index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
17,815
imodels.rule_set.rule_set
RuleSet
null
class RuleSet: def _extract_rules(self, X, y): pass def _score_rules(self, X, y, rules): pass def _prune_rules(self, rules): pass def _eval_weighted_rule_sum(self, X) -> np.ndarray: check_is_fitted(self, ['rules_without_feature_names_', 'n_features_', 'feature_placeholders']) X = check_array(X) if X.shape[1] != self.n_features_: raise ValueError("X.shape[1] = %d should be equal to %d, the number of features at training time." " Please reshape your data." % (X.shape[1], self.n_features_)) df = pd.DataFrame(X, columns=self.feature_placeholders) selected_rules = self.rules_without_feature_names_ scores = np.zeros(X.shape[0]) for r in selected_rules: features_r_uses = list(map(lambda x: x[0], r.agg_dict.keys())) scores[df[features_r_uses].query(str(r)).index.values] += r.args[0] return scores def _get_complexity(self): check_is_fitted(self, ['rules_without_feature_names_']) return sum([len(rule.agg_dict) for rule in self.rules_without_feature_names_])
()
17,821
imodels.algebraic.slim
SLIMClassifier
null
class SLIMClassifier(BaseEstimator, ClassifierMixin): def __init__(self, alpha=1): '''Model is initialized during fitting Params ------ alpha: float weight for sparsity penalty ''' self.alpha = alpha def fit(self, X, y, sample_weight=None): '''fit a logistic model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample ''' X, y = check_X_y(X, y) check_classification_targets(y) self.n_features_in_ = X.shape[1] self.classes_, y = np.unique(y, return_inverse=True) # deals with str inputs self.model_ = LogisticRegression() self.model_.classes_ = self.classes_ try: import cvxpy as cp # package for optimization, import here to make it optional from cvxpy.error import SolverError # declare the integer-valued optimization variable w = cp.Variable(X.shape[1], integer=True) # set up the minimization problem logits = -X @ w residuals = cp.multiply(1 - y, logits) - cp.logistic(logits) if sample_weight is not None: residuals = cp.multiply(sample_weight, residuals) celoss = -cp.sum(residuals) l1_penalty = self.alpha * cp.norm(w, 1) obj = cp.Minimize(celoss + l1_penalty) prob = cp.Problem(obj) try: # solve the problem using an appropriate solver prob.solve() self.model_.coef_ = np.array([w.value.astype(int)]) self.model_.intercept_ = 0 except SolverError: warnings.warn("mosek solver required for mixed-integer exponential cone " "programming. Rounding non-integer coefficients instead") self._fit_backup(X, y, sample_weight) except ImportError: warnings.warn("Should install cvxpy with pip install cvxpy. Rounding non-integer " "coefficients instead.") self._fit_backup(X, y, sample_weight) return self def _fit_backup(self, X, y, sample_weight=None): m = LogisticRegression(C=1 / self.alpha) m.fit(X, y, sample_weight=sample_weight) self.model_.coef_ = np.round(m.coef_).astype(int) self.model_.intercept_ = m.intercept_ def predict(self, X): check_is_fitted(self) X = check_array(X) return self.model_.predict(X) def predict_proba(self, X): check_is_fitted(self) X = check_array(X) return self.model_.predict_proba(X)
(alpha=1)
17,823
imodels.algebraic.slim
__init__
Model is initialized during fitting Params ------ alpha: float weight for sparsity penalty
def __init__(self, alpha=1): '''Model is initialized during fitting Params ------ alpha: float weight for sparsity penalty ''' self.alpha = alpha
(self, alpha=1)
17,829
imodels.algebraic.slim
_fit_backup
null
def _fit_backup(self, X, y, sample_weight=None): m = LogisticRegression(C=1 / self.alpha) m.fit(X, y, sample_weight=sample_weight) self.model_.coef_ = np.round(m.coef_).astype(int) self.model_.intercept_ = m.intercept_
(self, X, y, sample_weight=None)
17,838
imodels.algebraic.slim
fit
fit a logistic model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample
def fit(self, X, y, sample_weight=None): '''fit a logistic model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample ''' X, y = check_X_y(X, y) check_classification_targets(y) self.n_features_in_ = X.shape[1] self.classes_, y = np.unique(y, return_inverse=True) # deals with str inputs self.model_ = LogisticRegression() self.model_.classes_ = self.classes_ try: import cvxpy as cp # package for optimization, import here to make it optional from cvxpy.error import SolverError # declare the integer-valued optimization variable w = cp.Variable(X.shape[1], integer=True) # set up the minimization problem logits = -X @ w residuals = cp.multiply(1 - y, logits) - cp.logistic(logits) if sample_weight is not None: residuals = cp.multiply(sample_weight, residuals) celoss = -cp.sum(residuals) l1_penalty = self.alpha * cp.norm(w, 1) obj = cp.Minimize(celoss + l1_penalty) prob = cp.Problem(obj) try: # solve the problem using an appropriate solver prob.solve() self.model_.coef_ = np.array([w.value.astype(int)]) self.model_.intercept_ = 0 except SolverError: warnings.warn("mosek solver required for mixed-integer exponential cone " "programming. Rounding non-integer coefficients instead") self._fit_backup(X, y, sample_weight) except ImportError: warnings.warn("Should install cvxpy with pip install cvxpy. Rounding non-integer " "coefficients instead.") self._fit_backup(X, y, sample_weight) return self
(self, X, y, sample_weight=None)
17,841
imodels.algebraic.slim
predict
null
def predict(self, X): check_is_fitted(self) X = check_array(X) return self.model_.predict(X)
(self, X)
17,842
imodels.algebraic.slim
predict_proba
null
def predict_proba(self, X): check_is_fitted(self) X = check_array(X) return self.model_.predict_proba(X)
(self, X)
17,847
imodels.algebraic.slim
SLIMRegressor
Sparse integer linear model Params ------ alpha: float weight for sparsity penalty
class SLIMRegressor(BaseEstimator, RegressorMixin): '''Sparse integer linear model Params ------ alpha: float weight for sparsity penalty ''' def __init__(self, alpha=0.01): self.alpha = alpha def fit(self, X, y, sample_weight=None): '''fit a linear model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample ''' X, y = check_X_y(X, y) self.n_features_in_ = X.shape[1] self.model_ = LinearRegression() try: import cvxpy as cp # package for optimization, import here to make it optional from cvxpy.error import SolverError # declare the integer-valued optimization variable w = cp.Variable(X.shape[1], integer=True) # set up the minimization problem residuals = X @ w - y if sample_weight is not None: residuals = cp.multiply(sample_weight, residuals) mse = cp.sum_squares(residuals) l1_penalty = self.alpha * cp.norm(w, 1) obj = cp.Minimize(mse + l1_penalty) prob = cp.Problem(obj) try: # solve the problem using an appropriate solver prob.solve() self.model_.coef_ = w.value.astype(int) self.model_.intercept_ = 0 except SolverError: warnings.warn("gurobi, mosek, or cplex solver required for mixed-integer " "quadratic programming. Rounding non-integer coefficients instead.") self._fit_backup(X, y, sample_weight) except ImportError: warnings.warn("Should install cvxpy with pip install cvxpy. Rounding non-integer " "coefficients instead.") self._fit_backup(X, y, sample_weight) return self def _fit_backup(self, X, y, sample_weight): m = Lasso(alpha=self.alpha) m.fit(X, y, sample_weight=sample_weight) self.model_.coef_ = np.round(m.coef_).astype(int) self.model_.intercept_ = m.intercept_ def predict(self, X): check_is_fitted(self) X = check_array(X) return self.model_.predict(X)
(alpha=0.01)
17,849
imodels.algebraic.slim
__init__
null
def __init__(self, alpha=0.01): self.alpha = alpha
(self, alpha=0.01)
17,855
imodels.algebraic.slim
_fit_backup
null
def _fit_backup(self, X, y, sample_weight): m = Lasso(alpha=self.alpha) m.fit(X, y, sample_weight=sample_weight) self.model_.coef_ = np.round(m.coef_).astype(int) self.model_.intercept_ = m.intercept_
(self, X, y, sample_weight)
17,864
imodels.algebraic.slim
fit
fit a linear model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample
def fit(self, X, y, sample_weight=None): '''fit a linear model with integer coefficient and L1 regularization. In case the optimization fails, fit lasso and round coefs. Params ------ _sample_weight: np.ndarray (n,), optional weight for each individual sample ''' X, y = check_X_y(X, y) self.n_features_in_ = X.shape[1] self.model_ = LinearRegression() try: import cvxpy as cp # package for optimization, import here to make it optional from cvxpy.error import SolverError # declare the integer-valued optimization variable w = cp.Variable(X.shape[1], integer=True) # set up the minimization problem residuals = X @ w - y if sample_weight is not None: residuals = cp.multiply(sample_weight, residuals) mse = cp.sum_squares(residuals) l1_penalty = self.alpha * cp.norm(w, 1) obj = cp.Minimize(mse + l1_penalty) prob = cp.Problem(obj) try: # solve the problem using an appropriate solver prob.solve() self.model_.coef_ = w.value.astype(int) self.model_.intercept_ = 0 except SolverError: warnings.warn("gurobi, mosek, or cplex solver required for mixed-integer " "quadratic programming. Rounding non-integer coefficients instead.") self._fit_backup(X, y, sample_weight) except ImportError: warnings.warn("Should install cvxpy with pip install cvxpy. Rounding non-integer " "coefficients instead.") self._fit_backup(X, y, sample_weight) return self
(self, X, y, sample_weight=None)
17,872
imodels.rule_set.skope_rules
SkopeRulesClassifier
An easy-interpretable classifier optimizing simple logical rules. Parameters ---------- feature_names : list of str, optional The names of each feature to be used for returning rules in string format. precision_min : float, optional (default=0.5) The minimal precision of a rule to be selected. recall_min : float, optional (default=0.01) The minimal recall of a rule to be selected. n_estimators : int, optional (default=10) The number of base estimators (rules) to use for prediction. More are built before selection. All are available in the estimators_ attribute. max_samples : int or float, optional (default=.8) The number of samples to draw from X to train each decision tree, from which rules are generated and selected. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. If max_samples is larger than the number of samples provided, all samples will be used for all trees (no sampling). max_samples_features : int or float, optional (default=1.0) The number of features to draw from X to train each decision tree, from which rules are generated and selected. - If int, then draw `max_features` features. - If float, then draw `max_features * X.shape[1]` features. bootstrap : boolean, optional (default=False) Whether samples are drawn with replacement. bootstrap_features : boolean, optional (default=False) Whether features are drawn with replacement. max_depth : integer or List or None, optional (default=3) The maximum depth of the decision trees. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. If an iterable is passed, you will train n_estimators for each tree depth. It allows you to create and compare rules of different length. max_depth_duplication : integer, optional (default=None) The maximum depth of the decision tree for rule deduplication, if None then no deduplication occurs. max_features : int, float, string or None, optional (default="auto") The number of features considered (by each decision tree) when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node for each decision tree. - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional - If int, random_state is the seed used by the random number generator. - If RandomState instance, random_state is the random number generator. - If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. Attributes ---------- rules_ : dict of tuples (rule, precision, recall, nb). The collection of `n_estimators` rules used in the ``predict`` method. The rules are generated by fitted sub-estimators (decision trees). Each rule satisfies recall_min and precision_min conditions. The selection is done according to OOB precisions. estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators used to generate candidate rules. estimators_samples_ : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. estimators_features_ : list of arrays The subset of drawn features for each base estimator. max_samples_ : integer The actual number of samples n_features_ : integer The number of features when ``fit`` is performed. classes_ : array, shape (n_classes,) The classes labels.
