id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1654794
import pickle import os class Knowledge: """ 先验知识的保存 """ FILENAME_KNOW = "chatbot.know" FILENAME_DIALOG = "chatbot.dialog" def __init__(self, path="./data/", load=True): self.path = path self.known = {} self.dialog = {} if load: self.load() def study_entity(self, entity: str, sub: str): if entity not in self.known: self.known[entity] = Entity(entity) if sub not in self.known: self.known[sub] = Entity(sub) if not self.known[entity].has_sub(sub): self.known[entity].append(self.known[sub]) def study_connect(self, pre: dict, post: dict, double: bool): conn = Statement(pre, post, double) for entity in pre: if entity not in self.known: self.known[entity] = Entity(entity) self.known[entity].add_conn(conn) if double: for entity in post: if entity not in self.known: self.known[entity] = Entity(entity) self.known[entity].add_conn(conn) def study_dialog(self, question: str, answer: str): que_tag = None for entity in self.known.keys(): if self.known.get(entity, Entity(entity)).has_sub(question): que_tag = entity break if que_tag is None: que_tag = "问题 %d" % len(self.dialog.keys()) if que_tag not in self.dialog: self.dialog[que_tag] = [] self.study_entity(que_tag, question) self.dialog[que_tag].append(answer) def get_dialog_question(self) -> dict: return self.dialog.keys() def get_dialog_answer(self, question: str) -> dict: return self.dialog.get(question, []) def get_conn(self, entity: str) -> list: return self.known.get(entity, Entity(entity)).get_conn() def get_sub(self, entity: str) -> list: return self.known.get(entity, Entity(entity)).get_sub() def save(self): if not os.path.exists(self.path): os.makedirs(self.path) dialog_path = "%s%s" % (self.path, Knowledge.FILENAME_DIALOG) know_path = "%s%s" % (self.path, Knowledge.FILENAME_KNOW) with open(dialog_path, "wb") as data: pickle.dump(self.dialog, data) with open(know_path, "wb") as data: pickle.dump(self.known, data) def load(self): dialog_path = "%s%s" % (self.path, Knowledge.FILENAME_DIALOG) know_path = "%s%s" % (self.path, Knowledge.FILENAME_KNOW) if os.path.exists(dialog_path): with open(dialog_path, "rb") as data: self.dialog = pickle.load(data) if os.path.exists(know_path): with open(know_path, "rb") as data: self.known = pickle.load(data) class Instance: """ entity(string):抽象 tag(string):区分抽象的标签 text(string):实例 evidence(list):推导依据 """ def __init__(self, entity: str, text: str, evidence: list, tag=None): self.entity = entity self.text = text self.evidence = evidence self.tag = tag def get_entity(self): return self.entity def get_text(self): return self.text def get_evidence(self): return self.evidence def get_tag(self): return self.tag def __eq__(self, other): if not isinstance(other, Instance): return False if self.entity != other.entity: return False if self.text != other.text: return False if self.tag != other.tag: return False # evidence 是否要算入相等判断内呢? return True def __repr__(self): return "%s(%s)-%s\t(%s)" % (self.entity, self.tag, self.text, repr(self.evidence)) class Statement: """ pre(dict[string]sting): key为抽象,value为具体 post(dict[string]sting): key为抽象,value为具体 double(Connection): 是否是双向推导 """ def __init__(self, pre: dict, post: dict, double: bool): self.pre = pre self.post = post self.double = double def infer(self, ctx) -> list: evdience = [] # print("====") for entity_str, sub in self.pre.items(): succ = False for entity in ctx.findAll(entity_str): if sub is None or entity.get_text() == sub: succ = True evdience.append(entity) break # print(evdience, entity, sub) if succ is False: return None infer = [] for entity, sub in self.post.items(): infer.append(Instance(entity, sub, evdience)) return infer def __repr__(self): return repr(self.pre) + repr(self.post) def __eq__(self, other): if not isinstance(other, Statement): return False if self.double != other.double: return False if self.pre == other.pre and self.post == other.post: return True if self.double and self.pre == other.post and self.post == other.pre: return True return False class Entity: """ tag(string): 用于表示实体的文字,带[]的场合意味着联系其它实体 sub(Entity): 该实体的子实体,意味着该实体可以转化为的其它实体 conn(Connection): 用于知识推导的记录 """ def __init__(self, tag: str): self.tag = tag self.sub = [] self.conn = [] def append(self, sub): self.sub.append(sub) def get_text(self) -> str: return self.tag def get_sub(self) -> list: return self.sub def get_conn(self): return self.conn def add_conn(self, conn: Statement): if conn not in self.conn: self.conn.append(conn) def has_sub(self, sub: str): for entity in self.sub: if sub == entity.get_text(): return True return False def __repr__(self): return repr(self.tag) + repr(self.conn) + repr(self.sub) class Context: def __init__(self): self.inst_stack = [{}] def find(self, entity_str: str, tag=None, evdience=None) -> Instance: """ 返回满足tag和cond的entity的Instance """ for stack in self.inst_stack: for entity in stack.get(entity_str, []): if entity.get_tag() != tag: continue if evdience is not None and entity.get_evidence() != evdience: continue return entity return None def findAll(self, entity_str: str) -> list: result = [] for stack in self.inst_stack: for stack_entity_str, stack_entities in stack.items(): if stack_entity_str == entity_str: result.extend(stack_entities) return result def new_stack(self): self.inst_stack.append({}) def aborat_stack(self): self.inst_stack.pop() def apply_stack(self): stack = self.inst_stack.pop() for key in stack.keys(): if key in self.inst_stack[-1]: self.inst_stack[-1][key].extend(stack[key]) else: self.inst_stack[-1][key] = stack[key] def append(self, inst: Instance) -> bool: entity = inst.get_entity() tag = inst.get_tag() evdience = inst.get_evidence() if self.find(entity, tag=tag, evdience=evdience) is not None: return False if entity not in self.inst_stack[-1]: self.inst_stack[-1][entity] = [] self.inst_stack[-1][entity].append(inst) return True def iter_all_inst(self): for stack in self.inst_stack: for _, inst_list in stack.items(): for inst in inst_list: yield inst def get_known_stat(self, known: Knowledge): assert len(self.inst_stack) == 1, "上下文栈未全退出" known_stat = [] for inst in self.iter_all_inst(): entity = inst.get_entity() for stat in known.get_conn(entity): if stat not in known_stat: known_stat.append(stat) return known_stat def apply_closure(self, append_stat: list, known: Knowledge): new_stat = [] for stat in append_stat: infer = stat.infer(self) if infer is None: continue for inst in infer: entity = inst.get_entity() text = inst.get_text() evidence = inst.get_evidence() # TODO:解决同推导的tag覆盖问题 if self.append(Instance(entity, text, evidence, tag=None)): # TODO:解决推导可能成环的问题,尝试剪枝 for stat in known.get_conn(entity): new_stat.append(stat) if len(new_stat) > 0: self.apply_closure(new_stat, known) def infer(self, known: Knowledge): assert len(self.inst_stack) == 1, "上下文栈未全退出" known_stat = self.get_known_stat(known) self.apply_closure(known_stat, known) def __repr__(self): text = ["Context:"] for stack in self.inst_stack: text.append("==stack==") for inst in stack.items(): text.append(repr(inst)) return '\n'.join(text)
StarcoderdataPython
3377372
<filename>run.py #!/usr/bin/env python import sys from jira_migrate.issues import main if __name__ == "__main__": sys.exit(main(sys.argv))
StarcoderdataPython
1719742
import cloudmesh cloudmesh.shell("help") print cloudmesh.version()
StarcoderdataPython
14979
"""Module for BlameInteractionGraph plots.""" import typing as tp from datetime import datetime from pathlib import Path import click import matplotlib.pyplot as plt import networkx as nx import pandas as pd import plotly.offline as offply from matplotlib import style from varats.data.reports.blame_interaction_graph import ( create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs, ) from varats.data.reports.blame_report import BlameReport from varats.mapping.commit_map import get_commit_map from varats.paper_mgmt.case_study import ( newest_processed_revision_for_case_study, ) from varats.plot.plot import Plot, PlotDataEmpty from varats.plot.plots import ( PlotGenerator, REQUIRE_CASE_STUDY, REQUIRE_REVISION, ) from varats.plots.chord_plot_utils import ( make_chord_plot, make_arc_plot, NodeTy, ChordPlotNodeInfo, ChordPlotEdgeInfo, ArcPlotEdgeInfo, ArcPlotNodeInfo, ) from varats.ts_utils.cli_util import CLIOptionTy, make_cli_option from varats.utils.git_util import ( CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash, ) class CommitInteractionGraphPlot(Plot, plot_name='cig_plot'): """Creates a dot file for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: # Nothing to do here. pass def save(self, plot_dir: Path, filetype: str = 'svg') -> None: project_name = self.plot_kwargs["project"] revision = self.plot_kwargs["revision"] cig = create_blame_interaction_graph(project_name, revision ).commit_interaction_graph() nx.set_node_attributes( cig, {node: cig.nodes[node]["commit_hash"] for node in cig.nodes}, "label" ) # pylint: disable=import-outside-toplevel from networkx.drawing.nx_agraph import write_dot write_dot(cig, plot_dir / self.plot_file_name("dot")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CommitInteractionGraphPlotGenerator( PlotGenerator, generator_name="cig-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Plot a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphPlot(self.plot_config, **self.plot_kwargs) ] NodeInfoTy = tp.TypeVar("NodeInfoTy", ChordPlotNodeInfo, ArcPlotNodeInfo) EdgeInfoTy = tp.TypeVar("EdgeInfoTy", ChordPlotEdgeInfo, ArcPlotEdgeInfo) def _prepare_cig_plotly( project_name: str, revision: FullCommitHash, create_node_info: tp.Callable[[NodeTy, CommitRepoPair, nx.DiGraph], NodeInfoTy], create_edge_info: tp.Callable[[CommitRepoPair, CommitRepoPair, int], EdgeInfoTy] ) -> tp.Tuple[tp.List[tp.Tuple[NodeTy, NodeInfoTy]], tp.List[tp.Tuple[ NodeTy, NodeTy, EdgeInfoTy]]]: commit_lookup = create_commit_lookup_helper(project_name) cig = create_blame_interaction_graph(project_name, revision).commit_interaction_graph() def filter_nodes(node: CommitRepoPair) -> bool: if node.commit_hash == UNCOMMITTED_COMMIT_HASH: return False commit = commit_lookup(node) if not commit: return False # make filter configurable return datetime.utcfromtimestamp(commit.commit_time ) >= datetime(2015, 1, 1) nodes: tp.List[tp.Tuple[NodeTy, NodeInfoTy]] = [] node_meta: tp.Dict[NodeTy, CommitRepoPair] = {} for node in cig.nodes: node_attrs = tp.cast(CIGNodeAttrs, cig.nodes[node]) commit = node_attrs["commit"] if not filter_nodes(commit): continue node_meta[node] = commit nodes.append((node, create_node_info(node, commit, cig))) nodes = sorted( nodes, key=lambda x: int(commit_lookup(node_meta[x[0]]).commit_time) ) edges: tp.List[tp.Tuple[NodeTy, NodeTy, EdgeInfoTy]] = [] for source, sink in cig.edges: amount = tp.cast(CIGEdgeAttrs, cig[source][sink])["amount"] source_commit = tp.cast(CIGNodeAttrs, cig.nodes[source])["commit"] sink_commit = tp.cast(CIGNodeAttrs, cig.nodes[sink])["commit"] if not filter_nodes(source_commit) or not filter_nodes(sink_commit): continue edges.append(( source, sink, create_edge_info(source_commit, sink_commit, amount) )) return nodes, edges class CommitInteractionGraphChordPlot(Plot, plot_name='cig_chord_plot'): """Chord plot for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: project_name: str = self.plot_kwargs["case_study"].project_name revision = get_commit_map(project_name).convert_to_full_or_warn( ShortCommitHash(self.plot_kwargs["revision"]) ) def create_node_data( node: NodeTy, commit: CommitRepoPair, cig: nx.DiGraph ) -> ChordPlotNodeInfo: del node del cig return {"info": commit.commit_hash.short_hash, "color": 1} def create_edge_data( source_commit: CommitRepoPair, sink_commit: CommitRepoPair, amount: int ) -> ChordPlotEdgeInfo: return { "size": amount, "color": 1, "info": f"{source_commit.commit_hash.short_hash} " f"--{{{amount}}}--> " f"{sink_commit.commit_hash.short_hash}" } nodes, edges = _prepare_cig_plotly( project_name, revision, create_node_data, create_edge_data ) figure = make_chord_plot(nodes, edges, "Commit Interaction Graph") if view_mode: figure.show() else: offply.plot(figure, filename=self.plot_file_name("html")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGChordPlotGenerator( PlotGenerator, generator_name="cig-chord-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Generates a chord plot for a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphChordPlot( self.plot_config, **self.plot_kwargs ) ] class CommitInteractionGraphArcPlot(Plot, plot_name='cig_arc_plot'): """Arc plot for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: project_name: str = self.plot_kwargs["case_study"].project_name revision = get_commit_map(project_name).convert_to_full_or_warn( ShortCommitHash(self.plot_kwargs["revision"]) ) def create_node_data( node: NodeTy, commit: CommitRepoPair, cig: nx.DiGraph ) -> ArcPlotNodeInfo: return { "info": commit.commit_hash.short_hash, "size": cig.degree(node), "fill_color": cig.out_degree(node), "line_color": cig.in_degree(node) } def create_edge_data( source_commit: CommitRepoPair, sink_commit: CommitRepoPair, amount: int ) -> ArcPlotEdgeInfo: return { "size": amount, "color": amount, "info": f"{source_commit.commit_hash.short_hash} " f"--{{{amount}}}--> " f"{sink_commit.commit_hash.short_hash}" } nodes, edges = _prepare_cig_plotly( project_name, revision, create_node_data, create_edge_data ) figure = make_arc_plot(nodes, edges, "Commit Interaction Graph") if view_mode: figure.show() else: offply.plot(figure, filename=self.plot_file_name("html")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGArcPlotGenerator( PlotGenerator, generator_name="cig-arc-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Generates an arc plot for a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphArcPlot(self.plot_config, **self.plot_kwargs) ] OPTIONAL_SORT_METHOD: CLIOptionTy = make_cli_option( "--sort-by", type=click.Choice(["degree", "time"]), default="degree", required=False, help="Sort method for commit interaction graph nodes." ) class CommitInteractionGraphNodeDegreePlot(Plot, plot_name='cig_node_degrees'): """ Plot node degrees of a commit interaction graph. Additional arguments: - sort: criteria to sort the revisions [degree, time] """ def plot(self, view_mode: bool) -> None: sort = self.plot_kwargs["sort"] case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Commit Interaction Graph - Node Degrees") axes.set_title(case_study.project_name) axes.set_ylabel("Degree") xlabel = "" if sort == "time": xlabel = "Time (old to new)" elif sort == "degree": xlabel = "Commits" axes.set_xlabel(xlabel) revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() cig = create_blame_interaction_graph(case_study.project_name, revision ).commit_interaction_graph() commit_lookup = create_commit_lookup_helper(case_study.project_name) def filter_nodes(node: CommitRepoPair) -> bool: if node.commit_hash == UNCOMMITTED_COMMIT_HASH: return False return bool(commit_lookup(node)) def commit_time(node: CommitRepoPair) -> datetime: return datetime.utcfromtimestamp(commit_lookup(node).commit_time) nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in cig.nodes: node_attrs = tp.cast(CIGNodeAttrs, cig.nodes[node]) commit = node_attrs["commit"] if not filter_nodes(commit): continue nodes.append(({ "commit_hash": commit.commit_hash, "commit_time": commit_time(commit), "node_degree": cig.degree(node), "node_out_degree": cig.out_degree(node), "node_in_degree": cig.in_degree(node), })) data = pd.DataFrame(nodes) if sort == "time": data.sort_values(by="commit_time", inplace=True) node_degrees = data.loc[:, ["commit_hash", "node_degree"]] node_out_degrees = data.loc[:, ["commit_hash", "node_out_degree"]] node_in_degrees = data.loc[:, ["commit_hash", "node_in_degree"]] if sort == "degree": node_degrees.sort_values(by="node_degree", inplace=True) node_out_degrees.sort_values(by="node_out_degree", inplace=True) node_in_degrees.sort_values(by="node_in_degree", inplace=True) axes.plot(node_degrees["node_degree"].values, label="degree") axes.plot( node_out_degrees["node_out_degree"].values, label="out_degree" ) axes.plot(node_in_degrees["node_in_degree"].values, label="in_degree") axes.legend() def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGNodeDegreePlotGenerator( PlotGenerator, generator_name="cig-node-degrees", options=[REQUIRE_CASE_STUDY, OPTIONAL_SORT_METHOD] ): """Generates a plot of node degrees of a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ] class AuthorInteractionGraphNodeDegreePlot(Plot, plot_name='aig_node_degrees'): """Plot node degrees of a author interaction graph.""" def plot(self, view_mode: bool) -> None: case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Author Interaction Graph - Node Degrees") axes.set_title(case_study.project_name) axes.set_ylabel("Degree") axes.set_xlabel("Authors") project_name = case_study.project_name revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() aig = create_blame_interaction_graph(project_name, revision ).author_interaction_graph() nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in aig.nodes: node_attrs = tp.cast(AIGNodeAttrs, aig.nodes[node]) author = node_attrs["author"] nodes.append(({ "author": author, "node_degree": aig.degree(node), "node_out_degree": aig.out_degree(node), "node_in_degree": aig.in_degree(node), })) data = pd.DataFrame(nodes) node_degrees = data.loc[:, ["author", "node_degree"]] node_out_degrees = data.loc[:, ["author", "node_out_degree"]] node_in_degrees = data.loc[:, ["author", "node_in_degree"]] node_degrees.sort_values(by="node_degree", inplace=True) node_out_degrees.sort_values(by="node_out_degree", inplace=True) node_in_degrees.sort_values(by="node_in_degree", inplace=True) axes.plot(node_degrees["node_degree"].values, label="degree") axes.plot( node_out_degrees["node_out_degree"].values, label="out_degree" ) axes.plot(node_in_degrees["node_in_degree"].values, label="in_degree") axes.legend() def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class AIGNodeDegreePlotGenerator( PlotGenerator, generator_name="aig-node-degrees", options=[REQUIRE_CASE_STUDY] ): """Generates a plot of node degrees of a author interaction graph.""" def generate(self) -> tp.List[Plot]: return [ AuthorInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ] class CommitAuthorInteractionGraphNodeDegreePlot( Plot, plot_name='caig_node_degrees' ): """Plot node degrees of commits in a commit-author interaction graph.""" def plot(self, view_mode: bool) -> None: case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Commit-Author Interaction Graph - # Interacting Authors") axes.set_title(case_study.project_name) axes.set_ylabel("Authors") axes.set_xlabel("Commits") project_name = case_study.project_name revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() caig = create_blame_interaction_graph(project_name, revision ).commit_author_interaction_graph() nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in caig.nodes: node_attrs = tp.cast(CAIGNodeAttrs, caig.nodes[node]) commit = node_attrs["commit"] if commit: nodes.append(({ "commit": commit.commit_hash, "num_authors": caig.degree(node) })) data = pd.DataFrame(nodes) num_authors = data.loc[:, ["commit", "num_authors"]] num_authors.sort_values(by="num_authors", inplace=True) axes.plot(num_authors["num_authors"].values) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CAIGNodeDegreePlotGenerator( PlotGenerator, generator_name="caig-node-degrees", options=[ REQUIRE_CASE_STUDY, ] ): """Generates a plot of node degrees of a commit-author interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitAuthorInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ]
StarcoderdataPython
4809718
<gh_stars>10-100 # -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import Dict, List class ECertQueryHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class ECertQueryRequest(TeaModel): def __init__( self, user_id: str = None, ): # 用户ID self.user_id = user_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.user_id is not None: result['userId'] = self.user_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('userId') is not None: self.user_id = m.get('userId') return self class ECertQueryResponseBody(TeaModel): def __init__( self, real_name: str = None, cert_no: str = None, main_dept_id: int = None, main_dept_name: str = None, employ_job_id: str = None, employ_job_id_label: str = None, employ_position_id: str = None, employ_position_id_label: str = None, employ_position_rank_id: str = None, employ_position_rank_id_label: str = None, hired_date: str = None, last_work_day: str = None, termination_reason_voluntary: List[str] = None, termination_reason_passive: List[str] = None, name: str = None, ): # 身份证姓名 self.real_name = real_name # 身份证号码 self.cert_no = cert_no # 主部门ID self.main_dept_id = main_dept_id # 主部门 self.main_dept_name = main_dept_name # 职务ID self.employ_job_id = employ_job_id # 职务名称 self.employ_job_id_label = employ_job_id_label # 职位ID self.employ_position_id = employ_position_id # 职位名称 self.employ_position_id_label = employ_position_id_label # 职级ID self.employ_position_rank_id = employ_position_rank_id # 职级名称 self.employ_position_rank_id_label = employ_position_rank_id_label # 入职日期 self.hired_date = hired_date # 离职日期 self.last_work_day = last_work_day # 主动离职原因 self.termination_reason_voluntary = termination_reason_voluntary # 被动离职原因 self.termination_reason_passive = termination_reason_passive # 姓名 self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.real_name is not None: result['realName'] = self.real_name if self.cert_no is not None: result['certNO'] = self.cert_no if self.main_dept_id is not None: result['mainDeptId'] = self.main_dept_id if self.main_dept_name is not None: result['mainDeptName'] = self.main_dept_name if self.employ_job_id is not None: result['employJobId'] = self.employ_job_id if self.employ_job_id_label is not None: result['employJobIdLabel'] = self.employ_job_id_label if self.employ_position_id is not None: result['employPositionId'] = self.employ_position_id if self.employ_position_id_label is not None: result['employPositionIdLabel'] = self.employ_position_id_label if self.employ_position_rank_id is not None: result['employPositionRankId'] = self.employ_position_rank_id if self.employ_position_rank_id_label is not None: result['employPositionRankIdLabel'] = self.employ_position_rank_id_label if self.hired_date is not None: result['hiredDate'] = self.hired_date if self.last_work_day is not None: result['lastWorkDay'] = self.last_work_day if self.termination_reason_voluntary is not None: result['terminationReasonVoluntary'] = self.termination_reason_voluntary if self.termination_reason_passive is not None: result['terminationReasonPassive'] = self.termination_reason_passive if self.name is not None: result['name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('realName') is not None: self.real_name = m.get('realName') if m.get('certNO') is not None: self.cert_no = m.get('certNO') if m.get('mainDeptId') is not None: self.main_dept_id = m.get('mainDeptId') if m.get('mainDeptName') is not None: self.main_dept_name = m.get('mainDeptName') if m.get('employJobId') is not None: self.employ_job_id = m.get('employJobId') if m.get('employJobIdLabel') is not None: self.employ_job_id_label = m.get('employJobIdLabel') if m.get('employPositionId') is not None: self.employ_position_id = m.get('employPositionId') if m.get('employPositionIdLabel') is not None: self.employ_position_id_label = m.get('employPositionIdLabel') if m.get('employPositionRankId') is not None: self.employ_position_rank_id = m.get('employPositionRankId') if m.get('employPositionRankIdLabel') is not None: self.employ_position_rank_id_label = m.get('employPositionRankIdLabel') if m.get('hiredDate') is not None: self.hired_date = m.get('hiredDate') if m.get('lastWorkDay') is not None: self.last_work_day = m.get('lastWorkDay') if m.get('terminationReasonVoluntary') is not None: self.termination_reason_voluntary = m.get('terminationReasonVoluntary') if m.get('terminationReasonPassive') is not None: self.termination_reason_passive = m.get('terminationReasonPassive') if m.get('name') is not None: self.name = m.get('name') return self class ECertQueryResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ECertQueryResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ECertQueryResponseBody() self.body = temp_model.from_map(m['body']) return self class QueryJobRanksHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class QueryJobRanksRequest(TeaModel): def __init__( self, rank_category_id: str = None, rank_code: str = None, rank_name: str = None, next_token: int = None, max_results: int = None, ): # 职级序列 self.rank_category_id = rank_category_id # 职级编码 self.rank_code = rank_code # 职级名称 self.rank_name = rank_name # 标记当前开始读取的位置 self.next_token = next_token # 本次读取的最大数据记录数量 self.max_results = max_results def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.rank_category_id is not None: result['rankCategoryId'] = self.rank_category_id if self.rank_code is not None: result['rankCode'] = self.rank_code if self.rank_name is not None: result['rankName'] = self.rank_name if self.next_token is not None: result['nextToken'] = self.next_token if self.max_results is not None: result['maxResults'] = self.max_results return result def from_map(self, m: dict = None): m = m or dict() if m.get('rankCategoryId') is not None: self.rank_category_id = m.get('rankCategoryId') if m.get('rankCode') is not None: self.rank_code = m.get('rankCode') if m.get('rankName') is not None: self.rank_name = m.get('rankName') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('maxResults') is not None: self.max_results = m.get('maxResults') return self class QueryJobRanksResponseBodyList(TeaModel): def __init__( self, rank_id: str = None, rank_category_id: str = None, rank_code: str = None, rank_name: str = None, min_job_grade: int = None, max_job_grade: int = None, rank_description: str = None, ): # 职级ID self.rank_id = rank_id # 职级序列ID self.rank_category_id = rank_category_id # 职级编码 self.rank_code = rank_code # 职级名称 self.rank_name = rank_name # 最小等级 self.min_job_grade = min_job_grade # 最大等级 self.max_job_grade = max_job_grade # 职级描述 self.rank_description = rank_description def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.rank_id is not None: result['rankId'] = self.rank_id if self.rank_category_id is not None: result['rankCategoryId'] = self.rank_category_id if self.rank_code is not None: result['rankCode'] = self.rank_code if self.rank_name is not None: result['rankName'] = self.rank_name if self.min_job_grade is not None: result['minJobGrade'] = self.min_job_grade if self.max_job_grade is not None: result['maxJobGrade'] = self.max_job_grade if self.rank_description is not None: result['rankDescription'] = self.rank_description return result def from_map(self, m: dict = None): m = m or dict() if m.get('rankId') is not None: self.rank_id = m.get('rankId') if m.get('rankCategoryId') is not None: self.rank_category_id = m.get('rankCategoryId') if m.get('rankCode') is not None: self.rank_code = m.get('rankCode') if m.get('rankName') is not None: self.rank_name = m.get('rankName') if m.get('minJobGrade') is not None: self.min_job_grade = m.get('minJobGrade') if m.get('maxJobGrade') is not None: self.max_job_grade = m.get('maxJobGrade') if m.get('rankDescription') is not None: self.rank_description = m.get('rankDescription') return self class QueryJobRanksResponseBody(TeaModel): def __init__( self, next_token: int = None, has_more: bool = None, list: List[QueryJobRanksResponseBodyList] = None, ): # 表示当前调用返回读取到的位置,空代表数据已经读取完毕 self.next_token = next_token # 是否有更多数据 self.has_more = has_more # 职级列表 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.next_token is not None: result['nextToken'] = self.next_token if self.has_more is not None: result['hasMore'] = self.has_more result['list'] = [] if self.list is not None: for k in self.list: result['list'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('hasMore') is not None: self.has_more = m.get('hasMore') self.list = [] if m.get('list') is not None: for k in m.get('list'): temp_model = QueryJobRanksResponseBodyList() self.list.append(temp_model.from_map(k)) return self class QueryJobRanksResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: QueryJobRanksResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = QueryJobRanksResponseBody() self.body = temp_model.from_map(m['body']) return self class QueryJobsHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class QueryJobsRequest(TeaModel): def __init__( self, job_name: str = None, next_token: int = None, max_results: int = None, ): # 职务名称 self.job_name = job_name # 偏移量 self.next_token = next_token # 最大值 self.max_results = max_results def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.job_name is not None: result['jobName'] = self.job_name if self.next_token is not None: result['nextToken'] = self.next_token if self.max_results is not None: result['maxResults'] = self.max_results return result def from_map(self, m: dict = None): m = m or dict() if m.get('jobName') is not None: self.job_name = m.get('jobName') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('maxResults') is not None: self.max_results = m.get('maxResults') return self class QueryJobsResponseBodyList(TeaModel): def __init__( self, job_id: str = None, job_name: str = None, job_description: str = None, ): # 职务ID self.job_id = job_id # 职务名称 self.job_name = job_name # 职务描述 self.job_description = job_description def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.job_id is not None: result['jobId'] = self.job_id if self.job_name is not None: result['jobName'] = self.job_name if self.job_description is not None: result['jobDescription'] = self.job_description return result def from_map(self, m: dict = None): m = m or dict() if m.get('jobId') is not None: self.job_id = m.get('jobId') if m.get('jobName') is not None: self.job_name = m.get('jobName') if m.get('jobDescription') is not None: self.job_description = m.get('jobDescription') return self class QueryJobsResponseBody(TeaModel): def __init__( self, next_token: int = None, has_more: bool = None, list: List[QueryJobsResponseBodyList] = None, ): # 下次获取数据的起始游标 self.next_token = next_token # 是否有更多数据 self.has_more = has_more # 职务列表 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.next_token is not None: result['nextToken'] = self.next_token if self.has_more is not None: result['hasMore'] = self.has_more result['list'] = [] if self.list is not None: for k in self.list: result['list'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('hasMore') is not None: self.has_more = m.get('hasMore') self.list = [] if m.get('list') is not None: for k in m.get('list'): temp_model = QueryJobsResponseBodyList() self.list.append(temp_model.from_map(k)) return self class QueryJobsResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: QueryJobsResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = QueryJobsResponseBody() self.body = temp_model.from_map(m['body']) return self class QueryCustomEntryProcessesHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class QueryCustomEntryProcessesRequest(TeaModel): def __init__( self, operate_user_id: str = None, next_token: int = None, max_results: int = None, ): # 操作人id self.operate_user_id = operate_user_id # 偏移量 self.next_token = next_token # 最大值 self.max_results = max_results def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.operate_user_id is not None: result['operateUserId'] = self.operate_user_id if self.next_token is not None: result['nextToken'] = self.next_token if self.max_results is not None: result['maxResults'] = self.max_results return result def from_map(self, m: dict = None): m = m or dict() if m.get('operateUserId') is not None: self.operate_user_id = m.get('operateUserId') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('maxResults') is not None: self.max_results = m.get('maxResults') return self class QueryCustomEntryProcessesResponseBodyList(TeaModel): def __init__( self, form_id: str = None, form_name: str = None, form_desc: str = None, short_url: str = None, ): self.form_id = form_id self.form_name = form_name self.form_desc = form_desc self.short_url = short_url def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.form_id is not None: result['formId'] = self.form_id if self.form_name is not None: result['formName'] = self.form_name if self.form_desc is not None: result['formDesc'] = self.form_desc if self.short_url is not None: result['shortUrl'] = self.short_url return result def from_map(self, m: dict = None): m = m or dict() if m.get('formId') is not None: self.form_id = m.get('formId') if m.get('formName') is not None: self.form_name = m.get('formName') if m.get('formDesc') is not None: self.form_desc = m.get('formDesc') if m.get('shortUrl') is not None: self.short_url = m.get('shortUrl') return self class QueryCustomEntryProcessesResponseBody(TeaModel): def __init__( self, next_token: int = None, has_more: bool = None, list: List[QueryCustomEntryProcessesResponseBodyList] = None, ): # 下次获取数据的起始游标 self.next_token = next_token # 是否有更多 self.has_more = has_more # 表单信息列表 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.next_token is not None: result['nextToken'] = self.next_token if self.has_more is not None: result['hasMore'] = self.has_more result['list'] = [] if self.list is not None: for k in self.list: result['list'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('hasMore') is not None: self.has_more = m.get('hasMore') self.list = [] if m.get('list') is not None: for k in m.get('list'): temp_model = QueryCustomEntryProcessesResponseBodyList() self.list.append(temp_model.from_map(k)) return self class QueryCustomEntryProcessesResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: QueryCustomEntryProcessesResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = QueryCustomEntryProcessesResponseBody() self.body = temp_model.from_map(m['body']) return self class QueryPositionsHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class QueryPositionsRequest(TeaModel): def __init__( self, position_name: str = None, in_category_ids: List[str] = None, in_position_ids: List[str] = None, next_token: int = None, max_results: int = None, ): # 职位名称 self.position_name = position_name # 职位类别列表 self.in_category_ids = in_category_ids # 职位id列表 self.in_position_ids = in_position_ids # 偏移量 self.next_token = next_token # 一次查询获取记录数 self.max_results = max_results def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.position_name is not None: result['positionName'] = self.position_name if self.in_category_ids is not None: result['inCategoryIds'] = self.in_category_ids if self.in_position_ids is not None: result['inPositionIds'] = self.in_position_ids if self.next_token is not None: result['nextToken'] = self.next_token if self.max_results is not None: result['maxResults'] = self.max_results return result def from_map(self, m: dict = None): m = m or dict() if m.get('positionName') is not None: self.position_name = m.get('positionName') if m.get('inCategoryIds') is not None: self.in_category_ids = m.get('inCategoryIds') if m.get('inPositionIds') is not None: self.in_position_ids = m.get('inPositionIds') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('maxResults') is not None: self.max_results = m.get('maxResults') return self class QueryPositionsResponseBodyList(TeaModel): def __init__( self, position_id: str = None, position_name: str = None, position_category_id: str = None, job_id: str = None, position_des: str = None, rank_id_list: List[str] = None, status: int = None, ): # 职位ID self.position_id = position_id # 职位名称 self.position_name = position_name # 职位类别ID self.position_category_id = position_category_id # 所属职务ID self.job_id = job_id # 职位描述 self.position_des = position_des # 职位对应职级列表 self.rank_id_list = rank_id_list # 职位状态-0,启用;1,停用 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.position_id is not None: result['positionId'] = self.position_id if self.position_name is not None: result['positionName'] = self.position_name if self.position_category_id is not None: result['positionCategoryId'] = self.position_category_id if self.job_id is not None: result['jobId'] = self.job_id if self.position_des is not None: result['positionDes'] = self.position_des if self.rank_id_list is not None: result['rankIdList'] = self.rank_id_list if self.status is not None: result['status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('positionId') is not None: self.position_id = m.get('positionId') if m.get('positionName') is not None: self.position_name = m.get('positionName') if m.get('positionCategoryId') is not None: self.position_category_id = m.get('positionCategoryId') if m.get('jobId') is not None: self.job_id = m.get('jobId') if m.get('positionDes') is not None: self.position_des = m.get('positionDes') if m.get('rankIdList') is not None: self.rank_id_list = m.get('rankIdList') if m.get('status') is not None: self.status = m.get('status') return self class QueryPositionsResponseBody(TeaModel): def __init__( self, next_token: int = None, has_more: bool = None, list: List[QueryPositionsResponseBodyList] = None, ): # 表示当前调用返回读取到的位置,空代表数据已经读取完毕 self.next_token = next_token # 是否有更多数据 self.has_more = has_more # 职位列表 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.next_token is not None: result['nextToken'] = self.next_token if self.has_more is not None: result['hasMore'] = self.has_more result['list'] = [] if self.list is not None: for k in self.list: result['list'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('hasMore') is not None: self.has_more = m.get('hasMore') self.list = [] if m.get('list') is not None: for k in m.get('list'): temp_model = QueryPositionsResponseBodyList() self.list.append(temp_model.from_map(k)) return self class QueryPositionsResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: QueryPositionsResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = QueryPositionsResponseBody() self.body = temp_model.from_map(m['body']) return self class MasterDataQueryHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class MasterDataQueryRequestQueryParamsConditionList(TeaModel): def __init__( self, operate: str = None, value: str = None, ): # 字段关系符 self.operate = operate # 操作值 self.value = value def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.operate is not None: result['operate'] = self.operate if self.value is not None: result['value'] = self.value return result def from_map(self, m: dict = None): m = m or dict() if m.get('operate') is not None: self.operate = m.get('operate') if m.get('value') is not None: self.value = m.get('value') return self class MasterDataQueryRequestQueryParams(TeaModel): def __init__( self, field_code: str = None, join_type: str = None, condition_list: List[MasterDataQueryRequestQueryParamsConditionList] = None, ): # 需要筛选的字段 self.field_code = field_code # 筛选条件连接类型 self.join_type = join_type # 筛选条件 self.condition_list = condition_list def validate(self): if self.condition_list: for k in self.condition_list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.field_code is not None: result['fieldCode'] = self.field_code if self.join_type is not None: result['joinType'] = self.join_type result['conditionList'] = [] if self.condition_list is not None: for k in self.condition_list: result['conditionList'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('fieldCode') is not None: self.field_code = m.get('fieldCode') if m.get('joinType') is not None: self.join_type = m.get('joinType') self.condition_list = [] if m.get('conditionList') is not None: for k in m.get('conditionList'): temp_model = MasterDataQueryRequestQueryParamsConditionList() self.condition_list.append(temp_model.from_map(k)) return self class MasterDataQueryRequest(TeaModel): def __init__( self, scope_code: str = None, view_entity_code: str = None, tenant_id: int = None, biz_uk: str = None, relation_ids: List[str] = None, opt_user_id: str = None, next_token: int = None, max_results: int = None, query_params: List[MasterDataQueryRequestQueryParams] = None, ): # 领域code 由钉钉分配 self.scope_code = scope_code # 实体code self.view_entity_code = view_entity_code # 数据生产方的租户id,由钉钉分配 self.tenant_id = tenant_id # 数据唯一键 self.biz_uk = biz_uk # 关联id列表,一般为userId self.relation_ids = relation_ids # 当前操作人userId self.opt_user_id = opt_user_id # 分页查询的游标 self.next_token = next_token # 分页查询每页数据条数 self.max_results = max_results # 其他查询条件 self.query_params = query_params def validate(self): if self.query_params: for k in self.query_params: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scope_code is not None: result['scopeCode'] = self.scope_code if self.view_entity_code is not None: result['viewEntityCode'] = self.view_entity_code if self.tenant_id is not None: result['tenantId'] = self.tenant_id if self.biz_uk is not None: result['bizUK'] = self.biz_uk if self.relation_ids is not None: result['relationIds'] = self.relation_ids if self.opt_user_id is not None: result['optUserId'] = self.opt_user_id if self.next_token is not None: result['nextToken'] = self.next_token if self.max_results is not None: result['maxResults'] = self.max_results result['queryParams'] = [] if self.query_params is not None: for k in self.query_params: result['queryParams'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('scopeCode') is not None: self.scope_code = m.get('scopeCode') if m.get('viewEntityCode') is not None: self.view_entity_code = m.get('viewEntityCode') if m.get('tenantId') is not None: self.tenant_id = m.get('tenantId') if m.get('bizUK') is not None: self.biz_uk = m.get('bizUK') if m.get('relationIds') is not None: self.relation_ids = m.get('relationIds') if m.get('optUserId') is not None: self.opt_user_id = m.get('optUserId') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('maxResults') is not None: self.max_results = m.get('maxResults') self.query_params = [] if m.get('queryParams') is not None: for k in m.get('queryParams'): temp_model = MasterDataQueryRequestQueryParams() self.query_params.append(temp_model.from_map(k)) return self class MasterDataQueryResponseBodyResultViewEntityFieldVOListFieldDataVO(TeaModel): def __init__( self, key: str = None, value: str = None, ): # 字段值的key self.key = key # 字段值的文本 self.value = value def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.key is not None: result['key'] = self.key if self.value is not None: result['value'] = self.value return result def from_map(self, m: dict = None): m = m or dict() if m.get('key') is not None: self.key = m.get('key') if m.get('value') is not None: self.value = m.get('value') return self class MasterDataQueryResponseBodyResultViewEntityFieldVOList(TeaModel): def __init__( self, field_code: str = None, field_data_vo: MasterDataQueryResponseBodyResultViewEntityFieldVOListFieldDataVO = None, field_name: str = None, field_type: str = None, ): # 字段code self.field_code = field_code # 字段值 self.field_data_vo = field_data_vo # 字段名称 self.field_name = field_name # 字段类型 self.field_type = field_type def validate(self): if self.field_data_vo: self.field_data_vo.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.field_code is not None: result['fieldCode'] = self.field_code if self.field_data_vo is not None: result['fieldDataVO'] = self.field_data_vo.to_map() if self.field_name is not None: result['fieldName'] = self.field_name if self.field_type is not None: result['fieldType'] = self.field_type return result def from_map(self, m: dict = None): m = m or dict() if m.get('fieldCode') is not None: self.field_code = m.get('fieldCode') if m.get('fieldDataVO') is not None: temp_model = MasterDataQueryResponseBodyResultViewEntityFieldVOListFieldDataVO() self.field_data_vo = temp_model.from_map(m['fieldDataVO']) if m.get('fieldName') is not None: self.field_name = m.get('fieldName') if m.get('fieldType') is not None: self.field_type = m.get('fieldType') return self class MasterDataQueryResponseBodyResult(TeaModel): def __init__( self, outer_id: str = None, scope_code: str = None, view_entity_code: str = None, view_entity_field_volist: List[MasterDataQueryResponseBodyResultViewEntityFieldVOList] = None, relation_id: str = None, ): # 唯一id self.outer_id = outer_id # 领域 self.scope_code = scope_code # 编码 self.view_entity_code = view_entity_code # 字段列表 self.view_entity_field_volist = view_entity_field_volist # 关联id列表,一般为userId self.relation_id = relation_id def validate(self): if self.view_entity_field_volist: for k in self.view_entity_field_volist: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.outer_id is not None: result['outerId'] = self.outer_id if self.scope_code is not None: result['scopeCode'] = self.scope_code if self.view_entity_code is not None: result['viewEntityCode'] = self.view_entity_code result['viewEntityFieldVOList'] = [] if self.view_entity_field_volist is not None: for k in self.view_entity_field_volist: result['viewEntityFieldVOList'].append(k.to_map() if k else None) if self.relation_id is not None: result['relationId'] = self.relation_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('outerId') is not None: self.outer_id = m.get('outerId') if m.get('scopeCode') is not None: self.scope_code = m.get('scopeCode') if m.get('viewEntityCode') is not None: self.view_entity_code = m.get('viewEntityCode') self.view_entity_field_volist = [] if m.get('viewEntityFieldVOList') is not None: for k in m.get('viewEntityFieldVOList'): temp_model = MasterDataQueryResponseBodyResultViewEntityFieldVOList() self.view_entity_field_volist.append(temp_model.from_map(k)) if m.get('relationId') is not None: self.relation_id = m.get('relationId') return self class MasterDataQueryResponseBody(TeaModel): def __init__( self, total: int = None, has_more: bool = None, next_token: int = None, success: bool = None, result: List[MasterDataQueryResponseBodyResult] = None, ): # 总条目数 self.total = total # 是否还有更多 self.has_more = has_more # 分页游标 self.next_token = next_token # 是否成功 self.success = success # 结果 self.result = result def validate(self): if self.result: for k in self.result: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.total is not None: result['total'] = self.total if self.has_more is not None: result['hasMore'] = self.has_more if self.next_token is not None: result['nextToken'] = self.next_token if self.success is not None: result['success'] = self.success result['result'] = [] if self.result is not None: for k in self.result: result['result'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('total') is not None: self.total = m.get('total') if m.get('hasMore') is not None: self.has_more = m.get('hasMore') if m.get('nextToken') is not None: self.next_token = m.get('nextToken') if m.get('success') is not None: self.success = m.get('success') self.result = [] if m.get('result') is not None: for k in m.get('result'): temp_model = MasterDataQueryResponseBodyResult() self.result.append(temp_model.from_map(k)) return self class MasterDataQueryResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: MasterDataQueryResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = MasterDataQueryResponseBody() self.body = temp_model.from_map(m['body']) return self class AddHrmPreentryHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class AddHrmPreentryRequestGroupsSectionsEmpFieldVOList(TeaModel): def __init__( self, value: str = None, field_code: str = None, ): self.value = value self.field_code = field_code def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.value is not None: result['value'] = self.value if self.field_code is not None: result['fieldCode'] = self.field_code return result def from_map(self, m: dict = None): m = m or dict() if m.get('value') is not None: self.value = m.get('value') if m.get('fieldCode') is not None: self.field_code = m.get('fieldCode') return self class AddHrmPreentryRequestGroupsSections(TeaModel): def __init__( self, old_index: int = None, emp_field_volist: List[AddHrmPreentryRequestGroupsSectionsEmpFieldVOList] = None, ): self.old_index = old_index self.emp_field_volist = emp_field_volist def validate(self): if self.emp_field_volist: for k in self.emp_field_volist: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.old_index is not None: result['oldIndex'] = self.old_index result['empFieldVOList'] = [] if self.emp_field_volist is not None: for k in self.emp_field_volist: result['empFieldVOList'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('oldIndex') is not None: self.old_index = m.get('oldIndex') self.emp_field_volist = [] if m.get('empFieldVOList') is not None: for k in m.get('empFieldVOList'): temp_model = AddHrmPreentryRequestGroupsSectionsEmpFieldVOList() self.emp_field_volist.append(temp_model.from_map(k)) return self class AddHrmPreentryRequestGroups(TeaModel): def __init__( self, group_id: str = None, sections: List[AddHrmPreentryRequestGroupsSections] = None, ): self.group_id = group_id self.sections = sections def validate(self): if self.sections: for k in self.sections: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.group_id is not None: result['groupId'] = self.group_id result['sections'] = [] if self.sections is not None: for k in self.sections: result['sections'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('groupId') is not None: self.group_id = m.get('groupId') self.sections = [] if m.get('sections') is not None: for k in m.get('sections'): temp_model = AddHrmPreentryRequestGroupsSections() self.sections.append(temp_model.from_map(k)) return self class AddHrmPreentryRequest(TeaModel): def __init__( self, pre_entry_time: int = None, name: str = None, mobile: str = None, agent_id: int = None, groups: List[AddHrmPreentryRequestGroups] = None, ): self.pre_entry_time = pre_entry_time self.name = name self.mobile = mobile self.agent_id = agent_id self.groups = groups def validate(self): if self.groups: for k in self.groups: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.pre_entry_time is not None: result['preEntryTime'] = self.pre_entry_time if self.name is not None: result['name'] = self.name if self.mobile is not None: result['mobile'] = self.mobile if self.agent_id is not None: result['agentId'] = self.agent_id result['groups'] = [] if self.groups is not None: for k in self.groups: result['groups'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('preEntryTime') is not None: self.pre_entry_time = m.get('preEntryTime') if m.get('name') is not None: self.name = m.get('name') if m.get('mobile') is not None: self.mobile = m.get('mobile') if m.get('agentId') is not None: self.agent_id = m.get('agentId') self.groups = [] if m.get('groups') is not None: for k in m.get('groups'): temp_model = AddHrmPreentryRequestGroups() self.groups.append(temp_model.from_map(k)) return self class AddHrmPreentryResponseBody(TeaModel): def __init__( self, tmp_user_id: str = None, ): # result self.tmp_user_id = tmp_user_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.tmp_user_id is not None: result['tmpUserId'] = self.tmp_user_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('tmpUserId') is not None: self.tmp_user_id = m.get('tmpUserId') return self class AddHrmPreentryResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddHrmPreentryResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddHrmPreentryResponseBody() self.body = temp_model.from_map(m['body']) return self
StarcoderdataPython
4811349
import morepath from .app import App def run(): morepath.autoscan() morepath.run(App()) if __name__ == '__main__': run()
StarcoderdataPython
3259088
