index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
16,898
imodels.tree.cart_ccp
__init__
null
def __init__(self, estimator_: BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs): self.desired_complexity = desired_complexity # print('est', estimator_) self.estimator_ = estimator_ self.alpha = 0.0 self.complexity_measure = complexity_measure
(self, estimator_: sklearn.base.BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs)
16,904
imodels.tree.cart_ccp
_get_alpha
null
def _get_alpha(self, X, y, sample_weight=None): path = self.estimator_.cost_complexity_pruning_path(X, y) ccp_alphas, impurities = path.ccp_alphas, path.impurities complexities = {} low = 0 high = len(ccp_alphas) - 1 cur = 0 while low <= high: cur = (high + low) // 2 est_params = self.estimator_.get_params() est_params['ccp_alpha'] = ccp_alphas[cur] copied_estimator = deepcopy(self.estimator_).set_params(**est_params) copied_estimator.fit(X, y) if self._get_complexity(copied_estimator, self.complexity_measure) < self.desired_complexity: high = cur - 1 elif self._get_complexity(copied_estimator, self.complexity_measure) > self.desired_complexity: low = cur + 1 else: break self.alpha = ccp_alphas[cur]
(self, X, y, sample_weight=None)
16,905
imodels.tree.cart_ccp
_get_complexity
null
def _get_complexity(self, BaseEstimator, complexity_measure): return compute_tree_complexity(BaseEstimator.tree_, self.complexity_measure)
(self, BaseEstimator, complexity_measure)
16,914
imodels.tree.cart_ccp
fit
null
# closest_alpha, closest_leaves = min(complexities.items(), key=lambda x: abs(self.desired_complexity - x[1])) # self.alpha = closest_alpha def fit(self, X, y, sample_weight=None): params_for_fitting = self.estimator_.get_params() self._get_alpha(X, y, sample_weight) params_for_fitting['ccp_alpha'] = self.alpha self.estimator_.set_params(**params_for_fitting) self.estimator_.fit(X, y)
(self, X, y, sample_weight=None)
16,921
sklearn.tree._classes
DecisionTreeClassifier
A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : {"gini", "entropy", "log_loss"}, default="gini" The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see :ref:`tree_mathematical_formulation`. splitter : {"best", "random"}, default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int or float, default=2 The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for fractions. min_samples_leaf : int or float, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for fractions. min_weight_fraction_leaf : float, default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float or {"sqrt", "log2"}, default=None The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `max(1, int(max_features * n_features_in_))` features are considered at each split. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split, even if ``splitter`` is set to ``"best"``. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. See :term:`Glossary <random_state>` for details. max_leaf_nodes : int, default=None Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, default=0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 class_weight : dict, list of dict or "balanced", default=None Weights associated with classes in the form ``{class_label: weight}``. If None, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ``ccp_alpha`` will be chosen. By default, no pruning is performed. See :ref:`minimal_cost_complexity_pruning` for details. .. versionadded:: 0.22 monotonic_cst : array-like of int of shape (n_features), default=None Indicates the monotonicity constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease If monotonic_cst is None, no constraints are applied. Monotonicity constraints are not supported for: - multiclass classifications (i.e. when `n_classes > 2`), - multioutput classifications (i.e. when `n_outputs_ > 1`), - classifications trained on data with missing values. The constraints hold over the probability of the positive class. Read more in the :ref:`User Guide <monotonic_cst_gbdt>`. .. versionadded:: 1.4 Attributes ---------- classes_ : ndarray of shape (n_classes,) or list of ndarray The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : ndarray of shape (n_features,) The impurity-based feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. max_features_ : int The inferred value of max_features. n_classes_ : int or list of int The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree instance The underlying Tree object. Please refer to ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` for basic usage of these attributes. See Also -------- DecisionTreeRegressor : A decision tree regressor. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The :meth:`predict` method operates using the :func:`numpy.argmax` function on the outputs of :meth:`predict_proba`. This means that in case the highest predicted probabilities are tied, the classifier will predict the tied class with the lowest index in :term:`classes_`. References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ])
class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : {"gini", "entropy", "log_loss"}, default="gini" The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see :ref:`tree_mathematical_formulation`. splitter : {"best", "random"}, default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int or float, default=2 The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for fractions. min_samples_leaf : int or float, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for fractions. min_weight_fraction_leaf : float, default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float or {"sqrt", "log2"}, default=None The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `max(1, int(max_features * n_features_in_))` features are considered at each split. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split, even if ``splitter`` is set to ``"best"``. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. See :term:`Glossary <random_state>` for details. max_leaf_nodes : int, default=None Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, default=0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 class_weight : dict, list of dict or "balanced", default=None Weights associated with classes in the form ``{class_label: weight}``. If None, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ``ccp_alpha`` will be chosen. By default, no pruning is performed. See :ref:`minimal_cost_complexity_pruning` for details. .. versionadded:: 0.22 monotonic_cst : array-like of int of shape (n_features), default=None Indicates the monotonicity constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease If monotonic_cst is None, no constraints are applied. Monotonicity constraints are not supported for: - multiclass classifications (i.e. when `n_classes > 2`), - multioutput classifications (i.e. when `n_outputs_ > 1`), - classifications trained on data with missing values. The constraints hold over the probability of the positive class. Read more in the :ref:`User Guide <monotonic_cst_gbdt>`. .. versionadded:: 1.4 Attributes ---------- classes_ : ndarray of shape (n_classes,) or list of ndarray The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : ndarray of shape (n_features,) The impurity-based feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. max_features_ : int The inferred value of max_features. n_classes_ : int or list of int The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree instance The underlying Tree object. Please refer to ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` for basic usage of these attributes. See Also -------- DecisionTreeRegressor : A decision tree regressor. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The :meth:`predict` method operates using the :func:`numpy.argmax` function on the outputs of :meth:`predict_proba`. This means that in case the highest predicted probabilities are tied, the classifier will predict the tied class with the lowest index in :term:`classes_`. References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ _parameter_constraints: dict = { **BaseDecisionTree._parameter_constraints, "criterion": [StrOptions({"gini", "entropy", "log_loss"}), Hidden(Criterion)], "class_weight": [dict, list, StrOptions({"balanced"}), None], } def __init__( self, *, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None, ): super().__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state, min_impurity_decrease=min_impurity_decrease, monotonic_cst=monotonic_cst, ccp_alpha=ccp_alpha, ) @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels) as integers or strings. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- self : DecisionTreeClassifier Fitted estimator. """ super()._fit( X, y, sample_weight=sample_weight, check_input=check_input, ) return self def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \ such arrays if n_outputs > 1 The class probabilities of the input samples. The order of the classes corresponds to that in the attribute :term:`classes_`. """ check_is_fitted(self) X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: return proba[:, : self.n_classes_] else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, : self.n_classes_[k]] all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \ such arrays if n_outputs > 1 The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute :term:`classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba def _more_tags(self): # XXX: nan is only support for dense arrays, but we set this for common test to # pass, specifically: check_estimators_nan_inf allow_nan = self.splitter == "best" and self.criterion in { "gini", "log_loss", "entropy", } return {"multilabel": True, "allow_nan": allow_nan}
(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)
16,923
sklearn.tree._classes
__init__
null
def __init__( self, *, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None, ): super().__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state, min_impurity_decrease=min_impurity_decrease, monotonic_cst=monotonic_cst, ccp_alpha=ccp_alpha, )
(self, *, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)
16,945
sklearn.tree._classes
fit
Build a decision tree classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels) as integers or strings. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- self : DecisionTreeClassifier Fitted estimator.
def _more_tags(self): # XXX: nan is only support for dense arrays, but we set this for common test to # pass, specifically: check_estimators_nan_inf allow_nan = self.splitter == "best" and self.criterion in { "squared_error", "friedman_mse", "poisson", } return {"allow_nan": allow_nan}
(self, X, y, sample_weight=None, check_input=True)
16,950
sklearn.tree._classes
predict
Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) The predicted classes, or the predict values.
def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) The predicted classes, or the predict values. """ check_is_fitted(self) X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if is_classifier(self): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: class_type = self.classes_[0].dtype predictions = np.zeros((n_samples, self.n_outputs_), dtype=class_type) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0 ) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0]
(self, X, check_input=True)
16,952
sklearn.tree._classes
predict_proba
Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- proba : ndarray of shape (n_samples, n_classes) or list of n_outputs such arrays if n_outputs > 1 The class probabilities of the input samples. The order of the classes corresponds to that in the attribute :term:`classes_`.
def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \ such arrays if n_outputs > 1 The class probabilities of the input samples. The order of the classes corresponds to that in the attribute :term:`classes_`. """ check_is_fitted(self) X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: return proba[:, : self.n_classes_] else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, : self.n_classes_[k]] all_proba.append(proba_k) return all_proba
(self, X, check_input=True)
16,959
sklearn.tree._classes
DecisionTreeRegressor
A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : {"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error" The function to measure the quality of a split. Supported criteria are "squared_error" for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node, "friedman_mse", which uses mean squared error with Friedman's improvement score for potential splits, "absolute_error" for the mean absolute error, which minimizes the L1 loss using the median of each terminal node, and "poisson" which uses reduction in Poisson deviance to find splits. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. .. versionadded:: 0.24 Poisson deviance criterion. splitter : {"best", "random"}, default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int or float, default=2 The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for fractions. min_samples_leaf : int or float, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for fractions. min_weight_fraction_leaf : float, default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float or {"sqrt", "log2"}, default=None The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `max(1, int(max_features * n_features_in_))` features are considered at each split. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split, even if ``splitter`` is set to ``"best"``. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. See :term:`Glossary <random_state>` for details. max_leaf_nodes : int, default=None Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, default=0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ``ccp_alpha`` will be chosen. By default, no pruning is performed. See :ref:`minimal_cost_complexity_pruning` for details. .. versionadded:: 0.22 monotonic_cst : array-like of int of shape (n_features), default=None Indicates the monotonicity constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease If monotonic_cst is None, no constraints are applied. Monotonicity constraints are not supported for: - multioutput regressions (i.e. when `n_outputs_ > 1`), - regressions trained on data with missing values. Read more in the :ref:`User Guide <monotonic_cst_gbdt>`. .. versionadded:: 1.4 Attributes ---------- feature_importances_ : ndarray of shape (n_features,) The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. max_features_ : int The inferred value of max_features. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree instance The underlying Tree object. Please refer to ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` for basic usage of these attributes. See Also -------- DecisionTreeClassifier : A decision tree classifier. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_diabetes >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> X, y = load_diabetes(return_X_y=True) >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, X, y, cv=10) ... # doctest: +SKIP ... array([-0.39..., -0.46..., 0.02..., 0.06..., -0.50..., 0.16..., 0.11..., -0.73..., -0.30..., -0.00...])
