id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1746851
<reponame>kstaken/salt try: from mock import MagicMock, patch has_mock = True except ImportError: has_mock = False patch = lambda x: lambda y: None from saltunittest import TestCase, skipIf from salt.modules import pip pip.__salt__ = {"cmd.which_bin":lambda _:"pip"} @skipIf(has_mock is False, "mock python module is unavailable") class PipTestCase(TestCase): def test_fix4361(self): mock = MagicMock(return_value={'retcode': 0, 'stdout': ''}) with patch.dict(pip.__salt__, {'cmd.run_all':mock}): pip.install(requirements="requirements.txt") expected_cmd = 'pip install --requirement "requirements.txt" ' mock.assert_called_once_with(expected_cmd, runas=None, cwd=None) @patch('salt.modules.pip._get_cached_requirements') def test_failed_cached_requirements(self, get_cached_requirements): get_cached_requirements.return_value = False ret = pip.install(requirements='salt://my_test_reqs') self.assertEqual(False, ret['result']) self.assertIn('my_test_reqs', ret['comment']) @patch('salt.modules.pip._get_cached_requirements') def test_cached_requirements_used(self, get_cached_requirements): get_cached_requirements.return_value = 'my_cached_reqs' mock = MagicMock(return_value={'retcode': 0, 'stdout': ''}) with patch.dict(pip.__salt__, {'cmd.run_all': mock}): pip.install(requirements="salt://requirements.txt") expected_cmd = 'pip install --requirement "my_cached_reqs" ' mock.assert_called_once_with(expected_cmd, runas=None, cwd=None) @patch('os.path') def test_fix_activate_env(self, mock_path): mock_path.is_file.return_value = True mock_path.isdir.return_value = True def join(*args): return '/'.join(args) mock_path.join = join mock = MagicMock(return_value={'retcode': 0, 'stdout': ''}) with patch.dict(pip.__salt__, {'cmd.run_all': mock}): pip.install('mock', bin_env='/test_env', activate=True) expected_cmd = '. /test_env/bin/activate && /test_env/bin/pip install mock ' mock.assert_called_once_with(expected_cmd, runas=None, cwd=None)
StarcoderdataPython
3247766
<gh_stars>0 from fabric.context_managers import hide import re from calyptos.plugins.debugger.debuggerplugin import DebuggerPlugin class CheckComputeRequirements(DebuggerPlugin): def debug(self): # Supported CentOS/RHEL OS version for each component self.os_version = 6 # Default clock skew allowed for cloud components self.clock_skew_sec = 20 all_hosts = self.component_deployer.all_hosts roles = self.component_deployer.get_roles() self._verify_os_proc(all_hosts) self._verify_clocks(all_hosts) self._check_virtualization(roles['node-controller']) return (self.passed, self.failed) def _verify_os_proc(self, all_hosts): """ Verifies supported OS, correct chip architecture and recommended minimum number of processors on all cloud components. :param all_hosts: a set of Eucalyptus cloud components """ self.info('Operation System and Processor verification on all hosts') os_output = 'cat /etc/system-release' with hide('everything'): os_version = self.run_command_on_hosts(os_output, all_hosts) os_search_string = '(CentOS|Red).*(' + str(self.os_version) + '.\w+)' for host in all_hosts: if re.search(os_search_string, os_version[host]): self.success(host + ': Correct OS Version') else: self.failure(host + ': Incorrect OS Version') arch_output = 'uname -m' with hide('everything'): arch_version = self.run_command_on_hosts(arch_output, all_hosts) for host in all_hosts: if re.search('x86_64', arch_version[host]): self.success(host + ': Correct chip architecture') else: self.failure(host + ': Incorrect chip architecture') cpu_output = 'cat /proc/cpuinfo | grep processor' cputype_output = 'cat /proc/cpuinfo | grep \"model name\"' with hide('everything'): cpu_count = self.run_command_on_hosts(cpu_output, all_hosts) cpu_type = self.run_command_on_hosts(cputype_output, all_hosts) for host in all_hosts: cpus = re.findall('processor', cpu_count[host]) if len(cpus) >= 2: self.success(host + ': Passed minimum number of' + ' processors requirement') else: self.failure(host + ': Failed minimum number of' + ' processors requirement') proc_type = re.findall('(model).*([Intel|AMD].*)\w+', cpu_type[host]) if len(cpus) == len(proc_type): self.success(host + ': Passed requirement of ' + 'Intel/AMD processor support') else: self.failure(host + ': Failed requirement of ' + 'Intel/AMD processor support') def _verify_clocks(self, all_hosts): """ Verifies that ntp, and ntpdate are installed on each cloud component. In addition, confirms components clock skew isn't greater than the default maximum clock skew allowed for the cloud :param all_hosts: a set of Eucalyptus cloud components """ self.info('NTP/NTPD Test on all hosts') packages = ['ntp', 'ntpdate'] for package in packages: with hide('everything'): # Use rpm --query --all to confirm packages exist rpm_output = self.run_command_on_hosts('rpm ' + '--query --all ' + package, all_hosts) for host in all_hosts: if re.search(package, rpm_output[host]): self.success(host + ':Package found - ' + package) else: self.failure(host + ':Package not found - ' + package) service_output = 'service ntpd status' with hide('everything'): ntpd_output = self.run_command_on_hosts(service_output, all_hosts) for host in all_hosts: if re.search('running', ntpd_output[host]): self.success(host + ':ntpd running') else: self.failure(host + ':ntpd not running') # Check to see if ntpd is set to default-start runlevel chkconfig_output = 'chkconfig --list ntpd | awk \'{print $4,$5,$6,$7}\'' with hide('everything'): runlevel_output = self.run_command_on_hosts(chkconfig_output, all_hosts) for host in all_hosts: if re.search('off', runlevel_output[host]): self.failure(host + ':runlevel for ntpd' + ' has not been set to default-start') else: self.success(host + ':runlevel for ntpd' + ' has been set to default-start') """ Compare date across all cloud components. Date is compared in UTC format. In addition, compare time on each cloud component, and confirm there isn't more than the clock skew (in seconds) between all components. """ date_output = 'date --utc +%m%d%y' time_output = 'date --utc +%H%M%S' with hide('everything'): date_stamp = self.run_command_on_hosts(date_output, all_hosts) time_stamp = self.run_command_on_hosts(time_output, all_hosts) host_dates = [] host_times = [] for host in all_hosts: if not date_stamp[host] or not time_stamp[host]: self.failure(host + ': No date returned. Make sure machine clock' + ' is set and synced across all nodes') return else: host_dates.append(date_stamp[host]) host_times.append(time_stamp[host]) if all(date == host_dates[0] for date in host_dates): self.success('All cloud components are using the same date') else: self.failure('Date is not consistent across cloud components') max_time = max(host_times) for time in host_times: if abs(int(max_time) - int(time)) > int(self.clock_skew_sec): self.failure('Clock skew is greater than 1 minute across hosts.' + ' Please confirm clocks are synced across all hosts.') return self.success('Clocks are synced within allowed threshold') def _check_virtualization(self, nodes): """ Confirm that node controller(s) have hardware virtualization enabled on either Intel or AMD chips. :param nodes: a set of Eucalyptus Node Controller components """ self.info('Confirm virtualization is enabled on Node Controllers') virt_output = 'egrep -m1 -w \'^flags[[:blank:]]*:\' /proc/cpuinfo |' \ ' egrep -wo \'(vmx|svm)\'' with hide('everything'): virt_test = self.run_command_on_hosts(virt_output, nodes) for host in nodes: if re.match('(vmx|svm)', virt_test[host]): self.success(host + ': Passed requirement of ' + 'Intel/AMD hardware virtualization support') else: self.failure(host + ': Failed requirement of ' + 'Intel/AMD hardware virtualization support')
StarcoderdataPython
89023
<filename>constants.py<gh_stars>1-10 for name in 'channel pitch time duration velocity'.split(): globals()[name.upper()] = name
StarcoderdataPython
42606
<filename>app/moisturechecker/app.py import paho.mqtt.client as mqtt from gpiozero import Button as Sensor import os def on_event(client, topics, message): def func(): for topic in topics: client.publish(topic, message) return func if __name__ == '__main__': mqtt_url = os.environ['growmemoisturechecker_mqtturl'] mqtt_topics = os.environ['growmemoisturechecker_mqtttopics'].split(",") sensor_pin = int(os.environ['growmemoisturechecker_sensor']) client = mqtt.Client("moisture_54263841") client.username_pw_set(mqtt_url.split("@")[0].split(":")[0], mqtt_url.split("@")[0].split(":")[1]) client.connect(mqtt_url.split("@")[1].split(":")[0], int(mqtt_url.split("@")[1].split(":")[1])) sensor = Sensor(sensor_pin) sensor.when_pressed = on_event(client, mqtt_topics, "wet") sensor.when_released = on_event(client, mqtt_topics, "dry") client.loop_forever()
StarcoderdataPython
3367688
"""Constants for the Harmony component.""" DOMAIN = "harmony" SERVICE_SYNC = "sync" SERVICE_CHANGE_CHANNEL = "change_channel" PLATFORMS = ["remote", "switch"] UNIQUE_ID = "unique_id" ACTIVITY_POWER_OFF = "PowerOff" HARMONY_OPTIONS_UPDATE = "harmony_options_update" ATTR_DEVICES_LIST = "devices_list" ATTR_LAST_ACTIVITY = "last_activity" ATTR_ACTIVITY_STARTING = "activity_starting" PREVIOUS_ACTIVE_ACTIVITY = "Previous Active Activity"
StarcoderdataPython
25923
<filename>src/cuda_ai/mean.py # -*- coding: utf-8 -*- """ Created on Sun May 21 15:35:38 2017 @author: Liron """ import numpy as np np.set_printoptions(threshold=np.nan) data = np.genfromtxt("cuda_times.csv", delimiter=",", usecols=(0,1), max_rows=97, skip_header=96+96+96) print data[0] print data[data.shape[0]-1] mean = np.zeros((16,2)) for i in np.arange(mean.shape[0]): x = data[6*i + 1:6*(i+1) + 1,1] mean[i,1] = np.mean(x) mean[i,0] = data[6*i + 1,0] print mean #np.savetxt("cuda_1000threads.txt", mean, delimiter=',')
StarcoderdataPython
3313809
# -*- coding:utf8 -*- # File : progress.py # Author : <NAME> # Email : <EMAIL> # Date : 2/26/17 # # This file is part of TensorArtist. from tartist.core.utils.thirdparty import get_tqdm_defaults import tqdm import numpy as np def enable_epoch_progress(trainer): pbar = None def epoch_progress_on_iter_after(trainer, inp, out): nonlocal pbar if pbar is None: pbar = tqdm.tqdm(total=trainer.epoch_size, leave=False, initial=trainer.iter % trainer.epoch_size, **get_tqdm_defaults()) desc = 'Iter={}'.format(trainer.iter) if 'error' in trainer.runtime: desc += ', error={:.4f}'.format(trainer.runtime['error']) for k in sorted(out.keys()): v = out[k] if isinstance(v, (str, int, float, np.ndarray, np.float32, np.float64, np.int32, np.int64)): try: v = float(v) desc += ', {}={:.4f}'.format(k, v) except ValueError: pass pbar.set_description(desc) pbar.update() def epoch_progress_on_epoch_after(trainer): nonlocal pbar pbar.close() pbar = None trainer.register_event('iter:after', epoch_progress_on_iter_after, priority=25) trainer.register_event('epoch:after', epoch_progress_on_epoch_after, priority=5)
StarcoderdataPython
159374
<gh_stars>0 """! @file # Class Documenter @package src """ ## build a profile of each function and include in the documentation INCLUDE_FUNCTION_PROFILE = True ## pull inline comments up to function docstring INCLUDE_INLINE_COMMENTS = False import sys, os from util.log import setup_logging logger = setup_logging() from util.config import GetGlobalConfig config = GetGlobalConfig() CLASS_TEMPLATE = config['CLASS_TEMPLATE'] from python_code.CodeLine import CodeLine from function_documenter import DocumentFunction def doClassInit(codeblock): # make sure first argument is 'self'. Not a functional requirement, but necessary for doxygen to identify public members args = codeblock.getArguments() if args[0] != 'self': logger.warning('function {} does not have self as first argument in __init__. This will prevent doxygen from finding members.') members = codeblock.getMembers(args[0]) # TODO: we need the line #s and then to stick a new comment line above each... for member in members: word = "{}.{}".format(args[0], member) # we'll loop through the lines here, but this is not good style. Should make this a class function. for item, i in zip(codeblock.block, range(0, len(codeblock.block))): if item.find(word) > -1: break if i < len(codeblock.block): # check previous line, is it a comment already? if CodeLine.RemoveLeadingWhitespace(codeblock.block[i-1])[:2] != '##': ind = codeblock.block[i].indent() codeblock.block[i:i] = [CodeLine("## TODO_DOC: what is {} class member variable?".format(member)).indent(ind)] # codeblock.indent() def DocumentClasses(filename, FORCE): with open(filename, 'r') as f: raw = f.read() from python_code.CodeBlock import CodeBlock code_lines = CodeBlock.ParsePython(raw) logger.info('read {} bytes over {} blocks of code'.format(len(raw),len(code_lines))) write_it = False for cb in code_lines: if cb.isClass(): # do all the methods methods = cb.getAllFunctions() for method in methods: if method.getFunctionName() == '__init__': doClassInit(method) if method.hasDocumentation(): if FORCE: method.removeDocumentation() else: continue # document each function DocumentFunction(method, ignore_args=['self']) write_it = True if cb.hasDocumentation(): if FORCE: cb.removeDocumentation() else: continue # need special handling of __init__ function to document public members docs = CLASS_TEMPLATE.split('\n') docs = [CodeLine(d) for d in docs] cb.addDocumentation(docs) write_it = True if write_it: code_lines.indent() # makes changes in place # move original os.rename(filename, filename + '.old') logger.info('moved original file to {}'.format(filename + '.old')) with open(filename, 'w') as f: f.write( str(code_lines) ) logger.info('added new class documentation to {}'.format(filename)) else: logger.info('no changes were made.') if __name__ == "__main__": if len(sys.argv) < 2: logger.error('missing required path to file argument') exit() filename = sys.argv[1] FORCE = '-force' in sys.argv DocumentClasses(filename, FORCE)
StarcoderdataPython
113283
import os from flask import Flask, jsonify, send_file from flask_cors import CORS from flask_jwt_extended import JWTManager from api.login import blueprint as login_blueprint from api.odoo import blueprint as odoo_blueprint app = Flask(__name__) ALLOW_ALL_ORIGINS = os.getenv("ALLOW_ALL_ORIGINS") if ALLOW_ALL_ORIGINS: CORS(app) app.config["JWT_SECRET_KEY"] = os.environ.get("JWT_SECRET_KEY") jwt = JWTManager(app) app.register_blueprint(login_blueprint) app.register_blueprint(odoo_blueprint) @app.route("/api/ping") def ping(): return jsonify({"name": "auto-conso", "status": "ok"}) @app.route("/") def main(): index_path = os.path.join(app.static_folder, "index.html") return send_file(index_path) # Everything not declared before (not a Flask route / API endpoint)... @app.route("/<path:path>") def route_frontend(path): # ...could be a static file needed by the front end that # doesn't use the `static` path (like in `<script src="bundle.js">`) file_path = os.path.join(app.static_folder, path) if os.path.isfile(file_path): return send_file(file_path) # ...or should be handled by the SPA's "router" in front end else: index_path = os.path.join(app.static_folder, "index.html") return send_file(index_path) if __name__ == "__main__": app.run(debug=True)
StarcoderdataPython
3276961
<gh_stars>1-10 if __name__ == '__main__': from compute_realizability import * else: from contracts.compute_realizability import * if len(sys.argv) > 2: i = int(sys.argv[1]) j = int(sys.argv[2]) synthesize_by_ij(i,j) elif len(sys.argv) > 1 and sys.argv[1] == 'all': check_all() else: print('Checking stale contract...')
StarcoderdataPython
3316910
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2012 <NAME> <<EMAIL>> """extracts the openrave version from the root CMakeLists.txt file and returns it """ import sys if __name__=='__main__': data = open(sys.argv[1],'r').read() indices = [data.find('OPENRAVE_VERSION_MAJOR'), data.find('OPENRAVE_VERSION_MINOR'), data.find('OPENRAVE_VERSION_PATCH')] versions = [] for index in indices: startindex = data.find(' ',index) endindex = data.find(')',startindex) versions.append(data[startindex:endindex].strip()) print '.'.join(versions)
StarcoderdataPython
1720860
from traitlets import Bool, validate from .Material_autogen import Material as MaterialAutogen class Material(MaterialAutogen): # Do not sync this automatically: needsUpdate = Bool(False) @validate('needsUpdate') def onNeedsUpdate(self, proposal): if proposal.value: content = { "type": "needsUpdate", } self.send(content=content, buffers=None) # Never actually set value return False
StarcoderdataPython
3303240
from django.test import override_settings from django.urls import reverse class TestSettings: @override_settings(COMPRESS_ENABLED=True) def test_compression(self, django_app, volunteer): response = django_app.get(reverse("core:index"), user=volunteer) assert response.status_code == 200
StarcoderdataPython
1614232
import logging from aiohttp import web from eth_typing import BLSSignature from eth_utils import decode_hex, encode_hex, humanize_hash from lahja.base import EndpointAPI from ssz.tools.dump import to_formatted_dict from ssz.tools.parse import from_formatted_dict from eth2.beacon.chains.base import BaseBeaconChain from eth2.beacon.types.attestations import Attestation, AttestationData from eth2.beacon.types.blocks import BeaconBlock, BeaconBlockBody from eth2.beacon.typing import Bitfield, CommitteeIndex, Slot from eth2.api.http.validator import Paths as APIEndpoint from trinity._utils.version import construct_trinity_client_identifier from trinity.http.apps.base_handler import BaseHandler, get, post class ValidatorAPIHandler(BaseHandler): logger = logging.getLogger("trinity.http.apps.validator_api.ValidatorAPIHandler") def __init__( self, chain: BaseBeaconChain, event_bus: EndpointAPI, genesis_time: int ): self._chain = chain self._event_bus = event_bus self._genesis_time = genesis_time self._client_identifier = construct_trinity_client_identifier() @get(APIEndpoint.node_version) async def _get_client_version(self, request: web.Request) -> web.Response: return web.json_response(self._client_identifier) @get(APIEndpoint.genesis_time) async def _get_genesis_time(self, request: web.Request) -> web.Response: return web.json_response(self._genesis_time) @get(APIEndpoint.sync_status) async def _get_sync_status(self, request: web.Request) -> web.Response: # TODO: get actual status in real tim status = { "is_syncing": False, "sync_status": {"starting_slot": 0, "current_slot": 0, "highest_slot": 0}, } return web.json_response(status) @get(APIEndpoint.validator_duties) async def _get_validator_duties(self, request: web.Request) -> web.Response: public_keys = tuple( map(decode_hex, request.query["validator_pubkeys"].split(",")) ) # epoch = Epoch(request.query["epoch"]) duties = tuple( { "validator_pubkey": encode_hex(public_key), "attestation_slot": 2222, "attestation_shard": 22, "block_proposal_slot": 90, } for public_key in public_keys ) return web.json_response(duties) @get(APIEndpoint.block_proposal) async def _get_block_proposal(self, request: web.Request) -> web.Response: slot = Slot(int(request.query["slot"])) randao_reveal = BLSSignature( decode_hex(request.query["randao_reveal"]).ljust(96, b"\x00") ) block = BeaconBlock.create( slot=slot, body=BeaconBlockBody.create(randao_reveal=randao_reveal) ) return web.json_response(to_formatted_dict(block)) @post(APIEndpoint.block_proposal) async def _post_block_proposal(self, request: web.Request) -> web.Response: block_data = await request.json() block = from_formatted_dict(block_data, BeaconBlock) self.logger.info( "broadcasting block with root %s", humanize_hash(block.hash_tree_root) ) # TODO the actual brodcast return web.Response() @get(APIEndpoint.attestation) async def _get_attestation(self, request: web.Request) -> web.Response: # _public_key = BLSPubkey(decode_hex(request.query["validator_pubkey"])) slot = Slot(int(request.query["slot"])) committee_index = CommitteeIndex(int(request.query["committee_index"])) attestation = Attestation.create( aggregation_bits=Bitfield([True, False, False]), data=AttestationData.create(index=committee_index, slot=slot), ) return web.json_response(to_formatted_dict(attestation)) @post(APIEndpoint.attestation) async def _post_attestation(self, request: web.Request) -> web.Response: attestation_data = await request.json() attestation = from_formatted_dict(attestation_data, Attestation) self.logger.info( "broadcasting attestation with root %s", humanize_hash(attestation.hash_tree_root), ) # TODO the actual brodcast return web.Response()
StarcoderdataPython
185896
<filename>models/models.py from __future__ import print_function def create_model(opt): if opt.model == 'sr_resnet': from .sr_resnet_model import SRResNetModel model = SRResNetModel() elif opt.model == 'sr_resnet_test': from .sr_resnet_test_model import SRResNetTestModel model = SRResNetTestModel() elif opt.model == 'sr_gan': from .sr_gan_model import SRGANModel model = SRGANModel() else: raise NotImplementedError('Model [%s] not recognized.' % opt.model) model.initialize(opt) print('Model [%s] is created.' % model.name()) return model
StarcoderdataPython
3220855
<filename>Beginnings.py ''' * * * Sheet music generator using ABC notation * * * ''' # The bread and butter of proc-gen import random as r # Some basic values related to ABC: # Song number X='1' # First song, increase this to make an opus # Title T="Beginnings" # Song title # Key keys=['C','C# ','D','D# ','E','F','F# ','G','G# ','A','A# ','B'] K=r.choice(keys) # Random key, they're all the same mostly K='C' # and will only be used at the end for transposition. scales=['Penta','Major','Minor','Dev'] # Dev is my personal scale that drops the septet altogether, because I dislike the B sound in C scalesDic={ 'Penta':[1,4,6,8,11,13,16,18,20,23,-1], 'Major':[1,3,4,6,8,9,11,13,15,16,18,20,21,23,-1], 'Minor':[1,3,4,6,7,9,11,13,15,16,18,19,21,23,-1], 'Dev':[1,4,6,8,9,11,13,16,18,20,21,23,-1] } # 'BC'D'EF'G'A'BC scale=r.choice(scales) # Meter M=4 # Beats per bar M2=4 # note that is said beat (inverted) # Tempo/rate Q=180 # 3 beats per minute # Default note length L=1 # eighths L2=8 # Voice V=3 # Number of voices, the main, the base, and the arp (not used) # These are important in some way. The variables are what makes ABC # But there are also a few non-standard variables that'll help instrument='80' # Square wave sequence=1 # track 1 # Make the basic output output='X:'+X+'\nT:'+T+'\nK:'+K+'\nM:'+str(M)+'/'+str(M2)+'\nQ:'+str(Q)+'\nL:'+str(L)+'/'+str(L2)+'\n%%MIDI instrument%%:'+instrument+'\nV:1\n' # All these variables are set differently in the ABC, but that'll sort itself out. # Introducing the brand new, all improved, 2.0 version of chord progressions # Featuring your all time favorites such as majors, minors, 7ths and power chords # palette=['C','D_','D','E_','E','F','G_','G','A_','A','B_','B'] flavor=['','m','7','M7','dim','aug','-5','sus4','sus2'] flavorDic={'':[0,4,7],'m':[0,3,7],'7':[0,4,7,10],'M7':[0,4,7,11],'dim':[0,3,6],'aug':[0,4,8],'-5':[0,7],'sus4':[0,6,7],'sus2':[0,3,7]} # The concept here is to randomly generate a sequence of # - Notes, represented by a-g,A-G # - Note lengths, represented by numbers after the note # - Chords in the second track # Then end it all with the end token, which looks like |] # all the valid notes in a neat 5x5 grid notes=['_A,','A,' ,'_B,','B,','C', '_D','D' ,'_E' ,'E' ,'F', '_G','G' ,'_A' ,'A' ,'_B', 'B' ,'c,','_d' ,'d' ,'_e', 'e' ,'f' ,'_g' ,'g' ,'z'] # A routine that generates a bar def bar(): # The result list where everything is added to result=[] # A counter that counts the number of notes in a bar # It comes from M/L; in standard time with eighths, that's (4/4)/(1/8)=8 x=(M/M2)/(L/L2) while(x>0): # Pick a random note from the chosen scale note=notes[r.choice(scalesDic[scale])] # This is to make sure the note fits the bar fitting=False # Pick notes until something fits. while(not fitting): # Random note length, because only eighths is boring as all fuck. notelength=int(abs(r.gauss(0,1.5))+1) # Check to see if the note fits the bar. if(notelength<=x): # It does. fitting=True # If the bar isn't full yet, add the note. if(notelength>1): # If the note is actually longer than an eighth, it needs a number. result.append(note+str(notelength)) else: result.append(note) # Another bit of the bar filled. x-=notelength # The bar is complete. return result # A routine that makes a song def songify(): result=[] # x bars per song for k in range(90): result.append(bar()) return result # The bass consists of the first actual note of the bar and is made fun of. # If no such note exists, because the whole bar is rests, send a C (might change this later on). def bass(note): # Output string of the routine result='' # These are the note lengths, 8=whole, 1=eights, you do the math. lengths=[8,4,2,1] # Choose a length length=r.choice(lengths) length=8 # This next bit is pretty blatantly proc-gen, literally random stuff built upon the previous random step. if length!=8: # Random boolean in Python is fun alternating=bool(int(r.randint(0,1))) # Generate a random number, turn int into boolean if alternating: # Make a new note that's one octave higher or lower altNotes=[note+'\'',note+','] altNote=r.choice(altNotes) # Fill up the bar flag=True for x in range(int(8/length)): if flag: # Add the input node to the output string, which is one bar's worth of bass note result+=note+str(length) # This routine is called every bar, so it's possible one bar has a whole note, then 8 alternating, then 4 non-alternating if alternating: # toggle the flag flag=False else: # Add the alternated note instead. result+=altNote+str(length) flag=True else: result+=note+'8' return result # The bass writing routine def bassify(songNotes): result=[] # Which is the first note of the bar for x in songNotes: # Unless it's a rest for y in x: # This is for edge cases where there is no note on the bar, it'll default to C note2='C' # A note is a name, a pitch modifier and a length (the latter is optional), if the name is 'z' it's a rest if not y[0]=='z': # I need the name, but the length is going to fit the whole bar eventually # Check for accidentals if y[0]=='_': note2=bass(y[0]+y[1].upper()) else: note2=bass(y[0].upper()) # A note is found, break the loop break # Whether we broke out the loop or found no note, add the note2 to the staff. result.append(note2) return result # Every bar has a chord, which will be used for the arp and is based on the bass note. Eventually it can be replaced with an actual chord def progression(note,length): # Uppercase the note name, so it won't ever go out of bounds. note=note.upper() # The result string result='' # Choose a flavor chordflavor='' # The synergy of a dictionary and its index list is not to be understated chord=flavorDic[chordflavor] # Now it needs to be resolved to the 2 to 4 notes # For playback purposes of course, but also for the arp up=r.choice([True,False]) # Separate activity based on the chord length # Length 2 should flip between the two notes, possibly with extra octave support later. for x in range(length*2): if len(chord)==2: # Length 1 means the whole arp takes 1/1 note, write / for half time # Length 4 means the whole arp takes 1/4 note, write /4 for eighth time for y in chord: result+=notes[y+notes.index(note)]+'/'+str(length)+' ' for y in chord: result+=notes[y+notes.index(note)]+'/'+str(length)+' ' # Length 3 should oscillate between the notes. if len(chord)==3: # Oscillation goes one longer than the actual chord, doing the 2nd note again at the end. for y in range(len(chord)+1): if y>2: result+=notes[chord[1]+notes.index(note)]+'/'+str(length)+' ' else: result+=notes[chord[y]+notes.index(note)]+'/'+str(length)+' ' # Length 4 should go up or down the notes. if len(chord)==4: if up: for y in chord: result+=notes[y+notes.index(note)]+'/'+str(length)+' ' else: for y in range(len(chord)): result+=notes[chord[len(chord)-y-1]+notes.index(note)]+'/'+str(length)+' ' return result # The arp writing routine def progressify(bassNotes): result=[] # Choose a length, which is actually going to be really small and should be constant length=r.choice([1,2]) # Take a bar from the bass notes for i in bassNotes: # Put each first note of it through the wrangler # Since it's already sorted, bass notes is easier than sorting out the actual notes again. if i[0]=='_': result.append(progression((i[0]+i[1]),length)) else: result.append(progression(i[0],length)) return result '''Here be actual main''' # Generate a song # The notes songNotes=songify() # This is for outputting the song notes for i in range(18): for j in range(5): for k in songNotes[j+i*5]: # Add each bar of the note list to the output output+=k # And put a | delimiter at the end of it. output+='|' # End of the line' if i*j<17*4: output+='\n' # voice end output+=']\n\n' # For my next trick, I'll do the bass notes, which is the second voice output+='V:2\n' bassNotes=bassify(songNotes) # This is for outputting the bass notes for i in range(18): for j in range(5): for k in bassNotes[j+i*5]: # Add each bar of the note list to the output output+=k # This can be changed so instead it outputs alternating octaved notes in half, quarter, or eighths, which should be a def # And put a | delimiter at the end of it. output+='|' # End of the line, unless end of song if i*j<17*4: output+='\n' # voice end output+=']\n\n' # For my last trick, I'll do an arp output+='V:3\n' progNotes=progressify(bassNotes) for i in range(18): for j in range(5): for k in progNotes[j+i*5]: # Add each bar of the note list to the output output+=k # This can be changed so instead it outputs alternating octaved notes in half, quarter, or eighths, which should be a def # And put a | delimiter at the end of it. output+='|' # End of the line, unless end of song if i*j<17*4: output+='\n' # voice end output+=']\n\n' fileStream=open(T+'.abc','w') fileStream.write(output) fileStream.close() '''todo: actual chord progression the reason it's not here is because this version bases itself on the notes, not the chords i.e. it makes the notes first, then the chords from that. Other ways of making a song proc-gen is starting with drums, a base note (i.e. not chords), or just a function for the pitch (e.g. sine)''' # output is now a genuine, bonafide ABC file, write it to a .abc file and it will work. # That's not the purpose, so instead parse it with the import music21 as mu # package for further processing song=mu.converter.parse(output) # one such process is transposing according to the key. transpose={'C':0,'C# ':1,'D':2,'D# ':3,'E':4,'F':5,'F# ':6,'G':-5,'G# ':-4,'A':-3,'A# ':-2,'B':-1} # This is where the key is being actually used. song.transpose(transpose[K]) # print(song) song.show() # Now everything works.
StarcoderdataPython
3315792
<filename>lanedetect.py import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import os from lanedetect_helpers import process_image from moviepy.editor import VideoFileClip from IPython.display import HTML def lane_detect_images(): test_data_dir = "test_images/" # Read Test images test_images = os.listdir(test_data_dir) for test_image in test_images: image = mpimg.imread(os.path.join(test_data_dir, test_image)) final_image = process_image(image) def lane_detect_videos(): test_data_dir = "test_videos/" video_out_dir = "test_videos_output/" test_videos = os.listdir(test_data_dir) for test_video in test_videos: test_video_input = os.path.join(test_data_dir, test_video) test_video_output = os.path.join(video_out_dir, test_video) video_clip = VideoFileClip(test_video_input) video_frame = video_clip.fl_image(process_image) video_frame.write_videofile(test_video_output, audio=False) if __name__ =="__main__": lane_detect_images() #lane_detect_videos()
StarcoderdataPython
3258953
from datetime import date import factory from factory import fuzzy from dataactcore.models import domainModels class SF133Factory(factory.Factory): class Meta: model = domainModels.SF133 sf133_id = None agency_identifier = fuzzy.FuzzyText() allocation_transfer_agency = fuzzy.FuzzyText() availability_type_code = fuzzy.FuzzyText() beginning_period_of_availa = fuzzy.FuzzyText() ending_period_of_availabil = fuzzy.FuzzyText() main_account_code = fuzzy.FuzzyText() sub_account_code = fuzzy.FuzzyText() tas = fuzzy.FuzzyText() fiscal_year = fuzzy.FuzzyInteger(2010, 2040) period = fuzzy.FuzzyInteger(1, 12) line = fuzzy.FuzzyInteger(1, 9999) amount = 0 class CGACFactory(factory.Factory): class Meta: model = domainModels.CGAC cgac_id = None cgac_code = fuzzy.FuzzyText() agency_name = fuzzy.FuzzyText() class FRECFactory(factory.Factory): class Meta: model = domainModels.FREC frec_id = None frec_code = fuzzy.FuzzyText() agency_name = fuzzy.FuzzyText() cgac = factory.SubFactory(CGACFactory) class TASFactory(factory.Factory): class Meta: model = domainModels.TASLookup tas_id = None account_num = fuzzy.FuzzyInteger(1, 9999) allocation_transfer_agency = fuzzy.FuzzyText() agency_identifier = fuzzy.FuzzyText() beginning_period_of_availa = fuzzy.FuzzyText() ending_period_of_availabil = fuzzy.FuzzyText() availability_type_code = fuzzy.FuzzyText() fr_entity_description = fuzzy.FuzzyText() fr_entity_type = fuzzy.FuzzyText() main_account_code = fuzzy.FuzzyText() sub_account_code = fuzzy.FuzzyText() internal_start_date = fuzzy.FuzzyDate(date(2015, 1, 1), date(2015, 12, 31)) internal_end_date = None class ProgramActivityFactory(factory.Factory): class Meta: model = domainModels.ProgramActivity program_activity_id = None fiscal_year_quarter = fuzzy.FuzzyText() agency_id = fuzzy.FuzzyText() allocation_transfer_id = fuzzy.FuzzyText() account_number = fuzzy.FuzzyText() program_activity_code = fuzzy.FuzzyText() program_activity_name = fuzzy.FuzzyText() class ObjectClassFactory(factory.Factory): class Meta: model = domainModels.ObjectClass object_class_id = None object_class_code = fuzzy.FuzzyText() object_class_name = fuzzy.FuzzyText() class CFDAProgramFactory(factory.Factory): class Meta: model = domainModels.CFDAProgram cfda_program_id = None program_number = fuzzy.FuzzyDecimal(0, 99, 3) program_title = fuzzy.FuzzyText() popular_name = fuzzy.FuzzyText() federal_agency = fuzzy.FuzzyText() authorization = fuzzy.FuzzyText() objectives = fuzzy.FuzzyText() types_of_assistance = fuzzy.FuzzyText() uses_and_use_restrictions = fuzzy.FuzzyText() applicant_eligibility = fuzzy.FuzzyText() beneficiary_eligibility = fuzzy.FuzzyText() credentials_documentation = fuzzy.FuzzyText() preapplication_coordination = fuzzy.FuzzyText() application_procedures = fuzzy.FuzzyText() award_procedure = fuzzy.FuzzyText() deadlines = fuzzy.FuzzyText() range_of_approval_disapproval_time = fuzzy.FuzzyText() website_address = fuzzy.FuzzyText() formula_and_matching_requirements = fuzzy.FuzzyText() length_and_time_phasing_of_assistance = fuzzy.FuzzyText() reports = fuzzy.FuzzyText() audits = fuzzy.FuzzyText() records = fuzzy.FuzzyText() account_identification = fuzzy.FuzzyText() obligations = fuzzy.FuzzyText() range_and_average_of_financial_assistance = fuzzy.FuzzyText() appeals = fuzzy.FuzzyText() renewals = fuzzy.FuzzyText() program_accomplishments = fuzzy.FuzzyText() regulations_guidelines_and_literature = fuzzy.FuzzyText() regional_or_local_office = fuzzy.FuzzyText() headquarters_office = fuzzy.FuzzyText() related_programs = fuzzy.FuzzyText() examples_of_funded_projects = fuzzy.FuzzyText() criteria_for_selecting_proposals = fuzzy.FuzzyText() url = fuzzy.FuzzyText() recovery = fuzzy.FuzzyText() omb_agency_code = fuzzy.FuzzyText() omb_bureau_code = fuzzy.FuzzyText() published_date = fuzzy.FuzzyText() archived_date = fuzzy.FuzzyText() class ZipsFactory(factory.Factory): class Meta: model = domainModels.Zips zips_id = None zip5 = fuzzy.FuzzyText() zip_last4 = fuzzy.FuzzyText() state_abbreviation = fuzzy.FuzzyText() county_number = fuzzy.FuzzyText() congressional_district_no = fuzzy.FuzzyText() class SubTierAgencyFactory(factory.Factory): class Meta: model = domainModels.SubTierAgency sub_tier_agency_id = None sub_tier_agency_code = fuzzy.FuzzyText() sub_tier_agency_name = fuzzy.FuzzyText() cgac = factory.SubFactory(CGACFactory) frec = factory.SubFactory(FRECFactory) priority = fuzzy.FuzzyInteger(1, 2) class OfficeFactory(factory.Factory): class Meta: model = domainModels.Office office_id = None office_code = fuzzy.FuzzyText() office_name = fuzzy.FuzzyText() sub_tier_code = fuzzy.FuzzyText() agency_code = fuzzy.FuzzyText() contract_awards_office = fuzzy.FuzzyChoice((False, True)) contract_funding_office = fuzzy.FuzzyChoice((False, True)) financial_assistance_awards_office = fuzzy.FuzzyChoice((False, True)) financial_assistance_funding_office = fuzzy.FuzzyChoice((False, True)) class StatesFactory(factory.Factory): class Meta: model = domainModels.States states_id = None state_code = fuzzy.FuzzyText() state_name = fuzzy.FuzzyText() class CountyCodeFactory(factory.Factory): class Meta: model = domainModels.CountyCode county_code_id = None county_number = fuzzy.FuzzyText() county_name = fuzzy.FuzzyText() state_code = fuzzy.FuzzyText() class CityCodeFactory(factory.Factory): class Meta: model = domainModels.CityCode city_code_id = None feature_name = fuzzy.FuzzyText() feature_class = fuzzy.FuzzyText() city_code = fuzzy.FuzzyText() state_code = fuzzy.FuzzyText() county_number = fuzzy.FuzzyText() county_name = fuzzy.FuzzyText() latitude = fuzzy.FuzzyText() longitude = fuzzy.FuzzyText() class ZipCityFactory(factory.Factory): class Meta: model = domainModels.ZipCity zip_city_id = None zip_code = fuzzy.FuzzyText() city_name = fuzzy.FuzzyText() class CountryCodeFactory(factory.Factory): class Meta: model = domainModels.CountryCode country_code_id = None country_code = fuzzy.FuzzyText() country_name = fuzzy.FuzzyText() class DunsFactory(factory.Factory): class Meta: model = domainModels.DUNS duns_id = None awardee_or_recipient_uniqu = fuzzy.FuzzyText() legal_business_name = fuzzy.FuzzyText() dba_name = fuzzy.FuzzyText() activation_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) deactivation_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) registration_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) expiration_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) last_sam_mod_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) address_line_1 = fuzzy.FuzzyText() address_line_2 = fuzzy.FuzzyText() city = fuzzy.FuzzyText() state = fuzzy.FuzzyText() zip = fuzzy.FuzzyText() zip4 = fuzzy.FuzzyText() country_code = fuzzy.FuzzyText() congressional_district = fuzzy.FuzzyText() entity_structure = fuzzy.FuzzyText() business_types_codes = ['A', 'B', 'C'] ultimate_parent_unique_ide = fuzzy.FuzzyText() ultimate_parent_legal_enti = fuzzy.FuzzyText() high_comp_officer1_full_na = fuzzy.FuzzyText() high_comp_officer1_amount = fuzzy.FuzzyText() high_comp_officer2_full_na = fuzzy.FuzzyText() high_comp_officer2_amount = fuzzy.FuzzyText() high_comp_officer3_full_na = fuzzy.FuzzyText() high_comp_officer3_amount = fuzzy.FuzzyText() high_comp_officer4_full_na = fuzzy.FuzzyText() high_comp_officer4_amount = fuzzy.FuzzyText() high_comp_officer5_full_na = fuzzy.FuzzyText() high_comp_officer5_amount = fuzzy.FuzzyText() last_exec_comp_mod_date = fuzzy.FuzzyDate(date(2000, 1, 1), date(2020, 12, 31)) class StateCongressionalFactory(factory.Factory): class Meta: model = domainModels.StateCongressional state_congressional_id = None state_code = fuzzy.FuzzyText() congressional_district_no = fuzzy.FuzzyText() census_year = fuzzy.FuzzyInteger(1990, 2040)
StarcoderdataPython
1722212
''' LANGUAGE: Python AUTHOR: <NAME> GITHUB: https://github.com/Chandra-Sekhar-Bala ''' print('Hello, World!')
