac, where a, b, c are corners (see self.corners) """ a, b, c = self.corners() ab = b - a ac = c - a return ab, ac def norms(self): """ Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert np.allclose(m.triangles().norms(), ... [[0.0, 0.0, 1.0], ... [0.0, 0.0, -1.0], ... [0.0, 1.0, 0.0], ... [0.57735027] * 3], ... atol=1e-8) """ ab, ac = self.edges() vectors = np.cross(ab, ac) norms = np.apply_along_axis(np.linalg.norm, 0, vectors.T).reshape(-1, 1) # cross product may be zero, so replace zero norms by ones to divide vectors by norms np.place(norms, norms == 0.0, 1.0) return vectors / norms def _baricentric(self, point, delta=0.0): """ Determine baricentric coordinates like [u,v,w] = [ab, ac, ab x ac]^-1 * ap where ax is vector from point a to point x Examples: empty Meshes return right formatted array >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([], faces=[]) >>> m.triangles()._baricentric(np.array([0.2, 0.2, 0])) array([], dtype=float64) >>> m2 = tfields.Mesh3D([[0,0,0], [2,0,0], [0,2,0], [0,0,2]], ... faces=[[0, 1, 2], [0, 2, 3]]); >>> assert np.array_equal( ... m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=2.), ... [[0.1, 0.1, 0.0], ... [0.1, 0.0, 0.1]]) if point lies in the plane, return np.nan, else inf for w if delta is exactly 0. >>> baric = m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=0.), >>> baric_expected = np.array([[0.1, 0.1, np.nan], ... [0.1, 0.0, np.inf]]) >>> assert ((baric == baric_expected) | (np.isnan(baric) & ... np.isnan(baric_expected))).all() Raises: If you define triangles that have colinear side vectors or in general lead to not invertable matrices [ab, ac, ab x ac] the values will be nan and a warning will be triggered: >>> import warnings >>> import numpy as np >>> import tfields >>> m3 = tfields.Mesh3D([[0,0,0], [2,0,0], [4,0,0], [0,1,0]], ... maps=[[[0, 1, 2], [0, 1, 3]]]); >>> with warnings.catch_warnings(record=True) as wrn: ... warnings.simplefilter("ignore") ... bc = m3.triangles()._baricentric(np.array([0.2, 0.2, 0]), delta=0.3) >>> bc_exp = np.array([[ np.nan, np.nan, np.nan], [ 0.1, 0.2, 0. ]]) >>> assert ((bc == bc_exp) | (np.isnan(bc) & ... np.isnan(bc_exp))).all() The warning would be: UserWarning('Singular matrix: Could not invert matrix ... ... [[ 2. 4. 0.], [ 0. 0. 0.], [ 0. 0. 0.]]. Return nan matrix.',) Returns: np.ndarray: barycentric coordinates u, v, w of point with respect to each triangle """ if self.ntriangles() == 0: return np.array([]) a, _, _ = self.corners() ap = point - a # matrix vector product for matrices and vectors barCoords = np.einsum("...ji,...i", self._baricentric_matrix, ap) with warnings.catch_warnings(): # python2.7 warnings.filterwarnings( "ignore", message="invalid value encountered in divide" ) warnings.filterwarnings( "ignore", message="divide by zero encountered in divide" ) # python3.x warnings.filterwarnings( "ignore", message="invalid value encountered in true_divide" ) warnings.filterwarnings( "ignore", message="divide by zero encountered in true_divide" ) barCoords[:, 2] /= delta # allow devide by 0. return barCoords @cached_property() def _baricentric_matrix(self): """ cached barycentric matrix for faster calculations """ ab, ac = self.edges() # get norm vector TODO: replace by norm = self.norms() norm = np.cross(ab, ac) normLen = np.linalg.norm(norm, axis=1) normLen = normLen.reshape((1,) + normLen.shape) colinear_mask = normLen == 0 with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) # prevent divide by 0 norm[np.where(~colinear_mask.T)] = ( norm[np.where(~colinear_mask.T)] / normLen.T[np.where(~colinear_mask.T)] ) matrix = np.concatenate((ab, ac, norm), axis=1).reshape(ab.shape + (3,)) matrix = np.einsum("...ji", matrix) # transpose the inner matrix # invert matrix if possible # matrixI = np.linalg.inv(matrix) # one line variant without exception matrixI = [] for mat in matrix: try: matrixI.append(np.linalg.inv(mat)) except np.linalg.linalg.LinAlgError as e: if str(e) == "Singular matrix": warnings.warn( "Singular matrix: Could not invert matrix " "{0}. Return nan matrix.".format(str(mat).replace("\n", ",")) ) matrixI.append(np.full((3, 3), np.nan)) return np.array(matrixI) def _in_triangles(self, point, delta=0.0): """ Barycentric method to optain, wheter a point is in any of the triangles Args: point (list of len 3) delta (float / None): float: acceptance in +- norm vector direction None: accept the face with the minimum distance to the point Returns: np.array: boolean mask, True where point in a triangle within delta Examples: see tests/test_triangles_3d.py """ if self.ntriangles() == 0: return np.array([], dtype=bool) try: point = np.reshape(point, 3) except ValueError: raise ValueError( "point must be castable to shape 3 but is of shape {0}".format( point.shape ) ) # min_dist_method switch if delta is None if delta is None: delta = 1.0 min_dist_method = True else: min_dist_method = False u, v, w = self._baricentric(point, delta=delta).T if delta == 0.0: w[np.isnan(w)] = 0.0 # division by 0 in baricentric makes w = 0 nan. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="invalid value encountered in less_equal" ) barycentric_bools = ( ((v <= 1.0) & (v >= 0.0)) & ((u <= 1.0) & (u >= 0.0)) & ((v + u <= 1.0)) ) if all(~barycentric_bools): return barycentric_bools if min_dist_method: orthogonal_acceptance = np.full( barycentric_bools.shape, False, dtype=bool ) closest_indices = np.argmin(abs(w)[barycentric_bools]) # transform the indices to the whole array, not only the # barycentric_bools selection closest_indices = np.arange(len(barycentric_bools))[barycentric_bools][ closest_indices ] orthogonal_acceptance[closest_indices] = True else: orthogonal_acceptance = abs(w) <= 1 return np.array(barycentric_bools & orthogonal_acceptance) def in_triangles( self, tensors, delta: typing.Optional[float] = 0.0, assign_multiple: bool = False, ) -> typing.Union[typing.List[typing.List[int]], np.array]: """ Barycentric method to obtain, which tensors are containes in any of the triangles Args: tensors (Points3D instance) optional: delta: :obj:`float`: Normal distance to a triangle, that the points are concidered to be contained in the triangle. :obj:`None`: Find the minimum distance. Default is 0. assign_multiple: If True, one point may belong to multiple triangles at the same time. In the other case the first occurence will be True the other False Returns: list: [index(or indices if assign_multiple) of triangle for point in tensors] """ indices = np.full(tensors.shape[0], -1, dtype=int) if self.ntriangles() == 0: if assign_multiple: return [[-1] * len(indices)] else: return indices with tensors.tmp_transform(self.coord_sys): for i, point in enumerate(iter(tensors)): mask = self._in_triangles(point, delta) if np.any(mask): if assign_multiple: index = np.argwhere(mask == np.amax(mask)) index.flatten().tolist() indices.append(index) else: indices[i] = np.argmax(mask) else: if assign_multiple: indices.append([-1]) else: indices[i] = -1 return indices def _on_edges(self, point): """ Determine whether a point is on the edge / side ray of a triangle TODO: on_edges like in_triangles Returns: np.array: boolean mask which is true, if point is on one side ray of a triangle Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4]]); Corner points are found >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0,1,0]])), ... np.array([ True, True, False], dtype=bool)) Side points are found, too >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0.5,0,0.5]])), ... np.array([False, False, True], dtype=bool)) """ u, v, w = self._baricentric(point, 1.0).T orthogonal_acceptance = w == 0 # point should lie in triangle barycentric_bools = ( (((0.0 <= v) & (v <= 1.0)) & (u == 0.0)) | (((0.0 <= u) & (u <= 1.0)) & (v == 0.0)) | (v + u == 1.0) ) return np.array(barycentric_bools & orthogonal_acceptance) def _weights(self, weights, rigid=False): """ transformer method for weights inputs. Args: weights (np.ndarray | int | None): If weights is integer it will be used as index for fields and fields are used as weights. If weights is None it will Otherwise just pass the weights. Returns: TODO: Better docs """ # set weights to 1.0 if weights is None if weights is None: weights = np.ones(self.ntriangles()) return super(Triangles3D, self)._weights(weights, rigid=rigid)
(tensors, *fields, **kwargs)
21,438
tfields.triangles_3d
__getitem__
In addition to the usual, also slice fields Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors(np.array([range(30)] * 3).T) >>> triangles = tfields.Triangles3D(vectors, range(10)) >>> assert np.array_equal(triangles[3:6], ... [[3] * 3, ... [4] * 3, ... [5] * 3]) >>> assert triangles[3:6].fields[0][0] == 1
def __getitem__(self, index): """ In addition to the usual, also slice fields Examples: >>> import numpy as np >>> import tfields >>> vectors = tfields.Tensors(np.array([range(30)] * 3).T) >>> triangles = tfields.Triangles3D(vectors, range(10)) >>> assert np.array_equal(triangles[3:6], ... [[3] * 3, ... [4] * 3, ... [5] * 3]) >>> assert triangles[3:6].fields[0][0] == 1 """ item = super(tfields.TensorFields, self).__getitem__(index) try: # __iter__ will try except __getitem__(i) until IndexError if issubclass(type(item), Triangles3D): # block int, float, ... if len(item) % 3 != 0: item = tfields.Tensors(item) elif item.fields: # build triangle index / indices / mask when possible tri_index = None if isinstance(index, tuple): index = index[0] if isinstance(index, int): pass elif isinstance(index, slice): start = index.start or 0 stop = index.stop or len(self) step = index.step if start % 3 == 0 and (stop - start) % 3 == 0 and step is None: tri_index = slice(start // 3, stop // 3) else: try: tri_index = self._to_triangles_mask(index) except ValueError: pass # apply triangle index to fields if tri_index is not None: item.fields = [ field.__getitem__(tri_index) for field in item.fields ] else: item = tfields.Tensors(item) except IndexError as err: logging.warning( "Index error occured for field.__getitem__. Error message: %s", err ) return item
(self, index)
21,440
tfields.triangles_3d
__new__
null
def __new__(cls, tensors, *fields, **kwargs): kwargs["dim"] = 3 kwargs["rigid"] = False obj = super(Triangles3D, cls).__new__(cls, tensors, *fields, **kwargs) if not len(obj) % 3 == 0: warnings.warn( "Input object of size({0}) has no divider 3 and" " does not describe triangles.".format(len(obj)) ) return obj
(cls, tensors, *fields, **kwargs)
21,447
tfields.triangles_3d
_baricentric