# coding: utf-8 """ EXACT - API API to interact with the EXACT Server # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import from exact_sync.v1.api.pagination_base_api import PaginationBaseAPI import re # noqa: F401 # python 2 and python 3 compatibility library import six from exact_sync.v1.api_client import ApiClient class UsersApi(PaginationBaseAPI): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_user(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user(async_req=True) >>> result = thread.get() :param async_req bool :param Body body: :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_user_with_http_info(**kwargs) # noqa: E501 else: (data) = self.create_user_with_http_info(**kwargs) # noqa: E501 return data def create_user_with_http_info(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param Body body: :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_user" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def create_user(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user(async_req=True) >>> result = thread.get() :param async_req bool :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_user_with_http_info(**kwargs) # noqa: E501 else: (data) = self.create_user_with_http_info(**kwargs) # noqa: E501 return data def create_user_with_http_info(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['username', 'is_superuser', 'is_staff', 'is_active', 'last_login'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_user" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def create_user(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user(async_req=True) >>> result = thread.get() :param async_req bool :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_user_with_http_info(**kwargs) # noqa: E501 else: (data) = self.create_user_with_http_info(**kwargs) # noqa: E501 return data def create_user_with_http_info(self, **kwargs): # noqa: E501 """create_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['username', 'is_superuser', 'is_staff', 'is_active', 'last_login'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_user" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def destroy_user(self, id, **kwargs): # noqa: E501 """destroy_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.destroy_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str id2: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.destroy_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.destroy_user_with_http_info(id, **kwargs) # noqa: E501 return data def destroy_user_with_http_info(self, id, **kwargs): # noqa: E501 """destroy_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.destroy_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str id2: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'id2', 'username', 'username__contains', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method destroy_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `destroy_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username' in params: query_params.append(('username', params['username'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser' in params: query_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: query_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: query_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: query_params.append(('last_login', params['last_login'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_users(self, pagination:bool=True, **kwargs): # noqa: E501 """list_users # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_users(async_req=True) >>> result = thread.get() :param async_req bool :param int limit: Number of results to return per page. :param int offset: The initial index from which to return the results. :param str id: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: Users If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if pagination: if kwargs.get('async_req'): return self.list_users_with_http_info(**kwargs) # noqa: E501 else: (data) = self.list_users_with_http_info(**kwargs) # noqa: E501 return data else: return self._get_all(self.list_users_with_http_info, **kwargs) def list_users_with_http_info(self, **kwargs): # noqa: E501 """list_users # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_users_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param int limit: Number of results to return per page. :param int offset: The initial index from which to return the results. :param str id: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: Users If the method is called asynchronously, returns the request thread. """ all_params = ['limit', 'offset', 'id', 'username', 'username__contains', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'team'] # noqa: E501 all_params.append('omit') all_params.append('fields') all_params.append('expand') all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_users" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'limit' in params: query_params.append(('limit', params['limit'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'id' in params: query_params.append(('id', params['id'])) # noqa: E501 if 'username' in params: query_params.append(('username', params['username'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser' in params: query_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: query_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: query_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: query_params.append(('last_login', params['last_login'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 if 'omit' in params: query_params.append(('omit', params['omit'])) # noqa: E501 if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 if 'expand' in params: query_params.append(('expand', params['expand'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Users', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def partial_update_user(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param Body6 body: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 return data def partial_update_user_with_http_info(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param Body6 body: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method partial_update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `partial_update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def partial_update_user(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 return data def partial_update_user_with_http_info(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'username', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method partial_update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `partial_update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def partial_update_user(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.partial_update_user_with_http_info(id, **kwargs) # noqa: E501 return data def partial_update_user_with_http_info(self, id, **kwargs): # noqa: E501 """partial_update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.partial_update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'username', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method partial_update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `partial_update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def retrieve_user(self, id, **kwargs): # noqa: E501 """retrieve_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.retrieve_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str id2: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.retrieve_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.retrieve_user_with_http_info(id, **kwargs) # noqa: E501 return data def retrieve_user_with_http_info(self, id, **kwargs): # noqa: E501 """retrieve_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.retrieve_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str id2: id :param str username: username :param str username__contains: username__contains :param str is_superuser: is_superuser :param str is_staff: is_staff :param str is_active: is_active :param str last_login: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'id2', 'username', 'username__contains', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('omit') all_params.append('fields') all_params.append('expand') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method retrieve_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `retrieve_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username' in params: query_params.append(('username', params['username'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser' in params: query_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: query_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: query_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: query_params.append(('last_login', params['last_login'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 if 'omit' in params: query_params.append(('omit', params['omit'])) # noqa: E501 if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E50 if 'expand' in params: query_params.append(('expand', params['expand'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_user(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param Body3 body: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.update_user_with_http_info(id, **kwargs) # noqa: E501 return data def update_user_with_http_info(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param Body3 body: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_user(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.update_user_with_http_info(id, **kwargs) # noqa: E501 return data def update_user_with_http_info(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'username', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_user(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.update_user_with_http_info(id, **kwargs) # noqa: E501 return data def update_user_with_http_info(self, id, **kwargs): # noqa: E501 """update_user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param str username: :param bool is_superuser: :param bool is_staff: :param bool is_active: :param datetime last_login: :param str id2: id :param str username2: username :param str username__contains: username__contains :param str is_superuser2: is_superuser :param str is_staff2: is_staff :param str is_active2: is_active :param str last_login2: last_login :param str team: team :return: User If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'username', 'is_superuser', 'is_staff', 'is_active', 'last_login', 'id2', 'username2', 'username__contains', 'is_superuser2', 'is_staff2', 'is_active2', 'last_login2', 'team'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_user`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'id2' in params: query_params.append(('id', params['id2'])) # noqa: E501 if 'username2' in params: query_params.append(('username', params['username2'])) # noqa: E501 if 'username__contains' in params: query_params.append(('username__contains', params['username__contains'])) # noqa: E501 if 'is_superuser2' in params: query_params.append(('is_superuser', params['is_superuser2'])) # noqa: E501 if 'is_staff2' in params: query_params.append(('is_staff', params['is_staff2'])) # noqa: E501 if 'is_active2' in params: query_params.append(('is_active', params['is_active2'])) # noqa: E501 if 'last_login2' in params: query_params.append(('last_login', params['last_login2'])) # noqa: E501 if 'team' in params: query_params.append(('team', params['team'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 if 'username' in params: form_params.append(('username', params['username'])) # noqa: E501 if 'is_superuser' in params: form_params.append(('is_superuser', params['is_superuser'])) # noqa: E501 if 'is_staff' in params: form_params.append(('is_staff', params['is_staff'])) # noqa: E501 if 'is_active' in params: form_params.append(('is_active', params['is_active'])) # noqa: E501 if 'last_login' in params: form_params.append(('last_login', params['last_login'])) # noqa: E501 body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json', 'application/x-www-form-urlencoded', 'multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/api/v1/users/users/{id}/', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='User', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
StarcoderdataPython
1614297
import re import sys import shutil if not sys.version_info >= (3, 3): print('ERROR: You must be running Python >= 3.3') sys.exit(1) # cancel project MODULE_REGEX = r'^[_a-zA-Z][_a-zA-Z0-9]+$' module_name = '{{ cookiecutter.project_slug}}' if not re.match(MODULE_REGEX, module_name): print('ERROR: The project slug (%s) is not a valid Python module name. ' 'Please do not use a - and use _ instead' % module_name) sys.exit(1) # cancel project executables = ['flake8', 'pep8', 'pip', 'twine'] if "{{ cookiecutter.environment_manager }}" == 'conda': executables.append('conda') if "{{ cookiecutter.environment_manager }}" == 'tox': executables.append('tox') for executable in executables: if not shutil.which(executable): print('WARNING: You do not have the %s executable. You should ' 'install it now through pip/conda' % executable)
StarcoderdataPython
3276433
class PubSub: def __init__(self, logger, linked_list, bus_factory, async_service, context_service, *args, **kwargs): super().__init__(*args, **kwargs) self._logger = logger self._logger.debug( f"PubSub: context_service = {context_service}") self.__daisy_chain_bus = linked_list self.__bus_factory = bus_factory self._async_service = async_service self._context_service = context_service self.__daisy_chain_bus.append(self.__bus_factory()) def register_topic_publisher(self, topic, publisher, **kwargs): self.__head_bus.register_topic_publisher(topic, publisher, **kwargs) def register_topic_subscriber(self, topic, subscriber, **kwargs): self.__head_bus.register_topic_subscriber(topic, subscriber, **kwargs) def register_message_pipeline(self, pipe_line): message_bus_link = self.__daisy_chain_bus.head for message_pipe_node in pipe_line: if message_bus_link is None: message_bus = self.__bus_factory() self.__daisy_chain_bus.append(message_bus) message_bus_link = self.__daisy_chain_bus.tail message_bus = message_bus_link.value message_bus_link = message_bus_link.next_link message_pipe = message_pipe_node.value topic = message_pipe.topic for publisher in message_pipe.sources: message_bus.register_topic_publisher(topic, publisher) for subscriber, kwargs in message_pipe.destinations: message_bus.register_topic_subscriber(topic, subscriber, **kwargs) def start(self): self._logger.info("Starting the pub sub service.") self._async_service.run(self.__start) self._logger.info("The Pub Sub service has shutdown") async def __start(self): next_bus_link = self.__daisy_chain_bus.head.next_link async with self._async_service.create_channel_context() as channel_context: self._logger.debug("starting the head message bus") channel_context.start_soon(self.__head_bus.start_bus, next_bus_link) @property def __head_bus(self): return self.__daisy_chain_bus.head.value
StarcoderdataPython
3384382
"""Implements basic throttle, brake, steering functionality""" import rospy from yaw_controller import YawController from lowpass import LowPassFilter from pid import PID GAS_DENSITY = 2.858 ONE_MPH = 0.44704 #pylint: disable=C0326,trailing-whitespace class Controller(object): """ Use a Yaw controller and a pid controller to get throttle, brake and steer values """ def __init__( self, vehicle_mass, fuel_capacity, brake_deadband, accel_limit, decel_limit, wheel_base, wheel_radius, steer_ratio, max_lat_accel, max_steer_angle): #pylint: disable=too-many-arguments, too-many-locals self.yaw_controller = YawController(wheel_base, steer_ratio, 0.1, max_lat_accel, max_steer_angle) k_p, k_i, k_d = 0.3, 0.1, 0.0 min_thr, max_thr = 0.0, 1.0 self.throttle_controller = PID(k_p, k_i, k_d, min_thr, max_thr) tau = 0.5 sample_time = 0.02 # 1 / 50 Hz self.vel_lpf = LowPassFilter( tau, sample_time ) self.vehicle_mass= vehicle_mass self.fuel_capacity = fuel_capacity self.brake_deadband = brake_deadband self.accel_limit = accel_limit self.decel_limit = decel_limit self.wheel_base = wheel_base self.wheel_radius = wheel_radius self.last_time = rospy.get_time() def control(self, cur_linear_vel, cur_angular_vel, dsrd_linear_vel, dsrd_angular_vel, dbw_enabled): """Compute and return throttle brake and steering from dsrd linear_vel and dsrd_angular_vel as well as current vels""" if not dbw_enabled : self.throttle_controller.reset() return 0., 0., 0. cur_vel = self.vel_lpf.filt( cur_linear_vel ) steering = self.yaw_controller.get_steering( dsrd_linear_vel, dsrd_angular_vel, cur_vel ) vel_error = dsrd_linear_vel - cur_vel cur_time = rospy.get_time() del_time = cur_time - self.last_time self.last_time = cur_time throttle = self.throttle_controller.step( vel_error, del_time ) brake = 0. if dsrd_linear_vel == 0. and cur_vel < 0.1 : throttle = 0 brake = 400.0 elif throttle < 0.1 and vel_error < 0 : decel = max( vel_error, self.decel_limit ) brake = abs(decel) * self.vehicle_mass * self.wheel_radius return throttle, brake, steering #return 1.0, 0.0, 1.0 def show( self ) : """Another method to make pylint happy""" return "Controller(%s,%s)" % (self.throttle_controller, self.yaw_controller)
StarcoderdataPython
1739202
for _ in range(int(input())): n=int(input()) l=list(map(int,input().split())) pre=[0] for i in range(n): pre.append(l[i]+pre[-1]) d={} for i in l: if i in d: d[i]+=1 else: d[i]=1 c=0 for i in range(n): for j in range(i+1,n): s=pre[j+1]-pre[i] if s in d and d[s]!=0: c+=d[s] d[s]=0 print(c)
StarcoderdataPython
3372641
<reponame>alterway/anonymization<filename>anonymization/anonymizers/dateAnonymizers.py import re from types import SimpleNamespace from ..Anonymization import Anonymization class DateAnonymizer(): ''' Replace the dates with fake ones Date Formats: DD/MMM/YYYY or DD.MMM.YYYY or DD-MMM-YYYY or DD MMM YYYY ''' def __init__(self, anonymization: Anonymization): self.anonymization = anonymization self.date_regex= r'\d\d(?:\/|-|\.|\s)(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)(?:\/|-|\.|\s)\d{4}' def anonymize(self, text: str) -> str: return self.anonymization.regex_anonymizer(text,self.date_regex,'date') def evaluate(self, text: str) -> str: matchs = re.finditer(self.date_regex, text) ents = [SimpleNamespace(start=m.start(), end=m.end(), entity_type="DATE", score=1) for m in matchs] return ents
StarcoderdataPython
93723
<gh_stars>100-1000 # This script removes the input reference numbers from html pages. # They play a useful role in scientific notebooks, but they are really # just visual clutter in this project. # Could be an nbconvert setting, but it's an easy enough scripting job. import os import sys print("\nStripping input reference numbers from code cells...") # Find all files to work with. path_to_notebooks = '/srv/projects/intro_programming/intro_programming/notebooks/' filenames = [] for filename in os.listdir(path_to_notebooks): if '.html' in filename and filename != 'index.html': filenames.append(filename) # one file for testing: #filenames = ['hello_world.html'] for filename in filenames: f = open(path_to_notebooks + filename, 'r') lines = f.readlines() f.close() f = open(path_to_notebooks + filename, 'wb') for line in lines: # Unwanted lines have opening and closing div on same line, # with input reference number between them. if ('<div class="prompt input_prompt">' in line and '</div>' in line): # Don't write this line. continue else: # Regular line, write it. f.write(line.encode('utf-8')) f.close() print(" Stripped input reference numbers.\n")
StarcoderdataPython
1743735
import pp from pp import Port from pp.routing.connect_bundle import connect_bundle def test_connect_bundle(): xs_top = [-100, -90, -80, 0, 10, 20, 40, 50, 80, 90, 100, 105, 110, 115] pitch = 127.0 N = len(xs_top) xs_bottom = [(i - N / 2) * pitch for i in range(N)] top_ports = [Port("top_{}".format(i), (xs_top[i], 0), 0.5, 270) for i in range(N)] bottom_ports = [ Port("bottom_{}".format(i), (xs_bottom[i], -400), 0.5, 90) for i in range(N) ] top_cell = pp.Component(name="connect_bundle") elements = connect_bundle(top_ports, bottom_ports) for e in elements: top_cell.add(e) top_cell.name = "connect_bundle" return top_cell @pp.cell def test_connect_corner(N=6, config="A"): d = 10.0 sep = 5.0 top_cell = pp.Component(name="connect_bundle_corners") if config in ["A", "B"]: a = 100.0 ports_A_TR = [ Port("A_TR_{}".format(i), (d, a / 2 + i * sep), 0.5, 0) for i in range(N) ] ports_A_TL = [ Port("A_TL_{}".format(i), (-d, a / 2 + i * sep), 0.5, 180) for i in range(N) ] ports_A_BR = [ Port("A_BR_{}".format(i), (d, -a / 2 - i * sep), 0.5, 0) for i in range(N) ] ports_A_BL = [ Port("A_BL_{}".format(i), (-d, -a / 2 - i * sep), 0.5, 180) for i in range(N) ] ports_A = [ports_A_TR, ports_A_TL, ports_A_BR, ports_A_BL] ports_B_TR = [ Port("B_TR_{}".format(i), (a / 2 + i * sep, d), 0.5, 90) for i in range(N) ] ports_B_TL = [ Port("B_TL_{}".format(i), (-a / 2 - i * sep, d), 0.5, 90) for i in range(N) ] ports_B_BR = [ Port("B_BR_{}".format(i), (a / 2 + i * sep, -d), 0.5, 270) for i in range(N) ] ports_B_BL = [ Port("B_BL_{}".format(i), (-a / 2 - i * sep, -d), 0.5, 270) for i in range(N) ] ports_B = [ports_B_TR, ports_B_TL, ports_B_BR, ports_B_BL] elif config in ["C", "D"]: a = N * sep + 2 * d ports_A_TR = [ Port("A_TR_{}".format(i), (a, d + i * sep), 0.5, 0) for i in range(N) ] ports_A_TL = [ Port("A_TL_{}".format(i), (-a, d + i * sep), 0.5, 180) for i in range(N) ] ports_A_BR = [ Port("A_BR_{}".format(i), (a, -d - i * sep), 0.5, 0) for i in range(N) ] ports_A_BL = [ Port("A_BL_{}".format(i), (-a, -d - i * sep), 0.5, 180) for i in range(N) ] ports_A = [ports_A_TR, ports_A_TL, ports_A_BR, ports_A_BL] ports_B_TR = [ Port("B_TR_{}".format(i), (d + i * sep, a), 0.5, 90) for i in range(N) ] ports_B_TL = [ Port("B_TL_{}".format(i), (-d - i * sep, a), 0.5, 90) for i in range(N) ] ports_B_BR = [ Port("B_BR_{}".format(i), (d + i * sep, -a), 0.5, 270) for i in range(N) ] ports_B_BL = [ Port("B_BL_{}".format(i), (-d - i * sep, -a), 0.5, 270) for i in range(N) ] ports_B = [ports_B_TR, ports_B_TL, ports_B_BR, ports_B_BL] if config in ["A", "C"]: for ports1, ports2 in zip(ports_A, ports_B): elements = connect_bundle(ports1, ports2) top_cell.add(elements) elif config in ["B", "D"]: for ports1, ports2 in zip(ports_A, ports_B): elements = connect_bundle(ports2, ports1) top_cell.add(elements) return top_cell @pp.cell def test_connect_bundle_udirect(dy=200, angle=270): xs1 = [-100, -90, -80, -55, -35, 24, 0] + [200, 210, 240] axis = "X" if angle in [0, 180] else "Y" pitch = 10.0 N = len(xs1) xs2 = [50 + i * pitch for i in range(N)] if axis == "X": ports1 = [Port("top_{}".format(i), (0, xs1[i]), 0.5, angle) for i in range(N)] ports2 = [ Port("bottom_{}".format(i), (dy, xs2[i]), 0.5, angle) for i in range(N) ] else: ports1 = [Port("top_{}".format(i), (xs1[i], 0), 0.5, angle) for i in range(N)] ports2 = [ Port("bottom_{}".format(i), (xs2[i], dy), 0.5, angle) for i in range(N) ] top_cell = pp.Component(name="connect_bundle") elements = connect_bundle(ports1, ports2) for e in elements: top_cell.add(e) return top_cell @pp.cell def test_connect_bundle_u_indirect(dy=-200, angle=180): xs1 = [-100, -90, -80, -55, -35] + [200, 210, 240] axis = "X" if angle in [0, 180] else "Y" pitch = 10.0 N = len(xs1) xs2 = [50 + i * pitch for i in range(N)] a1 = angle a2 = a1 + 180 if axis == "X": ports1 = [Port("top_{}".format(i), (0, xs1[i]), 0.5, a1) for i in range(N)] ports2 = [Port("bottom_{}".format(i), (dy, xs2[i]), 0.5, a2) for i in range(N)] else: ports1 = [Port("top_{}".format(i), (xs1[i], 0), 0.5, a1) for i in range(N)] ports2 = [Port("bottom_{}".format(i), (xs2[i], dy), 0.5, a2) for i in range(N)] top_cell = pp.Component() elements = connect_bundle(ports1, ports2) for e in elements: top_cell.add(e) return top_cell @pp.cell def test_facing_ports(): dy = 200.0 xs1 = [-500, -300, -100, -90, -80, -55, -35, 200, 210, 240, 500, 650] pitch = 10.0 N = len(xs1) xs2 = [-20 + i * pitch for i in range(N // 2)] xs2 += [400 + i * pitch for i in range(N // 2)] a1 = 90 a2 = a1 + 180 ports1 = [Port("top_{}".format(i), (xs1[i], 0), 0.5, a1) for i in range(N)] ports2 = [Port("bottom_{}".format(i), (xs2[i], dy), 0.5, a2) for i in range(N)] top_cell = pp.Component() elements = connect_bundle(ports1, ports2) # elements = link_ports_path_length_match(ports1, ports2) top_cell.add(elements) return top_cell if __name__ == "__main__": import pp c = test_facing_ports() pp.show(c)
StarcoderdataPython
3212118
<reponame>mohammadasim/online-bookstore import uuid from django.contrib.auth import get_user_model from django.db import models from django.urls import reverse class CustomerPayment(models.Model): """ A django model representing a payment made by a customer """ payment_id = models.UUIDField( primary_key=True, default=uuid.uuid4, editable=False ) customer_id = models.ForeignKey( get_user_model(), on_delete=models.SET_DEFAULT, related_name='payments', default='' ) payment_date = models.DateField( 'Payment Date', auto_now_add=True ) def __str__(self): return str(self.payment_id) def get_absolute_url(self): """ A method to return url for a payment, with payment_id in the url. """ return reverse('payment_detail', args=[str(self.payment_id)])
StarcoderdataPython
3277042
""" Extra questions for Lab 08 """ from lab08 import * # OOP class Keyboard: """A Keyboard takes in an arbitrary amount of buttons, and has a dictionary of positions as keys, and values as Buttons. >>> b1 = Button(0, "H") >>> b2 = Button(1, "I") >>> k = Keyboard(b1, b2) >>> k.buttons[0].key 'H' >>> k.press(1) 'I' >>> k.typing([0, 1]) 'HI' >>> k.typing([1, 0]) 'IH' >>> b1.pressed 2 >>> b2.pressed 3 """ def __init__(self, *args): self.buttons = {} for btn in args: # not required but better safe than sorry assert isinstance(btn, Button), 'One or more args is not an instance of Button' self.buttons[btn.pos] = btn def press(self, info): """Takes in a position of the button pressed, and returns that button's output""" btn = self.buttons[info] # not required but better safe than sorry assert btn is not None, 'Requested button does not exist at position %s' % info btn.pressed += 1 return btn.key def typing(self, typing_input): """Takes in a list of positions of buttons pressed, and returns the total output""" return ''.join([self.press(pos) for pos in typing_input]) class Button: def __init__(self, pos, key): self.pos = pos self.key = key self.pressed = 0 # Nonlocal def make_advanced_counter_maker(): """Makes a function that makes counters that understands the messages "count", "global-count", "reset", and "global-reset". See the examples below: >>> make_counter = make_advanced_counter_maker() >>> tom_counter = make_counter() >>> tom_counter('count') 1 >>> tom_counter('count') 2 >>> tom_counter('global-count') 1 >>> jon_counter = make_counter() >>> jon_counter('global-count') 2 >>> jon_counter('count') 1 >>> jon_counter('reset') >>> jon_counter('count') 1 >>> tom_counter('count') 3 >>> jon_counter('global-count') 3 >>> jon_counter('global-reset') >>> tom_counter('global-count') 1 """ """ Be careful, this function returnsa function for the global count, which returns another function for the local count """ global_count = 0 def global_counter(): nonlocal global_count count = 0 def counter(cmd): nonlocal global_count nonlocal count if cmd == "count": count += 1 return count elif cmd == "reset": count = 0 elif cmd == "global-count": global_count += 1 return global_count elif cmd == "global-reset": global_count = 0 return counter return global_counter # Lists def trade(first, second): """Exchange the smallest prefixes of first and second that have equal sum. >>> a = [1, 1, 3, 2, 1, 1, 4] >>> b = [4, 3, 2, 7] >>> trade(a, b) # Trades 1+1+3+2=7 for 4+3=7 'Deal!' >>> a [4, 3, 1, 1, 4] >>> b [1, 1, 3, 2, 2, 7] >>> c = [3, 3, 2, 4, 1] >>> trade(b, c) 'No deal!' >>> b [1, 1, 3, 2, 2, 7] >>> c [3, 3, 2, 4, 1] >>> trade(a, c) 'Deal!' >>> a [3, 3, 2, 1, 4] >>> b [1, 1, 3, 2, 2, 7] >>> c [4, 3, 1, 4, 1] """ m, n = 1, 1 """ This function tries to find the indicies that result in an equal sum starting from the beginning of the lists. If either sides of the sums are smaller, the respective index is incremented. If either of the indicies pass the boundaries of the list, then an equal sum cannot be found. """ def find_equal_sum_partitions(fir, sec): fi, si = 1, 1 # indicies for iterating through the given lists while fi < len(fir) and si < len(sec): sumfi, sumsi = sum(fir[:fi]), sum(sec[:si]) if sumfi < sumsi: fi += 1 elif sumfi > sumsi: si += 1 else: return fi, si return None, None m, n = find_equal_sum_partitions(first, second) if None not in [m, n]: # change this line! first[:m], second[:n] = second[:n], first[:m] return 'Deal!' else: return 'No deal!' # Recursive objects def make_to_string(front, mid, back, empty_repr): """ Returns a function that turns linked lists to strings. >>> kevins_to_string = make_to_string("[", "|-]-->", "", "[]") >>> jerrys_to_string = make_to_string("(", " . ", ")", "()") >>> lst = Link(1, Link(2, Link(3, Link(4)))) >>> kevins_to_string(lst) '[1|-]-->[2|-]-->[3|-]-->[4|-]-->[]' >>> kevins_to_string(Link.empty) '[]' >>> jerrys_to_string(lst) '(1 . (2 . (3 . (4 . ()))))' >>> jerrys_to_string(Link.empty) '()' """ def fmt(link, depth=0): if link is Link.empty: return empty_repr return front + str(link.first) + mid + fmt(link.rest, depth + 1) + back return fmt def tree_map(fn, t): """Maps the function fn over the entries of t and returns the result in a new tree. >>> numbers = Tree(1, ... [Tree(2, ... [Tree(3), ... Tree(4)]), ... Tree(5, ... [Tree(6, ... [Tree(7)]), ... Tree(8)])]) >>> print(tree_map(lambda x: 2**x, numbers)) 2 4 8 16 32 64 128 256 """ """ This function does the same as what tree_map should do, but it mutates the tree. While I could have rewritten the function to do this from the start, it was easier to wrap it in a function and call that with a copy of the tree. TL;DR: Too lazy to rewrite a mutating function into a non-mutating one from scratch. """ def tree_map_mutate(fn, t): t.label = fn(t.label) for b in t.branches: if isinstance(b, Tree): tree_map_mutate(fn, b) else: b.label = fn(b.label) return t return tree_map_mutate(fn, t.copy_tree()) def long_paths(tree, n): """Return a list of all paths in tree with length at least n. >>> t = Tree(3, [Tree(4), Tree(4), Tree(5)]) >>> left = Tree(1, [Tree(2), t]) >>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)]) >>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])]) >>> whole = Tree(0, [left, Tree(13), mid, right]) >>> for path in long_paths(whole, 2): ... print(path) ... <0 1 2> <0 1 3 4> <0 1 3 4> <0 1 3 5> <0 6 7 8> <0 6 9> <0 11 12 13 14> >>> for path in long_paths(whole, 3): ... print(path) ... <0 1 3 4> <0 1 3 4> <0 1 3 5> <0 6 7 8> <0 11 12 13 14> >>> long_paths(whole, 4) [Link(0, Link(11, Link(12, Link(13, Link(14)))))] """ paths = [] # we check if n <= 0 (at some point) and we've hit a leaf # if we find a leaf and n > 0, the required length is too short if tree.is_leaf() and n <= 0: paths.append(Link(tree.label)) for b in tree.branches: # as we climb up the branches, we call this method with 'n' as n - 1 # if there are no paths, then paths will be empty, thus they won't be added for path in long_paths(b, n - 1): paths.append(Link(tree.label, path)) return paths # Orders of Growth def zap(n): i, count = 1, 0 while i <= n: while i <= 5 * n: count += i print(i / 6) i *= 3 return count def boom(n): sum = 0 a, b = 1, 1 while a <= n*n: while b <= n*n: sum += (a*b) b += 1 b = 0 a += 1 return sum # Tree class class Tree: def __init__(self, label, branches=[]): for c in branches: assert isinstance(c, Tree) self.label = label self.branches = list(branches) def __repr__(self): if self.branches: branches_str = ', ' + repr(self.branches) else: branches_str = '' return 'Tree({0}{1})'.format(self.label, branches_str) def is_leaf(self): return not self.branches def __eq__(self, other): return type(other) is type(self) and self.label == other.label \ and self.branches == other.branches def __str__(self): def print_tree(t, indent=0): tree_str = ' ' * indent + str(t.label) + "\n" for b in t.branches: tree_str += print_tree(b, indent + 1) return tree_str return print_tree(self).rstrip() def copy_tree(self): return Tree(self.label, [b.copy_tree() for b in self.branches])
StarcoderdataPython
1628910
<filename>accounts/migrations/0004_userprofile_wish_list.py<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-08-28 12:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0012_auto_20180827_1748'), ('accounts', '0003_auto_20180731_1243'), ] operations = [ migrations.AddField( model_name='userprofile', name='wish_list', field=models.ManyToManyField(blank=True, to='product.Product'), ), ]
StarcoderdataPython
3270603
<reponame>kapikantzari/MultiBench<filename>examples/healthcare/mimic_low_rank_tensor.py import torch from torch import nn import sys import os sys.path.append(os.getcwd()) from unimodals.common_models import MLP, GRU # noqa from datasets.mimic.get_data import get_dataloader # noqa from fusions.common_fusions import LowRankTensorFusion # noqa from training_structures.Simple_Late_Fusion import train, test # noqa # get dataloader for icd9 classification task 7 traindata, validdata, testdata = get_dataloader( 1, imputed_path='datasets/mimic/im.pk') # build encoders, head and fusion layer encoders = [MLP(5, 10, 10, dropout=False).cuda(), GRU( 12, 30, dropout=False, batch_first=True).cuda()] head = MLP(100, 40, 2, dropout=False).cuda() fusion = LowRankTensorFusion([10, 720], 100, 40).cuda() # train train(encoders, fusion, head, traindata, validdata, 50, auprc=True) # test print("Testing: ") model = torch.load('best.pt').cuda() # dataset = 'mimic mortality', 'mimic 1', 'mimic 7' test(model, testdata, dataset='mimic 1', auprc=True)
StarcoderdataPython
1777350
#!/usr/bin/env python """ @package mi.dataset.parser.test @file mi-dataset/mi/dataset/parser/test/test_winch_cspp.py @author <NAME> @brief Test code for Winch Cspp data parser Files used for testing: 20141114-194242-WINCH.LOG Contains engineering data for CSPP platform """ import os from nose.plugins.attrib import attr from mi.core.log import get_logger from mi.dataset.dataset_parser import DataSetDriverConfigKeys from mi.dataset.driver.winch_cspp.resource import RESOURCE_PATH from mi.dataset.parser.winch_cspp import WinchCsppParser from mi.dataset.test.test_parser import ParserUnitTestCase log = get_logger() MODULE_NAME = 'mi.dataset.parser.winch_cspp' CLASS_NAME = 'WinchCsppDataParticle' WINCH_CSPP_LOG_FILE = "20141114-194242-WINCH.LOG" WINCH_CSPP_LOG_FILE_2 = "20141114-194242-WINCH_2.LOG" # Define number of expected records/exceptions for various tests NUM_REC_WINCH_CSPP_LOG_FILE = 1617 YAML_FILE = "winch_cspp_test_data.yml" INVALID_DATA_FILE_1 = '20141114-194242-WINCH_invalid1.LOG' NUM_INVALID_EXCEPTIONS = 5 @attr('UNIT', group='mi') class WinchCsppParserUnitTestCase(ParserUnitTestCase): """ winch_cspp Parser unit test suite """ def setUp(self): ParserUnitTestCase.setUp(self) self.rec_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: MODULE_NAME, DataSetDriverConfigKeys.PARTICLE_CLASS: CLASS_NAME } def open_file(self, filename): file = open(os.path.join(RESOURCE_PATH, filename), mode='r') return file def open_file_write(self, filename): file = open(os.path.join(RESOURCE_PATH, filename), mode='w') return file def create_parser(self, file_handle): """ This function creates a WinchCspp parser for Winch CSPP data. """ parser = WinchCsppParser(self.rec_config, file_handle, self.exception_callback) return parser def test_verify_record(self): """ Simple test to verify that records are successfully read and parsed from a data file """ log.debug('===== START SIMPLE TEST =====') in_file = self.open_file(WINCH_CSPP_LOG_FILE) parser = self.create_parser(in_file) # In a single read, get all particles in this file. number_expected_results = NUM_REC_WINCH_CSPP_LOG_FILE result = parser.get_records(number_expected_results) self.assertEqual(len(result), number_expected_results) in_file.close() self.assertListEqual(self.exception_callback_value, []) log.debug('===== END SIMPLE TEST =====') def test_invalid_data(self): """ Test the parser to handle non conformed format data. There are a total of six records in the test file. The first line contains good data and the next 5 lines are bad lines with either wrong delimiter (expect white space but found ',') or wrong input type (expect integer but found float). Verify that one particle is generated and five exceptions are detected. """ log.debug('===== START TEST INVALID SENSOR DATA =====') in_file = self.open_file(INVALID_DATA_FILE_1) parser = self.create_parser(in_file) number_expected_results = 1 # Try to get records and verify that none are returned. result = parser.get_records(NUM_REC_WINCH_CSPP_LOG_FILE) self.assertEqual(len(result), 1) self.assertEqual(len(self.exception_callback_value), NUM_INVALID_EXCEPTIONS) in_file.close() log.debug('===== END TEST INVALID SENSOR DATA =====') def test_verify_record_against_yaml(self): """ Read data from a file and pull out data particles one at a time. Verify that the results are those we expected. """ log.debug('===== START YAML TEST =====') in_file = self.open_file(WINCH_CSPP_LOG_FILE_2) parser = self.create_parser(in_file) # In a single read, get all particles in this file. number_expected_results = 6 result = parser.get_records(number_expected_results) self.assert_particles(result, YAML_FILE, RESOURCE_PATH) in_file.close() self.assertListEqual(self.exception_callback_value, []) log.debug('===== END YAML TEST =====') def create_yml_file(self): """ Create a yml file corresponding to a Winch Cspp dataset. This is not an actual test. It allows us to create what we need for integration testing, i.e. a yml file. """ in_file = self.open_file(WINCH_CSPP_LOG_FILE_2) parser = self.create_parser(in_file) # In a single read, get all particles in this file. result = parser.get_records(100) self.particle_to_yml(result, YAML_FILE) def particle_to_yml(self, particles, filename, mode='w'): """ Write particle dictionaries to a yaml file """ # open write append, if you want to start from scratch manually delete this fid fid = self.open_file_write(filename) fid.write('header:\n') fid.write(" particle_object: 'MULTIPLE'\n") fid.write(" particle_type: 'MULTIPLE'\n") fid.write('data:\n') for i in range(0, len(particles)): particle_dict = particles[i].generate_dict() fid.write(' - _index: %d\n' % (i+1)) fid.write(' particle_object: %s\n' % particles[i].__class__.__name__) fid.write(' particle_type: %s\n' % particle_dict.get('stream_name')) fid.write(' internal_timestamp: %f\n' % particle_dict.get('internal_timestamp')) for val in particle_dict.get('values'): if isinstance(val.get('value'), float): fid.write(' %s: %16.5f\n' % (val.get('value_id'), val.get('value'))) elif isinstance(val.get('value'), str): fid.write(" %s: '%s'\n" % (val.get('value_id'), val.get('value'))) else: fid.write(' %s: %s\n' % (val.get('value_id'), val.get('value'))) fid.close()
StarcoderdataPython
1668502
import math import cv2 import numpy as np from dtld_parsing.calibration import CalibrationData from typing import Tuple __author__ = "<NAME>, <NAME> and <NAME>" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class ThreeDPosition(object): """ Three dimensional position with respect to a defined frame_id. """ def __init__(self, x: float, y: float, z: float, frame_id: str = "stereo_left"): self._x = x self._y = y self._z = z self._frame_id = frame_id def set_pos(self, x: float, y: float, z: float): self._x = x self._y = y self._z = z def move_pos(self, x: float, y: float, z: float): self._x += x self._y += y self._z += z def get_pos(self) -> Tuple[float, float, float]: return self._x, self._y, self._z class ThreeDimensionalPosition(object): def __init__( self, calibration_left: CalibrationData, calibration_right: CalibrationData, binning_x: int = 0, binning_y: int = 0, roi_offset_x: int = 0, roi_offset_y: int = 0, ): """ Class determining the 3D position of objects from disparity images. Args: calibration_left(CalibrationData): calibration for left camera calibration_right(CalibrationData): calibration for right camera binning_x(int): binning between original camera and disparity image in x direction binning_y(int): binning between original camera and disparity image in y direction roi_offset_x(int): RoI offset in x roi_offset_y(int): RoI offset in y """ self._calibration_left = calibration_left self._calibration_right = calibration_right self._binning_x = binning_x self._binning_y = binning_y self._roi_offset_x = roi_offset_x self._roi_offset_y = roi_offset_y def unrectify_rectangle(self, x: int, y: int, width: int, height: int): """ Converts rectified to unrectified coordinates using calibration matrices. Args: x(int): upper left corner of bbox y(int): upper left corner of bbox width(int): width of bbox height(int): height of bbox Returns: x, y, width, height in unrectified coordinates """ # not rectified coordinates pt_distorted = np.array([[float(x), float(y)], [float(x + width), float(y + height),],]) pt_distorted = pt_distorted[:, np.newaxis, :] # rectify points pt_undistorted = cv2.undistortPoints( pt_distorted, self._calibration_left.intrinsic_calibration.intrinsic_matrix, self._calibration_left.distortion_calibration.distortion_matrix, R=self._calibration_left.rectification_matrix.rectification_matrix, P=self._calibration_left.projection_matrix.projection_matrix, ) # get new coords x_out = pt_undistorted[0][0][0] y_out = pt_undistorted[0][0][1] w_out = pt_undistorted[1][0][0] - pt_undistorted[0][0][0] h_out = pt_undistorted[1][0][1] - pt_undistorted[0][0][1] # binning in x and y (camera images were binned before # disparity calculation) return ( int(round(x_out / float(self._binning_x))), int(round(y_out / float(self._binning_y))), int(round(w_out / float(self._binning_x))), int(round(h_out / float(self._binning_y))), ) def determine_disparity(self, x: int, y: int, width: int, height: int, disparity_image: np.ndarray) -> float: """ Calculates disparity from unrectified coordinates using calibration matrices and disparity image input. Args: x(int): upper left corner of bbox y(int): upper left corner of bbox width(int): width of bbox height(int): height of bbox disparity_image(np.ndarray): disparity image Returns: float: median disparity in RoI """ disparity_crop = disparity_image[y : y + height, x : x + width] # image = cv2.rectangle( # disparity_image, (int(x), int(y)), (int(x) + int(width), int(y) + int(height)), (255, 255, 255), 1, # ) # cv2.imwrite("/home/muelju3/disp.png", image) return np.nanmedian(disparity_crop) def determine_three_dimensional_position( self, x: int, y: int, width: int, height: int, disparity_image: np.ndarray ) -> ThreeDPosition: """ Calculates 3d position from rectified coordinates using calibration matrices and disparity image input. Args: x(int): upper left corner of bbox y(int): upper left corner of bbox width(int): width of bbox height(int): weight of bbox disparity_image(np.ndarray): disparity image Returns: ThreeDPosition: ThreeDPosition """ x_u, y_u, width_u, height_u = self.unrectify_rectangle(x=x, y=y, width=width, height=height) disparity = self.determine_disparity( x=x_u - int(round(self._roi_offset_x / self._binning_x)), y=y_u - int(round(self._roi_offset_y / self._binning_y)), width=width_u, height=height_u, disparity_image=disparity_image, ) # all values inside bbox are nan --> no depth if disparity == 0.0 or math.isnan(disparity): return ThreeDPosition(x=-1.0, y=-1.0, z=-1.0, frame_id="stereo_left") return self.twod_point_to_threed_from_disparity(x=x + width / 2.0, y=y + height / 2.0, disparity=disparity) def twod_point_to_threed_from_disparity(self, x, y, disparity): # get calibration values left_fx = self._calibration_left.intrinsic_calibration.fx left_fy = self._calibration_left.intrinsic_calibration.fy left_cx = self._calibration_left.intrinsic_calibration.cx left_cy = self._calibration_left.intrinsic_calibration.cy tx = -1.0 * self._calibration_right.projection_matrix.baseline # determine 3d pos x_world = left_fy * tx * x - left_fy * left_cx * tx y_world = left_fx * tx * y - left_fx * left_cy * tx z_world = left_fx * left_fy * tx # normalize w = -1.0 * self._binning_x * left_fy * disparity return ThreeDPosition(x=x_world / w, y=y_world / w, z=z_world / w, frame_id="stereo_left") def twod_point_to_threed_from_depth(self, x: int, y: int, depth: float) -> float: disparity = self.depth_to_disparity(depth) return self.twod_point_to_threed_from_disparity(x, y, disparity) def disparity_to_depth(self, disparity: float) -> float: """ Converts disparity to depth. Args: disparity(float): Disparity in pixels Returns: float: depth value in meters """ tx = -1.0 * self._calibration_right.projection_matrix.tx return tx / (disparity * self._binning_x) def depth_to_disparity(self, depth: float) -> float: """ Converts depth to disparity. Args: depth(float): Depth in meters Returns: float: disparity in meters """ tx = -1.0 * self._calibration_right.projection_matrix.tx return tx / (depth * self._binning_x) def twod_from_threed(self, x: float, y: float, z: float): """ Calculates hypothesis size in pixels based on depth of object. Args: x(float): 3D position x coordinate y(float): 3D position z coordinate z(float): 3D position y coordinate Returns: int, int: 2d pos """ # translation = depth t_vec = np.array([0.0, 0.0, 0.0]) r_vec = np.array([0.0, 0.0, 0.0]) # world corner points of object (float object assumption) world_points = np.array([[x, y, z],]) # project world points on image plane image_points = cv2.projectPoints( world_points, r_vec, t_vec, self._calibration_left.intrinsic_calibration.intrinsic_matrix, distCoeffs=self._calibration_left.distortion_calibration.distortion_matrix, )[0].tolist() # determine box width and height return image_points[0][0][0], image_points[0][0][1]
StarcoderdataPython
2036
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- __author__ = ["<NAME>"] __all__ = ["_StatsModelsAdapter"] import numpy as np import pandas as pd from sktime.forecasting.base._base import DEFAULT_ALPHA from sktime.forecasting.base._sktime import _OptionalForecastingHorizonMixin from sktime.forecasting.base._sktime import _SktimeForecaster class _StatsModelsAdapter(_OptionalForecastingHorizonMixin, _SktimeForecaster): """Base class for interfacing statsmodels forecasting algorithms""" _fitted_param_names = () def __init__(self): self._forecaster = None self._fitted_forecaster = None super(_StatsModelsAdapter, self).__init__() def fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored Returns ------- self : returns an instance of self. """ # statsmodels does not support the pd.Int64Index as required, # so we coerce them here to pd.RangeIndex if isinstance(y, pd.Series) and type(y.index) == pd.Int64Index: y, X = _coerce_int_to_range_index(y, X) self._set_y_X(y, X) self._set_fh(fh) self._fit_forecaster(y, X) self._is_fitted = True return self def _fit_forecaster(self, y_train, X_train=None): """Internal fit""" raise NotImplementedError("abstract method") def _predict(self, fh, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA): """ Make forecasts. Parameters ---------- fh : ForecastingHorizon The forecasters horizon with the steps ahead to to predict. Default is one-step ahead forecast, i.e. np.array([1]) X : pd.DataFrame, optional (default=None) Exogenous variables are ignored. return_pred_int : bool, optional (default=False) alpha : int or list, optional (default=0.95) Returns ------- y_pred : pd.Series Returns series of predicted values. """ if return_pred_int: raise NotImplementedError() # statsmodels requires zero-based indexing starting at the # beginning of the training series when passing integers start, end = fh.to_absolute_int(self._y.index[0], self.cutoff)[[0, -1]] y_pred = self._fitted_forecaster.predict(start, end) # statsmodels forecasts all periods from start to end of forecasting # horizon, but only return given time points in forecasting horizon return y_pred.loc[fh.to_absolute(self.cutoff).to_pandas()] def get_fitted_params(self): """Get fitted parameters Returns ------- fitted_params : dict """ self.check_is_fitted() return { name: self._fitted_forecaster.params.get(name) for name in self._get_fitted_param_names() } def _get_fitted_param_names(self): """Get names of fitted parameters""" return self._fitted_param_names def _coerce_int_to_range_index(y, X=None): new_index = pd.RangeIndex(y.index[0], y.index[-1] + 1) try: np.testing.assert_array_equal(y.index, new_index) except AssertionError: raise ValueError( "Coercion of pd.Int64Index to pd.RangeIndex " "failed. Please provide `y_train` with a " "pd.RangeIndex." ) y.index = new_index if X is not None: X.index = new_index return y, X
StarcoderdataPython
4808568
from itertools import cycle def xor_data(data, key): key = [q for q in key] data = [q for q in data] return bytes([c ^ k for c, k in zip(data, cycle(key))])
StarcoderdataPython
3270502
<reponame>SimonContreras/MHRiseWiki-discord-bot import os import discord from discord.ext import commands from src.skill.embed import SkillEmbed from src.common.embed import CommonEmbed from src.common.utils import InputParser from src.orm.queries.header import db_header from src.orm.queries.skill import db_skill class SkillCog(commands.Cog): """ Commands related to skill Attributes ---------- bot : commands.Bot Discord.ext class that implements Bot class Methods ------- skill(ctx, *args) Retrieve embeds related to command '?skill' """ def __init__(self, bot: commands.Bot): self._bot = bot self.name = 'Skill Cog' self.description = '''Skill commands MH Rise Wiki''' self.__dbHeader = db_header self.__dbSkill = db_skill self._skill_img_route=os.getenv('SKILL_LOCATION_ROUTE') @commands.command(name='hab', aliases=['skill']) async def skill(self, ctx: commands.Context, *args): """Manage rendered embeds of command '?skill' Parameters ---------- ctx : commands.Context context class that store data related to discord server *args : list List of params sent when the command is called Returns ------- Message retrieve rendered embed """ skill_name = InputParser(args).concat() dct = self.__dbSkill.get(str(ctx.guild.id), skill_name) if dct == None: dct = self.__dbHeader.entity_not_found(str(ctx.guild.id), 'skill_not_found') foooter = self.__dbHeader.get_footer(str(ctx.guild.id), 'general_footer') embed = CommonEmbed(dct, foooter, ctx) await ctx.send(embed=embed.notFound()) else: headers = self.__dbHeader.get_headers(str(ctx.guild.id), ctx.invoked_with) thumbnail_file = discord.File(self._skill_img_route+dct['icon'], filename=dct['icon']) embed = SkillEmbed(dct, headers) embed_main, embed_deco = embed.main() if embed_deco is None: await ctx.send(embed = embed_main, file=thumbnail_file) else: message = await ctx.send(embed=embed_main, file=thumbnail_file) await message.add_reaction('▶') valid_reactions = ['▶'] def check(reaction, user): return user == ctx.author reaction = None reaction_used = [] while True: if str(reaction) in valid_reactions and str(reaction) not in reaction_used: reaction_used.append(str(reaction)) deco_file = discord.File(self._skill_img_route+dct['icon'], filename=dct['icon']) await ctx.send(embed=embed_deco, file=deco_file) try: reaction, user = await self._bot.wait_for(event='reaction_add', timeout = 60.0, check = check) await message.remove_reaction(reaction, user) except: break await message.clear_reactions()
StarcoderdataPython
4840749
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # # This application is an example on how to use aiolifx # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR # IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE import sys import asyncio as aio import aiolifx as alix from functools import partial import argparse UDP_BROADCAST_PORT = 56700 #Simple bulb control frpm console class bulbs(): """ A simple class with a register and unregister methods """ def __init__(self): self.bulbs=[] self.boi=None #bulb of interest def register(self,bulb): bulb.get_label() bulb.get_location() bulb.get_version() bulb.get_group() bulb.get_wififirmware() bulb.get_hostfirmware() self.bulbs.append(bulb) self.bulbs.sort(key=lambda x: x.label or x.mac_addr) if opts.extra: bulb.register_callback(lambda y: print("Unexpected message: %s"%str(y))) def unregister(self,bulb): idx=0 for x in list([ y.mac_addr for y in self.bulbs]): if x == bulb.mac_addr: del(self.bulbs[idx]) break idx+=1 def readin(): """Reading from stdin and displaying menu""" selection = sys.stdin.readline().strip("\n") MyBulbs.bulbs.sort(key=lambda x: x.label or x.mac_addr) lov=[ x for x in selection.split(" ") if x != ""] if lov: if MyBulbs.boi: #try: if True: if int(lov[0]) == 0: MyBulbs.boi=None elif int(lov[0]) == 1: if len(lov) >1: MyBulbs.boi.set_power(lov[1].lower() in ["1","on","true"]) MyBulbs.boi=None else: print("Error: For power you must indicate on or off\n") elif int(lov[0]) == 2: if len(lov) >2: try: MyBulbs.boi.set_color([58275,0, int(round((float(lov[1])*65365.0)/100.0)), int(round(float(lov[2])))]) MyBulbs.boi=None except: print("Error: For white brightness (0-100) and temperature (2500-9000) must be numbers.\n") else: print("Error: For white you must indicate brightness (0-100) and temperature (2500-9000)\n") elif int(lov[0]) == 3: if len(lov) >3: try: MyBulbs.boi.set_color([int(round((float(lov[1])*65535.0)/360.0)), int(round((float(lov[2])*65535.0)/100.0)), int(round((float(lov[3])*65535.0)/100.0)),3500]) MyBulbs.boi=None except: print("Error: For colour hue (0-360), saturation (0-100) and brightness (0-100)) must be numbers.\n") else: print("Error: For colour you must indicate hue (0-360), saturation (0-100) and brightness (0-100))\n") elif int(lov[0]) == 4: print(MyBulbs.boi.device_characteristics_str(" ")) print(MyBulbs.boi.device_product_str(" ")) MyBulbs.boi=None elif int(lov[0]) == 5: print(MyBulbs.boi.device_firmware_str(" ")) MyBulbs.boi=None elif int(lov[0]) == 6: mypartial=partial(MyBulbs.boi.device_radio_str) MyBulbs.boi.get_wifiinfo(callb=lambda x,y:print("\n"+mypartial(y))) MyBulbs.boi=None elif int(lov[0]) == 7: mypartial=partial(MyBulbs.boi.device_time_str) MyBulbs.boi.get_hostinfo(callb=lambda x,y:print("\n"+mypartial(y))) MyBulbs.boi=None elif int(lov[0]) == 8: if len(lov) >3: try: print ( "Sending {}".format([int(round((float(lov[1])*65535.0)/360.0)), int(round((float(lov[2])*65535.0)/100.0)), int(round((float(lov[3])*65535.0)/100.0)),3500])) MyBulbs.boi.set_waveform({"color":[int(round((float(lov[1])*65535.0)/360.0)), int(round((float(lov[2])*65535.0)/100.0)), int(round((float(lov[3])*65535.0)/100.0)), 3500], "transient":1, "period":100, "cycles":30, "skew_ratio":0,"waveform":0}) MyBulbs.boi=None except: print("Error: For pulse hue (0-360), saturation (0-100) and brightness (0-100)) must be numbers.\n") else: print("Error: For pulse you must indicate hue (0-360), saturation (0-100) and brightness (0-100))\n") #except: #print ("\nError: Selection must be a number.\n") else: try: if int(lov[0]) > 0: if int(lov[0]) <=len(MyBulbs.bulbs): MyBulbs.boi=MyBulbs.bulbs[int(lov[0])-1] else: print("\nError: Not a valid selection.\n") except: print ("\nError: Selection must be a number.\n") if MyBulbs.boi: print("Select Function for {}:".format(MyBulbs.boi.label)) print("\t[1]\tPower (0 or 1)") print("\t[2]\tWhite (Brigthness Temperature)") print("\t[3]\tColour (Hue Saturation Brightness)") print("\t[4]\tInfo") print("\t[5]\tFirmware") print("\t[6]\tWifi") print("\t[7]\tUptime") print("\t[8]\tPulse") print("") print("\t[0]\tBack to bulb selection") else: idx=1 print("Select Bulb:") for x in MyBulbs.bulbs: print("\t[{}]\t{}".format(idx,x.label or x.mac_addr)) idx+=1 print("") print("Your choice: ", end='',flush=True) parser = argparse.ArgumentParser(description="Track and interact with Lifx light bulbs.") parser.add_argument("-6", "--ipv6prefix", default=None, help="Connect to Lifx using IPv6 with given /64 prefix (Do not end with colon unless you have less than 64bits).") parser.add_argument("-x","--extra", action='store_true', default=False, help="Print unexpected messages.") try: opts = parser.parse_args() except Exception as e: parser.error("Error: " + str(e)) MyBulbs= bulbs() loop = aio.get_event_loop() discovery = alix.LifxDiscovery(loop, MyBulbs) try: loop.add_reader(sys.stdin,readin) discovery.start() print("Hit \"Enter\" to start") print("Use Ctrl-C to quit") loop.run_forever() except: pass finally: discovery.cleanup() loop.remove_reader(sys.stdin) loop.close()
StarcoderdataPython
3248356
