id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1773558
try: from urllib.request import urlopen from urllib.error import HTTPError except ImportError: from urllib2 import urlopen from urllib2 import HTTPError
StarcoderdataPython
1636452
# Copyright (c) 2020-2021, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cupy as cp from math import log2, ceil from ..windows.windows import get_window def pulse_compression(x, template, normalize=False, window=None, nfft=None): """ Pulse Compression is used to increase the range resolution and SNR by performing matched filtering of the transmitted pulse (template) with the received signal (x) Parameters ---------- x : ndarray Received signal, assume 2D array with [num_pulses, sample_per_pulse] template : ndarray Transmitted signal, assume 1D array normalize : bool Normalize transmitted signal window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. nfft : int, size of FFT for pulse compression. Default is number of samples per pulse Returns ------- compressedIQ : ndarray Pulse compressed output """ [num_pulses, samples_per_pulse] = x.shape if nfft is None: nfft = samples_per_pulse if window is not None: Nx = len(template) if callable(window): W = window(cp.fft.fftfreq(Nx)) elif isinstance(window, cp.ndarray): if window.shape != (Nx,): raise ValueError("window must have the same length as data") W = window else: W = get_window(window, Nx, False) template = cp.multiply(template, W) if normalize is True: template = cp.divide(template, cp.linalg.norm(template)) fft_x = cp.fft.fft(x, nfft) fft_template = cp.conj(cp.tile(cp.fft.fft(template, nfft), (num_pulses, 1))) compressedIQ = cp.fft.ifft(cp.multiply(fft_x, fft_template), nfft) return compressedIQ def pulse_doppler(x, window=None, nfft=None): """ Pulse doppler processing yields a range/doppler data matrix that represents moving target data that's separated from clutter. An estimation of the doppler shift can also be obtained from pulse doppler processing. FFT taken across slow-time (pulse) dimension. Parameters ---------- x : ndarray Received signal, assume 2D array with [num_pulses, sample_per_pulse] window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. nfft : int, size of FFT for pulse compression. Default is number of samples per pulse Returns ------- pd_dataMatrix : ndarray Pulse-doppler output (range/doppler matrix) """ [num_pulses, samples_per_pulse] = x.shape if nfft is None: nfft = num_pulses if window is not None: Nx = num_pulses if callable(window): W = window(cp.fft.fftfreq(Nx)) elif isinstance(window, cp.ndarray): if window.shape != (Nx,): raise ValueError("window must have the same length as data") W = window else: W = get_window(window, Nx, False)[cp.newaxis] pd_dataMatrix = \ cp.fft.fft(cp.multiply(x, cp.tile(W.T, (1, samples_per_pulse)), nfft, axis=0)) else: pd_dataMatrix = cp.fft.fft(x, nfft, axis=0) return pd_dataMatrix _new_ynorm_kernel = cp.ElementwiseKernel( "int32 xlen, raw T xnorm, raw T ynorm", "T out", """ int row = i / xlen; int col = i % xlen; int x_col = col - ( xlen - 1 ) + row; if ( ( x_col >= 0 ) && ( x_col < xlen ) ) { out = ynorm[col] * thrust::conj( xnorm[x_col] ); } else { out = T(0,0); } """, "_new_ynorm_kernel", options=("-std=c++11",), ) def ambgfun(x, fs, prf, y=None, cut='2d', cutValue=0): """ Calculates the normalized ambiguity function for the vector x Parameters ---------- x : ndarray Input pulse waveform fs: int, float Sampling rate in Hz prf: int, float Pulse repetition frequency in Hz y : ndarray Second input pulse waveform. If not given, y = x cut : string Direction of one-dimensional cut through ambiguity function cutValue : int, float Time delay or doppler shift at which one-dimensional cut through ambiguity function is taken Returns ------- amfun : ndarray Normalized magnitude of the ambiguity function """ cut = cut.lower() if 'float64' in x.dtype.name: x = cp.asarray(x, dtype=cp.complex128) elif 'float32' in x.dtype.name: x = cp.asarray(x, dtype=cp.complex64) else: x = cp.asarray(x) xnorm = x / cp.linalg.norm(x) if y is None: y = x ynorm = xnorm else: ynorm = y / cp.linalg.norm(y) len_seq = len(xnorm) + len(ynorm) nfreq = 2**ceil(log2(len_seq - 1)) # Consider for deletion as we add different cut values """ if len(xnorm) < len(ynorm): len_diff = len(ynorm) - len(xnorm) ynorm = cp.concatenate(ynorm, cp.zeros(len_diff)) elif len(xnorm) > len(ynorm): len_diff = len(xnorm) - len(ynorm) xnorm = cp.concatenate(xnorm, cp.zeros(len_diff)) """ xlen = len(xnorm) if cut == '2d': new_ynorm = cp.empty((len_seq - 1, xlen), dtype=xnorm.dtype) _new_ynorm_kernel(xlen, xnorm, ynorm, new_ynorm) amf = nfreq * cp.abs(cp.fft.fftshift( cp.fft.ifft(new_ynorm, nfreq, axis=1), axes=1)) elif cut == 'delay': Fd = cp.arange(-fs / 2, fs / 2, fs / nfreq) fftx = cp.fft.fft(xnorm, nfreq) * \ cp.exp(1j * 2 * cp.pi * Fd * cutValue) xshift = cp.fft.ifft(fftx) ynorm_pad = cp.zeros(nfreq) ynorm_pad[:ynorm.shape[0]] = ynorm amf = nfreq * cp.abs(cp.fft.ifftshift( cp.fft.ifft(ynorm_pad * cp.conj(xshift), nfreq))) elif cut == 'doppler': t = cp.arange(0, xlen) / fs ffty = cp.fft.fft(ynorm, len_seq - 1) fftx = cp.fft.fft(xnorm * cp.exp(1j * 2 * cp.pi * cutValue * t), len_seq - 1) amf = cp.abs(cp.fft.fftshift(cp.fft.ifft(ffty * cp.conj(fftx)))) else: raise ValueError('2d, delay, and doppler are the only\ cut values allowed') return amf
StarcoderdataPython
1665892
<reponame>campo1312/DataDome # This tutorial is for informational purposes only. I guess you'll add the code to your scripts, go ahead but quote me, thanks. # In the "examples" folder i'll load some DataDome html pages, to let you familiarize with it # How to bypass it? # Basically you need a cookie called "datadome", to get it you need to solve the captcha on the page (It isn't a reCaptcha like on starcow) # and send some requests # Let's start with SlamJam # keep in mind that SlamJam sometimes got CloudFlare up, this script will help you only with datadome import requests, json, re headers = {"authority":"www.slamjam.com","scheme":"https","accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9","accept-language":"it-IT,it;q=0.9,en-US;q=0.8,en;q=0.7","sec-fetch-dest":"document","sec-fetch-mode":"navigate","sec-fetch-site":"none","sec-fetch-user":"?1","upgrade-insecure-requests":"1","user-agent":"Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36"} url = "https://www.slamjam.com/en_IT/cart" # Store the datadome redirect challenge url as variable datadome_url = 'https://www.slamjam.com/on/demandware.store/Sites-slamjam-Site/en_IT/DDUser-Challenge' s = requests.Session() proxies = your_proxies_in_json_format s.proxies.update(proxies) r = s.get(url, headers=headers) if r.url != datadome_url: print("No needed to solve datadome") else: print('Found datadome challenge') # Let's extractall the needed info from the page dd = json.loads(re.search('var dd=([^"]+)</script>', r.text).group(1).replace("'",'"')) initialCid = dd['cid'] hsh = dd['hsh'] t = dd['t'] host = dd['host'] cid = s.cookies['datadome'] # First post first_url = 'https://'+host.replace('&#x2d;','-')+'/captcha/?initialCid={}&hash={}&cid={}&t={}'.format(initialCid, hsh, cid,t) first_post = s.get(first_url) try: data = re.search('getRequest([^"]+)ddCaptcha', first_post.text).group(1) except: print('Proxy banned') # You got the "You have been blocked page", maybe but here a function to handle it and retry with another proxy # (You'll see this page if your proxy is banned) else: # Get the last needed info to solve the challenge useragent = re.search('&ua=([^"]+)&referer=', data).group(1).replace("' + encodeURIComponent('",'').replace("');",'').replace("\n getRequest += '",'') ip = re.search('&x-forwarded-for=([^"]+);', data).group(1).replace("' + encodeURIComponent('",'').replace("')",'') # Maybe a rude method, but it works # We need to generate the "magic number" to pass the challenge # I've loaded a js script that do this for us on heroku, send a request like this to generate it magic_number = json.loads(requests.get('https://datadome-magic-number-solver.herokuapp.com/datadome?id={}&ua={}'.format(cid, useragent)).text)['id'] # it will responde with a json like this {"id":169654359} # Number lenght should be 9, else you have probably done something wrong # SlamJam's datadome page got a captcha, so we need to solve it challenge_link = first_post.url sitekey = first_post.text.split("'sitekey' : '")[1].split("'")[0] response = solvecaptcha(challenge_link, sitekey) # Use 2Captcha or some similar services second_post = s.get('https://c.captcha-delivery.com/captcha/check?cid={}&icid={}&ccid=null&g-recaptcha-response={}&hash={}&ua={}&referer={}&parent_url={}&x-forwarded-for={}&captchaChallenge={}'.format(cid, initialCid, response, hsh, useragent, datadome_url, datadome_url, ip, magic_number)) if second_post.status_code == 200: # If is all good, the server will respond to you with a valid DataDome cookie (the cookie name is datadome), # With it you'll be able to access to the site # Example # set-cookie: datadome=Tdx_AVi.VpcPns7JD7n9~EedCazO2jmhdrv_5Hhxmg3ZnUB4iHxn1OE0pum84C2RrSAm_Tnbf7VfF-6.Kfy_XQGeYZBFPwQkbn2~xSmO0J; Max-Age=31536000; Domain=.captcha-delivery.com; Path=/; SameSite=Lax print('Datadome solved') # Now we got the cookie, you can send the request again and will be all good :) # Keep in mind that the cookies are unique for every ip, this cookie will not wotk with another ip # Honestly I don't remember how many time does it last, but you can do some tests # and maybe start harvesting it before a drop # For Courir is the same thing, just rember to save the challenge link as datadome_url # for other sites like StarCow, in addition to banning many more proxies as we all know, # it has a different type of captcha, always supported by 2Captcha else: print("Unexcepted error") # Hope i've helped you :) # If you need other help or work for DataDome, here's my mail <EMAIL>
StarcoderdataPython
3304557
<reponame>abhinayy0/chat.py from flask import Flask app = Flask(__name__) @app.route("/") def chat(): return "My chat application." if __name__=="__main__": app.run(host = "127.0.0.1", port = 5000, threaded= True, debug= True)
StarcoderdataPython
1649998
<gh_stars>10-100 """ Created: Tue Mar 26 09:45:46 2019 @author: <NAME> <<EMAIL>> """ import numpy as np import os from cffi import FFI docompile = False ffi = FFI() if docompile: cwd = os.getcwd() ffi.set_source('_libuq', '', libraries=['uq']) ffi.cdef(""" void __mod_unqu_MOD_init_uq(); void __mod_unqu_MOD_pre_uq(double *axi); void __mod_unqu_MOD_run_uq(); void __mod_unqu_MOD_post_uq(); """) ffi.compile(verbose=True) #%% import _libuq libuq = _libuq.lib npol = 3 npar = 2 nall = (npol+2)**npar axi = np.zeros(nall*npar, dtype=np.float32) libuq.__mod_unqu_MOD_init_uq() #libuq.__mod_unqu_MOD_pre_uq(ffi.cast('double*', axi.ctypes.data)) _libuq.lib.__mod_unqu_MOD_run_uq() #%% import numpy as np import matplotlib.pyplot as plt nt = 1 a0 = np.zeros(nt) for kt in np.arange(nt): data = np.loadtxt('akoef{:04d}.dat'.format(kt+1)) a0[kt] = data[0,2] plt.plot(a0)
StarcoderdataPython
22186
# -*- coding: utf-8 -*- import sys import argparse arg_no = len(sys.argv) tool_parser = argparse.ArgumentParser(add_help=False) tool_subparsers = tool_parser.add_subparsers(help='commands', dest='command') # The rename command. rename_parser = tool_subparsers.add_parser('rename', help='rename an existing user account.') rename_parser.add_argument( 'name', action='store', metavar='<name>', help='account name' ) rename_parser.add_argument( '--new-name', '-n', action='store', dest='newName', metavar='<new account name>' ) # The add command. add_parser = tool_subparsers.add_parser('add', help='add new user account to the directory.') add_parser.add_argument( '--type', '-t', action='store', default='generic', dest='account_type', metavar='<type of account>' ) add_parser.add_argument( 'name', action='store', help='account name', metavar='<name>' ) group1_parser = add_parser.add_argument_group('account specific') group1_parser.add_argument( '--password', '-P', action='store', dest='userPassword', metavar='<account\'s owner password>' ) group1_parser.add_argument( '--home', action='store', dest='homeDirectory', metavar='<path to the home directory>' ) group1_parser.add_argument( '--shell', action='store', dest='loginShell', metavar='<path to the shell interpreter>' ) group1_parser = add_parser.add_argument_group('personal information') group1_parser.add_argument( '--phone-no', action='append', dest='telephoneNumber', metavar='<phone number>' ) group1_parser.add_argument( '--last-name', action='store', dest='sn', metavar='<account owner\'s last name>' ) group1_parser.add_argument( '--first-name', action='store', dest='givenName', metavar='<account owner\'s first name>' ) group1_parser.add_argument( '--organization', '-o', action='store', dest='o', metavar='<organization>' ) group1_parser.add_argument( '--email', action='append', dest='mail', metavar='<email>' ) group1_parser.add_argument( '--full-name', action='store', dest='cn', metavar='<account owner\'s full name>' ) group1_parser = add_parser.add_argument_group('uid and group management') group1_parser.add_argument( '--uid', action='store', dest='uid', metavar='<user\'s uid>' ) group1_parser.add_argument( '--add-group', action='append', dest='group', metavar='<secondary group>' ) group1_parser.add_argument( '--uid-number', action='store', dest='uidNumber', metavar='<user id number>' ) group1_parser.add_argument( '--gid', action='store', dest='gidNumber', metavar='<primary group id>' ) # The show command. show_parser = tool_subparsers.add_parser('show', help='show account data') show_parser.add_argument( 'name', action='append', nargs='*', help='account name' ) show_parser.add_argument( '--verbose', '-v', action='store_true', dest='verbose', help='be verbose about it' ) # The edit command. edit_parser = tool_subparsers.add_parser('edit', help='edit existing user data in the directory') edit_parser.add_argument( '--type', '-t', action='store', dest='account_type', metavar='<change account type>' ) edit_parser.add_argument( 'name', action='store', help='account name' ) group1_parser = edit_parser.add_argument_group('account specific') group1_parser.add_argument( '--reset-password', '-r', dest='resetPassword', action='store_true', help='<reset user\'s password>' ) group1_parser.add_argument( '--home', action='store', dest='homeDirectory', metavar='<new home directory path>' ) group1_parser.add_argument( '--shell', action='store', dest='loginShell', metavar='<new shell interpreter path>' ) group1_parser = edit_parser.add_argument_group('personal information') group1_parser.add_argument( '--first-name', action='store', dest='givenName', metavar='<new first name>' ) group1_parser.add_argument( '--del-email', action='append', dest='delMail', metavar='<remove email address>' ) group1_parser.add_argument( '--last-name', action='store', dest='sn', metavar='<new last name>' ) group1_parser.add_argument( '--add-email', action='append', dest='addMail', metavar='<add new email address>' ) group1_parser.add_argument( '--del-phone-no', action='append', dest='delTelephoneNumber', metavar='<phone number to remove>' ) group1_parser.add_argument( '--organization', '-o', action='store', dest='o', metavar='<organization>' ) group1_parser.add_argument( '--add-phone-no', action='append', dest='addTelephoneNumber', metavar='<phone number to add>' ) group1_parser.add_argument( '--full-name', action='store', dest='cn', metavar='<new full name>' ) group1_parser = edit_parser.add_argument_group('uid and group management') group1_parser.add_argument( '--del-group', action='append', dest='delgroup', metavar='<remove user from the group>' ) group1_parser.add_argument( '--group-id', action='store', dest='gidNumber', metavar='<change primary group ID>' ) group1_parser.add_argument( '--add-group', action='append', dest='addgroup', metavar='<add user to the group>' ) group1_parser.add_argument( '--uid-number', action='store', dest='uidNumber', metavar='<change user ID number>' ) group1_parser.add_argument( '--uid', action='store', dest='uid', metavar='<user\'s uid>' ) # The retire command. retire_parser = tool_subparsers.add_parser('retire', help='retire an existing account and remove all its privileges.') retire_parser.add_argument( 'name', action='store', metavar='<name>', help='account name' ) # The type command. type_parser = tool_subparsers.add_parser('type', help='manage user types') type_parser.add_argument( '--list', '-l', action='store_true', dest='list_types', help='list user types' ) # The remove command. remove_parser = tool_subparsers.add_parser('remove', help='remove an existing account.') remove_parser.add_argument( 'name', action='store', metavar='<name>', help='account name' )
StarcoderdataPython
3301536
import os.path from recoder import Recoder from tk_recoder import gui import config config.load() init_config = config.to_string() log_file = os.path.join(config.application_path, f'{config.application_name}.log') recoder = Recoder(config.config, log_file) gui = gui.Gui(recoder, config.config) def on_close(): current_config = config.to_string() if current_config != init_config: config.save() gui.destroy() gui.protocol('WM_DELETE_WINDOW', on_close) gui.mainloop()
StarcoderdataPython
58841
<reponame>YilinLiu97/MR_Fingerprinting # import os.path # import torchvision.transforms as transforms # from data.base_dataset import BaseDataset, get_transform from data.base_dataset import BaseDataset # from data.image_folder import make_dataset # from PIL import Image # import PIL import h5py import random import torch import numpy class TestDataset(BaseDataset): def initialize(self, opt): ''' self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt) ''' self.opt = opt self.opt.A_paths_file = '/home/zhenghan/MRF/B' with open(self.opt.A_paths_file, 'r') as f: self.A_paths = f.read() self.A_paths = self.A_paths.replace('\n',' ').split() self.A_imgs = [] self.B_imgs = [] self.masks = [] #self.opt.patchSize=0 for A_path in self.A_paths: A_path1 = '/raid/zhenghan/data/MRF/data/'+A_path+'.mat' f = h5py.File(A_path1) A_img = numpy.transpose(f['imMRF']).astype('float32') #B_img = numpy.transpose(f['goal']).astype('float32') mask = numpy.transpose(f['mask']).astype('float32') f.close() if opt.goal_type == 'T2': A_path2='/raid/zhenghan/data/MRF/dataT2/'+A_path+'_T2.mat' #print(A_path2) f = h5py.File(A_path2) B_img = numpy.transpose(f['t2big']).astype('float32') maskT2 = numpy.transpose(f['maskT2']).astype('float32') f.close() mask = mask*maskT2 if opt.goal_type == 'T1': A_path2='/raid/zhenghan/data/MRF/dataT1/'+A_path+'_T1.mat' f = h5py.File(A_path2) B_img = numpy.transpose(f['t1big']).astype('float32') maskT1 = numpy.transpose(f['maskT1']).astype('float32') f.close() mask = mask*maskT1 A_img = A_img[53:201,58:229,:] B_img = B_img[53:201,58:229] mask = mask[53:201,58:229] A_img = numpy.concatenate((A_img[:,:,0:int(opt.input_nc/2)],A_img[:,:,2304:2304+int(opt.input_nc/2)]), axis=2) mask = mask[:,:,numpy.newaxis] if B_img.ndim==2: B_img = B_img[:,:,numpy.newaxis] assert A_img.ndim==3 and B_img.ndim==3, "# of dim is not 3 for training image" A_img = torch.from_numpy(A_img) B_img = torch.from_numpy(B_img) mask = torch.from_numpy(mask) if opt.data_GPU: A_img = A_img.cuda() B_img = B_img.cuda() mask = mask.cuda() A_img = A_img.permute(2,0,1) B_img = B_img.permute(2,0,1) mask = mask.permute(2,0,1) self.A_imgs.append(A_img) self.B_imgs.append(B_img) self.masks.append(mask) self.A_size = len(self.A_imgs) ''' elif self.opt.patchSize==1: #print(self.input_A_t.shape) for k in range(mask.shape[1]): for j in range(mask.shape[2]): if mask[0,k,j]==1: self.A_imgs.append(A_img[:,k:k+1,j:j+1]) self.B_imgs.append(B_img[:,k:k+1,j:j+1]) self.masks.append(mask[:,k:k+1,j:j+1]) self.A_size = len(self.A_imgs) else: self.A_imgs.append(A_img) self.B_imgs.append(B_img) self.masks.append(mask) self.A_size = int(len(self.A_imgs)*24990/(opt.patchSize**2)) ''' print("loaded image: %s" % A_path) self.num_imgs = len(self.A_paths) def __getitem__(self, index): ''' A_path = self.A_paths[index % self.A_size] index_A = index % self.A_size index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B] # print('(A, B) = (%d, %d)' % (index_A, index_B)) A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') A = self.transform(A_img) B = self.transform(B_img) if self.opt.which_direction == 'BtoA': input_nc = self.opt.output_nc output_nc = self.opt.input_nc else: input_nc = self.opt.input_nc output_nc = self.opt.output_nc if input_nc == 1: # RGB to gray tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114 A = tmp.unsqueeze(0) if output_nc == 1: # RGB to gray tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114 B = tmp.unsqueeze(0) return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} ''' index_A = index % self.A_size A_path = '' # print('(A, B) = (%d, %d)' % (index_A, index_B)) A_img = self.A_imgs[index_A] B_img = self.B_imgs[index_A] mask = self.masks[index_A] ''' elif self.opt.patchSize==1: index_A = index % self.A_size A_path = self.A_paths[0] # print('(A, B) = (%d, %d)' % (index_A, index_B)) A_img = self.A_imgs[index_A] B_img = self.B_imgs[index_A] mask = self.masks[index_A] else: index_A = index % self.num_imgs A_path = self.A_paths[0] # print('(A, B) = (%d, %d)' % (index_A, index_B)) A_img = self.A_imgs[index_A] B_img = self.B_imgs[index_A] mask = self.masks[index_A] # random crop patch_size = self.opt.patchSize A_position0, A_position1 = random.randint(0,A_img.shape[1]-patch_size), random.randint(0,A_img.shape[2]-patch_size) A_img = A_img[:, A_position0:A_position0+patch_size, A_position1:A_position1+patch_size] B_img = B_img[:, A_position0:A_position0+patch_size, A_position1:A_position1+patch_size] mask = mask[:, A_position0:A_position0+patch_size, A_position1:A_position1+patch_size] index_A = index // (256*256) p0, p1 = (index % (256*256)) // 256, (index % (256*256)) % 256 mask = self.masks[index_A] mask = mask[:, p0:p0+1, p1:p1+1] A_path = self.A_paths[index_A] # print('(A, B) = (%d, %d)' % (index_A, index_B)) A_img = self.A_imgs[index_A] B_img = self.B_imgs[index_A] A_img = A_img[:, p0:p0+1, p1:p1+1] B_img = B_img[:, p0:p0+1, p1:p1+1] ''' ''' f = h5py.File(A_path) A_img = numpy.transpose(f['imMRF']).astype('float32') B_img = numpy.transpose(f['t1big']).astype('float32') mask = numpy.transpose(f['mask']).astype('float32') mask = mask[:,:,numpy.newaxis] if B_img.ndim==2: B_img = B_img[:,:,numpy.newaxis] assert A_img.ndim==3 and B_img.ndim==3, "# of dim is not 3 for training image" ''' ''' A_img = A_img/255*2-1 B_img = B_img/255*2-1 # random crop if self.opt.patchSize0 <= 0 or self.opt.patchSize1 <= 0: patch_size0 = int((A_img.shape[0]*0.8)) patch_size1 = int((A_img.shape[1]*0.8)) else: patch_size0 = self.opt.patchSize0 patch_size1 = self.opt.patchSize1 A_position0, A_position1 = random.randint(0,A_img.shape[0]-patch_size0), random.randint(0,A_img.shape[1]-patch_size1) B_position0, B_position1 = random.randint(0,B_img.shape[0]-patch_size0), random.randint(0,B_img.shape[1]-patch_size1) A_img = A_img[A_position0:A_position0+patch_size0, A_position1:A_position1+patch_size1,:] B_img = B_img[B_position0:B_position0+patch_size0, B_position1:B_position1+patch_size1,:] ''' ''' A_img = torch.from_numpy(A_img) B_img = torch.from_numpy(B_img) mask = torch.from_numpy(mask) A_img = A_img.permute(2,0,1) B_img = B_img.permute(2,0,1) mask = mask.permute(2,0,1) ''' return {'A': A_img, 'B': B_img, 'mask': mask, 'A_paths': A_path} def __len__(self): return self.A_size def name(self): return 'TestDataset'
StarcoderdataPython
197056
def getLate(): v = Late(**{}) return v class Late(): value = 'late'
StarcoderdataPython
66164
#################################################################################################### ## ## Project: Embedded Learning Library (ELL) ## File: demoHelper.py ## Authors: <NAME> ## <NAME> ## ## Requires: Python 3.x ## #################################################################################################### import os import sys import argparse import cv2 import numpy as np import time import math script_path = os.path.dirname(os.path.abspath(__file__)) # Helper class that interfaces with ELL models to get predictions and provides handy conversion from opencv to ELL buffers and # rendering utilities class DemoHelper: def __init__(self, threshold=0.15): """ Helper class to store information about the model we want to use. threshold - specifies a prediction threshold """ self.threshold = threshold self.start = time.time() self.frame_count = 0 self.fps = 0 self.camera = 0 self.image_filename = None self.image_folder = None self.images = None self.image_pos = 0 self.capture_device = None self.frame = None self.save_images = None self.image_index = 0 self.model_file = None self.model = None self.model_name = "model" self.compiled_model = None self.compiled_module = None self.compiled_func = None self.labels_file = None self.model_file = None self.iterations = None # limit number of iterations through the loop. self.current = None self.total_time = 0 self.time_count = 0 self.warm_up = True self.input_shape = None self.output_shape = None self.output_size = 0 self.bgr = False self.results = None self.nogui = False def add_arguments(self, arg_parser): """ Adds common commandline arguments for ELL tutorials and demos and returns an object with the relevant values set from those arguments. Note: This method is designed for subclasses, so they can can add MORE arguments before calling parse_args. """ # required arguments arg_parser.add_argument("labels", help="path to the labels file for evaluating the model, or comma separated list if using more than one model") # options arg_parser.add_argument("--save", help="save images captured by the camera", action='store_true') arg_parser.add_argument("--threshold", type=float, help="threshold for the minimum prediction score. A lower threshold will show more prediction labels, but they have a higher chance of being completely wrong.", default=self.threshold) arg_parser.add_argument("--bgr", help="specify True if input data should be in BGR format (default False)", default = self.bgr) arg_parser.add_argument("--nogui", help="disable GUI to enable automated testing of a batch of images", action='store_true') arg_parser.add_argument("--iterations", type=int, help="when used with --nogui this tests multiple iterations of each image to get better timing information") # mutually exclusive options group = arg_parser.add_mutually_exclusive_group() group.add_argument("--camera", type=int, help="the camera id of the webcam", default=0) group.add_argument("--image", help="path to an image file. If set, evaluates the model using the image, instead of a webcam") group.add_argument("--folder", help="path to an image folder. If set, evaluates the model using the images found there") group2 = arg_parser.add_mutually_exclusive_group() group2.add_argument("--model", help="path to a model file") group2.add_argument("--compiledModel", help="path to the compiled model's Python module") group2.add_argument("--models", help="list of comma separated paths to model files") group2.add_argument("--compiledModels", help="list of comma separated paths to the compiled models' Python modules") def parse_arguments(self, argv, helpString): arg_parser = argparse.ArgumentParser(helpString) self.add_arguments(arg_parser) args = arg_parser.parse_args(argv) self.initialize(args) def value_from_arg(self, argValue, defaultValue): if (argValue is not None): return argValue return defaultValue def initialize(self, args): # called after parse_args to extract args from the arg_parser. # process required arguments self.labels_file = args.labels # process options self.save_images = self.value_from_arg(args.save, None) self.threshold = self.value_from_arg(args.threshold, None) self.iterations = self.value_from_arg(args.iterations, None) self.current = self.iterations self.camera = self.value_from_arg(args.iterations, 0) self.image_filename = self.value_from_arg(args.image, None) self.image_folder = self.value_from_arg(args.folder, None) self.bgr = args.bgr self.nogui = args.nogui if self.nogui and self.iterations == None: self.iterations = 1 # process image source options if (args.camera): self.image_filename = None self.image_folder = None elif (args.image): self.camera = None self.image_folder = None elif (args.folder): self.camera = None # load the labels self.labels = self.load_labels(self.labels_file) # process model options and load the model self.model_file = args.model self.compiled_model = args.compiledModel if (self.model_file == None): # this is the compiled model route, so load the wrapped module self.model_name = os.path.split(self.compiled_model)[1] self.import_compiled_model(self.compiled_model, self.model_name) else: # this is the "interpreted" model route, so we need the ELL runtime. self.model_name = os.path.splitext(os.path.basename(self.model_file))[0] self.import_ell_map() self.input_size = (self.input_shape.rows, self.input_shape.columns) print("Found input_shape [%d,%d,%d]" % (self.input_shape.rows, self.input_shape.columns, self.input_shape.channels)) return True def load_ell(self): print("### Loading ELL modules...") import find_ell import ell return ell def import_ell_map(self): ell = self.load_ell() sys.path.append(script_path) sys.path.append(os.getcwd()) print("loading model: " + self.model_file) self.model = ell.model.Map(self.model_file) self.input_shape = self.model.GetInputShape() self.output_shape = self.model.GetOutputShape() self.output_size = int(self.output_shape.rows * self.output_shape.columns * self.output_shape.channels) def import_compiled_model(self, compiledModulePath, name): moduleDirectory = os.path.dirname(compiledModulePath) print('Looking for: ' + name + ' in ' + moduleDirectory) if (not os.path.isdir('build')) and (not os.path.isdir(moduleDirectory + '/build')): raise Exception("you don't have a 'build' directory in '" + compiledModulePath + "', have you compiled this project yet?") func_name = 'predict' if func_name == "": raise Exception("Could not construct func name. Is the --compiledModel argument correct?") # Import the compiled model wrapper. Add the possible build directories. sys.path.append(script_path) sys.path.append(moduleDirectory) sys.path.append(os.path.join(moduleDirectory, 'build')) sys.path.append(os.path.join(moduleDirectory, 'build/Release')) sys.path.append(os.path.join(script_path, 'build')) sys.path.append(os.path.join(script_path, 'build/Release')) sys.path.append(os.path.join(os.getcwd(), 'build')) sys.path.append(os.path.join(os.getcwd(), 'build/Release')) try: self.compiled_module = __import__(name) inputShapeGetter = getattr(self.compiled_module, "get_default_input_shape") outputShapeGetter = getattr(self.compiled_module, "get_default_output_shape") self.input_shape = inputShapeGetter() self.output_shape = outputShapeGetter() self.output_size = int(self.output_shape.rows * self.output_shape.columns * self.output_shape.channels) try: self.compiled_func = getattr(self.compiled_module, func_name) except AttributeError: raise Exception(func_name + " function not found in compiled module") except: errorType, value, traceback = sys.exc_info() print("### Exception: " + str(errorType) + ": " + str(value)) print("====================================================================") print("Compiled ELL python module is not loading") print("It is possible that you need to add LibOpenBLAS to your system path (See Install-*.md) from root of this repo") raise Exception("Compiled model failed to load") def show_image(self, frameToShow, save): try: cv2.imshow('frame', frameToShow) except cv2.error as e: # OpenCV may not have been built with GTK or Carbon support pass if save and self.save_images: name = 'frame' + str(self.image_index) + ".png" cv2.imwrite(name, frameToShow) self.image_index = self.image_index + 1 def load_labels(self, fileName): labels = [] with open(fileName) as f: labels = f.read().splitlines() return labels def predict(self, data): if self.current != None: self.current = self.current - 1 start = time.time() if self.model == None: self.results = self.compiled_func(data) else: self.results = self.model.Compute(data, dtype=np.float32) end = time.time() diff = end - start # if warm up is true then discard the first time if self.time_count == 1 and self.warm_up: self.warm_up = False self.total_time = 0 self.time_count = 0 self.total_time = self.total_time + diff self.time_count = self.time_count + 1 return self.results def get_times(self): """Returns the average prediction time, if available.""" average_time = None if self.time_count > 0: average_time = self.total_time/self.time_count return average_time def report_times(self, node_level=True): """Prints the average prediction time and additional profiling info, if available.""" average_time = self.get_times() if average_time is not None: print("Average prediction time: " + str(average_time)) # if the model is compiled with profiling enabled, report the additional info if hasattr(self.compiled_module, self.model_name + "_PrintModelProfilingInfo"): getattr(self.compiled_module, self.model_name + "_PrintModelProfilingInfo")() if node_level: if hasattr(self.compiled_module, self.model_name + "_PrintNodeProfilingInfo"): getattr(self.compiled_module, self.model_name + "_PrintNodeProfilingInfo")() def get_top_n_predictions(self, predictions, N = 5): """Return at most the top N predictions as a list of tuples that meet the threshold. The first of element of each tuple represents the index or class of the prediction and the second element represents that probability or confidence value. """ map = [(i,predictions[i]) for i in range(len(predictions)) if predictions[i] >= self.threshold] map.sort(key=lambda tup: tup[1], reverse=True) result = map[:N] return result def get_label(self, i): if (i < len(self.labels)): return self.labels[i] return "" def get_predictor_map(self, predictor, intervalMs=0): ell = self.load_ell() """Creates an ELL map from an ELL predictor""" return ell.neural.utilities.ell_map_from_float_predictor(predictor) def compile(self, predictor, platform, path): path += '/model' prediction_function = self.get_predictor_map(predictor) prediction_function.Compile(platform, 'model', 'step', path, dtype=np.float32) from ..util.commands import run_llc, run_swig run_swig(path + '.i') run_llc(path + '.ll') def save_ell_predictor_to_file(self, predictor, filePath, intervalMs=0): """Saves an ELL predictor to file so that it can be compiled to run on a device, with an optional stepInterval in milliseconds""" ell_map = self.get_predictor_map(predictor, intervalMs) ell_map.Save(filePath) def init_image_source(self): # Start video capture device or load static image if self.camera is not None: self.capture_device = cv2.VideoCapture(self.camera) elif self.image_filename: self.frame = cv2.imread(self.image_filename) if (type(self.frame) == type(None)): raise Exception('image from %s failed to load' % (self.image_filename)) elif self.image_folder: self.frame = self.load_next_image() def load_next_image(self): if self.image_folder is None: return self.frame # find images in the self.image_folder and cycle through them. if self.images == None: self.images = os.listdir(self.image_folder) frame = None while frame is None and self.image_pos < len(self.images): filename = os.path.join(self.image_folder, self.images[self.image_pos]) frame = cv2.imread(filename) self.image_pos += 1 if not frame is None: return frame return self.frame def get_next_frame(self): if self.capture_device is not None: # if predictor is too slow frames get buffered, this is designed to flush that buffer for i in range(self.get_wait()): ret, self.frame = self.capture_device.read() if (not ret): raise Exception('your capture device is not returning images') return self.frame else: return np.copy(self.frame) def resize_image(self, image, newSize): # Shape: [rows, cols, channels] """Crops, resizes image to outputshape. Returns image as numpy array in in RGB order.""" if image.shape[0] > image.shape[1]: # Tall (more rows than cols) rowStart = int((image.shape[0] - image.shape[1]) / 2) rowEnd = rowStart + image.shape[1] colStart = 0 colEnd = image.shape[1] else: # Wide (more cols than rows) rowStart = 0 rowEnd = image.shape[0] colStart = int((image.shape[1] - image.shape[0]) / 2) colEnd = colStart + image.shape[0] cropped = image[rowStart:rowEnd, colStart:colEnd] resized = cv2.resize(cropped, newSize) return resized def prepare_image_for_predictor(self, image): """Crops, resizes image to outputshape. Returns image as numpy array in in RGB order.""" resized = self.resize_image(image, self.input_size) if not self.bgr: resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) resized = resized.astype(np.float).ravel() return resized def draw_label(self, image, label): """Helper to draw text label onto an image""" self.draw_header(image, label) return def draw_header(self, image, text): """Helper to draw header text block onto an image""" self.draw_text_block(image, text, (0, 0), (50, 200, 50)) return def draw_footer(self, image, text): """Helper to draw footer text block onto an image""" self.draw_text_block(image, text, (0, image.shape[0] - 40), (200, 100, 100)) return def draw_text_block(self, image, text, blockTopLeft=(0,0), blockColor=(50, 200, 50), blockHeight=40, fontScale=0.7): """Helper to draw a filled rectangle with text onto an image""" cv2.rectangle( image, blockTopLeft, (image.shape[1], blockTopLeft[1] + blockHeight), blockColor, cv2.FILLED) cv2.putText(image, text, (blockTopLeft[0] + int(blockHeight / 4), blockTopLeft[1] + int(blockHeight * 0.667)), cv2.FONT_HERSHEY_COMPLEX_SMALL, fontScale, (0, 0, 0), 1, cv2.LINE_AA) def draw_fps(self, image): """Helper to draw frame per second onto image""" now = time.time() if self.frame_count > 0: diff = now - self.start if diff >= 1: self.fps = round(self.frame_count / diff, 1) self.frame_count = 0 self.start = now label = "fps " + str(self.fps) labelSize, baseline = cv2.getTextSize( label, cv2.FONT_HERSHEY_SIMPLEX, 0.4, 1) width = image.shape[1] height = image.shape[0] pos = (width - labelSize[0] - 5, labelSize[1] + 5) cv2.putText(image, label, pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 128), 1, cv2.LINE_AA) self.frame_count = self.frame_count + 1 def get_wait(self): speed = self.fps if (speed == 0): speed = 1 if (speed > 1): return 1 return 3 def done(self): if self.current is not None and self.current > 0: return False # on slow devices this helps let the images to show up on screen result = False try: if self.nogui: if self.images is not None and self.image_pos < len(self.images): self.frame = self.load_next_image() self.current = self.iterations return False return True for i in range(self.get_wait()): key = cv2.waitKey(1) & 0xFF if key == 27: result = True break if key == ord(' '): self.frame = self.load_next_image() except cv2.error as e: # OpenCV may not have been built with GTK or Carbon support pass return result
StarcoderdataPython
1791692
from django.apps import AppConfig class DietConfig(AppConfig): name = 'diet'
StarcoderdataPython
1716532
<reponame>madaoCN/scopus_browser<filename>models/SearchRefModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/5/9 13:15 AM # @Author : MADAO class SearchRefModel(object): def __init__(self): super().__init__() self.raw = None self.doi = None self.title = None self.title_link = None self.author = None self.year = None self.journal = None self.journal_page = None self.ref_link = None def __repr__(self): return ''' ========\r\n doi: {doi}\r\n title: {title}\r\n title_link: {title_link}\r\n author: {author}\r\n year: {year}\r\n journal: {journal}\r\n journal_page: {journal_page}\r\n ref_link: {ref_link}\r\n ========\r\n'''.format( doi = self.doi, title = self.title, title_link = self.title_link, author = self.author, year = self.year, journal = self.journal, journal_page = self.journal_page, ref_link = self.ref_link )
StarcoderdataPython
1767897
<filename>petstagram/petstagram/accounts/urls.py from django.urls import path from petstagram.accounts.views import UserLoginView, ProfileDetailsView, UserRegisterView urlpatterns = [ path('login/', UserLoginView.as_view(), name='login user'), path('<int:pk>/', ProfileDetailsView.as_view(), name='profile details'), path('register/', UserRegisterView.as_view(), name='register'), # path('profile/edit/', edit_profile, name='edit profile'), # path('profile/delete/', delete_profile, name='delete profile'), ]
StarcoderdataPython
1637157