Determine baricentric coordinates like [u,v,w] = [ab, ac, ab x ac]^-1 * ap where ax is vector from point a to point x Examples: empty Meshes return right formatted array >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([], faces=[]) >>> m.triangles()._baricentric(np.array([0.2, 0.2, 0])) array([], dtype=float64) >>> m2 = tfields.Mesh3D([[0,0,0], [2,0,0], [0,2,0], [0,0,2]], ... faces=[[0, 1, 2], [0, 2, 3]]); >>> assert np.array_equal( ... m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=2.), ... [[0.1, 0.1, 0.0], ... [0.1, 0.0, 0.1]]) if point lies in the plane, return np.nan, else inf for w if delta is exactly 0. >>> baric = m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=0.), >>> baric_expected = np.array([[0.1, 0.1, np.nan], ... [0.1, 0.0, np.inf]]) >>> assert ((baric == baric_expected) | (np.isnan(baric) & ... np.isnan(baric_expected))).all() Raises: If you define triangles that have colinear side vectors or in general lead to not invertable matrices [ab, ac, ab x ac] the values will be nan and a warning will be triggered: >>> import warnings >>> import numpy as np >>> import tfields >>> m3 = tfields.Mesh3D([[0,0,0], [2,0,0], [4,0,0], [0,1,0]], ... maps=[[[0, 1, 2], [0, 1, 3]]]); >>> with warnings.catch_warnings(record=True) as wrn: ... warnings.simplefilter("ignore") ... bc = m3.triangles()._baricentric(np.array([0.2, 0.2, 0]), delta=0.3) >>> bc_exp = np.array([[ np.nan, np.nan, np.nan], [ 0.1, 0.2, 0. ]]) >>> assert ((bc == bc_exp) | (np.isnan(bc) & ... np.isnan(bc_exp))).all() The warning would be: UserWarning('Singular matrix: Could not invert matrix ... ... [[ 2. 4. 0.], [ 0. 0. 0.], [ 0. 0. 0.]]. Return nan matrix.',) Returns: np.ndarray: barycentric coordinates u, v, w of point with respect to each triangle
def _baricentric(self, point, delta=0.0): """ Determine baricentric coordinates like [u,v,w] = [ab, ac, ab x ac]^-1 * ap where ax is vector from point a to point x Examples: empty Meshes return right formatted array >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([], faces=[]) >>> m.triangles()._baricentric(np.array([0.2, 0.2, 0])) array([], dtype=float64) >>> m2 = tfields.Mesh3D([[0,0,0], [2,0,0], [0,2,0], [0,0,2]], ... faces=[[0, 1, 2], [0, 2, 3]]); >>> assert np.array_equal( ... m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=2.), ... [[0.1, 0.1, 0.0], ... [0.1, 0.0, 0.1]]) if point lies in the plane, return np.nan, else inf for w if delta is exactly 0. >>> baric = m2.triangles()._baricentric(np.array([0.2, 0.2, 0]), ... delta=0.), >>> baric_expected = np.array([[0.1, 0.1, np.nan], ... [0.1, 0.0, np.inf]]) >>> assert ((baric == baric_expected) | (np.isnan(baric) & ... np.isnan(baric_expected))).all() Raises: If you define triangles that have colinear side vectors or in general lead to not invertable matrices [ab, ac, ab x ac] the values will be nan and a warning will be triggered: >>> import warnings >>> import numpy as np >>> import tfields >>> m3 = tfields.Mesh3D([[0,0,0], [2,0,0], [4,0,0], [0,1,0]], ... maps=[[[0, 1, 2], [0, 1, 3]]]); >>> with warnings.catch_warnings(record=True) as wrn: ... warnings.simplefilter("ignore") ... bc = m3.triangles()._baricentric(np.array([0.2, 0.2, 0]), delta=0.3) >>> bc_exp = np.array([[ np.nan, np.nan, np.nan], [ 0.1, 0.2, 0. ]]) >>> assert ((bc == bc_exp) | (np.isnan(bc) & ... np.isnan(bc_exp))).all() The warning would be: UserWarning('Singular matrix: Could not invert matrix ... ... [[ 2. 4. 0.], [ 0. 0. 0.], [ 0. 0. 0.]]. Return nan matrix.',) Returns: np.ndarray: barycentric coordinates u, v, w of point with respect to each triangle """ if self.ntriangles() == 0: return np.array([]) a, _, _ = self.corners() ap = point - a # matrix vector product for matrices and vectors barCoords = np.einsum("...ji,...i", self._baricentric_matrix, ap) with warnings.catch_warnings(): # python2.7 warnings.filterwarnings( "ignore", message="invalid value encountered in divide" ) warnings.filterwarnings( "ignore", message="divide by zero encountered in divide" ) # python3.x warnings.filterwarnings( "ignore", message="invalid value encountered in true_divide" ) warnings.filterwarnings( "ignore", message="divide by zero encountered in true_divide" ) barCoords[:, 2] /= delta # allow devide by 0. return barCoords
