haneulpark commited on
Commit
4fc6905
·
verified ·
1 Parent(s): 92eff0c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -1
README.md CHANGED
@@ -140,7 +140,7 @@ then, from within python load the datasets library
140
 
141
  and load one of the `Molecule3D` datasets, e.g.,
142
 
143
- >>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split')
144
  README.md: 100% 4.95k/4.95k [00:00<00:00, 559kB/s]
145
  Generating train split: 100% 2339788/2339788 [00:34<00:00, 85817.85 examples/s]
146
  Generating test split: 100% 779930/779930 [00:15<00:00, 96660.33 examples/s]
@@ -164,6 +164,50 @@ and inspecting the dataset
164
  })
165
  })
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  ## Citation
168
  @misc{https://doi.org/10.48550/arxiv.2110.01717,
169
  doi = {10.48550/ARXIV.2110.01717},
 
140
 
141
  and load one of the `Molecule3D` datasets, e.g.,
142
 
143
+ >>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well
144
  README.md: 100% 4.95k/4.95k [00:00<00:00, 559kB/s]
145
  Generating train split: 100% 2339788/2339788 [00:34<00:00, 85817.85 examples/s]
146
  Generating test split: 100% 779930/779930 [00:15<00:00, 96660.33 examples/s]
 
164
  })
165
  })
166
 
167
+
168
+ ### Use a dataset to train a model
169
+ One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
170
+ First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
171
+
172
+ pip install 'molflux[catboost,rdkit]'
173
+
174
+ then load, featurize, split, fit, and evaluate the catboost model
175
+
176
+ import json
177
+ from datasets import load_dataset
178
+ from molflux.datasets import featurise_dataset
179
+ from molflux.features import load_from_dicts as load_representations_from_dicts
180
+ from molflux.splits import load_from_dict as load_split_from_dict
181
+ from molflux.modelzoo import load_from_dict as load_model_from_dict
182
+ from molflux.metrics import load_suite
183
+
184
+ split_dataset = load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well
185
+
186
+ split_featurised_dataset = featurise_dataset(
187
+ split_dataset,
188
+ column = "SMILES",
189
+ representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
190
+
191
+ model = load_model_from_dict({
192
+ "name": "cat_boost_regressor",
193
+ "config": {
194
+ "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
195
+ "y_features": ['Solubility']}})
196
+
197
+ model.train(split_featurised_dataset["train"])
198
+ preds = model.predict(split_featurised_dataset["test"])
199
+
200
+ regression_suite = load_suite("regression")
201
+
202
+ scores = regression_suite.compute(
203
+ references=split_featurised_dataset["test"]['Solubility'],
204
+ predictions=preds["cat_boost_regressor::Solubility"])
205
+
206
+
207
+
208
+
209
+
210
+
211
  ## Citation
212
  @misc{https://doi.org/10.48550/arxiv.2110.01717,
213
  doi = {10.48550/ARXIV.2110.01717},