class SkopeRulesClassifier(BaseEstimator, RuleSet, ClassifierMixin): """An easy-interpretable classifier optimizing simple logical rules. Parameters ---------- feature_names : list of str, optional The names of each feature to be used for returning rules in string format. precision_min : float, optional (default=0.5) The minimal precision of a rule to be selected. recall_min : float, optional (default=0.01) The minimal recall of a rule to be selected. n_estimators : int, optional (default=10) The number of base estimators (rules) to use for prediction. More are built before selection. All are available in the estimators_ attribute. max_samples : int or float, optional (default=.8) The number of samples to draw from X to train each decision tree, from which rules are generated and selected. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. If max_samples is larger than the number of samples provided, all samples will be used for all trees (no sampling). max_samples_features : int or float, optional (default=1.0) The number of features to draw from X to train each decision tree, from which rules are generated and selected. - If int, then draw `max_features` features. - If float, then draw `max_features * X.shape[1]` features. bootstrap : boolean, optional (default=False) Whether samples are drawn with replacement. bootstrap_features : boolean, optional (default=False) Whether features are drawn with replacement. max_depth : integer or List or None, optional (default=3) The maximum depth of the decision trees. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. If an iterable is passed, you will train n_estimators for each tree depth. It allows you to create and compare rules of different length. max_depth_duplication : integer, optional (default=None) The maximum depth of the decision tree for rule deduplication, if None then no deduplication occurs. max_features : int, float, string or None, optional (default="auto") The number of features considered (by each decision tree) when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node for each decision tree. - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional - If int, random_state is the seed used by the random number generator. - If RandomState instance, random_state is the random number generator. - If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. Attributes ---------- rules_ : dict of tuples (rule, precision, recall, nb). The collection of `n_estimators` rules used in the ``predict`` method. The rules are generated by fitted sub-estimators (decision trees). Each rule satisfies recall_min and precision_min conditions. The selection is done according to OOB precisions. estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators used to generate candidate rules. estimators_samples_ : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. estimators_features_ : list of arrays The subset of drawn features for each base estimator. max_samples_ : integer The actual number of samples n_features_ : integer The number of features when ``fit`` is performed. classes_ : array, shape (n_classes,) The classes labels. """ def __init__(self, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=.8, max_samples_features=.8, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1., min_samples_split=2, n_jobs=1, random_state=None, verbose=0): self.precision_min = precision_min self.recall_min = recall_min self.n_estimators = n_estimators self.max_samples = max_samples self.max_samples_features = max_samples_features self.bootstrap = bootstrap self.bootstrap_features = bootstrap_features self.max_depth = max_depth self.max_depth_duplication = max_depth_duplication self.max_features = max_features self.min_samples_split = min_samples_split self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose def fit(self, X, y, feature_names=None, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Has to follow the convention 0 for normal data, 1 for anomalies. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples, typically the amount in case of transactions data. Used to grow regression trees producing further rules to be tested. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) check_classification_targets(y) self.n_features_ = X.shape[1] self.sample_weight = sample_weight self.classes_ = unique_labels(y) n_classes = len(self.classes_) if n_classes < 2: raise ValueError( "This method needs samples of at least 2 classes in the data, but the data contains only one class: %r" % self.classes_[0] ) if not isinstance(self.max_depth_duplication, int) and self.max_depth_duplication is not None: raise ValueError("max_depth_duplication should be an integer") if not set(self.classes_) == {0, 1}: warn( "Found labels %s. This method assumes target class to be labeled as 1 and normal data to be labeled as " "0. Any label different from 0 will be considered as being from the target class." % set(self.classes_) ) y = (y > 0) # ensure that max_samples is in [1, n_samples]: n_samples = X.shape[0] if isinstance(self.max_samples, six.string_types): raise ValueError( 'max_samples (%s) is not supported. Valid choices are: "auto", int or float' % self.max_samples ) elif isinstance(self.max_samples, INTEGER_TYPES): if self.max_samples > n_samples: warn( "max_samples (%s) is greater than the total number of samples (%s). max_samples will be set " "to n_samples for estimation." % (self.max_samples, n_samples) ) max_samples = n_samples else: max_samples = self.max_samples else: # float if not (0. < self.max_samples <= 1.): raise ValueError("max_samples must be in (0, 1], got %r" % self.max_samples) max_samples = int(self.max_samples * X.shape[0]) self.max_samples_ = max_samples self.feature_dict_ = get_feature_dict(X.shape[1], feature_names) self.feature_placeholders = np.array(list(self.feature_dict_.keys())) self.feature_names = np.array(list(self.feature_dict_.values())) extracted_rules, self.estimators_samples_, self.estimators_features_ = self._extract_rules(X, y) scored_rules = self._score_rules(X, y, extracted_rules) self.rules_ = self._prune_rules(scored_rules) self.rules_without_feature_names_ = self.rules_ self.rules_ = [ replace_feature_name(rule, self.feature_dict_) for rule in self.rules_ ] self.complexity_ = self._get_complexity() return self def predict(self, X) -> np.ndarray: """Predict if a particular sample is an outlier or not. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules. """ X = check_array(X) return np.argmax(self.predict_proba(X), axis=1) def predict_proba(self, X) -> np.ndarray: '''Predict probability of a particular sample being an outlier or not ''' X = check_array(X) weight_sum = np.sum([w[0] for (r, w) in self.rules_without_feature_names_]) if weight_sum == 0: return np.vstack((np.ones(X.shape[0]), np.zeros(X.shape[0]))).transpose() y = self._eval_weighted_rule_sum(X) / weight_sum return np.vstack((1 - y, y)).transpose() def _rules_vote(self, X) -> np.ndarray: """Score representing a vote of the base classifiers (rules). The score of an input sample is computed as the sum of the binary rules outputs: a score of k means than k rules have voted positively. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. The higher, the more abnormal. Positive scores represent outliers, null scores represent inliers. """ # Check if fit had been called check_is_fitted(self, ['rules_', 'estimators_samples_', 'max_samples_']) # Input validation X = check_array(X) if X.shape[1] != self.n_features_: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time." " Please reshape your data." % (X.shape[1], self.n_features_)) df = pandas.DataFrame(X, columns=self.feature_placeholders) selected_rules = self.rules_without_feature_names_ scores = np.zeros(X.shape[0]) for (r, _) in selected_rules: scores[list(df.query(r).index)] += 1 return scores def _score_top_rules(self, X) -> np.ndarray: """Score representing an ordering between the base classifiers (rules). The score is high when the instance is detected by a performing rule. If there are n rules, ordered by increasing OOB precision, a score of k means than the kth rule has voted positively, but not the (k-1) first rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. Positive scores represent outliers, null scores represent inliers. """ # Check if fit had been called check_is_fitted(self, ['rules_', 'estimators_samples_', 'max_samples_']) # Input validation X = check_array(X) if X.shape[1] != self.n_features_: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time." " Please reshape your data." % (X.shape[1], self.n_features_)) df = pandas.DataFrame(X, columns=self.feature_placeholders) selected_rules = self.rules_without_feature_names_ scores = np.zeros(X.shape[0]) for (k, r) in enumerate(list((selected_rules))): scores[list(df.query(r.rule).index)] = np.maximum( len(selected_rules) - k, scores[list(df.query(r.rule).index)]) return scores def _predict_top_rules(self, X, n_rules) -> np.ndarray: """Predict if a particular sample is an outlier or not, using the n_rules most performing rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` n_rules : int The number of rules used for the prediction. If one of the n_rules most performing rules is activated, the prediction is equal to 1. Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules. """ return np.array((self._score_top_rules(X) > len(self.rules_) - n_rules), dtype=int) def _extract_rules(self, X, y) -> Tuple[List[str], List[np.array], List[np.array]]: return extract_skope(X, y, feature_names=self.feature_placeholders, sample_weight=self.sample_weight, n_estimators=self.n_estimators, max_samples=self.max_samples_, max_samples_features=self.max_samples_features, bootstrap=self.bootstrap, bootstrap_features=self.bootstrap_features, max_depths=self.max_depth, max_features=self.max_features, min_samples_split=self.min_samples_split, n_jobs=self.n_jobs, random_state=self.random_state, verbose=self.verbose) def _score_rules(self, X, y, rules) -> List[Rule]: return score_precision_recall(X, y, rules, self.estimators_samples_, self.estimators_features_, self.feature_placeholders) def _prune_rules(self, rules) -> List[Rule]: return deduplicate( prune_mins(rules, self.precision_min, self.recall_min), self.max_depth_duplication )
(precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=0.8, max_samples_features=0.8, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1.0, min_samples_split=2, n_jobs=1, random_state=None, verbose=0)
17,874
imodels.rule_set.skope_rules
__init__
null
def __init__(self, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=.8, max_samples_features=.8, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1., min_samples_split=2, n_jobs=1, random_state=None, verbose=0): self.precision_min = precision_min self.recall_min = recall_min self.n_estimators = n_estimators self.max_samples = max_samples self.max_samples_features = max_samples_features self.bootstrap = bootstrap self.bootstrap_features = bootstrap_features self.max_depth = max_depth self.max_depth_duplication = max_depth_duplication self.max_features = max_features self.min_samples_split = min_samples_split self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose
(self, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=0.8, max_samples_features=0.8, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1.0, min_samples_split=2, n_jobs=1, random_state=None, verbose=0)
17,881
imodels.rule_set.skope_rules
_extract_rules
null
def _extract_rules(self, X, y) -> Tuple[List[str], List[np.array], List[np.array]]: return extract_skope(X, y, feature_names=self.feature_placeholders, sample_weight=self.sample_weight, n_estimators=self.n_estimators, max_samples=self.max_samples_, max_samples_features=self.max_samples_features, bootstrap=self.bootstrap, bootstrap_features=self.bootstrap_features, max_depths=self.max_depth, max_features=self.max_features, min_samples_split=self.min_samples_split, n_jobs=self.n_jobs, random_state=self.random_state, verbose=self.verbose)
(self, X, y) -> Tuple[List[str], List[<built-in function array>], List[<built-in function array>]]
17,892
imodels.rule_set.skope_rules
_score_rules
null
def _score_rules(self, X, y, rules) -> List[Rule]: return score_precision_recall(X, y, rules, self.estimators_samples_, self.estimators_features_, self.feature_placeholders)
(self, X, y, rules) -> List[imodels.util.rule.Rule]
17,896
imodels.rule_set.skope_rules
fit
Fit the model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Has to follow the convention 0 for normal data, 1 for anomalies. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples, typically the amount in case of transactions data. Used to grow regression trees producing further rules to be tested. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self.
def fit(self, X, y, feature_names=None, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Has to follow the convention 0 for normal data, 1 for anomalies. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples, typically the amount in case of transactions data. Used to grow regression trees producing further rules to be tested. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) check_classification_targets(y) self.n_features_ = X.shape[1] self.sample_weight = sample_weight self.classes_ = unique_labels(y) n_classes = len(self.classes_) if n_classes < 2: raise ValueError( "This method needs samples of at least 2 classes in the data, but the data contains only one class: %r" % self.classes_[0] ) if not isinstance(self.max_depth_duplication, int) and self.max_depth_duplication is not None: raise ValueError("max_depth_duplication should be an integer") if not set(self.classes_) == {0, 1}: warn( "Found labels %s. This method assumes target class to be labeled as 1 and normal data to be labeled as " "0. Any label different from 0 will be considered as being from the target class." % set(self.classes_) ) y = (y > 0) # ensure that max_samples is in [1, n_samples]: n_samples = X.shape[0] if isinstance(self.max_samples, six.string_types): raise ValueError( 'max_samples (%s) is not supported. Valid choices are: "auto", int or float' % self.max_samples ) elif isinstance(self.max_samples, INTEGER_TYPES): if self.max_samples > n_samples: warn( "max_samples (%s) is greater than the total number of samples (%s). max_samples will be set " "to n_samples for estimation." % (self.max_samples, n_samples) ) max_samples = n_samples else: max_samples = self.max_samples else: # float if not (0. < self.max_samples <= 1.): raise ValueError("max_samples must be in (0, 1], got %r" % self.max_samples) max_samples = int(self.max_samples * X.shape[0]) self.max_samples_ = max_samples self.feature_dict_ = get_feature_dict(X.shape[1], feature_names) self.feature_placeholders = np.array(list(self.feature_dict_.keys())) self.feature_names = np.array(list(self.feature_dict_.values())) extracted_rules, self.estimators_samples_, self.estimators_features_ = self._extract_rules(X, y) scored_rules = self._score_rules(X, y, extracted_rules) self.rules_ = self._prune_rules(scored_rules) self.rules_without_feature_names_ = self.rules_ self.rules_ = [ replace_feature_name(rule, self.feature_dict_) for rule in self.rules_ ] self.complexity_ = self._get_complexity() return self
(self, X, y, feature_names=None, sample_weight=None)
17,902
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.rule_set.skope_rules.SkopeRulesClassifier, *, feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.rule_set.skope_rules.SkopeRulesClassifier
17,905
imodels.rule_set.slipper_util
SlipperBaseEstimator
An estimator that supports building rules as described in A Simple, Fast, and Effective Rule Learner (1999). Intended to be used as part of the SlipperRulesClassifier.
class SlipperBaseEstimator(BaseEstimator, ClassifierMixin): """ An estimator that supports building rules as described in A Simple, Fast, and Effective Rule Learner (1999). Intended to be used as part of the SlipperRulesClassifier. """ def __init__(self): self.Z = None self.rule = None self.D = None def _make_candidate(self, X, y, curr_rule, feat, A_c): """ Make candidate rules for grow routine to compare scores""" # make candidate rules candidates = [curr_rule.copy() for _ in range(3)] candidates = [ x + [{ 'feature': int(feat), 'operator': operator, 'pivot': float(A_c)}] for x, operator in zip(candidates, ['>', '<', '==']) ] # pick best condition Zs = [self._grow_rule_obj(X, y, r) for r in candidates] return candidates[Zs.index(max(Zs))] def _condition_classify(self, X, condition): """ Helper function to make classifications for a condition in a rule """ logic = 'X[:, {}] {} {}'.format( condition['feature'], condition['operator'], condition['pivot'] ) output = np.where(eval(logic)) return output[0] def _rule_predict(self, X, rule): """ return all indices for which the passed rule holds on X """ preds = np.zeros(X.shape[0]) positive_cases = set(range(X.shape[0])) for condition in rule: outputs = set(list(self._condition_classify(X, condition))) positive_cases = positive_cases.intersection(outputs) preds[list(positive_cases)] = 1 return preds def _get_design_matrices(self, X, y, rule): """ produce design matrices used in most equations""" preds = self._rule_predict(X, rule) W_plus_idx = np.where((preds == 1) & (y == 1)) W_minus_idx = np.where((preds == 1) & (y == 0)) return np.sum(self.D[W_plus_idx]), np.sum(self.D[W_minus_idx]) def _grow_rule_obj(self, X, y, rule): """ equation to maximize in growing rule equation 6 from Cohen & Singer (1999) """ W_plus, W_minus = self._get_design_matrices(X, y, rule) # C_R = self._sample_weight(W_plus, W_minus) return np.sqrt(W_plus) - np.sqrt(W_minus) def _sample_weight(self, plus, minus): """ Calculate learner sample weight in paper this is C_R, which is confidence of learner """ return 0.5 * np.log((plus + (1 / (2 * len(self.D)))) / (minus + 1 / (2 * len(self.D)))) def _grow_rule(self, X, y): """ Starts with empty conjunction of conditions and greedily adds rules to maximize Z_tilde """ stop_condition = False features = list(range(X.shape[1])) # rule is stored as a list of dictionaries, each dictionary is a condition curr_rule = [] while not stop_condition: candidate_rule = curr_rule.copy() for feat in features: try: pivots = np.percentile(X[:, feat], range(0, 100, 4), method='linear') except: pivots = np.percentile(X[:, feat], range(0, 100, 4), # deprecated interpolation='midpoint') # get a list of possible rules feature_candidates = [ self._make_candidate(X, y, curr_rule, feat, A_c) for A_c in pivots ] # get max Z_tilde and update candidate accordingly tildes = [self._grow_rule_obj(X, y, r) for r in feature_candidates] if