class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : {"squared_error", "friedman_mse", "absolute_error", \ "poisson"}, default="squared_error" The function to measure the quality of a split. Supported criteria are "squared_error" for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node, "friedman_mse", which uses mean squared error with Friedman's improvement score for potential splits, "absolute_error" for the mean absolute error, which minimizes the L1 loss using the median of each terminal node, and "poisson" which uses reduction in Poisson deviance to find splits. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. .. versionadded:: 0.24 Poisson deviance criterion. splitter : {"best", "random"}, default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int or float, default=2 The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for fractions. min_samples_leaf : int or float, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for fractions. min_weight_fraction_leaf : float, default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float or {"sqrt", "log2"}, default=None The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `max(1, int(max_features * n_features_in_))` features are considered at each split. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split, even if ``splitter`` is set to ``"best"``. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. See :term:`Glossary <random_state>` for details. max_leaf_nodes : int, default=None Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, default=0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ``ccp_alpha`` will be chosen. By default, no pruning is performed. See :ref:`minimal_cost_complexity_pruning` for details. .. versionadded:: 0.22 monotonic_cst : array-like of int of shape (n_features), default=None Indicates the monotonicity constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease If monotonic_cst is None, no constraints are applied. Monotonicity constraints are not supported for: - multioutput regressions (i.e. when `n_outputs_ > 1`), - regressions trained on data with missing values. Read more in the :ref:`User Guide <monotonic_cst_gbdt>`. .. versionadded:: 1.4 Attributes ---------- feature_importances_ : ndarray of shape (n_features,) The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. max_features_ : int The inferred value of max_features. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree instance The underlying Tree object. Please refer to ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` for basic usage of these attributes. See Also -------- DecisionTreeClassifier : A decision tree classifier. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_diabetes >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> X, y = load_diabetes(return_X_y=True) >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, X, y, cv=10) ... # doctest: +SKIP ... array([-0.39..., -0.46..., 0.02..., 0.06..., -0.50..., 0.16..., 0.11..., -0.73..., -0.30..., -0.00...]) """ _parameter_constraints: dict = { **BaseDecisionTree._parameter_constraints, "criterion": [ StrOptions({"squared_error", "friedman_mse", "absolute_error", "poisson"}), Hidden(Criterion), ], } def __init__( self, *, criterion="squared_error", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None, ): super().__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state, min_impurity_decrease=min_impurity_decrease, ccp_alpha=ccp_alpha, monotonic_cst=monotonic_cst, ) @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- self : DecisionTreeRegressor Fitted estimator. """ super()._fit( X, y, sample_weight=sample_weight, check_input=check_input, ) return self def _compute_partial_dependence_recursion(self, grid, target_features): """Fast partial dependence computation. Parameters ---------- grid : ndarray of shape (n_samples, n_target_features) The grid points on which the partial dependence should be evaluated. target_features : ndarray of shape (n_target_features) The set of target features for which the partial dependence should be evaluated. Returns ------- averaged_predictions : ndarray of shape (n_samples,) The value of the partial dependence function on each grid point. """ grid = np.asarray(grid, dtype=DTYPE, order="C") averaged_predictions = np.zeros( shape=grid.shape[0], dtype=np.float64, order="C" ) self.tree_.compute_partial_dependence( grid, target_features, averaged_predictions ) return averaged_predictions def _more_tags(self): # XXX: nan is only support for dense arrays, but we set this for common test to # pass, specifically: check_estimators_nan_inf allow_nan = self.splitter == "best" and self.criterion in { "squared_error", "friedman_mse", "poisson", } return {"allow_nan": allow_nan}
(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None)
16,961
sklearn.tree._classes
__init__
null
def __init__( self, *, criterion="squared_error", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None, ): super().__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state, min_impurity_decrease=min_impurity_decrease, ccp_alpha=ccp_alpha, monotonic_cst=monotonic_cst, )
(self, *, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None)
16,968
sklearn.tree._classes
_compute_partial_dependence_recursion
Fast partial dependence computation. Parameters ---------- grid : ndarray of shape (n_samples, n_target_features) The grid points on which the partial dependence should be evaluated. target_features : ndarray of shape (n_target_features) The set of target features for which the partial dependence should be evaluated. Returns ------- averaged_predictions : ndarray of shape (n_samples,) The value of the partial dependence function on each grid point.
def _compute_partial_dependence_recursion(self, grid, target_features): """Fast partial dependence computation. Parameters ---------- grid : ndarray of shape (n_samples, n_target_features) The grid points on which the partial dependence should be evaluated. target_features : ndarray of shape (n_target_features) The set of target features for which the partial dependence should be evaluated. Returns ------- averaged_predictions : ndarray of shape (n_samples,) The value of the partial dependence function on each grid point. """ grid = np.asarray(grid, dtype=DTYPE, order="C") averaged_predictions = np.zeros( shape=grid.shape[0], dtype=np.float64, order="C" ) self.tree_.compute_partial_dependence( grid, target_features, averaged_predictions ) return averaged_predictions
(self, grid, target_features)
16,973
sklearn.tree._classes
_more_tags
null
def _more_tags(self): # XXX: nan is only support for dense arrays, but we set this for common test to # pass, specifically: check_estimators_nan_inf allow_nan = self.splitter == "best" and self.criterion in { "squared_error", "friedman_mse", "poisson", } return {"allow_nan": allow_nan}
(self)
16,984
sklearn.tree._classes
fit
Build a decision tree regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you're doing. Returns ------- self : DecisionTreeRegressor Fitted estimator.
def _more_tags(self): # XXX: nan is only support for dense arrays, but we set this for common test to # pass, specifically: check_estimators_nan_inf allow_nan = self.splitter == "best" and self.criterion in { "squared_error", "friedman_mse", "poisson", } return {"allow_nan": allow_nan}
(self, X, y, sample_weight=None, check_input=True)
16,995
imodels.util.distillation
DistilledRegressor
Class to implement distillation. Currently only supports regression. Params ------ teacher: initial model to be trained must be a regressor or a binary classifier student: model to be distilled from teacher's predictions must be a regressor
class DistilledRegressor(BaseEstimator, RegressorMixin): """ Class to implement distillation. Currently only supports regression. Params ------ teacher: initial model to be trained must be a regressor or a binary classifier student: model to be distilled from teacher's predictions must be a regressor """ def __init__(self, teacher: BaseEstimator, student: BaseEstimator, n_iters_teacher: int=1): self.teacher = teacher self.student = student self.n_iters_teacher = n_iters_teacher self._validate_student() self._check_teacher_type() def _validate_student(self): if is_regressor(self.student): pass else: if not hasattr(self.student, "prediction_task"): raise ValueError("Student must be either a scikit-learn or imodels regressor") elif self.student.prediction_task == "classification": raise ValueError("Student must be a regressor") def _check_teacher_type(self): if hasattr(self.teacher, "prediction_task"): self.teacher_type = self.teacher.prediction_task elif hasattr(self.teacher, "_estimator_type"): if is_regressor(self.teacher): self.teacher_type = "regression" else: self.teacher_type = "classification" def set_teacher_params(self, **params): self.teacher.set_params(**params) def set_student_params(self, **params): self.student.set_params(**params) def fit(self, X, y, **kwargs): # fit teacher for iter_teacher in range(self.n_iters_teacher): self.teacher.fit(X, y, **kwargs) if self.teacher_type == "regression": y = self.teacher.predict(X) else: y = self.teacher.predict_proba(X)[:, 1] # assumes binary classifier # fit student self.student.fit(X, y) def predict(self, X): return self.student.predict(X)
(teacher: sklearn.base.BaseEstimator, student: sklearn.base.BaseEstimator, n_iters_teacher: int = 1)
16,997
imodels.util.distillation
__init__
null
def __init__(self, teacher: BaseEstimator, student: BaseEstimator, n_iters_teacher: int=1): self.teacher = teacher self.student = student self.n_iters_teacher = n_iters_teacher self._validate_student() self._check_teacher_type()
(self, teacher: sklearn.base.BaseEstimator, student: sklearn.base.BaseEstimator, n_iters_teacher: int = 1)
17,003
imodels.util.distillation
_check_teacher_type
null
def _check_teacher_type(self): if hasattr(self.teacher, "prediction_task"): self.teacher_type = self.teacher.prediction_task elif hasattr(self.teacher, "_estimator_type"): if is_regressor(self.teacher): self.teacher_type = "regression" else: self.teacher_type = "classification"
(self)
17,012
imodels.util.distillation
_validate_student
null
def _validate_student(self): if is_regressor(self.student): pass else: if not hasattr(self.student, "prediction_task"): raise ValueError("Student must be either a scikit-learn or imodels regressor") elif self.student.prediction_task == "classification": raise ValueError("Student must be a regressor")
(self)
17,013
imodels.util.distillation
fit
null
def fit(self, X, y, **kwargs): # fit teacher for iter_teacher in range(self.n_iters_teacher): self.teacher.fit(X, y, **kwargs) if self.teacher_type == "regression": y = self.teacher.predict(X) else: y = self.teacher.predict_proba(X)[:, 1] # assumes binary classifier # fit student self.student.fit(X, y)
(self, X, y, **kwargs)
17,016
imodels.util.distillation
predict
null
def predict(self, X): return self.student.predict(X)
(self, X)
17,020
imodels.util.distillation
set_student_params
null
def set_student_params(self, **params): self.student.set_params(**params)
(self, **params)
17,021
imodels.util.distillation
set_teacher_params
null
def set_teacher_params(self, **params): self.teacher.set_params(**params)
(self, **params)
17,022
imodels.tree.figs
FIGSClassifier
null
class FIGSClassifier(FIGS, ClassifierMixin): ...
