Datasets:
				
			
			
	
			
	
		
			
	
		
		Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -140,7 +140,7 @@ then, from within python load the datasets library 
     | 
|
| 140 | 
         | 
| 141 | 
         
             
            and load one of the `Molecule3D` datasets, e.g.,
         
     | 
| 142 | 
         | 
| 143 | 
         
            -
                >>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split')
         
     | 
| 144 | 
         
             
                README.md: 100%  4.95k/4.95k [00:00<00:00, 559kB/s]
         
     | 
| 145 | 
         
             
                Generating train split: 100%  2339788/2339788 [00:34<00:00, 85817.85 examples/s]
         
     | 
| 146 | 
         
             
                Generating test split: 100%  779930/779930 [00:15<00:00, 96660.33 examples/s]
         
     | 
| 
         @@ -164,6 +164,50 @@ and inspecting the dataset 
     | 
|
| 164 | 
         
             
                })
         
     | 
| 165 | 
         
             
            }) 
         
     | 
| 166 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 167 | 
         
             
            ## Citation
         
     | 
| 168 | 
         
             
            @misc{https://doi.org/10.48550/arxiv.2110.01717,
         
     | 
| 169 | 
         
             
              doi = {10.48550/ARXIV.2110.01717},
         
     | 
| 
         | 
|
| 140 | 
         | 
| 141 | 
         
             
            and load one of the `Molecule3D` datasets, e.g.,
         
     | 
| 142 | 
         | 
| 143 | 
         
            +
                >>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split')   # can put 'Molecule3D_scaffold_split' for the name as well
         
     | 
| 144 | 
         
             
                README.md: 100%  4.95k/4.95k [00:00<00:00, 559kB/s]
         
     | 
| 145 | 
         
             
                Generating train split: 100%  2339788/2339788 [00:34<00:00, 85817.85 examples/s]
         
     | 
| 146 | 
         
             
                Generating test split: 100%  779930/779930 [00:15<00:00, 96660.33 examples/s]
         
     | 
| 
         | 
|
| 164 | 
         
             
                })
         
     | 
| 165 | 
         
             
            }) 
         
     | 
| 166 | 
         | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
            ### Use a dataset to train a model
         
     | 
| 169 | 
         
            +
            One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
         
     | 
| 170 | 
         
            +
            First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                pip install 'molflux[catboost,rdkit]'
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
            then load, featurize, split, fit, and evaluate the catboost model
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                import json
         
     | 
| 177 | 
         
            +
                from datasets import load_dataset
         
     | 
| 178 | 
         
            +
                from molflux.datasets import featurise_dataset
         
     | 
| 179 | 
         
            +
                from molflux.features import load_from_dicts as load_representations_from_dicts
         
     | 
| 180 | 
         
            +
                from molflux.splits import load_from_dict as load_split_from_dict
         
     | 
| 181 | 
         
            +
                from molflux.modelzoo import load_from_dict as load_model_from_dict
         
     | 
| 182 | 
         
            +
                from molflux.metrics import load_suite
         
     | 
| 183 | 
         
            +
                
         
     | 
| 184 | 
         
            +
                split_dataset = load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split')  # can put 'Molecule3D_scaffold_split' for the name as well
         
     | 
| 185 | 
         
            +
                
         
     | 
| 186 | 
         
            +
                split_featurised_dataset = featurise_dataset(
         
     | 
| 187 | 
         
            +
                  split_dataset,
         
     | 
| 188 | 
         
            +
                  column = "SMILES",
         
     | 
| 189 | 
         
            +
                  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                model = load_model_from_dict({
         
     | 
| 192 | 
         
            +
                    "name": "cat_boost_regressor",
         
     | 
| 193 | 
         
            +
                    "config": {
         
     | 
| 194 | 
         
            +
                        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
         
     | 
| 195 | 
         
            +
                        "y_features": ['Solubility']}})
         
     | 
| 196 | 
         
            +
                
         
     | 
| 197 | 
         
            +
                model.train(split_featurised_dataset["train"])
         
     | 
| 198 | 
         
            +
                preds = model.predict(split_featurised_dataset["test"])
         
     | 
| 199 | 
         
            +
                
         
     | 
| 200 | 
         
            +
                regression_suite = load_suite("regression")
         
     | 
| 201 | 
         
            +
                
         
     | 
| 202 | 
         
            +
                scores = regression_suite.compute(
         
     | 
| 203 | 
         
            +
                    references=split_featurised_dataset["test"]['Solubility'],
         
     | 
| 204 | 
         
            +
                    predictions=preds["cat_boost_regressor::Solubility"])    
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
             
            ## Citation
         
     | 
| 212 | 
         
             
            @misc{https://doi.org/10.48550/arxiv.2110.01717,
         
     | 
| 213 | 
         
             
              doi = {10.48550/ARXIV.2110.01717},
         
     |