<filename>Modules/LSTM_Config.py ######################## config ############################## import tensorflow as tf from keras.applications import VGG16 from tensorflow import keras from keras.models import Model import numpy as np from random import shuffle from Modules import PublicModules as lib from keras.models import Sequential from keras.layers import LSTM, Dense, Activation, Dropout import matplotlib.pyplot as plt import cv2 DIR_ROOT = '' DIR_INPUT_TRAIN = DIR_ROOT + 'Data/Train' DIR_INPUT_TEST = DIR_ROOT + 'Data/Test' DIR_INPUT_TEST1 = DIR_ROOT + 'Data/Test1' DIR_INPUT_VALIDATION = DIR_ROOT + 'Data/Validation' DIR_INPUT_SHOW_VIDEO_TEST = DIR_ROOT + 'Data/ShowVideoTest' DIR_INPUT_SHOW_VIDEO_TRAIN = DIR_ROOT + 'Data/ShowVideoTrain' DIR_MODEL_LSTM = DIR_ROOT + 'Modules/LSTM_Model_17PL_06_01_2021_01.h5' DIR_MODEL_CNN = DIR_ROOT + 'Modules/VGG16_Model.h5' DIR_TRANSFER_VALUES_VGG16_MODEL = DIR_ROOT + 'Modules/TransferValuesVGG16.npy' SIZE = (224, 224) NUM_FRAME_INPUT_LSTM = 20 TRANSFER_VALUE_SIZE = 4096 RNN_SIZE = 600 DENSE1 = 1024 DENSE2 = 70 EPOCH = 400 BATCH_SIZE = 300 LEARNING_RATE = 0.0001 # So Luong Validation VALID_PERCENT = 0.2 # % Du lieu de test TEST_PERCENT = 0.3 # K-Folder Validation K_FOLD = 10 VIDEO_NAMES = [ 'bc', 'cq', 'da', 'dn', 'kc', 'lg', 'lk', 'na', 'nc', 'ne', 'nt', 'om', 'tc', 'vk', 'xd', 'xt', 'no' ] VIDEO_NAMES_DETAIL = [ 'bc - Bóp Cổ', 'cq - Cởi Quần Áo', 'da - Đá, Đạp', 'dn - Đánh, Tát', 'kc - Kẹp Cổ', 'lg - Lên Gối', 'lk - Lôi Kéo', 'na - Nằm Xuống Sàn', 'nc - Nắm Cổ', 'ne - Ném Đồ Vật', 'nt - Nắm Tóc', 'om - Ôm, Vật Lôn', 'tc - Thủ Thế Võ', 'vk - Vật, Vũ Khí', 'xd - Xô Đẩy', 'xt - Xỉ Tay', 'no'# Khong co hanh dong bao luc ] VIDEO_LABELS = [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ] NUM_CLASSIFY = len(VIDEO_NAMES) ######################## end config ############################## # dinh nghia VGG16 Model def fun_getVGG16Model(): modelCNN = VGG16(include_top=True, weights='imagenet') modelCNN.summary() transferLayer = modelCNN.get_layer(name='fc2') imgModelTransfer = Model(inputs=modelCNN.input, outputs=transferLayer.output) return imgModelTransfer # One hot def fun_onesHotLabel(label: list): _ones = np.ones([NUM_FRAME_INPUT_LSTM, NUM_CLASSIFY]) _onesHot = label * _ones return np.array(_onesHot) # Danh nhan video def fun_getVideoLabelNames_EachFolder(path: str): names = [] labels = [] for fol in VIDEO_NAMES: folder = path + '/' + fol fileNames = lib.fun_getFileNames(path=folder) index = VIDEO_NAMES.index(fol) for file in fileNames: names.append('/' + fol + '/' + file) labels.append(VIDEO_LABELS[index]) c = list(zip(names, labels)) shuffle(c) names, labels = zip(*c) return names, labels # Loc video def fun_locVideoDuFrame(path: str): names, label = fun_getVideoLabelNames_EachFolder(path= path) incree = 1 max = len(names) for file in names: frames = lib.fun_getFramesOfVideo_ALL(path= DIR_INPUT_TRAIN + file) if len(frames) < 25: print(file) lib.fun_print_process(count= incree, max= max, mess= 'Filter Frame Count Precess: ') incree += 1 # nem 20 frame hinh vao VGG16 Model def fun_getTransferValue(pathVideoOrListFrame, modelVGG16): if isinstance(pathVideoOrListFrame, str): frames = lib.fun_getFramesOfVideo(path=pathVideoOrListFrame, count=NUM_FRAME_INPUT_LSTM) else: frames = pathVideoOrListFrame frames = lib.fun_resizeFrames(frames=frames, size=SIZE) frames = np.array(frames) frames = (frames / 255.).astype(np.float16) transfer = modelVGG16.predict(frames) return transfer # nem 20 frame hinh vao VGG16 Model def fun_getTransferValue_EDIT(pathVideoOrListFrame, modelVGG16): images = [] if (isinstance(pathVideoOrListFrame, str)): vidcap = cv2.VideoCapture(pathVideoOrListFrame) success, image = vidcap.read() count = 0 while count < NUM_FRAME_INPUT_LSTM: try: RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) res = cv2.resize(RGB_img, dsize=SIZE, interpolation=cv2.INTER_CUBIC) images.append(res) success, image = vidcap.read() count += 1 except: break else: for image in pathVideoOrListFrame: try: RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) res = cv2.resize(RGB_img, dsize=SIZE, interpolation=cv2.INTER_CUBIC) images.append(res) except: break if len(images) != NUM_FRAME_INPUT_LSTM: lib.fun_print(name='Frames count: ' + pathVideoOrListFrame, value=len(images)) return None resul = np.array(images) resul = (resul / 255.).astype(np.float16) # # Pre-allocate input-batch-array for images. # shape = (NUM_FRAME_INPUT_LSTM,) + SIZE + (3,) # image_batch = np.zeros(shape=shape, dtype=np.float16) # image_batch = resul # # Pre-allocate output-array for transfer-values. # # Note that we use 16-bit floating-points to save memory. # shape = (NUM_FRAME_INPUT_LSTM, TRANSFER_VALUE_SIZE) # transfer_values = np.zeros(shape=shape, dtype=np.float16) transfer_values = modelVGG16.predict(resul) return transfer_values # chuan bi tap du lieu + nhan de train lstm def fun_getTrainSet_LabelSet(pathVideoOrListFrame: str, numItem: int, modelVGG16, names, labels, mess: str= 'Train'): count = 0 trainSet = [] labelSet = [] while count < numItem: itemTrain = fun_getTransferValue_EDIT(pathVideoOrListFrame=pathVideoOrListFrame + names[count], modelVGG16= modelVGG16) itemLable = fun_onesHotLabel(label=labels[count]) trainSet.append(itemTrain) labelSet.append(itemLable[0]) lib.fun_print_process(count=count, max=numItem, mess='Video frame throw into VGG16 Model Processing {0}: '.format(mess)) count += 1 return trainSet, labelSet # chuan bi tap du lieu + nhan de train lstm def fun_getTrainSet_LabelSet_SaveFile(pathVideoOrListFrame: str, numItem: int, modelVGG16, names, labels, mess: str= 'Train'): count = 0 trainSet = [] labelSet = [] with open(file= DIR_TRANSFER_VALUES_VGG16_MODEL, mode= 'wb') as f: # the first write len dataset np.save(f, np.array(numItem)) # write next recode of dataset while count < numItem: itemTrain = fun_getTransferValue_EDIT(pathVideoOrListFrame=pathVideoOrListFrame + names[count], modelVGG16= modelVGG16) itemLable = fun_onesHotLabel(label=labels[count]) trainSet.append(itemTrain) labelSet.append(itemLable[0]) np.save(f, itemTrain) np.save(f, itemLable[0]) lib.fun_print_process(count=count, max=numItem, mess='Video frame throw into VGG16 Model Processing {0}: '.format(mess)) count += 1 return trainSet, labelSet # chuan bi tap du lieu + nhan de train lstm def fun_getTrainSet_LabelSet_LoadFile(numItem: int, mess: str= 'Load File: '): count = 0 trainSet = [] labelSet = [] with open(file= DIR_TRANSFER_VALUES_VGG16_MODEL, mode= 'rb') as f: # the first read len dataset np.load(f) # read next recode of dataset while count < numItem: itemTrain = np.load(f) itemLable = np.load(f) trainSet.append(itemTrain) labelSet.append(itemLable) lib.fun_print_process(count=count, max=numItem, mess='Video frame throw into VGG16 Model Processing {0}: '.format(mess)) count += 1 return trainSet, labelSet # Dinh nghia mang LSTM def fun_getModelLSTM(rnn_size: int = RNN_SIZE, input_shape: tuple = (NUM_FRAME_INPUT_LSTM, TRANSFER_VALUE_SIZE), num_classify: int = NUM_CLASSIFY): modelLSTM = Sequential() modelLSTM.add(LSTM(rnn_size, input_shape=input_shape)) modelLSTM.add(Dense(DENSE1)) modelLSTM.add(Activation('relu')) modelLSTM.add(Dense(DENSE2)) modelLSTM.add(Activation('sigmoid')) modelLSTM.add(Dense(num_classify)) modelLSTM.add(Activation('softmax')) modelLSTM.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) return modelLSTM # Dinh nghia mang LSTM 2 def fun_getModelLSTM_2(rnn_size: int = RNN_SIZE, input_shape: tuple = (NUM_FRAME_INPUT_LSTM, TRANSFER_VALUE_SIZE), num_classify: int = NUM_CLASSIFY): modelLSTM = Sequential() modelLSTM.add(LSTM(rnn_size, input_shape= input_shape)) modelLSTM.add(Dense(DENSE1)) modelLSTM.add(Activation('relu')) modelLSTM.add(Dense(DENSE2)) modelLSTM.add(Activation('sigmoid')) modelLSTM.add(Dense(num_classify)) modelLSTM.add(Activation('softmax')) opt = keras.optimizers.Adam(learning_rate= LEARNING_RATE) modelLSTM.compile(loss='mean_squared_error', optimizer=opt, metrics=['accuracy']) return modelLSTM # Dinh nghia mang LSTM 5 def fun_getModelLSTM_5(rnn_size: int = RNN_SIZE, input_shape: tuple = (NUM_FRAME_INPUT_LSTM, TRANSFER_VALUE_SIZE), num_classify: int = NUM_CLASSIFY): modelLSTM = Sequential() modelLSTM.add(LSTM(1024, input_shape=input_shape)) modelLSTM.add(Dense(200)) modelLSTM.add(Activation('relu')) modelLSTM.add(Dense(50)) modelLSTM.add(Activation('sigmoid')) modelLSTM.add(Dense(num_classify)) modelLSTM.add(Activation('softmax')) opt = keras.optimizers.Adam(learning_rate=LEARNING_RATE) modelLSTM.compile(loss='mean_squared_error', optimizer=opt, metrics=['accuracy']) return modelLSTM # Dinh nghia mang LSTM 6 def fun_getModelLSTM_6(rnn_size: int = RNN_SIZE, input_shape: tuple = (NUM_FRAME_INPUT_LSTM, TRANSFER_VALUE_SIZE), num_classify: int = NUM_CLASSIFY): modelLSTM = Sequential() modelLSTM.add(LSTM(120, input_shape= input_shape)) modelLSTM.add(Dense(1024, activation='relu')) modelLSTM.add(Dropout(.5)) modelLSTM.add(Dense(512, activation='relu')) modelLSTM.add(Dropout(.5)) modelLSTM.add(Dense(128, activation='relu')) modelLSTM.add(Dropout(.5)) modelLSTM.add(Dense(64, activation='relu')) modelLSTM.add(Dense(NUM_CLASSIFY, activation='softmax')) opt = keras.optimizers.Adam(learning_rate= LEARNING_RATE) modelLSTM.compile(loss='mean_squared_error', optimizer=opt, metrics=['accuracy']) return modelLSTM # bat dau cong viec train lstm percent def fun_START_TRAINT_LSTM_PERCENT(modelLSTM, trainSet, labelSet): lenValid = int(VALID_PERCENT * len(trainSet)) # Init Valid valSet = trainSet[0:lenValid] valLabelSet = labelSet[0:lenValid] # Init Train trainSet = trainSet[lenValid:] labelSet = labelSet[lenValid:] print('Len Validation: ' + str(len(valSet))) input('any: ') print('Len Train: ' + str(len(trainSet))) input('any: ') history = modelLSTM.fit(np.array(trainSet), np.array(labelSet), epochs=EPOCH, validation_data=(np.array(valSet), np.array(valLabelSet)), batch_size=BATCH_SIZE, verbose=2) lib.fun_print(name= 'LSTM Train', value= 'Train Finish!') return history def get_model_name(k): return 'Modules/K_model_'+str(k)+'.h5' def fun_mergeArray(arr1, arr2): res = [] for x in arr1: res.append(x) for x in arr2: res.append(x) return res def fun_START_TRAINT_LSTM_PERCENT_K_Fold(modelLSTM, trainSet, labelSet, testSet, testLabelSet): history = None VALIDATION_ACCURACY = [] VALIDATION_LOSS = [] max = len(trainSet) index = max // K_FOLD for k in range(0, K_FOLD): start = index * k end = start + index # Anh xa validation _valSet = trainSet[start:end] _valLabelSet = labelSet[start:end] # Phan con lai de train _trainLeft = trainSet[0:start] _trainRight = trainSet[end:max] _trainFOLD = fun_mergeArray(_trainLeft, _trainRight) _labelLeft = labelSet[0:start] _labelRight = labelSet[end:max] _labelFOLD = fun_mergeArray(_labelLeft, _labelRight) lib.fun_print(name= 'Train fold {0}'.format(k), value= 'valid: {0}, train: {1}'.format(len(_valSet), len(_trainFOLD))) # Bat dau train # create callback checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath=get_model_name(k), monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] history = modelLSTM.fit(np.array(_trainFOLD), np.array(_labelFOLD), epochs=EPOCH, validation_data=(np.array(_valSet), np.array(_valLabelSet)), callbacks=callbacks_list, batch_size=BATCH_SIZE, verbose=2) ''' HIEN THI BIEU DO HOI TU ''' fun_showAnalysis(history=history) ''' DU DOAN % DO CHINH XAC, - Thu muc test tai: Data/Test/ ''' fun_evaluate(modelLSTM=modelLSTM, testSet=testSet, testLabelSet=testLabelSet) # PLOT HISTORY# :# :# LOAD BEST MODEL to evaluate the performance of the model modelLSTM.load_weights(get_model_name(k)) # evaluate results = modelLSTM.evaluate(np.array(_valSet), np.array(_valLabelSet)) results = dict(zip(modelLSTM.metrics_names, results)) VALIDATION_ACCURACY.append(results['accuracy']) VALIDATION_LOSS.append(results['loss']) tf.keras.backend.clear_session() print(VALIDATION_ACCURACY) print(VALIDATION_LOSS) return history # bat dau cong viec train lstm def fun_START_TRAINT_LSTM(modelVGG16, modelLSTM, trainSet, labelSet): valName, valLabel = fun_getVideoLabelNames_EachFolder(path= DIR_INPUT_VALIDATION) print('len Valid: ', len(valName)) input('any: ') valSet, valLabelSet = fun_getTrainSet_LabelSet(pathVideoOrListFrame= DIR_INPUT_VALIDATION ,numItem= len(valName), modelVGG16= modelVGG16, names= valName, labels= valLabel, mess= 'Validation') history = modelLSTM.fit(np.array(trainSet), np.array(labelSet), epochs=EPOCH, validation_data=(np.array(valSet), np.array(valLabelSet)), batch_size=BATCH_SIZE, verbose=2) lib.fun_print(name= 'LSTM Train', value= 'Train Finish!') return history # Show bieu do hoi tu def fun_showAnalysis(history): plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig('destination_path.eps', format='eps', dpi=1000) plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig('destination_path1.eps', format='eps', dpi=1000) plt.show() def fun_loadModelLSTM(): modelLSTM = fun_getModelLSTM_2(num_classify= NUM_CLASSIFY) modelLSTM.load_weights(filepath= DIR_MODEL_LSTM) return modelLSTM def fun_evaluate(modelLSTM, testSet, testLabelSet): result = modelLSTM.evaluate(np.array(testSet), np.array(testLabelSet)) for name, value in zip(modelLSTM.metrics_names, result): print(name, value) def fun_FilterVideoFitFrameCount(fileName:str ,count: int=25): frames = lib.fun_getFramesOfVideo_ALL(path= fileName) if len(frames) < count: print(fileName)
StarcoderdataPython
114028
import sqlite3 db_con = sqlite3.connect("./manga_db.sqlite", detect_types=sqlite3.PARSE_DECLTYPES) db_con.row_factory = sqlite3.Row with db_con: c = db_con.executescript(""" PRAGMA foreign_keys=off; BEGIN TRANSACTION; DROP INDEX IF EXISTS id_onpage_on_site; CREATE INDEX IF NOT EXISTS idx_id_onpage_imported_from ON ExternalInfo (id_onpage, imported_from); CREATE UNIQUE INDEX IF NOT EXISTS idx_artist_name ON Artist (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_category_name ON Category (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_character_name ON Character (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_collection_name ON Collection (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_groups_name ON Groups (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_list_name ON List (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_parody_name ON Parody (name); CREATE UNIQUE INDEX IF NOT EXISTS idx_tag_name ON Tag (name); DROP TRIGGER IF EXISTS set_last_update_ext_info; COMMIT; PRAGMA foreign_keys=on; """)
StarcoderdataPython
41658
<reponame>Aleksander-Drozd/pycsvw term_mappings = { 'Cell': 'csvw:Cell', 'Column': 'csvw:Column', 'Datatype': 'csvw:Datatype', 'Dialect': 'csvw:Dialect', 'Direction': 'csvw:Direction', 'ForeignKey': 'csvw:ForeignKey', 'JSON': 'csvw:JSON', 'NCName': 'xsd:NCName', 'NMTOKEN': 'xsd:NMTOKEN', 'Name': 'xsd:Name', 'NumericFormat': 'csvw:NumericFormat', 'QName': 'xsd:QName', 'Row': 'csvw:Row', 'Schema': 'csvw:Schema', 'Table': 'csvw:Table', 'TableGroup': 'csvw:TableGroup', 'TableReference': 'csvw:TableReference', 'Transformation': 'csvw:Transformation', 'aboutUrl': 'csvw:aboutUrl', 'any': 'xsd:anyAtomicType', 'anyAtomicType': 'xsd:anyAtomicType', 'anyURI': 'xsd:anyURI', 'as': 'https://www.w3.org/ns/activitystreams#', 'base': 'csvw:base', 'base64Binary': 'xsd:base64Binary', 'binary': 'xsd:base64Binary', 'boolean': 'xsd:boolean', 'byte': 'xsd:byte', 'cc': 'http://creativecommons.org/ns#', 'columnReference': 'csvw:columnReference', 'columns': 'csvw:column', 'commentPrefix': 'csvw:commentPrefix', 'csvw': 'http://www.w3.org/ns/csvw#', 'ctag': 'http://commontag.org/ns#', 'datatype': 'csvw:datatype', 'date': 'xsd:date', 'dateTime': 'xsd:dateTime', 'dateTimeStamp': 'xsd:dateTimeStamp', 'datetime': 'xsd:dateTime', 'dayTimeDuration': 'xsd:dayTimeDuration', 'dc': 'http://purl.org/dc/terms/', 'dc11': 'http://purl.org/dc/elements/1.1/', 'dcat': 'http://www.w3.org/ns/dcat#', 'dcterms': 'http://purl.org/dc/terms/', 'dctypes': 'http://purl.org/dc/dcmitype/', 'decimal': 'xsd:decimal', 'decimalChar': 'csvw:decimalChar', 'default': 'csvw:default', 'delimiter': 'csvw:delimiter', 'describedby': 'wrds:describedby', 'describes': 'csvw:describes', 'dialect': 'csvw:dialect', 'double': 'xsd:double', 'doubleQuote': 'csvw:doubleQuote', 'dqv': 'http://www.w3.org/ns/dqv#', 'duration': 'xsd:duration', 'duv': 'https://www.w3.org/TR/vocab-duv#', 'encoding': 'csvw:encoding', 'float': 'xsd:float', 'foaf': 'http://xmlns.com/foaf/0.1/', 'foreignKeys': 'csvw:foreignKey', 'format': 'csvw:format', 'gDay': 'xsd:gDay', 'gMonth': 'xsd:gMonth', 'gMonthDay': 'xsd:gMonthDay', 'gYear': 'xsd:gYear', 'gYearMonth': 'xsd:gYearMonth', 'gr': 'http://purl.org/goodrelations/v1#', 'grddl': 'http://www.w3.org/2003/g/data-view#', 'groupChar': 'csvw:groupChar', 'header': 'csvw:header', 'headerRowCount': 'csvw:headerRowCount', 'hexBinary': 'xsd:hexBinary', 'html': 'rdf:HTML', 'ical': 'http://www.w3.org/2002/12/cal/icaltzd#', 'int': 'xsd:int', 'integer': 'xsd:integer', 'json': 'csvw:JSON', 'lang': 'csvw:lang', 'language': 'xsd:language', 'ldp': 'http://www.w3.org/ns/ldp#', 'length': 'csvw:length', 'license': 'xhv:license', 'lineTerminators': 'csvw:lineTerminators', 'long': 'xsd:long', 'ma': 'http://www.w3.org/ns/ma-ont#', 'maxExclusive': 'csvw:maxExclusive', 'maxInclusive': 'csvw:maxInclusive', 'maxLength': 'csvw:maxLength', 'maximum': 'csvw:maxInclusive', 'minExclusive': 'csvw:minExclusive', 'minInclusive': 'csvw:minInclusive', 'minLength': 'csvw:minLength', 'minimum': 'csvw:minInclusive', 'name': 'csvw:name', 'negativeInteger': 'xsd:negativeInteger', 'nonNegativeInteger': 'xsd:nonNegativeInteger', 'nonPositiveInteger': 'xsd:nonPositiveInteger', 'normalizedString': 'xsd:normalizedString', 'notes': 'csvw:note', 'null': 'csvw:null', 'number': 'xsd:double', 'oa': 'http://www.w3.org/ns/oa#', 'og': 'http://ogp.me/ns#', 'ordered': 'csvw:ordered', 'org': 'http://www.w3.org/ns/org#', 'owl': 'http://www.w3.org/2002/07/owl#', 'pattern': 'csvw:pattern', 'positiveInteger': 'xsd:positiveInteger', 'primaryKey': 'csvw:primaryKey', 'propertyUrl': 'csvw:propertyUrl', 'prov': 'http://www.w3.org/ns/prov#', 'qb': 'http://purl.org/linked-data/cube#', 'quoteChar': 'csvw:quoteChar', 'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', 'rdfa': 'http://www.w3.org/ns/rdfa#', 'rdfs': 'http://www.w3.org/2000/01/rdf-schema#', 'reference': 'csvw:reference', 'referencedRows': 'csvw:referencedRow', 'required': 'csvw:required', 'resource': 'csvw:resource', 'rev': 'http://purl.org/stuff/rev#', 'rif': 'http://www.w3.org/2007/rif#', 'role': 'xhv:role', 'row': 'csvw:row', 'rowTitles': 'csvw:rowTitle', 'rownum': 'csvw:rownum', 'rr': 'http://www.w3.org/ns/r2rml#', 'schema': 'http://schema.org/', 'schemaReference': 'csvw:schemaReference', 'scriptFormat': 'csvw:scriptFormat', 'sd': 'http://www.w3.org/ns/sparql-service-description#', 'separator': 'csvw:separator', 'short': 'xsd:short', 'sioc': 'http://rdfs.org/sioc/ns#', 'skipBlankRows': 'csvw:skipBlankRows', 'skipColumns': 'csvw:skipColumns', 'skipInitialSpace': 'csvw:skipInitialSpace', 'skipRows': 'csvw:skipRows', 'skos': 'http://www.w3.org/2004/02/skos/core#', 'skosxl': 'http://www.w3.org/2008/05/skos-xl#', 'source': 'csvw:source', 'string': 'xsd:string', 'suppressOutput': 'csvw:suppressOutput', 'tableDirection': 'csvw:tableDirection', 'tableSchema': 'csvw:tableSchema', 'tables': 'csvw:table', 'targetFormat': 'csvw:targetFormat', 'textDirection': 'csvw:textDirection', 'time': 'xsd:time', 'titles': 'csvw:title', 'token': 'xsd:token', 'transformations': 'csvw:transformations', 'trim': 'csvw:trim', 'unsignedByte': 'xsd:unsignedByte', 'unsignedInt': 'xsd:unsignedInt', 'unsignedLong': 'xsd:unsignedLong', 'unsignedShort': 'xsd:unsignedShort', 'uriTemplate': 'csvw:uriTemplate', 'url': 'csvw:url', 'v': 'http://rdf.data-vocabulary.org/#', 'valueUrl': 'csvw:valueUrl', 'vcard': 'http://www.w3.org/2006/vcard/ns#', 'virtual': 'csvw:virtual', 'void': 'http://rdfs.org/ns/void#', 'wdr': 'http://www.w3.org/2007/05/powder#', 'wrds': 'http://www.w3.org/2007/05/powder-s#', 'xhv': 'http://www.w3.org/1999/xhtml/vocab#', 'xml': 'rdf:XMLLiteral', 'xsd': 'http://www.w3.org/2001/XMLSchema#', 'yearMonthDuration': 'xsd:yearMonthDuration', } core_group_of_tables_annotations = ['id', 'notes', 'tables'] core_table_annotations = ['columns', 'tableDirection', 'foreignKeys', 'id', 'notes', 'rows', 'schema', 'suppressOutput', 'transformations', 'url'] core_column_annotations = ['aboutUrl', 'cells', 'datatype', 'default', 'lang', 'name', 'null', 'number', 'ordered', 'propertyUrl', 'required', 'separator', 'sourceNumber', 'suppressOutput', 'table', 'textDirection', 'titles', 'valueUrl', 'virtual'] core_row_annotations = ['cells', 'number', 'primaryKey', 'titles', 'referencedRows', 'sourceNumber', 'table'] schema_description = ['columns', 'foreignKeys', 'primaryKey', 'rowTitles', '@type', '@id'] def is_non_core_annotation(name): return name not in core_group_of_tables_annotations \ and name not in core_table_annotations \ and name not in core_column_annotations \ and name not in core_row_annotations \ and name not in schema_description CONST_STANDARD_MODE = 'standard' CONST_MINIMAL_MODE = 'minimal' core_group_of_tables_properties = ['tables', 'dialect', 'notes', 'tableDirection', 'tableSchema', 'transformations', '@id', '@type', '@context'] core_table_properties = ['url', 'dialect', 'notes', 'suppressOutput', 'tableDirection', 'tableSchema', 'transformations', '@id', '@type'] inherited_properties = ['aboutUrl', 'datatype', 'default', 'lang', 'null', 'ordered', 'propertyUrl', 'required', 'separator', 'textDirection', 'valueUrl'] array_properties = ['tables', 'transformations', '@context', 'notes', 'foreignKeys', 'columns', 'lineTerminators'] array_property_item_types = { 'columns': dict, 'foreignKeys': dict, 'lineTerminators': str, 'notes': dict, 'transformations': dict, 'tables': dict, } number_datatypes = ['decimal', 'integer', 'integer', 'long', 'int', 'short', 'byte', 'nonNegativeInteger', 'positiveInteger', 'unsignedLong', 'unsignedInt', 'unsignedShort', 'unsignedByte', 'nonPositiveInteger', 'negativeInteger', 'double', 'number', 'duration', 'dayTimeDuration', 'yearMonthDuration', 'float'] date_datatypes = ['date', 'dateTime', 'datetime', 'dateTimeStamp'] fields_properties = { 'transformations': {'url': True, 'scriptFormat': True, 'targetFormat': True, 'source': False, 'titles': False, '@id': False, '@type': True}, 'tableGroup': {'tables': True, 'dialect': False, 'notes': False, 'tableDirection': False, 'tableSchema': False, 'transformations': False, '@id': False, '@type': False, '@context': True}, 'tables': {'url': True, 'dialect': False, 'notes': False, 'suppressOutput': False, 'tableDirection': False, 'transformations': False, 'tableSchema': False, '@id': False, '@type': False}, 'columns': {'name': False, 'suppressOutput': False, 'titles': False, 'virtual': False, '@id': False, '@type': False, } }
StarcoderdataPython
4826343
<gh_stars>0 import pandas as pd import numpy as np # Store filepath in a variable path = "Resources/budget_data.csv" # Read our Data file with the pandas library df = pd.read_csv(path, encoding="ISO-8859-1") # Total num of months months = df["Date"].nunique() # net P&L p_and_l = df["Profit/Losses"].sum() #get number of rows in Profit/Losses column num_rows = len(df["Profit/Losses"]) #add a new column to data frame with monthly dollar changes. #there will be a null value for the first month for i in range(0,num_rows): if i<(num_rows-1): df.loc[i+1,"Change"]= (df["Profit/Losses"][i+1]) - (df["Profit/Losses"][i]) #get mean, max and min of monthly dollar changes mean_change = df["Change"].mean() min_change = df["Change"].min() max_change = df["Change"].max() #get the row of max and min dollar changes min_change_row = (df["Change"].idxmin()) max_change_row = (df["Change"].idxmax()) # get corresponding month of max and min changes min_month = df.loc[min_change_row, "Date"] max_month = df.loc[max_change_row, "Date"] #print output print("Financial Analysis") print("----------------------------") print(f"Total Months: {months}") print(f"Total: ${p_and_l}") print("Average Change: $" + format (mean_change, ".2f")) print("Greatest Increase in Profits: " + max_month + " ($" + format(max_change, ".0f") + ")") print("Greatest Decrease in Profits: " + min_month + " ($" + format(min_change, ".0f") + ")") ##Print to text file #print("Financial Analysis", file=open("pybank_output.txt", "a")) print("Financial Analysis", file=open("pybank_output.txt", "a")) print("----------------------------", file=open("pybank_output.txt", "a")) print(f"Total Months: {months}", file=open("pybank_output.txt", "a")) print(f"Total: ${p_and_l}", file=open("pybank_output.txt", "a")) print("Average Change: $" + format (mean_change, ".2f"), file=open("pybank_output.txt", "a")) print("Greatest Increase in Profits: " + max_month + " ($" + format(max_change, ".0f") + ")", file=open("pybank_output.txt", "a")) print("Greatest Decrease in Profits: " + min_month + " ($" + format(min_change, ".0f") + ")", file=open("pybank_output.txt", "a")) # get min profit #idmin, axis = 0 returns index of the row #.loc returns the row of the above index #min_profit_df = budget_data_df.loc[budget_data_df["Profit/Losses"].idxmin(axis = 0)] #min_profit_month = min_profit_df[0] #min_profit_value = min_profit_df[1] # average change #average_change = budget_data_df["Profit/Losses"].mean() # get max profit #idxmax, axis = 0 returns index of the row #.loc returns the row of the above index #max_profit_df = budget_data_df.loc[budget_data_df["Profit/Losses"].idxmax(axis = 0)] #max_profit_month = max_profit_df[0] #max_profit_value = max_profit_df[1] #print(len(df["Profit/Losses"])) #print(df["Profit/Losses"][1]) #print("----------------------------") #calc average change #dollar_change = [] #pandas.DataFrame.append() #avg_dollar_change = average(dollar_change) #mean_dollar_change = np.mean(dollar_change) #max_dollar_change = np.max(dollar_change) #min_dollar_change = np.min(dollar_change) # #print(mean_dollar_change) #print(max_dollar_change) #print(min_dollar_change)
StarcoderdataPython
3295927
<reponame>PortableProgrammer/Status-Light # https://github.com/portableprogrammer/Status-Light/ # Module imports import sys import signal import os import time import logging from datetime import datetime # Project imports import webex import office365 import tuya import env import const currentStatus = const.Status.unknown lastStatus = currentStatus logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s: %(message)s', datefmt='[%Y-%m-%d %H:%M:%S]', level=logging.WARNING) logger = logging.getLogger(__name__) logger.info('Startup') print(datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'),'Startup') # Register for SIGHUP, SIGINT, SIGQUIT, SIGTERM # At the moment, we'll treat them all (but SIGTERM) the same and exit shouldContinue = True def receiveSignal(signalNumber, frame): logger.warning('\nSignal received: %s', signalNumber) # TODO: Make better choices here, this is really a hack global shouldContinue shouldContinue = False return # SIGTERM should be handled special def receiveTerminate(signalNumber, frame): logger.warning('\nSIGTERM received, terminating immediately') sys.exit(0) signals = [signal.SIGHUP, signal.SIGINT, signal.SIGQUIT] for sig in signals: signal.signal(sig, receiveSignal) signal.signal(signal.SIGTERM, receiveTerminate) # Validate environment variables in a structured way localEnv = env.Environment() if False in [localEnv.getSources(), localEnv.getTuya(), localEnv.getColors(), localEnv.getStatus(), localEnv.getSleep(), localEnv.getLogLevel()]: # We failed to gather some environment variables logger.warning('Failed to find all environment variables!') sys.exit(1) # 23 - Make logging level configurable logger.info('Setting log level to %s', localEnv.logLevel) print(datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'),'Setting log level to', localEnv.logLevel) logger.setLevel(localEnv.logLevel) # Depending on the selected sources, get the environment webexAPI = None if const.StatusSource.webex in localEnv.selectedSources: if localEnv.getWebex(): logger.info('Requested Webex') webexAPI = webex.WebexAPI() webexAPI.botID = localEnv.webexBotID else: logger.warning('Requested Webex, but could not find all environment variables!') sys.exit(1) officeAPI = None if const.StatusSource.office365 in localEnv.selectedSources: if localEnv.getOffice(): logger.info('Requested Office 365') officeAPI = office365.OfficeAPI() officeAPI.appID = localEnv.officeAppID officeAPI.appSecret = localEnv.officeAppSecret officeAPI.tokenStore = localEnv.officeTokenStore officeAPI.authenticate() else: logger.warning('Requested Office 365, but could not find all environment variables!') sys.exit(1) # Tuya light = tuya.TuyaLight() light.device = eval(localEnv.tuyaDevice) logger.debug('Retrieved TUYA_DEVICE variable: %s', light.device) # TODO: Connect to the device and ensure it's available #light.getCurrentStatus() while shouldContinue: try: webexStatus = const.Status.unknown officeStatus = const.Status.unknown # Webex Status if const.StatusSource.webex in localEnv.selectedSources: webexStatus = webexAPI.getPersonStatus(localEnv.webexPersonID) # O365 Status (based on calendar) if const.StatusSource.office365 in localEnv.selectedSources: officeStatus = officeAPI.getCurrentStatus() # Compare statii and pick a winner logger.debug('Webex: %s | Office: %s', webexStatus, officeStatus) # Webex status always wins except in specific scenarios currentStatus = webexStatus if (webexStatus in localEnv.availableStatus or webexStatus in localEnv.offStatus) and officeStatus not in localEnv.offStatus: logger.debug('Using officeStatus: %s', officeStatus) currentStatus = officeStatus if lastStatus != currentStatus: lastStatus = currentStatus print() print(datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'),'Found new status:',currentStatus, end='', flush=True) logger.info('Transitioning to %s',currentStatus) light.transitionStatus(currentStatus, localEnv) else: print('.', end='', flush=True) # Sleep for a few seconds time.sleep(localEnv.sleepSeconds) except (SystemExit, KeyboardInterrupt) as e: logger.info('%s received; shutting down...', e.__class__.__name__) shouldContinue = False except BaseException as e: logger.warning('Exception during main loop: %s', e) logger.debug(e) print() print(datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'),'Shutdown') logger.info('Shutdown') logger.debug('Turning light off') light.off()
StarcoderdataPython
3261849
<filename>lib/script/who.py # # EXAMPLE: A primitive who command # __name__ = "who Command" __author__ = "jh" __date__ = "Feb 2004" __version__ = "1.0" __text__ = "blah blah blah" __deps__ = [] from mud import * import server def __init__() : register_command("who", \ { "position" : POS_DEAD, "function" : do_who, "level" : 0, "subcmd" : 0, "priority" : 25, "override" : 1 } ) def __end__() : deregister_command(do_who) def class_abbr(num) : return server.class_abbreviate(num) # # Get the flag string of a bottled char # def who_flag_str(ch) : s = [] if ch.prf_flagged(PRF_NOTELL) : s.append("(notell)") return " ".join(s) def do_who(ch,cmd,args,subcmd,rawtext) : d = server.cvar.descriptor_list show = [] while d != None : c = d.character if c == None : continue them = server.py_Bottle_Char(c) if them == None : continue if ch.can_see(them) : show.append(c) d = d.next ch.send("Players") ch.send("-------") for them in show : ch.write(ch.yel(NRM)) if ch.isnpc : a = "--" else : a = class_abbr(them.player.chclass) ch.write("[%2d %s] %s %s %s" % (them.player.level, a, them.player.name, them.player.title, who_flag_str(server.py_Bottle_Char(them)))) ch.send(ch.nrm(NRM)) ch.send("") if len(show) != 1 : ch.send("%d characters shown" % len(show)) else : ch.send("1 character shown")
StarcoderdataPython
1793532
#!/usr/bin/python # -*- coding: utf-8 -*- # Hive Colony Framework # Copyright (c) 2008-2020 Hive Solutions Lda. # # This file is part of Hive Colony Framework. # # Hive Colony Framework is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Colony Framework is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Colony Framework. If not, see <http://www.apache.org/licenses/>. __author__ = "<NAME> <<EMAIL>>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2020 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ class Handler(object): """ The abstract handler class to be used for handlers that are class oriented (not direct function calls). """ filters = None """ The reference to the list that will hold the various filters to be applied to the message to be sent """ def __init__(self): self.filters = [] def add_filter(self, filter): self.filters.append(filter) def filter(self, message): # retrieves the (data) type of the current message, and # in case it's not a map returns immediately, plain messages # are not "filterable" message_t = type(message) if not message_t == dict: return message # iterates over the complete set of filters registered in the # handler and runs them in the message, retrieving the filtered # message as the new message for filter in self.filters: message = filter(message) return message def plain_filter(self, message): contents = message.get("contents", {}) value = contents.get("value", None) return value
StarcoderdataPython
52185
from RPi import GPIO from time import sleep # clk = 17 # dt = 18 sw = 24 clk = 12 dt = 25 GPIO.setmode(GPIO.BCM) GPIO.setup(clk, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.setup(dt, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.setup(sw, GPIO.IN, pull_up_down=GPIO.PUD_UP) counter = 0 clkLastState = GPIO.input(clk) try: while True: pushBtn = GPIO.input(sw) if pushBtn !=1: print("button pressed..") clkState = GPIO.input(clk) dtState = GPIO.input(dt) if clkState != clkLastState: if dtState != clkState: counter += 1 else: counter -= 1 print(counter) clkLastState = clkState sleep(0.01) finally: GPIO.cleanup()
StarcoderdataPython
1761704
""" """ from __future__ import absolute_import, division, print_function import numpy as np import pytest from astropy.utils.misc import NumpyRNGContext from ..mean_los_velocity_vs_rp import mean_los_velocity_vs_rp from ...tests.cf_helpers import generate_locus_of_3d_points __all__ = ('test_mean_los_velocity_vs_rp_correctness1', 'test_mean_los_velocity_vs_rp_correctness2', 'test_mean_los_velocity_vs_rp_correctness3', 'test_mean_los_velocity_vs_rp_correctness4', 'test_mean_los_velocity_vs_rp_parallel', 'test_mean_los_velocity_vs_rp_auto_consistency', 'test_mean_los_velocity_vs_rp_cross_consistency') fixed_seed = 43 def pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rp_min, rp_max, pi_max, Lbox=None): """ Brute force pure python function calculating mean los velocities in a single bin of separation. """ if Lbox is None: xperiod, yperiod, zperiod = np.inf, np.inf, np.inf else: xperiod, yperiod, zperiod = Lbox, Lbox, Lbox npts1, npts2 = len(sample1), len(sample2) running_tally = [] for i in range(npts1): for j in range(npts2): dx = sample1[i, 0] - sample2[j, 0] dy = sample1[i, 1] - sample2[j, 1] dz = sample1[i, 2] - sample2[j, 2] dvz = velocities1[i, 2] - velocities2[j, 2] if dx > xperiod/2.: dx = xperiod - dx elif dx < -xperiod/2.: dx = -(xperiod + dx) if dy > yperiod/2.: dy = yperiod - dy elif dy < -yperiod/2.: dy = -(yperiod + dy) if dz > zperiod/2.: dz = zperiod - dz zsign_flip = -1 elif dz < -zperiod/2.: dz = -(zperiod + dz) zsign_flip = -1 else: zsign_flip = 1 d_rp = np.sqrt(dx*dx + dy*dy) if (d_rp > rp_min) & (d_rp < rp_max) & (abs(dz) < pi_max): if abs(dz) > 0: vlos = dvz*dz*zsign_flip/abs(dz) else: vlos = dvz running_tally.append(vlos) if len(running_tally) > 0: return np.mean(running_tally) else: return 0. def test_mean_radial_velocity_vs_r_vs_brute_force_pure_python(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns results that agree with a brute force pure python implementation for a random distribution of points, both with and without PBCs. """ npts = 99 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) sample2 = np.random.random((npts, 3)) velocities1 = np.random.uniform(-10, 10, npts*3).reshape((npts, 3)) velocities2 = np.random.uniform(-10, 10, npts*3).reshape((npts, 3)) rp_bins, pi_max = np.array([0, 0.1, 0.2, 0.3]), 0.1 ############################################ # Run the test with PBCs turned off s1s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_auto=False) rmin, rmax = rp_bins[0], rp_bins[1] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[0], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[1], rp_bins[2] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[1], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[2], rp_bins[3] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max) assert np.allclose(s1s2[2], pure_python_s1s2, rtol=0.01) # ############################################ # # Run the test with PBCs operative s1s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_auto=False, period=1) rmin, rmax = rp_bins[0], rp_bins[1] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max, Lbox=1) assert np.allclose(s1s2[0], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[1], rp_bins[2] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max, Lbox=1) assert np.allclose(s1s2[1], pure_python_s1s2, rtol=0.01) rmin, rmax = rp_bins[2], rp_bins[3] pure_python_s1s2 = pure_python_mean_los_velocity_vs_rp( sample1, velocities1, sample2, velocities2, rmin, rmax, pi_max, Lbox=1) assert np.allclose(s1s2[2], pure_python_s1s2, rtol=0.01) @pytest.mark.slow def test_mean_los_velocity_vs_rp_correctness1(): """ This function tests that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (1, 0, 0.1), the second at (1, 0.2, 0.25). The first set of points is moving at +50 in the z-direction; the second set of points is at rest. PBCs are set to infinity in this test. So in this configuration, the two sets of points are moving towards each other, and so the relative z-velocity should be -50 for cross-correlations in separation bins containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. The tests will be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = -50 npts = 100 xc1, yc1, zc1 = 1, 0, 0.1 xc2, yc2, zc2 = 1, 0.2, 0.25 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 2] = 50. rp_bins, pi_max = np.array([0, 0.1, 0.15, 0.21, 0.25]), 0.2 s1s1, s1s2, s2s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s1[0:2], 0, rtol=0.01) assert np.allclose(s1s2[0:2], 0, rtol=0.01) assert np.allclose(s2s2[0:2], 0, rtol=0.01) assert np.allclose(s1s1[2], 0, rtol=0.01) assert np.allclose(s1s2[2], correct_relative_velocity, rtol=0.01) assert np.allclose(s2s2[2], 0, rtol=0.01) assert np.allclose(s1s1[3], 0, rtol=0.01) assert np.allclose(s1s2[3], 0, rtol=0.01) assert np.allclose(s2s2[3], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) s1s1 = mean_los_velocity_vs_rp(sample, velocities, rp_bins, pi_max) assert np.allclose(s1s1[0:2], 0, rtol=0.01) assert np.allclose(s1s1[2], correct_relative_velocity, rtol=0.01) assert np.allclose(s1s1[3], 0, rtol=0.01) @pytest.mark.slow def test_mean_los_velocity_vs_rp_correctness2(): """ This function tests that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.5, 0.5, 0.1), the second at (0.5, 0.35, 0.2). The first set of points is moving at -50 in the z-direction; the second set of points is at rest. PBCs are set to infinity in this test. So in this configuration, the two sets of points are moving away from each other, and so the relative z-velocity should be +50 for cross-correlations in separation bins containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. The tests will be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = +50 npts = 100 xc1, yc1, zc1 = 0.5, 0.5, 0.1 xc2, yc2, zc2 = 0.5, 0.35, 0.25 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 2] = -50. rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1, s1s2, s2s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s2s2[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) assert np.allclose(s2s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) s1s1 = mean_los_velocity_vs_rp(sample, velocities, rp_bins, pi_max) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) @pytest.mark.slow def test_mean_los_velocity_vs_rp_correctness3(): """ This function tests that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.5, 0.55, 0.1), the second at (0.5, 0.4, 0.95). The first set of points is moving at (-50, -10, +20), the second set of points is moving at (+25, +10, +40). So in this configuration, the second set of points is "gaining ground" on the second set in the z-direction, and so the relative z-velocity should be -20 for cross-correlations in separation bins containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. The tests will be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = -20 npts = 100 xc1, yc1, zc1 = 0.5, 0.55, 0.1 xc2, yc2, zc2 = 0.5, 0.4, 0.95 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 0] = -50. velocities1[:, 1] = -10. velocities1[:, 2] = +20. velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities2[:, 0] = +25. velocities2[:, 1] = +10. velocities2[:, 2] = +40. rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1, s1s2, s2s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s2s2[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) assert np.allclose(s2s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) s1s1 = mean_los_velocity_vs_rp(sample, velocities, rp_bins, pi_max, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) @pytest.mark.slow def test_mean_los_velocity_vs_rp_correctness4(): """ This function tests that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.05, 0.05, 0.3), the second at (0.95, 0.95, 0.4). The first set of points is moving at (-50, -10, +20), the second set of points is moving at (+25, +10, +40). So in this configuration, the first set of points is "losing ground" on the second set in the z-direction, and so the relative z-velocity should be +20 for cross-correlations in separation bins containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. Note that in this test, PBCs operate in both x & y directions to identify pairs of points, but PBCs are irrelevant in the z-direction. The tests will be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = +20 npts = 100 xc1, yc1, zc1 = 0.05, 0.05, 0.3 xc2, yc2, zc2 = 0.95, 0.95, 0.4 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 0] = -50. velocities1[:, 1] = -10. velocities1[:, 2] = +20. velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities2[:, 0] = +25. velocities2[:, 1] = +10. velocities2[:, 2] = +40. rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1, s1s2, s2s2 = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s2s2[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) assert np.allclose(s2s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) s1s1 = mean_los_velocity_vs_rp(sample, velocities, rp_bins, pi_max, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) @pytest.mark.slow def test_mean_los_velocity_vs_rp_parallel(): """ Verify that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns identical results for a random distribution of points whether the function runs in parallel or serial. """ npts = 101 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) velocities1 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) sample2 = np.random.random((npts, 3)) velocities2 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1_parallel, s1s2_parallel, s2s2_parallel = mean_los_velocity_vs_rp( sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, num_threads=2, period=1) s1s1_serial, s1s2_serial, s2s2_serial = mean_los_velocity_vs_rp( sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, num_threads=1, period=1) assert np.allclose(s1s1_serial, s1s1_parallel, rtol=0.001) assert np.allclose(s1s2_serial, s1s2_parallel, rtol=0.001) assert np.allclose(s2s2_serial, s2s2_parallel, rtol=0.001) @pytest.mark.slow def test_mean_los_velocity_vs_rp_auto_consistency(): """ Verify that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns self-consistent auto-correlation results regardless of whether we ask for cross-correlations. """ npts = 101 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) velocities1 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) sample2 = np.random.random((npts, 3)) velocities2 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1a, s1s2a, s2s2a = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2) s1s1b, s2s2b = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_cross=False) assert np.allclose(s1s1a, s1s1b, rtol=0.001) assert np.allclose(s2s2a, s2s2b, rtol=0.001) @pytest.mark.slow def test_mean_los_velocity_vs_rp_cross_consistency(): """ Verify that the `~halotools.mock_observables.mean_los_velocity_vs_rp` function returns self-consistent cross-correlation results regardless of whether we ask for auto-correlations. """ npts = 101 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) velocities1 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) sample2 = np.random.random((npts, 3)) velocities2 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) rp_bins, pi_max = np.array([0, 0.1, 0.3]), 0.2 s1s1a, s1s2a, s2s2a = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2) s1s2b = mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max, sample2=sample2, velocities2=velocities2, do_auto=False) assert np.allclose(s1s2a, s1s2b, rtol=0.001)
StarcoderdataPython
4842858
<reponame>SantaSpeen/gitflic """ Gitflic authentication wrapper. """ import json import os import threading from urllib.parse import quote_plus import webbrowser from enum import Enum from typing import Union import logging import requests from .exceptions import AuthError, GitflicExceptions from .__version__ import __version__ from gitflic.GitflicOAuthServer import get_server OAUTH_URL = "https://oauth.gitflic.ru/oauth/authorize?scope={}&clientId={}&redirectUrl={}&state={}" def _add_enum_values(*args): string = str() for arg in args: if isinstance(arg, Enum): string += arg.value else: string += str(arg) string += "," return string[:len(string) - 1] class GitflicAuthScopes(Enum): """ Authentication scopes from Gitflic. Doc: https://gitflic.ru/help/api/access-token""" USER_READ = "USER_READ" USER_WRITE = "USER_WRITE" PROJECT_READ = "PROJECT_READ" PROJECT_WRITE = "PROJECT_WRITE" PROJECT_EDIT = "PROJECT_EDIT" # For a hint in the IDE ALL_READ: "GitflicAuthScopes.ALL_READ" ALL_WRITE: "GitflicAuthScopes.ALL_WRITE" ALL: "GitflicAuthScopes.ALL" GitflicAuthScopes.ALL_READ = _add_enum_values(GitflicAuthScopes.USER_READ, GitflicAuthScopes.PROJECT_READ) GitflicAuthScopes.ALL_WRITE = _add_enum_values(GitflicAuthScopes.PROJECT_WRITE, GitflicAuthScopes.PROJECT_EDIT, GitflicAuthScopes.PROJECT_WRITE) GitflicAuthScopes.ALL = _add_enum_values(GitflicAuthScopes.ALL_WRITE, GitflicAuthScopes.ALL_READ) class GitflicAuth: """ Gitflic authentication wrapper. """ # noinspection PyTypeChecker def __init__(self, access_token: str = None, localhost_oauth: bool = False, scope: Union[GitflicAuthScopes, str] = GitflicAuthScopes.ALL_READ, client_id: str = "cc2a5d8a-385a-436<PASSWORD>b2b-bb2412e<PASSWORD>", redirect_url: str = "https://gitflic.ru/settings/oauth/token", state: str = None): """ :param access_token: Raw token for raw AUTH. :param scope: OAUTH field. Default GitflicAuthScopes.ALL_READ :param client_id: OAUTH field. Default "cc<PASSWORD>", Simple gitflic app :param redirect_url: OAUTH field. Default "https://gitflic.ru/settings/oauth/token/" :param state: OAUTH field. Default "python_user" """ # Logging. self.log: logging.Logger = logging.getLogger(__name__) # Requests. self.session: requests.Session = requests.Session() # Set headers self.session.headers = { "User-Agent": f"gitflic-py/{__version__}", 'Accept': "application/*", 'Authorization': "token " } # Token fields. self.access_token: str = access_token self.refresh_token: str = None # OAUTH fields. self.scope: str = scope if not isinstance(scope, GitflicAuthScopes) else scope.value self._localhost_oauth: bool = localhost_oauth self.client_id: str = client_id self.redirect_url: str = redirect_url self.state: str = state self._server_thread: threading.Thread = None self._try_login() def _try_login(self): """ Tries to login user with token or OAUTH. """ if self._localhost_oauth: self.state = self.state or "GitflicOAuthServer" if not (self.scope and self.client_id): raise GitflicExceptions( "Using localhost, you are required to this params: ('scope', 'client_id')! " ) self._oauth_login() elif self.access_token: # Raw authorization. self._token_login() else: if self.scope and self.client_id and self.state: # OAUTH authorization. self._oauth_login() else: if any((self.scope, self.client_id, self.redirect_url, self.state)): raise GitflicExceptions( "Not found one or more of params for OAUTH, you are required to send ALL params from ('scope', 'client_id', 'redirect_url', 'state')! " "See docs: https://gitflic.ru/help/api/access-token." ) raise GitflicExceptions( "Please pass 'token' param for raw auth or ('scope', 'client_id', 'redirect_url', 'state') params for OAUTH " "See docs: https://gitflic.ru/help/api/access-token." ) def _oauth_login(self): """ Tries to login user with OAUTH. """ self.log.debug("Trying to login with OAUTH...") if self._localhost_oauth: server, self.redirect_url, self.state = get_server(self) # OAUTH authorization. redirect_url = quote_plus(self.redirect_url) webbrowser.open(OAUTH_URL.format(self.scope, self.client_id, redirect_url, self.state)) if not self._localhost_oauth: code = input("Paste code: ") if not code: raise AuthError("Cannot find code.") res = self.session.get("https://oauth.gitflic.ru/api/token/access?code=" + code) if res.status_code == 200: res = res.json() jsn = {"request": {"code": code, "state": None}, "response": res} with open(os.path.join(os.getcwd(), "config.json"), "w") as f: json.dump(jsn, f, indent=3) access_token = res['accessToken'] self.access_token = access_token self.refresh_token = res['refreshToken'] self.session.headers["Authorization"] += access_token else: error = None title_split = res.json()['title'].split(".") if len(title_split) == 6: error = title_split[2].title() + " " + title_split[3].title() + ": " + title_split[4] raise AuthError(error or "Unknown error") else: self._server_thread = threading.Thread(target=server.serve_forever) self._server_thread.start() print("Waiting server..") self._server_thread.join() self.session.headers['Authorization'] += self.access_token self.check_token() def _token_login(self): """ Tries to login user with given access token. """ self.log.debug(f"Trying to login with token={self.access_token}...") assert isinstance(self.access_token, str) self.session.headers['Authorization'] += self.access_token self.check_token() def check_token(self): """ Checks that current auth session token is valid or not (by making request to get current user). """ self.log.debug("Checking token....") r = self.session.get("https://api.gitflic.ru/user/me") if r.status_code == 403: e = AuthError("Authentication failed. Invalid token?") e.response = r raise e else: r = r.json() self.log.debug(f"Successfully logged as {r.get('username')} {r.get('id')}")
StarcoderdataPython
1771784
#instaspy from time import sleep from selenium import webdriver from selenium.webdriver.common.keys import Keys class instaspy: def __init__(self, username, password, target_username): self.username = username self.password = password self.target_username = target_username self.browser = webdriver.Firefox() def login(self): browser = self.browser browser.implicitly_wait(5) #opening instagram.com browser.get('https://www.instagram.com/') #-------login process starts #finding input boxes for username and password and pasing the appropriate values browser.find_element_by_xpath("//input[@name='username']").send_keys(self.username) browser.find_element_by_xpath("//input[@name='password']").send_keys(self.password) #findind login button and clicking it browser.find_element_by_xpath("//button[@type='submit']").click() #-------login process ends def target_profile(self): browser = self.browser browser.implicitly_wait(5) #Clicking "Not Now" in pop up just after login sleep(4) not_now_button = browser.find_element_by_xpath("//button[text()='Not Now']") sleep(1) not_now_button.click() #-------search for victim's username starts #click search bar browser.find_element_by_xpath("//span[text()='Search']").click() #enter victim's username and clicking Search browser.find_element_by_xpath("//input[@placeholder='Search']").send_keys(self.target_username) sleep(3) #open victim's profile browser.find_element_by_xpath("//span[text()='"+self.target_username+"'][@class='Ap253']").click() sleep(2) #-------search for username stops def list_followers(self): browser = self.browser browser.implicitly_wait(5) #clicking and opening followers tabs and getting maximum numbers of followers max = int(browser.find_element_by_xpath("/html[1]/body[1]/div[1]/section[1]/main[1]/div[1]/header[1]/section[1]/ul[1]/li[2]/a[1]/span[1]").get_attribute('title').replace(',','')) browser.find_element_by_xpath("//a[@class='-nal3 '][@href='/"+self.target_username+"/followers/']").click() sleep(0.5) followersList = browser.find_element_by_css_selector('div[role=\'dialog\'] ul') numberOfFollowersInList = len(followersList.find_elements_by_css_selector('li')) temp = [numberOfFollowersInList, 0] followersList.click() actionChain = webdriver.ActionChains(browser) while (numberOfFollowersInList < max): actionChain.key_down(Keys.SPACE).key_up(Keys.SPACE).perform() sleep(1) numberOfFollowersInList = len(followersList.find_elements_by_css_selector('li')) sleep(1) if (numberOfFollowersInList == temp[1]): break else: temp[1] = temp[0] temp[0] = numberOfFollowersInList followers = [] for user in followersList.find_elements_by_css_selector('li'): userLink = user.find_element_by_css_selector('a').get_attribute('href') followers.append(userLink) if (len(followers) == max): break return followers def list_following(self): browser = self.browser browser.implicitly_wait(5) browser.get("https://www.instagram.com/"+self.target_username+"/") #clicking and opening following tabs and getting maximum numbers of following max = int(browser.find_element_by_xpath("/html[1]/body[1]/div[1]/section[1]/main[1]/div[1]/header[1]/section[1]/ul[1]/li[3]/a[1]/span[1]").text.replace(',','')) browser.find_element_by_xpath("//a[@class='-nal3 '][@href='/"+self.target_username+"/following/']").click() sleep(0.5) followingList = browser.find_element_by_css_selector('div[role=\'dialog\'] ul') numberOfFollowingInList = len(followingList.find_elements_by_css_selector('li')) temp = [numberOfFollowingInList, 0] followingList.click() actionChain = webdriver.ActionChains(browser) while (numberOfFollowingInList < max): actionChain.key_down(Keys.SPACE).key_up(Keys.SPACE).perform() sleep(1) numberOfFollowingInList = len(followingList.find_elements_by_css_selector('li')) sleep(1) if (numberOfFollowingInList == temp[1]): break else: temp[1] = temp[0] temp[0] = numberOfFollowingInList following = [] for user in followingList.find_elements_by_css_selector('li'): userLink = user.find_element_by_css_selector('a').get_attribute('href') following.append(userLink) if (len(following) == max): break browser.close() return following if __name__ == '__main__': InstaSpy_bot = instaspy('<Username>', '<Password>', '<target_username>') InstaSpy_bot.login() InstaSpy_bot.target_profile() followers_list = InstaSpy_bot.list_followers() following_list = InstaSpy_bot.list_following() with open('followers.csv', 'w') as f1: f1.write("Followers list:\n") for l1 in followers_list: f1.write(l1) f1.write('\n') with open('following.csv', 'w') as f2: f2.write("Following list:\n") for l2 in following_list: f2.write(l2) f2.write("\n")
StarcoderdataPython
4829050
from django import template register = template.Library() @register.inclusion_tag('widgets/std_field.html', takes_context=True) def std_field(context, field, **kwargs): field.__dict__.update(kwargs) return {"field": field} @register.inclusion_tag('widgets/multi_field.html', takes_context=True) def radio_field(context, field, **kwargs): kwargs.update({"radiogroup": True}) field.__dict__.update(kwargs) return {"field": field} @register.inclusion_tag('widgets/multi_field.html', takes_context=True) def multi_field(context, field, **kwargs): field.__dict__.update(kwargs) return {"field": field} @register.inclusion_tag('widgets/hidden_field.html', takes_context=True) def hidden_field(context, field, **kwargs): field.__dict__.update(kwargs) return {"field": field} @register.inclusion_tag("widgets/split_form.html", takes_context=True) def split_form(context, split_form): return {"form": split_form}
StarcoderdataPython
1771732