max(tildes) > self._grow_rule_obj(X, y, candidate_rule): candidate_rule = feature_candidates[ tildes.index(max(tildes)) ] preds = self._rule_predict(X, candidate_rule) negative_coverage = np.where((preds == y) & (y == 0)) if self._grow_rule_obj(X, y, curr_rule) >= self._grow_rule_obj(X, y, candidate_rule) or \ len(negative_coverage) == 0: stop_condition = True else: curr_rule = candidate_rule.copy() return curr_rule def _prune_rule(self, X, y, rule): """ Remove conditions from greedily built rule until objective does not improve """ stop_condition = False curr_rule = rule.copy() while not stop_condition: candidate_rules = [] if len(curr_rule) == 1: return curr_rule candidate_rules = [ self._pop_condition(curr_rule, condition) for condition in curr_rule ] prune_objs = [self._prune_rule_obj(X, y, rule) for x in candidate_rules] best_prune = candidate_rules[ prune_objs.index(min(prune_objs)) ] if self._prune_rule_obj(X, y, rule) > self._prune_rule_obj(X, y, rule): curr_rule = best_prune.copy() else: stop_condition = True return curr_rule def _pop_condition(self, rule, condition): """ Remove a condition from an existing Rule object """ temp = rule.copy() temp.remove(condition) return temp def _make_default_rule(self, X, y): """ Make the default rule that is true for every observation of data set. Without default rule a SlipperBaseEstimator would never predict negative """ default_rule = [] features = random.choices( range(X.shape[1]), k=random.randint(2, 8) ) default_rule.append({ 'feature': str(features[0]), 'operator': '>', 'pivot': str(min(X[:, features[0]])) }) for i, x in enumerate(features): if i % 2: default_rule.append({ 'feature': x, 'operator': '<', 'pivot': str(max(X[:, x])) }) else: default_rule.append({ 'feature': x, 'operator': '>', 'pivot': str(min(X[:, x])) }) return default_rule def _prune_rule_obj(self, X, y, rule): """ objective function for prune rule routine eq 7 from Cohen & Singer (1999) """ V_plus, V_minus = self._get_design_matrices(X, y, rule) C_R = self._sample_weight(V_plus, V_minus) return (1 - V_plus - V_minus) + V_plus * np.exp(-C_R) \ + V_minus * np.exp(C_R) def _eq_5(self, X, y, rule): """ equation 5 from Cohen & Singer (1999) used to compare the learned rule with a default rule """ W_plus, W_minus = self._get_design_matrices(X, y, rule) return 1 - np.square(np.sqrt(W_plus) - np.sqrt(W_minus)) def _set_rule_or_default(self, X, y, learned_rule): """ Compare output of eq 5 between learned rule and default rule return rule that minimizes eq 5 """ rules = [self._make_default_rule(X, y), learned_rule] scores = [self._eq_5(X, y, rule) for rule in rules] self.rule = rules[scores.index(min(scores))] def _make_feature_dict(self, num_features, features): """ Map features to place holder names """ if features is None: new_feats = ['X_' + str(i) for i in range(num_features)] else: new_feats = features self.feature_dict = { old_feat: new_feat for old_feat, new_feat in enumerate(new_feats) } def predict_proba(self, X): proba = self.predict(X) proba = proba.reshape(-1, 1) proba = np.hstack([ np.zeros(proba.shape), proba ]) return proba def predict(self, X): """ external predict function that returns predictions using estimators rule """ return self._rule_predict(X, self.rule) def fit(self, X, y, sample_weight=None, feature_names=None): """ Main loop for training """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) if sample_weight is not None: self.D = sample_weight X_grow, X_prune, y_grow, y_prune = \ train_test_split(X, y, test_size=0.33) self._make_feature_dict(X.shape[1], feature_names) rule = self._grow_rule(X_grow, y_grow) rule = self._prune_rule(X_prune, y_prune, rule) self._set_rule_or_default(X, y, rule) return self
()
17,907
imodels.rule_set.slipper_util
__init__
null
def __init__(self): self.Z = None self.rule = None self.D = None
(self)
17,913
imodels.rule_set.slipper_util
_condition_classify
Helper function to make classifications for a condition in a rule
def _condition_classify(self, X, condition): """ Helper function to make classifications for a condition in a rule """ logic = 'X[:, {}] {} {}'.format( condition['feature'], condition['operator'], condition['pivot'] ) output = np.where(eval(logic)) return output[0]
(self, X, condition)
17,914
imodels.rule_set.slipper_util
_eq_5
equation 5 from Cohen & Singer (1999) used to compare the learned rule with a default rule
def _eq_5(self, X, y, rule): """ equation 5 from Cohen & Singer (1999) used to compare the learned rule with a default rule """ W_plus, W_minus = self._get_design_matrices(X, y, rule) return 1 - np.square(np.sqrt(W_plus) - np.sqrt(W_minus))
(self, X, y, rule)
17,915
imodels.rule_set.slipper_util
_get_design_matrices
produce design matrices used in most equations
def _get_design_matrices(self, X, y, rule): """ produce design matrices used in most equations""" preds = self._rule_predict(X, rule) W_plus_idx = np.where((preds == 1) & (y == 1)) W_minus_idx = np.where((preds == 1) & (y == 0)) return np.sum(self.D[W_plus_idx]), np.sum(self.D[W_minus_idx])
(self, X, y, rule)
17,919
imodels.rule_set.slipper_util
_grow_rule
Starts with empty conjunction of conditions and greedily adds rules to maximize Z_tilde
def _grow_rule(self, X, y): """ Starts with empty conjunction of conditions and greedily adds rules to maximize Z_tilde """ stop_condition = False features = list(range(X.shape[1])) # rule is stored as a list of dictionaries, each dictionary is a condition curr_rule = [] while not stop_condition: candidate_rule = curr_rule.copy() for feat in features: try: pivots = np.percentile(X[:, feat], range(0, 100, 4), method='linear') except: pivots = np.percentile(X[:, feat], range(0, 100, 4), # deprecated interpolation='midpoint') # get a list of possible rules feature_candidates = [ self._make_candidate(X, y, curr_rule, feat, A_c) for A_c in pivots ] # get max Z_tilde and update candidate accordingly tildes = [self._grow_rule_obj(X, y, r) for r in feature_candidates] if max(tildes) > self._grow_rule_obj(X, y, candidate_rule): candidate_rule = feature_candidates[ tildes.index(max(tildes)) ] preds = self._rule_predict(X, candidate_rule) negative_coverage = np.where((preds == y) & (y == 0)) if self._grow_rule_obj(X, y, curr_rule) >= self._grow_rule_obj(X, y, candidate_rule) or \ len(negative_coverage) == 0: stop_condition = True else: curr_rule = candidate_rule.copy() return curr_rule
(self, X, y)
17,920
imodels.rule_set.slipper_util
_grow_rule_obj
equation to maximize in growing rule equation 6 from Cohen & Singer (1999)
def _grow_rule_obj(self, X, y, rule): """ equation to maximize in growing rule equation 6 from Cohen & Singer (1999) """ W_plus, W_minus = self._get_design_matrices(X, y, rule) # C_R = self._sample_weight(W_plus, W_minus) return np.sqrt(W_plus) - np.sqrt(W_minus)
(self, X, y, rule)
17,921
imodels.rule_set.slipper_util
_make_candidate
Make candidate rules for grow routine to compare scores
def _make_candidate(self, X, y, curr_rule, feat, A_c): """ Make candidate rules for grow routine to compare scores""" # make candidate rules candidates = [curr_rule.copy() for _ in range(3)] candidates = [ x + [{ 'feature': int(feat), 'operator': operator, 'pivot': float(A_c)}] for x, operator in zip(candidates, ['>', '<', '==']) ] # pick best condition Zs = [self._grow_rule_obj(X, y, r) for r in candidates] return candidates[Zs.index(max(Zs))]
(self, X, y, curr_rule, feat, A_c)
17,922
imodels.rule_set.slipper_util
_make_default_rule
Make the default rule that is true for every observation of data set. Without default rule a SlipperBaseEstimator would never predict negative
def _make_default_rule(self, X, y): """ Make the default rule that is true for every observation of data set. Without default rule a SlipperBaseEstimator would never predict negative """ default_rule = [] features = random.choices( range(X.shape[1]), k=random.randint(2, 8) ) default_rule.append({ 'feature': str(features[0]), 'operator': '>', 'pivot': str(min(X[:, features[0]])) }) for i, x in enumerate(features): if i % 2: default_rule.append({ 'feature': x, 'operator': '<', 'pivot': str(max(X[:, x])) }) else: default_rule.append({ 'feature': x, 'operator': '>', 'pivot': str(min(X[:, x])) }) return default_rule
(self, X, y)
17,923
imodels.rule_set.slipper_util
_make_feature_dict
Map features to place holder names
def _make_feature_dict(self, num_features, features): """ Map features to place holder names """ if features is None: new_feats = ['X_' + str(i) for i in range(num_features)] else: new_feats = features self.feature_dict = { old_feat: new_feat for old_feat, new_feat in enumerate(new_feats) }
(self, num_features, features)
17,925
imodels.rule_set.slipper_util
_pop_condition
Remove a condition from an existing Rule object
def _pop_condition(self, rule, condition): """ Remove a condition from an existing Rule object """ temp = rule.copy() temp.remove(condition) return temp
(self, rule, condition)
17,926
imodels.rule_set.slipper_util
_prune_rule
Remove conditions from greedily built rule until objective does not improve
def _prune_rule(self, X, y, rule): """ Remove conditions from greedily built rule until objective does not improve """ stop_condition = False curr_rule = rule.copy() while not stop_condition: candidate_rules = [] if len(curr_rule) == 1: return curr_rule candidate_rules = [ self._pop_condition(curr_rule, condition) for condition in curr_rule ] prune_objs = [self._prune_rule_obj(X, y, rule) for x in candidate_rules] best_prune = candidate_rules[ prune_objs.index(min(prune_objs)) ] if self._prune_rule_obj(X, y, rule) > self._prune_rule_obj(X, y, rule): curr_rule = best_prune.copy() else: stop_condition = True return curr_rule
(self, X, y, rule)
17,927
imodels.rule_set.slipper_util
_prune_rule_obj
objective function for prune rule routine eq 7 from Cohen & Singer (1999)
def _prune_rule_obj(self, X, y, rule): """ objective function for prune rule routine eq 7 from Cohen & Singer (1999) """ V_plus, V_minus = self._get_design_matrices(X, y, rule) C_R = self._sample_weight(V_plus, V_minus) return (1 - V_plus - V_minus) + V_plus * np.exp(-C_R) \ + V_minus * np.exp(C_R)
(self, X, y, rule)
17,930
imodels.rule_set.slipper_util
_rule_predict
return all indices for which the passed rule holds on X
def _rule_predict(self, X, rule): """ return all indices for which the passed rule holds on X """ preds = np.zeros(X.shape[0]) positive_cases = set(range(X.shape[0])) for condition in rule: outputs = set(list(self._condition_classify(X, condition))) positive_cases = positive_cases.intersection(outputs) preds[list(positive_cases)] = 1 return preds
(self, X, rule)
17,931
imodels.rule_set.slipper_util
_sample_weight
Calculate learner sample weight in paper this is C_R, which is confidence of learner
def _sample_weight(self, plus, minus): """ Calculate learner sample weight in paper this is C_R, which is confidence of learner """ return 0.5 * np.log((plus + (1 / (2 * len(self.D)))) / (minus + 1 / (2 * len(self.D))))
(self, plus, minus)
17,932
imodels.rule_set.slipper_util
_set_rule_or_default
Compare output of eq 5 between learned rule and default rule return rule that minimizes eq 5
def _set_rule_or_default(self, X, y, learned_rule): """ Compare output of eq 5 between learned rule and default rule return rule that minimizes eq 5 """ rules = [self._make_default_rule(X, y), learned_rule] scores = [self._eq_5(X, y, rule) for rule in rules] self.rule = rules[scores.index(min(scores))]
(self, X, y, learned_rule)
17,935
imodels.rule_set.slipper_util
fit
Main loop for training
def fit(self, X, y, sample_weight=None, feature_names=None): """ Main loop for training """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) if sample_weight is not None: self.D = sample_weight X_grow, X_prune, y_grow, y_prune = \ train_test_split(X, y, test_size=0.33) self._make_feature_dict(X.shape[1], feature_names) rule = self._grow_rule(X_grow, y_grow) rule = self._prune_rule(X_prune, y_prune, rule) self._set_rule_or_default(X, y, rule) return self
(self, X, y, sample_weight=None, feature_names=None)
17,938
imodels.rule_set.slipper_util
predict
external predict function that returns predictions using estimators rule
def predict(self, X): """ external predict function that returns predictions using estimators rule """ return self._rule_predict(X, self.rule)
(self, X)
17,939
imodels.rule_set.slipper_util
predict_proba
null
def predict_proba(self, X): proba = self.predict(X) proba = proba.reshape(-1, 1) proba = np.hstack([ np.zeros(proba.shape), proba ]) return proba
(self, X)
17,944
imodels.rule_set.slipper
SlipperClassifier
null
class SlipperClassifier(BoostedRulesClassifier): def __init__(self, n_estimators=10, **kwargs): ''' An estimator that supports building rules as described in A Simple, Fast, and Effective Rule Learner (1999). Parameters ---------- n_estimators ''' super().__init__(estimator=SlipperBaseEstimator(), n_estimators=n_estimators, **kwargs) # super().__init__(n_estimators, SlipperBaseEstimator)
(n_estimators=10, **kwargs)
17,947
imodels.rule_set.slipper
__init__
An estimator that supports building rules as described in A Simple, Fast, and Effective Rule Learner (1999). Parameters ---------- n_estimators
def __init__(self, n_estimators=10, **kwargs): ''' An estimator that supports building rules as described in A Simple, Fast, and Effective Rule Learner (1999). Parameters ---------- n_estimators ''' super().__init__(estimator=SlipperBaseEstimator(), n_estimators=n_estimators, **kwargs) # super().__init__(n_estimators, SlipperBaseEstimator)
(self, n_estimators=10, **kwargs)
17,985
imodels.tree.tao
TaoTreeClassifier
null
class TaoTreeClassifier(TaoTree, ClassifierMixin): pass
(model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)
17,987
imodels.tree.tao
__init__
TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018) https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html Note: this implementation learns single-feature splits rather than oblique trees. Currently supports - given a CART tree, posthoc improve it with TAO - also works with HSTreeCV Todo - update bottom to top otherwise input points don't get updated - update leaf nodes - support regression - support FIGS - support error-weighting - support oblique trees - support generic models at decision node - support pruning (e.g. if weights -> 0, then remove a node) - support classifiers in leaves Parameters ---------- model_type: str 'CART' or 'FIGS' n_iters Number of iterations to run TAO model_args Arguments to pass to the model randomize_tree Whether to randomize the tree before each iteration min_node_samples_tao: int Minimum number of samples in a node to apply tao min_leaf_samples_tao: int node_model: str 'stump' or 'linear' reg_param Regularization parameter for node-wise linear model (if node_model is 'linear') verbose: int Verbosity level
def __init__(self, model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 1e-3, weight_errors: bool = False, verbose: int = 0, ): """TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018) https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html Note: this implementation learns single-feature splits rather than oblique trees. Currently supports - given a CART tree, posthoc improve it with TAO - also works with HSTreeCV Todo - update bottom to top otherwise input points don't get updated - update leaf nodes - support regression - support FIGS - support error-weighting - support oblique trees - support generic models at decision node - support pruning (e.g. if weights -> 0, then remove a node) - support classifiers in leaves Parameters ---------- model_type: str 'CART' or 'FIGS' n_iters Number of iterations to run TAO model_args Arguments to pass to the model randomize_tree Whether to randomize the tree before each iteration min_node_samples_tao: int Minimum number of samples in a node to apply tao min_leaf_samples_tao: int node_model: str 'stump' or 'linear' reg_param Regularization parameter for node-wise linear model (if node_model is 'linear') verbose: int Verbosity level """ super().__init__() self.model_type = model_type self.n_iters = n_iters self.model_args = model_args self.randomize_tree = randomize_tree self.update_scoring = update_scoring self.min_node_samples_tao = min_node_samples_tao self.min_leaf_samples_tao = min_leaf_samples_tao self.node_model = node_model self.node_model_args = node_model_args self.reg_param = reg_param self.weight_errors = weight_errors self.verbose = verbose self._init_prediction_task() # decides between regressor and classifier
(self, model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)
17,996
imodels.tree.tao
_init_prediction_task
TaoRegressor and TaoClassifier override this method to alter the prediction task. When using this class directly, it is equivalent to SuperCARTRegressor
def _init_prediction_task(self): """ TaoRegressor and TaoClassifier override this method to alter the prediction task. When using this class directly, it is equivalent to SuperCARTRegressor """ self.prediction_task = 'classification'
(self)
18,000
imodels.tree.tao
_tao_iter_cart
Updates tree by applying the tao algorithm to the tree Params ------ X: array-like of shape (n_samples, n_features) The input samples. y: array-like of shape (n_samples,) The target values. model: DecisionTreeClassifier.tree_ or DecisionTreeRegressor.tree_ The model to be post-hoc improved