(max_rules: int = 12, max_trees: int = None, min_impurity_decrease: float = 0.0, random_state=None, max_features: str = None)
17,024
imodels.tree.figs
__init__
Params ------ max_rules: int Max total number of rules across all trees max_trees: int Max total number of trees min_impurity_decrease: float A node will be split if this split induces a decrease of the impurity greater than or equal to this value. max_features The number of features to consider when looking for the best split (see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)
def __init__( self, max_rules: int = 12, max_trees: int = None, min_impurity_decrease: float = 0.0, random_state=None, max_features: str = None, ): """ Params ------ max_rules: int Max total number of rules across all trees max_trees: int Max total number of trees min_impurity_decrease: float A node will be split if this split induces a decrease of the impurity greater than or equal to this value. max_features The number of features to consider when looking for the best split (see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html) """ super().__init__() self.max_rules = max_rules self.max_trees = max_trees self.min_impurity_decrease = min_impurity_decrease self.random_state = random_state self.max_features = max_features self._init_decision_function()
(self, max_rules: int = 12, max_trees: Optional[int] = None, min_impurity_decrease: float = 0.0, random_state=None, max_features: Optional[str] = None)
17,028
imodels.tree.figs
__str__
null
def __str__(self): if not hasattr(self, "trees_"): s = self.__class__.__name__ s += "(" s += "max_rules=" s += repr(self.max_rules) s += ")" return s else: s = "> ------------------------------\n" s += "> FIGS-Fast Interpretable Greedy-Tree Sums:\n" s += '> \tPredictions are made by summing the "Val" reached by traversing each tree.\n' s += "> \tFor classifiers, a sigmoid function is then applied to the sum.\n" s += "> ------------------------------\n" s += "\n\t+\n".join([self._tree_to_str(t) for t in self.trees_]) if hasattr(self, "feature_names_") and self.feature_names_ is not None: for i in range(len(self.feature_names_))[::-1]: s = s.replace(f"X_{i}", self.feature_names_[i]) return s
(self)
17,031
imodels.tree.figs
_construct_node_with_stump
Params ------ compare_nodes_with_sample_weight: Deprecated If this is set to true and sample_weight is passed, use sample_weight to compare nodes Otherwise, use sample_weight only for picking a split given a particular node
def _construct_node_with_stump( self, X, y, idxs, tree_num, sample_weight=None, compare_nodes_with_sample_weight=True, max_features=None, ): """ Params ------ compare_nodes_with_sample_weight: Deprecated If this is set to true and sample_weight is passed, use sample_weight to compare nodes Otherwise, use sample_weight only for picking a split given a particular node """ # array indices SPLIT = 0 LEFT = 1 RIGHT = 2 # fit stump stump = tree.DecisionTreeRegressor(max_depth=1, max_features=max_features) sweight = None if sample_weight is not None: sweight = sample_weight[idxs] stump.fit(X[idxs], y[idxs], sample_weight=sweight) # these are all arrays, arr[0] is split node # note: -2 is dummy feature = stump.tree_.feature threshold = stump.tree_.threshold impurity = stump.tree_.impurity n_node_samples = stump.tree_.n_node_samples value = stump.tree_.value # no split if len(feature) == 1: # print('no split found!', idxs.sum(), impurity, feature) return Node( idxs=idxs, value=value[SPLIT], tree_num=tree_num, feature=feature[SPLIT], threshold=threshold[SPLIT], impurity=impurity[SPLIT], impurity_reduction=None, ) # manage sample weights idxs_split = X[:, feature[SPLIT]] <= threshold[SPLIT] idxs_left = idxs_split & idxs idxs_right = ~idxs_split & idxs if sample_weight is None: n_node_samples_left = n_node_samples[LEFT] n_node_samples_right = n_node_samples[RIGHT] else: n_node_samples_left = sample_weight[idxs_left].sum() n_node_samples_right = sample_weight[idxs_right].sum() n_node_samples_split = n_node_samples_left + n_node_samples_right # calculate impurity impurity_reduction = ( impurity[SPLIT] - impurity[LEFT] * n_node_samples_left / n_node_samples_split - impurity[RIGHT] * n_node_samples_right / n_node_samples_split ) * n_node_samples_split node_split = Node( idxs=idxs, value=value[SPLIT], tree_num=tree_num, feature=feature[SPLIT], threshold=threshold[SPLIT], impurity=impurity[SPLIT], impurity_reduction=impurity_reduction, ) # print('\t>>>', node_split, 'impurity', impurity, 'num_pts', idxs.sum(), 'imp_reduc', impurity_reduction) # manage children node_left = Node( idxs=idxs_left, value=value[LEFT], impurity=impurity[LEFT], tree_num=tree_num, ) node_right = Node( idxs=idxs_right, value=value[RIGHT], impurity=impurity[RIGHT], tree_num=tree_num, ) node_split.setattrs( left_temp=node_left, right_temp=node_right, ) return node_split
(self, X, y, idxs, tree_num, sample_weight=None, compare_nodes_with_sample_weight=True, max_features=None)
17,032
imodels.tree.figs
_encode_categories
null
def _encode_categories(self, X, categorical_features): encoder = None if hasattr(self, "_encoder"): encoder = self._encoder return encode_categories(X, categorical_features, encoder)
(self, X, categorical_features)
17,036
imodels.tree.figs
_init_decision_function
Sets decision function based on _estimator_type
def _init_decision_function(self): """Sets decision function based on _estimator_type""" # used by sklearn GridSearchCV, BaggingClassifier if isinstance(self, ClassifierMixin): def decision_function(x): return self.predict_proba(x)[:, 1] elif isinstance(self, RegressorMixin): decision_function = self.predict
(self)
17,038
imodels.tree.figs
_predict_tree
Predict for a single tree
def _predict_tree(self, root: Node, X): """Predict for a single tree""" def _predict_tree_single_point(root: Node, x): if root.left is None and root.right is None: return root.value[0, 0] left = x[root.feature] <= root.threshold if left: if root.left is None: # we don't actually have to worry about this case return root.value else: return _predict_tree_single_point(root.left, x) else: if ( root.right is None ): # we don't actually have to worry about this case return root.value else: return _predict_tree_single_point(root.right, x) preds = np.zeros(X.shape[0]) for i in range(X.shape[0]): preds[i] = _predict_tree_single_point(root, X[i]) return preds
(self, root: imodels.tree.figs.Node, X)
17,041
imodels.tree.figs
_tree_to_str
null
def _tree_to_str(self, root: Node, prefix=""): if root is None: return "" elif root.threshold is None: return "" pprefix = prefix + "\t" return ( prefix + str(root) + "\n" + self._tree_to_str(root.left, pprefix) + self._tree_to_str(root.right, pprefix) )
(self, root: imodels.tree.figs.Node, prefix='')
17,042
imodels.tree.figs
_tree_to_str_with_data
null
def _tree_to_str_with_data(self, X, y, root: Node, prefix=""): if root is None: return "" elif root.threshold is None: return "" pprefix = prefix + "\t" left = X[:, root.feature] <= root.threshold return ( prefix + root.print_root(y) + "\n" + self._tree_to_str_with_data(X[left], y[left], root.left, pprefix) + self._tree_to_str_with_data(X[~left], y[~left], root.right, pprefix) )
(self, X, y, root: imodels.tree.figs.Node, prefix='')
17,045
imodels.tree.figs
fit
Params ------ _sample_weight: array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node.
def fit( self, X, y=None, feature_names=None, verbose=False, sample_weight=None, categorical_features=None, ): """ Params ------ _sample_weight: array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. """ if categorical_features is not None: X, self._encoder = self._encode_categories(X, categorical_features) X, y, feature_names = check_fit_arguments(self, X, y, feature_names) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) self.trees_ = [] # list of the root nodes of added trees self.complexity_ = 0 # tracks the number of rules in the model y_predictions_per_tree = {} # predictions for each tree y_residuals_per_tree = {} # based on predictions above # set up initial potential_splits # everything in potential_splits either is_root (so it can be added directly to self.trees_) # or it is a child of a root node that has already been added idxs = np.ones(X.shape[0], dtype=bool) node_init = self._construct_node_with_stump( X=X, y=y, idxs=idxs, tree_num=-1, sample_weight=sample_weight, max_features=self.max_features, ) potential_splits = [node_init] for node in potential_splits: node.setattrs(is_root=True) potential_splits = sorted(potential_splits, key=lambda x: x.impurity_reduction) # start the greedy fitting algorithm finished = False while len(potential_splits) > 0 and not finished: # print('potential_splits', [str(s) for s in potential_splits]) # get node with max impurity_reduction (since it's sorted) split_node = potential_splits.pop() # don't split on node if split_node.impurity_reduction < self.min_impurity_decrease: finished = True break elif ( split_node.is_root and self.max_trees is not None and len(self.trees_) >= self.max_trees ): # If the node is the root of a new tree and we have reached self.max_trees, # don't split on it, but allow later splits to continue growing existing trees continue # split on node if verbose: print("\nadding " + str(split_node)) self.complexity_ += 1 # if added a tree root if split_node.is_root: # start a new tree self.trees_.append(split_node) # update tree_num for node_ in [split_node, split_node.left_temp, split_node.right_temp]: if node_ is not None: node_.tree_num = len(self.trees_) - 1 # add new root potential node node_new_root = Node( is_root=True, idxs=np.ones(X.shape[0], dtype=bool), tree_num=-1 ) potential_splits.append(node_new_root) # add children to potential splits # assign left_temp, right_temp to be proper children # (basically adds them to tree in predict method) split_node.setattrs(left=split_node.left_temp, right=split_node.right_temp) # add children to potential_splits potential_splits.append(split_node.left) potential_splits.append(split_node.right) # update predictions for altered tree for tree_num_ in range(len(self.trees_)): y_predictions_per_tree[tree_num_] = self._predict_tree( self.trees_[tree_num_], X ) # dummy 0 preds for possible new trees y_predictions_per_tree[-1] = np.zeros(X.shape[0]) # update residuals for each tree # -1 is key for potential new tree for tree_num_ in list(range(len(self.trees_))) + [-1]: y_residuals_per_tree[tree_num_] = deepcopy(y) # subtract predictions of all other trees # Since the current tree makes