Datasets:
File size: 7,964 Bytes
3272d6d c099ba6 3272d6d 43acaf8 3272d6d 43acaf8 3272d6d 7ad50a2 3698a0d 7ff6405 3698a0d 7ff6405 3698a0d 7ff6405 3698a0d 71a11f4 3698a0d 71a11f4 3698a0d 71a11f4 43acaf8 f34bfa2 43acaf8 b70b0dd 43acaf8 7ad50a2 43acaf8 7ad50a2 43acaf8 f34bfa2 69d9d56 f34bfa2 ec808ed f34bfa2 ec808ed f34bfa2 3272d6d 446b9b0 555229a 446b9b0 b19c8ea 555229a 4a4f847 446b9b0 9db37df 5226f04 555229a c8a9c47 4fc6905 92eff0c 555229a 92eff0c 555229a 92eff0c 555229a 92eff0c c8a9c47 4fc6905 e9c0924 4fc6905 e9c0924 4fc6905 5226f04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
version: 1.0.2
language: en
license: gpl-3.0
size_categories:
- 1M<n<10M
task_categories:
- tabular-regression
pretty_name: Molecule3D
tags:
- molecular geometry
- molecular graph
dataset_summary: Curated dataset of ground-state geometries of 4 million molecules
dervied from density functional theory, consisting of SMILES, sdf, and 3D properties
of molecules. Random split and scaffold split datasets are uploaded to our repository.
citation: '@misc{https://doi.org/10.48550/arxiv.2110.01717, doi = {10.48550/ARXIV.2110.01717},
url = {https://arxiv.org/abs/2110.01717}, author = {Xu, Zhao and Luo, Youzhi and
Zhang, Xuan and Xu, Xinyi and Xie, Yaochen and Liu, Meng and Dickerson, Kaleb
and Deng, Cheng and Nakata, Maho and Ji, Shuiwang}, keywords = {Machine Learning
(cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS:
Computer and information sciences}, title = {Molecule3D: A Benchmark for Predicting
3D Geometries from Molecular Graphs}, publisher = {arXiv}, year = {2021}, copyright
= {arXiv.org perpetual, non-exclusive license} }'
configs:
- config_name: Molecule3D_random_split
data_files:
- split: train
path: Molecule3D/Molecule3D_random_split/train-*
- split: test
path: Molecule3D/Molecule3D_random_split/test-*
- split: validation
path: Molecule3D/Molecule3D_random_split/validation-*
- config_name: Molecule3D_scaffold_split
data_files:
- split: train
path: Molecule3D/Molecule3D_scaffold_split/train-*
- split: test
path: Molecule3D/Molecule3D_scaffold_split/test-*
- split: validation
path: Molecule3D/Molecule3D_scaffold_split/validation-*
dataset_info:
- config_name: Molecule3D_random_split
features:
- name: index
dtype: int64
- name: SMILES
dtype: string
- name: sdf
dtype: string
- name: cid
dtype: int64
- name: dipole x
dtype: float64
- name: dipole y
dtype: float64
- name: dipole z
dtype: float64
- name: homo
dtype: float64
- name: lumo
dtype: float64
- name: Y
dtype: float64
- name: scf energy
dtype: float64
splits:
- name: train
num_bytes: 3175820005
num_examples: 2339788
- name: test
num_bytes: 1058816993
num_examples: 779930
- name: validation
num_bytes: 1058522808
num_examples: 779929
download_size: 1881875022
dataset_size: 5293159806
- config_name: Molecule3D_scaffold_split
features:
- name: index
dtype: int64
- name: SMILES
dtype: string
- name: sdf
dtype: string
- name: cid
dtype: int64
- name: dipole x
dtype: float64
- name: dipole y
dtype: float64
- name: dipole z
dtype: float64
- name: homo
dtype: float64
- name: lumo
dtype: float64
- name: Y
dtype: float64
- name: scf energy
dtype: float64
splits:
- name: train
num_bytes: 3066856853
num_examples: 2339788
- name: test
num_bytes: 1130636582
num_examples: 779930
- name: validation
num_bytes: 1095666371
num_examples: 779929
download_size: 1867778422
dataset_size: 5293159806
---
# Molecule3D
[Molecule3D](https://arxiv.org/abs/2110.01717) is a comprehensive dataset containing ground-state geometries derived from Density Functional Theory (DFT) calculations for approximately 4 million molecules.
This is a mirror of the [Official Github repo](https://github.com/divelab/MoleculeX/tree/molx/Molecule3D) where the dataset was uploaded in 2021.
## Preprocseeing
We utilized the raw data uploaded on [Github](https://github.com/divelab/MoleculeX/tree/molx/Molecule3D/data/raw) and performed several preprocessing:
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
2. Combine the SMILES strings, SDF data, and 3D molecular properties for each molecule.
3. Split the dataset using random split and scaffold split (train, test, validation)
If you would like to try these processes with the original dataset,
please follow the instructions in the [Preprocessing Script](https://huggingface.co/datasets/maomlab/Molecule3D/blob/main/Molecule3D_preprocessing.py) file located in our Molecule3D repository.
## Quickstart Usage
### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the `Molecule3D` datasets, e.g.,
>>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well
README.md: 100% 4.95k/4.95k [00:00<00:00, 559kB/s]
Generating train split: 100% 2339788/2339788 [00:34<00:00, 85817.85 examples/s]
Generating test split: 100% 779930/779930 [00:15<00:00, 96660.33 examples/s]
Generating validation split: 100% 779929/779929 [00:09<00:00, 79064.99 examples/s]
and inspecting the dataset
>>> Molecule3D
DatasetDict({
train: Dataset({
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'],
num_rows: 2339788
})
test: Dataset({
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'],
num_rows: 779930
})
validation: Dataset({
features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'],
num_rows: 779929
})
})
### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
split_dataset = load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_regressor",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
regression_suite = load_suite("regression")
scores = regression_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_regressor::Y"])
## Citation
@misc{https://doi.org/10.48550/arxiv.2110.01717,
doi = {10.48550/ARXIV.2110.01717},
url = {https://arxiv.org/abs/2110.01717},
author = {Xu, Zhao and Luo, Youzhi and Zhang, Xuan and Xu, Xinyi and Xie, Yaochen and Liu, Meng and Dickerson, Kaleb and Deng, Cheng and Nakata, Maho and Ji, Shuiwang},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs},
publisher = {arXiv},
year = {2021},
copyright = {arXiv.org perpetual, non-exclusive license}
}
|