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # """RAMSES RF - a RAMSES-II protocol decoder & analyser. Schema processor. """ # TODO: move max_zones into system-specific location, ?profile import logging import re from types import SimpleNamespace from typing import Any import voluptuous as vol from .const import ( DEFAULT_MAX_ZONES, DEV_ROLE, DEV_ROLE_MAP, DEV_TYPE, DEV_TYPE_MAP, DEVICE_ID_REGEX, DONT_CREATE_MESSAGES, SZ_ALIAS, SZ_CLASS, SZ_FAKED, SZ_ZONE_IDX, ZON_ROLE_MAP, SystemType, __dev_mode__, ) from .helpers import shrink from .protocol import PACKET_LOG, PACKET_LOG_SCHEMA, SERIAL_CONFIG_SCHEMA from .protocol.const import ( SZ_ACTUATORS, SZ_DEVICES, SZ_INBOUND, SZ_NAME, SZ_OUTBOUND, SZ_SENSOR, SZ_ZONE_TYPE, SZ_ZONES, ) from .protocol.transport import DEV_HACK_REGEX, SZ_BLOCK_LIST, SZ_KNOWN_LIST DEV_MODE = __dev_mode__ and False _LOGGER = logging.getLogger(__name__) if DEV_MODE: _LOGGER.setLevel(logging.DEBUG) # schema strings SCHEMA = "schema" SZ_MAIN_CONTROLLER = "main_controller" SZ_CONTROLLER = DEV_TYPE_MAP[DEV_TYPE.CTL] SZ_TCS_SYSTEM = "system" SZ_APPLIANCE_CONTROL = DEV_ROLE_MAP[DEV_ROLE.APP] SZ_ORPHANS = "orphans" SZ_DHW_SYSTEM = "stored_hotwater" SZ_DHW_SENSOR = DEV_ROLE_MAP[DEV_ROLE.DHW] SZ_DHW_VALVE = DEV_ROLE_MAP[DEV_ROLE.HTG] SZ_HTG_VALVE = DEV_ROLE_MAP[DEV_ROLE.HT1] SZ_SENSOR_FAKED = "sensor_faked" SZ_UFH_SYSTEM = "underfloor_heating" SZ_UFH_CTL = DEV_TYPE_MAP[DEV_TYPE.UFC] # ufh_controller SZ_CIRCUITS = "circuits" DEV_REGEX_ANY = vol.Match(DEVICE_ID_REGEX.ANY) DEV_REGEX_SEN = vol.Match(DEVICE_ID_REGEX.SEN) DEV_REGEX_CTL = vol.Match(DEVICE_ID_REGEX.CTL) DEV_REGEX_DHW = vol.Match(DEVICE_ID_REGEX.DHW) DEV_REGEX_HGI = vol.Match(DEVICE_ID_REGEX.HGI) DEV_REGEX_APP = vol.Match(DEVICE_ID_REGEX.APP) DEV_REGEX_BDR = vol.Match(DEVICE_ID_REGEX.BDR) DEV_REGEX_UFC = vol.Match(DEVICE_ID_REGEX.UFC) HEAT_ZONES_STRS = tuple(ZON_ROLE_MAP[t] for t in ZON_ROLE_MAP.HEAT_ZONES) DOMAIN_ID = vol.Match(r"^[0-9A-F]{2}$") UFH_IDX_REGEX = r"^0[0-8]$" UFH_IDX = vol.Match(UFH_IDX_REGEX) ZONE_IDX = vol.Match(r"^0[0-9AB]$") # TODO: what if > 12 zones? (e.g. hometronics) INPUT_FILE = "input_file" # Config parameters DEBUG_MODE = "debug_mode" SZ_CONFIG = "config" DISABLE_DISCOVERY = "disable_discovery" DISABLE_SENDING = "disable_sending" ENABLE_EAVESDROP = "enable_eavesdrop" ENFORCE_KNOWN_LIST = f"enforce_{SZ_KNOWN_LIST}" EVOFW_FLAG = "evofw_flag" SZ_MAX_ZONES = "max_zones" REDUCE_PROCESSING = "reduce_processing" SERIAL_CONFIG = "serial_config" USE_ALIASES = "use_aliases" # use friendly device names from known_list USE_SCHEMA = "use_schema" USE_REGEX = "use_regex" def renamed(new_key): def func(value): raise vol.Invalid(f"the key name has changed: rename it to '{new_key}'") return func # 1/3: Schemas for Configuration CONFIG_SCHEMA = vol.Schema( { vol.Optional(DISABLE_DISCOVERY, default=False): bool, vol.Optional(DISABLE_SENDING, default=False): bool, vol.Optional(ENABLE_EAVESDROP, default=False): bool, vol.Optional(REDUCE_PROCESSING, default=0): vol.All( int, vol.Range(min=0, max=DONT_CREATE_MESSAGES) ), vol.Optional(SZ_MAX_ZONES, default=DEFAULT_MAX_ZONES): vol.All( int, vol.Range(min=1, max=16) ), vol.Optional(USE_SCHEMA, default=True): vol.Any(None, bool), vol.Optional(ENFORCE_KNOWN_LIST, default=None): vol.Any(None, bool), vol.Optional(USE_ALIASES, default=None): vol.Any(None, bool), vol.Optional(EVOFW_FLAG, default=None): vol.Any(None, str), vol.Optional(USE_REGEX, default={}): dict, }, extra=vol.ALLOW_EXTRA, # TODO: remove for production ) SCHEMA_DEV = vol.Any( { vol.Optional(SZ_ALIAS, default=None): vol.Any(None, str), vol.Optional(SZ_CLASS, default=None): vol.Any( None, *(DEV_TYPE_MAP[s] for s in DEV_TYPE_MAP.slugs()) ), vol.Optional(SZ_FAKED, default=None): vol.Any(None, bool), vol.Optional("_note"): str, # only a convenience, not used }, ) _SCHEMA_DEV = vol.Schema( {vol.Optional(DEV_REGEX_ANY): SCHEMA_DEV}, extra=vol.PREVENT_EXTRA, ) # 2/3: Schemas for Heating systems SYSTEM_KLASS = (SystemType.EVOHOME, SystemType.HOMETRONICS, SystemType.SUNDIAL) SCHEMA_TCS = vol.Schema( { vol.Required(SZ_APPLIANCE_CONTROL, default=None): vol.Any(None, DEV_REGEX_APP), vol.Optional("heating_control"): renamed(SZ_APPLIANCE_CONTROL), vol.Optional(SZ_CLASS, default=SystemType.EVOHOME): vol.Any(*SYSTEM_KLASS), }, extra=vol.PREVENT_EXTRA, ) SCHEMA_DHW = vol.Schema( { vol.Optional(SZ_SENSOR, default=None): vol.Any(None, DEV_REGEX_DHW), vol.Optional(SZ_DHW_VALVE, default=None): vol.Any(None, DEV_REGEX_BDR), vol.Optional(SZ_HTG_VALVE, default=None): vol.Any(None, DEV_REGEX_BDR), vol.Optional(SZ_DHW_SENSOR): renamed(SZ_SENSOR), } ) UFC_CIRCUIT = vol.Schema( { vol.Required(UFH_IDX): vol.Any( {vol.Optional(SZ_ZONE_IDX): vol.Any(ZONE_IDX)}, ), } ) SCHEMA_UFH = vol.Schema( { vol.Required(DEV_REGEX_UFC): vol.Any( None, {vol.Optional(SZ_CIRCUITS): vol.Any(None, dict)} ) } ) SCHEMA_UFH = vol.All(SCHEMA_UFH, vol.Length(min=1, max=3)) SCHEMA_ZON = vol.Schema( # vol.All([DEV_REGEX_ANY], vol.Length(min=0))(['01:123456']) { vol.Optional(SZ_CLASS, default=None): vol.Any(None, *HEAT_ZONES_STRS), vol.Optional(SZ_SENSOR, default=None): vol.Any(None, DEV_REGEX_SEN), vol.Optional(SZ_DEVICES): renamed(SZ_ACTUATORS), vol.Optional(SZ_ACTUATORS, default=[]): vol.All( [DEV_REGEX_ANY], vol.Length(min=0) ), vol.Optional(SZ_ZONE_TYPE): renamed(SZ_CLASS), vol.Optional("zone_sensor"): renamed(SZ_SENSOR), # vol.Optional(SZ_SENSOR_FAKED): bool, vol.Optional(f"_{SZ_NAME}"): vol.Any(str, None), }, extra=vol.PREVENT_EXTRA, ) # SCHEMA_ZON({SZ_CLASS: None, SZ_DEVICES: None}) # TODO: remove me SCHEMA_ZONES = vol.All( vol.Schema({vol.Required(ZONE_IDX): SCHEMA_ZON}), vol.Length(min=1, max=DEFAULT_MAX_ZONES), ) SCHEMA_SYS = vol.Schema( { # vol.Required(SZ_CONTROLLER): DEV_REGEX_CTL, vol.Optional(SZ_TCS_SYSTEM, default={}): vol.Any({}, SCHEMA_TCS), vol.Optional(SZ_DHW_SYSTEM, default={}): vol.Any({}, SCHEMA_DHW), vol.Optional(SZ_UFH_SYSTEM, default={}): vol.Any({}, SCHEMA_UFH), vol.Optional(SZ_ORPHANS, default=[]): vol.Any([], [DEV_REGEX_ANY]), vol.Optional(SZ_ZONES, default={}): vol.Any({}, SCHEMA_ZONES), }, extra=vol.PREVENT_EXTRA, ) # 3/3: Global Schemas SCHEMA_GLOBAL_CONFIG = vol.Schema( { vol.Required(SZ_CONFIG): CONFIG_SCHEMA.extend( { vol.Optional(SERIAL_CONFIG): SERIAL_CONFIG_SCHEMA, vol.Optional(PACKET_LOG, default={}): vol.Any({}, PACKET_LOG_SCHEMA), } ), vol.Optional(SZ_KNOWN_LIST, default={}): vol.All( _SCHEMA_DEV, vol.Length(min=0) ), vol.Optional(SZ_BLOCK_LIST, default={}): vol.All( _SCHEMA_DEV, vol.Length(min=0) ), }, extra=vol.REMOVE_EXTRA, ) def load_config( serial_port, input_file, **kwargs ) -> tuple[SimpleNamespace, dict, dict, dict]: """Process the configuration, including any filter lists. Returns: - config (includes config.enforce_known_list) - schema (processed further later on) - known_list (is a dict) - block_list (is a dict) """ config = SCHEMA_GLOBAL_CONFIG(kwargs) schema = {k: v for k, v in kwargs.items() if k not in config and k[:1] != "_"} block_list = config.pop(SZ_BLOCK_LIST) known_list = config.pop(SZ_KNOWN_LIST) config = CONFIG_SCHEMA.extend( {vol.Optional(SERIAL_CONFIG, default={}): SERIAL_CONFIG_SCHEMA} )(config[SZ_CONFIG]) if serial_port and input_file: _LOGGER.warning( "Serial port was specified (%s), so input file (%s) will be ignored", serial_port, input_file, ) elif serial_port is None: config[DISABLE_SENDING] = True if config[DISABLE_SENDING]: config[DISABLE_DISCOVERY] = True if config[ENABLE_EAVESDROP]: _LOGGER.warning( f"{ENABLE_EAVESDROP} enabled: this is discouraged for routine use" " (there be dragons here)" ) update_config(config, known_list, block_list) config = SimpleNamespace(**config) return (config, schema, known_list, block_list) def update_config(config, known_list, block_list) -> dict: """Determine which device filter to use, if any: known_list or block_list.""" if SZ_INBOUND not in config[USE_REGEX]: # TODO: move to voluptuous config[USE_REGEX][SZ_INBOUND] = {} if SZ_OUTBOUND not in config[USE_REGEX]: config[USE_REGEX][SZ_OUTBOUND] = {} if DEV_HACK_REGEX: # HACK: for DEV/TEST convenience, not for production config[USE_REGEX][SZ_INBOUND].update( { "( 03:.* 03:.* (1060|2389|30C9) 003) ..": "\\1 00", # "02:153425": "20:153425", } ) if config[ENFORCE_KNOWN_LIST] and not known_list: _LOGGER.warning( f"An empty {SZ_KNOWN_LIST} was provided, so it cant be used " f"as a whitelist (device_id filter)" ) config[ENFORCE_KNOWN_LIST] = False if config[ENFORCE_KNOWN_LIST]: _LOGGER.info( f"The {SZ_KNOWN_LIST} will be used " f"as a whitelist (device_id filter), length = {len(known_list)}" ) _LOGGER.debug(f"known_list = {known_list}") elif block_list: _LOGGER.info( f"The {SZ_BLOCK_LIST} will be used " f"as a blacklist (device_id filter), length = {len(block_list)}" ) _LOGGER.debug(f"block_list = {block_list}") elif known_list: _LOGGER.warning( f"It is strongly recommended to use the {SZ_KNOWN_LIST} " f"as a whitelist (device_id filter), configure: {ENFORCE_KNOWN_LIST} = True" ) _LOGGER.debug(f"known_list = {known_list}") else: _LOGGER.warning( f"It is strongly recommended to provide a {SZ_KNOWN_LIST}, and use it " f"as a whitelist (device_id filter), configure: {ENFORCE_KNOWN_LIST} = True" ) def _get_device(gwy, dev_id, **kwargs) -> Any: # Device """Raise an LookupError if a device_id is filtered out by a list. The underlying method is wrapped only to provide a better error message. """ def check_filter_lists(dev_id: str) -> None: """Raise an LookupError if a device_id is filtered out by a list.""" err_msg = None if gwy.config.enforce_known_list and dev_id not in gwy._include: err_msg = f"it is in the {SCHEMA}, but not in the {SZ_KNOWN_LIST}" if dev_id in gwy._exclude: err_msg = f"it is in the {SCHEMA}, but also in the {SZ_BLOCK_LIST}" if err_msg: raise LookupError( f"Can't create {dev_id}: {err_msg} (check the lists and the {SCHEMA})" ) check_filter_lists(dev_id) return gwy.get_device(dev_id, **kwargs) def load_schema(gwy, **kwargs) -> dict: """Process the schema, and the configuration and return True if it is valid.""" [ load_system(gwy, ctl_id, schema) for ctl_id, schema in kwargs.items() if re.match(DEVICE_ID_REGEX.ANY, ctl_id) ] if kwargs.get(SZ_MAIN_CONTROLLER): gwy._tcs = gwy.system_by_id.get(kwargs[SZ_MAIN_CONTROLLER]) [ _get_device(gwy, device_id, disable_warning=True) for device_id in kwargs.pop(SZ_ORPHANS, []) ] def load_system(gwy, ctl_id, schema) -> Any: # System """Create a system using its schema.""" # print(schema) # schema = SCHEMA_ZON(schema) ctl = _get_device(gwy, ctl_id) ctl.tcs._update_schema(**schema) # TODO for dev_id in schema.get(SZ_UFH_SYSTEM, {}).keys(): # UFH controllers _get_device(gwy, dev_id, parent=ctl) # , **_schema) for dev_id in schema.get(SZ_ORPHANS, []): _get_device(gwy, dev_id, parent=ctl) if False and DEV_MODE: import json src = json.dumps(shrink(schema), sort_keys=True) dst = json.dumps(shrink(gwy.system_by_id[ctl.id].schema), sort_keys=True) # assert dst == src, "They don't match!" print(src) print(dst) return ctl.tcs
StarcoderdataPython
77913
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # --------------------------------------------------------------------------------------- # Connect to MongoDB and return the client - # --------------------------------------------------------------------------------------- import pymongo, logging, config, time from logging.config import fileConfig class Mongodb: client = "" def __init__(self) -> None: # set up logging fileConfig(config.env.LOGGING_CONFIG_FILE) def connect(self, DB_URI): logging.info("Connecting to DB...") while(True): try: self.client = pymongo.MongoClient(DB_URI) db = self.client.binance status = db.command("serverStatus") logging.info("Running MongoDB version {}".format(status.get('version'))) return self.client except Exception as error: logging.error(error) time.sleep(1) def close(self): self.client.close()
StarcoderdataPython
1707494
# Copyright 2021 <NAME> (KRR-Oxford). All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import datetime import time # subclass of logging.Formatter class RuntimeFormatter(logging.Formatter): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.start_time = time.time() def formatTime(self, record, datefmt=None): """Record relative runtime in hr:min:sec format """ duration = datetime.datetime.utcfromtimestamp(record.created - self.start_time) elapsed = duration.strftime("%H:%M:%S") return "{}".format(elapsed) def create_logger(model_name: str, saved_path: str): """Create logger for both console info and saved info """ logger = logging.getLogger(model_name) logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(f"{saved_path}/{model_name}.log") fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter and add it to the handlers formatter = RuntimeFormatter('[Time: %(asctime)s] - [PID: %(process)d] - [Model: %(name)s] \n%(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) return logger ################################################################################## ### pretty print ### ################################################################################## def banner_msg(message: str, banner_len: int = 70, sym="#"): """Print banner message: ###################################################################### ### example ### ###################################################################### """ print() print(sym * banner_len) message = sym * 3 + " " * ((banner_len - len(message)) // 2 - 3) + message message = message + " " * (banner_len - len(message) - 3) + sym * 3 print(message) print(sym * banner_len) print()
StarcoderdataPython
4815952
<gh_stars>1-10 # Generated by Django 3.2.6 on 2021-08-22 02:30 from django.db import migrations import wagtail.core.blocks import wagtail.core.fields class Migration(migrations.Migration): dependencies = [ ('committees', '0028_auto_20210809_0310'), ] operations = [ migrations.AlterField( model_name='resourcespage', name='resources', field=wagtail.core.fields.StreamField([('resource', wagtail.core.blocks.StreamBlock([('resource_name', wagtail.core.blocks.CharBlock()), ('information', wagtail.core.blocks.RichTextBlock()), ('structured_info_block', wagtail.core.blocks.StreamBlock([('heading', wagtail.core.blocks.CharBlock()), ('body', wagtail.core.blocks.RichTextBlock())]))]))]), ), ]
StarcoderdataPython
133220
<reponame>Sketos/PyAutoArray<filename>test_autoarray/unit/structures/test_arrays.py import os import numpy as np import pytest import shutil import autoarray as aa from autoarray.structures import arrays from autoarray import exc test_data_dir = "{}/../test_files/array/".format( os.path.dirname(os.path.realpath(__file__)) ) class TestArrayAPI: class TestManual: def test__array__makes_array_without_other_inputs(self): arr = aa.array.manual_2d(array=[[1.0, 2.0], [3.0, 4.0]]) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() arr = aa.array.manual_1d(array=[1.0, 2.0, 3.0, 4.0], shape_2d=(2, 2)) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape_2d=(2, 3), store_in_1d=True ) assert type(arr) == arrays.Array assert (arr == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])).all() assert (arr.in_2d == np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])).all() arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape_2d=(2, 3), store_in_1d=False ) assert type(arr) == arrays.Array assert (arr == np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])).all() assert (arr.in_2d == np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])).all() def test__array__makes_array_with_pixel_scale(self): arr = aa.array.manual_2d(array=[[1.0, 2.0], [3.0, 4.0]], pixel_scales=1.0) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0], shape_2d=(2, 2), pixel_scales=1.0, origin=(0.0, 1.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape_2d=(2, 3), pixel_scales=(2.0, 3.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])).all() assert arr.pixel_scales == (2.0, 3.0) assert arr.geometry.origin == (0.0, 0.0) def test__array__makes_with_pixel_scale_and_sub_size(self): arr = aa.array.manual_2d( array=[[1.0, 2.0], [3.0, 4.0]], pixel_scales=1.0, sub_size=1 ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 1 arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0], shape_2d=(1, 1), pixel_scales=1.0, sub_size=2, origin=(0.0, 1.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 2 arr = aa.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], shape_2d=(2, 1), pixel_scales=2.0, sub_size=2, ) assert type(arr) == arrays.Array assert ( arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert ( arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]) ).all() assert (arr.in_2d_binned == np.array([[2.5], [6.5]])).all() assert (arr.in_1d_binned == np.array([2.5, 6.5])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 class TestFull: def test__array__makes_array_without_other_inputs(self): arr = aa.array.full(fill_value=1.0, shape_2d=(2, 2)) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() arr = aa.array.full(fill_value=2.0, shape_2d=(2, 2), store_in_1d=True) assert type(arr) == arrays.Array assert (arr == np.array([2.0, 2.0, 2.0, 2.0])).all() assert (arr.in_2d == np.array([[2.0, 2.0], [2.0, 2.0]])).all() assert (arr.in_1d == np.array([2.0, 2.0, 2.0, 2.0])).all() arr = aa.array.full(fill_value=2.0, shape_2d=(2, 2), store_in_1d=False) assert type(arr) == arrays.Array assert (arr == np.array([[2.0, 2.0], [2.0, 2.0]])).all() assert (arr.in_2d == np.array([[2.0, 2.0], [2.0, 2.0]])).all() assert (arr.in_1d == np.array([2.0, 2.0, 2.0, 2.0])).all() def test__array__makes_scaled_array_with_pixel_scale(self): arr = aa.array.full(fill_value=1.0, shape_2d=(2, 2), pixel_scales=1.0) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) arr = aa.array.full( fill_value=2.0, shape_2d=(2, 2), pixel_scales=1.0, origin=(0.0, 1.0) ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[2.0, 2.0], [2.0, 2.0]])).all() assert (arr.in_1d == np.array([2.0, 2.0, 2.0, 2.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) def test__array__makes_scaled_sub_array_with_pixel_scale_and_sub_size(self): arr = aa.array.full( fill_value=1.0, shape_2d=(1, 4), pixel_scales=1.0, sub_size=1 ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0, 1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 1 arr = aa.array.full( fill_value=2.0, shape_2d=(1, 1), pixel_scales=1.0, sub_size=2, origin=(0.0, 1.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[2.0, 2.0], [2.0, 2.0]])).all() assert (arr.in_1d == np.array([2.0, 2.0, 2.0, 2.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 2 class TestOnesZeros: def test__array__makes_array_without_other_inputs(self): arr = aa.array.ones(shape_2d=(2, 2)) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() arr = aa.array.zeros(shape_2d=(2, 2), store_in_1d=True) assert type(arr) == arrays.Array assert (arr == np.array([0.0, 0.0, 0.0, 0.0])).all() assert (arr.in_2d == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_1d == np.array([0.0, 0.0, 0.0, 0.0])).all() arr = aa.array.zeros(shape_2d=(2, 2), store_in_1d=False) assert type(arr) == arrays.Array assert (arr == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_2d == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_1d == np.array([0.0, 0.0, 0.0, 0.0])).all() def test__array__makes_scaled_array_with_pixel_scale(self): arr = aa.array.ones(shape_2d=(2, 2), pixel_scales=1.0) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) arr = aa.array.zeros(shape_2d=(2, 2), pixel_scales=1.0, origin=(0.0, 1.0)) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_1d == np.array([0.0, 0.0, 0.0, 0.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) def test__array__makes_scaled_sub_array_with_pixel_scale_and_sub_size(self): arr = aa.array.ones(shape_2d=(1, 4), pixel_scales=1.0, sub_size=1) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0, 1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 1 arr = aa.array.zeros( shape_2d=(1, 1), pixel_scales=1.0, sub_size=2, origin=(0.0, 1.0) ) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_1d == np.array([0.0, 0.0, 0.0, 0.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 2 class TestFromFits: def test__array__makes_array_without_other_inputs(self): arr = aa.array.from_fits(file_path=test_data_dir + "3x3_ones.fits", hdu=0) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d == np.ones(9)).all() arr = aa.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, store_in_1d=True ) assert type(arr) == arrays.Array assert (arr == np.ones((12,))).all() assert (arr.in_2d == np.ones((4, 3))).all() assert (arr.in_1d == np.ones((12,))).all() arr = aa.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, store_in_1d=False ) assert type(arr) == arrays.Array assert (arr == np.ones((4, 3))).all() assert (arr.in_2d == np.ones((4, 3))).all() assert (arr.in_1d == np.ones((12,))).all() def test__array__makes_scaled_array_with_pixel_scale(self): arr = aa.array.from_fits( file_path=test_data_dir + "3x3_ones.fits", hdu=0, pixel_scales=1.0 ) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d == np.ones(9)).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) arr = aa.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, pixel_scales=1.0, origin=(0.0, 1.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((4, 3))).all() assert (arr.in_1d == np.ones((12,))).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) def test__array__makes_scaled_sub_array_with_pixel_scale_and_sub_size(self): arr = aa.array.from_fits( file_path=test_data_dir + "3x3_ones.fits", hdu=0, pixel_scales=1.0, sub_size=1, ) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d == np.ones(9)).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 1 arr = aa.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, pixel_scales=1.0, sub_size=1, origin=(0.0, 1.0), ) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((4, 3))).all() assert (arr.in_1d == np.ones(12)).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 1 class TestMaskedArrayAPI: class TestManual: def test__array__makes_array_with_pixel_scale(self): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0) arr = aa.masked.array.manual_2d(array=[[1.0, 2.0], [3.0, 4.0]], mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], pixel_scales=1.0, origin=(0.0, 1.0), ) arr = aa.masked.array.manual_1d(array=[1.0, 2.0, 4.0], mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [0.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], pixel_scales=1.0, origin=(0.0, 1.0), ) arr = aa.masked.array.manual_2d(array=[[1.0, 2.0], [3.0, 4.0]], mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 2.0], [0.0, 4.0]])).all() assert (arr.in_1d == np.array([1.0, 2.0, 4.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) mask = aa.mask.manual( mask_2d=[[False], [True]], pixel_scales=2.0, sub_size=2 ) arr = aa.masked.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0], mask=mask, store_in_1d=True ) assert type(arr) == arrays.Array assert (arr == np.array([1.0, 2.0, 3.0, 4.0])).all() assert ( arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (arr.in_2d_binned == np.array([[2.5], [0.0]])).all() assert (arr.in_1d_binned == np.array([2.5])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 arr = aa.masked.array.manual_1d( array=[1.0, 2.0, 3.0, 4.0], mask=mask, store_in_1d=False ) assert type(arr) == arrays.Array assert ( arr == np.array([[1.0, 2.0], [3.0, 4.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert ( arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (arr.in_2d_binned == np.array([[2.5], [0.0]])).all() assert (arr.in_1d_binned == np.array([2.5])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 def test__manual_2d__exception_raised_if_input_array_is_2d_and_not_sub_shape_of_mask( self ): with pytest.raises(exc.ArrayException): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0, sub_size=1) aa.masked.array.manual_2d(array=[[1.0], [3.0]], mask=mask) with pytest.raises(exc.ArrayException): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0, sub_size=2) aa.masked.array.manual_2d(array=[[1.0, 2.0], [3.0, 4.0]], mask=mask) with pytest.raises(exc.ArrayException): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0, sub_size=2) aa.masked.array.manual_2d( array=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], mask=mask ) def test__exception_raised_if_input_array_is_1d_and_not_number_of_masked_sub_pixels( self ): with pytest.raises(exc.ArrayException): mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], sub_size=1 ) aa.masked.array.manual_1d(array=[1.0, 2.0, 3.0, 4.0], mask=mask) with pytest.raises(exc.ArrayException): mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], sub_size=1 ) aa.masked.array.manual_1d(array=[1.0, 2.0], mask=mask) with pytest.raises(exc.ArrayException): mask = aa.mask.manual(mask_2d=[[False, True], [True, True]], sub_size=2) aa.masked.array.manual_1d(array=[1.0, 2.0, 4.0], mask=mask) with pytest.raises(exc.ArrayException): mask = aa.mask.manual(mask_2d=[[False, True], [True, True]], sub_size=2) aa.masked.array.manual_1d(array=[1.0, 2.0, 3.0, 4.0, 5.0], mask=mask) class TestFull: def test__makes_array_using_mask(self): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0) arr = aa.masked.array.full(fill_value=1.0, mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], pixel_scales=1.0, origin=(0.0, 1.0), ) arr = aa.masked.array.full(fill_value=2.0, mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[2.0, 2.0], [0.0, 2.0]])).all() assert (arr.in_1d == np.array([2.0, 2.0, 2.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) mask = aa.mask.manual( mask_2d=[[False], [True]], pixel_scales=2.0, sub_size=2 ) arr = aa.masked.array.full(fill_value=3.0, mask=mask, store_in_1d=True) assert type(arr) == arrays.Array assert (arr == np.array([3.0, 3.0, 3.0, 3.0])).all() assert ( arr.in_2d == np.array([[3.0, 3.0], [3.0, 3.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([3.0, 3.0, 3.0, 3.0])).all() assert (arr.in_2d_binned == np.array([[3.0], [0.0]])).all() assert (arr.in_1d_binned == np.array([3.0])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 arr = aa.masked.array.full(fill_value=3.0, mask=mask, store_in_1d=False) assert type(arr) == arrays.Array assert ( arr == np.array([[3.0, 3.0], [3.0, 3.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert ( arr.in_2d == np.array([[3.0, 3.0], [3.0, 3.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([3.0, 3.0, 3.0, 3.0])).all() assert (arr.in_2d_binned == np.array([[3.0], [0.0]])).all() assert (arr.in_1d_binned == np.array([3.0])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 class TestOnesZeros: def test__makes_array_using_mask(self): mask = aa.mask.unmasked(shape_2d=(2, 2), pixel_scales=1.0) arr = aa.masked.array.ones(mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) mask = aa.mask.manual( mask_2d=[[False, False], [True, False]], pixel_scales=1.0, origin=(0.0, 1.0), ) arr = aa.masked.array.zeros(mask=mask) assert type(arr) == arrays.Array assert (arr.in_2d == np.array([[0.0, 0.0], [0.0, 0.0]])).all() assert (arr.in_1d == np.array([0.0, 0.0, 0.0])).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) mask = aa.mask.manual( mask_2d=[[False], [True]], pixel_scales=2.0, sub_size=2 ) arr = aa.masked.array.ones(mask=mask, store_in_1d=True) assert type(arr) == arrays.Array assert (arr == np.array([1.0, 1.0, 1.0, 1.0])).all() assert ( arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert (arr.in_2d_binned == np.array([[1.0], [0.0]])).all() assert (arr.in_1d_binned == np.array([1.0])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 arr = aa.masked.array.ones(mask=mask, store_in_1d=False) assert type(arr) == arrays.Array assert ( arr == np.array([[1.0, 1.0], [1.0, 1.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert ( arr.in_2d == np.array([[1.0, 1.0], [1.0, 1.0], [0.0, 0.0], [0.0, 0.0]]) ).all() assert (arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0])).all() assert (arr.in_2d_binned == np.array([[1.0], [0.0]])).all() assert (arr.in_1d_binned == np.array([1.0])).all() assert arr.pixel_scales == (2.0, 2.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 2 class TestFromFits: def test__array_from_fits_uses_mask(self): mask = aa.mask.unmasked(shape_2d=(3, 3), pixel_scales=1.0) arr = aa.masked.array.from_fits( file_path=test_data_dir + "3x3_ones.fits", hdu=0, mask=mask ) assert type(arr) == arrays.Array assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d == np.ones(9)).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 0.0) assert arr.mask.sub_size == 1 mask = aa.mask.manual( [ [False, False, False], [False, False, False], [True, False, True], [False, False, False], ], pixel_scales=1.0, origin=(0.0, 1.0), ) arr = aa.masked.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, mask=mask, store_in_1d=True, ) assert type(arr) == arrays.Array assert ( arr == np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) ).all() assert ( arr.in_2d == np.array( [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0]] ) ).all() assert ( arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) ).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 1 arr = aa.masked.array.from_fits( file_path=test_data_dir + "4x3_ones.fits", hdu=0, mask=mask, store_in_1d=False, ) assert type(arr) == arrays.Array assert ( arr == np.array( [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0]] ) ).all() assert ( arr.in_2d == np.array( [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0]] ) ).all() assert ( arr.in_1d == np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) ).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.origin == (0.0, 1.0) assert arr.mask.sub_size == 1 class TestArray: class TestConstructorMethods: def test__constructor_class_method_in_2d__store_in_1d(self): arr = arrays.Array.manual_2d( array=np.ones((3, 3)), sub_size=1, pixel_scales=(1.0, 1.0), store_in_1d=True, ) assert (arr == np.ones((9,))).all() assert (arr.in_1d == np.ones((9,))).all() assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d_binned == np.ones((9,))).all() assert (arr.in_2d_binned == np.ones((3, 3))).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((3.0, 3.0)) assert arr.geometry.scaled_maxima == (1.5, 1.5) assert arr.geometry.scaled_minima == (-1.5, -1.5) arr = arrays.Array.manual_2d( array=np.ones((4, 4)), sub_size=2, pixel_scales=(0.1, 0.1), store_in_1d=True, ) assert (arr == np.ones((16,))).all() assert (arr.in_1d == np.ones((16,))).all() assert (arr.in_2d == np.ones((4, 4))).all() assert (arr.in_1d_binned == np.ones((4,))).all() assert (arr.in_2d_binned == np.ones((2, 2))).all() assert arr.pixel_scales == (0.1, 0.1) assert arr.geometry.central_pixel_coordinates == (0.5, 0.5) assert arr.geometry.shape_2d_scaled == pytest.approx((0.2, 0.2)) assert arr.geometry.scaled_maxima == pytest.approx((0.1, 0.1), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-0.1, -0.1), 1e-4) arr = arrays.Array.manual_2d( array=np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]), pixel_scales=(0.1, 0.1), sub_size=2, origin=(1.0, 1.0), store_in_1d=True, ) assert (arr == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])).all() assert arr.shape_2d == (2, 1) assert arr.sub_shape_2d == (4, 2) assert ( arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]) ).all() assert ( arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert arr.in_2d_binned.shape == (2, 1) assert (arr.in_1d_binned == np.array([2.5, 6.5])).all() assert (arr.in_2d_binned == np.array([[2.5], [6.5]])).all() assert arr.pixel_scales == (0.1, 0.1) assert arr.geometry.central_pixel_coordinates == (0.5, 0.0) assert arr.geometry.shape_2d_scaled == pytest.approx((0.2, 0.1)) assert arr.geometry.scaled_maxima == pytest.approx((1.1, 1.05), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((0.9, 0.95), 1e-4) arr = arrays.Array.manual_2d( array=np.ones((3, 3)), pixel_scales=(2.0, 1.0), sub_size=1, origin=(-1.0, -2.0), store_in_1d=True, ) assert arr == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_1d == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_2d == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.pixel_scales == (2.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((6.0, 3.0)) assert arr.geometry.origin == (-1.0, -2.0) assert arr.geometry.scaled_maxima == pytest.approx((2.0, -0.5), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-4.0, -3.5), 1e-4) def test__constructor_class_method_in_1d__store_in_1d(self): arr = arrays.Array.manual_1d( array=np.ones((9,)), shape_2d=(3, 3), pixel_scales=(2.0, 1.0), sub_size=1, origin=(-1.0, -2.0), store_in_1d=True, ) assert arr == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_1d == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_2d == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.pixel_scales == (2.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((6.0, 3.0)) assert arr.geometry.origin == (-1.0, -2.0) assert arr.geometry.scaled_maxima == pytest.approx((2.0, -0.5), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-4.0, -3.5), 1e-4) def test__constructor_class_method_in_2d__store_in_2d(self): arr = arrays.Array.manual_2d( array=np.ones((3, 3)), sub_size=1, pixel_scales=(1.0, 1.0), store_in_1d=False, ) assert (arr == np.ones((3, 3))).all() assert (arr.in_1d == np.ones((9,))).all() assert (arr.in_2d == np.ones((3, 3))).all() assert (arr.in_1d_binned == np.ones((9,))).all() assert (arr.in_2d_binned == np.ones((3, 3))).all() assert arr.pixel_scales == (1.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((3.0, 3.0)) assert arr.geometry.scaled_maxima == (1.5, 1.5) assert arr.geometry.scaled_minima == (-1.5, -1.5) arr = arrays.Array.manual_2d( array=np.ones((4, 4)), sub_size=2, pixel_scales=(0.1, 0.1), store_in_1d=False, ) assert (arr == np.ones((4, 4))).all() assert (arr.in_1d == np.ones((16,))).all() assert (arr.in_2d == np.ones((4, 4))).all() assert (arr.in_1d_binned == np.ones((4,))).all() assert (arr.in_2d_binned == np.ones((2, 2))).all() assert arr.pixel_scales == (0.1, 0.1) assert arr.geometry.central_pixel_coordinates == (0.5, 0.5) assert arr.geometry.shape_2d_scaled == pytest.approx((0.2, 0.2)) assert arr.geometry.scaled_maxima == pytest.approx((0.1, 0.1), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-0.1, -0.1), 1e-4) arr = arrays.Array.manual_2d( array=np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]), pixel_scales=(0.1, 0.1), sub_size=2, origin=(1.0, 1.0), store_in_1d=False, ) assert ( arr == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert arr.shape_2d == (2, 1) assert arr.sub_shape_2d == (4, 2) assert ( arr.in_1d == np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]) ).all() assert ( arr.in_2d == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert arr.in_2d_binned.shape == (2, 1) assert (arr.in_1d_binned == np.array([2.5, 6.5])).all() assert (arr.in_2d_binned == np.array([[2.5], [6.5]])).all() assert arr.pixel_scales == (0.1, 0.1) assert arr.geometry.central_pixel_coordinates == (0.5, 0.0) assert arr.geometry.shape_2d_scaled == pytest.approx((0.2, 0.1)) assert arr.geometry.scaled_maxima == pytest.approx((1.1, 1.05), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((0.9, 0.95), 1e-4) arr = arrays.Array.manual_2d( array=np.ones((3, 3)), pixel_scales=(2.0, 1.0), sub_size=1, origin=(-1.0, -2.0), store_in_1d=False, ) assert arr == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.in_1d == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_2d == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.pixel_scales == (2.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((6.0, 3.0)) assert arr.geometry.origin == (-1.0, -2.0) assert arr.geometry.scaled_maxima == pytest.approx((2.0, -0.5), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-4.0, -3.5), 1e-4) def test__constructor_class_method_in_1d__store_in_2d(self): arr = arrays.Array.manual_1d( array=np.ones((9,)), shape_2d=(3, 3), pixel_scales=(2.0, 1.0), sub_size=1, origin=(-1.0, -2.0), store_in_1d=False, ) assert arr == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.in_1d == pytest.approx(np.ones((9,)), 1e-4) assert arr.in_2d == pytest.approx(np.ones((3, 3)), 1e-4) assert arr.pixel_scales == (2.0, 1.0) assert arr.geometry.central_pixel_coordinates == (1.0, 1.0) assert arr.geometry.shape_2d_scaled == pytest.approx((6.0, 3.0)) assert arr.geometry.origin == (-1.0, -2.0) assert arr.geometry.scaled_maxima == pytest.approx((2.0, -0.5), 1e-4) assert arr.geometry.scaled_minima == pytest.approx((-4.0, -3.5), 1e-4) class TestNewArrays: def test__pad__compare_to_array_util(self): array_2d = np.ones((5, 5)) array_2d[2, 2] = 2.0 arr = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(1.0, 1.0) ) arr = arr.resized_from_new_shape(new_shape=(7, 7)) arr_resized_manual = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 2.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] ) assert type(arr) == arrays.Array assert (arr.in_2d == arr_resized_manual).all() assert arr.mask.pixel_scales == (1.0, 1.0) def test__trim__compare_to_array_util(self): array_2d = np.ones((5, 5)) array_2d[2, 2] = 2.0 arr = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(1.0, 1.0) ) arr = arr.resized_from_new_shape(new_shape=(3, 3)) arr_resized_manual = np.array( [[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]] ) assert type(arr) == arrays.Array assert (arr.in_2d == arr_resized_manual).all() assert arr.mask.pixel_scales == (1.0, 1.0) def test__kernel_trim__trim_edges_where_extra_psf_blurring_is_performed(self): array_2d = np.ones((5, 5)) array_2d[2, 2] = 2.0 arr = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(1.0, 1.0) ) new_arr = arr.trimmed_from_kernel_shape(kernel_shape_2d=(3, 3)) assert type(new_arr) == arrays.Array assert ( new_arr.in_2d == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() assert new_arr.mask.pixel_scales == (1.0, 1.0) new_arr = arr.trimmed_from_kernel_shape(kernel_shape_2d=(5, 5)) assert type(new_arr) == arrays.Array assert (new_arr.in_2d == np.array([[2.0]])).all() assert new_arr.mask.pixel_scales == (1.0, 1.0) array_2d = np.ones((9, 9)) array_2d[4, 4] = 2.0 arr = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(1.0, 1.0) ) new_arr = arr.trimmed_from_kernel_shape(kernel_shape_2d=(7, 7)) assert type(new_arr) == arrays.Array assert ( new_arr.in_2d == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() assert new_arr.mask.pixel_scales == (1.0, 1.0) def test__zoomed__2d_array_zoomed__uses_the_limits_of_the_mask(self): array_2d = np.array( [ [1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0], ] ) mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, True], [True, False, False, True], [True, False, False, True], [True, True, True, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=0) assert (arr_zoomed.in_2d == np.array([[6.0, 7.0], [10.0, 11.0]])).all() mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, True], [True, False, False, False], [True, False, False, False], [True, True, True, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=0) assert ( arr_zoomed.in_2d == np.array([[6.0, 7.0, 8.0], [10.0, 11.0, 12.0]]) ).all() mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, True], [True, False, False, True], [True, False, False, True], [True, False, False, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=0) assert ( arr_zoomed.in_2d == np.array([[6.0, 7.0], [10.0, 11.0], [14.0, 15.0]]) ).all() mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, True], [True, False, False, True], [False, False, False, True], [True, True, True, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=0) assert ( arr_zoomed.in_2d == np.array([[0.0, 6.0, 7.0], [9.0, 10.0, 11.0]]) ).all() mask = aa.mask.manual( mask_2d=np.array( [ [True, False, True, True], [True, False, False, True], [True, False, False, True], [True, True, True, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=0) assert ( arr_zoomed.in_2d == np.array([[2.0, 0.0], [6.0, 7.0], [10.0, 11.0]]) ).all() mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, True], [True, False, False, True], [True, False, False, True], [True, True, True, True], ] ), pixel_scales=(1.0, 1.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) arr_zoomed = arr_masked.zoomed_around_mask(buffer=1) assert ( arr_zoomed.in_2d == np.array( [ [0.0, 0.0, 0.0, 0.0], [0.0, 6.0, 7.0, 0.0], [0.0, 10.0, 11.0, 0.0], [0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__zoomed__array_extent__uses_the_limits_of_the_unzoomed_mask(self): array_2d = np.array( [ [1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0], [13.0, 14.0, 15.0, 16.0], ] ) mask = aa.mask.manual( mask_2d=np.array( [ [True, True, True, False], [True, False, False, True], [True, False, False, True], [True, True, True, True], ] ), pixel_scales=(1.0, 2.0), sub_size=1, ) arr_masked = aa.masked.array.manual_2d(array=array_2d, mask=mask) extent = arr_masked.extent_of_zoomed_array(buffer=1) assert extent == pytest.approx(np.array([-4.0, 6.0, -2.0, 3.0]), 1.0e-4) def test__binned_up__compare_all_extract_methods_to_array_util(self): array_2d = np.array( [ [1.0, 6.0, 3.0, 7.0, 3.0, 2.0], [2.0, 5.0, 3.0, 7.0, 7.0, 7.0], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], ] ) arr = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(0.1, 0.1) ) arr_binned_util = aa.util.binning.bin_array_2d_via_mean( array_2d=array_2d, bin_up_factor=4 ) arr_binned = arr.binned_from_bin_up_factor(bin_up_factor=4, method="mean") assert (arr_binned.in_2d == arr_binned_util).all() assert arr_binned.pixel_scales == (0.4, 0.4) arr_binned_util = aa.util.binning.bin_array_2d_via_quadrature( array_2d=array_2d, bin_up_factor=4 ) arr_binned = arr.binned_from_bin_up_factor( bin_up_factor=4, method="quadrature" ) assert (arr_binned.in_2d == arr_binned_util).all() assert arr_binned.pixel_scales == (0.4, 0.4) arr_binned_util = aa.util.binning.bin_array_2d_via_sum( array_2d=array_2d, bin_up_factor=4 ) arr_binned = arr.binned_from_bin_up_factor(bin_up_factor=4, method="sum") assert (arr_binned.in_2d == arr_binned_util).all() assert arr_binned.pixel_scales == (0.4, 0.4) def test__binned_up__invalid_method__raises_exception(self): array_2d = np.array( [ [1.0, 6.0, 3.0, 7.0, 3.0, 2.0], [2.0, 5.0, 3.0, 7.0, 7.0, 7.0], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], ] ) array_2d = arrays.Array.manual_2d( array=array_2d, sub_size=1, pixel_scales=(0.1, 0.1) ) with pytest.raises(exc.ArrayException): array_2d.binned_from_bin_up_factor(bin_up_factor=4, method="wrong") class TestOutputToFits: def test__output_to_fits(self): arr = aa.array.from_fits(file_path=test_data_dir + "3x3_ones.fits", hdu=0) output_data_dir = "{}/../test_files/array/output_test/".format( os.path.dirname(os.path.realpath(__file__)) ) if os.path.exists(output_data_dir): shutil.rmtree(output_data_dir) os.makedirs(output_data_dir) arr.output_to_fits(file_path=output_data_dir + "array.fits") array_from_out = aa.array.from_fits( file_path=output_data_dir + "array.fits", hdu=0 ) assert (array_from_out.in_2d == np.ones((3, 3))).all() def test__output_to_fits__shapes_of_arrays_are_2d(self): arr = aa.array.from_fits(file_path=test_data_dir + "3x3_ones.fits", hdu=0) output_data_dir = "{}/../test_files/array/output_test/".format( os.path.dirname(os.path.realpath(__file__)) ) if os.path.exists(output_data_dir): shutil.rmtree(output_data_dir) os.makedirs(output_data_dir) arr.output_to_fits(file_path=output_data_dir + "array.fits") array_from_out = aa.util.array.numpy_array_2d_from_fits( file_path=output_data_dir + "array.fits", hdu=0 ) assert (array_from_out == np.ones((3, 3))).all() mask = aa.mask.unmasked(shape_2d=(3, 3), pixel_scales=0.1) masked_array = aa.masked.array(array=arr, mask=mask) masked_array.output_to_fits(file_path=output_data_dir + "masked_array.fits") masked_array_from_out = aa.util.array.numpy_array_2d_from_fits( file_path=output_data_dir + "masked_array.fits", hdu=0 ) assert (masked_array_from_out == np.ones((3, 3))).all()
StarcoderdataPython
1724039
# Copyright 2019-2021 Swiss National Supercomputing Centre (CSCS/ETH Zurich) # HPCTools Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: BSD-3-Clause import os import sys import reframe as rfm import reframe.utility.sanity as sn sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../common'))) # noqa: E402 import sphexa.hooks as hooks # {{{ class SphExa_STAT_Check @rfm.simple_test class SphExa_STAT_Check(rfm.RegressionTest, hooks.setup_pe, hooks.setup_code): # {{{ ''' This class runs the test code with Cray stat ''' # }}} steps = parameter([2]) # will hang rank0 at step0 compute_node = parameter([1]) np_per_c = parameter([1e3]) debug_flags = variable(bool, value=True) def __init__(self): # {{{ pe self.descr = 'Tool validation' self.valid_prog_environs = [ 'PrgEnv-gnu', 'cpeGNU' ] self.valid_systems = [ 'dom:mc', 'dom:gpu', 'daint:mc', 'daint:gpu', 'eiger:mc', 'pilatus:mc' ] self.tool = 'stat-cl' self.modules = ['cray-stat', 'cray-cti'] self.maintainers = ['JG'] self.tags = {'sph', 'hpctools', 'cpu', 'craype', 'debugging'} # }}} # {{{ compile self.testname = 'sedov' self.executable = 'mpi+omp' # re_ver_1 = 'STAT_VERSION1=$' # re_ver_2 = 'STAT_VERSION2=$' version_rpt = 'version.rpt' which_rpt = 'which.rpt' cs = self.current_system.name if cs not in {'pilatus', 'eiger'}: self.prebuild_cmds += [ # --- chech tool version f'echo STAT_VERSION1=$STAT_VERSION > {version_rpt}', f'echo STAT_VERSION2=`STATbin --version` >> {version_rpt}', ] else: self.prebuild_cmds += [ # --- chech tool version f'echo STAT_VERSION1=$STAT_LEVEL > {version_rpt}', f'echo STAT_VERSION2=`STATbin --version` >> {version_rpt}', ] self.prebuild_cmds += [ f'STATbin -V >> {version_rpt}', f'which {self.tool} > {which_rpt}', ] # {{{ run self.time_limit = '10m' # }}} # {{{ sanity # TODO: regex = ( # r'function="(?P<fun>.*)", source="(?P<filename>.*)",' # r' line=":(?P<ll>\d+)"' # ) # + cuda # + largescale self.sanity_patterns = sn.all([ # check the job output: sn.assert_found(r'Starting main loop', self.stdout), # check the tool output: sn.assert_not_found('not found', which_rpt), sn.assert_not_found('ERROR', self.stdout), # <LMON FE API> (ERROR): read_lmonp_msgheader failed while # attempting to receive continue launch message from back end sn.assert_found(r'STAT started', self.stdout), sn.assert_found(r'Attaching to job launcher', self.stdout), sn.assert_found(r'launching tool daemons', self.stdout), sn.assert_found(r'Results written to', self.stdout), ]) # }}} # {{{ performance # see common/sphexa/hooks.py # }}} # {{{ hooks # {{{ set_hang @run_before('compile') def set_hang(self): source_file = 'include/sph/totalEnergy.hpp' die = '60' sed_header = (r'"s@USE_MPI@USE_MPI\n#include <thread>@"') sed_hang = ( r'"/MPI_Allreduce(MPI_IN_PLACE, &einttmp, 1, MPI_DOUBLE, MPI_SUM, ' r'MPI_COMM_WORLD);/a' r'int mpirank; MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);' r'if (mpirank == 0 && d.iteration == 0) ' r'{std::this_thread::sleep_for(std::chrono::seconds('f'{die}));' r'}"' ) self.prebuild_cmds += [ f'# --- make the code hang:', f'sed -i {sed_header} {source_file}', f'sed -i {sed_hang} {source_file}', ] # }}} # {{{ set_tool @run_before('run') def set_tool(self): self.executable_opts += ['& #'] # FIXME: will default to: '& # -n 50 -s 2' ssh_cmd = 'ssh -o "StrictHostKeyChecking no"' self.postrun_cmds = [ # slurm only 'nid=`SQUEUE_FORMAT=%.9B squeue --noheader -j $SLURM_JOBID`', f'pidsrun=`{ssh_cmd} $nid "ps -hxo pid,cmd |grep -m1 srun" `', 'pid=${pidsrun% srun*}', 'echo "# nid=$nid pid=$pid"', 'sleep 1', f'tool=`which {self.tool}`', 'echo "tool=$tool"', f'{ssh_cmd} $nid "cd {self.stagedir} ;' f'$tool -i -j $SLURM_JOBID $pid"', 'wait', 'echo done' ] # }}} # }}} # }}}
StarcoderdataPython
3363129
<reponame>Rayckey/motion_imitation<gh_stars>1-10 # coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from envs import locomotion_gym_env from envs import locomotion_gym_config from envs.env_wrappers import imitation_wrapper_env from envs.env_wrappers import observation_dictionary_to_array_wrapper from envs.env_wrappers import trajectory_generator_wrapper_env from envs.env_wrappers import simple_openloop from envs.env_wrappers import simple_TG_group from envs.env_wrappers import imitation_task from envs.sensors import environment_sensors from envs.sensors import sensor_wrappers from envs.sensors import robot_sensors from envs.utilities import controllable_env_randomizer_from_config from robots import laikago import numpy as np def build_imitation_env(motion_files, num_parallel_envs, mode, enable_randomizer, enable_rendering, action_lim = 0.2, hist = 3, curr_steps = 30000000, path = 0): assert len(motion_files) > 0 curriculum_episode_length_start = 20 curriculum_episode_length_end = 600 sim_params = locomotion_gym_config.SimulationParameters() sim_params.enable_rendering = enable_rendering gym_config = locomotion_gym_config.LocomotionGymConfig(simulation_parameters=sim_params) robot_class = laikago.Laikago # sensors = [ # sensor_wrappers.HistoricSensorWrapper( # wrapped_sensor=robot_sensors.MotorAngleSensor(num_motors=laikago.NUM_MOTORS), num_history=3), # sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.IMUSensor(), num_history=3), # sensor_wrappers.HistoricSensorWrapper( # wrapped_sensor=environment_sensors.LastActionSensor(num_actions=laikago.NUM_MOTORS), num_history=3) # ] sensors = [ sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.BasePositionSensor(), num_history=hist), sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.IMUSensor(['Y', 'R', 'dR', 'P', 'dP']), num_history=hist), sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.MotorAngleSensor(num_motors=laikago.NUM_MOTORS), num_history=hist), sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=environment_sensors.LastActionSensor(num_actions=laikago.NUM_MOTORS), num_history=hist) ] # Look at this, this is the TG now trajectory_generator = simple_TG_group.SimpleTGGroup( action_limit=action_lim, init_lg_param=None, is_touting=2, init_f_tg=2) init_lg_param = trajectory_generator.init_lg_param # print(" initial tg parameters is this") # print(init_lg_param) init_lg_param = np.concatenate([np.zeros([12]), init_lg_param[1:]]) tg_init_position = trajectory_generator.get_action(current_time=0, input_action=init_lg_param) task = imitation_task.ImitationTask(ref_motion_filenames=motion_files, enable_cycle_sync=True, tar_frame_steps=[1, 2, 10, 30], ref_state_init_prob=0.9, warmup_time=0.25,tg_init_position=tg_init_position, path = path) randomizers = [] if enable_randomizer: randomizer = controllable_env_randomizer_from_config.ControllableEnvRandomizerFromConfig(verbose=False) randomizers.append(randomizer) env = locomotion_gym_env.LocomotionGymEnv(gym_config=gym_config, robot_class=robot_class, env_randomizers=randomizers, robot_sensors=sensors, task=task) env = observation_dictionary_to_array_wrapper.ObservationDictionaryToArrayWrapper(env) env = trajectory_generator_wrapper_env.TrajectoryGeneratorWrapperEnv(env, trajectory_generator=trajectory_generator) if mode == "test": curriculum_episode_length_start = curriculum_episode_length_end env = imitation_wrapper_env.ImitationWrapperEnv(env, episode_length_start=curriculum_episode_length_start, episode_length_end=curriculum_episode_length_end, curriculum_steps=curr_steps, num_parallel_envs=num_parallel_envs) return env def build_other_env(motion_files, num_parallel_envs, mode, enable_randomizer, enable_rendering, action_lim = 0.2, curr_steps = 30000000): assert len(motion_files) > 0 curriculum_episode_length_start = 20 curriculum_episode_length_end = 600 sim_params = locomotion_gym_config.SimulationParameters() sim_params.enable_rendering = enable_rendering gym_config = locomotion_gym_config.LocomotionGymConfig(simulation_parameters=sim_params) robot_class = laikago.Laikago # sensors = [ # sensor_wrappers.HistoricSensorWrapper( # wrapped_sensor=robot_sensors.MotorAngleSensor(num_motors=laikago.NUM_MOTORS), num_history=3), # sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.IMUSensor(), num_history=3), # sensor_wrappers.HistoricSensorWrapper( # wrapped_sensor=environment_sensors.LastActionSensor(num_actions=laikago.NUM_MOTORS), num_history=3) # ] sensors = [ sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.BasePositionSensor(), num_history=3), sensor_wrappers.HistoricSensorWrapper(wrapped_sensor=robot_sensors.IMUSensor(), num_history=3), sensor_wrappers.HistoricSensorWrapper( wrapped_sensor=robot_sensors.MotorAngleSensor(num_motors=laikago.NUM_MOTORS), num_history=3), sensor_wrappers.HistoricSensorWrapper( wrapped_sensor=environment_sensors.LastActionSensor(num_actions=laikago.NUM_MOTORS), num_history=3) ] # Look at this, this is the TG now trajectory_generator = simple_TG_group.SimpleTGGroup( action_limit=action_lim, init_lg_param=None, is_touting=2, init_f_tg=2) init_lg_param = trajectory_generator.init_lg_param # print(" initial tg parameters is this") # print(init_lg_param) init_lg_param = np.concatenate([np.zeros([12]), init_lg_param[1:]]) tg_init_position = trajectory_generator.get_action(current_time=0, input_action=init_lg_param) task = imitation_task.ImitationTask(ref_motion_filenames=motion_files, enable_cycle_sync=True, tar_frame_steps=[1, 2, 10, 30], ref_state_init_prob=0.9, warmup_time=0.25,tg_init_position=tg_init_position) randomizers = [] if enable_randomizer: randomizer = controllable_env_randomizer_from_config.ControllableEnvRandomizerFromConfig(verbose=False) randomizers.append(randomizer) env = locomotion_gym_env.LocomotionGymEnv(gym_config=gym_config, robot_class=robot_class, env_randomizers=randomizers, robot_sensors=sensors, task=task) env = observation_dictionary_to_array_wrapper.ObservationDictionaryToArrayWrapper(env) env = trajectory_generator_wrapper_env.TrajectoryGeneratorWrapperEnv(env, trajectory_generator=trajectory_generator) if mode == "test": curriculum_episode_length_start = curriculum_episode_length_end env = imitation_wrapper_env.ImitationWrapperEnv(env, episode_length_start=curriculum_episode_length_start, episode_length_end=curriculum_episode_length_end, curriculum_steps=curr_steps, num_parallel_envs=num_parallel_envs) return env
StarcoderdataPython
74020
import time import dweepy import RPi.GPIO as GPIO KEY = 'tweet_about_me' OUTPUT_PIN = 18 OUTPUT_DURATION = 10 GPIO.setmode(GPIO.BCM) GPIO.setup(OUTPUT_PIN, GPIO.OUT) while True: try: for dweet in dweepy.listen_for_dweets_from(KEY): print('Tweet: ' + dweet['content']['text']) GPIO.output(OUTPUT_PIN, True) time.sleep(OUTPUT_DURATION) GPIO.output(OUTPUT_PIN, False) except Exception: pass
StarcoderdataPython
86706
from setuptools import setup, find_packages setup( name='GitSpammer', version='0.1.0', packages=find_packages(), install_requires=[ 'Click' ], entry_points={ 'console_scripts': [ 'gitspam = gitspammer.entry:cli' ], }, description="Experiment with Git's features. Create as many test commits as necessary. And branches too." )
StarcoderdataPython
1619394
<gh_stars>0 class GiteeUser: def __init__(self): self.id = None self.giteeLogin = None self.userLogin = None def from_record(self, record): self.id = record[0] self.giteeLogin = record[1] self.userLogin = record[2]
StarcoderdataPython
4808377
<reponame>drevicko/senpy import random from senpy.plugins import EmotionPlugin from senpy.models import EmotionSet, Emotion class RmoRandPlugin(EmotionPlugin): def analyse_entry(self, entry, params): category = "emoml:big6happiness" number = max(-1, min(1, random.gauss(0, 0.5))) if number > 0: category = "emoml:big6anger" emotionSet = EmotionSet() emotion = Emotion({"onyx:hasEmotionCategory": category}) emotionSet.onyx__hasEmotion.append(emotion) emotionSet.prov__wasGeneratedBy = self.id entry.emotions.append(emotionSet) yield entry
StarcoderdataPython
4830547
from django.contrib import admin from aditamento.militaries.models import Military class MilitaryModelAdmin(admin.ModelAdmin): list_display = ('name', 'cpf') search_fields = ('name', 'cpf') admin.site.register(Military, MilitaryModelAdmin)