StarcoderdataPython
80907
import math opposite = int(input("Enter the opposite side: ")) adjacent = int(input("Enter the opposite side: ")) hypotenuse = math.sqrt(math.pow(opposite, 2) + math.pow(adjacent, 2)) print(f'hypotenuse = {hypotenuse}')
StarcoderdataPython
1739491
<filename>mixpyBuild/FileDialog.py from tkinter import * import tkinter.filedialog def getOneFile(): fn = tkinter.filedialog.askopenfilename() return fn def getManyFiles(): files = tkinter.filedialog.askopenfilenames() if files: ofiles = [] for filename in files: ofiles.append(filename) return ofiles def getDirectory(): dr = tkinter.filedialog.askdirectory() return dr
StarcoderdataPython
1743395
<reponame>crowdbotics-apps/nccaa-rfp-33947<filename>backend/inquiry/apps.py<gh_stars>0 from django.apps import AppConfig class InquiryConfig(AppConfig): name = 'inquiry'
StarcoderdataPython
3573
<reponame>startupgrind/mezzanine __version__ = "4.3.1.post1"
StarcoderdataPython
3379911
""" This module provides functions for time evolution of a state given as MPS, MPO or PMPS via the tMPS algorithm. This is based on functions which calculate the time evolution of an operator in MPS, MPO or PMPS form from Hamiltonians acting on every single and every two adjacent sites. tMPS is a method to evolve a one dimensional quantum state, represented as an MPS, MPO or PMPS, in time. It requires that the Hamiltonian is only comprised of terms acting on single sites or pairs of adjacent sites of the state. This allows the Hamiltonian :math:`H` to be written as .. math:: H = \\sum_j h_{j, j+1}, where :math:`j` is the index of the respective site in the state. These components can be grouped into those acting on even and those acting on odd sites, leading to a time evolution operator .. math:: U(\\tau) = \\text{e}^{\mathrm{i}(H_{\\text{even}}+H_{\\text{ odd}})\\tau}, with .. math:: H_{\\text{even}} = \\sum_{j\\text{ even}} h_{j, j+1} .. math:: H_{\\text{odd}} = \\sum_{j\\text{ odd}} h_{j, j+1} This allows to perform Trotter-Suzuki decompositions of :math:`U`, for example of second order: .. math:: U(\\tau) = \\text{e}^{\mathrm{i} H_{\\text{odd}} \\tau/2} \\text{e}^{\mathrm{i} H_{\\text{even}} \\tau} \\text{e}^{\mathrm{i} H_{\\text{odd}} \\tau/2} + \\mathcal{O}(\\tau^3). These decompositions provide the advantage that :math:`U` does not need to be calculated as a whole matrix, which could potentially become way too big. Since the elements within :math:`H_{\\text{even}}` and those within :math:`H_{\\text{odd}}` commute, :math:`U` can be broken up into smaller pieces which a computer can handle even for very large systems. For more information, see chapter 7 in Schollwöck’s paper Annals of Physics 326, 96-192 (2011); doi: 10.1016/j.aop.2010.09.012 In this file, :func:`evolve` is the main function to be called to evolve a state in time. It will itself call :func:`_trotter_slice` which will call :func:`_trotter_two` or :func:`_trotter_four` to calculate the :math:`U( \\tau)` representing one Trotter slice. When that is done, :func:`evolve` will take it and pass it on to :func:`_time_evolution` which will then go through the Trotter iterations, thus actually evolving the state in time, and store the requested results on the way. """ from collections import Counter from itertools import repeat import numpy as np from scipy.linalg import expm import mpnum as mp def _get_subsystems_list(subsystems, len_step_numbers): """ This function just brings subsystems, which indicates which subsystem should be returned at the respective step number, in the right form. Args: subsystems (list): Same as that described in :func:`evolve` len_step_numbers (int): The length of the array containing the step numbers for which the evolved state is to be stored. Returns: list[list[int]]: Sites for which the subsystem should be returned at the respective time, """ if type(subsystems[0]) != list: if len(subsystems) != 2: raise ValueError("Subsystems must be of the form [a, b] or [[a1, " "a2, ...], [b1, b2, ...]].") subsystems = [subsystems] * len_step_numbers return subsystems def _times_to_steps(ts, num_trotter_slices): """ Based on the requested times `ts`, calculate Trotter step numbers at which (subsystems of) evolved states need to be saved. .. doctest:: >>> _times_to_steps([10, 25, 30], 100) ([33, 83, 100], 0.3) >>> _times_to_steps([8, 26, 19], 80) ([25, 80, 58], 0.325) Args: ts (list[float]): The times for which the evolution should be computed and the state of the full system or a subsystem returned (i.e. it's reduced density matrix (for now only works with method='mpo'. If the method is not mpo, omit subsystems)). The algorithm will calculate the evolution using the given number of Trotter steps for the largest number in ts. On the way there it will store the evolved states for smaller times. NB: Beware of memory overload since len(t) mpnum.MPArrays will be stored num_trotter_slices (int): Number of Trotter slices to be used for the largest t in ts. Returns: tuple[list[int], float]: step numbers, tau = maximal t / num_trotter_slices """ tau = max(ts) / num_trotter_slices step_numbers = [int(round(t / tau)) for t in ts] return step_numbers, tau def _trotter_slice(hamiltonians, tau, num_sites, trotter_order, compr): """ Get a list of ordered operator exponentials for one Trotter slice. The Trotter-Suzuki formula approximates the time-evolution during a single Trotter slice .. math:: U(\\tau) = \\text{e}^{\\mathrm{i}\\sum_{j=1}^m H_j \\tau}, with .. math:: {U}^\\prime(\\tau) =\\prod_{p=1}^N U_p, which is a product of :math:`N` operator exponentials .. math:: U_p := {\\text{e}^{H_{j_p}\\tau_p}} of :math:`H_j`. Here :math:`\\{\\tau_p\\}` is a sequence of real numbers such that :math:`\\sum_p \\tau_p = \\tau`. The :math:`H_{j_p}` for a certain :math:`p` are all elements of the Hamiltonian acting either on even or on odd pairs of adjacent sites. This ensures that within one :math:`U_p` all terms in the exponential commute. This function returns the list of operators :math:`U_p` as MPOs. For more information on Trotter-Suzuki, see chapter 7 in Schollwöck's paper Annals of Physics 326, 96-192 (2011); doi: 10.1016/j.aop.2010.09.012. Args: hamiltonians (list): List of two lists of Hamiltonians, the Hamiltonians in the first acting on every single site, the Hamiltonians in the second acting on every pair of two adjacent sites tau (float): As defined in :func:`_times_to_steps` num_sites (int): Number of sites of the state to be evolved trotter_order (int): Order of Trotter-Suzuki decomposition to be used compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: list[mpnum.MPArray]: The time evolution operator parts, which, applied one after another, give one Trotter slice """ if trotter_order == 2: return _trotter_two(hamiltonians, tau, num_sites, compr) if trotter_order == 4: return _trotter_four(hamiltonians, tau, num_sites, compr) else: raise ValueError("Trotter order " + str(trotter_order) + " is currently not implemented.") def _trotter_two(hamiltonians, tau, num_sites, compr): """ Get a list of ordered operator exponentials for one second-order Trotter slice. Based on the description in the documentation of :func:`_trotter_slice` and on the paper by Schollwöck, :math:`N` = 3, with :math:`\\tau_1 =\\tau_3 = \\tau/2` and :math:`\\tau_2=\\tau`. Args: hamiltonians (list): List of two lists of Hamiltonians, the Hamiltonians in the first acting on every single site, the Hamiltonians in the second acting on every pair of two adjacent sites tau (float): As defined in :func:`_times_to_steps` num_sites (int): Number of sites of the state to be evolved compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: list[mpnum.MPArray]: The time evolution operator parts, which, applied one after another, give one Trotter slice """ h_single, h_adjacent = _get_h_list(hamiltonians=hamiltonians, num_sites=num_sites) dims = [len(h_single[i]) for i in range(len(h_single))] u_odd_list = _get_u_list_odd(dims, h_single, h_adjacent, tau=tau / 2) u_even_list = _get_u_list_even(dims, h_single, h_adjacent, tau=tau) u_odd = _u_list_to_mpo_odd(dims, u_odd_list, compr) u_even = _u_list_to_mpo_even(dims, u_even_list, compr) return [u_odd, u_even, u_odd] def _trotter_four(hamiltonians, tau, num_sites, compr): """ Get a list of ordered operator exponentials for one fourth-order Trotter slice. Based on the description in the documentation of :func:`_trotter_slice` and on the paper by Schollwöck, :math:`N` = 11, with .. math:: \\tau_1 = \\tau_{11} = \\frac{\\tau}{2(4 - 4^{1/3})}, .. math:: \\tau_2 = \\tau_3 = \\tau_4 = \\tau_8 = \\tau_9 = \\tau_{10} = \\frac{\\tau}{4 - 4^{1 / 3}}, .. math:: \\tau_5 = \\tau_7 = \\frac{\\tau (1 - 3)}{2(4 - 4^{1 / 3})}, and .. math:: \\tau_6 = \\frac{\\tau (1 - 4)}{4 - 4^{1 / 3}}. Args: hamiltonians (list): List of two lists of Hamiltonians, the Hamiltonians in the first acting on every single site, the Hamiltonians in the second acting on every pair of two adjacent sites tau (float): As defined in :func:`_times_to_steps` num_sites (int): Number of sites of the state to be evolved compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: list[mpnum.MPArray]: The time evolution operator parts, which, applied one after another, give one Trotter slice """ taus_for_odd = [tau * .5 / (4 - 4 ** (1 / 3)), tau / (4 - 4 ** (1 / 3)), tau * .5 * (1 - 3 / (4 - 4 ** (1 / 3)))] taus_for_even = [tau / (4 - 4 ** (1 / 3)), tau * (1 - 4 / (4 - 4 ** (1 / 3)))] h_single, h_adjacent = _get_h_list(hamiltonians=hamiltonians, num_sites=num_sites) dims = [len(h_single[i]) for i in range(len(h_single))] u_odd_lists = [_get_u_list_odd(dims, h_single, h_adjacent, t) for t in taus_for_odd] u_even_lists = [_get_u_list_even(dims, h_single, h_adjacent, t) for t in taus_for_even] multiplication_order = [0, 0, 1, 0, 2, 1, 2, 0, 1, 0, 0] us = [] for i in range(11): if i % 2 == 1: us = us + [_u_list_to_mpo_even(dims, u_even_lists[ multiplication_order[i]], compr)] else: us = us + [_u_list_to_mpo_odd( dims, u_odd_lists[multiplication_order[i]], compr)] return us def _get_h_list(hamiltonians, num_sites): """ Convert given list of Hamiltonians into form suitable for exponentiation. If only one Hamiltonian acting on every single site and one acting on every two adjacent sites is given, transform it into the form returned. If not, check whether the lengths of the lists match the number of sites. Args: hamiltonians (list): Hamiltonians as in :func:`evolve` num_sites (int): Number of sites of the state to be evolved Returns: list[list[numpy.ndarray], list[numpy.ndarray]]: A list with two items: The first is a list of Hamiltonians acting on the single sites, like [h1, h2, h3, ...] and the second is a list of Hamiltonians acting on each two adjacent sites, like [h12, h23, h34, ...] """ if type(hamiltonians[0]) is not list: hamiltonians = [list(repeat(hamiltonians[0], num_sites)), list(repeat(hamiltonians[1], num_sites - 1))] elif (len(hamiltonians[0]) != num_sites) or ( len(hamiltonians[1]) != num_sites - 1): raise ValueError( "Number of given Hamiltonians does not match number of sites") return hamiltonians[0], hamiltonians[1] def _get_u_list_odd(dims, h_single, h_adjacent, tau): """ Calculates individual operator exponentials of adjacent odd-even sites, i.e. transforms :math:`\\{h_{j, j+1} : j \\text{ odd}\\}` into :math:`\\{ \\text{e}^{\\mathrm{i} h_{j,j+1} \\tau} : j \\text{ odd}\\}` .. doctest:: >>> dims = [2, 2, 2, 2] >>> sx = np.array([[0, 1], [1, 0]]) >>> sz = np.array([[1, 0], [0, -1]]) >>> tau = 1 >>> actual_result = _get_u_list_odd(dims, [sx] * 4, [np.kron(sz, sz)] * 3, tau) >>> expected_result = [expm(-1j * tau * (np.kron(sz,sz) + .5 * (np.kron(sx, np.identity(2)) + np.kron(np.identity(2), sx))))] * 2 >>> print(np.array_equal(expected_result, actual_result)) True Args: dims (list): The dimensions of the single sites of the state U will be applied to h_single (list): The Hamiltonians acting on every single site h_adjacent (list): The Hamiltonians acting on every two adjacent sites tau (float): The time step for the time evolution of U Returns: list[numpy.ndarray]: List of operators acting on odd adjacent sites, like [u12, u34, ...] """ h_2sites = [ 1 / 2 * (np.kron(h_single[i], np.identity(dims[i + 1])) + np.kron(np.identity(dims[i]), h_single[i + 1])) for i in range(0, len(h_single) - 1, 2)] u_odd = list(expm(-1j * tau * (h + h_2sites[i])) for i, h in enumerate(h_adjacent[::2])) if len(dims) % 2 == 1: u_odd = u_odd + [expm(-1j * tau * h_single[-1] / 2)] return u_odd def _get_u_list_even(dims, h_single, h_adjacent, tau): """ Calculates individual operator exponentials of adjacent even-odd sites, i.e. transforms :math:`\\{h_{j,j+1} : j \\text{ even}\\}` into :math:`\\{ \\text{e}^{\\mathrm{i} h_{j,j+1} \\tau} : j \\text{ even}\\}` Args: dims (list): The dimensions of the single sites of the state U will be applied to h_single (list): The Hamiltonians acting on every single site h_adjacent (list): The Hamiltonians acting on every two adjacent sites tau (float): The time step for the time evolution of U Returns: list[numpy.ndarray]: List of operators acting on even adjacent sites, like [u23, u45, ...] """ h_2sites = [ 1 / 2 * (np.kron(h_single[i], np.identity(dims[i + 1])) + np.kron(np.identity(dims[i]), h_single[i + 1])) for i in range(1, len(h_single) - 1, 2)] u_even = list(expm(-1j * tau * (h + h_2sites[i])) for i, h in enumerate(h_adjacent[1::2])) u_even = [expm(-1j * tau * h_single[0] / 2)] + u_even if len(dims) % 2 == 0: u_even = u_even + [expm(-1j * tau * h_single[-1] / 2)] return u_even def _u_list_to_mpo_odd(dims, u_odd, compr): """ Transforms list of matrices on odd-even sites to MPO acting on full state. So the list of u_odd :math:`\\{u_{j,j+1} : j \\text{ odd}\\}`, which are ``numpy.ndarrays``, is transformed into :math:`\\bigotimes_j u_{j,j+1} : j \\text{ odd}` of the type ``mpnum.MPArray``. Args: dims (list): List of dimensions of each site u_odd (list): List of time evolution operators acting on odd adjacent sites compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: mpnum.MPArray: The MPO for the full state acting on odd-even adjacent sites """ if len(dims) % 2 == 1: last_h = u_odd[-1] u_odd = u_odd[:-1] odd = mp.chain(matrix_to_mpo( u, [[dims[2 * i]] * 2, [dims[2 * i + 1]] * 2], compr) for i, u in enumerate(u_odd)) if len(dims) % 2 == 1: odd = mp.chain([odd, matrix_to_mpo(last_h, [[dims[-1]] * 2], compr)]) return odd def _u_list_to_mpo_even(dims, u_even, compr): """ Transforms list of matrices on even-odd sites to MPO acting on full state. So the list of u_even :math:`\\{u_{j,j+1} : j \\text{ even}\\}`, which are ``numpy.ndarrays``, is transformed into :math:`\\bigotimes_j u_{j,j+1} : j \\text{ even}` of the type ``mpnum.MPArray``. Args: dims (list): List of dimensions of each site u_even (list): List of time evolution operators acting on even adjacent sites compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: mpnum.MPArray: The MPO for the full state acting on even-odd adjacent sites """ if len(dims) % 2 == 0: last_h = u_even[-1] u_even = u_even[:-1] even = mp.chain(matrix_to_mpo( u, [[dims[2 * i + 1]] * 2, [dims[2 * i + 2]] * 2], compr) for i, u in enumerate(u_even[1::])) even = mp.chain([matrix_to_mpo(u_even[0], [[dims[0]] * 2], compr), even]) if len(dims) % 2 == 0: even = mp.chain([even, matrix_to_mpo(last_h, [[dims[-1]] * 2], compr)]) return even def matrix_to_mpo(matrix, shape, compr=None): """ Convert matrix to MPO Converts given :math:`M \\times N` matrix in global form into an MPO with the given shape. The number of legs per site must be the same for all sites. .. doctest:: >>> matrix = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> mpo = matrix_to_mpo(matrix, [[3, 3]]) >>> print(mpo.to_array_global()) [[1 0 0] [0 0 0] [0 0 0]] Args: matrix (numpy.ndarray): The matrix to be transformed to an MPO shape (list): The shape the single sites of the resulting MPO should have, as used in mpnum. For example three sites with two legs each might look like ``[[3, 3], [2, 2], [2, 2]]``. Format same as ``numpy.ndarray.shape`` compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation where trotter_compr is used Returns: mpnum.MPArray: The MPO with shape ``shape`` representing the matrix """ if compr == None: compr = dict(method='svd', relerr=1e-6) num_legs = len(shape[0]) if not (np.array([len(shape[i]) for i in range(len(shape))]) == num_legs).all(): raise ValueError("Not all sites have the same number of physical legs") newShape = [] for i in range(num_legs): for j in range(len(shape)): newShape = newShape + [shape[j][i]] matrix = matrix.reshape(newShape) mpo = mp.MPArray.from_array_global(matrix, ndims=num_legs) mpo.compress(**compr) return mpo def normalize(state, method): """ Normalize a state. Args: state (mpnum.MPArray): The state to be normalized method (str): Whether it is a MPS, MPO or PMPS state Returns: mpnum.MPArray: The normalized state """ if method == 'pmps' or method == 'mps': state = state / mp.norm(state) if method == 'mpo': state = state / mp.trace(state) return state def _set_compr_params(): """ A function to set default compression parameters if none were provided. They will suffice in many cases, but might well lead to problems described in the Pitfalls section of the introduction notebook. If that is the case, try to find and provide your own suitable compression parameters, which is also recommended to have more control over the calculations and their precision. For more information on this, read the introduction notebook and make use of the verbose output option to monitor bond dimensions during calculations. Returns: list[dict]: Some default compression and Trotter compression parameters """ return dict(method='svd', relerr=1e-10), dict(method='svd', relerr=1e-4, rank=30) def evolve(state, hamiltonians, num_trotter_slices, method, trotter_order, ts, trotter_compr=None, compr=None, subsystems=None, v=0): """ Evolve a one dimensional MPS, MPO or PMPS state using tMPS as described in the module's documentation. The initial state, Hamiltonians and certain parameters are required. The output is a list of times and a list of the evolved states at these times. Those states might be subsystems of the whole evolved system, which allows for the user to keep memory consumption small by focusing on the subsystems of interest. .. todo:: Raise exception if hamiltonians are not of the right dimension .. todo:: Implement tracking of compression errors. .. todo:: Get variable compression to work (might involve changing mpnum). Args: state (mpnum.MPArray): The state to be evolved in time. The state has to be an MPS, MPO or PMPS, depending on which method is chosen hamiltonians (list): Either a list containing the Hamiltonian acting on every single site and the Hamiltonian acting on every two adjacents sites, like ``[H_i, H_ij]``, or a list containing a list of Hamiltonians acting on the single sites and a list of Hamiltonians acting on each two adjacent sites, like ``[[h1, h2, h3, ...], [h12, h23, h34, ...]]`` num_trotter_slices (int): Number of Trotter slices to be used for evolution over time equal to the largest t in ts. method (str): Which method to use. Either 'mps', 'mpo' or 'pmps'. trotter_order (int): Order of Trotter-Suzuki decomposition to be used. Currently only 2 and 4 are implemented ts (list[float]): The times for which the evolution should be computed and the state of the full system or a subsystem returned (i.e. it's reduced density matrix). The algorithm will calculate the evolution using the given number of Trotter steps for the largest number in ts. On the way there it will store the evolved states for smaller times. NB: Beware of memory overload since len(t) number of mpnum.MPArrays will be stored trotter_compr (dict): Compression parameters used in the iterations of Trotter (in the form required by :func:`mpnum.MPArray.compress`. If unsure, look at https://github.com/dseuss/mpnum/blob/master/examples/mpnum_intro.ipynb .) If omitted, some default compression will be used that will probably work but might lead to problems. See :func:`_set_compr_params` for more information. compr (dict): Parameters for the compression which is executed on every MPA during the calculations, except for the Trotter calculation, where trotter_compr is used. compr = dict(method='svd', rank=10) would for example ensure that the ranks of any MPA never exceed 10 during all of the calculations. An accepted relative error for the compression can be provided in addition to or instead of ranks, which would lead to e.g. compr = dict(method='svd', rank=10, relerr=1e-12). If omitted, some default compression will be used that will probably work but might lead to problems. See :func:`_set_compr_params` for more information. subsystems (list): A list defining for which subsystem the reduced density matrix or whether the full state should be returned for a time in ``ts``. This can be a list of the length same as that of ``ts`` looking like ``[[a1, b1], [a2, b2], ...]`` or just a list like ``[a, b]``. In the first case the respective subsystem for every entry in ts will be returned, in the second case the same subsystem will be returned for all entries in ``ts``. ``[a, b]`` will lead to a return of the reduced density matrix of the sites from ``a`` up to, but not including, ``b``. For example ``[0, 3]`` if the reduced density matrix of the first three sites should be returned. A time can occur twice in ``ts`` and then different subsystems to be returned can be defined for that same time. If this parameter is omitted, the full system will be returned for every time in ``ts``. v (int): Level of verbose output. 0 means no output, 1 means that some basic output showing the progress of calculations is produced. 2 will in addition show the bond dimensions of the state after every couple of iterations, 3 will show bond dimensions after every Trotter iteration. Returns: list[list[float], list[list[int]], list[mpnum.MPArray]]: A list with five items: (i) The list of times for which the density matrices have been computed (ii) The list indicating which subsystems of the system are returned at the respective time of the first list (iii) The list of density matrices as MPO or PMPS as mpnum.MPArray, depending on the input "method". If that was MPS, the full states will still be MPSs, the reduced ones will be MPOs. """ if compr is None: compr, _ = _set_compr_params() if trotter_compr is None: _, trotter_compr = _set_compr_params() state.compress(**compr) state = normalize(state, method) if len(state) < 3: raise ValueError("State has too few sites") if (np.array(ts) == 0).all(): raise ValueError( "No time evolution requested by the user. Check your input 't'") if subsystems == None: subsystems = [0, len(state)] step_numbers, tau = _times_to_steps(ts, num_trotter_slices) subsystems = _get_subsystems_list(subsystems, len(step_numbers)) us = _trotter_slice(hamiltonians=hamiltonians, tau=tau, num_sites=len(state), trotter_order=trotter_order, compr=compr) if v != 0: print("Time evolution operator for Trotter slice calculated, " "starting " "Trotter iterations...") return _time_evolution(state, us, step_numbers, subsystems, tau, method, trotter_compr, v) def _time_evolution(state, us, step_numbers, subsystems, tau, method, trotter_compr, v): """ Implements time-evolution via Trotter-Suzuki decomposition Args: state (mpnum.MPArray): The state to be evolved in time us (list[mpnum.MPArray]): List of ordered operator exponentials for a single Trotter slice step_numbers (list[int]): List of time steps as generated by :func:`_times_to_steps` subsystems (list[list[int]]): Sites for which the subsystem states should be returned at the respective times tau (float): Duration of one Trotter slice. As defined in :func:`_times_to_steps` method (str): Which method to use. Either 'mps', 'mpo' or 'pmps'. trotter_compr (dict): Compression parameters used in the iterations of Trotter-Suzuki decomposition. v (int): Level of verbose output. 0 means no output, 1 means that some basic output showing the progress of calculations is produced. 2 will in addition show the bond dimensions of the state after every couple of iterations, 3 will show bond dimensions after every Trotter iteration. Returns: list[list[float], list[list[int]], list[mpnum.MPArray]: A list with five items: (i) The list of times for which the density matrices have been computed (ii) The list indicating which subsystems of the system are returned at the respective time of the first list (iii) The list of density matrices as MPO or PMPS as mpnum.MPArray, depending on the input "method". If that was MPS, the full states will still be MPSs, the reduced ones will be MPOs. """ c = Counter(step_numbers) times = [] states = [] compr_errors = [] trot_errors = [] var_compression = False if trotter_compr['method'] == 'var': var_compression = True accumulated_overlap = 1 accumulated_trotter_error = 0 for i in range(max(step_numbers) + 1): for j in range(c[i]): _append(times, states, compr_errors, trot_errors, tau, i, j, step_numbers, subsystems, state, accumulated_overlap, accumulated_trotter_error, method) for u in us: if var_compression: trotter_compr['startmpa'] = mp.MPArray.copy(state) state = mp.dot(u, state) accumulated_overlap *= state.compress(**trotter_compr) if method == 'mpo': for u in us: if var_compression: trotter_compr['startmpa'] = mp.MPArray.copy(state) state = mp.dot(state, u.T.conj()) accumulated_overlap *= state.compress(**trotter_compr) state = normalize(state, method) accumulated_trotter_error += tau ** 3 if (v == 1 or v == 2) and np.sqrt(i + 1) % 1 == 0 and i < \ step_numbers[-1]: print(str(i + 1) + " Trotter iterations finished...") if v == 2: print("Ranks: " + str(state.ranks)) if v == 3 and i < step_numbers[-1]: print(str(i + 1) + " Trotter iterations finished...") print("Ranks: " + str(state.ranks)) if v != 0: print("Done with time evolution") return times, subsystems, states # , compr_errors, trot_errors def _append(times, states, compr_errors, trot_errors, tau, i, j, step_numbers, subsystems, state, accumulated_overlap, accumulated_trotter_error, method): """ Function to append time evolved state etc to output of :func:`_time_evolution` Args: times (list[float]): List containing the times to which the states are evolved states (list[mpnum.MPArray]): List containing the evolved states compr_errors (list[float]): List containing the respective compression errors trot_errors (list[float]): List containing the respective Trotter errors tau (float): The time of one Trotter slice i (int): Number indicating which is the current Trotter slice j (int): Number indicating how many times a state related to the current i has been appended already step_numbers (list[int]): List containing the time steps subsystems (list[list[int]]): List of sites for which the subsystem should be returned at the respective time state (mpnum.MPArray): The current state accumulated_overlap (float): The accumulated overlap error accumulated_trotter_error (float): The accumulated Trotter error method (str): Method to use as defined in :func:`evolve` Returns: None: Nothing, changes happen in place """ times.append(tau * i) sites = [x for t, x in zip(step_numbers, subsystems) if t == i][j] if sites == [0, len(state)]: states.append(state.copy()) elif method == 'mpo': states.append(next( mp.reductions_mpo(state, sites[1] - sites[0], [sites[0]]))) elif method == 'pmps': states.append(next( mp.reductions_pmps(state, sites[1] - sites[0], [sites[0]]))) elif method == 'mps': states.append(next( mp.reductions_mps_as_mpo(state, sites[1] - sites[0], [sites[0]]))) compr_errors.append(accumulated_overlap) trot_errors.append(accumulated_trotter_error) if __name__ == "__main__": import doctest doctest.testmod()
StarcoderdataPython
1704421
<reponame>line/networking-sr # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr import os import sys from neutron_lib.agent import topics from neutron_lib import constants from neutron_lib import exceptions from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_service import service from oslo_utils import excutils import pyroute2 from pyroute2.config.eventlet import eventlet_config from neutron.agent.common import utils from neutron.agent.linux import bridge_lib from neutron.agent.linux import external_process from neutron.agent.linux import ip_lib from neutron.api.rpc.handlers import securitygroups_rpc as sg_rpc from neutron.common import config as common_config from neutron.common import profiler as setup_profiler from neutron.plugins.ml2.drivers.agent import _agent_manager_base as amb from neutron.privileged.agent.linux import ip_lib as privileged from networking_sr.agent import rpc as sr_rpc from networking_sr.common import config # noqa from networking_sr.ml2.agent import sr_agent_loop eventlet_config() LOG = logging.getLogger(__name__) SR_AGENT_BINARY = 'neutron-sr-agent' AGENT_TYPE_SR = 'SR agent' EXTENSION_DRIVER_TYPE = 'sr' INTERFACE_FS = "/sys/class/net/" RESOURCE_ID_LENGTH = 11 VRF_TABLE_NAMBER_BASE = 1000 class SysctlCommandError(exceptions.NeutronException): message = "Sysctl command %(cmd)s failed." class SrManager(amb.CommonAgentManagerBase): def __init__(self): super(SrManager, self).__init__() self.process_monitor = external_process.ProcessMonitor( cfg.CONF, resource_type="sr-agent") self.node_id = cfg.CONF.sr.segment_node_id if not self.node_id: LOG.error("Segment Node ID is not set in config.") sys.exit(1) self.gw_id = cfg.CONF.sr.segment_gw_id self._setup_system() self._setup_ipv6() # vrf_tables = {"vrf name": vrf_table_id} self.vrf_tables = {} # Check existing vrf # TODO(hichihara): Refactor the following codes # Exteded privileged ip_lib should be created with pyroute2.IPDB() as ipdb: interfaces = ipdb.by_name.keys() vrfs = [] for i in interfaces: if i[:3] == "vrf": vrfs.append(i) with pyroute2.IPRoute() as ip: for vrf in vrfs: try: vrf_id = ip.link_lookup(ifname=vrf)[0] except IndexError: privileged.NetworkInterfaceNotFound(device=vrf, namespace=None) link = ip.link("get", index=vrf_id)[0] linkinfo = self._nlattr_get(link['attrs'], 'IFLA_LINKINFO') if not linkinfo: LOG.error("Failed to cannot found attr " "IFLA_LINKINFO from vrf interface") sys.exit(1) info_data = self._nlattr_get(linkinfo["attrs"], "IFLA_INFO_DATA") if not info_data: LOG.error("Failed to cannot found attr " "IFLA_INFO_DATA from vrf interface") sys.exit(1) vrf_table = self._nlattr_get(info_data["attrs"], "IFLA_VRF_TABLE") if not vrf_table: LOG.error("Failed to cannot found attr " "IFLA_VRF_TABLE from vrf interface") sys.exit(1) self.vrf_tables[vrf] = vrf_table LOG.debug("Found existing vrf %(vrf)s with table id " "%(table_id)d", {"vrf": vrf, "table_id": vrf_table}) # TODO(hichihara): Replace this to a way which actually gets # current rules self.encap_info = [] def _nlattr_get(self, attrs, key): # Search by key from attrs, if not found, return None for attr in attrs: if attr[0] == key: return attr[1] return None def _setup_system(self): # Make sure to allow ip forward cmd = ['net.ipv4.ip_forward=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv4.ip_forward=1.") sys.exit(1) # Make sure to allow tcp packet to pass though default vrf cmd = ['net.ipv4.tcp_l3mdev_accept=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv4.tcp_l3mdev_accept=1.") sys.exit(1) # Make sure to allow udp packet to pass though default vrf cmd = ['net.ipv4.udp_l3mdev_accept=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv4.udp_l3mdev_accept=1.") sys.exit(1) cmd = ['net.ipv6.conf.all.seg6_enabled=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv6.conf.all.seg6_enabled=1.") sys.exit(1) cmd = ['net.ipv6.conf.all.forwarding=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv6.conf.all.forwarding=1.") sys.exit(1) cmd = ['net.ipv4.conf.all.rp_filter=0'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv4.conf.all.rp_filter=0.") sys.exit(1) for interface in cfg.CONF.sr.srv6_interfaces: cmd = ['net.ipv4.conf.%s.rp_filter=0' % interface] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.ipv4.conf.%s.rp_filter=0.", interface) sys.exit(1) # Make sure to allow bridge to call iptables cmd = ['net.bridge.bridge-nf-call-iptables=1'] result = ip_lib.sysctl(cmd) if result == 1: LOG.error("Failed to enable net.bridge.bridge-nf-call-iptables=1.") sys.exit(1) def _setup_ipv6(self): # Setup SRv6 configuration # TODO(hichihara): Refactor to use ip_lib instead of command execute cmd = ["ip", "-6", "rule", "add", "pref", "32765", "table", "local"] utils.execute(cmd, run_as_root=True, check_exit_code=False) cmd = ["ip", "-6", "rule", "del", "pref", "0"] utils.execute(cmd, run_as_root=True, check_exit_code=False) def _setup_interface_ip(self, ip, interface='lo'): """Sets up an IP address on the target interface Args: ip(String): ip address with cidr interface(String): network interface, 'lo' by default Return: None """ dev = ip_lib.IPDevice(interface) dev.addr = ip_lib.IpAddrCommand(dev) existing_addreses = ip_lib.get_devices_with_ip(None, name=dev.name) existing_ips = [addr['cidr'] for addr in existing_addreses] if ip not in existing_ips: LOG.info("Adding %s to %s interface" % (ip, dev.name)) dev.addr.add(cidr=ip) else: LOG.debug("%s interface already have %s ip" % (dev.name, ip)) def get_agent_configurations(self): configurations = {} configurations['segment_node_id'] = self.node_id return configurations def get_agent_id(self): devices = ip_lib.IPWrapper().get_devices(True) if devices: mac = ip_lib.get_device_mac(devices[0].name) return 'sr%s' % mac.replace(":", "") else: LOG.error("Unable to obtain MAC address for unique ID. " "Agent terminated!") sys.exit(1) def get_all_devices(self, with_ifindex=False): """Return all existing tap devices They are technically devices having name starting with constants.TAP_DEVICE_PREFIX Args: with_ifindex(bool): if True, return dict include device index, if False, return set include just device name Return: if with_ifindex is True: devices_with_ifindex(dict): {"<device_name>": "<device index>"} if with_ifindex is False: devices(set<String>): set contains device name """ devices = {} if with_ifindex else set() for device in os.listdir(INTERFACE_FS): if not device.startswith(constants.TAP_DEVICE_PREFIX): continue # Try to lookup interface index as well if with_ifindex: try: with open(os.path.join( INTERFACE_FS, device, 'ifindex'), 'r') as f: devices[device] = int(f.read().strip()) except (IOError, ValueError): # if we faied to lookup, this device has been deleted # after exec listdir, so we should not that device as # current device continue else: devices.add(device) return devices def get_all_encap_rules(self): return self.encap_info def get_devices_modified_timestamps(self, devices): return {} def get_extension_driver_type(self): return EXTENSION_DRIVER_TYPE def get_rpc_callbacks(self, context, agent, sg_agent): return SrRpcCallbacks(context, agent, sg_agent) def get_agent_api(self, **kwargs): pass def get_rpc_consumers(self): consumers = [[topics.PORT, topics.UPDATE], [topics.NETWORK, topics.UPDATE], [topics.SECURITY_GROUP, topics.UPDATE], [sr_rpc.TOPICS_ENCAP, topics.DELETE], [sr_rpc.TOPICS_ENCAP_RULE, topics.UPDATE], [sr_rpc.TOPICS_ENCAP, topics.UPDATE], [sr_rpc.TOPICS_VRF, topics.DELETE]] return consumers def plug_interface(self, vrf, device, device_details, ports, vrf_ip, vrf_cidr): tap_device_name = device try: if not ip_lib.device_exists(tap_device_name): LOG.debug("Tap device: %s does not exist on " "this host, skipped", tap_device_name) return False self.configure_tap(tap_device_name, device_details['mac_address'], device_details['related_ips'], ports, vrf, vrf_ip, vrf_cidr) LOG.debug("Finished to configure tap %s device", tap_device_name) return True except Exception: with excutils.save_and_reraise_exception() as ctx: if not ip_lib.device_exists(tap_device_name): # the exception was likely a side effect of the tap device # being removed during handling so we just return false # like we would if it didn't exist to begin with. ctx.reraise = False return False def configure_tap(self, tap_device_name, vm_mac, related_ips, ports, vrf, vrf_ip, vrf_cidr): """Configure tap device The traffic for vm's ip goes to tap device vm connected to. NB: 1 port could have multiple ip address. that's why related_ips is list including ip informations Args: tap_device_name(String): tap device name vm_mac(String): mac address VM use related_ips(list<dict>): [{'gw_ip': <gateway_ip>, 'cidr': <cidr of subnet>, 'vm_ip': <vm ip address>}] Return: None """ tap_dev = ip_lib.IPDevice(tap_device_name) tap_dev.addr = IpAddrCommandAcceptArgs(tap_dev) for related_ip in related_ips: # Ensure veth qvb, qvr = self._get_veth_pair_names(tap_device_name[3:]) qvr_dev = self._add_veth(qvb, qvr) # Create brdige br_name = "qbr%s" % tap_device_name[3:] self._ensure_bridge(br_name, [qvb, tap_dev.name]) cidr = '/' + related_ip['cidr'] # assign virtual gateway ip to qvr qvr_address = related_ip['gw_ip'] + cidr LOG.debug("Ensure %s having %s" % (qvr_dev.name, qvr_address)) self._ensure_dev_having_ip(qvr_dev, qvr_address) # Ensure vrf exist vrf_table = self._ensure_vrf(vrf, vrf_ip, vrf_cidr) # assign qvr to vrf self._add_avr_to_vrf(vrf, qvr) # Configure SRv6 self._set_srv6_rules(vrf, vrf_ip, ports) # add static route /32 to tap vm_ip_for_route = related_ip['vm_ip'] + '/' + '32' LOG.debug("Ensure root namespace having route %s via %s" % ( vm_ip_for_route, qvr_dev.name)) self._ensure_vm_route(qvr_dev, vm_ip_for_route, vrf_table) for kernel_opts in ("net.ipv4.conf.%s.proxy_arp=1", "net.ipv4.neigh.