|
--- |
|
version: 1.0.2 |
|
language: en |
|
license: gpl-3.0 |
|
size_categories: |
|
- 1M<n<10M |
|
task_categories: |
|
- tabular-regression |
|
pretty_name: Molecule3D |
|
tags: |
|
- molecular geometry |
|
- molecular graph |
|
dataset_summary: Curated dataset of ground-state geometries of 4 million molecules |
|
dervied from density functional theory, consisting of SMILES, sdf, and 3D properties |
|
of molecules. Random split and scaffold split datasets are uploaded to our repository. |
|
citation: '@misc{https://doi.org/10.48550/arxiv.2110.01717, doi = {10.48550/ARXIV.2110.01717}, |
|
url = {https://arxiv.org/abs/2110.01717}, author = {Xu, Zhao and Luo, Youzhi and |
|
Zhang, Xuan and Xu, Xinyi and Xie, Yaochen and Liu, Meng and Dickerson, Kaleb |
|
and Deng, Cheng and Nakata, Maho and Ji, Shuiwang}, keywords = {Machine Learning |
|
(cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: |
|
Computer and information sciences}, title = {Molecule3D: A Benchmark for Predicting |
|
3D Geometries from Molecular Graphs}, publisher = {arXiv}, year = {2021}, copyright |
|
= {arXiv.org perpetual, non-exclusive license} }' |
|
configs: |
|
- config_name: Molecule3D_random_split |
|
data_files: |
|
- split: train |
|
path: Molecule3D/Molecule3D_random_split/train-* |
|
- split: test |
|
path: Molecule3D/Molecule3D_random_split/test-* |
|
- split: validation |
|
path: Molecule3D/Molecule3D_random_split/validation-* |
|
- config_name: Molecule3D_scaffold_split |
|
data_files: |
|
- split: train |
|
path: Molecule3D/Molecule3D_scaffold_split/train-* |
|
- split: test |
|
path: Molecule3D/Molecule3D_scaffold_split/test-* |
|
- split: validation |
|
path: Molecule3D/Molecule3D_scaffold_split/validation-* |
|
dataset_info: |
|
- config_name: Molecule3D_random_split |
|
features: |
|
- name: index |
|
dtype: int64 |
|
- name: SMILES |
|
dtype: string |
|
- name: sdf |
|
dtype: string |
|
- name: cid |
|
dtype: int64 |
|
- name: dipole x |
|
dtype: float64 |
|
- name: dipole y |
|
dtype: float64 |
|
- name: dipole z |
|
dtype: float64 |
|
- name: homo |
|
dtype: float64 |
|
- name: lumo |
|
dtype: float64 |
|
- name: Y |
|
dtype: float64 |
|
- name: scf energy |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 3175820005 |
|
num_examples: 2339788 |
|
- name: test |
|
num_bytes: 1058816993 |
|
num_examples: 779930 |
|
- name: validation |
|
num_bytes: 1058522808 |
|
num_examples: 779929 |
|
download_size: 1881875022 |
|
dataset_size: 5293159806 |
|
- config_name: Molecule3D_scaffold_split |
|
features: |
|
- name: index |
|
dtype: int64 |
|
- name: SMILES |
|
dtype: string |
|
- name: sdf |
|
dtype: string |
|
- name: cid |
|
dtype: int64 |
|
- name: dipole x |
|
dtype: float64 |
|
- name: dipole y |
|
dtype: float64 |
|
- name: dipole z |
|
dtype: float64 |
|
- name: homo |
|
dtype: float64 |
|
- name: lumo |
|
dtype: float64 |
|
- name: Y |
|
dtype: float64 |
|
- name: scf energy |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 3066856853 |
|
num_examples: 2339788 |
|
- name: test |
|
num_bytes: 1130636582 |
|
num_examples: 779930 |
|
- name: validation |
|
num_bytes: 1095666371 |
|
num_examples: 779929 |
|
download_size: 1867778422 |
|
dataset_size: 5293159806 |
|
--- |
|
|
|
# Molecule3D |
|
[Molecule3D](https://arxiv.org/abs/2110.01717) is a comprehensive dataset containing ground-state geometries derived from Density Functional Theory (DFT) calculations for approximately 4 million molecules. |
|
This is a mirror of the [Official Github repo](https://github.com/divelab/MoleculeX/tree/molx/Molecule3D) where the dataset was uploaded in 2021. |
|
|
|
|
|
## Preprocseeing |
|