StarcoderdataPython
1723432
import urllib.request import json #from PIL import Image from Kaspa.modules.abstract_modules.abstractModule import AbstractModule from Kaspa.modules.extension_modules.knowledge_module.knowledgeModuleDe import KnowledgeModuleDe from Kaspa.modules.extension_modules.knowledge_module.knowledgeModuleEn import KnowledgeModuleEn from Kaspa.config import Config from Kaspa.modules.exceptions.impossibleActionError import ImpossibleActionError from Kaspa.modules.exceptions.moduleError import ModuleError import Kaspa.modules.extension_modules.helper.comandOps as Co import wikipedia as wiki from wikipedia.exceptions import DisambiguationError class KnowledgeModuleMain(AbstractModule): module_name = "Wolfram Alpha" config_parameters = {"api_key" : "This is the Wolfram Alpha Api Key. You can get it for free from here: \n" "http://products.wolframalpha.com/api/"} api_key = None url = "http://api.wolframalpha.com/v1/conversation.jsp" conversationID = None s = None def __init__(self): super(KnowledgeModuleMain, self).__init__() self.add_submodule(KnowledgeModuleDe()) self.add_submodule(KnowledgeModuleEn()) def configure(self): self.api_key = Config.get_instance().get('wolfram alpha', 'api_key') @staticmethod def convert_query(orig_query): new_query = orig_query.replace(" ", "+") return new_query def get_answer(self, query): query = self.convert_query(query) try: url = "http://api.wolframalpha.com/v1/result?appid=" + self.api_key + "&i=" + query response = urllib.request.urlopen(url).read().decode('utf-8') except: # TODO localize raise ImpossibleActionError("nope.") return response def get_wolfram_alpha_answer(self, query): query = self.convert_query(query) if self.conversationID is None: url = self.url + "?appid=" + self.api_key + "&i=" + query else: url = self.url + "?appid=" + self.api_key + "&conversationid=" + self.conversationID + "&i=" + query if self.s is not None: url = url + "&s=" + self.s response = urllib.request.urlopen(url).read().decode('utf-8') result = json.loads(response) if "error" in result.keys(): # reset values self.url = "http://api.wolframalpha.com/v1/conversation.jsp" self.conversationID = None self.s = None raise ImpossibleActionError("even Wolfram Alpha cannot help") self.url = "http://" + result["host"] + "/api/v1/conversation.jsp" self.conversationID = result["conversationID"] if "s" in result.keys(): self.s = result["s"] else: self.s = None return Co.get_sentences(result["result"], 1) def get_picture(self, query): query = self.convert_query(query) url = "https://api.wolframalpha.com/v1/simple?i=" + query + "%3F&appid=" + self.api_key img = urllib.request.urlopen(url).read() f = open('/tmp/output', 'wb') f.write(img) f.close() return '/tmp/output' def get_wikipedia_description(self, query_text, language): try: wiki.set_lang(language) # query_text = wiki.search(query_text)[0] # search for query and take title of first result ret = wiki.summary(query_text) # TODO improve sentence detection return Co.get_sentences(ret, 1) # better than the built in function of the wikipedia module except DisambiguationError as disambigError: query_text = disambigError.options[0] # take first guess of meaning ret = wiki.summary(query_text) return Co.get_sentences(ret, 1) except Exception as e: raise ModuleError(self.module_name, str(e))
StarcoderdataPython
1765017
<gh_stars>0 import sys import numpy as np import math fname = sys.argv[1] quantums = [] with open(fname) as f: content = f.readlines() content = [x.strip() for x in content] count = 0 is_quantum = False quantum = [] for line in content: if line.startswith("-----------"): quantum.append(line) is_quantum = True elif line.startswith("thread id :"): quantum.append(line) quantums.append(quantum) quantum = [] is_quantum = False elif is_quantum: quantum.append(line) threads = [] for thread in quantums[0][4:7]: threads.append(thread.split()[1:3]) threads.append(quantums[0][4].split()[1:3]) quantums = quantums[1:] big_core_errors = [] big_core_predicted_error = [] big_core_next_quantum_error = [] small_core_errors = [] small_core_predicted_error = [] small_core_next_quantum_error = [] system_error = [] system_predicted_error = [] system_next_quantum_error = [] system_ipc = [] quantum_count = 1 s_ipc = 0 for quantum in quantums: temp = [] for line in quantum: if line[0].isdigit(): temp.append(line.split()[1:3]) small_errors = [] small_predicted_error = [] small_next_quantum_error =[] s_predicted = 0 s_real = 0 s_ml_predicted = 0 s_ml_predicted_real = 0 s_next_quantum = 0 s_next_quantum_real = 0 for prev_t, t in zip(threads, temp): if not t[0].startswith("*") and not t[0].startswith("?"): big_core_errors.append([t[0], prev_t[0]]) s_predicted += float(prev_t[0][1:] if prev_t[0].startswith("*") or prev_t[0].startswith("?") else prev_t[0]) s_real += float(t[0][1:] if t[0].startswith("*") or t[0].startswith("?") else t[0]) if prev_t[0].startswith("*") and not prev_t[0].startswith("?"): big_core_predicted_error.append([t[0], prev_t[0][1:]]) s_ml_predicted += float(prev_t[0][1:]) s_ml_predicted_real += float(t[0]) if not prev_t[0].startswith("*") and not prev_t[0].startswith("?"): big_core_next_quantum_error.append([t[0], prev_t[0]]) s_next_quantum += float(prev_t[0]) s_next_quantum_real += float(t[0]) s_ipc += s_real if not t[1].startswith("*") and not t[1].startswith("?"): small_errors.append([t[1], prev_t[1]]) s_predicted += float(prev_t[1][1:] if prev_t[1].startswith("*") or prev_t[1].startswith("?") else prev_t[1]) s_real += float(t[1][1:] if t[1].startswith("*") or t[1].startswith("?") else t[1]) s_ipc += s_real if prev_t[1].startswith("*") and not prev_t[1].startswith("?"): small_predicted_error.append([t[1], prev_t[1][1:]]) s_ml_predicted += float(prev_t[1][1:]) s_ml_predicted_real += float(t[1]) if not prev_t[1].startswith("*") and not prev_t[1].startswith("?"): small_next_quantum_error.append([t[1], prev_t[1]]) s_next_quantum += float(prev_t[1]) s_next_quantum_real += float(t[1]) quantum_count += 1 system_ipc.append([quantum_count, s_real]) quantum_count += 1 system_error.append([s_real, s_predicted]) threads = temp small_core_errors.append(small_errors) small_core_predicted_error.append(small_predicted_error) small_core_next_quantum_error.append(small_next_quantum_error) system_predicted_error.append([s_ml_predicted_real, s_ml_predicted]) system_next_quantum_error.append([s_next_quantum_real, s_next_quantum]) big_mean_square_error = 0 small_mean_square_error = 0 big_percentage_error = [] small_percentage_error = [] diff_small = [] diff_big = [] system_mean_square_error = 0 system_percentage_error = [] diff_system = [] system_predicted_mean_square_error = 0 system_next_quantum_mean_square_error = 0 small_core_predicted_mean_square_error = 0 small_core_next_quantum_mean_square_error = 0 big_core_predicted_mean_square_error = 0 big_core_next_quantum_mean_square_error = 0 big_err = [] for big_error in big_core_errors: if big_error[1].startswith("*") or big_error[1].startswith("?"): big_error[1] = big_error[1][1:] big_error = np.array(big_error) big_error = big_error.astype(np.float) if big_error[0] == 0: continue big_err.append(((abs(big_error[1] - big_error[0])) / big_error[0])) big_percentage_error.append((big_error[1] - big_error[0]) / big_error[0]) diff_big.append(big_error[1] - big_error[0]) big_uerr = sum(big_err) / len(big_err) big_std_err = 0 for err in big_err: big_std_err += pow((err - big_uerr), 2) big_std_err = math.sqrt(big_std_err / len(big_err)) #================= big_err_pred = [] for big_error in big_core_predicted_error: if big_error[1].startswith("*") or big_error[1].startswith("?"): big_error[1] = big_error[1][1:] big_error = np.array(big_error) big_error = big_error.astype(np.float) if big_error[0] == 0: continue big_err_pred.append(((abs(big_error[1] - big_error[0])) / big_error[0])) big_uerr_pred = sum(big_err_pred) / len(big_err_pred) big_core_predicted_mean_square_error = 0 for err in big_err_pred: big_core_predicted_mean_square_error += pow((err - big_uerr_pred), 2) big_core_predicted_mean_square_error = math.sqrt(big_core_predicted_mean_square_error / len(big_err_pred)) #================= #================= big_err_next = [] for big_error in big_core_next_quantum_error: if big_error[1].startswith("*") or big_error[1].startswith("?"): big_error[1] = big_error[1][1:] big_error = np.array(big_error) big_error = big_error.astype(np.float) if big_error[0] == 0: continue big_err_next.append(((abs(big_error[1] - big_error[0])) / big_error[0])) big_uerr_next = sum(big_err_next) / len(big_err_next) big_core_next_quantum_mean_square_error = 0 for err in big_err_next: big_core_next_quantum_mean_square_error += pow((err - big_uerr_next), 2) big_core_next_quantum_mean_square_error = math.sqrt(big_core_next_quantum_mean_square_error / len(big_err_next)) #================= #================= small_error_pred = [] for small_error_quantum in small_core_predicted_error: s_p = 0 s_r = 0 for small_error in small_error_quantum: if small_error[1].startswith("*") or small_error[1].startswith("?"): small_error[1] = small_error[1][1:] small_error = np.array(small_error) small_error = small_error.astype(np.float) if small_error[0] == 0: continue s_p += small_error[1] s_r += small_error[0] if len(small_error_quantum) == 0: continue s_p = s_p / len(small_error_quantum) s_r = s_r / len(small_error_quantum) small_error_pred.append(abs(s_p - s_r) / s_r) small_uerror_pred = sum(small_error_pred) / len(small_error_pred) small_core_predicted_mean_square_error = 0 for err in small_error_pred: small_core_predicted_mean_square_error += pow((err - small_uerror_pred), 2) small_core_predicted_mean_square_error = math.sqrt(small_core_predicted_mean_square_error / len(small_error_pred)) #================= #================= small_error_next = [] for small_error_quantum in small_core_next_quantum_error: s_p = 0 s_r = 0 for small_error in small_error_quantum: if small_error[1].startswith("*") or small_error[1].startswith("?"): small_error[1] = small_error[1][1:] small_error = np.array(small_error) small_error = small_error.astype(np.float) if small_error[0] == 0: continue s_p += small_error[1] s_r += small_error[0] s_p = s_p / len(small_error_quantum) s_r = s_r / len(small_error_quantum) small_error_next.append(abs(s_p - s_r) / s_r) small_uerror_next = sum(small_error_next) / len(small_error_next) small_core_next_quantum_mean_square_error = 0 for err in small_error_next: small_core_next_quantum_mean_square_error += pow((err - small_uerror_next), 2) small_core_next_quantum_mean_square_error = math.sqrt(small_core_next_quantum_mean_square_error / len(small_error_next)) #================= small_error_ = [] for small_error_quantum in small_core_errors: small_error_quantum_percentage = [] small_error_quantum_meansquare = [] s_p = 0 s_r = 0 for small_error in small_error_quantum: if small_error[1].startswith("*") or small_error[1].startswith("?"): small_error[1] = small_error[1][1:] small_error = np.array(small_error) small_error = small_error.astype(np.float) if small_error[0] == 0: continue s_p += small_error[1] s_r += small_error[0] small_error_quantum_meansquare.append(pow((small_error[1] - small_error[0]), 2)) small_error_quantum_percentage.append((small_error[1] - small_error[0]) / small_error[0]) s_p = s_p / len(small_error_quantum) s_r = s_r / len(small_error_quantum) small_error_.append(abs(s_p - s_r) / s_r) small_percentage_error.append(sum(small_error_quantum_percentage) / len(small_error_quantum_percentage)) small_uerror = sum(small_error_) / len(small_error_) small_std_error = 0 for err in small_error_: small_std_error += pow((err - small_uerror), 2) small_std_error = math.sqrt(small_std_error / len(small_error_)) #======= system_error_pred = [] for s_error in system_predicted_error: if s_error[0] == 0: continue system_error_pred.append(((abs(s_error[1] - s_error[0])) / s_error[0])) system_uerror_pred = sum(system_error_pred) / len(system_error_pred) system_predicted_mean_square_error = 0 for err in system_error_pred: system_predicted_mean_square_error += pow((err - system_uerror_pred), 2) system_predicted_mean_square_error = math.sqrt((system_predicted_mean_square_error / len(system_error_pred))) #======= #======= system_error_next = [] for s_error in system_next_quantum_error: if s_error[0] == 0: continue system_error_next.append(((abs(s_error[1] - s_error[0])) / s_error[0])) system_uerror_next = sum(system_error_next) / len(system_error_next) system_next_quantum_mean_square_error = 0 for err in system_error_next: system_next_quantum_mean_square_error += pow((err - system_uerror_next), 2) system_next_quantum_mean_square_error = math.sqrt((system_next_quantum_mean_square_error / len(system_error_next))) #======= system_error_ = [] for s_error in system_error: if s_error[0] == 0: continue system_error_.append(((abs(s_error[1] - s_error[0])) / s_error[0])) system_mean_square_error += pow((s_error[1] - s_error[0]), 2) system_percentage_error.append((s_error[1] - s_error[0]) / s_error[0]) diff_system.append(s_error[1] - s_error[0]) system_uerror = sum(system_error_) / len(system_error_) system_std_error = 0 for err in system_error_: system_std_error += pow((err - system_uerror), 2) system_std_error = math.sqrt((system_std_error / len(system_error_))) big_mean_square_error = big_mean_square_error / len(big_core_errors) small_mean_square_error = small_mean_square_error / len(small_core_errors) system_mean_square_error = system_mean_square_error / len(system_error) big_std = np.std(big_percentage_error) small_std = np.std(small_percentage_error) system_std = np.std(system_percentage_error) big_percentage_error = sum(big_percentage_error) / len(big_core_errors) small_percentage_error = sum(small_percentage_error) / len(small_core_errors) system_percentage_error = sum(system_percentage_error) / len(system_error) # diff_big = np.array(diff_big) # diff_small = np.array(diff_small) # diff_system = np.array(diff_system) s_ipc = s_ipc / quantum_count with open("IpcError.txt", "a") as myfile: myfile.write(fname + "\nbig_std_error_whole : " + str(big_std_err) + "\nbig_std_error_pred : " + str(big_core_predicted_mean_square_error) + "\nbig_std_error_next_quantum : " + str(big_core_next_quantum_mean_square_error) +"\nsmall_std_error_whole : " + str(small_std_error) + "\nsmall_std_error_pred : " + str(small_core_predicted_mean_square_error) + "\nsmall_std_error_next : " + str(small_core_next_quantum_mean_square_error) + "\nsystem_std_whole : " + str(system_std_error) + "\nsystem_std_pred: " + str(system_predicted_mean_square_error) + "\nsystem_std_next : " + str(system_next_quantum_mean_square_error) + "\n\n")
StarcoderdataPython
1786373
<gh_stars>0 import json import torch import PIL import argparse import matplotlib import numpy as np import torchvision as tv import matplotlib.pyplot as plt from torch import nn from collections import OrderedDict from train import setup_nn def main(): # Parse Arguments parser = argparse.ArgumentParser() parser.add_argument('image_path', type=str) parser.add_argument('checkpoint_path', type=str) parser.add_argument('--top', dest="top", type=int, default=5) parser.add_argument('--category_names', dest="category_names_path", type=str, default="./cat_to_name.json") parser.add_argument('--gpu', dest="gpu", type=bool, default=True) args = parser.parse_args() print('Chosen configuration:') for arg in vars(args): print("{} = {}".format(arg, getattr(args, arg))) image_path = args.image_path checkpoint_path = args.checkpoint_path top = args.top category_names_path = args.category_names_path # load neural network model = load_nn(checkpoint_path) # load label mapping with open(category_names_path, 'r') as f: cat_to_name = json.load(f) # predict image and display probabilities predicted_probabilities, predicted_labels = predict(image_path, model) image = process_image(image_path) predicted_probabilities = np.array(predicted_probabilities[0]) predicted_labels = np.array(predicted_labels[0]) print(predicted_probabilities) print(predicted_labels) # Show image ax1 = imshow(image, ax = plt) ax1.axis('off') ax1.show() # Do assignments assigned_probabilities = np.array(predicted_probabilities) assigned_labels = [cat_to_name[str(label+1)] for label in predicted_labels] print(assigned_probabilities) print(assigned_labels) # Show Assignments _,ax2 = plt.subplots() ticks = np.arange(len(assigned_labels)) ax2.bar(ticks, assigned_probabilities) ax2.set_xticks(ticks = ticks) ax2.set_xticklabels(assigned_labels) ax2.yaxis.grid(True) plt.show() def load_nn(checkpoint_path): checkpoint = torch.load(checkpoint_path) model,_,_ = setup_nn(checkpoint['input_size'], checkpoint['hidden_sizes'], checkpoint['output_size'], checkpoint['drop_p'], checkpoint['learning_rate']) model.load_state_dict(checkpoint['state_dict']) return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' pil_image = PIL.Image.open(image) image_transforms = tv.transforms.Compose([tv.transforms.Resize(255), tv.transforms.CenterCrop(224), tv.transforms.ToTensor(), tv.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) tensor_image = image_transforms(pil_image) np_image = tensor_image.numpy() return np_image def imshow(image, ax=None, title=None): if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax def predict(image_path, model, topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' # TODO: Implement the code to predict the class from an image file model.to('cuda') image = process_image(image_path) image = torch.from_numpy(image) image = image.unsqueeze_(0) image = image.to('cuda') # Calculate the class probabilities (softmax) for img with torch.no_grad(): output = model.forward(image) output_softmaxed = torch.nn.functional.softmax(output.data, dim=1) return output_softmaxed.topk(topk) if __name__ == '__main__': main()
StarcoderdataPython
1712303
from django.conf.urls import patterns, include, url from qa.views import QuestionListView, QuestionView, QuestionNewView, \ QuestionUpdateView, QuestionDeleteView, vote_question urlpatterns = [ url(r'^$', QuestionListView.as_view(), name='questions'), url(r'^q/(?P<slug_title>[\w-]+)$', QuestionView.as_view(), name='question'), url(r'^new$', QuestionNewView.as_view(), name='new'), url(r'^edit/(?P<slug_title>[\w-]+)$', QuestionUpdateView.as_view(), name='edit'), url(r'^answer/(?P<slug_title>[\w-]+)$', QuestionView.as_view(), name='answer'), url(r'^delete/(?P<slug_title>[\w-]+)$', QuestionDeleteView.as_view(), name='delete'), url(r'^vote/(?P<slug_title>[\w-]+)$', vote_question, name='vote') ]
StarcoderdataPython
3228876
import os from dataclasses import dataclass from pathlib import Path from typing import Any, Dict, Optional from rich import print from cookietemple.common.version import load_ct_template_version from cookietemple.config.config import ConfigCommand from cookietemple.create.domains.cookietemple_template_struct import CookietempleTemplateStruct from cookietemple.create.github_support import load_github_username, prompt_github_repo from cookietemple.create.template_creator import TemplateCreator from cookietemple.custom_cli.questionary import cookietemple_questionary_or_dot_cookietemple @dataclass class TemplateStructPub(CookietempleTemplateStruct): """ This class contains all attributes specific for PUB projects """ """ This section contains some PUB-domain specific attributes """ pubtype: str = "" author: str = "" title: str = "" university: str = "" department: str = "" degree: str = "" github_username = "" class PubCreator(TemplateCreator): def __init__(self): self.pub_struct = TemplateStructPub(domain="pub", language="latex") super().__init__(self.pub_struct) self.WD_Path = Path(os.path.dirname(__file__)) self.TEMPLATES_PUB_PATH = f"{self.WD_Path.parent}/templates/pub" '"" TEMPLATE VERSIONS ""' self.PUB_LATEX_TEMPLATE_VERSION = load_ct_template_version("pub-thesis-latex", self.AVAILABLE_TEMPLATES_PATH) def create_template(self, path: Path, dot_cookietemple: Optional[dict]): """ Prompts the user for the publication type and forwards to subsequent prompts. Creates the pub template. """ # latex is default language self.pub_struct.pubtype = cookietemple_questionary_or_dot_cookietemple( function="select", question="Choose between the following publication types", choices=["thesis"], dot_cookietemple=dot_cookietemple, to_get_property="pubtype", ) if not os.path.exists(ConfigCommand.CONF_FILE_PATH): print("[bold red]Cannot find a Cookietemple config file! Is this your first time with Cookietemple?\n") print("[bold blue]Lets set your configs for Cookietemple and you are ready to go!\n") ConfigCommand.all_settings() # switch case statement to prompt the user to fetch template specific configurations switcher: Dict[str, Any] = { "latex": self.common_latex_options, } switcher.get(self.pub_struct.language.lower(), lambda: "Invalid language!")(dot_cookietemple) # type: ignore self.handle_pub_type(dot_cookietemple) ( self.pub_struct.is_github_repo, self.pub_struct.is_repo_private, self.pub_struct.is_github_orga, self.pub_struct.github_orga, ) = prompt_github_repo(dot_cookietemple) if self.pub_struct.is_github_orga: self.pub_struct.github_username = self.pub_struct.github_orga # create the pub template super().create_template_with_subdomain(self.TEMPLATES_PUB_PATH, self.pub_struct.pubtype) # type: ignore # switch case statement to fetch the template version switcher_version = { "latex": self.PUB_LATEX_TEMPLATE_VERSION, } self.pub_struct.template_version = switcher_version.get( self.pub_struct.language.lower(), lambda: "Invalid language!" ) self.pub_struct.template_version, self.pub_struct.template_handle = ( switcher_version.get(self.pub_struct.language.lower(), lambda: "Invalid language!"), f"pub-{self.pub_struct.pubtype}-{self.pub_struct.language.lower()}", ) # perform general operations like creating a GitHub repository and general linting, but skip common_files copying and rst linting super().process_common_operations( path=Path(path).resolve(), skip_common_files=True, skip_fix_underline=True, domain="pub", subdomain=self.pub_struct.pubtype, language=self.pub_struct.language, dot_cookietemple=dot_cookietemple, ) def handle_pub_type(self, dot_cookietemple: Optional[dict]) -> None: """ Determine the type of publication and handle it further. """ switcher = { "thesis": self.handle_thesis_latex, } switcher.get(self.pub_struct.pubtype.lower(), lambda: "Invalid Pub Project Type!")(dot_cookietemple) # type: ignore def handle_thesis_latex(self, dot_cookietemple: Optional[dict]) -> None: self.pub_struct.degree = cookietemple_questionary_or_dot_cookietemple( function="text", question="Degree", default="PhD", dot_cookietemple=dot_cookietemple, to_get_property="degree", ) def common_latex_options(self, dot_cookietemple: Optional[dict]) -> None: """ Prompt the user for common thesis/paper data """ self.pub_struct.author = cookietemple_questionary_or_dot_cookietemple( function="text", question="Author", default="<NAME>", dot_cookietemple=dot_cookietemple, to_get_property="author", ) self.pub_struct.project_slug = cookietemple_questionary_or_dot_cookietemple( function="text", question="Project name", default="PhD Thesis", dot_cookietemple=dot_cookietemple, to_get_property="project_name", ).replace( # type: ignore " ", "_" ) self.pub_struct.project_slug_no_hyphen = self.pub_struct.project_slug.replace("-", "_") self.pub_struct.title = cookietemple_questionary_or_dot_cookietemple( function="text", question="Publication title", default="On how Springfield exploded", dot_cookietemple=dot_cookietemple, to_get_property="title", ) self.pub_struct.university = cookietemple_questionary_or_dot_cookietemple( function="text", question="University", default="<NAME> University", dot_cookietemple=dot_cookietemple, to_get_property="university", ) self.pub_struct.department = cookietemple_questionary_or_dot_cookietemple( function="text", question="Department", default="Department of Nuclear Physics", dot_cookietemple=dot_cookietemple, to_get_property="department", ) self.pub_struct.github_username = load_github_username() # Required for Github support
StarcoderdataPython
1688528
__author__ = 'justinarmstrong' import pygame as pg from .. import setup from .. import constants as c from . import powerups from . import coin class Coin_box(pg.sprite.Sprite): """Coin box sprite""" def __init__(self, x, y, contents='coin', group=None): pg.sprite.Sprite.__init__(self) self.sprite_sheet = setup.GFX['tile_set'] self.frames = [] self.setup_frames() self.frame_index = 0 self.image = self.frames[self.frame_index] self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y self.mask = pg.mask.from_surface(self.image) self.animation_timer = 0 self.first_half = True # First half of animation cycle self.state = c.RESTING self.rest_height = y self.gravity = 1.2 self.y_vel = 0 self.contents = contents self.group = group def get_image(self, x, y, width, height): """Extract image from sprite sheet""" image = pg.Surface([width, height]).convert() rect = image.get_rect() image.blit(self.sprite_sheet, (0, 0), (x, y, width, height)) image.set_colorkey(c.BLACK) image = pg.transform.scale(image, (int(rect.width*c.BRICK_SIZE_MULTIPLIER), int(rect.height*c.BRICK_SIZE_MULTIPLIER))) return image def setup_frames(self): """Create frame list""" self.frames.append( self.get_image(384, 0, 16, 16)) self.frames.append( self.get_image(400, 0, 16, 16)) self.frames.append( self.get_image(416, 0, 16, 16)) self.frames.append( self.get_image(432, 0, 16, 16)) def update(self, game_info): """Update coin box behavior""" self.current_time = game_info[c.CURRENT_TIME] self.handle_states() def handle_states(self): """Determine action based on RESTING, BUMPED or OPENED state""" if self.state == c.RESTING: self.resting() elif self.state == c.BUMPED: self.bumped() elif self.state == c.OPENED: self.opened() def resting(self): """Action when in the RESTING state""" if self.first_half: if self.frame_index == 0: if (self.current_time - self.animation_timer) > 375: self.frame_index += 1 self.animation_timer = self.current_time elif self.frame_index < 2: if (self.current_time - self.animation_timer) > 125: self.frame_index += 1 self.animation_timer = self.current_time elif self.frame_index == 2: if (self.current_time - self.animation_timer) > 125: self.frame_index -= 1 self.first_half = False self.animation_timer = self.current_time else: if self.frame_index == 1: if (self.current_time - self.animation_timer) > 125: self.frame_index -= 1 self.first_half = True self.animation_timer = self.current_time self.image = self.frames[self.frame_index] def bumped(self): """Action after Mario has bumped the box from below""" self.rect.y += self.y_vel self.y_vel += self.gravity if self.rect.y > self.rest_height + 5: self.rect.y = self.rest_height self.state = c.OPENED if self.contents == 'mushroom': self.group.add(powerups.Mushroom(self.rect.centerx, self.rect.y)) elif self.contents == 'fireflower': self.group.add(powerups.FireFlower(self.rect.centerx, self.rect.y)) elif self.contents == '1up_mushroom': self.group.add(powerups.DeathMushroom(self.rect.centerx, self.rect.y)) elif self.contents == 'death_mushroom': self.group.add(powerups.DeathMushroom(self.rect.centerx, self.rect.y)) self.frame_index = 3 self.image = self.frames[self.frame_index] def start_bump(self, score_group): """Transitions box into BUMPED state""" self.y_vel = -6 self.state = c.BUMPED if self.contents == 'coin': self.group.add(coin.Coin(self.rect.centerx, self.rect.y, score_group)) setup.SFX['coin'].play() else: setup.SFX['powerup_appears'].play() def opened(self): """Placeholder for OPENED state""" pass
StarcoderdataPython
4838374
class ClassNames: RECURRENCE_EVENTS = "recurrence-events" NO_RECURRENCE_EVENTS = "no-recurrence-events" CLASSES = [ ClassNames.RECURRENCE_EVENTS, ClassNames.NO_RECURRENCE_EVENTS ] FEATURES = [ "age", "menopause", "tumor-size", "inv-nodes", "node-caps", "deg-malig", "breast", "breast-quad", "irradiat" ] FEATURE_VALUES = { "age": ["10-19", "20-29", "30-39", "40-49", "50-59", "60-69", "70-79", "80-89", "90-99"], "menopause": ["lt40", "ge40", "premeno"], "tumor-size": ["0-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", "55-59"], "inv-nodes": ["0-2", "3-5", "6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "24-26", "27-29", "30-32", "33-35", "36-39"], "node-caps": ["yes", "no"], "deg-malig": ["1", "2", "3"], "breast": ["left", "right"], "breast-quad": ["left_up", "left_low", "right_up", "right_low", "central"], "irradiat": ["yes", "no"] }
StarcoderdataPython
3271052
<reponame>ahmedkhalf/SimpleShell from subprocess import check_call, CalledProcessError import readline while True: try: command = input("$ ") except EOFError: break except KeyboardInterrupt: print() continue if command.strip() == "exit": break else: try: check_call(command, shell=True) except CalledProcessError as e: pass
StarcoderdataPython
3362924
<gh_stars>0 #!/usr/bin/env python3 from .arguments import arguments from . import capture, cleanup from .compileVideo import compileVideo from .interface import banner, print_statusline from .logger import logging from time import sleep def main(): # print program banner if verbose is set if arguments["--verbose"]: banner() if arguments["compile"]: compileVideo( workDir=arguments["--save-dir"], videoName=arguments["--output-video"], fps=int(arguments["--fps"]), ) exit() elif arguments["clean"]: cleanup.clean() exit() camera = capture.camera( workdir=arguments["--save-dir"], length=int(arguments["--length"]), width=int(arguments["--width"]), ) if arguments["capture"]: camera.capture( imageName=arguments["--image-name"], addTime=not arguments["--no-time"] ) logging.success("Image successfully captured.") elif arguments["record"]: try: waitingTime = int(arguments["--shutter-wait"]) if waitingTime != 0: for sec in range(0, waitingTime + 1): print_statusline(f"Countdown before record: {waitingTime - sec}") sleep(1) print() camera.record( duration=int(arguments["--duration"]), frequency=int(arguments["--frequency"]), continuous=arguments["--continuous"], ) if arguments["--auto-compile"]: compileVideo( workDir=arguments["--save-dir"], videoName=arguments["--output-video"], fps=int(arguments["--fps"]), ) except KeyboardInterrupt: if ( arguments["--auto-compile"] and input("[prompt] Continue compiling video? [y/n] ") == "y" ): compileVideo( workDir=arguments["--save-dir"], videoName=arguments["--output-video"], fps=int(arguments["--fps"]), ) if __name__ == "__main__": main()
StarcoderdataPython
58436
<reponame>smarie/python-doit-api<filename>doit_api/main.py import sys from inspect import isgeneratorfunction from os.path import exists import platform try: from typing import Callable, Union, List, Tuple, Dict, Optional, Type, Any from pathlib import Path DoitAction = Union[str, List, Callable, Tuple[Callable, Tuple, Dict]] DoitTask = Union[str, Callable, 'task', 'taskgen'] DoitPath = Union[str, Path] except ImportError: pass from doit.action import CmdAction # --- configuration def doit_config( # execution related default_tasks=None, # type: List[str] single=None, # type: bool continue_=None, # type: bool always=None, # type: bool cleanforget=None, # type: bool cleandep=None, # type: bool dryrun=None, # type: bool # database db_file=None, # type: Union[str, Path] dep_file=None, # type: Union[str, Path] backend=None, # type: str # verbosities verbosity=None, # type: int failure_verbosity=None, # type: int # output and working dir outfile=None, # type: Union[str, Path] reporter=None, # type: Union[str, Type] dir=None, # type: Union[str, Path] # parallel processing num_process=None, # type: int parallel_type=None, # type: str # misc check_file_uptodate=None, # type: str pdb=None, # type: bool codec_cls=None, # type: Type minversion=None, # type: Union[str, Tuple[int, int, int]] auto_delayed_regex=None, # type: bool action_string_formatting=None, # type: str ): """ Generates a valid DOIT_CONFIG dictionary, that can contain GLOBAL options. You can use it at the beginning of your `dodo.py` file: ```python from doit_api import doit_config DOIT_CONFIG = doit_config(verbosity=2) ``` Almost all command line options can be changed here. See https://pydoit.org/configuration.html#configuration-at-dodo-py :param default_tasks: The list of tasks to run when no task names are specified in the commandline. By default all tasks are run. See https://pydoit.org/tasks.html#task-selection :param single: set this to true to execute only specified tasks ignoring their task_dep. Default: False :param continue_: by default the execution of tasks is halted on the first task failure or error. You can force it to continue execution by setting this to True. See https://pydoit.org/cmd_run.html#continue :param always: set this to True to always execute tasks even if up-to-date (default: False) :param cleanforget: a boolean, set this to true (default: False) if you like to also make doit forget previous execution of cleaned tasks. See https://pydoit.org/cmd_other.html#clean :param cleandep: By default if a task contains task-dependencies those are not automatically cleaned too. Set this flag to True to do it. Note that if you execute the default tasks, this is set to True by default. See https://pydoit.org/cmd_other.html#clean :param dryrun: a boolean (default False), telling doit to print actions without really executing them. See https://pydoit.org/cmd_other.html#dry-run :param db_file: an alias for dep_file :param dep_file: sets the name of the file to save the "DB", default is .doit.db. Note that DBM backends might save more than one file, in this case the specified name is used as a base name. See https://pydoit.org/cmd_run.html#db-file :param backend: The backend used by pydoit to store the execution states and results. A string that can be any of 'dbm' (default), 'json' (slow but good for debugging), 'sqlite3' (supports concurrent access). Other choices may be available if you install doit plugins adding backends (e.g. redit...). See https://pydoit.org/cmd_run.html#db-backend :param verbosity: An integer defining the verbosity level: 0 capture (do not print) stdout/stderr from task, 1 capture stdout only, 2 do not capture anything (print everything immediately). Default is 1. See https://pydoit.org/tasks.html#verbosity :param failure_verbosity: Option to control if stdout/stderr should be re-displayed in the end of of report. This is useful when used in conjunction with the `continue` option. Default: 0 0 do not show re-display 1 re-display stderr only 2 re-display both stderr/stdout See https://pydoit.org/cmd_run.html#failure-verbosity :param outfile: output file where to write the results to. Default is stdout. See https://pydoit.org/cmd_run.html#output-file :param reporter: choice of reporter for the console. Can be a string indicating a reporter included in doit, or a class. Supported string values are 'console' (default), 'executed-only' (Produces zero output if no task is executed), 'json' (Output results in JSON format) 'zero' (display only error messages (does not display info on tasks being executed/skipped). This is used when you only want to see the output generated by the tasks execution.) see https://pydoit.org/cmd_run.html#reporter and https://pydoit.org/cmd_run.html#custom-reporter :param dir: By default the directory of the dodo file is used as the "current working directory" on python execution. You can specify a different cwd with this argument. See https://pydoit.org/cmd_run.html#dir-cwd :param num_process: the number of parallel execution processes to use. Default 1. See https://pydoit.org/cmd_run.html#parallel-execution :param parallel_type: the type of parallelism mechanism used when process is set to a number larger than 1. A string one of 'thread' (uses threads) and 'process' (uses python multiprocessing module, default). :param check_file_uptodate: a string indicating how to check if files have been modified. 'md5': use the md5sum (default) 'timestamp': use the timestamp. See https://pydoit.org/cmd_run.html#check-file-uptodate :param pdb: set this to True to get into PDB (python debugger) post-mortem in case of unhandled exception. Default: False. See https://pydoit.org/cmd_run.html#pdb :param codec_cls: a class used to serialize and deserialize values returned by python-actions. Default `JSONCodec`. See https://pydoit.org/cmd_run.html#codec-cls :param minversion: an optional string or a 3-element tuple with integer values indicating the minimum/oldest doit version that can be used with a dodo.py file. If specified as a string any part that is not a number i.e.(dev0, a2, b4) will be converted to -1. See https://pydoit.org/cmd_run.html#minversion :param auto_delayed_regex: set this to True (default False) to use the default regex ".*" for every delayed task loader for which no regex was explicitly defined. See https://pydoit.org/cmd_run.html#automatic-regex-for-delayed-task-loaders :param action_string_formatting: Defines the templating style used by your cmd action strings for automatic variable substitution. It is a string that can be 'old' (default), 'new', or 'both'. See https://pydoit.org/tasks.html#keywords-on-cmd-action-string :return: a configuration dictionary that you can use as the DOIT_CONFIG variable in your dodo.py file """ config_dict = dict() # execution related if default_tasks is not None: # note: yes, not a dash here but an underscore config_dict.update(default_tasks=default_tasks) if single is not None: config_dict.update(single=single) if continue_ is not None: config_dict['continue'] = continue_ if always is not None: config_dict.update(always=always) if cleanforget is not None: config_dict.update(cleanforget=cleanforget) if cleandep is not None: config_dict.update(cleandep=cleandep) if dryrun is not None: config_dict.update(dryrun=dryrun) # database if db_file is not None: assert dep_file is None, "db_file and dep_file are equivalent, you should not specify both" dep_file = db_file if dep_file is not None: # note: yes, not a dash here but an underscore config_dict.update(dep_file=dep_file) if backend is not None: config_dict.update(backend=backend) # verbosities if verbosity is not None: config_dict.update(verbosity=verbosity) if failure_verbosity is not None: # confirmed config_dict.update(failure_verbosity=failure_verbosity) # output, reporter and working dir if outfile is not None: # yes, short name config_dict.update(outfile=outfile) if reporter is not None: config_dict.update(reporter=reporter) if dir is not None: config_dict.update(dir=dir) # parallel processing if num_process is not None: config_dict.update(num_process=num_process) if parallel_type is not None: config_dict.update(par_type=parallel_type) # misc if check_file_uptodate is not None: config_dict.update(check_file_uptodate=check_file_uptodate) if pdb is not None: config_dict.update(pdb=pdb) if codec_cls is not None: config_dict.update(codec_cls=codec_cls) if minversion is not None: config_dict.update(minversion=minversion) if auto_delayed_regex is not None: config_dict.update(auto_delayed_regex=auto_delayed_regex) if action_string_formatting is not None: config_dict.update(action_string_formatting=action_string_formatting) return config_dict # --- task utilities def why_am_i_running(task, changed): """ Goodie: a python action that you can use in any `doit` task, to print the reason why the task is running if the task declared a `file_dep`, `task_dep`, `uptodate` or `targets`. Useful for debugging. See [this doit conversation](https://github.com/pydoit/doit/issues/277). """ for t in task.targets: if not exists(t): print("Running %s because one of its targets does not exist: %r" % (task, t)) return if changed is None or len(changed) == 0: if len(task.targets) > 0: print("Running %s because even though it declares at least a target, it does not have" " explicit `uptodate=True`." % task) else: # silence # print("Running %s because it declares no mechanism (file_dep or target) to avoid useless executions." % task) pass else: print("Running %s because the following changed: %r" % (task, changed)) def title_with_actions(task): """ Goodie: an automatic title for doit tasks. Same than `doit.title_with_actions` but removes `why_am_i_running` actions if any is present. """ if task.actions: title = "\n\t".join([str(action) for action in task.actions if not hasattr(action, 'py_callable') or action.py_callable is not why_am_i_running]) # A task that contains no actions at all # is used as group task else: title = "Group: %s" % ", ".join(task.task_dep) return "%s => %s" % (task.name, title) # ----------- tasks creators def validate_action(a): """ Internal helper to validate an action. Validates the conventions in https://pydoit.org/tasks.html#actions - a command action = A string (command to be executed with the shell) or a list of strings or pathlib Paths (command to be executed without the shell). See https://pydoit.org/tasks.html#cmd-action - a python action = a python callable or a tuple (callable, *args, **kwargs). See https://pydoit.org/tasks.html#python-action :param a: :return: """ if isinstance(a, str): # command action with the shell (Popen argument shell=True) pass elif isinstance(a, list): # command action without the shell (Popen argument shell=False) pass elif isinstance(a, tuple): # python callable with args and kwargs # assert len(a) == 3 # assert callable(a[0]) pass elif callable(a): pass elif isinstance(a, CmdAction): pass else: raise ValueError("Action %r is not a valid action" % a) def replace_task_names(list_of_tasks): """internal helper to replace tasks with their names in a list""" def gen_all(): for o in list_of_tasks: if isinstance(o, task): yield o.name elif isinstance(o, taskgen): yield o.name elif callable(o): yield o.__name__.replace('task_', '') else: # a string task name yield o return list(gen_all()) class taskbase(object): """ Base class for `task` and `taskgen`. """ def __init__(self, name, # type: str doc, # type: str title # type: Union[str, Callable] ): """ :param name: an alternate base name for the task. By default the name of the decorated function is used. See https://pydoit.org/tasks.html#task-name :param title: an optional message string or callable generating a message, to print when the task is run. If nothing is provided, by default the task name is printed. If a string is provided, the task name will automatically be printed before it. If a callable is provided it should receive a single `task` argument and return a string. See https://pydoit.org/tasks.html#title :param doc: an optional documentation string for the task. If `@task` is used as a decorator, the decorated function docstring will be used. See https://pydoit.org/tasks.html#doc """ self.name = name self.doc = doc self.title=title self.actions = None def add_default_desc_from_fun(self, func): """ Uses the information from `func` to fill the blanks in name and doc :param func: :return: """ if self.name is None: self.name = func.__name__ if self.doc is None: self.doc = func.__doc__ def get_base_desc(self, is_subtask=False, **additional_meta): task_dict = dict() # base name if is_subtask: task_dict.update(name=self.name) else: task_dict.update(basename=self.name) # doc if self.doc is not None: task_dict.update(doc=self.doc) # title if self.title is not None: if isinstance(self.title, str): # a string: doit does not support this, so create a callable with a simple format. def make_title(task): return "%s => %s" % (task.name, self.title) task_dict.update(title=make_title) else: # a callable already task_dict.update(title=self.title) # update with additional meta if provided task_dict.update(additional_meta) return task_dict class task(taskbase): """ Creates a doit task. ```python from doit_api import task echoer = task(name="echoer", actions=["echo hi"], doc="the doc for echoer") ``` It signature regroups all options that you usually can set on a `doit` task, with sensible defaults. See constructor for details. Note: this relies on the `create_doit_tasks` hook, see https://pydoit.org/task_creation.html#custom-task-definition """ def __init__(self, # *, (support for python 2: no kw only args) # -- task information + what the task is doing when run name, # type: str actions, # type: List[DoitAction] doc=None, # type: str title=title_with_actions, # type: Union[str, Callable] tell_why_am_i_running=True, # type: bool # -- preventing useless runs and selecting order targets=None, # type: List[DoitPath] clean=None, # type: Union[bool, List[DoitAction]] file_dep=None, # type: List[DoitPath] task_dep=None, # type: List[DoitTask] uptodate=None, # type: List[Optional[Union[bool, Callable, str]]] # -- advanced setup=None, # type: List[DoitTask] teardown=None, # type: List[DoitAction] getargs=None, # type: Dict[str, Tuple[str, str]] calc_dep=None, # type: List[DoitTask] # -- misc verbosity=None, # type: int ): """ A minimal `doit` task consists of one or several actions. You must provide at least one action in `actions`. If `tell_why_i_am_running=True` (default) an additional action will be prepended to print the reason why the task is running if the task declared a `file_dep`, `task_dep`, `uptodate` or `targets`. All other parameters match those in `doit` conventions (See docstrings below), except - `name` that is an intelligent placeholder for `basename` (if a task is a simple task) or `name` (if the task is a subtask in a `@taskgen` generator), - `title` that adds support for plain strings and by default is `title_with_actions` - `task_dep`, `setup` and `calc_dep` where if a task callable (decorated with `@task` or not) is provided, the corresponding name will be used. Note: the `watch` parameter (Linux and Mac only) is not yet supported. See https://pydoit.org/cmd_other.html?highlight=watch#auto-watch :param name: a mandatory name for the task. Note that this parameter will intelligently set 'basename' for normal tasks or 'name' for subtasks in a task generator (`@taskgen`). See https://pydoit.org/tasks.html#task-name :param actions: a mandatory list of actions that this task should execute. There are 2 basic kinds of actions: cmd-action and python-action. See https://pydoit.org/tasks.html#actions :param doc: an optional documentation string for the task. See https://pydoit.org/tasks.html#doc :param title: an optional message string or callable generating a message, to print when the task is run. If nothing is provided, by default the task name is printed. If a string is provided, the task name will automatically be printed before it. If a callable is provided it should receive a single `task` argument and return a string. See https://pydoit.org/tasks.html#title :param tell_why_am_i_running: if True (default), an additional `why_am_i_running` action is prepended to the list of actions :param file_dep: an optional list of strings or instances of any pathlib Path class indicating the files required for this task to run. When none of these files are modified, the task will be skipped if already run. See https://pydoit.org/tasks.html#file-dep-file-dependency :param task_dep: an optional list of tasks (names or callables) that should be run *before* this task. Note that this is also a convenient way to create a group of tasks. See https://pydoit.org/dependencies.html#task-dependency :param uptodate: an optional list where each element can be True (up to date), False (not up to date), None (ignored), a callable or a command(string). Many pre-baked callables from `doit.tools` can be used: `result_dep` to depend on the result of another task, `run_once` to run only once, `timeout` for time-based expiration, `config_changed`for changes in a "configuration" string or dictionary, and more... See https://pydoit.org/dependencies.html#uptodate :param targets: an optional list of strings or instances of any pathlib Path class indicating the files created by the task. They can be any file path (a file or folder). If a target does not exist the task will be executed. Two different tasks *can not* have the same target. See https://pydoit.org/tasks.html#targets :param clean: an optional boolean or list of tasks indicating if the task should perform some cleaning when `doit clean` is executed. `True` means "delete all targets". If there is a folder as a target it will be removed if the folder is empty, otherwise it will display a warning message. If you want to clean the targets and add some custom clean actions, you can include the doit.task.clean_targets See https://pydoit.org/cmd_other.html#clean :param setup: tasks to be run before this task but only when it is run. See https://pydoit.org/dependencies.html#setup-task :param teardown: actions to run once all tasks are completed. See https://pydoit.org/dependencies.html#setup-task :param getargs: an optional dictionary where the key is the argument name used on actions, and the value is a tuple with 2 strings: task name, "value name". getargs provides a way to use values computed from one task in another task. See https://pydoit.org/dependencies.html#getargs :param calc_dep: See https://pydoit.org/dependencies.html#calculated-dependencies :param verbosity: an optional custom verbosity level (0, 1, or 2) for this task: 0 capture (do not print) stdout/stderr from task, 1 capture stdout only, 2 do not capture anything (print everything immediately). Default is 1. See https://pydoit.org/tasks.html#verbosity """ # base super(task, self).__init__(name=name, doc=doc, title=title) # validate all actions if actions is None or not isinstance(actions, list): raise TypeError("actions should be a list, found: %r" % actions) # for a in actions: # validate_action(a) self.actions = actions self.tell_why_am_i_running = tell_why_am_i_running # store other attributes self.file_dep = file_dep self.task_dep = task_dep self.uptodate = uptodate self.targets = targets self.clean = clean # advanced ones self.setup = setup self.teardown = teardown self.getargs = getargs self.calc_dep = calc_dep self.verbosity = verbosity # finally attach the `create_doit_tasks` hook if needed self.create_doit_tasks = self._create_doit_tasks_noargs def _create_doit_tasks_noargs(self): return self._create_doit_tasks() def _create_doit_tasks(self, is_subtask=False): """Called by doit to know this task's definition, or by `@taskgen`""" # first get the base description task_dict = self.get_base_desc(is_subtask=is_subtask) # actions if self.tell_why_am_i_running: actions = [why_am_i_running] + self.actions else: actions = self.actions task_dict.update(actions=actions) # task dep, setup, calc dep: support direct link if self.task_dep is not None: task_dict.update(task_dep=replace_task_names(self.task_dep)) if self.setup is not None: task_dict.update(setup=replace_task_names(self.setup)) if self.calc_dep is not None: task_dict.update(calc_dep=replace_task_names(self.calc_dep)) # others: simply use if not none if self.file_dep is not None: task_dict.update(file_dep=self.file_dep) if self.uptodate is not None: task_dict.update(uptodate=self.uptodate) if self.targets is not None: task_dict.update(targets=self.targets) if self.clean is not None: task_dict.update(clean=self.clean) if self.teardown is not None: task_dict.update(teardown=self.teardown) if self.getargs is not None: task_dict.update(getargs=self.getargs) if self.verbosity is not None: task_dict.update(verbosity=self.verbosity) return task_dict class taskgen(taskbase): """ A decorator to create a doit task generator (See https://pydoit.org/tasks.html#sub-tasks). Similar to `@task`, you can use it without arguments and it will capture the name and docstring of the decorated function. This function needs to be a generator, meaning that it should `yield` tasks. Such tasks can be plain old dictionaries as in `doit`, or can be created with `task`. For example this is a task group named `mygroup` with two tasks `mygroup:echo0` and `mygroup:echo1` ```python from doit_api import taskgen, task @taskgen def mygroup(): ''' hey!!! ''' for i in range(2): yield task(name="echo%s" % i, actions=["echo hi > hoho%s.txt" % i], targets=["hoho%s.txt" % i]) ``` And this is one with two python subtasks: ```python from doit_api import taskgen, task @taskgen def mygroup(): ''' hey!!! ''' for i in range(2): @task(name="subtask %i" % i, doc="a subtask %s" % i, title="this is %s running" % i) def c_(): print("hello sub") yield c_ ``` `@taskgen` only accepts three optional arguments: `name` (that will be used for the base group name), doc, and title. """ def __init__(self, _func=None, # *, (support for python 2: no kw only args) # -- task information name=None, # type: str doc=None, # type: str # -- what the task is doing when run title=None # type: Union[str, Callable] ): """ :param name: an alternate base name for the task group. By default the name of the decorated function is used. See https://pydoit.org/tasks.html#sub-tasks :param doc: an optional documentation string for the task group. By default the decorated function docstring will be used. See https://pydoit.org/tasks.html#doc :param title: an optional message string or callable generating a message, to print when this task group is run. If nothing is provided, by default the task name is printed. If a string is provided, the task name will automatically be printed before it. If a callable is provided it should receive a single `task` argument and return a string. See https://pydoit.org/tasks.html#title """ # base super(taskgen, self).__init__(name=name, doc=doc, title=title) # this will be non-None if @taskgen is used as a decorator without arguments self.func = _func # late-rename so that doit doesn't try to call the unbound method. self.create_doit_tasks = self._create_doit_tasks def __call__(self, func): self.func = func # When instantiated with kwargs & used as a decorator return self def _create_doit_tasks(self): """Called by doit to know this task's definition""" # validate decorated function - a generator if self.func is None: raise TypeError("No task generator function is provided") if not isgeneratorfunction(self.func): raise TypeError("The decorated function should be a generator") # Protect against empty subtasks by yielding a first def with name None, see https://pydoit.org/tasks.html#sub-tasks self.add_default_desc_from_fun(self.func) yield self.get_base_desc(name=None) for f in self.func(): if isinstance(f, dict): yield f else: yield f._create_doit_tasks(is_subtask=True) # class TaskBase(object): # todo we could wish to provide the same level of functionality than this letsdoit class, but with fields listed. # """Subclass this to define tasks.""" # @classmethod # def create_doit_tasks(cls): # if cls is TaskBase: # return # avoid create tasks from base class 'Task' # instance = cls() # kw = dict((a, getattr(instance, a)) \ # for a in dir(instance) if not a.startswith('_')) # # kw.pop('create_doit_tasks') # if 'actions' not in kw: # kw['actions'] = [kw.pop('run')] # if 'doc' not in kw and (cls.__doc__ != TaskBase.__doc__): # kw['doc'] = cls.