<reponame>lucasazevedo/bstgames<filename>bstgames/models.py from django.db import models from stdimage.models import StdImageField from django.core.validators import MaxValueValidator class GameGenre(models.Model): genre = models.CharField('Genre', max_length=50, unique=True) class Meta: verbose_name = 'Game Genre' verbose_name_plural = 'Game Genres' def __str__(self): return self.genre class GamePlatform(models.Model): platform = models.CharField('Platform', max_length=50, unique=True) class Meta: verbose_name = 'Game Platform' verbose_name_plural = 'Game Platforms' def __str__(self): return self.platform class GameDeveloper(models.Model): developer = models.CharField('Developer', max_length=50, unique=True) class Meta: verbose_name = 'Game Developer' verbose_name_plural = 'Game Developers' def __str__(self): return self.developer class GamePublisher(models.Model): publisher = models.CharField('Publisher', max_length=50, unique=True) class Meta: verbose_name = 'Game Publisher' verbose_name_plural = 'Game Publishers' def __str__(self): return self.publisher class Game(models.Model): game = models.CharField('Game', max_length=50, unique=True) genre = models.ManyToManyField('GameGenre', blank=True, verbose_name='Genre', through='GameGameGenre') platform = models.ManyToManyField('GamePlatform', blank=True, verbose_name='Platform', through='GameGamePlatform') description = models.TextField('Description', blank=True) developer = models.ForeignKey('GameDeveloper', verbose_name='Developer', on_delete=models.SET_NULL, null=True, blank=True) publisher = models.ForeignKey('GamePublisher', verbose_name='Publisher', on_delete=models.SET_NULL, null=True, blank=True) age_rating = models.PositiveSmallIntegerField('Age Rating', null=True, blank=True, validators=[MaxValueValidator(18)]) class Meta: verbose_name = 'Game' verbose_name_plural = 'Games' def __str__(self): return self.game def image_upload_path(instance, filename): return 'games/platforms/{0}_{1}'.format(instance.gamegameplatform.id, filename) class GamePlatformImage(models.Model): gamegameplatform = models.ForeignKey('GameGamePlatform', on_delete=models.CASCADE) image = StdImageField('Image', upload_to=image_upload_path, variations={'thumbnail': {'width': 117, 'height': 147, 'crop': False}}, delete_orphans=True) default = models.BooleanField('Default', default=False) def __str__(self): return f'{self.gamegameplatform.game.game} - {self.gamegameplatform.gameplatform.platform}' class GameGamePlatform(models.Model): game = models.ForeignKey('Game', on_delete=models.CASCADE) gameplatform = models.ForeignKey('GamePlatform', on_delete=models.CASCADE) metascore = models.PositiveSmallIntegerField('Metascore', null=True, blank=True, validators=[MaxValueValidator(100)]) release_date = models.DateField('Release Date', null=True, blank=True) def get_default_image(self): return GamePlatformImage.objects.filter(gamegameplatform=self.pk, default=True).first() class Meta: db_table = 'bstgames_game_platform' constraints = [ models.UniqueConstraint(name='unique_game_gameplatform', fields=['game', 'gameplatform']) ] def __str__(self): return f'{self.game.game} - {self.gameplatform.platform}' class GameGameGenre(models.Model): game = models.ForeignKey('Game', on_delete=models.CASCADE) gamegenre = models.ForeignKey('GameGenre', on_delete=models.CASCADE) class Meta: db_table = 'bstgames_game_genre' constraints = [ models.UniqueConstraint(name='unique_game_gamegenre', fields=['game', 'gamegenre']) ] def __str__(self): return f'{self.game.game} - {self.gamegenre.genre}' class GameMarket(models.Model): class ActionChoices(models.IntegerChoices): BUY = 1, 'Buy' SELL = 2, 'Sell' TRADE = 3, 'Trade' class StatusChoices(models.IntegerChoices): ACTIVE = 1, 'Active' INACTIVE = 2, 'Inactive' user = models.ForeignKey('users.User', verbose_name='User', on_delete=models.CASCADE) gameplatform = models.ForeignKey('GameGamePlatform', verbose_name='Game - Platform', on_delete=models.CASCADE, null=True) action = models.PositiveSmallIntegerField('Action', choices=ActionChoices.choices) trade = models.ManyToManyField('GameGamePlatform', blank=True, verbose_name='Trade For', related_name='trades') status = models.PositiveSmallIntegerField('Status', choices=StatusChoices.choices) price = models.DecimalField('Price', max_digits=5, decimal_places=2, null=True, blank=True) date = models.DateField('Date', auto_now_add=True) class Meta: verbose_name = 'Game Market' verbose_name_plural = 'Game Markets' def __str__(self): return f'{self.user} - {self.gameplatform} ({self.get_action_display()})'
StarcoderdataPython
140287
<filename>framework/contrib/PythonFMU/pythonfmu/tests/test_variables.py from enum import Enum from random import randint import pytest from pythonfmu import Fmi2Slave from pythonfmu.enums import Fmi2Causality, Fmi2Initial, Fmi2Variability from pythonfmu.variables import Boolean, Integer, Real, ScalarVariable, String from .utils import PY2FMI SCALAR_VARIABLE_ATTRIBUTES = ["name", "valueReference", "description", "causality", "variability", "initial"] def test_ScalarVariable_reference_set_once_only(): v = ScalarVariable('variable') v.value_reference = 22 with pytest.raises(RuntimeError): v.value_reference = 33 @pytest.mark.parametrize("causality", list(Fmi2Causality) + [None]) @pytest.mark.parametrize("initial", list(Fmi2Initial) + [None]) @pytest.mark.parametrize("variability", list(Fmi2Variability) + [None]) @pytest.mark.parametrize("name, description", [ ("var", None), ("var", "description of var"), ]) def test_ScalarVariable_constructor(causality, initial, variability, name, description): var = ScalarVariable(name, causality, description, initial, variability) assert var.name == name assert var.value_reference is None assert var.causality == causality assert var.description == description assert var.initial == initial assert var.variability == variability @pytest.mark.parametrize("fmi_type,value", [ (Boolean, False), (Integer, 22), (Real, 2./3.), (String, "hello_world"), ]) def test_ScalarVariable_getter(fmi_type, value): class Slave(Fmi2Slave): def __init__(self, **kwargs): super().__init__(**kwargs) self.var = [value] self.register_variable(PY2FMI[type(value)]("var", getter=lambda: self.var[0])) def do_step(self, t, dt): return True fmi_type_name = fmi_type.__qualname__.lower() slave = Slave(instance_name="slaveInstance") assert getattr(slave, f"get_{fmi_type_name}")([0]) == [value] @pytest.mark.parametrize("fmi_type,value", [ (Boolean, False), (Integer, 22), (Real, 2./3.), (String, "hello_world"), ]) def test_ScalarVariable_setter(fmi_type, value): class Slave(Fmi2Slave): def __init__(self, **kwargs): super().__init__(**kwargs) self.var = [None] self.register_variable( PY2FMI[type(value)]( "var", getter=lambda: self.var[0], setter=lambda v: self.var.__setitem__(0, v) ) ) def do_step(self, t, dt): return True slave = Slave(instance_name="slaveInstance") fmi_type_name = fmi_type.__qualname__.lower() set_method = getattr(slave, f"set_{fmi_type_name}") set_method([0, ], [value, ]) assert getattr(slave, f"get_{fmi_type_name}")([0]) == [value] @pytest.mark.parametrize("causality", list(Fmi2Causality) + [None]) @pytest.mark.parametrize("initial", list(Fmi2Initial) + [None]) @pytest.mark.parametrize("variability", list(Fmi2Variability) + [None]) @pytest.mark.parametrize("name, description", [ ("var", None), ("var", "description of var"), ]) def test_ScalarVariable_to_xml(causality, initial, variability, name, description): var = ScalarVariable(name, causality, description, initial, variability) valueReference = randint(0, 25000) var.value_reference = valueReference node = var.to_xml() assert node.tag == 'ScalarVariable' args = locals() for attr in SCALAR_VARIABLE_ATTRIBUTES: value = args[attr] if value is not None: if isinstance(value, Enum): assert node.attrib[attr] == value.name else: assert node.attrib[attr] == str(value) @pytest.mark.parametrize("var_type, value", [ (Boolean, True), (Integer, 23), (Real, 15.), (String, "hello")]) @pytest.mark.parametrize("causality", list(Fmi2Causality) + [None]) @pytest.mark.parametrize("initial", list(Fmi2Initial) + [None]) @pytest.mark.parametrize("variability", list(Fmi2Variability) + [None]) def test_ScalarVariable_start(var_type, value, causality, initial, variability): var_obj = var_type("var", causality=causality, description="a variable", initial=initial, variability=variability) class PySlave(Fmi2Slave): def __init__(self, **kwargs): super().__init__(**kwargs) setattr(self, "var", value) self.register_variable(var_obj) def do_step(self, current_time: float, step_size: float): return True slave = PySlave(instance_name="testInstance") xml = slave.to_xml() var_node = xml.find(".//ScalarVariable[@name='var']") assert var_node is not None if ScalarVariable.requires_start(var_obj): assert var_obj.start == value else: assert var_obj.start is None @pytest.mark.parametrize("name,start", [ ("boolean_name", None), ("boolean_another_name", False), ]) def test_Boolean_constructor(name, start): r = Boolean(name, start) assert r.start == start @pytest.mark.parametrize("name,start", [ ("boolean_name", None), ("boolean_another_name", True), ("boolean_yet_another", False), ]) def test_Boolean_to_xml(name, start): r = Boolean(name, start) xml = r.to_xml() children = list(xml) assert len(children) == 1 if start is not None: assert children[0].attrib['start'] == str(start).lower() @pytest.mark.parametrize("name,start", [ ("integer_name", None), ("integer_another_name", 42), ]) def test_Integer_constructor(name, start): r = Integer(name, start) assert r.start == start @pytest.mark.parametrize("name,start", [ ("integer_name", None), ("integer_another_name", 42), ]) def test_Integer_to_xml(name, start): r = Integer(name, start) xml = r.to_xml() children = list(xml) assert len(children) == 1 if start is not None: assert children[0].attrib['start'] == str(start) @pytest.mark.parametrize("name,start", [ ("real_name", None), ("real_another_name", 22.), ]) def test_Real_constructor(name, start): r = Real(name, start) assert r.start == start @pytest.mark.parametrize("name,start", [ ("real_name", None), ("real_another_name", 22.), ]) def test_Real_to_xml(name, start): r = Real(name, start) xml = r.to_xml() children = list(xml) assert len(children) == 1 if start is not None: assert children[0].attrib['start'] == f"{start:.16g}" @pytest.mark.parametrize("name,start", [ ("string_name", None), ("string_another_name", "dummy"), ]) def test_String_constructor(name, start): r = String(name, start) assert r.start == start @pytest.mark.parametrize("name,start", [ ("string_name", None), ("string_another_name", "dummy"), ]) def test_String_to_xml(name, start): r = String(name, start) xml = r.to_xml() children = list(xml) assert len(children) == 1 if start is not None: assert children[0].attrib['start'] == str(start)
StarcoderdataPython
164085
<reponame>Ivancaminal72/mcv-m6-2018-team3 import cv2 import numpy as np from track import track from utils import write_images2 from homography_transformation import * from speedlimit_emojis import speedlimit_emojis, watermark # TODO: Check the thresholds (validate) & put in config file selection = 'highway' if selection == 'highway': thresh_dist = 70 minDistance = 35 thresh_consecutiveInvisible = 2 thresh_area = 160 seq_name = 'highway' elif selection == 'traffic': thresh_dist = 70 minDistance = 35 thresh_consecutiveInvisible = 2 thresh_area = 160 seq_name = 'traffic' elif selection == 'custom': thresh_dist = 70 minDistance = 15 thresh_consecutiveInvisible = 2 thresh_area = 45 seq_name = 'custom' # low traffic: 0-2 vehicles # medium traffic: 3-4 vehicles # high traffic: >5 vehicles thresh_traffic_low = 2 thresh_traffic_high = 5 # RGB color code map color_code_map = [ #[0.0, 0.0, 0.0], # 0 - Black [1.0, 0.0, 0.0], # 1 - Red [1.0, 0.5, 0.0], # 2 - Orange [1.0, 0.0, 1.0], # 3 - Magenta [0.0, 0.0, 1.0], # 4 - Blue [0.0, 1.0, 0.0], # 5 - Green [0.0, 1.0, 1.0], # 6 - Cyan ] # to goturn: from https://github.com/opencv/opencv_extra/tree/c4219d5eb3105ed8e634278fad312a1a8d2c182d/testdata/tracking # download the files, put them all in your homework directory and unzip to make one file "goturn.caffemodel" # Make sure you have installed the opencv-contrib-python package with: # pip install opencv-contrib-python tracker_types = ['kalman filter', 'kcf', 'medianflow', 'boosting', 'mil', 'tld', 'goturn'] tracker_type = tracker_types[0] def getConnectedComponents(mask): connectivity = 4 mask = mask * 255. mask = mask.astype("uint8") output = cv2.connectedComponentsWithStats(mask, connectivity, cv2.CV_32S) nb_objects = output[0] - 1 cc_map = output[1] bboxes = output[2] centroids = output[3] return nb_objects, cc_map, bboxes, centroids def computeDistance(point1, point2): distance = pow((point1[0] - point2[0])** 2 + (point1[1] - point2[1])** 2, 0.5) return distance def get_nearest_track(centroid, track_list, height, width): track_index = -1 for idx, t in enumerate(track_list): predicted_centroid = t.tracker.predict() predicted_centroid = np.array(predicted_centroid).astype("int") #print(type(predicted_centroid)) #print(type(centroid)) #print("centroid = ", centroid) #print("predicted_centroid = ", predicted_centroid) distance = computeDistance(centroid, predicted_centroid) print("distance = ", distance) if distance < thresh_dist and distance < minDistance: #minDistance = distance track_index = idx #index of menor distance return track_index # modification for speed def drawing(image, track_list, track_index, color_code_map, speed, history_center, history_predictions=False, emoji=1): ix = track_list[track_index].id % len(color_code_map) color = np.array(color_code_map[ix])*255 bb_shape = (track_list[track_index].bbox[0] + track_list[track_index].bbox[2], track_list[track_index].bbox[1] + track_list[track_index].bbox[3]) # draw the bounding box image = cv2.rectangle(image, (track_list[track_index].bbox[0], track_list[track_index].bbox[1]), bb_shape, color, 3) # draw all the history center if history_center: for i in range(len(track_list[track_index].history_centroid)): cv2.circle(image, (track_list[track_index].history_centroid[i][0], track_list[track_index].history_centroid[i][1]), 1, color, -1) # draw all the history positions predictions if history_predictions: for i in range(len(track_list[track_index].history_centroid_predicted)): if tracker_type == 'kalman filter': cv2.circle(image, (track_list[track_index].history_centroid_predicted[i][0].astype("int"), track_list[track_index].history_centroid_predicted[i][1].astype("int")), 1, (0, 0, 0), -1) else: cv2.circle(image, (track_list[track_index].history_centroid_predicted[i][0], track_list[track_index].history_centroid_predicted[i][1]), 1, (0, 0, 0), -1) text_position = (track_list[track_index].bbox[0] + int(track_list[track_index].bbox[2]/4), track_list[track_index].bbox[1] - 3) font = cv2.FONT_HERSHEY_SIMPLEX image = cv2.putText(image, str(round(speed, 2)), text_position, font, 0.43, (255, 255, 255), 1, cv2.LINE_AA) # traffic mode text_position = (10, 20) font = cv2.FONT_HERSHEY_SIMPLEX size = 0.6 if len(track_list) <= thresh_traffic_low: image = cv2.putText(image, 'LOW TRAFFIC', text_position, font, size, (0, 255, 0), 2, cv2.LINE_AA) elif len(track_list) >= thresh_traffic_high: image = cv2.putText(image, 'HIGH TRAFFIC', text_position, font, size, (0, 0, 255), 2, cv2.LINE_AA) else: image = cv2.putText(image, 'MODERATE TRAFFIC', text_position, font, size, (0, 255, 255), 2, cv2.LINE_AA) if emoji == 0: image = speedlimit_emojis(selection, image, speed, text_position, bb_shape) elif emoji == 1: image = watermark(image, speed, bb_shape[0], bb_shape[1], track_list[track_index].bbox[2], track_list[track_index].bbox[3]) return image # Task2 : compute speed def update_speed(track, H, params): #speed_treshold = 30 #frames = 4 total_visible = track.totalVisible if total_visible % 5 is 0 and total_visible is not 0: p_now = apply_homography(track.centroid, H)[0][0] p_now[p_now<0] = 0 p_past = apply_homography(track.centroid_memory, H)[0][0] p_past[p_now < 0] = 0 #print('speed computation: ') # speed update every 10 frames speed = (params['fps']/5) * (params['distance']*(np.abs(p_now[1] - p_past[1])) / params['y_distance']) #history_mean = np.mean(track.history_speed[-frames:]) #print(': ', track.history_speed) # if len(track.history_speed) > 0: # # if speed < history_mean - speed_treshold or speed > history_mean + speed_treshold: # # remain last speed without update # speed = track.speed #if track.id is 7: print('speed: ', speed) track.centroid_memory = track.centroid track.speed = speed track.history_speed.append(speed) return speed else: return track.speed track_list = [] nb_tracks = 0 #X_res = [] #lo recivimos de IVAN (masks) #Original_image = [] #lo recivimos de IVAN (original image) X_res = np.load('masks_new.npy') Original_image = np.load('original_images.npy') highway_ref_points = np.array([(276, 12), (201, 12), (39, 184), (277, 184)]) traffic_ref_points = np.array([[2,60], [140,5], [318,96], [129,231]]) custom_points = np.array([[145,72], [185, 72], [302, 160], [0, 160]]) #traffic_ref_points = np.array([[33,45], [113,15], [168,176], [260,115]]) # H: perspective correction homography. # y_distance: distance in pixels in transformed domain. # distance: distance in meters of the study traject. # fps: frames per seconds of the sequence. if seq_name is 'highway': H = compute_homograpy(highway_ref_points) params = {'y_distance': 238, 'distance': 400, 'fps': 30} elif seq_name is 'traffic': H = compute_homograpy(traffic_ref_points) params = {'y_distance': 232, 'distance': 40, 'fps': 30} elif seq_name is 'custom': H = compute_homograpy(custom_points) params = {'y_distance': 284, 'distance': 850, 'fps': 30} else: H = None params = None print('Invalid sequence name') found_index = [] output_tracking = [] img1 = Original_image[0] count = 0 for image, mask in zip(Original_image[:,:,:], X_res[:,:,:]): nb_objects, cc_map, bboxes, centroids = getConnectedComponents(mask) # Start timer timer = cv2.getTickCount() print("COUNT=", count) count += 1 found_index = [] for idx in np.unique(cc_map)[1:]: #print("len(track_list) = ",len(track_list)) area = bboxes[idx][-1:] # Check if bbox area is valid print("area = ", area) if area < thresh_area: continue height, width = image.shape[:2] centroid = centroids[idx].astype('int') track_index = get_nearest_track(centroid, track_list, height, width) # TODO: Check if track_index is in found_index (there is already assigned) if track_index is -1: # create new track nb_tracks += 1 # create new track if tracker_type == 'kalman filter': newTrack = track(nb_tracks, bboxes[idx][:-1], centroid, area, tracker_type) else: newTrack = track(nb_tracks, bboxes[idx][:-1], centroid, area, tracker_type, image) track_list.append(newTrack) #print("New track") track_index = track_list.index(newTrack) #draw_bbox(image, track_list, track_index, color_code_map) found_index.append(track_index) else: # Update track corresponding on track index track_list[track_index].centroid = centroid track_list[track_index].history_centroid.append(centroid) track_list[track_index].bbox = bboxes[idx][:-1] track_list[track_index].age += 1 track_list[track_index].area.append(area) center_predicted = track_list[track_index].tracker.predict() if center_predicted is not np.array([0, 0]): # history of prediction positions by the filter track_list[track_index].history_centroid_predicted.append(track_list[track_index].tracker.predict()) if tracker_type == 'kalman filter': track_list[track_index].tracker.update(centroid) else: track_list[track_index].tracker.update(image) track_list[track_index].visible = True track_list[track_index].consecutiveInvisible = 0 found_index.append(track_index) for idx, _ in enumerate(track_list): # Mark as False the existent tracks not found if idx not in found_index: track_list[idx].visible = False if track_list[idx].visible: track_list[idx].totalVisible += 1 # compute speed speed = update_speed(track_list[idx], H, params) # draw bbox with speed. TODO: update draw_bbow image = drawing(image, track_list, idx, color_code_map, speed, True, True, 1) else: track_list[idx].consecutiveInvisible += 1 if track_list[idx].consecutiveInvisible > thresh_consecutiveInvisible: track_list.remove(track_list[idx]) #print("REMOVE = ",idx) # Calculate Frames per second (FPS) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) #print("FPS : ", str(int(fps))) output_tracking.append(image) # save images output_tracking = np.array(output_tracking) #np.save('tracking_cube.npy', output_tracking) write_images2(output_tracking, 'output', 'track_')
StarcoderdataPython
1679156
<filename>testcase/tools/findleaves.py<gh_stars>1-10 #!/usr/bin/env python # # Copyright (C) 2009 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Finds files with the specified name under a particular directory, stopping # the search in a given subdirectory when the file is found. # import os import sys def perform_find(mindepth, prune, dirlist, filenames): result = [] pruneleaves = set(map(lambda x: os.path.split(x)[1], prune)) for rootdir in dirlist: rootdepth = rootdir.count("/") for root, dirs, files in os.walk(rootdir, followlinks=True): # prune check_prune = False for d in dirs: if d in pruneleaves: check_prune = True break if check_prune: i = 0 while i < len(dirs): if dirs[i] in prune: del dirs[i] else: i += 1 # mindepth if mindepth > 0: depth = 1 + root.count("/") - rootdepth if depth < mindepth: continue # match for filename in filenames: if filename in files: result.append(os.path.join(root, filename)) del dirs[:] return result def usage(): sys.stderr.write("""Usage: %(progName)s [<options>] [--dir=<dir>] <filenames> Options: --mindepth=<mindepth> Both behave in the same way as their find(1) equivalents. --prune=<dirname> Avoids returning results from inside any directory called <dirname> (e.g., "*/out/*"). May be used multiple times. --dir=<dir> Add a directory to search. May be repeated multiple times. For backwards compatibility, if no --dir argument is provided then all but the last entry in <filenames> are treated as directories. """ % { "progName": os.path.split(sys.argv[0])[1], }) sys.exit(1) def main(argv): mindepth = -1 prune = [] dirlist = [] i=1 while i<len(argv) and len(argv[i])>2 and argv[i][0:2] == "--": arg = argv[i] if arg.startswith("--mindepth="): try: mindepth = int(arg[len("--mindepth="):]) except ValueError: usage() elif arg.startswith("--prune="): p = arg[len("--prune="):] if len(p) == 0: usage() prune.append(p) elif arg.startswith("--dir="): d = arg[len("--dir="):] if len(p) == 0: usage() dirlist.append(d) else: usage() i += 1 if len(dirlist) == 0: # backwards compatibility if len(argv)-i < 2: # need both <dirlist> and <filename> usage() dirlist = argv[i:-1] filenames = [argv[-1]] else: if len(argv)-i < 1: # need <filename> usage() filenames = argv[i:] results = list(set(perform_find(mindepth, prune, dirlist, filenames))) results.sort() for r in results: print r if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
3311118
<reponame>liamrahav/TopicBERT-PyTorch<filename>vae_main.py import sys import torch from datasets import Reuters8Dataset, IMDBDataset, Vocabulary, EmbeddingDataset from training.pretrain_vae import pretrain from models import VAEEncoder, Generator2 def run_vae_pretrain(opts): verbose = opts['verbose'] if opts['dataset'] == 'reuters8': vocab = Vocabulary.from_files([opts['train_dataset_path'], opts['val_dataset_path'], opts['test_dataset_path']]) if verbose: print(' [*] Vocabulary built.') train_dataset = Reuters8Dataset( opts['train_dataset_path'], opts['label_path'], vocab) train_dataset = EmbeddingDataset(train_dataset, train_dataset.vocab) if verbose: print(' [*] Train dataset built.') val_dataset = Reuters8Dataset( opts['val_dataset_path'], opts['label_path'], vocab) val_dataset = EmbeddingDataset(val_dataset, val_dataset.vocab) if verbose: print(' [*] Validation dataset built.') test_dataset = Reuters8Dataset( opts['test_dataset_path'], opts['label_path'], vocab) test_dataset = EmbeddingDataset(test_dataset, test_dataset.vocab) if verbose: print(' [*] Test dataset built.') elif opts['dataset'] == 'imdb': train_dataset, val_dataset, test_dataset = IMDBDataset.full_split( opts['train_dataset_path']) train_dataset = EmbeddingDataset(train_dataset, train_dataset.vocab) if verbose: print(' [*] Train dataset built.') val_dataset = EmbeddingDataset(val_dataset, val_dataset.vocab) if verbose: print(' [*] Validation dataset built.') test_dataset = EmbeddingDataset(test_dataset, test_dataset.vocab) if verbose: print(' [*] Test dataset built.') tensorboard = not opts['disable_tensorboard'] load_ckpt = bool(opts['resume']) if opts['save_checkpoint_only']: load_ckpt = False pretrain(train_dataset, val_dataset=val_dataset, test_dataset=test_dataset, emb_size=opts['emb_size'], lr=opts['lr'], num_epochs=opts['num_epochs'], num_workers=opts['num_workers'], batch_size=opts['batch_size'], device=opts['device'], verbose=verbose, tensorboard=tensorboard, tensorboard_dir=opts['tensorboard_dir'], should_load_ckpt=load_ckpt, ckpt_dir=opts['resume'])
StarcoderdataPython
184213
<reponame>ck-tm/biserici-inlemnite<gh_stars>0 # Generated by Django 3.1.13 on 2021-08-04 10:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('biserici', '0046_auto_20210804_1253'), ] operations = [ migrations.AddField( model_name='componentaartistica', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='descriere', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='finisaj', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='fotografii', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='historicalcomponentaartistica', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='historicaldescriere', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='historicalfinisaj', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='historicalfotografii', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='historicalidentificare', name='missing_fields', field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name='identificare', name='missing_fields', field=models.JSONField(blank=True, null=True), ), ]
StarcoderdataPython
3303078
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['PortForwardingV2Args', 'PortForwardingV2'] @pulumi.input_type class PortForwardingV2Args: def __init__(__self__, *, external_port: pulumi.Input[int], floatingip_id: pulumi.Input[str], internal_ip_address: pulumi.Input[str], internal_port: pulumi.Input[int], internal_port_id: pulumi.Input[str], protocol: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a PortForwardingV2 resource. :param pulumi.Input[int] external_port: The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. :param pulumi.Input[str] floatingip_id: The ID of the Neutron floating IP address. Changing this creates a new port forwarding. :param pulumi.Input[str] internal_ip_address: The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. :param pulumi.Input[int] internal_port: The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. :param pulumi.Input[str] internal_port_id: The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. :param pulumi.Input[str] protocol: The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. :param pulumi.Input[str] description: A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. :param pulumi.Input[str] region: The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ pulumi.set(__self__, "external_port", external_port) pulumi.set(__self__, "floatingip_id", floatingip_id) pulumi.set(__self__, "internal_ip_address", internal_ip_address) pulumi.set(__self__, "internal_port", internal_port) pulumi.set(__self__, "internal_port_id", internal_port_id) pulumi.set(__self__, "protocol", protocol) if description is not None: pulumi.set(__self__, "description", description) if region is not None: pulumi.set(__self__, "region", region) @property @pulumi.getter(name="externalPort") def external_port(self) -> pulumi.Input[int]: """ The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. """ return pulumi.get(self, "external_port") @external_port.setter def external_port(self, value: pulumi.Input[int]): pulumi.set(self, "external_port", value) @property @pulumi.getter(name="floatingipId") def floatingip_id(self) -> pulumi.Input[str]: """ The ID of the Neutron floating IP address. Changing this creates a new port forwarding. """ return pulumi.get(self, "floatingip_id") @floatingip_id.setter def floatingip_id(self, value: pulumi.Input[str]): pulumi.set(self, "floatingip_id", value) @property @pulumi.getter(name="internalIpAddress") def internal_ip_address(self) -> pulumi.Input[str]: """ The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. """ return pulumi.get(self, "internal_ip_address") @internal_ip_address.setter def internal_ip_address(self, value: pulumi.Input[str]): pulumi.set(self, "internal_ip_address", value) @property @pulumi.getter(name="internalPort") def internal_port(self) -> pulumi.Input[int]: """ The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. """ return pulumi.get(self, "internal_port") @internal_port.setter def internal_port(self, value: pulumi.Input[int]): pulumi.set(self, "internal_port", value) @property @pulumi.getter(name="internalPortId") def internal_port_id(self) -> pulumi.Input[str]: """ The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. """ return pulumi.get(self, "internal_port_id") @internal_port_id.setter def internal_port_id(self, value: pulumi.Input[str]): pulumi.set(self, "internal_port_id", value) @property @pulumi.getter def protocol(self) -> pulumi.Input[str]: """ The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. """ return pulumi.get(self, "protocol") @protocol.setter def protocol(self, value: pulumi.Input[str]): pulumi.set(self, "protocol", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def region(self) -> Optional[pulumi.Input[str]]: """ The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region", value) @pulumi.input_type class _PortForwardingV2State: def __init__(__self__, *, description: Optional[pulumi.Input[str]] = None, external_port: Optional[pulumi.Input[int]] = None, floatingip_id: Optional[pulumi.Input[str]] = None, internal_ip_address: Optional[pulumi.Input[str]] = None, internal_port: Optional[pulumi.Input[int]] = None, internal_port_id: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering PortForwardingV2 resources. :param pulumi.Input[str] description: A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. :param pulumi.Input[int] external_port: The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. :param pulumi.Input[str] floatingip_id: The ID of the Neutron floating IP address. Changing this creates a new port forwarding. :param pulumi.Input[str] internal_ip_address: The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. :param pulumi.Input[int] internal_port: The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. :param pulumi.Input[str] internal_port_id: The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. :param pulumi.Input[str] protocol: The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. :param pulumi.Input[str] region: The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ if description is not None: pulumi.set(__self__, "description", description) if external_port is not None: pulumi.set(__self__, "external_port", external_port) if floatingip_id is not None: pulumi.set(__self__, "floatingip_id", floatingip_id) if internal_ip_address is not None: pulumi.set(__self__, "internal_ip_address", internal_ip_address) if internal_port is not None: pulumi.set(__self__, "internal_port", internal_port) if internal_port_id is not None: pulumi.set(__self__, "internal_port_id", internal_port_id) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if region is not None: pulumi.set(__self__, "region", region) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="externalPort") def external_port(self) -> Optional[pulumi.Input[int]]: """ The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. """ return pulumi.get(self, "external_port") @external_port.setter def external_port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "external_port", value) @property @pulumi.getter(name="floatingipId") def floatingip_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Neutron floating IP address. Changing this creates a new port forwarding. """ return pulumi.get(self, "floatingip_id") @floatingip_id.setter def floatingip_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "floatingip_id", value) @property @pulumi.getter(name="internalIpAddress") def internal_ip_address(self) -> Optional[pulumi.Input[str]]: """ The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. """ return pulumi.get(self, "internal_ip_address") @internal_ip_address.setter def internal_ip_address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "internal_ip_address", value) @property @pulumi.getter(name="internalPort") def internal_port(self) -> Optional[pulumi.Input[int]]: """ The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. """ return pulumi.get(self, "internal_port") @internal_port.setter def internal_port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "internal_port", value) @property @pulumi.getter(name="internalPortId") def internal_port_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. """ return pulumi.get(self, "internal_port_id") @internal_port_id.setter def internal_port_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "internal_port_id", value) @property @pulumi.getter def protocol(self) -> Optional[pulumi.Input[str]]: """ The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. """ return pulumi.get(self, "protocol") @protocol.setter def protocol(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "protocol", value) @property @pulumi.getter def region(self) -> Optional[pulumi.Input[str]]: """ The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region", value) class PortForwardingV2(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, external_port: Optional[pulumi.Input[int]] = None, floatingip_id: Optional[pulumi.Input[str]] = None, internal_ip_address: Optional[pulumi.Input[str]] = None, internal_port: Optional[pulumi.Input[int]] = None, internal_port_id: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages a V2 portforwarding resource within OpenStack. ## Example Usage ### Simple portforwarding ```python import pulumi import pulumi_openstack as openstack pf1 = openstack.networking.PortForwardingV2("pf1", external_port=7233, floatingip_id="7a52eb59-7d47-415d-a884-046666a6fbae", internal_port=25, internal_port_id="b930d7f6-ceb7-40a0-8b81-a425dd994ccf", protocol="tcp") ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. :param pulumi.Input[int] external_port: The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. :param pulumi.Input[str] floatingip_id: The ID of the Neutron floating IP address. Changing this creates a new port forwarding. :param pulumi.Input[str] internal_ip_address: The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. :param pulumi.Input[int] internal_port: The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. :param pulumi.Input[str] internal_port_id: The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. :param pulumi.Input[str] protocol: The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. :param pulumi.Input[str] region: The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ ... @overload def __init__(__self__, resource_name: str, args: PortForwardingV2Args, opts: Optional[pulumi.ResourceOptions] = None): """ Manages a V2 portforwarding resource within OpenStack. ## Example Usage ### Simple portforwarding ```python import pulumi import pulumi_openstack as openstack pf1 = openstack.networking.PortForwardingV2("pf1", external_port=7233, floatingip_id="7a52eb59-7d47-415d-a884-046666a6fbae", internal_port=25, internal_port_id="b930d7f6-ceb7-40a0-8b81-a425dd994ccf", protocol="tcp") ``` :param str resource_name: The name of the resource. :param PortForwardingV2Args args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PortForwardingV2Args, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, external_port: Optional[pulumi.Input[int]] = None, floatingip_id: Optional[pulumi.Input[str]] = None, internal_ip_address: Optional[pulumi.Input[str]] = None, internal_port: Optional[pulumi.Input[int]] = None, internal_port_id: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PortForwardingV2Args.__new__(PortForwardingV2Args) __props__.__dict__["description"] = description if external_port is None and not opts.urn: raise TypeError("Missing required property 'external_port'") __props__.__dict__["external_port"] = external_port if floatingip_id is None and not opts.urn: raise TypeError("Missing required property 'floatingip_id'") __props__.__dict__["floatingip_id"] = floatingip_id if internal_ip_address is None and not opts.urn: raise TypeError("Missing required property 'internal_ip_address'") __props__.__dict__["internal_ip_address"] = internal_ip_address if internal_port is None and not opts.urn: raise TypeError("Missing required property 'internal_port'") __props__.__dict__["internal_port"] = internal_port if internal_port_id is None and not opts.urn: raise TypeError("Missing required property 'internal_port_id'") __props__.__dict__["internal_port_id"] = internal_port_id if protocol is None and not opts.urn: raise TypeError("Missing required property 'protocol'") __props__.__dict__["protocol"] = protocol __props__.__dict__["region"] = region super(PortForwardingV2, __self__).__init__( 'openstack:networking/portForwardingV2:PortForwardingV2', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, external_port: Optional[pulumi.Input[int]] = None, floatingip_id: Optional[pulumi.Input[str]] = None, internal_ip_address: Optional[pulumi.Input[str]] = None, internal_port: Optional[pulumi.Input[int]] = None, internal_port_id: Optional[pulumi.Input[str]] = None, protocol: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None) -> 'PortForwardingV2': """ Get an existing PortForwardingV2 resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. :param pulumi.Input[int] external_port: The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. :param pulumi.Input[str] floatingip_id: The ID of the Neutron floating IP address. Changing this creates a new port forwarding. :param pulumi.Input[str] internal_ip_address: The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. :param pulumi.Input[int] internal_port: The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. :param pulumi.Input[str] internal_port_id: The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. :param pulumi.Input[str] protocol: The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. :param pulumi.Input[str] region: The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _PortForwardingV2State.__new__(_PortForwardingV2State) __props__.__dict__["description"] = description __props__.__dict__["external_port"] = external_port __props__.__dict__["floatingip_id"] = floatingip_id __props__.__dict__["internal_ip_address"] = internal_ip_address __props__.__dict__["internal_port"] = internal_port __props__.__dict__["internal_port_id"] = internal_port_id __props__.__dict__["protocol"] = protocol __props__.__dict__["region"] = region return PortForwardingV2(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A text describing the port forwarding. Changing this updates the `description` of an existing port forwarding. """ return pulumi.get(self, "description") @property @pulumi.getter(name="externalPort") def external_port(self) -> pulumi.Output[int]: """ The TCP/UDP/other protocol port number of the port forwarding. Changing this updates the `external_port` of an existing port forwarding. """ return pulumi.get(self, "external_port") @property @pulumi.getter(name="floatingipId") def floatingip_id(self) -> pulumi.Output[str]: """ The ID of the Neutron floating IP address. Changing this creates a new port forwarding. """ return pulumi.get(self, "floatingip_id") @property @pulumi.getter(name="internalIpAddress") def internal_ip_address(self) -> pulumi.Output[str]: """ The fixed IPv4 address of the Neutron port associated with the port forwarding. Changing this updates the `internal_ip_address` of an existing port forwarding. """ return pulumi.get(self, "internal_ip_address") @property @pulumi.getter(name="internalPort") def internal_port(self) -> pulumi.Output[int]: """ The TCP/UDP/other protocol port number of the Neutron port fixed IP address associated to the port forwarding. Changing this updates the `internal_port` of an existing port forwarding. """ return pulumi.get(self, "internal_port") @property @pulumi.getter(name="internalPortId") def internal_port_id(self) -> pulumi.Output[str]: """ The ID of the Neutron port associated with the port forwarding. Changing this updates the `internal_port_id` of an existing port forwarding. """ return pulumi.get(self, "internal_port_id") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ The IP protocol used in the port forwarding. Changing this updates the `protocol` of an existing port forwarding. """ return pulumi.get(self, "protocol") @property @pulumi.getter def region(self) -> pulumi.Output[str]: """ The region in which to obtain the V2 networking client. A networking client is needed to create a port forwarding. If omitted, the `region` argument of the provider is used. Changing this creates a new port forwarding. """ return pulumi.get(self, "region")
StarcoderdataPython
175811
from census import Census from census_tract_race_population import CensusTractRacePopulation import sys from us import states if __name__ == '__main__': if len(sys.argv) == 1: print('Provide your Census API token as an argument when running this script.') sys.exit() api_key = sys.argv[1] if not api_key: print('Provide your Census API token as an argument when running this script.') sys.exit() tracts = CensusTractRacePopulation.fetch( api_key, states.MO.fips, CensusTractRacePopulation.COUNTY_CODE_JACKSON_MO, Census.ALL, ) races = CensusTractRacePopulation.get_all_races() rows = [] header_titles = [] header_titles.append('Tract') header_titles.append('Majority') for race in races: header_titles.append(CensusTractRacePopulation.get_race_display(race)) rows.append(','.join(header_titles)) for tract in tracts: row_data = [ tract.tract, CensusTractRacePopulation.get_race_display(tract.majority_race), ] for race in races: estimate = tract.get_population_estimate_for_race(race) percent = tract.get_population_estimate_percentage_for_race(race) row_data.append('%d (%.2f%%)' % (estimate, percent)) rows.append(','.join(row_data)) for row in rows: print(row)
StarcoderdataPython
44131
BATCH_SIZE = 100 # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 50 # Epochs after which learning rate decays. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor. INITIAL_LEARNING_RATE = 0.001 # Initial learning rate. EVAL_INTERVAL_SECS = 60 """How often to run the eval.""" NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 800 EVAL_NUM_EXAMPLES = 800 """Number of examples to run for eval.""" EVAL_RUN_ONCE = False """Whether to run eval only once.""" NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 5000 IMAGE_HEIGHT = 160 IMAGE_WIDTH = 60 IMAGE_CHANNELS = 3 NUM_CLASSES = 2 LABEL_BYTES = 1 DATA_BATCH_COUNT = 10 LOG_DEVICE_PLACEMENT = False """Whether to log device placement.""" LOG_FREQUENCY = 10 """How often to log results to the console.""" TRAIN_ACCURACY_FREQUENCY = 20 USE_FP16 = False NUM_EPOCHS = 70 MAX_STEPS = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN/BATCH_SIZE * NUM_EPOCHS """Number of batches to run."""