(self, point, delta=0.0)
21,450
tfields.triangles_3d
_in_triangles
Barycentric method to optain, wheter a point is in any of the triangles Args: point (list of len 3) delta (float / None): float: acceptance in +- norm vector direction None: accept the face with the minimum distance to the point Returns: np.array: boolean mask, True where point in a triangle within delta Examples: see tests/test_triangles_3d.py
def _in_triangles(self, point, delta=0.0): """ Barycentric method to optain, wheter a point is in any of the triangles Args: point (list of len 3) delta (float / None): float: acceptance in +- norm vector direction None: accept the face with the minimum distance to the point Returns: np.array: boolean mask, True where point in a triangle within delta Examples: see tests/test_triangles_3d.py """ if self.ntriangles() == 0: return np.array([], dtype=bool) try: point = np.reshape(point, 3) except ValueError: raise ValueError( "point must be castable to shape 3 but is of shape {0}".format( point.shape ) ) # min_dist_method switch if delta is None if delta is None: delta = 1.0 min_dist_method = True else: min_dist_method = False u, v, w = self._baricentric(point, delta=delta).T if delta == 0.0: w[np.isnan(w)] = 0.0 # division by 0 in baricentric makes w = 0 nan. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="invalid value encountered in less_equal" ) barycentric_bools = ( ((v <= 1.0) & (v >= 0.0)) & ((u <= 1.0) & (u >= 0.0)) & ((v + u <= 1.0)) ) if all(~barycentric_bools): return barycentric_bools if min_dist_method: orthogonal_acceptance = np.full( barycentric_bools.shape, False, dtype=bool ) closest_indices = np.argmin(abs(w)[barycentric_bools]) # transform the indices to the whole array, not only the # barycentric_bools selection closest_indices = np.arange(len(barycentric_bools))[barycentric_bools][ closest_indices ] orthogonal_acceptance[closest_indices] = True else: orthogonal_acceptance = abs(w) <= 1 return np.array(barycentric_bools & orthogonal_acceptance)
(self, point, delta=0.0)
21,452
tfields.triangles_3d
_on_edges
Determine whether a point is on the edge / side ray of a triangle TODO: on_edges like in_triangles Returns: np.array: boolean mask which is true, if point is on one side ray of a triangle Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4]]); Corner points are found >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0,1,0]])), ... np.array([ True, True, False], dtype=bool)) Side points are found, too >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0.5,0,0.5]])), ... np.array([False, False, True], dtype=bool))
def _on_edges(self, point): """ Determine whether a point is on the edge / side ray of a triangle TODO: on_edges like in_triangles Returns: np.array: boolean mask which is true, if point is on one side ray of a triangle Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4]]); Corner points are found >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0,1,0]])), ... np.array([ True, True, False], dtype=bool)) Side points are found, too >>> assert np.array_equal( ... m.triangles()._on_edges(tfields.Points3D([[0.5,0,0.5]])), ... np.array([False, False, True], dtype=bool)) """ u, v, w = self._baricentric(point, 1.0).T orthogonal_acceptance = w == 0 # point should lie in triangle barycentric_bools = ( (((0.0 <= v) & (v <= 1.0)) & (u == 0.0)) | (((0.0 <= u) & (u <= 1.0)) & (v == 0.0)) | (v + u == 1.0) ) return np.array(barycentric_bools & orthogonal_acceptance)