def _tao_iter_cart(self, X, y, tree, X_score=None, y_score=None, sample_weight=None): """Updates tree by applying the tao algorithm to the tree Params ------ X: array-like of shape (n_samples, n_features) The input samples. y: array-like of shape (n_samples,) The target values. model: DecisionTreeClassifier.tree_ or DecisionTreeRegressor.tree_ The model to be post-hoc improved """ # Tree properties children_left = tree.children_left children_right = tree.children_right feature = tree.feature threshold = tree.threshold value = tree.value # For each node, store the path to that node ####################################################### indexes_with_prefix_paths = [] # data structure with (index, path_to_node_index) # e.g. if if node 3 is the left child of node 1 which is the right child of node 0 # then we get (3, [(0, R), (1, L)]) # start with the root node id (0) and its depth (0) queue = deque() queue.append((0, [])) while len(queue) > 0: node_id, path_to_node_index = queue.popleft() indexes_with_prefix_paths.append((node_id, path_to_node_index)) # If a split node, append left and right children and depth to queue if children_left[node_id] != children_right[node_id]: queue.append((children_left[node_id], path_to_node_index + [(node_id, 'L')])) queue.append((children_right[node_id], path_to_node_index + [(node_id, 'R')])) # print(indexes_with_prefix_paths) num_updates = 0 # Reversing BFS queue presents nodes bottom -> top one level at a time for (node_id, path_to_node_index) in reversed(indexes_with_prefix_paths): # For each each node, try a TAO update # print('node_id', node_id, path_to_node_index) # Compute the points being input to the node ###################################### def filter_points_by_path(X, y, path_to_node_index): """Returns the points in X that are in the path to the node""" for node_id, direction in path_to_node_index: idxs = X[:, feature[node_id]] <= threshold[node_id] if direction == 'R': idxs = ~idxs # print('idxs', idxs.size, idxs.sum()) X = X[idxs] y = y[idxs] return X, y X_node, y_node = filter_points_by_path(X, y, path_to_node_index) if sample_weight is not None: sample_weight_node = filter_points_by_path(X, sample_weight, path_to_node_index)[1] else: sample_weight_node = np.ones(y_node.size) # Skip over leaf nodes and nodes with too few samples ###################################### if children_left[node_id] == children_right[node_id]: # is leaf node if isinstance(self, RegressorMixin) and X_node.shape[0] >= self.min_leaf_samples_tao: # old_score = self.model.score(X, y) value[node_id] = np.mean(y_node) """ new_score = self.model.score(X, y) if new_score > old_score: print(f'\tLeaf improved score from {old_score:0.3f} to {new_score:0.3f}') if new_score < old_score: print(f'\tLeaf reduced score from {old_score:0.3f} to {new_score:0.3f}') # raise ValueError('Leaf update reduced score') """ # print('\tshapes', X_node.shape, y_node.shape) # print('\tvals:', value[node_id][0][0], np.mean(y_node)) # assert value[node_id][0][0] == np.mean(y_node), 'unless tree changed, vals should be leaf means' continue elif X_node.shape[0] < self.min_node_samples_tao: continue # Compute the outputs for these points if they go left or right ###################################### def predict_from_node(X, node_id): """Returns predictions for X starting at node node_id""" def predict_from_node(x, node_id): """Returns predictions for x starting at node node_id""" if children_left[node_id] == children_right[node_id]: if isinstance(self, RegressorMixin): return value[node_id] if isinstance(self, ClassifierMixin): return np.argmax(value[node_id]) # note value stores counts for each class if x[feature[node_id]] <= threshold[node_id]: return predict_from_node(x, children_left[node_id]) else: return predict_from_node(x, children_right[node_id]) preds = np.zeros(X.shape[0]) for i in range(X.shape[0]): preds[i] = predict_from_node(X[i], node_id) return preds y_node_left = predict_from_node(X_node, children_left[node_id]) y_node_right = predict_from_node(X_node, children_right[node_id]) if node_id == 0: # root node assert np.all(np.logical_or(self.model.predict(X_node) == y_node_left, self.model.predict( X_node) == y_node_right)), \ 'actual predictions should match either predict_from_node left or right' # Decide on prediction target (want to go left (0) / right (1) when advantageous) # TAO paper binarizes these (e.g. predict 0 or 1 depending on which of these is better) y_node_absolute_errors = np.abs(np.vstack((y_node - y_node_left, y_node - y_node_right))).T # screen out indexes where going left/right has no effect idxs_relevant = y_node_absolute_errors[:, 0] != y_node_absolute_errors[:, 1] if idxs_relevant.sum() <= 1: # nothing to change if self.verbose: print('no errors to change') continue # assert np.all((self.model.predict(X) != y)[idxs_relevant]), 'relevant indexes should be errors' y_node_target = np.argmin(y_node_absolute_errors, axis=1) y_node_target = y_node_target[idxs_relevant] # here, we optionally weight these errors by the size of the error # if we want this to work for classification, must switch to predict_proba # if self.prediction_task == 'regression': # weight by the difference in error ############################################################### if self.weight_errors: sample_weight_node *= np.abs(y_node_absolute_errors[:, 1] - y_node_absolute_errors[:, 0]) sample_weight_node_target = sample_weight_node[idxs_relevant] X_node = X_node[idxs_relevant] # Fit a 1-variable binary classification model on these outputs ###################################### # Note: this could be customized (e.g. for sparse oblique trees) best_score = -np.inf best_feat_num = None for feat_num in range(X.shape[1]): if isinstance(self, ClassifierMixin): if self.node_model == 'linear': m = LogisticRegression(**self.node_model_args) elif self.node_model == 'stump': m = DecisionTreeClassifier(max_depth=1, **self.node_model_args) if isinstance(self, RegressorMixin): if self.node_model == 'linear': m = LinearRegression(**self.node_model_args) elif self.node_model == 'stump': m = DecisionTreeRegressor(max_depth=1, **self.node_model_args) X_node_single_feat = X_node[:, feat_num: feat_num + 1] m.fit(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target) score = m.score(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target) if score > best_score: best_score = score best_feat_num = feat_num best_model = deepcopy(m) if self.node_model == 'linear': best_threshold = -best_model.intercept_ / best_model.coef_[0] elif self.node_model == 'stump': best_threshold = best_model.tree_.threshold[0] # print((feature[node_id], threshold[node_id]), '\n->', # (best_feat_num, best_threshold)) # Update the node with the new feature / threshold ###################################### old_feat_num = feature[node_id] old_threshold = threshold[node_id] # print(X.sum(), y.sum()) if X_score is None: X_score = X if y_score is None: y_score = y scorer = get_scorer(self.update_scoring) old_score = scorer(self.model, X_score, y_score) feature[node_id] = best_feat_num threshold[node_id] = best_threshold new_score = scorer(self.model, X_score, y_score) # debugging if self.verbose > 1: if old_score == new_score: print('\tno change', best_feat_num, old_feat_num) print(f'\tscore_total {old_score:0.4f} -> {new_score:0.4f}') if old_score >= new_score: feature[node_id] = old_feat_num threshold[node_id] = old_threshold else: # (Track if any updates were necessary) num_updates += 1 if self.verbose > 0: print(f'Improved score from {old_score:0.4f} to {new_score:0.4f}') # debugging snippet (if score_m_new > score_m_old, then new_score should be > old_score, but it isn't!!!!) if self.verbose > 1: """ X_node_single_feat = X_node[:, best_feat_num: best_feat_num + 1] score_m_new = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight) best_model.tree_.feature[0] = old_feat_num best_model.tree_.threshold[0] = old_threshold X_node_single_feat = X_node[:, old_feat_num: old_feat_num + 1] score_m_old = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight) print('\t\t', f'score_local {score_m_old:0.4f} -> {score_m_new:0.4f}') """ return num_updates
(self, X, y, tree, X_score=None, y_score=None, sample_weight=None)
18,003
imodels.tree.tao
fit
Params ------ _sample_weight: array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node.
def fit(self, X, y=None, feature_names=None, sample_weight=None): """ Params ------ _sample_weight: array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) if isinstance(self, RegressorMixin): raise Warning('TAO Regression is not yet tested') X, y = check_X_y(X, y) y = y.astype(float) if feature_names is not None: self.feature_names_ = feature_names if self.model_type == 'CART': if isinstance(self, ClassifierMixin): self.model = DecisionTreeClassifier(**self.model_args) elif isinstance(self, RegressorMixin): self.model = DecisionTreeRegressor(**self.model_args) self.model.fit(X, y, sample_weight=sample_weight) if self.verbose: print(export_text(self.model)) # plot_tree(self.model) # plt.savefig('/Users/chandan/Desktop/tree.png', dpi=300) # plt.show() if self.randomize_tree: np.random.shuffle(self.model.tree_.feature) # shuffle CART features # np.random.shuffle(self.model.tree_.threshold) for i in range(self.model.tree_.node_count): # split on feature medians self.model.tree_.threshold[i] = np.median( X[:, self.model.tree_.feature[i]]) if self.verbose: print('starting score', self.model.score(X, y)) for i in range(self.n_iters): num_updates = self._tao_iter_cart(X, y, self.model.tree_, sample_weight=sample_weight) if num_updates == 0: break return self
(self, X, y=None, feature_names=None, sample_weight=None)
18,006
imodels.tree.tao
predict
null
def predict(self, X): return self.model.predict(X)
(self, X)
18,007
imodels.tree.tao
predict_proba
null
def predict_proba(self, X): return self.model.predict_proba(X)
(self, X)
18,008
imodels.tree.tao
score
null
def score(self, X, y): return self.model.score(X, y)
(self, X, y)
18,011
imodels.tree.tao
TaoTreeRegressor
null
class TaoTreeRegressor(TaoTree, RegressorMixin): pass
(model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)
18,037
imodels.algebraic.tree_gam
TreeGAMClassifier
null
class TreeGAMClassifier(TreeGAM, ClassifierMixin): ...
(n_boosting_rounds=100, max_leaf_nodes=3, reg_param=0.0, learning_rate: float = 0.01, n_boosting_rounds_marginal=0, max_leaf_nodes_marginal=2, reg_param_marginal=0.0, fit_linear_marginal=None, select_linear_marginal=False, decay_rate_towards_marginal=1.0, fit_posthoc_tree_coefs=None, boosting_strategy='cyclic', validation_frac=0.15, random_state=None)
18,039
imodels.algebraic.tree_gam
__init__
Params ------ n_boosting_rounds : int Number of boosting rounds for the cyclic boosting. max_leaf_nodes : int Maximum number of leaf nodes for the trees in the cyclic boosting. reg_param : float Regularization parameter for the cyclic boosting. learning_rate: float Learning rate for the cyclic boosting. n_boosting_rounds_marginal : int Number of boosting rounds for the marginal boosting. max_leaf_nodes_marginal : int Maximum number of leaf nodes for the trees in the marginal boosting. reg_param_marginal : float Regularization parameter for the marginal boosting. fit_linear_marginal : str [None, "None", "ridge", "NNLS"] Whether to fit a linear model to the marginal effects. NNLS for non-negative least squares ridge for ridge regression None for no linear model select_linear_marginal: bool Whether to restrict features to those with non-negative coefficients in the linear model. Requires that fit_linear_marginal is NNLS. decay_rate_towards_marginal: float, [0, 1] Decay rate for regularizing each shape function towards the marginal shape function after each step 1 means no decay, 0 means only use marginal effects shape = (1 - decay_rate_towards_marginal) * shape + decay_rate_towards_marginal * marginal_shape The way this is implemented is by keeping track of how many times to multiply decay_rate_towards_marginal for each cyclic estimator fit_posthoc_tree_coefs: str [None, "ridge"] Whether to fit a linear model to the tree coefficients after fitting the cyclic boosting. boosting_strategy : str ["cyclic", "greedy"] Whether to use cyclic boosting (cycle over features) or greedy boosting (select best feature at each step) validation_frac: float Fraction of data to use for early stopping. random_state : int Random seed.
def __init__( self, n_boosting_rounds=100, max_leaf_nodes=3, reg_param=0.0, learning_rate: float = 0.01, n_boosting_rounds_marginal=0, max_leaf_nodes_marginal=2, reg_param_marginal=0.0, fit_linear_marginal=None, select_linear_marginal=False, decay_rate_towards_marginal=1.0, fit_posthoc_tree_coefs=None, boosting_strategy="cyclic", validation_frac=0.15, random_state=None, ): """ Params ------ n_boosting_rounds : int Number of boosting rounds for the cyclic boosting. max_leaf_nodes : int Maximum number of leaf nodes for the trees in the cyclic boosting. reg_param : float Regularization parameter for the cyclic boosting. learning_rate: float Learning rate for the cyclic boosting. n_boosting_rounds_marginal : int Number of boosting rounds for the marginal boosting. max_leaf_nodes_marginal : int Maximum number of leaf nodes for the trees in the marginal boosting. reg_param_marginal : float Regularization parameter for the marginal boosting. fit_linear_marginal : str [None, "None", "ridge", "NNLS"] Whether to fit a linear model to the marginal effects. NNLS for non-negative least squares ridge for ridge regression None for no linear model select_linear_marginal: bool Whether to restrict features to those with non-negative coefficients in the linear model. Requires that fit_linear_marginal is NNLS. decay_rate_towards_marginal: float, [0, 1] Decay rate for regularizing each shape function towards the marginal shape function after each step 1 means no decay, 0 means only use marginal effects shape = (1 - decay_rate_towards_marginal) * shape + decay_rate_towards_marginal * marginal_shape The way this is implemented is by keeping track of how many times to multiply decay_rate_towards_marginal for each cyclic estimator fit_posthoc_tree_coefs: str [None, "ridge"] Whether to fit a linear model to the tree coefficients after fitting the cyclic boosting. boosting_strategy : str ["cyclic", "greedy"] Whether to use cyclic boosting (cycle over features) or greedy boosting (select best feature at each step) validation_frac: float Fraction of data to use for early stopping. random_state : int Random seed. """ self.n_boosting_rounds = n_boosting_rounds self.max_leaf_nodes = max_leaf_nodes self.reg_param = reg_param self.learning_rate = learning_rate self.max_leaf_nodes_marginal = max_leaf_nodes_marginal self.reg_param_marginal = reg_param_marginal self.n_boosting_rounds_marginal = n_boosting_rounds_marginal self.fit_linear_marginal = fit_linear_marginal self.select_linear_marginal = select_linear_marginal self.decay_rate_towards_marginal = decay_rate_towards_marginal self.fit_posthoc_tree_coefs = fit_posthoc_tree_coefs self.boosting_strategy = boosting_strategy self.validation_frac = validation_frac self.random_state = random_state
(self, n_boosting_rounds=100, max_leaf_nodes=3, reg_param=0.0, learning_rate: float = 0.01, n_boosting_rounds_marginal=0, max_leaf_nodes_marginal=2, reg_param_marginal=0.0, fit_linear_marginal=None, select_linear_marginal=False, decay_rate_towards_marginal=1.0, fit_posthoc_tree_coefs=None, boosting_strategy='cyclic', validation_frac=0.15, random_state=None)
18,043
imodels.algebraic.tree_gam
_calc_mse
null
def _calc_mse(self, X, y, sample_weight=None): return np.average( np.square(y - self.predict_proba(X)[:, 1]), weights=sample_weight, )
(self, X, y, sample_weight=None)
18,046
imodels.algebraic.tree_gam
_cyclic_boost
Apply cyclic boosting, storing trees in self.estimators_
def _cyclic_boost( self, X_train, y_train, sample_weight_train, X_val, y_val, sample_weight_val ): """Apply cyclic boosting, storing trees in self.estimators_""" residuals_train = y_train - self.predict_proba(X_train)[:, 1] mse_val = self._calc_mse(X_val, y_val, sample_weight_val) self.decay_coef_towards_marginal_ = [] for _ in range(self.n_boosting_rounds): boosting_round_ests = [] boosting_round_mses = [] feature_nums = np.arange(X_train.shape[1]) if self.select_linear_marginal: assert ( self.fit_linear_marginal == "NNLS" and self.n_boosting_rounds_marginal > 0 ), "select_linear_marginal requires fit_linear_marginal to be NNLS and for n_boosting_rounds_marginal > 0" feature_nums = np.where(self.marginal_coef_ > 0)[0] for feature_num in feature_nums: X_ = np.zeros_like(X_train) X_[:, feature_num] = X_train[:, feature_num] est = DecisionTreeRegressor( max_leaf_nodes=self.max_leaf_nodes, random_state=self.random_state, ) est.fit(X_, residuals_train, sample_weight=sample_weight_train) succesfully_split_on_feature = np.all( (est.tree_.feature[0] == feature_num) | ( est.tree_.feature[0] == -2) ) if not succesfully_split_on_feature: continue if self.reg_param > 0: est = imodels.HSTreeRegressor( est, reg_param=self.reg_param) self.estimators_.append(est) residuals_train_new = ( residuals_train - self.learning_rate * est.predict(X_train) ) if self.boosting_strategy == "cyclic": residuals_train = residuals_train_new elif self.boosting_strategy == "greedy": mse_train_new = self._calc_mse( X_train, y_train, sample_weight_train ) # don't add each estimator for greedy boosting_round_ests.append( deepcopy(self.estimators_.pop())) boosting_round_mses.append(mse_train_new) if self.boosting_strategy == "greedy": best_est = boosting_round_ests[np.argmin(boosting_round_mses)] self.estimators_.append(best_est) residuals_train = ( residuals_train - self.learning_rate * best_est.predict(X_train) ) # decay marginal effects if self.decay_rate_towards_marginal < 1.0: new_decay_coefs = [self.decay_rate_towards_marginal] * ( len(self.estimators_) - len(self.decay_coef_towards_marginal_) ) # print(self.decay_coef_towards_marginal_) # print('new_decay_coefs', new_decay_coefs) self.decay_coef_towards_marginal_ = [ x * self.decay_rate_towards_marginal for x in self.decay_coef_towards_marginal_ ] + new_decay_coefs # print(self.decay_coef_towards_marginal_) # early stopping if validation error does not decrease mse_val_new = self._calc_mse(X_val, y_val, sample_weight_val) if mse_val_new >= mse_val: # print("early stop!") return else: mse_val = mse_val_new
(self, X_train, y_train, sample_weight_train, X_val, y_val, sample_weight_val)
18,047
imodels.algebraic.tree_gam
_fit_posthoc_tree_coefs
null
def _fit_posthoc_tree_coefs(self, X, y, sample_weight=None): # extract predictions from each tree X_pred_tree = np.array([est.predict(X) for est in self.estimators_]).T print('shapes', X.shape, X_pred_tree.shape, y.shape, len(self.estimators_)) coef_prior = np.ones(len(self.estimators_)) * self.learning_rate y = y - self.bias_ - X_pred_tree @ coef_prior if self.fit_posthoc_tree_coefs.lower() == "ridge": m = RidgeCV(fit_intercept=False) elif self.fit_posthoc_tree_coefs.lower() == "nnls": m = LinearRegression(fit_intercept=False, positive=True) elif self.fit_posthoc_tree_coefs.lower() == "elasticnet": m = ElasticNetCV(fit_intercept=False, positive=True) m.fit(X_pred_tree, y, sample_weight=sample_weight) self.cyclic_coef_ = m.coef_ + coef_prior
(self, X, y, sample_weight=None)
18,051
imodels.algebraic.tree_gam
_marginal_fit
Fit a gbdt estimator for each feature independently. Store in self.estimators_marginal