StarcoderdataPython
3356821
import numpy as np import timeit from collections import defaultdict # 문제 구성 : { # state : {x1, x2, x3, x4, x5, x6} # action : {1, 0} # reward : {1, -1} # if prev_state_fp == 0,1,0,1,0 and currentAction == 0 { # reward : 1000} # } class QLearningAgent: # 상태 변환 확률은 1이므로 생략 def __init__(self) : self.actions = [0, 1] self.learningLate = 0.01 self.discountFactor = 0.99 self.epsilon = 0.1 self.q_table = defaultdict(int) def setWarmup(self) : self.epsilon = 1 # 최적경로를 찾기까지 epsilon을 1로 설정. 탐색력 최대화 def adjWarmup(self, str): if self.q_table[str] == 9999 and self.epsilon > 0.11 : self.epsilon -= 0.1 else : pass # s, a, r, s`를 이용해서 q-table 업데이트 def learn(self, state, action, reward, nextState) : q_1 = self.q_table[state+str(action)] q_2 = reward + self.discountFactor * self.q_table[nextState+self.argMax(nextState)] self.q_table[state+str(action)] += self.learningLate * (q_2 - q_1) # 마지막 state(6번째 갈림 길)일 때의 q-table 업데이트 def learnFinal(self, state, action, reward): q_1 = reward self.q_table[state+str(action)] = q_1 # e-greedy 정책에 따른 q-table내 해당 state의 action 반환 def get_action(self, state) : if np.random.rand() < self.epsilon : action = np.random.choice(self.actions) # print("i'm greedy!") else : action = self.argMax(state) return str(action) # 최적의 action 반환 def argMax(self, state): zeroValues = self.q_table[str(state)+'0'] oneValues = self.q_table[str(state)+'1'] if zeroValues > oneValues: action = '0' elif zeroValues < oneValues: action = '1' else: action = str(np.random.choice(self.actions)) return str(action) def diverCheck(self): checker = 0 if self.q_table['0'] >= 100 : return True else : return False class CoProblem : def __init__(self) : self.fieldSize = 6 # 최대 행동 수 self.currentState = "" # 현재 상태 # 현재 state 반환 def getCurrentState(self): self.currentState return self.currentState # 다음 state를 반환 def getNextState(self, action): self.currentState += str(action) return self.currentState # 다음 state로 이동 def toNextState(self, aciton): self.currentState += str(action) # 현재 action에 대한 reward 반환 def getReward(self, action): reward = 0 if self.currentState == "01010" and action == '0' : reward += 9999 else : if action == '0': reward += -1 else: reward += 1 return reward # episode가 끝날 때마다 다시 environment 세팅 def setInit(self): self.currentState = "" if __name__ == "__main__" : # Max Episode 설정 MAX_EPISODE = 10000 # environment와 agent 초기화 start = timeit.default_timer() cop = CoProblem() agent = QLearningAgent() # 웜업을 통한 초기탐색 agent.setWarmup() for episode in range(MAX_EPISODE) : # episode가 시작할 때마다 environment 초기화 cop.setInit() for stage in range(1,7): # state 관측 state = cop.getCurrentState() # state에 따른 agent의 action 선택 action = agent.get_action(state) # action에 대한 reward 획득 reward = cop.getReward(action) if len(cop.currentState) != cop.fieldSize-1: # state와 action을 이용해서 nextState 관측 nextState = cop.getNextState(action) # s, a, r, s`를 이용한 Q-table 학습 agent.learn(state, action, reward, nextState) elif len(cop.currentState) == cop.fieldSize-1: cop.toNextState(action) # 마지막 단계일 때, s, a, r을 이용한 Q-table 학습 agent.learnFinal(state, action, reward) # 웜업 조정 agent.adjWarmup(cop.getCurrentState()) print(episode, "episode's totoal state :", cop.currentState, "total rewards :", agent.q_table[cop.currentState]) # 수렴 확인 if agent.diverCheck() == True : print("i'm god") break print(agent.epsilon) print(agent.q_table) stop = timeit.default_timer() print(stop - start)
StarcoderdataPython
1634786
import tkinter top = tkinter.Tk() # Code to add widgets will go here top.mainloop()
StarcoderdataPython
161281
<gh_stars>1-10 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MACchangerGUI.ui' # # Created by: PyQt5 UI code generator 5.15.1 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(400, 280) self.verticalLayoutWidget = QtWidgets.QWidget(Dialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(40, 10, 321, 51)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.label_intfce = QtWidgets.QLabel(self.verticalLayoutWidget) self.label_intfce.setAlignment(QtCore.Qt.AlignCenter) self.label_intfce.setObjectName("label_intfce") self.verticalLayout.addWidget(self.label_intfce) self.comboBox_intfce = QtWidgets.QComboBox(self.verticalLayoutWidget) self.comboBox_intfce.setObjectName("comboBox_intfce") self.verticalLayout.addWidget(self.comboBox_intfce) self.horizontalLayoutWidget = QtWidgets.QWidget(Dialog) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(20, 70, 361, 91)) self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.label_curent_MAC = QtWidgets.QLabel(self.horizontalLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_curent_MAC.sizePolicy().hasHeightForWidth()) self.label_curent_MAC.setSizePolicy(sizePolicy) self.label_curent_MAC.setAlignment(QtCore.Qt.AlignCenter) self.label_curent_MAC.setObjectName("label_curent_MAC") self.horizontalLayout.addWidget(self.label_curent_MAC) self.horizontalLayoutWidget_2 = QtWidgets.QWidget(Dialog) self.horizontalLayoutWidget_2.setGeometry(QtCore.QRect(20, 170, 361, 51)) self.horizontalLayoutWidget_2.setObjectName("horizontalLayoutWidget_2") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget_2) self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.pushButton1 = QtWidgets.QPushButton(self.horizontalLayoutWidget_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton1.sizePolicy().hasHeightForWidth()) self.pushButton1.setSizePolicy(sizePolicy) self.pushButton1.setAutoFillBackground(False) self.pushButton1.setObjectName("pushButton1") self.horizontalLayout_2.addWidget(self.pushButton1) self.textEdit = QtWidgets.QTextEdit(self.horizontalLayoutWidget_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.textEdit.sizePolicy().hasHeightForWidth()) self.textEdit.setSizePolicy(sizePolicy) self.textEdit.setDocumentTitle("") self.textEdit.setObjectName("textEdit") self.horizontalLayout_2.addWidget(self.textEdit) self.pushButton2 = QtWidgets.QPushButton(Dialog) self.pushButton2.setGeometry(QtCore.QRect(114, 240, 161, 23)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton2.sizePolicy().hasHeightForWidth()) self.pushButton2.setSizePolicy(sizePolicy) self.pushButton2.setObjectName("pushButton2") self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "MAC Address Changer")) self.label_intfce.setText(_translate("Dialog", "<html><head/><body><p><span style=\" font-weight:600;\">List of Current Network Interfaces</span></p></body></html>")) self.label_curent_MAC.setText(_translate("Dialog", "<html><head/><body><p><span style=\" font-size:11pt;\">Current MAC</span></p></body></html>")) self.pushButton1.setText(_translate("Dialog", "Change MAC Address")) self.textEdit.setPlaceholderText(_translate("Dialog", "Input your new MAC address here")) self.pushButton2.setText(_translate("Dialog", "Reset Default MAC Address")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
StarcoderdataPython
3281666
#!/usr/bin/env python """ Use an aggregation query to answer the following question. What is the most common city name in our cities collection? Your first attempt probably identified None as the most frequently occurring city name. What that actually means is that there are a number of cities without a name field at all. It's strange that such documents would exist in this collection and, depending on your situation, might actually warrant further cleaning. To solve this problem the right way, we should really ignore cities that don't have a name specified. As a hint ask yourself what pipeline operator allows us to simply filter input? How do we test for the existence of a field? Please modify only the 'make_pipeline' function so that it creates and returns an aggregation pipeline that can be passed to the MongoDB aggregate function. As in our examples in this lesson, the aggregation pipeline should be a list of one or more dictionary objects. Please review the lesson examples if you are unsure of the syntax. Your code will be run against a MongoDB instance that we have provided. If you want to run this code locally on your machine, you have to install MongoDB, download and insert the dataset. For instructions related to MongoDB setup and datasets please see Course Materials. Please note that the dataset you are using here is a smaller version of the cities collection used in examples in this lesson. If you attempt some of the same queries that we looked at in the lesson examples, your results may be different. """ def get_db(db_name): from pymongo import MongoClient client = MongoClient('localhost:27017') db = client[db_name] return db def make_pipeline(): # complete the aggregation pipeline pipeline = [ {'$match' : {'name' : {'$exists':1}}}, {'$group': {'_id' : '$name', 'count': {'$sum': 1}}}, {'$sort':{'count':-1}}, {'$limit':1} ] return pipeline def aggregate(db, pipeline): result = db.cities.aggregate(pipeline) return result if __name__ == '__main__': db = get_db('examples') pipeline = make_pipeline() result = aggregate(db, pipeline) import pprint pprint.pprint(result["result"][0]) assert len(result["result"]) == 1 assert result["result"][0] == {'_id': 'Shahpur', 'count': 6}
StarcoderdataPython
3271860
<reponame>zavolanlab/htsinfer<filename>htsinfer/models.py """Data models.""" from enum import ( Enum, IntEnum, ) import logging import re from typing import Optional # pylint: disable=no-name-in-module,invalid-name from pydantic import BaseModel class CleanupRegimes(Enum): """Enumerator of cleanup regimes.""" DEFAULT = "default" KEEP_ALL = "keep_all" KEEP_NONE = "keep_none" KEEP_RESULTS = "keep_results" class LogLevels(Enum): """Log level enumerator.""" DEBUG = logging.DEBUG INFO = logging.INFO WARN = logging.WARNING WARNING = logging.WARNING ERROR = logging.ERROR CRITICAL = logging.CRITICAL class RunStates(IntEnum): """Enumerator of run states and exit codes.""" OKAY = 0 WARNING = 1 ERROR = 2 SeqIdFormats = Enum( # type: ignore # Source information: # https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informatics/BS/FileFormat_FASTQ-files_swBS.htm # https://en.wikipedia.org/wiki/FASTQ_format#Illumina_sequence_identifiers value='SeqIdFormats', names=[ # Illumina Casava >=1.8 # example EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG ( 'Casava >=1.8', re.compile( r'(?P<prefix>\w+:\d+:\w+:\d+:\d+:\d+:\d+(:[ACGTN]\+[ACGTN])?)' r'(' r'(?P<linker> )' r'(?P<mate>[12])' r'(?P<suffix>:[YN]:\d*[02468]:([ACGTN]|\d)+)' r')?' ) ), # Illumina Casava <1.8 # example: HWUSI-EAS100R:6:73:941:1973#0/1 ( 'Casava <1.8', re.compile( r'(?P<prefix>[\w-]+:\d+:\d+:\d+:\d+#([ACGTN|\d])+)' r'(' r'(?P<linker>/)' r'(?P<mate>[12])' r'(?P<suffix>)' r')?' ) ), ], ) class StatesType(Enum): """Possible outcomes of determining the sequencing library type of an individual FASTQ file. Attributes: file_problem: There was a problem with opening or parsing the file. first_mate: All of the sequence identifiers of the processed file indicate that the library represents the first mate of a paired-end library. mixed_mates: All of the sequence identifiers of the processed file include mate information. However, the file includes at least one record for either mate, indicating that the library represents a mixed mate library. not_available: Library type information is not available for a given file, either because no file was provided, the file could not be parsed, a library type has not yet been assigned, the processed file contains records with sequence identifiers of an unknown format, of different formats or that are inconsistent in that they indicate the library represents both a single-ended and paired-ended library at the same time. second_mate: All of the sequence identifiers of the processed file indicate that the library represents the second mate of a paired-end library. single: All of the sequence identifiers of the processed file indicate that the library represents a single-end library. """ first_mate = "first_mate" mixed_mates = "mixed_mates" not_available = None second_mate = "second_mate" single = "single" class StatesTypeRelationship(Enum): """Possible outcomes of determining the sequencing library type/mate relationship between two FASTQ files. Attributes: not_available: Mate relationship information is not available, likely because only a single file was provided or because the mate relationship has not yet been evaluated. not_mates: The library type information of the files is not compatible, either because not a pair of first and second mate files was provided, or because the files do not compatible sequence identifiers. split_mates: One of the provided files represents the first and the the other the second mates of a paired-end library. """ split_mates = "split_mates" not_available = None not_mates = "not_mates" class ResultsType(BaseModel): """Container class for aggregating library type and mate relationship information. Args: file_1: Library type of the first file. file_2: Library type of the second file. relationship: Type/mate relationship between the provided files. Attributes: file_1: Library type of the first file. file_2: Library type of the second file. relationship: Type/mate relationship between the provided files. """ file_1: StatesType = StatesType.not_available file_2: StatesType = StatesType.not_available relationship: StatesTypeRelationship = ( StatesTypeRelationship.not_available ) class ResultsSource(BaseModel): """TODO: implement""" class ResultsReadOrientation(BaseModel): """TODO: implement""" class Layout(BaseModel): """Read layout of a single sequencing file. Args: adapt_3: Adapter sequence ligated to 3'-end of sequence. Attributes: adapt_3: Adapter sequence ligated to 3'-end of sequence. """ adapt_3: Optional[str] = None class ResultsLayout(BaseModel): """Container class for read layout of a sequencing library. Args: file_1: Adapter sequence present in first file. file_2: Adapter sequence present in second file. Attributes: file_1: Adapter sequence present in first file. file_2: Adapter sequence present in second file. """ file_1: Layout = Layout() file_2: Layout = Layout() class Results(BaseModel): """Container class for aggregating results from the different inference functionalities. Args: library_type: Library type inference results. library_source: Library source inference results. orientation: Read orientation inference results. read_layout: Read layout inference results. Args: type: Library type inference results. source: Library source inference results. read_orientation: Read orientation inference results. read_layout: Read layout inference results. """ library_type: ResultsType = ResultsType() library_source: ResultsSource = ResultsSource() read_orientation: ResultsReadOrientation = ResultsReadOrientation() read_layout: ResultsLayout = ResultsLayout()
StarcoderdataPython
12312
<filename>core/migrations/0010_wagtailsitepage_screenshot.py # -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-21 23:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0009_wagtail112upgrade'), ] operations = [ migrations.RenameField( model_name='wagtailsitepage', old_name='image_desktop', new_name='site_screenshot', ), migrations.RemoveField( model_name='wagtailsitepage', name='image_phone', ), migrations.RemoveField( model_name='wagtailsitepage', name='image_tablet', ), ]
StarcoderdataPython
3343351
""" """ import pandas as pd import numpy as np from clintk.cat2vec.feature_selection import LassoSelector from numpy.testing import assert_array_equal values = {'feature1': [0, 0, 1, 1, 0], 'feature2': [0, 1, 1, 0, 1], 'feature3': [1, 0, 0, 0, 0], 'feature4': [1, 0, 0, 0, 1]} coefficients = {'coef': [0, 4.5, -1.2, 0.5], 'feature_name': ['feature1', 'feature2', 'feature3', 'feature4']} df = pd.DataFrame(values) # feature1 feature2 feature3 feature4 # 0 0 0 1 1 # 1 0 1 0 0 # 2 1 1 0 0 # 3 1 0 0 0 # 4 0 1 0 1 df_coef = pd.DataFrame(coefficients) # coef feature_name # 0 0.0 feature1 # 1 4.5 feature2 # 2 -1.2 feature3 # 3 0.5 feature4 class TestTransformation(object): def SetUp(self): return self def test_fit_transform(self): selector = LassoSelector(n_features=2, lasso_coefs=df_coef, feature_col='feature_name', coef_col='coef') # selector.fit(df_coef.feature_name, df_coef.coef) x_res = selector.transform(df) x_expected = np.array([[0, 1], [1, 0], [1, 0], [0, 0], [1, 0]]) assert_array_equal(x_expected, x_res)
StarcoderdataPython
105265
def differentSymbolsNaive(s): diffArray = [] for i in range(len(list(s))): if list(s)[i] not in diffArray: diffArray.append(list(s)[i]) return len(diffArray)
StarcoderdataPython
1614322
<gh_stars>10-100 #!/usr/bin/env python3 #****************************************************************************** # (C) 2019, <NAME>, Austria * # * # The Space Python Library is free software; you can redistribute it and/or * # modify it under under the terms of the MIT License as published by the * # Massachusetts Institute of Technology. * # * # The Space Python Library is distributed in the hope that it will be useful, * # but WITHOUT ANY WARRANTY; without even the implied warranty of * # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License * # for more details. * #****************************************************************************** # Tutorial - Example_7 * #****************************************************************************** import sys from UTIL.SYS import LOG, LOG_ERROR import CCSDS.FRAME import UTIL.DU ############# # constants # ############# FRAME_FILE_NAME = "Example_7.hex" ######## # main # ######## # open the frame dump file for binary reading try: frameFile = open(FRAME_FILE_NAME, "r") except: LOG_ERROR("cannot read " + self.frameDumpFileName) sys.exit(-1) # read hex frames from file and display related packets for h, hexFrame in enumerate(frameFile.readlines()): LOG("--- tmFrame_" + str(h) + " ---") binFrame = UTIL.DU.str2array(hexFrame) # create a CCSDS TM Frame object that wraps the binary data tmFrame = CCSDS.FRAME.TMframe(binFrame) # extract the TM Packets leadingFragment, tmPackets, trailingFragment = tmFrame.getPackets() LOG("leadingFragment = " + str(leadingFragment)) for i, tmPacket in enumerate(tmPackets): LOG("tmPacket_" + str(i) + " = " + UTIL.DU.array2str(tmPacket)) LOG("trailingFragment = " + str(trailingFragment)) # close file frameFile.close()
StarcoderdataPython
1649958
from aliyun.log.etl_core import * TRANSFORM_EVENT_lookup = [ ( NO_EMPTY('csv_field'), ('csv_field', CSV("f_v1,f_v2,f_v3")) ), ( NO_EMPTY('dsv_field'), ('dsv_field', CSV("f_d1,f_d2,f_d3", sep='#', quote='|')) ), ( ANY, ([("f1", "c1"), ("f2", "c2")], LOOKUP('./data4_lookup_csv1.txt', ["d1", "d2"]) ) ), ( ANY, ("f1",LOOKUP({'a': "a_new", '*': "unknown"}, "f1_new")) ), ( NO_EMPTY('split2'), ("split2", SPLIT)) ] KV_FIELDS_data = r'kv_data\d+' DROP_FIELDS_origin = ["csv_field", 'dsv_field', 'data', 'f1', 'f2', r'kv_data\d+'] @condition(NO_EMPTY("split")) def sls_en_split(event): return [{"split": v} for v in event['split'].split(',')]
StarcoderdataPython
4834735
<filename>Tests/func_deriv_check.py #!/usr/bin/env python """\ Test the functional derivatives """ from PyQuante.DFunctionals import xpbe,xs,xb,cvwn,clyp rho = 1.0 gam = 0 d = 1e-5 Funcs = dict(S=xs,B=xb,PBE=xpbe,VWN=cvwn,LYP=clyp) hasg = dict(S=False,B=True,PBE=True,VWN=False,LYP=True) for name in ['S','B','PBE']: f = Funcs[name] print name if hasg[name]: e,v = f(rho,0) e2,v2 = f(rho+d,0) else: e,v = f(rho) e2,v2 = f(rho+d) print e,v,(e2-e)/d for name in ['VWN','LYP']: f = Funcs[name] print name if hasg[name]: e,va,vb = f(rho,rho,0,0,0) e2,va2,vb2 = f(rho+d,rho+d,0,0,0) else: e,va,vb = f(rho,rho) e2,va2,vb2 = f(rho+d,rho+d) print e,va+vb,(e2-e)/d
StarcoderdataPython
7708
<filename>Exercise_8.py # Solution of Exercise 8 - Exercise_8.py # # Uploaded by <NAME> on 11/23/20. # Updated by <NAME> on 11/06/21. formatter = "%r %r %r %r" print formatter % (1, 2, 3, 4) print formatter % ("one", "two", "three", "four") print formatter % (True, False, False, True) print formatter % (formatter, formatter, formatter, formatter) print formatter % ( "I had this thing.", "That you could type up right.", "But it didn't sing.", "So I said goodnight." )
StarcoderdataPython
86580
#!/usr/bin/env python """This file is part of the django ERP project. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright (c) 2013-2015, django ERP Team' __version__ = '0.0.5' from hashlib import md5 from django import template from django.utils.html import format_html, mark_safe, escape register = template.Library() @register.simple_tag def avatar(email, size=32, default="mm", css_class="avatar image"): """Returns the gravatar image associated to the given email. More info: http://www.gravatar.com Example tag usage: {% avatar email_address 80 "http://.../my_default_image.jpg" [css_class] %} """ # Creates and returns the URL. h = "" if email: h = md5(email.encode('utf-8')).hexdigest() url = 'http://www.gravatar.com/avatar/%s?s=%s&r=g' % (h, escape(size)) # Adds a default image URL (if present). if default: url += "&d=%s" % escape(default) url = mark_safe(url) return format_html('<img class="{}" width="{}" height="{}" src="{}" />', css_class, size, size, url)
StarcoderdataPython
1662275
<filename>Projects Cousera/Python For Everybory/random.py def fred(): print("Zap") def jane(): print("ABC") jane() fred() jane() def thing(): print('Hello') print('There') def func(x): print(x) func(10) func(20) def stuff(): print('Hello') return print('World') stuff() def greet(lang): if lang == 'es': return 'Hola' elif lang == 'fr': return 'Bonjour' else: return 'Hello' print(greet('fr'), 'Michael') def addtwo(a, b): added = a + b return a x = addtwo(2, 7) print(x)
StarcoderdataPython
3254554
# 136. Single Number class Solution: # Math def singleNumber(self, nums: list[int]) -> int: # 2 ∗ (a + b + c) − (a + a + b + b + c) = c return 2 * sum(set(nums)) - sum(nums)
StarcoderdataPython
34987
<gh_stars>0 import skimage.io # bug. need to import this before tensorflow import skimage.transform # bug. need to import this before tensorflow from resnet_train import train from resnet import inference import tensorflow as tf import time import os import sys import re import numpy as np from image_processing import image_preprocessing FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('filename_list', 'check.doc.list', 'file list') '''def file_list(filename_list): reader = open(filename_list, 'r') filenames = reader.readlines() filenames = [int(f) for f in filenames] return filenames''' def file_list(data_dir): i = 0 filenames = [] for root, dirs, files in os.walk(data_dir): for file in files: if os.path.splitext(file)[1] == '.jpg': filename = os.path.splitext(file)[0] i = i + 1 filenames.append(int(filename)) print("number of files") print(i) return filenames def load_data(data_dir): data = [] start_time = time.time() files = file_list(data_dir) duration = time.time() - start_time print "took %f sec" % duration for img_fn in files: img_fn = str(img_fn) + '.jpg' fn = os.path.join(data_dir, img_fn) data.append(fn) return data def distorted_inputs(data_dir): filenames = load_data(data_dir) files = [] images = [] i = 0 files_b = [] images_b = [] height = FLAGS.input_size width = FLAGS.input_size depth = 3 step = 0 for filename in filenames: image_buffer = tf.read_file(filename) bbox = [] train = False image = image_preprocessing(image_buffer, bbox, train, 0) files_b.append(filename) images_b.append(image) i = i + 1 #print(image) if i == 20: print(i) files.append(files_b) images_b = tf.reshape(images_b, [20, height, width, depth]) images.append(images_b) files_b = [] images_b = [] i = 0 #files = files_b #images = tf.reshape(images_b, [13, height, width, depth]) images = np.array(images, ndmin=1) #images = tf.cast(images, tf.float32) #images = tf.reshape(images, shape=[-1, height, width, depth]) print(type(files)) print(type(images)) print(images.shape) #files = tf.reshape(files, [len(files)]) # print(files) # print(images) return files, images _, images = distorted_inputs("check_ic//check")
StarcoderdataPython
3277059
from typing import List import pandas as pd import streamlit as st from pyspark.sql import DataFrame def preview_df(df: DataFrame, n: int = 100): preview_pdf = df.limit(n).toPandas() st.markdown(f'Preview for first {n} rows out of {df.count()} loaded.') st.dataframe(preview_pdf) def highlight_columns(df: pd.DataFrame, columns: List[str]): def fn(s: pd.Series) -> List[str]: if s.name in columns: return ['background-color: #ff0000; color: white'] * len(s) else: return [''] * len(s) return df.style.apply(fn, axis=0)
StarcoderdataPython
148744
<reponame>tanimutomo/bag-of-local-features-models import keras from keras.models import load_model __all__ = ['bagnet9', 'bagnet17', 'bagnet33'] model_urls = { 'bagnet9': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/d413271344758455ac086992beb579e256447839/bagnet8.h5', 'bagnet17': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/d413271344758455ac086992beb579e256447839/bagnet16.h5', 'bagnet33': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/d413271344758455ac086992beb579e256447839/bagnet32.h5', } def bagnet9(): model_path = keras.utils.get_file( 'bagnet8.h5', model_urls['bagnet9'], cache_subdir='models', file_hash='5b70adc7c4ff77d932dbba485a5ea1d333a65e777a45511010f22e304a2fdd69') return load_model(model_path) def bagnet17(): model_path = keras.utils.get_file( 'bagnet16.h5', model_urls['bagnet17'], cache_subdir='models', file_hash='b262dfee15a86c91e6aa21bfd86505ecd20a539f7f7c72439d5b1d352dd98a1d') return load_model(model_path) def bagnet33(): model_path = keras.utils.get_file( 'bagnet32.h5', model_urls['bagnet33'], cache_subdir='models', file_hash='96d8842eec8b8ce5b3bc6a5f4ff3c8c0278df3722c12bc84408e1487811f8f0f') return load_model(model_path)
StarcoderdataPython
3231162
<reponame>pk-hackerrank/python def print_rangoli(size): alphabets = list('abcdefghijklmnopqrstuvwxyz') size_count = 1 loop_count = 2*size - 1 alphabets_size = len(alphabets) # Print the upper code including the middle for i in range(loop_count,0,-2): str = "-"*(i-1) sub_list = alphabets[size-size_count:size] # We can concat the two lists and use "-".join first_list = list(reversed(sub_list)) str = str + "-".join(first_list) if i != loop_count: # if we concat the lists, this additional check is not required. str = str + "-" str = str + "-".join(sub_list[1:]) size_count += 1 str = str + "-"*(i-1) print(str) size_count = 1 # Printing the below cone. for i in range(1,loop_count,2): str = "-"*(i+1) sub_list = alphabets[size_count:size] new_list = list(reversed(sub_list)) str = str + "-".join(new_list) if i != loop_count-2: str = str + "-" str = str + "-".join(sub_list[1:]) size_count += 1 str = str+ "-"*(i+1) print(str) if __name__ == '__main__': n = int(input()) print_rangoli(n)
StarcoderdataPython
157607
#!/usr/bin/python3 # -*- coding: utf-8 -*- ## Autor: <NAME> import numpy as np from bubble2 import Bubble2 from bworld import Bworld n = 1000 bubbles = [] bubbles.append(Bubble2(np.random.rand(n, 3) * 10, np.zeros((n, 3)), radius = (np.random.rand(n) / 6), color = (0.5, 0.8, 1.0, 0.8))) testworld = Bworld(bubbles, boundaries = np.asarray([[0, 20], [0,10], [0, 10]]))
StarcoderdataPython
21714
from __future__ import unicode_literals import codecs from django.conf import settings from rest_framework.compat import six from rest_framework.parsers import BaseParser, ParseError from rest_framework import renderers from rest_framework.settings import api_settings import ujson class UJSONParser(BaseParser): """ Parses JSON-serialized data. """ media_type = 'application/json' renderer_class = renderers.JSONRenderer strict = api_settings.STRICT_JSON def parse(self, stream, media_type=None, parser_context=None): """ Parses the incoming bytestream as JSON and returns the resulting data. """ parser_context = parser_context or {} encoding = parser_context.get('encoding', settings.DEFAULT_CHARSET) try: decoded_stream = codecs.getreader(encoding)(stream) parse_constant = ujson.strict_constant if self.strict else None return ujson.load(decoded_stream, parse_constant=parse_constant) except ValueError as exc: raise ParseError('JSON parse error - %s' % six.text_type(exc))
StarcoderdataPython
194493
<gh_stars>0 # -*- coding: utf-8 -*- __doc__ = """ bloombox: CLI color support """ # colorama from colorama import init, Fore, Style init() def green(message): """ Output a green message. """ print Fore.GREEN + message + Fore.RESET + Style.RESET_ALL def red(message): """ Output a red message. """ print Fore.RED + message + Fore.RESET + Style.RESET_ALL def yellow(message): """ Output a yellow message. """ print Fore.YELLOW + message + Fore.RESET + Style.RESET_ALL def cyan(message): """ Output a cyan message. """ print Fore.CYAN + message + Fore.RESET + Style.RESET_ALL def gray(message): """ Output a gray message. """ print Fore.LIGHTBLACK_EX + message + Fore.RESET + Style.RESET_ALL
StarcoderdataPython
1665122
<reponame>zhongtianxie/fm-orchestrator # -*- coding: utf-8 -*- # SPDX-License-Identifier: MIT from __future__ import absolute_import import os import tempfile import shutil from textwrap import dedent import kobo.rpmlib import koji import mock import pytest from module_build_service.common.config import conf from module_build_service.builder.MockModuleBuilder import ( import_fake_base_module, import_builds_from_local_dnf_repos, load_local_builds, MockModuleBuilder, ) from module_build_service.common import models from module_build_service.common.models import ModuleBuild, ComponentBuild from module_build_service.common.utils import load_mmd, mmd_to_str from module_build_service.scheduler import events from module_build_service.scheduler.db_session import db_session from tests import clean_database, make_module_in_db, read_staged_data, staged_data_filename class TestMockModuleBuilder: def setup_method(self, test_method): clean_database() self.resultdir = tempfile.mkdtemp() def teardown_method(self, test_method): clean_database() shutil.rmtree(self.resultdir) def _create_module_with_filters(self, db_session, batch, state): mmd = load_mmd(read_staged_data("testmodule-with-filters")) # Set the name and stream mmd = mmd.copy("mbs-testmodule", "test") mmd.set_xmd({ "mbs": { "rpms": { "ed": {"ref": "01bf8330812fea798671925cc537f2f29b0bd216"}, "mksh": {"ref": "f70fd11ddf96bce0e2c64309706c29156b39141d"}, }, "buildrequires": { "host": { "version": "20171024133034", "filtered_rpms": [], "stream": "master", "ref": "6df253bb3c53e84706c01b8ab2d5cac24f0b6d45", "context": "00000000", }, "platform": { "version": "20171028112959", "filtered_rpms": [], "stream": "master", "ref": "4f7787370a931d57421f9f9555fc41c3e31ff1fa", "context": "00000000", }, }, "scmurl": "file:///testdir", "commit": "<PASSWORD>", "requires": { "platform": { "version": "20171028112959", "filtered_rpms": [], "stream": "master", "ref": "4f7787370a931d57421f9f9555fc41c3e31ff1fa", "context": "00000000", } }, } }) module = ModuleBuild.create( db_session, conf, name="mbs-testmodule", stream="test", version="20171027111452", modulemd=mmd_to_str(mmd), scmurl="file:///testdir", username="test", ) module.koji_tag = "module-mbs-testmodule-test-20171027111452" module.batch = batch db_session.add(module) db_session.commit() comp_builds = [ { "module_id": module.id, "state": state, "package": "ed", "format": "rpms", "scmurl": ( "https://src.fedoraproject.org/rpms/ed" "?#01bf8330812fea798671925cc537f2f29b0bd216" ), "batch": 2, "ref": "01bf8330812fea798671925cc537f2f29b0bd216", }, { "module_id": module.id, "state": state, "package": "mksh", "format": "rpms", "scmurl": ( "https://src.fedoraproject.org/rpms/mksh" "?#f70fd11ddf96bce0e2c64309706c29156b39141d" ), "batch": 3, "ref": "f70fd11ddf96bce0e2c64309706c29156b39141d", }, ] for build in comp_builds: db_session.add(ComponentBuild(**build)) db_session.commit() return module @mock.patch("module_build_service.common.conf.system", new="mock") def test_createrepo_filter_last_batch(self): module = self._create_module_with_filters(db_session, 3, koji.BUILD_STATES["COMPLETE"]) builder = MockModuleBuilder( db_session, "mcurlej", module, conf, module.koji_tag, module.component_builds ) builder.resultsdir = self.resultdir rpms = [ "ed-1.14.1-4.module+24957a32.x86_64.rpm", "mksh-56b-1.module+24957a32.x86_64.rpm", "module-build-macros-0.1-1.module+24957a32.noarch.rpm", ] rpm_qf_output = dedent("""\ ed 0 1.14.1 4.module+24957a32 x86_64 mksh 0 56b-1 module+24957a32 x86_64 module-build-macros 0 0.1 1.module+24957a32 noarch """) with mock.patch("os.listdir", return_value=rpms): with mock.patch("subprocess.check_output", return_value=rpm_qf_output): builder._createrepo() with open(os.path.join(self.resultdir, "pkglist"), "r") as fd: pkglist = fd.read().strip() rpm_names = [kobo.rpmlib.parse_nvr(rpm)["name"] for rpm in pkglist.split("\n")] assert "ed" not in rpm_names @mock.patch("module_build_service.common.conf.system", new="mock") def test_createrepo_not_last_batch(self): module = self._create_module_with_filters(db_session, 2, koji.BUILD_STATES["COMPLETE"]) builder = MockModuleBuilder( db_session, "mcurlej", module, conf, module.koji_tag, module.component_builds ) builder.resultsdir = self.resultdir rpms = [ "ed-1.14.1-4.module+24957a32.x86_64.rpm", "mksh-56b-1.module+24957a32.x86_64.rpm", ] rpm_qf_output = dedent("""\ ed 0 1.14.1 4.module+24957a32 x86_64 mksh 0 56b-1 module+24957a32 x86_64 """) with mock.patch("os.listdir", return_value=rpms): with mock.patch("subprocess.check_output", return_value=rpm_qf_output): builder._createrepo() with open(os.path.join(self.resultdir, "pkglist"), "r") as fd: pkglist = fd.read().strip() rpm_names = [kobo.rpmlib.parse_nvr(rpm)["name"] for rpm in pkglist.split("\n")] assert "ed" in rpm_names @mock.patch("module_build_service.common.conf.system", new="mock") def test_createrepo_empty_rmp_list(self): module = self._create_module_with_filters(db_session, 3, koji.BUILD_STATES["COMPLETE"]) builder = MockModuleBuilder( db_session, "mcurlej", module, conf, module.koji_tag, module.component_builds) builder.resultsdir = self.resultdir rpms = [] with mock.patch("os.listdir", return_value=rpms): builder._createrepo() with open(os.path.join(self.resultdir, "pkglist"), "r") as fd: pkglist = fd.read().strip() assert not pkglist class TestMockModuleBuilderAddRepos: def setup_method(self, test_method): clean_database(add_platform_module=False) @mock.patch("module_build_service.common.conf.system", new="mock") @mock.patch( "module_build_service.common.config.Config.base_module_repofiles", new_callable=mock.PropertyMock, return_value=["/etc/yum.repos.d/bar.repo", "/etc/yum.repos.d/bar-updates.repo"], create=True, ) @mock.patch("module_build_service.builder.MockModuleBuilder.open", create=True) @mock.patch( "module_build_service.builder.MockModuleBuilder.MockModuleBuilder._load_mock_config" ) @mock.patch( "module_build_service.builder.MockModuleBuilder.MockModuleBuilder._write_mock_config" ) def test_buildroot_add_repos( self, write_config, load_config, patched_open, base_module_repofiles ): import_fake_base_module("platform:f29:1:000000") platform = ModuleBuild.get_last_build_in_stream(db_session, "platform", "f29") module_deps = [{ "requires": {"platform": ["f29"]}, "buildrequires": {"platform": ["f29"]}, }] foo = make_module_in_db("foo:1:1:1", module_deps) app = make_module_in_db("app:1:1:1", module_deps) patched_open.side_effect = [ mock.mock_open(read_data="[fake]\nrepofile 1\n").return_value, mock.mock_open(read_data="[fake]\nrepofile 2\n").return_value, mock.mock_open(read_data="[fake]\nrepofile 3\n").return_value, ] builder = MockModuleBuilder(db_session, "user", app, conf, "module-app", []) dependencies = { "repofile://": [platform.mmd()], "repofile:///etc/yum.repos.d/foo.repo": [foo.mmd(), app.mmd()], } builder.buildroot_add_repos(dependencies) assert "repofile 1" in builder.yum_conf assert "repofile 2" in builder.yum_conf assert "repofile 3" in builder.yum_conf assert set(builder.enabled_modules) == {"foo:1", "app:1"} class TestOfflineLocalBuilds: def setup_method(self): clean_database() def teardown_method(self): clean_database() def test_import_fake_base_module(self): import_fake_base_module("platform:foo:1:000000") module_build = models.ModuleBuild.get_build_from_nsvc( db_session, "platform", "foo", 1, "000000") assert module_build mmd = module_build.mmd() xmd = mmd.get_xmd() assert xmd == { "mbs": { "buildrequires": {}, "commit": "ref_000000", "koji_tag": "repofile://", "mse": "true", "requires": {}, } } assert set(mmd.get_profile_names()) == {"buildroot", "srpm-buildroot"} @mock.patch( "module_build_service.builder.MockModuleBuilder.open", create=True, new_callable=mock.mock_open, ) def test_import_builds_from_local_dnf_repos(self, patched_open): with mock.patch("dnf.Base") as dnf_base: repo = mock.MagicMock() repo.repofile = "/etc/yum.repos.d/foo.repo" mmd = load_mmd(read_staged_data("formatted_testmodule")) repo.get_metadata_content.return_value = mmd_to_str(mmd) base = dnf_base.return_value base.repos = {"reponame": repo} patched_open.return_value.readlines.return_value = ("FOO=bar", "PLATFORM_ID=platform:x") import_builds_from_local_dnf_repos() base.read_all_repos.assert_called_once() repo.load.assert_called_once() repo.get_metadata_content.assert_called_once_with("modules") module_build = models.ModuleBuild.get_build_from_nsvc( db_session, "testmodule", "master", 20180205135154, "9c690d0e") assert module_build assert module_build.koji_tag == "repofile:///etc/yum.repos.d/foo.repo" module_build = models.ModuleBuild.get_build_from_nsvc( db_session, "platform", "x", 1, "000000") assert module_build def test_import_builds_from_local_dnf_repos_platform_id(self): with mock.patch("dnf.Base"): import_builds_from_local_dnf_repos("platform:y") module_build = models.ModuleBuild.get_build_from_nsvc( db_session, "platform", "y", 1, "000000") assert module_build @mock.patch( "module_build_service.common.config.Config.mock_resultsdir", new_callable=mock.PropertyMock, return_value=staged_data_filename("local_builds") ) @mock.patch( "module_build_service.common.config.Config.system", new_callable=mock.PropertyMock, return_value="mock", ) class TestLocalBuilds: def setup_method(self): clean_database() events.scheduler.reset() def teardown_method(self): clean_database() events.scheduler.reset() def test_load_local_builds_name(self, conf_system, conf_resultsdir): load_local_builds("testmodule") local_modules = models.ModuleBuild.local_modules(db_session) assert len(local_modules) == 1 assert local_modules[0].koji_tag.endswith( "/module-testmodule-master-20170816080816/results") def test_load_local_builds_name_stream(self, conf_system, conf_resultsdir): load_local_builds("testmodule:master") local_modules = models.ModuleBuild.local_modules(db_session) assert len(local_modules) == 1 assert local_modules[0].koji_tag.endswith( "/module-testmodule-master-20170816080816/results") def test_load_local_builds_name_stream_non_existing( self, conf_system, conf_resultsdir ): with pytest.raises(RuntimeError): load_local_builds("testmodule:x") models.ModuleBuild.local_modules(db_session) def test_load_local_builds_name_stream_version(self, conf_system, conf_resultsdir): load_local_builds("testmodule:master:20170816080815") local_modules = models.ModuleBuild.local_modules(db_session) assert len(local_modules) == 1 assert local_modules[0].koji_tag.endswith( "/module-testmodule-master-20170816080815/results") def test_load_local_builds_name_stream_version_non_existing( self, conf_system, conf_resultsdir ): with pytest.raises(RuntimeError): load_local_builds("testmodule:master:123") models.ModuleBuild.local_modules(db_session) def test_load_local_builds_platform(self, conf_system, conf_resultsdir): load_local_builds("platform:f30") local_modules = models.ModuleBuild.local_modules(db_session) assert len(local_modules) == 1 assert local_modules[0].koji_tag.endswith("/module-platform-f30-3/results") def test_load_local_builds_platform_f28(self, conf_system, conf_resultsdir): load_local_builds("platform:f30") local_modules = models.ModuleBuild.local_modules(db_session) assert len(local_modules) == 1 assert local_modules[0].koji_tag.endswith("/module-platform-f30-3/results")
StarcoderdataPython
1705380
<reponame>ViditSheth77/Solecthon import cv2 import numpy as np import math path = "http://192.168.43.156:4747/video" cap = cv2.VideoCapture('video.mp4') # Laptop camera pt = [(0,100), (-600,416), (416,100), (1016,416)] LIMIT_CONE = 230+30-30 mid_c = 80-5 # intel camera #pt = [(0,225), (-1500,500), (600,225), (2100,500)] car_coor = (208,450-5) def angle(p1, p2): x, y = p1 p, q = p2 try: slope = (q - y)/(p - x) except: slope = 99999 angle = np.arctan(slope)*180/math.pi if(angle > 0): return -1*(90 - angle) return (90 + angle) def coneDetect(frame): frame = cv2.resize(frame, (416, 416)) img_HSV = cv2.cvtColor(frame, cv2.COLOR_RGB2HSV) img_thresh_low = cv2.inRange(img_HSV, np.array([0, 135, 135]),np.array([15, 255, 255])) # everything that is included in the "left red" img_thresh_high = cv2.inRange(img_HSV, np.array([159, 135, 135]), np.array([179, 255, 255])) # everything that is included in the "right red" img_thresh_mid = cv2.inRange(img_HSV, np.array([100, 150, 0]),np.array([140, 255, 255])) # everything that is included in the "right red" img_thresh = cv2.bitwise_or(img_thresh_low, img_thresh_mid) # combine the resulting image img_thresh = cv2.bitwise_or(img_thresh, img_thresh_high) kernel = np.ones((5, 5)) img_thresh_opened = cv2.morphologyEx(img_thresh, cv2.MORPH_OPEN, kernel) img_thresh_blurred = cv2.medianBlur(img_thresh_opened, 5) img_edges = cv2.Canny(img_thresh_blurred, 80, 160) contours, _ = cv2.findContours(np.array(img_edges), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) img_contours = np.zeros_like(img_edges) cv2.drawContours(img_contours, contours, -1, (255, 255, 255), 2) approx_contours = [] for c in contours: approx = cv2.approxPolyDP(c, 10, closed=True) approx_contours.append(approx) img_approx_contours = np.zeros_like(img_edges) cv2.drawContours(img_approx_contours, approx_contours, -1, (255, 255, 255), 1) all_convex_hulls = [] for ac in approx_contours: all_convex_hulls.append(cv2.convexHull(ac)) img_all_convex_hulls = np.zeros_like(img_edges) cv2.drawContours(img_all_convex_hulls, all_convex_hulls, -1, (255, 255, 255), 2) convex_hulls_3to10 = [] for ch in all_convex_hulls: if 3 <= len(ch) <= 10: convex_hulls_3to10.append(cv2.convexHull(ch)) img_convex_hulls_3to10 = np.zeros_like(img_edges) cv2.drawContours(img_convex_hulls_3to10, convex_hulls_3to10, -1, (255, 255, 255), 2) def convex_hull_pointing_up(ch): '''Determines if the path is directed up. If so, then this is a cone. ''' # contour points above center and below points_above_center, points_below_center = [], [] x, y, w, h = cv2.boundingRect(ch) # coordinates of the upper left corner of the describing rectangle, width and height aspect_ratio = w / h # ratio of rectangle width to height # if the rectangle is narrow, continue the definition. If not, the circuit is not suitable if aspect_ratio < 0.8: # We classify each point of the contour as lying above or below the center vertical_center = y + h / 2 for point in ch: if point[0][ 1] < vertical_center: # if the y coordinate of the point is above the center, then add this point to the list of points above the center points_above_center.append(point) elif point[0][1] >= vertical_center: points_below_center.append(point) # determine the x coordinates of the extreme points below the center left_x = points_below_center[0][0][0] right_x = points_below_center[0][0][0] for point in points_below_center: if point[0][0] < left_x: left_x = point[0][0] if point[0][0] > right_x: right_x = point[0][0] # check if the upper points of the contour lie outside the "base". If yes, then the circuit does not fit for point in points_above_center: if (point[0][0] < left_x) or (point[0][0] > right_x): return False else: return False return True cones = [] bounding_rects = [] for ch in convex_hulls_3to10: if convex_hull_pointing_up(ch): cones.append(ch) rect = cv2.boundingRect(ch) bounding_rects.append(rect) img_res = frame.copy() cv2.drawContours(img_res, cones, -1, (255, 255, 255), 2) transf = np.zeros([450, 600, 3]) for rect in bounding_rects: #print('previous', rect[0], rect[1], rect[2], rect[3]) cv2.rectangle(img_res, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (1, 255, 1), 6) cv2.circle(img_res,(rect[0], rect[1]), 5, (0,200,255), -1) cv2.circle(img_res,(rect[0] + rect[2], rect[1] + rect[3]), 5, (0,200,255), -1) cv2.circle(img_res,(rect[0] + rect[2]//2, rect[1] + rect[3]), 5, (255,255,255), -1) return bounding_rects, img_res def inv_map(frame): pts1 = np.float32([pt[0],pt[1],pt[2],pt[3]]) pts2 = np.float32([[0,0],[0,416],[416,0],[416,416]]) M = cv2.getPerspectiveTransform(pts1,pts2) image = cv2.warpPerspective(frame,M,(416,416), flags=cv2.INTER_LINEAR) #cv2.imshow('itshouldlookfine!', image) return image, M def inv_coor(bounding_rects, M, image): mybox = [] for detection in bounding_rects: xmax = detection[0] xmin = detection[1] ymax = detection[2] ymin = detection[3] #print( ((xmax+xmin)//2), (ymax) ) pt1 = (int(xmin), int(ymin)) pt2 = (int(xmax), int(ymax)) cv2.circle(image,pt1, 5, (255,255,255), -1) cv2.circle(image,pt2, 5, (255,255,255), -1) #for rect in bounding_rects: a = np.array([[( (xmax+xmin)//2 ), (ymax//1)]], dtype='float32') a = np.array([a]) pointsOut = cv2.perspectiveTransform(a, M) box = pointsOut[0][0][0], pointsOut[0][0][1] mybox.append(box) #print(pointsOut) #mybox = sorted(mybox, key=lambda k:(k[1], k[0])).copy() #mybox.reverse() #abc = sorted(mybox, key=last) print('boxall', mybox) return mybox , image def st_line( a, b, c, x, y ): if( a*x + b*y + c < 0 ): return True# True means left side for left turn return False def pathplan(mybox, str_ang): left_box = [] right_box = [] left_count = 5 right_count = 5 for i in range(len(mybox)): x, y = mybox[i] if( str_ang == '3' or str_ang == '4' or str_ang == '5' ): if(x < 208): if(left_count > 0): left_box.append(mybox[i]) left_count = left_count - 1 else: if(right_count > 0): right_box.append(mybox[i]) right_count = right_count - 1 elif( str_ang == '0' or str_ang == '1' or str_ang == '2'): lim_coor = 104 if( x < ((y + 416)/4) ): if(left_count > 0): left_box.append(mybox[i]) left_count = left_count - 1 else: if(right_count > 0): right_box.append(mybox[i]) right_count = right_count - 1 elif( str_ang == '6' or str_ang == '7' or str_ang == '8' ): if( x > ((1248 - y)/4) ): if(right_count > 0): right_box.append(mybox[i]) right_count = right_count - 1 else: if(left_count > 0): left_box.append(mybox[i]) left_count = left_count - 1 ############################################################################# left_box.sort(reverse = True) right_box.sort(reverse = True) left_box = sorted(left_box, key=lambda k:(k[1], k[0])).copy() right_box = sorted(right_box, key=lambda l:(l[1], l[0])).copy() '''left_box.sort() right_box.sort()''' ############################################################################# ############################### path planning ############################### ############################################################################# try: if(left_box[-1][1] < LIMIT_CONE): left_box.clear() except: print('Left Exception in pathplan function.............') try: if(right_box[-1][1] < LIMIT_CONE): right_box.clear() except: print('Right Exception in pathplan function.............') ############################################################################# lines = [] lines.append(car_coor) if( len(left_box) == 0 and len(right_box) == 0 ): lines.append((208,350)) elif( len(left_box) == 0 and len(right_box) != 0 ): for i in range(len(right_box)): #print( 'test1' ) x, y = right_box[i] x = x - mid_c lines.append( (int(x), int(y)) ) elif( len(left_box) != 0 and len(right_box) == 0 ): for i in range(len(left_box)): #print( 'test2' ) x, y = left_box[i] x = x + mid_c lines.append( (int(x), int(y)) ) elif( len(left_box) != 0 and len(right_box) != 0 ): small_len = 0 left_box = left_box[::-1].copy() right_box = right_box[::-1].copy() if(len(left_box) > len(right_box)): small_len = len(right_box) else: small_len = len(left_box) for i in reversed(range(small_len)): #print( 'test3' ) x, y = tuple(np.add((right_box[i]), (left_box[i]))) x = x//2 y = y//2 #cv2.circle(transf,(int(x), int(y)), 5, (255,0,255), -1) # Filled lines.append( (int(x), int(y)) ) left_box = left_box[::-1].copy() right_box = right_box[::-1].copy() lines = sorted(lines, key=lambda m:(m[1], m[0])).copy() #print(len(left_box), len(right_box)) return left_box[::-1], right_box[::-1], lines[::-1] def pathbana(lines, inv_image): for i in range(len(lines) - 1): cv2.circle(inv_image,lines[i], 5, (0,0,0), -1) # Filled #print( 'test4' ) inv_image = cv2.line(inv_image,lines[i],lines[i+1],(255,255,0),4) '''if(angle(lines[0], lines[1]) > 75 or angle(lines[0], lines[1]) < -75): lines.remove(1)''' #print( lines[0], lines[1] , angle(lines[0], lines[1]) ) return inv_image