__doc__ # return kw def cmdtask( # -- task information name=None, # type: Union[str, Any] doc=None, # type: str # -- what the task is doing when run title=title_with_actions, # type: Union[str, Callable] pre_actions=None, # type: List[DoitAction] post_actions=None, # type: List[DoitAction] tell_why_am_i_running=True, # type: bool # -- preventing useless runs and selecting order targets=None, # type: List[DoitPath] clean=None, # type: Union[bool, List[DoitAction]] file_dep=None, # type: List[DoitPath] task_dep=None, # type: List[DoitTask] uptodate=None, # type: List[Optional[Union[bool, Callable, str]]] # -- advanced setup=None, # type: List[DoitTask] teardown=None, # type: List[DoitAction] getargs=None, # type: Dict[str, Tuple[str, str]] calc_dep=None, # type: List[DoitTask] # -- misc verbosity=None # type: int ): """ A decorator to create a task containing a shell command action (returned by the decorated function), and optional additional actions. ```python from doit_api import cmdtask @cmdtask def a(): ''' the doc for a ''' return "echo hi" @cmdtask(targets='foo.txt', file_deps=..., ...) def b(): ''' the doc for b ''' return ''' echo about to create file echo hi > foo.txt ''' @cmdtask def c(): ''' the doc for c ''' return [ "echo hi", ("echo", "hi") ] ``` A minimal `doit` task consists of one or several actions. Here, the main action is a shell command or sequence of shell commands, returned by the decorated function. In addition to supporting all ways to express a command action in doit, this also supports multiline strings to easily concatenate several commands into one (see rejected [feature request](https://github.com/pydoit/doit/issues/314)), and plain string or tuple (not in a list). Your function can therefore return: - A string (command to be executed with the shell). - A multiline string (commands to be executed with the shell. Blank lines automatically trimmed. All lines are concatenated into the same shell command using '&' (windows) or ';' (linux) before execution). This allows several commands to leverage each other, for example `conda activate` + some python execution. - a tuple (not list!) of strings or pathlib Paths (command to be executed without the shell). - a list of strings or tuples. Note that in this case strings can not be multiline. See [doit cmd-action](https://pydoit.org/tasks.html#cmd-action). You can specify actions to be done before and after that/these `actions` in `pre_actions` and `post_actions`. If `tell_why_i_am_running=True` (default) an additional action will be prepended to print the reason why the task is running if the task declared a `file_dep`, `task_dep`, `uptodate` or `targets`. All other parameters match those in `doit` conventions (See docstrings below), except - `name` that is an intelligent placeholder for `basename` (if a task is a simple task) or `name` (if the task is a subtask in a `@taskgen` generator), - `title` that adds support for plain strings and by default is `title_with_actions` - `task_dep`, `setup` and `calc_dep` where if a task callable (decorated with `@task` or not) is provided, the corresponding name will be used. Note: the `watch` parameter (Linux and Mac only) is not yet supported. See https://pydoit.org/cmd_other.html?highlight=watch#auto-watch :param name: an alternate name for the task. By default the name of the decorated function is used. Note that this parameter will intelligently set 'basename' for normal tasks or 'name' for subtasks in a task generator (`@taskgen`). See https://pydoit.org/tasks.html#task-name :param doc: an optional documentation string for the task. By default, the decorated function docstring will be used. See https://pydoit.org/tasks.html#doc :param title: an optional message string or callable generating a message, to print when the task is run. If nothing is provided, by default the task name is printed. If a string is provided, the task name will automatically be printed before it. If a callable is provided it should receive a single `task` argument and return a string. See https://pydoit.org/tasks.html#title :param pre_actions: an optional list of actions to be executed before the main python action. There are 2 basic kinds of actions: cmd-action and python-action. See https://pydoit.org/tasks.html#actions :param post_actions: an optional list of actions to be executed after the main python action. There are 2 basic kinds of actions: cmd-action and python-action. See https://pydoit.org/tasks.html#actions :param tell_why_am_i_running: if True (default), an additional `why_am_i_running` action is prepended to the list of actions :param file_dep: an optional list of strings or instances of any pathlib Path class indicating the files required for this task to run. When none of these files are modified, the task will be skipped if already run. See https://pydoit.org/tasks.html#file-dep-file-dependency :param task_dep: an optional list of tasks (names or callables) that should be run *before* this task. Note that this is also a convenient way to create a group of tasks. See https://pydoit.org/dependencies.html#task-dependency :param uptodate: an optional list where each element can be True (up to date), False (not up to date), None (ignored), a callable or a command(string). Many pre-baked callables from `doit.tools` can be used: `result_dep` to depend on the result of another task, `run_once` to run only once, `timeout` for time-based expiration, `config_changed`for changes in a "configuration" string or dictionary, and more... See https://pydoit.org/dependencies.html#uptodate :param targets: an optional list of strings or instances of any pathlib Path class indicating the files created by the task. They can be any file path (a file or folder). If a target does not exist the task will be executed. Two different tasks *can not* have the same target. See https://pydoit.org/tasks.html#targets :param clean: an optional boolean or list of tasks indicating if the task should perform some cleaning when `doit clean` is executed. `True` means "delete all targets". If there is a folder as a target it will be removed if the folder is empty, otherwise it will display a warning message. If you want to clean the targets and add some custom clean actions, you can include the doit.task.clean_targets See https://pydoit.org/cmd_other.html#clean :param setup: tasks to be run before this task but only when it is run. See https://pydoit.org/dependencies.html#setup-task :param teardown: actions to run once all tasks are completed. See https://pydoit.org/dependencies.html#setup-task :param getargs: an optional dictionary where the key is the argument name used on actions, and the value is a tuple with 2 strings: task name, "value name". getargs provides a way to use values computed from one task in another task. See https://pydoit.org/dependencies.html#getargs :param calc_dep: See https://pydoit.org/dependencies.html#calculated-dependencies :param verbosity: an optional custom verbosity level (0, 1, or 2) for this task: 0 capture (do not print) stdout/stderr from task, 1 capture stdout only, 2 do not capture anything (print everything immediately). Default is 1. See https://pydoit.org/tasks.html#verbosity """ # our decorator def _decorate(f # type: Callable ): # checks on the decorated function name if f.__name__.startswith("task_"): raise ValueError("You can not decorate a function named `task_xxx` with `@pytask` ; please remove the " "`task_` prefix.") # call the function to get the list of actions f_actions = f() if isinstance(f_actions, str): # by default multiline strings are executed in the same shell command f_actions = [join_cmds(get_multiline_actions(f_actions))] elif isinstance(f_actions, tuple): f_actions = [f_actions] elif isinstance(f_actions, list): # just convert the possible tuples inside, into lists. f_actions = [list(a) if isinstance(a, tuple) else a for a in f_actions] else: raise TypeError("Unsupported return type for @cmdtask '%s': returned %r" % (f.__name__, f_actions)) # create the actions: pre + [fun] + post actions = [] for _actions in (pre_actions, f_actions, post_actions): if _actions is None: continue if not isinstance(_actions, list): raise TypeError("pre_actions and post_actions should be lists") # for a in _actions: # validate_action(a) actions += _actions # create the task object f_task = task(name=name, doc=doc, title=title, actions=actions, tell_why_am_i_running=tell_why_am_i_running, targets=targets, clean=clean, file_dep=file_dep, task_dep=task_dep, uptodate=uptodate, setup=setup, teardown=teardown, getargs=getargs, calc_dep=calc_dep, verbosity=verbosity) # declare the fun f_task.add_default_desc_from_fun(f) # move the hooks from f_task to f f.create_doit_tasks = f_task.create_doit_tasks del f_task.create_doit_tasks f._create_doit_tasks = f_task._create_doit_tasks return f if name is not None and callable(name): # used without arguments: we have to return a function, not a task ! otherwise pickle wont work f = name name = None # important ! indeed it is used in _decorate return _decorate(f) else: # used with arguments: return a decorator return _decorate def pytask( # -- task information name=None, # type: Union[str, Any] doc=None, # type: str # -- what the task is doing when run title=title_with_actions, # type: Union[str, Callable] pre_actions=None, # type: List[DoitAction] post_actions=None, # type: List[DoitAction] tell_why_am_i_running=True, # type: bool # -- preventing useless runs and selecting order targets=None, # type: List[DoitPath] clean=None, # type: Union[bool, List[DoitAction]] file_dep=None, # type: List[DoitPath] task_dep=None, # type: List[DoitTask] uptodate=None, # type: List[Optional[Union[bool, Callable, str]]] # -- advanced setup=None, # type: List[DoitTask] teardown=None, # type: List[DoitAction] getargs=None, # type: Dict[str, Tuple[str, str]] calc_dep=None, # type: List[DoitTask] # -- misc verbosity=None # type: int ): """ A decorator to create a task containing a python action (the decorated function), and optional additional actions. ```python from doit_api import pytask @pytask def a(): ''' the doc for a ''' print("hi") @pytask(targets=..., file_deps=..., ...) def b(): print("hi") ``` A minimal `doit` task consists of one or several actions. Here, the main action is a call to the decorated function. You can specify actions to be done before and after that/these `actions` in `pre_actions` and `post_actions`. If `tell_why_i_am_running=True` (default) an additional action will be prepended to print the reason why the task is running if the task declared a `file_dep`, `task_dep`, `uptodate` or `targets`. All other parameters match those in `doit` conventions (See docstrings below), except - `name` that is an intelligent placeholder for `basename` (if a task is a simple task) or `name` (if the task is a subtask in a `@taskgen` generator), - `title` that adds support for plain strings and by default is `title_with_actions` - `task_dep`, `setup` and `calc_dep` where if a task callable (decorated with `@task` or not) is provided, the corresponding name will be used. Note: the `watch` parameter (Linux and Mac only) is not yet supported. See https://pydoit.org/cmd_other.html?highlight=watch#auto-watch :param name: an alternate name for the task. By default the name of the decorated function is used. Note that this parameter will intelligently set 'basename' for normal tasks or 'name' for subtasks in a task generator (`@taskgen`). See https://pydoit.org/tasks.html#task-name :param doc: an optional documentation string for the task. By default, the decorated function docstring will be used. See https://pydoit.org/tasks.html#doc :param title: an optional message string or callable generating a message, to print when the task is run. If nothing is provided, by default the task name is printed. If a string is provided, the task name will automatically be printed before it. If a callable is provided it should receive a single `task` argument and return a string. See https://pydoit.org/tasks.html#title :param pre_actions: an optional list of actions to be executed before the main python action. There are 2 basic kinds of actions: cmd-action and python-action. See https://pydoit.org/tasks.html#actions :param post_actions: an optional list of actions to be executed after the main python action. There are 2 basic kinds of actions: cmd-action and python-action. See https://pydoit.org/tasks.html#actions :param tell_why_am_i_running: if True (default), an additional `why_am_i_running` action is prepended to the list of actions :param file_dep: an optional list of strings or instances of any pathlib Path class indicating the files required for this task to run. When none of these files are modified, the task will be skipped if already run. See https://pydoit.org/tasks.html#file-dep-file-dependency :param task_dep: an optional list of tasks (names or callables) that should be run *before* this task. Note that this is also a convenient way to create a group of tasks. See https://pydoit.org/dependencies.html#task-dependency :param uptodate: an optional list where each element can be True (up to date), False (not up to date), None (ignored), a callable or a command(string). Many pre-baked callables from `doit.tools` can be used: `result_dep` to depend on the result of another task, `run_once` to run only once, `timeout` for time-based expiration, `config_changed`for changes in a "configuration" string or dictionary, and more... See https://pydoit.org/dependencies.html#uptodate :param targets: an optional list of strings or instances of any pathlib Path class indicating the files created by the task. They can be any file path (a file or folder). If a target does not exist the task will be executed. Two different tasks *can not* have the same target. See https://pydoit.org/tasks.html#targets :param clean: an optional boolean or list of tasks indicating if the task should perform some cleaning when `doit clean` is executed. `True` means "delete all targets". If there is a folder as a target it will be removed if the folder is empty, otherwise it will display a warning message. If you want to clean the targets and add some custom clean actions, you can include the doit.task.clean_targets See https://pydoit.org/cmd_other.html#clean :param setup: tasks to be run before this task but only when it is run. See https://pydoit.org/dependencies.html#setup-task :param teardown: actions to run once all tasks are completed. See https://pydoit.org/dependencies.html#setup-task :param getargs: an optional dictionary where the key is the argument name used on actions, and the value is a tuple with 2 strings: task name, "value name". getargs provides a way to use values computed from one task in another task. See https://pydoit.org/dependencies.html#getargs :param calc_dep: See https://pydoit.org/dependencies.html#calculated-dependencies :param verbosity: an optional custom verbosity level (0, 1, or 2) for this task: 0 capture (do not print) stdout/stderr from task, 1 capture stdout only, 2 do not capture anything (print everything immediately). Default is 1. See https://pydoit.org/tasks.html#verbosity """ # our decorator def _decorate(f # type: Callable ): # checks on the decorated function name if f.__name__.startswith("task_"): raise ValueError("You can not decorate a function named `task_xxx` with `@pytask` ; please remove the " "`task_` prefix.") # create the actions: pre + [fun] + post actions = [] for _actions in (pre_actions, [f], post_actions): if _actions is None: continue if not isinstance(_actions, list): raise TypeError("pre_actions and post_actions should be lists") # for a in _actions: # validate_action(a) actions += _actions # create the task object f_task = task(name=name, doc=doc, title=title, actions=actions, tell_why_am_i_running=tell_why_am_i_running, targets=targets, clean=clean, file_dep=file_dep, task_dep=task_dep, uptodate=uptodate, setup=setup, teardown=teardown, getargs=getargs, calc_dep=calc_dep, verbosity=verbosity) # declare the fun f_task.add_default_desc_from_fun(f) # move the hooks from f_task to f f.create_doit_tasks = f_task.create_doit_tasks del f_task.create_doit_tasks f._create_doit_tasks = f_task._create_doit_tasks return f if name is not None and callable(name): # used without arguments: we have to return a function, not a task ! otherwise pickle wont work f = name name = None # important ! indeed it is used in _decorate return _decorate(f) else: # used with arguments: return a decorator return _decorate # python 2 -specific hack to enable pickling task and taskgen objects # without getting TypeError: can't pickle instancemethod objects # see https://stackoverflow.com/a/25161919/7262247 if sys.version_info < (3, 0): import copy_reg import types def _pickle_method(m): if m.im_self is None: return getattr, (m.im_class, m.im_func.func_name) else: return getattr, (m.im_self, m.im_func.func_name) copy_reg.pickle(types.MethodType, _pickle_method) def get_multiline_actions(a_string): """ Transforms the multiline command string provided into a list of single-line commands. :param a_string: :return: a list of action strings """ def _procline(l): # remove spaces on the left l = l.strip() # remove comments try: cmt_idx = l.index('#') l = l[:cmt_idx] except: pass # finally remove trailing spaces return l.rstrip() lines = [_procline(l) for l in a_string.splitlines()] return [l for l in lines if len(l) > 0] OS_CMD_SEP = '& ' if platform.system() == 'Windows' else '; ' def join_cmds(cmds_list): """ Joins all commands in cmds_list into a single-line command, with the appropriate OS-dependent separator. See https://github.com/pydoit/doit/issues/314 (rejected :( ) :param cmds_list: a list of shell commands (string) :return: a single string containing a shell command """ def _procline(l): # remove spaces on the left l = l.strip() # remove comments try: cmt_idx = l.index('#') l = l[:cmt_idx] except: pass # finally remove trailing spaces return l.rstrip() lines = [_procline(l) for l in cmds_list] lines = [l for l in lines if len(l) > 0] return OS_CMD_SEP.join(lines)
StarcoderdataPython
83231
# # elkme - the command-line sms utility # see main.py for the main entry-point # __version__ = '0.6.0' __release_date__ = '2017-07-17'
StarcoderdataPython
1758703
<filename>test-rst2.py import io import os import select import socket import time import utils # 以下はnetwork namespaceを新たに作成するためか、tcp_fin_timeoutの変更等が継承されないためコメントアウト # utils.new_ns() port = 1 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) s.bind(('127.0.0.1', port)) s.listen(16) tcpdump = utils.tcpdump_start(port) c = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) time.sleep(1) utils.ss(port) c.connect(('127.0.0.1', port)) time.sleep(1) print("[c] client connect") utils.ss(port) x, _ = s.accept() time.sleep(1) print("[x] server accept") utils.ss(port) for num in range(3): print("[x] send") c.send(b"hello world") x.shutdown(socket.SHUT_WR) time.sleep(1) print("[x] server shutdown(SHUT_WR)") utils.ss(port) x.close() time.sleep(1) print("[x] server close socket") utils.ss(port) for num in range(3): print("[x] send") c.send(b"hello world") time.sleep(1) utils.ss(port) print("#####just ss outputs from now#####") time.sleep(1) utils.ss(port) time.sleep(1) utils.ss(port) time.sleep(1) utils.ss(port)
StarcoderdataPython
96489
"""MPC Algorithms.""" import torch from torch.distributions import MultivariateNormal from rllib.util.parameter_decay import Constant, ParameterDecay from .abstract_solver import MPCSolver class MPPIShooting(MPCSolver): """Solve MPC using Model Predictive Path Integral control. References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2016). Aggressive driving with model predictive path integral control. ICRA. <NAME>., <NAME>., & <NAME>. (2015). Model predictive path integral control using covariance variable importance sampling. arXiv. <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv. """ def __init__(self, kappa=1.0, filter_coefficients=(0.25, 0.8, 0), *args, **kwargs): super().__init__(*args, **kwargs) if not isinstance(kappa, ParameterDecay): kappa = Constant(kappa) self.kappa = kappa self.filter_coefficients = torch.tensor(filter_coefficients) self.filter_coefficients /= torch.sum(self.filter_coefficients) def get_candidate_action_sequence(self): """Get candidate actions by sampling from a multivariate normal.""" noise_dist = MultivariateNormal(torch.zeros_like(self.mean), self.covariance) noise = noise_dist.sample((self.num_samples,)) lag = len(self.filter_coefficients) for i in range(self.horizon): weights = self.filter_coefficients[: min(i + 1, lag)] aux = torch.einsum( "i, ki...j-> k...j", weights.flip(0), noise[:, max(0, i - lag + 1) : i + 1, ..., :], ) noise[:, i, ..., :] = aux / torch.sum(weights) action_sequence = self.mean.unsqueeze(0).repeat_interleave(self.num_samples, 0) action_sequence += noise action_sequence = action_sequence.permute( tuple(torch.arange(1, action_sequence.dim() - 1)) + (0, -1) ) if self.clamp: return action_sequence.clamp(-1.0, 1.0) return action_sequence def get_best_action(self, action_sequence, returns): """Get best action by a weighted average of e^kappa returns.""" returns = self.kappa() * returns weights = torch.exp(returns - torch.max(returns)) normalization = weights.sum() weights = weights.unsqueeze(0).unsqueeze(-1) weights = weights.repeat_interleave(self.horizon, 0).repeat_interleave( self.dim_action, -1 ) return (weights * action_sequence).sum(dim=-2) / normalization def update_sequence_generation(self, elite_actions): """Update distribution by the fitting the elite_actions to the mean.""" self.mean = elite_actions self.kappa.update()
StarcoderdataPython
3393912
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-23 21:56 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('snorna', '0002_clinical_genomic_analysis_snorna_expression'), ] operations = [ migrations.RenameField( model_name='dataset', old_name='read_length', new_name='average_mappable_reads', ), migrations.RemoveField( model_name='dataset', name='sequencing_strategy', ), migrations.AddField( model_name='dataset', name='snorna_n', field=models.IntegerField(null=True), ), migrations.AddField( model_name='dataset', name='snorna_rpkm_n', field=models.IntegerField(null=True), ), ]
StarcoderdataPython
184287
<gh_stars>1-10 #!/usr/bin/env python import pytest """ Test 1805. Number of Different Integers in a String """ @pytest.fixture(scope="session") def init_variables_1805(): from src.leetcode_1805_number_of_different_integers_in_a_string import Solution solution = Solution() def _init_variables_1805(): return solution yield _init_variables_1805 class TestClass1805: def test_solution_0(self, init_variables_1805): assert init_variables_1805().numDifferentIntegers("a123bc34d8ef34") == 3 def test_solution_1(self, init_variables_1805): assert init_variables_1805().numDifferentIntegers("leet1234code234") == 2 def test_solution_2(self, init_variables_1805): assert init_variables_1805().numDifferentIntegers("a1b01c001") == 1
StarcoderdataPython
42994
<reponame>josborne-noaa/PyFerret<gh_stars>10-100 ''' Template for creating a PyFerret Python External Function (PyEF). The names of the functions provided should not be changed. By default, PyFerret uses the name of the module as the function name. Copy this file using a name that you would like to be the function name, then modify the contents of these functions and comments as desired. ''' import numpy def ferret_init(efid): ''' Initialization function for this PyFerret PyEF. Returns a dictionary describing the features of this PyFerret PyEF. At a minimum, assigns the number of arguments expected and a descriptions of the functions. May also provide descriptions of the arguments and specifications for a non-standard result grid. ''' init_dict = { } init_dict["numargs"] = 1 init_dict["descript"] = "Pass through" return init_dict def ferret_result_limits(efid): ''' Defines the index limits for all abstract axes in the result grid. Returns an (X,Y,Z,T,E,F)-axis six-tuple of either (low,high) pairs, for an abstract axis, or None, for a non-abstract axis. The low and high values are integer values. If the result grid has no abstract axes, this function will not be called and can be deleted. ''' axis_limits = (None, None, None, None, None, None) return axis_limits def ferret_custom_axes(efid): ''' Defines all custom axes in ther result grid. Returns a (X,Y,Z,T,E,F)- axis six-tuple of either a (low, high, delta, unit_name, is_modulo) tuple, for a custom axis, or None, for a non-custom axis. The low, high, and delta values are floating-point values in units of the axis coordinate ("world coordinates"). If the result grid has no custom axes, this function will not be called and can be deleted. ''' axis_info = (None, None, None, None, None, None) return axis_info def ferret_compute(efid, result, result_bdf, inputs, input_bdfs): ''' Computation function for this PyFerret PyEF. Assign values to the elements of result; do not reassign result itself. In other words, assign values using notation similar to 'result[...] = ...'; do not use notation similar to 'result = ...' as this will simply define a new local variable called result, hiding the variable passed into this function. If an error is detected, raise an appropriate exception. ValueError is commonly used for unexpected values. IndexError is commonly used for unexpected array sizes. Arguments: result - numpy float array to be assigned result_bdf - numpy read-only float array of one element giving the missing-data value to be used when assigning result inputs - tuple of numpy read-only float arrays giving the input values provided by the caller input_bdfs - numpy read-only float arrays of one element giving the missing-data value for the corresponding inputs array ''' # Create masks of values that are undefined and that are defined bad_mask = ( inputs[0] == input_bdfs[0] ) good_mask = numpy.logical_not(bad_mask) result[good_mask] = inputs[0][good_mask] result[bad_mask] = result_bdf return
StarcoderdataPython
3334883
from .pytorch_helpers import cuda_to_numpy import numpy as np from .costum_loss_functions import CostumMetric, INetworkLossFunction import torch import torch.nn.functional as F class Accuracy(CostumMetric): def __init__(self): self.mode = 'max' self.__name__ = 'acc' def __call__(self, y_pred, y_true): y_pred = cuda_to_numpy(y_pred) y_pred = np.argmax(y_pred, axis=-1) y_true = cuda_to_numpy(y_true) y_true = y_true[..., 0] return np.mean(y_pred == y_true) class DiceLoss(INetworkLossFunction): def __init__(self, class_weights=None): self.__name__ = 'dice_loss' self.mode = 'min' if class_weights is not None: self.class_weights = torch.tensor( class_weights, requires_grad=False).view(1, len(class_weights), 1, 1) else: self.class_weights = None def __call__(self, logits, true, eps=1e-7): """Computes the Sørensen–Dice loss. Note that PyTorch optimizers minimize a loss. In this case, we would like to maximize the dice loss so we return the negated dice loss. Args: true: a tensor of shape [B, 1, H, W]. logits: a tensor of shape [B, C, H, W]. Corresponds to the raw output or logits of the model. eps: added to the denominator for numerical stability. Returns: dice_loss: the Sørensen–Dice loss. """ num_classes = logits.shape[1] if num_classes == 1: true_1_hot = torch.eye(num_classes + 1)[true] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() true_1_hot_f = true_1_hot[:, 0:1, :, :] true_1_hot_s = true_1_hot[:, 1:2, :, :] true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1) pos_prob = torch.sigmoid(logits) neg_prob = 1 - pos_prob probas = torch.cat([pos_prob, neg_prob], dim=1) else: true_1_hot = torch.eye(num_classes)[true] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() probas = F.softmax(logits, dim=1) dims = (0,) + tuple(range(2, true.ndimension())) probas = probas.cuda() # apply weights if self.class_weights is not None: probas = probas * self.class_weights true_1_hot = true_1_hot.cuda() intersection = torch.sum(probas * true_1_hot, dims) cardinality = torch.sum(probas + true_1_hot, dims) dice_loss = (2. * intersection / (cardinality + eps)).mean() return (1.0 - dice_loss.cuda())
StarcoderdataPython
1636277
from aioazstorage import TableClient from os import environ from datetime import datetime from uuid import uuid1 from time import time from asyncio import set_event_loop_policy, Task, gather try: from uvloop import get_event_loop, EventLoopPolicy set_event_loop_policy(EventLoopPolicy()) except ImportError: from asyncio import get_event_loop # TODO: add SAS token support, reference: # https://github.com/yokawasa/azure-functions-python-samples/blob/master/blob-sas-token-generator/function/run.py STORAGE_ACCOUNT=environ['STORAGE_ACCOUNT'] STORAGE_KEY=environ['STORAGE_KEY'] OPERATION_COUNT=int(environ.get('OPERATION_COUNT',100)) async def main(): t = TableClient(STORAGE_ACCOUNT, STORAGE_KEY) #print("Table Deletion", end=" ") #print((await t.deleteTable('aiotest')).status) print("Table Creation", end=" ") print((await t.createTable('aiotest')).status) print("Table Query", end=" ") async for item in t.getTables({"$filter": "TableName eq 'aiotest'"}): print(item['TableName'], end=" ") print("\nInsertion:", end=" ") tasks = [] for i in range(OPERATION_COUNT): tasks.append(Task(t.insertEntity('aiotest', { "Address":"Mountain View", "Age":23 + i, "AmountDue":200.23, "CustomerCode": str(uuid1()), # send this as string intentionally "CustomerSince":datetime.now(), "IsActive": True, "NumberOfOrders": 255, "PartitionKey":"mypartitionkey", "RowKey": "Customer%d" % i }))) start = time() res = await gather(*tasks) print("{} operations/s".format(OPERATION_COUNT/(time()-start))) #print([r.status for r in res]) print("Deletion:") tasks = [] for i in range(OPERATION_COUNT): tasks.append(Task(t.deleteEntity('aiotest', { "PartitionKey":"mypartitionkey", "RowKey": "Customer%d" % i }))) start = time() res = await gather(*tasks) print("{} operations/s".format(OPERATION_COUNT/(time()-start))) #print([r.status for r in res]) print("Upsert:") tasks = [] for i in range(OPERATION_COUNT): tasks.append(Task(t.insertOrReplaceEntity('aiotest', { "Address":"Mountain View", "Age": 23 - i, "AmountDue": 0, "CustomerCode": uuid1(), # this updates the entry schema as well "CustomerSince":datetime.now(), "IsActive": True, "NumberOfOrders": 0, "PartitionKey":"mypartitionkey", "RowKey": "Customer%d" % i }))) start = time() res = await gather(*tasks) print("{} operations/s".format(OPERATION_COUNT/(time()-start))) #print([r.status for r in res]) print("Query") async for item in t.queryEntities('aiotest', {"$filter": "Age gt 0"}): print(item['RowKey'], end= " ") print() entities = [] for i in range(OPERATION_COUNT): entities.append({ "Address":"Mountain View", "Age":23 + i, "AmountDue":200.23, "CustomerCode": str(uuid1()), # send this as string intentionally "<EMAIL>": "Edm.DateTime", "CustomerSince":datetime.now(), "IsActive": True, "NumberOfOrders": 255, "PartitionKey":"mypartitionkey", "RowKey": "Customer%d" % i }) start = time() res = await t.batchUpdate('aiotest', entities) print("{} operations/s".format(OPERATION_COUNT/(time()-start))) print(res.status) print(res.headers) print(await res.text()) print() await t.close() if __name__ == '__main__': loop = get_event_loop() loop.run_until_complete(main())
StarcoderdataPython
4814952
import datetime from database.database_schemas import Schemas from database.dsstox.generic_substances import GenericSubstances from database.dsstox.source_substances import SourceSubstances from sqlalchemy import Column, Integer, String, DateTime, ForeignKey from sqlalchemy.dialects.mysql import FLOAT from sqlalchemy.orm import relationship from database.base import Base class SourceGenericSubstanceMappings(Base): """Maps to source_generic_substance_mappings table in dsstox databases.""" __tablename__ = 'source_generic_substance_mappings' __table_args__ = {'schema': Schemas.dsstox_schema} id = Column(Integer, primary_key=True, nullable=False) fk_source_substance_id = Column(ForeignKey(SourceSubstances.id)) fk_generic_substance_id = Column(ForeignKey(GenericSubstances.id)) connection_reason = Column(String(255)) linkage_score = Column(FLOAT) curator_validated = Column(Integer) qc_notes = Column(String(1024)) created_by = Column(String(255), nullable=False) updated_by = Column(String(255), nullable=False) created_at = Column(DateTime, default=datetime.datetime.now, nullable=False) updated_at = Column(DateTime, default=datetime.datetime.now, nullable=False) source_substance = relationship("SourceSubstances") generic_substance = relationship("GenericSubstances")
StarcoderdataPython
3252573
"""String utils module""" import re def replace_ascii(str): # Substitute swedish characters for sensible counterparts str = str.replace(u'\xc5','A') str = str.replace(u'\xe5','a') str = str.replace(u'\xc4','A') str = str.replace(u'\xe4','a') str = str.replace(u'\xd6','O') str = str.replace(u'\xf6','o') return str.encode('ascii','replace') def hamming_distance(s1, s2): """Calculate the Hamming distance between two strings of equal lengths. Raise ValueError if strings are of unequal length. """ if len(s1) != len(s2): raise ValueError('strings of unequal length') return sum(ch1 != ch2 for ch1, ch2 in zip(s1, s2)) def strip_extensions(fn, ext=[]): """Strip extensions from a filename. :param fn: filename :param ext: list of extensions to strip :returns: stripped version of fn and extension """ pattern = "|".join(".*({})$".format(x) for x in ext) if not pattern: return (fn, None) m = re.search(pattern, fn) if not m: return (fn, None) return (fn.replace(m.group(1), ""), m.group(1))
StarcoderdataPython
3369657
""" Unique usernames You get an list of names and need to return a list of unique usernames. For a duplicate name, add the next integer after the name For example: Input ['Julie', 'Emma', 'Zoe', 'Liam', 'Emma'] Output ['Julie', 'Emma', 'Zoe', 'Liam', 'Emma1'] Input ['Julie', 'Zoe', 'Zoe', 'Liam', 'Emma', 'Zoe'] Output ['Julie', 'Zoe', 'Zoe1', 'Liam', 'Emma', 'Zoe2'] """ def users(names): usernames = [] for name in names[1:]: if name not in usernames: usernames.append(name) else: count = sum(name in user for user in usernames) usernames.append(name + str(count)) return usernames
StarcoderdataPython
4803189
<reponame>atamraka/PythonExamples<gh_stars>0 ''' Created on May 14, 2017 @author: rujina ''' ''' select any 6 columns out of the columns inside csv file attached to this email and write it in other csv files with the same column names.(do not select adjacent coloumns) ''' # with open('write.csv', 'wb') as csv_write_file: # writer=csv.writer(csv_write_file) # with open('FL_insurance_sample.csv','rb') as csv_data: # read_data=csv.reader(csv_data) # for rowdata in read_data: # writer.writerow([rowdata[0], rowdata[2], rowdata[4], rowdata[6], rowdata[8], rowdata[10]]) ''' Write a program that accepts sequence of lines as input and prints the lines after making all characters in the sentence capitalized. Suppose the following input is supplied to the program: Hello world s Practice makes perfect Then, the output should be: HELLO WORLD PRACTICE MAKES PERFECT ''' # print "Enter/Paste your content. Ctrl-D to save it." # contents = "" # # while True: # line = raw_input("") # if(line==""): # break # contents=contents+"\n"+line # print contents.upper() ''' 3)-Define a function that can accept two strings as input and print the string with maximum length in console. If two strings have the same length, then the function should print all strings line by line. ''' # no_of_lines = 2 # lines = [] # for i in xrange(no_of_lines): # lines.append(raw_input()) # maxLineLen = max(lines, key=len) # for st in lines: # if(len(st) == len(maxLineLen)): # print st ''' 4)-With a given list [12,24,35,24,88,120,155,88,120,155], write a program to print this list after removing all duplicate values with original order reserved. ''' # t=[12,24,35,24,88,120,155,88,120,155] # list_suplicateRemoved=list(set(t)) # print list_suplicateRemoved # list_suplicateRemoved.reverse() # print list_suplicateRemoved ''' 5)- create html page consisting of all points of the course from w3schools. '''
StarcoderdataPython
3305447
<reponame>nacknime-official/freelancehunt-api<gh_stars>1-10 #!usr/bin/python3 """`Freelancehunt Documentation - Profiles API <https://apidocs.freelancehunt.com/?version=latest#7dfb1bc1-4d54-46d8-9c01-75b7a32f3db6>`_.""" from typing import List, Optional, Tuple, Union from ..core import FreelancehuntObject from ..models.user import Profile, Freelancer, Employer __all__ = ('Profiles',) class Profiles(FreelancehuntObject): """Provide operations with Profiles API part. .. warning:: For directly usage please set `token` argument. :param str token: your API token, optional """ def __init__(self, token: Optional[str] = None, **kwargs): """Create object to provide operations with Profiles API part. :param token: your API token (only for directly usage, not inside Client class), defaults to None """ super().__init__(token, **kwargs) @property def my_profile(self) -> Union[Employer, Freelancer]: """Get my profile information. :return: information of your account """ responce = self._get('/my/profile') return Profile.de_json(**responce) def get_freelancers_list( self, country_id: Optional[int] = None, city_id: Optional[int] = None, skill_id: Optional[int] = None, login: Optional[str] = None, pages: Optional[Union[int, Tuple[int], List[int]]] = 1 ) -> List[Freelancer]: """Get filtered freelancer profiles. :param country_id: freelancer from country (API-related Country identifier), defaults to None :param city_id: freelancer from city (API-related City identifier), defaults to None :param skill_id: freelancer skill (API-related Skill identifier), defaults to None :param login: with the desired login, defaults to None :param pages: number of pages, defaults to 1 :return: list of filtered freelancer profiles """ filters = { 'country_id': country_id, 'city_id': city_id, 'skill_id': skill_id, 'login': login } responce = self._multi_page_get('/freelancers', filters, pages) return [Freelancer.de_json(**data) for data in responce] def get_employers_list( self, country_id: Optional[int] = None, city_id: Optional[int] = None, login: Optional[str] = None, pages: Optional[Union[int, Tuple[int], List[int]]] = 1 ) -> List[Employer]: """Get filtered employer profiles. :param country_id: employer from country (API-related Country identifier), defaults to None :param city_id: employer from city (API-related City identifier), defaults to None :param login: with the desired login, defaults to None :param pages: number of pages, defaults to 1 :return: list of filtered employer profiles """ filters = { 'country_id': country_id, 'city_id': city_id, 'login': login } responce = self._multi_page_get('/employers', filters, pages) return [Employer.de_json(**data) for data in responce] def get_freelancer_datails(self, profile_id: int) -> Freelancer: """Get information about freelancer by identifier. :param profile_id: the desired profile identifier """ responce = self._get(f'/freelancers/{profile_id}') return Freelancer.de_json(**responce) def get_employer_datails(self, profile_id: int) -> Employer: """Get information about employer by identifier. :param profile_id: the desired profile identifier """ responce = self._get(f'/employers/{profile_id}') return Employer.de_json(**responce)
StarcoderdataPython
20539
from abaqusConstants import * from .OdbPart import OdbPart from .OdbStep import OdbStep from .SectionCategory import SectionCategory from ..Amplitude.AmplitudeOdb import AmplitudeOdb from ..BeamSectionProfile.BeamSectionProfileOdb import BeamSectionProfileOdb from ..Filter.FilterOdb import FilterOdb from ..Material.MaterialOdb import MaterialOdb class Odb(AmplitudeOdb, FilterOdb, MaterialOdb, BeamSectionProfileOdb): """The Odb object is the in-memory representation of an output database (ODB) file. Attributes ---------- isReadOnly: Boolean A Boolean specifying whether the output database was opened with read-only access. amplitudes: dict[str, Amplitude] A repository of :py:class:`~abaqus.Amplitude.Amplitude.Amplitude` objects. filters: dict[str, Filter] A repository of :py:class:`~abaqus.Filter.Filter.Filter` objects. rootAssembly: OdbAssembly An :py:class:`~abaqus.Odb.OdbAssembly.OdbAssembly` object. jobData: JobData A :py:class:`~abaqus.Odb.JobData.JobData` object. parts: dict[str, OdbPart] A repository of :py:class:`~abaqus.Odb.OdbPart.OdbPart` objects. materials: dict[str, Material] A repository of :py:class:`~abaqus.Material.Material.Material` objects. steps: dict[str, OdbStep] A repository of :py:class:`~abaqus.Odb.OdbStep.OdbStep` objects. sections: dict[str, Section] A repository of :py:class:`~abaqus.Section.Section.Section` objects. sectionCategories: dict[str, SectionCategory] A repository of :py:class:`~abaqus.Odb.SectionCategory.SectionCategory` objects. sectorDefinition: SectorDefinition A :py:class:`~abaqus.Odb.SectorDefinition.SectorDefinition` object. userData: UserData A :py:class:`~abaqus.Odb.UserData.UserData` object. customData: RepositorySupport A :py:class:`~abaqus.CustomKernel.RepositorySupport.RepositorySupport` object. profiles: dict[str, Profile] A repository of :py:class:`~abaqus.BeamSectionProfile.Profile.Profile` objects. Notes ----- This object can be accessed by: .. code-block:: python import odbAccess session.odbs[name] """ def Part(self, name: str, embeddedSpace: SymbolicConstant, type: SymbolicConstant) -> OdbPart: """This method creates an OdbPart object. Nodes and elements are added to this object at a later stage. Notes ----- This function can be accessed by: .. code-block:: python session.odbs[name].Part Parameters ---------- name A String specifying the part name. embeddedSpace A SymbolicConstant specifying the dimensionality of the Part object. Possible values are THREE_D, TWO_D_PLANAR, and AXISYMMETRIC. type A SymbolicConstant specifying the type of the Part object. Possible values are DEFORMABLE_BODY and ANALYTIC_RIGID_SURFACE. Returns ------- An OdbPart object. """ self.parts[name] = odbPart = OdbPart(name, embeddedSpace, type) return odbPart def Step(self, name: str, description: str, domain: SymbolicConstant, timePeriod: float = 0, previousStepName: str = '', procedure: str = '', totalTime: float = None) -> OdbStep: """This method creates an OdbStep object. Notes ----- This function can be accessed by: .. code-block:: python session.odbs[name].Step Parameters ---------- name A String specifying the repository key. description A String specifying the step description. domain A SymbolicConstant specifying the domain of the step. Possible values are TIME, FREQUENCY, ARC_LENGTH, and MODAL.The type of OdbFrame object that can be created for this step is based on the value of the *domain* argument. timePeriod A Float specifying the time period of the step. *timePeriod* is required if *domain*=TIME; otherwise, this argument is not applicable. The default value is 0.0. previousStepName A String specifying the preceding step. If *previousStepName* is the empty string, the last step in the repository is used. If *previousStepName* is not the last step, this will result in a change to the *previousStepName* member of the step that was in that position. A special value 'Initial' refers to the internal initial model step and may be used exclusively for inserting a new step at the first position before any other existing steps. The default value is an empty string. procedure A String specifying the step procedure. The default value is an empty string. The following is the list of valid procedures: ``` *ANNEAL *BUCKLE *COMPLEX FREQUENCY *COUPLED TEMPERATURE-DISPLACEMENT *COUPLED TEMPERATURE-DISPLACEMENT, CETOL *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE *COUPLED THERMAL-ELECTRICAL, STEADY STATE *COUPLED THERMAL-ELECTRICAL *COUPLED THERMAL-ELECTRICAL, DELTMX *DYNAMIC *DYNAMIC, DIRECT *DYNAMIC, EXPLICIT *DYNAMIC, SUBSPACE *DYNAMIC TEMPERATURE-DISPLACEMENT, EXPLICT *ELECTROMAGNETIC, HIGH FREQUENCY, TIME HARMONIC *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN, DIRECT *ELECTROMAGNETIC, LOW FREQUENCY, TIME HARMONIC *FREQUENCY *GEOSTATIC *HEAT TRANSFER *HEAT TRANSFER, DELTAMX=__ *HEAT TRANSFER, STEADY STATE *MAGNETOSTATIC *MAGNETOSTATIC, DIRECT *MASS DIFFUSION *MASS DIFFUSION, DCMAX= *MASS DIFFUSION, STEADY STATE *MODAL DYNAMIC *RANDOM RESPONSE *RESPONSE SPECTRUM *SOILS *SOILS, CETOL/UTOL *SOILS, CONSOLIDATION *SOILS, CONSOLIDATION, CETOL/UTOL *STATIC *STATIC, DIRECT *STATIC, RIKS *STEADY STATE DYNAMICS *STEADY STATE TRANSPORT *STEADY STATE TRANSPORT, DIRECT *STEP PERTURBATION, *STATIC *SUBSTRUCTURE GENERATE *USA ADDDED MASS GENERATION *VISCO ``` totalTime A Float specifying the analysis time spend in all the steps previous to this step. The default value is −1.0. Returns ------- An OdbStep object. Raises ------ - If *previousStepName* is invalid: ValueError: previousStepName is invalid """ self.steps[name] = odbStep = OdbStep(name, description, domain, timePeriod, previousStepName, procedure, totalTime) return odbStep def SectionCategory(self, name: str, description: str) -> SectionCategory: """This method creates a SectionCategory object. Notes ----- This function can be accessed by: .. code-block:: python session.odbs[*name*].SectionCategory Parameters ---------- name A String specifying the name of the category. description A String specifying the description of the category. Returns ------- A SectionCategory object. """ self.sectionCategories[name] = sectionCategory = SectionCategory(name, description) return sectionCategory
StarcoderdataPython
138714
import hydra from hydra.core.config_store import ConfigStore from omegaconf import OmegaConf from configs import TrainConfig from jerex import model, util cs = ConfigStore.instance() cs.store(name="train", node=TrainConfig) @hydra.main(config_name='train', config_path='configs/docred_joint') def train(cfg: TrainConfig) -> None: print(OmegaConf.to_yaml(cfg)) util.config_to_abs_paths(cfg.datasets, 'train_path', 'valid_path', 'test_path', 'types_path') util.config_to_abs_paths(cfg.model, 'tokenizer_path', 'encoder_path') util.config_to_abs_paths(cfg.misc, 'cache_path') model.train(cfg) if __name__ == '__main__': train()
StarcoderdataPython
197832
<gh_stars>10-100 from apiwrapper.endpoints.endpoint import Endpoint from apiwrapper.endpoints.monetary_account import MonetaryAccount class DraftPayment(Endpoint): __endpoint_draft_payment = "draft-payment" @classmethod def _get_base_endpoint(cls, user_id, account_id): endpoint = MonetaryAccount._get_base_endpoint(user_id) endpoint += "/%d/%s" % ( account_id, cls.__endpoint_draft_payment ) return endpoint def get_all_draft_payments_for_account(self, user_id, account_id): endpoint = self._get_base_endpoint(user_id, account_id) return self._make_get_request(endpoint) def get_draft_payment_by_id(self, user_id, account_id, draft_id): endpoint = self._get_base_endpoint(user_id, account_id) endpoint += "/%d" % draft_id return self._make_get_request(endpoint)
StarcoderdataPython
3203919
<reponame>PoncinMatthieu/skrm from __future__ import print_function import os import getopt import sys import subprocess import re def exit_with_usage(error=0, msg=""): if error != 0: print("Error: " + msg) print("usage: ./skrm [OPTIONS] [COMMANDS] [TAGS]") print("skrm stands for simple keyring manager, it stores keys with tags into a file encrypted using gpg.") print("skrm will ask for the master password to encrypt/decrypt the storing file.") print("OPTIONS:") print("\t-h, --help: Print usage.") print("\t-g, --get: Return keyrings matching strictly the given tags. This option is used by default. If a keyId is selected, a get or a search return only the keyring matching the keyId.") print("\t-s, --search: Return keyrings matching the given tags (tags are interpreted as a regex expression).") print("\t-c, --clip: Copy the key of the last matched keyring from a get or a search into the clipboard using xclip. Nothing will be printed out to the shell.") print("COMMANDS:") print("\t--file=[FILENAME]: use the given file to read/store keyrings.") print("\t--recipient=[USER_ID_NAME]: set the user id name for gpg to get the key and encrypt the file.") print("\t--pass=[MASTER_PASS]: set the master pass to use when encrypting or decrypting the file.") print("\t--add=[KEY]: add a key to the file with the specified tags.") print("\t--select=[KEYID]: select a keyring using its key id. To use with a command like \"remove\" or \"update\".") print("\t--remove: remove the selected key.") print("\t--update=[KEY]: update the selected key.") print("\t--backup=[HOSTDEST]: scp the bdd file to the given host destination.") print("TAGS:") print("\tA list of strings to define tags you want to use for any commands keyring related management.") sys.exit(error) class KeyringManager: def __init__(self, user_pref_path, bdd_path, argv): self.read_user_prefs(user_pref_path, bdd_path) try: opts, args = getopt.getopt(argv, "hgsc", ["help", "file=", "get", "search", "pass=", "add=", "select=", "remove", "update=", "recipient=", "backup=", "clip"]) except getopt.GetoptError: exit_with_usage(1, "Bad arguments.") for opt, arg in opts: if opt in ("-h", "--help"): exit_with_usage() elif opt == "--file": self.filename = os.path.expanduser(arg) elif opt in ("-g", "--get"): self.command = "get" elif opt in ("-s", "--search"): self.command = "search" elif opt == "--add": self.command = "add" self.key = arg elif opt == "--select": if arg.isdigit(): self.keyId = int(arg) else: exit_with_usage(1, "The given keyid is not a number.") elif opt == "--remove": self.command = "remove" elif opt == "--update": self.command = "update" self.key = arg elif opt == "--pass": self.passphrase = arg elif opt == "--recipient": self.recipient = arg elif opt == "--backup": self.command = "backup" self.hostdest = arg elif opt in ("-c", "--clip"): self.clip = 1 for arg in args: self.tags.append(arg) def read_user_prefs(self, user_pref_path, bdd_path): user_pref_file = user_pref_path self.filename = bdd_path self.command = "get" self.passphrase = "" self.tags = [] self.key = "" self.keyId = -1 self.recipient = "" self.clip = 0 try: with open(user_pref_file, "r") as f: for line in f: option = line.split("=") option[1] = option[1].rstrip('\n') if option[0][0] != '#': if option[0] == "file": self.filename = option[1] elif option[0] == "recipient": self.recipient = option[1] except IOError: # use preffs not found, do nothing. args must be defined in command line arguments. pass def load_raw_bdd(self): """ Decript gpg file and return the content """ args = ["gpg", "-dq"] if self.passphrase: args.append("--no-use-agent") args.append("--passphrase") args.append(self.passphrase) args.append(self.filename) p = subprocess.Popen(args, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE, close_fds = True) stdout, stderr = p.communicate(None) if stdout == "" and stdout != "": print(stderr) exit(1) return stdout.rstrip() def save_raw_bdd(self, raw): """ Encript gpg file """ args = ["gpg", "--yes", "-e", "-r", self.recipient, "-o", self.filename] p = subprocess.Popen(args, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE, close_fds = True) stdout, stderr = p.communicate(raw) stdout = stdout.rstrip() stderr = stderr.rstrip() if stdout != "": print(stdout) if stderr != "": print(stderr) def parse_raw(self, raw): bdd = [] if raw: keyrings = raw.split(b"\x03") for keyring in keyrings: bdd.append(keyring.split(b"\x02")) return bdd def parse_bdd(self, bdd): raw = b"" bddLen = len(bdd) for i, keyring in enumerate(bdd): keyringLen = len(keyring) for j, tag in enumerate(keyring): if isinstance(tag, str): tag = bytes(tag, 'utf8') raw += tag if j < (keyringLen - 1): raw += b"\x02" if i < (bddLen - 1): raw += b"\x03" return raw def save_bdd(self, bdd): raw = self.parse_bdd(bdd) self.save_raw_bdd(raw) def get_fonctor(self, keyring, tag): keyringLen = len(keyring) for i, t in enumerate(keyring): if i < (keyringLen - 1): if tag.upper() == t.upper().decode('utf8'): return 1 return 0 def search_fonctor(self, keyring, tag): keyringLen = len(keyring) p = re.compile(tag.upper()) for i, t in enumerate(keyring): if i < (keyringLen - 1): if p.search(t.upper().decode('utf8')) != None: return 1 return 0 def print_keyring(self, i, keyring): if self.clip == 0: # print the keyring print(i, end='') print(":", end='') print(keyring) else: # copy the keyring to the clipboard from sys import platform as _platform if _platform == "linux" or _platform == "linux2": # linux args = ["xclip"] p = subprocess.Popen(args, stdin = subprocess.PIPE) p.communicate(keyring[len(keyring) - 1]) elif _platform == "darwin": # OS X args = ["pbcopy"] p = subprocess.Popen(args, stdin = subprocess.PIPE) p.communicate(keyring[len(keyring) - 1]) elif _platform == "win32": # Windows print("Can't copy on clipboard under windows, method not implemented!") def print_matching_keyrings(self, bdd, Functor): if self.keyId >= 0: print(self.keyId, end='') print(":", end='') print(bdd[self.keyId]) else: for i, keyring in enumerate(bdd): if len(self.tags) == 0: print(i, end='') print(":", end='') print(keyring) else: foundAll = 1 for tag in self.tags: if Functor(keyring, tag) == 0: foundAll = 0 if foundAll == 1: self.print_keyring(i, keyring) def command_get(self, bdd): print("GET") self.print_matching_keyrings(bdd, self.get_fonctor) def command_search(self, bdd): print("SEARCH") self.print_matching_keyrings(bdd, self.search_fonctor) def command_add(self, bdd): newKeyring = self.tags newKeyring.append(self.key) bdd.append(newKeyring) self.save_bdd(bdd) print("Add OK") def command_remove(self, bdd): if (self.keyId < 0 or self.keyId >= len(bdd)): exit_with_usage(1, "Wrong argument, the given key id must be a valid number.") print("Removing: ", end='') print(bdd[self.keyId]) del bdd[self.keyId]; self.save_bdd(bdd) print("Remove OK") def command_update(self, bdd): if (self.keyId < 0 or self.keyId >= len(bdd)): exit_with_usage(1, "Wrong argument, the given key id must be a valid number.") bdd[self.keyId][len(bdd[self.keyId]) - 1] = self.key; print("New keyring: ", end='') print(bdd[self.keyId]) self.save_bdd(bdd) print("Update OK") def command_backup(self): args = ["scp", self.filename, self.hostdest] p = subprocess.Popen(args, stdin = subprocess.PIPE, stderr = subprocess.PIPE, close_fds = True) stdout, stderr = p.communicate(None) stderr = stderr.rstrip() if stderr != "": print(stderr) print("Backup Failed!") exit(1) print("Backup OK") def run(self): if self.command == "backup": self.command_backup() else: raw_bdd = self.load_raw_bdd() bdd = self.parse_raw(raw_bdd) if self.command == "get": self.command_get(bdd) elif self.command == "search": self.command_search(bdd) elif self.command == "add": self.command_add(bdd) elif self.command == "remove": self.command_remove(bdd) elif self.command == "update": self.command_update(bdd)
StarcoderdataPython
1757447