def _marginal_fit( self, X_train, y_train, sample_weight_train, ): """Fit a gbdt estimator for each feature independently. Store in self.estimators_marginal""" residuals_train = y_train - self.predict_proba(X_train)[:, 1] p = X_train.shape[1] for feature_num in range(p): X_ = np.zeros_like(X_train) X_[:, feature_num] = X_train[:, feature_num] est = GradientBoostingRegressor( max_leaf_nodes=self.max_leaf_nodes_marginal, random_state=self.random_state, n_estimators=self.n_boosting_rounds_marginal, ) est.fit(X_, residuals_train, sample_weight=sample_weight_train) if self.reg_param_marginal > 0: est = imodels.HSTreeRegressor( est, reg_param=self.reg_param_marginal) self.estimators_marginal.append(est) if ( self.fit_linear_marginal is not None and not self.fit_linear_marginal == "None" ): if self.fit_linear_marginal.lower() == "ridge": linear_marginal = RidgeCV(fit_intercept=False) elif self.fit_linear_marginal == "NNLS": linear_marginal = LinearRegression( fit_intercept=False, positive=True) linear_marginal.fit( np.array([est.predict(X_train) for est in self.estimators_marginal]).T, residuals_train, sample_weight_train, ) self.marginal_coef_ = linear_marginal.coef_ self.lin = linear_marginal else: self.marginal_coef_ = np.ones(p) / p
(self, X_train, y_train, sample_weight_train)
18,057
imodels.algebraic.tree_gam
fit
null
def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, accept_sparse=False, multi_output=False) if isinstance(self, ClassifierMixin): check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) sample_weight = _check_sample_weight(sample_weight, X, dtype=None) # split into train and validation for early stopping ( X_train, X_val, y_train, y_val, sample_weight_train, sample_weight_val, ) = train_test_split( X, y, sample_weight, test_size=self.validation_frac, random_state=self.random_state, stratify=y if isinstance(self, ClassifierMixin) else None, ) self.estimators_marginal = [] self.estimators_ = [] self.bias_ = np.mean(y) if self.n_boosting_rounds_marginal > 0: self._marginal_fit( X_train, y_train, sample_weight_train, ) if self.n_boosting_rounds > 0: self._cyclic_boost( X_train, y_train, sample_weight_train, X_val, y_val, sample_weight_val, ) if self.fit_posthoc_tree_coefs is not None: self._fit_posthoc_tree_coefs(X_train, y_train, sample_weight_train) self.mse_val_ = self._calc_mse(X_val, y_val, sample_weight_val) return self
(self, X, y, sample_weight=None)
18,060
imodels.algebraic.tree_gam
predict
null
def predict(self, X, marginal_only=False): if isinstance(self, RegressorMixin): return self.predict_proba(X, marginal_only=marginal_only)[:, 1] elif isinstance(self, ClassifierMixin): return np.argmax(self.predict_proba(X, marginal_only=marginal_only), axis=1)
(self, X, marginal_only=False)
18,061
imodels.algebraic.tree_gam
predict_proba
Params ------ marginal_only: bool If True, only use the marginal effects.
def predict_proba(self, X, marginal_only=False): """ Params ------ marginal_only: bool If True, only use the marginal effects. """ X = check_array(X, accept_sparse=False, dtype=None) check_is_fitted(self) probs1 = np.ones(X.shape[0]) * self.bias_ # marginal prediction for i, est in enumerate(self.estimators_marginal): probs1 += est.predict(X) * self.marginal_coef_[i] # cyclic coefs prediction if not marginal_only: if not hasattr(self, "cyclic_coef_"): cyclic_coef_ = np.ones( len(self.estimators_)) * self.learning_rate else: cyclic_coef_ = self.cyclic_coef_ # print('coef', cyclic_coef_) if self.decay_rate_towards_marginal < 1.0: for i, est in enumerate(self.estimators_): if i < len(self.decay_coef_towards_marginal_): probs1 += ( cyclic_coef_[i] * self.decay_coef_towards_marginal_[i] * est.predict(X) ) else: probs1 += cyclic_coef_[i] * est.predict(X) else: for i, est in enumerate(self.estimators_): probs1 += cyclic_coef_[i] * est.predict(X) probs1 = np.clip(probs1, a_min=0, a_max=1) return np.array([1 - probs1, probs1]).T
(self, X, marginal_only=False)
18,065
sklearn.utils._metadata_requests
set_predict_proba_request
Request metadata passed to the ``predict_proba`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``predict_proba`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``predict_proba``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- marginal_only : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``marginal_only`` parameter in ``predict_proba``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.algebraic.tree_gam.TreeGAMClassifier, *, marginal_only: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.algebraic.tree_gam.TreeGAMClassifier
18,066
sklearn.utils._metadata_requests
set_predict_request
Request metadata passed to the ``predict`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``predict`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``predict``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- marginal_only : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``marginal_only`` parameter in ``predict``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.algebraic.tree_gam.TreeGAMClassifier, *, marginal_only: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.algebraic.tree_gam.TreeGAMClassifier
18,068
imodels.algebraic.tree_gam
TreeGAMRegressor
null
class TreeGAMRegressor(TreeGAM, RegressorMixin): ...
(n_boosting_rounds=100, max_leaf_nodes=3, reg_param=0.0, learning_rate: float = 0.01, n_boosting_rounds_marginal=0, max_leaf_nodes_marginal=2, reg_param_marginal=0.0, fit_linear_marginal=None, select_linear_marginal=False, decay_rate_towards_marginal=1.0, fit_posthoc_tree_coefs=None, boosting_strategy='cyclic', validation_frac=0.15, random_state=None)
18,101
sklearn.utils.validation
check_X_y
Input validation for standard estimators. Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : {ndarray, list, sparse matrix} Input data. y : {ndarray, list, sparse matrix} Labels. accept_sparse : str, bool or list of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'}, default=None Whether an array will be forced to be fortran or c-style. If `None`, then the input data's order is preserved when possible. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` ensure_2d : bool, default=True Whether to raise a value error if X is not 2D. allow_nd : bool, default=False Whether to allow X.ndim > 2. multi_output : bool, default=False Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int, default=1 Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : bool, default=False Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. Examples -------- >>> from sklearn.utils.validation import check_X_y >>> X = [[1, 2], [3, 4], [5, 6]] >>> y = [1, 2, 3] >>> X, y = check_X_y(X, y) >>> X array([[1, 2], [3, 4], [5, 6]]) >>> y array([1, 2, 3])
def check_X_y( X, y, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, estimator=None, ): """Input validation for standard estimators. Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : {ndarray, list, sparse matrix} Input data. y : {ndarray, list, sparse matrix} Labels. accept_sparse : str, bool or list of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'}, default=None Whether an array will be forced to be fortran or c-style. If `None`, then the input data's order is preserved when possible. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` ensure_2d : bool, default=True Whether to raise a value error if X is not 2D. allow_nd : bool, default=False Whether to allow X.ndim > 2. multi_output : bool, default=False Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int, default=1 Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : bool, default=False Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. Examples -------- >>> from sklearn.utils.validation import check_X_y >>> X = [[1, 2], [3, 4], [5, 6]] >>> y = [1, 2, 3] >>> X, y = check_X_y(X, y) >>> X array([[1, 2], [3, 4], [5, 6]]) >>> y array([1, 2, 3]) """ if y is None: if estimator is None: estimator_name = "estimator" else: estimator_name = _check_estimator_name(estimator) raise ValueError( f"{estimator_name} requires y to be passed, but the target y is None" ) X = check_array( X, accept_sparse=accept_sparse, accept_large_sparse=accept_large_sparse, dtype=dtype, order=order, copy=copy, force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=ensure_min_features, estimator=estimator, input_name="X", ) y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator) check_consistent_length(X, y) return X, y
(X, y, accept_sparse=False, *, accept_large_sparse=True, dtype='numeric', order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, estimator=None)
18,102
sklearn.utils.validation
check_array
Input validation on an array, list, sparse matrix or similar. By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : str, bool or list/tuple of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'} or None, default=None Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` ensure_2d : bool, default=True Whether to raise a value error if array is not 2D. allow_nd : bool, default=False Whether to allow array.ndim > 2. ensure_min_samples : int, default=1 Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. input_name : str, default="" The data name used to construct the error message. In particular if `input_name` is "X" and the data has NaN values and allow_nan is False, the error message will link to the imputer documentation. .. versionadded:: 1.1.0 Returns ------- array_converted : object The converted and validated array. Examples -------- >>> from sklearn.utils.validation import check_array >>> X = [[1, 2, 3], [4, 5, 6]] >>> X_checked = check_array(X) >>> X_checked array([[1, 2, 3], [4, 5, 6]])
def check_array( array, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, estimator=None, input_name="", ): """Input validation on an array, list, sparse matrix or similar. By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : str, bool or list/tuple of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'} or None, default=None Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` ensure_2d : bool, default=True Whether to raise a value error if array is not 2D. allow_nd : bool, default=False Whether to allow array.ndim > 2. ensure_min_samples : int, default=1 Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. input_name : str, default="" The data name used to construct the error message. In particular if `input_name` is "X" and the data has NaN values and allow_nan is False, the error message will link to the imputer documentation. .. versionadded:: 1.1.0 Returns ------- array_converted : object The converted and validated array. Examples -------- >>> from sklearn.utils.validation import check_array >>> X = [[1, 2, 3], [4, 5, 6]] >>> X_checked = check_array(X) >>> X_checked array([[1, 2, 3], [4, 5, 6]]) """ if isinstance(array, np.matrix): raise TypeError( "np.matrix is not supported. Please convert to a numpy array with " "np.asarray. For more information see: " "https://numpy.org/doc/stable/reference/generated/numpy.matrix.html" ) xp, is_array_api_compliant = get_namespace(array) # store reference to original array to check if copy is needed when # function returns array_orig = array # store whether originally we wanted numeric dtype dtype_numeric = isinstance(dtype, str) and dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not is_array_api_compliant and not hasattr(dtype_orig, "kind"): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None # check if the object contains several dtypes (typically a pandas # DataFrame), and store them. If not, store None. dtypes_orig = None pandas_requires_conversion = False # track if we have a Series-like object to raise a better error message type_if_series = None if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"): # throw warning if columns are sparse. If all columns are sparse, then # array.sparse exists and sparsity will be preserved (later). with suppress(ImportError): from pandas import SparseDtype def is_sparse(dtype): return isinstance(dtype, SparseDtype) if not hasattr(array, "sparse") and array.dtypes.apply(is_sparse).any(): warnings.warn( "pandas.DataFrame with sparse columns found." "It will be converted to a dense numpy array." ) dtypes_orig = list(array.dtypes) pandas_requires_conversion = any( _pandas_dtype_needs_early_conversion(i) for i in dtypes_orig ) if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig): dtype_orig = np.result_type(*dtypes_orig) elif pandas_requires_conversion and any(d == object for d in dtypes_orig): # Force object if any of the dtypes is an object dtype_orig = object elif (_is_extension_array_dtype(array) or hasattr(array, "iloc")) and hasattr( array, "dtype" ): # array is a pandas series type_if_series = type(array) pandas_requires_conversion = _pandas_dtype_needs_early_conversion(array.dtype) if isinstance(array.dtype, np.dtype): dtype_orig = array.dtype else: # Set to None to let array.astype work out the best dtype dtype_orig = None if dtype_numeric: if ( dtype_orig is not None and hasattr(dtype_orig, "kind") and dtype_orig.kind == "O" ): # if input is object, convert to float. dtype = xp.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if pandas_requires_conversion: # pandas dataframe requires conversion earlier to handle extension dtypes with # nans # Use the original dtype for conversion if dtype is None new_dtype = dtype_orig if dtype is None else dtype array = array.astype(new_dtype) # Since we converted here, we do not need to convert again later dtype = None if force_all_finite not in (True, False, "allow-nan"): raise ValueError( 'force_all_finite should be a bool or "allow-nan". Got {!r} instead'.format( force_all_finite ) ) if dtype is not None and _is_numpy_namespace(xp): # convert to dtype object to conform to Array API to be use `xp.isdtype` later dtype = np.dtype(dtype) estimator_name = _check_estimator_name(estimator) context = " by %s" % estimator_name if estimator is not None else "" # When all dataframe columns are sparse, convert to a sparse array if hasattr(array, "sparse") and array.ndim > 1: with suppress(ImportError): from pandas import SparseDtype # noqa: F811 def is_sparse(dtype): return isinstance(dtype, SparseDtype) if array.dtypes.apply(is_sparse).all(): # DataFrame.sparse only supports `to_coo` array = array.sparse.to_coo() if array.dtype == np.dtype("object"): unique_dtypes = set([dt.subtype.name for dt in array_orig.dtypes]) if len(unique_dtypes) > 1: raise ValueError( "Pandas DataFrame with mixed sparse extension arrays " "generated a sparse matrix with object dtype which " "can not be converted to a scipy sparse matrix." "Sparse extension arrays should all have the same " "numeric type." ) if sp.issparse(array): _ensure_no_complex_data(array) array = _ensure_sparse_format( array, accept_sparse=accept_sparse, dtype=dtype, copy=copy, force_all_finite=force_all_finite, accept_large_sparse=accept_large_sparse, estimator_name=estimator_name, input_name=input_name, ) else: # If np.array(..) gives ComplexWarning, then we convert the warning # to an error. This is needed because specifying a non complex # dtype to the function converts complex to real dtype, # thereby passing the test made in the lines following the scope # of warnings context manager. with warnings.catch_warnings(): try: warnings.simplefilter("error", ComplexWarning) if dtype is not None and xp.isdtype(dtype, "integral"): # Conversion float -> int should not contain NaN or # inf (numpy#14412). We cannot use casting='safe' because # then conversion float -> int would be disallowed. array = _asarray_with_order(array, order=order, xp=xp) if xp.isdtype(array.dtype, ("real floating", "complex floating")): _assert_all_finite( array, allow_nan=False, msg_dtype=dtype, estimator_name=estimator_name, input_name=input_name, ) array = xp.astype(array, dtype, copy=False) else: array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp) except ComplexWarning as complex_warning: raise ValueError( "Complex data not supported\n{}\n".format(array) ) from complex_warning # It is possible that the np.array(..) gave no warning. This happens # when no dtype conversion happened, for example dtype = None. The # result is that np.array(..) produces an array of complex dtype # and we need to catch and raise exception for such cases. _ensure_no_complex_data(array) if ensure_2d: # If input is scalar raise error if array.ndim == 0: raise ValueError( "Expected 2D array, got scalar array instead:\narray={}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample.".format(array) ) # If input is 1D raise error if array.ndim == 1: # If input is a Series-like object (eg. pandas Series or polars Series) if type_if_series is not None: msg = ( f"Expected a 2-dimensional container but got {type_if_series} " "instead. Pass a DataFrame containing a single row (i.e. " "single sample) or a single column (i.e. single feature) " "instead." ) else: msg = ( f"Expected 2D array, got 1D array instead:\narray={array}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample." ) raise ValueError(msg) if dtype_numeric and hasattr(array.dtype, "kind") and array.dtype.kind in "USV": raise ValueError( "dtype='numeric' is not compatible with arrays of bytes/strings." "Convert your data to numeric values explicitly instead." ) if not allow_nd and array.ndim >= 3: raise ValueError( "Found array with dim %d. %s expected <= 2." % (array.ndim, estimator_name) ) if force_all_finite: _assert_all_finite( array, input_name=input_name, estimator_name=estimator_name, allow_nan=force_all_finite == "allow-nan", ) if copy: if _is_numpy_namespace(xp): # only make a copy if `array` and `array_orig` may share memory` if np.may_share_memory(array, array_orig): array = _asarray_with_order( array, dtype=dtype, order=order, copy=True, xp=xp ) else: # always make a copy for non-numpy arrays array = _asarray_with_order( array, dtype=dtype, order=order, copy=True, xp=xp ) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError( "Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required%s." % (n_samples, array.shape, ensure_min_samples, context) ) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError( "Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required%s." % (n_features, array.shape, ensure_min_features, context) ) # With an input pandas dataframe or series, we know we can always make the # resulting array writeable: # - if copy=True, we have already made a copy so it is fine to make the # array writeable # - if copy=False, the caller is telling us explicitly that we can do # in-place modifications # See https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html#read-only-numpy-arrays # for more details about pandas copy-on-write mechanism, that is enabled by # default in pandas 3.0.0.dev. if _is_pandas_df_or_series(array_orig) and hasattr(array, "flags"): array.flags.writeable = True return array
(array, accept_sparse=False, *, accept_large_sparse=True, dtype='numeric', order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, estimator=None, input_name='')
18,103
sklearn.utils.multiclass
check_classification_targets
Ensure that target y is of a non-regression type. Only the following target types (as defined in type_of_target) are allowed: 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences' Parameters ---------- y : array-like Target values.