StarcoderdataPython
1738199
<gh_stars>0 from syne_tune import read_version from setuptools import setup, find_packages from pathlib import Path def load_requirements(filename): with open(filename) as f: return f.read().splitlines() def load_benchmark_requirements(): # the requirements of benchmarks are placed into the same directory as the examples script res = set() for fname in Path(__file__).parent.glob("benchmarking/training_scripts/*/requirements.txt"): res.update(load_requirements(fname)) # gluon-ts is not added as the git dependency does not work with setup.py k = 'git+https://github.com/awslabs/gluon-ts.git' if k in res: res.remove(k) return list(res) required_core = load_requirements('requirements.txt') required_ray = load_requirements('requirements-ray.txt') required_gpsearchers = load_requirements('requirements-gpsearchers.txt') required_bore = load_requirements('requirements-bore.txt') required_kde = load_requirements('requirements-kde.txt') required_blackbox_repository = load_requirements('benchmarking/blackbox_repository/requirements.txt') required_benchmarks = load_benchmark_requirements() long_description = (Path(__file__).parent / "README.md").read_text() setup( name='syne_tune', version=read_version(), description='Distributed Hyperparameter Optimization on SageMaker', long_description=long_description, long_description_content_type='text/markdown', author='AWS', packages=find_packages(include=[ 'syne_tune', 'syne_tune.*', ]), extras_require={ 'raytune': required_ray, 'bore': required_bore, 'kde': required_kde, 'gpsearchers': required_gpsearchers, 'benchmarks': required_benchmarks, 'blackbox-repository': required_blackbox_repository, 'extra': required_ray + required_gpsearchers + required_benchmarks + required_blackbox_repository + required_kde, }, install_requires=required_core, include_package_data=True, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.8', ], )
StarcoderdataPython
3387549
<reponame>anuragpapineni/Hearthbreaker-evolved-agent<gh_stars>0 try: import ctrnn # C++ extension except ImportError: print "CTRNN extension library not found!" raise def create_phenotype(chromo): num_inputs = chromo.sensors num_neurons = len(chromo.node_genes) - num_inputs #num_outputs = chromo.actuators network = ctrnn.CTRNN(num_inputs, num_neurons) #network.set_rk4(0.01) # integration method network.set_euler(0.01) if chromo.node_genes[-1].activation_type == 'tanh': network.set_logistic(False) # create neurons neuron_type = None for ng in chromo.node_genes[num_inputs:]: if ng.type == 'OUTPUT': neuron_type = 1 else: neuron_type = 0 #print 'Creating neuron: ', ng.id-num_inputs-1, ng.bias, ng.response, neuron_type network.setNeuronParameters(ng.id-num_inputs-1, ng.bias, ng.response, neuron_type) # create connections for cg in chromo.conn_genes: if cg.enabled: if cg.innodeid-1 < num_inputs: # set sensory input network.set_sensory_weight(cg.innodeid-1, cg.outnodeid-num_inputs-1, cg.weight) #print "Sensory: ", cg.innodeid-1, cg.outnodeid-num_inputs-1, cg.weight else: # set interneuron connection network.SetConnectionWeight(cg.innodeid-num_inputs-1, cg.outnodeid-num_inputs-1, cg.weight) #print "Inter..: ", cg.innodeid-num_inputs, cg.outnodeid-num_inputs-1, cg.weight return network if __name__ == "__main__": # setting a network manually network = ctrnn.CTRNN(0,2) network.set_logistic(True) network.set_euler(0.05) # integrate using Euler's method #network.set_rk4(0.05) network.setNeuronParameters(0, -2.75, 1.0, 1) network.setNeuronParameters(1, -1.75, 1.0, 1) network.set_neuron_state(0, -0.084000643) network.set_neuron_state(1, -0.408035109) network.SetConnectionWeight(0, 0, 4.5) network.SetConnectionWeight(0, 1, -1.0) network.SetConnectionWeight(1, 0, 1.0) network.SetConnectionWeight(1, 1, 4.5) print "%2.17f %2.17f" %(network.NeuronOutput(0), network.NeuronOutput(1)) for i in range(100000): output = network.pactivate([]) print "%2.17f %2.17f" %(output[0], output[1])
StarcoderdataPython
100607
from collections import OrderedDict import sys import numpy as np import onnx from array import array from pprint import pprint def onnx2darknet(onnxfile): # Load the ONNX model model = onnx.load(onnxfile) # Check that the IR is well formed onnx.checker.check_model(model) # Print a human readable representation of the graph print(onnx.helper.printable_graph(model.graph)) #onnx -> darknet convert jj=0 kk=0 i= 0 end = 0 layer_num = 0 act_layer = [] k=0 wdata = [] blocks = [] block = OrderedDict() block['type'] = 'net' block['batch'] = 1 block['channels'] = 3 block['height'] = 416 block['width'] = 416 blocks.append(block) while i < len(model.graph.node): layer = model.graph.node[i] if layer.op_type == 'Conv': #[route] layer => attribute 1 if int( layer.input[0]) !=1 and act_layer.index( int(layer.input[0])) - len(act_layer) +1 < 0: block = OrderedDict() block['type'] = 'route' block['layers'] = act_layer.index( int(layer.input[0])) - len(act_layer) blocks.append(block) act_layer.append(int(layer.output[0])) block = OrderedDict() block['type'] = 'convolutional' #Input informations => filters input_num = layer.input[1] block['filters'] = model.graph.input[int(input_num)].type.tensor_type.shape.dim[0].dim_value j=0 while j < len(layer.attribute): #kernel_shape => size if layer.attribute[j].name == 'kernel_shape': block['size'] = layer.attribute[j].ints[0] j = j+1 #strides => stride elif layer.attribute[j].name == 'strides': block['stride'] = '1' j = j+1 #pads => pad elif layer.attribute[j].name == 'pads': block['pad'] ='1' j = j+1 else: #blocks.append("<unknown>") j = j+1 i = i + 1 elif layer.op_type == 'BatchNormalization': #is_test => batch_normalize if layer.attribute[0].name == 'is_test': block['batch_normalize'] = '1' kk = kk + 5 while jj < len(model.graph.initializer[kk-3].raw_data): wdata += list(array('f',model.graph.initializer[kk-3].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 while jj < len(model.graph.initializer[kk-4].raw_data): wdata += list(array('f',model.graph.initializer[kk-4].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 while jj < len(model.graph.initializer[kk-2].raw_data): wdata += list(array('f',model.graph.initializer[kk-2].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 while jj < len(model.graph.initializer[kk-1].raw_data): wdata += list(array('f',model.graph.initializer[kk-1].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 while jj < len(model.graph.initializer[kk-5].raw_data): wdata += list(array('f',model.graph.initializer[kk-5].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 i = i + 1 elif layer.op_type == 'LeakyRelu': #LeakyRelu => activation=leaky block['activation'] = 'leaky' blocks.append(block) i = i + 1 act_layer.append(int(layer.output[0])) elif layer.op_type == 'Add': #LeakyRelu => activation=linear block['activation'] = 'linear ' blocks.append(block) kk = kk + 1 while jj < len(model.graph.initializer[kk].raw_data): wdata += list(array('f',model.graph.initializer[kk].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 while jj < len(model.graph.initializer[kk-1].raw_data): wdata += list(array('f',model.graph.initializer[kk-1].raw_data[jj:jj+4])) jj = jj + 4 jj = 0 i = i + 1 ######################################################## elif layer.op_type == 'MaxPool': block = OrderedDict() block['type'] = 'maxpool' j = 0 while j < len(layer.attribute): #kernel_shape => size if layer.attribute[j].name == 'kernel_shape': block['size'] = layer.attribute[j].ints[0] j = j + 1 #strides => stride elif layer.attribute[j].name == 'strides': block['stride'] = layer.attribute[j].ints[0] blocks.append(block) j = j + 1 else: j = j + 1 i = i + 1 act_layer.append(int(layer.output[0])) ######################################################## #Reshpae => reorg layer elif layer.op_type == 'Reshape': if end == 0: block = OrderedDict() block['type'] = 'reorg' block['stride'] = '2' blocks.append(block) end = 1 else: if(model.graph.node[i+1].op_type) == 'Transpose': end else: act_layer.append(int(layer.output[0])) i = i + 1 ######################################################## # elif layer.op_type == 'Transpose': # if layer['attribute'] == 'perm': ######################################################## #Concat => [route] layer => attribute 2 elif layer.op_type == 'Concat': block = OrderedDict() block['type'] = 'route' first_num = act_layer.index( int(layer.input[0])) - len(act_layer) last_num = act_layer.index( int(layer.input[1])) - len(act_layer) block['layers'] = str(first_num) + ',' + str(last_num) blocks.append(block) i = i + 1 act_layer.append(int(layer.output[0])) ######################################################## else: i = i + 1 block = OrderedDict() block['type'] = 'region' block['anchors'] = '0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828' block['bias_match']=1 block['classes']=80 block['coords']=4 block['num']=5 block['softmax']=1 block['jitter']=.3 block['rescore']=1 block['object_scale']=5 block['noobject_scale']=1 block['class_scale']=1 block['coord_scale']=1 block['absolute']=1 block['thresh'] =' .6' block['random']=1 blocks.append(block) return blocks, np.array(wdata) def save_cfg(blocks, cfgfile): print ('Save to ', cfgfile) with open(cfgfile, 'w') as fp: for block in blocks: fp.write('[%s]\n' % (block['type'])) for key,value in block.items(): if key != 'type': fp.write('%s=%s\n' % (key, value)) fp.write('\n') def save_weights(data, weightfile): #onnx weights -> darknet weights print ('Save to ', weightfile) wsize = data.size weights = np.zeros((wsize+4,), dtype=np.int32) ## write info weights[0] = 0 ## major version weights[1] = 1 ## minor version weights[2] = 0 ## revision weights[3] = 0 ## net.seen weights.tofile(weightfile) weights = np.fromfile(weightfile, dtype=np.float32) weights[4:] = data weights.tofile(weightfile) if __name__ == '__main__': import sys if len(sys.argv) != 4: print('try:') print('python onnx2darknet.py yolov2.onnx yolov2.cfg yolov2.weights') exit() onnxfile = sys.argv[1] cfgfile = sys.argv[2] weightfile = sys.argv[3] blocks, data = onnx2darknet(onnxfile) save_cfg(blocks, cfgfile) save_weights(data, weightfile)
StarcoderdataPython
22865
import serial class Agilent34970A: def __init__(self): self.timeout = 10 self.baudrate = 4800 self.bytesize = serial.EIGHTBITS self.parity = serial.PARITY_NONE self.stopbits = serial.STOPBITS_ONE xonxoff = True self.s = serial.Serial(port='/dev/ttyUSB3', timeout=self.timeout, baudrate=self.baudrate, bytesize=self.bytesize, parity=self.parity, stopbits=self.stopbits, xonxoff=True) def reset(self): self.s.write('*RST\n') def closeSwitch(self, board, switch): self.s.write('ROUT:CLOS (@' + str(board) + str(switch).zfill(2) + ')\n') def checkClosed(self, board, switch): self.s.write('ROUT:CLOS? (@' + str(board) + str(switch).zfill(2) + ')\n') sto = self.s.readline() if int(sto) == 0: print 'Switch open' elif int(sto) == 1: print 'Switch closed' def measureResistance(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:RES? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:RES? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measureFrequency(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:FREQ? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:FREQ? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measurePeriod(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:PER? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:PER? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measureACCurrent(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:CURR:AC? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:CURR:AC? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measureDCCurrent(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:CURR:DC? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:CURR:DC? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measureACVoltage(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:VOLT:AC? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:VOLT:AC? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline()) def measureDCVoltage(self, board, switch, Range="AUTO", Resolution="AUTO"): if Resolution == "AUTO": self.s.write( 'MEAS:VOLT:DC? ' + str(Range) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') else: self.s.write( 'MEAS:VOLT:DC? ' + str(Range) + ',' + str(Resolution) + ',(@' + str(board) + str(switch).zfill(2) + ')\n') return float(self.s.readline())
StarcoderdataPython
3264006
import inspect import simplejson as json from pprint import pprint class jsonUtil(object): def __init__(self): pass def dump_json(self, obj, **param): return json.dumps(obj, param) def dict_to_bytes(the_dict): return json.dumps(the_dict).encode() def readJson(self, file): with open(file) as data_file: json_data = json.load(data_file) return json_data def printJson(self, json_data): pprint(json_data) def props(self, obj, depth=0): depth += 1 pr = {} for name in dir(obj): try: value = getattr(obj, name) if not name.startswith('__') and not inspect.ismethod(value) and not callable(value): print(name) pr[name] = value if value.__repr__().startswith('<') and depth < 5: pr[name] = props(value, depth=depth) except Exception as err: print(err) continue return pr
StarcoderdataPython
1690740
from ..common import * class Generic(object): def __init__(self, arch, descr): self._arch = arch self._descr = descr def generate(self, cpp, routineCache): d = self._descr if not d.add: writeBB = boundingBoxFromLoopRanges(d.result.indices, d.loopRanges) initializeWithZero(cpp, self._arch, d.result, writeBB) sumIndex = d.term.indices - d.result.indices assert len(sumIndex) == 1 class IndexSumBody(object): def __call__(s): target = '{}[{}]'.format(d.result.name, d.result.memoryLayout.addressString(d.result.indices)) initialValue = target if d.add else self._arch.formatConstant(0.0) cpp( '{} sum = {};'.format(self._arch.typename, initialValue) ) with cpp.For('int {0} = {1}; {0} < {2}; ++{0}'.format(sumIndex, d.sumLoopRange.start, d.sumLoopRange.stop)): cpp( 'sum += {}[{}];'.format(d.term.name, d.term.memoryLayout.addressString(d.term.indices)) ) mult = '{} * '.format(d.alpha) if d.alpha != 1.0 else '' cpp( '{} = {}sum;'.format(target, mult) ) flop = 1 if d.alpha != 1.0 else 0 return d.sumLoopRange.size() + flop return forLoops(cpp, d.result.indices, d.loopRanges, IndexSumBody())
StarcoderdataPython
81966
""" 10/26/2017 ACM-ICPC 6818 Reverse Rot Accepted by OJ """ import sys alphabet = [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '_', '.', ] # lines = open('ACM-ICPC_6818.txt').readlines() # for line in lines: for line in sys.stdin: line = line.strip() if line == '0': break num, code = line.split() reverse = code[::-1] encode = '' for i in reverse: index = alphabet.index(i) + int(num) if index >= len(alphabet): index -= len(alphabet) encode += alphabet[index] print(encode)
StarcoderdataPython
1606579
<gh_stars>1-10 #!/usr/bin/env python import json import logging import requests from s3vaultlib import __application__ from .base import MetadataBase __author__ = "<NAME>" __copyright__ = "Copyright 2017-2021, <NAME>" __credits__ = ["<NAME>"] __license__ = "BSD" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "PerpetualBeta" class EC2MetadataException(Exception): pass class EC2Metadata(MetadataBase): """ Object that retrieve metadata from within an EC2 instance """ def __init__(self, endpoint='169.254.169.254', version='latest', session_info=None): self.logger = logging.getLogger('{a}.{m}'.format(a=__application__, m=self.__class__.__name__)) self._endpoint = endpoint self._version = version self._instance_identity_document = None self._uri = 'http://{e}/{v}'.format(e=endpoint, v=version) def _get_data(self, url_path): """ Query the metadata """ url = '{b}/{p}'.format(b=self._uri, p=url_path) try: response = requests.get(url, timeout=5) except Exception: self.logger.error('Error while getting metadata. Perhaps you want to use --no-ec2 flag?') raise if not response.ok: raise EC2MetadataException('Error while reading metadata from path') return response.text.strip() @property def role(self): """ Return the role associated to the instance """ data = self._get_data('meta-data/iam/security-credentials/') if not data: raise EC2MetadataException('Role not associated') return data @property def account_id(self): """ Return the account_id associated to the instance :return: account_id :rtype: basestring """ return self._get_instance_identity_document()['accountId'] @property def region(self): """ Return the region associated to the instance :return: region :rtype: basestring """ return self._get_instance_identity_document()['availabilityZone'][:-1] @property def instance_id(self): """ Return the instance_id associated to the instance :return: instance_id :rtype: basestring """ return self._get_instance_identity_document()['instanceId'] def _get_instance_identity_document(self): if not self._instance_identity_document: data = self._get_data('dynamic/instance-identity/document') if not data: raise EC2MetadataException('Unable to retrieve instance identity document') self._instance_identity_document = json.loads(data) return self._instance_identity_document
StarcoderdataPython
1638746
<reponame>gbrls/CompetitiveCode # one-line solution for palindrome string # check if a string is the same as its reverse palindrome_check = lambda s: s[::-1] == s #tests print(palindrome_check("racecar")) print(palindrome_check("abba")) print(palindrome_check("palindrome"))
StarcoderdataPython
1777406
<reponame>PaulKGrimes/bolo-calc #!/usr/bin/env python import yaml import argparse from bolo import Top def main(): """Hook for setup.py""" parser = argparse.ArgumentParser() parser.add_argument('-i', "--input", default=None, required=True, help="Input configuration file") parser.add_argument('-o', "--output", default=None, help="Output file") args = parser.parse_args() dd = yaml.safe_load(open(args.input)) top = Top(**dd) top.run() top.instrument.print_summary() top.instrument.print_optical_output() if args.output: top.instrument.write_tables(args.output) if __name__ == '__main__': main()
StarcoderdataPython
1755003
<gh_stars>1-10 from django.db import models, transaction from django.utils import timezone from django.core import validators from django.contrib.auth.models import AbstractUser from main.utils.string_utils import generate_noise from main.utils.user_utils import validate_multiuser_csv class User(AbstractUser): """用户""" class Meta: verbose_name = '用户' verbose_name_plural = verbose_name USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] email = models.EmailField( verbose_name='邮箱', unique=True, error_messages={ 'unique': '拥有该邮箱的用户已存在。', }, blank=True, null=True,) mobile = models.CharField( verbose_name='手机号', max_length=11, blank=True, null=True, validators=[validators.RegexValidator( r'^\d{11}$', '请输入合法的手机号。', 'invalid' )], help_text='11 位数字',) student_id = models.CharField( verbose_name='学号', max_length=20, blank=True, null=True,) def save(self, *args, **kwargs): if self.email == '': self.email = None if self.mobile == '': self.mobile = None if self.student_id == '': self.student_id = None super().save(*args, **kwargs) class MultiUserUpload(models.Model): """批量用户上传""" class Meta: verbose_name = '批量用户上传' verbose_name_plural = verbose_name ordering = ['-id'] csv_content = models.TextField( verbose_name='用户信息', validators=[validate_multiuser_csv], help_text='CSV 格式:"username,student_id,email,mobile",其中 username 字段为必填项') results = models.TextField( verbose_name='创建结果', help_text='CSV 格式:"username,password"') create_time = models.DateTimeField( verbose_name='创建时间', default=timezone.now,) def __str__(self): return '%s' % self.id def save(self, *args, **kwargs): with transaction.atomic(): lines = self.csv_content.splitlines() lines = [line.strip() for line in lines if line.strip()] results = [] for line in lines: fields = [field.strip() for field in line.split(',')] assert len(fields) == 4 username, student_id, email, mobile = fields assert username user = User.objects.create( username=username, student_id=student_id, email=email, mobile=mobile,) # password = <PASSWORD>(8) password = <PASSWORD> user.set_password(password) user.save() results.append('{},{}'.format(username, password)) self.results = '\n'.join(results) super().save(*args, **kwargs)
StarcoderdataPython
3243826
"""Tests of queue.""" import pytest from data_structure.queue.oop_queue import Queue as ArrayQueue from data_structure.queue.two_stacks_queue import Queue as StackQueue from data_structure.exceptions.collection_exeption import CollectionIsEmptyExeption from data_structure.exceptions.error_messages import queue_is_empty @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_make_queue(Queue): queue = Queue() assert queue.size == 0 assert queue.is_empty == True assert len(queue) == 0 @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_enqueue(Queue): queue = Queue() for i in range(3): queue.enqueue(i) assert queue.size == 3 assert queue.is_empty == False assert len(queue) == 3 @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_dequeue_positive1(Queue): queue = Queue() for i in range(11, 15): queue.enqueue(i) assert queue.dequeue() == 11 assert queue.size == 3 assert queue.is_empty == False assert len(queue) == 3 @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_dequeue_positive2(Queue): queue = Queue() for i in range(21, 25): queue.enqueue(i) assert queue.dequeue() == 21 assert queue.size == 3 assert queue.is_empty == False assert len(queue) == 3 assert queue.dequeue() == 22 assert queue.size == 2 assert queue.is_empty == False assert len(queue) == 2 assert queue.dequeue() == 23 assert queue.dequeue() == 24 @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_dequeue_positive3(Queue): queue = Queue() queue.enqueue(1) queue.enqueue(2) assert queue.dequeue() == 1 queue.enqueue(3) assert queue.dequeue() == 2 assert queue.dequeue() == 3 @pytest.mark.parametrize("Queue", [ArrayQueue, StackQueue]) def test_dequeue_from_empty_queue(Queue): queue = Queue() with pytest.raises(CollectionIsEmptyExeption) as exception_info: value = queue.dequeue() assert str(exception_info.value) == queue_is_empty()
StarcoderdataPython
1679824
#!/usr/bin/python3 """ Best-practices tracker for Tor source code. Go through the various .c files and collect metrics about them. If the metrics violate some of our best practices and they are not found in the optional exceptions file, then log a problem about them. We currently do metrics about file size, function size and number of includes. practracker.py should be run with its second argument pointing to the Tor top-level source directory like this: $ python3 ./scripts/maint/practracker/practracker.py . To regenerate the exceptions file so that it allows all current problems in the Tor source, use the --regen flag: $ python3 --regen ./scripts/maint/practracker/practracker.py . """ from __future__ import print_function import os, sys import metrics import util import problem # The filename of the exceptions file (it should be placed in the practracker directory) EXCEPTIONS_FNAME = "./exceptions.txt" # Recommended file size MAX_FILE_SIZE = 3000 # lines # Recommended function size MAX_FUNCTION_SIZE = 100 # lines # Recommended number of #includes MAX_INCLUDE_COUNT = 50 ####################################################### # ProblemVault singleton ProblemVault = None # The Tor source code topdir TOR_TOPDIR = None ####################################################### if sys.version_info[0] <= 2: def open_file(fname): return open(fname, 'r') else: def open_file(fname): return open(fname, 'r', encoding='utf-8') def consider_file_size(fname, f): """Consider file size issues for 'f' and return True if a new issue was found""" file_size = metrics.get_file_len(f) if file_size > MAX_FILE_SIZE: p = problem.FileSizeProblem(fname, file_size) return ProblemVault.register_problem(p) return False def consider_includes(fname, f): """Consider #include issues for 'f' and return True if a new issue was found""" include_count = metrics.get_include_count(f) if include_count > MAX_INCLUDE_COUNT: p = problem.IncludeCountProblem(fname, include_count) return ProblemVault.register_problem(p) return False def consider_function_size(fname, f): """Consider the function sizes for 'f' and return True if a new issue was found""" found_new_issues = False for name, lines in metrics.get_function_lines(f): # Don't worry about functions within our limits if lines <= MAX_FUNCTION_SIZE: continue # That's a big function! Issue a problem! canonical_function_name = "%s:%s()" % (fname, name) p = problem.FunctionSizeProblem(canonical_function_name, lines) found_new_issues |= ProblemVault.register_problem(p) return found_new_issues ####################################################### def consider_all_metrics(files_list): """Consider metrics for all files, and return True if new issues were found""" found_new_issues = False for fname in files_list: with open_file(fname) as f: found_new_issues |= consider_metrics_for_file(fname, f) return found_new_issues def consider_metrics_for_file(fname, f): """ Consider the various metrics for file with filename 'fname' and file descriptor 'f'. Return True if we found new issues. """ # Strip the useless part of the path if fname.startswith(TOR_TOPDIR): fname = fname[len(TOR_TOPDIR):] found_new_issues = False # Get file length found_new_issues |= consider_file_size(fname, f) # Consider number of #includes f.seek(0) found_new_issues |= consider_includes(fname, f) # Get function length f.seek(0) found_new_issues |= consider_function_size(fname, f) return found_new_issues HEADER="""\ # Welcome to the exceptions file for Tor's best-practices tracker! # # Each line of this file represents a single violation of Tor's best # practices -- typically, a violation that we had before practracker.py # first existed. # # There are three kinds of problems that we recognize right now: # function-size -- a function of more than {MAX_FUNCTION_SIZE} lines. # file-size -- a file of more than {MAX_FILE_SIZE} lines. # include-count -- a file with more than {MAX_INCLUDE_COUNT} #includes. # # Each line below represents a single exception that practracker should # _ignore_. Each line has four parts: # 1. The word "problem". # 2. The kind of problem. # 3. The location of the problem: either a filename, or a # filename:functionname pair. # 4. The magnitude of the problem to ignore. # # So for example, consider this line: # problem file-size /src/core/or/connection_or.c 3200 # # It tells practracker to allow the mentioned file to be up to 3200 lines # long, even though ordinarily it would warn about any file with more than # {MAX_FILE_SIZE} lines. # # You can either edit this file by hand, or regenerate it completely by # running `make practracker-regen`. # # Remember: It is better to fix the problem than to add a new exception! """.format(**globals()) def main(argv): import argparse progname = argv[0] parser = argparse.ArgumentParser(prog=progname) parser.add_argument("--regen", action="store_true", help="Regenerate the exceptions file") parser.add_argument("--exceptions", help="Override the location for the exceptions file") parser.add_argument("topdir", default=".", nargs="?", help="Top-level directory for the tor source") args = parser.parse_args(argv[1:]) global TOR_TOPDIR TOR_TOPDIR = args.topdir if args.exceptions: exceptions_file = args.exceptions else: exceptions_file = os.path.join(TOR_TOPDIR, "scripts/maint/practracker", EXCEPTIONS_FNAME) # 1) Get all the .c files we care about files_list = util.get_tor_c_files(TOR_TOPDIR) # 2) Initialize problem vault and load an optional exceptions file so that # we don't warn about the past global ProblemVault if args.regen: tmpname = exceptions_file + ".tmp" tmpfile = open(tmpname, "w") sys.stdout = tmpfile sys.stdout.write(HEADER) ProblemVault = problem.ProblemVault() else: ProblemVault = problem.ProblemVault(exceptions_file) # 3) Go through all the files and report problems if they are not exceptions found_new_issues = consider_all_metrics(files_list) if args.regen: tmpfile.close() os.rename(tmpname, exceptions_file) sys.exit(0) # If new issues were found, try to give out some advice to the developer on how to resolve it. if found_new_issues and not args.regen: new_issues_str = """\ FAILURE: practracker found new problems in the code: see warnings above. Please fix the problems if you can, and update the exceptions file ({}) if you can't. See doc/HACKING/HelpfulTools.md for more information on using practracker.\ """.format(exceptions_file) print(new_issues_str) sys.exit(found_new_issues) if __name__ == '__main__': main(sys.argv)
StarcoderdataPython
1775291
import attr from copy import * from pprint import * from .document import Document from .has_settings import HasSettings from .templated import Templated from exam_gen.util.excel_cols import excel_col from exam_gen.util.with_options import WithOptions import exam_gen.util.logging as logging log = logging.new(__name__, level="WARNING") @attr.s class Numbered(Templated): _depth = attr.ib(default=0, kw_only=True) _numbering_depth = attr.ib(default=None, kw_only=True) _number = attr.ib(default="", kw_only=True) settings.new_value( 'numbering_scheme', default='1a.', doc= """ The scheme for numbering child questions in the exam or document. Each char in the string represents a sequence to use for each sub-level of the document. - `1`: Sequence of integers `1`,`2`,`3`, and so on. - `a`: Sequence of lower-case letters in excel column order. `a`,`b`,`c`, ... ,`aa`,`ab`,`ac`, etc.. - `A`: as above but upper-case. Additionally `.` is a special character that tells when a period should be inserted as a separator. Also the sequence will repeat the For instance the default scheme `1a.` would give us a tree like: ``` - 1 - 2 - 2a - 2b - 2b.1 - 3 - 3a - 3a.1 - 3a.1a - 3a.1a.1 ``` Note that this setting won't register any changes in `user_setup` """) def init_questions(self): super(Numbered, self).init_questions() if self._parent_doc == None: self.push_numbering() # def __attrs_post_init__(self): # if hasattr(super(), '__attrs_post_init__'): # super().__attrs_post_init__() def push_numbering(self): if self._numbering_depth == None or self._numbering_depth == "": self._numbering_depth = self.settings.numbering_scheme for (ind, (name, question)) in enumerate(self.questions.items()): self.questions[name].settings.numbering_scheme = ( self.settings.numbering_scheme) self.questions[name]._numbering_depth = self._numbering_depth[1:] self.questions[name]._depth = self._depth + 1 self.questions[name]._number = self._get_subq_number(ind) self.questions[name].push_numbering() def build_template_spec(self, build_info): spec = super(Numbered, self).build_template_spec(build_info) spec.context['number'] = self._number spec.context['nesting_depth'] = self._depth spec.context['numbering_depth'] = self._numbering_depth spec.context['numbering_scheme'] = self.settings.numbering_scheme return spec def _get_subq_number(self, ind): numbering_depth = self._numbering_depth prefix = "" while not numbering_depth[0].isalnum(): prefix += numbering_depth[0] numbering_depth = numbering_depth[1:] if numbering_depth == "": numbering_depth = self.settings.numbering_scheme return self._number + prefix + excel_col(numbering_depth[0], ind)
StarcoderdataPython
157226
from django.conf import settings from django.contrib import admin from django.urls import path app_name = "django_calendardate" urlpatterns = [ path(settings.ADMIN_URL, admin.site.urls), ]
StarcoderdataPython
1764229
<filename>plugin/view.py #!/usr/bin/env python import vim from enml import * from utils import * from conn import * # Maps buffer names to NoteTracker objects. openNotes = {} # # Holds all information that needs to be tracked for any note that has been # opened. # class NoteTracker(object): def __init__(self, note, buffer): self.note = note self.buffer = buffer self.modified = False # Close all opened notes. def GeeknoteCloseAllNotes(): # # Try to delete any temp files that still exist (is is possible that # some/all were already garbage collected by the OS. # try: for filename in openNotes: os.remove(filename) except: pass openNotes.clear() # Close the note associated with the given buffer name. def GeeknoteCloseNote(filename): if filename in openNotes: os.remove(filename) del openNotes[filename] # Commit any changes that were made to the note in the buffer to the note. def GeeknoteCommitChangesToNote(note): tracker = GeeknoteGetNoteTracker(note) # If the note has not been modified, there's nothing more to do. if tracker.modified is False: return False # # Now that we know the note has been modified, read the note's buffer and # pull out the note's title and content. # content = '' title = tracker.note.title lines = open(tracker.buffer.name, 'r').readlines() if len(lines) > 0: title = lines.pop(0).strip() while len(lines) > 0: if lines[0].strip() == '': lines.pop(0) else: break for r in lines: content += r # Update the note's title and content from what was read from the buffer. tracker.note.title = title tracker.note.content = textToENML(content) return True # Find the object that is tracking the given note (None if note opened). def GeeknoteGetNoteTracker(note): for filename in openNotes: if openNotes[filename].note.guid == note.guid: return openNotes[filename] return None # Given the name of a buffer, find the note that the buffer represents. def GeeknoteGetOpenNote(filename): if filename in openNotes: return openNotes[filename].note return None # Determine if the note has been modified since since it was last saved. def GeeknoteNoteIsModified(note): tracker = GeeknoteGetNoteTracker(note) return tracker.modified # Determine if the user has already opened the given note. def GeeknoteNoteIsOpened(note): tracker = GeeknoteGetNoteTracker(note) return True if tracker is not None else False # Open a note in the active window. def GeeknoteOpenNote(note): # # Determine which window to display the note in (creating one if necessary) # and switch to that window. # origWin = getActiveWindow() prevWin = getPreviousWindow() setActiveWindow(prevWin) isPrevUsable = GeeknoteIsWindowUsable(prevWin) if isPrevUsable is False: firstUsableWin = GeeknoteGetFirstUsableWindow() if firstUsableWin != -1: setActiveWindow(firstUsableWin) else: vim.command('vertical new') # # Check to see if the note is already opened before opening it in a new # buffer. # opened = GeeknoteNoteIsOpened(note) if opened is False: # Load the note's content note = GeeknoteLoadNote(note) content = ENMLtoText(note.content) content = tools.stdoutEncode(content) # Write the note's title and content to a temporary file. f = createTempFile(delete=False) f.write(note.title + '\n\n') isNoteEmpty = not content.strip() if isNoteEmpty is False: f.write(content) else: f.write("<add content here>\n") f.flush() # Now edit the file in a new buffer within the active window. vim.command('edit {}'.format(f.name)) # Close the file now that it is open in the buffer. f.close() # Position the cursor at a convenient location if opening an empty note if isNoteEmpty: vim.current.window.cursor = (3, 0) # # Create an object to keep track of the note and all associated # information while it's opened. # openNotes[f.name] = NoteTracker(note, vim.current.buffer) # Register callbacks for the buffer events that affect the note. autocmd('BufWritePre', '<buffer>', ':call Vim_GeeknotePrepareToSaveNote("{}")'.format(f.name)) autocmd('BufWritePost', '<buffer>', ':call Vim_GeeknoteSaveNote("{}")'.format(f.name)) autocmd('BufDelete', '<buffer>', ':call Vim_GeeknoteCloseNote("{}")'.format(f.name)) vim.command("let b:GeeknoteTitle=\"%s\"" % note.title) notebook = GeeknoteGetNotebook(note.notebookGuid) vim.command("let b:GeeknoteNotebook=\"%s\"" % notebook.name) # # Otherwise, the note has aleady been opened. Simply switch the active window # to the note's buffer. # else: tracker = GeeknoteGetNoteTracker(note) vim.command("buffer {}".format(tracker.buffer.name)) # # By default, Geeknote expects to receive notes with markdown-formated # content. Set the buffer's 'filetype' and 'syntax' options. # # TODO: Figure out why setting the 'syntax' buffer option alone does not # enable syntax highlighting and why setlocal is needed instead. # # vim.current.buffer.options['filetype'] = 'markdown' # vim.command('setlocal syntax=markdown') # Now restore the original window. setActiveWindow(origWin) def GeeknotePrepareToSaveNote(filename): filename = os.path.abspath(filename) tracker = openNotes[filename] tracker.modified = tracker.buffer.options['modified'] def GeeknoteGetFirstUsableWindow(): wnum = 1 while wnum <= winnr('$'): bnum = winbufnr(wnum) buftype = getBufferVariable(bnum, 'buftype') isModified = getBufferVariable(bnum, 'modified') isPreviewWin = getWindowVariable(wnum, 'previewwindow') name = getBufferName(bnum) if ((bnum != -1) and (buftype == '') and (name == '') and (isPreviewWin is False) and ((isModified is False) or hidden())): return wnum wnum += 1 return -1 def GeeknoteIsWindowUsable(wnum): if winnr('$') == 1: return False bnum = vim.windows[wnum-1].buffer.number buftype = getBufferVariable(bnum, 'buftype') preview = getWindowVariable(wnum, 'previewwindow') # # If the window's buffer has a special type or is the preview window, it is # not usable. # if (buftype != '') or (preview is True): return False # If the user has the 'hidden' option set, the window is usable. if hidden(): return True # # If the window's buffer belongs to an unmodified note, the window is # usable. # name = getBufferName(bnum) if name in openNotes: isModified = getBufferVariable(bnum, 'modified') if isModified is False: return True # If the buffer is open in more than one window, the window is usable. return bufInWindows(winbufnr(wnum)) > 1
StarcoderdataPython
1720288
<gh_stars>0 from flask import Flask, request, jsonify, render_template, url_for, send_file from full_prediction import get_full_prediction import io app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/predict', methods=['POST']) def test_predict(): if request.method == 'POST': img, label = get_full_prediction(request.files['img']) output = io.BytesIO() img.convert('RGBA').save(output, format='PNG') output.seek(0, 0) return send_file(output, mimetype='image/png', as_attachment=False) #return render_template('results.html', data=data)
StarcoderdataPython
1645618