We utilized the raw data uploaded on [Github](https://github.com/divelab/MoleculeX/tree/molx/Molecule3D/data/raw) and performed several preprocessing: |
|
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format) |
|
2. Combine the SMILES strings, SDF data, and 3D molecular properties for each molecule. |
|
3. Split the dataset using random split and scaffold split (train, test, validation) |
|
|
|
If you would like to try these processes with the original dataset, |
|
please follow the instructions in the [Preprocessing Script](https://huggingface.co/datasets/maomlab/Molecule3D/blob/main/Molecule3D_preprocessing.py) file located in our Molecule3D repository. |
|
|
|
|
|
|
|
## Quickstart Usage |
|
|
|
### Load a dataset in python |
|
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
First, from the command line install the `datasets` library |
|
|
|
$ pip install datasets |
|
|
|
then, from within python load the datasets library |
|
|
|
>>> import datasets |
|
|
|
and load one of the `Molecule3D` datasets, e.g., |
|
|
|
>>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well |
|
README.md: 100% 4.95k/4.95k [00:00<00:00, 559kB/s] |
|
Generating train split: 100% 2339788/2339788 [00:34<00:00, 85817.85 examples/s] |
|
Generating test split: 100% 779930/779930 [00:15<00:00, 96660.33 examples/s] |
|
Generating validation split: 100% 779929/779929 [00:09<00:00, 79064.99 examples/s] |
|
|
|
and inspecting the dataset |
|
|
|
>>> Molecule3D |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], |
|
num_rows: 2339788 |
|
}) |
|
test: Dataset({ |
|
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], |
|
num_rows: 779930 |
|
}) |
|
validation: Dataset({ |
|
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], |
|
num_rows: 779929 |
|
}) |
|
}) |
|
|
|
|
|
### Use a dataset to train a model |
|
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. |
|
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support |
|
|
|
pip install 'molflux[catboost,rdkit]' |
|
|
|
then load, featurize, split, fit, and evaluate the catboost model |
|
|
|
import json |
|
from datasets import load_dataset |
|
from molflux.datasets import featurise_dataset |
|
from molflux.features import load_from_dicts as load_representations_from_dicts |
|
from molflux.splits import load_from_dict as load_split_from_dict |
|
from molflux.modelzoo import load_from_dict as load_model_from_dict |
|
from molflux.metrics import load_suite |
|
|
|
split_dataset = load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well |
|
|
|
split_featurised_dataset = featurise_dataset( |
|
split_dataset, |
|
column = "SMILES", |
|
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) |
|
|
|
model = load_model_from_dict({ |
|
"name": "cat_boost_regressor", |
|
"config": { |
|
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], |
|
"y_features": ['Y']}}) |
|
|
|
model.train(split_featurised_dataset["train"]) |
|
preds = model.predict(split_featurised_dataset["test"]) |
|
|
|
regression_suite = load_suite("regression") |
|
|
|
scores = regression_suite.compute( |
|
references=split_featurised_dataset["test"]['Y'], |
|
predictions=preds["cat_boost_regressor::Y"]) |
|
|
|
|
|
## Citation |
|
@misc{https://doi.org/10.48550/arxiv.2110.01717, |
|
doi = {10.48550/ARXIV.2110.01717}, |
|
url = {https://arxiv.org/abs/2110.01717}, |
|
author = {Xu, Zhao and Luo, Youzhi and Zhang, Xuan and Xu, Xinyi and Xie, Yaochen and Liu, Meng and Dickerson, Kaleb and Deng, Cheng and Nakata, Maho and Ji, Shuiwang}, |
|
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs}, |
|
publisher = {arXiv}, |
|
year = {2021}, |
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
|