(self, point)
21,456
tfields.triangles_3d
_save_stl
Save the object to a stl file
def _save_stl(self, path, **kwargs): """ Save the object to a stl file """ import stl shape = stl.Mesh(np.zeros(self.ntriangles(), dtype=stl.Mesh.dtype)) shape.vectors = self.bulk.reshape((self.ntriangles(), 3, 3)) shape.save(path, **kwargs)
(self, path, **kwargs)
21,458
tfields.triangles_3d
_to_triangles_mask
null
def _to_triangles_mask(self, mask): mask = np.array(mask) mask = mask.reshape((self.ntriangles(), 3)) mask = mask.all(axis=1) return mask
(self, mask)
21,459
tfields.triangles_3d
_weights
transformer method for weights inputs. Args: weights (np.ndarray | int | None): If weights is integer it will be used as index for fields and fields are used as weights. If weights is None it will Otherwise just pass the weights. Returns: TODO: Better docs
def _weights(self, weights, rigid=False): """ transformer method for weights inputs. Args: weights (np.ndarray | int | None): If weights is integer it will be used as index for fields and fields are used as weights. If weights is None it will Otherwise just pass the weights. Returns: TODO: Better docs """ # set weights to 1.0 if weights is None if weights is None: weights = np.ones(self.ntriangles()) return super(Triangles3D, self)._weights(weights, rigid=rigid)
(self, weights, rigid=False)
21,460
tfields.triangles_3d
areas
Calculate area with "heron's formula" Args: transform (np.ndarray): optional transformation matrix The triangle points are transformed with transform if given before calclulating the area Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[1,0,0], [0,0,1], [0,0,0]], ... faces=[[0, 1, 2]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [0,0,0], [0,0,1]], ... faces=[[0, 1, 2], [1, 2, 3]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [1,1,0], [0,0,1], [1,0,1]], ... faces=[[0, 1, 2], [0, 3, 4]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5]))
def areas(self, transform=None): """ Calculate area with "heron's formula" Args: transform (np.ndarray): optional transformation matrix The triangle points are transformed with transform if given before calclulating the area Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[1,0,0], [0,0,1], [0,0,0]], ... faces=[[0, 1, 2]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [0,0,0], [0,0,1]], ... faces=[[0, 1, 2], [1, 2, 3]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5])) >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [1,1,0], [0,0,1], [1,0,1]], ... faces=[[0, 1, 2], [0, 3, 4]]) >>> assert np.allclose(m.triangles().areas(), np.array([0.5, 0.5])) """ if transform is None: return self._areas else: indices = range(self.ntriangles()) aIndices = [i * 3 for i in indices] bIndices = [i * 3 + 1 for i in indices] cIndices = [i * 3 + 2 for i in indices] # define 3 vectors building the triangle, transform it back and take their norm if not np.array_equal(transform, np.eye(3)): a = np.linalg.norm( np.linalg.solve( transform.T, (self[aIndices, :] - self[bIndices, :]).T ), axis=0, ) b = np.linalg.norm( np.linalg.solve( transform.T, (self[aIndices, :] - self[cIndices, :]).T ), axis=0, ) c = np.linalg.norm( np.linalg.solve( transform.T, (self[bIndices, :] - self[cIndices, :]).T ), axis=0, ) else: a = np.linalg.norm(self[aIndices, :] - self[bIndices, :], axis=1) b = np.linalg.norm(self[aIndices, :] - self[cIndices, :], axis=1) c = np.linalg.norm(self[bIndices, :] - self[cIndices, :], axis=1) # sort by length for numerical stability lengths = np.concatenate( (a.reshape(-1, 1), b.reshape(-1, 1), c.reshape(-1, 1)), axis=1 ) lengths.sort() a, b, c = lengths.T return 0.25 * np.sqrt( (a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c)) )