<gh_stars>0 #!/usr/bin/env python3 # # Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import abc import binascii import os import subprocess from pathlib import Path from typing import Dict, List, Optional, Tuple, Type import eden.dirstate import facebook.eden.ttypes as eden_ttypes from eden.cli import hg_util from eden.cli.config import EdenCheckout from eden.cli.doctor.problem import FixableProblem, ProblemTracker, UnexpectedCheckError from thrift.Thrift import TApplicationException class HgChecker: errors: List[str] = [] def __init__(self, checkout: EdenCheckout) -> None: self.checkout = checkout def check(self) -> bool: self.errors = self.check_for_error() return not self.errors @abc.abstractmethod def check_for_error(self) -> List[str]: """Check for errors. Returns a list of errors, or an empty list if no problems were found. """ raise NotImplementedError() @abc.abstractmethod def repair(self) -> None: raise NotImplementedError() class HgFileChecker(HgChecker): def __init__(self, checkout: EdenCheckout, name: str) -> None: super().__init__(checkout) self.name = name self.problem: Optional[str] = None @property def path(self) -> Path: return self.checkout.path / ".hg" / self.name @property def short_path(self) -> str: return os.path.join(".hg", self.name) def check_for_error(self) -> List[str]: try: data = self.path.read_bytes() except IOError as ex: return [f"error reading {self.short_path}: {ex}"] return self.check_data(data) def check_data(self, data: bytes) -> List[str]: return [] class DirstateChecker(HgFileChecker): _null_commit_id = 20 * b"\x00" _old_snapshot: Optional[bytes] = None _old_dirstate_parents: Optional[Tuple[bytes, bytes]] = None _tuples_dict: Dict[bytes, Tuple[str, int, int]] = {} _copymap: Dict[bytes, bytes] = {} _new_parents: Optional[Tuple[bytes, bytes]] = None def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "dirstate") def check_for_error(self) -> List[str]: errors: List[str] = [] self._get_old_dirstate_info(errors) self._get_old_snapshot(errors) self._new_parents = self._select_new_parents(errors) # If we need to update state make sure we reported an error if ( self._new_parents != self._old_dirstate_parents or self._new_parents[0] != self._old_snapshot ): assert errors return errors def _get_old_dirstate_info(self, errors: List[str]) -> None: # Read the data from the dirstate file try: with self.path.open("rb") as f: parents, tuples_dict, copymap = eden.dirstate.read(f, str(self.path)) self._old_dirstate_parents = parents self._tuples_dict = {os.fsencode(k): v for k, v in tuples_dict.items()} self._copymap = {os.fsencode(k): os.fsencode(v) for k, v in copymap.items()} except IOError as ex: errors.append(f"error reading {self.short_path}: {ex}") return except eden.dirstate.DirstateParseException as ex: errors.append(f"error parsing {self.short_path}: {ex}") return # Make sure the commits are valid, and discard them otherwise old_p0 = self._check_commit(errors, parents[0], "mercurial's p0 commit") old_p1 = self._check_commit(errors, parents[1], "mercurial's p1 commit") if old_p0 is None: self._old_dirstate_parents = None else: if old_p1 is None: old_p1 = self._null_commit_id self._old_dirstate_parents = (old_p0, old_p1) def _get_old_snapshot(self, errors: List[str]) -> None: # Get the commit ID from the snapshot file try: snapshot_hex = self.checkout.get_snapshot() self._old_snapshot = binascii.unhexlify(snapshot_hex) except Exception as ex: errors.append(f"error parsing Eden snapshot ID: {ex}") return self._old_snapshot = self._check_commit( errors, self._old_snapshot, "Eden's snapshot file" ) def _check_commit( self, errors: List[str], commit: bytes, name: str ) -> Optional[bytes]: if self._is_commit_hash_valid(commit): return commit commit_hex = self._commit_hex(commit) errors.append(f"{name} points to a bad commit: {commit_hex}") return None def _select_new_parents(self, errors: List[str]) -> Tuple[bytes, bytes]: if self._old_snapshot is None and self._old_dirstate_parents is None: last_resort = self._get_last_resort_commit() return (last_resort, self._null_commit_id) elif self._old_dirstate_parents is None: assert self._old_snapshot is not None # to make mypy happy return (self._old_snapshot, self._null_commit_id) else: if ( self._old_snapshot is not None and self._old_snapshot != self._old_dirstate_parents[0] ): p0_hex = self._commit_hex(self._old_dirstate_parents[0]) snapshot_hex = self._commit_hex(self._old_snapshot) errors.append( f"mercurial's parent commit is {p0_hex}, but Eden's internal " f"parent commit is {snapshot_hex}" ) return self._old_dirstate_parents def repair(self) -> None: # If the .hg directory was missing entirely check_for_error() won't have been # called yet. Call it now to compute self._new_parents if self._new_parents is None: self.check_for_error() assert self._new_parents is not None if self._new_parents != self._old_dirstate_parents: with self.path.open("wb") as f: eden.dirstate.write( f, self._new_parents, self._tuples_dict, self._copymap ) if self._new_parents[0] != self._old_snapshot: parents = eden_ttypes.WorkingDirectoryParents(parent1=self._new_parents[0]) if self._new_parents[1] != self._null_commit_id: parents.parent2 = self._new_parents[1] with self.checkout.instance.get_thrift_client() as client: client.resetParentCommits(bytes(self.checkout.path), parents) def _commit_hex(self, commit: bytes) -> str: return binascii.hexlify(commit).decode("utf-8") def _is_commit_hash_valid(self, commit_hash: bytes) -> bool: # The null commit ID is always valid if commit_hash == self._null_commit_id: return True try: with self.checkout.instance.get_thrift_client() as client: client.getScmStatusBetweenRevisions( bytes(self.checkout.path), commit_hash, commit_hash ) return True except (TApplicationException, eden_ttypes.EdenError) as ex: if "RepoLookupError: unknown revision" in str(ex): return False raise def _get_last_resort_commit(self) -> bytes: try: return get_tip_commit_hash(self.checkout.path) except Exception: return self._null_commit_id class HgrcChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "hgrc") def repair(self) -> None: hgrc_data = hg_util.get_hgrc_data(self.checkout) self.path.write_text(hgrc_data) class RequiresChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "requires") def check_data(self, data: bytes) -> List[str]: requirements = data.splitlines() if b"eden" not in requirements: return [".hg/requires file does not include Eden as a requirement"] return [] def repair(self) -> None: hgrc_data = hg_util.get_requires_data(self.checkout) self.path.write_text(hgrc_data) class SharedPathChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "sharedpath") def check_data(self, data: bytes) -> List[str]: # TODO: make sure the sharedpath file points to a valid .hg directory that # does not use Eden itself. However, we can't fix errors about the sharedpath # file pointing to a bad repo, so those should probably be reported as # completely separate problems to the ProblemTracker. # # backing_repo = Path(os.fsdecode(data)) return [] def repair(self) -> None: backing_hg_dir = hg_util.get_backing_hg_dir(self.checkout) self.path.write_bytes(bytes(backing_hg_dir)) class SharedChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "shared") def check_data(self, data: bytes) -> List[str]: # This file normally contains "bookmarks" for most users, but its fine # if users don't have anything here if they don't want to share bookmarks. # Therefore we don't do any other validation of the contents of this file. return [] def repair(self) -> None: self.path.write_text("bookmarks\n") class BookmarksChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "bookmarks") def repair(self) -> None: self.path.touch() class BranchChecker(HgFileChecker): def __init__(self, checkout: EdenCheckout) -> None: super().__init__(checkout, "branch") def repair(self) -> None: self.path.write_text("default\n") def get_tip_commit_hash(repo: Path) -> bytes: # Try to get the tip commit ID. If that fails, use the null commit ID. args = ["hg", "log", "-T", "{node}", "-r", "tip"] env = dict(os.environ, HGPLAIN="1") result = subprocess.run( args, env=env, cwd=str(repo), check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return binascii.unhexlify(result.stdout.strip()) def check_hg(tracker: ProblemTracker, checkout: EdenCheckout) -> None: checker_classes: List[Type[HgChecker]] = [ DirstateChecker, HgrcChecker, RequiresChecker, SharedPathChecker, SharedChecker, BookmarksChecker, BranchChecker, ] checkers = [checker_class(checkout) for checker_class in checker_classes] hg_path = checkout.path / ".hg" if not os.path.exists(hg_path): description = f"Missing hg directory: {checkout.path}/.hg" tracker.add_problem(HgDirectoryError(checkout, checkers, description)) return bad_checkers: List[HgChecker] = [] for checker in checkers: try: if checker.check(): continue bad_checkers.append(checker) except Exception: tracker.add_problem(UnexpectedCheckError()) if bad_checkers: msg = ( f"No contents present in hg directory: {checkout.path}/.hg" if len(bad_checkers) == len(checkers) else None ) tracker.add_problem(HgDirectoryError(checkout, bad_checkers, msg)) class HgDirectoryError(FixableProblem): def __init__( self, checkout: EdenCheckout, checkers: List[HgChecker], description: Optional[str] = None, ) -> None: self._checkout = checkout self._checkers = checkers self._description = description def description(self) -> str: if self._description is not None: return self._description all_errors = [] for checker in self._checkers: all_errors.extend(checker.errors) problems = "\n ".join(all_errors) return ( f"Found inconsistent/missing data in {self._checkout.path}/.hg:\n " + problems ) def dry_run_msg(self) -> str: return f"Would repair hg directory contents for {self._checkout.path}" def start_msg(self) -> str: return f"Repairing hg directory contents for {self._checkout.path}" def perform_fix(self) -> None: hg_path = self._checkout.path / ".hg" # Make sure the hg directory exists hg_path.mkdir(exist_ok=True) for checker in self._checkers: checker.repair()
StarcoderdataPython
1631343
<filename>__init__.py from piperunner import GEJob, GEArrayJob, GESeriesJob, GEParallelJob
StarcoderdataPython
3256145
<gh_stars>10-100 import os import logging from datetime import datetime from pathlib import Path import pytz import pandas as pd from margot.config import settings logger = logging.getLogger(__name__) class DailyMixin(object): @property def stale(self): """Check if we think there might be new data, and if so - update. """ now = pd.Timestamp(datetime.now(tz=pytz.UTC)) if self._full_series.index.max().date( ) < self.trading_calendar.previous_close(now).date(): return True class BaseColumn(object): """ BaseColumn is the super class for implementing Columns. Generally, you will only need to extend BaseColumn if you are implementing a new data provider. A Column represents a single time series of a symbol. Examples of commonly used time-series are adjusted_close, open, highh, low close, volume. However columns can also be used to represent fundamental time-series, or time- series from alternative sources. To implement a new type of Column, you must implement the 'fetch' method. Example:: class MyDataProvider(BaseColumn): def fetch(self, symbol): df = get_my_dataframe(symbol) return self.clean(df) Optionally, you may also need to perform additional cleaning of the data, you can do this by extending the clean() method. Don't forget to call super().clean(df). Example:: class MyDataProvider(BaseColumn): def clean(self, df): df = df.rename(mapper={ 'Open': 'open', 'High': 'high', 'Low': 'low', 'Close': 'close', }, axis='columns') return super().clean(df) When using an implementation of a subclass of BaseColumn, users are expected to at least specify the time_series that they want to access. Args: time_series (str): the name of the time_series that will be returned. """ INITED = False def __init__(self, time_series: str, *args, **kwargs): # noqa: D107 self.time_series = time_series self._full_series = None self._series = None def get_label(self): """Return the label for this column.""" return self.series.name def clone(self): """Return a new instance of oneself.""" return self.__class__(self.time_series) def setup(self, symbol: str, trading_calendar): """ Called by Symbol after it is instantiated. Ensures that this column knows the context in which it operates, including what Symbol we are using and what the trading_calendar is. """ self.symbol = symbol self.trading_calendar = trading_calendar # TODO: File names should be managed in a central configuration data_cache = settings.paths['cache'] Path(data_cache).mkdir(parents=True, exist_ok=True) self.hdf5_file = os.path.join( data_cache, '{}.hdf5'.format(self.symbol)) @classmethod def clean(cls, df): """Clean the data.""" df = df.sort_index() # make tz aware if not already if not isinstance(df.index.dtype, pd.DatetimeTZDtype): df = df.tz_localize(pytz.UTC) return df def load_or_fetch_series(self, symbol: str): """ Load of fetch the Dataframe, return the series. In order to return the time-series, first determine if we have it and can return it, or if we need to fetch it. Args: symbol (str): the name of the symbol to fetch. Returns: pd.Series: time-series of the column """ try: df = self.load(symbol) except (KeyError, FileNotFoundError): df = self.refresh() return df[self.time_series] def refresh(self): """ Refresh the data from the source. Returns: pd.DataFrame: the whole dataframe (cleaned) """ df = self.fetch(self.symbol) df = self.clean(df) self.save(df, self.symbol) return df def fetch(self, symbol: str): # noqa: D102 raise NotImplementedError( 'This is implementation specific to the data provider.') def load(self, symbol: str): """Load it.""" return pd.read_hdf( self.hdf5_file, key=symbol) def save(self, df, symbol): """Save it.""" df.to_hdf(self.hdf5_file, key=symbol) @property def series(self): """ Get the data series as a pandas series. Returns: pd.Series: time series of the field """ if self._full_series is None: self._full_series = self.load_or_fetch_series(self.symbol) if self.stale: self.refresh() self.load(self.symbol) self._series = self._full_series.copy() self.INITED = True return self._series def simulate(self, when): """ Simulate a time in history. Args: when (datetime): (optional) used when simulating historical data, typically using margot.backtest. """ self._series = self._full_series[:when] @property def latest(self): """Return the latest value in this series.""" return self.series.tail(1)[0]
StarcoderdataPython
1615762
<reponame>KTH/aspen __author__ = '<EMAIL>' import unittest from test import mock_test_data from modules.steps.secret_verification import SecretVerification from modules.util import data_defs, exceptions class TestSecretVerification(unittest.TestCase): def test_has_secrets_env_file(self): pipeline_data = {data_defs.STACK_FILE_PARSED_CONTENT: mock_test_data.get_parsed_stack_content()} test = SecretVerification() self.assertFalse(test.has_secrets_env_file(pipeline_data)) pipeline_data[data_defs.STACK_FILE_PARSED_CONTENT]['services']['api']['env_file'] = ['secrets.decrypted.env'] self.assertTrue(test.has_secrets_env_file(pipeline_data)) def test_raise_for_exception(self): pipeline_data = {data_defs.STACK_FILE_PARSED_CONTENT: mock_test_data.get_parsed_stack_content()} step = SecretVerification() has_password = False has_secret_file = True has_env_file = True self.assertRaises(exceptions.DeploymentError, step.raise_for_exception, has_password, has_secret_file, has_env_file, pipeline_data) has_password = True has_secret_file = False has_env_file = True self.assertRaises(exceptions.DeploymentError, step.raise_for_exception, has_password, has_secret_file, has_env_file, pipeline_data) has_password = False has_secret_file = True has_env_file = False try: step.raise_for_exception(has_password, has_secret_file, has_env_file, pipeline_data) except: self.fail()
StarcoderdataPython
3313994
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Tests for the transformers for upgrading AiiDA entry points.""" import libcst as cst import pytest @pytest.mark.parametrize( ("expression", "result"), ( ("Dict()", "Dict()"), ("Dict(dict={'a': 1})", "Dict({'a': 1})"), ("Dict(value={'a': 1})", "Dict(value={'a': 1})"), ("List(list=[1, 2, 3])", "List([1, 2, 3])"), ("List(value=[1, 2, 3])", "List(value=[1, 2, 3])"), ), ) def test_dict_list_no_keyword(expression, result): """Test the ``DictListNoKeywordTransformer`` class.""" from aiida_upgrade.methods import DictListNoKeywordTransformer cst_tree = cst.parse_module(expression) assert cst_tree.visit(DictListNoKeywordTransformer()).code == result
StarcoderdataPython
172958
<reponame>ioannistsanaktsidis/flaskreactredux from flask import Blueprint, jsonify blueprint = Blueprint( 'testapp_api', __name__, url_prefix='/api' ) @blueprint.route('/health', methods=['HEAD', 'GET']) def ping(): """Load balancer ping view.""" return jsonify({"health": "ok"})
StarcoderdataPython
1648362
from typing import Iterable from queue import Queue TEST_INPUT = """2199943210 3987894921 9856789892 8767896789 9899965678""".splitlines() def parse_input(puzzle: Iterable[str]) -> dict[tuple[int, int]]: grid = {} for y, row in enumerate(puzzle): for x, char in enumerate(row): grid[x, y] = int(char) return grid def part_one(puzzle: Iterable[str]) -> int: grid = parse_input(puzzle) score = 0 for (x, y), value in grid.items(): neighbors = [ grid[neighbor] for neighbor in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] if neighbor in grid ] if all(neighbor > value for neighbor in neighbors): score += value + 1 return score def basin_size(low_point: tuple[int, int], grid: dict[tuple[int, int]]) -> int: queue = Queue() queue.put(low_point) places_seen = set() while not queue.empty(): next_neighbor = queue.get(block=False) if next_neighbor in places_seen: continue places_seen.add(next_neighbor) x, y = next_neighbor neighbors = [ neighbor for neighbor in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] if neighbor in grid and grid[neighbor] != 9 ] for neighbor in neighbors: queue.put(neighbor) return len(places_seen) def part_two(puzzle: Iterable[str]) -> int: grid = parse_input(puzzle) low_points = [] for (x, y), value in grid.items(): neighbors = [ grid[neighbor] for neighbor in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] if neighbor in grid ] if all(neighbor > value for neighbor in neighbors): low_points.append((x, y)) basin_sizes = sorted((basin_size(pos, grid) for pos in low_points), reverse=True) return basin_sizes[0] * basin_sizes[1] * basin_sizes[2] def main(): part_one_test = part_one(TEST_INPUT) assert part_one_test == 15, part_one_test part_two_test = part_two(TEST_INPUT) assert part_two_test == 1134, part_two_test with open("day09.txt") as infile: puzzle = [line.strip() for line in infile] print(part_one(puzzle)) print(part_two(puzzle)) if __name__ == "__main__": main()
StarcoderdataPython
177467
<gh_stars>1-10 class Node: def __init__(self, value): self.value = value self.next = None class Stack: def __init__(self): self.head = Node("head") self.size = 0 def __str__(self): cur = self.head.next out = "" while cur: out += str(cur.value) + "->" cur = cur.next return out[:-3] def is_empty(self): return self.size == 0 def peek(self): if self.is_empty(): raise Exception("Peeking from an empty stack") return self.head.next.value def push(self, value): node = Node(value) node.next = self.head.next self.head.next = node self.size += 1 def pop(self): if self.is_empty(): raise Exception("Popping from an empty stack") remove = self.head.next self.head.next = self.head.next.next self.size -= 1 return remove.value
StarcoderdataPython
1719188
<reponame>BearerPipelineTest/google-ctf<filename>2020/quals/reversing-sprint/asm.py # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys # Usage: python3 asm.py source.s scaffold.c output.c assembly = open(sys.argv[1]).readlines() assembly = [line.split(";")[0].strip().replace(",", "") for line in assembly] assembly = [line for line in assembly if line] label_to_pc = {} code = ["\x00"] * 65536 def reg_to_int(r): assert r[0] == 'r' return int(r[1:])*2 + 8 def get_const(label): try: n = int(label, 0) return str(n % 2**16) except: if passnum == 1: n = label_to_pc[label] else: n = label_to_pc.get(label, 0) return "{:05d}".format(n % 2**16) def dst_to_num(dst): if dst[0] == 'r': return int(dst[1:])*2+9 elif dst == "dptr": return 7 elif dst == "*dptr": return 6 else: print("Oops") raise Exception("Invalid dst: " + dst) def src_to_str(src): if src[0] == 'r': return "*{}$".format(int(src[1:])*2+8) elif src == "dptr": return "*6$" elif src == "*dptr": return "*5$" else: return get_const(src) for passnum in range(2): pc = 0 print("Pass #" + str(passnum)) for i, line in enumerate(assembly): label_to_pc["_" + str(i)] = pc if ":" in line: # A label. name = line.split(":")[0].strip() label_to_pc[name] = pc elif line[0] == ".": # Directive. line = line.split() name = line[0] args = line[1:] if name == ".org": pc = int(args[0], 0) elif name == ".equ": label, val = args label_to_pc[label] = int(val, 0) elif name == ".db": for a in args: code[pc] = chr(int(a, 0)%256) pc += 1 elif name == ".dw": for a in args: code[pc] = chr(int(a, 0)&255) code[pc+1] = chr(int(a, 0)>>8) pc += 2 else: print("Oops") raise Exception("Unknown directive: " + name) else: line = line.split() name = line[0] args = line[1:] #print(name, args) if name == "jnz": # Special case. reg, where = args reg = reg_to_int(reg) A = int(get_const("_" + str(i+1))) B = int(get_const(where)) first = (B-A-1) % 2**16 second = (A-2-first) % 2**16 ins = "%{reg:02d}$c%1${first:05d}s%2$c%4$s%1${second:05d}s%3$hn" ins = ins.format(reg=reg, first=first, second=second) elif name == "jmp": tgt, = args tgt = get_const(tgt) ins = "%1${tgt}s%3$hn".format(tgt=tgt) else: next = int(get_const("_" + str(i+1))) compl = 2**16 - next ins = "%1${next:05d}s%3$hn%1${compl:05d}s" ins = ins.format(next=next, compl=compl) ap = "" if name == "mov": dst, src = args dst = dst_to_num(dst) src = src_to_str(src) ap = "%1${src}s%{dst}$hn".format(src=src, dst=dst) elif name == "add": dst, src1, src2 = args dst = dst_to_num(dst) src1 = src_to_str(src1) src2 = src_to_str(src2) ap = "%1${src1}s%1${src2}s%{dst}$hn" ap = ap.format(src1=src1, src2=src2, dst=dst) else: print("Oops") raise Exception("Unknown opcode: " + name) ins += ap #print("Asm:", ins) for j, c in enumerate(ins): code[pc+j] = c pc += len(ins) + 1 # For NUL full = "" for c in "".join(code).rstrip("\x00"): full += "\\x{:02x}".format(ord(c)) #print("Final code:") #print(full) scaffold = open(sys.argv[2]).read() open(sys.argv[3], "w").write(scaffold.replace("PROG_HERE", full)) open(sys.argv[3] + ".map", "w").write("".join( "{:04x}".format(label_to_pc["_" + str(i)]) + ": " + assembly[i] + "\n" for i in range(len(assembly))))
StarcoderdataPython
50656
<filename>milkviz/_dot.py from typing import Optional, List, Union, Tuple, Any import matplotlib as mpl import matplotlib.axes import matplotlib.pyplot as plt import numpy as np from milkviz.utils import adaptive_figsize, norm_arr, doc, set_size_legend, set_spines, set_ticks def set_dot_grid(data, ax=None, xlabel=None, ylabel=None, xticklabels=None, yticklabels=None, no_spines=True, no_ticks=True, min_side=4, ): Y, X = data.shape x, y = np.meshgrid(np.arange(X), np.arange(Y)) # Get the coordinates xcoord = x.flatten() ycoord = y.flatten() if ax is None: ratio = 0.6 figsize = adaptive_figsize((X * ratio, Y * ratio), min_side=min_side) _, ax = plt.subplots(figsize=figsize) if no_spines: set_spines(ax) if no_ticks: set_ticks(ax) ax.set_aspect("equal") ax.set_xlim(-0.5, X - 0.5) ax.set_ylim(-0.5, Y - 0.5) ax.set( xlabel=xlabel, ylabel=ylabel, xticks=np.arange(X), yticks=np.arange(Y), xticklabels=xticklabels if xticklabels is not None else [], yticklabels=yticklabels if yticklabels is not None else [], ) plt.xticks(rotation=90) return ax, xcoord, ycoord @doc def dot( dot_size: np.ndarray, dot_hue: Union[str, np.ndarray, None] = None, xticklabels: Optional[List[str]] = None, yticklabels: Optional[List[str]] = None, xlabel: Optional[str] = None, ylabel: Optional[str] = None, sizes: Tuple[int, int] = (1, 500), size_dtype: Any = None, legend_title: str = "size", no_spines: bool = True, no_ticks: bool = True, ax: Optional[mpl.axes.Axes] = None, ) -> mpl.axes.Axes: """Dot plot Args: dot_size: [size] dot_hue: [hue] xticklabels: [xticklabels] yticklabels: [yticklabels] xlabel: [xlabel] ylabel: [ylabel] sizes: [sizes] size_dtype: [size_dtype] legend_title: [size_legend_title] no_spines: [no_spines] no_ticks: [no_ticks] ax: [ax] Returns: [return_obj] """ ax, xcoord, ycoord = set_dot_grid(dot_size, ax=ax, xlabel=xlabel, ylabel=ylabel, xticklabels=xticklabels, yticklabels=yticklabels, no_spines=no_spines, no_ticks=no_ticks, min_side=3) if dot_hue is not None: if isinstance(dot_hue, str): circ_colors = np.repeat(dot_hue, dot_size.size) else: if np.array((dot_hue.shape == dot_size.shape)).all(): circ_colors = dot_hue.flatten() else: raise ValueError("dot_hue does not match the shape of dot_size") else: circ_colors = np.repeat("#D75455", dot_size.size) circ_size = norm_arr(dot_size, sizes) _ = plt.scatter(xcoord, ycoord, s=circ_size, c=circ_colors) # adding dot size legend set_size_legend(ax, dot_size, circ_size, (1.05, 0, 1, 1), legend_title, dtype=size_dtype) ax.grid(False) return ax
StarcoderdataPython
144743
<reponame>nxtbesu/python-oligo import unittest from oligo.exception import SessionException, LoginException, ResponseException class TestResponseException(unittest.TestCase): def test_message(self): login_exception = ResponseException(418) self.assertEqual('Response error, code: 418', login_exception.args[0]) class TestLoginException(unittest.TestCase): def test_message(self): login_exception = LoginException("pepe") self.assertEqual('Unable to log in with user pepe', login_exception.args[0]) class TestSessionException(unittest.TestCase): def test_message(self): session_exception = SessionException() self.assertEqual('Session required, use login() method to obtain a session', session_exception.args[0])
StarcoderdataPython
140132
<reponame>akrisanov/python_notebook<gh_stars>1-10 import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", 9000)) # max port is 65535 sock.listen(socket.SOMAXCONN) conn, addr = sock.accept() while True: data = conn.recv(1024) if not data: break print(data.decode("utf8")) conn.close() sock.close()
StarcoderdataPython
3208403
<reponame>franklongford/ImageCol """ ColECM: Collagen ExtraCellular Matrix Simulation UTILITIES ROUTINE Created by: <NAME> Created on: 01/11/2015 Last Modified: 12/04/2018 """ from functools import wraps import logging import time from stevedore import ExtensionManager import numpy as np logger = logging.getLogger(__name__) SQRT3 = np.sqrt(3) SQRT2 = np.sqrt(2) SQRTPI = np.sqrt(np.pi) IMAGE_MAX = 255.99999 class NoiseError(Exception): def __init__(self, noise, thresh): self.noise = noise self.thresh = thresh self.message = "Image too noisy ({} > {})".format(noise, thresh) class NotSupportedError(Exception): message = "Method not supported by class" def logo(version): logo_text = "\n" logo_text += " ___ ___ " + '\n' logo_text += " | \\ | . | " + '\n' logo_text += " |__/ |__ |__ __ __ " + '\n' logo_text += " | | | | | | | | |__| " + '\n' logo_text += " | \\__| | | |__/ | |__ " + '\n' logo_text += " __/ " + '\n' logo_text += f"\n Fibrous Tissue Image Toolkit v{version}\n" return logo_text def numpy_remove(list1, list2): """ numpy_remove(list1, list2) Deletes overlapping elements of list2 from list1 """ return np.delete(list1, np.where(np.isin(list1, list2))) def unit_vector(vector, axis=-1): """ unit_vector(vector, axis=-1) Returns unit vector of vector """ vector = np.array(vector) magnitude_2 = np.resize( np.sum(vector**2, axis=axis), vector.shape) u_vector = np.sqrt(vector**2 / magnitude_2) * np.sign(vector) return u_vector def label_set(labels, background=0): """Return a unique set of non-background values in labels""" unique_labels = np.unique(labels) # Remove any labels corresponding to the background indices = np.where(unique_labels != background) unique_labels = unique_labels[indices] return unique_labels def nanmean(array_like, weights=None): if weights is None: weights = np.ones(array_like.shape) # Ensure None and NaN objects are filtered out. We need to use # equality comparison for None at each array element here since # numpy.where cannot handle identity checks array_like = np.array( np.where( array_like == None, np.nan, array_like # noqa: 501 ), dtype=float ) weights = np.array( np.where( weights == None, np.nan, weights # noqa: 501 ), dtype=float ) indices = ~np.isnan(array_like) * ~np.isnan(weights) try: average = np.average( array_like[indices], weights=weights[indices]) except ZeroDivisionError: average = None return average def ring(image, index, sizes, value): index = np.array(index) sizes = np.array(sizes) for size in sizes: indices = np.concatenate((index - size, index + size)) if indices[0] >= 0: start = max([indices[1], 0]) end = min([indices[3], image.shape[1]]) + 1 image[indices[0], start: end] = value if indices[2] < image.shape[0]: start = max([indices[1], 0]) end = min([indices[3], image.shape[1]]) + 1 image[indices[2], start: end] = value if indices[1] >= 0: start = max([indices[0], 0]) end = min([indices[2], image.shape[0]]) + 1 image[start: end, indices[1]] = value if indices[3] < image.shape[1]: start = max([indices[0], 0]) end = min([indices[2], image.shape[0]]) + 1 image[start: end, indices[3]] = value return image def clear_border(image, thickness=1): for i in range(thickness): image[:, 0 + i] = 0 image[0 + i, :] = 0 image[:, -(1 + i)] = 0 image[-(1 + i), :] = 0 return image def flatten_list(list_of_lists): """Returned a flattened version of a list of lists""" flat_list = [ val for sublist in list_of_lists for val in sublist ] return flat_list def matrix_split(matrix, nrows, ncols): """Split a matrix into sub-matrices""" assert matrix.ndim == 2 rows = np.array_split(matrix, ncols, axis=0) grid = [] for item in rows: grid += np.array_split(item, nrows, axis=-1) return grid def load_plugins(): """Load PyFibre plugins via Stevedore. """ mgr = ExtensionManager( namespace='pyfibre.plugins', invoke_on_load=True ) plugins = [ext.obj for ext in mgr] return plugins def log_time(message): """Use as a decorator around a callable to automatically record elapsed time to the log. Can be personalised with an extra string message argument Example ------- >>> @log_time(name='TEST') >>> def function(x, y): >>> return x * y >>> ... >>> >>> function(2, 3) 6 Will produce a log message: >>> INFO: TOTAL TEST TIME .. s """ def log_time_decorator(func): """Decorator around function to be called""" @wraps(func) def function_wrapper(*args, **kwargs): """Actual wrapper around callable, including log instructions""" start = time.time() result = func(*args, **kwargs) logger.info( # f"TOTAL TIME = " f"TOTAL {message.upper()} TIME = " f"{round(time.time() - start, 3)} s") return result return function_wrapper return log_time_decorator
StarcoderdataPython
3217221
#!/usr/bin/python # Copyright 2016 <NAME> # # This module is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: os_keystone_service short_description: Manage OpenStack Identity services extends_documentation_fragment: openstack author: "<NAME> (@SamYaple)" version_added: "2.2" description: - Create, update, or delete OpenStack Identity service. If a service with the supplied name already exists, it will be updated with the new description and enabled attributes. options: name: description: - Name of the service required: true description: description: - Description of the service required: false default: None enabled: description: - Is the service enabled required: false default: True service_type: description: - The type of service required: true state: description: - Should the resource be present or absent. choices: [present, absent] default: present availability_zone: description: - Ignored. Present for backwards compatibility required: false requirements: - "python >= 2.6" - "shade" ''' EXAMPLES = ''' # Create a service for glance - os_keystone_service: cloud: mycloud state: present name: glance service_type: image description: OpenStack Image Service # Delete a service - os_keystone_service: cloud: mycloud state: absent name: glance service_type: image ''' RETURN = ''' service: description: Dictionary describing the service. returned: On success when I(state) is 'present' type: complex contains: id: description: Service ID. type: string sample: "3292f020780b4d5baf27ff7e1d224c44" name: description: Service name. type: string sample: "glance" service_type: description: Service type. type: string sample: "image" description: description: Service description. type: string sample: "OpenStack Image Service" enabled: description: Service status. type: boolean sample: True id: description: The service ID. returned: On success when I(state) is 'present' type: string sample: "3292f020780b4d5baf27ff7e1d224c44" ''' try: import shade HAS_SHADE = True except ImportError: HAS_SHADE = False from distutils.version import StrictVersion def _needs_update(module, service): if service.enabled != module.params['enabled']: return True if service.description is not None and \ service.description != module.params['description']: return True return False def _system_state_change(module, service): state = module.params['state'] if state == 'absent' and service: return True if state == 'present': if service is None: return True return _needs_update(module, service) return False def main(): argument_spec = openstack_full_argument_spec( description=dict(default=None), enabled=dict(default=True, type='bool'), name=dict(required=True), service_type=dict(required=True), state=dict(default='present', choices=['absent', 'present']), ) module_kwargs = openstack_module_kwargs() module = AnsibleModule(argument_spec, supports_check_mode=True, **module_kwargs) if not HAS_SHADE: module.fail_json(msg='shade is required for this module') if StrictVersion(shade.__version__) < StrictVersion('1.6.0'): module.fail_json(msg="To utilize this module, the installed version of" "the shade library MUST be >=1.6.0") description = module.params['description'] enabled = module.params['enabled'] name = module.params['name'] state = module.params['state'] service_type = module.params['service_type'] try: cloud = shade.operator_cloud(**module.params) services = cloud.search_services(name_or_id=name, filters=dict(type=service_type)) if len(services) > 1: module.fail_json(msg='Service name %s and type %s are not unique' % (name, service_type)) elif len(services) == 1: service = services[0] else: service = None if module.check_mode: module.exit_json(changed=_system_state_change(module, service)) if state == 'present': if service is None: service = cloud.create_service(name=name, description=description, type=service_type, enabled=True) changed = True else: if _needs_update(module, service): service = cloud.update_service( service.id, name=name, type=service_type, enabled=enabled, description=description) changed = True else: changed = False module.exit_json(changed=changed, service=service, id=service.id) elif state == 'absent': if service is None: changed=False else: cloud.delete_service(service.id) changed=True module.exit_json(changed=changed) except shade.OpenStackCloudException as e: module.fail_json(msg=str(e)) from ansible.module_utils.basic import * from ansible.module_utils.openstack import * if __name__ == '__main__': main()
StarcoderdataPython
1742455
#!/usr/bin/env python # encoding: utf-8 from __future__ import absolute_import, unicode_literals import codecs from ..util import u, slugify import os from ..util import ERROR_COLOR, RESET_COLOR class TextExporter(object): """This Exporter can convert entries and journals into text files.""" names = ["text", "txt"] extension = "txt" @classmethod def export_entry(cls, entry): """Returns a unicode representation of a single entry.""" return entry.__unicode__() @classmethod def export_journal(cls, journal): """Returns a unicode representation of an entire journal.""" return "\n".join(cls.export_entry(entry) for entry in journal) @classmethod def write_file(cls, journal, path): """Exports a journal into a single file.""" try: with codecs.open(path, "w", "utf-8") as f: f.write(cls.export_journal(journal)) return "[Journal exported to {0}]".format(path) except IOError as e: return "[{2}ERROR{3}: {0} {1}]".format(e.filename, e.strerror, ERROR_COLOR, RESET_COLOR) @classmethod def make_filename(cls, entry): return entry.date.strftime("%Y-%m-%d_{0}.{1}".format(slugify(u(entry.title)), cls.extension)) @classmethod def write_files(cls, journal, path): """Exports a journal into individual files for each entry.""" for entry in journal.entries: try: full_path = os.path.join(path, cls.make_filename(entry)) with codecs.open(full_path, "w", "utf-8") as f: f.write(cls.export_entry(entry)) except IOError as e: return "[{2}ERROR{3}: {0} {1}]".format(e.filename, e.strerror, ERROR_COLOR, RESET_COLOR) return "[Journal exported to {0}]".format(path) @classmethod def export(cls, journal, output=None): """Exports to individual files if output is an existing path, or into a single file if output is a file name, or returns the exporter's representation as unicode if output is None.""" if output and os.path.isdir(output): # multiple files return cls.write_files(journal, output) elif output: # single file return cls.write_file(journal, output) else: return cls.export_journal(journal)
StarcoderdataPython
3299471
class Solution: def containsDuplicate(self, nums: List[int]) -> bool: # my solution nums.sort() for i in range(1, len(nums)): if nums[i-1] == nums[i]: return True return False # more concise solution # https://leetcode.com/problems/contains-duplicate/discuss/61076/In-python-this-problem-is-a-joke def containsDuplicate(self, nums: List[int]) -> bool: return len(nums) != len(set(nums))
StarcoderdataPython
1643373
<gh_stars>1-10 from datetime import datetime, date, time from hun_date_parser import datetime2text, text2datetime, text2date, text2time def test_datetime2text(): candidates = datetime2text(datetime(2020, 12, 21)) assert set(candidates) == {'dates', 'times'} assert len([c for c in candidates['dates'] if c]) == 2 assert len([c for c in candidates['times'] if c]) == 4 def test_text2datetime(): now = datetime(2020, 12, 27) tf = [('ma', [{'start_date': datetime(2020, 12, 27), 'end_date': datetime(2020, 12, 27, 23, 59, 59)}]), ('ma reggel', [{'start_date': datetime(2020, 12, 27, 6), 'end_date': datetime(2020, 12, 27, 9, 59, 59)}])] for inp, out in tf: assert text2datetime(inp, now=now) == out def test_text2date(): now = datetime(2020, 12, 27) tf = [('ma', [{'start_date': date(2020, 12, 27), 'end_date': date(2020, 12, 27)}]), ('ma reggel', [{'start_date': date(2020, 12, 27), 'end_date': date(2020, 12, 27)}]), ('reggel nyolc óra', [])] for inp, out in tf: assert text2date(inp, now=now) == out def test_text2time(): now = datetime(2020, 12, 27) tf = [('ma', []), ('ma reggel', [{'start_date': time(6), 'end_date': time(9, 59, 59)}]), ('reggel nyolc óra', [{'start_date': time(8), 'end_date': time(8, 59, 59)}])] for inp, out in tf: assert text2time(inp, now=now) == out
StarcoderdataPython
3319608
from botstory.ast import story_context from botstory.ast.story_context import get_message_attachment from botstory.middlewares import any, location, option, sticker, text from botstory.integrations.commonhttp import errors as http_errors import emoji import datetime import logging from nasabot.geo import animation, tiles import os from urllib.parse import urljoin import uuid logger = logging.getLogger(__name__) dir_path = os.getcwd() satellite_image_epsg3857 = 'https://gibs.earthdata.nasa.gov/wmts/epsg3857/best/MODIS_Terra_CorrectedReflectance_TrueColor/default/{date}/GoogleMapsCompatible_Level9/{z}/{y}/{x}.jpg' satellite_image_epsg4326 = 'https://gibs.earthdata.nasa.gov/wmts/epsg4326/best/MODIS_Terra_CorrectedReflectance_TrueColor/default/{date}/250m/{z}/{y}/{x}.jpg' def day_before(): return datetime.datetime.now() - datetime.timedelta(days=1) class ContextException(Exception): pass class UserDialogContext: """ store context of user dialog and get used context to reduce similar questions """ def __init__(self, ctx): self.ctx = ctx self.user_data = story_context.get_user_data(ctx) def get_last_location(self): """ get last used coords :return: """ # TODO: raise exception if we don't have coors try: return self.user_data['coors'][-1] except KeyError: raise ContextException() def store_location(self, lat, long, zoom=None, name=None): if 'coors' not in self.user_data: self.user_data['coors'] = [] self.user_data['coors'].append({ 'lat': lat, 'long': long, 'zoom': zoom, 'name': name, }) def setup(story): async def show_image(ctx, target_date, lat, long, level): tile = tiles.wgs84_tile_by_coors(lat, long, level) await story.send_image( # satellite_image_epsg3857.format( satellite_image_epsg4326.format( **tile, date=target_date.isoformat(), z=level, ), user=ctx['user'], ) await story.ask( emoji.emojize('There will come GIBS!', use_aliases=True), user=ctx['user'], quick_replies=[{ 'title': emoji.emojize(':earth_americas:', use_aliases=True), 'payload': 'SHOW_AMERICAS' }, { 'title': emoji.emojize(':earth_africa:', use_aliases=True), 'payload': 'SHOW_AFRICA_N_EUROPE' }, { 'title': emoji.emojize(':earth_asia:', use_aliases=True), 'payload': 'SHOW_ASIA' }, ], ) async def show_animation(ctx, target_date, lat, long, level): tile = tiles.mercator_tile_by_coords(lat, long, level) await story.say('Here is the last 2 weeks...', user=ctx['user']) await story.start_typing(user=ctx['user']) gif_filename = 'animation-{}.gif'.format(uuid.uuid4()) gif_full_filename = os.path.join(os.environ.get('GENERATED_STATIC_DIR'), gif_filename) gif_url = urljoin(os.environ.get('HOST_URL'), os.path.join(os.environ.get('GENERATED_STATIC_PATH'), gif_filename)) logger.info('# tile') logger.info(tile) logger.info('# level') logger.info(level) await animation.pipeline( source=animation.source.GIBSSource( 'https://gibs.earthdata.nasa.gov/wmts/{projection}/best/{layer}/default/{date}/{resolution}/{z}/{y}/{x}.jpg', layer='MODIS_Terra_CorrectedReflectance_TrueColor', resolution='GoogleMapsCompatible_Level9', projection='epsg3857', z=level, **tile, ), timeline=animation.timeline.Interval( target_date - datetime.timedelta(weeks=2), target_date, ), target=animation.target.Gif( gif_full_filename, ), ) await story.say( emoji.emojize('Processed. Now we are going to upload it :package:.'), user=ctx['user']) await story.start_typing(user=ctx['user']) await story.send_image(gif_url, user=ctx['user']) await story.stop_typing(user=ctx['user']) # show static image # # await story.send_image( # satellite_image_epsg3857.format( # # satellite_image_epsg4326.format( # **tile, # date=target_date.isoformat(), # z=level, # ), # user=ctx['user'], # ) await story.say('What is next?', user=ctx['user']) os.remove(gif_full_filename) async def show_animation_or_ask_retry_on_fail(ctx, lat, long, zoom): try: await show_animation(ctx, day_before(), lat, long, zoom) except http_errors.HttpRequestError as ex: logger.warning('# got exception') await story.ask( emoji.emojize(':confused: Got error:\n\n{}\n\nPlease retry.'.format(ex.message), use_aliases=True), quick_replies=[{ 'title': 'Retry {},{},{}'.format(lat, long, zoom), 'payload': 'RETRY_SHOW_EARTH_{},{},{}'.format(lat, long, zoom), }], user=ctx['user'] ) @story.on(text.EqualCaseIgnore('earth')) def handle_random_location(): @story.part() async def show_whole_earth(ctx): # TODO: request target date await show_image(ctx, day_before(), 0, 0, 0) @story.on(emoji.emojize(':earth_americas:', use_aliases=True)) def handle_america_location(): @story.part() async def show_america(ctx): await show_image(ctx, day_before(), 5, -90, 2) @story.on(emoji.emojize(':earth_africa:', use_aliases=True)) def handle_africa_location(): @story.part() async def show_africa_n_europe_(ctx): await show_image(ctx, day_before(), 15, 15, 2) @story.on(emoji.emojize(':earth_asia:', use_aliases=True)) def handle_asia_location(): @story.part() async def show_asia(ctx): await show_image(ctx, day_before(), 0, 170, 2) @story.on([text.EqualCaseIgnore('retry'), option.Match('RETRY_(.+)')]) def handle_retry(): @story.part() async def use_store_coors_to_show_earth(ctx): logger.info('# use_store_coors_to_show_earth') dlg = UserDialogContext(ctx) try: location = dlg.get_last_location() await show_animation_or_ask_retry_on_fail( ctx=ctx, lat=location['lat'], long=location['long'], zoom=location['zoom'], ) except ContextException: logger.warning('# we do not have needed user context') @story.on(text.Any()) def handle_list_of_coords(): @story.part() async def use_passed_coords_to_show_earth(ctx): logger.info('# use_passed_coords_to_show_earth') raw_text = text.get_raw_text(ctx) values = raw_text.split(',') if len(values) < 2 or len(values) > 4: raise NotImplemented('Should parse if got less then 2 or more the 4 values with , delimiter') lat = float(values[0]) long = float(values[1]) if len(values) > 2: zoom = int(values[2]) else: zoom = 6 dlg = UserDialogContext(ctx) dlg.store_location(lat=lat, long=long, zoom=zoom) await show_animation_or_ask_retry_on_fail( ctx=ctx, lat=lat, long=long, zoom=zoom, ) @story.on(location.Any()) def handle_location(): @story.part() async def show_earth_of_location(ctx): logger.debug('# show earth of passed location') location = get_message_attachment(ctx, 'location')['payload']['coordinates'] # TODO: request zoom from User # TODO: request target date await show_image(ctx, day_before(), location['lat'], location['long'], 5)
StarcoderdataPython
1758086
<reponame>MugeraH/Neighbourhood from django.urls import path from django.conf import settings from django.conf.urls.static import static from .views import LandingPageView,HomePageView,NeighbourHoodCreateView,ProfileView,NeigbourhoodDetail,UpdateNeigbourhood,add_business,add_post,update_post,update_business,join_hood,leave_hood,update_profile app_name ="main" urlpatterns=[ path('home/',HomePageView,name='home'), path('',LandingPageView.as_view(),name='landing'), path('join_hood/<int:id>',join_hood,name="join_hood"), path('leave_hood/<int:id>',leave_hood,name="leave_hood"), path('create_hood/',NeighbourHoodCreateView.as_view(),name="create_hood"), path('hood/<int:id>', NeigbourhoodDetail,name="hood"), path('update_hood/<int:id>', UpdateNeigbourhood,name="update_hood"), path('add_business/<int:id>',add_business,name="add_business"), path('update_business/<int:id>',update_business,name="update_business"), path('add_post/<int:id>', add_post,name="add_post"), path('update_post/<int:id>', update_post,name="update_post"), path('profile/',ProfileView,name="profile"), path('update_profile/',update_profile,name="update_profile") ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL,document_root= settings.MEDIA_ROOT)
StarcoderdataPython
3320292