%s.proxy_delay=0"): cmd = [kernel_opts % qvr] result = ip_lib.sysctl(cmd) if result == 1: raise SysctlCommandError(cmd=cmd) def _get_veth_pair_names(self, iface_id): return (("qvb%s" % iface_id), ("qvr%s" % iface_id)) def _add_veth(self, qvb, qvr): ip = ip_lib.IPWrapper() try: qvb_dev, qvr_dev = ip.add_veth(qvb, qvr) qvb_dev.link.set_up() qvr_dev.link.set_up() except RuntimeError: qvr_dev = ip_lib.IPDevice(qvr) qvr_dev.addr = IpAddrCommandAcceptArgs(qvr_dev) return qvr_dev def _bridge_exists_and_ensure_up(self, bridge_name): """Check if the bridge exists and make sure it is up.""" br = ip_lib.IPDevice(bridge_name) br.set_log_fail_as_error(False) try: # If the device doesn't exist this will throw a RuntimeError br.link.set_up() except RuntimeError: return False return True def _ensure_bridge(self, bridge_name, interfaces): """Create a bridge unless it already exists.""" # _bridge_exists_and_ensure_up instead of device_exists is used here # because there are cases where the bridge exists but it's not UP, # for example: # 1) A greenthread was executing this function and had not yet executed # "ip link set bridge_name up" before eventlet switched to this # thread running the same function # 2) The Nova VIF driver was running concurrently and had just created # the bridge, but had not yet put it UP if not self._bridge_exists_and_ensure_up(bridge_name): LOG.debug("Starting bridge %(bridge_name)s for subinterface " "%(interfaces)s", {'bridge_name': bridge_name, 'interfaces': interfaces}) bridge_device = bridge_lib.BridgeDevice.addbr(bridge_name) if bridge_device.setfd(0): return if bridge_device.disable_stp(): return if bridge_device.disable_ipv6(): return if bridge_device.link.set_up(): return LOG.debug("Done starting bridge %(bridge_name)s for " "subinterface %(interfaces)s", {'bridge_name': bridge_name, 'interfaces': interfaces}) else: bridge_device = bridge_lib.BridgeDevice(bridge_name) # Check if the interface is part of the bridge for interface in interfaces: if not bridge_device.owns_interface(interface): try: bridge_device.addif(interface) except Exception as e: LOG.error(("Unable to add %(interface)s to %(bridge_name)s" "! Exception: %(e)s"), {'interface': interface, 'bridge_name': bridge_name, 'e': e}) # Try ip link set cmd = ["ip", "link", "set", "dev", interface, "master", bridge_name] utils.execute(cmd, run_as_root=True, check_exit_code=False) return return bridge_name def _ensure_dev_having_ip(self, target_dev, ip): """Ensure target device have ip Args: target_dev(ip_lib.IPDevice): ip(String): ip address with cidr Return: None """ existing_addreses = ip_lib.get_devices_with_ip(None, name=target_dev.name) existing_ips = [addr['cidr'] for addr in existing_addreses] LOG.debug("The existing address of dev %s are %s" % (target_dev.name, existing_ips)) if ip not in existing_ips: target_dev.addr.add( cidr=ip, additional_args=['noprefixroute', ]) else: LOG.debug("%s already have ip %s" % (target_dev.name, ip)) def _ensure_vrf(self, vrf, vrf_ip, cidr): """Ensure vrf interface return: vrf_table """ if self.vrf_tables: vrf_table = max(list(self.vrf_tables.values())) + 1 else: vrf_table = VRF_TABLE_NAMBER_BASE if vrf not in list(self.vrf_tables): privileged.create_interface(vrf, None, "vrf", vrf_table=vrf_table) privileged.set_link_attribute(vrf, None, state="up") LOG.debug("VRF %s is created" % vrf) self.vrf_tables[vrf] = vrf_table # TODO(hichihara): Refactor to use ip_lib instead of command ip = vrf_ip + '/' + cidr self._setup_interface_ip(ip, vrf) cmd = ["ip", "route", "replace", vrf_ip, "dev", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) vrf_sid = ("%(node_id)s:%(vrf_ip)s/128" % {"node_id": self.node_id, "vrf_ip": vrf_ip}) self._setup_interface_ip(vrf_sid, vrf) self._setup_interface_ip("169.254.169.254/32", vrf) # Create encap rules for encap_info in self.encap_info: if vrf == encap_info['vrf']: self.add_encap_rules([encap_info], add_flag=False) break else: vrf_table = self.vrf_tables[vrf] return vrf_table def _add_avr_to_vrf(self, vrf, qvr): vrf_idx = privileged.get_link_id(vrf, None) privileged.set_link_attribute(qvr, None, master=vrf_idx) def _set_srv6_rules(self, vrf, vrf_ip, ports): # Encap rules for port in ports: # TODO(hichihara): Configure multiple fixed_ips target_ip = port["ip"] + "/32" target_node_id = port["segment_node_id"] if target_node_id is None: continue # Ensure connection between VMs have same network(vrf) target_vrf = port["vrf"] if target_vrf != vrf: continue if target_node_id != self.node_id: # Create target_sid target_sid = ("%(node_id)s:%(vrf_ip)s" % { "node_id": target_node_id, "vrf_ip": vrf_ip}) cmd = ["ip", "route", "replace", target_ip, "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) # Default route to network nodes if self.gw_id: target_sid = ("%(node_id)s:%(vrf_ip)s" % { "node_id": self.gw_id, "vrf_ip": vrf_ip}) cmd = ["ip", "route", "replace", "0.0.0.0/0", "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) # Decap rules # TODO(hichihara): Refactor to use ip_lib instead of command execute decap_sid = ("%(node_id)s:%(vrf_ip)s" % {"node_id": self.node_id, "vrf_ip": vrf_ip}) cmd = ["ip", "-6", "route", "replace", "local", decap_sid, "encap", "seg6local", "action", "End.DX4", "nh4", vrf_ip, "dev", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) def _ensure_vm_route(self, target_dev, vm_route, vrf_table): """Ensure root namespace on host have vm_route Args: target_dev(ip_lib.IPDevice): vm_route(String): ip address for this vm with /32 e.g. If vm's ip is 192.168.0.2/16, vm_route should be 192.168.0.2/32 Return: None """ target_dev.route.add_route(cidr=vm_route, table=vrf_table) def _get_ip_version(self, cidr): """Check if cidr is ip version 4 or not by existence of : Args: cidr(String): ip address with cidr Return: version(Int): 4 or 6 depending on cidr """ if ":" in cidr: return 6 else: return 4 def add_encap_rules(self, encap_rules, add_flag=True): for target in encap_rules: # Set srv6 rule on the vrf vrf = target['vrf'] encap_info = None for encap in self.encap_info: if encap['id'] == target['id']: encap_info = encap break for rule in target['rules']: ip = rule['destination'] target_sid = rule['nexthop'] cmd = ["ip", "route", "replace", ip, "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) if add_flag: if encap_info is not None: encap_info['rules'] += target['rules'] else: self.encap_info.append(target) def remove_encap_rules(self, encap_rules): for target in encap_rules: # Remove srv6 rule on the vrf vrf = target['vrf'] encap_info = None for encap in self.encap_info: if encap['id'] == target['id']: encap_info = encap break else: break for rule in target['rules']: ip = rule['destination'] target_sid = rule['nexthop'] cmd = ["ip", "route", "del", ip, "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) encap_info['rules'].remove(rule) def setup_target_sr(self, updated_targets): for target in updated_targets: # if target node is same as local node_id, # we should not configure encap rule if target["segment_node_id"] == self.node_id: continue # Set srv6 rule on the vrf vrf = target["vrf"] vrf_ip = target["vrf_ip"] # Ensure vrf exist self._ensure_vrf(vrf, vrf_ip, target["cidr"]) ip = target["ip"] + "/32" node_id = target["segment_node_id"] target_sid = ("%(node_id)s:%(vrf_ip)s" % { "node_id": node_id, "vrf_ip": vrf_ip}) cmd = ["ip", "route", "replace", ip, "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) def clear_target_sr(self, removed_targets): for target in removed_targets: # Remove srv6 rule on the vrf vrf = target["vrf"] vrf_ip = target["vrf_ip"] ip = target["ip"] + "/32" node_id = target["segment_node_id"] target_sid = ("%(node_id)s:%(vrf_ip)s" % { "node_id": node_id, "vrf_ip": vrf_ip}) cmd = ["ip", "route", "del", ip, "encap", "seg6", "mode", "encap", "segs", target_sid, "dev", vrf, "vrf", vrf] utils.execute(cmd, run_as_root=True, check_exit_code=False) def remove_vrf(self, vrf): if self.vrf_tables.get(vrf): privileged.set_link_attribute(vrf, None, state="down") privileged.delete_interface(vrf, None) self.vrf_tables.pop(vrf) LOG.debug("Removed vrf %s", vrf) def get_tap_device_name(self, interface_id): """Get tap device name by interface_id. Normally tap device name is the "tap" + first RESOURCE_ID_LENGTH characters of port id Args: interface_id(String): port uuid Return: tap_device_name(String): tap device name on the based of port id """ if not interface_id: LOG.warning("Invalid Interface ID, will lead to incorrect " "tap device name") tap_device_name = constants.TAP_DEVICE_PREFIX + \ interface_id[:RESOURCE_ID_LENGTH] return tap_device_name def ensure_port_admin_state(self, tap_name, admin_state_up): """Ensure the tap device is same status as admin_state_up Args: tap_name(String): tap device name admin_state_up(Bool): port admin status neutron maintain Return: None """ LOG.debug("Setting admin_state_up to %s for device %s", admin_state_up, tap_name) if admin_state_up: ip_lib.IPDevice(tap_name).link.set_up() else: ip_lib.IPDevice(tap_name).link.set_down() def _delete_bridge(self, bridge_name): bridge_device = bridge_lib.BridgeDevice(bridge_name) if bridge_device.exists(): try: LOG.debug("Deleting bridge %s", bridge_name) if bridge_device.link.set_down(): return if bridge_device.delbr(): return LOG.debug("Done deleting bridge %s", bridge_name) return except RuntimeError: pass LOG.debug("Cannot delete bridge %s; it does not exist", bridge_name) def delete_port(self, device): # Delete veth qvb, qvr = self._get_veth_pair_names(device[3:]) ip = ip_lib.IPWrapper() try: ip.del_veth(qvb) LOG.debug("Delete veth pair %s %s", qvb, qvr) except RuntimeError: pass # Delete bridge br_name = "qbr%s" % device[3:] self._delete_bridge(br_name) def setup_arp_spoofing_protection(self, device, device_details): pass def delete_arp_spoofing_protection(self, devices): pass def delete_unreferenced_arp_protection(self, current_devices): pass class SrRpcCallbacks(sg_rpc.SecurityGroupAgentRpcCallbackMixin, amb.CommonAgentManagerRpcCallBackBase): # Set RPC API version to 1.0 by default. # history # 1.1 Support Security Group RPC # 1.3 Added param devices_to_update to security_groups_provider_updated # 1.4 Added support for network_update target = oslo_messaging.Target(version='1.4') def __init__(self, context, agent, sg_agent): super(SrRpcCallbacks, self).__init__(context, agent, sg_agent) self.removed_devices_encap = set() self.removed_ports = {} self.encap_info = [] self.updated_devices_encap = set() self.updated_ports = {} self.removed_vrfs = set() def port_update(self, context, **kwargs): """RPC for port_update event This method will be called when port is updated in neutron server this method just add device_name associating updated port into updated_devices list and this device recognized as updated device in next iteration and if tap is in own host, plug_interaface method will be executed with that tap """ port_id = kwargs['port']['id'] device_name = self.agent.mgr.get_tap_device_name(port_id) # Put the device name in the updated_devices set. # Do not store port details, as if they're used for processing # notifications there is no guarantee the notifications are # processed in the same order as the relevant API requests. self.updated_devices.add(device_name) LOG.debug("port_update RPC received for port: %s", port_id) def encap_rule_update(self, context, **kwargs): encap_info = kwargs['encap_info'] for encap in self.encap_info: if encap['id'] == encap_info['id']: self.encap_info.remove(encap) break self.encap_info.append(encap_info) LOG.debug("encap_update RPC received for encap rules: %s", encap_info) def get_and_clear_updated_encaps(self): encap_info = self.encap_info self.encap_info = [] return encap_info def encap_delete(self, context, **kwargs): port = kwargs['port'] port_id = port['id'] device_name = self.agent.mgr.get_tap_device_name(port_id) self.removed_devices_encap.add(device_name) self.removed_ports[device_name] = port LOG.debug("encap_delete RPC received for port: %s", port_id) def encap_update(self, context, **kwargs): port = kwargs['port'] port_id = port['id'] device_name = self.agent.mgr.get_tap_device_name(port_id) self.updated_devices_encap.add(device_name) self.updated_ports[device_name] = port LOG.debug("encap_update RPC received for port: %s", port_id) def network_update(self, context, **kwargs): """RPC for network_update event This method will be called when network is updated in neutron server this method add all ports under this network into updated_devices list """ network_id = kwargs['network']['id'] LOG.debug("network_update message processed for network " "%(network_id)s, with ports: %(ports)s", {'network_id': network_id, 'ports': self.agent.network_ports[network_id]}) for port_data in self.agent.network_ports[network_id]: self.updated_devices.add(port_data['device']) def get_and_clear_removed_devices_encap(self): """Get and clear the list of devices for which a removed was received. :return: set - A set with removed devices. Format is ['tap1', 'tap2'] """ # Save and reinitialize the set variable that the port_delete RPC uses. # This should be thread-safe as the greenthread should not yield # between these two statements. removed_devices_encap = self.removed_devices_encap self.removed_devices_encap = set() return removed_devices_encap def get_removed_ports(self, devices): for device in devices: try: yield self.removed_ports[device] except KeyError: # Already removed pass def clear_removed_ports(self, devices): for device in devices: self.removed_ports.pop(device, None) def network_delete(self, context, **kwargs): pass def get_and_clear_updated_devices_encap(self): """Get and clear the list of devices for which a updated was received. :return: set - A set with updated devices. Format is ['tap1', 'tap2'] """ # Save and reinitialize the set variable that the port_delete RPC uses. # This should be thread-safe as the greenthread should not yield # between these two statements. updated_devices_encap = self.updated_devices_encap self.updated_devices_encap = set() return updated_devices_encap def get_updated_ports(self, devices): for device in devices: try: yield self.updated_ports[device] except KeyError: # Already removed pass def clear_updated_ports(self, devices): for device in devices: self.updated_ports.pop(device, None) def vrf_delete(self, context, **kwargs): vrf = kwargs['vrf'] LOG.debug("vrf_delete message processed for vrf " "%(vrf)s", {'vrf': vrf}) self.removed_vrfs.add(vrf) def get_and_clear_removed_vrfs(self): """Get and clear the list of vrfs for which a removed was received. :return: set - A set with removed vrfs. """ removed_vrfs = self.removed_vrfs self.removed_vrfs = set() return removed_vrfs class IpAddrCommandAcceptArgs(ip_lib.IpAddrCommand): def add(self, cidr, scope='global', add_broadcast=True, additional_args=None): """This is method for executing "ip addr add" as root The reason why it override is we want to specify option. but super class doesn't allow us to pass additional option Args: cidr(String): ip address with subnet scope(String): scope of this address add_broadcast(Bool): if True, it add "brd" option additional_args(list<String>): additional arguments Return: None """ net = netaddr.IPNetwork(cidr) args = ['add', cidr, 'scope', scope, 'dev', self.name] if add_broadcast and net.version == 4: args += ['brd', str(net[-1])] if additional_args: args += additional_args self._as_root([net.version], tuple(args)) def main(): common_config.init(sys.argv[1:]) common_config.setup_logging() manager = SrManager() polling_interval = cfg.CONF.AGENT.polling_interval quitting_rpc_timeout = cfg.CONF.AGENT.quitting_rpc_timeout agent = sr_agent_loop.SrAgentLoop(manager, polling_interval, quitting_rpc_timeout, AGENT_TYPE_SR, SR_AGENT_BINARY) setup_profiler.setup(SR_AGENT_BINARY, cfg.CONF.host) LOG.info("Agent initialized successfully, now running... ") launcher = service.launch(cfg.CONF, agent, restart_method='mutate') launcher.wait()
StarcoderdataPython
3255589
<reponame>santoshmano/pybricks<gh_stars>0 def print_board(board): print("N-queens Board") [print(_) for _ in board] def create_board(size): return [[0 for _ in range(size)] for _ in range(size)] def is_safe(board, row, col): for r in range(len(board)): if board[r][col] == 1: return False for c in range(len(board)): if board[row][c] == 1: return False r = row+1 c = col+1 while r < len(board) and c < len(board): if board[r][c] == 1: return False r += 1 c += 1 r = row-1 c = col-1 while r >=0 and c >= 0: if board[r][c] == 1: return False r -= 1 c -= 1 r = row-1 c = col+1 while r >=0 and c < len(board): if board[r][c] == 1: return False r -= 1 c += 1 r = row+1 c = col-1 while c >=0 and r < len(board): if board[r][c] == 1: return False c -= 1 r += 1 return True def nqueens(board, row, col, queens): if queens == 0: print_board(board) return if col == len(board): col = 0 row += 1 for i in range(row, len(board)): for j in range(col, len(board)): if is_safe(board, i, j): board[i][j] = 1 nqueens(board, row, col+1, queens-1) board[i][j] = 0 return if __name__ == "__main__": size = 5 board = create_board(size) print_board(board) nqueens(board, 0, 0, size)
StarcoderdataPython
170228
#!/usr/bin/env python3 import os import sys import json from pathlib import Path from shutil import copyfile appName = "Warspite Map Exporter" appVer = "1.0.1.0" appDesc = """Corrects paths and moves maps and their dependencies.""" sImgFormats = [ ".png", ".jpg", ".webp", ".tiff" ] def DoesParameterExist(parmName): for i in sys.argv: if i == parmName: return True return False def GetParameterValue(parmName, required=False): for i, j in enumerate(sys.argv): if j == parmName and (i+1 < len(sys.argv)): if not sys.argv[i+1].startswith("-"): return sys.argv[i+1] if required: raise RuntimeError("Cannot find specified required parameter \"{0}\"!".format(parmName)) return 0 print("{0}".format(appName)) print("Version: {0}".format(appVer)) print("Description:\n{0}\n".format(appDesc)) try: workingDir = Path(GetParameterValue("-workDir", True)) except RuntimeError: workingDir = Path(os.getcwd()) print("Using working directory: \"{0}\"".format(workingDir)) mapFile = Path(GetParameterValue("-map", True)) # expecting the first parameter after the script to be the map file. baseFolder = GetParameterValue("-baseFolder") if DoesParameterExist("-baseFolder") else "assets" # the base folder for storing assets - can be game folder or generic engine assets print("Processing map %s..." % mapFile.name) # A few checks if not (os.path.isfile(mapFile)): print("Cannot find map file \"%s\"!" % mapFile) if not (os.path.exists(workingDir)): print("Cannot find path \"%s\"!" % workingDir) if not (os.path.exists(workingDir.joinpath(baseFolder))): print("Cannot find base folder \"%s\"!" % workingDir.joinpath(baseFolder)) mapData = dict() try: mf = open(mapFile, "r") except OSError as e: print("Failed to read mapFile!") print("Error:\n%s" % str(e)) sys.exit(-1) else: with mf: mapData = json.load(mf) print("Successfully read mapFile \"%s\"!" % mapFile) for j, i in enumerate(mapData["tilesets"]): cTileset = dict() pTileset = mapFile npTileset = "" # Check if we are dealing with an external tileset file if "source" in i: try: # Set the path of the tileset pTileset = Path(os.path.join(mapFile.parent, i["source"])) # Usually relative to the mapFile fs = open(pTileset, "r") except OSError as e: print("Failed to read tileset!") print("Error:\n%s" % str(e)) sys.exit(-1) else: with fs: cTileset = json.load(fs) else: # It's an embedded tileset cTileset = i npTileset = Path(os.path.join(workingDir, baseFolder, "tilesets", pTileset.name)) # Usually relative to the tileset iTileSet = Path(os.path.join(pTileset.parent, cTileset["image"])) dTileSet = Path(os.path.join(workingDir, baseFolder, "textures", iTileSet.name)) if not (os.path.exists(dTileSet.parent)): os.mkdir(dTileSet.parent) copyfile(iTileSet, dTileSet) cTileset["image"] = str(dTileSet.relative_to(workingDir)) # If we are dealing with an external file... if pTileset != mapFile: try: ws = open(npTileset, "w") except OSError as e: print("Cannot write tileset!") print("Error:\n%s" % str(e)) sys.exit(-1) else: with ws: json.dump(cTileset, ws) mapData["tilesets"][j]["source"] = str(npTileset.relative_to(workingDir)) else: mapData["tilesets"][j] = cTileset print("Copied tilesets!") # Does the map have custom properties? if "properties" in mapData: for i, j in enumerate(mapData["properties"]): if j["type"] == "file": propFile=Path(mapFile.parent, j["value"]) if (propFile.suffix in sImgFormats) and (propFile.parent.name == "dev"): nPropFile = Path(workingDir, baseFolder, "textures", "dev", propFile.name) elif propFile.suffix in sImgFormats: nPropFile=Path(workingDir, baseFolder, "textures", propFile.name) elif propFile.suffix in ".py": nPropFile = Path(workingDir, baseFolder, "scripts", propFile.name) else: nPropFile=Path(workingDir, baseFolder, propFile.name) if propFile.resolve() != nPropFile.resolve(): copyfile(propFile, nPropFile) print("Moving file from {0} to {1}...".format(propFile, nPropFile)) mapData["properties"][i]["value"] = str(nPropFile.relative_to(workingDir)) print("Checked property values") nMapFile = Path(os.path.join(workingDir, baseFolder, "maps", mapFile.name)) try: jw = open(nMapFile, "w") except OSError as e: print("An error occurred while writing \"%s\"!" % str(nMapFile.absolute())) print("Error:\n%s" % str(e)) else: with jw: json.dump(mapData, jw) print("Rewrote map files!") print("Moved \"%s\" to \"%s\"" % (str(nMapFile.name), str(nMapFile.parent)))
StarcoderdataPython
3205735
# -*- coding: utf-8 -*- from AccessControl.unauthorized import Unauthorized from plone import api from plone.app.testing import setRoles from plone.app.testing import SITE_OWNER_NAME from plone.app.testing import SITE_OWNER_PASSWORD from plone.app.testing import TEST_USER_ID from plone.dexterity.interfaces import IDexterityFTI from plone.testing.z2 import Browser from plonetraining.testing.testing import PLONETRAINING_TESTING_FUNCTIONAL_TESTING from plonetraining.testing.testing import PLONETRAINING_TESTING_INTEGRATION_TESTING from zope.component import createObject from zope.component import queryUtility import unittest try: from plone.dexterity.schema import portalTypeToSchemaName except ImportError: # Plone < 5 from plone.dexterity.utils import portalTypeToSchemaName class TestingItemIntegrationTest(unittest.TestCase): layer = PLONETRAINING_TESTING_INTEGRATION_TESTING def setUp(self): """Custom shared utility setup for tests.""" self.portal = self.layer['portal'] setRoles(self.portal, TEST_USER_ID, ['Manager']) self.parent = self.portal def test_ct_testing_item_schema(self): fti = queryUtility(IDexterityFTI, name='TestingItem') schema = fti.lookupSchema() schema_name = portalTypeToSchemaName('TestingItem') self.assertEqual(schema_name, schema.getName()) def test_ct_testing_item_fti(self): fti = queryUtility(IDexterityFTI, name='TestingItem') self.assertTrue(fti) def test_ct_testing_item_factory(self): fti = queryUtility(IDexterityFTI, name='TestingItem') factory = fti.factory obj = createObject(factory) def test_ct_testing_item_adding(self): setRoles(self.portal, TEST_USER_ID, ['Contributor']) obj = api.content.create( container=self.portal, type='TestingItem', id='testing_item', ) parent = obj.__parent__ self.assertIn('testing_item', parent.objectIds()) # check that deleting the object works too api.content.delete(obj=obj) self.assertNotIn('testing_item', parent.objectIds()) def test_ct_testing_item_globally_addable(self): setRoles(self.portal, TEST_USER_ID, ['Contributor']) fti = queryUtility(IDexterityFTI, name='TestingItem') self.assertTrue( fti.global_allow, u'{0} is not globally addable!'.format(fti.id), ) def test_ct_testing_item_contributor_cant_add(self): setRoles(self.portal, TEST_USER_ID, ['Contributor']) with self.assertRaises(Unauthorized): api.content.create( container=self.portal, type='TestingItem', id='testing_item', ) class TestingItemFunctionalTest(unittest.TestCase): layer = PLONETRAINING_TESTING_FUNCTIONAL_TESTING def setUp(self): app = self.layer['app'] self.portal = self.layer['portal'] self.request = self.layer['request'] self.portal_url = self.portal.absolute_url() # Set up browser self.browser = Browser(app) self.browser.handleErrors = False self.browser.addHeader( 'Authorization', 'Basic {username}:{password}'.format( username=SITE_OWNER_NAME, password=SITE_OWNER_PASSWORD), ) def test_add_testing_item(self): self.browser.open(self.portal_url + '/++add++TestingItem') self.browser.getControl(name='form.widgets.IBasic.title').value = 'Foo' self.browser.getControl('Save').click() self.assertTrue( '<h1 class="documentFirstHeading">Foo</h1>' in self.browser.contents ) self.assertEqual('Foo', self.portal['foo'].title) def test_view_testing_item(self): setRoles(self.portal, TEST_USER_ID, ['Manager']) api.content.create( type='TestingItem', title='Bar', description='This is a description', container=self.portal, ) import transaction transaction.commit() self.browser.open(self.portal_url + '/bar') self.assertTrue('Bar' in self.browser.contents) self.assertIn('This is a description', self.browser.contents) def test_rich_text_field(self): self.browser.open(self.portal_url + '/++add++TestingItem') self.assertIn( 'form.widgets.IRichTextBehavior.text', self.browser.contents, ) self.browser.getControl( name='form.widgets.IBasic.title' ).value = 'A content with text' self.browser.getControl( name='form.widgets.IRichTextBehavior.text' ).value = 'Some text' self.browser.getControl('Save').click() self.assertIn('Some text', self.browser.contents)
StarcoderdataPython
43895
# -*- coding: utf-8 -*- # Import libraries from api from visual_api import * class MplCanvas(FigureCanvas): """Base MPL widget for plotting Parameters ---------- FigureCanvas : FigureCanvasQTAgg Canvas for plotting Returns ------- None """ def __init__(self, parent=None, dpi=100): self.fig = plt.figure(dpi=dpi) self.axes = self.fig.add_subplot(111) self._reg_predictions_added = 0 self._clf_predictions_added = 0 self._clust_predictions_added = 0 FigureCanvas.__init__(self, self.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) class DynamicMplCanvas(MplCanvas): """A canvas that updates itself on call with a new plot""" def __init__(self, *args, **kwargs): MplCanvas.__init__(self, *args, **kwargs) self.compute_initial_figure() def compute_initial_figure(self): """Initial demo plot for matplotlib canvas""" self.axes.plot([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [60, 70, 85, 100, 125, 160, 195, 225, 0, 0], '-o', color='green') self.axes.set_xlabel("Number of Espresso Shots") self.axes.set_ylabel("Heart Rate") self.axes.set_ylim([-2, 230]) self.axes.set_title("Demo Plot: Number of Espresso Shots x Heart Rate") plt.tight_layout() def _reset_plots(self): """Resets plots for update_plot function""" try: self.fig.delaxes(self.axes) self.axes = self.fig.add_subplot(111) except: pass try: self.fig.delaxes(self.axes_x) self.fig.delaxes(self.axes_y) self.axes = self.fig.add_subplot(111) except: pass def update_plot(self, x, y, xlabel, ylabel, plot_type, plot_generated, checkbox): """Updates plot based on user input and plot type # TODO: Fix axis x-axis tick marks and labels for bar charts, especially when two # variables plotted together Parameters ---------- x : pandas Series x variable for plotting y : pandas Series y variable for plotting xlabel : str Name of x variable ylabel : str Name of y variable plot_type : str Name of plot to generate plot_generated : dict Holds status information about generated plot checkbox : PySide CheckBox widget "Add Predictions to Plot" check box widget Returns ------- status : str Status of method """ # Clear plotting canvas and define variables used for plotting self._reset_plots() self.x = x self.y = y try: # Scatter plot if plot_type == 'Scatter': title_str = "Scatter: {} x {}".format(xlabel, ylabel) self.axes.scatter(x, y, alpha=.6) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) self.axes.set_title(title_str) # Line plot elif plot_type == 'Line': title_str = "Line: {} x {}".format(xlabel, ylabel) self.axes.plot(x, y, alpha=.6) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) self.axes.set_title(title_str) # Scatter + Line plot elif plot_type == 'Scatter + Line': title_str = "Scatter + Line: {} x {}".format(xlabel, ylabel) self.axes.plot(x, y, '-o', alpha=.6) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) self.axes.set_title(title_str) # Histogram elif plot_type == 'Histogram': if x is not None: self.axes.hist(x, alpha=.6, label=xlabel, color='blue') if y is not None: self.axes.hist(y, alpha=.6, label=ylabel, color='green') # Add labels and title if x is not None and y is not None: title_str = "Histogram: {} and {}".format(xlabel, ylabel) self.axes.set_xlabel(xlabel + ' and ' + ylabel) elif x is not None and y is None: title_str = "Histogram: {}".format(xlabel) self.axes.set_xlabel(xlabel) else: title_str = "Histogram: {}".format(ylabel) self.axes.set_xlabel(ylabel) # Set title for any histogram self.axes.set_title(title_str) self.axes.set_ylabel('Count') plt.legend(loc='best') # Bar Chart elif plot_type == 'Bar Chart': if x is not None: self.axes.bar(np.unique(x), pd.value_counts(x), alpha=.6, label=xlabel, color='blue') if y is not None: self.axes.bar(np.unique(y), pd.value_counts(y), alpha=.6, label=ylabel, color='green') # Add labels and title if x is not None and y is not None: title_str = "Bar Chart: {} and {}".format(xlabel, ylabel) self.axes.set_xlabel(xlabel + ' and ' + ylabel) elif x is not None and y is None: title_str = "Bar Chart: {}".format(xlabel) self.axes.set_xlabel(xlabel) else: title_str = "Bar Chart: {}".format(ylabel) self.axes.set_xlabel(ylabel) # Set title for any bar chart self.axes.set_title(title_str) self.axes.set_ylabel('Count') plt.legend(loc='best') # Boxplot else: if x is not None and y is None: title_str = "Boxplot: {}".format(xlabel) self.axes.boxplot(x) self.axes.set_ylabel('Value') self.axes.set_title(title_str) elif x is None and y is not None: title_str = "Boxplot: {}".format(ylabel) self.axes.boxplot(y) self.axes.set_ylabel('Value') self.axes.set_title(title_str) else: self.fig.delaxes(self.axes) # X variable self.axes_x = self.fig.add_subplot(121) self.axes_x.boxplot(x) self.axes_x.set_ylabel("Value") self.axes_x.set_title("Boxplot: {}".format(xlabel)) # Y variable self.axes_y = self.fig.add_subplot(122) self.axes_y.boxplot(y) self.axes_y.set_title("Boxplot: {}".format(ylabel)) # Create better layout and draw plt.tight_layout() self.draw() # Update plot status plot_generated['status'] = True # This lets main UI know the plot generated plot_generated['xlabel'] = xlabel plot_generated['ylabel'] = ylabel # Enable/disable checkbox based on plot types if plot_type in utils.PLOTS_FOR_PRED: checkbox.setEnabled(True) checkbox.setChecked(True) else: checkbox.setEnabled(False) checkbox.setChecked(False) return 'Success' except Exception as e: plot_generated['status'] = False # Sorry about your luck :( plot_generated['xlabel'] = 'None' plot_generated['ylabel'] = 'None' return str(e) def add_predictions_to_plot(self, y_pred, model_type, model_name): """Adds machine learning predictions to currently generated plot Parameters ---------- y_pred : 1d array-like Machine learning model predictions model_type : str Type of machine learning model model_name : str Name of machine learning model Returns ------- status : str Status of method """ try: if model_type == 'Regression': if self._reg_predictions_added > (len(REG_COLORS)-1): self._reg_predictions_added = 0 self.axes.scatter(self.x, y_pred, label='Predicted: {}'.format(model_name), color=REG_COLORS[self._reg_predictions_added], alpha=.6) self._reg_predictions_added += 1 elif model_type == 'Classification': if self._clf_predictions_added > (len(CLF_COLORS)-1): self._clf_predictions_added = 0 # Plot hits and misses hits, misses = np.where(y_pred == self.y)[0], np.where(y_pred != self.y)[0] self.axes.scatter(self.x.iloc[hits], y_pred[hits], label='Correct: {}'.format(model_name), alpha=.6, facecolors='none', edgecolors=CLF_COLORS[self._clf_predictions_added][0]) self.axes.scatter(self.x.iloc[misses], y_pred[misses], label='Incorrect: {}'.format(model_name), alpha=.6, marker='x', color=CLF_COLORS[self._clf_predictions_added][1]) self._clf_predictions_added += 1 else: cluster_ids = np.unique(y_pred) CLUST_COLORS = utils.get_spaced_colors(len(cluster_ids)+1, offset=self._clust_predictions_added) for i, label in enumerate(cluster_ids): idx = np.where(y_pred == label)[0] self.axes.scatter(self.x.iloc[idx], self.y.iloc[idx], label='Cluster {}: {}'.format(i, model_name), color=next(CLUST_COLORS), alpha=.6) self._clust_predictions_added += 1 # Add legend and draw plot plt.legend(loc='upper left') self.draw() return 'Success' except Exception as e: return str(e)
StarcoderdataPython
1638569
<filename>api/__init__.py import geojson, datetime, pytz, json, os, importlib, datetime, math from housepy import server, config, log, util, strings from mongo import ASCENDING, DESCENDING, ObjectId """ Basically, it's like this: /api/<view>/<output>?<query> The view is what kind of thing you want back (eg, a FeatureCollection (features), or a list of expeditions) The output is json if it's missing, otherwise, how about a map? or HTML? a chart? See templates/api/map.html for an example of how to subsequently load the JSON data asyncronously The query defines the filter. This might be any property at all, but keyed ones are: - Expedition (eg okavango_14) - Member (eg Jer) - startDate and endDate (endDate is one day later if omitted and startDate is present) - geoBounds (upper left (NW), lower right (SE): lon_1,lat_1,lon_2,lat_2. So Okavango is something like 20,-17,26,-22 - region (arbitrary polygon) Can also do expeditionDay=N for the 24 hour period N days after the expedition start date specified in the config By default, returns the first 100 results. limit=N for more. Sorted in ascending order by t_utc. To reverse, use order=descending. Returns only one feature for every resolution seconds. """ class Api(server.Handler): def post(self, nop=None): return self.not_found() def get(self, view_name=None, output=None): # add a header for unrestricted access self.set_header("Access-Control-Allow-Origin", "*") csv = False geo = False # do the routing and load view module if not len(view_name): log.info("Listing views...") views = ["/api/%s" % filename.split('.')[0] for filename in os.listdir(os.path.abspath(os.path.dirname(__file__))) if filename[0] != "_" and filename[-3:] == ".py"] response = {'description': "API view endpoints", "views": views} return self.json(response) module_name = "api.%s" % view_name try: view = importlib.import_module(module_name) log.info("Loaded %s module" % module_name) except ImportError as e: log.error(log.exc(e)) return self.error("View \"%s\" not recognized" % view_name) if len(output): if output == "csv": csv = True elif output == "geo": geo = True else: feature_type = self.get_argument('FeatureType', None) try: return self.render("api/%s.html" % output, query=(self.request.uri).replace("/%s" % output, ""), feature_type=feature_type) except Exception as e: return self.error("Could not render %s" % output) # time to build our search filter search = {} # special parsing for FeatureType feature_type = self.get_argument('FeatureType', None) if feature_type is not None: if ',' in feature_type: search['$or'] = [{'properties.FeatureType': ft} for ft in feature_type.split(',')] else: search['FeatureType'] = feature_type del self.request.arguments['FeatureType'] # special parsing for id feature_id = self.get_argument('id', None) if feature_id is not None: try: search['_id'] = ObjectId(feature_id) except Exception as e: log.error(log.exc(e)) return self.error("Bad ID") del self.request.arguments['id'] # special parsing for startDate and endDate start_string = self.get_argument('startDate', None) if start_string is not None: try: start_dt = util.parse_date(start_string, tz=config['local_tz']) start_t = util.timestamp(start_dt) end_string = self.get_argument('endDate', (start_dt + datetime.timedelta(days=1)).strftime("%Y-%m-%d")) end_dt = util.parse_date(end_string, tz=config['local_tz']) end_t = util.timestamp(end_dt) log.debug("startDate %s" % start_dt) log.debug("endDate %s" % end_dt) search['t_utc'] = {'$gt': start_t, '$lt': end_t} except Exception as e: log.error(log.exc(e)) return self.error("Bad dates") del self.request.arguments['startDate'] if 'endDate' in self.request.arguments: del self.request.arguments['endDate'] # special parsing for rectangular location # expecting bounds (upper left (NW), lower right (SE)): lon_1,lat_1,lon_2,lat_2 # oka: 20,-17,26,-22 nyc: -75,41,-71,40 geo_bounds = self.get_argument('geoBounds', None) if geo_bounds is not None: try: lon_1, lat_1, lon_2, lat_2 = [float(coord) for coord in geo_bounds.split(',')] log.debug("geo_bounds %f,%f %f,%f" % (lon_1, lat_1, lon_2, lat_2)) search['geometry'] = {'$geoWithin': {'$geometry': {'type': "Polygon", 'coordinates': [[ [lon_1, lat_1], [lon_2, lat_1], [lon_2, lat_2], [lon_1, lat_2], [lon_1, lat_1] ]]}}} except Exception as e: log.error(log.exc(e)) return self.error("Bad geometry") del self.request.arguments['geoBounds'] # special parsing for polygonal region # expecting an arbitrary polygon # (rough) mombo: 22.731580,-19.186571,22.716444,-19.227478,22.766600,-19.295694,22.827821,-19.319120,22.874635,-19.336678,22.948241,-19.282060,22.747431,-19.132026 region = self.get_argument('region', None) if region is not None: try: cs = [float(coord) for coord in region.split(',') if len(coord)] coords = list(zip(cs[::2], cs[1::2])) if coords[0] != coords[-1]: coords.append(coords[0]) log.debug("region %s" % (coords)) search['geometry'] = {'$geoWithin': {'$geometry': {'type': "Polygon", 'coordinates': [coords]}}} except Exception as e: log.error(log.exc(e)) return self.error("Bad geometry") del self.request.arguments['region'] # filter results without geo if geo: search['geometry'] = {'$exists': True, '$ne': None} # special parsing for expeditionDay (overrides startDate / endDate) expedition_day = self.get_argument('expeditionDay', None) if expedition_day is not None: try: expedition = self.get_argument('expedition', config['expedition']) expedition = self.get_argument('Expedition', expedition) start_dt = util.parse_date(str(config['start_date'][expedition]), tz=config['local_tz']) expedition_day = int(expedition_day) - 1 log.debug("%s days after %s" % (expedition_day, start_dt)) gt_t = util.timestamp(start_dt + datetime.timedelta(days=expedition_day)) lt_t = util.timestamp(start_dt + datetime.timedelta(days=expedition_day + 1)) search['t_utc'] = {'$gt': gt_t, '$lt': lt_t} except Exception as e: log.error(log.exc(e)) return self.error("Bad day") del self.request.arguments['expeditionDay'] # special parsing for resolution resolution = strings.as_numeric(self.request.arguments['resolution'][0]) if 'resolution' in self.request.arguments else 0 # special parsing for SpeciesSearch species_search = self.get_argument('speciesSearch', None) if species_search is not None: search['$text'] = {'$search': species_search} del self.request.arguments['speciesSearch'] # get limit and order # limit = self.get_argument('limit', 100) # this fails on int arguments, which I think is a tornado bug limit = strings.as_numeric(self.request.arguments['limit'][0]) if 'limit' in self.request.arguments else 100 order = self.request.arguments['order'][0].lower() if 'order' in self.request.arguments else 'ascending' order = ASCENDING if order == "ascending" else DESCENDING # get all the rest of the arguments and format as properties try: for param, value in self.request.arguments.items(): for i, item in enumerate(value): item = item.decode('utf-8') item = strings.as_numeric(item) item = True if type(item) == str and item.lower() == "true" else item item = False if type(item) == str and item.lower() == "false" else item item = {'$exists': True} if item == '*' else item value[i] = item search[param] = value[0] if len(value) == 1 else value search = { ('properties.%s' % (strings.camelcase(param) if param != 't_utc' and param != '_id' else param) if param != 'geometry' and param != '$text' and param != '$or' and param != '_id' else param): value for (param, value) in search.items() if param not in ['limit', 'order', 'resolution']} except Exception as e: log.error(log.exc(e)) return self.error("bad parameters") # http://localhost:7777/api?geoBounds=20,-17,26,-22&startDate=2014-08-01&endDate=2014-09-01&Member=Jer log.info("FILTER %s" % search) # pass our search to the view module for execution and formatting try: result = view.assemble(self, search, limit, order, resolution) if result is None: return if csv: return self.csv(format_csv(result), "data.csv") results, total, returned = result if 'features' in results: for feature in results['features']: try: if feature['geometry']['coordinates'][2] is None: del feature['geometry']['coordinates'][2] except Exception: pass for field in feature['properties']: if type(feature['properties'][field]) is float and math.isnan(feature['properties'][field]): feature['properties'][field] = None if geo: ## cola for feature in results['features']: keys = list(feature['properties'].keys()) for key in keys: if type(feature['properties'][key]) == dict: ks = list(feature['properties'][key].keys()) for k in ks: feature['properties'][key + "_" + k] = feature['properties'][key][k] del feature['properties'][key] return self.json(results) search = {key.replace('properties.', ''): value for (key, value) in search.items()} return self.json({'order': order, 'limit': limit, 'total': total, 'returned': len(results) if returned is None else returned, 'filter': search, 'results': results, 'resolution': resolution if resolution != 0 else "full"}) except Exception as e: return self.error(log.exc(e)) def format_csv(data): import csv features = data[0]['features'] # build header header = [] for feature in features: feature.update(feature['properties']) if 'Taxonomy' in feature and feature['Taxonomy'] is not None: feature.update(feature['Taxonomy']) del feature['Taxonomy'] if feature['geometry'] is not None: feature.update({"Longitude": feature['geometry']['coordinates'][0], "Latitude": feature['geometry']['coordinates'][1]}) del feature['properties'] del feature['geometry'] for key in feature: if key not in header: header.append(key) header.sort() log.debug(header) # populate rows csv = [] csv.append(','.join(header)) with open('data.csv', 'w', newline='') as csvfile: for feature in features: row = [] for column in header: if column in feature: value = feature[column] if type(value) == str: value = strings.singlespace(value) value.replace('"', "'") value = "%s" % value row.append(str(value).replace(",", "")) else: row.append("None") csv.append(','.join(row)) return '\n'.join(csv) # print(json.dumps(features, indent=4, default=lambda x: str(x)))
StarcoderdataPython
1705106
<gh_stars>10-100 # -*- coding: utf-8 -*- """ Created on Mon Sep 24 09:08:21 2018 @author: Xian_Work """ import scipy from scipy.optimize import fmin, brute from model_plotting import norm , compute_dist,gen_evolve_share_series, mk_mix_agent #Import parameters and other UI modules param_path="../Parameters/params_ui.json" execfile("prelim.py") #################################### #Model Target and Base Plots #################################### #Data Series to plot against data_tminus5 = norm(param.JPMC_cons_moments, param.plt_norm_index) data_tminus5_search = param.JPMC_search_moments ###Use vcv weights### cons_se_vcv_tminus5 =param.JPMC_cons_SE search_se_vcv = param.JPMC_search_SE #Targets opt_target_cons = data_tminus5 cons_wmat = np.linalg.inv(np.asmatrix(np.diag(np.square(cons_se_vcv_tminus5)))) opt_target_search = data_tminus5_search[param.moments_len_diff: param.moments_len_diff + param.s_moments_len] search_wmat = np.linalg.inv(np.asmatrix(np.diag(np.square(search_se_vcv)))) ######################################### # Baseline Parameters ######################################### pd_base = {"a0": param.a0_data, "T_series":T_series, "T_solve":param.TT, "e":param.e_extend, "beta_var":param.beta, "beta_hyp": param.beta_hyp, "a_size": param.a_size, "rho":param.rho, "verbose":False, "L_":param.L, "constrained":param.constrained, "Pi_":np.zeros((param.TT+1,param.a_size+1,9,9)), "z_vals" : param.z_vals, "R" : param.R, "Rbor" : param.R, "phi": param.phi, "k":param.k, "spline_k":param.spline_k, "solve_V": True, "solve_search": True} for t in range(param.TT+1): for a_index in range(param.a_size+1): pd_base['Pi_'][t][a_index] = param.Pi pd_base['T_series']=len(pd_base['e'])-1 ### Estimated standard model f = open("../Parameters/model_params_main.json") models_params = json.load(f) f.close est_params_1b1k = models_params['est_params_1b2k'] est_params_1b2k = models_params['est_params_1b2k'] pd_1b1k = copy.deepcopy(pd_base) for k, v in est_params_1b1k.iteritems(): if k in pd_base.keys(): pd_1b1k.update({k:v}) pd_1b2k = copy.deepcopy(pd_base) for k, v in est_params_1b2k.iteritems(): if k in pd_base.keys(): pd_1b2k.update({k:v}) weights_1b2k = (est_params_1b2k['w_lo_k'], 1- est_params_1b2k['w_lo_k']) params_1b2k = ('k', ) vals_1b2k = ((est_params_1b2k['k0'], ), (est_params_1b2k['k1'], ),) ################################################ # Functions to estimate delta for a given gamma ############################################### def gen_agent_bhvr(agent): c_start = param.c_plt_start_index s_start = param.s_plt_start_index series_dict = gen_evolve_share_series(pd_base['e'], c_start, s_start, len(opt_target_cons), param.plt_norm_index, *agent, verbose = True, normalize = True) cons_out = series_dict['w_cons_out'] search_out = series_dict['w_search_out'][s_start-c_start : s_start-c_start+len(opt_target_search)] return {'cons_out':cons_out, 'search_out':search_out} def find_opt_delta_1b2k(gamma, opt_type= None): """For a given gamma, finds the discount factor delta(beta_var) that generates behavior to best fit the data moments""" def obj_func(delta_in): delta = delta_in[0] #Generate agent if opt_type == "1b1k": pd_temp = copy.deepcopy(pd_1b1k) pd_temp.update({'rho':gamma}) pd_temp.update({'beta_var':delta}) agent = [(1,pd_temp)] elif opt_type == "1b2k": pd_temp = copy.deepcopy(pd_1b2k) pd_temp.update({'rho':gamma}) pd_temp.update({'beta_var':delta}) agent = mk_mix_agent(pd_temp, params_1b2k, vals_1b2k, weights_1b2k) #Compute predicted behavior series_out = gen_agent_bhvr(agent) cons_out = series_out['cons_out'] search_out = series_out['search_out'] #Calculate distance from targets cons_dist = compute_dist(cons_out, opt_target_cons, cons_wmat) search_dist = compute_dist(search_out, opt_target_search, search_wmat) return cons_dist + search_dist opt_out = scipy.optimize.minimize(obj_func, [pd_base['beta_var'],], bounds=[(0.9,1.0),], options = {'maxiter':15}) return(opt_out) ############################################### # Estimate best delta for a range of gamma vals ############################################### gammas_out = {} for gamma in [0.9999, 4.0, 10.0]: opt_out_1b1k = find_opt_delta_1b2k(gamma, opt_type ="1b1k") opt_out_1b2k = find_opt_delta_1b2k(gamma, opt_type ="1b2k") opt_delta_1b1k = opt_out_1b1k['x'][0] opt_delta_1b2k = opt_out_1b2k['x'][0] key_1b1k = "est_params_1b1k_fix_gamma_" + str(int(np.round(gamma))) key_1b2k = "est_params_1b2k_fix_gamma_" + str(int(np.round(gamma))) gammas_out.update({key_1b1k: {'beta_var':opt_delta_1b1k, 'rho':gamma}}) gammas_out.update({key_1b2k: {'beta_var':opt_delta_1b2k, 'rho':gamma}}) with open('../Parameters/model_params_robust_gamma.json', 'w') as f: json.dump(gammas_out, f, indent=0)
StarcoderdataPython
68183
# Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from model_analyzer.config.input.objects.config_model_profile_spec \ import ConfigModelProfileSpec from model_analyzer.constants import LOGGER_NAME, THROUGHPUT_GAIN import copy import logging logger = logging.getLogger(LOGGER_NAME) class RunSearch: """ A class responsible for searching the config space. """ def __init__(self, config): self._max_concurrency = config.run_config_search_max_concurrency self._max_instance_count = config.run_config_search_max_instance_count self._max_preferred_batch_size = config.run_config_search_max_preferred_batch_size self._sweep_preferred_batch_size_disable = config.run_config_search_preferred_batch_size_disable self._model_config_parameters = {'instance_count': 1} self._measurements = [] self._last_batch_length = None # Run search operating mode self._sweep_mode_function = None def _create_model_config(self, cpu_only=False): """ Generate the model config sweep to be used. """ model_config = self._model_config_parameters new_config = {} if 'dynamic_batching' in model_config: if model_config['dynamic_batching'] is None: new_config['dynamic_batching'] = {} else: new_config['dynamic_batching'] = { 'preferred_batch_size': [model_config['dynamic_batching']] } if 'instance_count' in model_config: if not cpu_only: new_config['instance_group'] = [{ 'count': model_config['instance_count'], 'kind': 'KIND_GPU' }] else: new_config['instance_group'] = [{ 'count': model_config['instance_count'], 'kind': 'KIND_CPU' }] return new_config def add_measurements(self, measurements): """ Add the measurments that are the result of running the sweeps. Parameters ---------- measurements : list list of measurements """ self._last_batch_length = len(measurements) # The list will contain one parameter, because we are experimenting # with one value at a time. self._measurements += measurements def _step_instance_count(self): """ Advances instance count by one step. """ self._model_config_parameters['instance_count'] += 1 def _step_dynamic_batching(self): """ Advances the dynamic batching by one step. """ if 'dynamic_batching' not in self._model_config_parameters: # Enable dynamic batching self._model_config_parameters['dynamic_batching'] = None else: if self._model_config_parameters['dynamic_batching'] is None: self._model_config_parameters['dynamic_batching'] = 1 else: self._model_config_parameters['dynamic_batching'] *= 2 def _get_throughput(self, measurement): return measurement.get_metric_value('perf_throughput') def _calculate_throughput_gain(self, index): throughput_before = self._get_throughput( self._measurements[-(index + 1)]) throughput_after = self._get_throughput(self._measurements[-index]) gain = (throughput_after - throughput_before) / throughput_before return gain def _valid_throughput_gain(self): """ Returns true if the amount of throughput gained is reasonable for continuing the search process """ # If number of measurements is smaller than 4, # the search can continue. if len(self._measurements) < 4: return True return self._calculate_throughput_gain(1) > THROUGHPUT_GAIN or \ self._calculate_throughput_gain(2) > THROUGHPUT_GAIN or \ self._calculate_throughput_gain(3) > THROUGHPUT_GAIN def init_model_sweep(self, concurrency, search_model_config_parameters): """ Intiliazes the sweep mode, and model config parameters in some cases. """ # Reset the measurements after each init self._measurements = [] if len(concurrency) != 0 and search_model_config_parameters: self._model_config_parameters = {'instance_count': 0} self._sweep_mode_function = self._sweep_model_config_only elif len(concurrency) == 0 and search_model_config_parameters: self._model_config_parameters = {'instance_count': 1} logger.info( 'Will sweep both the concurrency and model config parameters...' ) self._sweep_mode_function = self._sweep_concurrency_and_model_config else: logger.info('Will sweep only through the concurrency values...') self._sweep_mode_function = self._sweep_concurrency_only def get_model_sweep(self, config_model): """ Get the next iteration of the sweeps. Parameters ---------- config_model : ConfigModelProfileSpec The config model object of the model to sweep through Returns ------- config_model, list The list may be empty, contain a model config dict or None """ new_model = ConfigModelProfileSpec( copy.deepcopy(config_model.model_name()), copy.deepcopy(config_model.cpu_only()), copy.deepcopy(config_model.objectives()), copy.deepcopy(config_model.constraints()), copy.deepcopy(config_model.parameters()), copy.deepcopy(config_model.model_config_parameters()), copy.deepcopy(config_model.perf_analyzer_flags())) if self._sweep_mode_function: new_model, model_sweep = self._sweep_mode_function(new_model) # Only log message if there is new runs. if model_sweep: self._log_message(new_model) return new_model, model_sweep return new_model, [] def _sweep_concurrency_and_model_config(self, model): """ Gets next iteration of both the concurrency and model config parameters Parameters ---------- model : ConfigModelProfileSpec The model whose parameters are being swept over """ return self._sweep_parameters(model, sweep_model_configs=True) def _sweep_concurrency_only(self, model): """ Gets next iteration of the concurrency sweep """ return self._sweep_parameters(model, sweep_model_configs=False) def _sweep_parameters(self, model, sweep_model_configs): """ A helper function that sweeps over concurrency and if required, over model configs as well """ concurrency = model.parameters()['concurrency'] if len(concurrency) == 0: model.parameters()['concurrency'] = [1] else: # Exponentially increase concurrency new_concurrency = concurrency[0] * 2 # If the concurrency limit has been reached, the last batch lead to # an error, or the throughput gain is not significant, step # the concurrency value. TODO: add exponential backoff so # that the algorithm can step back and exactly find the points. concurrency_limit_reached = new_concurrency > self._max_concurrency last_batch_erroneous = self._last_batch_length == 0 throughput_peaked = not self._valid_throughput_gain() if concurrency_limit_reached or last_batch_erroneous or throughput_peaked: # Reset concurrency if sweep_model_configs: self._measurements = [] model.parameters()['concurrency'] = [1] return self._sweep_model_config_only(model) else: return model, [] model.parameters()['concurrency'] = [new_concurrency] return model, [ self._create_model_config( cpu_only=model.cpu_only()) if sweep_model_configs else None ] def _sweep_model_config_only(self, model): """ Gets next iteration model config parameters sweep """ self._step_instance_count() instance_limit_reached = self._model_config_parameters[ 'instance_count'] > self._max_instance_count if instance_limit_reached: if self._sweep_preferred_batch_size_disable: return model, [] # Reset instance_count self._model_config_parameters['instance_count'] = 1 self._step_dynamic_batching() dynamic_batching_enabled = self._model_config_parameters[ 'dynamic_batching'] is not None if dynamic_batching_enabled: batch_size_limit_reached = self._model_config_parameters[ 'dynamic_batching'] > self._max_preferred_batch_size if batch_size_limit_reached: return model, [] return model, [self._create_model_config(cpu_only=model.cpu_only())] def _log_message(self, model): """ Writes the current state of the search to the console """ concurrency = model.parameters()['concurrency'][0] message = 'dynamic batching is disabled.' if 'dynamic_batching' in self._model_config_parameters: if self._model_config_parameters['dynamic_batching'] is None: message = 'dynamic batching is enabled.' else: message = ( "preferred batch size is set to " f"{self._model_config_parameters['dynamic_batching']}.") if self._sweep_mode_function == self._sweep_concurrency_only: logger.info(f"[Search Step] Concurrency set to {concurrency}. ") elif self._sweep_mode_function == self._sweep_concurrency_and_model_config: logger.info( f"[Search Step] Concurrency set to {concurrency}. " f"Instance count set to " f"{self._model_config_parameters['instance_count']}, and {message}" ) elif self._sweep_mode_function == self._sweep_model_config_only: logger.info( f"[Search Step] Instance count set to " f"{self._model_config_parameters['instance_count']}, and {message}" )
StarcoderdataPython
3269959
<filename>Easy/ValidQuadrilateral.py """ Problem Statement John loves gardening. He believes that for good growth of the plant, the land should be quadrilateral. Given angles of 4 sides of the land. Find whether the land is a valid quadrilateral or not. A quadrilateral is valid if the sum of all four angles is equal to 360 degrees. Input The first line contains an integer T, total number of test cases. The next T lines, each, contain four angles A, B, C and D of a quadrilateral separated by space. Output Print "YES" if the quadrilateral is valid, else print "NO", without the double quotes. Constraints 1 ≤ T ≤ 100 1 ≤ A,B,C and D ≤ 360 Sample Input 2 90 90 90 90 180 180 45 55 Sample Output YES NO """ n = int(input()) for i in range(n): a = input().split() ar = [int(x) for x in a] if sum(ar) == 360: print("YES") else: print("NO")
StarcoderdataPython
3286518
import numpy as np class Genome: def __init__(self, x_dim, y_dim, random_weights=True): self.genome_type = "survived" self.x_dim = x_dim self.y_dim = y_dim self.h_dim = 1 self.score = 0 self.fitness = 0 # fixed bias for simplicity # for optimal search, inputs should be normalized in advance self.x_bias = 1 # self.h_bias = 1 if random_weights: self.w1 = np.random.random(( self.h_dim, self.x_dim + 1 )) * 2 - 1 self.w2 = np.random.random(( self.y_dim, self.h_dim )) * 2 - 1 else: self.w1 = np.zeros((self.h_dim, self.x_dim + 1)) self.w2 = np.zeros((self.y_dim, self.h_dim)) return # x, h, and y are input vector, hidden vector, and output vector respectively def predict(self, x): # append bias to inputs x = np.append(self.x_bias, x) # multiply by weight and push to hidden layer h = np.dot(self.w1, x.reshape(-1, 1)) # h = self.layer_output(x, self.w1) # apply relu activation to h # sigmoid activation commented out below # h = 1 / (1 + np.exp(-1 * h)) h = h * (h > 0) # h = np.append(self.h_bias, h) # multiply by weight and push to output y = np.dot(self.w2, h.reshape(-1, 1)) # return formatted output y = np.ndarray.flatten(y > 0) return y
StarcoderdataPython
3344911
<reponame>YungTimAllen/RSVP-TE-Lab-Builder #!/usr/bin/env python3 """Script for rendering config for topologies defined by a YAML file""" from argparse import ArgumentParser, Namespace import yaml from jinja2 import Template def main(args: Namespace): """First method called when ran as a script""" with open(args.topology_file, "r") as fp_: render( data=yaml.safe_load(fp_), path_to_j2=args.template if args.template else "ios-classic-ospf.j2", ) def render(data: dict, path_to_j2: str): """Renders given Jinja2 template with given data (dict) Args: data: Dict object containing structured data valid for given Jinja template path_to_j2: Filepath to Jinja template """ with open(path_to_j2) as file_: print(Template(file_.read()).render(data)) if __name__ == "__main__": parser = ArgumentParser(description="Render templates for node config") parser.add_argument("topology_file", type=str, help="YAML defining topology") parser.add_argument( "--template", type=str, help="Use a custom template. Default: ./ios-classic-ospf.j2" ) main(parser.parse_args())
StarcoderdataPython
3237346
<reponame>mathisloge/mapnik-vector-tile { "includes": [ "common.gypi" ], 'variables': { 'MAPNIK_PLUGINDIR%': '', 'enable_sse%':'true', 'common_defines' : [ 'MAPNIK_VECTOR_TILE_LIBRARY=1' ] }, "targets": [ { 'target_name': 'make_vector_tile', 'type': 'none', 'hard_dependency': 1, 'actions': [ { 'action_name': 'run_protoc', 'inputs': [ '../proto/vector_tile.proto' ], 'outputs': [ "<(SHARED_INTERMEDIATE_DIR)/vector_tile.pb.cc", "<(SHARED_INTERMEDIATE_DIR)/vector_tile.pb.h" ], 'action': ['protoc','-I../proto/','--cpp_out=<(SHARED_INTERMEDIATE_DIR)/','../proto/vector_tile.proto'] } ] }, { "target_name": "vector_tile", 'dependencies': [ 'make_vector_tile' ], 'hard_dependency': 1, "type": "static_library", "sources": [ "<(SHARED_INTERMEDIATE_DIR)/vector_tile.pb.cc" ], 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/' ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], 'cflags_cc' : [ '-D_THREAD_SAFE', '<!@(mapnik-config --cflags)', '-Wno-sign-compare', '-Wno-sign-conversion' ], 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS':[ '-D_THREAD_SAFE', '<!@(mapnik-config --cflags)', '-Wno-sign-compare', '-Wno-sign-conversion' ], }, 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/' ], 'libraries':[ '-lprotobuf-lite' ], 'cflags_cc' : [ '-D_THREAD_SAFE' ], 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS':[ '-D_THREAD_SAFE', ], }, } }, { "target_name": "mapnik_vector_tile_impl", 'dependencies': [ 'vector_tile' ], 'hard_dependency': 1, "type": "static_library", "sources": [ "<!@(find ../src/ -name '*.cpp')" ], 'defines' : [ "<@(common_defines)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], 'cflags_cc' : [ '<!@(mapnik-config --cflags)' ], 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS':[ '<!@(mapnik-config --cflags)' ], }, 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/' ], 'defines' : [ "<@(common_defines)" ], 'cflags_cc' : [ '<!@(mapnik-config --cflags)' ], 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS':[ '<!@(mapnik-config --cflags)' ], }, 'libraries':[ '<!@(mapnik-config --libs)', '<!@(mapnik-config --ldflags)', '-lmapnik-wkt', '-lmapnik-json', '<!@(mapnik-config --dep-libs)', '-lprotobuf-lite', '-lz' ], } }, { "target_name": "tests", 'dependencies': [ 'mapnik_vector_tile_impl' ], "type": "executable", "defines": [ "<@(common_defines)", "MAPNIK_PLUGINDIR=<(MAPNIK_PLUGINDIR)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "sources": [ "<!@(find ../test/ -name '*.cpp')" ], "include_dirs": [ "../src", '../test', '../test/utils' ] }, { "target_name": "vtile-transform", 'dependencies': [ 'mapnik_vector_tile_impl' ], "type": "executable", "defines": [ "<@(common_defines)", "MAPNIK_PLUGINDIR=<(MAPNIK_PLUGINDIR)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "sources": [ "../bench/vtile-transform.cpp" ], "include_dirs": [ "../src", ] }, { "target_name": "vtile-decode", 'dependencies': [ 'mapnik_vector_tile_impl' ], "type": "executable", "defines": [ "<@(common_defines)", "MAPNIK_PLUGINDIR=<(MAPNIK_PLUGINDIR)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "sources": [ "../bench/vtile-decode.cpp" ], "include_dirs": [ "../src", ] }, { "target_name": "vtile-encode", 'dependencies': [ 'mapnik_vector_tile_impl' ], "type": "executable", "defines": [ "<@(common_defines)", "MAPNIK_PLUGINDIR=<(MAPNIK_PLUGINDIR)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "sources": [ "../bench/vtile-encode.cpp" ], "include_dirs": [ "../src", ] }, { "target_name": "vtile-edit", 'dependencies': [ 'mapnik_vector_tile_impl' ], "type": "executable", "defines": [ "<@(common_defines)", "MAPNIK_PLUGINDIR=<(MAPNIK_PLUGINDIR)" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "sources": [ "../bin/vtile-edit.cpp" ], "include_dirs": [ "../src", ] }, { "target_name": "tileinfo", 'dependencies': [ 'vector_tile' ], "type": "executable", "sources": [ "../examples/c++/tileinfo.cpp" ], 'conditions': [ ['enable_sse == "true"', { 'defines' : [ 'SSE_MATH' ] }] ], "include_dirs": [ "../src" ], 'libraries':[ '-L<!@(mapnik-config --prefix)/lib', '<!@(mapnik-config --ldflags)', '-lz' ], 'cflags_cc' : [ '-D_THREAD_SAFE', '<!@(mapnik-config --cflags)' ], 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS':[ '-D_THREAD_SAFE', '<!@(mapnik-config --cflags)' ], } } ] }
StarcoderdataPython
3326385
<filename>dakotathon/plugins/__init__.py """Components that can be called by Dakota."""
StarcoderdataPython
3325110
from abc import ABC, abstractmethod from typing import Dict, Union class Variable(ABC): """ Abstract variable class Args: type (str): The variable type name (str): The variable name value: (int, float): The variable value Attributes: type (str): The variable type name (str): The variable name value: (int, float): The variable value comment (str): The variable comment """ def __init__(self, type: str, name: str, value: Union[int, float]): self.type = type self.name = name self.value = value self.comment = '' # allowed types? def comment(self, comment: str): """ Adds a comment to the variable Args: comment (str): The comment """ self.comment = comment @abstractmethod def validate(self): pass @abstractmethod def generate(self): pass
StarcoderdataPython
3249690
<gh_stars>0 from numpy import * from numpy.random import * from LabFuncs import * from Params import * from HaloFuncs import * from WIMPFuncs import * import pandas # Halo params HaloModel = SHMpp v0 = HaloModel.RotationSpeed v_esc = HaloModel.EscapeSpeed beta = HaloModel.SausageBeta sig_beta = HaloModel.SausageDispersionTensor sig_iso = array([1.0,1.0,1.0])*v0/sqrt(2.0) # Load shards df = pandas.read_csv('../data/FitShards_red.csv') names = df.group_id nshards = size(names) velocities = zeros(shape=(nshards,3)) dispersions = zeros(shape=(nshards,3)) velocities[0:(nshards),0] = df.vx # stream velocities velocities[0:(nshards),1] = df.vy velocities[0:(nshards),2] = df.vz dispersions[0:(nshards),0] = df.sigx # dispersion tensors dispersions[0:(nshards),1] = df.sigy dispersions[0:(nshards),2] = df.sigz pops = df.population Psun = df.Psun weights = ShardsWeights(names,pops,Psun) iS1 = 0 iS2 = arange(1,3) iRet = arange(3,10) iPro = arange(10,25) iLowE = arange(25,59) # v_mins n = 1000 v_min = linspace(0.01,750.0,n) # Times ndays = 100 days = linspace(0.0,365.0-365.0/ndays,ndays) # Calculate everything gmin_Iso = zeros(shape=(ndays,n)) gmin_Iso_gf = zeros(shape=(ndays,n)) gmin_Saus = zeros(shape=(ndays,n)) gmin_Saus_gf = zeros(shape=(ndays,n)) gmin_S1 = zeros(shape=(ndays,n)) gmin_S1_gf = zeros(shape=(ndays,n)) gmin_S2 = zeros(shape=(ndays,n)) gmin_S2_gf = zeros(shape=(ndays,n)) gmin_Ret = zeros(shape=(ndays,n)) gmin_Ret_gf = zeros(shape=(ndays,n)) gmin_Pro = zeros(shape=(ndays,n)) gmin_Pro_gf = zeros(shape=(ndays,n)) gmin_LowE = zeros(shape=(ndays,n)) gmin_LowE_gf = zeros(shape=(ndays,n)) for i in range(0,ndays): gmin_Iso[i,:] = gvmin_Triaxial(v_min,days[i],sig_iso) gmin_Iso_gf[i,:] = gvmin_Triaxial(v_min,days[i],sig_iso,GravFocus=True) gmin_Saus[i,:] = gvmin_Triaxial(v_min,days[i],sig_beta) gmin_Saus_gf[i,:] = gvmin_Triaxial(v_min,days[i],sig_beta,GravFocus=True) gmin_sub = zeros(shape=(nshards,n)) gmin_sub_gf = zeros(shape=(nshards,n)) for isub in range(0,nshards): v_s = velocities[isub,:] sig_s = dispersions[isub,:] gmin_sub[isub,:] = weights[isub]*gvmin_Triaxial(v_min,days[i],sig_s,v_shift=v_s) gmin_sub_gf[isub,:] = weights[isub]*gvmin_Triaxial(v_min,days[i],sig_s,v_shift=v_s,GravFocus=True) gmin_S1[i,:] = gmin_sub[iS1,:] gmin_S1_gf[i,:] = gmin_sub_gf[iS1,:] gmin_S2[i,:] = sum(gmin_sub[iS2,:],0) gmin_S2_gf[i,:] = sum(gmin_sub_gf[iS2,:],0) gmin_Ret[i,:] = sum(gmin_sub[iRet,:],0) gmin_Ret_gf[i,:] = sum(gmin_sub_gf[iRet,:],0) gmin_Pro[i,:] = sum(gmin_sub[iPro,:],0) gmin_Pro_gf[i,:] = sum(gmin_sub_gf[iPro,:],0) gmin_LowE[i,:] = sum(gmin_sub[iLowE,:],0) gmin_LowE_gf[i,:] = sum(gmin_sub_gf[iLowE,:],0) print('day = ',i+1,'of',ndays,sum(gmin_S1[i,:]),sum(gmin_S1_gf[i,:])) savetxt('../data/gvmin/gvmin_Halo.txt',vstack((v_min,gmin_Iso)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Halo_GF.txt',vstack((v_min,gmin_Iso_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Saus.txt',vstack((v_min,gmin_Saus)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Saus_GF.txt',vstack((v_min,gmin_Saus_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_S1.txt',vstack((v_min,gmin_S1)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_S1_GF.txt',vstack((v_min,gmin_S1_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_S2.txt',vstack((v_min,gmin_S2)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_S2_GF.txt',vstack((v_min,gmin_S2_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Ret.txt',vstack((v_min,gmin_Ret)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Ret_GF.txt',vstack((v_min,gmin_Ret_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Pro.txt',vstack((v_min,gmin_Pro)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_Pro_GF.txt',vstack((v_min,gmin_Pro_gf)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_LowE.txt',vstack((v_min,gmin_LowE)),delimiter='\t',fmt="%1.12f") savetxt('../data/gvmin/gvmin_LowE_GF.txt',vstack((v_min,gmin_LowE_gf)),delimiter='\t',fmt="%1.12f")
StarcoderdataPython
3311907
<reponame>kcarnold/sentiment-slant-gi18 import kenlm import heapq import pickle import os import sys import numpy as np import nltk import cytoolz import joblib import random from scipy.misc import logsumexp import itertools from functools import partial from .paths import paths from .tokenization import tokenize_mid_document from .lang_model import Model, LMClassifier from .diversity import scalar_diversity from . import suffix_array, clustering, manual_bos LOG10 = np.log(10) # Sentiment global flags SHOW_SENTIMENT_OPTIONS = False SENTIMENT_METHOD = 'full' MAX_LOGPROB_PENALTY = -1. PRELOAD_MODELS = ''' yelp_train-balanced yelp_train-1star yelp_train-2star yelp_train-3star yelp_train-4star yelp_train-5star yelp_topic_seqs airbnb_train yelp_lowfreq yelp_hifreq'''.split() ''' yelp_train-stars12 yelp_train-stars45 sotu ''' [Model.get_or_load_model(name) for name in PRELOAD_MODELS] get_model = Model.get_model import json star_prior_counts = np.array(json.load(open(paths.models / 'star_counts.json'))) sentiment_classifier = LMClassifier([get_model(f'yelp_train-{star}star') for star in range(1, 6)], star_prior_counts) # def print(*a, **kw): pass enable_sufarr = False enable_bos_suggs = False use_word_vecs = False if enable_sufarr: print("Loading docs...", end='', file=sys.stderr, flush=True) docs = pickle.load(open(os.path.join(paths.models, 'tokenized_reviews.pkl'), 'rb')) print(', suffix array...', end='', file=sys.stderr, flush=True) sufarr = suffix_array.DocSuffixArray(docs=docs, **joblib.load(os.path.join(paths.models, 'yelp_train_sufarr.joblib'))) docs_by_id_fname = os.path.join(paths.models, 'yelp_train_docs_by_id.pkl') if os.path.exists(docs_by_id_fname): print(', loading id-mapped docs...', end='', file=sys.stderr, flush=True) docs_by_id = pickle.load(open(docs_by_id_fname, 'rb')) else: print(', mapping ids...', end='', file=sys.stderr, flush=True) _str2id = {word: idx for idx, word in enumerate(get_model('yelp_train').id2str)} docs_by_id = [[_str2id.get(word, 0) for word in doc] for doc in docs] pickle.dump(docs_by_id, open(docs_by_id_fname, 'wb'), -1) print(" Done.", file=sys.stderr) if enable_bos_suggs: print("Loading goal-oriented suggestion data...", end='', file=sys.stderr, flush=True) with open(os.path.join(paths.parent, 'models', 'goal_oriented_suggestion_data.pkl'), 'rb') as f: clizer = pickle.load(f) clizer.topic_continuation_scores = np.load('topic_continuation_scores.npy') keep = np.full(len(clizer.unique_starts), True, dtype=bool) keep[clizer.omit] = 0 np.mean(keep) clizer.scores_by_cluster = clizer.scores_by_cluster[keep] clizer.topic_continuation_scores = clizer.topic_continuation_scores[keep] clizer.unique_starts = [clizer.unique_starts[i] for i in np.flatnonzero(keep)] likelihood_bias = logsumexp(clizer.scores_by_cluster, axis=1, keepdims=True) clizer.scores_by_cluster = clizer.scores_by_cluster - .85 * likelihood_bias clizer.topic_continuation_scores_argsort = [np.argsort(clizer.topic_continuation_scores[:,topic])[::-1] for topic in range(clizer.n_clusters)] clizer.scores_by_cluster_argsort = [np.argsort(clizer.scores_by_cluster[:,topic])[::-1] for topic in range(clizer.n_clusters)] del keep del likelihood_bias topic_tags = [f'<T{i}>' for i in range(clizer.n_clusters)] topic_seq_model = get_model('yelp_topic_seqs') topic_word_indices = [topic_seq_model.model.vocab_index(tag) for tag in topic_tags] print("Done.", file=sys.stderr) if use_word_vecs: cnnb = clustering.ConceptNetNumberBatch.load() def get_vecs_for_words(cnnb, words): res = np.zeros((len(words), cnnb.ndim)) for i, word in enumerate(words): try: res[i] = cnnb[word] except KeyError: pass return res word_vecs_for_model = {} def get_word_vecs_for_model(model_name): if model_name not in word_vecs_for_model: word_vecs_for_model[model_name] = get_vecs_for_words(cnnb, get_model(model_name).id2str) return word_vecs_for_model[model_name] print("Getting word vecs for some models", file=sys.stderr) get_word_vecs_for_model('yelp_train-balanced') get_word_vecs_for_model('airbnb_train') sentiment_starters_by_stars_and_sentnum = json.load(open(paths.models / 'yelp_sentiment_starters.json')) import numba @numba.jit def _next_elt_le(arr, criterion, start, end): for i in range(start, end): if arr[i] <= criterion: return i return end def collect_words_in_range(start, after_end, word_idx, docs): words = [] if start == after_end: return words word = docs[sufarr.doc_idx[start]][sufarr.tok_idx[start] + word_idx] words.append(word) while True: before_next_idx = _next_elt_le(sufarr.lcp, word_idx, start, after_end - 1) if before_next_idx == after_end - 1: break next_idx = before_next_idx + 1 word = docs[sufarr.doc_idx[next_idx]][sufarr.tok_idx[next_idx] + word_idx] words.append(word) start = next_idx return words def softmax(scores): return np.exp(scores - logsumexp(scores)) def next_word_probs(model, state, prev_word, prefix_logprobs=None, temperature=1., length_bonus_min_length=6, length_bonus_amt=0., pos_weights=None): next_words, logprobs = model.next_word_logprobs_raw(state, prev_word, prefix_logprobs=prefix_logprobs) if len(next_words) == 0: return next_words, logprobs if length_bonus_amt: length_bonus_elegible = model.word_lengths[next_words] >= length_bonus_min_length logprobs = logprobs + length_bonus_amt * length_bonus_elegible if pos_weights is not None: poses = model.pos_tags[next_words] logprobs = logprobs + pos_weights[poses] logprobs /= temperature return next_words, softmax(logprobs) class GenerationFailedException(Exception): pass def retry_on_exception(exception, tries): def decorator(fn): def wrapper(*a, **kw): for i in range(tries): try: return fn(*a, **kw) except exception: continue except: raise return fn(*a, **kw) return wrapper return decorator @retry_on_exception(GenerationFailedException, 10) def generate_phrase(model, context_toks, length, prefix_logprobs=None, **kw): if context_toks[0] == '<s>': state, _ = model.get_state(context_toks[1:], bos=True) else: state, _ = model.get_state(context_toks, bos=False) phrase = context_toks[:] generated_logprobs = np.empty(length) for i in range(length): next_words, probs = next_word_probs(model, state, phrase[-1], prefix_logprobs=prefix_logprobs, **kw) if len(next_words) == 0: raise GenerationFailedException prefix_logprobs = None picked_subidx = np.random.choice(len(probs), p=probs) picked_idx = next_words[picked_subidx] new_state = kenlm.State() model.model.base_score_from_idx(state, picked_idx, new_state) state = new_state word = model.id2str[picked_idx] phrase.append(word) generated_logprobs[i] = np.log(probs[picked_subidx]) return phrase[len(context_toks):], generated_logprobs def generate_phrase_from_sufarr(model, sufarr, context_toks, length, prefix_logprobs=None, temperature=1.): if context_toks[0] == '<s>': state, _ = model.get_state(context_toks[1:], bos=True) else: state, _ = model.get_state(context_toks, bos=False) phrase = [] generated_logprobs = np.empty(length) for i in range(length): start_idx, end_idx = sufarr.search_range((context_toks[-1],) + tuple(phrase) + ('',)) next_words = collect_words_in_range(start_idx, end_idx, i + 1) if prefix_logprobs is not None: prior_logprobs = np.full(len(next_words), -10) for logprob, prefix in prefix_logprobs: for nextword_idx, word in enumerate(next_words): if word.startswith(prefix): prior_logprobs[nextword_idx] = logprob else: prior_logprobs = None if len(next_words) == 0: raise GenerationFailedException vocab_indices = [model.model.vocab_index(word) for word in next_words] logprobs = model.eval_logprobs_for_words(state, vocab_indices) if prior_logprobs is not None: logprobs += prior_logprobs logprobs /= temperature probs = softmax(logprobs) picked_subidx = np.random.choice(len(probs), p=probs) picked_idx = vocab_indices[picked_subidx] new_state = kenlm.State() model.model.base_score_from_idx(state, picked_idx, new_state) state = new_state word = next_words[picked_subidx] phrase.append(word) generated_logprobs[i] = np.log(probs[picked_subidx]) prefix_logprobs = None return phrase, generated_logprobs def generate_diverse_phrases(model, context_toks, n, length, prefix_logprobs=None, use_sufarr=False, null_logprob_weight=None, **kw): if model is None: model = 'yelp_train' if isinstance(model, str): model = get_model(model) if 'pos_weights' in kw: kw['pos_weights'] = np.array(kw['pos_weights']) assert not use_sufarr state, _ = model.get_state(context_toks) first_words, first_word_probs = next_word_probs(model, state, context_toks[-1], prefix_logprobs=prefix_logprobs, **kw) if len(first_words) == 0: return [] res = [] for idx in np.random.choice(len(first_words), min(len(first_words), n), p=first_word_probs, replace=False): first_word = model.id2str[first_words[idx]] first_word_logprob = np.log(first_word_probs[idx]) phrase, phrase_logprobs = generate_phrase(model, context_toks + [first_word], length - 1, **kw) # phrase, phrase_logprobs = generate_phrase_from_sufarr(model, sufarr, context_toks + [first_word], length - 1, **kw) res.append(([first_word] + phrase, dict(probs=np.hstack(([first_word_logprob], phrase_logprobs)).tolist()))) return res from collections import namedtuple BeamEntry = namedtuple("BeamEntry", 'score, words, done, penultimate_state, last_word_idx, num_chars, extra') def beam_search_phrases_init(model, start_words, **kw): if isinstance(model, str): model = get_model(model) start_state, start_score = model.get_state(start_words, bos=False) return [(0., [], False, start_state, model.model.vocab_index(start_words[-1]), 0, None)] def beam_search_phrases_extend(model, beam, *, beam_width, iteration_num, length_after_first, prefix_logprobs=None, rare_word_bonus=0., constraints): if isinstance(model, str): model = get_model(model) unigram_probs = model.unigram_probs_wordsonly avoid_letter = constraints.get('avoidLetter') bigrams = model.unfiltered_bigrams if iteration_num == 0 else model.filtered_bigrams DONE = 2 new_beam = [ent for ent in beam if ent[DONE]] new_beam_size = len(new_beam) for entry in beam: score, words, done, penultimate_state, last_word_idx, num_chars, _ = entry if done: continue else: if iteration_num > 0: last_state = kenlm.State() model.model.base_score_from_idx(penultimate_state, last_word_idx, last_state) else: last_state = penultimate_state probs = None if iteration_num == 0 and prefix_logprobs is not None: next_words = [] probs = [] for prob, prefix in prefix_logprobs: for word, word_idx in model.vocab_trie.items(prefix): next_words.append(word_idx) probs.append(prob) else: # print(id2str[last_word]) next_words = bigrams.get(last_word_idx, []) if len(next_words) < 10: if iteration_num == 0: # Fall back to all common words. next_words = model.most_common_words_by_idx else: # Use the larger set of possible next words next_words = model.unfiltered_bigrams.get(last_word_idx, []) if len(next_words) < 10: next_words = model.most_common_words_by_idx new_state = kenlm.State() for next_idx, word_idx in enumerate(next_words): if word_idx == model.eos_idx or word_idx == model.eop_idx: continue if probs is not None: prob = probs[next_idx] else: prob = 0. word = model.id2str[word_idx] if avoid_letter is not None and avoid_letter in word: continue if word[0] in '.?!': continue unigram_bonus = -unigram_probs[word_idx]*rare_word_bonus if iteration_num > 0 and rare_word_bonus and word not in words else 0. main_model_score = LOG10 * model.model.base_score_from_idx(last_state, word_idx, new_state) new_score = score + prob + unigram_bonus + main_model_score new_words = words + [word] new_num_chars = num_chars + 1 + len(word) if iteration_num else 0 done = new_num_chars >= length_after_first new_entry = (new_score, new_words, done, last_state, word_idx, new_num_chars, None) if new_beam_size == beam_width: heapq.heappushpop(new_beam, new_entry) # Beam size unchanged. else: new_beam.append(new_entry) new_beam_size += 1 if new_beam_size == beam_width: heapq.heapify(new_beam) # assert len(new_beam) <= beam_width return new_beam def beam_search_phrases_loop(model, beam, *, length_after_first, prefix_logprobs=None, start_idx=0, **kw): for iteration_num in range(start_idx, length_after_first): beam = beam_search_phrases_extend(model, beam, iteration_num=iteration_num, length_after_first=length_after_first, prefix_logprobs=prefix_logprobs, **kw) prefix_logprobs = None return [BeamEntry(*ent) for ent in sorted(beam, reverse=True)] def beam_search_phrases(model, start_words, **kw): beam = beam_search_phrases_init(model, start_words, **kw) beam = beam_search_phrases_loop(model, beam, **kw) beam.sort(reverse=True) return [BeamEntry(*ent) for ent in beam] def beam_search_sufarr_init(model, start_words): start_state, start_score = model.get_state(start_words, bos=False) return [(0., [], False, start_state, None, 0, (0, len(sufarr.doc_idx), model.null_context_state))] def beam_search_sufarr_extend(model, beam, context_tuple, iteration_num, beam_width, length_after_first, *, word_bonuses=None, prefix='', null_logprob_weight=0., constraints): if isinstance(model, str): model = get_model(model) avoid_letter = constraints.get('avoidLetter') def candidates(): for entry in beam: score, words, done, penultimate_state, last_word_idx, num_chars, (prev_start_idx, prev_end_idx, penultimate_state_null) = entry if done: yield entry continue if last_word_idx is not None: last_state = kenlm.State() model.model.base_score_from_idx(penultimate_state, last_word_idx, last_state) last_state_null = kenlm.State() model.model.base_score_from_idx(penultimate_state_null, last_word_idx, last_state_null) else: last_state = penultimate_state last_state_null = penultimate_state_null start_idx, end_idx = sufarr.search_range(context_tuple + tuple(words) + (prefix,), lo=prev_start_idx, hi=prev_end_idx) next_word_ids = collect_words_in_range(start_idx, end_idx, iteration_num + 1, docs_by_id) if len(next_word_ids) == 0: assert iteration_num == 0 or model.id2str[last_word_idx] == '</S>', "We only expect to run out of words at an end-of-sentence that's also an end-of-document." continue new_state = kenlm.State() for next_idx, word_idx in enumerate(next_word_ids): if word_idx == 0: continue word = model.id2str[word_idx] if avoid_letter is not None and avoid_letter in word: continue if word[0] in '.?!': continue new_words = words + [word] new_num_chars = num_chars + 1 + len(word) if iteration_num > 0 else 0 logprob = LOG10 * model.model.base_score_from_idx(last_state, word_idx, new_state) unigram_bonus = word_bonuses[word_idx] if word not in words else 0. logprob_null = LOG10 * model.model.base_score_from_idx(last_state_null, word_idx, new_state) new_score = score + logprob + null_logprob_weight * logprob_null + unigram_bonus done = new_num_chars >= length_after_first yield new_score, new_words, done, last_state, word_idx, new_num_chars, (start_idx, end_idx, last_state_null)#bonuses + [unigram_bonus]) return heapq.nlargest(beam_width, candidates()) def tap_decoder(char_model, before_cursor, cur_word, key_rects, beam_width=100, scale=100.): keys = [k['key'] for k in key_rects] rects = [k['rect'] for k in key_rects] centers = [((rect['left'] + rect['right']) / 2, (rect['top'] + rect['bottom']) / 2) for rect in rects] beam_width = 100 beam = [(0., '', None)] for item in cur_word: if 'tap' not in item: letter = item['letter'] letters_and_distances = [(letter, 0)] else: x, y = item['tap'] sq_dist_to_center = [(x - rect_x) ** 2. + (y - rect_y) ** 2. for rect_x, rect_y in centers] letters_and_distances = zip(keys, sq_dist_to_center) new_beam = [] # print(np.min(sq_dist_to_center) / scale, keys[np.argmin(sq_dist_to_center)]) for score, sofar, penultimate_state in beam: last_state = kenlm.State() if sofar: char_model.BaseScore(penultimate_state, sofar[-1], last_state) else: char_model.NullContextWrite(last_state) for c in before_cursor: next_state = kenlm.State() char_model.BaseScore(last_state, c, next_state) last_state = next_state next_state = kenlm.State() for key, dist in letters_and_distances: new_so_far = sofar + key new_beam.append((score + char_model.BaseScore(last_state, key, next_state) - dist / scale, new_so_far, last_state)) beam = sorted(new_beam, reverse=True)[:beam_width] return [(prob, word) for prob, word, state in sorted(beam, reverse=True)[:10]] def tokenize_sofar(sofar): toks = tokenize_mid_document(sofar.lower().replace(' .', '.').replace(' ,', ','))[0] if toks[-1] != '': print("WEIRD: somehow we got a mid-word sofar:", repr(sofar)) assert toks[0] == "<D>" assert toks[1] == "<P>" assert toks[2] == "<S>" return ['<s>', "<D>"] + toks[3:-1] def phrases_to_suggs(phrases): return [Recommendation(words=phrase, meta=meta) for phrase, meta in phrases] def predict_forward(domain, toks, beam_width, length_after_first, constraints): model = get_model(domain) first_word = toks[-1] if first_word in '.?!': return [first_word], None continuations = beam_search_phrases(model, toks, beam_width=beam_width, length_after_first=length_after_first, constraints=constraints) if len(continuations) > 0: continuation = continuations[0].words else: continuation = [] return [first_word] + continuation, None def try_to_match_topic_distribution(clizer, target_dist, sents): def normal_lik(x, sigma): return np.exp(-.5*(x/sigma)**2) / (2*np.pi*sigma) sent_cluster_distribs = cytoolz.thread_first( sents, clizer.vectorize_sents, clustering.normalize_vecs, clizer.clusterer.transform, (normal_lik, .5), clustering.normalize_dists ) new_dists_opts = np.eye(clizer.n_clusters) from scipy.special import kl_div with_new_dist = np.array([np.concatenate((sent_cluster_distribs, new_dist_opt[None]), axis=0) for new_dist_opt in new_dists_opts]) dist_with_new_dist = clustering.normalize_dists(np.mean(with_new_dist, axis=1)) return np.argsort(kl_div(dist_with_new_dist, target_dist).sum(axis=1))[:3].tolist() def get_topic_seq(sents): if len(sents) == 0: return [] cluster_distances = cytoolz.thread_first( sents, clizer.vectorize_sents, clustering.normalize_vecs, clizer.clusterer.transform) return np.argmin(cluster_distances, axis=1).tolist() def get_bos_suggs(sofar, sug_state, *, bos_sugg_flag, constraints, verbose=False): if sug_state is None: sug_state = {} if 'suggested_already' not in sug_state: sug_state['suggested_already'] = set() suggested_already = sug_state['suggested_already'] if verbose: print("Already suggested", suggested_already) sents = nltk.sent_tokenize(sofar) topic_seq = get_topic_seq(sents) if False: topics_to_suggest = try_to_match_topic_distribution( clizer=clizer, target_dist=clizer.target_dists['best'], sents=sents) elif bos_sugg_flag == 'continue': if len(topic_seq) == 0: return None, sug_state, None last_topic = topic_seq[-1] topics_to_suggest = [last_topic] * 3 else: # Find the most likely next topics. topic_seq_state = topic_seq_model.get_state([topic_tags[topic] for topic in topic_seq], bos=True)[0] topic_likelihood = topic_seq_model.eval_logprobs_for_words(topic_seq_state, topic_word_indices) if len(topic_seq): # Ensure that we don't continue the same topic. last_topic = topic_seq[-1] topic_likelihood[last_topic] = -np.inf # Penalize already-covered topics. for topic in topic_seq: topic_likelihood[topic] -= 100.0 topics_to_suggest = np.argsort(topic_likelihood)[-3:][::-1].tolist() if verbose: print(f"seq={topic_seq} flag={bos_sugg_flag} suggesting={topics_to_suggest}") if bos_sugg_flag == 'continue': argsort_scores_for_topic = clizer.topic_continuation_scores_argsort else: argsort_scores_for_topic = clizer.scores_by_cluster_argsort avoid_letter = constraints.get('avoidLetter') phrases = [] first_words = [] for topic in topics_to_suggest: # Try to find a start for this topic that doesn't overlap an existing one in first word. for suggest_idx in argsort_scores_for_topic[topic]: phrase = clizer.unique_starts[suggest_idx] if phrase[0] in first_words: continue beginning = ' '.join(phrase[:3]) if beginning in suggested_already: print("Taboo:", beginning) continue if avoid_letter is not None and (avoid_letter in beginning or avoid_letter in ''.join(phrase)): continue first_words.append(phrase[0]) suggested_already.add(beginning) phrases.append((phrase, {'bos': True})) break return phrases, sug_state, dict(topic_seq=topic_seq, topics_to_suggest=topics_to_suggest) def get_sentence_enders(model, start_words): if isinstance(model, str): model = get_model(model) start_state, start_score = model.get_state(start_words, bos=False) toks = list('.?!') end_indices = [model.model.vocab_index(tok) for tok in toks] scores = np.exp(model.eval_logprobs_for_words(start_state, end_indices)) cum_score = np.sum(scores) if cum_score > 2/3: return [toks[i] for i in np.argsort(scores)[::-1][:2]] elif cum_score > 1/3: return [toks[np.argmax(scores)]] return [] # Based on https://github.com/python/cpython/blob/3.6/Lib/concurrent/futures/process.py def _get_chunks(*iterables, chunksize): """ Iterates over zip()ed iterables in chunks. """ it = zip(*iterables) while True: chunk = tuple(itertools.islice(it, chunksize)) if not chunk: return yield chunk def _process_chunk(fn, chunk): """ Processes a chunk of an iterable passed to map. Runs the function passed to map() on a chunk of the iterable passed to map. This function is run in a separate process. """ return [fn(*args) for args in chunk] def map_as_jobs(executor, fn, arr, chunksize=8): """Launches jobs that run a chunk of chunksize elements of arr through fn. Each job will yield an array; you can use itertools.chain.from_iterable(results). """ return [executor.submit(partial(_process_chunk, fn), chunk) for chunk in _get_chunks(arr, chunksize=chunksize)] def Recommendation(words, meta={}): return dict(words=words, meta=meta) def get_synonyms(model, state, toks, query_word_idx, *, num_sims, num_alternatives): from sklearn.metrics import pairwise word_vecs = get_word_vecs_for_model(model.name) # Get unconditional next words next_words, logprobs = model.next_word_logprobs_raw(state, toks[-1]) # Find synonyms that are less likely. query_word_vec = word_vecs[query_word_idx] likelihood_threshold = model.unigram_probs[query_word_idx] less_frequent_indices = [i for i, idx in enumerate(next_words) if model.unigram_probs_wordsonly[idx] < likelihood_threshold] if len(less_frequent_indices) == 0: return [] next_words = np.array(next_words)[less_frequent_indices] logprobs = logprobs[less_frequent_indices] vecs_for_words = word_vecs[next_words] sims = pairwise.cosine_similarity(query_word_vec[None, :], vecs_for_words)[0] candidates = np.argsort(sims)[-num_sims:][::-1] relevances = logprobs[candidates] return [Recommendation([model.id2str[next_words[idx]]]) for idx in candidates[np.argsort(relevances)[::-1][:num_alternatives]]] def get_split_recs(sofar, cur_word, flags={}): domain = flags.get('domain', 'yelp_train-balanced') num_sims = flags.get('num_sims', 5) num_alternatives = flags.get('num_alternatives', 5) model = get_model(domain) toks = tokenize_sofar(sofar) cur_word_letters = ''.join(item['letter'] for item in cur_word) prefix_logprobs = [(0., cur_word_letters)] if len(cur_word) > 0 else None state = model.get_state(toks)[0] next_words, logprobs = model.next_word_logprobs_raw(state, toks[-1], prefix_logprobs=prefix_logprobs) logprob_argsort = np.argsort(logprobs) predictions = [] for idx in logprob_argsort[::-1]: word = model.id2str[next_words[idx]] if word[0] in ',.?!<': continue predictions.append(Recommendation([word])) if len(predictions) == 3: break result = dict(predictions=predictions) if len(predictions) == 0: return result if len(cur_word) > 0: # Offer uncommon synonyms of the most likely next word to_replace = cur_word_letters replacement_start_idx = len(sofar) query_word_idx = next_words[np.argmax(logprobs)] query_state = state query_toks = toks else: to_replace = toks[-1] if to_replace[0] not in '.?!<' and to_replace in sofar: replacement_start_idx = sofar.rindex(to_replace) query_word_idx = model.model.vocab_index(to_replace) query_toks = toks[:-1] query_state = model.get_state(query_toks)[0] else: query_word_idx = 0 if query_word_idx != 0: replacement_end_idx = replacement_start_idx + len(to_replace) result['replacement_range'] = [replacement_start_idx, replacement_end_idx] result['synonyms'] = get_synonyms( model, query_state, query_toks, query_word_idx, num_sims=num_sims, num_alternatives=num_alternatives) return result def get_clustered_recs(sofar, cur_word, flags={}): from sklearn.cluster import AffinityPropagation domain = flags.get('domain', 'yelp_train-balanced') n_clusters = flags.get('n_clusters', 5) model = get_model(domain) word_vecs = get_word_vecs_for_model(domain) toks = tokenize_sofar(sofar) prefix_logprobs = [(0., ''.join(item['letter'] for item in cur_word))] if len(cur_word) > 0 else None state = model.get_state(toks)[0] next_words, logprobs = model.next_word_logprobs_raw(state, toks[-1], prefix_logprobs=prefix_logprobs) # TODO: cur_word if len(next_words) < n_clusters: return dict(clusters=[[(model.id2str[idx], logprob.item())] for idx, logprob in zip(next_words, logprobs)]) vecs_for_words = word_vecs[next_words] vecs_for_clustering = vecs_for_words[np.argsort(logprobs)[-30:]] clusterer = AffinityPropagation(verbose=True) clusterer.fit(vecs_for_clustering) cluster_assignment = clusterer.predict(vecs_for_words) relevance = logprobs# - .5 * model.unigram_probs[next_words] clusters = [] for cluster in range(cluster_assignment.max() + 1): members = np.flatnonzero(cluster_assignment == cluster) if len(members) == 0: continue relevances = relevance[members] new_order = np.argsort(relevances)[::-1][:10] members = members[new_order] print(cluster, ', '.join('{}[{:.2f}]'.format(model.id2str[next_words[idx]], relevance[idx]) for idx in members)) clusters.append([(model.id2str[next_words[idx]], relevance[idx].item()) for idx in members]) clusters.sort(key=lambda x: -x[0][1]) return dict(clusters=clusters) def get_suggestions_async(executor, *, sofar, cur_word, domain, rare_word_bonus, use_sufarr, temperature, use_bos_suggs, length_after_first=17, sug_state=None, word_bonuses=None, prewrite_info=None, constraints={}, promise=None, sentiment=None, **kw): if SENTIMENT_METHOD == 'simple': if sentiment == 1: sentiment = None assert domain == 'yelp_train-balanced' domain = 'yelp_train-stars12' elif sentiment == 5: sentiment = None assert domain == 'yelp_train-balanced' domain = 'yelp_train-stars45' model = get_model(domain) toks = tokenize_sofar(sofar) prefix_logprobs = [(0., ''.join(item['letter'] for item in cur_word))] if len(cur_word) > 0 else None prefix = ''.join(item['letter'] for item in cur_word) # prefix_probs = tap_decoder(sofar[-12:].replace(' ', '_'), cur_word, key_rects) if sug_state is None: sug_state = {} if 'suggested_already' not in sug_state: sug_state['suggested_already'] = {} suggested_already = sug_state['suggested_already'] if word_bonuses is None and prewrite_info is not None: known_words = set() unknown_words = set() word_bonuses = np.zeros(len(model.id2str)) unigram_probs = model.unigram_probs_wordsonly for word in prewrite_info['text'].split(): idx = model.model.vocab_index(word) if idx != 0: word_bonuses[idx] = prewrite_info['amount'] * -unigram_probs[idx] known_words.add(word) else: unknown_words.add(word) print(f"Bonusing {len(known_words)} prewrite words: {' '.join(sorted(known_words))}") print(f"Not bonusing {len(unknown_words)} unknown words: {' '.join(sorted(unknown_words))}") # Beginning of sentence suggestions if use_bos_suggs and use_bos_suggs != 'manual' and not enable_bos_suggs: print("Warning: requested BOS suggs but they're not enabled.") use_bos_suggs = False is_bos = len(cur_word) == 0 and toks[-1] in ['<D>', '<S>'] if use_bos_suggs and is_bos: if promise is not None: print("Warning: promise enabled but making beginning-of-sentence suggestions!") if use_bos_suggs == 'manual': phrases, sug_state = manual_bos.get_manual_bos(sofar, sug_state) elif use_bos_suggs in ['diverse', 'continue']: phrases, sug_state, _ = get_bos_suggs(sofar, sug_state, bos_sugg_flag=use_bos_suggs, constraints=constraints) else: phrases = None if phrases is not None: return phrases, sug_state if use_sufarr and not enable_sufarr: print("Warning: requested sufarr but not enabled.") use_sufarr = False if temperature == 0: if use_sufarr and len(cur_word) == 0: assert sentiment is None, "sufarr doesn't support sentiment yet" assert promise is None, "sufarr doesn't support promises yet" beam_width = 100 beam = beam_search_sufarr_init(model, toks) context_tuple = (toks[-1],) if word_bonuses is None: # The multiplication makes a copy. word_bonuses = model.unigram_probs_wordsonly * -rare_word_bonus else: word_bonuses = word_bonuses.copy() # Don't double-bonus words that have already been used. for word in set(toks): word_idx = model.model.vocab_index(word) word_bonuses[word_idx] = 0. for i in range(length_after_first): beam_chunks = cytoolz.partition_all(8, beam) parallel_futures = yield [executor.submit( beam_search_sufarr_extend, domain, chunk, context_tuple, i, beam_width, length_after_first=length_after_first, word_bonuses=word_bonuses, prefix=prefix, constraints=constraints, **kw) for chunk in beam_chunks] parallel_beam = list(cytoolz.concat(parallel_futures)) prefix = '' # FIXME: maintain diversity in first-words here? beam = heapq.nlargest(beam_width, parallel_beam) # entry 2 is "DONE" if all(ent[2] for ent in beam): break ents = [BeamEntry(*ent) for ent in beam] if len(ents) == 0: # Fall back on the full LM, but just for one word. first_word_ents = yield executor.submit(beam_search_phrases, domain, toks, beam_width=100, length_after_first=1, prefix_logprobs=prefix_logprobs, constraints=constraints) phrases = [(ent.words, None) for ent in first_word_ents[:3]] else: result = [ents.pop(0)] first_words = {ent.words[0] for ent in result} while len(result) < 3 and len(ents) > 0: ents.sort(reverse=True, key=lambda ent: (ent.words[0] not in first_words, ent.score)) best = ents.pop(0) first_words.add(best.words[0]) result.append(best) phrases = [([word for word in ent.words if word[0] != '<'], None) for ent in result] else: # sufarr # Use beam search on LM. if prefix_logprobs is None: sentence_enders = yield executor.submit(get_sentence_enders, domain, toks) else: sentence_enders = [] beam_search_kwargs = dict(constraints=constraints) if sentiment: clf_startstate = sentiment_classifier.get_state(toks) # Include a broader range of first words if we may need to diversify by sentiment after the fact. num_first_words = 3 - len(sentence_enders) if sentiment is None else 20 num_intermediates = 20 max_logprob_penalty = MAX_LOGPROB_PENALTY # Launch a job to get first words. if num_first_words: first_word_ents = yield executor.submit(beam_search_phrases, domain, toks, beam_width=num_first_words, length_after_first=1, prefix_logprobs=prefix_logprobs, **beam_search_kwargs) else: first_word_ents = [] first_words = {ent[1][0]: fwent_idx for fwent_idx, ent in enumerate(first_word_ents)} if promise is not None: promise_slot = promise['slot'] promise_words = promise['words'] # Remove the first word of the promise from the pool, we'll get to it later. promise_first_word = promise_words[0] if promise_first_word in first_words: first_word_ents.pop(first_words[promise_first_word]) else: promise_slot = None jobs = [executor.submit(beam_search_phrases_loop, model, [ent], start_idx=1, beam_width=num_intermediates, length_after_first=length_after_first, **beam_search_kwargs) for ent in first_word_ents] if promise is not None and len(promise_words) < 5 and not any(x in promise_words for x in '.?!'): # Sneak an extra job into the queue... promise_extension = True # Promise provided, but we need to extend it with some new words. remaining_length = max(1, length_after_first - len(' '.join(promise_words))) jobs.append(executor.submit(beam_search_phrases, model, toks + promise_words, beam_width=num_intermediates, length_after_first=remaining_length, **beam_search_kwargs)) else: promise_extension = False results = (yield jobs) if promise_extension: # The extra job computed a bunch of possible promise continuations. Hold them aside. promise_extension_results = results.pop() # Convert them into a format compatible with our beam search. # Make the score positive, so we can know not to taboo this entry. promise_beam = [(ent[0] + 500, promise_words + ent[1]) for ent in promise_extension_results] results.append(promise_beam) # Now build final suggestions. is_new_word = len(cur_word) == 0 active_entities = [] final_tok = toks[-1] if final_tok in suggested_already: suggested_already_this_tok = suggested_already[final_tok] else: suggested_already_this_tok = suggested_already[final_tok] = set() for beam in results: for ent in beam: llk = ent[0] words = ent[1] # Penalize a suggestion that has already been made exactly like this before. if llk < 0 and is_new_word and ' '.join(words[:3]) in suggested_already_this_tok: print("Taboo:", ' '.join(words)) llk -= 5000. active_entities.append((llk, words, {})) # Add sentence-enders in the mix, but flagged special. for ender in sentence_enders[:2]: active_entities.append((995, [ender], {'type': 'eos'})) # Add the highest likelihood promise continuation also, also flagged special. if promise is not None: llk = 999 if promise_extension: words = promise_beam[0][1] else: words = promise_words active_entities.append((llk, words, {'type': 'promise'})) # If we're at the beginning of a sentence, add the special sentiment sentence starters. if sentiment is not None and use_bos_suggs == 'sentiment' and len(cur_word) == 0 and toks[-1] in ["<D>", "<S>"]: sent_idx = sum(1 for tok in toks if tok == '</S>') if sentiment == 'diverse': sent_targets = [[0, 1], [2], [3, 4]] else: sent_targets = [[sentiment - 1]] * 3 this_time_taboo = set() for tgt_sentiments in sent_targets: sent_bos_options = [ (tgt_sentiment, bos_option) for tgt_sentiment in tgt_sentiments for bos_option in sentiment_starters_by_stars_and_sentnum[tgt_sentiment][min(sent_idx, 2)]] random.shuffle(sent_bos_options) for tgt_sentiment, bos_option in sent_bos_options: toks = bos_option.split() first_3_words = ' '.join(toks[:3]) if first_3_words in this_time_taboo: continue if first_3_words in suggested_already_this_tok: print("bos taboo:", bos_option) continue active_entities.append((100, toks, {'type': 'sentiment_bos', 'sentiment': tgt_sentiment / 4})) this_time_taboo.add(first_3_words) break # Pad the active entities with null suggestions. for i in range(3): active_entities.append((-9999, [''], {'type': 'null'})) active_entities.sort(reverse=True) # Compute sentiment data if sentiment is not None: if sentiment == 'diverse': # Diversify the suggestions by sentiment. def summarize_posterior(sent_posteriors): return np.mean(sent_posteriors, axis=0) @ sentiment_classifier.sentiment_weights objective = scalar_diversity else: # Try to maximize the likelihood of the desired sentiment target_sentiment = sentiment - 1 assert 0 <= target_sentiment < 5 def summarize_posterior(sent_posteriors): return np.mean(sent_posteriors, axis=0)[target_sentiment] def objective(slots): return np.sum(slots) classify_jobs = [] classify_jobs_meta = [] for entity_idx, (llk, words, meta) in enumerate(active_entities): if meta.get('type') == 'eos' or 'sentiment' in meta: continue classify_jobs.append(words) classify_jobs_meta.append(entity_idx) classify_jobs_results = (yield map_as_jobs(executor, partial(sentiment_classifier.classify_seq_by_tok, clf_startstate), classify_jobs, chunksize=32)) sentiment_data = [ent[2].get('sentiment', .5) for ent in active_entities] for entity_idx, posterior in zip(classify_jobs_meta, itertools.chain.from_iterable(classify_jobs_results)): sentiment_data[entity_idx] = summarize_posterior(posterior) entity_idx = 0 promise_entity_idx = 0 if promise is not None: # The zeroth entity should be the promise. assert active_entities[promise_entity_idx][2]['type'] == 'promise' # Start open-assignment at the first entity. entity_idx += 1 # Take 3 suggestions assignments = [None] * 3 first_words_used = {} if promise is not None: first_words_used[promise['words'][0]] = promise_slot for slot_idx in range(3): if slot_idx == promise_slot: # Assign the existing promise to this entry. # We may extend it later with one of the computed extensions. assignments[slot_idx] = promise_entity_idx continue while True: llk, words, meta = active_entities[entity_idx] first_word = words[0] if first_word in first_words_used: entity_idx += 1 continue if first_word != '': first_words_used[first_word] = slot_idx assignments[slot_idx] = entity_idx entity_idx += 1 break if sentiment is not None: # Tweak the suggestions as requested. print("First words:", ' '.join(ent[1][0] for ent in first_word_ents)) cur_summaries = np.array([sentiment_data[entity_idx] for entity_idx in assignments]) cur_objective = objective(cur_summaries) min_logprob_allowed = min(active_entities[entity_idx][0] for entity_idx in assignments) + max_logprob_penalty if SHOW_SENTIMENT_OPTIONS: for i in np.argsort(sentiment_data): llk, words, meta = active_entities[i] if llk < min_logprob_allowed: continue print(f'{sentiment_data[i]:.2f} {llk:.2f}', ' '.join(words)) # Greedily replace suggestions so as to increase sentiment diversity. while True: for entity_idx in assignments: llk, words, meta = active_entities[entity_idx] sentiment = sentiment_data[entity_idx] print(f"{sentiment:3.2f} {llk:6.2f} {' '.join(words)}") print() print() candidates = [] for entity_idx, (llk, words, meta) in enumerate(active_entities): if llk < min_logprob_allowed: continue cur_summary = sentiment_data[entity_idx] # Would this increase the objective if we added it? # Case 1: it replaces an existing word replaces_slot = first_words_used.get(words[0]) if replaces_slot is not None: prev_llk = active_entities[assignments[replaces_slot]][0] if llk < prev_llk + max_logprob_penalty: # Too much relevance cost. continue if replaces_slot == promise_slot: # This could replace the promise iff it was a continuation. if words[:len(promise_words)] == promise_words: # print("Considering replacing promise", words) pass else: continue elif prev_llk >= 0: # Sorry, this was a special one, can't kick it out. continue candidate_summaries = cur_summaries.copy() candidate_summaries[replaces_slot] = cur_summary new_objective = objective(candidate_summaries) else: # Case 2: it replaces the currently least-diverse word. new_objectives = np.full(3, -np.inf) for replaces_slot in range(3): prev_llk = active_entities[assignments[replaces_slot]][0] if prev_llk >= 0: # Sorry, this was a special one, can't kick it out. continue elif llk < prev_llk + max_logprob_penalty: # Sorry, too much relevance cost. continue candidate_summaries = cur_summaries.copy() candidate_summaries[replaces_slot] = cur_summary new_objectives[replaces_slot] = objective(candidate_summaries) replaces_slot = np.argmax(new_objectives) new_objective = new_objectives[replaces_slot] if new_objective > cur_objective: candidates.append((new_objective, replaces_slot, entity_idx)) print(f"Found {len(candidates)} candidates that increase objective") if len(candidates) == 0: break prev_objective = cur_objective cur_objective, replaces_slot, entity_idx = max(candidates) llk, words, meta = active_entities[entity_idx] new_summary = sentiment_data[entity_idx] print(f"Replacing slot {replaces_slot} with llk={llk:.2f} sent={new_summary:.2f} \"{' '.join(words)}\" to gain {cur_objective - prev_objective:.2f} objective") # Actually replace the suggestion. kicked_out_entity_idx = assignments[replaces_slot] cur_summaries[replaces_slot] = new_summary existing_first_word = active_entities[kicked_out_entity_idx][1][0] del first_words_used[existing_first_word] first_words_used[words[0]] = replaces_slot assignments[replaces_slot] = entity_idx # Sort the slots by sentiment, but keeping the promise in its spot. if promise is not None: assert active_entities[assignments[promise_slot]][1][:len(promise_words)] == promise_words promise_entity_idx = assignments.pop(promise_slot) assignments.sort(key=lambda entity_idx: -sentiment_data[entity_idx]) if promise is not None: assignments.insert(promise_slot, promise_entity_idx) # Now we should have assignments of phrases to slots. phrases = [] for entity_idx in assignments: llk, words, meta = active_entities[entity_idx] meta = dict(meta, llk=llk) if sentiment is not None: meta['sentiment_summary'] = sentiment_data[entity_idx] phrases.append((words, meta)) suggested_already_this_tok.add(' '.join(words[:3])) if is_bos: phrases = [(words, dict(meta, bos=True)) for words, meta in phrases] else: # TODO: upgrade to use_sufarr flag phrases = generate_diverse_phrases( domain, toks, 3, 6, prefix_logprobs=prefix_logprobs, temperature=temperature, use_sufarr=use_sufarr, **kw) return phrases, sug_state def get_suggestions(*a, **kw): '''Wrap the async suggestion generation so it's testable.''' from concurrent.futures import Future class NullExecutor: def submit(self, fn, *a, **kw): future = Future() future.set_result(fn(*a, **kw)) return future generator = get_suggestions_async(NullExecutor(), *a, **kw) result = None while True: try: result = generator.send(result) if isinstance(result, Future): result = result.result() elif isinstance(result, list) and len(result) > 0 and isinstance(result[0], Future): result = [fut.result() for fut in result] else: print("Unexpected yield of something other than a Future!") return result except StopIteration as stop: return stop.value def request_to_kwargs(request): return dict( domain=request.get('domain', 'yelp_train'), rare_word_bonus=request.get('rare_word_bonus', 0.0), use_sufarr=request.get('useSufarr', False), temperature=request.get('temperature', 0.), use_bos_suggs=request.get('use_bos_suggs', False), length_after_first=request.get('continuation_length', 17), null_logprob_weight=request.get('null_logprob_weight', 0.), prewrite_info=request.get('prewrite_info'), constraints=request.get('constraints', {}), promise=request.get('promise'), sentiment=request.get('sentiment'), word_bonuses=None) def do_request_raw(request): return get_suggestions( sofar=request['sofar'], cur_word=request['cur_word'], **request_to_kwargs(request)) def do_request_raw_json(request_json): return do_request_raw(json.loads(request_json))
StarcoderdataPython
1712047
"""RKI Covid numbers integration.""" import asyncio from datetime import timedelta import logging import aiohttp import async_timeout from homeassistant import config_entries, core from homeassistant.helpers import update_coordinator from homeassistant.helpers.aiohttp_client import async_get_clientsession from rki_covid_parser.parser import RkiCovidParser from custom_components.rki_covid.const import DOMAIN from custom_components.rki_covid.data import DistrictData _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor"] async def async_setup(hass: core.HomeAssistant, config: dict) -> bool: """Set up the component into HomeAssistant.""" _LOGGER.debug("setup component.") parser = RkiCovidParser(async_get_clientsession(hass)) # Make sure coordinator is initialized. await get_coordinator(hass, parser) # Return boolean to indicate that initialization was successful. return True async def async_setup_entry( hass: core.HomeAssistant, entry: config_entries.ConfigEntry ) -> bool: """Set up component from a config entry.""" _LOGGER.debug(f"Setup item from config entry: {entry.data}.") # Forward the setup to the sensor platform. for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True async def async_unload_entry( hass: core.HomeAssistant, entry: config_entries.ConfigEntry ): """Unload a config entry.""" _LOGGER.debug(f"Unload item from config entry: {entry.data}.") unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) return unload_ok async def get_coordinator(hass: core.HomeAssistant, parser: RkiCovidParser): """Get the data update coordinator.""" _LOGGER.debug("initialize the data coordinator.") if DOMAIN in hass.data: return hass.data[DOMAIN] async def async_get_districts(): """Fetch data from rki-covid-parser library. Here the data for each district is loaded. """ _LOGGER.debug("fetch data from rki-covid-parser.") try: with async_timeout.timeout(30): # return {case.county: case for case in await api.load_districts()} await parser.load_data() _LOGGER.debug("fetching finished.") items = {} # districts for d in parser.districts: district = parser.districts[d] items[district.county] = DistrictData( district.name, district.county, district.state, district.population, district.cases, district.deaths, district.casesPerWeek, district.recovered, district.weekIncidence, district.casesPer100k, district.newCases, district.newDeaths, district.newRecovered, district.lastUpdate, ) # states for s in parser.states: state = parser.states[s] name = "BL " + state.name items[name] = DistrictData( name, name, None, state.population, state.cases, state.deaths, state.casesPerWeek, state.recovered, state.weekIncidence, state.casesPer100k, state.newCases, state.newDeaths, state.newRecovered, state.lastUpdate, ) # country items["Deutschland"] = DistrictData( "Deutschland", "Deutschland", None, parser.country.population, parser.country.cases, parser.country.deaths, parser.country.casesPerWeek, parser.country.recovered, parser.country.weekIncidence, parser.country.casesPer100k, parser.country.newCases, parser.country.newDeaths, parser.country.newRecovered, parser.country.lastUpdate, ) _LOGGER.debug("parsing data finished.") return items except asyncio.TimeoutError as err: raise update_coordinator.UpdateFailed( f"Error reading data from rki-covid-parser timed-out: {err}" ) except aiohttp.ClientError as err: raise update_coordinator.UpdateFailed( f"Error reading data from rki-covid-parser by client: {err}" ) hass.data[DOMAIN] = update_coordinator.DataUpdateCoordinator( hass, logging.getLogger(__name__), name=DOMAIN, update_method=async_get_districts, update_interval=timedelta(hours=3), ) await hass.data[DOMAIN].async_refresh() return hass.data[DOMAIN]
StarcoderdataPython
1648025
import logging import os.path from flask import request from flask_restplus import Resource, fields from common import api, main log = logging.getLogger(__name__) # This collects the API operations into named groups under a root URL. example_ns = api.namespace('example', description="Example operations") ExampleObj = api.model('Example', { 'in_str': fields.String(required=True, description='your str', example="exs"), }) @example_ns.route('/<string:in_str>') class ExampleResource(Resource): @api.marshal_with(ExampleObj) def get(self, in_str): """Takes in data""" log.debug("Got parameter: %r", in_str) log.debug("Got body: %r", request.data) return {"in_str": in_str} if __name__ == '__main__': main(os.path.splitext(os.path.basename(__file__))[0] + '.json')
StarcoderdataPython
1640837
<reponame>franpoz/tirma class StarInfo: def __init__(self, object_id=None, ld_coefficients=None, teff=None, lum=None, logg=None, radius=None, radius_min=None, radius_max=None, mass=None, mass_min=None, mass_max=None, ra=None, dec=None): self.object_id = object_id self.ld_coefficients = ld_coefficients self.teff = teff self.lum = lum self.logg = logg self.mass = mass self.radius = radius self.mass = mass self.mass_min = None if mass is None or mass_min is None else mass - mass_min self.mass_max = None if mass is None or mass_max is None else mass + mass_max self.radius = radius self.radius_min = None if radius is None or radius_min is None else radius - radius_min self.radius_max = None if radius is None or radius_max is None else radius + radius_max self.mass_assumed = False self.radius_assumed = False self.ra = ra self.dec = dec def assume_model_mass(self, mass=0.1): self.mass = mass self.mass_min = mass self.mass_max = mass self.mass_assumed = True def assume_model_radius(self, radius=0.1): self.radius = radius self.radius_min = radius self.radius_max = radius self.radius_assumed = True
StarcoderdataPython
159225
<filename>operations/subtraction.py from operations.operation import Operation class Subtraction(Operation): """ Representing an operation to perform Subtraction """ TAG = 'subtraction' __slots__ = ('minuend', 'subtrahend') def __init__(self): self.minuend = None self.subtrahend = None def __hash__(self): return hash(self.minuend) ^ hash(self.subtrahend) def __call__(self): """ Perform the operation on operands :return: a number representing the outcome of operation or NaN """ if self.minuend is not None and self.subtrahend is not None: return self.minuend() - self.subtrahend() return self.NAN def add_operand(self, operand, tag): """ Add an operand for this operation """ if not isinstance(operand, Operation): raise TypeError("Operand of type Operator is expected") if tag not in self.__slots__: raise ValueError("Tag value cannot only be one of following: ", *self.__slots__) if tag == 'minuend': self.minuend = operand elif tag == 'subtrahend': self.subtrahend = operand
StarcoderdataPython
3291835
<gh_stars>1-10 #!/usr/bin/env python from math import * # https://www.allaboutcircuits.com/textbook/alternating-current/chpt-3/ac-inductor-circuits/ # a pure inductor circuit (AC current with inductor) will have V(t) 90 phase ahead of I(t) and the power can be negative # implying we can absorb power from the circuit as well as release it (net dissipation of energy is 0), however it cannot # be realized in practice because this is ideal behavior which have no wire resistance def reactance(f, L): return 2*pi*f*L def inductive_reactance(E, Xl): return E/Xl print(reactance(60, 10e-3)) print(reactance(120, 10e-3)) print(reactance(2500, 10e-3)) # at 60 hz with 10 mH, find the current of the circuit # I = E/Xl print(inductive_reactance(10, reactance(60, 10e-3)))
StarcoderdataPython
3369501
<reponame>strawpants/cate # The MIT License (MIT) # Copyright (c) 2016, 2017 by the ESA CCI Toolbox development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __author__ = "<NAME> (Brockmann Consult GmbH)" def extend(target_class, property_name=None, property_doc=None): """ Return a class decorator for classes that will become extensions to the given *target_class*. The *target_class* will be extended by a new property with the given *name* and the given *doc*. The new property will return an instance of the decorated extension class. The property value will be lazily created by calling the extension class' ``__init__`` method with the the *target_class* instance as only argument. Example: Let ``Model`` be an existing API class. Now another module wishes to extend the ``Model`` class by additional methods. This could be done by inheritance, but this will cause severe compatibility issues once the ``Model`` class evolves and break the composition-over-inheritance design principle. In addition, instantiation of the derived class must be performed explicitly. Instead, we want all ``Model`` instances to automatically include our new methods. Here is the code::: @extend(Model, 'my_ext') class MyModelExt: '''My Model extension'''' def __init__(self, model): self.model = model def some_new_method(self, x): self.model.some_old_method() # ... # Model API users can now use the API extension without explicitly instantiating MyModelExt: model = Model() model.my_ext.some_new_method() :param target_class: A target class or sequence of target classes that will be extended. :param property_name: The name of the new property in the target class. If ``None``, a name will be derived from the *extension_class*. :param property_doc: The docstring of the new property in the target class. If ``None``, the doc-string will be taken from the *extension_class*, if any. :return: A decorator. """ def decorator(extension_class): return _add_extension(target_class, extension_class, property_name=property_name, property_doc=property_doc) return decorator def _add_extension(target_class, extension_class, property_name=None, property_doc=None): """ Add an "extension" property with *property_name* to the *target_class*. The property will return an instance of *extension_class* whose ``__init__`` method will be called with the the *target_class* instance as only argument. Use this function to dynamically add extensions to existing classes in order to avoid inheritance. This function should be used through its decorator function :py:func:`extend`. :param target_class: A target class or sequence of target classes that will be extended. :param extension_class: The class that implements the extension. :param property_name: The name of the new property in the target class. If ``None``, a name will be derived from the *extension_class*. :param property_doc: The docstring of the new property in the target class. If ``None``, the doc-string will be taken from the *extension_class*, if any. :return: The *extension_class*. """ if not property_name: # generate a property name from extension class name property_name = [] last_was_lower = False for c in extension_class.__name__: if last_was_lower and c.isupper(): property_name.append('_') property_name.append(c.lower()) last_was_lower = c.islower() property_name = ''.join(property_name) attribute_name = '_' + property_name # define a property getter that lazily creates the extension instance def _lazy_extension_getter(self): if hasattr(self, attribute_name): extension = getattr(self, attribute_name) else: extension = extension_class(self) setattr(self, attribute_name, extension) return extension # derive docstring for property doc = property_doc if property_doc else getattr(extension_class, '__doc__', None) # inject new property into all target classes try: iterator = iter(target_class) except TypeError: iterator = iter([target_class]) for cls in iterator: if hasattr(cls, property_name): raise ValueError("an attribute with name '%s' already exists in %s", property_name, cls) setattr(cls, property_name, property(fget=_lazy_extension_getter, doc=doc)) return extension_class
StarcoderdataPython
4824819
<reponame>scottwedge/OpenStack-Stein # Copyright (c) 2013 Bull. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from blazar import manager from blazar.utils import service CONF = cfg.CONF CONF.import_opt('rpc_topic', 'blazar.manager.service', 'manager') class ManagerRPCAPI(service.RPCClient): """Client side for the Manager RPC API. Used from other services to communicate with blazar-manager service. """ BASE_RPC_API_VERSION = '1.0' def __init__(self): """Initiate RPC API client with needed topic and RPC version.""" super(ManagerRPCAPI, self).__init__(manager.get_target()) def get_computehost(self, host_id): """Get detailed info about some computehost.""" return self.call('physical:host:get_computehost', host_id=host_id) def list_computehosts(self, query=None): """List all computehosts.""" return self.call('physical:host:list_computehosts', query=query) def create_computehost(self, host_values): """Create computehost with specified parameters.""" return self.call('physical:host:create_computehost', host_values=host_values) def update_computehost(self, host_id, values): """Update computehost with passes values dictionary.""" return self.call('physical:host:update_computehost', host_id=host_id, values=values) def delete_computehost(self, host_id): """Delete specified computehost.""" return self.call('physical:host:delete_computehost', host_id=host_id) def list_allocations(self, query): """List all allocations on all computehosts.""" return self.call('physical:host:list_allocations', query=query) def get_allocations(self, host_id, query): """List all allocations on a specified computehost.""" return self.call('physical:host:get_allocations', host_id=host_id, query=query)
StarcoderdataPython
1695143
<reponame>tusharsarkar3/XBNet import torch import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from XBNet.training_utils import training,predict from XBNet.models import XBNETClassifier from XBNet.run import run_XBNET from os import environ def suppress_qt_warnings(): environ["QT_DEVICE_PIXEL_RATIO"] = "0" environ["QT_AUTO_SCREEN_SCALE_FACTOR"] = "1" environ["QT_SCREEN_SCALE_FACTORS"] = "1" environ["QT_SCALE_FACTOR"] = "1" suppress_qt_warnings() column_to_predict = input("Column to classify: ") data = pd.read_csv(r'test\Iris (1).csv') n_df = len(data) label_encoded = {} imputations = {} for i in data.columns: imputations[i] = data[i].mode() if data[i].isnull().sum()/n_df >= 0.15: data.drop(i,axis = 1,inplace=True) elif data[i].isnull().sum()/n_df < 0.15 and data[i].isnull().sum()/n_df > 0: data[i].fillna(data[i].mode(),inplace=True) imputations[i] = data[i].mode() columns_object = list(data.dtypes[data.dtypes==object].index) for i in columns_object: if i != column_to_predict: if data[i].nunique()/n_df < 0.4: le = LabelEncoder() data[i] = le.fit_transform(data[i]) label_encoded[i] = le else: data.drop(i,axis=1,inplace=True) x_data = data.drop(column_to_predict,axis=1).to_numpy() columns_finally_used = data.drop(column_to_predict,axis=1).columns print(x_data[0,:]) print("Number of features are: ",x_data.shape[1]) y_data = data[column_to_predict].to_numpy() if y_data.dtype == object: y_label_encoder = LabelEncoder() y_data = y_label_encoder.fit_transform(y_data) print("Number of classes are: ", np.unique(y_data,return_counts=True)) X_train,X_test,y_train,y_test = train_test_split(x_data,y_data,test_size = 0.3,random_state = 0) # model = torch.load("model.pb") model = XBNETClassifier(X_train,y_train,2,input_through_cmd=True,inputs_for_gui=[10,4,4,2]) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) m,acc, lo, val_ac, val_lo = run_XBNET(X_train,X_test,y_train,y_test,model,criterion,optimizer,32,300) print(predict(m, x_data)) print(model.feature_importances_) def process_for_predict(df,columns,imputations,encodings): data = df[columns] n = len(data) for i in data.columns: if data[i].isnull().sum() >0: data[i].fillna(imputations[i], inplace=True) if i in encodings.keys(): data[i] = encodings[i].transform(data[i]) print(predict(m, data.to_numpy())) process_for_predict(pd.read_csv(r"test\titanic_test.csv"),columns_finally_used,imputations,label_encoded)
StarcoderdataPython
3399523
<reponame>tiaanswart/NZBankRegisterJSON # import the modules import csv import json # reader dict collection bankAndBranchDict = [] # https://www.paymentsnz.co.nz/resources/industry-registers/bank-branch-register/ # read bank branch registry with open("Bank_Branch_Register.csv", 'r') as csvfile: reader = csv.DictReader(csvfile) for row in reader: bankAndBranchDict.append(dict(row)) csvfile.close() # New banks collection for JSON sBanks = {} # For each branch for branch in bankAndBranchDict: # If we don't have the Bank yet if branch["Bank_Number"] not in sBanks: # Add the bank sBanks[branch["Bank_Number"]] = {"Bank_Name": branch["Bank_Name"], "Branches": {}} # Clone the branch info branchDict = branch.copy() # Get the number branchNumber = branchDict.pop("Branch_Number") # Remove Bank Attributes from Branch del branchDict["Bank_Number"] del branchDict["Bank_Name"] # Add Branch to Bank sBanks[branch["Bank_Number"]]["Branches"][branchNumber] = branchDict # Dump Bank Dict into JSON file jsonDump = json.dumps(sBanks) jsonFile = open("banks.json","w") jsonFile.write(jsonDump) jsonFile.close()
StarcoderdataPython
1641576
<reponame>mhtb32/tl-env import pytest from tl_env.logic.automaton import Automaton, TransitionError def test_add_state(): a = Automaton() a.add_state(1) # add int node a.add_state('q1') # add str node assert a.states <= {1, 'q1'} a.clear() a.add_state(1, type_='init') a.add_state(2, type_='final') assert a.states[1] == {'type': 'init'} # check whether value error is raised with pytest.raises(ValueError): a.add_state(3, type_='normal') def test_add_state_from(): a = Automaton() a.add_state_from([1, 2]) # add normal states a.add_state_from([(3, {'type': 'final'})]) assert a.states <= {1, 2, 3} assert a.states[3] == {'type': 'final'} # check whether key error is raised with pytest.raises(KeyError): a.add_state_from([(4, {'typo': 'final'})]) def test_step(): a = Automaton() alphabet = {'x': True, 'y': False} a.add_transition_from([('q1', 'q2', 'x'), ('q1', 'q3', 'y'), ('q2', 'q3', 'y')]) # initial state is unknown, we expect throwing an error with pytest.raises(TransitionError): a.step(alphabet) a.add_state_from([('q1', {'type': 'init'}), 'q2', ('q3', {'type': 'final'})]) a.step(alphabet) assert a.cur_state == 'q2' # should not allow simultaneous active alphabet alphabet = {'x': True, 'y': True} with pytest.raises(TransitionError): a.step(alphabet) alphabet = {'x': False, 'y': True} a.step(alphabet) assert a.cur_state == 'q3' # q3 has no successors, so the state must remain q3 a.step(alphabet) assert a.cur_state == 'q3' assert a.in_final() def test_drawing(): a = Automaton() a.add_state('q1') a.add_state('q2', type_='final') a.add_transition_from([('q1', 'q2', 'x'), ('q2', 'q1', 'y')]) a.draw()
StarcoderdataPython
1702097
<gh_stars>1-10 import sys sys.path.append('../implementations/') from implementations.dimensions import dimensions for dimension in dimensions: print(dimension)
StarcoderdataPython
189367
<reponame>pusinuke/Python_projects #Coursera capstone project #week3 #2020 02 17 from bs4 import BeautifulSoup import requests source = requests.get('https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M').text soup = BeautifulSoup(source, 'lxml') for table in soup.find_all('table'): # line = table.tr.th.text try: line = table.tr.text except Exception as e: line = None print(line) print() # table = soup.find('table') # line = table.tr.text # print(line) #print(table.prettify()) #print(soup.prettify()) # with open('List of postal codes of Canada_ M - Wikipedia.htm') as html_file: # soup = BeautifulSoup(html_file, 'lxml') # print(soup.prettify()) # # match = soup.title.text #randa tik pirma title # # match = soup.div #tik pirma div su visais priklausiniais # # match = soup.find('div') #randa ta pati ka anksciau # # match = soup.find('div', class_='footer') # #print(match) # for article in soup.find_all('div', class_='article'): # headline = article.h2.a.text # print(headline) # summary = article.p.text # print(summary) # print()
StarcoderdataPython
60378
import pandas as pd from os import listdir from datetime import datetime as dtt import logging import json logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class WalletManager: def __init__(self, client, states): self.binance = client self.states = states self._wallet_history_file = "wallet_history.csv" def update_balances(self): logger.info("Updating account balances...") r = self.binance.spot_account_trade.account_information()["content"] balances = {} for b in r["balances"]: if float(b["free"]) == 0 and float(b["locked"]) == 0: continue balances[b["asset"]] = float(b["free"]) self.states["balances"] = balances def fetch_trading_rules(self): logger.info("Fetching trading rules...") trade_rules = {} r = self.binance.market_data.exchange_information() for symbol in r["content"]["symbols"]: pair = symbol["symbol"] trade_rules[pair] = {} for feelter in symbol["filters"]: filter_type = feelter["filterType"] trade_rules[pair][filter_type] = {} for part in feelter.keys(): if part == "filterType": continue value = feelter[part] if type(value) == str: value = float(value) trade_rules[pair][filter_type][part] = value self.states["trade_rules"] = trade_rules
StarcoderdataPython
131314
<reponame>paul-nameless/beanie from typing import Type, TYPE_CHECKING, Optional, Union, Mapping from pymongo.client_session import ClientSession from beanie.odm.interfaces.session import SessionMethods from beanie.odm.interfaces.update import ( UpdateMethods, ) from beanie.odm.operators.update import BaseUpdateOperator if TYPE_CHECKING: from beanie.odm.documents import Document class UpdateQuery(UpdateMethods, SessionMethods): """ Update Query base class Inherited from: - [SessionMethods](/api/interfaces/#sessionmethods) - [UpdateMethods](/api/interfaces/#aggregatemethods) """ def __init__(self, document_model: Type["Document"], find_query: dict): self.document_model = document_model self.find_query = find_query self.update_expressions = [] self.session = None @property def update_query(self): query = {} for expression in self.update_expressions: if isinstance(expression, BaseUpdateOperator): query.update(expression.query) elif isinstance(expression, dict): query.update(expression) else: raise TypeError("Wrong expression type") return query def update( self, *args: Union[dict, Mapping], session: Optional[ClientSession] = None ): """ Provide modifications to the update query. The same as `update()` :param args: *Union[dict, Mapping] - the modifications to apply. :param session: Optional[ClientSession] :return: UpdateMany query """ self.set_session(session=session) self.update_expressions += args return self class UpdateMany(UpdateQuery): """ Update Many query class Inherited from: - [UpdateQuery](/api/queries/#updatequery) """ def update_many(self, *args, session: Optional[ClientSession] = None): """ Provide modifications to the update query :param args: *Union[dict, Mapping] - the modifications to apply. :param session: Optional[ClientSession] :return: UpdateMany query """ return self.update(*args, session=session) def __await__(self): """ Run the query :return: """ yield from self.document_model.get_motor_collection().update_many( self.find_query, self.update_query, session=self.session ) class UpdateOne(UpdateQuery): """ Update One query class Inherited from: - [UpdateQuery](/api/queries/#updatequery) """ def update_one(self, *args, session: Optional[ClientSession] = None): """ Provide modifications to the update query. The same as `update()` :param args: *Union[dict, Mapping] - the modifications to apply. :param session: Optional[ClientSession] :return: UpdateMany query """ return self.update(*args, session=session) def __await__(self): """ Run the query :return: """ yield from self.document_model.get_motor_collection().update_one( self.find_query, self.update_query, session=self.session )
StarcoderdataPython
3256168
<reponame>dimkarakostas/advent-of-code from collections import defaultdict from math import ceil product_requirements, reaction_amounts = {}, {} for l in open('input14').readlines(): reaction = [r.split(',') for r in l.strip().split('=>')] inputs, output = reaction[0], reaction[1][0] inputs = [i.strip().split(' ') for i in inputs] output = output.strip().split(' ') product_requirements[output[1]] = [(int(a), b) for [a, b] in inputs] reaction_amounts[output[1]] = int(output[0]) def mine(element, quantity): if element == 'ORE': used[element] += quantity else: if quantity <= excess[element]: used[element] += quantity excess[element] -= quantity else: quantity = quantity - excess[element] used[element] += excess[element] excess[element] = 0 reactions_needed = int(ceil(float(quantity) / reaction_amounts[element])) for (q, elem) in product_requirements[element]: mine(elem, reactions_needed * q) used[element] += quantity excess[element] += reactions_needed * reaction_amounts[element] - quantity used, excess = defaultdict(int), defaultdict(int) mine('FUEL', 1) print 'Part 1:', used['ORE'] max_ore = 1000000000000 fuels_min, fuels_max = max_ore / used['ORE'], max_ore while fuels_min < fuels_max: mid_fuel = (fuels_max + fuels_min) / 2 used, excess = defaultdict(int), defaultdict(int) mine('FUEL', mid_fuel) if used['ORE'] > max_ore: fuels_max = mid_fuel - 1 elif used['ORE'] < max_ore: fuels_min = mid_fuel + 1 else: fuels_max = mid_fuel break print 'Part 2:', fuels_max
StarcoderdataPython
1669418
from unittest import TestCase from unittest.mock import MagicMock, patch from piccolo.apps.meta.commands.version import version class TestVersion(TestCase): @patch("piccolo.apps.meta.commands.version.print") def test_version(self, print_: MagicMock): version() print_.assert_called_once()
StarcoderdataPython
4807190
<filename>dnachisel/builtin_specifications/EnforceSequence.py<gh_stars>100-1000 """Implement EnforceSequence (DO NOT USE YET: Work in progress, stabilizing)""" # TODO: factorize with self.sequence ? import numpy as np from ..Specification import Specification, SpecEvaluation from ..Location import Location from ..biotools import group_nearby_indices, reverse_complement, IUPAC_NOTATION class EnforceSequence(Specification): """Enforces a (possibly degenerate) sequence at some location. Shorthand for annotations: "sequence". Parameters ---------- sequence An ATGC string representing the wanted sequence, possibly degenerated, for instance ATTCGCGTYTTKWNAA location Location of the DNA segment on which to enforce the pattern e.g. ``Location(10, 45, 1)`` or simply ``(10, 45, 1)`` """ localization_interval_length = 6 # used when optimizing best_possible_score = 0 enforced_by_nucleotide_restrictions = True shorthand_name = "sequence" def __init__(self, sequence=None, location=None, boost=1.0): """Initialize.""" self.sequence = sequence self.location = Location.from_data(location) self.boost = boost def initialized_on_problem(self, problem, role): """Find out what sequence it is that we are supposed to conserve.""" return self._copy_with_full_span_if_no_location(problem) # if self.location is None: # result = self.copy_with_changes() # result.location = Location(0, len(problem.sequence), 1) # return result # else: # return self def evaluate(self, problem): """Return a score equal to -number_of modifications. Locations are "binned" modifications regions. Each bin has a length in nucleotides equal to ``localization_interval_length`.` """ sequence = self.location.extract_sequence(problem.sequence) discrepancies = np.array( [ i for i, nuc in enumerate(sequence) if nuc not in IUPAC_NOTATION[self.sequence[i]] ] ) if self.location.strand == -1: discrepancies = self.location.end - discrepancies else: discrepancies = discrepancies + self.location.start intervals = [ (r[0], r[-1] + 1) for r in group_nearby_indices( discrepancies, max_group_spread=self.localization_interval_length ) ] locations = [Location(start, end, 1) for start, end in intervals] return SpecEvaluation( self, problem, score=-len(discrepancies), locations=locations ) def localized(self, location, problem=None): """Localize the spec to the overlap of its location and the new.""" start, end = location.start, location.end new_location = self.location.overlap_region(location) if new_location is None: return None else: if self.location.strand == -1: start = self.location.end - new_location.end end = self.location.end - new_location.start else: start = new_location.start - self.location.start end = new_location.end - self.location.start new_sequence = self.sequence[start:end] return self.copy_with_changes(location=new_location, sequence=new_sequence) def restrict_nucleotides(self, sequence, location=None): """When localizing, forbid any nucleotide but the one already there.""" if location is not None: new_location = self.location.overlap_region(location) if new_location is None: return [] else: new_location = self.location start, end = new_location.start, new_location.end if self.location.strand == -1: lend = self.location.end return [ ( i, set( reverse_complement(n) for n in IUPAC_NOTATION[self.sequence[lend - i - 1]] ), ) for i in range(start, end) ] else: lstart = self.location.start return [ (i, IUPAC_NOTATION[self.sequence[i - lstart]]) for i in range(start, end) ] def __repr__(self): """Represent.""" return "EnforceSequence(%s)" % str(self.location) def __str__(self): """Represent.""" return "EnforceSequence(%s)" % str(self.location)
StarcoderdataPython
4829383
from mango.relations import base from mango.relations.constants import CASCADE __all__ = [ "OneToOneRel", "OneToManyRel", "ManyToOneRel", "ManyToManyRel", ] class OneToOneRel(base.Relation): def __init__( self, cls=None, name=None, rev_name=None, rev_hidden=None, hidden=False, persist=True, typed=False, validators=(), on_delete=CASCADE ): super(OneToOneRel, self).__init__( cls=cls, name=name, rev_name=rev_name, rev_hidden=rev_hidden, rev_relation=OneToOneRel, hidden=hidden, persist=persist, typed=typed, on_delete=on_delete, validators=validators, multi=False, ) class OneToManyRel(base.Relation): def __init__( self, cls=None, name=None, rev_name=None, rev_hidden=None, hidden=False, persist=True, typed=False, validators=(), on_delete=CASCADE ): super(OneToManyRel, self).__init__( cls=cls, name=name, rev_name=rev_name, rev_hidden=rev_hidden, rev_relation=OneToOneRel, hidden=hidden, persist=persist, typed=typed, on_delete=on_delete, validators=validators, multi=True, ) class ManyToOneRel(base.Relation): def __init__( self, cls=None, name=None, rev_name=None, rev_hidden=None, hidden=False, persist=True, typed=False, validators=(), on_delete=CASCADE ): super(ManyToOneRel, self).__init__( cls=cls, name=name, rev_name=rev_name, rev_hidden=rev_hidden, rev_relation=OneToManyRel, hidden=hidden, persist=persist, typed=typed, on_delete=on_delete, validators=validators, multi=False, ) class ManyToManyRel(base.Relation): def __init__( self, cls=None, name=None, rev_name=None, rev_hidden=None, hidden=False, persist=True, typed=False, validators=(), on_delete=CASCADE ): super(ManyToManyRel, self).__init__( cls=cls, name=name, rev_name=rev_name, rev_hidden=rev_hidden, rev_relation=ManyToManyRel, hidden=hidden, persist=persist, typed=typed, on_delete=on_delete, validators=validators, multi=True, )
StarcoderdataPython
135727
<filename>catalog/migrations/0005_auto_20220324_0011.py<gh_stars>1-10 # Generated by Django 3.2.12 on 2022-03-23 21:11 import catalog.validators from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('rating', '0001_initial'), ('catalog', '0004_auto_20220324_0011'), ] operations = [ migrations.AddField( model_name='item', name='ratings', field=models.ManyToManyField(related_name='items', through='rating.Rating', to=settings.AUTH_USER_MODEL, verbose_name='Оценки'), ), migrations.AlterField( model_name='item', name='name', field=models.CharField(max_length=150), ), migrations.AlterField( model_name='item', name='text', field=models.TextField(help_text='Минимум два слова. Обязательно должно содержаться слово превосходно или роскошно', validators=[catalog.validators.text_validation], verbose_name='Текст'), ), migrations.AddField( model_name='item', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, related_name='items', to='catalog.category', verbose_name='Категория'), preserve_default=False, ), migrations.AddField( model_name='item', name='tags', field=models.ManyToManyField(related_name='items', to='catalog.Tag', verbose_name='Теги'), ), ]
StarcoderdataPython
3241383
import util from os import system from random import randint import tempfile def config_version(stack, version): config = "tconfig" + str(randint(1000, 5000)) fp = tempfile.NamedTemporaryFile(delete=False) version_as_bytes = str.encode(version) fp.write(b'%s' % version_as_bytes) fp.close() print(stack) config_name = stack + "/" + config print(config_name) util.run("rio config create %s %s" % (config_name, fp.name)) return config def create_service(stack, config): name = "tsrv" + str(randint(1000, 5000)) fullName = "%s/%s" % (stack, name) path = "/usr/share/nginx/html/index.html" print(fullName) print(config) run_command = "rio run -n %s -p 80/http --config %s:%s nginx" % ( fullName, config, path ) print(run_command) system(run_command) system("rio wait %s" % fullName) return name def stage_service(stack, name, version, second_config): fullName = "%s/%s" % (stack, name) path = "/usr/share/nginx/html/index.html" command = "rio stage --image=nginx --config %s:%s %s:%s" % ( second_config, path, fullName, version ) print(command) system(command) system("rio wait %s" % fullName) stackJson = util.runToJson("rio export -o json %s" % stack) got = stackJson['services'][name]['revisions']['v2']['scale'] return got def weight_service(stack, name, version, weight): fullName = "%s/%s" % (stack, name) command = "rio weight %s:%s=%s" % (fullName, version, weight) system(command) stackJson = util.runToJson("rio export -o json %s" % stack) got = stackJson['services'][name]['revisions']['v2']['weight'] return got def promote_service(stack, name, version): fullName = "%s/%s" % (stack, name) command = "rio promote %s:%s" % (fullName, version) system(command) stackJson = util.runToJson("rio export -o json %s" % stack) got = stackJson['services'][name]['version'] return got def test_stage_service(stack): config_name = config_version(stack, "1") name = create_service(stack, config_name) second_config = config_version(stack, "2") got = stage_service(stack, name, "v2", second_config) assert got == 1 def test_weight_service(stack): config_name = config_version(stack, "1") name = create_service(stack, config_name) second_config = config_version(stack, "2") stage_service(stack, name, "v2", second_config) got = weight_service(stack, name, "v2", "50") assert got == 50 def test_promote_service(stack): config_name = config_version(stack, "1") name = create_service(stack, config_name) second_config = config_version(stack, "2") stage_service(stack, name, "v2", second_config) weight_service(stack, name, "v2", "50") got = promote_service(stack, name, "v2") assert got == "v2"
StarcoderdataPython
174227
import cv2 as cv img = cv.imread('data/pic1.jpg') cv.imshow('pic1', img) # RGB rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB) cv.imshow('rgb', rgb) # HSV hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) cv.imshow('hsv', hsv) # LAB lab = cv.cvtColor(img, cv.COLOR_BGR2LAB) cv.imshow('lab', lab) # grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('gray', gray) cv.waitKey(0)
StarcoderdataPython
3307813
import uuid from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from orders.domain.exceptions.invalid_uuid import InvalidUUID from orders.domain.exceptions.order_does_not_exist import OrderDoesNotExist from orders.infrastructure.persistence.django.order import Order ORDER = 'api:api_orders:v1_order' class OrderTests(TestCase): """ E2E tests using Order API Creating order Deleting order """ def setUp(self): self.client = APIClient() def test_create_order(self): """Test creating order""" order_uuid = str(uuid.uuid4()) url = reverse( ORDER, kwargs={ 'order_uuid': order_uuid, }, ) response = self.client.post(url) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(1, Order.objects.filter(id=order_uuid).count()) def test_create_order_with_invalid_uuid(self): """Test creating order with invalid uuid""" order_uuid = "error" url = reverse( ORDER, kwargs={ 'order_uuid': order_uuid, }, ) with self.assertRaises(InvalidUUID): self.client.post(url) def test_remove_order(self): """Test remove existing order""" order_uuid = str(uuid.uuid4()) url = reverse( ORDER, kwargs={ 'order_uuid': order_uuid, }, ) self.client.post(url) response = self.client.delete(url) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(0, Order.objects.filter(id=order_uuid).count()) def test_remove_non_existing_order(self): """Test remove non existing order""" order_uuid = str(uuid.uuid4()) url = reverse( ORDER, kwargs={ 'order_uuid': order_uuid, }, ) with self.assertRaises(OrderDoesNotExist): self.client.delete(url)
StarcoderdataPython
3224751
class Main: def __init__(self): self.li = [] for i in range(0, 4): self.li.append(int(input())) def difference(self): return self.li[0] * self.li[1] - self.li[2] * self.li[3] def output(self): print("DIFERENCA = {dif}".format(dif=self.difference())) if __name__ == '__main__': obj = Main() obj.output()
StarcoderdataPython
1779173
global_catalyst_coprocessor = None def initialize(coprocessing_script): global global_catalyst_coprocessor import paraview paraview.options.batch = True paraview.options.symmetric = True from paraview.vtk.vtkPVClientServerCoreCore import vtkProcessModule def coprocess(dataset, timestep, time): pass def finalize(): pass
StarcoderdataPython
1670008
<reponame>daserzw/oidc-swamid-federation #!/usr/bin/env python3 import json import os import sys from urllib.parse import quote_plus for _dir in ['entities']: if not os.path.isdir(_dir): os.makedirs(_dir) mdss_sign_key = open('public/mdss.json').read() for entity in sys.argv[1:]: einfo = json.loads(open('../{}/enrollment_info'.format(entity)).read()) eid = quote_plus(einfo['entity_id']) fp = open('entities/{}'.format(eid), 'w') fp.write(json.dumps(einfo)) fp.close() fp = open('../{}/mdss.jwks'.format(entity), 'w') fp.write(mdss_sign_key) fp.close()
StarcoderdataPython
1728039
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-31 21:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('crowdsourcing', '0003_taskworker_attempt'), ] operations = [ migrations.AlterField( model_name='project', name='group_id', field=models.IntegerField(db_index=True, null=True), ), migrations.AlterField( model_name='task', name='group_id', field=models.IntegerField(db_index=True, null=True), ), migrations.AlterField( model_name='taskworker', name='group_id', field=models.IntegerField(db_index=True, null=True), ), migrations.AlterField( model_name='template', name='group_id', field=models.IntegerField(db_index=True, null=True), ), ]
StarcoderdataPython
1679605
from typing import Union, BinaryIO, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from ...types import T class VideoDataMixin: """Provide helper functions for :class:`Document` to support video data. """ def load_uri_to_video_blob(self: 'T', only_keyframes: bool = False) -> 'T': """Convert a :attr:`.uri` to a video ndarray :attr:`.blob`. :param only_keyframes: only keep the keyframes in the video :return: Document itself after processed """ import av with av.open(self.uri) as container: if only_keyframes: stream = container.streams.video[0] stream.codec_context.skip_frame = 'NONKEY' frames = [] for frame in container.decode(video=0): img = frame.to_image() frames.append(np.asarray(img)) self.blob = np.moveaxis(np.stack(frames), 1, 2) return self def save_video_blob_to_file( self: 'T', file: Union[str, BinaryIO], frame_rate: int = 30, codec: str = 'h264' ) -> 'T': """Save :attr:`.blob` as a video mp4/h264 file. :param file: The file to open, which can be either a string or a file-like object. :param frame_rate: frames per second :param codec: the name of a decoder/encoder :return: itself after processed """ if ( self.blob.ndim != 4 or self.blob.shape[-1] != 3 or self.blob.dtype != np.uint8 ): raise ValueError( f'expects `.blob` with dtype=uint8 and ndim=4 and the last dimension is 3, ' f'but receiving {self.blob.shape} in {self.blob.dtype}' ) video_blob = np.moveaxis(np.clip(self.blob, 0, 255), 1, 2) import av with av.open(file, mode='w') as container: stream = container.add_stream(codec, rate=frame_rate) stream.width = self.blob.shape[1] stream.height = self.blob.shape[2] stream.pix_fmt = 'yuv420p' for b in video_blob: frame = av.VideoFrame.from_ndarray(b, format='rgb24') for packet in stream.encode(frame): container.mux(packet) for packet in stream.encode(): container.mux(packet) return self
StarcoderdataPython
151420
<filename>mvn/test/__init__.py import os import sys import subprocess #import nose def main(argv = None): if argv is None: argv = [] [testPath,filename] = os.path.split(__file__) [mvnPath,_] = os.path.split(testPath) resultPath = os.path.join(testPath,'results.txt') targets = [mvnPath,os.path.join(testPath+'/unit.py')] args = ['--with-coverage','--cover-package=mvn','--with-doctest'] # nose.run(argv = args+targets) tee = subprocess.Popen( ['tee',resultPath], stdin = subprocess.PIPE, stdout = sys.stdout ) tests = subprocess.Popen( ['nosetests']+args+targets, stdout = tee.stdin, stderr = tee.stdin ) tests.communicate()
StarcoderdataPython
4832493
from abc import ABC class AbstractType(ABC): def __init__(self, module_name: str, class_name: str): self._module_name = module_name self._class_name = class_name @property def module_name(self): return self._module_name @property def class_name(self): return self._class_name def is_primitive_type(self) -> bool: return self._module_name == "builtins" def is_defined(self) -> bool: return self._module_name != "inspect" and self._class_name != "_empty" def __str__(self): return self._module_name + "." + self._class_name
StarcoderdataPython
1661756
from .verbs import * # preceed w/ underscore so it isn't exported by default # we just want to register the singledispatch funcs from .dply import vector as _vector from .dply import string as _string
StarcoderdataPython
3236638
<filename>7KYU/reverse.py def reverse(n: int) -> int: """ This function takes in input 'n' and returns 'n' with all digits reversed. Assume positive 'n'. """ reversed_n = [] while n != 0: i = n % 10 reversed_n.append(i) n = (n - i) // 10 return int(''.join(map(str, reversed_n)))
StarcoderdataPython
3301852
<reponame>cdeepakroy/SMQTK import abc import collections import os from smqtk.representation import SmqtkRepresentation from smqtk.utils import plugin class DataSet (collections.Set, SmqtkRepresentation, plugin.Pluggable): """ Abstract interface for data sets, that contain an arbitrary number of ``DataElement`` instances of arbitrary implementation type, keyed on ``DataElement`` UUID values. This should only be used with DataElements whose byte content is expected not to change. If they do, then UUID keys may no longer represent the elements associated with them. """ def __len__(self): """ :return: Number of elements in this DataSet. :rtype: int """ return self.count() def __getitem__(self, uuid): return self.get_data(uuid) def __contains__(self, d): """ Different than has_uuid() because this takes another DataElement instance, not a UUID. :param d: DataElement to test for containment :type d: smqtk.representation.DataElement :return: True of this DataSet contains the given data element. Since, :rtype: bool """ return self.has_uuid(d.uuid()) @abc.abstractmethod def __iter__(self): """ :return: Generator over the DataElements contained in this set in no particular order. """ @abc.abstractmethod def count(self): """ :return: The number of data elements in this set. :rtype: int """ @abc.abstractmethod def uuids(self): """ :return: A new set of uuids represented in this data set. :rtype: set """ @abc.abstractmethod def has_uuid(self, uuid): """ Test if the given uuid refers to an element in this data set. :param uuid: Unique ID to test for inclusion. This should match the type that the set implementation expects or cares about. :type uuid: collections.Hashable :return: True if the given uuid matches an element in this set, or False if it does not. :rtype: bool """ @abc.abstractmethod def add_data(self, *elems): """ Add the given data element(s) instance to this data set. *NOTE: Implementing methods should check that input elements are in fact DataElement instances.* :param elems: Data element(s) to add :type elems: smqtk.representation.DataElement """ @abc.abstractmethod def get_data(self, uuid): """ Get the data element the given uuid references, or raise an exception if the uuid does not reference any element in this set. :raises KeyError: If the given uuid does not refer to an element in this data set. :param uuid: The uuid of the element to retrieve. :type uuid: collections.Hashable :return: The data element instance for the given uuid. :rtype: smqtk.representation.DataElement """ def get_data_set_impls(reload_modules=False): """ Discover and return discovered ``DataSet`` classes. Keys in the returned map are the names of the discovered classes, and the paired values are the actual class type objects. We search for implementation classes in: - modules next to this file this function is defined in (ones that begin with an alphanumeric character), - python modules listed in the environment variable ``DATA_SET_PATH`` - This variable should contain a sequence of python module specifications, separated by the platform specific PATH separator character (``;`` for Windows, ``:`` for unix) Within a module we first look for a helper variable by the name ``DATA_SET_CLASS``, which can either be a single class object or an iterable of class objects, to be specifically exported. If the variable is set to None, we skip that module and do not import anything. If the variable is not present, we look at attributes defined in that module for classes that descend from the given base class type. If none of the above are found, or if an exception occurs, the module is skipped. :param reload_modules: Explicitly reload discovered modules from source. :type reload_modules: bool :return: Map of discovered class object of type ``DataSet`` whose keys are the string names of the classes. :rtype: dict[str, type] """ this_dir = os.path.abspath(os.path.dirname(__file__)) env_var = "DATA_SET_PATH" helper_var = "DATA_SET_CLASS" return plugin.get_plugins(__name__, this_dir, env_var, helper_var, DataSet, reload_modules=reload_modules)
StarcoderdataPython
3366649
<reponame>HanseMerkur/nitro-python # # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nitro.resource.base.base_resource import base_resource from nitro.resource.base.base_resource import base_response from nitro.service.options import options from nitro.exception.nitro_exception import nitro_exception from nitro.util.nitro_util import nitro_util class protocoltcp_stats(base_resource) : """Statistics for tcp protocol resource.""" def __init__(self) : self._clearstats = "" self._tcpactiveserverconn = 0 self._tcpcurserverconnopening = 0 self._tcpcurclientconnopening = 0 self._tcpcurclientconnestablished = 0 self._tcpcurserverconnestablished = 0 self._tcptotrxpkts = 0 self._tcprxpktsrate = 0 self._tcptotrxbytes = 0 self._tcprxbytesrate = 0 self._tcptottxpkts = 0 self._tcptxpktsrate = 0 self._tcptottxbytes = 0 self._tcptxbytesrate = 0 self._tcpcurclientconn = 0 self._tcpcurclientconnclosing = 0 self._tcptotclientconnopened = 0 self._tcpclientconnopenedrate = 0 self._tcpcurserverconn = 0 self._tcpcurserverconnclosing = 0 self._tcptotserverconnopened = 0 self._tcpserverconnopenedrate = 0 self._tcpsurgequeuelen = 0 self._tcpspareconn = 0 self._tcptotzombiecltconnflushed = 0 self._tcpzombiecltconnflushedrate = 0 self._tcptotzombiehalfopencltconnflushed = 0 self._tcpzombiehalfopencltconnflushedrate = 0 self._tcptotzombieactivehalfclosecltconnflushed = 0 self._tcpzombieactivehalfclosecltconnflushedrate = 0 self._tcptotzombiepassivehalfclosecltconnflushed = 0 self._tcpzombiepassivehalfclosecltconnflushedrate = 0 self._tcptotzombiesvrconnflushed = 0 self._tcpzombiesvrconnflushedrate = 0 self._tcptotzombiehalfopensvrconnflushed = 0 self._tcpzombiehalfopensvrconnflushedrate = 0 self._tcptotzombieactivehalfclosesvrconnflushed = 0 self._tcpzombieactivehalfclosesvrconnflushedrate = 0 self._tcptotzombiepassivehalfclosesrvconnflushed = 0 self._tcpzombiepassivehalfclosesrvconnflushedrate = 0 self._pcbtotzombiecall = 0 self._pcbzombiecallrate = 0 self._tcptotsyn = 0 self._tcpsynrate = 0 self._tcptotsynprobe = 0 self._tcpsynproberate = 0 self._tcptotsvrfin = 0 self._tcpsvrfinrate = 0 self._tcptotcltfin = 0 self._tcpcltfinrate = 0 self._tcpwaittosyn = 0 self._tcpwaittosynrate = 0 self._tcpwaittodata = 0 self._tcpwaittodatarate = 0 self._tcptotsynheld = 0 self._tcpsynheldrate = 0 self._tcptotsynflush = 0 self._tcpsynflushrate = 0 self._tcptotfinwaitclosed = 0 self._tcpfinwaitclosedrate = 0 self._tcperrbadchecksum = 0 self._tcperrbadchecksumrate = 0 self._tcperrdataafterfin = 0 self._tcperrdataafterfinrate = 0 self._tcperrsyninsynrcvd = 0 self._tcperrsyninsynrcvdrate = 0 self._tcperrsyninest = 0 self._tcperrsyninestrate = 0 self._tcperrsynsentbadack = 0 self._tcperrsynsentbadackrate = 0 self._tcperrrst = 0 self._tcperrrstrate = 0 self._tcperrrstnonest = 0 self._tcperrrstnonestrate = 0 self._tcperrrstoutofwindow = 0 self._tcperrrstoutofwindowrate = 0 self._tcperrrstintimewait = 0 self._tcperrrstintimewaitrate = 0 self._tcperrsvroutoforder = 0 self._tcperrsvroutoforderrate = 0 self._tcperrcltoutoforder = 0 self._tcperrcltoutoforderrate = 0 self._tcperrclthole = 0 self._tcperrcltholerate = 0 self._tcperrsvrhole = 0 self._tcperrsvrholerate = 0 self._tcperrcookiepktseqreject = 0 self._tcperrcookiepktseqrejectrate = 0 self._tcperrcookiepktsigreject = 0 self._tcperrcookiepktsigrejectrate = 0 self._tcperrcookiepktseqdrop = 0 self._tcperrcookiepktseqdroprate = 0 self._tcperrcookiepktmssreject = 0 self._tcperrcookiepktmssrejectrate = 0 self._tcperranyportfail = 0 self._tcperranyportfailrate = 0 self._tcperripportfail = 0 self._tcperripportfailrate = 0 self._tcperrstraypkt = 0 self._tcperrstraypktrate = 0 self._tcperrsentrst = 0 self._tcperrsentrstrate = 0 self._tcperrbadstateconn = 0 self._tcperrbadstateconnrate = 0 self._tcperrrstthreshold = 0 self._tcperrrstthresholdrate = 0 self._tcperroutofwindowpkts = 0 self._tcperroutofwindowpktsrate = 0 self._tcperrsyndroppedcongestion = 0 self._tcperrsyndroppedcongestionrate = 0 self._tcperrcltretrasmit = 0 self._tcperrcltretrasmitrate = 0 self._tcperrfullretrasmit = 0 self._tcperrfullretrasmitrate = 0 self._tcperrsynretry = 0 self._tcperrsynretryrate = 0 self._tcperrsyngiveup = 0 self._tcperrsyngiveuprate = 0 self._tcperrretransmit = 0 self._tcperrretransmitrate = 0 self._tcperrfirstretransmissions = 0 self._tcperrfirstretransmissionsrate = 0 self._tcperrthirdretransmissions = 0 self._tcperrthirdretransmissionsrate = 0 self._tcperrfifthretransmissions = 0 self._tcperrfifthretransmissionsrate = 0 self._tcperrseventhretransmissions = 0 self._tcperrseventhretransmissionsrate = 0 self._tcperrfastretransmissions = 0 self._tcperrfastretransmissionsrate = 0 self._tcperrsvrretrasmit = 0 self._tcperrsvrretrasmitrate = 0 self._tcperrpartialretrasmit = 0 self._tcperrpartialretrasmitrate = 0 self._tcperrfinretry = 0 self._tcperrfinretryrate = 0 self._tcperrfingiveup = 0 self._tcperrfingiveuprate = 0 self._tcperrsecondretransmissions = 0 self._tcperrsecondretransmissionsrate = 0 self._tcperrforthretransmissions = 0 self._tcperrforthretransmissionsrate = 0 self._tcperrsixthretransmissions = 0 self._tcperrsixthretransmissionsrate = 0 self._tcperrretransmitgiveup = 0 self._tcperrretransmitgiveuprate = 0 self._tcperrcipalloc = 0 self._tcperrcipallocrate = 0 @property def clearstats(self) : """Clear the statsistics / counters.<br/>Possible values = basic, full.""" try : return self._clearstats except Exception as e: raise e @clearstats.setter def clearstats(self, clearstats) : """Clear the statsistics / counters :param clearstats: """ try : self._clearstats = clearstats except Exception as e: raise e @property def tcperrfingiveuprate(self) : """Rate (/s) counter for tcperrfingiveup.""" try : return self._tcperrfingiveuprate except Exception as e: raise e @property def tcperrretransmit(self) : """TCP packets retransmitted. The NetScaler attempts to retransmit the packet up to seven times, after which it resets the other half of the TCP connection.""" try : return self._tcperrretransmit except Exception as e: raise e @property def tcperrcookiepktmssreject(self) : """SYN cookie packets rejected because the maximum segment size (MSS) specified in the packets is incorrect.""" try : return self._tcperrcookiepktmssreject except Exception as e: raise e @property def tcptotzombiehalfopencltconnflushed(self) : """Half-opened client connections that are flushed because the three-way handshakes are not complete.""" try : return self._tcptotzombiehalfopencltconnflushed except Exception as e: raise e @property def tcperrsentrstrate(self) : """Rate (/s) counter for tcperrsentrst.""" try : return self._tcperrsentrstrate except Exception as e: raise e @property def tcperrcltoutoforder(self) : """Out of order TCP packets received from a client.""" try : return self._tcperrcltoutoforder except Exception as e: raise e @property def tcpsurgequeuelen(self) : """Connections in the surge queue. When the NetScaler cannot open a connection to the server, for example when maximum connections have been reached, the NetScaler queues these requests.""" try : return self._tcpsurgequeuelen except Exception as e: raise e @property def tcperrcookiepktseqrejectrate(self) : """Rate (/s) counter for tcperrcookiepktseqreject.""" try : return self._tcperrcookiepktseqrejectrate except Exception as e: raise e @property def tcperrrstoutofwindowrate(self) : """Rate (/s) counter for tcperrrstoutofwindow.""" try : return self._tcperrrstoutofwindowrate except Exception as e: raise e @property def tcptotrxpkts(self) : """TCP packets received.""" try : return self._tcptotrxpkts except Exception as e: raise e @property def tcpcurclientconnopening(self) : """Client connections in the Opening state, which indicates that the handshakes are not yet complete.""" try : return self._tcpcurclientconnopening except Exception as e: raise e @property def tcperrcookiepktseqreject(self) : """SYN cookie packets rejected because they contain an incorrect sequence number.""" try : return self._tcperrcookiepktseqreject except Exception as e: raise e @property def tcperrforthretransmissionsrate(self) : """Rate (/s) counter for tcperrforthretransmissions.""" try : return self._tcperrforthretransmissionsrate except Exception as e: raise e @property def tcperrrst(self) : """Reset packets received from a client or a server.""" try : return self._tcperrrst except Exception as e: raise e @property def tcpsvrfinrate(self) : """Rate (/s) counter for tcptotsvrfin.""" try : return self._tcpsvrfinrate except Exception as e: raise e @property def tcptxbytesrate(self) : """Rate (/s) counter for tcptottxbytes.""" try : return self._tcptxbytesrate except Exception as e: raise e @property def tcptotsyn(self) : """SYN packets received.""" try : return self._tcptotsyn except Exception as e: raise e @property def tcpserverconnopenedrate(self) : """Rate (/s) counter for tcptotserverconnopened.""" try : return self._tcpserverconnopenedrate except Exception as e: raise e @property def tcperrsyninsynrcvdrate(self) : """Rate (/s) counter for tcperrsyninsynrcvd.""" try : return self._tcperrsyninsynrcvdrate except Exception as e: raise e @property def tcperrpartialretrasmitrate(self) : """Rate (/s) counter for tcperrpartialretrasmit.""" try : return self._tcperrpartialretrasmitrate except Exception as e: raise e @property def tcpzombieactivehalfclosecltconnflushedrate(self) : """Rate (/s) counter for tcptotzombieactivehalfclosecltconnflushed.""" try : return self._tcpzombieactivehalfclosecltconnflushedrate except Exception as e: raise e @property def tcperrfinretry(self) : """FIN packets resent to a server or a client.""" try : return self._tcperrfinretry except Exception as e: raise e @property def tcperrsvroutoforderrate(self) : """Rate (/s) counter for tcperrsvroutoforder.""" try : return self._tcperrsvroutoforderrate except Exception as e: raise e @property def pcbzombiecallrate(self) : """Rate (/s) counter for pcbtotzombiecall.""" try : return self._pcbzombiecallrate except Exception as e: raise e @property def tcperrfirstretransmissionsrate(self) : """Rate (/s) counter for tcperrfirstretransmissions.""" try : return self._tcperrfirstretransmissionsrate except Exception as e: raise e @property def tcperrstraypkt(self) : """Number of stray or misrouted packets.""" try : return self._tcperrstraypkt except Exception as e: raise e @property def tcperrsyninsynrcvd(self) : """SYN packets received on a connection that is in the SYN_RCVD state. A connection goes into the SYN_RCVD state after receiving a SYN packet.""" try : return self._tcperrsyninsynrcvd except Exception as e: raise e @property def tcprxbytesrate(self) : """Rate (/s) counter for tcptotrxbytes.""" try : return self._tcprxbytesrate except Exception as e: raise e @property def tcpcurserverconnestablished(self) : """Current server connections in the Established state, which indicates that data transfer can occur between the NetScaler and the server.""" try : return self._tcpcurserverconnestablished except Exception as e: raise e @property def tcperroutofwindowpktsrate(self) : """Rate (/s) counter for tcperroutofwindowpkts.""" try : return self._tcperroutofwindowpktsrate except Exception as e: raise e @property def tcperranyportfailrate(self) : """Rate (/s) counter for tcperranyportfail.""" try : return self._tcperranyportfailrate except Exception as e: raise e @property def tcpsynproberate(self) : """Rate (/s) counter for tcptotsynprobe.""" try : return self._tcpsynproberate except Exception as e: raise e @property def tcpzombiesvrconnflushedrate(self) : """Rate (/s) counter for tcptotzombiesvrconnflushed.""" try : return self._tcpzombiesvrconnflushedrate except Exception as e: raise e @property def tcpcurclientconn(self) : """Client connections, including connections in the Opening, Established, and Closing state.""" try : return self._tcpcurclientconn except Exception as e: raise e @property def tcperrsyninestrate(self) : """Rate (/s) counter for tcperrsyninest.""" try : return self._tcperrsyninestrate except Exception as e: raise e @property def tcpcurserverconn(self) : """Server connections, including connections in the Opening, Established, and Closing state.""" try : return self._tcpcurserverconn except Exception as e: raise e @property def tcperripportfailrate(self) : """Rate (/s) counter for tcperripportfail.""" try : return self._tcperripportfailrate except Exception as e: raise e @property def tcperrcookiepktsigrejectrate(self) : """Rate (/s) counter for tcperrcookiepktsigreject.""" try : return self._tcperrcookiepktsigrejectrate except Exception as e: raise e @property def tcperrforthretransmissions(self) : """Packets retransmitted four times by the NetScaler.""" try : return self._tcperrforthretransmissions except Exception as e: raise e @property def tcpzombiehalfopensvrconnflushedrate(self) : """Rate (/s) counter for tcptotzombiehalfopensvrconnflushed.""" try : return self._tcpzombiehalfopensvrconnflushedrate except Exception as e: raise e @property def tcperrsixthretransmissions(self) : """Packets retransmitted six times by the NetScaler.""" try : return self._tcperrsixthretransmissions except Exception as e: raise e @property def tcpfinwaitclosedrate(self) : """Rate (/s) counter for tcptotfinwaitclosed.""" try : return self._tcpfinwaitclosedrate except Exception as e: raise e @property def tcperrbadchecksum(self) : """Packets received with a TCP checksum error.""" try : return self._tcperrbadchecksum except Exception as e: raise e @property def tcpsynflushrate(self) : """Rate (/s) counter for tcptotsynflush.""" try : return self._tcpsynflushrate except Exception as e: raise e @property def tcperrcipallocrate(self) : """Rate (/s) counter for tcperrcipalloc.""" try : return self._tcperrcipallocrate except Exception as e: raise e @property def tcperrrstthreshold(self) : """Reset packets dropped because the default threshold of 100 resets per 10 milliseconds has been exceeded. This is a configurable value using the set rateControl command.""" try : return self._tcperrrstthreshold except Exception as e: raise e @property def tcptotzombieactivehalfclosecltconnflushed(self) : """Active half-closed client connections that are flushed because the client has closed the connection and there has been no activity on the connection.""" try : return self._tcptotzombieactivehalfclosecltconnflushed except Exception as e: raise e @property def tcperrsynsentbadackrate(self) : """Rate (/s) counter for tcperrsynsentbadack.""" try : return self._tcperrsynsentbadackrate except Exception as e: raise e @property def tcpwaittodatarate(self) : """Rate (/s) counter for tcpwaittodata.""" try : return self._tcpwaittodatarate except Exception as e: raise e @property def tcperrseventhretransmissionsrate(self) : """Rate (/s) counter for tcperrseventhretransmissions.""" try : return self._tcperrseventhretransmissionsrate except Exception as e: raise e @property def tcperrretransmitrate(self) : """Rate (/s) counter for tcperrretransmit.""" try : return self._tcperrretransmitrate except Exception as e: raise e @property def tcperrfullretrasmitrate(self) : """Rate (/s) counter for tcperrfullretrasmit.""" try : return self._tcperrfullretrasmitrate except Exception as e: raise e @property def tcptotsynflush(self) : """SYN packets flushed on the NetScaler because of no response from the server for three or more seconds.""" try : return self._tcptotsynflush except Exception as e: raise e @property def tcperrsixthretransmissionsrate(self) : """Rate (/s) counter for tcperrsixthretransmissions.""" try : return self._tcperrsixthretransmissionsrate except Exception as e: raise e @property def tcperrfastretransmissions(self) : """TCP packets on which the NetScaler performs a fast retransmission in response to three duplicate acknowledgements or a partial acknowledgement. The NetScaler assumes that the packet is lost and retransmits the packet before its time-out.""" try : return self._tcperrfastretransmissions except Exception as e: raise e @property def tcperrsecondretransmissionsrate(self) : """Rate (/s) counter for tcperrsecondretransmissions.""" try : return self._tcperrsecondretransmissionsrate except Exception as e: raise e @property def tcpzombiepassivehalfclosecltconnflushedrate(self) : """Rate (/s) counter for tcptotzombiepassivehalfclosecltconnflushed.""" try : return self._tcpzombiepassivehalfclosecltconnflushedrate except Exception as e: raise e @property def tcpcltfinrate(self) : """Rate (/s) counter for tcptotcltfin.""" try : return self._tcpcltfinrate except Exception as e: raise e @property def tcpsynheldrate(self) : """Rate (/s) counter for tcptotsynheld.""" try : return self._tcpsynheldrate except Exception as e: raise e @property def tcperrrstnonestrate(self) : """Rate (/s) counter for tcperrrstnonest.""" try : return self._tcperrrstnonestrate except Exception as e: raise e @property def tcperrcltretrasmit(self) : """Packets retransmitted by a client. This usually occurs because the acknowledgement from the NetScaler has not reached the client.""" try : return self._tcperrcltretrasmit except Exception as e: raise e @property def tcptotsynprobe(self) : """Probes from the NetScaler to a server. The NetScaler sends a SYN packet to the server to check its availability and expects a SYN_ACK packet from the server before a specified response timeout.""" try : return self._tcptotsynprobe except Exception as e: raise e @property def tcptotfinwaitclosed(self) : """Connections closed on the NetScaler because the number of connections in the TIME_WAIT state has exceeded the default value of 7000.""" try : return self._tcptotfinwaitclosed except Exception as e: raise e @property def tcpzombiepassivehalfclosesrvconnflushedrate(self) : """Rate (/s) counter for tcptotzombiepassivehalfclosesrvconnflushed.""" try : return self._tcpzombiepassivehalfclosesrvconnflushedrate except Exception as e: raise e @property def tcperrsynsentbadack(self) : """Incorrect ACK packets received on a connection that is in the SYN_SENT state. An incorrect ACK packet is the third packet in the three-way handshake that has an incorrect sequence number.""" try : return self._tcperrsynsentbadack except Exception as e: raise e @property def tcptotsynheld(self) : """SYN packets held on the NetScaler that are waiting for a server connection.""" try : return self._tcptotsynheld except Exception as e: raise e @property def tcperrrstintimewaitrate(self) : """Rate (/s) counter for tcperrrstintimewait.""" try : return self._tcperrrstintimewaitrate except Exception as e: raise e @property def tcperrrstintimewait(self) : """Reset packets received on a connection that is in the TIME_WAIT state. Packets cannot be transferred on a connection in the TIME_WAIT state.""" try : return self._tcperrrstintimewait except Exception as e: raise e @property def tcperrthirdretransmissions(self) : """Packets retransmitted three times by the NetScaler.""" try : return self._tcperrthirdretransmissions except Exception as e: raise e @property def tcptotrxbytes(self) : """Bytes of TCP data received.""" try : return self._tcptotrxbytes except Exception as e: raise e @property def tcperrsvrretrasmit(self) : """Packets retransmitted by a server. This usually occurs because the acknowledgement from the NetScaler has not reached the server.""" try : return self._tcperrsvrretrasmit except Exception as e: raise e @property def tcperrfastretransmissionsrate(self) : """Rate (/s) counter for tcperrfastretransmissions.""" try : return self._tcperrfastretransmissionsrate except Exception as e: raise e @property def tcptotzombiepassivehalfclosecltconnflushed(self) : """Passive half-closed client connections that are flushed because the NetScaler has closed the connection and there has been no activity on the connection.""" try : return self._tcptotzombiepassivehalfclosecltconnflushed except Exception as e: raise e @property def tcperrcltholerate(self) : """Rate (/s) counter for tcperrclthole.""" try : return self._tcperrcltholerate except Exception as e: raise e @property def tcperrsvroutoforder(self) : """Out of order TCP packets received from a server. .""" try : return self._tcperrsvroutoforder except Exception as e: raise e @property def tcprxpktsrate(self) : """Rate (/s) counter for tcptotrxpkts.""" try : return self._tcprxpktsrate except Exception as e: raise e @property def tcptotclientconnopened(self) : """Client connections opened by the NetScaler since startup (after three-way handshake). This counter is reset when the NetScaler is restarted.""" try : return self._tcptotclientconnopened except Exception as e: raise e @property def tcperrstraypktrate(self) : """Rate (/s) counter for tcperrstraypkt.""" try : return self._tcperrstraypktrate except Exception as e: raise e @property def tcperrfinretryrate(self) : """Rate (/s) counter for tcperrfinretry.""" try : return self._tcperrfinretryrate except Exception as e: raise e @property def tcptotserverconnopened(self) : """Server connections initiated by the NetScaler since startup. This counter is reset when the NetScaler is restarted.""" try : return self._tcptotserverconnopened except Exception as e: raise e @property def tcperrretransmitgiveup(self) : """Number of times NetScaler terminates a connection after retransmitting the packet seven times on that connection.Retrasnmission happens when recieving end doesn't acknowledges the packet.""" try : return self._tcperrretransmitgiveup except Exception as e: raise e @property def tcperrthirdretransmissionsrate(self) : """Rate (/s) counter for tcperrthirdretransmissions.""" try : return self._tcperrthirdretransmissionsrate except Exception as e: raise e @property def tcpwaittosyn(self) : """SYN packets (packets used to initiate a TCP connection) received on connections that are in the TIME_WAIT state. Packets cannot be transferred on a connection in this state.""" try : return self._tcpwaittosyn except Exception as e: raise e @property def tcperrsyndroppedcongestion(self) : """SYN packets dropped because of network congestion.""" try : return self._tcperrsyndroppedcongestion except Exception as e: raise e @property def tcperrfingiveup(self) : """Connections that were timed out by the NetScaler because of not receiving the ACK packet after retransmitting the FIN packet four times.""" try : return self._tcperrfingiveup except Exception as e: raise e @property def tcptotsvrfin(self) : """FIN packets received from the server.""" try : return self._tcptotsvrfin except Exception as e: raise e @property def tcperrcltretrasmitrate(self) : """Rate (/s) counter for tcperrcltretrasmit.""" try : return self._tcperrcltretrasmitrate except Exception as e: raise e @property def tcperrcookiepktmssrejectrate(self) : """Rate (/s) counter for tcperrcookiepktmssreject.""" try : return self._tcperrcookiepktmssrejectrate except Exception as e: raise e @property def tcperrsvrretrasmitrate(self) : """Rate (/s) counter for tcperrsvrretrasmit.""" try : return self._tcperrsvrretrasmitrate except Exception as e: raise e @property def tcpcurserverconnclosing(self) : """Server connections in the Closing state, which indicates that the connection termination process has initiated but is not complete.""" try : return self._tcpcurserverconnclosing except Exception as e: raise e @property def tcperrrstrate(self) : """Rate (/s) counter for tcperrrst.""" try : return self._tcperrrstrate except Exception as e: raise e @property def tcperrfifthretransmissionsrate(self) : """Rate (/s) counter for tcperrfifthretransmissions.""" try : return self._tcperrfifthretransmissionsrate except Exception as e: raise e @property def tcperrdataafterfin(self) : """Packets received following a connection termination request. This error is usually caused by a reordering of packets during transmission.""" try : return self._tcperrdataafterfin except Exception as e: raise e @property def tcperrsvrhole(self) : """TCP holes created on a server connection. When out of order packets are received from a server, a hole is created on the NetScaler for each group of missing packets.""" try : return self._tcperrsvrhole except Exception as e: raise e @property def tcperrsyngiveup(self) : """Attempts to establish a connection on the NetScaler that timed out.""" try : return self._tcperrsyngiveup except Exception as e: raise e @property def tcperrfirstretransmissions(self) : """Packets retransmitted once by the NetScaler.""" try : return self._tcperrfirstretransmissions except Exception as e: raise e @property def tcptotzombiesvrconnflushed(self) : """Server connections that are flushed because there have been no client requests in the queue for some time.""" try : return self._tcptotzombiesvrconnflushed except Exception as e: raise e @property def tcperrsynretryrate(self) : """Rate (/s) counter for tcperrsynretry.""" try : return self._tcperrsynretryrate except Exception as e: raise e @property def tcperrcookiepktsigreject(self) : """SYN cookie packets rejected because they contain an incorrect signature.""" try : return self._tcperrcookiepktsigreject except Exception as e: raise e @property def tcperroutofwindowpkts(self) : """Packets received that are out of the current advertised window.""" try : return self._tcperroutofwindowpkts except Exception as e: raise e @property def tcperrcookiepktseqdrop(self) : """SYN cookie packets dropped because the sequence number specified in the packets is outside the current window.""" try : return self._tcperrcookiepktseqdrop except Exception as e: raise e @property def tcperrbadstateconnrate(self) : """Rate (/s) counter for tcperrbadstateconn.""" try : return self._tcperrbadstateconnrate except Exception as e: raise e @property def tcperrsyndroppedcongestionrate(self) : """Rate (/s) counter for tcperrsyndroppedcongestion.""" try : return self._tcperrsyndroppedcongestionrate except Exception as e: raise e @property def tcperrsvrholerate(self) : """Rate (/s) counter for tcperrsvrhole.""" try : return self._tcperrsvrholerate except Exception as e: raise e @property def tcperrdataafterfinrate(self) : """Rate (/s) counter for tcperrdataafterfin.""" try : return self._tcperrdataafterfinrate except Exception as e: raise e @property def tcperrcltoutoforderrate(self) : """Rate (/s) counter for tcperrcltoutoforder.""" try : return self._tcperrcltoutoforderrate except Exception as e: raise e @property def tcptotzombiepassivehalfclosesrvconnflushed(self) : """Passive half-closed server connections that are flushed because the NetScaler has closed the connection and there has been no activity on the connection.""" try : return self._tcptotzombiepassivehalfclosesrvconnflushed except Exception as e: raise e @property def tcperrsyninest(self) : """SYN packets received on a connection that is in the ESTABLISHED state. A SYN packet is not expected on an ESTABLISHED connection.""" try : return self._tcperrsyninest except Exception as e: raise e @property def tcperrsecondretransmissions(self) : """Packets retransmitted twice by the NetScaler.""" try : return self._tcperrsecondretransmissions except Exception as e: raise e @property def tcperrbadstateconn(self) : """Connections that are not in a valid TCP state.""" try : return self._tcperrbadstateconn except Exception as e: raise e @property def tcpspareconn(self) : """Spare connections available. To save time and resources in establishing another connection for a new client, the connection on the server is not closed after completing the request from the first client and is available for serving future requests.""" try : return self._tcpspareconn except Exception as e: raise e @property def tcperrretransmitgiveuprate(self) : """Rate (/s) counter for tcperrretransmitgiveup.""" try : return self._tcperrretransmitgiveuprate except Exception as e: raise e @property def tcptottxpkts(self) : """TCP packets transmitted.""" try : return self._tcptottxpkts except Exception as e: raise e @property def tcptotcltfin(self) : """FIN packets received from the clients.""" try : return self._tcptotcltfin except Exception as e: raise e @property def tcpsynrate(self) : """Rate (/s) counter for tcptotsyn.""" try : return self._tcpsynrate except Exception as e: raise e @property def tcpclientconnopenedrate(self) : """Rate (/s) counter for tcptotclientconnopened.""" try : return self._tcpclientconnopenedrate except Exception as e: raise e @property def tcperranyportfail(self) : """Port allocations that have failed on a mapped IP address because the maximum limit of 65536 has been exceeded.""" try : return self._tcperranyportfail except Exception as e: raise e @property def tcpwaittosynrate(self) : """Rate (/s) counter for tcpwaittosyn.""" try : return self._tcpwaittosynrate except Exception as e: raise e @property def tcperrrstnonest(self) : """Reset packets received on a connection that is not in the ESTABLISHED state.""" try : return self._tcperrrstnonest except Exception as e: raise e @property def tcperripportfail(self) : """Port allocations that have failed on a subnet IP address or vserver IP address because the maximum limit of 65536 has been exceeded.""" try : return self._tcperripportfail except Exception as e: raise e @property def tcperrpartialretrasmit(self) : """Partial packet retransmits by a client or server due to congestion on the connection. This usually occurs because the window advertised by the NetScaler is not big enough to hold the full packet.""" try : return self._tcperrpartialretrasmit except Exception as e: raise e @property def tcpzombieactivehalfclosesvrconnflushedrate(self) : """Rate (/s) counter for tcptotzombieactivehalfclosesvrconnflushed.""" try : return self._tcpzombieactivehalfclosesvrconnflushedrate except Exception as e: raise e @property def tcperrclthole(self) : """TCP holes created on a client connection. When out of order packets are received from a client, a hole is created on the NetScaler for each group of missing packets.""" try : return self._tcperrclthole except Exception as e: raise e @property def tcpcurclientconnestablished(self) : """Current client connections in the Established state, which indicates that data transfer can occur between the NetScaler and the client.""" try : return self._tcpcurclientconnestablished except Exception as e: raise e @property def tcpwaittodata(self) : """Bytes of data received on connections that are in the TIME_WAIT state. Data cannot be transferred on a connection that is in this state.""" try : return self._tcpwaittodata except Exception as e: raise e @property def tcperrsentrst(self) : """Reset packets sent to a client or a server.""" try : return self._tcperrsentrst except Exception as e: raise e @property def tcperrsyngiveuprate(self) : """Rate (/s) counter for tcperrsyngiveup.""" try : return self._tcperrsyngiveuprate except Exception as e: raise e @property def tcperrbadchecksumrate(self) : """Rate (/s) counter for tcperrbadchecksum.""" try : return self._tcperrbadchecksumrate except Exception as e: raise e @property def tcperrcookiepktseqdroprate(self) : """Rate (/s) counter for tcperrcookiepktseqdrop.""" try : return self._tcperrcookiepktseqdroprate except Exception as e: raise e @property def tcperrseventhretransmissions(self) : """Packets retransmitted seven times by the NetScaler. If this fails, the NetScaler terminates the connection.""" try : return self._tcperrseventhretransmissions except Exception as e: raise e @property def tcperrrstoutofwindow(self) : """Reset packets received on a connection that is out of the current TCP window.""" try : return self._tcperrrstoutofwindow except Exception as e: raise e @property def tcpcurserverconnopening(self) : """Server connections in the Opening state, which indicates that the handshakes are not yet complete.""" try : return self._tcpcurserverconnopening except Exception as e: raise e @property def tcptotzombieactivehalfclosesvrconnflushed(self) : """Active half-closed server connections that are flushed because the server has closed the connection and there has been no activity on the connection.""" try : return self._tcptotzombieactivehalfclosesvrconnflushed except Exception as e: raise e @property def tcperrfullretrasmit(self) : """Full packets retransmitted by the client or the server.""" try : return self._tcperrfullretrasmit except Exception as e: raise e @property def tcperrcipalloc(self) : """Number of times TCP level client header insertion failure.""" try : return self._tcperrcipalloc except Exception as e: raise e @property def tcptotzombiecltconnflushed(self) : """Client connections that are flushed because the client has been idle for some time.""" try : return self._tcptotzombiecltconnflushed except Exception as e: raise e @property def tcptotzombiehalfopensvrconnflushed(self) : """Half-opened server connections that are flushed because the three-way handshakes are not complete.""" try : return self._tcptotzombiehalfopensvrconnflushed except Exception as e: raise e @property def pcbtotzombiecall(self) : """Times the Zombie cleanup function is called. Every time a connection is flushed, it is marked for cleanup. The Zombie cleanup function clears all these connections at predefined intervals.""" try : return self._pcbtotzombiecall except Exception as e: raise e @property def tcpactiveserverconn(self) : """Connections to a server currently responding to requests.""" try : return self._tcpactiveserverconn except Exception as e: raise e @property def tcperrsynretry(self) : """SYN packets resent to a server.""" try : return self._tcperrsynretry except Exception as e: raise e @property def tcptottxbytes(self) : """Bytes of TCP data transmitted.""" try : return self._tcptottxbytes except Exception as e: raise e @property def tcpcurclientconnclosing(self) : """Client connections in the Closing state, which indicates that the connection termination process has initiated but is not complete.""" try : return self._tcpcurclientconnclosing except Exception as e: raise e @property def tcperrrstthresholdrate(self) : """Rate (/s) counter for tcperrrstthreshold.""" try : return self._tcperrrstthresholdrate except Exception as e: raise e @property def tcperrfifthretransmissions(self) : """Packets retransmitted five times by the NetScaler.""" try : return self._tcperrfifthretransmissions except Exception as e: raise e @property def tcpzombiehalfopencltconnflushedrate(self) : """Rate (/s) counter for tcptotzombiehalfopencltconnflushed.""" try : return self._tcpzombiehalfopencltconnflushedrate except Exception as e: raise e @property def tcpzombiecltconnflushedrate(self) : """Rate (/s) counter for tcptotzombiecltconnflushed.""" try : return self._tcpzombiecltconnflushedrate except Exception as e: raise e @property def tcptxpktsrate(self) : """Rate (/s) counter for tcptottxpkts.""" try : return self._tcptxpktsrate except Exception as e: raise e def _get_nitro_response(self, service, response) : """converts nitro response into object and returns the object array in case of get request. :param service: :param response: """ try : result = service.payload_formatter.string_to_resource(protocoltcp_response, response, self.__class__.__name__.replace('_stats','')) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.protocoltcp except Exception as e : raise e def _get_object_name(self) : """Returns the value of object identifier argument""" try : return 0 except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : """Use this API to fetch the statistics of all protocoltcp_stats resources that are configured on netscaler. :param service: :param name: (Default value = "") :param option_: (Default value = "") """ try : obj = protocoltcp_stats() if not name : response = obj.stat_resources(service, option_) return response except Exception as e: raise e class Clearstats: """ """ basic = "basic" full = "full" class protocoltcp_response(base_response) : """ """ def __init__(self, length=1) : self.protocoltcp = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.protocoltcp = [protocoltcp_stats() for _ in range(length)]
StarcoderdataPython
4801369
# -*- coding: utf-8 -*- """Find a Buyer - Confirm Identity - with letter page""" import logging from requests import Response, Session from directory_tests_shared import PageType, Service, URLs from tests.functional.utils.context_utils import Actor from tests.functional.utils.request import Method, check_response, make_request SERVICE = Service.FAB NAME = "Confirm identity with letter" TYPE = PageType.FORM URL = URLs.FAB_CONFIRM_IDENTITY_LETTER.absolute EXPECTED_STRINGS = [ "Verification letter request", "Your verification letter should arrive within 5 working days", "Contact us", URLs.CONTACT_US_FEEDBACK.absolute, "The letter contains a 12 digit verification code", "Go to your company profile", # URLs.FAB_COMPANY_PROFILE.relative, ] def go_to(session: Session) -> Response: headers = {"Referer": URL} return make_request(Method.GET, URL, session=session, headers=headers) def should_be_here(response: Response): check_response(response, 200, body_contains=EXPECTED_STRINGS) logging.debug( "Successfully got to the FAB Confirm your Identity - with letter page" ) def submit(actor: Actor) -> Response: """Verify your identity with a physical letter.""" headers = {"Referer": URL} data = { "csrfmiddlewaretoken": actor.csrfmiddlewaretoken, "send_verification_letter_view-current_step": "address", "address-postal_full_name": actor.alias, "address-address_confirmed": "on", } response = make_request( Method.POST, URL, session=actor.session, headers=headers, data=data ) return response
StarcoderdataPython
1719251
<filename>dnstable_manager/util.py # Copyright (c) 2015 by Farsight Security, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def iterfileobj(fp, length=16*1024): '''iterate data from file-like object fp''' while 1: buf = fp.read(length) if not buf: break yield buf
StarcoderdataPython
1734842
<gh_stars>1-10 import os import pyapr from skimage import io as skio def main(): """ This demo shows how to convert an image to an APR using a fixed set of parameters. """ # Read in an image io_int = pyapr.filegui.InteractiveIO() fpath = io_int.get_tiff_file_name() # get image file path from gui (data type must be float32 or uint16) img = skio.imread(fpath) # Set some parameters par = pyapr.APRParameters() par.rel_error = 0.1 # relative error threshold par.gradient_smoothing = 3 # b-spline smoothing parameter for gradient estimation # 0 = no smoothing, higher = more smoothing par.dx = 1 par.dy = 1 # voxel size par.dz = 1 # threshold parameters par.Ip_th = 0 # regions below this intensity are regarded as background par.grad_th = 3 # gradients below this value are set to 0 par.sigma_th = 10 # the local intensity scale is clipped from below to this value par.auto_parameters = False # if true, threshold parameters are set automatically based on histograms # Compute APR and sample particle values apr, parts = pyapr.converter.get_apr(img, params=par, verbose=True) # Compute computational ratio cr = img.size/apr.total_number_particles() print("Compuational Ratio: {:7.2f}".format(cr)) # Display the APR pyapr.viewer.parts_viewer(apr, parts) # Write the resulting APR to file print("Writing APR to file ... \n") fpath_apr = io_int.save_apr_file_name() # get path through gui pyapr.io.write(fpath_apr, apr, parts) if fpath_apr: # Display the size of the file file_sz = os.path.getsize(fpath_apr) print("APR File Size: {:7.2f} MB \n".format(file_sz * 1e-6)) # Compute compression ratio mcr = os.path.getsize(fpath) / file_sz print("Memory Compression Ratio: {:7.2f}".format(mcr)) if __name__ == '__main__': main()
StarcoderdataPython
1675295
from flask import render_template,request,redirect,url_for,abort from . import main from ..models import User,Pitch,Comment from .forms import UpdateProfile,PitchForm,CommentForm from .. import db,photos from flask_login import login_required,current_user from datetime import datetime @main.route('/') def index(): pitches = Pitch.query.order_by(Pitch.time.desc()).all() return render_template('index.html', pitches = pitches) @main.route('/add',methods = ['GET','POST']) @login_required def add_pitch(): form = PitchForm() if form.validate_on_submit(): pitch = Pitch(title = form.title.data, pitch = form.pitch.data,user=current_user) db.session.add(pitch) db.session.commit() return redirect(url_for('main.index')) return render_template('add.html',pitch_form=form) @main.route('/pitch/<int:id>') def pitch(id): pitch = Pitch.query.filter_by(id=id).first() comments = Comment.get_comments(pitch.id) return render_template('pitch.html',comments = comments, pitch = pitch) @main.route('/pitch/comment/new/<int:id>', methods = ['GET','POST']) @login_required def new_comment(id): form = CommentForm() pitch = Pitch.query.filter_by(id=id).first() if form.validate_on_submit(): comment = form.comment.data new_comment = Comment(pitch_comment=comment,pitch_id = pitch.id,user=current_user) new_comment.save_comment() return redirect(url_for('.pitch',id = pitch.id)) return render_template('new_comment.html',comment_form=form, pitch=pitch) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template("profile/profile.html", user = user) @main.route('/user/<uname>/update',methods = ['GET', 'POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form=form) @main.route('/user/<uname>/update/pic',methods=['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)).
StarcoderdataPython
1658215
<reponame>k4rth33k/gdrivefs import re import json import os from fsspec.spec import AbstractFileSystem, AbstractBufferedFile from googleapiclient.discovery import build from googleapiclient.errors import HttpError from google.auth.credentials import AnonymousCredentials import pydata_google_auth scope_dict = {'full_control': 'https://www.googleapis.com/auth/drive', 'read_only': 'https://www.googleapis.com/auth/drive.readonly'} DIR_MIME_TYPE = 'application/vnd.google-apps.folder' fields = ','.join(['name', 'id', 'size', 'description', 'trashed', 'mimeType', 'version', 'createdTime', 'modifiedTime', 'capabilities']) def _normalize_path(prefix, name): raw_prefix = prefix.strip('/') return '/' + '/'.join([raw_prefix, name]) def _finfo_from_response(f, path_prefix=None): # strictly speaking, other types might be capable of having children, # such as packages ftype = 'directory' if f.get('mimeType') == DIR_MIME_TYPE else 'file' if path_prefix: name = _normalize_path(path_prefix, f['name']) else: name = f['name'] info = {'name': name.lstrip('/'), 'size': int(f.get('size', 0)), 'type': ftype} f.update(info) return f class GoogleDriveFileSystem(AbstractFileSystem): protocol = "gdrive" root_marker = '' def __init__(self, root_file_id=None, token="browser", access="full_control", spaces='drive', **kwargs): """ Access to dgrive as a file-system :param root_file_id: str or None If you have a share, drive or folder ID to treat as the FS root, enter it here. Otherwise, you will get your default drive :param token: str One of "anon", "browser", "cache". Using "browser" will prompt a URL to be put in a browser, and cache the response for future use with token="cache". "browser" will remove any previously cached token file if it exists. :param access: str One of "full_control", "read_only :param spaces: Category of files to search, can be 'drive', 'appDataFolder' and 'photos'. Of these, only the first is general :param kwargs: Passed to parent """ super().__init__(**kwargs) self.access = access self.scopes = [scope_dict[access]] self.token = token self.spaces = spaces self.root_file_id = root_file_id or 'root' self.connect(method=token) if token != "anon": self.ls("") def connect(self, method=None): if method == 'browser': cred = self._connect_browser() elif method == "cache": cred = self._connect_cache() elif method == 'anon': cred = AnonymousCredentials() else: raise ValueError(f"Invalid connection method `{method}`.") srv = build('drive', 'v3', credentials=cred) self._drives = srv.drives() self.service = srv.files() def _connect_browser(self): try: os.remove(pydata_google_auth.cache.READ_WRITE._path) except OSError: pass return self._connect_cache() def _connect_cache(self): return pydata_google_auth.get_user_credentials(self.scopes) @property def drives(self): if self._drives is not None: return self._drives.list().execute()['drives'] else: return [] def info(self, path, trashed=False, **kwargs): if self._parent(path) in self.dircache: listing = self.dircache[self._parent(path)] out = [l for l in listing if l['name'] == path] if not out: raise FileNotFoundError return out[0] else: file_id = self.path_to_file_id(path, trashed=trashed) return self._info_by_id(file_id) def mkdir(self, path, create_parents=True, **kwargs): if create_parents and self._parent(path): self.makedirs(self._parent(path), exist_ok=True) parent_id = self.path_to_file_id(self._parent(path)) meta = {"name": path.rstrip("/").rsplit("/", 1)[-1], 'mimeType': DIR_MIME_TYPE, "parents": [parent_id]} self.service.create(body=meta).execute() self.invalidate_cache(self._parent(path)) def makedirs(self, path, exist_ok=True): if self.isdir(path): if exist_ok: return else: raise FileExistsError(path) if self._parent(path): self.makedirs(self._parent(path), exist_ok=True) self.mkdir(path, create_parents=False) def _delete(self, file_id): self.service.delete(fileId=file_id).execute() def rm(self, path, recursive=True, maxdepth=None): if recursive is False and self.isdir(path) and self.ls(path): raise ValueError("Attempt to delete non-empty folder") self._delete(self.path_to_file_id(path)) self.invalidate_cache(path) self.invalidate_cache(self._parent(path)) def rmdir(self, path): if not self.isdir(path): raise ValueError("Path is not a directory") self.rm(path, recursive=False) def _info_by_id(self, file_id, path_prefix=None): response = self.service.get(fileId=file_id, fields=fields, ).execute() return _finfo_from_response(response, path_prefix) def export(self, path, mime_type): """ Convert a google-native file to other format and download mime_type is something like "text/plain" """ file_id = self.path_to_file_id(path) return self.service.export(fileId=file_id, mimeType=mime_type).execute() def ls(self, path, detail=False, trashed=False): if path in [None, '/']: path = "" if path not in self.dircache: if path == "": file_id = self.root_file_id else: file_id = self.path_to_file_id(path, trashed=trashed) files = self._list_directory_by_id(file_id, trashed=trashed, path_prefix=path) self.dircache[path] = files else: files = self.dircache[path] if detail: return files else: return sorted([f["name"] for f in files]) def _list_directory_by_id(self, file_id, trashed=False, path_prefix=None): all_files = [] page_token = None afields = 'nextPageToken, files(%s)' % fields query = f"'{file_id}' in parents " if not trashed: query += "and trashed = false " while True: response = self.service.list(q=query, spaces=self.spaces, fields=afields, pageToken=page_token).execute() for f in response.get('files', []): all_files.append(_finfo_from_response(f, path_prefix)) more = response.get('incompleteSearch', False) page_token = response.get('nextPageToken', None) if page_token is None or more is False: break return all_files def invalidate_cache(self, path=None): if path: self.dircache.pop(path, None) else: self.dircache.clear() def path_to_file_id(self, path, parent=None, trashed=False): items = path.strip('/').split('/') if path in ["", "/", "root", self.root_file_id]: return self.root_file_id if parent is None: parent = self.root_file_id top_file_id = self._get_directory_child_by_name(items[0], parent, trashed=trashed) if len(items) == 1: return top_file_id else: sub_path = '/'.join(items[1:]) return self.path_to_file_id(sub_path, parent=top_file_id, trashed=trashed) def _get_directory_child_by_name(self, child_name, directory_file_id, trashed=False): all_children = self._list_directory_by_id(directory_file_id, trashed=trashed) possible_children = [] for child in all_children: if child['name'] == child_name: possible_children.append(child['id']) if len(possible_children) == 0: raise FileNotFoundError( f'Directory {directory_file_id} has no child ' f'named {child_name}') if len(possible_children) == 1: return possible_children[0] else: raise KeyError(f'Directory {directory_file_id} has more than one ' f'child named {child_name}. Unable to resolve path ' 'to file_id.') def _open(self, path, mode="rb", **kwargs): return GoogleDriveFile(self, path, mode=mode, **kwargs) DEFAULT_BLOCK_SIZE = 5 * 2 ** 20 class GoogleDriveFile(AbstractBufferedFile): def __init__(self, fs, path, mode='rb', block_size=DEFAULT_BLOCK_SIZE, autocommit=True, **kwargs): """ Open a file. Parameters ---------- fs: instance of GoogleDriveFileSystem mode: str Normal file modes. Currently only 'wb' amd 'rb'. block_size: int Buffer size for reading or writing (default 5MB) """ super().__init__(fs, path, mode, block_size, autocommit=autocommit, **kwargs) if mode == 'wb': self.location = None else: self.file_id = fs.path_to_file_id(path) def _fetch_range(self, start=None, end=None): """ Get data from Google Drive start, end : None or integers if not both None, fetch only given range """ if start is not None or end is not None: start = start or 0 end = end or 0 head = {'Range': 'bytes=%i-%i' % (start, end - 1)} else: head = {} try: files_service = self.fs.service media_obj = files_service.get_media(fileId=self.file_id) media_obj.headers.update(head) data = media_obj.execute() return data except HttpError as e: # TODO : doc says server might send everything if range is outside if 'not satisfiable' in str(e): return b'' raise def _upload_chunk(self, final=False): """ Write one part of a multi-block file upload Parameters ---------- final: bool Complete and commit upload """ self.buffer.seek(0) data = self.buffer.getvalue() head = {} l = len(data) if final and self.autocommit: if l: part = "%i-%i" % (self.offset, self.offset + l - 1) head['Content-Range'] = 'bytes %s/%i' % (part, self.offset + l) else: # closing when buffer is empty head['Content-Range'] = 'bytes */%i' % self.offset data = None else: head['Content-Range'] = 'bytes %i-%i/*' % ( self.offset, self.offset + l - 1) head.update({'Content-Type': 'application/octet-stream', 'Content-Length': str(l)}) req = self.fs.service._http.request head, body = req(self.location, method="PUT", body=data, headers=head) status = int(head['status']) assert status < 400, "Init upload failed" if status in [200, 201]: # server thinks we are finished, this should happen # only when closing self.file_id = json.loads(body.decode())['id'] elif 'Range' in head: assert status == 308 assert head['Range'].split("=") == part else: raise IOError return True def commit(self): """If not auto-committing, finalize file""" self.autocommit = True self._upload_chunk(final=True) def _initiate_upload(self): """ Create multi-upload """ parent_id = self.fs.path_to_file_id(self.fs._parent(self.path)) head = {"Content-Type": "application/json; charset=UTF-8"} # also allows description, MIME type, version, thumbnail... body = json.dumps({"name": self.path.rsplit('/', 1)[-1], "parents": [parent_id]}).encode() req = self.fs.service._http.request # TODO : this creates a new file. If the file exists, you should # update it by getting the ID and using PATCH, else you get two # identically-named files r = req("https://www.googleapis.com/upload/drive/v3/files" "?uploadType=resumable", method='POST', headers=head, body=body) head = r[0] assert int(head['status']) < 400, "Init upload failed" self.location = r[0]['location'] def discard(self): """Cancel in-progress multi-upload """ if self.location is None: return uid = re.findall('upload_id=([^&=?]+)', self.location) head, _ = self.gcsfs._call( 'DELETE', 'https://www.googleapis.com/upload/drive/v3/files', params={'uploadType': 'resumable', 'upload_id': uid}) assert int(head['status']) < 400, "Cancel upload failed"
StarcoderdataPython
3238312
from .board import * def penalty_action(board: Board) -> Action: goal_vector = Vector.from_point( board.ball.position - board.opponent_goal_position ) ball_vector = Vector.from_point( board.ball.position - board.controlled_player.position ) if board.ball.position.x > 0: return board.set_action(Action.Shot, vector=goal_vector, power=4) else: return board.set_action(None, ball_vector, sprint=True)
StarcoderdataPython
1312
<gh_stars>10-100 #!/usr/local/bin/python # -*- coding: utf-8 -*- """ - LICENCE The MIT License (MIT) Copyright (c) 2016 <NAME> Ericsson AB (EU FP7 CityPulse Project) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - DESCRIPTION OF DOCUMENTS -- MongoDB Database Documents: address_document: { '_id', 'name', 'node_id', 'point': {'longitude', 'latitude'} } bus_line_document: { '_id', 'bus_line_id', 'bus_stops': [{'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}] } bus_stop_document: { '_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'} } bus_stop_waypoints_document: { '_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[edge_object_id]] } bus_vehicle_document: { '_id', 'bus_vehicle_id', 'maximum_capacity', 'routes': [{'starting_datetime', 'ending_datetime', 'timetable_id'}] } detailed_bus_stop_waypoints_document: { '_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[edge_document]] } edge_document: { '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' } node_document: { '_id', 'osm_id', 'tags', 'point': {'longitude', 'latitude'} } point_document: { '_id', 'osm_id', 'point': {'longitude', 'latitude'} } timetable_document: { '_id', 'timetable_id', 'bus_line_id', 'bus_vehicle_id', 'timetable_entries': [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'number_of_onboarding_passengers', 'number_of_deboarding_passengers', 'number_of_current_passengers', 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } }], 'travel_requests': [{ '_id', 'client_id', 'bus_line_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'starting_timetable_entry_index', 'ending_timetable_entry_index' }] } traffic_event_document: { '_id', 'event_id', 'event_type', 'event_level', 'point': {'longitude', 'latitude'}, 'datetime' } travel_request_document: { '_id', 'client_id', 'bus_line_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'starting_timetable_entry_index', 'ending_timetable_entry_index' } way_document: { '_id', 'osm_id', 'tags', 'references' } -- Route Generator Responses: get_route_between_two_bus_stops: { 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } } get_route_between_multiple_bus_stops: [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } }] get_waypoints_between_two_bus_stops: { 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[{ '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' }]] } get_waypoints_between_multiple_bus_stops: [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[{ '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' }]] }] """ import time import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.common.logger import log from src.common.parameters import testing_bus_stop_names from src.route_generator.route_generator_client import get_route_between_two_bus_stops, \ get_route_between_multiple_bus_stops, get_waypoints_between_two_bus_stops, get_waypoints_between_multiple_bus_stops __author__ = '<NAME>' __email__ = '<EMAIL>' __credits__ = [ '<NAME> (Senior Researcher at Ericsson AB) - email: <EMAIL>' '<NAME> (Senior Researcher at Ericsson AB) - email: <EMAIL>' ] def test_get_route_between_two_bus_stops(starting_bus_stop=None, ending_bus_stop=None, starting_bus_stop_name=None, ending_bus_stop_name=None): """ :param starting_bus_stop: bus_stop_document :param ending_bus_stop: bus_stop_document :param starting_bus_stop_name: string :param ending_bus_stop_name: string """ log(module_name='route_generator_test', log_type='INFO', log_message='get_route_between_two_bus_stops: starting') start_time = time.time() # response = { # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'route': { # 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', # 'distances_from_starting_node', 'times_from_starting_node', # 'distances_from_previous_node', 'times_from_previous_node' # } # } response = get_route_between_two_bus_stops( starting_bus_stop=starting_bus_stop, ending_bus_stop=ending_bus_stop, starting_bus_stop_name=starting_bus_stop_name, ending_bus_stop_name=ending_bus_stop_name ) starting_bus_stop = response.get('starting_bus_stop') ending_bus_stop = response.get('ending_bus_stop') route = response.get('route') if route is not None: total_distance = route.get('total_distance') total_time = route.get('total_time') node_osm_ids = route.get('node_osm_ids') points = route.get('points') edges = route.get('edges') distances_from_starting_node = route.get('distances_from_starting_node') times_from_starting_node = route.get('times_from_starting_node') distances_from_previous_node = route.get('distances_from_previous_node') times_from_previous_node = route.get('times_from_previous_node') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\ntotal_distance: ' + str(total_distance) + \ '\ntotal_time: ' + str(total_time) + \ '\nnode_osm_ids: ' + str(node_osm_ids) + \ '\npoints: ' + str(points) + \ '\nedges: ' + str(edges) + \ '\ndistances_from_starting_node: ' + str(distances_from_starting_node) + \ '\ntimes_from_starting_node: ' + str(times_from_starting_node) + \ '\ndistances_from_previous_node: ' + str(distances_from_previous_node) + \ '\ntimes_from_previous_node: ' + str(times_from_previous_node) else: output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\nroute: None' print output elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_route_between_two_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_route_between_multiple_bus_stops(bus_stops=None, bus_stop_names=None): """ :param bus_stops: [bus_stop_document] :param bus_stop_names: [string] """ log(module_name='route_generator_test', log_type='INFO', log_message='get_route_between_multiple_bus_stops: starting') start_time = time.time() route_distance = 0 route_traveling_time = 0 # response = [{ # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'route': { # 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', # 'distances_from_starting_node', 'times_from_starting_node', # 'distances_from_previous_node', 'times_from_previous_node' # } # }] response = get_route_between_multiple_bus_stops( bus_stops=bus_stops, bus_stop_names=bus_stop_names ) for intermediate_response in response: starting_bus_stop = intermediate_response.get('starting_bus_stop') ending_bus_stop = intermediate_response.get('ending_bus_stop') intermediate_route = intermediate_response.get('route') if intermediate_route is not None: total_distance = intermediate_route.get('total_distance') route_distance += total_distance total_time = intermediate_route.get('total_time') route_traveling_time += total_time node_osm_ids = intermediate_route.get('node_osm_ids') points = intermediate_route.get('points') edges = intermediate_route.get('edges') distances_from_starting_node = intermediate_route.get('distances_from_starting_node') times_from_starting_node = intermediate_route.get('times_from_starting_node') distances_from_previous_node = intermediate_route.get('distances_from_previous_node') times_from_previous_node = intermediate_route.get('times_from_previous_node') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\ntotal_distance: ' + str(total_distance) + \ '\ntotal_time: ' + str(total_time) + \ '\nnode_osm_ids: ' + str(node_osm_ids) + \ '\npoints: ' + str(points) + \ '\nedges: ' + str(edges) + \ '\ndistances_from_starting_node: ' + str(distances_from_starting_node) + \ '\ntimes_from_starting_node: ' + str(times_from_starting_node) + \ '\ndistances_from_previous_node: ' + str(distances_from_previous_node) + \ '\ntimes_from_previous_node: ' + str(times_from_previous_node) else: output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\nroute: None' print output route_average_speed = (route_distance / 1000) / (route_traveling_time / 3600) print '\nroute_distance: ' + str(route_distance / 1000) + \ ' - route_traveling_time: ' + str(route_traveling_time / 60) + \ ' - route_average_speed: ' + str(route_average_speed) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_route_between_multiple_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_waypoints_between_two_bus_stops(starting_bus_stop=None, ending_bus_stop=None, starting_bus_stop_name=None, ending_bus_stop_name=None): """ :param starting_bus_stop: bus_stop_document :param ending_bus_stop: bus_stop_document :param starting_bus_stop_name: string :param ending_bus_stop_name: string """ log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_two_bus_stops: starting') start_time = time.time() # response = { # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'waypoints': [[{ # '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'max_speed', 'road_type', 'way_id', 'traffic_density' # }]] # } response = get_waypoints_between_two_bus_stops( starting_bus_stop=starting_bus_stop, ending_bus_stop=ending_bus_stop, starting_bus_stop_name=starting_bus_stop_name, ending_bus_stop_name=ending_bus_stop_name ) starting_bus_stop = response.get('starting_bus_stop') ending_bus_stop = response.get('ending_bus_stop') waypoints = response.get('waypoints') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) print output for separate_waypoints in waypoints: print 'waypoints: ' + str(separate_waypoints) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_two_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_waypoints_between_multiple_bus_stops(bus_stops=None, bus_stop_names=None): """ :param bus_stops: [bus_stop_document] :param bus_stop_names: [string] """ log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_multiple_bus_stops: starting') start_time = time.time() # response = [{ # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'waypoints': [[{ # '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'max_speed', 'road_type', 'way_id', 'traffic_density' # }]] # }] response = get_waypoints_between_multiple_bus_stops( bus_stops=bus_stops, bus_stop_names=bus_stop_names ) for intermediate_response in response: starting_bus_stop = intermediate_response.get('starting_bus_stop') ending_bus_stop = intermediate_response.get('ending_bus_stop') waypoints = intermediate_response.get('waypoints') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) print output for separate_waypoints in waypoints: print 'waypoints: ' + str(separate_waypoints) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_multiple_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') if __name__ == '__main__': selection = '' while True: selection = raw_input( '\n0. exit' '\n1. test_get_route_between_two_bus_stops' '\n2. test_get_route_between_multiple_bus_stops' '\n3. test_get_waypoints_between_two_bus_stops' '\n4. test_get_waypoints_between_multiple_bus_stops' '\nSelection: ' ) if selection == '0': break elif selection == '1': test_get_route_between_two_bus_stops( starting_bus_stop_name=testing_bus_stop_names[0], ending_bus_stop_name=testing_bus_stop_names[1] ) elif selection == '2': test_get_route_between_multiple_bus_stops( bus_stop_names=testing_bus_stop_names ) elif selection == '3': test_get_waypoints_between_two_bus_stops( starting_bus_stop_name=testing_bus_stop_names[0], ending_bus_stop_name=testing_bus_stop_names[1] ) elif selection == '4': test_get_waypoints_between_multiple_bus_stops( bus_stop_names=testing_bus_stop_names ) else: print 'Invalid input'
StarcoderdataPython
1728940
""" Module to featurize CIFs using JarvisCFID Author: <NAME> Email: <EMAIL> """ import os import pandas as pd import numpy as np import pymatgen as pmg import timeout_decorator import pathlib import joblib from matminer.featurizers.structure import JarvisCFID class use_cfid(): """ Class to generate JarvisCFID features using CIFs args: (1) name_of_parent_folder (type:str) - must match name of directory containing the 'cif' folder (2) csv (type:bool) - whether to save data as csv return: (1) pandas.Dataframe of CFID features (pkl and/or csv) """ def __init__(self, name_of_parent_folder, csv): self.name_of_parent_folder = name_of_parent_folder self.csv = csv self.cur_dir = pathlib.Path().resolve() self.directory = os.path.join(self.cur_dir, 'retrieved_data', self.name_of_parent_folder, 'cifs') self.directory_2 = os.path.join('retrieved_data', self.name_of_parent_folder) self.jarvis = JarvisCFID() print(self.jarvis) @timeout_decorator.timeout(100, timeout_exception = TimeoutError) #100 seconds timer def descriptor(self, cif): """ Apply CFID descriptor args: (1) CIFs return: (2) CFID features """ struc = pmg.Structure.from_file(os.path.join(self.directory, cif)) output = self.jarvis.featurize(struc) return output def featurize(self): """ Create features using the 'descriptor()' function with a time limit of 100 seconds """ # Create a list of cifs files = [f for f in os.listdir(self.directory) if os.path.isfile(os.path.join(self.directory, f))] cif_files = [f for f in files if os.path.splitext(f)[1] == '.cif'] print('No. of CIFs: ', len(cif_files)) # Featurise jarvis_features, cif_success, cif_timedout, cif_error = list(), list(), list(), list() for cif in cif_files: try: cif_features = self.descriptor(cif) jarvis_features.append(cif_features) cif_success.append(os.path.splitext(cif)[0]) print('Success with ', cif) except TimeoutError: cif_timedout.append(os.path.splitext(cif)[0]) print('Timeout with ', cif) pass except: cif_error.append(os.path.splitext(cif)[0]) print('Error with ', cif) pass print('no. of data saved:', len(cif_success)) print('no. of errors:', len(cif_error)) print('no. of time-outs:', len(cif_timedout)) # Create pandas.Dataframe of the complied data if len(cif_success) != 0: #Features df_cif = pd.DataFrame(jarvis_features) #CIF IDs df_index = pd.DataFrame(cif_success) df_index = df_index.rename(columns={0: 'task_id'}) #Concat two dataframes df = pd.concat([df_index, df_cif], axis=1) df['task_id'] = df['task_id'].map(lambda x: x.rstrip('.cif')) df = df.set_index('task_id') # CIF with erros df_error = pd.DataFrame(cif_error) df_error = df_error.rename(columns={0: 'task_id'}) # CIF that timed out df_timedout = pd.DataFrame(cif_timedout) df_timedout = df_timedout.rename(columns={0: 'task_id'}) # Save data if len(cif_success) != 0: joblib.dump(df, os.path.join(self.directory_2,r'CFID_features_' + str(self.name_of_parent_folder) + '.pkl')) print('Successfully saved data as: ', 'CFID_features_' + str(self.name_of_parent_folder) + '.pkl') if self.csv == True: df.to_csv(os.path.join(self.directory_2,r'CFID_features_' + str(self.name_of_parent_folder) + '.csv'), index = False) print('Successfully saved data as: ', 'CFID_features_' + str(self.name_of_parent_folder) + '.csv') joblib.dump(df_error, os.path.join(self.directory_2,r'CFID_error_' + str(self.name_of_parent_folder) + '.pkl')) joblib.dump(df_timedout, os.path.join(self.directory_2,r'CFID_timedout_' + str(self.name_of_parent_folder) + '.pkl')) if self.csv == True: df_error.to_csv(os.path.join(self.directory_2,r'CFID_error_' + str(self.name_of_parent_folder) + '.csv'), index = False) df_timedout.to_csv(os.path.join(self.directory_2,r'CFID_timedout_' + str(self.name_of_parent_folder) + '.csv'), index = False)
StarcoderdataPython
1623837
<filename>dnplab/widgets/manual_align.py import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons def manual_align(data, dim): """Manually align spectra""" coord = data.coords[dim] max_index = int(data.size / (coord.size**2.0)) fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) init_index = 0 delta_index = 1 l = plt.plot(data.coords["f2"], np.real(data.values)) ax.margins(x=0) axcolor = "lightgoldenrodyellow" axindex = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor) sindex = Slider( axindex, "index", -1 * max_index, max_index, valinit=init_index, valstep=delta_index, ) def update(val): index = sindex.val ix = 0 for line in l: line.set_ydata(np.roll(data[dim, ix].values.ravel(), index * ix)) ix += 1 fig.canvas.draw_idle() sindex.on_changed(update) reset_ax = plt.axes([0.8, 0.025, 0.1, 0.04]) reset_button = Button(reset_ax, "Reset", color=axcolor, hovercolor="0.975") inc_ax = plt.axes([0.6, 0.025, 0.1, 0.04]) inc_button = Button(inc_ax, "+", color=axcolor, hovercolor="0.975") dec_ax = plt.axes([0.4, 0.025, 0.1, 0.04]) dec_button = Button(dec_ax, "-", color=axcolor, hovercolor="0.975") def reset(event): sindex.reset() def inc(event): sindex.set_val(sindex.val + 1) def dec(event): sindex.set_val(sindex.val - 1) reset_button.on_clicked(reset) inc_button.on_clicked(inc) dec_button.on_clicked(dec) plt.show() manual_index = sindex.val for ix, x in enumerate(data.coords[dim]): data[dim, ix] = np.roll(data[dim, ix].values, manual_index * ix) ix += 1 proc_parameters = { "dim": dim, } proc_attr_name = "manualalign" data.add_proc_attrs(proc_attr_name, proc_parameters) return data
StarcoderdataPython
3241269
<filename>Timbuchalka/Section-1/Experementing/English holiday homework.py<gh_stars>1-10 english_homework = [ "\t\t\t\t\t\t\t\t\t\t\t" , "Write A letter to an editor" , "Write a diary entry" ,"The School of the future had no books and no teacher. Write an crticle based on the lesson - The fun they had." , "Write a letter Plasing an order (page no. 13,13)" ] h1= input ("Press the number of the holiday homework to get it (Max is 4)\ " ) print (english_homework[int(h1)]) h1= input ("Press the number of the holiday homework to get it (Max is 4)\ " ) print (english_homework[int(h1)]) h1= input ("Press the number of the holiday homework to get it (Max is 4)\ " ) print (english_homework[int(h1)]) h1= input ("Press the number of the holiday homework to get it (Max is 4)\ " ) print (english_homework[int(h1)]) endkey = input ("{0}".format("-----Press ENTER to exit-----")) print ("exiting program...")
StarcoderdataPython
3207861
<reponame>rokj/django_basketball<filename>basketball/templatetags/replace.py # -*- coding: utf-8 -*- from django import template from datetime import datetime from django.conf import settings from common.functions import replace register = template.Library() register.filter("replace", replace)
StarcoderdataPython
104488
<filename>oozappa/_structure/_environment/fabfile/__init__.py # -*- coding:utf8 -*- from fabric.api import task, local, run, sudo, env from oozappa.config import get_config, procure_common_functions _settings = get_config() procure_common_functions() # your own task below
StarcoderdataPython
3275178
<reponame>jdmoorman/clapsolver<filename>setup.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" import platform import sys import setuptools from setuptools import Extension, find_packages, setup from setuptools.command.build_ext import build_ext with open("README.md") as readme_file: readme = readme_file.read() test_requirements = [ "codecov", "pytest", "pytest-cov", ] docs_requirements = [ "sphinx==1.8.5", ] setup_requirements = [ "numpy", "pytest-runner", "pybind11>=2.5.0", ] perf_requirements = [ "pyperf", "matplotlib", "numpy", "scipy", "munkres", "lap", "lapsolver", "lapjv", ] dev_requirements = [ *test_requirements, *docs_requirements, *setup_requirements, *perf_requirements, "pre-commit", "bumpversion>=0.5.3", "ipython>=7.5.0", "tox>=3.5.2", "twine>=1.13.0", "wheel>=0.33.1", ] requirements = [ "numpy", "scipy", "numba", ] extra_requirements = { "test": test_requirements, "docs": docs_requirements, "setup": setup_requirements, "dev": dev_requirements, "perf": perf_requirements, "all": [ *requirements, *test_requirements, *docs_requirements, *setup_requirements, *dev_requirements, *perf_requirements, ], } class get_pybind_include(object): """Helper class to determine the pybind11 include path The purpose of this class is to postpone importing pybind11 until it is actually installed, so that the ``get_include()`` method can be invoked. """ def __str__(self): import pybind11 return pybind11.get_include() class get_numpy_include(object): """Same as ``get_pybind_include``, but for ``numpy``""" def __str__(self): import numpy return numpy.get_include() # cf http://bugs.python.org/issue26689 def has_flag(compiler, flagname): """Return a boolean indicating whether a flag name is supported on the specified compiler. """ import os import tempfile with tempfile.NamedTemporaryFile("w", suffix=".cpp", delete=False) as f: f.write("int main (int argc, char **argv) { return 0; }") fname = f.name try: compiler.compile([fname], extra_postargs=[flagname]) except setuptools.distutils.errors.CompileError: return False finally: try: os.remove(fname) except OSError: pass return True def cpp_flag(compiler): """Return the -std=c++[11/14/17] compiler flag. The newer version is prefered over c++11 (when it is available). """ flags = ["-std=c++17", "-std=c++14", "-std=c++11"] for flag in flags: if has_flag(compiler, flag): return flag raise RuntimeError("Unsupported compiler -- at least C++11 support " "is needed!") class BuildExt(build_ext): """A custom build extension for adding compiler-specific options.""" c_opts = { "msvc": ["/EHsc", "/std:c++latest", "/arch:AVX2"], "unix": ["-march=native", "-ftree-vectorize"], } l_opts = { "msvc": [], "unix": [], } if sys.platform == "darwin": darwin_opts = ["-stdlib=libc++", "-mmacosx-version-min=10.7"] c_opts["unix"] += darwin_opts l_opts["unix"] += darwin_opts def build_extensions(self): ct = self.compiler.compiler_type opts = self.c_opts.get(ct, []) link_opts = self.l_opts.get(ct, []) if ct == "unix": opts.append(cpp_flag(self.compiler)) for ext in self.extensions: ext.define_macros = [ ("VERSION_INFO", '"{}"'.format(self.distribution.get_version())) ] ext.extra_compile_args = opts ext.extra_link_args = link_opts build_ext.build_extensions(self) setup( author="<NAME>", author_email="<EMAIL>", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research ", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering", ], cmdclass={"build_ext": BuildExt}, description="Fast constrained linear assignment problem (CLAP) solvers", ext_modules=[ Extension( "_augment", sorted( ["src/cpp/_augment.cpp"] ), # Sort input source files to ensure bit-for-bit reproducible builds include_dirs=[get_pybind_include()], # Path to pybind11 headers language="c++", ), Extension( "py_lapjv", sources=["src/cpp/py_lapjv.cpp"], include_dirs=[get_numpy_include(), "src/cpp"], language="c++", ), ], extras_require=extra_requirements, install_requires=requirements, license="MIT License", long_description=readme, long_description_content_type="text/markdown", include_package_data=True, keywords="laptools", name="laptools", packages=find_packages(where="src"), package_dir={"": "src"}, python_requires=">=3.6", setup_requires=setup_requirements, test_suite="tests", tests_require=test_requirements, url="https://github.com/jdmoorman/laptools", # Do not edit this string manually, always use bumpversion # Details in CONTRIBUTING.rst version="0.2.6", zip_safe=False, )
StarcoderdataPython
1685833
<filename>software/jetson/ArduCAM/MIPI_Camera/RPI/python/imx230_postProcess/postProcess.py import sys import cv2 as cv import numpy as np import os import arducam_mipicamera as arducam def align_down(size, align): return (size & ~((align)-1)) def align_up(size, align): return align_down(size + align - 1, align) def remove_padding(data, width, height, bit_width): buff = np.frombuffer(data, np.uint8) real_width = int(width / 8 * bit_width) align_width = align_up(real_width, 32) align_height = align_up(height, 16) buff = buff.reshape(align_height, align_width) buff = buff[:height, :real_width] buff = buff.reshape(height, real_width) buff = buff.astype(np.uint16) << 2 # now convert to real 10 bit camera signal for byte in range(4): buff[:, byte::5] |= ((buff[:, 4::5] >> ((4 - byte) * 2)) & 0b11) # delete the unused pix buff = np.delete(buff, np.s_[4::5], 1) return buff def choose_lens_table(i): switcher={ 0:'./lens_table/imx230/5344x4012.npy', 1:'./lens_table/imx230/2672x2004.npy', 2:'./lens_table/imx230/1920x1080.npy', 3:'./lens_table/imx230/1336x1000.npy', 4:'./lens_table/imx230/1280x960.npy', 5:'./lens_table/imx230/1280x720.npy', } return switcher.get(i,"Invalid lens_table path ") if __name__ == '__main__': camera = arducam.mipi_camera() print("Open camera...") mode =1 camera.init_camera() camera.set_mode(mode) # chose a camera mode which yields raw10 pixel format, see output of list_format utility fmt = camera.get_format() width = fmt.get("width") height = fmt.get("height") # print(choose_lens_table(mode)) print("Current resolution is {w}x{h}".format(w=width, h=height)) mask = np.load(choose_lens_table(mode)) rmask = mask[:, :, 0] g1mask = mask[:, :, 1] g2mask = mask[:, :, 2] bmask = mask[:, :, 3] rmask = cv.resize(rmask.astype(np.uint8), (width//2, height//2), interpolation=cv.INTER_LINEAR).astype(np.uint8) g1mask = cv.resize(g1mask.astype(np.uint8),(width//2, height//2), interpolation=cv.INTER_LINEAR).astype(np.uint8) g2mask = cv.resize(g2mask.astype(np.uint8), (width//2, height//2), interpolation=cv.INTER_LINEAR).astype(np.uint8) bmask = cv.resize(bmask.astype(np.uint8), (width//2, height//2), interpolation=cv.INTER_LINEAR).astype(np.uint8) rmask = (rmask[:, :] >> 5) + (rmask[:, :] & 0x1F) / 32 g1mask = (g1mask[:, :] >> 5) + (g1mask[:, :] & 0x1F) / 32 g2mask = (g2mask[:, :] >> 5) + (g2mask[:, :] & 0x1F) / 32 bmask = (bmask[:, :] >> 5) + (bmask[:, :] & 0x1F) / 32 while cv.waitKey(10) != 27: frame = camera.capture(encoding = 'raw') #stream = open("./2672x2004.raw", 'rb') #test #image = stream.read() image = remove_padding(frame.data,width,height,10 ) image[0::2, 0::2] = image[0::2, 0::2] * rmask image[0::2, 1::2] = image[0::2, 1::2] * g1mask image[1::2, 0::2] = image[1::2, 0::2] * g2mask image[1::2, 1::2] = image[1::2, 1::2] * bmask image = np.clip(image, 0, 1023) image = cv.cvtColor(image, 46) image = image >>2 image = image.astype(np.uint8) image = cv.resize(image, (640, 480)) cv.imshow("preview image", image) # Release memory del frame print("Close camera...") camera.close_camera()
StarcoderdataPython
1768800
# Databricks notebook source # DBTITLE 1,Define path variables import glow spark = glow.register(spark) vcf_path = '/databricks-datasets/genomics/variant-splitting/01_IN_altered_multiallelic.vcf' # COMMAND ---------- # DBTITLE 1,Load a VCF into a DataFrame original_variants_df = (spark.read .format("vcf") .option("includeSampleIds", False) .option("flattenInfoFields", True) .load(vcf_path)) # COMMAND ---------- # DBTITLE 1,Display display(original_variants_df) # COMMAND ---------- # DBTITLE 1,Split multi-allelic variants spark.conf.set("spark.sql.codegen.wholeStage", False) # turn off Spark SQL whole-stage code generation for faster performance. split_variants_df = glow.transform( "split_multiallelics", original_variants_df ) display(split_variants_df)
StarcoderdataPython
3395539
<gh_stars>0 """ Renders form for creating new users, and writes new users to database get(): Renders new user signup form post(): If user input is valid, creates new user """ import handler as handler import models.user as db_user # facilitates creation and query for users import helpers.form_data as validate_form # validates user's form data import helpers.password as pw_hash # creates and validates hashed passwords class SignUp(handler.Handler): """ Handles all requests pertaining to signing up new users """ def show_form(self, form_data=None): """ Display HTML form with any residual user-generated content """ self.render("signup.html", form_data=None) def get(self): """ Show form without any user data """ self.show_form() def post(self): """ If user input from form is valid, create new user in database """ # Logic inspired by Intro to Backend course materials error_flag = False username = self.request.get("username") password = self.request.get("password") verify = self.request.get("verify") email = self.request.get("email") params = dict(username=username, email=email) if not validate_form.username(username): params["error_username"] = "That is not a valid username" error_flag = True if db_user.User.by_username(username): params["error_username"] = "That user already exists" error_flag = True if not validate_form.password(password): params["error_password"] = "<PASSWORD>" error_flag = True elif password != verify: params["error_verify"] = "Passwords do not match" error_flag = True if not validate_form.email(email): params["error_email"] = "That is not a valid email" error_flag = True if error_flag: self.render("signup.html", **params) else: hashed_pw = pw_hash.make(username, password) usr = db_user.User.register(username, hashed_pw, email) self.set_secure_cookie("username", usr.username) self.redirect("/welcome")
StarcoderdataPython
151605
import napalm driver = napalm.get_network_driver("ios") conn_details = { "hostname" : 'sandbox-iosxe-recomm-1.cisco.com', "username" : 'developer', "password" : '<PASSWORD>', "optional_args": { "port": 22 } } device = driver(**conn_details) device.open() to_ping = [ "10.0.0.1" ] for host in to_ping: res = device.ping(host) print(f"Results for {host}") print(res) device.close()
StarcoderdataPython
174876
<filename>soft_delete_model_mixin/managers.py<gh_stars>0 from django.db import models from .querysets import SoftDeleteQuerySet class SoftDeleteModelManager(models.Manager): def get_queryset(self): return SoftDeleteQuerySet(self.model, using=self._db).not_deleted_items()
StarcoderdataPython
34806
from bgfactory.components.constants import HALIGN_LEFT, HALIGN_CENTER, HALIGN_RIGHT import pangocffi as pango PANGO_SCALE = 1024 def convert_to_pango_align(halign): if halign == HALIGN_LEFT: return pango.Alignment.LEFT elif halign == HALIGN_CENTER: return pango.Alignment.CENTER elif halign == HALIGN_RIGHT: return pango.Alignment.RIGHT else: raise ValueError('Horizontal alignment type {} not recognized'.format(halign)) def convert_extents(ext): return ext.x / PANGO_SCALE, ext.y / PANGO_SCALE, ext.width / PANGO_SCALE, ext.height / PANGO_SCALE
StarcoderdataPython
3357540
# coding: utf-8 import datetime from pytest import approx import scipy as sp from scipy.stats import multivariate_normal from ..linear import RandomWalk def test_rwodel(): """ RandomWalk Transition Model test """ # State related variables state_vec = sp.array([[3.0]]) old_timestamp = datetime.datetime.now() timediff = 1 # 1sec new_timestamp = old_timestamp + datetime.timedelta(seconds=timediff) time_interval = new_timestamp - old_timestamp # Model-related components noise_diff_coeff = 0.001 # m/s^2 F = sp.array([[1]]) Q = sp.array([[timediff]]) * noise_diff_coeff # Create and a Random Walk model object rw = RandomWalk(noise_diff_coeff=noise_diff_coeff) # Ensure ```rw.transfer_function(time_interval)``` returns F assert sp.array_equal(F, rw.matrix( timestamp=new_timestamp, time_interval=time_interval)) # Ensure ```rw.covar(time_interval)``` returns Q assert sp.array_equal(Q, rw.covar( timestamp=new_timestamp, time_interval=time_interval)) # Propagate a state vector through the model # (without noise) new_state_vec_wo_noise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval, noise=0) assert sp.array_equal(new_state_vec_wo_noise, F@state_vec) # Evaluate the likelihood of the predicted state, given the prior # (without noise) prob = rw.pdf(new_state_vec_wo_noise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_wo_noise.T, mean=sp.array(F@state_vec).ravel(), cov=Q) # Propagate a state vector throught the model # (with internal noise) new_state_vec_w_inoise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval) assert not sp.array_equal(new_state_vec_w_inoise, F@state_vec) # Evaluate the likelihood of the predicted state, given the prior # (with noise) prob = rw.pdf(new_state_vec_w_inoise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_w_inoise.T, mean=sp.array(F@state_vec).ravel(), cov=Q) # Propagate a state vector throught the model # (with external noise) noise = rw.rvs(timestamp=new_timestamp, time_interval=time_interval) new_state_vec_w_enoise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval, noise=noise) assert sp.array_equal(new_state_vec_w_enoise, F@state_vec+noise) # Evaluate the likelihood of the predicted state, given the prior # (with noise) prob = rw.pdf(new_state_vec_w_enoise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_w_enoise.T, mean=sp.array(F@state_vec).ravel(), cov=Q)
StarcoderdataPython
1727830
import scipy as sp import scipy.linalg as la import matplotlib.pyplot as plt def Problem1(): x = sp.linspace(-5, 5, 10) plt.plot(x, x*3, 'kD') plt.show() def Problem2(x): x = sp.arange(x) return sp.array([x*i for i in xrange(x)]) def Problem3(x): numbers = sp.arange(x) return sp.outer(number, numbers) def Problem4(): #Need another problem def Problem5(): matrix = sp.zeros((10,10)) matrix2 = sp.zeros((12,12)) vector1 = sp.ones(12) try: print "Setting a array row length {0} with vector size {1}".format(matrix[0].shape, vector1.shape) matrix[0] = vector1 except ValueError, err: print "ValueError: ", err try: print "Concatenating a {0} size array with {1} size array".format(matrix.shape, matrix2.shape) sp.concatenate((matrix, matrix2)) except ValueError, err: print "ValueError: ", err def Problem6(h): x = sp.arange(0, sp.pi, h) approx = sp.diff(sp.sin(x**2))/h x = sp.delete(x, 0) actual = 2 * sp.cos(x**2) * x print "Error: ", sp.absolute(actual - approx).max() plt.plot(x, approx, x, actual, x, approx - actual) plt.show() def Problem7(): x = sp.rand(10000) print "Mean: {0} (0.5 - {0} = {1})".format(x.mean(), 0.5 - x.mean()) print "Standard Deviation: {0} (1/sqrt(12) - {0} = {1})".format(x.std(), 1./sp.math.sqrt(12) - x.std()) def Problem8(n): """Verify the numerical accuracy of linalg.lstsq vs la.inv""" from scipy.linalg import lstsq, inv, norm from scipy import dot, rand, allclose A = rand(n, n) b = rand(n, 1) inv_method = dot(inv(A), b) lstsq_method = lstsq(A, b)[0] #check the accuracy return norm(inv_method - lstsq_method)
StarcoderdataPython
1736086
<filename>aisutils/daemon.py<gh_stars>10-100 #!/usr/bin/env python __author__ = '<NAME>' __version__ = '$Revision: 11839 $'.split()[1] __revision__ = __version__ __date__ = '$Date: 2009-05-05 17:34:17 -0400 (Tue, 05 May 2009) $'.split()[1] __copyright__ = '2007, 2008' __license__ = 'Apache 2.0' __doc__ = ''' Daemon tool to detach from the terminal @requires: U{epydoc<http://epydoc.sourceforge.net/>} > 3.0alpha3 @status: under development @since: 2008-Feb-04 @undocumented: __doc__ @todo: Clean way to shut down ''' import os def stdCmdlineOptions(parser,skip_short=False): ''' Standard command line options @param parser: OptionParser parser that will get the additional options ''' if skip_short: parser.add_option('--daemon' ,dest='daemon_mode' ,default=False,action='store_true' ,help='Detach from the terminal and run as a daemon service.' +' Returns the pid. [default: %default]') else: parser.add_option('-d' ,'--daemon' ,dest='daemon_mode' ,default=False,action='store_true' ,help='Detach from the terminal and run as a daemon service.' +' Returns the pid. [default: %default]') # FIX: have an option to make a default pid file location parser.add_option('--pid-file' ,dest='pid_file' ,default=None ,help='Where to write the process id when in daemon mode') def start(pid_file=None): ''' Jump to daemon mode. Must set either @param options: must have pid_file key ''' create() if pid_file != None: open(pid_file, 'w').write(str(os.getpid())+'\n') def create(): """ nohup like function to detach from the terminal. Best to call start(), not this. """ try: pid = os.fork() except OSError, except_params: raise Exception, "%s [%d]" % (except_params.strerror, except_params.errno) if (pid == 0): # The first child. os.setsid() try: pid = os.fork() # Fork a second child. except OSError, except_params: raise Exception, "%s [%d]" % (except_params.strerror, except_params.errno) if (pid != 0): os._exit(0) # Exit parent (the first child) of the second child. else: os._exit(0) # Exit parent of the first child. import resource # Resource usage information. maxfd = resource.getrlimit(resource.RLIMIT_NOFILE)[1] if (maxfd == resource.RLIM_INFINITY): maxfd = 1024 # Iterate through and close all file descriptors. if True: for fd in range(0, maxfd): try: os.close(fd) except OSError: # ERROR, fd wasn't open to begin with (ignored) pass # Send all output to /dev/null - FIX: send it to a log file os.open('/dev/null', os.O_RDWR) os.dup2(0, 1) os.dup2(0, 2) return (0)
StarcoderdataPython
1745445
import os from glob import glob from setuptools import setup package_name = 'pybullet_ros' submodules = [os.path.join(package_name, sub) for sub in ['plugins', 'sdf']] data_files = [ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ] def glob_recursive(data_files, directory): files = glob(directory+'*.*') data_files.append((os.path.join('share', package_name, directory), files)) subdirectories = glob(directory+'*/') if (subdirectories == []): return else: for dir in subdirectories: glob_recursive(data_files, dir) data_directories = ['launch', 'config', 'scripts', 'config', 'common'] for directory in data_directories: glob_recursive(data_files, directory) setup( name=package_name, version='0.0.1', packages=[package_name] + submodules, data_files=data_files, install_requires=['setuptools'], zip_safe=True, maintainer='jasonx', maintainer_email='59<EMAIL>', description='ROS2 wrapper for pybullet simulator', license='MIT', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'pybullet_ros_wrapper = pybullet_ros.pybullet_ros_wrapper:main' ], }, )
StarcoderdataPython
1769341
<filename>users/urls.py from django.urls import path from .api import CheckVerificationCodeView, EmailView urlpatterns = [ path("user/email/", EmailView.as_view(), name="send-verification-code"), path( "user/email/check/", CheckVerificationCodeView.as_view(), name="check-verification-code", ), ]
StarcoderdataPython
3273577
<filename>exasol_advanced_analytics_framework/deployment/scripts_deployer.py import pyexasol import logging from jinja2 import Environment, PackageLoader, select_autoescape from exasol_advanced_analytics_framework.deployment import constants, utils from exasol_advanced_analytics_framework.deployment.bundle_lua_scripts import \ BundleLuaScripts logger = logging.getLogger(__name__) class ScriptsDeployer: def __init__(self, language_alias: str, schema: str, pyexasol_conn: pyexasol.ExaConnection): self._language_alias = language_alias self._schema = schema self._pyexasol_conn = pyexasol_conn logger.debug(f"Init {ScriptsDeployer.__name__}.") def _open_schema(self) -> None: queries = ["CREATE SCHEMA IF NOT EXISTS {schema_name}", "OPEN SCHEMA {schema_name}"] for query in queries: self._pyexasol_conn.execute(query.format(schema_name=self._schema)) logger.debug(f"Schema {self._schema} is opened.") def _deploy_udf_scripts(self) -> None: for udf_call_src, template_src in constants.UDF_CALL_TEMPLATES.items(): udf_content = constants.SOURCE_DIR.joinpath( udf_call_src).read_text() udf_query = utils.load_and_render_statement( template_src, script_content=udf_content, language_alias=self._language_alias) self._pyexasol_conn.execute(udf_query) logger.debug(f"UDF statement of the template " f"{template_src} is executed.") def _deploy_lua_scripts(self) -> None: with open(constants.LUA_SCRIPT_OUTPUT, "r") as file: lua_query = file.read() self._pyexasol_conn.execute(lua_query) logger.debug(f"The Lua statement of the template " f"{constants.LUA_SCRIPT_TEMPLATE} is executed.") def deploy_scripts(self) -> None: self._open_schema() self._deploy_udf_scripts() self._deploy_lua_scripts() logger.debug(f"Scripts are deployed.") @classmethod def run(cls, dsn: str, user: str, password: str, schema: str, language_alias: str, develop: bool): if develop: BundleLuaScripts.save_statement() pyexasol_conn = pyexasol.connect(dsn=dsn, user=user, password=password) scripts_deployer = cls(language_alias, schema, pyexasol_conn) scripts_deployer.deploy_scripts()
StarcoderdataPython
7703
import tensorflow as tf import numpy as np from graphsage.models import FCPartition from graphsage.partition_train import construct_placeholders from graphsage.utils import load_graph_data, load_embedded_data, load_embedded_idmap flags = tf.app.flags FLAGS = flags.FLAGS # flags.DEFINE_integer('dim_1', 128, 'Size of output dim (final is 2x this, if using concat)') # DIR = 'trained_models' # MODEL = 'partition' # with tf.Session() as sess: # new_saver = tf.train.import_meta_graph(DIR+'/'+MODEL+'.ckpt.meta') # new_saver.restore(sess, tf.train.latest_checkpoint(DIR + '/./')) # new_saver.run() # print(new_saver) def predict(train_data, id_map): num_classes = 3 placeholders = construct_placeholders(num_classes) placeholders['features'] = train_data # feed_dict = dict() # train_data = train_data.astype('float32') # feed_dict.update({placeholders['features']: train_data}) dim = [] # print("f:{}".format(len(train_data[0]))) dim.append(len(train_data[0])) dim.append(FLAGS.dim_1) dim.append(num_classes) model = FCPartition(placeholders, dim) sess = tf.Session() model.load(sess) results = model.predict() results_np = results.eval(session=sess) # print(results.eval(session=sess)) # print(results_np.shape) id_map = id_map.astype('int') results_np = np.expand_dims(results_np, axis=1) results_np = np.insert(results_np, 0, id_map, axis=1) results_np = results_np[results_np[:,0].argsort()] print(results_np) np.save(FLAGS.outDir+'/predict_predict.npy', results_np) def main(): print("load data ...") train_data = load_embedded_data(FLAGS.train_prefix) id_map = load_embedded_idmap(FLAGS.train_prefix) predict(train_data, id_map) if __name__ == '__main__': main()
StarcoderdataPython
176545
<reponame>Duke-GCB/bespin-api # -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2018-06-15 15:37 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data', '0051_auto_20180615_1536'), ] operations = [ migrations.AlterField( model_name='jobquestionnairetype', name='tag', field=models.SlugField(help_text='Unique tag for specifying a questionnaire for a workflow version', unique=True), ), migrations.AlterField( model_name='workflow', name='tag', field=models.SlugField(help_text='Unique tag to represent this workflow', unique=True), ), ]
StarcoderdataPython