import os.path import sys from download import download import numpy as np import pandas as pd sys.path.append(os.path.dirname(os.path.abspath(__file__)) + (os.path.sep + '..')*2) import Coberny as cyb from Coberny.url import * def test_indice1(): url = 'https://raw.githubusercontent.com/ABernard27/PROJET-groupe-3/master/Document/Distance.csv' path_target = "./Distance.csv" download(url, path_target, replace = True) #download(url_dist, path_dist, replace=True) DISTANCE=pd.read_csv("Distance.csv", sep=',') assert cyb.ind('Agde Pezenas', DISTANCE) == 2 def test_indice2(): url = 'https://raw.githubusercontent.com/ABernard27/PROJET-groupe-3/master/Document/Distance.csv' path_target = "./Distance.csv" download(url, path_target, replace = True) #download(url_dist, path_dist, replace=True) DISTANCE=pd.read_csv("Distance.csv", sep=',') assert cyb.ind('Castelnaudary', DISTANCE) == 17 def test_indice3(): url = 'https://raw.githubusercontent.com/ABernard27/PROJET-groupe-3/master/Document/Distance.csv' path_target = "./Distance.csv" download(url, path_target, replace = True) #download(url_dist, path_dist, replace=True) DISTANCE=pd.read_csv("Distance.csv", sep=',') assert cyb.ind('Montgiscard', DISTANCE) == 22 def KMaxConstraint(): download(url_prix , path_prix , replace=True) assert cyb.GetKMaxConstraint(df_price, 'Sete', 'Narbonne est ') == 4 def cheaperPath(): download(url_prix , path_prix , replace=True) couple = cyb.FindBestPathForPrice(df_price, 'St-Jean-de-Vedas', 'Montgiscard', 3) cheaper_path = couple[0] assert cheaper_path == ['St-Jean-de-Vedas', 'Sete', '<NAME>', '<NAME>', 'Montgiscard'] def PricecheaperPath(): download(url_prix , path_prix , replace=True) couple = cyb.FindBestPathForPrice(df_price, 'St-Jean-de-Vedas', 'Bram', 3) PriceOfCheaperPath = couple[1] assert PriceOfCheaperPath == 14.7
StarcoderdataPython
1748594
<gh_stars>1-10 from django.core.management.base import BaseCommand, CommandError from django.conf import settings from optparse import make_option import os import sys import glob import shutil try: set except NameError: from sets import Set as set # Python 2.3 fallback # Based on the collectmedia management command by <NAME> (exogen) # http://blog.brianbeck.com/post/50940622/collectmedia class Command(BaseCommand): media_dirs = ['media'] ignore_apps = ['django.contrib.admin'] exclude = ['CVS', '.*', '*~'] option_list = BaseCommand.option_list + ( make_option('--media-root', default=settings.MEDIA_ROOT, dest='media_root', metavar='DIR', help="Specifies the root directory in which to collect media files."), make_option('-n', '--dry-run', action='store_true', dest='dry_run', help="Do everything except modify the filesystem."), make_option('-d', '--dir', action='append', default=media_dirs, dest='media_dirs', metavar='NAME', help="Specifies the name of the media directory to look for in each app."), make_option('-e', '--exclude', action='append', default=exclude, dest='exclude', metavar='PATTERNS', help="A space-delimited list of glob-style patterns to ignore. Use multiple times to add more."), make_option('-l', '--link', action='store_true', dest='link', help="Create a symbolic link to each file instead of copying."), make_option('-i', '--interactive', action='store_true', dest='interactive', help="Ask before modifying files and selecting from multiple sources."), make_option('-t', '--theme', default=settings.PINAX_THEME, dest='theme', metavar='DIR', help="Use this Pinax theme as a the basis." ) ) help = 'Collect media files from installed apps, Pinax and project in a single media directory.' args = '[appname ...]' def handle(self, *app_labels, **options): if not app_labels: app_labels = settings.INSTALLED_APPS short_app_labels = [label.split('.')[-1] for label in app_labels] interactive = options.get('interactive', False) dry_run = options.get('dry_run', False) exclude = options.get('exclude') theme = options.get('theme', settings.PINAX_THEME) media_root = options.get('media_root', settings.MEDIA_ROOT) pinax_media_root = os.path.join(settings.PINAX_ROOT, 'media', theme) project_media_root = os.path.join(settings.PROJECT_ROOT, 'media') if dry_run: print "\n DRY RUN! NO FILES WILL BE MODIFIED." # This mapping collects files that may be copied. Keys are what the # file's path relative to `media_root` will be when copied. Values # are a list of 2-tuples containing the the name of the app providing # the file and the file's absolute path. The list will have a length # greater than 1 if multiple apps provide a media file with the same # relative path. media_files = {} for app in app_labels: if app not in self.ignore_apps: for rel_path, abs_path in self.handle_app(app, **options): media_files.setdefault(rel_path, []).append((app, abs_path)) for location in (pinax_media_root, project_media_root): if not os.path.isdir(location): continue app_labels = [] app_labels[:] = self.filter_names(os.listdir(location), exclude=exclude) for app in app_labels: if app in short_app_labels and app not in self.ignore_apps: for rel_path, abs_path in self.handle_override(app, location, **options): media_files.setdefault(rel_path, []).append((app, abs_path)) # Forget the unused versions of a media file for f in media_files: media_files[f] = dict(media_files[f]).items() # Stop if no media files were found if not media_files: print "\nNo media found." return # Try to copy in some predictable order. destinations = list(media_files) destinations.sort() for destination in destinations: sources = media_files[destination] first_source, other_sources = sources[0], sources[1:] if interactive and other_sources: first_app = first_source[0] app_sources = dict(sources) print "\nThe file %r is provided by multiple apps:" % destination print "\n".join([" %s" % app for (app, source) in sources]) message = "Enter the app that should provide this file [%s]: " % first_app while True: app = raw_input(message) if not app: app, source = first_source break elif app in app_sources: source = app_sources[app] break else: print "The app %r does not provide this file." % app else: app, source = first_source print "\nSelected %r provided by %r." % (destination, app) # Move in site_media/<app_label>/<file> destination = os.path.join(app.split('.')[-1], destination) self.process_file(source, destination, media_root, **options) def handle_override(self, app, location, **options): media_dirs = options.get('media_dirs') exclude = options.get('exclude') for media_dir in media_dirs: app_media = os.path.join(location, app) if os.path.isdir(app_media): prefix_length = len(app_media) + len(os.sep) for root, dirs, files in os.walk(app_media): # Filter `dirs` and `files` based on the exclusion pattern. dirs[:] = self.filter_names(dirs, exclude=exclude) files[:] = self.filter_names(files, exclude=exclude) for filename in files: absolute_path = os.path.join(root, filename) relative_path = absolute_path[prefix_length:] yield (relative_path, absolute_path) def handle_app(self, app, **options): if isinstance(app, basestring): app = __import__(app, {}, {}, ['']) media_dirs = options.get('media_dirs') exclude = options.get('exclude') app_root = os.path.dirname(app.__file__) for media_dir in media_dirs: app_media = os.path.join(app_root, media_dir) if os.path.isdir(app_media): prefix_length = len(app_media) + len(os.sep) for root, dirs, files in os.walk(app_media): # Filter `dirs` and `files` based on the exclusion pattern. dirs[:] = self.filter_names(dirs, exclude=exclude) files[:] = self.filter_names(files, exclude=exclude) for filename in files: absolute_path = os.path.join(root, filename) relative_path = absolute_path[prefix_length:] yield (relative_path, absolute_path) def process_file(self, source, destination, root, link=False, **options): dry_run = options.get('dry_run', False) interactive = options.get('interactive', False) destination = os.path.abspath(os.path.join(root, destination)) if not dry_run: # Get permission bits and ownership of `root`. try: root_stat = os.stat(root) except os.error, e: mode = 0777 # Default for `os.makedirs` anyway. uid = gid = None else: mode = root_stat.st_mode uid, gid = root_stat.st_uid, root_stat.st_gid destination_dir = os.path.dirname(destination) try: # Recursively create all the required directories, attempting # to use the same mode as `root`. os.makedirs(destination_dir, mode) except os.error, e: # This probably just means the leaf directory already exists, # but if not, we'll find out when copying or linking anyway. pass else: os.lchown(destination_dir, uid, gid) if link: success = self.link_file(source, destination, interactive, dry_run) else: success = self.copy_file(source, destination, interactive, dry_run) if success and None not in (uid, gid): # Try to use the same ownership as `root`. os.lchown(destination, uid, gid) def copy_file(self, source, destination, interactive=False, dry_run=False): "Attempt to copy `source` to `destination` and return True if successful." if interactive: exists = os.path.exists(destination) or os.path.islink(destination) if exists: print "The file %r already exists." % destination if not self.prompt_overwrite(destination): return False print "Copying %r to %r." % (source, destination) if not dry_run: try: os.remove(destination) except os.error, e: pass shutil.copy2(source, destination) return True return False def link_file(self, source, destination, interactive=False, dry_run=False): "Attempt to link to `source` from `destination` and return True if successful." if sys.platform == 'win32': message = "Linking is not supported by this platform (%s)." raise os.error(message % sys.platform) if interactive: exists = os.path.exists(destination) or os.path.islink(destination) if exists: print "The file %r already exists." % destination if not self.prompt_overwrite(destination): return False if not dry_run: try: os.remove(destination) except os.error, e: pass print "Linking to %r from %r." % (source, destination) if not dry_run: os.symlink(source, destination) return True return False def prompt_overwrite(self, filename, default=True): "Prompt the user to overwrite and return their selection as True or False." yes_values = ['Y'] no_values = ['N'] if default: prompt = "Overwrite? [Y/n]: " yes_values.append('') else: prompt = "Overwrite? [y/N]: " no_values.append('') while True: overwrite = raw_input(prompt).strip().upper() if overwrite in yes_values: return True elif overwrite in no_values: return False else: print "Select 'Y' or 'N'." def filter_names(self, names, exclude=None, func=glob.fnmatch.filter): if exclude is None: exclude = [] elif isinstance(exclude, basestring): exclude = exclude.split() else: exclude = [pattern for patterns in exclude for pattern in patterns.split()] excluded_names = set( [name for pattern in exclude for name in func(names, pattern)] ) return set(names) - excluded_names
StarcoderdataPython
111468
import setuptools with open("README.md", "r") as fh: long_description = fh.read() version = "0.0.25" setuptools.setup( name="commondtools", version=version, author="<NAME>", author_email="<EMAIL>", description="Common D-tools.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/M0Rph3U56031769/commondtools", packages=setuptools.find_packages(), include_package_data=True, install_requires=[ "astroid==2.4.2", "bleach==3.3.0", "bump2version==1.0.1", "bumpversion==0.6.0", "certifi==2020.12.5", "cffi==1.14.4", "chardet==3.0.4", "colorama==0.4.4", "coverage==5.3", "cryptography==3.3.2", "docutils==0.16", "idna>=2.5", "importlib-metadata==3.1.0", "isort==5.6.4", "jeepney==0.6.0", "keyring==21.5.0", "lazy-object-proxy==1.4.3", "mccabe==0.6.1", "numpy==1.19.4", "packaging==20.7", "pandas==1.1.4", "pkginfo==1.6.1", "pycparser==2.20", "Pygments~>2.7.4", "pylint==2.6.0", "pyparsing==2.4.7", "python-dateutil==2.8.1", "pytz==2020.4", "pywin32-ctypes==0.2.0", "readme-renderer==28.0", "requests==2.25.0", "requests-toolbelt==0.9.1", "rfc3986==1.4.0", "SecretStorage==3.3.0", "selenium==3.141.0", "six==1.15.0", "toml==0.10.2", "tqdm==4.54.0", "twine==3.2.0", "urllib3~>1.26.5", "webencodings==0.5.1", "wrapt==1.12.1", "zipp==3.4.0" ], classifiers=[ "Programming Language :: Python :: 3.9", "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3', )
StarcoderdataPython
3204141
<filename>algorithms/sorting/selection_sort.py<gh_stars>1-10 """ Selection sort always out performs the bubble sort. It is aunstable. Selection sort also does fewer swap operations, and by extension memory writes than Bubble sort. In the worst case, it does n-1 swap operations The core principle in selection is to devide the list to be sorted into the sorted and unsorted part. With each iteration the unsorted part is traversed and manipulated. This is repeated until there is no unsorted part left. How is this achieved? With each iteration the smallest item in the unsorted part is spoted and swapped with the leftmost item in the unsorted part. The smallest item put in place of the leftmost item then becomes a part of the sorted part. The number of elements to be parsed decreases with each iteration. For example given an array, [1,5,2,7,0,11] For iteration one we will consider elements from index 0 to the last index. The smallest element is o so it will be swapped with 1 = [0,5,2,7,1,11]. Our sorted part is now [0] and the unsorted part is [5,2,7,1,11] For iteration 2, we again find the smallest item in the unsorted part and swap it with the leftmost item. This entials swapping 1 with 5. this then yields, [1,2,7,5,11]. Our sorted part is now [0, 1], and unsorted is [2,7,5,11] We will repeat the circle until we are only left with no unsorted part Assumption: sort in ascending order Run time complexity: O(n^2) """ class SelectionSort(): def __init__(self, nums) -> None: self.nums = nums def sort(self) -> None: for i in range(len(self.nums)-1): index = i # index of the smallest item in the unsorted part for j in range(i, len(self.nums)): if self.nums[j] < self.nums[index]: index = j if index != i: # To avoid swapping an element with itself self._swap(i, index) def _swap(self, i, j) -> None: self.nums[i], self.nums[j] = self.nums[j], self.nums[i]
StarcoderdataPython
167733
<filename>Sem5SLLPYTHON/FINALS/partb/1b/1.py def remdup(a): return list(set(a)) l=[] for i in range(0,5): l.append(input()) print(l) rev = l[::-1] print(rev) print(remdup(l)) print([i for i in range(0,10) if i%2==0])
StarcoderdataPython
4836244
<reponame>chiragmatkar/testplan<gh_stars>0 """ This file is base on the difflib from python standard library (version: 2.7.9) it provides diff (context/unified) functions with more options like GNU diff, including: --ignore-space-change, --ignore-whitespace, --ignore-blank-lines Due to the different algorithm, its output might be a slightly difference compared with that of gnu diff or windiff, but it won't lead to confusing. Module difflib -- helpers for computing deltas between objects. Function get_close_matches(word, possibilities, n=3, cutoff=0.6): Use SequenceMatcher to return list of the best "good enough" matches. Function context_diff(a, b): For two lists of strings, return a delta in context diff format. Function diff(a, b): Return a delta: the difference between `a` and `b` (lists of strings). Function unified_diff(a, b): For two lists of strings, return a delta in unified diff format. Class SequenceMatcher: A flexible class for comparing pairs of sequences of any type. Class Differ: For producing human-readable deltas from sequences of lines of text. """ import os import re import heapq import six from collections import namedtuple as _namedtuple from functools import reduce from datetime import datetime __all__ = [ "Match", "SequenceMatcher", "get_close_matches", "Differ", "IS_CHARACTER_JUNK", "IS_LINE_JUNK", "diff", "context_diff", "unified_diff", ] Match = _namedtuple("Match", "a b size") def _calculate_ratio(matches, length): if length: return 2.0 * matches / length return 1.0 class SequenceMatcher(object): """ SequenceMatcher is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980's by <NAME> Obershelp under the hyperbolic name "gestalt pattern matching". The basic idea is to find the longest contiguous matching subsequence that contains no "junk" elements (R-O doesn't address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that "look right" to people. SequenceMatcher tries to compute a "human-friendly diff" between two sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the longest *contiguous* & junk-free matching subsequence. That's what catches peoples' eyes. The Windows(tm) windiff has another interesting notion, pairing up elements that appear uniquely in each sequence. That, and the method here, appear to yield more intuitive difference reports than does diff. This method appears to be the least vulnerable to synching up on blocks of "junk lines", though (like blank lines in ordinary text files, or maybe "<P>" lines in HTML files). That may be because this is the only method of the 3 that has a *concept* of "junk" <wink>. Example, comparing two strings, and considering blanks to be "junk": >>> s = SequenceMatcher(lambda x: x == " ", ... "private Thread currentThread;", ... "private volatile Thread currentThread;") >>> .ratio() returns a float in [0, 1], measuring the "similarity" of the sequences. As a rule of thumb, a .ratio() value over 0.6 means the sequences are close matches: >>> print(round(s.ratio(), 3)) 0.866 >>> If you're only interested in where the sequences match, .get_matching_blocks() is handy: >>> for block in s.get_matching_blocks(): ... print("a[%d] and b[%d] match for %d elements" % block) a[0] and b[0] match for 8 elements a[8] and b[17] match for 21 elements a[29] and b[38] match for 0 elements Note that the last tuple returned by .get_matching_blocks() is always a dummy, (len(a), len(b), 0), and this is the only case in which the last tuple element (number of elements matched) is 0. If you want to know how to change the first sequence into the second, use .get_opcodes(): >>> for opcode in s.get_opcodes(): ... print("%6s a[%d:%d] b[%d:%d]" % opcode) equal a[0:8] b[0:8] insert a[8:8] b[8:17] equal a[8:29] b[17:38] See the Differ class for a fancy human-friendly file differencer, which uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within similar (near-matching) lines. See also function get_close_matches() in this module, which shows how simple code building on SequenceMatcher can be used to do useful work. Timing: Basic R-O is cubic time worst case and quadratic time expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior dependent in a complicated way on how many elements the sequences have in common; best case time is linear. Methods: __init__(isjunk=None, a='', b='') Construct a SequenceMatcher. set_seqs(a, b) Set the two sequences to be compared. set_seq1(a) Set the first sequence to be compared. set_seq2(b) Set the second sequence to be compared. find_longest_match(alo, ahi, blo, bhi) Find longest matching block in a[alo:ahi] and b[blo:bhi]. get_matching_blocks() Return list of triples describing matching subsequences. get_opcodes() Return list of 5-tuples describing how to turn a into b. ratio() Return a measure of the sequences' similarity (float in [0,1]). quick_ratio() Return an upper bound on .ratio() relatively quickly. real_quick_ratio() Return an upper bound on ratio() very quickly. """ def __init__(self, isjunk=None, a="", b="", autojunk=False): """Construct a SequenceMatcher. Optional arg isjunk is None (the default), or a one-argument function that takes a sequence element and returns true iff the element is junk. None is equivalent to passing "lambda x: 0", i.e. no elements are considered to be junk. For example, pass lambda x: x in " \\t" if you're comparing lines as sequences of characters, and don't want to synch up on blanks or hard tabs. Optional arg a is the first of two sequences to be compared. By default, an empty string. The elements of a must be hashable. See also .set_seqs() and .set_seq1(). Optional arg b is the second of two sequences to be compared. By default, an empty string. The elements of b must be hashable. See also .set_seqs() and .set_seq2(). Optional arg autojunk should be set to False to disable the "automatic junk heuristic" that treats popular elements as junk (see module documentation for more information). """ # Members: # a # first sequence # b # second sequence; differences are computed as "what do # we need to do to 'a' to change it into 'b'?" # b2j # for x in b, b2j[x] is a list of the indices (into b) # at which x appears; junk elements do not appear # fullbcount # for x in b, fullbcount[x] == the number of times x # appears in b; only materialized if really needed (used # only for computing quick_ratio()) # matching_blocks # a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k]; # ascending & non-overlapping in i and in j; terminated by # a dummy (len(a), len(b), 0) sentinel # opcodes # a list of (tag, i1, i2, j1, j2) tuples, where tag is # one of # 'replace' a[i1:i2] should be replaced by b[j1:j2] # 'delete' a[i1:i2] should be deleted # 'insert' b[j1:j2] should be inserted # 'equal' a[i1:i2] == b[j1:j2] # isjunk # a user-supplied function taking a sequence element and # returning true iff the element is "junk" -- this has # subtle but helpful effects on the algorithm, which I'll # get around to writing up someday <0.9 wink>. # DON'T USE! Only __chain_b uses this. Use isbjunk. # isbjunk # for x in b, isbjunk(x) == isjunk(x) but much faster; # it's really the __contains__ method of a hidden dict. # DOES NOT WORK for x in a! # isbpopular # for x in b, isbpopular(x) is true iff b is reasonably long # (at least 200 elements) and x accounts for more than 1 + 1% of # its elements (when autojunk is enabled). # DOES NOT WORK for x in a! self.isjunk = isjunk self.a = self.b = None self.autojunk = autojunk self.set_seqs(a, b) def set_seqs(self, a, b): """Set the two sequences to be compared. >>> s = SequenceMatcher() >>> s.set_seqs("abcd", "bcde") >>> s.ratio() 0.75 """ self.set_seq1(a) self.set_seq2(b) def set_seq1(self, a): """Set the first sequence to be compared. The second sequence to be compared is not changed. >>> s = SequenceMatcher(None, "abcd", "bcde") >>> s.ratio() 0.75 >>> s.set_seq1("bcde") >>> s.ratio() 1.0 >>> SequenceMatcher computes and caches detailed information about the second sequence, so if you want to compare one sequence S against many sequences, use .set_seq2(S) once and call .set_seq1(x) repeatedly for each of the other sequences. See also set_seqs() and set_seq2(). """ if a is self.a: return self.a = a self.a_real_content = ( self.a.real_content() if isinstance(self.a, FuzzyMatchingString) else None ) self.matching_blocks = self.opcodes = self._ratio = None # cache the data for self.find_longest_match() ajunk = ( {elt for elt in self.a if self.isjunk(elt)} if self.isjunk else set() ) self.isajunk = ajunk.__contains__ def set_seq2(self, b): """Set the second sequence to be compared. The first sequence to be compared is not changed. >>> s = SequenceMatcher(None, "abcd", "bcde") >>> s.ratio() 0.75 >>> s.set_seq2("abcd") >>> s.ratio() 1.0 >>> SequenceMatcher computes and caches detailed information about the second sequence, so if you want to compare one sequence S against many sequences, use .set_seq2(S) once and call .set_seq1(x) repeatedly for each of the other sequences. See also set_seqs() and set_seq1(). """ if b is self.b: return self.b = b self.b_real_content = ( self.b.real_content() if isinstance(self.b, FuzzyMatchingString) else None ) self.matching_blocks = self.opcodes = self._ratio = None self.fullbcount = None self.__chain_b() # For each element x in b, set b2j[x] to a list of the indices in # b where x appears; the indices are in increasing order; note that # the number of times x appears in b is len(b2j[x]) ... # when self.isjunk is defined, junk elements don't show up in this # map at all, which stops the central find_longest_match method # from starting any matching block at a junk element ... # also creates the fast isbjunk function ... # b2j also does not contain entries for "popular" elements, meaning # elements that account for more than 1 + 1% of the total elements, and # when the sequence is reasonably large (>= 200 elements); this can # be viewed as an adaptive notion of semi-junk, and yields an enormous # speedup when, e.g., comparing program files with hundreds of # instances of "return NULL;" ... # note that this is only called when b changes; so for cross-product # kinds of matches, it's best to call set_seq2 once, then set_seq1 # repeatedly def __chain_b(self): # Because isjunk is a user-defined (not C) function, and we test # for junk a LOT, it's important to minimize the number of calls. # Before the tricks described here, __chain_b was by far the most # time-consuming routine in the whole module! If anyone sees # <NAME>, thank him again for profile.py -- I never would # have guessed that. # The first trick is to build b2j ignoring the possibility # of junk. I.e., we don't call isjunk at all yet. Throwing # out the junk later is much cheaper than building b2j "right" # from the start. b = self.b self.b2j = b2j = {} for i, elt in enumerate(b): indices = b2j.setdefault(elt, []) indices.append(i) # Purge junk elements bjunk = set() isjunk = self.isjunk if isjunk: for elt in list(b2j.keys()): # using list() since b2j is modified if isjunk(elt): bjunk.add(elt) del b2j[elt] # Purge popular elements that are not junk popular = set() n = len(b) if self.autojunk and n >= 200: ntest = n // 100 + 1 for elt, idxs in list(b2j.items()): if len(idxs) > ntest: popular.add(elt) del b2j[elt] # Now for x in b, isjunk(x) == x in junk, but the latter is much faster. # Sicne the number of *unique* junk elements is probably small, the # memory burden of keeping this set alive is likely trivial compared to # the size of b2j. self.isbjunk = bjunk.__contains__ self.isbpopular = popular.__contains__ def find_longest_match(self, alo, ahi, blo, bhi): """Find longest matching block in a[alo:ahi] and b[blo:bhi]. If isjunk is not defined: Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where alo <= i <= i+k <= ahi blo <= j <= j+k <= bhi and for all (i',j',k') meeting those conditions, k >= k' j <= j' and if j == j', i <= i' In other words, of all maximal matching blocks, return one that starts earliest in b, and of all those maximal matching blocks that start earliest in b, return the one that starts earliest in a. >>> s = SequenceMatcher(None, " abcd", "abcd abcd") >>> s.find_longest_match(0, 5, 0, 9) Match(a=0, b=4, size=5) If isjunk is defined, first the longest matching block is determined as above, but with the additional restriction that no junk element appears in the block. Then that block is extended as far as possible by matching (only) junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to be adjacent to an "interesting" match. Here's the same example as before, but considering blanks to be junk. That prevents " abcd" from matching the " abcd" at the tail end of the second sequence directly. Instead only the "abcd" can match, and matches the leftmost "abcd" in the second sequence: >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd") >>> s.find_longest_match(0, 5, 0, 9) Match(a=1, b=0, size=4) If no blocks match, return (alo, blo, 0). >>> s = SequenceMatcher(None, "ab", "c") >>> s.find_longest_match(0, 2, 0, 1) Match(a=0, b=0, size=0) """ # CAUTION: stripping common prefix or suffix would be incorrect. # E.g., # ab # acab # Longest matching block is "ab", but if common prefix is # stripped, it's "a" (tied with "b"). UNIX(tm) diff does so # strip, so ends up claiming that ab is changed to acab by # inserting "ca" in the middle. That's minimal but unintuitive: # "it's obvious" that someone inserted "ac" at the front. # Windiff ends up at the same place as diff, but by pairing up # the unique 'b's and then matching the first two 'a's. a, b, b2j = self.a, self.b, self.b2j isajunk, isbjunk = self.isajunk, self.isbjunk besti, bestj, bestsize = alo, blo, 0 # find longest junk-free match # during an iteration of the loop, j2len[j] = length of longest # junk-free match ending with a[i-1] and b[j] j2len = {} for i in range(alo, ahi): # look at all instances of a[i] in b; note that because # b2j has no junk keys, the loop is skipped if a[i] is junk j2lenget = j2len.get newj2len = {} indices = [] # TODO: (need improve) time consuming in this loop. For immutable # string we could get indices from b2j directly, but we may compare # mutable objects here, i.e. instances of FuzzyMatchingString. for key, val in b2j.items(): if a[i] == key: indices = val break for j in indices: # a[i] matches b[j] if j < blo: continue if j >= bhi: break k = newj2len[j] = j2lenget(j - 1, 0) + 1 # with condition 'k == bestsize and j-k+1 < bestj', the longest # substring starts earliest in b will be selected with priority if k > bestsize or k == bestsize and j - k + 1 < bestj: besti, bestj, bestsize = i - k + 1, j - k + 1, k j2len = newj2len # Extend the best by non-junk and junk elements repeatedly until # no element can be appended to the front or back of the best match. prev_bestsize = 0 while prev_bestsize != bestsize: prev_bestsize = bestsize # Extend the best by non-junk elements on each end. In particular, # "popular" non-junk elements aren't in b2j, which greatly speeds # the inner loop above, but also means "the best" match so far # doesn't contain any junk *or* popular non-junk elements. while ( besti > alo and bestj > blo and not isajunk(a[besti - 1]) and not isbjunk(b[bestj - 1]) and a[besti - 1] == b[bestj - 1] ): besti, bestj, bestsize = besti - 1, bestj - 1, bestsize + 1 while ( besti + bestsize < ahi and bestj + bestsize < bhi and not isajunk(a[besti + bestsize]) and not isbjunk(b[bestj + bestsize]) and a[besti + bestsize] == b[bestj + bestsize] ): bestsize += 1 # Now that we have a wholly interesting match (albeit possibly # empty!), we may as well suck up the matching junk on each # side of it too. Can't think of a good reason not to, and it # saves post-processing the (possibly considerable) expense of # figuring out what to do with it. In the case of an empty # interesting match, this is clearly the right thing to do, # because no other kind of match is possible in the regions. while ( besti > alo and bestj > blo and isajunk(a[besti - 1]) and isbjunk(b[bestj - 1]) and a[besti - 1] == b[bestj - 1] ): besti, bestj, bestsize = besti - 1, bestj - 1, bestsize + 1 while ( besti + bestsize < ahi and bestj + bestsize < bhi and isajunk(a[besti + bestsize]) and isbjunk(b[bestj + bestsize]) and a[besti + bestsize] == b[bestj + bestsize] ): bestsize += 1 return Match(besti, bestj, bestsize) def get_matching_blocks(self): """Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and in j. New in Python 2.5, it's also guaranteed that if (i, j, n) and (i', j', n') are adjacent triples in the list, and the second is not the last triple in the list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe adjacent equal blocks. The last triple is a dummy, (len(a), len(b), 0), and is the only triple with n==0. >>> s = SequenceMatcher(None, "abxcd", "abcd") >>> s.get_matching_blocks() [Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)] """ if self.matching_blocks is not None: return self.matching_blocks la, lb = len(self.a), len(self.b) # This is most naturally expressed as a recursive algorithm, but # at least one user bumped into extreme use cases that exceeded # the recursion limit on their box. So, now we maintain a list # ('queue`) of blocks we still need to look at, and append partial # results to `matching_blocks` in a loop; the matches are sorted # at the end. queue = [(0, la, 0, lb)] matching_blocks = [] while queue: alo, ahi, blo, bhi = queue.pop() i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi) # a[alo:i] vs b[blo:j] unknown # a[i:i+k] same as b[j:j+k] # a[i+k:ahi] vs b[j+k:bhi] unknown if k: # if k is 0, there was no matching block matching_blocks.append(x) if alo < i and blo < j: queue.append((alo, i, blo, j)) if i + k < ahi and j + k < bhi: queue.append((i + k, ahi, j + k, bhi)) matching_blocks.sort() # It's possible that we have adjacent equal blocks in the # matching_blocks list now. Starting with 2.5, this code was added # to collapse them. i1 = j1 = k1 = 0 non_adjacent = [] for i2, j2, k2 in matching_blocks: # Is this block adjacent to i1, j1, k1? if i1 + k1 == i2 and j1 + k1 == j2: # Yes, so collapse them -- this just increases the length of # the first block by the length of the second, and the first # block so lengthened remains the block to compare against. k1 += k2 else: # Not adjacent. Remember the first block (k1==0 means it's # the dummy we started with), and make the second block the # new block to compare against. if k1: non_adjacent.append((i1, j1, k1)) i1, j1, k1 = i2, j2, k2 if k1: non_adjacent.append((i1, j1, k1)) non_adjacent.append((la, lb, 0)) self.matching_blocks = map(Match._make, non_adjacent) return self.matching_blocks def get_opcodes(self): """Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the tuple preceding it, and likewise for j1 == the previous j2. The tags are strings, with these meanings: 'replace': a[i1:i2] should be replaced by b[j1:j2] 'delete': a[i1:i2] should be deleted. Note that j1==j2 in this case. 'insert': b[j1:j2] should be inserted at a[i1:i1]. Note that i1==i2 in this case. 'equal': a[i1:i2] == b[j1:j2] >>> a = "qabxcd" >>> b = "abycdf" >>> s = SequenceMatcher(None, a, b) >>> for tag, i1, i2, j1, j2 in s.get_opcodes(): ... print("%7s a[%d:%d] (%s) b[%d:%d] (%s)" % ... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])) delete a[0:1] (q) b[0:0] () equal a[1:3] (ab) b[0:2] (ab) replace a[3:4] (x) b[2:3] (y) equal a[4:6] (cd) b[3:5] (cd) insert a[6:6] () b[5:6] (f) """ if self.opcodes is not None: return self.opcodes i = j = 0 self.opcodes = answer = [] for ai, bj, size in self.get_matching_blocks(): # invariant: we've pumped out correct diffs to change # a[:i] into b[:j], and the next matching block is # a[ai:ai+size] == b[bj:bj+size]. So we need to pump # out a diff to change a[i:ai] into b[j:bj], pump out # the matching block, and move (i,j) beyond the match tag = "" if i < ai and j < bj: tag = "replace" elif i < ai: tag = "delete" elif j < bj: tag = "insert" if tag: answer.append((tag, i, ai, j, bj)) i, j = ai + size, bj + size # the list of matching blocks is terminated by a # sentinel with size 0 if size: answer.append(("equal", ai, i, bj, j)) return answer def get_grouped_opcodes(self, n=3): """ Isolate change clusters by eliminating ranges with no changes. Return a generator of groups with up to n lines of context. Each group is in the same format as returned by get_opcodes(). >>> from pprint import pprint >>> a = map(str, range(1,40)) >>> b = a[:] >>> b[8:8] = ['i'] # Make an insertion >>> b[20] += 'x' # Make a replacement >>> b[23:28] = [] # Make a deletion >>> b[30] += 'y' # Make another replacement >>> pprint(list(SequenceMatcher(None, a, b).get_grouped_opcodes())) [[('equal', 5, 8, 5, 8), ('insert', 8, 8, 8, 9), ('equal', 8, 11, 9, 12)], [('equal', 16, 19, 17, 20), ('replace', 19, 20, 20, 21), ('equal', 20, 22, 21, 23), ('delete', 22, 27, 23, 23), ('equal', 27, 30, 23, 26)], [('equal', 31, 34, 27, 30), ('replace', 34, 35, 30, 31), ('equal', 35, 38, 31, 34)]] """ codes = self.get_opcodes() if not codes: codes = [("equal", 0, 1, 0, 1)] # Fixup leading and trailing groups if they show no changes. if codes[0][0] == "equal": tag, i1, i2, j1, j2 = codes[0] codes[0] = tag, max(i1, i2 - n), i2, max(j1, j2 - n), j2 if codes[-1][0] == "equal": tag, i1, i2, j1, j2 = codes[-1] codes[-1] = tag, i1, min(i2, i1 + n), j1, min(j2, j1 + n) nn = n + n group = [] for tag, i1, i2, j1, j2 in codes: # End the current group and start a new one whenever # there is a large range with no changes. if tag == "equal" and i2 - i1 > nn: group.append((tag, i1, min(i2, i1 + n), j1, min(j2, j1 + n))) yield group group = [] i1, j1 = max(i1, i2 - n), max(j1, j2 - n) group.append((tag, i1, i2, j1, j2)) if group and not (len(group) == 1 and group[0][0] == "equal"): yield group def ratio(self): """Return a measure of the sequences' similarity (float in [0,1]). Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T. Note that this is 1 if the sequences are identical, and 0 if they have nothing in common. .ratio() is expensive to compute if you haven't already computed .get_matching_blocks() or .get_opcodes(), in which case you may want to try .quick_ratio() or .real_quick_ratio() first to get an upper bound. >>> s = SequenceMatcher(None, "abcd", "bcde") >>> s.ratio() 0.75 >>> s.quick_ratio() 0.75 >>> s.real_quick_ratio() 1.0 """ if self._ratio: return self._ratio a = self.a if self.a_real_content is None else self.a_real_content b = self.b if self.b_real_content is None else self.b_real_content # compute the similar ratio and cache it matches = reduce( lambda count, triple: count + triple[-1], SequenceMatcher(self.isjunk, a, b).get_matching_blocks(), 0, ) self._ratio = _calculate_ratio(matches, len(a) + len(b)) return self._ratio def quick_ratio(self): """Return an upper bound on ratio() relatively quickly. This isn't defined beyond that it is an upper bound on .ratio(), and is faster to compute. """ a = self.a if self.a_real_content is None else self.a_real_content b = self.b if self.b_real_content is None else self.b_real_content # viewing a and b as multisets, set matches to the cardinality # of their intersection; this counts the number of matches # without regard to order, so is clearly an upper bound if self.fullbcount is None: self.fullbcount = fullbcount = {} for elt in b: fullbcount[elt] = fullbcount.get(elt, 0) + 1 fullbcount = self.fullbcount # avail[x] is the number of times x appears in 'b' less the # number of times we've seen it in 'a' so far ... kinda avail = {} availhas, matches = avail.__contains__, 0 for elt in a: if availhas(elt): numb = avail[elt] else: numb = fullbcount.get(elt, 0) avail[elt] = numb - 1 if numb > 0: matches = matches + 1 return _calculate_ratio(matches, len(a) + len(b)) def real_quick_ratio(self): """Return an upper bound on ratio() very quickly. This isn't defined beyond that it is an upper bound on .ratio(), and is faster to compute than either .ratio() or .quick_ratio(). """ la = len( self.a if self.a_real_content is None else self.a_real_content ) lb = len( self.b if self.b_real_content is None else self.b_real_content ) # can't have more matches than the number of elements in the # shorter sequence return _calculate_ratio(min(la, lb), la + lb) def get_close_matches(word, possibilities, n=3, cutoff=0.6): """Use SequenceMatcher to return list of the best "good enough" matches. word is a sequence for which close matches are desired (typically a string). possibilities is a list of sequences against which to match word (typically a list of strings). Optional arg n (default 3) is the maximum number of close matches to return. n must be > 0. Optional arg cutoff (default 0.6) is a float in [0, 1]. Possibilities that don't score at least that similar to word are ignored. The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most similar first. >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"]) ['apple', 'ape'] >>> import keyword as _keyword >>> get_close_matches("wheel", _keyword.kwlist) ['while'] >>> get_close_matches("apple", _keyword.kwlist) [] >>> get_close_matches("accept", _keyword.kwlist) ['except'] """ if not n > 0: raise ValueError("n must be > 0: %r" % (n,)) if not 0.0 <= cutoff <= 1.0: raise ValueError("cutoff must be in [0.0, 1.0]: %r" % (cutoff,)) result = [] s = SequenceMatcher() s.set_seq2(word) for x in possibilities: s.set_seq1(x) if ( s.real_quick_ratio() >= cutoff and s.quick_ratio() >= cutoff and s.ratio() >= cutoff ): result.append((s.ratio(), x)) # Move the best scorers to head of list result = heapq.nlargest(n, result) # Strip scores for the best n matches return [x for score, x in result] class FuzzyMatchingString(str): """ Inherits built-in str, but two strings can be considered equal when their content in accord with the rules defined. """ def __new__(cls, value, *args, **kwargs): return super(FuzzyMatchingString, cls).__new__(cls, value) def __init__(self, value, *args, **kwargs): raise NotImplementedError("FuzzyMatchingString: Not implemented!") def __hash__(self): return hash(str(self)) def __eq__(self, other): if isinstance(other, self.__class__): return self.real_content() == other.real_content() else: return self.real_content() == str(other) def __ne__(self, other): return not self.__eq__(other) def real_content(self): return None class SpaceIgnoredString(FuzzyMatchingString): """ Inherits FuzzyMatchingString, ingores whitespace and space change when compared with other strings. """ def __init__( self, value, ignore_space_change=False, ignore_whitespaces=False ): self.ignore_space_change = ignore_space_change self.ignore_whitespaces = ignore_whitespaces def real_content(self): if self.ignore_whitespaces: return re.sub(r"\s+", "", self) elif self.ignore_space_change: # gnu diff ignores all whitespace (include line-feed) in the # right side when compare with -b or --ignore-space-change, # just simulatethat behavior return re.sub(r"\s+", " ", self).rstrip() else: return str(self) class Differ(object): r""" Differ is a class for comparing sequences of lines of text, and producing human-readable differences or deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters within similar (near-matching) lines. Use get_opcodes() and get_merged_opcodes() to get a list of 5-tuples describing how to turn a into b. The former can give detailed transformation steps, especially the 'replace' operation for similar lines will be recorded, it is userful for ndiff (not implemented in this file), the latter gives concise transformation steps by merging adjacent op items if they can be merged. get_grouped_opcodes() is used for context_diff() and unified_diff(). Example: Comparing two texts. >>> a = ['aaa\n', 'bbb\n', 'c\n', 'cc\n', 'ccc\n', '\n', 'ddd\n', ... 'eee\n', 'ggg\n'] >>> b = ['aaaa\n', 'bbbb\n', 'c\n', 'cc\n', 'ccc\n', 'dddd\n', 'hhh\n', ... 'fff\n', '\n', 'ggg\n'] >>> d = Differ() >>> for op in d.get_opcodes(a, b): print(op) ... ('replace', 0, 1, 0, 1) ('replace', 1, 2, 1, 2) ('equal', 2, 5, 2, 5) ('delete', 5, 6, 5, 5) ('replace', 6, 7, 5, 6) ('replace', 7, 8, 6, 9) ('equal', 8, 9, 9, 10) >>> for op in d.get_merged_opcodes(a, b): print(op) ... ('replace', 0, 2, 0, 2) ('equal', 2, 5, 2, 5) ('replace', 5, 8, 5, 9) ('equal', 8, 9, 9, 10) >>> for op in d.get_grouped_opcodes(a, b, 1): print(op) ... [('replace', 0, 2, 0, 2), ('equal', 2, 3, 2, 3)] [('equal', 4, 5, 4, 5), ('replace', 5, 8, 5, 9), ('equal', 8, 9, 9, 10)] Note that when instantiating a Differ object we may pass functions to filter out line and character 'junk'. See Differ.__init__ for details. """ def __init__( self, linejunk=None, charjunk=None, ignore_space_change=False, ignore_whitespaces=False, ignore_blank_lines=False, ): """ Construct a text differencer, with optional filters. The two optional keyword parameters are for filter functions: - `linejunk`: A function that should accept a single string argument, and return true iff the string is junk. The module-level function `IS_LINE_JUNK` may be used to filter out lines without visible characters, except for at most one splat ('#'). It is recommended to leave linejunk None; as of Python 2.3, the underlying SequenceMatcher class has grown an adaptive notion of "noise" lines that's better than any static definition the author has ever been able to craft. - `charjunk`: A function that should accept a string of length 1. The module-level function `IS_CHARACTER_JUNK` may be used to filter out whitespace characters (a blank or tab; **note**: bad idea to include newline in this!). Use of IS_CHARACTER_JUNK is recommended. - `ignore_space_change`: refer to gnu diff option -b - `ignore_whitespaces`: refer to gnu diff option -w - `ignore_blank_lines`: refer to gnu diff option -B """ self.linejunk = linejunk self.charjunk = charjunk self.ignore_space_change = ignore_space_change self.ignore_whitespaces = ignore_whitespaces self.ignore_blank_lines = ignore_blank_lines def get_opcodes(self, a, b): r""" Compare two sequences of lines; generate the resulting delta. Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained from the `readlines()` method of file-like objects. The delta generated also consists of newline- terminated strings, ready to be printed as-is via the writeline() method of a file-like object. Example: >>> for op in Differ().get_opcodes('one\ntwo\nthree\n', ... 'ore\nthree\nemu\n'): ... print(op) ... ('replace', 0, 2, 0, 1) ('equal', 2, 3, 1, 2) ('insert', 3, 3, 2, 3) """ assert all(str(i) != "" for i in a) and all(str(j) != "" for j in b) if self.ignore_space_change or self.ignore_whitespaces: new_a, new_b = [], [] for i in a: new_a.append( SpaceIgnoredString( i, self.ignore_space_change, self.ignore_whitespaces ) ) for j in b: new_b.append( SpaceIgnoredString( j, self.ignore_space_change, self.ignore_whitespaces ) ) a, b = new_a, new_b cruncher = SequenceMatcher(self.linejunk, a, b) for tag, alo, ahi, blo, bhi in cruncher.get_opcodes(): if tag == "replace": # `_fancy_replace` can give us a more specific result, for # example, it can recognize completely equal lines among # a block of line junks. it is also useful when we want to # show exact difference line by line like what ndiff does. g = self._fancy_replace(a, alo, ahi, b, blo, bhi) elif tag in ("equal", "delete", "insert"): g = ((tag, alo, ahi, blo, bhi),) else: raise ValueError("unknown tag %r" % (tag,)) for tag, alo, ahi, blo, bhi in g: yield (tag, alo, ahi, blo, bhi) def get_merged_opcodes(self, a, b): r""" Similar like get_opcodes(), but the adjacent items might be merge as one, for example: ('equal', 2, 9, 0, 7) ('equal', 9, 11, 7, 9) ('replace', 11, 12, 9, 10) ('replace', 12, 13, 10, 11) ('replace', 13, 14, 11, 12) will be merged as: ('equal', 2, 11, 0, 9) ('replace', 11, 14, 9, 12) Another example: ('delete', 11, 12, 10, 10) ('replace', 12, 13, 10, 11) will be merged as: ('replace', 11, 13, 10, 11) """ g = self._merge_opcodes(self.get_opcodes(a, b)) if self.ignore_blank_lines: g = self._merge_opcodes(self._verify_blank_lines(a, b, g)) for tag, alo, ahi, blo, bhi in g: yield (tag, alo, ahi, blo, bhi) def get_grouped_opcodes(self, a, b, n=3): """ Isolate change clusters by eliminating ranges with no changes. Return a generator of groups with up to n lines of context. Each group is in the same format as returned by get_opcodes(). >>> from pprint import pprint >>> a = map(str, range(1,40)) >>> b = a[:] >>> b[8:8] = ['i'] # Make an insertion >>> b[20] += 'x' # Make a replacement >>> b[23:28] = [] # Make a deletion >>> b[30] += 'y' # Make another replacement >>> pprint(list(SequenceMatcher(None,a,b).get_grouped_opcodes())) [[('equal', 5, 8, 5, 8), ('insert', 8, 8, 8, 9), ('equal', 8, 11, 9, 12)], [('equal', 16, 19, 17, 20), ('replace', 19, 20, 20, 21), ('equal', 20, 22, 21, 23), ('delete', 22, 27, 23, 23), ('equal', 27, 30, 23, 26)], [('equal', 31, 34, 27, 30), ('replace', 34, 35, 30, 31), ('equal', 35, 38, 31, 34)]] """ def _is_blank_block(code): "Check if the opcode represents blank lines" return code[0] == "equal" and ( code[1] == code[2] or code[3] == code[4] ) def _check_adjacent_blank_block(codes, i): """Make change to the nearest opcode of blank lines if there are no more than `n` lines between them.""" if i >= 0 and i < len(codes) and _is_blank_block(codes[i]): # code[i-1][0] or code[i+1][0] MUST BE 'equal' if it exists if ( i < len(codes) - 2 and codes[i + 1][2] - codes[i + 1][1] < n and codes[i + 2][0] != "equal" or i > 1 and codes[i - 1][2] - codes[i - 1][1] < n and codes[i - 2][0] != "equal" ): tag, i1, i2, j1, j2 = codes[i] codes[i] = ( "insert" if i1 == i2 else "delete", i1, i2, j1, j2, ) _check_adjacent_blank_block(codes, i - 2) _check_adjacent_blank_block(codes, i + 2) g = self._merge_opcodes(self.get_opcodes(a, b)) if self.ignore_blank_lines: g = self._verify_blank_lines(a, b, g) codes = list(g) # Block composed of blank lines already changed its tag to 'equal', # but in a unified or context diff, we might have to output them. if self.ignore_blank_lines: for i in range(len(codes)): _check_adjacent_blank_block(codes, i) codes = list(self._merge_opcodes(codes)) if not codes: codes = [("equal", 0, 1, 0, 1)] # Fixup leading and trailing groups if they show no changes. if codes[0][0] == "equal": tag, i1, i2, j1, j2 = codes[0] codes[0] = (tag, max(i1, i2 - n), i2, max(j1, j2 - n), j2) if codes[-1][0] == "equal": tag, i1, i2, j1, j2 = codes[-1] codes[-1] = (tag, i1, min(i2, i1 + n), j1, min(j2, j1 + n)) nn = n + n group = [] for tag, i1, i2, j1, j2 in codes: # End the current group and start a new one whenever # there is a large range with no changes. if tag == "equal" and i2 - i1 > nn: group.append((tag, i1, min(i2, i1 + n), j1, min(j2, j1 + n))) yield group group = [] i1, j1 = max(i1, i2 - n), max(j1, j2 - n) group.append((tag, i1, i2, j1, j2)) if group and not (len(group) == 1 and group[0][0] == "equal"): yield group def _merge_opcodes(self, generator): "Algorithm for merging opcode" prev_tag = "" prev_alo, prev_ahi, prev_blo, prev_bhi = 0, 0, 0, 0 for tag, alo, ahi, blo, bhi in generator: assert prev_ahi == alo and prev_bhi == blo if prev_tag == tag or not prev_tag: prev_tag, prev_ahi, prev_bhi = tag, ahi, bhi elif tag == "equal" or prev_tag == "equal": yield (prev_tag, prev_alo, prev_ahi, prev_blo, prev_bhi) prev_tag = tag prev_alo, prev_ahi, prev_blo, prev_bhi = alo, ahi, blo, bhi else: prev_tag, prev_ahi, prev_bhi = "replace", ahi, bhi if prev_tag: yield (prev_tag, prev_alo, prev_ahi, prev_blo, prev_bhi) def _verify_blank_lines(self, a, b, g): "Modify tag if all lines in a deletion or insertion block are blank" for tag, alo, ahi, blo, bhi in g: if ( tag == "delete" and all( str(a[i]) in ("\n", "\r\n", "\r") for i in range(alo, ahi) ) or tag == "insert" and all( str(b[j]) in ("\n", "\r\n", "\r") for j in range(blo, bhi) ) ): yield ("equal", alo, ahi, blo, bhi) else: yield (tag, alo, ahi, blo, bhi) def _fancy_replace(self, a, alo, ahi, b, blo, bhi): r""" When replacing one block of lines with another, search the blocks for *similar* lines; the best-matching pair (if any) is used as a synch point, and intraline difference marking is done on the similar pair. Lots of work, but often worth it. Example: >>> for op in Differ()._fancy_replace('abcDefghiJkl\n', 3, 12, ... 'abcdefGhijkl\n', 3, 12): ... print(op) ... ('replace', 3, 4, 3, 4) ('equal', 4, 5, 4, 5) ('equal', 5, 6, 5, 6) ('replace', 6, 7, 6, 7) ('equal', 7, 8, 7, 8) ('equal', 8, 9, 8, 9) ('replace', 9, 10, 9, 10) ('equal', 10, 11, 10, 11) ('equal', 11, 12, 11, 12) """ # don't synch up unless the lines have a similarity score of at # least cutoff; best_ratio tracks the best score seen so far best_ratio, junk_line_best_ratio, cutoff = 0.74, 0.74, 0.75 best_i, best_j, junk_line_best_i, junk_line_best_j = -1, -1, -1, -1 cruncher = SequenceMatcher(self.charjunk) eqi, eqj = None, None # 1st indices of equal lines (if any) # search for the pair that matches best without being identical # (identical lines must be junk lines, & we don't want to synch up # on junk -- unless we have to) for j in range(blo, bhi): bj = b[j] cruncher.set_seq2(bj) for i in range(alo, ahi): ai = a[i] if ai == bj: # here, at least ai or bj MUST BE link junks if eqi is None: eqi, eqj = i, j continue cruncher.set_seq1(ai) # computing similarity is expensive, so use the quick # upper bounds first -- have seen this speed up messy # compares by a factor of 3. # note that ratio() is only expensive to compute the first # time it's called on a sequence pair; the expensive part # of the computation is cached by cruncher if ( cruncher.real_quick_ratio() > best_ratio and cruncher.quick_ratio() > best_ratio and cruncher.ratio() > best_ratio ): # junk line should not be considered as very similar to # normal line or other junk line unless there's no other # similar normal lines found if self.linejunk and ( self.linejunk(ai) or self.linejunk(bj) ): if cruncher.ratio() > junk_line_best_ratio: junk_line_best_ratio = cruncher.ratio() junk_line_best_i, junk_line_best_j = i, j else: best_ratio, best_i, best_j = cruncher.ratio(), i, j # priority: normal lines (pretty close) > line junks (identical) # > line junks (pretty close) if best_ratio < cutoff: # no non-identical "pretty close" pair if eqi is None: # no identical pair either -- treat it as a straight replace if junk_line_best_ratio < cutoff: # even no non-identical "pretty close" line junks found # treat it as a straight replace yield ("replace", alo, ahi, blo, bhi) return else: # at least we can find junk lines that are pretty close best_i, best_j = junk_line_best_i, junk_line_best_j best_ratio = junk_line_best_ratio else: # no close pair, but an identical pair -- synch up on that best_i, best_j, best_ratio = eqi, eqj, 1.0 else: # there's a close pair, so forget the identical pair (if any) eqi = None # a[best_i] very similar to b[best_j]; eqi is None if they're not # identical # pump out diffs from before the synch point for opcode in self._fancy_helper(a, alo, best_i, b, blo, best_j): yield opcode # generate op code on the synch pair if eqi is None: # the synch pair is similar yield ("replace", best_i, best_i + 1, best_j, best_j + 1) else: # the synch pair is identical yield ("equal", best_i, best_i + 1, best_j, best_j + 1) # pump out diffs from after the synch point for opcode in self._fancy_helper( a, best_i + 1, ahi, b, best_j + 1, bhi ): yield opcode def _fancy_helper(self, a, alo, ahi, b, blo, bhi): g = [] if alo < ahi: if blo < bhi: g = self._fancy_replace(a, alo, ahi, b, blo, bhi) else: g = [("delete", alo, ahi, blo, bhi)] elif blo < bhi: g = [("insert", alo, ahi, blo, bhi)] for opcode in g: yield opcode # With respect to junk, an earlier version of ndiff simply refused to # *start* a match with a junk element. The result was cases like this: # before: private Thread currentThread; # after: private volatile Thread currentThread; # If you consider whitespace to be junk, the longest contiguous match # not starting with junk is "e Thread currentThread". So ndiff reported # that "e volatil" was inserted between the 't' and the 'e' in "private". # While an accurate view, to people that's absurd. The current version # looks for matching blocks that are entirely junk-free, then extends the # longest one of those as far as possible but only with matching junk. # So now "currentThread" is matched, then extended to suck up the # preceding blank; then "private" is matched, and extended to suck up the # following blank; then "Thread" is matched; and finally ndiff reports # that "volatile " was inserted before "Thread". The only quibble # remaining is that perhaps it was really the case that " volatile" # was inserted after "private". I can live with that <wink>. def IS_LINE_JUNK(line, pat=re.compile(r"\s*#?