a constant prediction over the node being split, # one may ignore its contributions to the residuals without affecting the impurity decrease. for tree_num_other_ in range(len(self.trees_)): if not tree_num_other_ == tree_num_: y_residuals_per_tree[tree_num_] -= y_predictions_per_tree[ tree_num_other_ ] # recompute all impurities + update potential_split children potential_splits_new = [] for potential_split in potential_splits: y_target = y_residuals_per_tree[potential_split.tree_num] # re-calculate the best split potential_split_updated = self._construct_node_with_stump( X=X, y=y_target, idxs=potential_split.idxs, tree_num=potential_split.tree_num, sample_weight=sample_weight, max_features=self.max_features, ) # need to preserve certain attributes from before (value at this split + is_root) # value may change because residuals may have changed, but we want it to store the value from before potential_split.setattrs( feature=potential_split_updated.feature, threshold=potential_split_updated.threshold, impurity_reduction=potential_split_updated.impurity_reduction, impurity=potential_split_updated.impurity, left_temp=potential_split_updated.left_temp, right_temp=potential_split_updated.right_temp, ) # this is a valid split if potential_split.impurity_reduction is not None: potential_splits_new.append(potential_split) # sort so largest impurity reduction comes last (should probs make this a heap later) potential_splits = sorted( potential_splits_new, key=lambda x: x.impurity_reduction ) if verbose: print(self) if self.max_rules is not None and self.complexity_ >= self.max_rules: finished = True break # annotate final tree with node_id and value_sklearn, and prepare importance_data_ importance_data = [] for tree_ in self.trees_: node_counter = iter(range(0, int(1e06))) def _annotate_node(node: Node, X, y): if node is None: return # TODO does not incorporate sample weights value_counts = pd.Series(y).value_counts() try: neg_count = value_counts[0.0] except KeyError: neg_count = 0 try: pos_count = value_counts[1.0] except KeyError: pos_count = 0 value_sklearn = np.array([neg_count, pos_count], dtype=float) node.setattrs(node_id=next(node_counter), value_sklearn=value_sklearn) idxs_left = X[:, node.feature] <= node.threshold _annotate_node(node.left, X[idxs_left], y[idxs_left]) _annotate_node(node.right, X[~idxs_left], y[~idxs_left]) _annotate_node(tree_, X, y) # now that the samples per node are known, we can start to compute the importances importance_data_tree = np.zeros(len(self.feature_names_)) def _importances(node: Node): if node is None or node.left is None: return 0.0 # TODO does not incorporate sample weights, but will if added to value_sklearn importance_data_tree[node.feature] += ( np.sum(node.value_sklearn) * node.impurity - np.sum(node.left.value_sklearn) * node.left.impurity - np.sum(node.right.value_sklearn) * node.right.impurity ) return ( np.sum(node.value_sklearn) + _importances(node.left) + _importances(node.right) ) # require the tree to have more than 1 node, otherwise just leave importance_data_tree as zeros if 1 < next(node_counter): tree_samples = _importances(tree_) if tree_samples != 0: importance_data_tree /= tree_samples else: importance_data_tree = 0 importance_data.append(importance_data_tree) self.importance_data_ = importance_data return self
(self, X, y=None, feature_names=None, verbose=False, sample_weight=None, categorical_features=None)
17,048
imodels.tree.figs
plot
null
def plot( self, cols=2, feature_names=None, filename=None, label="all", impurity=False, tree_number=None, dpi=150, fig_size=None, ): is_single_tree = len(self.trees_) < 2 or tree_number is not None n_cols = int(cols) n_rows = int(np.ceil(len(self.trees_) / n_cols)) if feature_names is None: if hasattr(self, "feature_names_") and self.feature_names_ is not None: feature_names = self.feature_names_ n_plots = int(len(self.trees_)) if tree_number is None else 1 fig, axs = plt.subplots(n_plots, dpi=dpi) if fig_size is not None: fig.set_size_inches(fig_size, fig_size) n_classes = 1 if isinstance(self, RegressorMixin) else 2 ax_size = int(len(self.trees_)) for i in range(n_plots): r = i // n_cols c = i % n_cols if not is_single_tree: ax = axs[i] else: ax = axs try: dt = extract_sklearn_tree_from_figs( self, i if tree_number is None else tree_number, n_classes ) plot_tree( dt, ax=ax, feature_names=feature_names, label=label, impurity=impurity, ) except IndexError: ax.axis("off") continue ttl = f"Tree {i}" if n_plots > 1 else f"Tree {tree_number}" ax.set_title(ttl) if filename is not None: plt.savefig(filename) return plt.show()
(self, cols=2, feature_names=None, filename=None, label='all', impurity=False, tree_number=None, dpi=150, fig_size=None)
17,049
imodels.tree.figs
predict
null
def predict(self, X, categorical_features=None): if hasattr(self, "_encoder"): X = self._encode_categories(X, categorical_features=categorical_features) X = check_array(X) preds = np.zeros(X.shape[0]) for tree in self.trees_: preds += self._predict_tree(tree, X) if isinstance(self, RegressorMixin): return preds elif isinstance(self, ClassifierMixin): return (preds > 0.5).astype(int)
(self, X, categorical_features=None)
17,050
imodels.tree.figs
predict_proba
Predict probability for classifiers: Default behavior is to constrain the outputs to the range of probabilities, i.e. 0 to 1, with a sigmoid function. Set use_clipped_prediction=True to use prior behavior of clipping between 0 and 1 instead.
def predict_proba(self, X, categorical_features=None, use_clipped_prediction=False): """Predict probability for classifiers: Default behavior is to constrain the outputs to the range of probabilities, i.e. 0 to 1, with a sigmoid function. Set use_clipped_prediction=True to use prior behavior of clipping between 0 and 1 instead. """ if hasattr(self, "_encoder"): X = self._encode_categories(X, categorical_features=categorical_features) X = check_array(X) if isinstance(self, RegressorMixin): return NotImplemented preds = np.zeros(X.shape[0]) for tree in self.trees_: preds += self._predict_tree(tree, X) if use_clipped_prediction: # old behavior, pre v1.3.9 # constrain to range of probabilities by clipping preds = np.clip(preds, a_min=0.0, a_max=1.0) else: # constrain to range of probabilities with a sigmoid function preds = expit(preds) return np.vstack((1 - preds, preds)).transpose()
(self, X, categorical_features=None, use_clipped_prediction=False)
17,051
imodels.tree.figs
print_tree
null
def print_tree(self, X, y, feature_names=None): s = "------------\n" + "\n\t+\n".join( [self._tree_to_str_with_data(X, y, t) for t in self.trees_] ) if feature_names is None: if hasattr(self, "feature_names_") and self.feature_names_ is not None: feature_names = self.feature_names_ if feature_names is not None: for i in range(len(feature_names))[::-1]: s = s.replace(f"X_{i}", feature_names[i]) return s
(self, X, y, feature_names=None)
17,053
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- categorical_features : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``categorical_features`` parameter in ``fit``. feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. verbose : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``verbose`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.tree.figs.FIGSClassifier, *, categorical_features: Union[bool, NoneType, str] = '$UNCHANGED$', feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$', verbose: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.tree.figs.FIGSClassifier
17,055
sklearn.utils._metadata_requests
set_predict_proba_request
Request metadata passed to the ``predict_proba`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``predict_proba`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``predict_proba``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- categorical_features : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``categorical_features`` parameter in ``predict_proba``. use_clipped_prediction : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``use_clipped_prediction`` parameter in ``predict_proba``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.tree.figs.FIGSClassifier, *, categorical_features: Union[bool, NoneType, str] = '$UNCHANGED$', use_clipped_prediction: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.tree.figs.FIGSClassifier
17,056
sklearn.utils._metadata_requests
set_predict_request
Request metadata passed to the ``predict`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``predict`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``predict``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- categorical_features : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``categorical_features`` parameter in ``predict``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.tree.figs.FIGSClassifier, *, categorical_features: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.tree.figs.FIGSClassifier
17,058
imodels.tree.figs
FIGSClassifierCV
null
class FIGSClassifierCV(FIGSCV): def __init__( self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring="accuracy", *args, **kwargs, ): super(FIGSClassifierCV, self).__init__( figs=FIGSClassifier, n_rules_list=n_rules_list, n_trees_list=n_trees_list, cv=cv, scoring=scoring, *args, **kwargs, )
(n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring='accuracy', *args, **kwargs)
17,059
imodels.tree.figs
__init__
null
def __init__( self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring="accuracy", *args, **kwargs, ): super(FIGSClassifierCV, self).__init__( figs=FIGSClassifier, n_rules_list=n_rules_list, n_trees_list=n_trees_list, cv=cv, scoring=scoring, *args, **kwargs, )
(self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring='accuracy', *args, **kwargs)
17,060
imodels.tree.figs
fit
null
def fit(self, X, y): self.scores_ = [] for _i, n_rules in enumerate(self.n_rules_list): est = self._figs_class(max_rules=n_rules, max_trees=self.n_trees_list[_i]) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) mean_score = np.mean(cv_scores) if len(self.scores_) == 0: self.figs = est elif mean_score > np.max(self.scores_): self.figs = est self.scores_.append(mean_score) self.figs.fit(X=X, y=y)
(self, X, y)
17,061
imodels.tree.figs
predict
null
def predict(self, X): return self.figs.predict(X)
(self, X)
17,062
imodels.tree.figs
predict_proba
null
def predict_proba(self, X): return self.figs.predict_proba(X)
(self, X)
17,063
imodels.tree.figs
FIGSRegressor
null
class FIGSRegressor(FIGS, RegressorMixin): ...