<reponame>digitalepidemiologylab/text-classification """ Printing helpers ================ """ import os import pandas as pd import logging logger = logging.getLogger(__name__) def print_misclassifications(run, num_samples): f_path = os.path.join(os.getcwd(), 'output', run) if not os.path.isdir(f_path): raise FileNotFoundError(f'Could not find run directory {f_path}') test_output_file = os.path.join(os.getcwd(), 'output', run, 'test_output.csv') if not os.path.isfile(test_output_file): raise FileNotFoundError(f'No file {test_output_file} found for run {run}. Pass the option `write_test_output: true` when training the model.') df = pd.read_csv(test_output_file) for label, grp in df.groupby('label'): misclassifications = grp[grp.prediction != label] num_misclassifications = len(misclassifications) print(f'True label: {label.ljust(10)} (num misclassifications: {num_misclassifications:,})') if num_misclassifications == 0: print('<No misclassifications to show>') continue show_samples = min(num_misclassifications, num_samples) for i, row in misclassifications.sample(show_samples).iterrows(): print(f'Predicted: {row.prediction.ljust(20)} | {row.text}') print('-'*40)
StarcoderdataPython
1750186
import logging from pyspark.sql import SparkSession def run_spark_job(spark): #TODO read format as Kafka and add various configurations df = spark \ .readStream \ .load() # Show schema for the incoming resources for checks df.printSchema() agg_df = df.count() # TODO complete this # play around with processingTime to see how the progress report changes query = if __name__ == "__main__": logger = logging.getLogger(__name__) spark = SparkSession \ .builder \ .master("local[*]") \ .appName("StructuredStreamingSetup") \ .getOrCreate() logger.info("Spark started") run_spark_job(spark) spark.stop()
StarcoderdataPython
143385
<gh_stars>0 from typing import Dict count = 0 # Part 1 with open("06.in", "r") as file: group_unique = set() for line in file.readlines(): line = line.replace("\n", "") # New group if line == "": count += len(group_unique) group_unique = set() # Read unique answered yes questions else: for char in line: group_unique.add(char) count += len(group_unique) print(f"Part 1, count: {count}") # Part 2 def count_yes(group_answers: Dict[str, int], person_count: int) -> int: yes = 0 for count in group_answers.values(): if count == person_count: yes += 1 return yes count = 0 person_count = 0 with open("06.in", "r") as file: group_answers = {} for line in file.readlines(): line = line.replace("\n", "") # New group if line == "": count += count_yes(group_answers, person_count) group_answers = {} person_count = 0 # Read answers else: person_count += 1 for char in line: # Increase question yes count if char in group_answers: group_answers[char] += 1 else: group_answers[char] = 1 count += count_yes(group_answers, person_count) print(f"Part 2, count: {count}")
StarcoderdataPython
1702287
<reponame>QianLiGui/tfsnippet import numpy as np from tfsnippet.utils import DocInherit from .base import DataFlow __all__ = [ 'DataMapper', 'SlidingWindow' ] @DocInherit class DataMapper(object): """ Base class for all data mappers. A :class:`DataMapper` is a callable object, which maps input arrays into outputs arrays. Instances of :class:`DataMapper` are usually used as the ``mapper`` of a :class:`tfsnippet.dataflows.MapperFlow`. """ def _transform(self, *args): """Subclasses should override this to implement the transformation.""" raise NotImplementedError() def __call__(self, *arrays): """ Transform the input arrays into outputs. Args: *arrays: Arrays to be transformed. Returns: tuple[np.ndarray]: The output arrays. """ ret = self._transform(*arrays) if not isinstance(ret, (tuple, list)): raise TypeError('The output of {} is neither a tuple, nor a list.'. format(self.__class__.__name__)) return tuple(ret) class SlidingWindow(DataMapper): """ :class:`DataMapper` for producing sliding windows according to indices. Usage:: data = np.arange(1000) sw = SlidingWindow(data, window_size=100) # construct a DataFlow from this SlidingWindow sw_flow = sw.as_flow(batch_size=64) # or equivalently sw_flow = DataFlow.seq( 0, len(data) - sw.window_size + 1, batch_size=64).map(sw) """ def __init__(self, data_array, window_size): """ Construct a :class:`SlidingWindow`. Args: data_array (np.ndarray): The array from which to extract sliding windows. window_size (int): Size of each window. """ self._data_array = data_array self._window_size = window_size offset_dtype = (np.int32 if window_size < (1 << 32) else np.int64) self._offset = np.arange(0, window_size, 1, dtype=offset_dtype) def as_flow(self, batch_size, shuffle=False, skip_incomplete=False): """ Get a :class:`DataFlow` which iterates through mini-batches of sliding windows upon ``data_array``. Args: batch_size (int): Batch size of the data flow. Required. shuffle (bool): Whether or not to shuffle the numbers before iterating? (default :obj:`False`) skip_incomplete (bool): Whether or not to exclude the last mini-batch if it is incomplete? (default :obj:`False`) Returns: DataFlow: The data flow for sliding windows. """ data_length = len(self.data_array) seq_dtype = (np.int32 if data_length < (1 << 32) else np.int64) seq_flow = DataFlow.seq( 0, data_length - self.window_size + 1, 1, batch_size=batch_size, shuffle=shuffle, skip_incomplete=skip_incomplete, dtype=seq_dtype ) return seq_flow.map(self) @property def data_array(self): """Get the data array.""" return self._data_array @property def window_size(self): """Get the window size.""" return self._window_size def _transform(self, indices): return ( self._data_array[ indices.reshape(indices.shape + (1,)) + self._offset ], )
StarcoderdataPython
1787826
<reponame>rido-min/azure-iot-cli-extension # coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import json from azext_iot.common.utility import process_json_arg, scantree, unpack_msrest_error from azext_iot.digitaltwins.providers.base import DigitalTwinsProvider from azext_iot.sdk.digitaltwins.dataplane.models import ErrorResponseException from knack.log import get_logger from knack.util import CLIError logger = get_logger(__name__) def get_model_dependencies(model): """Return a list of dependency DTMIs for a given model""" dependencies = [] # Add everything that would have dependency DTMIs, worry about flattening later if "contents" in model: components = [item["schema"] for item in model["contents"] if item["@type"] == "Component"] dependencies.extend(components) if "extends" in model: dependencies.append(model['extends']) # Go through gathered items, get the DTMI references, and flatten if needed no_dup = set() for item in dependencies: # Models defined in a DTDL can implement extensions of up to two interfaces. # These interfaces can be in the form of a DTMI reference, or a nested model. if isinstance(item, str): # If its just a string, thats a single DTMI reference, so just add that to our set no_dup.add(item) elif isinstance(item, dict): # If its a single nested model, get its dtmi reference, dependencies and add them no_dup.update(set(get_model_dependencies(item))) elif isinstance(item, list): # If its a list, could have DTMIs or nested models for sub_item in item: if isinstance(sub_item, str): # If there are strings in the list, that's a DTMI reference, so add it no_dup.add(sub_item) elif isinstance(sub_item, dict): # This is a nested model. Now go get its dependencies and add them no_dup.update(set(get_model_dependencies(sub_item))) return list(no_dup) class ModelProvider(DigitalTwinsProvider): def __init__(self, cmd, name, rg=None): super(ModelProvider, self).__init__( cmd=cmd, name=name, rg=rg, ) self.model_sdk = self.get_sdk().digital_twin_models def add(self, models=None, from_directory=None): if not any([models, from_directory]): raise CLIError("Provide either --models or --from-directory.") # If both arguments are provided. --models wins. payload = [] if models: models_result = process_json_arg(content=models, argument_name="models") if isinstance(models_result, list): payload.extend(models_result) elif isinstance(models_result, dict): payload.append(models_result) elif from_directory: payload = self._process_directory(from_directory=from_directory) logger.info("Models payload %s", json.dumps(payload)) # TODO: Not standard - have to revisit. try: response = self.model_sdk.add(payload) except ErrorResponseException as e: raise CLIError(unpack_msrest_error(e)) if response.status_code not in [200, 201]: error_text = response.text if response.status_code == 403 and not error_text: error_text = "Current principal access is forbidden. Please validate rbac role assignments." else: try: error_text = response.json() except Exception: pass raise CLIError(error_text) return response.json() def _process_directory(self, from_directory): logger.debug( "Documents contained in directory: {}, processing...".format(from_directory) ) payload = [] for entry in scantree(from_directory): if all( [not entry.name.endswith(".json"), not entry.name.endswith(".dtdl")] ): logger.debug( "Skipping {} - model file must end with .json or .dtdl".format( entry.path ) ) continue entry_json = process_json_arg(content=entry.path, argument_name=entry.name) payload.append(entry_json) return payload def get(self, id, get_definition=False): try: return self.model_sdk.get_by_id( id=id, include_model_definition=get_definition, raw=True ).response.json() except ErrorResponseException as e: raise CLIError(unpack_msrest_error(e)) def list( self, get_definition=False, dependencies_for=None, top=None ): # top is guarded for int() in arg def from azext_iot.sdk.digitaltwins.dataplane.models import DigitalTwinModelsListOptions list_options = DigitalTwinModelsListOptions(max_item_count=top) return self.model_sdk.list( dependencies_for=dependencies_for, include_model_definition=get_definition, digital_twin_models_list_options=list_options, ) def update(self, id, decommission: bool): patched_model = [ {"op": "replace", "path": "/decommissioned", "value": decommission} ] # Does not return model object upon updating try: self.model_sdk.update(id=id, update_model=patched_model) except ErrorResponseException as e: raise CLIError(unpack_msrest_error(e)) return self.get(id=id) def delete(self, id: str): try: self.model_sdk.delete(id=id) except ErrorResponseException as e: raise CLIError(unpack_msrest_error(e)) def delete_all(self): # Get all models incoming_pager = self.list(get_definition=True) incoming_result = [] try: while True: incoming_result.extend(incoming_pager.advance_page()) except StopIteration: pass except ErrorResponseException as e: raise CLIError(unpack_msrest_error(e)) # Build dict of model_id : set of parent_ids parsed_models = {model.id: set() for model in incoming_result} for model in incoming_result: # Parse dependents, add current model as parent of dependents dependencies = get_model_dependencies(model.model) for d_id in dependencies: parsed_models[d_id].add(model.id) def delete_parents(model_id, model_dict): # Check if current model has been deleted already if model_id not in model_dict: return # Delete parents first for parent_id in model_dict[model_id]: if parent_id in model_dict: delete_parents(parent_id, model_dict) # Delete current model and remove references del model_dict[model_id] try: self.delete(model_id) except CLIError as e: logger.warn(f"Could not delete model {model_id}; error is {e}") while len(parsed_models) > 0: model_id = next(iter(parsed_models)) delete_parents(model_id, parsed_models)
StarcoderdataPython
97095
<filename>sesion28/tictactoe/core/routing.py from django.conf.urls import url from core.consumer import TicTacToeConsumer websocket_urlpatterns = [ url(r'^ws/play/$', TicTacToeConsumer.as_asgi()) ]
StarcoderdataPython
3376682
from random import random class Synapse: def __init__(self, from_neuron, to_neuron): self.from_neuron = from_neuron self.to_neuron = to_neuron self.weight = random()
StarcoderdataPython
1782935
<reponame>canyon289/nipymc import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd import numpy as np import scipy as sp import pymc3 as pm from pymc3 import Deterministic import theano.tensor as T from sklearn.preprocessing import scale as standardize import sys, pickle from random import shuffle import nipymc from nipymc import * # 1st argument = instance of simulation # 2nd argument = p = number of participants # 3rd argument = q = number of stimuli # 4th argument = s = SD of stimulus effects instance = sys.argv[1] p = sys.argv[2] q = sys.argv[3] s = sys.argv[4] # global variables... SAMPLES = 1000 BURN = 100 # double-gamma HRF (https://github.com/poldrack/pybetaseries/blob/master/pybetaseries.py) def spm_hrf(TR,p=[6,16,1,1,6,0,32]): """ An implementation of spm_hrf.m from the SPM distribution Arguments: Required: TR: repetition time at which to generate the HRF (in seconds) Optional: p: list with parameters of the two gamma functions: defaults (seconds) p[0] - delay of response (relative to onset) 6 p[1] - delay of undershoot (relative to onset) 16 p[2] - dispersion of response 1 p[3] - dispersion of undershoot 1 p[4] - ratio of response to undershoot 6 p[5] - onset (seconds) 0 p[6] - length of kernel (seconds) 32 """ p=[float(x) for x in p] fMRI_T = 16.0 TR=float(TR) dt = TR/fMRI_T u = np.arange(p[6]/dt + 1) - p[5]/dt hrf=sp.stats.gamma.pdf(u,p[0]/p[2],scale=1.0/(dt/p[2])) - sp.stats.gamma.pdf(u,p[1]/p[3],scale=1.0/(dt/p[3]))/p[4] good_pts=np.array(range(np.int(p[6]/TR)))*fMRI_T hrf=hrf[list(good_pts)] # hrf = hrf([0:(p(7)/RT)]*fMRI_T + 1); hrf = hrf/np.sum(hrf); return hrf # function to insert ISIs into a trial list def insert_ISI(trials, ISI): return np.insert(trials, np.repeat(range(1,len(trials)), ISI), 0) # function to build activation sequence from stimulus list # because of how ISI is added, length of stimulus list must be a multiple of 4 # output a tidy DataFrame including # subject info, convolved & unconvolved regressors, random effects, etc. def build_seq(sub_num, stims, sub_A_sd, sub_B_sd): # shuffle stimulus list stims = stims.reindex(np.random.permutation(stims.index)) # inter-stimulus interval is randomly selected from [1,2,3,4] # the first ISI is removed (so sequence begins with a stim presentation) ISI = np.delete(np.repeat([1,2,3,4], len(stims.index)/4, axis=0), 0) np.random.shuffle(ISI) # create matrix of stimulus predictors and add ISIs X = np.diag(stims['effect']) X = np.apply_along_axis(func1d=insert_ISI, axis=0, arr=X, ISI=ISI) # reorder the columns so they are in the same order (0-39) for everyone X = X[:,[list(stims['stim']).index([i]) for i in range(len(stims.index))]] # now convolve all predictors with double gamma HRF X = np.apply_along_axis(func1d=np.convolve, axis=0, arr=X, v=spm_hrf(1)) # build and return this subject's dataframe df = pd.DataFrame(X) df['time'] = range(len(df.index)) df['sub_num'] = sub_num # df['sub_intercept'] = np.asscalar(np.random.normal(size=1)) df['sub_A'] = np.asscalar(np.random.normal(size=1, scale=sub_A_sd)) df['sub_B'] = np.asscalar(np.random.normal(size=1, scale=sub_B_sd)) return df def build_seq_block(sub_num, stims, sub_A_sd, sub_B_sd, block_size): # block stimulus list and shuffle within each block q = len(stims.index) stims = [stims.iloc[:q//2,], stims.iloc[q//2:,]] stims = [x.reindex(np.random.permutation(x.index)) for x in stims] shuffle(stims) stims = [[x.iloc[k:(k+block_size),] for k in range(0, q//2, block_size)] for x in stims] stims = pd.concat([val for pair in zip(stims[0], stims[1]) for val in pair]) # inter-stimulus interval is randomly selected from [1,2,3,4] # the first ISI is removed (so sequence begins with a stim presentation) ISI = np.delete(np.repeat(2, len(stims.index), axis=0), 0) # create matrix of stimulus predictors and add ISIs X = np.diag(stims['effect']) X = np.apply_along_axis(func1d=insert_ISI, axis=0, arr=X, ISI=ISI) # reorder the columns so they are in the same order (0-39) for everyone X = X[:,[list(stims['stim']).index([i]) for i in range(len(stims.index))]] # now convolve all predictors with double gamma HRF X = np.apply_along_axis(func1d=np.convolve, axis=0, arr=X, v=spm_hrf(1)) # build and return this subject's dataframe df = pd.DataFrame(X) df['time'] = range(len(df.index)) df['sub_num'] = sub_num # df['sub_intercept'] = np.asscalar(np.random.normal(size=1)) df['sub_A'] = np.asscalar(np.random.normal(size=1, scale=sub_A_sd)) df['sub_B'] = np.asscalar(np.random.normal(size=1, scale=sub_B_sd)) return df # generalize the code above into a simulation function def simulate(num_subs, num_stims, A_mean, B_mean, sub_A_sd, sub_B_sd, stim_A_sd, stim_B_sd, resid_sd, ar=None, block_size=None): # build stimulus list stims = np.random.normal(size=num_stims//2, loc=1, scale=stim_A_sd/A_mean).tolist() + \ np.random.normal(size=num_stims//2, loc=1, scale=stim_B_sd/B_mean).tolist() stims = pd.DataFrame({'stim':range(num_stims), 'condition':np.repeat([0,1], num_stims//2), 'effect':np.array(stims)}) # now build design matrix from stimulus list if block_size is None: # build event-related design data = pd.concat([build_seq(sub_num=i, stims=stims, sub_A_sd=sub_A_sd, sub_B_sd=sub_B_sd) for i in range(num_subs)]) else: # build blocked design data = pd.concat([build_seq_block(sub_num=i, stims=stims, sub_A_sd=sub_A_sd, sub_B_sd=sub_B_sd, block_size=block_size) for i in range(num_subs)]) # add response variable and difference predictor if ar is None: # build y WITHOUT AR(2) errors data['y'] = (A_mean + data['sub_A'])*data.iloc[:,:(num_stims//2)].sum(axis=1).values + \ (B_mean + data['sub_B'])*data.iloc[:,(num_stims//2):num_stims].sum(axis=1).values + \ np.random.normal(size=len(data.index), scale=resid_sd) else: # build y WITH AR(2) errors data['y'] = np.empty(len(data.index)) data['y_t-1'] = np.zeros(len(data.index)) data['y_t-2'] = np.zeros(len(data.index)) for t in range(len(pd.unique(data['time']))): data.loc[t,'y'] = pd.DataFrame( (A_mean + data.loc[t,'sub_A'])*data.loc[t, range(num_stims//2)].sum(axis=1).values + \ (B_mean + data.loc[t,'sub_B'])*data.loc[t, range(num_stims//2, num_stims)].sum(axis=1).values + \ np.random.normal(size=len(data.loc[t].index), scale=resid_sd)).values if t==1: data.loc[t,'y'] = pd.DataFrame(data.loc[t,'y'].values + ar[0]*data.loc[t-1,'y'].values).values data.loc[t,'y_t-1'] = pd.DataFrame(data.loc[t-1,'y']).values if t>1: data.loc[t,'y'] = pd.DataFrame(data.loc[t,'y'].values + ar[0]*data.loc[t-1,'y'].values + ar[1]*data.loc[t-2,'y'].values).values data.loc[t,'y_t-1'] = pd.DataFrame(data.loc[t-1,'y']).values data.loc[t,'y_t-2'] = pd.DataFrame(data.loc[t-2,'y']).values # remove random stimulus effects from regressors before fitting model data.iloc[:, :num_stims] = data.iloc[:, :num_stims] / stims['effect'].tolist() # build design DataFrame # create num_subs * num_stims DataFrame # where each cell is when that stim was presented for that sub # note that this depends on there being no repeated stimulus presentations gb = data.groupby('sub_num') pres = pd.DataFrame([[next(i-1 for i, val in enumerate(df.iloc[:,stim]) if abs(val) > .0001) for stim in range(num_stims)] for sub_num, df in gb]) # build the design DataFrame from pres design = pd.concat([pd.DataFrame({'onset':pres.iloc[sub,:].sort_values(), 'run_onset':pres.iloc[sub,:].sort_values(), 'stimulus':pres.iloc[sub,:].sort_values().index, 'subject':sub, 'duration':1, 'amplitude':1, 'run':1, 'index':range(pres.shape[1])}) for sub in range(num_subs)]) design['condition'] = stims['condition'][design['stimulus']] # build activation DataFrame activation = pd.DataFrame({'y':data['y'].values, 'vol':data['time'], 'run':1, 'subject':data['sub_num']}) # build Dataset object dataset = nipymc.data.Dataset(design=design, activation=activation, TR=1) #################################### ############ FIT MODELS ############ #################################### # SPM model def get_diff(df): X = pd.concat([df.iloc[:,:num_stims//2].sum(axis=1), df.iloc[:,num_stims//2:num_stims].sum(axis=1), df['y_t-1'], df['y_t-2']], axis=1) beta = pd.stats.api.ols(y=df['y'], x=X, intercept=False).beta return pd.Series(beta[1] - beta[0]).append(beta) sub_diffs = data.groupby('sub_num').apply(get_diff) # fit model with FIXED stim effects (LS-All model) with pm.Model(): # Fixed effects b = pm.Normal('fixstim_b', mu=0, sd=10, shape=num_stims) if ar is not None: ar1 = pm.Cauchy('fixstim_AR1', alpha=0, beta=1) ar2 = pm.Cauchy('fixstim_AR2', alpha=0, beta=1) # random x1 & x2 slopes for participants sigma_sub_A = pm.HalfCauchy('fixstim_sigma_sub_A', beta=10) sigma_sub_B = pm.HalfCauchy('fixstim_sigma_sub_B', beta=10) u0 = pm.Normal('u0_sub_A_log', mu=0., sd=sigma_sub_A, shape=data['sub_num'].nunique()) u1 = pm.Normal('u1_sub_B_log', mu=0., sd=sigma_sub_B, shape=data['sub_num'].nunique()) # now write the mean model mu = u0[data['sub_num'].values]*data.iloc[:,:(num_stims//2)].sum(axis=1).values + \ u1[data['sub_num'].values]*data.iloc[:,(num_stims//2):num_stims].sum(axis=1).values + \ pm.dot(data.iloc[:, :num_stims].values, b) if ar is not None: mu += ar1*data['y_t-1'].values + ar2*data['y_t-2'].values # define the condition contrast cond_diff = Deterministic('fixstim_cond_diff', T.mean(b[num_stims//2:]) - T.mean(b[:num_stims//2])) # model for the observed values Y_obs = pm.Normal('Y_obs', mu=mu, sd=pm.HalfCauchy('fixstim_sigma', beta=10), observed=data['y'].values) # run the sampler step = pm.NUTS() print('fitting fixstim model...') trace0 = pm.sample(SAMPLES, step=step, progressbar=False) # fit model WITHOUT random stim effects with pm.Model(): # Fixed effects b1 = pm.Normal('nostim_b_A', mu=0, sd=10) b2 = pm.Normal('nostim_b_B', mu=0, sd=10) if ar is not None: ar1 = pm.Cauchy('nostim_AR1', alpha=0, beta=1) ar2 = pm.Cauchy('nostim_AR2', alpha=0, beta=1) # random x1 & x2 slopes for participants sigma_sub_A = pm.HalfCauchy('nostim_sigma_sub_A', beta=10) sigma_sub_B = pm.HalfCauchy('nostim_sigma_sub_B', beta=10) u0 = pm.Normal('u0_sub_A_log', mu=0., sd=sigma_sub_A, shape=data['sub_num'].nunique()) u1 = pm.Normal('u1_sub_B_log', mu=0., sd=sigma_sub_B, shape=data['sub_num'].nunique()) # now write the mean model mu = (b1 + u0[data['sub_num'].values])*data.iloc[:,:(num_stims//2)].sum(axis=1).values + \ (b2 + u1[data['sub_num'].values])*data.iloc[:,(num_stims//2):num_stims].sum(axis=1).values if ar is not None: mu += ar1*data['y_t-1'].values + ar2*data['y_t-2'].values # define the condition contrast cond_diff = Deterministic('nostim_cond_diff', b2 - b1) # model for the observed values Y_obs = pm.Normal('Y_obs', mu=mu, sd=pm.HalfCauchy('nostim_sigma', beta=10), observed=data['y'].values) # run the sampler step = pm.NUTS() print('fitting nostim model...') trace1 = pm.sample(SAMPLES, step=step, progressbar=False) # fit model with separate dists + variances with pm.Model(): # Fixed effects b1 = pm.Normal('randstim_b_A', mu=0, sd=10) b2 = pm.Normal('randstim_b_B', mu=0, sd=10) if ar is not None: ar1 = pm.Cauchy('randstim_AR1', alpha=0, beta=1) ar2 = pm.Cauchy('randstim_AR2', alpha=0, beta=1) # random x1 & x2 slopes for participants sigma_sub_A = pm.HalfCauchy('randstim_sigma_sub_A', beta=10) sigma_sub_B = pm.HalfCauchy('randstim_sigma_sub_B', beta=10) u0 = pm.Normal('u0_sub_A_log', mu=0., sd=sigma_sub_A, shape=data['sub_num'].nunique()) u1 = pm.Normal('u1_sub_B_log', mu=0., sd=sigma_sub_B, shape=data['sub_num'].nunique()) # random stim intercepts sigma_stim_A = pm.HalfCauchy('randstim_sigma_stim_A', beta=10) u2 = pm.Normal('randstim_stim_A', mu=0., sd=sigma_stim_A, shape=num_stims//2) sigma_stim_B = pm.HalfCauchy('randstim_sigma_stim_B', beta=10) u3 = pm.Normal('randstim_stim_B', mu=0., sd=sigma_stim_B, shape=num_stims//2) # now write the mean model mu = (b1 + u0[data['sub_num'].values])*data.iloc[:,:(num_stims//2)].sum(axis=1).values + \ (b2 + u1[data['sub_num'].values])*data.iloc[:,(num_stims//2):num_stims].sum(axis=1).values + \ pm.dot(data.iloc[:, :num_stims//2].values, u2) + pm.dot(data.iloc[:, (num_stims//2):num_stims].values, u3) if ar is not None: mu += ar1*data['y_t-1'].values + ar2*data['y_t-2'].values # define the condition contrast cond_diff = Deterministic('randstim_cond_diff', b2 - b1) # model for the observed values Y_obs = pm.Normal('Y_obs', mu=mu, sd=pm.HalfCauchy('randstim_sigma', beta=10), observed=data['y'].values) # run the sampler step = pm.NUTS() print('fitting 2dist2var model...') trace2 = pm.sample(SAMPLES, step=step, progressbar=False) # fit FIX_STIM model using pymcwrap mod3 = nipymc.model.BayesianModel(dataset) mod3.add_term('subject', label='nipymc_fixstim_subject', split_by='condition', categorical=True, random=True) mod3.add_term('stimulus', label='nipymc_fixstim_stimulus', categorical=True) mod3.groupA = [mod3.level_map['nipymc_fixstim_stimulus'][i] for i in range(num_stims//2)] mod3.groupB = [mod3.level_map['nipymc_fixstim_stimulus'][i] for i in range(num_stims//2, num_stims)] mod3.add_deterministic('nipymc_fixstim_cond_diff', "T.mean(self.dists['b_nipymc_fixstim_stimulus'][self.groupB]) - T.mean(self.dists['b_nipymc_fixstim_stimulus'][self.groupA])") mod3.set_y('y', scale=None, detrend=False, ar=0 if ar is None else 2) print('fitting nipymc_fixstim model...') mod3_fitted = mod3.run(samples=SAMPLES, verbose=False, find_map=False) # fit NO_STIM model using pymcwrap mod4 = nipymc.model.BayesianModel(dataset) mod4.add_term('condition', label='nipymc_nostim_condition', categorical=True, scale=False) mod4.add_term('subject', label='nipymc_nostim_subject', split_by='condition', categorical=True, random=True) groupA = str(mod4.level_map['nipymc_nostim_condition'][0]) groupB = str(mod4.level_map['nipymc_nostim_condition'][1]) mod4.add_deterministic('nipymc_nostim_cond_diff', "self.dists['b_nipymc_nostim_condition']["+groupB+"] - self.dists['b_nipymc_nostim_condition']["+groupA+"]") mod4.set_y('y', scale=None, detrend=False, ar=0 if ar is None else 2) print('fitting nipymc_nostim model...') mod4_fitted = mod4.run(samples=SAMPLES, verbose=False, find_map=False) # fit 2dist2var model using pymcwrap mod5 = nipymc.model.BayesianModel(dataset) mod5.add_term('condition', label='nipymc_randstim_condition', categorical=True, scale=False) mod5.add_term('stimulus', label='nipymc_randstim_stimulus', split_by='condition', categorical=True, random=True) mod5.add_term('subject', label='nipymc_randstim_subject', split_by='condition', categorical=True, random=True) groupA = str(mod5.level_map['nipymc_randstim_condition'][0]) groupB = str(mod5.level_map['nipymc_randstim_condition'][1]) mod5.add_deterministic('nipymc_randstim_cond_diff', "self.dists['b_nipymc_randstim_condition']["+groupB+"] - self.dists['b_nipymc_randstim_condition']["+groupA+"]") mod5.set_y('y', scale=None, detrend=False, ar=0 if ar is None else 2) print('fitting nipymc_randstim model...') mod5_fitted = mod5.run(samples=SAMPLES, verbose=False, find_map=False) # # save PNG of traceplot # plt.figure() # pm.traceplot(trace2[BURN:]) # plt.savefig('pymc3_randstim.png') # plt.close() # plt.figure() # pm.traceplot(mod5_fitted.trace[BURN:]) # plt.savefig('nipymc_randstim.png') # plt.close() ###################################### ########## SAVE RESULTS ############## ###################################### # return parameter estimates print('computing and returning parameter estimates...') # lists of traces and names of their model parameters traces = [trace0, # fixstim trace1, # nostim trace2, # randstim mod3_fitted.trace, # nipymc_fixstim mod4_fitted.trace, # nipymc_nostim mod5_fitted.trace] # nipymc_randstim parlists = [[x for x in trace.varnames if 'log' not in x and 'u_' not in x] for trace in traces] # get posterior mean and SDs as lists of lists means = [[trace[param][BURN:].mean() for param in parlist] for trace, parlist in zip(traces, parlists)] SDs = [[trace[param][BURN:].std() for param in parlist] for trace, parlist in zip(traces, parlists)] # print list of summary statistics stats = sum([['posterior_mean']*len(x) + ['posterior_SD']*len(x) for x in parlists], []) print(stats) print(len(stats)) # print parameter names in the order in which they are saved parlists = [2*parlist for parlist in parlists] extra_params = [] params = [param for parlist in parlists for param in parlist] + extra_params print(params) # add SPM model results ans = [summary for model in zip(means, SDs) for summary in model] ans = [sub_diffs.mean(0).tolist(), (sub_diffs.std(0)/(len(sub_diffs.index)**.5)).tolist()] + ans params = ['SPM_cond_diff','SPM_A_mean','SPM_B_mean','SPM_AR1','SPM_AR2']*2 + params stats = ['posterior_mean']*5 + ['posterior_SD']*5 + stats # add test statistics for all models # grab all posterior means nums = [np.array(x) for x in ans][::2] # grab all posterior SDs denoms = [np.array(x) for x in ans][1::2] # divide them zs = [n/d for n,d in zip(nums,denoms)] zs = sum([x.tolist() for x in zs], []) # keep only the test statistics related to cond_diff labels = [params[i] for i in [j for j,x in enumerate(stats) if x=='posterior_mean']] zs = [(z,l) for z,l in zip(zs,labels) if 'cond_diff' in l] # add them to the results ans = [[x[0] for x in zs]] + ans params = [x[1] for x in zs] + params stats = ['test_statistic']*7 + stats # return the parameter values # for first instance only, also return param names and etc. if int(instance)==0: ans = [ans, params, stats] return ans # run simulation print('beginning simulation...') dat = simulate(num_subs=int(p), num_stims=int(q), A_mean=1, B_mean=2, sub_A_sd=1, sub_B_sd=1, stim_A_sd=float(s), stim_B_sd=float(s), resid_sd=1, ar=[.45,.15], block_size=8) print('sim complete. saving results...') # write results to disk as pickle # w = write, r = read, a = append # b = binary output = open('/scratch/03754/jaw5629/xsim_appendix_test/xsim_p'+str(p)+'_q'+str(q)+'_s'+str(s)+'_dat'+str(instance)+'.pkl', 'wb') pickle.dump(dat, output) output.close() print('finished nicely!')
StarcoderdataPython
1788564
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (division, absolute_import, print_function, unicode_literals) class Calculator(): def power(self, n, p): if n < 0 or p < 0: raise Exception('n and p should be non-negative') else: return n**p def main(): myCalculator = Calculator() T = int(input()) for i in range(T): n, p = map(int, input().split()) try: ans = myCalculator.power(n, p) print(ans) except Exception as e: print(e) if __name__ == '__main__': main()
StarcoderdataPython
4814802
<filename>hummingbird/ml/operator_converters/sklearn/label_encoder.py<gh_stars>1-10 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Converter for scikit-learn label encoder. """ import numpy as np from onnxconverter_common.registration import register_converter from .._label_encoder_implementations import NumericLabelEncoder, StringLabelEncoder def convert_sklearn_label_encoder(operator, device, extra_config): """ Converter for `sklearn.preprocessing.LabelEncoder` Args: operator: An operator wrapping a `sklearn.preprocessing.LabelEncoder` model device: String defining the type of device the converted operator should be run on extra_config: Extra configuration used to select the best conversion strategy Returns: A PyTorch model """ if all([type(x) in [int, np.int32, np.int64] for x in operator.raw_operator.classes_]): return NumericLabelEncoder(operator.raw_operator.classes_, device) else: return StringLabelEncoder(operator.raw_operator.classes_, device, extra_config) register_converter("SklearnLabelEncoder", convert_sklearn_label_encoder)
StarcoderdataPython
3377596
#!/usr/bin/env python # # Copyright 2014 cloudysunny14. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ How to run this test edit linc config file. LINC-Switch/rel/linc/releases/1.0/sys.config You can find the sample config I used for the test below: [ {linc, [ {of_config, enabled}, {capable_switch_ports, [ {port, 1, [{interface, "tap0"}]}, {port, 2, [{interface, "tap1"}]} ]}, {capable_switch_queues, [ {queue, 1, [{min_rate, 100}, {max_rate, 100}]}, {queue, 2, [{min_rate, 100}, {max_rate, 100}]} ]}, {logical_switches, [ {switch, 0, [ {backend, linc_us4}, {controllers, [ {"Switch0-DefaultController", "localhost", 6633, tcp} ]}, {queues_status, enabled}, {ports, [ {port, 1, {queues, [1,2]}}, {port, 2, {queues, [1,2]}} ]} ]} ]} ]}, {enetconf, [ {capabilities, [{base, {1, 1}}, {startup, {1, 0}}, {'writable-running', {1, 0}}]}, {callback_module, linc_ofconfig}, {sshd_ip, any}, {sshd_port, 1830}, {sshd_user_passwords, [ {"linc", "linc"} ]} ]}, {lager, [ {handlers, [ {lager_console_backend, info}, {lager_file_backend, [ {"log/error.log", error, 10485760, "$D0", 5}, {"log/console.log", info, 10485760, "$D0", 5} ]} ]} ]}, {sasl, [ {sasl_error_logger, {file, "log/sasl-error.log"}}, {errlog_type, error}, {error_logger_mf_dir, "log/sasl"}, % Log directory {error_logger_mf_maxbytes, 10485760}, % 10 MB max file size {error_logger_mf_maxfiles, 5} % 5 files max ]}, {sync, [ {excluded_modules, [procket]} ]} ]. Then run linc # sudo rel/linc/bin/linc console Then run ryu # cd of_mangle # export RYUHOME=$HOME/ryu # PYTHONPATH=$RYUHOME:. $RYUHOME/bin/ryu-manager --verbose\ tests/test_of_mangle.py """ import logging from ryu.base import app_manager from ryu.controller import dpset from ryu.controller.handler import set_ev_cls from ryu.exception import OFPUnknownVersion from ryu.lib import ofctl_v1_0 from ryu.lib import ofctl_v1_2 from ryu.lib import ofctl_v1_3 from ryu.lib import hub from ryu.lib.of_config import capable_switch from ryu.controller import ofp_event from ryu.controller import dpset from ryu.controller.handler import MAIN_DISPATCHER from ryu.ofproto import ofproto_v1_0 from ryu.ofproto import ofproto_v1_2 from ryu.ofproto import ofproto_v1_3 from app import qoslib LOG = logging.getLogger(__name__) LOG_TEST_FINISH = 'TEST_FINISHED: Tests=[%s] (OK=%s NG=%s SKIP=%s)' def get_flow_stats(dp, waiters, ofctl): table_id = dp.ofproto.OFPTT_ALL flags = 0 out_port = dp.ofproto.OFPP_ANY out_group = dp.ofproto.OFPG_ANY cookie = 0 cookie_mask = 0 match = dp.ofproto_parser.OFPMatch() stats = dp.ofproto_parser.OFPFlowStatsRequest( dp, flags, table_id, out_port, out_group, cookie, cookie_mask, match) msgs = [] ofctl.send_stats_request(dp, stats, waiters, msgs) flows = [] for msg in msgs: for stats in msg.body: actions = ofctl.actions_to_str(stats.instructions) match = ofctl.match_to_str(stats.match) s = {'priority': stats.priority, 'cookie': stats.cookie, 'idle_timeout': stats.idle_timeout, 'hard_timeout': stats.hard_timeout, 'actions': actions, 'match': match, 'table_id': stats.table_id} flows.append(s) flows = {str(dp.id): flows} return flows def delete_all_flows(dp): match = dp.ofproto_parser.OFPMatch() m = dp.ofproto_parser.OFPFlowMod(dp, 0, 0, dp.ofproto.OFPTT_ALL, dp.ofproto.OFPFC_DELETE, 0, 0, 0, 0xffffffff, dp.ofproto.OFPP_ANY, dp.ofproto.OFPG_ANY, 0, match, []) dp.send_msg(m) class OFMangleTester(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] _CONTEXTS = {'dpset': dpset.DPSet, 'qoslib': qoslib.QoSLib} _OFCTL = {ofproto_v1_0.OFP_VERSION: ofctl_v1_0, ofproto_v1_2.OFP_VERSION: ofctl_v1_2, ofproto_v1_3.OFP_VERSION: ofctl_v1_3} def __init__(self, *args, **kwargs): super(OFMangleTester, self).__init__(*args, **kwargs) self.dpset = kwargs['dpset'] self.qoslib = kwargs['qoslib'] self.qoslib.use_switch_flow = False self.waiters = {} self.pending = [] self.results = {} self.capable_switch = capable_switch.OFCapableSwitch( host='localhost', port=1830, username='linc', password='<PASSWORD>', unknown_host_cb=lambda host, fingeprint: True) for t in dir(self): if t.startswith("test_"): self.pending.append(t) self.pending.sort(reverse=True) def stats_reply_handler(self, ev): msg = ev.msg dp = msg.datapath if dp.id not in self.waiters: return if msg.xid not in self.waiters[dp.id]: return lock, msgs = self.waiters[dp.id][msg.xid] msgs.append(msg) flags = 0 if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION or \ dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: flags = dp.ofproto.OFPSF_REPLY_MORE elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: flags = dp.ofproto.OFPMPF_REPLY_MORE if msg.flags & flags: return del self.waiters[dp.id][msg.xid] lock.set() # for OpenFlow version1.0 @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) def stats_reply_handler_v1_0(self, ev): self.stats_reply_handler(ev) # for OpenFlow version1.2 or later @set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER) def stats_reply_handler_v1_2(self, ev): self.stats_reply_handler(ev) @set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER) def datapath_handler(self, ev): # Target switch datapath self.dp = ev.dp version = self.dp.ofproto.OFP_VERSION if version not in self._OFCTL: raise OFPUnknownVersion(version=version) self.ofctl = self._OFCTL[version] hub.spawn(self._do_test) def test_action_accept(self): mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'accept').\ add_property('dst-address', '10.0.0.2').\ add_property('chain', 'forward') self.qoslib.add_mangle(mangle) msg = get_flow_stats(self.dp, self.waiters, self.ofctl) flow = msg[msg.keys()[0]][0] return ({'hard_timeout': 0, 'actions': ['GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 0, 'table_id': 2, 'match': {'dl_type': 2048, 'nw_dst': '10.0.0.2'}} == flow) def test_action_list(self): mangle = qoslib.QoSLib.mangle(self.dp) mangle.address_list('first', ['10.0.0.2', '10.0.0.3']) mangle.add_property('action', 'accept').\ add_property('dst-address-list', 'first').\ add_property('chain', 'forward') self.qoslib.add_mangle(mangle) msg = get_flow_stats(self.dp, self.waiters, self.ofctl) flow = msg[msg.keys()[0]] LOG.info(flow) return ([{'hard_timeout': 0, 'actions': ['GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 2113536, 'table_id': 2, 'match': {'dl_type': 2048, 'nw_dst': '10.0.0.3'}}, {'hard_timeout': 0, 'actions': ['GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 2113536, 'table_id': 2, 'match': {'dl_type': 2048, 'nw_dst': '10.0.0.2'}}] == flow) def test_add_address_list(self): mangle = qoslib.QoSLib.mangle(self.dp) mangle.address_list('add_telnet', ['10.0.2.1', '10.0.3.1']) mangle.add_property('action', 'add-dst-to-address-list').\ add_property('address-list', 'add_telnet').\ add_property('dst-port', 5001).\ add_property('chain', 'input').\ add_property('priority', 100) self.qoslib.add_mangle(mangle) mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'mark-packet').\ add_property('src-address-list', 'add_telnet').\ add_property('new-packet-mark', 'drop').\ add_property('chain', 'preforward') self.qoslib.add_mangle(mangle) mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'accept').\ add_property('chain', 'input').\ add_property('priority', 0) self.qoslib.add_mangle(mangle) msg = get_flow_stats(self.dp, self.waiters, self.ofctl) flow = msg[msg.keys()[0]] LOG.info(flow) return ([{'hard_timeout': 0, 'actions': ['OUTPUT:4294967293'], 'priority': 100, 'idle_timeout': 0, 'cookie': 1048576, 'table_id': 0, 'match': {'dl_type': 2048, 'nw_proto': 6, 'tp_dst': 5001}}, {'hard_timeout': 0, 'actions': ['GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 0, 'table_id': 0, 'match': {}}, {'hard_timeout': 0, 'actions': ['SET_FIELD: {ip_dscp:2}', 'GOTO_TABLE:2'], 'priority': 0, 'idle_timeout': 0, 'cookie': 1056768, 'table_id': 1, 'match': {'dl_type': 2048, 'nw_src': '10.0.3.1'}}, {'hard_timeout': 0, 'actions': ['SET_FIELD: {ip_dscp:2}', 'GOTO_TABLE:2'], 'priority': 0, 'idle_timeout': 0, 'cookie': 1056768, 'table_id': 1, 'match': {'dl_type': 2048, 'nw_src': '10.0.2.1'}}] == flow) def test_match_mac(self): mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'accept').\ add_property('dst-mac-address', '11:11:11:11:11:11').\ add_property('chain', 'forward') self.qoslib.add_mangle(mangle) msg = get_flow_stats(self.dp, self.waiters, self.ofctl) flow = msg[msg.keys()[0]] return ([{'hard_timeout': 0, 'actions': ['GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 0, 'table_id': 2, 'match': {'dl_dst': '11:11:11:11:11:11'}}] == flow) def test_add_queue(self): queue = qoslib.QoSLib.queue_tree(self.capable_switch, self.dp) queue.queue('high-priority', '500', '500') self.qoslib.register_queue(queue) return True def test_queue_configuration(self): queue = qoslib.QoSLib.queue_tree(self.capable_switch, self.dp) queue.queue('best-effort-queue', '100', '100') self.qoslib.register_queue(queue) mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'mark-packet').\ add_property('new-packet-mark', 'best-effort').\ add_property('src-address', '10.0.1.0/24').\ add_property('jump', 'forward') self.qoslib.add_mangle(mangle) mangle = qoslib.QoSLib.mangle(self.dp) mangle.add_property('action', 'accept').\ add_property('queue', 'best-effort-queue').\ add_property('packet-mark', 'best-effort').\ add_property('chain', 'forward') self.qoslib.add_mangle(mangle) msg = get_flow_stats(self.dp, self.waiters, self.ofctl) flow = msg[msg.keys()[0]] LOG.info(flow) return ([{'hard_timeout': 0, 'actions': ['SET_FIELD: {ip_dscp:1}', 'GOTO_TABLE:2'], 'priority': 0, 'idle_timeout': 0, 'cookie': 0, 'table_id': 0, 'match': {'dl_type': 2048, 'nw_src': '10.0.1.0/24'}}, {'hard_timeout': 0, 'actions': ['SET_QUEUE:2', 'GOTO_TABLE:3'], 'priority': 0, 'idle_timeout': 0, 'cookie': 0, 'table_id': 2, 'match': {'dl_type': 2048, 'ip_dscp': 1}}] == flow) def _print_results(self): LOG.info("TEST_RESULTS:") ok = 0 ng = 0 skip = 0 for t in sorted(self.results.keys()): if self.results[t] is True: ok += 1 else: ng += 1 LOG.info(" %s: %s", t, self.results[t]) LOG.info(LOG_TEST_FINISH, len(self.pending), ok, ng, skip) def _do_test(self): """""" for test in self.pending: delete_all_flows(self.dp) self.results[test] = getattr(self, test)() self._print_results()
StarcoderdataPython
4813849
<filename>pocao.py<gh_stars>0 from pokemon import * from pessoa import Pessoa class Pocao(Pokemon, Pessoa): def __init__(self, pokemon=None, jcoin=0): self.pokemon = pokemon self.preco = 350 self.jcoin = jcoin def funcao_pocao(self): pass class Curar(Pocao): def funcao_pocao(self, saldo): if saldo > self.preco: print('Curando...') sleep(1.5) curar_pokemon = self.pokemon print(f'Preco de cura: {self.preco}') novo = saldo - self.preco curar_pokemon.vida = curar_pokemon.level * 10 else: print('sem saldo') return self.preco
StarcoderdataPython
1718307