(self, transform=None)
21,461
tfields.triangles_3d
centroids
Returns: :func:`~tfields.Triangles3D._centroids` Examples: >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert m.triangles().centroids().equal( ... [[1./3, 1./3, 0.], ... [-1./3, 1./3, 0.], ... [0., 0., 1./3], ... [1./3, 1./3, 1./3]])
def centroids(self): """ Returns: :func:`~tfields.Triangles3D._centroids` Examples: >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert m.triangles().centroids().equal( ... [[1./3, 1./3, 0.], ... [-1./3, 1./3, 0.], ... [0., 0., 1./3], ... [1./3, 1./3, 1./3]]) """ return self._centroids
(self)
21,462
tfields.triangles_3d
circumcenters
Semi baricentric method to calculate circumcenter points of the triangles Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert np.allclose( ... m.triangles().circumcenters(), ... [[0.5, 0.5, 0.0], ... [-0.5, 0.5, 0.0], ... [0.0, 0.0, 0.0], ... [1.0 / 3, 1.0 / 3, 1.0 / 3]])
def circumcenters(self): """ Semi baricentric method to calculate circumcenter points of the triangles Examples: >>> import numpy as np >>> import tfields >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [-1,0,0], [0,1,0], [0,0,1]], ... faces=[[0, 1, 3],[0, 2, 3],[1,2,4], [1, 3, 4]]); >>> assert np.allclose( ... m.triangles().circumcenters(), ... [[0.5, 0.5, 0.0], ... [-0.5, 0.5, 0.0], ... [0.0, 0.0, 0.0], ... [1.0 / 3, 1.0 / 3, 1.0 / 3]]) """ pointA, pointB, pointC = self.corners() a = np.linalg.norm( pointC - pointB, axis=1 ) # side length of side opposite to pointA b = np.linalg.norm(pointC - pointA, axis=1) c = np.linalg.norm(pointB - pointA, axis=1) bary1 = a**2 * (b**2 + c**2 - a**2) bary2 = b**2 * (a**2 + c**2 - b**2) bary3 = c**2 * (a**2 + b**2 - c**2) matrices = np.concatenate((pointA, pointB, pointC), axis=1).reshape( pointA.shape + (3,) ) # transpose the inner matrix matrices = np.einsum("...ji", matrices) vectors = np.array((bary1, bary2, bary3)).T # matrix vector product for matrices and vectors P = np.einsum("...ji,...i", matrices, vectors) P /= vectors.sum(axis=1).reshape((len(vectors), 1)) return tfields.Points3D(P)
(self)
21,466
tfields.triangles_3d
corners
Returns: three np.arrays with corner points of triangles
def corners(self): """ Returns: three np.arrays with corner points of triangles """ indices = range(self.ntriangles()) aIndices = [i * 3 for i in indices] bIndices = [i * 3 + 1 for i in indices] cIndices = [i * 3 + 2 for i in indices] a = self.bulk[aIndices, :] b = self.bulk[bIndices, :] c = self.bulk[cIndices, :] return a, b, c
(self)
21,468
tfields.triangles_3d
cut
Default cut method for Triangles3D Examples: >>> import sympy >>> import numpy as np >>> import tfields >>> x, y, z = sympy.symbols('x y z') >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1, 0, -1], [0, 1, -1], ... [-5, -5, -5], [1, 0, -1], [0, 1, -1]]) >>> tc = t.cut(x >= 0) >>> assert tc.equal(tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) >>> t.fields.append(tfields.Tensors([1,2,3])) >>> tc2 = t.cut(x >= 0) >>> assert np.array_equal(tc2.fields[-1], np.array([2.]))