def check_classification_targets(y): """Ensure that target y is of a non-regression type. Only the following target types (as defined in type_of_target) are allowed: 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences' Parameters ---------- y : array-like Target values. """ y_type = type_of_target(y, input_name="y") if y_type not in [ "binary", "multiclass", "multiclass-multioutput", "multilabel-indicator", "multilabel-sequences", ]: raise ValueError( f"Unknown label type: {y_type}. Maybe you are trying to fit a " "classifier, which expects discrete classes on a " "regression target with continuous values." )
(y)
18,104
imodels.util.arguments
check_fit_arguments
Process arguments for fit and predict methods.
def check_fit_arguments(model, X, y, feature_names): """Process arguments for fit and predict methods. """ if isinstance(model, ClassifierMixin): model.classes_, y = np.unique(y, return_inverse=True) # deals with str inputs check_classification_targets(y) if feature_names is None: if isinstance(X, pd.DataFrame): model.feature_names_ = X.columns elif isinstance(X, list): model.feature_names_ = ['X' + str(i) for i in range(len(X[0]))] else: model.feature_names_ = ['X' + str(i) for i in range(X.shape[1])] else: model.feature_names_ = feature_names if scipy.sparse.issparse(X): X = X.toarray() X, y = check_X_y(X, y) _, model.n_features_in_ = X.shape assert len(model.feature_names_) == model.n_features_in_, 'feature_names should be same size as X.shape[1]' y = y.astype(float) return X, y, model.feature_names_
(model, X, y, feature_names)
18,105
sklearn.utils.validation
check_is_fitted
Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message. If an estimator does not set any attributes with a trailing underscore, it can define a ``__sklearn_is_fitted__`` method returning a boolean to specify if the estimator is fitted or not. See :ref:`sphx_glr_auto_examples_developing_estimators_sklearn_is_fitted.py` for an example on how to use the API. Parameters ---------- estimator : estimator instance Estimator instance for which the check is performed. attributes : str, list or tuple of str, default=None Attribute name(s) given as string or a list/tuple of strings Eg.: ``["coef_", "estimator_", ...], "coef_"`` If `None`, `estimator` is considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore. msg : str, default=None The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default=all Specify whether all or any of the given attributes must exist. Raises ------ TypeError If the estimator is a class or not an estimator instance NotFittedError If the attributes are not found. Examples -------- >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.utils.validation import check_is_fitted >>> from sklearn.exceptions import NotFittedError >>> lr = LogisticRegression() >>> try: ... check_is_fitted(lr) ... except NotFittedError as exc: ... print(f"Model is not fitted yet.") Model is not fitted yet. >>> lr.fit([[1, 2], [1, 3]], [1, 0]) LogisticRegression() >>> check_is_fitted(lr)
def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message. If an estimator does not set any attributes with a trailing underscore, it can define a ``__sklearn_is_fitted__`` method returning a boolean to specify if the estimator is fitted or not. See :ref:`sphx_glr_auto_examples_developing_estimators_sklearn_is_fitted.py` for an example on how to use the API. Parameters ---------- estimator : estimator instance Estimator instance for which the check is performed. attributes : str, list or tuple of str, default=None Attribute name(s) given as string or a list/tuple of strings Eg.: ``["coef_", "estimator_", ...], "coef_"`` If `None`, `estimator` is considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore. msg : str, default=None The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default=all Specify whether all or any of the given attributes must exist. Raises ------ TypeError If the estimator is a class or not an estimator instance NotFittedError If the attributes are not found. Examples -------- >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.utils.validation import check_is_fitted >>> from sklearn.exceptions import NotFittedError >>> lr = LogisticRegression() >>> try: ... check_is_fitted(lr) ... except NotFittedError as exc: ... print(f"Model is not fitted yet.") Model is not fitted yet. >>> lr.fit([[1, 2], [1, 3]], [1, 0]) LogisticRegression() >>> check_is_fitted(lr) """ if isclass(estimator): raise TypeError("{} is a class, not an instance.".format(estimator)) if msg is None: msg = ( "This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this estimator." ) if not hasattr(estimator, "fit"): raise TypeError("%s is not an estimator instance." % (estimator)) if not _is_fitted(estimator, attributes, all_or_any): raise NotFittedError(msg % {"name": type(estimator).__name__})
(estimator, attributes=None, *, msg=None, all_or_any=<built-in function all>)
18,106
copy
deepcopy
Deep copy operation on arbitrary Python objects. See the module's __doc__ string for more info.
def deepcopy(x, memo=None, _nil=[]): """Deep copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ if memo is None: memo = {} d = id(x) y = memo.get(d, _nil) if y is not _nil: return y cls = type(x) copier = _deepcopy_dispatch.get(cls) if copier is not None: y = copier(x, memo) else: if issubclass(cls, type): y = _deepcopy_atomic(x, memo) else: copier = getattr(x, "__deepcopy__", None) if copier is not None: y = copier(memo) else: reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor is not None: rv = reductor(4) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error( "un(deep)copyable object of type %s" % cls) if isinstance(rv, str): y = x else: y = _reconstruct(x, memo, *rv) # If is its own copy, don't memoize. if y is not x: memo[d] = y _keep_alive(x, memo) # Make sure x lives at least as long as d return y
(x, memo=None, _nil=[])
18,107
imodels.util.convert
dict_to_rule
Function to accept rule dict and convert to Rule object Parameters: rule: list of dict of schema [ { 'feature': int, 'operator': str, 'value': float }, ]
def dict_to_rule(rule, clf_feature_dict): """ Function to accept rule dict and convert to Rule object Parameters: rule: list of dict of schema [ { 'feature': int, 'operator': str, 'value': float }, ] """ output = '' for condition in rule: output += '{} {} {} and '.format( clf_feature_dict[int(condition['feature'])], condition['operator'], condition['pivot'] ) return output[:-5]
(rule, clf_feature_dict)
18,110
imodels.util.explain_errors
explain_classification_errors
Explains the classification errors of a model by fitting an interpretable model to them. Currently only supports binary classification. Parameters ---------- X: array_like (n, n_features) predictions: array_like (n, 1) predictions y (n, 1) targets with integer values representing class feature_names n_features Returns ------- model: BaseEstimator
def explain_classification_errors(X, predictions, y, feature_names: list = None, target_name: str = None, classifier: BaseEstimator = imodels.GreedyTreeClassifier(), target_one_hot_encode: bool = False, print_rules: bool = True): """Explains the classification errors of a model by fitting an interpretable model to them. Currently only supports binary classification. Parameters ---------- X: array_like (n, n_features) predictions: array_like (n, 1) predictions y (n, 1) targets with integer values representing class feature_names n_features Returns ------- model: BaseEstimator """ # deal with names if feature_names is None: if isinstance(X, pd.DataFrame): feature_names = X.columns.tolist() else: feature_names = [f'X{i + 1}' for i in range(X.shape[1])] if target_name is None: if isinstance(y, pd.DataFrame): target_name = y.columns[0] elif isinstance(y, pd.Series): target_name = y.name else: target_name = 'target' if isinstance(predictions, pd.Series) or isinstance(predictions, pd.DataFrame): predictions = predictions.values X, y = check_X_y(X, y) # converts to np if len(y.shape) == 1: y = y.reshape(-1, 1) if len(predictions.shape) == 1: predictions = predictions.reshape(-1, 1) errors = np.array(predictions != y).astype(int) features = pd.DataFrame(np.hstack((X, y))) features.columns = [*feature_names, target_name] classifier.fit(features, errors.flatten()) if print_rules: print(classifier) return classifier, features.columns
(X, predictions, y, feature_names: Optional[list] = None, target_name: Optional[str] = None, classifier: sklearn.base.BaseEstimator = GreedyTreeClassifier(), target_one_hot_encode: bool = False, print_rules: bool = True)
18,111
imodels.util.data_util
get_clean_dataset
Fetch clean data (as numpy arrays) from various sources including imodels, pmlb, openml, and sklearn. If data is not downloaded, will download and cache. Otherwise will load locally. Cleans features so that they are type float and features names don't start with a digit. Parameters ---------- dataset_name: str Checks for unique identifier in imodels.util.data_util.DSET_KWARGS Otherwise, unique dataset identifier (see https://github.com/csinva/imodels-data for unique identifiers) data_source: str options: 'imodels', 'pmlb', 'sklearn', 'openml', 'synthetic' data_path: str path to load/save data (default: 'data') test_size: float, optional if not None, will split data into train and test sets (with fraction test_size in test set) & change the return signature to `X_train, X_test, y_train, y_test, feature_names` random_state: int, optional if test_size is not None, will use this random state to split data Returns ------- X: np.ndarray features y: np.ndarray outcome feature_names: list Example ------- ``` # download compas dataset from imodels X, y, feature_names = imodels.get_clean_dataset('compas_two_year_clean', data_source='imodels') # download ionosphere dataset from pmlb X, y, feature_names = imodels.get_clean_dataset('ionosphere', data_source='pmlb') # download liver dataset from openml X, y, feature_names = imodels.get_clean_dataset('8', data_source='openml') # download ca housing from sklearn X, y, feature_names = imodels.get_clean_dataset('california_housing', data_source='sklearn') ```
def get_clean_dataset( dataset_name: str, data_source: str = "imodels", data_path=os.path.expanduser("~/cache_imodels_data"), convertna: bool = True, test_size: float = None, random_state: int = 42, verbose=True, ) -> Tuple[np.ndarray, np.ndarray, list]: """Fetch clean data (as numpy arrays) from various sources including imodels, pmlb, openml, and sklearn. If data is not downloaded, will download and cache. Otherwise will load locally. Cleans features so that they are type float and features names don't start with a digit. Parameters ---------- dataset_name: str Checks for unique identifier in imodels.util.data_util.DSET_KWARGS Otherwise, unique dataset identifier (see https://github.com/csinva/imodels-data for unique identifiers) data_source: str options: 'imodels', 'pmlb', 'sklearn', 'openml', 'synthetic' data_path: str path to load/save data (default: 'data') test_size: float, optional if not None, will split data into train and test sets (with fraction test_size in test set) & change the return signature to `X_train, X_test, y_train, y_test, feature_names` random_state: int, optional if test_size is not None, will use this random state to split data Returns ------- X: np.ndarray features y: np.ndarray outcome feature_names: list Example ------- ``` # download compas dataset from imodels X, y, feature_names = imodels.get_clean_dataset('compas_two_year_clean', data_source='imodels') # download ionosphere dataset from pmlb X, y, feature_names = imodels.get_clean_dataset('ionosphere', data_source='pmlb') # download liver dataset from openml X, y, feature_names = imodels.get_clean_dataset('8', data_source='openml') # download ca housing from sklearn X, y, feature_names = imodels.get_clean_dataset('california_housing', data_source='sklearn') ``` """ if dataset_name in DSET_KWARGS: if verbose: data_source = DSET_KWARGS[dataset_name]["data_source"] dataset_name = DSET_KWARGS[dataset_name]["dataset_name"] print(f"fetching {dataset_name} from {data_source}") assert data_source in ["imodels", "pmlb", "imodels-multitask", "sklearn", "openml", "synthetic"], ( data_source + " not correct" ) if test_size is not None: def _split(X, y, feature_names): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=test_size, random_state=random_state ) return X_train, X_test, y_train, y_test, feature_names else: def _split(X, y, feature_names): return X, y, feature_names if data_source == "imodels": if not dataset_name.endswith("csv"): dataset_name = dataset_name + ".csv" if not os.path.isfile(dataset_name): _download_imodels_dataset(dataset_name, data_path) df = pd.read_csv(oj(data_path, "imodels_data", dataset_name)) X, y = df.iloc[:, :-1].values, df.iloc[:, -1].values feature_names = df.columns.values[:-1] if convertna: X = np.nan_to_num(X.astype("float32")) return _split(X, y, _clean_feat_names(feature_names)) elif data_source == 'imodels-multitask': if not dataset_name.endswith("csv"): dataset_name = dataset_name + ".csv" if not os.path.isfile(dataset_name): _download_imodels_multitask_dataset(dataset_name, data_path) df = pd.read_csv(oj(data_path, "imodels_multitask_data", dataset_name)) target_cols = [col for col in df.columns if col.endswith('__target')] feature_names = [col for col in df.columns if col not in target_cols] X, y = df[feature_names].values, df[target_cols].values if convertna: X = np.nan_to_num(X.astype("float32")) return _split(X, y, _clean_feat_names(feature_names)) elif data_source == "pmlb": from pmlb import fetch_data feature_names = list( fetch_data( dataset_name, return_X_y=False, local_cache_dir=oj(data_path, "pmlb_data"), ).columns ) feature_names.remove("target") X, y = fetch_data( dataset_name, return_X_y=True, local_cache_dir=oj(data_path, "pmlb_data") ) if ( np.unique(y).size == 2 ): # if binary classification, ensure that the classes are 0 and 1 y -= np.min(y) return _split(_clean_features(X), y, _clean_feat_names(feature_names)) elif data_source == "sklearn": if dataset_name == "diabetes": data = sklearn.datasets.load_diabetes() elif dataset_name == "california_housing": data = sklearn.datasets.fetch_california_housing( data_home=oj(data_path, "sklearn_data") ) elif dataset_name == "breast_cancer": data = sklearn.datasets.load_breast_cancer() return data["data"], data["target"], _clean_feat_names(data["feature_names"]) elif ( data_source == "openml" ): # note this api might change in newer sklearn - should give dataset-id not name data = sklearn.datasets.fetch_openml( data_id=dataset_name, data_home=oj(data_path, "openml_data"), parser="auto" ) X, y, feature_names = ( data["data"], data["target"], _clean_feat_names(data["feature_names"]), ) if isinstance(X, pd.DataFrame): X = X.values if isinstance(y, pd.Series): y = y.values y = _define_openml_outcomes(y, dataset_name) return _split(_clean_features(X), y, _clean_feat_names(feature_names)) elif data_source == "synthetic": if dataset_name == "friedman1": X, y = sklearn.datasets.make_friedman1( n_samples=200, n_features=10) elif dataset_name == "friedman2": X, y = sklearn.datasets.make_friedman2(n_samples=200) elif dataset_name == "friedman3": X, y = sklearn.datasets.make_friedman3(n_samples=200) elif dataset_name == "radchenko_james": X, y = make_rj() elif dataset_name == "vo_pati": X, y = make_vp() return _split(X, y, ["X_" + str(i + 1) for i in range(X.shape[1])])