<filename>lenstools/simulations/nbody.py from __future__ import division from abc import ABCMeta,abstractproperty,abstractmethod from operator import mul from functools import reduce import sys,os from .logs import logplanes,logstderr,peakMemory import logging from .. import extern as ext import numpy as np #astropy stuff, invaluable here from astropy.units import Mbyte,kpc,Mpc,cm,km,g,s,hour,day,deg,arcmin,rad,Msun,quantity,def_unit from astropy.constants import c from astropy.cosmology import w0waCDM,z_at_value #FFT engine from ..utils.fft import NUMPYFFTPack fftengine = NUMPYFFTPack() #KD-Tree from scipy.spatial import cKDTree as KDTree #Plotting engine try: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D matplotlib = True except ImportError: matplotlib = False #Try to import r2py to save snapshot positions in R format try: import rpy2.robjects as robj rpy2 = True except ImportError: rpy2 = False ################################################################### #################NbodySnapshot abstract class###################### ################################################################### class NbodySnapshot(object): __metaclass__ = ABCMeta """ A class that handles Nbody simulation snapshots; it's an abstract class as I/O routines have to be specified """ ##################################################################### ######################Abstract methods############################### ##################################################################### @abstractmethod def buildFilename(cls,root,pool,**kwargs): pass @abstractmethod def int2root(cls,name,n): pass @abstractmethod def getHeader(self): pass @abstractmethod def setLimits(self): pass @abstractmethod def getPositions(self,first=None,last=None,save=True): pass @abstractmethod def getVelocities(self,first=None,last=None,save=True): pass @abstractmethod def getID(self,first=None,last=None,save=True): pass @abstractmethod def write(self,filename,files=1): pass ################################################################################### ######################Default, non--abstract methods############################### ################################################################################### #Check that header has all required keys# _header_keys = ['redshift','scale_factor','masses','num_particles_file','num_particles_total','box_size','num_files','Om0','Ode0','w0','wa','h'] def _check_header(self): for key in self._header_keys: assert key in self._header,"Key {0} not loaded in header, please make sure that the getHeader method is configured to do that!".format(key) #################################################################################################################### def __enter__(self): return self def __exit__(self,type,value,tb): self.fp.close() def __init__(self,fp=None,pool=None,length_unit=1.0*kpc,mass_unit=1.0e10*Msun,velocity_unit=1.0*km/s,header_kwargs=dict()): self.pool = pool self._length_unit = length_unit.to(cm).value self._mass_unit = mass_unit.to(g).value self._velocity_unit = velocity_unit.to(cm/s).value if fp is not None: self.fp = fp #Load the header self._header = self.getHeader(**header_kwargs) #Check that header has been loaded correctly self._check_header() #Hubble parameter h = self._header["h"] #Define the Mpc/h, and kpc/h units for convenience if h>0.0: self.kpc_over_h = def_unit("kpc/h",kpc/self._header["h"]) self.Mpc_over_h = def_unit("Mpc/h",Mpc/self._header["h"]) #Scale box to kpc/h self._header["box_size"] *= self.kpc_over_h #Convert to Mpc/h self._header["box_size"] = self._header["box_size"].to(self.Mpc_over_h) #Read in the comoving distance if "comoving_distance" in self._header: self._header["comoving_distance"] = (self._header["comoving_distance"] / 1.0e3) * self.Mpc_over_h else: self._header["box_size"] *= kpc logging.debug("Warning! Hubble parameter h is zero!!") #Scale masses to correct units if h>0.0: self._header["masses"] *= (self._mass_unit / self._header["h"]) self._header["masses"] = (self._header["masses"]*g).to(Msun) #Scale Hubble parameter to correct units self._header["H0"] = self._header["h"] * 100 * km / (s*Mpc) #Update the dictionary with the number of particles per side self._header["num_particles_total_side"] = int(np.round(self._header["num_particles_total"]**(1/3))) #Once all the info is available, add a wCDM instance as attribute to facilitate the cosmological calculations if h>0.0: self.cosmology = w0waCDM(H0=self._header["H0"],Om0=self._header["Om0"],Ode0=self._header["Ode0"],w0=self._header["w0"],wa=self._header["wa"]) #Set particle number limits that this instance will handle self.setLimits() @classmethod def open(cls,filename,pool=None,header_kwargs=dict(),**kwargs): """ Opens a snapshot at filename :param filename: file name of the snapshot :type filename: str. or file. :param pool: use to distribute the calculations on different processors; if not None, each processor takes care of one of the snapshot parts, appending as ".n" to the filename :type pool: MPIWhirlPool instance :param header_kwargs: keyword arguments to pass to the getHeader method :type header_kwargs: dict. :param kwargs: the keyword arguments are passed to buildFilename :type kwargs: dict. """ if hasattr(filename,"format"): fp = open(cls.buildFilename(filename,pool,**kwargs),"rb") elif hasattr(filename,"read"): if pool is not None: raise TypeError("Specifying file objects with MPIPools is not allowed!") fp = filename else: raise TypeError("filename type is {0}, must be string or file!".format(type(filename))) return cls(fp,pool,header_kwargs=header_kwargs) @property def header(self): """ Displays the snapshot header information :returns: the snapshot header information in dictionary form :rtype: dict. """ return self._header def pos2R(self,filename,variable_name="pos"): """ Saves the positions of the particles in a R readable format, for facilitating visualization with RGL :param filename: name of the file on which to save the particles positions :type filename: str. :param variable_name: name of the variable that contains the (x,y,z) positions in the R environment :type variable_name: str. """ if not rpy2: raise ImportError("rpy2 is not installed, can't proceed!") #Read in the positions if not hasattr(self,"positions"): self.getPositions() #Convert numpy array into an R vector positions_bare = self.positions.to(Mpc).value r_positions = robj.FloatVector(positions_bare.T.ravel()) #Set the R environment robj.rinterface.globalenv[variable_name] = robj.r["matrix"](r_positions,nrow=positions_bare.shape[0]) #Save robj.r.save(variable_name,file=filename) def reorder(self): """ Sort particles attributes according to their ID """ assert hasattr(self,"id") #Rank the IDs idx = np.argsort(self.id) #Sort positions if hasattr(self,"positions"): assert self.positions.shape[0]==len(self.id) self.positions = self.positions[idx] #Sort velocities if hasattr(self,"velocities"): assert self.velocities.shape[0]==len(self.id) self.velocities = self.velocities[idx] #Finally sort IDs self.id.sort() def gridID(self): """ Compute an ID for the particles in incresing order according to their position on a Nside x Nside x Nside grid; the id is computed as x + y*Nside + z*Nside**2 :returns: the gridded IDs :rtype: array of float """ try: pos = self.positions except: pos = self.getPositions() #Set the measure units for the grid grid_unit = self.header["box_size"].to(pos.unit).value / self._header["num_particles_total_side"] row = np.array([1,self._header["num_particles_total_side"],self._header["num_particles_total_side"]**2]) posID = np.dot(pos.value/grid_unit,row) return posID def visualize(self,fig=None,ax=None,scale=False,first=None,last=None,**kwargs): """ Visualize the particles in the snapshot using the matplotlib 3D plotting engine, the kwargs are passed to the matplotlib scatter method :param scale: if True, multiply all the (comoving) positions by the scale factor :type scale: bool. """ if not matplotlib: raise ImportError("matplotlib is not installed, cannot visualize!") #Get the positions if you didn't do it before if not hasattr(self,"positions"): self.getPositions() #If first or last are not specified, show all the particles if first is None: first = 0 if last is None: last = self.positions.shape[0] #Instantiate figure if (fig is None) or (ax is None): self.fig = plt.figure() self.ax = self.fig.add_subplot(111,projection="3d") else: self.fig = fig self.ax = ax #Put the particles in the figure if scale: self.ax.scatter(*(self.positions[first:last].T.value*self._header["scale_factor"]),**kwargs) else: self.ax.scatter(*self.positions[first:last].T.value,**kwargs) #Put the labels on the axes self.ax.set_xlabel(r"$x({0})$".format(self.positions.unit.to_string())) self.ax.set_ylabel(r"$y({0})$".format(self.positions.unit.to_string())) self.ax.set_zlabel(r"$z({0})$".format(self.positions.unit.to_string())) def savefig(self,filename): """ Save the snapshot visualization to an external file :param filename: file name to which the figure will be saved :type filename: str. """ self.fig.savefig(filename) def close(self): """ Closes the snapshot file """ self.fp.close() def setPositions(self,positions): """ Sets the positions in the current snapshot (with the intent of writing them to a properly formatted snapshot file) :param positions: positions of the particles, must have units :type positions: (N,3) array with units """ assert positions.shape[1]==3 assert positions.unit.physical_type=="length" self.positions = positions def setVelocities(self,velocities): """ Sets the velocities in the current snapshot (with the intent of writing them to a properly formatted snapshot file) :param velocities: velocities of the particles, must have units :type velocities: (N,3) array with units """ assert velocities.shape[1]==3 assert velocities.unit.physical_type=="speed" self.velocities = velocities def massDensity(self,resolution=0.5*Mpc,smooth=None,left_corner=None,save=False,density_placeholder=None): """ Uses a C backend gridding function to compute the matter mass density fluctutation for the current snapshot: the density is evaluated using a nearest neighbor search :param resolution: resolution below which particles are grouped together; if an int is passed, this is the size of the grid :type resolution: float with units or int. :param smooth: if not None, performs a smoothing of the density (or potential) with a gaussian kernel of scale "smooth x the pixel resolution" :type smooth: int. or None :param left_corner: specify the position of the lower left corner of the box; if None, the minimum of the (x,y,z) of the contained particles is assumed :type left_corner: tuple of quantities or None :param save: if True saves the density histogram and resolution as instance attributes :type save: bool. :param density placeholder: if not None, it is used as a fixed memory chunk for MPI communications of the density :type density_placeholder: array :returns: tuple(numpy 3D array with the (unsmoothed) matter density fluctuation on a grid,bin resolution along the axes) """ #Sanity checks assert type(resolution) in [np.int,quantity.Quantity] if type(resolution)==quantity.Quantity: assert resolution.unit.physical_type=="length" #Check if positions are already available, otherwise retrieve them if hasattr(self,"positions"): positions = self.positions else: positions = self.getPositions(save=False) assert hasattr(self,"weights") assert hasattr(self,"virial_radius") assert hasattr(self,"concentration") #Bin extremes (we start from the leftmost position up to the box size) if left_corner is None: xmin,ymin,zmin = positions.min(axis=0) else: xmin,ymin,zmin = left_corner #Construct binning if type(resolution)==quantity.Quantity: #Scale to appropriate units resolution = resolution.to(positions.unit) xi = np.arange(xmin.to(positions.unit).value,(xmin + self._header["box_size"]).to(positions.unit).value,resolution.value) yi = np.arange(ymin.to(positions.unit).value,(ymin + self._header["box_size"]).to(positions.unit).value,resolution.value) zi = np.arange(zmin.to(positions.unit).value,(zmin + self._header["box_size"]).to(positions.unit).value,resolution.value) else: xi = np.linspace(xmin.to(positions.unit).value,(xmin + self._header["box_size"]).to(positions.unit).value,resolution+1) yi = np.linspace(ymin.to(positions.unit).value,(ymin + self._header["box_size"]).to(positions.unit).value,resolution+1) zi = np.linspace(zmin.to(positions.unit).value,(zmin + self._header["box_size"]).to(positions.unit).value,resolution+1) #Compute the number count histogram assert positions.value.dtype==np.float32 #Weights if self.weights is not None: weights = (self.weights * self._header["num_particles_total"] / ((len(xi) - 1) * (len(yi) - 1) * (len(zi) - 1))).astype(np.float32) else: weights = None if self.virial_radius is not None: rv = self.virial_radius.to(positions.unit).value else: rv = None density = ext._nbody.grid3d(positions.value,(xi,yi,zi),weights,rv,self.concentration) * (len(xi)-1) * (len(yi)-1) * (len(zi)-1) / self._header["num_particles_total"] #Accumulate from the other processors if self.pool is not None: if density_placeholder is not None: density_placeholder[:] = density self.pool.comm.Barrier() self.pool.accumulate() else: self.pool.openWindow(density) self.pool.accumulate() self.pool.closeWindow() #Recompute resolution to make sure it represents the bin size correctly bin_resolution = ((xi[1:]-xi[:-1]).mean() * positions.unit,(yi[1:]-yi[:-1]).mean() * positions.unit,(zi[1:]-zi[:-1]).mean() * positions.unit) #Perform smoothing if prompted if smooth is not None: #Fourier transform the density field fx,fy,fz = np.meshgrid(fftengine.fftfreq(density.shape[0]),fftengine.fftfreq(density.shape[1]),fftengine.rfftfreq(density.shape[2]),indexing="ij") density_ft = fftengine.rfftn(density) #Perform the smoothing density_ft *= np.exp(-0.5*((2.0*np.pi*smooth)**2)*(fx**2 + fy**2 + fz**2)) #Go back in real space density = fftengine.irfftn(density_ft) #Return the density histogram, along with the bin resolution along each axis if save: self.density,self.resolution = density,bin_resolution return density,bin_resolution ################################################################################################################################################### def cutPlaneGaussianGrid(self,normal=2,thickness=0.5*Mpc,center=7.0*Mpc,plane_resolution=4096,left_corner=None,thickness_resolution=1,smooth=1,kind="density",**kwargs): """ Cuts a density (or lensing potential) plane out of the snapshot by computing the particle number density on a slab and performing Gaussian smoothing; the plane coordinates are cartesian comoving :param normal: direction of the normal to the plane (0 is x, 1 is y and 2 is z) :type normal: int. (0,1,2) :param thickness: thickness of the plane :type thickness: float. with units :param center: location of the plane along the normal direction :type center: float. with units :param plane_resolution: plane resolution (perpendicular to the normal) :type plane_resolution: float. with units (or int.) :param left_corner: specify the position of the lower left corner of the box; if None, the minimum of the (x,y,z) of the contained particles is assumed :type left_corner: tuple of quantities or None :param thickness_resolution: plane resolution (along the normal) :type thickness_resolution: float. with units (or int.) :param smooth: if not None, performs a smoothing of the density (or potential) with a gaussian kernel of scale "smooth x the pixel resolution" :type smooth: int. or None :param kind: decide if computing a density or gravitational potential plane (this is computed solving the poisson equation) :type kind: str. ("density" or "potential") :param kwargs: accepted keyword are: 'density_placeholder', a pre-allocated numpy array, with a RMA window opened on it; this facilitates the communication with different processors by using a single RMA window during the execution. 'l_squared' a pre-computed meshgrid of squared multipoles used for smoothing :type kwargs: dict. :returns: tuple(numpy 2D array with the density (or lensing potential),bin resolution along the axes, number of particles on the plane) """ #Sanity checks assert normal in range(3),"There are only 3 dimensions!" assert kind in ["density","potential"],"Specify density or potential plane!" assert type(thickness)==quantity.Quantity and thickness.unit.physical_type=="length" assert type(center)==quantity.Quantity and center.unit.physical_type=="length" #Redshift must be bigger than 0 or we cannot proceed if ("redshift" in self.header) and (self.header["redshift"]<=0.0): raise ValueError("The snapshot redshift must be >0 for the lensing density to be defined!") #Cosmological normalization factor cosmo_normalization = 1.5 * self.header["H0"]**2 * self.header["Om0"] / c**2 #Direction of the plane plane_directions = [ d for d in range(3) if d!=normal ] #Get the particle positions if not available get if hasattr(self,"positions"): positions = self.positions else: positions = self.getPositions(first=self._first,last=self._last,save=False) assert hasattr(self,"weights") assert hasattr(self,"virial_radius") assert hasattr(self,"concentration") #Lower left corner of the plane if left_corner is None: left_corner = positions.min(axis=0) #Create a list that holds the bins binning = [None,None,None] #Binning in the longitudinal direction assert type(plane_resolution) in [np.int,quantity.Quantity] if type(plane_resolution)==quantity.Quantity: assert plane_resolution.unit.physical_type=="length" plane_resolution = plane_resolution.to(positions.unit) binning[plane_directions[0]] = np.arange(left_corner[plane_directions[0]].to(positions.unit).value,(left_corner[plane_directions[0]] + self._header["box_size"]).to(positions.unit).value,plane_resolution.value) binning[plane_directions[1]] = np.arange(left_corner[plane_directions[1]].to(positions.unit).value,(left_corner[plane_directions[1]] + self._header["box_size"]).to(positions.unit).value,plane_resolution.value) else: binning[plane_directions[0]] = np.linspace(left_corner[plane_directions[0]].to(positions.unit).value,(left_corner[plane_directions[0]] + self._header["box_size"]).to(positions.unit).value,plane_resolution+1) binning[plane_directions[1]] = np.linspace(left_corner[plane_directions[1]].to(positions.unit).value,(left_corner[plane_directions[1]] + self._header["box_size"]).to(positions.unit).value,plane_resolution+1) #Binning in the normal direction assert type(thickness_resolution) in [np.int,quantity.Quantity] center = center.to(positions.unit) thickness = thickness.to(positions.unit) if type(thickness_resolution)==quantity.Quantity: assert thickness_resolution.unit.physical_type=="length" thickness_resolution = thickness_resolution.to(positions.unit) binning[normal] = np.arange((center - thickness/2).to(positions.unit).value,(center + thickness/2).to(positions.unit).value,thickness_resolution.value) else: binning[normal] = np.linspace((center - thickness/2).to(positions.unit).value,(center + thickness/2).to(positions.unit).value,thickness_resolution+1) #Weights if self.weights is not None: weights = self.weights.astype(np.float32) else: weights = None #Virial radius if self.virial_radius is not None: assert weights is not None,"Particles have virial radiuses, you should specify their weight!" weights = (weights * self._header["num_particles_total"] / ((len(binning[0]) - 1) * (len(binning[1]) - 1) * (len(binning[2]) - 1))).astype(np.float32) rv = self.virial_radius.to(positions.unit).value else: rv = None #Recompute resolution to make sure it represents the bin size correctly bin_resolution = [ (binning[n][1:]-binning[n][:-1]).mean() * positions.unit for n in (0,1,2) ] ############################################################################################################ #################################Longitudinal normalization factor########################################## #If the comoving distance is not provided in the header, the position along the normal direction is assumed# ############################################################################################################ if "comoving_distance" in self.header: #Constant time snapshots density_normalization = bin_resolution[normal] * self.header["comoving_distance"] / self.header["scale_factor"] else: #Light cone projection: use the lens center as the common comoving distance zlens = z_at_value(self.cosmology.comoving_distance,center) density_normalization = bin_resolution[normal] * center * (1.+zlens) #Now use gridding to compute the density along the slab assert positions.value.dtype==np.float32 #Log if self.pool is not None: logplanes.debug("Task {0} began gridding procedure".format(self.pool.rank)) else: logplanes.debug("Began gridding procedure") ########## #Gridding# ########## density = ext._nbody.grid3d_nfw(positions.value,tuple(binning),weights,rv,self.concentration) ################################################################################################################################### #Log if self.pool is not None: logplanes.debug("Task {0} done with gridding procedure".format(self.pool.rank)) else: logplanes.debug("Done with gridding procedure") if (self.pool is None) or (self.pool.is_master()): logstderr.debug("Done with gridding procedure: peak memory usage {0:.3f} (task)".format(peakMemory())) #Accumulate the density from the other processors if "density_placeholder" in kwargs.keys(): density_projected = kwargs["density_placeholder"] #Safety assert assert density_projected.shape==(density.shape[plane_directions[0]],density.shape[plane_directions[1]]) density_projected[:] = density.sum(normal) NumPartTask = density_projected.sum() if self.pool is not None: self.pool.comm.Barrier() #Log logplanes.debug("Task {0} collected {1:.3e} particles".format(self.pool.rank,NumPartTask)) #Compute how many particles in total shoud be collected (for checking) NumPartTotalExpected = np.zeros(1,dtype=np.float32) self.pool.comm.Reduce(np.array([NumPartTask]),NumPartTotalExpected) #Log if self.pool.is_master(): logplanes.debug("{0[0]:.3e} particles should be collected from tasks 0-{1}".format(NumPartTotalExpected,self.pool.size)) logplanes.debug("Communicating density between tasks...") self.pool.accumulate() else: #Project along the normal direction density_projected = density.sum(normal) NumPartTask = density_projected.sum() if self.pool is not None: #Log logplanes.debug("Task {0} collected {1:.3e} particles".format(self.pool.rank,NumPartTask)) self.pool.openWindow(density_projected) self.pool.accumulate() self.pool.closeWindow() #Safety barrier sync if self.pool is not None: self.pool.comm.Barrier() #Compute the number of particles on the plane NumPartTotal = density_projected.sum() #Log if (self.pool is not None) and self.pool.is_master(): logplanes.debug("Received particles from all tasks: collected {0:.3e} particles".format(NumPartTotal)) logstderr.debug("Received particles from all tasks: peak memory usage {0:.3f} (task)".format(peakMemory())) #If this task is not the master, we can return now if (self.pool is not None) and not(self.pool.is_master()): return (None,)*3 #Normalize the density to the density fluctuation density_projected /= self._header["num_particles_total"] density_projected *= (self._header["box_size"]**3 / (bin_resolution[0]*bin_resolution[1]*bin_resolution[2])).decompose().value ################################################################################################################################# ######################################Ready to solve poisson equation via FFTs################################################### ################################################################################################################################# bin_resolution.pop(normal) #If smoothing is enabled or potential calculations are needed, we need to FFT the density field if (smooth is not None) or kind=="potential": #Compute the multipoles if "l_squared" in kwargs.keys(): l_squared = kwargs["l_squared"] else: lx,ly = np.meshgrid(fftengine.fftfreq(density_projected.shape[0]),fftengine.rfftfreq(density_projected.shape[1]),indexing="ij") l_squared = lx**2 + ly**2 #Avoid dividing by 0 l_squared[0,0] = 1.0 #FFT the density field if (self.pool is None) or (self.pool.is_master()): logplanes.debug("Proceeding in density FFT operations...") density_ft = fftengine.rfftn(density_projected) #Zero out the zeroth frequency density_ft[0,0] = 0.0 if kind=="potential": #Find out the comoving distance if "comoving_distance" in self.header: chi = self.header["comoving_distance"] else: chi = center #Solve the poisson equation density_ft *= -2.0 * (bin_resolution[0] * bin_resolution[1] / chi**2).decompose().value / (l_squared * ((2.0*np.pi)**2)) if smooth is not None: #Perform the smoothing density_ft *= np.exp(-0.5*((2.0*np.pi*smooth)**2)*l_squared) #Revert the FFT lensing_potential = fftengine.irfftn(density_ft) if (self.pool is None) or (self.pool.is_master()): logplanes.debug("Done with density FFT operations...") logstderr.debug("Done with density FFT operations: peak memory usage {0:.3f} (task)".format(peakMemory())) else: lensing_potential = density_projected #Multiply by the normalization factors lensing_potential = lensing_potential * cosmo_normalization * density_normalization lensing_potential = lensing_potential.decompose() assert lensing_potential.unit.physical_type=="dimensionless" #Add units to lensing potential if kind=="potential": lensing_potential *= rad**2 else: lensing_potential = lensing_potential.value #Return return lensing_potential,bin_resolution,NumPartTotal ############################################################################################################################################################################ def neighborDistances(self,neighbors=64): """ Find the N-th nearest neighbors to each particle :param neighbors: neighbor order :type neighbors: int. :returns: array with units """ #Get the particle positions if not available get if hasattr(self,"positions"): positions = self.positions.copy() else: positions = self.getPositions(save=False) #Build the KD-Tree particle_tree = KDTree(positions.value) #For memory reasons, with large datasets it's better to proceed in chunks with nearest neighbors queries numPart = positions.shape[0] rp = np.zeros(numPart) #Split the particles in chunks chunkSize = numPart // neighbors remaining = numPart % neighbors #Cycle over the chunks, querying the tree for i in range(neighbors): rp[i*chunkSize:(i+1)*chunkSize] = particle_tree.query(positions[i*chunkSize:(i+1)*chunkSize].value,k=neighbors)[0][:,neighbors-1] if remaining: rp[neighbors*chunkSize:] = particle_tree.query(positions[neighbors*chunkSize:].value,k=neighbors)[0][:,neighbors-1] #Return return rp * positions.unit ############################################################################################################################################################################ def cutPlaneAdaptive(self,normal=2,center=7.0*Mpc,left_corner=None,plane_resolution=0.1*Mpc,neighbors=64,neighborDistances=None,kind="density",projectAll=False): """ Cuts a density (or gravitational potential) plane out of the snapshot by computing the particle number density using an adaptive smoothing scheme; the plane coordinates are cartesian comoving :param normal: direction of the normal to the plane (0 is x, 1 is y and 2 is z) :type normal: int. (0,1,2) :param center: location of the plane along the normal direction :type center: float. with units :param plane_resolution: plane resolution (perpendicular to the normal) :type plane_resolution: float. with units (or int.) :param left_corner: specify the position of the lower left corner of the box; if None, the minimum of the (x,y,z) of the contained particles is assumed :type left_corner: tuple of quantities or None :param neighbors: number of nearest neighbors to use in the adaptive smoothing procedure :type neighbors: int. :param neighborDistances: precomputed distances of each particle to its N-th nearest neighbor; if None these are computed :type neighborDistances: array with units :param kind: decide if computing a density or gravitational potential plane (this is computed solving the poisson equation) :type kind: str. ("density" or "potential") :param projectAll: if True, all the snapshot is projected on a single slab perpendicular to the normal, ignoring the position of the center :type projectAll: bool. :returns: tuple(numpy 2D array with the computed particle number density (or lensing potential),bin resolution along the axes,number of particles on the plane) """ #Sanity checks assert normal in range(3),"There are only 3 dimensions!" assert kind in ["density","potential"],"Specify density or potential plane!" assert type(center)==quantity.Quantity and center.unit.physical_type=="length" #Direction of the plane plane_directions = range(3) plane_directions.pop(normal) #Get the particle positions if not available get if hasattr(self,"positions"): positions = self.positions else: positions = self.getPositions(save=False) assert hasattr(self,"weights") assert hasattr(self,"virial_radius") assert hasattr(self,"concentration") #Lower left corner of the plane if left_corner is None: left_corner = positions.min(axis=0) #Binning of the plane binning = [None,None] assert type(plane_resolution) in [np.int,quantity.Quantity] if type(plane_resolution)==quantity.Quantity: assert plane_resolution.unit.physical_type=="length" plane_resolution = plane_resolution.to(positions.unit) for i in range(2): binning[i] = np.arange(left_corner[plane_directions[i]].to(positions.unit).value,(left_corner[plane_directions[i]] + self._header["box_size"]).to(positions.unit).value,plane_resolution.value) else: for i in range(2): binning[i] = np.linspace(left_corner[plane_directions[i]].to(positions.unit).value,(left_corner[plane_directions[i]] + self._header["box_size"]).to(positions.unit).value,plane_resolution+1) #Recompute bin_resolution bin_resolution = [ (binning[0][1:]-binning[0][:-1]).mean() * positions.unit,(binning[1][1:]-binning[1][:-1]).mean() * positions.unit ] ################################################################################### #For each particle, we need to determine the distance to its N-th nearest neighbor# ################################################################################### if neighborDistances is None: #Find the distance to the Nth-nearest neighbor rp = self.neighborDistances(neighbors).to(positions.unit).value else: #Convert pre computed distances into appropriate units assert neighbors is None,"You cannot specify the number of neighbors if the distances are precomputed!" assert neighborDistances.shape[0]==positions.shape[0] rp = neighborDistances.to(positions.unit).value #Check that thay are all positive assert (rp>0).all() #Weights if self.weights is not None: weights = self.weights.astype(np.float32) else: weights = None #Compute the adaptive smoothing density = (3.0/np.pi)*ext._nbody.adaptive(positions.value,weights,rp,self.concentration,binning,center.to(positions.unit).value,plane_directions[0],plane_directions[1],normal,projectAll) #Accumulate the density from the other processors if self.pool is not None: self.pool.openWindow(density) self.pool.accumulate() self.pool.closeWindow() #Integrate the density to find the total number of particles NumPartTotal = (density.sum() * bin_resolution[0] * bin_resolution[1] * positions.unit**-2).decompose().value ############################################## #Compute the dimensionless density fluctation# ############################################## #Normalize to correct units and subtract the mean density *= positions.unit**-2 density *= (self.header["box_size"]**3 / self.header["num_particles_total"]).decompose() density -= self.header["box_size"] #Add the cosmological normalization factor density *= 1.5 * self.header["H0"]**2 * self.header["Om0"] / c**2 density *= self.header["comoving_distance"] / self.header["scale_factor"] assert density.unit.physical_type=="dimensionless" density = density.decompose().value if kind=="density": return density,bin_resolution,NumPartTotal ################################################################################# ##############Ready to compute the lensing potential############################# ################################################################################# if kind=="potential": #Compute the multipoles lx,ly = np.meshgrid(fftengine.fftfreq(density.shape[0]),fftengine.rfftfreq(density.shape[1]),indexing="ij") l_squared = lx**2 + ly**2 #Avoid dividing by 0 l_squared[0,0] = 1.0 #FFT the density field density_ft = fftengine.rfftn(density) #Zero out the zeroth frequency density_ft[0,0] = 0.0 #Solve the poisson equation density_ft *= -2.0 * (bin_resolution[0] * bin_resolution[1] / self.header["comoving_distance"]**2).decompose().value / (l_squared * ((2.0*np.pi)**2)) #Revert the FFT and return density = fftengine.irfftn(density_ft) return density*(rad**2),bin_resolution,NumPartTotal ############################################################################################################################################################################ def cutPlaneAngular(self,normal=2,thickness=0.5*Mpc,center=7.0*Mpc,left_corner=None,plane_lower_corner=np.array([0.0,0.0])*deg,plane_size=0.15*deg,plane_resolution=1.0*arcmin,thickness_resolution=0.1*Mpc,smooth=None,tomography=False,kind="density",space="real"): """ Same as cutPlaneGaussianGrid(), except that this method will return a lens plane as seen from an observer at z=0; the spatial transverse units are converted in angular units as seen from the observer :param normal: direction of the normal to the plane (0 is x, 1 is y and 2 is z) :type normal: int. (0,1,2) :param thickness: thickness of the plane :type thickness: float. with units :param center: location of the plane along the normal direction; it is assumed that the center of the plane is seen from an observer with a redshift of self.header["redshift"] :type center: float. with units :param left_corner: specify the position of the lower left corner of the box; if None, the minimum of the (x,y,z) of the contained particles is assumed :type left_corner: tuple of quantities or None :param plane_lower_corner: lower left corner of the plane, as seen from the observer (0,0) corresponds to the lower left corner of the snapshot :type plane_lower_corner: float with units. :param plane_size: angular size of the lens plane (angles start from 0 in the lower left corner) :type plane_size: float with units :param plane_resolution: plane angular resolution (perpendicular to the normal) :type plane_resolution: float. with units (or int.) :param thickness_resolution: plane resolution (along the normal) :type thickness_resolution: float. with units (or int.) :param smooth: if not None, performs a smoothing of the angular density (or potential) with a gaussian kernel of scale "smooth x the pixel resolution" :type smooth: int. or None :param tomography: if True returns the lens plane angular density for each slab, otherwise a projected density (or lensing potential) is computed :type tomography: bool. :param kind: decide if computing an angular density or lensing potential plane (this is computed solving the poisson equation) :type kind: str. ("density" or "potential") :param space: if "real" return the lens plane in real space, if "fourier" the Fourier transform is not inverted :type space: str. :returns: tuple(numpy 2D or 3D array with the (unsmoothed) particle angular number density,bin angular resolution, total number of particles on the plane); the constant spatial part of the density field is subtracted (we keep the fluctuation only) """ #Sanity checks assert normal in range(3),"There are only 3 dimensions!" assert kind in ["density","potential"],"Specify density or potential plane!" assert type(thickness)==quantity.Quantity and thickness.unit.physical_type=="length" assert type(center)==quantity.Quantity and center.unit.physical_type=="length" assert type(plane_lower_corner)==quantity.Quantity and plane_lower_corner.unit.physical_type=="angle" assert type(plane_size)==quantity.Quantity and plane_size.unit.physical_type=="angle" #First compute the overall normalization factor for the angular density cosmo_normalization = 1.5 * (self._header["H0"]**2) * self._header["Om0"] * self.cosmology.comoving_distance(self._header["redshift"]) * (1.0+self._header["redshift"]) / c**2 #Direction of the plane plane_directions = range(3) plane_directions.pop(normal) #Get the particle positions if not available get if hasattr(self,"positions"): positions = self.positions.copy() else: positions = self.getPositions(save=False) assert hasattr(self,"weights") assert hasattr(self,"virial_radius") assert hasattr(self,"concentration") #Scale the units thickness = thickness.to(positions.unit) center = center.to(positions.unit) #Lower left corner of the plane if left_corner is None: left_corner = positions.min(axis=0) #Translate the transverse coordinates so that the lower corner is in (0,0) for i in range(2): positions[:,plane_directions[i]] -= left_corner[plane_directions[i]].astype(np.float32) #Create a list that holds the bins binning = [None,None,None] #Binning in the longitudinal direction assert type(plane_resolution) in [np.int,quantity.Quantity] if type(plane_resolution)==quantity.Quantity: assert plane_resolution.unit.physical_type=="angle" plane_resolution = plane_resolution.to(rad) binning[plane_directions[0]] = np.arange(plane_lower_corner[0].to(rad).value,(plane_lower_corner[0] + plane_size).to(rad).value,plane_resolution.value) binning[plane_directions[1]] = np.arange(plane_lower_corner[1].to(rad).value,(plane_lower_corner[1] + plane_size).to(rad).value,plane_resolution.value) else: binning[plane_directions[0]] = np.linspace(plane_lower_corner[0].to(rad).value,(plane_lower_corner[0] + plane_size).to(rad).value,plane_resolution + 1) binning[plane_directions[1]] = np.linspace(plane_lower_corner[1].to(rad).value,(plane_lower_corner[1] + plane_size).to(rad).value,plane_resolution + 1) #Get the snapshot comoving distance from the observer (which is the same as the plane comoving distance) plane_comoving_distance = self.cosmology.comoving_distance(self._header["redshift"]).to(positions.unit) #Binning in the normal direction assert type(thickness_resolution) in [np.int,quantity.Quantity] center = center.to(positions.unit) thickness = thickness.to(positions.unit) if type(thickness_resolution)==quantity.Quantity: assert thickness_resolution.unit.physical_type=="length" thickness_resolution = thickness_resolution.to(positions.unit) binning[normal] = np.arange((plane_comoving_distance - thickness/2).to(positions.unit).value,(plane_comoving_distance + thickness/2).to(positions.unit).value,thickness_resolution.value) else: binning[normal] = np.linspace((plane_comoving_distance - thickness/2).to(positions.unit).value,(plane_comoving_distance + thickness/2).to(positions.unit).value,thickness_resolution+1) #Now that everything has the same units, let's go dimensionless to convert into angular units length_unit = positions.unit positions = positions.value #Convert the normal direction into comoving distance from the observer positions[:,normal] += (plane_comoving_distance.value - center.value) #Convert the longitudinal spatial coordinates into angles (theta = comiving transverse/comoving distance) for i in range(2): positions[:,plane_directions[i]] /= positions[:,normal] #Now use grid3d to compute the angular density on the lens plane assert positions.dtype==np.float32 if self.virial_radius is not None: rv = self.virial_radius.to(positions.unit).value else: rv = None density = ext._nbody.grid3d(positions,tuple(binning),self.weights,rv,self.concentration) #Accumulate the density from the other processors if self.pool is not None: self.pool.openWindow(density) self.pool.accumulate() self.pool.closeWindow() #Compute the total number of particles on the lens plane NumPartTotal = density.sum() #Recompute resolution to make sure it represents the bin size correctly bin_resolution = [ (binning[0][1:]-binning[0][:-1]).mean() , (binning[1][1:]-binning[1][:-1]).mean() , (binning[2][1:]-binning[2][:-1]).mean() ] #Restore units bin_resolution[normal] *= length_unit for i in range(2): try: bin_resolution[plane_directions[i]] = (bin_resolution[plane_directions[i]] * rad).to(plane_resolution.unit) except AttributeError: bin_resolution[plane_directions[i]] = (bin_resolution[plane_directions[i]] * rad).to(arcmin) ############################################################################################################################################# ######################################If tomography is desired, we can return now############################################################ ############################################################################################################################################# if tomography: if kind=="potential": raise NotImplementedError("Lensing potential tomography is not implemented!") if smooth is not None: fx,fy,fz = np.meshgrid(fftengine.fftfreq(density.shape[0]),fftengine.fftfreq(density.shape[1]),fftengine.rfftfreq(density.shape[2]),indexing="ij") density_ft = fftengine.rfftn(density) density_ft *= np.exp(-0.5*((2.0*np.pi*smooth)**2)*(fx**2 + fy**2 + fz**2)) density_ft[0,0] = 0.0 density = fftengine.irfftn(density_ft) return (density * (1.0/self._header["num_particles_total"]) * (self._header["box_size"]*self.lensMaxSize()**2)/reduce(mul,bin_resolution)).decompose().value, bin_resolution, NumPartTotal else: return ((density - density.sum()/reduce(mul,density.shape)) * (1.0/self._header["num_particles_total"]) * (self._header["box_size"]*self.lensMaxSize()**2)/reduce(mul,bin_resolution)).decompose().value, bin_resolution, NumPartTotal ############################################################################################################################################# ######################################Ready to solve the lensing poisson equation via FFTs################################################### ############################################################################################################################################# #First project the density along the line of sight density = density.sum(normal) bin_resolution.pop(normal) #Compute the normalization factor to convert the absolute number density into a relative number density density_normalization = (self._header["box_size"]/self._header["num_particles_total"]) * (self.lensMaxSize() / bin_resolution[0])**2 #Then solve the poisson equation and/or smooth the density field with FFTs if (smooth is not None) or kind=="potential": #Compute the multipoles lx,ly = np.meshgrid(fftengine.fftfreq(density.shape[0]),fftengine.rfftfreq(density.shape[1]),indexing="ij") l_squared = lx**2 + ly**2 #Avoid dividing by 0 l_squared[0,0] = 1.0 #Fourier transform the density field density_ft = fftengine.rfftn(density) #Perform the smoothing if smooth is not None: density_ft *= np.exp(-0.5*((2.0*np.pi*smooth)**2)*l_squared) #If kind is potential, solve the poisson equation if kind=="potential": density_ft *= -2.0 * ((bin_resolution[0].to(rad).value)**2) / (l_squared * ((2.0*np.pi)**2)) #Return only the density fluctuation, dropping the zeroth frequency (i.e. uniform part) density_ft[0,0] = 0.0 #Go back in real space if space=="real": density = fftengine.irfftn(density_ft) elif space=="fourier": density = density_ft else: raise ValueError("space must be real or fourier!") else: density -= density.sum() / reduce(mul,density.shape) if space=="fourier": density = fftengine.rfftn(density) #Return return (density*cosmo_normalization*density_normalization).decompose().value,bin_resolution,NumPartTotal ############################################################################################################################################# def lensMaxSize(self): """ Computes the maximum observed size of a lens plane cut out of the current snapshot """ return ((self._header["box_size"] / self.cosmology.comoving_distance(self._header["redshift"])) * rad).to(deg) ############################################################################################################################################# def powerSpectrum(self,k_edges,resolution=None,return_num_modes=False,density_placeholder=None): """ Computes the power spectrum of the relative density fluctuations in the snapshot at the wavenumbers specified by k_edges; a discrete particle number density is computed before hand to prepare the FFT grid :param k_edges: wavenumbers at which to compute the density power spectrum (must have units) :type k_edges: array. :param resolution: optional, fix the grid resolution to some value; to be passed to the massDensity method. If none this is computed automatically from the k_edges :type resolution: float with units, int. or None :param return_num_modes: if True returns the mode counting for each k bin as the last element in the return tuple :type return_num_modes: bool. :param density placeholder: if not None, it is used as a fixed memory chunk for MPI communications in the density calculations :type density_placeholder: array :returns: tuple(k_values(bin centers),power spectrum at the specified k_values) """ #Check for correct units assert k_edges.unit.physical_type=="wavenumber" if resolution is None: resolution = 2.0 * np.pi / k_edges.max() #Sanity check on bin spacing (must not be smaller than the one allowed by the size of the box) if (k_edges[1:] - k_edges[:-1]).mean() < 2.0*np.pi/self._header["box_size"]: raise ValueError("Your bins are too small! Minimum allowed by the current box size is {0}".format(2.0*np.pi/self._header["box_size"])) #Compute the gridded number density if not hasattr(self,"density"): density,bin_resolution = self.massDensity(resolution=resolution,density_placeholder=density_placeholder) else: assert resolution is None,"The spatial resolution is already specified in the attributes of this instance! Call massDensity() to modify!" density,bin_resolution = self.density,self.resolution #Decide pixel sizes in Fourier spaces kpixX = (2.0*np.pi/self._header["box_size"]).to(k_edges.unit) kpixY = (2.0*np.pi/self._header["box_size"]).to(k_edges.unit) kpixZ = (2.0*np.pi/self._header["box_size"]).to(k_edges.unit) #Compute the maximum allowed wavenumber k_max = 0.5*np.sqrt((kpixX * density.shape[0])**2 + (kpixY * density.shape[1])**2 + (kpixZ * density.shape[2])**2) k_max_recommended = (1 / (max(bin_resolution))).to(k_max.unit) #Sanity check on maximum k: maximum is limited by the grid resolution if k_edges.max() > k_max: logstderr.warning("Your grid resolution is too low to compute accurately the power on {0} (maximum recommended {1}, distortions might start to appear already at {2}): results might be inaccurate".format(k_edges.max(),k_max,k_max_recommended)) #Perform the FFT density_ft = fftengine.rfftn(density) #Compute the azimuthal averages hits,power_spectrum = ext._topology.rfft3_azimuthal(density_ft,density_ft,kpixX.value,kpixY.value,kpixZ.value,k_edges.value) #Return the result (normalize the power so it corresponds to the one of the density fluctuations) k = 0.5*(k_edges[1:]+k_edges[:-1]) return_tuple = (k,(power_spectrum/hits) * (bin_resolution[0] * bin_resolution[1] * bin_resolution[2])**2 / (self._header["box_size"]**3)) if return_num_modes: return_tuple += (hits,) return return_tuple def __add__(self,rhs): """ Add two snapshots together: useful when the particle content is split between different files; all the positions and particle velocities are vstacked together """ merged_snapshot = self.__class__(None) merged_snapshot._header = self._header + rhs._header if hasattr(self,"positions") and hasattr(rhs,"positions"): assert self.positions.unit==rhs.positions.unit merged_snapshot.positions = np.vstack((self.positions.value,rhs.positions.value)) merged_snapshot.positions = merged_snapshot.positions * self.positions.unit if hasattr(self,"velocities") and hasattr(rhs,"velocities"): assert self.velocities.unit==rhs.velocities.unit merged_snapshot.velocities = np.vstack((self.velocities.value,rhs.velocities.value)) merged_snapshot.velocities = merged_snapshot.velocities * self.velocities.unit if hasattr(self,"id") and hasattr(rhs,"id"): merged_snapshot.id = np.hstack((self.id,rhs.id)) return merged_snapshot