def cut(self, expression, coord_sys=None): """ Default cut method for Triangles3D Examples: >>> import sympy >>> import numpy as np >>> import tfields >>> x, y, z = sympy.symbols('x y z') >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1, 0, -1], [0, 1, -1], ... [-5, -5, -5], [1, 0, -1], [0, 1, -1]]) >>> tc = t.cut(x >= 0) >>> assert tc.equal(tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) >>> t.fields.append(tfields.Tensors([1,2,3])) >>> tc2 = t.cut(x >= 0) >>> assert np.array_equal(tc2.fields[-1], np.array([2.])) """ # mask = self.evalf(expression, coord_sys=coord_sys) # inst = self[mask].copy() # return inst return super().cut(expression, coord_sys)
(self, expression, coord_sys=None)
21,471
tfields.triangles_3d
edges
Retrieve two of the three edge vectors Returns: two np.ndarrays: vectors ab and ac, where a, b, c are corners (see self.corners)
def edges(self): """ Retrieve two of the three edge vectors Returns: two np.ndarrays: vectors ab and ac, where a, b, c are corners (see self.corners) """ a, b, c = self.corners() ab = b - a ac = c - a return ab, ac
(self)
21,474
tfields.triangles_3d
evalf
Triangle3D implementation Examples: >>> from sympy.abc import x >>> import numpy as np >>> import tfields >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1,0,-1], [0,1,-1], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> mask = t.evalf(x >= 0) >>> assert np.array_equal(t[mask], ... tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) Returns: np.array: mask which is True, where expression evaluates True
def evalf(self, expression=None, coord_sys=None): """ Triangle3D implementation Examples: >>> from sympy.abc import x >>> import numpy as np >>> import tfields >>> t = tfields.Triangles3D([[1., 2., 3.], [-4., 5., 6.], [1, 2, -6], ... [5, -5, -5], [1,0,-1], [0,1,-1], ... [-5, -5, -5], [1,0,-1], [0,1,-1]]) >>> mask = t.evalf(x >= 0) >>> assert np.array_equal(t[mask], ... tfields.Triangles3D([[ 5., -5., -5.], ... [ 1., 0., -1.], ... [ 0., 1., -1.]])) Returns: np.array: mask which is True, where expression evaluates True """ mask = super(Triangles3D, self).evalf(expression, coord_sys=coord_sys) mask = self._to_triangles_mask(mask) mask = np.array([mask] * 3).T.reshape((len(self))) return mask
(self, expression=None, coord_sys=None)
21,475
tfields.triangles_3d
in_triangles
Barycentric method to obtain, which tensors are containes in any of the triangles Args: tensors (Points3D instance) optional: delta: :obj:`float`: Normal distance to a triangle, that the points are concidered to be contained in the triangle. :obj:`None`: Find the minimum distance. Default is 0. assign_multiple: If True, one point may belong to multiple triangles at the same time. In the other case the first occurence will be True the other False Returns: list: [index(or indices if assign_multiple) of triangle for point in tensors]
def in_triangles( self, tensors, delta: typing.Optional[float] = 0.0, assign_multiple: bool = False, ) -> typing.Union[typing.List[typing.List[int]], np.array]: """ Barycentric method to obtain, which tensors are containes in any of the triangles Args: tensors (Points3D instance) optional: delta: :obj:`float`: Normal distance to a triangle, that the points are concidered to be contained in the triangle. :obj:`None`: Find the minimum distance. Default is 0. assign_multiple: If True, one point may belong to multiple triangles at the same time. In the other case the first occurence will be True the other False Returns: list: [index(or indices if assign_multiple) of triangle for point in tensors] """ indices = np.full(tensors.shape[0], -1, dtype=int) if self.ntriangles() == 0: if assign_multiple: return [[-1] * len(indices)] else: return indices with tensors.tmp_transform(self.coord_sys): for i, point in enumerate(iter(tensors)): mask = self._in_triangles(point, delta) if np.any(mask): if assign_multiple: index = np.argwhere(mask == np.amax(mask)) index.flatten().tolist() indices.append(index) else: indices[i] = np.argmax(mask) else: if assign_multiple: indices.append([-1]) else: indices[i] = -1 return indices
(self, tensors, delta: Optional[float] = 0.0, assign_multiple: bool = False) -> Union[List[List[int]], <built-in function array>]