(max_rules: int = 12, max_trees: int = None, min_impurity_decrease: float = 0.0, random_state=None, max_features: str = None)
17,099
imodels.tree.figs
FIGSRegressorCV
null
class FIGSRegressorCV(FIGSCV): def __init__( self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring="r2", *args, **kwargs, ): super(FIGSRegressorCV, self).__init__( figs=FIGSRegressor, n_rules_list=n_rules_list, n_trees_list=n_trees_list, cv=cv, scoring=scoring, *args, **kwargs, )
(n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring='r2', *args, **kwargs)
17,100
imodels.tree.figs
__init__
null
def __init__( self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring="r2", *args, **kwargs, ): super(FIGSRegressorCV, self).__init__( figs=FIGSRegressor, n_rules_list=n_rules_list, n_trees_list=n_trees_list, cv=cv, scoring=scoring, *args, **kwargs, )
(self, n_rules_list: List[int] = [6, 12, 24, 30, 50], n_trees_list: List[int] = [5, 5, 5, 5, 5], cv: int = 3, scoring='r2', *args, **kwargs)
17,104
imodels.rule_set.fplasso
FPLassoClassifier
null
class FPLassoClassifier(FPLasso, ClassifierMixin): def _init_prediction_task(self): self.prediction_task = 'classification'
(minsupport=0.1, maxcardinality=2, verbose=False, n_estimators=100, tree_size=4, sample_fract='default', max_rules=2000, memory_par=0.01, tree_generator=None, lin_trim_quantile=0.025, lin_standardise=True, exp_rand_tree_size=True, include_linear=True, alpha=None, random_state=None)
17,106
imodels.rule_set.fplasso
__init__
null
def __init__(self, minsupport=0.1, maxcardinality=2, verbose=False, n_estimators=100, tree_size=4, sample_fract='default', max_rules=2000, memory_par=0.01, tree_generator=None, lin_trim_quantile=0.025, lin_standardise=True, exp_rand_tree_size=True, include_linear=True, alpha=None, random_state=None): super().__init__(n_estimators, tree_size, sample_fract, max_rules, memory_par, tree_generator, lin_trim_quantile, lin_standardise, exp_rand_tree_size, include_linear, alpha, random_state) self.minsupport = minsupport self.maxcardinality = maxcardinality self.verbose = verbose
(self, minsupport=0.1, maxcardinality=2, verbose=False, n_estimators=100, tree_size=4, sample_fract='default', max_rules=2000, memory_par=0.01, tree_generator=None, lin_trim_quantile=0.025, lin_standardise=True, exp_rand_tree_size=True, include_linear=True, alpha=None, random_state=None)
17,110
imodels.rule_set.rule_fit
__str__
null
def __str__(self): if not hasattr(self, 'coef'): s = self.__class__.__name__ s += "(" s += "max_rules=" s += repr(self.max_rules) s += ")" return s else: s = '> ------------------------------\n' s += '> RuleFit:\n' s += '> \tPredictions are made by summing the coefficients of each rule\n' s += '> ------------------------------\n' return s + self.visualize().to_string(index=False) + '\n'
(self)
17,114
imodels.rule_set.fplasso
_extract_rules
null
def _extract_rules(self, X, y) -> List[str]: X = pd.DataFrame(X, columns=self.feature_placeholders) itemsets = extract_fpgrowth(X, minsupport=self.minsupport, maxcardinality=self.maxcardinality, verbose=self.verbose) return itemsets_to_rules(itemsets)
(self, X, y) -> List[str]
17,118
imodels.rule_set.rule_fit
_get_rules
Return the estimated rules Parameters ---------- exclude_zero_coef: If True (default), returns only the rules with an estimated coefficient not equalt to zero. subregion: If None (default) returns global importances (FP 2004 eq. 28/29), else returns importance over subregion of inputs (FP 2004 eq. 30/31/32). Returns ------- rules: pandas.DataFrame with the rules. Column 'rule' describes the rule, 'coef' holds the coefficients and 'support' the support of the rule in the training data set (X)
def _get_rules(self, exclude_zero_coef=False, subregion=None): """Return the estimated rules Parameters ---------- exclude_zero_coef: If True (default), returns only the rules with an estimated coefficient not equalt to zero. subregion: If None (default) returns global importances (FP 2004 eq. 28/29), else returns importance over subregion of inputs (FP 2004 eq. 30/31/32). Returns ------- rules: pandas.DataFrame with the rules. Column 'rule' describes the rule, 'coef' holds the coefficients and 'support' the support of the rule in the training data set (X) """ n_features = len(self.coef) - len(self.rules_) rule_ensemble = list(self.rules_without_feature_names_) output_rules = [] # Add coefficients for linear effects for i in range(0, n_features): if self.lin_standardise: coef = self.coef[i] * self.friedscale.scale_multipliers[i] else: coef = self.coef[i] if subregion is None: importance = abs(coef) * self.stddev[i] else: subregion = np.array(subregion) importance = sum(abs(coef) * abs([x[i] for x in self.winsorizer.trim(subregion)] - self.mean[i])) / len( subregion) output_rules += [(self.feature_names[i], 'linear', coef, 1, importance)] # Add rules for i in range(0, len(self.rules_)): rule = rule_ensemble[i] coef = self.coef[i + n_features] if subregion is None: importance = abs(coef) * (rule.support * (1 - rule.support)) ** (1 / 2) else: rkx = self.transform(subregion, [rule])[:, -1] importance = sum( abs(coef) * abs(rkx - rule.support)) / len(subregion) output_rules += [(self.rules_[i].rule, 'rule', coef, rule.support, importance)] rules = pd.DataFrame(output_rules, columns=[ "rule", "type", "coef", "support", "importance"]) if exclude_zero_coef: rules = rules.ix[rules.coef != 0] return rules
(self, exclude_zero_coef=False, subregion=None)
17,120
imodels.rule_set.fplasso
_init_prediction_task
null
def _init_prediction_task(self): self.prediction_task = 'classification'
(self)
17,122
imodels.rule_set.rule_fit
_predict_continuous_output
Predict outcome of linear model for X
def _predict_continuous_output(self, X): """Predict outcome of linear model for X """ if type(X) == pd.DataFrame: X = X.values.astype(np.float32) y_pred = np.zeros(X.shape[0]) y_pred += self._eval_weighted_rule_sum(X) if self.include_linear: if self.lin_standardise: X = self.friedscale.scale(X) y_pred += X @ self.coef[:X.shape[1]] return y_pred + self.intercept
(self, X)
17,126
imodels.rule_set.rule_fit
_score_rules
null
def _score_rules(self, X, y, rules) -> Tuple[List[Rule], List[float], float]: X_concat = np.zeros([X.shape[0], 0]) # standardise linear variables if requested (for regression model only) if self.include_linear: # standard deviation and mean of winsorized features self.winsorizer.train(X) winsorized_X = self.winsorizer.trim(X) self.stddev = np.std(winsorized_X, axis=0) self.mean = np.mean(winsorized_X, axis=0) if self.lin_standardise: self.friedscale.train(X) X_regn = self.friedscale.scale(X) else: X_regn = X.copy() X_concat = np.concatenate((X_concat, X_regn), axis=1) X_rules = self.transform(X, rules) if X_rules.shape[0] > 0: X_concat = np.concatenate((X_concat, X_rules), axis=1) # no rules fit and self.include_linear == False if X_concat.shape[1] == 0: return [], [], 0 prediction_task = 'regression' if isinstance( self, RegressorMixin) else 'classification' return score_linear(X_concat, y, rules, prediction_task=prediction_task, max_rules=self.max_rules, alpha=self.alpha, cv=self.cv, random_state=self.random_state)
(self, X, y, rules) -> Tuple[List[imodels.util.rule.Rule], List[float], float]
17,129
imodels.rule_set.fplasso
fit
null
def fit(self, X, y=None, feature_names=None, undiscretized_features=[]): self.undiscretized_features = undiscretized_features super().fit(X, y, feature_names=feature_names) return self
(self, X, y=None, feature_names=None, undiscretized_features=[])
17,133
imodels.rule_set.rule_fit
predict
Predict. For regression returns continuous output. For classification, returns discrete output.
def predict(self, X): '''Predict. For regression returns continuous output. For classification, returns discrete output. ''' check_is_fitted(self) if scipy.sparse.issparse(X): X = X.toarray() X = check_array(X) if isinstance(self, RegressorMixin): return self._predict_continuous_output(X) else: return np.argmax(self.predict_proba(X), axis=1)
(self, X)
17,134
imodels.rule_set.rule_fit
predict_proba
null
def predict_proba(self, X): check_is_fitted(self) if scipy.sparse.issparse(X): X = X.toarray() X = check_array(X) continuous_output = self._predict_continuous_output(X) logits = np.vstack( (1 - continuous_output, continuous_output)).transpose() return softmax(logits, axis=1)
(self, X)
17,136
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. undiscretized_features : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``undiscretized_features`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.rule_set.fplasso.FPLassoClassifier, *, feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', undiscretized_features: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.rule_set.fplasso.FPLassoClassifier
17,140
sklearn.utils._metadata_requests
set_transform_request
Request metadata passed to the ``transform`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``transform`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``transform``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- rules : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``rules`` parameter in ``transform``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.rule_set.fplasso.FPLassoClassifier, *, rules: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.rule_set.fplasso.FPLassoClassifier
17,141
imodels.rule_set.rule_fit
transform
Transform dataset. Parameters ---------- X : array-like matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed: matrix, shape=(n_samples, n_out) Transformed data set
def _score_rules(self, X, y, rules) -> Tuple[List[Rule], List[float], float]: X_concat = np.zeros([X.shape[0], 0]) # standardise linear variables if requested (for regression model only) if self.include_linear: # standard deviation and mean of winsorized features self.winsorizer.train(X) winsorized_X = self.winsorizer.trim(X) self.stddev = np.std(winsorized_X, axis=0) self.mean = np.mean(winsorized_X, axis=0) if self.lin_standardise: self.friedscale.train(X) X_regn = self.friedscale.scale(X) else: X_regn = X.copy() X_concat = np.concatenate((X_concat, X_regn), axis=1) X_rules = self.transform(X, rules) if X_rules.shape[0] > 0: X_concat = np.concatenate((X_concat, X_rules), axis=1) # no rules fit and self.include_linear == False if X_concat.shape[1] == 0: return [], [], 0 prediction_task = 'regression' if isinstance( self, RegressorMixin) else 'classification' return score_linear(X_concat, y, rules, prediction_task=prediction_task, max_rules=self.max_rules, alpha=self.alpha, cv=self.cv, random_state=self.random_state)
(self, X=None, rules=None)
17,142
imodels.rule_set.rule_fit
visualize
null
def visualize(self, decimals=2): rules = self._get_rules() rules = rules[rules.coef != 0].sort_values("support", ascending=False) pd.set_option('display.max_colwidth', None) return rules[['rule', 'coef']].round(decimals)
(self, decimals=2)
17,143
imodels.rule_set.fplasso
FPLassoRegressor
null
class FPLassoRegressor(FPLasso, RegressorMixin): def _init_prediction_task(self): self.prediction_task = 'regression'
(minsupport=0.1, maxcardinality=2, verbose=False, n_estimators=100, tree_size=4, sample_fract='default', max_rules=2000, memory_par=0.01, tree_generator=None, lin_trim_quantile=0.025, lin_standardise=True, exp_rand_tree_size=True, include_linear=True, alpha=None, random_state=None)
17,159
imodels.rule_set.fplasso
_init_prediction_task
null
def _init_prediction_task(self): self.prediction_task = 'regression'
(self)
17,182
imodels.rule_set.fpskope
FPSkopeClassifier
null
class FPSkopeClassifier(SkopeRulesClassifier): def __init__(self, minsupport=0.1, maxcardinality=2, verbose=False, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=.8, max_samples_features=1., bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1., min_samples_split=2, n_jobs=1, random_state=None): super().__init__(precision_min, recall_min, n_estimators, max_samples, max_samples_features, bootstrap, bootstrap_features, max_depth, max_depth_duplication, max_features, min_samples_split, n_jobs, random_state, verbose) self.minsupport = minsupport self.maxcardinality = maxcardinality self.verbose = verbose def fit(self, X, y=None, feature_names=None, undiscretized_features=[], sample_weight=None): self.undiscretized_features = undiscretized_features super().fit(X, y, feature_names=feature_names, sample_weight=sample_weight) return self def _extract_rules(self, X, y) -> List[str]: X = pd.DataFrame(X, columns=self.feature_placeholders) itemsets = extract_fpgrowth(X, minsupport=self.minsupport, maxcardinality=self.maxcardinality, verbose=self.verbose) return [itemsets_to_rules(itemsets)], [np.arange(X.shape[0])], [np.arange(len(self.feature_names))] def _score_rules(self, X, y, rules) -> List[Rule]: return score_precision_recall(X, y, rules, self.estimators_samples_, self.estimators_features_, self.feature_placeholders, oob=False)
(minsupport=0.1, maxcardinality=2, verbose=False, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=0.8, max_samples_features=1.0, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1.0, min_samples_split=2, n_jobs=1, random_state=None)
17,184
imodels.rule_set.fpskope
__init__
null
def __init__(self, minsupport=0.1, maxcardinality=2, verbose=False, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=.8, max_samples_features=1., bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1., min_samples_split=2, n_jobs=1, random_state=None): super().__init__(precision_min, recall_min, n_estimators, max_samples, max_samples_features, bootstrap, bootstrap_features, max_depth, max_depth_duplication, max_features, min_samples_split, n_jobs, random_state, verbose) self.minsupport = minsupport self.maxcardinality = maxcardinality self.verbose = verbose
(self, minsupport=0.1, maxcardinality=2, verbose=False, precision_min=0.5, recall_min=0.01, n_estimators=10, max_samples=0.8, max_samples_features=1.0, bootstrap=False, bootstrap_features=False, max_depth=3, max_depth_duplication=None, max_features=1.0, min_samples_split=2, n_jobs=1, random_state=None)
17,191
imodels.rule_set.fpskope
_extract_rules
null
def _extract_rules(self, X, y) -> List[str]: X = pd.DataFrame(X, columns=self.feature_placeholders) itemsets = extract_fpgrowth(X, minsupport=self.minsupport, maxcardinality=self.maxcardinality, verbose=self.verbose) return [itemsets_to_rules(itemsets)], [np.arange(X.shape[0])], [np.arange(len(self.feature_names))]
(self, X, y) -> List[str]
17,197
imodels.rule_set.skope_rules
_predict_top_rules
Predict if a particular sample is an outlier or not, using the n_rules most performing rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` n_rules : int The number of rules used for the prediction. If one of the n_rules most performing rules is activated, the prediction is equal to 1. Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules.