(dataset_name: str, data_source: str = 'imodels', data_path='/root/cache_imodels_data', convertna: bool = True, test_size: Optional[float] = None, random_state: int = 42, verbose=True) -> Tuple[numpy.ndarray, numpy.ndarray, list]
18,112
imodels.util.rule
get_feature_dict
null
def get_feature_dict(num_features: int, feature_names: Iterable[str] = None) -> Dict[str, str]: feature_dict = OrderedDict() if feature_names is not None: for i in range(num_features): feature_dict[f'X_{i}'] = feature_names[i] else: for i in range(num_features): feature_dict[f'X_{i}'] = f'X_{i}' return feature_dict
(num_features: int, feature_names: Optional[Iterable[str]] = None) -> Dict[str, str]
18,113
sklearn.preprocessing._data
normalize
Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : {'l1', 'l2', 'max'}, default='l2' The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : {0, 1}, default=1 Define axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : bool, default=True If False, try to avoid a copy and normalize in place. This is not guaranteed to always work in place; e.g. if the data is a numpy array with an int dtype, a copy will be returned even with copy=False. return_norm : bool, default=False Whether to return the computed norms. Returns ------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Normalized input X. norms : ndarray of shape (n_samples, ) if axis=1 else (n_features, ) An array of norms along given axis for X. When X is sparse, a NotImplementedError will be raised for norm 'l1' or 'l2'. See Also -------- Normalizer : Performs normalization using the Transformer API (e.g. as part of a preprocessing :class:`~sklearn.pipeline.Pipeline`). Notes ----- For a comparison of the different scalers, transformers, and normalizers, see: :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`. Examples -------- >>> from sklearn.preprocessing import normalize >>> X = [[-2, 1, 2], [-1, 0, 1]] >>> normalize(X, norm="l1") # L1 normalization each row independently array([[-0.4, 0.2, 0.4], [-0.5, 0. , 0.5]]) >>> normalize(X, norm="l2") # L2 normalization each row independently array([[-0.66..., 0.33..., 0.66...], [-0.70..., 0. , 0.70...]])
def scale(X, *, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis. Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to center and scale. axis : {0, 1}, default=0 Axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : bool, default=True If True, center the data before scaling. with_std : bool, default=True If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : bool, default=True If False, try to avoid a copy and scale in place. This is not guaranteed to always work in place; e.g. if the data is a numpy array with an int dtype, a copy will be returned even with copy=False. Returns ------- X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features) The transformed data. See Also -------- StandardScaler : Performs scaling to unit variance using the Transformer API (e.g. as part of a preprocessing :class:`~sklearn.pipeline.Pipeline`). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSC matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSC matrix. NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data transformation. We use a biased estimator for the standard deviation, equivalent to `numpy.std(x, ddof=0)`. Note that the choice of `ddof` is unlikely to affect model performance. For a comparison of the different scalers, transformers, and normalizers, see: :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`. .. warning:: Risk of data leak Do not use :func:`~sklearn.preprocessing.scale` unless you know what you are doing. A common mistake is to apply it to the entire data *before* splitting into training and test sets. This will bias the model evaluation because information would have leaked from the test set to the training set. In general, we recommend using :class:`~sklearn.preprocessing.StandardScaler` within a :ref:`Pipeline <pipeline>` in order to prevent most risks of data leaking: `pipe = make_pipeline(StandardScaler(), LogisticRegression())`. Examples -------- >>> from sklearn.preprocessing import scale >>> X = [[-2, 1, 2], [-1, 0, 1]] >>> scale(X, axis=0) # scaling each column independently array([[-1., 1., 1.], [ 1., -1., -1.]]) >>> scale(X, axis=1) # scaling each row independently array([[-1.37..., 0.39..., 0.98...], [-1.22..., 0. , 1.22...]]) """ X = check_array( X, accept_sparse="csc", copy=copy, ensure_2d=False, estimator="the scale function", dtype=FLOAT_DTYPES, force_all_finite="allow-nan", ) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives." ) if axis != 0: raise ValueError( "Can only scale sparse matrix on axis=0, got axis=%d" % axis ) if with_std: _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var, copy=False) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) if with_mean: mean_ = np.nanmean(X, axis) if with_std: scale_ = np.nanstd(X, axis) # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = np.nanmean(Xr, axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn( "Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features." ) Xr -= mean_1 if with_std: scale_ = _handle_zeros_in_scale(scale_, copy=False) Xr /= scale_ if with_mean: mean_2 = np.nanmean(Xr, axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even # if mean_1 was close to zero. The problem is thus essentially # due to the lack of precision of mean_. A solution is then to # subtract the mean again: if not np.allclose(mean_2, 0): warnings.warn( "Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. " ) Xr -= mean_2 return X
(X, norm='l2', *, axis=1, copy=True, return_norm=False)
18,116
imodels.util.rule
replace_feature_name
null
def replace_feature_name(rule: Rule, replace_dict: Dict[str, str]) -> Rule: def replace(match): return replace_dict[match.group(0)] rule_replaced = copy.copy(rule) rule_replaced.rule = re.sub('|'.join(r'\b%s\b' % re.escape(s) for s in replace_dict), replace, rule.rule) replaced_agg_dict = {} for feature, symbol in rule_replaced.agg_dict: replaced_agg_dict[(replace_dict[feature], symbol)] = rule_replaced.agg_dict[(feature, symbol)] rule_replaced.agg_dict = replaced_agg_dict return rule_replaced
(rule: imodels.util.rule.Rule, replace_dict: Dict[str, str]) -> imodels.util.rule.Rule
18,120
sklearn.model_selection._split
train_test_split
Split arrays or matrices into random train and test subsets. Quick utility that wraps input validation, ``next(ShuffleSplit().split(X, y))``, and application to input data into a single call for splitting (and optionally subsampling) data into a one-liner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If ``train_size`` is also None, it will be set to 0.25. train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, default=None Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. shuffle : bool, default=True Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None. stratify : array-like, default=None If not None, data is split in a stratified fashion, using this as the class labels. Read more in the :ref:`User Guide <stratification>`. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] >>> train_test_split(y, shuffle=False) [[0, 1, 2], [3, 4]]
def __repr__(self): return _build_repr(self)
(*arrays, test_size=None, train_size=None, random_state=None, shuffle=True, stratify=None)
18,122
imodels.util.convert
tree_to_code
Prints a tree with a single split
def tree_to_code(clf, feature_names): '''Prints a tree with a single split ''' n_nodes = clf.tree_.node_count children_left = clf.tree_.children_left children_right = clf.tree_.children_right feature = clf.tree_.feature threshold = clf.tree_.threshold node_depth = np.zeros(shape=n_nodes, dtype=np.int64) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, 0)] # start with the root node id (0) and its depth (0) s = '' while len(stack) > 0: # `pop` ensures each node is only visited once node_id, depth = stack.pop() node_depth[node_id] = depth # If the left and right child of a node is not the same we have a split # node is_split_node = children_left[node_id] != children_right[node_id] # If a split node, append left and right children and depth to `stack` # so we can loop through them if is_split_node: stack.append((children_left[node_id], depth + 1)) stack.append((children_right[node_id], depth + 1)) else: is_leaves[node_id] = True # print("The binary tree structure has {n} nodes and has " # "the following tree structure:\n".format(n=n_nodes)) for i in range(n_nodes): if is_leaves[i]: pass # print("{space}node={node} is a leaf node.".format( # space=node_depth[i] * "\t", node=i)) else: s += f"{feature_names[feature[i]]} <= {threshold[i]}" return f"\033[96m{s}\033[00m\n"
(clf, feature_names)
18,123
imodels.util.convert
tree_to_rules
Return a list of rules from a tree Parameters ---------- tree : Decision Tree Classifier/Regressor feature_names: list of variable names Returns ------- rules : list of rules.
def tree_to_rules(tree: Union[DecisionTreeClassifier, DecisionTreeRegressor], feature_names: List[str], prediction_values: bool = False, round_thresholds=True) -> List[str]: """ Return a list of rules from a tree Parameters ---------- tree : Decision Tree Classifier/Regressor feature_names: list of variable names Returns ------- rules : list of rules. """ # XXX todo: check the case where tree is build on subset of features, # ie max_features != None tree_ = tree.tree_ feature_name = [ feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!" for i in tree_.feature ] rules = [] def recurse(node, base_name): if tree_.feature[node] != _tree.TREE_UNDEFINED: name = feature_name[node] symbol = '<=' symbol2 = '>' threshold = tree_.threshold[node] if round_thresholds: threshold = np.round(threshold, decimals=5) text = base_name + ["{} {} {}".format(name, symbol, threshold)] recurse(tree_.children_left[node], text) text = base_name + ["{} {} {}".format(name, symbol2, threshold)] recurse(tree_.children_right[node], text) else: rule = str.join(' and ', base_name) rule = (rule if rule != '' else ' == '.join([feature_names[0]] * 2)) # a rule selecting all is set to "c0==c0" if prediction_values: rules.append((rule, tree_.value[node][0].tolist())) else: rules.append(rule) recurse(0, []) return rules if len(rules) > 0 else 'True'
(tree: Union[sklearn.tree._classes.DecisionTreeClassifier, sklearn.tree._classes.DecisionTreeRegressor], feature_names: List[str], prediction_values: bool = False, round_thresholds=True) -> List[str]
18,124
sklearn.utils.multiclass
unique_labels
Extract an ordered array of unique labels. We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes Label values. Returns ------- out : ndarray of shape (n_unique_labels,) An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11])
def unique_labels(*ys): """Extract an ordered array of unique labels. We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes Label values. Returns ------- out : ndarray of shape (n_unique_labels,) An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ xp, is_array_api_compliant = get_namespace(*ys) if not ys: raise ValueError("No argument has been passed.") # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == {"binary", "multiclass"}: ys_types = {"multiclass"} if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if ( label_type == "multilabel-indicator" and len( set( check_array(y, accept_sparse=["csr", "csc", "coo"]).shape[1] for y in ys ) ) > 1 ): raise ValueError( "Multi-label binary indicator input with different numbers of labels" ) # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) if is_array_api_compliant: # array_api does not allow for mixed dtypes unique_ys = xp.concat([_unique_labels(y) for y in ys]) return xp.unique_values(unique_ys) ys_labels = set(chain.from_iterable((i for i in _unique_labels(y)) for y in ys)) # Check that we don't mix string type with number type if len(set(isinstance(label, str) for label in ys_labels)) > 1: raise ValueError("Mix of label input types (string and number)") return xp.asarray(sorted(ys_labels))
(*ys)
18,126
jsondiff
CompactJsonDiffSyntax
null
class CompactJsonDiffSyntax(object): def emit_set_diff(self, a, b, s, added, removed): if s == 0.0 or len(removed) == len(a): return {replace: b} if isinstance(b, dict) else b else: d = {} if removed: d[discard] = removed if added: d[add] = added return d def emit_list_diff(self, a, b, s, inserted, changed, deleted): if s == 0.0: return {replace: b} if isinstance(b, dict) else b elif s == 1.0: return {} else: d = changed if inserted: d[insert] = inserted if deleted: d[delete] = [pos for pos, value in deleted] return d def emit_dict_diff(self, a, b, s, added, changed, removed): if s == 0.0: return {replace: b} if isinstance(b, dict) else b elif s == 1.0: return {} else: changed.update(added) if removed: changed[delete] = list(removed.keys()) return changed def emit_value_diff(self, a, b, s): if s == 1.0: return {} else: return {replace: b} if isinstance(b, dict) else b def patch(self, a, d): if isinstance(d, dict): if not d: return a if replace in d: return d[replace] if isinstance(a, dict): a = dict(a) for k, v in d.items(): if k is delete: for kdel in v: del a[kdel] else: av = a.get(k, missing) if av is missing: a[k] = v else: a[k] = self.patch(av, v) return a elif isinstance(a, (list, tuple)): original_type = type(a) a = list(a) if delete in d: for pos in d[delete]: a.pop(pos) if insert in d: for pos, value in d[insert]: a.insert(pos, value) for k, v in d.items(): if k is not delete and k is not insert: k = int(k) a[k] = self.patch(a[k], v) if original_type is not list: a = original_type(a) return a elif isinstance(a, set): a = set(a) if discard in d: for x in d[discard]: a.discard(x) if add in d: for x in d[add]: a.add(x) return a return d