StarcoderdataPython
3396275
<reponame>fitushar/3DCNNs_TF2Modelhub from __future__ import print_function from __future__ import absolute_import from __future__ import division import tensorflow as tf ##########---tf bilinear UpSampling3D def up_sampling(input_tensor, scale): net = tf.keras.layers.TimeDistributed(tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation='bilinear'))(input_tensor) net = tf.keras.layers.Permute((2, 1, 3, 4))(net) # (B, z, H, W, C) -> (B, H, z, w, c) net = tf.keras.layers.TimeDistributed(tf.keras.layers.UpSampling2D(size=(scale, 1), interpolation='bilinear'))(net) net = tf.keras.layers.Permute((2, 1, 3, 4))(net) # (B, z, H, W, C) -> (B, H, z, w, c) return net #######-----Bottleneck def Bottleneck(x, nb_filter, increase_factor=4., weight_decay=1e-4): inter_channel = int(nb_filter * increase_factor) x = tf.keras.layers.Conv3D(inter_channel, (1, 1, 1), kernel_initializer='he_normal', padding='same', use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(x) x = tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(x) x = tf.nn.relu6(x) return x #####------------>>> Convolutional Block def conv_block(input, nb_filter, kernal_size=(3, 3, 3), dilation_rate=1, bottleneck=False, dropout_rate=None, weight_decay=1e-4): ''' Apply BatchNorm, Relu, 3x3X3 Conv3D, optional bottleneck block and dropout Args: input: Input tensor nb_filter: number of filters bottleneck: add bottleneck block dropout_rate: dropout rate weight_decay: weight decay factor Returns: tensor with batch_norm, relu and convolution3D added (optional bottleneck) ''' x = tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(input) x = tf.nn.relu6(x) if bottleneck: inter_channel = nb_filter # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua x = tf.keras.layers.Conv3D(inter_channel, (1, 1, 1), kernel_initializer='he_normal', padding='same', use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(x) x = tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(x) x = tf.nn.relu6(x) x = tf.keras.layers.Conv3D(nb_filter, kernal_size, dilation_rate=dilation_rate, kernel_initializer='he_normal', padding='same', use_bias=False)(x) if dropout_rate: x = tf.keras.layers.SpatialDropout3D(dropout_rate)(x) return x ##--------------------DenseBlock-------#### def dense_block(x, nb_layers, growth_rate, kernal_size=(3, 3, 3), dilation_list=None, bottleneck=True, dropout_rate=None, weight_decay=1e-4, return_concat_list=False): ''' Build a dense_block where the output of each conv_block is fed to subsequent ones Args: x: input tensor nb_layers: the number of layers of conv_block to append to the model. nb_filter: number of filters growth_rate: growth rate bottleneck: bottleneck block dropout_rate: dropout rate weight_decay: weight decay factor grow_nb_filters: flag to decide to allow number of filters to grow return_concat_list: return the list of feature maps along with the actual output Returns: tensor with nb_layers of conv_block appended ''' if dilation_list is None: dilation_list = [1] * nb_layers elif type(dilation_list) is int: dilation_list = [dilation_list] * nb_layers else: if len(dilation_list) != nb_layers: raise ('the length of dilation_list should be equal to nb_layers %d' % nb_layers) x_list = [x] for i in range(nb_layers): cb = conv_block(x, growth_rate, kernal_size, dilation_list[i], bottleneck, dropout_rate, weight_decay) x_list.append(cb) if i == 0: x = cb else: x = tf.keras.layers.concatenate([x, cb], axis=-1) if return_concat_list: return x, x_list else: return x ###---------transition_block def transition_block(input, nb_filter, compression=1.0, weight_decay=1e-4, pool_kernal=(3, 3, 3), pool_strides=(2, 2, 2)): ''' Apply BatchNorm, Relu 1x1, Conv3D, optional compression, dropout and Maxpooling3D Args: input: input tensor nb_filter: number of filters compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block. dropout_rate: dropout rate weight_decay: weight decay factor Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool ''' x =tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(input) x = tf.nn.relu6(x) x = tf.keras.layers.Conv3D(int(nb_filter * compression), (1, 1, 1), kernel_initializer='he_normal', padding='same', use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(x) x = tf.keras.layers.AveragePooling3D(pool_kernal, strides=pool_strides)(x) return x ###---Trasnsition up block def transition_up_block(input, nb_filters, compression=1.0, kernal_size=(3, 3, 3), pool_strides=(2, 2, 2), type='deconv', weight_decay=1E-4): ''' SubpixelConvolutional Upscaling (factor = 2) Args: input: tensor nb_filters: number of layers type: can be 'upsampling', 'subpixel', 'deconv'. Determines type of upsampling performed weight_decay: weight decay factor Returns: keras tensor, after applying upsampling operation. ''' if type == 'upsampling': x = tf.keras.layers.UpSampling3D(size=kernal_size, interpolation='bilinear')(input) x = tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(x) x = tf.nn.relu6(x) x = tf.keras.layers.Conv3D(int(nb_filters * compression), (1, 1, 1), kernel_initializer='he_normal', padding='same', use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(x) else: x = tf.keras.layers.Conv3DTranspose(int(nb_filters * compression), kernal_size, strides=pool_strides, activation='relu', padding='same', kernel_initializer='he_normal', kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(input) return x def DenseVnet3D(inputs, nb_classes=1, encoder_nb_layers=(5, 8, 8), growth_rate=(4, 8, 12), dilation_list=(5, 3, 1), dropout_rate=0.25, weight_decay=1e-4, init_conv_filters=24): """ 3D DenseVNet Implementation by f.i.tushar, tf 2.0. This is a tensorflow 2.0 Implementation of paper: Gibson et al., "Automatic multi-organ segmentation on abdominal CT with dense V-networks" 2018. Reference Implementation: vision4med :i) https://github.com/baibaidj/vision4med/blob/5c23f57c2836bfabd7bd95a024a0a0b776b181b5/nets/DenseVnet.py ii) https://niftynet.readthedocs.io/en/dev/_modules/niftynet/network/dense_vnet.html#DenseVNet Input | --[ DFS ]-----------------------[ Conv ]------------[ Conv ]------[+]--> | | | | -----[ DFS ]---------------[ Conv ]------ | | | | | -----[ DFS ]-------[ Conv ]--------- | [ Prior ]--- Args: inputs: Input , input shape should be (Batch,D,H,W,channels) nb_classes: number of classes encoder_nb_layers: Number of Layer in each dense_block growth_rate: Number of filters in each DenseBlock dilation_list=Dilation rate each level dropout_rate: dropout rate weight_decay: weight decay Returns: Returns the Segmentation Prediction of Given Input Shape """ #--|Getting the Input img_input = inputs input_shape = tf.shape(img_input) # Input shape nb_dense_block = len(encoder_nb_layers)# Convert tuple to list # Initial convolution x = tf.keras.layers.Conv3D(init_conv_filters, (5, 5, 5), strides=2, kernel_initializer='he_normal', padding='same', name='initial_conv3D', use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))(img_input) x = tf.keras.layers.BatchNormalization(epsilon=1.1e-5)(x) x = tf.nn.relu6(x) #Making the skiplist for concationatin skip_list = [] # Add dense blocks for block_idx in range(nb_dense_block): ''' |--Input for dense_block is as following |---#x=Input, #encoder_nb_layers[block_idx]=Number of layer in a dense_block #growth_rate[block_idx]= Number of Filter in that DenseBlock #dilation_list= Dilation Rate. ''' x = dense_block(x, encoder_nb_layers[block_idx], growth_rate[block_idx], kernal_size=(3, 3, 3), dilation_list=dilation_list[block_idx], dropout_rate=dropout_rate, weight_decay=weight_decay, ) # Skip connection skip_list.append(x) #Pooling x = tf.keras.layers.AveragePooling3D((2, 2, 2))(x) # x = __transition_block(x, nb_filter,compression=compression,weight_decay=weight_decay,pool_kernal=(3, 3, 3),pool_strides=(2, 2, 2)) ##Convolutiion and third Resolution layer and Updample. x_level3 = conv_block(skip_list[-1], growth_rate[2], bottleneck=True, dropout_rate=dropout_rate) x_level3 = up_sampling(x_level3, scale=4) # x_level3 = UpSampling3D(size = (4,4,4))(x_level3) ##Convolutiion and 2nd Resolution layer and Updample. x_level2 = conv_block(skip_list[-2], growth_rate[1], bottleneck=True, dropout_rate=dropout_rate) x_level2 = up_sampling(x_level2, scale=2) # x_level2 = UpSampling3D(size=(2, 2, 2))(x_level2) ##Convolutiion and first Resolution layer x_level1 = conv_block(skip_list[-3], growth_rate[0], bottleneck=True, dropout_rate=dropout_rate) #x_level1 = up_sampling(x_level1, scale=2) x = tf.keras.layers.Concatenate()([x_level3, x_level2, x_level1]) ###--Final Convolution--- x = conv_block(x, 24, bottleneck=False, dropout_rate=dropout_rate) ##----Upsampling--TheFinal Output----##### x = up_sampling(x, scale=2) ####------Prediction---------------### if nb_classes == 1: x = tf.keras.layers.Conv3D(nb_classes, 1, activation='sigmoid', padding='same', use_bias=False)(x) elif nb_classes > 1: x = tf.keras.layers.Conv3D(nb_classes + 1, 1, activation='softmax', padding='same', use_bias=False)(x) print(x) # Create model. model = tf.keras.Model(img_input, x, name='DenseVnet3D') return model ''' ###################----Demo Usages----############# INPUT_PATCH_SIZE=[384,192,192,1] NUMBER_OF_CLASSES=1 inputs = tf.keras.Input(shape=INPUT_PATCH_SIZE, name='CT') #Model_3D=DenseVnet3D(inputs,nb_classes=1,encoder_nb_layers=(5, 8, 8),growth_rate=(4, 8, 12),dilation_list=(5, 3, 1)) Model_3D=DenseVnet3D(inputs,nb_classes=1,encoder_nb_layers=(4, 8, 16),growth_rate=(12,24,24),dilation_list=(5, 10, 10),dropout_rate=0.25) Model_3D.summary() tf.keras.utils.plot_model(Model_3D, 'DenseVnet3D.png',show_shapes=True) '''
StarcoderdataPython
143829
<reponame>tkg-framework/TKG-framework<filename>tkge/models/model.py import torch from torch import nn from torch.nn import functional as F import numpy as np from enum import Enum import os from collections import defaultdict from typing import Mapping, Dict import random from tkge.common.registry import Registrable from tkge.common.config import Config from tkge.common.error import ConfigurationError from tkge.data.dataset import DatasetProcessor from tkge.models.layers import LSTMModel from tkge.models.utils import * class BaseModel(nn.Module, Registrable): def __init__(self, config: Config, dataset: DatasetProcessor): nn.Module.__init__(self) Registrable.__init__(self, config=config) self.dataset = dataset @staticmethod def create(config: Config, dataset: DatasetProcessor): """Factory method for sampler creation""" model_type = config.get("model.name") if model_type in BaseModel.list_available(): # kwargs = config.get("model.args") # TODO: 需要改成key的格式 return BaseModel.by_name(model_type)(config, dataset) else: raise ConfigurationError( f"{model_type} specified in configuration file is not supported" f"implement your model class with `BaseModel.register(name)" ) def load_config(self): # TODO(gengyuan): 有参数的话加载,没指定参数的话用默认,最好可以直接读config文件然后setattr,需不需要做assert? raise NotImplementedError def prepare_embedding(self): raise NotImplementedError def get_embedding(self, **kwargs): raise NotImplementedError def forward(self, samples, **kwargs): raise NotImplementedError def predict(self, queries: torch.Tensor): """ Should be a wrapper of method forward or a computation flow same as that in forward. Particularly for prediction task with incomplete queries as inputs. New modules or learnable parameter constructed in this namespace should be avoided since it's not evolved in training procedure. """ raise NotImplementedError def fit(self, samples: torch.Tensor): # TODO(gengyuan): wrapping all the models """ Should be a wrapper of forward or a computation flow same as that in forward. This method is intended to handle arbitrarily-shaped samples due to negative sampling, either matrix or flatteded. Especially when training procedure and prediction procedure are different. Samples should be processed in this method and then passed to forward. Input samples are the direct output of the negative sampling. """ raise NotImplementedError @BaseModel.register(name='de_simple') class DeSimplEModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) self.prepare_embedding() self.time_nl = torch.sin # TODO add to configuration file def prepare_embedding(self): num_ent = self.dataset.num_entities() num_rel = self.dataset.num_relations() emb_dim = self.config.get("model.embedding.emb_dim") se_prop = self.config.get("model.embedding.se_prop") s_emb_dim = int(se_prop * emb_dim) t_emb_dim = emb_dim - s_emb_dim # torch.manual_seed(0) # torch.cuda.manual_seed_all(0) # np.random.seed(0) # random.seed(0) # torch.backends.cudnn.deterministic = True # os.environ['PYTHONHASHSEED'] = str(0) self.embedding: Dict[str, nn.Module] = defaultdict(dict) self.embedding.update({'ent_embs_h': nn.Embedding(num_ent, s_emb_dim)}) self.embedding.update({'ent_embs_t': nn.Embedding(num_ent, s_emb_dim)}) self.embedding.update({'rel_embs_f': nn.Embedding(num_rel, s_emb_dim + t_emb_dim)}) self.embedding.update({'rel_embs_i': nn.Embedding(num_rel, s_emb_dim + t_emb_dim)}) # frequency embeddings for the entities self.embedding.update({'m_freq_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'m_freq_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_freq_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_freq_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_freq_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_freq_t': nn.Embedding(num_ent, t_emb_dim)}) # phi embeddings for the entities self.embedding.update({'m_phi_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'m_phi_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_phi_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_phi_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_phi_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_phi_t': nn.Embedding(num_ent, t_emb_dim)}) # frequency embeddings for the entities self.embedding.update({'m_amps_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'m_amps_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_amps_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'d_amps_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_amps_h': nn.Embedding(num_ent, t_emb_dim)}) self.embedding.update({'y_amps_t': nn.Embedding(num_ent, t_emb_dim)}) self.embedding = nn.ModuleDict(self.embedding) for k, v in self.embedding.items(): nn.init.xavier_uniform_(v.weight) # nn.init.xavier_uniform_(self.ent_embs_h.weight) # nn.init.xavier_uniform_(self.ent_embs_t.weight) # nn.init.xavier_uniform_(self.rel_embs_f.weight) # nn.init.xavier_uniform_(self.rel_embs_i.weight) # # nn.init.xavier_uniform_(self.m_freq_h.weight) # nn.init.xavier_uniform_(self.d_freq_h.weight) # nn.init.xavier_uniform_(self.y_freq_h.weight) # nn.init.xavier_uniform_(self.m_freq_t.weight) # nn.init.xavier_uniform_(self.d_freq_t.weight) # nn.init.xavier_uniform_(self.y_freq_t.weight) # # nn.init.xavier_uniform_(self.m_phi_h.weight) # nn.init.xavier_uniform_(self.d_phi_h.weight) # nn.init.xavier_uniform_(self.y_phi_h.weight) # nn.init.xavier_uniform_(self.m_phi_t.weight) # nn.init.xavier_uniform_(self.d_phi_t.weight) # nn.init.xavier_uniform_(self.y_phi_t.weight) # # nn.init.xavier_uniform_(self.m_amps_h.weight) # nn.init.xavier_uniform_(self.d_amps_h.weight) # nn.init.xavier_uniform_(self.y_amps_h.weight) # nn.init.xavier_uniform_(self.m_amps_t.weight) # nn.init.xavier_uniform_(self.d_amps_t.weight) # nn.init.xavier_uniform_(self.y_amps_t.weight) # nn.init.xavier_uniform_(self.embedding['ent_embs_h'].weight) # nn.init.xavier_uniform_(self.embedding['ent_embs_t'].weight) # nn.init.xavier_uniform_(self.embedding['rel_embs_f'].weight) # nn.init.xavier_uniform_(self.embedding['rel_embs_i'].weight) # # nn.init.xavier_uniform_(self.embedding['m_freq_h'].weight) # nn.init.xavier_uniform_(self.embedding['d_freq_h'].weight) # nn.init.xavier_uniform_(self.embedding['y_freq_h'].weight) # nn.init.xavier_uniform_(self.embedding['m_freq_t'].weight) # nn.init.xavier_uniform_(self.embedding['d_freq_t'].weight) # nn.init.xavier_uniform_(self.embedding['y_freq_t'].weight) # # nn.init.xavier_uniform_(self.embedding['m_phi_h'].weight) # nn.init.xavier_uniform_(self.embedding['d_phi_h'].weight) # nn.init.xavier_uniform_(self.embedding['y_phi_h'].weight) # nn.init.xavier_uniform_(self.embedding['m_phi_t'].weight) # nn.init.xavier_uniform_(self.embedding['d_phi_t'].weight) # nn.init.xavier_uniform_(self.embedding['y_phi_t'].weight) # # nn.init.xavier_uniform_(self.embedding['m_amps_h'].weight) # nn.init.xavier_uniform_(self.embedding['d_amps_h'].weight) # nn.init.xavier_uniform_(self.embedding['y_amps_h'].weight) # nn.init.xavier_uniform_(self.embedding['m_amps_t'].weight) # nn.init.xavier_uniform_(self.embedding['d_amps_t'].weight) # nn.init.xavier_uniform_(self.embedding['y_amps_t'].weight) # for name, params in self.named_parameters(): # print(name) # print(params) # print(params.size()) # # assert False def get_time_embedding(self, ent, year, month, day, ent_pos): # TODO: enum if ent_pos == "head": time_emb = self.embedding['y_amps_h'](ent) * self.time_nl( self.embedding['y_freq_h'](ent) * year + self.embedding['y_phi_h'](ent)) time_emb += self.embedding['m_amps_h'](ent) * self.time_nl( self.embedding['m_freq_h'](ent) * month + self.embedding['m_phi_h'](ent)) time_emb += self.embedding['d_amps_h'](ent) * self.time_nl( self.embedding['d_freq_h'](ent) * day + self.embedding['d_phi_h'](ent)) else: time_emb = self.embedding['y_amps_t'](ent) * self.time_nl( self.embedding['y_freq_t'](ent) * year + self.embedding['y_phi_t'](ent)) time_emb += self.embedding['m_amps_t'](ent) * self.time_nl( self.embedding['m_freq_t'](ent) * month + self.embedding['m_phi_t'](ent)) time_emb += self.embedding['d_amps_t'](ent) * self.time_nl( self.embedding['d_freq_t'](ent) * day + self.embedding['d_phi_t'](ent)) return time_emb def get_embedding(self, head, rel, tail, year, month, day): year = year.view(-1, 1) month = month.view(-1, 1) day = day.view(-1, 1) h_emb1 = self.embedding['ent_embs_h'](head) r_emb1 = self.embedding['rel_embs_f'](rel) t_emb1 = self.embedding['ent_embs_t'](tail) h_emb2 = self.embedding['ent_embs_h'](tail) r_emb2 = self.embedding['rel_embs_i'](rel) t_emb2 = self.embedding['ent_embs_t'](head) h_emb1 = torch.cat((h_emb1, self.get_time_embedding(head, year, month, day, 'head')), 1) t_emb1 = torch.cat((t_emb1, self.get_time_embedding(tail, year, month, day, 'tail')), 1) h_emb2 = torch.cat((h_emb2, self.get_time_embedding(tail, year, month, day, 'head')), 1) t_emb2 = torch.cat((t_emb2, self.get_time_embedding(head, year, month, day, 'tail')), 1) return h_emb1, r_emb1, t_emb1, h_emb2, r_emb2, t_emb2 def forward(self, samples, **kwargs): head = samples[:, 0].long() rel = samples[:, 1].long() tail = samples[:, 2].long() year = samples[:, 3] month = samples[:, 4] day = samples[:, 5] h_emb1, r_emb1, t_emb1, h_emb2, r_emb2, t_emb2 = self.get_embedding(head, rel, tail, year, month, day) p = self.config.get('model.dropout') scores = ((h_emb1 * r_emb1) * t_emb1 + (h_emb2 * r_emb2) * t_emb2) / 2.0 scores = F.dropout(scores, p=p, training=self.training) # TODO training scores = torch.sum(scores, dim=1) return scores, None def fit(self, samples: torch.Tensor): bs = samples.size(0) dim = samples.size(1) // (1 + self.config.get("negative_sampling.num_samples")) samples = samples.view(-1, dim) scores, factor = self.forward(samples) scores = scores.view(bs, -1) return scores, factor def predict(self, queries: torch.Tensor): assert torch.isnan(queries).sum(1).byte().all(), "Either head or tail should be absent." bs = queries.size(0) dim = queries.size(0) candidates = all_candidates_of_ent_queries(queries, self.dataset.num_entities()) scores, _ = self.forward(candidates) scores = scores.view(bs, -1) return scores @BaseModel.register(name="tcomplex") class TComplExModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) self.rank = self.config.get("model.rank") self.no_time_emb = self.config.get("model.no_time_emb") self.init_size = self.config.get("model.init_size") self.num_ent = self.dataset.num_entities() self.num_rel = self.dataset.num_relations() self.num_ts = self.dataset.num_timestamps() self.prepare_embedding() def prepare_embedding(self): self.embeddings = nn.ModuleList([ nn.Embedding(s, 2 * self.rank, sparse=True) for s in [self.num_ent, self.num_rel, self.num_ts] ]) for emb in self.embeddings: emb.weight.data *= self.init_size def forward(self, x): """ x is spot """ lhs = self.embeddings[0](x[:, 0].long()) rel = self.embeddings[1](x[:, 1].long()) rhs = self.embeddings[0](x[:, 2].long()) time = self.embeddings[2](x[:, 3].long()) lhs = lhs[:, :self.rank], lhs[:, self.rank:] rel = rel[:, :self.rank], rel[:, self.rank:] rhs = rhs[:, :self.rank], rhs[:, self.rank:] time = time[:, :self.rank], time[:, self.rank:] right = self.embeddings[0].weight # all ent tensor right = right[:, :self.rank], right[:, self.rank:] rt = rel[0] * time[0], rel[1] * time[0], rel[0] * time[1], rel[1] * time[1] full_rel = rt[0] - rt[3], rt[1] + rt[2] # 1st item: scores # 2nd item: reg item factors # 3rd item: time scores = (lhs[0] * full_rel[0] - lhs[1] * full_rel[1]) @ right[0].t() + \ (lhs[1] * full_rel[0] + lhs[0] * full_rel[1]) @ right[1].t() factors = { "n3": (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2), torch.sqrt(full_rel[0] ** 2 + full_rel[1] ** 2), torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2)), "lambda3": (self.embeddings[2].weight[:-1] if self.no_time_emb else self.embeddings[2].weight) } return scores, factors def predict(self, x): assert torch.isnan(x).sum(1).byte().all(), "Either head or tail should be absent." missing_head_ind = torch.isnan(x)[:, 0].byte().unsqueeze(1) reversed_x = x.clone() reversed_x[:, 1] += 1 reversed_x[:, (0, 2)] = reversed_x[:, (2, 0)] x = torch.where(missing_head_ind, reversed_x, x) lhs = self.embeddings[0](x[:, 0].long()) rel = self.embeddings[1](x[:, 1].long()) time = self.embeddings[2](x[:, 3].long()) lhs = lhs[:, :self.rank], lhs[:, self.rank:] rel = rel[:, :self.rank], rel[:, self.rank:] time = time[:, :self.rank], time[:, self.rank:] right = self.embeddings[0].weight right = right[:, :self.rank], right[:, self.rank:] scores = (lhs[0] * rel[0] * time[0] - lhs[1] * rel[1] * time[0] - lhs[1] * rel[0] * time[1] - lhs[0] * rel[1] * time[1]) @ right[0].t() + \ (lhs[1] * rel[0] * time[0] + lhs[0] * rel[1] * time[0] + lhs[0] * rel[0] * time[1] - lhs[1] * rel[1] * time[1]) @ right[1].t() return scores def forward_over_time(self, x): lhs = self.embeddings[0](x[:, 0]) rel = self.embeddings[1](x[:, 1]) rhs = self.embeddings[0](x[:, 2]) time = self.embeddings[2].weight lhs = lhs[:, :self.rank], lhs[:, self.rank:] rel = rel[:, :self.rank], rel[:, self.rank:] rhs = rhs[:, :self.rank], rhs[:, self.rank:] time = time[:, :self.rank], time[:, self.rank:] return ( (lhs[0] * rel[0] * rhs[0] - lhs[1] * rel[1] * rhs[0] - lhs[1] * rel[0] * rhs[1] + lhs[0] * rel[1] * rhs[1]) @ time[0].t() + (lhs[1] * rel[0] * rhs[0] - lhs[0] * rel[1] * rhs[0] + lhs[0] * rel[0] * rhs[1] - lhs[1] * rel[1] * rhs[1]) @ time[1].t() ) @BaseModel.register(name="hyte") class HyTEModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) @BaseModel.register(name="atise") class ATiSEModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) # TODO(gengyuan) load params before initialize self.cmin = self.config.get("model.cmin") self.cmax = self.config.get("model.cmax") self.emb_dim = self.config.get("model.embedding_dim") self.prepare_embedding() def prepare_embedding(self): num_ent = self.dataset.num_entities() num_rel = self.dataset.num_relations() self.embedding: Dict[str, nn.Module] = defaultdict(None) self.embedding.update({'emb_E': nn.Embedding(num_ent, self.emb_dim, padding_idx=0)}) self.embedding.update({'emb_E_var': nn.Embedding(num_ent, self.emb_dim, padding_idx=0)}) self.embedding.update({'emb_R': nn.Embedding(num_rel, self.emb_dim, padding_idx=0)}) self.embedding.update({'emb_R_var': nn.Embedding(num_rel, self.emb_dim, padding_idx=0)}) self.embedding.update({'emb_TE': nn.Embedding(num_ent, self.emb_dim, padding_idx=0)}) self.embedding.update({'alpha_E': nn.Embedding(num_ent, 1, padding_idx=0)}) self.embedding.update({'beta_E': nn.Embedding(num_ent, self.emb_dim, padding_idx=0)}) self.embedding.update({'omega_E': nn.Embedding(num_ent, self.emb_dim, padding_idx=0)}) self.embedding.update({'emb_TR': nn.Embedding(num_rel, self.emb_dim, padding_idx=0)}) self.embedding.update({'alpha_R': nn.Embedding(num_rel, 1, padding_idx=0)}) self.embedding.update({'beta_R': nn.Embedding(num_rel, self.emb_dim, padding_idx=0)}) self.embedding.update({'omega_R': nn.Embedding(num_rel, self.emb_dim, padding_idx=0)}) self.embedding = nn.ModuleDict(self.embedding) r = 6 / np.sqrt(self.emb_dim) self.embedding['emb_E'].weight.data.uniform_(-r, r) self.embedding['emb_E_var'].weight.data.uniform_(self.cmin, self.cmax) self.embedding['emb_R'].weight.data.uniform_(-r, r) self.embedding['emb_R_var'].weight.data.uniform_(self.cmin, self.cmax) self.embedding['emb_TE'].weight.data.uniform_(-r, r) self.embedding['alpha_E'].weight.data.uniform_(0, 0) self.embedding['beta_E'].weight.data.uniform_(0, 0) self.embedding['omega_E'].weight.data.uniform_(-r, r) self.embedding['emb_TR'].weight.data.uniform_(-r, r) self.embedding['alpha_R'].weight.data.uniform_(0, 0) self.embedding['beta_R'].weight.data.uniform_(0, 0) self.embedding['omega_R'].weight.data.uniform_(-r, r) self.embedding['emb_E'].weight.data.renorm_(p=2, dim=0, maxnorm=1) self.embedding['emb_E_var'].weight.data.uniform_(self.cmin, self.cmax) self.embedding['emb_R'].weight.data.renorm_(p=2, dim=0, maxnorm=1) self.embedding['emb_R_var'].weight.data.uniform_(self.cmin, self.cmax) self.embedding['emb_TE'].weight.data.renorm_(p=2, dim=0, maxnorm=1) self.embedding['emb_TR'].weight.data.renorm_(p=2, dim=0, maxnorm=1) def forward(self, sample: torch.Tensor): bs = sample.size(0) # TODO(gengyuan) dim = sample.size(1) // (1 + self.config.get("negative_sampling.num_samples")) sample = sample.view(-1, dim) # TODO(gengyuan) type conversion when feeding the data instead of running the models h_i, t_i, r_i, d_i = sample[:, 0].long(), sample[:, 2].long(), sample[:, 1].long(), sample[:, 3] pi = 3.14159265358979323846 h_mean = self.embedding['emb_E'](h_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_E'](h_i).view(-1, 1) * self.embedding['emb_TE'](h_i).view(-1, self.emb_dim) \ + self.embedding['beta_E'](h_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_E'](h_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) t_mean = self.embedding['emb_E'](t_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_E'](t_i).view(-1, 1) * self.embedding['emb_TE'](t_i).view(-1, self.emb_dim) \ + self.embedding['beta_E'](t_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_E'](t_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) r_mean = self.embedding['emb_R'](r_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_R'](r_i).view(-1, 1) * self.embedding['emb_TR'](r_i).view(-1, self.emb_dim) \ + self.embedding['beta_R'](r_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_R'](r_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) h_var = self.embedding['emb_E_var'](h_i).view(-1, self.emb_dim) t_var = self.embedding['emb_E_var'](t_i).view(-1, self.emb_dim) r_var = self.embedding['emb_R_var'](r_i).view(-1, self.emb_dim) out1 = torch.sum((h_var + t_var) / r_var, 1) + torch.sum(((r_mean - h_mean + t_mean) ** 2) / r_var, 1) - self.emb_dim out2 = torch.sum(r_var / (h_var + t_var), 1) + torch.sum(((h_mean - t_mean - r_mean) ** 2) / (h_var + t_var), 1) - self.emb_dim scores = (out1 + out2) / 4 scores = scores.view(bs, -1) factors = { "renorm": (self.embedding['emb_E'].weight, self.embedding['emb_R'].weight, self.embedding['emb_TE'].weight, self.embedding['emb_TR'].weight), "clamp": (self.embedding['emb_E_var'].weight, self.embedding['emb_R_var'].weight) } return scores, factors # TODO(gengyaun): # walkaround def predict(self, sample: torch.Tensor): bs = sample.size(0) # TODO(gengyuan) dim = sample.size(1) // (self.dataset.num_entities()) sample = sample.view(-1, dim) # TODO(gengyuan) type conversion when feeding the data instead of running the models h_i, t_i, r_i, d_i = sample[:, 0].long(), sample[:, 2].long(), sample[:, 1].long(), sample[:, 3] pi = 3.14159265358979323846 h_mean = self.embedding['emb_E'](h_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_E'](h_i).view(-1, 1) * self.embedding['emb_TE'](h_i).view(-1, self.emb_dim) \ + self.embedding['beta_E'](h_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_E'](h_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) t_mean = self.embedding['emb_E'](t_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_E'](t_i).view(-1, 1) * self.embedding['emb_TE'](t_i).view(-1, self.emb_dim) \ + self.embedding['beta_E'](t_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_E'](t_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) r_mean = self.embedding['emb_R'](r_i).view(-1, self.emb_dim) + \ d_i.view(-1, 1) * self.embedding['alpha_R'](r_i).view(-1, 1) * self.embedding['emb_TR'](r_i).view(-1, self.emb_dim) \ + self.embedding['beta_R'](r_i).view(-1, self.emb_dim) * torch.sin( 2 * pi * self.embedding['omega_R'](r_i).view(-1, self.emb_dim) * d_i.view(-1, 1)) h_var = self.embedding['emb_E_var'](h_i).view(-1, self.emb_dim) t_var = self.embedding['emb_E_var'](t_i).view(-1, self.emb_dim) r_var = self.embedding['emb_R_var'](r_i).view(-1, self.emb_dim) out1 = torch.sum((h_var + t_var) / r_var, 1) + torch.sum(((r_mean - h_mean + t_mean) ** 2) / r_var, 1) - self.emb_dim out2 = torch.sum(r_var / (h_var + t_var), 1) + torch.sum(((h_mean - t_mean - r_mean) ** 2) / (h_var + t_var), 1) - self.emb_dim scores = (out1 + out2) / 4 scores = scores.view(bs, -1) factors = { "renorm": (self.embedding['emb_E'].weight, self.embedding['emb_R'].weight, self.embedding['emb_TE'].weight, self.embedding['emb_TR'].weight), "clamp": (self.embedding['emb_E_var'].weight, self.embedding['emb_R_var'].weight) } return scores, factors # reference: https://github.com/bsantraigi/TA_TransE/blob/master/model.py # reference: https://github.com/jimmywangheng/knowledge_representation_pytorch @BaseModel.register(name="ta_transe") class TATransEModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) # model params from files self.emb_dim = self.config.get("model.emb_dim") self.l1_flag = self.config.get("model.l1_flag") self.p = self.config.get("model.p") self.dropout = torch.nn.Dropout(p=self.p) self.lstm = LSTMModel(self.emb_dim, n_layer=1) self.prepare_embedding() def prepare_embedding(self): num_ent = self.dataset.num_entities() num_rel = self.dataset.num_relations() num_tem = 32 # should be 32 self.embedding: Dict[str, torch.nn.Embedding] = defaultdict(None) self.embedding['ent'] = torch.nn.Embedding(num_ent, self.emb_dim) self.embedding['rel'] = torch.nn.Embedding(num_rel, self.emb_dim) self.embedding['tem'] = torch.nn.Embedding(num_tem, self.emb_dim) self.embedding = nn.ModuleDict(self.embedding) for _, emb in self.embedding.items(): torch.nn.init.xavier_uniform_(emb.weight) emb.weight.data.renorm(p=2, dim=1, maxnorm=1) def get_rseq(self, rel: torch.LongTensor, tem: torch.LongTensor): r_e = self.embedding['rel'](rel) r_e = r_e.unsqueeze(0).transpose(0, 1) bs = tem.size(0) tem_len = tem.size(1) tem = tem.contiguous() tem = tem.view(bs * tem_len) token_e = self.embedding['tem'](tem) token_e = token_e.view(bs, tem_len, self.emb_dim) seq_e = torch.cat((r_e, token_e), 1) hidden_tem = self.lstm(seq_e) hidden_tem = hidden_tem[0, :, :] rseq_e = hidden_tem return rseq_e def forward(self, samples: torch.Tensor): h, r, t, tem = samples[:, 0].long(), samples[:, 1].long(), samples[:, 2].long(), samples[:, 3:].long() h_e = self.embedding['ent'](h) t_e = self.embedding['ent'](t) rseq_e = self.get_rseq(r, tem) h_e = self.dropout(h_e) t_e = self.dropout(t_e) rseq_e = self.dropout(rseq_e) if self.l1_flag: scores = torch.sum(torch.abs(h_e + rseq_e - t_e), 1) else: scores = torch.sum((h_e + rseq_e - t_e) ** 2, 1) factors = { "norm": (h_e, t_e, rseq_e) } return scores, factors def fit(self, samples: torch.Tensor): bs = samples.size(0) dim = samples.size(1) // (1 + self.config.get("negative_sampling.num_samples")) samples = samples.view(-1, dim) scores, factor = self.forward(samples) scores = scores.view(bs, -1) return scores, factor def predict(self, queries: torch.Tensor): assert torch.isnan(queries).sum(1).byte().all(), "Either head or tail should be absent." bs = queries.size(0) dim = queries.size(0) candidates = all_candidates_of_ent_queries(queries, self.dataset.num_entities()) scores, _ = self.forward(candidates) scores = scores.view(bs, -1) return scores # reference: https://github.com/bsantraigi/TA_TransE/blob/master/model.py @BaseModel.register(name="ta_distmult") class TADistmultModel(BaseModel): def __init__(self, config: Config, dataset: DatasetProcessor): super().__init__(config, dataset) # model params from files self.emb_dim = self.config.get("model.emb_dim") self.l1_flag = self.config.get("model.l1_flag") self.p = self.config.get("model.p") self.dropout = torch.nn.Dropout(p=self.p) self.lstm = LSTMModel(self.emb_dim, n_layer=1) self.criterion = nn.Softplus() self.prepare_embedding() def prepare_embedding(self): num_ent = self.dataset.num_entities() num_rel = self.dataset.num_relations() num_tem = 32 # should be 32 self.embedding: Dict[str, torch.nn.Embedding] = defaultdict(None) self.embedding['ent'] = torch.nn.Embedding(num_ent, self.emb_dim) self.embedding['rel'] = torch.nn.Embedding(num_rel, self.emb_dim) self.embedding['tem'] = torch.nn.Embedding(num_tem, self.emb_dim) self.embedding = nn.ModuleDict(self.embedding) for _, emb in self.embedding.items(): torch.nn.init.xavier_uniform_(emb.weight) emb.weight.data.renorm(p=2, dim=1, maxnorm=1) def forward(self, samples: torch.Tensor): h, r, t, tem = samples[:, 0].long(), samples[:, 1].long(), samples[:, 2].long(), samples[:, 3:].long() h_e = self.embedding['ent'](h) t_e = self.embedding['ent'](t) rseq_e = self.get_rseq(r, tem) h_e = self.dropout(h_e) t_e = self.dropout(t_e) rseq_e = self.dropout(rseq_e) scores = torch.sum(h_e * t_e * rseq_e, 1, False) factors = { "norm": (self.embedding['ent'].weight, self.embedding['rel'].weight, self.embedding['tem'].weight) } return scores, factors def get_rseq(self, rel, tem): r_e = self.embedding['rel'](rel) r_e = r_e.unsqueeze(0).transpose(0, 1) bs = tem.size(0) tem_len = tem.size(1) tem = tem.contiguous() tem = tem.view(bs * tem_len) token_e = self.embedding['tem'](tem) token_e = token_e.view(bs, tem_len, self.emb_dim) seq_e = torch.cat((r_e, token_e), 1) hidden_tem = self.lstm(seq_e) hidden_tem = hidden_tem[0, :, :] rseq_e = hidden_tem return rseq_e def fit(self, samples: torch.Tensor): bs = samples.size(0) dim = samples.size(1) // (1 + self.config.get("negative_sampling.num_samples")) samples = samples.view(-1, dim) scores, factor = self.forward(samples) scores = scores.view(bs, -1) return scores, factor def predict(self, queries: torch.Tensor): assert torch.isnan(queries).sum(1).byte().all(), "Either head or tail should be absent." bs = queries.size(0) dim = queries.size(0) candidates = all_candidates_of_ent_queries(queries, self.dataset.num_entities()) scores, _ = self.forward(candidates) scores = scores.view(bs, -1) return scores
StarcoderdataPython
1731861
from typing import Mapping, Sequence import pandas as pd from multilevel_panels import MultilevelPanel known = [ ('Felis', 'silvestris'), ('Canis', 'lupus'), ('Homo', None), ('Panthera', 'leo'), ('Panthera', 'tigris'), ('Bos', 'taurus'), ('Ovis', None), ] candidate = [ ('Felis', 'silvestris'), ('Canis', 'aureus'), ('Homo', 'sapiens'), ('Homo', 'neanderthalensis'), ('Homo', 'habilis'), ('Panthera', None), ('Capra', 'aegagrus'), ('Ovis', None), ] def make_categorical_codes(*args: pd.DataFrame) -> Sequence[Sequence[Mapping]]: """Concatenate the passed arguments into a single DataFrame, convert each column to categorical, and return two sequences of sequences. Each element of an inner sequence is a mapping corresponding to the columns in the concatenated dataframe. The first sequence contains a sequence of mappings of categorical values to numerical codes, and the second sequence contains a sequence of mappings of numerical codes to categorical values. """ # get categorical codes for the unique set of values in each column across both datasets df = pd.concat(args).astype('category') cat_to_code = tuple( {v: k for k, v in enumerate(df[col].cat.categories)} for col in df ) code_to_cat = tuple( dict(enumerate(df[col].cat.categories)) for col in df ) return cat_to_code, code_to_cat def categorical_df_to_mlp(df: pd.DataFrame, cat_to_code: Sequence[Mapping]) -> MultilevelPanel: return MultilevelPanel( pd.concat( [df[i].map(cat_to_code[i]) for i in range(df.shape[1])], axis=1 ).values ) def mlp_to_categorical_df(mlp: MultilevelPanel, code_to_cat: Sequence[Mapping]) -> pd.DataFrame: df = pd.DataFrame(mlp.flatten()) return pd.concat( [df[i].map(code_to_cat[i]) for i in range(df.shape[1])], axis=1, ) def main(): """ # get the codes >>> cat_to_code, code_to_cat = make_categorical_codes(pd.DataFrame(known), pd.DataFrame(candidate)) # convert the datasets to multilevel panels >>> known_mlp = categorical_df_to_mlp(pd.DataFrame(known), cat_to_code) >>> candidate_mlp = categorical_df_to_mlp(pd.DataFrame(candidate), cat_to_code) # what is the intersection between the known data and the candidate data? >>> known_mlp.intersect(candidate_mlp) [[ 5. nan] [ 3. 7.] [ 4. 2.] [ 4. 5.] [ 4. 6.] [ 6. 3.] [ 6. 9.]] # convert the numerical codes back to categories >>> mlp_to_categorical_df(known_mlp.intersect(candidate_mlp), code_to_cat) 0 1 0 Ovis NaN 1 Felis silvestris 2 Homo habilis 3 Homo neanderthalensis 4 Homo sapiens 5 Panthera leo 6 Panthera tigris # note that: # - genus/species pairs are intersected normally # - a genus without a species matches any genus/species pair of the same genus # -- the result of such matches only includes genus/species pairs # - a genus without a species matches the same genus without a species # - matching occurs in both directions # - the output rows are unordered # what is the union of the known data and the candidate data? >>> known_mlp.union(candidate_mlp) [[ 4. nan] [ 5. nan] [ 6. nan] [ 0. 8.] [ 1. 1.] [ 1. 4.] [ 2. 0.] [ 3. 7.]] # convert the numerical codes back to categories >>> mlp_to_categorical_df(known_mlp.union(candidate_mlp), code_to_cat) 0 1 0 Homo NaN 1 Ovis NaN 2 Panthera NaN 3 Bos taurus 4 Canis aureus 5 Canis lupus 6 Capra aegagrus 7 Felis silvestris # note that: # - genus/species pairs are unioned normally # - a genus without a species matches any genus/species pair of the same genus # -- the result of such matches only includes genus without species # - a genus without a species matches the same genus without a species # - matching occurs in both directions # - the output rows are unordered """ if __name__ == "__main__": import doctest doctest.testmod()
StarcoderdataPython
1672282
from .models import Order from django import forms class OrderForm(forms.ModelForm): class Meta: model = Order fields = ('description', 'product_type')
StarcoderdataPython
1747100
<reponame>deepmind/launchpad # Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Launchpad Node. Node represents a service. It may return a handle for others to interact with it. """ import abc import functools from typing import Any, Generic, List, Optional, Sequence, Set, TypeVar from launchpad import address as lp_address from launchpad import context as lp_context from launchpad.nodes import dereference from launchpad.program_stopper import program_stopper ClientType = TypeVar('ClientType') HandleType = TypeVar('HandleType', bound='Handle') class Handle(dereference.Dereferenceable[ClientType], Generic[ClientType]): """Represents an interface of the service (the node). Call `.dereference()` to get the actual client object of this service (to be implemented in subclasses). """ def connect(self, node: 'Node[Handle[ClientType]]', label: str) -> None: """Called to let this handle know about it's connecting to a node. This is supposed to be called: 1. Before creating any executables 2. Before any address binding happens The motivation is we want to give the handle a chance to configure itself for the node, before it's turned into executables and addresses are finalized. Args: node: The node that the handle connects to. label: Label of the node. """ pass def transform(self, executables: Sequence[Any]) -> Sequence[Any]: """Transforms the executables that make use of this handle.""" return executables class Node(Generic[HandleType], metaclass=abc.ABCMeta): """Represents a service, and may return a Handle for interaction with it.""" def __init__(self) -> None: # This is a low-level API to allow Node/Handle to access launch config # during run time. It's only available after launch, and it's set by the # launcher. self._launch_context = lp_context.LaunchContext() # Handles used by this node (to interact with other nodes) self._input_handles = [] # type: List[Handle[Any]] # Handles created by this node # Note: `type: List[HandleType]` is not supported yet. self._created_handles = [] # type: List[Handle] # Addresses known to the node. This exists so that launchpad can, from # the program (which contains the nodes), list all the addresses that need # to be bind before launch. # `addresses` usually contains the address(es) owned by the node. However, # in case of nodes containing other nodes (e.g. multi-threading nodes), it # will also contain addresses owned by sub-nodes. # Thus, use `address.assign` to give ownership of an address to a node, # and `addresses.append` to only expose the address to launchpad launch # mechanism. self.addresses = [] # type: List[lp_address.Address] @property def launch_context(self): return self._launch_context def _initialize_context(self, launch_type: lp_context.LaunchType, launch_config: Any): self._launch_context.initialize( launch_type, launch_config, program_stopper.make_program_stopper(launch_type)) def _track_handle(self, handle: HandleType) -> HandleType: """Keeps track of created handles. MUST be called in create_handle(). This is called so that the node knows about the handle it creates. The reason we don't automate this is because we'll lose return annotation if we wrap create_handle() using a base class method (i.e., the base class wrapper method doesn't know about the subclass return type). Args: handle: The handle (MUST be created by this node) to track. Returns: The same handle that was passed in, for the nicer syntax on call site. """ self._created_handles.append(handle) return handle @abc.abstractmethod def create_handle(self) -> HandleType: """Creates a handle to interact with this node. MUST call _track_handle() after creating a handle. """ raise NotImplementedError() @abc.abstractstaticmethod def to_executables(nodes, label, context): """Creates executables for a specific launch type.""" raise NotImplementedError() def bind_addresses(self, **kwargs) -> None: """Binds addresses of the node.""" del kwargs # Unused. @property def input_handles(self) -> List[Handle[Any]]: return list(self._input_handles) def allocate_address(self, address: lp_address.Address) -> None: """Low-level API to add an address to listen to. Prefer `address.assign(node)`. This is a low level API and users shouldn't need to use it most of the time. Args: address: Address to listen to (i.e., to create a server). """ address.assign(self) @classmethod def default_launch_config(cls, launch_type: lp_context.LaunchType): """Defines the default launch config of this node type. This is optional. The returned config is conditional on the launch type. Args: launch_type: Return the launch_config for this launch_type. """ raise NotImplementedError( f'Launch config has to be explicitly specified for {cls.__name__}') def extract_handles( obj: Any, handles: List[Handle], visited: Optional[Set[int]] = None, ) -> None: """Extract the handles of `obj` to and add them into `handles`.""" visited = visited or set() # Transitive input_handles from Deferred objects are included. if isinstance(obj, dereference.Deferred): if id(obj) not in visited: visited.add(id(obj)) obj._apply_to_args( functools.partial(extract_handles, handles=handles, visited=visited)) elif isinstance(obj, Handle): handles.append(obj)
StarcoderdataPython