def _predict_top_rules(self, X, n_rules) -> np.ndarray: """Predict if a particular sample is an outlier or not, using the n_rules most performing rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` n_rules : int The number of rules used for the prediction. If one of the n_rules most performing rules is activated, the prediction is equal to 1. Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules. """ return np.array((self._score_top_rules(X) > len(self.rules_) - n_rules), dtype=int)
(self, X, n_rules) -> numpy.ndarray
17,198
imodels.rule_set.skope_rules
_prune_rules
null
def _prune_rules(self, rules) -> List[Rule]: return deduplicate( prune_mins(rules, self.precision_min, self.recall_min), self.max_depth_duplication )
(self, rules) -> List[imodels.util.rule.Rule]
17,201
imodels.rule_set.skope_rules
_rules_vote
Score representing a vote of the base classifiers (rules). The score of an input sample is computed as the sum of the binary rules outputs: a score of k means than k rules have voted positively. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. The higher, the more abnormal. Positive scores represent outliers, null scores represent inliers.
def _rules_vote(self, X) -> np.ndarray: """Score representing a vote of the base classifiers (rules). The score of an input sample is computed as the sum of the binary rules outputs: a score of k means than k rules have voted positively. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. The higher, the more abnormal. Positive scores represent outliers, null scores represent inliers. """ # Check if fit had been called check_is_fitted(self, ['rules_', 'estimators_samples_', 'max_samples_']) # Input validation X = check_array(X) if X.shape[1] != self.n_features_: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time." " Please reshape your data." % (X.shape[1], self.n_features_)) df = pandas.DataFrame(X, columns=self.feature_placeholders) selected_rules = self.rules_without_feature_names_ scores = np.zeros(X.shape[0]) for (r, _) in selected_rules: scores[list(df.query(r).index)] += 1 return scores
(self, X) -> numpy.ndarray
17,202
imodels.rule_set.fpskope
_score_rules
null
def _score_rules(self, X, y, rules) -> List[Rule]: return score_precision_recall(X, y, rules, self.estimators_samples_, self.estimators_features_, self.feature_placeholders, oob=False)
(self, X, y, rules) -> List[imodels.util.rule.Rule]
17,203
imodels.rule_set.skope_rules
_score_top_rules
Score representing an ordering between the base classifiers (rules). The score is high when the instance is detected by a performing rule. If there are n rules, ordered by increasing OOB precision, a score of k means than the kth rule has voted positively, but not the (k-1) first rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. Positive scores represent outliers, null scores represent inliers.
def _score_top_rules(self, X) -> np.ndarray: """Score representing an ordering between the base classifiers (rules). The score is high when the instance is detected by a performing rule. If there are n rules, ordered by increasing OOB precision, a score of k means than the kth rule has voted positively, but not the (k-1) first rules. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. Returns ------- scores : array, shape (n_samples,) The score of the input samples. Positive scores represent outliers, null scores represent inliers. """ # Check if fit had been called check_is_fitted(self, ['rules_', 'estimators_samples_', 'max_samples_']) # Input validation X = check_array(X) if X.shape[1] != self.n_features_: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time." " Please reshape your data." % (X.shape[1], self.n_features_)) df = pandas.DataFrame(X, columns=self.feature_placeholders) selected_rules = self.rules_without_feature_names_ scores = np.zeros(X.shape[0]) for (k, r) in enumerate(list((selected_rules))): scores[list(df.query(r.rule).index)] = np.maximum( len(selected_rules) - k, scores[list(df.query(r.rule).index)]) return scores
(self, X) -> numpy.ndarray
17,206
imodels.rule_set.fpskope
fit
null
def fit(self, X, y=None, feature_names=None, undiscretized_features=[], sample_weight=None): self.undiscretized_features = undiscretized_features super().fit(X, y, feature_names=feature_names, sample_weight=sample_weight) return self
(self, X, y=None, feature_names=None, undiscretized_features=[], sample_weight=None)
17,209
imodels.rule_set.skope_rules
predict
Predict if a particular sample is an outlier or not. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules.
def predict(self, X) -> np.ndarray: """Predict if a particular sample is an outlier or not. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Internally, it will be converted to ``dtype=np.float32`` Returns ------- is_outlier : array, shape (n_samples,) For each observations, tells whether or not (1 or 0) it should be considered as an outlier according to the selected rules. """ X = check_array(X) return np.argmax(self.predict_proba(X), axis=1)
(self, X) -> numpy.ndarray
17,210
imodels.rule_set.skope_rules
predict_proba
Predict probability of a particular sample being an outlier or not
def predict_proba(self, X) -> np.ndarray: '''Predict probability of a particular sample being an outlier or not ''' X = check_array(X) weight_sum = np.sum([w[0] for (r, w) in self.rules_without_feature_names_]) if weight_sum == 0: return np.vstack((np.ones(X.shape[0]), np.zeros(X.shape[0]))).transpose() y = self._eval_weighted_rule_sum(X) / weight_sum return np.vstack((1 - y, y)).transpose()
(self, X) -> numpy.ndarray
17,212
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. undiscretized_features : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``undiscretized_features`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.rule_set.fpskope.FPSkopeClassifier, *, feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$', undiscretized_features: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.rule_set.fpskope.FPSkopeClassifier
17,215
imodels.rule_list.greedy_rule_list
GreedyRuleListClassifier
null
class GreedyRuleListClassifier(BaseEstimator, RuleList, ClassifierMixin): def __init__(self, max_depth: int = 5, class_weight=None, criterion: str = 'gini'): ''' Params ------ max_depth Maximum depth the list can achieve criterion: str Criterion used to split 'gini', 'entropy', or 'log_loss' ''' self.max_depth = max_depth self.class_weight = class_weight self.criterion = criterion self.depth = 0 # tracks the fitted depth def fit(self, X, y, depth: int = 0, feature_names=None, verbose=False): """ Params ------ X: array_like Feature set y: array_like target variable depth the depth of the current layer (used to recurse) """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) return self.fit_node_recursive(X, y, depth=0, verbose=verbose) def fit_node_recursive(self, X, y, depth: int, verbose): # base case 1: no data in this group if y.size == 0: return [] # base case 2: all y is the same in this group elif np.all(y == y[0]): return [{'val': y[0], 'num_pts': y.size}] # base case 3: max depth reached elif depth == self.max_depth: return [{'val': np.mean(y), 'num_pts': y.size}] # recursively generate rule list else: # find a split with the best value for the criterion m = DecisionTreeClassifier(max_depth=1, criterion=self.criterion) m.fit(X, y) col = m.tree_.feature[0] cutoff = m.tree_.threshold[0] # col, cutoff, criterion_val = self._find_best_split(X, y) if col == -2: return [] y_left = y[X[:, col] < cutoff] # left-hand side data y_right = y[X[:, col] >= cutoff] # right-hand side data # put higher probability of class 1 on the right-hand side if len(y_left) > 0 and np.mean(y_left) > np.mean(y_right): flip = True tmp = deepcopy(y_left) y_left = deepcopy(y_right) y_right = tmp x_left = X[X[:, col] >= cutoff] else: flip = False x_left = X[X[:, col] < cutoff] # print if verbose: print( f'{np.mean(100 * y):.2f} -> {self.feature_names_[col]} -> {np.mean(100 * y_left):.2f} ({y_left.size}) {np.mean(100 * y_right):.2f} ({y_right.size})') # save info par_node = [{ 'col': self.feature_names_[col], 'index_col': col, 'cutoff': cutoff, 'val': np.mean(y_left), # will be the values before splitting in the next lower level 'flip': flip, 'val_right': np.mean(y_right), 'num_pts': y.size, 'num_pts_right': y_right.size }] # generate tree for the non-leaf data par_node = par_node + \ self.fit_node_recursive(x_left, y_left, depth + 1, verbose=verbose) self.depth += 1 # increase the depth since we call fit once self.rules_ = par_node self.complexity_ = len(self.rules_) self.classes_ = unique_labels(y) return par_node def predict_proba(self, X): check_is_fitted(self) X = check_array(X) n = X.shape[0] probs = np.zeros(n) for i in range(n): x = X[i] for j, rule in enumerate(self.rules_): if j == len(self.rules_) - 1: probs[i] = rule['val'] continue regular_condition = x[rule["index_col"]] >= rule["cutoff"] flipped_condition = x[rule["index_col"]] < rule["cutoff"] condition = flipped_condition if rule["flip"] else regular_condition if condition: probs[i] = rule['val_right'] break return np.vstack((1 - probs, probs)).transpose() # probs (n, 2) def predict(self, X): check_is_fitted(self) X = check_array(X) return np.argmax(self.predict_proba(X), axis=1) """ def __str__(self): # s = '' # for rule in self.rules_: # s += f"mean {rule['val'].round(3)} ({rule['num_pts']} pts)\n" # if 'col' in rule: # s += f"if {rule['col']} >= {rule['cutoff']} then {rule['val_right'].round(3)} ({rule['num_pts_right']} pts)\n" # return s """ def __str__(self): '''Print out the list in a nice way ''' s = '> ------------------------------\n> Greedy Rule List\n> ------------------------------\n' def red(s): # return f"\033[91m{s}\033[00m" return s def cyan(s): # return f"\033[96m{s}\033[00m" return s def rule_name(rule): if rule['flip']: return '~' + rule['col'] return rule['col'] # rule = self.rules_[0] # s += f"{red((100 * rule['val']).round(3))}% IwI ({rule['num_pts']} pts)\n" for rule in self.rules_: s += u'\u2193\n' + f"{cyan((100 * rule['val']).round(2))}% risk ({rule['num_pts']} pts)\n" # s += f"\t{'Else':>45} => {cyan((100 * rule['val']).round(2)):>6}% IwI ({rule['val'] * rule['num_pts']:.0f}/{rule['num_pts']} pts)\n" if 'col' in rule: # prefix = f"if {rule['col']} >= {rule['cutoff']}" prefix = f"if {rule_name(rule)}" val = f"{100 * rule['val_right'].round(3)}" s += f"\t{prefix} ==> {red(val)}% risk ({rule['num_pts_right']} pts)\n" # rule = self.rules_[-1] # s += f"{red((100 * rule['val']).round(3))}% IwI ({rule['num_pts']} pts)\n" return s ######## HERE ONWARDS CUSTOM SPLITTING (DEPRECATED IN FAVOR OF SKLEARN STUMP) ######## ###################################################################################### def _find_best_split(self, x, y): """ Find the best split from all features returns: the column to split on, the cutoff value, and the actual criterion_value """ col = None min_criterion_val = 1e10 cutoff = None # iterating through each feature for i, c in enumerate(x.T): # find the best split of that feature criterion_val, cur_cutoff = self._split_on_feature(c, y) # found perfect cutoff if criterion_val == 0: return i, cur_cutoff, criterion_val # check if it's best so far elif criterion_val <= min_criterion_val: min_criterion_val = criterion_val col = i cutoff = cur_cutoff return col, cutoff, min_criterion_val def _split_on_feature(self, col, y): """ col: the column we split on y: target var """ min_criterion_val = 1e10 cutoff = 0.5 # iterate through each value in the column for value in np.unique(col): # separate y into 2 groups y_predict = col < value # get criterion val of this split criterion_val = self._weighted_criterion(y_predict, y) # check if it's the smallest one so far if criterion_val <= min_criterion_val: min_criterion_val = criterion_val cutoff = value return min_criterion_val, cutoff def _weighted_criterion(self, split_decision, y_real): """Returns criterion calculated over a split split decision, True/False, and y_true can be multi class """ if split_decision.shape[0] != y_real.shape[0]: print('They have to be the same length') return None # choose the splitting criterion if self.criterion == 'entropy': criterion_func = self._entropy_criterion elif self.criterion == 'gini': criterion_func = self._gini_criterion elif self.criterion == 'neg_corr': return self._neg_corr_criterion(split_decision, y_real) # left-hand side criterion s_left = criterion_func(y_real[split_decision]) # right-hand side criterion s_right = criterion_func(y_real[~split_decision]) # overall criterion, again weighted average n = y_real.shape[0] if self.class_weight is not None: sample_weights = np.ones(n) for c in self.class_weight.keys(): idxs_c = y_real == c sample_weights[idxs_c] = self.class_weight[c] total_weight = np.sum(sample_weights) weight_left = np.sum(sample_weights[split_decision]) / total_weight # weight_right = np.sum(sample_weights[~split_decision]) / total_weight else: tot_left_samples = np.sum(split_decision == 1) weight_left = tot_left_samples / n s = weight_left * s_left + (1 - weight_left) * s_right return s def _gini_criterion(self, y): '''Returns gini index for one node = sum(pc * (1 – pc)) ''' s = 0 n = y.shape[0] classes = np.unique(y) # for each class, get entropy for c in classes: # weights for each class n_c = np.sum(y == c) p_c = n_c / n # weighted avg s += p_c * (1 - p_c) return s def _entropy_criterion(self, y): """Returns entropy of a divided group of data Data may have multiple classes """ s = 0 n = len(y) classes = set(y) # for each class, get entropy for c in classes: # weights for each class weight = sum(y == c) / n def _entropy_from_counts(c1, c2): """Returns entropy of a group of data c1: count of one class c2: count of another class """ if c1 == 0 or c2 == 0: # when there is only one class in the group, entropy is 0 return 0 def _entropy_func(p): return -p * math.log(p, 2) p1 = c1 * 1.0 / (c1 + c2) p2 = c2 * 1.0 / (c1 + c2) return _entropy_func(p1) + _entropy_func(p2) # weighted avg s += weight * _entropy_from_counts(sum(y == c), sum(y != c)) return s def _neg_corr_criterion(self, split_decision, y): '''Returns negative correlation between y and the binary splitting variable split_decision y must be binary ''' if np.unique(y).size < 2: return 0 elif np.unique(y).size != 2: print('y must be binary output for corr criterion') # y should be 1 more often on the "right side" of the split if y.sum() < y.size / 2: y = 1 - y return -1 * np.corrcoef(split_decision.astype(np.int), y)[0, 1]
(max_depth: int = 5, class_weight=None, criterion: str = 'gini')
17,217
imodels.rule_list.greedy_rule_list
__init__
Params ------ max_depth Maximum depth the list can achieve criterion: str Criterion used to split 'gini', 'entropy', or 'log_loss'
def __init__(self, max_depth: int = 5, class_weight=None, criterion: str = 'gini'): ''' Params ------ max_depth Maximum depth the list can achieve criterion: str Criterion used to split 'gini', 'entropy', or 'log_loss' ''' self.max_depth = max_depth self.class_weight = class_weight self.criterion = criterion self.depth = 0 # tracks the fitted depth
(self, max_depth: int = 5, class_weight=None, criterion: str = 'gini')
17,221
imodels.rule_list.greedy_rule_list
__str__
Print out the list in a nice way
def __str__(self): '''Print out the list in a nice way ''' s = '> ------------------------------\n> Greedy Rule List\n> ------------------------------\n' def red(s): # return f"\033[91m{s}\033[00m" return s def cyan(s): # return f"\033[96m{s}\033[00m" return s def rule_name(rule): if rule['flip']: return '~' + rule['col'] return rule['col'] # rule = self.rules_[0] # s += f"{red((100 * rule['val']).round(3))}% IwI ({rule['num_pts']} pts)\n" for rule in self.rules_: s += u'\u2193\n' + f"{cyan((100 * rule['val']).round(2))}% risk ({rule['num_pts']} pts)\n" # s += f"\t{'Else':>45} => {cyan((100 * rule['val']).round(2)):>6}% IwI ({rule['val'] * rule['num_pts']:.0f}/{rule['num_pts']} pts)\n" if 'col' in rule: # prefix = f"if {rule['col']} >= {rule['cutoff']}" prefix = f"if {rule_name(rule)}" val = f"{100 * rule['val_right'].round(3)}" s += f"\t{prefix} ==> {red(val)}% risk ({rule['num_pts_right']} pts)\n" # rule = self.rules_[-1] # s += f"{red((100 * rule['val']).round(3))}% IwI ({rule['num_pts']} pts)\n" return s
(self)
17,224
imodels.rule_list.greedy_rule_list
_entropy_criterion
Returns entropy of a divided group of data Data may have multiple classes
def _entropy_criterion(self, y): """Returns entropy of a divided group of data Data may have multiple classes """ s = 0 n = len(y) classes = set(y) # for each class, get entropy for c in classes: # weights for each class weight = sum(y == c) / n def _entropy_from_counts(c1, c2): """Returns entropy of a group of data c1: count of one class c2: count of another class """ if c1 == 0 or c2 == 0: # when there is only one class in the group, entropy is 0 return 0 def _entropy_func(p): return -p * math.log(p, 2) p1 = c1 * 1.0 / (c1 + c2) p2 = c2 * 1.0 / (c1 + c2) return _entropy_func(p1) + _entropy_func(p2) # weighted avg s += weight * _entropy_from_counts(sum(y == c), sum(y != c)) return s
(self, y)
17,225
imodels.rule_list.greedy_rule_list
_find_best_split
Find the best split from all features returns: the column to split on, the cutoff value, and the actual criterion_value
def _find_best_split(self, x, y): """ Find the best split from all features returns: the column to split on, the cutoff value, and the actual criterion_value """ col = None min_criterion_val = 1e10 cutoff = None # iterating through each feature for i, c in enumerate(x.T): # find the best split of that feature criterion_val, cur_cutoff = self._split_on_feature(c, y) # found perfect cutoff if criterion_val == 0: return i, cur_cutoff, criterion_val # check if it's best so far elif criterion_val <= min_criterion_val: min_criterion_val = criterion_val col = i cutoff = cur_cutoff return col, cutoff, min_criterion_val
(self, x, y)
17,230
imodels.rule_list.greedy_rule_list
_gini_criterion
Returns gini index for one node = sum(pc * (1 – pc))
def _gini_criterion(self, y): '''Returns gini index for one node = sum(pc * (1 – pc)) ''' s = 0 n = y.shape[0] classes = np.unique(y) # for each class, get entropy for c in classes: # weights for each class n_c = np.sum(y == c) p_c = n_c / n # weighted avg s += p_c * (1 - p_c) return s
(self, y)
17,232
imodels.rule_list.greedy_rule_list
_neg_corr_criterion
Returns negative correlation between y and the binary splitting variable split_decision y must be binary
def _neg_corr_criterion(self, split_decision, y): '''Returns negative correlation between y and the binary splitting variable split_decision y must be binary ''' if np.unique(y).size < 2: return 0 elif np.unique(y).size != 2: print('y must be binary output for corr criterion') # y should be 1 more often on the "right side" of the split if y.sum() < y.size / 2: y = 1 - y return -1 * np.corrcoef(split_decision.astype(np.int), y)[0, 1]
(self, split_decision, y)
17,235
imodels.rule_list.greedy_rule_list
_split_on_feature
col: the column we split on y: target var
def _split_on_feature(self, col, y): """ col: the column we split on y: target var """ min_criterion_val = 1e10 cutoff = 0.5 # iterate through each value in the column for value in np.unique(col): # separate y into 2 groups y_predict = col < value # get criterion val of this split criterion_val = self._weighted_criterion(y_predict, y) # check if it's the smallest one so far if criterion_val <= min_criterion_val: min_criterion_val = criterion_val cutoff = value return min_criterion_val, cutoff
(self, col, y)
17,238
imodels.rule_list.greedy_rule_list
_weighted_criterion
Returns criterion calculated over a split split decision, True/False, and y_true can be multi class
def _weighted_criterion(self, split_decision, y_real): """Returns criterion calculated over a split split decision, True/False, and y_true can be multi class """ if split_decision.shape[0] != y_real.shape[0]: print('They have to be the same length') return None # choose the splitting criterion if self.criterion == 'entropy': criterion_func = self._entropy_criterion elif self.criterion == 'gini': criterion_func = self._gini_criterion elif self.criterion == 'neg_corr': return self._neg_corr_criterion(split_decision, y_real) # left-hand side criterion s_left = criterion_func(y_real[split_decision]) # right-hand side criterion s_right = criterion_func(y_real[~split_decision]) # overall criterion, again weighted average n = y_real.shape[0] if self.class_weight is not None: sample_weights = np.ones(n) for c in self.class_weight.keys(): idxs_c = y_real == c sample_weights[idxs_c] = self.class_weight[c] total_weight = np.sum(sample_weights) weight_left = np.sum(sample_weights[split_decision]) / total_weight # weight_right = np.sum(sample_weights[~split_decision]) / total_weight else: tot_left_samples = np.sum(split_decision == 1) weight_left = tot_left_samples / n s = weight_left * s_left + (1 - weight_left) * s_right return s
(self, split_decision, y_real)
17,239