()
18,127
jsondiff
emit_dict_diff
null
def emit_dict_diff(self, a, b, s, added, changed, removed): if s == 0.0: return {replace: b} if isinstance(b, dict) else b elif s == 1.0: return {} else: changed.update(added) if removed: changed[delete] = list(removed.keys()) return changed
(self, a, b, s, added, changed, removed)
18,128
jsondiff
emit_list_diff
null
def emit_list_diff(self, a, b, s, inserted, changed, deleted): if s == 0.0: return {replace: b} if isinstance(b, dict) else b elif s == 1.0: return {} else: d = changed if inserted: d[insert] = inserted if deleted: d[delete] = [pos for pos, value in deleted] return d
(self, a, b, s, inserted, changed, deleted)
18,129
jsondiff
emit_set_diff
null
def emit_set_diff(self, a, b, s, added, removed): if s == 0.0 or len(removed) == len(a): return {replace: b} if isinstance(b, dict) else b else: d = {} if removed: d[discard] = removed if added: d[add] = added return d
(self, a, b, s, added, removed)
18,130
jsondiff
emit_value_diff
null
def emit_value_diff(self, a, b, s): if s == 1.0: return {} else: return {replace: b} if isinstance(b, dict) else b
(self, a, b, s)
18,131
jsondiff
patch
null
def patch(self, a, d): if isinstance(d, dict): if not d: return a if replace in d: return d[replace] if isinstance(a, dict): a = dict(a) for k, v in d.items(): if k is delete: for kdel in v: del a[kdel] else: av = a.get(k, missing) if av is missing: a[k] = v else: a[k] = self.patch(av, v) return a elif isinstance(a, (list, tuple)): original_type = type(a) a = list(a) if delete in d: for pos in d[delete]: a.pop(pos) if insert in d: for pos, value in d[insert]: a.insert(pos, value) for k, v in d.items(): if k is not delete and k is not insert: k = int(k) a[k] = self.patch(a[k], v) if original_type is not list: a = original_type(a) return a elif isinstance(a, set): a = set(a) if discard in d: for x in d[discard]: a.discard(x) if add in d: for x in d[add]: a.add(x) return a return d
(self, a, d)
18,132
jsondiff
ExplicitJsonDiffSyntax
null
class ExplicitJsonDiffSyntax(object): def emit_set_diff(self, a, b, s, added, removed): if s == 0.0 or len(removed) == len(a): return b else: d = {} if removed: d[discard] = removed if added: d[add] = added return d def emit_list_diff(self, a, b, s, inserted, changed, deleted): if s == 0.0: return b elif s == 1.0: return {} else: d = changed if inserted: d[insert] = inserted if deleted: d[delete] = [pos for pos, value in deleted] return d def emit_dict_diff(self, a, b, s, added, changed, removed): if s == 0.0: return b elif s == 1.0: return {} else: d = {} if added: d[insert] = added if changed: d[update] = changed if removed: d[delete] = list(removed.keys()) return d def emit_value_diff(self, a, b, s): if s == 1.0: return {} else: return b
()
18,133
jsondiff
emit_dict_diff
null
def emit_dict_diff(self, a, b, s, added, changed, removed): if s == 0.0: return b elif s == 1.0: return {} else: d = {} if added: d[insert] = added if changed: d[update] = changed if removed: d[delete] = list(removed.keys()) return d
(self, a, b, s, added, changed, removed)
18,134
jsondiff
emit_list_diff
null
def emit_list_diff(self, a, b, s, inserted, changed, deleted): if s == 0.0: return b elif s == 1.0: return {} else: d = changed if inserted: d[insert] = inserted if deleted: d[delete] = [pos for pos, value in deleted] return d
(self, a, b, s, inserted, changed, deleted)
18,135
jsondiff
emit_set_diff
null
def emit_set_diff(self, a, b, s, added, removed): if s == 0.0 or len(removed) == len(a): return b else: d = {} if removed: d[discard] = removed if added: d[add] = added return d
(self, a, b, s, added, removed)
18,136
jsondiff
emit_value_diff
null
def emit_value_diff(self, a, b, s): if s == 1.0: return {} else: return b
(self, a, b, s)
18,137
jsondiff
JsonDiffSyntax
null
class JsonDiffSyntax(object): def emit_set_diff(self, a, b, s, added, removed): raise NotImplementedError() def emit_list_diff(self, a, b, s, inserted, changed, deleted): raise NotImplementedError() def emit_dict_diff(self, a, b, s, added, changed, removed): raise NotImplementedError() def emit_value_diff(self, a, b, s): raise NotImplementedError() def patch(self, a, d): raise NotImplementedError() def unpatch(self, a, d): raise NotImplementedError()
()
18,138
jsondiff
emit_dict_diff
null
def emit_dict_diff(self, a, b, s, added, changed, removed): raise NotImplementedError()
(self, a, b, s, added, changed, removed)
18,139
jsondiff
emit_list_diff
null
def emit_list_diff(self, a, b, s, inserted, changed, deleted): raise NotImplementedError()
(self, a, b, s, inserted, changed, deleted)
18,140
jsondiff
emit_set_diff
null
def emit_set_diff(self, a, b, s, added, removed): raise NotImplementedError()
(self, a, b, s, added, removed)
18,141
jsondiff
emit_value_diff
null
def emit_value_diff(self, a, b, s): raise NotImplementedError()
(self, a, b, s)
18,142
jsondiff
patch
null
def patch(self, a, d): raise NotImplementedError()
(self, a, d)
18,143
jsondiff
unpatch
null
def unpatch(self, a, d): raise NotImplementedError()
(self, a, d)
18,144
jsondiff
JsonDiffer
null
class JsonDiffer(object): class Options(object): pass def __init__(self, syntax='compact', load=False, dump=False, marshal=False, loader=default_loader, dumper=default_dumper, escape_str='$'): self.options = JsonDiffer.Options() self.options.syntax = builtin_syntaxes.get(syntax, syntax) self.options.load = load self.options.dump = dump self.options.marshal = marshal self.options.loader = loader self.options.dumper = dumper self.options.escape_str = escape_str self._symbol_map = { escape_str + symbol.label: symbol for symbol in _all_symbols_ } def _list_diff_0(self, C, X, Y): i, j = len(X), len(Y) r = [] while True: if i > 0 and j > 0: d, s = self._obj_diff(X[i-1], Y[j-1]) if s > 0 and C[i][j] == C[i-1][j-1] + s: r.append((0, d, j-1, s)) i, j = i - 1, j - 1 continue if j > 0 and (i == 0 or C[i][j-1] >= C[i-1][j]): r.append((1, Y[j-1], j-1, 0.0)) j = j - 1 continue if i > 0 and (j == 0 or C[i][j-1] < C[i-1][j]): r.append((-1, X[i-1], i-1, 0.0)) i = i - 1 continue return reversed(r) def _list_diff(self, X, Y): # LCS m = len(X) n = len(Y) # An (m+1) times (n+1) matrix C = [[0 for j in range(n+1)] for i in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): _, s = self._obj_diff(X[i-1], Y[j-1]) # Following lines are part of the original LCS algorithm # left in the code in case modification turns out to be problematic #if X[i-1] == Y[j-1]: # C[i][j] = C[i-1][j-1] + 1 #else: C[i][j] = max(C[i][j-1], C[i-1][j], C[i-1][j-1] + s) inserted = [] deleted = [] changed = {} tot_s = 0.0 for sign, value, pos, s in self._list_diff_0(C, X, Y): if sign == 1: inserted.append((pos, value)) elif sign == -1: deleted.insert(0, (pos, value)) elif sign == 0 and s < 1: changed[pos] = value tot_s += s tot_n = len(X) + len(inserted) if tot_n == 0: s = 1.0 else: s = tot_s / tot_n return self.options.syntax.emit_list_diff(X, Y, s, inserted, changed, deleted), s def _set_diff(self, a, b): removed = a.difference(b) added = b.difference(a) if not removed and not added: return {}, 1.0 ranking = sorted( ( (self._obj_diff(x, y)[1], x, y) for x in removed for y in added ), reverse=True, key=lambda x: x[0] ) r2 = set(removed) a2 = set(added) n_common = len(a) - len(removed) s_common = float(n_common) for s, x, y in ranking: if x in r2 and y in a2: r2.discard(x) a2.discard(y) s_common += s n_common += 1 if not r2 or not a2: break n_tot = len(a) + len(added) s = s_common / n_tot if n_tot != 0 else 1.0 return self.options.syntax.emit_set_diff(a, b, s, added, removed), s def _dict_diff(self, a, b): removed = {} nremoved = 0 nadded = 0 nmatched = 0 smatched = 0.0 added = {} changed = {} for k, v in a.items(): w = b.get(k, missing) if w is missing: nremoved += 1 removed[k] = v else: nmatched += 1 d, s = self._obj_diff(v, w) if s < 1.0: changed[k] = d smatched += 0.5 + 0.5 * s for k, v in b.items(): if k not in a: nadded += 1 added[k] = v n_tot = nremoved + nmatched + nadded s = smatched / n_tot if n_tot != 0 else 1.0 return self.options.syntax.emit_dict_diff(a, b, s, added, changed, removed), s def _obj_diff(self, a, b): if a is b: return self.options.syntax.emit_value_diff(a, b, 1.0), 1.0 if isinstance(a, dict) and isinstance(b, dict): return self._dict_diff(a, b) elif isinstance(a, tuple) and isinstance(b, tuple): return self._list_diff(a, b) elif isinstance(a, list) and isinstance(b, list): return self._list_diff(a, b) elif isinstance(a, set) and isinstance(b, set): return self._set_diff(a, b) elif a != b: return self.options.syntax.emit_value_diff(a, b, 0.0), 0.0 else: return self.options.syntax.emit_value_diff(a, b, 1.0), 1.0 def diff(self, a, b, fp=None): if self.options.load: a = self.options.loader(a) b = self.options.loader(b) d, s = self._obj_diff(a, b) if self.options.marshal or self.options.dump: d = self.marshal(d) if self.options.dump: return self.options.dumper(d, fp) else: return d def similarity(self, a, b): if self.options.load: a = self.options.loader(a) b = self.options.loader(b) d, s = self._obj_diff(a, b) return s def patch(self, a, d, fp=None): if self.options.load: a = self.options.loader(a) d = self.options.loader(d) if self.options.marshal or self.options.load: d = self.unmarshal(d) b = self.options.syntax.patch(a, d) if self.options.dump: return self.options.dumper(b, fp) else: return b def unpatch(self, b, d, fp=None): if self.options.load: b = self.options.loader(b) d = self.options.loader(d) if self.options.marshal or self.options.load: d = self.unmarshal(d) a = self.options.syntax.unpatch(b, d) if self.options.dump: return self.options.dumper(a, fp) else: return a def _unescape(self, x): if isinstance(x, string_types): sym = self._symbol_map.get(x, None) if sym is not None: return sym if x.startswith(self.options.escape_str): return x[1:] return x def unmarshal(self, d): if isinstance(d, dict): return { self._unescape(k): self.unmarshal(v) for k, v in d.items() } elif isinstance(d, (list, tuple)): return type(d)( self.unmarshal(x) for x in d ) else: return self._unescape(d) def _escape(self, o): if type(o) is Symbol: return self.options.escape_str + o.label if isinstance(o, string_types) and o.startswith(self.options.escape_str): return self.options.escape_str + o return o def marshal(self, d): if isinstance(d, dict): return { self._escape(k): self.marshal(v) for k, v in d.items() } elif isinstance(d, (list, tuple)): return type(d)( self.marshal(x) for x in d ) else: return self._escape(d)
(syntax='compact', load=False, dump=False, marshal=False, loader=<jsondiff.JsonLoader object at 0x7f5da7f7c0a0>, dumper=<jsondiff.JsonDumper object at 0x7f5da7f7c040>, escape_str='$')
18,145
jsondiff
__init__
null
def __init__(self, syntax='compact', load=False, dump=False, marshal=False, loader=default_loader, dumper=default_dumper, escape_str='$'): self.options = JsonDiffer.Options() self.options.syntax = builtin_syntaxes.get(syntax, syntax) self.options.load = load self.options.dump = dump self.options.marshal = marshal self.options.loader = loader self.options.dumper = dumper self.options.escape_str = escape_str self._symbol_map = { escape_str + symbol.label: symbol for symbol in _all_symbols_ }
(self, syntax='compact', load=False, dump=False, marshal=False, loader=<jsondiff.JsonLoader object at 0x7f5da7f7c0a0>, dumper=<jsondiff.JsonDumper object at 0x7f5da7f7c040>, escape_str='$')
18,146
jsondiff
_dict_diff
null
def _dict_diff(self, a, b): removed = {} nremoved = 0 nadded = 0 nmatched = 0 smatched = 0.0 added = {} changed = {} for k, v in a.items(): w = b.get(k, missing) if w is missing: nremoved += 1 removed[k] = v else: nmatched += 1 d, s = self._obj_diff(v, w) if s < 1.0: changed[k] = d smatched += 0.5 + 0.5 * s for k, v in b.items(): if k not in a: nadded += 1 added[k] = v n_tot = nremoved + nmatched + nadded s = smatched / n_tot if n_tot != 0 else 1.0 return self.options.syntax.emit_dict_diff(a, b, s, added, changed, removed), s
(self, a, b)
18,147
jsondiff
_escape
null
def _escape(self, o): if type(o) is Symbol: return self.options.escape_str + o.label if isinstance(o, string_types) and o.startswith(self.options.escape_str): return self.options.escape_str + o return o
(self, o)
18,148
jsondiff
_list_diff
null
def _list_diff(self, X, Y): # LCS m = len(X) n = len(Y) # An (m+1) times (n+1) matrix C = [[0 for j in range(n+1)] for i in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): _, s = self._obj_diff(X[i-1], Y[j-1]) # Following lines are part of the original LCS algorithm # left in the code in case modification turns out to be problematic #if X[i-1] == Y[j-1]: # C[i][j] = C[i-1][j-1] + 1 #else: C[i][j] = max(C[i][j-1], C[i-1][j], C[i-1][j-1] + s) inserted = [] deleted = [] changed = {} tot_s = 0.0 for sign, value, pos, s in self._list_diff_0(C, X, Y): if sign == 1: inserted.append((pos, value)) elif sign == -1: deleted.insert(0, (pos, value)) elif sign == 0 and s < 1: changed[pos] = value tot_s += s tot_n = len(X) + len(inserted) if tot_n == 0: s = 1.0 else: s = tot_s / tot_n return self.options.syntax.emit_list_diff(X, Y, s, inserted, changed, deleted), s
(self, X, Y)
18,149
jsondiff
_list_diff_0
null
def _list_diff_0(self, C, X, Y): i, j = len(X), len(Y) r = [] while True: if i > 0 and j > 0: d, s = self._obj_diff(X[i-1], Y[j-1]) if s > 0 and C[i][j] == C[i-1][j-1] + s: r.append((0, d, j-1, s)) i, j = i - 1, j - 1 continue if j > 0 and (i == 0 or C[i][j-1] >= C[i-1][j]): r.append((1, Y[j-1], j-1, 0.0)) j = j - 1 continue if i > 0 and (j == 0 or C[i][j-1] < C[i-1][j]): r.append((-1, X[i-1], i-1, 0.0)) i = i - 1 continue return reversed(r)
(self, C, X, Y)
18,150
jsondiff
_obj_diff
null
def _obj_diff(self, a, b): if a is b: return self.options.syntax.emit_value_diff(a, b, 1.0), 1.0 if isinstance(a, dict) and isinstance(b, dict): return self._dict_diff(a, b) elif isinstance(a, tuple) and isinstance(b, tuple): return self._list_diff(a, b) elif isinstance(a, list) and isinstance(b, list): return self._list_diff(a, b) elif isinstance(a, set) and isinstance(b, set): return self._set_diff(a, b) elif a != b: return self.options.syntax.emit_value_diff(a, b, 0.0), 0.0 else: return self.options.syntax.emit_value_diff(a, b, 1.0), 1.0
(self, a, b)