\s*$").match): r""" Return 1 for ignorable line: iff `line` is blank or contains a single '#'. Examples: >>> IS_LINE_JUNK('\n') True >>> IS_LINE_JUNK(' # \n') True >>> IS_LINE_JUNK('hello\n') False """ return pat(line) is not None def IS_CHARACTER_JUNK(ch, ws=" \t"): r""" Return 1 for ignorable character: iff `ch` is a space or tab. Examples: >>> IS_CHARACTER_JUNK(' ') True >>> IS_CHARACTER_JUNK('\t') True >>> IS_CHARACTER_JUNK('\n') False >>> IS_CHARACTER_JUNK('x') False """ return ch in ws ######################################################################## ### Diff ######################################################################## def diff( a, b, ignore_space_change=False, ignore_whitespaces=False, ignore_blank_lines=False, unified=False, context=False, ): r""" Compare two blocks of text or two sequences of lines and generate delta as a normal/unified/context diff. Lines that only contain whitespaces have lower priority to get matched. If a or b is a string, then is will be split as list of strings which are separated by '\n', '\r\n' or '\r', while keep the line terminator. By default, the function generates the delta as a normal diff, but you can specify a unified diff or context diff. And you can directly set the parameter unified or context to a positive integer, that means the number of context lines, which defaults to three. - `ignore_space_change`: refer to gnu diff option -b - `ignore_whitespaces`: refer to gnu diff option -w - `ignore_blank_lines`: refer to gnu diff option -B - `unified`: if True, output in unified format, default False - `context`: if True, output in context format, default False """ a = a.splitlines(True) if isinstance(a, six.string_types) else a b = b.splitlines(True) if isinstance(b, six.string_types) else b assert isinstance(a, list) and isinstance(b, list) if unified: n = 3 if isinstance(unified, bool) else int(unified) assert n > 0 g = unified_diff( a, b, n, ignore_space_change, ignore_whitespaces, ignore_blank_lines, ) elif context: n = 3 if isinstance(context, int) else int(context) assert n > 0 g = context_diff( a, b, n, ignore_space_change, ignore_whitespaces, ignore_blank_lines, ) else: g = _diff( a, b, ignore_space_change, ignore_whitespaces, ignore_blank_lines ) return g ######################################################################## ### Basic Diff ######################################################################## def _dump_line(prefix, content): "Add a prefix in front, also add line break at tail if there is not one" if not content.endswith("\n"): yield prefix + content + os.linesep yield "\\ No newline at end of file" + os.linesep else: yield prefix + content def _diff( a, b, ignore_space_change=False, ignore_whitespaces=False, ignore_blank_lines=False, ): r""" Compare `a` and `b` (lists of strings); return a delta of gnu diff style. - `ignore_space_change`: refer to gnu diff option -b - `ignore_whitespaces`: refer to gnu diff option -w - `ignore_blank_lines`: refer to gnu diff option -B Example: >>> difference = _diff('one\ntwo\nthree\n'.splitlines(True), 'ore\nthree\nemu\n'.splitlines(True)) >>> print(''.join(difference)) 1,2c1 < one < two --- > ore 3a3 > emu """ for tag, alo, ahi, blo, bhi in Differ( linejunk=IS_LINE_JUNK, charjunk=None, ignore_space_change=ignore_space_change, ignore_whitespaces=ignore_whitespaces, ignore_blank_lines=ignore_blank_lines, ).get_merged_opcodes(a, b): if tag == "replace": head_a = ( "{},{}".format(alo + 1, ahi) if ahi - alo > 1 else str(alo + 1) ) head_b = ( "{},{}".format(blo + 1, bhi) if bhi - blo > 1 else str(blo + 1) ) yield "{}c{}{}".format(head_a, head_b, os.linesep) for line in a[alo:ahi]: for text in _dump_line("< ", line): yield text yield "---" + os.linesep for line in b[blo:bhi]: for text in _dump_line("> ", line): yield text elif tag == "delete": head_a = ( "{},{}".format(alo + 1, ahi) if ahi - alo > 1 else str(alo + 1) ) yield "{}d{}{}".format(head_a, bhi, os.linesep) for line in a[alo:ahi]: for text in _dump_line("< ", line): yield text elif tag == "insert": head_b = ( "{},{}".format(blo + 1, bhi) if bhi - blo > 1 else str(blo + 1) ) yield "{}a{}{}".format(alo, head_b, os.linesep) for line in b[blo:bhi]: for text in _dump_line("> ", line): yield text ######################################################################## ### Unified Diff ######################################################################## def _format_range_unified(start, stop): 'Convert range to the "ed" format' # Per the diff spec at http://www.unix.org/single_unix_specification/ beginning = start + 1 # lines start numbering with one length = stop - start if length == 1: return "{}".format(beginning) if not length: beginning -= 1 # empty ranges begin at line just before the range return "{},{}".format(beginning, length) def unified_diff( a, b, n=3, ignore_space_change=False, ignore_whitespaces=False, ignore_blank_lines=False, ): r""" Compare two sequences of lines; generate the delta as a unified diff. Unified diffs are a compact way of showing line changes and a few lines of context. The number of context lines is set by 'n' which defaults to three. By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This is helpful so that inputs created from file.readlines() result in diffs that are suitable for file.writelines() since both the inputs and outputs have trailing newlines. The unidiff format normally has a header for filenames and modification times. Here, "a.text" and "b.text" are displayed instead of file names, and current UTC time instead of the modification time. - `ignore_space_change`: refer to gnu diff option -b - `ignore_whitespaces`: refer to gnu diff option -w - `ignore_blank_lines`: refer to gnu diff option -B Example: >>> difference = unified_diff('one\ntwo\nthree\n'.splitlines(True), 'ore\nthree\nemu\n'.splitlines(True)) >>> print(''.join(difference)) --- a.text 2018-08-28 11:36:46 UTC +++ b.text 2018-08-28 11:36:46 UTC @@ -1,3 +1,3 @@ -one -two +ore three +emu """ started = False for group in Differ( linejunk=IS_LINE_JUNK, charjunk=None, ignore_space_change=ignore_space_change, ignore_whitespaces=ignore_whitespaces, ignore_blank_lines=ignore_blank_lines, ).get_grouped_opcodes(a, b, n): if not started: started = True utc_time_str = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S UTC") fromdate = todate = "\t{}".format(utc_time_str) yield "--- {}{}{}".format("a.text", fromdate, os.linesep) yield "+++ {}{}{}".format("b.text", todate, os.linesep) first, last = group[0], group[-1] file1_range = _format_range_unified(first[1], last[2]) file2_range = _format_range_unified(first[3], last[4]) yield "@@ -{} +{} @@{}".format(file1_range, file2_range, os.linesep) for tag, i1, i2, j1, j2 in group: if tag == "equal": for line in a[i1:i2]: for text in _dump_line(" ", line): yield text continue if tag in ("replace", "delete"): for line in a[i1:i2]: for text in _dump_line("-", line): yield text if tag in ("replace", "insert"): for line in b[j1:j2]: for text in _dump_line("+", line): yield text ######################################################################## ### Context Diff ######################################################################## def _format_range_context(start, stop): 'Convert range to the "ed" format' # Per the diff spec at http://www.unix.org/single_unix_specification/ beginning = start + 1 # lines start numbering with one length = stop - start if not length: beginning -= 1 # empty ranges begin at line just before the range if length <= 1: return "{}".format(beginning) return "{},{}".format(beginning, beginning + length - 1) # See http://www.unix.org/single_unix_specification/ def context_diff( a, b, n=3, ignore_space_change=False, ignore_whitespaces=False, ignore_blank_lines=False, ): r""" Compare two sequences of lines; generate the delta as a context diff. Context diffs are a compact way of showing line changes and a few lines of context. The number of context lines is set by 'n' which defaults to three. By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is helpful so that inputs created from file.readlines() result in diffs that are suitable for file.writelines() since both the inputs and outputs have trailing newlines. The context diff format normally has a header for filenames and modification times. Here, "a.text" and "b.text" are displayed instead of file names, and current UTC time instead of the modification time. - `ignore_space_change`: refer to gnu diff option -b - `ignore_whitespaces`: refer to gnu diff option -w - `ignore_blank_lines`: refer to gnu diff option -B Example: >>> difference = context_diff('one\ntwo\nthree\n'.splitlines(True), 'ore\nthree\nemu\n'.splitlines(True)) >>> print(''.join(difference)) --- a.text 2018-08-28 11:40:17 UTC +++ b.text 2018-08-28 11:40:17 UTC *************** *** 1,3 **** ! one ! two three --- 1,3 ---- ! ore three + emu """ prefix = dict(insert="+ ", delete="- ", replace="! ", equal=" ") started = False for group in Differ( linejunk=IS_LINE_JUNK, charjunk=None, ignore_space_change=ignore_space_change, ignore_whitespaces=ignore_whitespaces, ignore_blank_lines=ignore_blank_lines, ).get_grouped_opcodes(a, b, n): if not started: started = True utc_time_str = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S UTC") fromdate = todate = "\t{}".format(utc_time_str) yield "--- {}{}{}".format("a.text", fromdate, os.linesep) yield "+++ {}{}{}".format("b.text", todate, os.linesep) first, last = group[0], group[-1] yield "***************" + os.linesep file1_range = _format_range_context(first[1], last[2]) yield "*** {} ****{}".format(file1_range, os.linesep) if any(tag in ("replace", "delete") for tag, _, _, _, _ in group): for tag, i1, i2, _, _ in group: if tag != "insert": for line in a[i1:i2]: for text in _dump_line(prefix[tag], line): yield text file2_range = _format_range_context(first[3], last[4]) yield "--- {} ----{}".format(file2_range, os.linesep) if any(tag in ("replace", "insert") for tag, _, _, _, _ in group): for tag, _, _, j1, j2 in group: if tag != "delete": for line in b[j1:j2]: for text in _dump_line(prefix[tag], line): yield text
StarcoderdataPython
3269048
#!/usr/bin/python # Can enable debug output by uncommenting: #import logging #logging.basicConfig(level=logging.DEBUG) import math import Turbo_I2C.MPU6050 as MPU6050 sensor = MPU6050.MPU6050() sensor.read_raw_data() print 'Temp = {0:0.2f} *C'.format(sensor.read_temp()) print 'Pitch = {0:0.2f} grader '.format(sensor.read_pitch()/ math.pi *180) print 'Roll = {0:0.2f} grader '.format(sensor.read_roll()/ math.pi *180)
StarcoderdataPython
83060
from django.db import models from django.db.models import Case, F, Q, Value, When from psqlextra.expressions import HStoreRef from psqlextra.fields import HStoreField from .fake_model import get_fake_model def test_query_annotate_hstore_key_ref(): """Tests whether annotating using a :see:HStoreRef expression works correctly. This allows you to select an individual hstore key. """ model_fk = get_fake_model({"title": HStoreField()}) model = get_fake_model( {"fk": models.ForeignKey(model_fk, on_delete=models.CASCADE)} ) fk = model_fk.objects.create(title={"en": "english", "ar": "arabic"}) model.objects.create(fk=fk) queryset = ( model.objects.annotate(english_title=HStoreRef("fk__title", "en")) .values("english_title") .first() ) assert queryset["english_title"] == "english" def test_query_annotate_rename(): """Tests whether field names can be overwritten with a annotated field.""" model = get_fake_model({"title": models.CharField(max_length=12)}) model.objects.create(title="swen") obj = model.objects.annotate(title=F("title")).first() assert obj.title == "swen" def test_query_annotate_rename_chain(): """Tests whether annotations are behaving correctly after a QuerySet chain.""" model = get_fake_model( { "name": models.CharField(max_length=10), "value": models.IntegerField(), } ) model.objects.create(name="test", value=23) obj = model.objects.values("name").annotate(value=F("value"))[:1] assert "value" in obj[0] assert obj[0]["value"] == 23 def test_query_annotate_rename_order(): """Tests whether annotation order is preserved after a rename.""" model = get_fake_model( { "name": models.CharField(max_length=10), "value": models.IntegerField(), } ) qs = model.objects.annotate(value=F("value"), value_2=F("value")) assert list(qs.query.annotations.keys()) == ["value", "value_2"] def test_query_annotate_in_expression(): """Tests whether annotations can be used in expressions.""" model = get_fake_model({"name": models.CharField(max_length=10)}) model.objects.create(name="henk") result = model.objects.annotate( real_name=F("name"), is_he_henk=Case( When(Q(real_name="henk"), then=Value("really henk")), default=Value("definitely not henk"), output_field=models.CharField(), ), ).first() assert result.real_name == "henk" assert result.is_he_henk == "really henk" def test_query_hstore_value_update_f_ref(): """Tests whether F(..) expressions can be used in hstore values when performing update queries.""" model = get_fake_model( {"name": models.CharField(max_length=255), "name_new": HStoreField()} ) model.objects.create(name="waqas", name_new=dict(en="swen")) model.objects.update(name_new=dict(en=models.F("name"))) inst = model.objects.all().first() assert inst.name_new.get("en") == "waqas" def test_query_hstore_value_update_cast(): """Tests whether values in a HStore field are automatically cast to strings when doing updates.""" model = get_fake_model({"title": HStoreField()}) model.objects.create(title=dict(en="test")) model.objects.update(title=dict(en=2)) inst = model.objects.all().first() assert inst.title.get("en") == "2" def test_query_hstore_value_update_escape(): """Tests whether values in a HStore field are properly escaped using prepared statement values.""" model = get_fake_model({"title": HStoreField()}) model.objects.create(title=dict(en="test")) model.objects.update(title=dict(en="console.log('test')")) inst = model.objects.all().first() assert inst.title.get("en") == "console.log('test')"
StarcoderdataPython
110143
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import xml.etree.ElementTree as ET import xml.dom.minidom as pxml import os def convert(tree,fileName=None): """ Converts input files to be compatible with merge request #460: - Removes "all" node - Sets default variable names @ In, tree, xml.etree.ElementTree.ElementTree object, the contents of a RAVEN input file @ In, fileName, the name for the raven input file @Out, tree, xml.etree.ElementTree.ElementTree object, the modified RAVEN input file """ simulation = tree.getroot() opts = simulation.find('Optimizers') if opts is not None: for child in opts: if child.tag == 'FiniteDifferenceGradientOptimizer': child.tag = 'FiniteDifference' return tree if __name__=='__main__': import convert_utils import sys convert_utils.standardMain(sys.argv,convert)
StarcoderdataPython
1798595
<reponame>paulmassen/kibitzr import os import logging import pkgutil import importlib logger = logging.getLogger(__name__) def dummy_notify_factory(notify_func): def factory(conf, value): return notify_func return factory def load_notifiers(): path = os.path.dirname(os.path.abspath(__file__)) before, sep, _ = __name__.rpartition('.') prefix = before + sep registry = {} for _, modname, _ in pkgutil.walk_packages([path], prefix): submodule = importlib.import_module(modname, __name__) if hasattr(submodule, 'register'): submodule.register(registry) else: key = getattr(submodule, 'NAME', modname.split('.')[-1]) if hasattr(submodule, 'notify_factory'): registry[key] = submodule.notify_factory elif hasattr(submodule, 'notify'): registry[key] = dummy_notify_factory(submodule.notify) return registry class CompositeNotifier(object): REGISTRY = load_notifiers() def __init__(self, conf): self.conf = conf notifiers_conf = conf.get('notify', []) if not notifiers_conf: logger.warning( "No notifications configured for %r", conf['name'], ) self.notifiers = [] for notifier_conf in notifiers_conf: self.add_notifier(notifier_conf) def add_notifier(self, notifier_conf): try: name, value = next(iter(notifier_conf.items())) except AttributeError: name, value = notifier_conf, None try: notify_factory = self.REGISTRY[name] except KeyError: logger.error("Unknown notifier %r", name) else: self.notifiers.append( notify_factory(conf=self.conf, value=value) ) def notify(self, report): if report: logger.debug('Sending report: %r', report) for notifier in self.notifiers: try: notifier(report=report) except: logger.exception( "Exception occurred during sending notification" ) else: logger.debug('Report is empty, skipping notification') __call__ = notify
StarcoderdataPython
21436
from time import time import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) from singly_linkedlist.singly_linkedlist import SinglyLinkedList start = time() linked_list = SinglyLinkedList() for i in range(100000): linked_list.insert_head(111111111111) end = time() print("Took {0} seconds".format(start-end)) # linked_list.print_elements()
StarcoderdataPython
189873
<reponame>yoshihikosuzuki/pbcore<gh_stars>0 from nose.tools import assert_equal, assert_true, assert_false from numpy.testing import assert_array_equal from StringIO import StringIO from pbcore.io import BasH5Collection from pbcore import data def lookupSomeReadsByName(bc): pass def test(): for fofn in data.getFofns(): bc = BasH5Collection(fofn) for zmw in bc: zmwAgain = bc[zmw.zmwName] assert_equal(zmw.zmwName, zmwAgain.zmwName) def test_read_iterators(): for fofn in data.getFofns(): bc = BasH5Collection(fofn) # TODO Add some meaningful tests here list(bc.subreads()) list(bc.reads()) list(bc.ccsReads())
StarcoderdataPython
3221949
<filename>vsts/vsts/work/v4_0/models/capacity_patch.py # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class CapacityPatch(Model): """CapacityPatch. :param activities: :type activities: list of :class:`Activity <work.v4_0.models.Activity>` :param days_off: :type days_off: list of :class:`DateRange <work.v4_0.models.DateRange>` """ _attribute_map = { 'activities': {'key': 'activities', 'type': '[Activity]'}, 'days_off': {'key': 'daysOff', 'type': '[DateRange]'} } def __init__(self, activities=None, days_off=None): super(CapacityPatch, self).__init__() self.activities = activities self.days_off = days_off
StarcoderdataPython
184119
<reponame>kilinger/marathon-rocketchat-hubot # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0002_auto_20160122_0305'), ] operations = [ migrations.AddField( model_name='projectport', name='container_port', field=models.IntegerField(default=5000), preserve_default=False, ), ]
StarcoderdataPython
54499
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Name: sorting.py # Purpose: Music21 class for sorting # # Authors: <NAME> # # Copyright: Copyright © 2014-2015 <NAME> and the music21 # Project # License: BSD, see license.txt # ----------------------------------------------------------------------------- ''' This module defines a single class, SortTuple, which is a named tuple that can sort against bare offsets and other SortTuples. This is a performance-critical object. It also defines three singleton instance of the SortTupleLow class as ZeroSortTupleDefault, ZeroSortTupleLow and ZeroSortTupleHigh which are sortTuple at offset 0.0, priority [0, -inf, inf] respectively: >>> sorting.ZeroSortTupleDefault SortTuple(atEnd=0, offset=0.0, priority=0, classSortOrder=0, isNotGrace=1, insertIndex=0) >>> sorting.ZeroSortTupleLow SortTuple(atEnd=0, offset=0.0, priority=-inf, classSortOrder=0, isNotGrace=1, insertIndex=0) >>> sorting.ZeroSortTupleHigh SortTuple(atEnd=0, offset=0.0, priority=inf, classSortOrder=0, isNotGrace=1, insertIndex=0) ''' from collections import namedtuple from math import inf as INFINITY from music21 import exceptions21 _attrList = ['atEnd', 'offset', 'priority', 'classSortOrder', 'isNotGrace', 'insertIndex'] class SortingException(exceptions21.Music21Exception): pass class SortTuple(namedtuple('SortTuple', _attrList)): ''' Derived class of namedTuple which allows for comparisons with pure ints/fractions. >>> n = note.Note() >>> s = stream.Stream() >>> s.insert(4, n) >>> st = n.sortTuple() >>> st SortTuple(atEnd=0, offset=4.0, priority=0, classSortOrder=20, isNotGrace=1, insertIndex=...) >>> st.shortRepr() '4.0 <0.20...>' >>> st.atEnd 0 >>> st.offset 4.0 >>> st < 5.0 True >>> 5.0 > st True >>> st > 3.0 True >>> 3.0 < st True >>> st == 4.0 True >>> ts = bar.Barline('double') >>> t = stream.Stream() >>> t.storeAtEnd(ts) >>> ts_st = ts.sortTuple() >>> ts_st SortTuple(atEnd=1, offset=0.0, priority=0, classSortOrder=-5, isNotGrace=1, insertIndex=...) >>> st < ts_st True >>> ts_st > 999999 True >>> import math >>> ts_st == math.inf True Construct one w/ keywords: >>> st = sorting.SortTuple(atEnd=0, offset=1.0, priority=0, classSortOrder=20, ... isNotGrace=1, insertIndex=323) >>> st.shortRepr() '1.0 <0.20.323>' or as tuple: >>> st = sorting.SortTuple(0, 1.0, 0, 20, 1, 323) >>> st.shortRepr() '1.0 <0.20.323>' ''' def __new__(cls, *tupEls, **kw): # noinspection PyTypeChecker return super(SortTuple, cls).__new__(cls, *tupEls, **kw) def __eq__(self, other): if isinstance(other, tuple): return super().__eq__(other) try: if self.atEnd == 1 and other != INFINITY: return False elif self.atEnd == 1: return True else: return self.offset == other except ValueError: return NotImplemented def __lt__(self, other): if isinstance(other, tuple): return super().__lt__(other) try: if self.atEnd == 1: return False else: return self.offset < other except ValueError: return NotImplemented def __gt__(self, other): if isinstance(other, tuple): return super().__gt__(other) try: if self.atEnd == 1 and other != INFINITY: return True elif self.atEnd == 1: return False else: return self.offset > other except ValueError: return NotImplemented def __ne__(self, other): return not self.__eq__(other) def __le__(self, other): return self.__lt__(other) or self.__eq__(other) def __ge__(self, other): return self.__gt__(other) or self.__eq__(other) def shortRepr(self): ''' Returns a nice representation of a SortTuple >>> st = sorting.SortTuple(atEnd=0, offset=1.0, priority=0, classSortOrder=20, ... isNotGrace=1, insertIndex=323) >>> st.shortRepr() '1.0 <0.20.323>' >>> st = sorting.SortTuple(atEnd=1, offset=1.0, priority=4, classSortOrder=7, ... isNotGrace=0, insertIndex=200) >>> st.shortRepr() 'End <4.7.[Grace].200>' ''' reprParts = [] if self.atEnd: reprParts.append('End') else: reprParts.append(str(self.offset)) reprParts.append(' <') reprParts.append(str(self.priority)) reprParts.append('.') reprParts.append(str(self.classSortOrder)) if self.isNotGrace == 0: reprParts.append('.[Grace]') reprParts.append('.') reprParts.append(str(self.insertIndex)) reprParts.append('>') return ''.join(reprParts) def modify(self, **kw): ''' return a new SortTuple identical to the previous, except with the given keyword modified. Works only with keywords. >>> st = sorting.SortTuple(atEnd=0, offset=1.0, priority=0, classSortOrder=20, ... isNotGrace=1, insertIndex=32) >>> st2 = st.modify(offset=2.0) >>> st2.shortRepr() '2.0 <0.20.32>' >>> st2 SortTuple(atEnd=0, offset=2.0, priority=0, classSortOrder=20, isNotGrace=1, insertIndex=32) >>> st3 = st2.modify(atEnd=1, isNotGrace=0) >>> st3.shortRepr() 'End <0.20.[Grace].32>' The original tuple is never modified (hence tuple): >>> st.offset 1.0 Changing offset, but nothing else, helps in creating .flatten() positions. ''' outList = [kw.get(attr, getattr(self, attr)) for attr in _attrList] return self.__class__(*outList) def add(self, other): ''' Add all attributes from one sortTuple to another, returning a new one. >>> n = note.Note() >>> n.offset = 10 >>> s = stream.Stream() >>> s.offset = 10 >>> n.sortTuple() SortTuple(atEnd=0, offset=10.0, priority=0, classSortOrder=20, isNotGrace=1, insertIndex=0) >>> s.sortTuple() SortTuple(atEnd=0, offset=10.0, priority=0, classSortOrder=-20, isNotGrace=1, insertIndex=0) >>> s.sortTuple().add(n.sortTuple()) SortTuple(atEnd=0, offset=20.0, priority=0, classSortOrder=0, isNotGrace=1, insertIndex=0) Note that atEnd and isNotGrace are equal to other's value. are upper bounded at 1 and take the maxValue of either. ''' if not isinstance(other, self.__class__): raise SortingException('Cannot add attributes from a different class') outList = [max(getattr(self, attr), getattr(other, attr)) if attr in ('atEnd', 'isNotGrace') else (getattr(self, attr) + getattr(other, attr)) for attr in _attrList] return self.__class__(*outList) def sub(self, other): ''' Subtract all attributes from to another. atEnd and isNotGrace take the min value of either. >>> n = note.Note() >>> n.offset = 10 >>> s = stream.Stream() >>> s.offset = 10 >>> n.sortTuple() SortTuple(atEnd=0, offset=10.0, priority=0, classSortOrder=20, isNotGrace=1, insertIndex=0) >>> s.sortTuple() SortTuple(atEnd=0, offset=10.0, priority=0, classSortOrder=-20, isNotGrace=1, insertIndex=0) >>> s.sortTuple().sub(n.sortTuple()) SortTuple(atEnd=0, offset=0.0, priority=0, classSortOrder=-40, isNotGrace=1, insertIndex=0) Note that atEnd and isNotGrace are lower bounded at 0. ''' if not isinstance(other, self.__class__): raise SortingException('Cannot add attributes from a different class') outList = [min(getattr(self, attr), getattr(other, attr)) if attr in ('atEnd', 'isNotGrace') else (getattr(self, attr) - getattr(other, attr)) for attr in _attrList] return self.__class__(*outList) ZeroSortTupleDefault = SortTuple(atEnd=0, offset=0.0, priority=0, classSortOrder=0, isNotGrace=1, insertIndex=0) ZeroSortTupleLow = SortTuple(atEnd=0, offset=0.0, priority=-INFINITY, classSortOrder=0, isNotGrace=1, insertIndex=0) ZeroSortTupleHigh = SortTuple(atEnd=0, offset=0.0, priority=INFINITY, classSortOrder=0, isNotGrace=1, insertIndex=0) # ----------------------------------------------------------------------------- if __name__ == '__main__': import music21 music21.mainTest()
StarcoderdataPython
1793038
<reponame>GmZhang3/data-science-ipython-notebooks<filename>python/python101/basis/distince_test.py #!/usr/bin/python # -*- coding: UTF-8 -*- import numpy as np from sklearn.cluster import DBSCAN def distince(vect1,vect2): dist = (vect1-vect2)*((vect1-vect2).T) return dist[0,0] if __name__ == "__main__": v1 = np.array([1,2]) v2 = np.array([1,1]) print v1 -v2 print (v1 -v2).T vv = (v1 -v2)*((v1 -v2).T) print vv # print type(v1) # print v2 # print distince(v1,v2)
StarcoderdataPython
30198
from enum import Enum from typing import Tuple, Type, Optional class Mode(Enum): SIMPLE = "s" EXTENDED = "e" def __str__(self) -> str: return self.value class Header(Enum): PATH = "Path" NAME = "Name" SIZE = "Size" MODIFIED = "Modified" ACCESSED = "Accessed" INPUT = "Input" OUTPUT = "Output" def __str__(self) -> str: return self.value Header_ref = Tuple[Header, Type, Optional[str]]
StarcoderdataPython
1762400
# +--------------------------------------------------------------------------+ # | Licensed Materials - Property of IBM | # | | # | (C) Copyright IBM Corporation 2009-2014. | # +--------------------------------------------------------------------------+ # | This module complies with Django 1.0 and is | # | Licensed under the Apache License, Version 2.0 (the "License"); | # | you may not use this file except in compliance with the License. | # | You may obtain a copy of the License at | # | http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable | # | law or agreed to in writing, software distributed under the License is | # | distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | # | KIND, either express or implied. See the License for the specific | # | language governing permissions and limitations under the License. | # +--------------------------------------------------------------------------+ # | Authors: <NAME>, <NAME>, <NAME> | # +--------------------------------------------------------------------------+ import sys _IS_JYTHON = sys.platform.startswith( 'java' ) if not _IS_JYTHON: try: # Import IBM_DB wrapper ibm_db_dbi import ibm_db_dbi as Database #from Database import DatabaseError except ImportError, e: raise ImportError( "ibm_db module not found. Install ibm_db module from http://code.google.com/p/ibm-db/. Error: %s" % e ) else: from com.ziclix.python.sql import zxJDBC from django.db.backends import BaseDatabaseIntrospection, FieldInfo from django import VERSION as djangoVersion class DatabaseIntrospection( BaseDatabaseIntrospection ): """ This is the class where database metadata information can be generated. """ if not _IS_JYTHON: data_types_reverse = { Database.STRING : "CharField", Database.TEXT : "TextField", Database.XML : "XMLField", Database.NUMBER : "IntegerField", Database.FLOAT : "FloatField", Database.DECIMAL : "DecimalField", Database.DATE : "DateField", Database.TIME : "TimeField", Database.DATETIME : "DateTimeField", } if(djangoVersion[0:2] > (1, 1)): data_types_reverse[Database.BINARY] = "BinaryField" data_types_reverse[Database.BIGINT] = "BigIntegerField" else: data_types_reverse[Database.BIGINT] = "IntegerField" else: data_types_reverse = { zxJDBC.CHAR: "CharField", zxJDBC.BIGINT: "BigIntegerField", zxJDBC.BINARY: "BinaryField", zxJDBC.BIT: "SmallIntegerField", zxJDBC.BLOB: "BinaryField", zxJDBC.CLOB: "TextField", zxJDBC.DATE: "DateField", zxJDBC.DECIMAL: "DecimalField", zxJDBC.DOUBLE: "FloatField", zxJDBC.FLOAT: "FloatField", zxJDBC.INTEGER: "IntegerField", zxJDBC.LONGVARCHAR: "TextField", zxJDBC.LONGVARBINARY: "ImageField", zxJDBC.NUMERIC: "DecimalField", zxJDBC.REAL: "FloatField", zxJDBC.SMALLINT: "SmallIntegerField", zxJDBC.VARCHAR: "CharField", zxJDBC.TIMESTAMP: "DateTimeField", zxJDBC.TIME: "TimeField", } def get_field_type(self, data_type, description): if not _IS_JYTHON: if data_type == Database.NUMBER: if description.precision == 5: return 'SmallIntegerField' return super(DatabaseIntrospection, self).get_field_type(data_type, description) # Converting table name to lower case. def table_name_converter ( self, name ): return name.lower() # Getting the list of all tables, which are present under current schema. def get_table_list ( self, cursor ): table_list = [] if not _IS_JYTHON: for table in cursor.connection.tables( cursor.connection.get_current_schema() ): table_list.append( table['TABLE_NAME'].lower() ) else: cursor.execute( "select current_schema from sysibm.sysdummy1" ) schema = cursor.fetchone()[0] # tables(String catalog, String schemaPattern, String tableNamePattern, String[] types) gives a description of tables available in a catalog cursor.tables( None, schema, None, ( "TABLE", ) ) for table in cursor.fetchall(): # table[2] is table name table_list.append( table[2].lower() ) return table_list # Generating a dictionary for foreign key details, which are present under current schema. def get_relations( self, cursor, table_name ): relations = {} if not _IS_JYTHON: schema = cursor.connection.get_current_schema() for fk in cursor.connection.foreign_keys( True, schema, table_name ): relations[self.__get_col_index( cursor, schema, table_name, fk['FKCOLUMN_NAME'] )] = ( self.__get_col_index( cursor, schema, fk['PKTABLE_NAME'], fk['PKCOLUMN_NAME'] ), fk['PKTABLE_NAME'].lower() ) else: cursor.execute( "select current_schema from sysibm.sysdummy1" ) schema = cursor.fetchone()[0] # foreign_keys(String primaryCatalog, String primarySchema, String primaryTable, String foreignCatalog, String foreignSchema, String foreignTable) # gives a description of the foreign key columns in the foreign key table that reference the primary key columns # of the primary key table (describe how one table imports another's key.) This should normally return a single foreign key/primary key pair # (most tables only import a foreign key from a table once.) They are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and KEY_SEQ cursor.foreignkeys( None, schema, table_name, None, '%', '%' ) for fk in cursor.fetchall(): # fk[2] is primary key table name, fk[3] is primary key column name, fk[7] is foreign key column name being exported relations[self.__get_col_index( cursor, schema, table_name, fk[7] )] = ( self.__get_col_index( cursor, schema, fk[2], fk[3] ), fk[3], fk[2] ) return relations # Private method. Getting Index position of column by its name def __get_col_index ( self, cursor, schema, table_name, col_name ): if not _IS_JYTHON: for col in cursor.connection.columns( schema, table_name, [col_name] ): return col['ORDINAL_POSITION'] - 1 else: cursor.execute( "select current_schema from sysibm.sysdummy1" ) schema = cursor.fetchone()[0] # columns(String catalog, String schemaPattern, String tableNamePattern, String columnNamePattern) gives a description of table columns available in the specified catalog cursor.columns( None, schema, table_name, col_name ) for col in cursor.fetchall(): #col[16] is index of column in table return col[16] - 1 def get_key_columns(self, cursor, table_name): relations = [] if not _IS_JYTHON: schema = cursor.connection.get_current_schema() for fk in cursor.connection.foreign_keys( True, schema, table_name ): relations.append( (fk['FKCOLUMN_NAME'].lower(), fk['PKTABLE_NAME'].lower(), fk['PKCOLUMN_NAME'].lower()) ) else: cursor.execute( "select current_schema from sysibm.sysdummy1" ) schema = cursor.fetchone()[0] # foreign_keys(String primaryCatalog, String primarySchema, String primaryTable, String foreignCatalog, String foreignSchema, String foreignTable) # gives a description of the foreign key columns in the foreign key table that reference the primary key columns # of the primary key table (describe how one table imports another's key.) This should normally return a single foreign key/primary key pair # (most tables only import a foreign key from a table once.) They are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and KEY_SEQ cursor.foreignkeys( None, schema, table_name, None, '%', '%' ) for fk in cursor.fetchall(): # fk[2] is primary key table name, fk[3] is primary key column name, fk[7] is foreign key column name being exported relations.append( (fk[7], fk[2], fk[3]) ) return relations # Getting list of indexes associated with the table provided. def get_indexes( self, cursor, table_name ): indexes = {} # To skip indexes across multiple fields multifield_indexSet = set() if not _IS_JYTHON: schema = cursor.connection.get_current_schema() all_indexes = cursor.connection.indexes( True, schema, table_name ) for index in all_indexes: if (index['ORDINAL_POSITION'] is not None) and (index['ORDINAL_POSITION']== 2): multifield_indexSet.add(index['INDEX_NAME']) for index in all_indexes: temp = {} if index['INDEX_NAME'] in multifield_indexSet: continue if ( index['NON_UNIQUE'] ): temp['unique'] = False else: temp['unique'] = True temp['primary_key'] = False indexes[index['COLUMN_NAME'].lower()] = temp for index in cursor.connection.primary_keys( True, schema, table_name ): indexes[index['COLUMN_NAME'].lower()]['primary_key'] = True else: cursor.execute( "select current_schema from sysibm.sysdummy1" ) schema = cursor.fetchone()[0] # statistics(String catalog, String schema, String table, boolean unique, boolean approximate) returns a description of a table's indices and statistics. cursor.statistics( None, schema, table_name, 0, 0 ) all_indexes = cursor.fetchall() for index in all_indexes: #index[7] indicate ORDINAL_POSITION within index, and index[5] is index name if index[7] == 2: multifield_indexSet.add(index[5]) for index in all_indexes: temp = {} if index[5] in multifield_indexSet: continue # index[3] indicate non-uniqueness of column if ( index[3] != None ): if ( index[3] ) == 1: temp['unique'] = False else: temp['unique'] = True temp['primary_key'] = False # index[8] is column name indexes[index[8].lower()] = temp # primarykeys(String catalog, String schema, String table) gives a description of a table's primary key columns cursor.primarykeys( None, schema, table_name ) for index in cursor.fetchall(): #index[3] is column name indexes[index[3].lower()]['primary_key'] = True return indexes # Getting the description of the table. def get_table_description( self, cursor, table_name ): qn = self.connection.ops.quote_name cursor.execute( "SELECT * FROM %s FETCH FIRST 1 ROWS ONLY" % qn( table_name ) ) description = [] if djangoVersion < (1, 6): for desc in cursor.description: description.append( [ desc[0].lower(), ] + desc[1:] ) else: for desc in cursor.description: description.append(FieldInfo(*[desc[0].lower(), ] + desc[1:])) return description def get_constraints(self, cursor, table_name): constraints = {} if not _IS_JYTHON: schema = cursor.connection.get_current_schema() sql = "SELECT CONSTNAME, COLNAME FROM SYSCAT.COLCHECKS WHERE TABSCHEMA='%(schema)s' AND TABNAME='%(table)s'" % {'schema': schema.upper(), 'table': table_name.upper()} cursor.execute(sql) for constname, colname in cursor.fetchall(): if constname not in constraints: constraints[constname] = { 'columns': [], 'primary_key': False, 'unique': False, 'foreign_key': None, 'check': True, 'index': False } constraints[constname]['columns'].append(colname.lower()) sql = "SELECT KEYCOL.CONSTNAME, KEYCOL.COLNAME FROM SYSCAT.KEYCOLUSE KEYCOL INNER JOIN SYSCAT.TABCONST TABCONST ON KEYCOL.CONSTNAME=TABCONST.CONSTNAME WHERE TABCONST.TABSCHEMA='%(schema)s' and TABCONST.TABNAME='%(table)s' and TABCONST.TYPE='U'" % {'schema': schema.upper(), 'table': table_name.upper()} cursor.execute(sql) for constname, colname in cursor.fetchall(): if constname not in constraints: constraints[constname] = { 'columns': [], 'primary_key': False, 'unique': True, 'foreign_key': None, 'check': False, 'index': True } constraints[constname]['columns'].append(colname.lower()) for pkey in cursor.connection.primary_keys(None, schema, table_name): if pkey['PK_NAME'] not in constraints: constraints[pkey['PK_NAME']] = { 'columns': [], 'primary_key': True, 'unique': False, 'foreign_key': None, 'check': False, 'index': True } constraints[pkey['PK_NAME']]['columns'].append(pkey['COLUMN_NAME'].lower()) for fk in cursor.connection.foreign_keys( True, schema, table_name ): if fk['FK_NAME'] not in constraints: constraints[fk['FK_NAME']] = { 'columns': [], 'primary_key': False, 'unique': False, 'foreign_key': (fk['PKTABLE_NAME'].lower(), fk['PKCOLUMN_NAME'].lower()), 'check': False, 'index': False } constraints[fk['FK_NAME']]['columns'].append(fk['FKCOLUMN_NAME'].lower()) if fk['PKCOLUMN_NAME'].lower() not in constraints[fk['FK_NAME']]['foreign_key']: fkeylist = list(constraints[fk['FK_NAME']]['foreign_key']) fkeylist.append(fk['PKCOLUMN_NAME'].lower()) constraints[fk['FK_NAME']]['foreign_key'] = tuple(fkeylist) for index in cursor.connection.indexes( True, schema, table_name ): if index['INDEX_NAME'] not in constraints: constraints[index['INDEX_NAME']] = { 'columns': [], 'primary_key': False, 'unique': False, 'foreign_key': None, 'check': False, 'index': True } elif constraints[index['INDEX_NAME']]['unique'] : continue elif constraints[index['INDEX_NAME']]['primary_key']: continue constraints[index['INDEX_NAME']]['columns'].append(index['COLUMN_NAME'].lower()) return constraints
StarcoderdataPython
1620730
import sys import os import collections import nltk.data import string import math import features import traceback import time import argparse import nltk.corpus import nltk.stem.porter import textClasses as tc import cluster import fuzzy import rules CUE_PHRASE_FILE = 'bonus_words' STIGMA_WORDS_FILE = 'stigma_words' def pre_process_text(text): while text[0] == "\n": text = text[1:] text = text.split('\n', 1) title = tc.Title(text[0], []) text = text[1].replace(u"\u2018", '\'').replace(u"\u2019", '\'').replace(u"\u201c",'"').replace(u"\u201d", '"') words = dict() sentences = [] sentence_detector = nltk.data.load('tokenizers/punkt/english.pickle') detected_sentences = sentence_detector.tokenize(text.strip()) stopwords_list = nltk.corpus.stopwords.words('english') stemmer = nltk.stem.porter.PorterStemmer() #Pre-process title tokens = nltk.word_tokenize(title.original) tokens = [token for token in tokens if token not in stopwords_list] part_of_speech = nltk.pos_tag(tokens) for (token, word_pos) in zip(tokens, part_of_speech): token = token.lower() if (token not in words) and (token not in list(string.punctuation) and (token not in stopwords_list)): words[token] = tc.Word(stemmer.stem(token), word_pos, [(lemma, stemmer.stem(lemma)) for synset in nltk.corpus.wordnet.synsets(token) for lemma in synset.lemma_names()]) title.bag_of_words.append(token) #Pre-process text for detected_sentence in detected_sentences: tokens = nltk.word_tokenize(detected_sentence) tokens = [token for token in tokens if token not in stopwords_list] if tokens: part_of_speech = nltk.pos_tag(tokens) bag_of_words = [] stemmed_bag_of_words = [] for (token, word_pos) in zip(tokens, part_of_speech): token = token.lower() if (token not in list(string.punctuation) and (token not in stopwords_list)): if (token not in words): words[token] = tc.Word(stemmer.stem(token), word_pos, [(lemma, stemmer.stem(lemma)) for synset in nltk.corpus.wordnet.synsets(token) for lemma in synset.lemma_names()]) elif token in words: words[token].increment_abs_frequency() bag_of_words.append(token) stemmed_bag_of_words.append(stemmer.stem(token)) if (len(bag_of_words) != 0 or len(stemmed_bag_of_words) != 0): sentences.append(tc.Sentence(detected_sentence, len(sentences) + 1, [], [], None)) sentences[-1].bag_of_words = list(bag_of_words) sentences[-1].stemmed_bag_of_words = list(stemmed_bag_of_words) return [title, sentences, words] def process_input(argv=None): if argv is None: argv = sys.argv else: sys.argv.extend(argv) parser = argparse.ArgumentParser() parser.add_argument("-f", "--text-file", dest="text_file", help="the file containing the text tom be summarized", required=True) parser.add_argument("-p", "--percent", dest="percentage", help="the compression rate as percentage", required=True) parser.add_argument("-t", "--threads", dest="threads", help="the number of threads", required=True) # Process arguments args = parser.parse_args() threads = args.threads percentage = args.percentage text_file = args.text_file with open(text_file, 'r') as f: text = f.read() f.closed return {"text": text, "percentage": percentage, "threads": threads} def resource_loader(): resources = dict() path = os.path.dirname(os.path.realpath(__file__)) + '\\resources\\' resource_files = [file.split()[0] for file in os.listdir(path)] for resource_file_name in resource_files: with open(path + "/"+resource_file_name, 'r') as f: text = f.read() f.closed resources[resource_file_name.split('.')[0]] = set(list(text.split('\n'))) return resources def print_stuff(sentences, sentences_features): data = sentences_features for i in range(0, len(data)): print("******************************") print("Sentence: ", end="") print(sentences[i].original) print_sentence_info(data[i]) print("Rules: ") rules.print_rules_results(data[i]) def filter_using_clusters(sentences, percentage, clusters): number_sentences = math.floor(percentage * len(sentences)) sentences = sorted(sentences, key=lambda x: x.rank, reverse=True) clusters_counter = [0] * len(clusters) sentence_counter = 0; chosen_sentences = [] while len(chosen_sentences) < number_sentences: sentence_counter = 0 for i in range(0, len(clusters)): for j in range(0, len(sentences)): if (clusters_counter[i] == min(clusters_counter) and clusters[i].count(sentences[j].position) == 1): chosen_sentences.append(sentences[j]) clusters[i].remove(sentences[j].position) if (len(clusters[i]) == 0): clusters_counter[i] = sys.maxsize else: clusters_counter[i] += 1 break; if (len(chosen_sentences) >= number_sentences): break; chosen_sentences = sorted(chosen_sentences, key=lambda x: x.position) return chosen_sentences def print_based_on_fuzzy(angels_objects, p): print("***** RESULTS BASED ONLY ON FUZZY *****") number_sentences = math.floor(p * len(angels_objects)) sorted_by_rank = [element for element in sorted(angels_objects, key=lambda x: x.rank, reverse=True)][0:number_sentences] vukans_list = sorted(sorted_by_rank, key=lambda x: x.position, reverse=False) for sentence in vukans_list: print(sentence.original) print("") def main(): try: start_time = time.time() processed_input = process_input() text = processed_input['text'] percentage = processed_input['percentage'] threads = int(processed_input['threads']) resources = resource_loader() preprocessed_text = pre_process_text(text) preprocessed_text[1] = sorted(preprocessed_text[1], key=lambda x: x.position) keyword_feature_value = features.keyword_feature(preprocessed_text[1], preprocessed_text[2]) title_word_feature_value = features.title_word_feature(preprocessed_text[0], preprocessed_text[1]) sentence_location_feature_value = features.sentence_location_feature(preprocessed_text[1]) sentence_length_feature_value = features.sentence_length_feature(preprocessed_text[1]) proper_noun_feature_value = features.pos_tag_feature(preprocessed_text[1], preprocessed_text[2], 'NNP') cue_phrase_feature_value = features.phrase_feature(preprocessed_text[1], resources[CUE_PHRASE_FILE]) stigma_phrase_feature_value = features.phrase_feature(preprocessed_text[1], resources[STIGMA_WORDS_FILE]) numerical_data_feature_value = features.pos_tag_feature(preprocessed_text[1], preprocessed_text[2], 'CD') k_means_result = cluster.k_means(preprocessed_text[1], preprocessed_text[2], percentage, threads) # summary = cluster.cluster_based_summary(preprocessed_text[1], k_means_result[0], k_means_result[1]) sentences_feature_list = [] for ( keyword_value, title_word_value, sentence_location_value, sentence_lenght_value, proper_noun_value, cue_phase_value, stigma_word_value, numerical_data_value, ) in zip( keyword_feature_value, title_word_feature_value, sentence_location_feature_value, sentence_length_feature_value, proper_noun_feature_value, cue_phrase_feature_value, stigma_phrase_feature_value, numerical_data_feature_value, ): sentences_feature_list.append({ 'keyword': keyword_value, 'title_word': title_word_value, 'sentence_location': sentence_location_value, 'sentence_length': sentence_lenght_value, 'proper_noun': proper_noun_value, 'cue_phrase': cue_phase_value, 'nonessential': stigma_word_value, 'numerical_data': numerical_data_value, }) #fuzzy.print_everything(preprocessed_text[1], sentences_feature_list) fuzzy.set_fuzzy_ranks(preprocessed_text[1], sentences_feature_list) chosen_sentences = filter_using_clusters(preprocessed_text[1], float(percentage)/100, k_means_result[1]) all_sentences_information = [] for sentence in preprocessed_text[1]: chosen = 0 if (sentence in chosen_sentences): chosen = 1 all_sentences_information.append([sentence.position, sentence.rank, chosen]) print(all_sentences_information) print([keyword_feature_value, title_word_feature_value, sentence_location_feature_value, sentence_length_feature_value, proper_noun_feature_value, numerical_data_feature_value, cue_phrase_feature_value, stigma_phrase_feature_value]) print(preprocessed_text[0].original) for sentence in chosen_sentences: print(sentence.original) return 0 except KeyboardInterrupt: ### handle keyboard interrupt ### return 0 except Exception as e: sys.stderr.write(repr(e)) traceback.print_tb(e.__traceback__) return 2 if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
3328285
__author__ = '1988' import drawtree class node: def __init__(self,parent,isroot=False): self.parent=parent self.root=isroot self.children=[] def show(self,i=0,drawtool=drawtree.drawtree().showdraw): if not drawtool: return elif drawtool=='print': if self.root: print(self.getnodetext()) else: indent=" "*i print(indent+self.getnodetext()) i+=1 for child in self.children: child.show(i=i) else: drawtool(self) def getnodetext(self): return 'node' def isleaf(self): if not self.children:return True return len(self.children)==0 def getwidth(self,step=1): if self.isleaf(): return step else: return sum([child.getwidth(step=step) for child in self.children]) def getheight(self): if self.isleaf(): return 1 else: return 1+max([child.getheight() for child in self.children]) #获取所有子孙节点 def getallchildren(self): if self.isleaf(): return [] return self.getallnodeslist()[1:] #获取所有子孙节点+自身 def getallnodeslist(self): if self.isleaf(): return [self] return [self]+[child.getallchildren() for child in self.children]
StarcoderdataPython
1668931
<reponame>zianke/cmdnote from unittest import TestCase from unittest.mock import patch from cmdnote.main import main from .utils import * class Test(TestCase): def test_main(self): with patch('sys.argv', ['cmdnote']): with captured_output() as (out, err): main() output = out.getvalue().strip() self.assertTrue(output.startswith('usage'))
StarcoderdataPython
1760837
# from contextlib import redirect_stdout, redirect_stderr # from io import StringIO from unittest.mock import patch, call from ..base import IntegrationTests from ..util import fork class TestNoProfile(IntegrationTests): """ Integration tests for no profile. """ @fork() def test_logout_via_awscli(self): """ Logging out should throw AlreadyLoggedOut when not logged in. """ mesg = 'Already logged out!\n' self.assertAwsCliReturns('logout', stderr=mesg, code=3) # TODO FIXME NO HARDCODE @fork() @patch('builtins.input', return_value='') def test_save_credentials_default_profile(self, mock_input): """ Creates a default entry in ~/.aws/credentials """ calls = [ call('ECP Endpoint URL [None]: '), call('Username [None]: '), call('Enable Keyring [False]: '), call('Duo Factor [None]: '), call('Role ARN [None]: '), ] self.assertAwsCliReturns('login', 'configure', code=0) mock_input.assert_has_calls(calls) self.assertEqual(len(mock_input.call_args_list), len(calls)) class TestDefaultProfile(IntegrationTests): """ Integration tests for default profile. """ @fork() def test_logout_via_awscli(self): """ Logging out should throw AlreadyLoggedOut when not logged in. """ self.profile = 'default' self.aws_credentials = """ [default] aws_access_key_id = abc aws_secret_access_key = def aws_session_token = ghi """ mesg = 'Already logged out!\n' self.assertAwsCliReturns('logout', stderr=mesg, code=3) # TODO FIXME NO HARDCODE ERROR CODES!
StarcoderdataPython
51757
from datetime import timedelta, datetime from typing import Optional from fastapi import HTTPException, Depends from fastapi.security import OAuth2PasswordBearer from jose import jwt, JWTError from passlib.context import CryptContext from pydantic import BaseModel from db import database as adb from usermanagement.models import users from usermanagement.schema import UserCreate, User from starlette import status SECRET_KEY = "<KEY>" ALGORITHM = "HS256" ACCESS_TOKEN_EXPIRE_MINUTES = 30 oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") class Token(BaseModel): access_token: str token_type: str class TokenData(BaseModel): username: Optional[str] = None pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") def verify_password(plain_password, hashed_password) -> str: return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password) -> str: return pwd_context.hash(password) async def get_user(username: Optional[str]) -> UserCreate: query = users.select() user_list = await adb.fetch_all(query) for user in user_list: if user["username"] == username: return UserCreate(**user) return HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="User not found") """authenticating user""" async def authenticate_user(username: str, password: str): user = await get_user(username) if not user: return False if not verify_password(password, user.password): return False return user """code to create the access token""" def create_access_token(data: dict, expires_delta: Optional[timedelta] = None) -> str: to_encode = data.copy() if expires_delta: expire = datetime.now() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt """getting the current user details""" async def get_current_user(token: str = Depends(oauth2_scheme)) -> User: credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username: str = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except JWTError: raise credentials_exception user = await get_user(username=token_data.username) if not user: raise credentials_exception return user """Checking users if they are active or not""" async def get_current_active_user( current_user: User = Depends(get_current_user) ) -> User: if current_user.disabled: raise HTTPException(status_code=400, detail="Inactive user") return current_user def testFunc(): return "Hello"
StarcoderdataPython
1636476
import torch import torch.nn as nn import torch.nn.functional as F class AGNewsmodelWrapper(nn.Module): def __init__(self, model): super(AGNewsmodelWrapper, self).__init__() self.model = model def compute_bert_outputs( # pylint: disable=no-self-use self, model_bert, embedding_input, attention_mask=None, head_mask=None ): """Computes Bert Outputs. Args: model_bert : the bert model embedding_input : input for bert embeddings. attention_mask : attention mask head_mask : head mask Returns: output : the bert output """ if attention_mask is None: attention_mask = torch.ones( # pylint: disable=no-member embedding_input.shape[0], embedding_input.shape[1] ).to(embedding_input) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to( dtype=next(model_bert.parameters()).dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(model_bert.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(model_bert.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * model_bert.config.num_hidden_layers encoder_outputs = model_bert.encoder( embedding_input, extended_attention_mask, head_mask=head_mask ) sequence_output = encoder_outputs[0] pooled_output = model_bert.pooler(sequence_output) outputs = ( sequence_output, pooled_output, ) + encoder_outputs[1:] return outputs def forward(self, embeddings, attention_mask=None): """Forward function. Args: embeddings : bert embeddings. attention_mask: Attention mask value """ outputs = self.compute_bert_outputs(self.model.bert_model, embeddings, attention_mask) pooled_output = outputs[1] output = F.relu(self.model.fc1(pooled_output)) output = self.model.drop(output) output = self.model.out(output) return output
StarcoderdataPython
16919
<filename>tests/ut/python/nn/test_activation.py # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test Activations """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _cell_graph_executor from ..ut_filter import non_graph_engine class SoftmaxNet(nn.Cell): def __init__(self, dim): super(SoftmaxNet, self).__init__() self.softmax = nn.Softmax(dim) def construct(self, x): return self.softmax(x) @non_graph_engine def test_compile(): net = SoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) @non_graph_engine def test_compile_axis(): net = SoftmaxNet(-1) prob = 355 input_data = np.random.randn(4, 16, 1, 1).astype(np.float32) * prob input_tensor = Tensor(input_data) net(input_tensor) class LogSoftmaxNet(nn.Cell): def __init__(self, dim): super(LogSoftmaxNet, self).__init__() self.logsoftmax = nn.LogSoftmax(dim) def construct(self, x): return self.logsoftmax(x) @non_graph_engine def test_compile_logsoftmax(): net = LogSoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) class Net1(nn.Cell): def __init__(self): super(Net1, self).__init__() self.relu = nn.ReLU() def construct(self, x): return self.relu(x) def test_compile_relu(): net = Net1() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class Net_gelu(nn.Cell): def __init__(self): super(Net_gelu, self).__init__() self.gelu = nn.GELU() def construct(self, x): return self.gelu(x) def test_compile_gelu(): net = Net_gelu() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class NetLeakyReLU(nn.Cell): def __init__(self, alpha): super(NetLeakyReLU, self).__init__() self.leaky_relu = nn.LeakyReLU(alpha) def construct(self, x): return self.leaky_relu(x) def test_compile_leaky_relu(): net = NetLeakyReLU(alpha=0.1) input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data)
StarcoderdataPython