imodels.rule_list.greedy_rule_list
fit
Params ------ X: array_like Feature set y: array_like target variable depth the depth of the current layer (used to recurse)
def fit(self, X, y, depth: int = 0, feature_names=None, verbose=False): """ Params ------ X: array_like Feature set y: array_like target variable depth the depth of the current layer (used to recurse) """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) return self.fit_node_recursive(X, y, depth=0, verbose=verbose)
(self, X, y, depth: int = 0, feature_names=None, verbose=False)
17,240
imodels.rule_list.greedy_rule_list
fit_node_recursive
null
def fit_node_recursive(self, X, y, depth: int, verbose): # base case 1: no data in this group if y.size == 0: return [] # base case 2: all y is the same in this group elif np.all(y == y[0]): return [{'val': y[0], 'num_pts': y.size}] # base case 3: max depth reached elif depth == self.max_depth: return [{'val': np.mean(y), 'num_pts': y.size}] # recursively generate rule list else: # find a split with the best value for the criterion m = DecisionTreeClassifier(max_depth=1, criterion=self.criterion) m.fit(X, y) col = m.tree_.feature[0] cutoff = m.tree_.threshold[0] # col, cutoff, criterion_val = self._find_best_split(X, y) if col == -2: return [] y_left = y[X[:, col] < cutoff] # left-hand side data y_right = y[X[:, col] >= cutoff] # right-hand side data # put higher probability of class 1 on the right-hand side if len(y_left) > 0 and np.mean(y_left) > np.mean(y_right): flip = True tmp = deepcopy(y_left) y_left = deepcopy(y_right) y_right = tmp x_left = X[X[:, col] >= cutoff] else: flip = False x_left = X[X[:, col] < cutoff] # print if verbose: print( f'{np.mean(100 * y):.2f} -> {self.feature_names_[col]} -> {np.mean(100 * y_left):.2f} ({y_left.size}) {np.mean(100 * y_right):.2f} ({y_right.size})') # save info par_node = [{ 'col': self.feature_names_[col], 'index_col': col, 'cutoff': cutoff, 'val': np.mean(y_left), # will be the values before splitting in the next lower level 'flip': flip, 'val_right': np.mean(y_right), 'num_pts': y.size, 'num_pts_right': y_right.size }] # generate tree for the non-leaf data par_node = par_node + \ self.fit_node_recursive(x_left, y_left, depth + 1, verbose=verbose) self.depth += 1 # increase the depth since we call fit once self.rules_ = par_node self.complexity_ = len(self.rules_) self.classes_ = unique_labels(y) return par_node
(self, X, y, depth: int, verbose)
17,243
imodels.rule_list.greedy_rule_list
predict
null
def predict(self, X): check_is_fitted(self) X = check_array(X) return np.argmax(self.predict_proba(X), axis=1)
(self, X)
17,244
imodels.rule_list.greedy_rule_list
predict_proba
null
def predict_proba(self, X): check_is_fitted(self) X = check_array(X) n = X.shape[0] probs = np.zeros(n) for i in range(n): x = X[i] for j, rule in enumerate(self.rules_): if j == len(self.rules_) - 1: probs[i] = rule['val'] continue regular_condition = x[rule["index_col"]] >= rule["cutoff"] flipped_condition = x[rule["index_col"]] < rule["cutoff"] condition = flipped_condition if rule["flip"] else regular_condition if condition: probs[i] = rule['val_right'] break return np.vstack((1 - probs, probs)).transpose() # probs (n, 2)
(self, X)
17,246
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- depth : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``depth`` parameter in ``fit``. feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. verbose : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``verbose`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.rule_list.greedy_rule_list.GreedyRuleListClassifier, *, depth: Union[bool, NoneType, str] = '$UNCHANGED$', feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', verbose: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.rule_list.greedy_rule_list.GreedyRuleListClassifier
17,249
imodels.tree.cart_wrapper
GreedyTreeClassifier
Wrapper around sklearn greedy tree classifier
class GreedyTreeClassifier(DecisionTreeClassifier): """Wrapper around sklearn greedy tree classifier """ def fit(self, X, y, feature_names=None, sample_weight=None, check_input=True): """Build a decision tree classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels) as integers or strings. feature_names : array-like of shape (n_features) The names of the features sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeClassifier Fitted estimator. """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, sample_weight=sample_weight, check_input=check_input) self._set_complexity() def _set_complexity(self): """Set complexity as number of non-leaf nodes """ self.complexity_ = compute_tree_complexity(self.tree_) def __str__(self): s = '> ------------------------------\n' s += '> Greedy CART Tree:\n' s += '> \tPrediction is made by looking at the value in the appropriate leaf of the tree\n' s += '> ------------------------------' + '\n' if hasattr(self, 'feature_names') and self.feature_names is not None: return s + export_text(self, feature_names=self.feature_names, show_weights=True) else: return s + export_text(self, show_weights=True)
(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)
17,255
imodels.tree.cart_wrapper
__str__
null
def __str__(self): s = '> ------------------------------\n' s += '> Greedy CART Tree:\n' s += '> \tPrediction is made by looking at the value in the appropriate leaf of the tree\n' s += '> ------------------------------' + '\n' if hasattr(self, 'feature_names') and self.feature_names is not None: return s + export_text(self, feature_names=self.feature_names, show_weights=True) else: return s + export_text(self, show_weights=True)
(self)
17,267
imodels.tree.cart_wrapper
_set_complexity
Set complexity as number of non-leaf nodes
def _set_complexity(self): """Set complexity as number of non-leaf nodes """ self.complexity_ = compute_tree_complexity(self.tree_)
(self)
17,275
imodels.tree.cart_wrapper
fit
Build a decision tree classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels) as integers or strings. feature_names : array-like of shape (n_features) The names of the features sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeClassifier Fitted estimator.
def fit(self, X, y, feature_names=None, sample_weight=None, check_input=True): """Build a decision tree classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels) as integers or strings. feature_names : array-like of shape (n_features) The names of the features sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeClassifier Fitted estimator. """ X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, sample_weight=sample_weight, check_input=check_input) self._set_complexity()
(self, X, y, feature_names=None, sample_weight=None, check_input=True)
17,284
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``feature_names`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: imodels.tree.cart_wrapper.GreedyTreeClassifier, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', feature_names: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$') -> imodels.tree.cart_wrapper.GreedyTreeClassifier
17,289
imodels.tree.cart_wrapper
GreedyTreeRegressor
Wrapper around sklearn greedy tree regressor
class GreedyTreeRegressor(DecisionTreeRegressor): """Wrapper around sklearn greedy tree regressor """ def fit(self, X, y, feature_names=None, sample_weight=None, check_input=True): """Build a decision tree regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeRegressor Fitted estimator. """ if feature_names is not None: self.feature_names = feature_names else: self.feature_names = ["X" + str(i + 1) for i in range(X.shape[1])] super().fit(X, y, sample_weight=sample_weight, check_input=check_input) self._set_complexity() def _set_complexity(self): """Set complexity as number of non-leaf nodes """ self.complexity_ = compute_tree_complexity(self.tree_) def __str__(self): if hasattr(self, 'feature_names') and self.feature_names is not None: return 'GreedyTree:\n' + export_text(self, feature_names=self.feature_names, show_weights=True) else: return 'GreedyTree:\n' + export_text(self, show_weights=True)
(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None)
17,295
imodels.tree.cart_wrapper
__str__
null
def __str__(self): if hasattr(self, 'feature_names') and self.feature_names is not None: return 'GreedyTree:\n' + export_text(self, feature_names=self.feature_names, show_weights=True) else: return 'GreedyTree:\n' + export_text(self, show_weights=True)
(self)
17,316
imodels.tree.cart_wrapper
fit
Build a decision tree regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeRegressor Fitted estimator.
def fit(self, X, y, feature_names=None, sample_weight=None, check_input=True): """Build a decision tree regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like of shape (n_samples,) or (n_samples, n_outputs) The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeRegressor Fitted estimator. """ if feature_names is not None: self.feature_names = feature_names else: self.feature_names = ["X" + str(i + 1) for i in range(X.shape[1])] super().fit(X, y, sample_weight=sample_weight, check_input=check_input) self._set_complexity()
(self, X, y, feature_names=None, sample_weight=None, check_input=True)
17,327
imodels.tree.cart_ccp
HSDecisionTreeCCPClassifierCV
null
class HSDecisionTreeCCPClassifierCV(HSTreeClassifier): def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs): super().__init__(estimator_=estimator_, reg_param=None) self.reg_param_list = np.array(reg_param_list) self.cv = cv self.scoring = scoring self.desired_complexity = desired_complexity def fit(self, X, y, sample_weight=None, *args, **kwargs): m = DecisionTreeCCPClassifier(self.estimator_, desired_complexity=self.desired_complexity) m.fit(X, y, sample_weight, *args, **kwargs) self.scores_ = [] for reg_param in self.reg_param_list: est = HSTreeClassifier(deepcopy(m.estimator_), reg_param) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) self.scores_.append(np.mean(cv_scores)) self.reg_param = self.reg_param_list[np.argmax(self.scores_)] super().fit(X=X, y=y)
(estimator_: sklearn.base.BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs)
17,329
imodels.tree.cart_ccp
__init__
null
def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs): super().__init__(estimator_=estimator_, reg_param=None) self.reg_param_list = np.array(reg_param_list) self.cv = cv self.scoring = scoring self.desired_complexity = desired_complexity
(self, estimator_: sklearn.base.BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs)