id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
20004
import os import sys from typing import Iterable from jinja2 import Environment, FileSystemLoader, Template import config as cfg from . import app_root_dir, doc_root_dir, resource_dir, template_dir _usage = "Usage: generate.py <onprem|aws|gcp|azure|k8s|alibabacloud|oci|programming|saas>" def load_tmpl(tmpl: str) -> Template: env = Environment(loader=FileSystemLoader(template_dir())) env.filters["up_or_title"] = up_or_title return env.get_template(tmpl) def up_or_title(pvd: str, s: str) -> str: if s in cfg.UPPER_WORDS.get(pvd, ()): return s.upper() if s in cfg.TITLE_WORDS.get(pvd, {}): return cfg.TITLE_WORDS[pvd][s] return s.title() def gen_classes(pvd: str, typ: str, paths: Iterable[str]) -> str: """Generate all service node classes based on resources paths with class templates.""" tmpl = load_tmpl(cfg.TMPL_MODULE) # TODO: extract the gen class metas for sharing # TODO: independent function for generating all pvd/typ/paths pairs def _gen_class_meta(path: str) -> dict: base = os.path.splitext(path)[0] name = "".join([up_or_title(pvd, s) for s in base.split("-")]) return {"name": name, "icon": path} metas = map(_gen_class_meta, paths) aliases = cfg.ALIASES[pvd][typ] if typ in cfg.ALIASES[pvd] else {} return tmpl.render(pvd=pvd, typ=typ, metas=metas, aliases=aliases) def gen_apidoc(pvd: str, typ_paths: dict) -> str: tmpl = load_tmpl(cfg.TMPL_APIDOC) # TODO: remove def _gen_class_name(path: str) -> str: base = os.path.splitext(path)[0] name = "".join([up_or_title(pvd, s) for s in base.split("-")]) return name typ_classes = {} for typ, paths in sorted(typ_paths.items()): typ_classes[typ] = [] for name in map(_gen_class_name, paths): alias = cfg.ALIASES[pvd].get(typ, {}).get(name) typ_classes[typ].append({"name": name, "alias": alias}) return tmpl.render(pvd=pvd, typ_classes=typ_classes) def make_module(pvd: str, typ: str, classes: str) -> None: """Create a module file""" mod_path = os.path.join(app_root_dir(pvd), f"{typ}.py") with open(mod_path, "w+") as f: f.write(classes) def make_apidoc(pvd: str, content: str) -> None: """Create an api documentation file""" mod_path = os.path.join(doc_root_dir(), f"{pvd}.md") with open(mod_path, "w+") as f: f.write(content) def generate(pvd: str) -> None: """Generates a service node classes.""" typ_paths = {} for root, _, files in os.walk(resource_dir(pvd)): # Extract the names and paths from resources. files.sort() pngs = list(filter(lambda f: f.endswith(".png"), files)) paths = list(filter(lambda f: "rounded" not in f, pngs)) # Skip the top-root directory. typ = os.path.basename(root) if typ == pvd: continue classes = gen_classes(pvd, typ, paths) make_module(pvd, typ, classes) typ_paths[typ] = paths # Build API documentation apidoc = gen_apidoc(pvd, typ_paths) make_apidoc(pvd, apidoc) if __name__ == "__main__": pvd = sys.argv[1] if pvd not in cfg.PROVIDERS: sys.exit() generate(pvd)
StarcoderdataPython
3323330
<reponame>ZTjack/tesseract.js ''' @Author: Jack @Date: 2020-04-02 12:55:27 @LastEditors: Jack @LastEditTime: 2020-04-02 13:46:23 @Description: 把一张图片从歪的变成正的,方便读取信息 http://developers.goalist.co.jp/entry/2019/02/13/150126 ''' import cv2 # opencv-python import numpy as np from skimage.filters import threshold_local # scikit-image import imutils from matplotlib import pyplot as plt def show_img(opencv_img): image = cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB) pixels = np.array(image) plt.imshow(pixels) plt.show() def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right poi # nt will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # return the warped image return warped # read the input image image = cv2.imread("test2.png") # clone the original image original_image = image.copy() # resize using ratio (old height to the new height) ratio = image.shape[0] / 500.0 image = imutils.resize(image, height=500) # # change the color space to YUV image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV) # # grap only the Y component image_y = np.zeros(image_yuv.shape[0:2], np.uint8) image_y[:, :] = image_yuv[:, :, 0] # # blur the image to reduce high frequency noises image_blurred = cv2.GaussianBlur(image_y, (3, 3), 0) # show_img(image_blurred) # # find edges in the image edges = cv2.Canny(image_blurred, 50, 200, apertureSize=3) # show_img(edges) # # find contours contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # # draw all contours on the original image cv2.drawContours(image, contours, -1, (0, 255, 0), 1) # show_img(image) # # !! Attention !! Do not draw contours on the image at this point # # I have drawn all the contours just to show below image # # to collect all the detected polygons polygons = [] # loop over the contours for cnt in contours: # find the convex hull hull = cv2.convexHull(cnt) # compute the approx polygon and put it into polygons polygons.append(cv2.approxPolyDP(hull, 0.01 * cv2.arcLength(hull, True), False)) # # sort polygons in desc order of contour area # print(polygons) sortedPoly = sorted(polygons, key=cv2.contourArea, reverse=True) # # draw points of the intersection of only the largest polyogon with red color cv2.drawContours(image, sortedPoly[0], -1, (0, 0, 255), 5) # show_img(image) # # get the contours of the largest polygon in the image simplified_cnt = sortedPoly[0] simplified_cnt = simplified_cnt[:-1] # # check if the polygon has four point if len(simplified_cnt) == 4: # trasform the prospective of original image cropped_image = four_point_transform(original_image, simplified_cnt.reshape(4, 2) * ratio) # Binarize the cropped image gray_image = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY) T = threshold_local(gray_image, 11, offset=10, method="gaussian") binarized_image = (gray_image > T).astype("uint8") * 255 show_img(binarized_image) show_img(cropped_image) # cv.imwrite('binarized_image.jpg', binarized_image) # cv.imwrite('cropped_image.jpg', midpoint(cropped_image))
StarcoderdataPython
136983
# This file is part of Scapy # See http://www.secdev.org/projects/scapy for more informations # Copyright (C) <NAME> <<EMAIL>> # This program is published under a GPLv2 license """ Classes related to the EAP protocol. """ from __future__ import absolute_import from __future__ import print_function import struct from scapy.fields import BitField, ByteField, XByteField, ByteEnumField,\ ShortField, IntField, XIntField, ByteEnumField, StrLenField, XStrField,\ XStrLenField, XStrFixedLenField, LenField, FieldLenField, PacketField,\ PacketListField, ConditionalField, PadField from scapy.packet import Packet, Padding, bind_layers from scapy.layers.l2 import SourceMACField, Ether, CookedLinux, GRE, SNAP from scapy.utils import issubtype from scapy.config import conf from scapy.compat import orb, chb # # EAPOL # ######################################################################### # # EAPOL protocol version # IEEE Std 802.1X-2010 - Section 11.3.1 ######################################################################### # eapol_versions = { 0x1: "802.1X-2001", 0x2: "802.1X-2004", 0x3: "802.1X-2010", } ######################################################################### # # EAPOL Packet Types # IEEE Std 802.1X-2010 - Table 11.3 ######################################################################### # eapol_types = { 0x0: "EAP-Packet", # "EAPOL-EAP" in 801.1X-2010 0x1: "EAPOL-Start", 0x2: "EAPOL-Logoff", 0x3: "EAPOL-Key", 0x4: "EAPOL-Encapsulated-ASF-Alert", 0x5: "EAPOL-MKA", 0x6: "EAPOL-Announcement (Generic)", 0x7: "EAPOL-Announcement (Specific)", 0x8: "EAPOL-Announcement-Req" } class EAPOL(Packet): """ EAPOL - IEEE Std 802.1X-2010 """ name = "EAPOL" fields_desc = [ ByteEnumField("version", 1, eapol_versions), ByteEnumField("type", 0, eapol_types), LenField("len", None, "H") ] EAP_PACKET = 0 START = 1 LOGOFF = 2 KEY = 3 ASF = 4 def extract_padding(self, s): l = self.len return s[:l], s[l:] def hashret(self): return chb(self.type) + self.payload.hashret() def answers(self, other): if isinstance(other, EAPOL): if ((self.type == self.EAP_PACKET) and (other.type == self.EAP_PACKET)): return self.payload.answers(other.payload) return 0 def mysummary(self): return self.sprintf("EAPOL %EAPOL.type%") # # EAP # ######################################################################### # # EAP methods types # http://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-4 ######################################################################### # eap_types = { 0: "Reserved", 1: "Identity", 2: "Notification", 3: "Legacy Nak", 4: "MD5-Challenge", 5: "One-Time Password (OTP)", 6: "Generic Token Card (GTC)", 7: "Allocated - RFC3748", 8: "Allocated - RFC3748", 9: "RSA Public Key Authentication", 10: "DSS Unilateral", 11: "KEA", 12: "KEA-VALIDATE", 13: "EAP-TLS", 14: "Defender Token (AXENT)", 15: "RSA Security SecurID EAP", 16: "Arcot Systems EAP", 17: "EAP-Cisco Wireless", 18: "GSM Subscriber Identity Modules (EAP-SIM)", 19: "SRP-SHA1", 20: "Unassigned", 21: "EAP-TTLS", 22: "Remote Access Service", 23: "EAP-AKA Authentication", 24: "EAP-3Com Wireless", 25: "PEAP", 26: "MS-EAP-Authentication", 27: "Mutual Authentication w/Key Exchange (MAKE)", 28: "CRYPTOCard", 29: "EAP-MSCHAP-V2", 30: "DynamID", 31: "Rob EAP", 32: "Protected One-Time Password", 33: "MS-Authentication-TLV", 34: "SentriNET", 35: "EAP-Actiontec Wireless", 36: "Cogent Systems Biometrics Authentication EAP", 37: "AirFortress EAP", 38: "EAP-HTTP Digest", 39: "SecureSuite EAP", 40: "DeviceConnect EAP", 41: "EAP-SPEKE", 42: "EAP-MOBAC", 43: "EAP-FAST", 44: "ZoneLabs EAP (ZLXEAP)", 45: "EAP-Link", 46: "EAP-PAX", 47: "EAP-PSK", 48: "EAP-SAKE", 49: "EAP-IKEv2", 50: "EAP-AKA", 51: "EAP-GPSK", 52: "EAP-pwd", 53: "EAP-EKE Version 1", 54: "EAP Method Type for PT-EAP", 55: "TEAP", 254: "Reserved for the Expanded Type", 255: "Experimental", } ######################################################################### # # EAP codes # http://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-1 ######################################################################### # eap_codes = { 1: "Request", 2: "Response", 3: "Success", 4: "Failure", 5: "Initiate", 6: "Finish" } class EAP(Packet): """ RFC 3748 - Extensible Authentication Protocol (EAP) """ name = "EAP" fields_desc = [ ByteEnumField("code", 4, eap_codes), ByteField("id", 0), ShortField("len", None), ConditionalField(ByteEnumField("type", 0, eap_types), lambda pkt:pkt.code not in [ EAP.SUCCESS, EAP.FAILURE]), ConditionalField(ByteEnumField("desired_auth_type", 0, eap_types), lambda pkt:pkt.code == EAP.RESPONSE and pkt.type == 3), ConditionalField( StrLenField("identity", '', length_from=lambda pkt: pkt.len - 5), lambda pkt: pkt.code == EAP.RESPONSE and hasattr(pkt, 'type') and pkt.type == 1), ConditionalField( StrLenField("message", '', length_from=lambda pkt: pkt.len - 5), lambda pkt: pkt.code == EAP.REQUEST and hasattr(pkt, 'type') and pkt.type == 1) ] ######################################################################### # # EAP codes # http://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-1 ######################################################################### # REQUEST = 1 RESPONSE = 2 SUCCESS = 3 FAILURE = 4 INITIATE = 5 FINISH = 6 registered_methods = {} @classmethod def register_variant(cls): cls.registered_methods[cls.type.default] = cls @classmethod def dispatch_hook(cls, _pkt=None, *args, **kargs): if _pkt: c = orb(_pkt[0]) if c in [1, 2] and len(_pkt) >= 5: t = orb(_pkt[4]) return cls.registered_methods.get(t, cls) return cls def haslayer(self, cls): if cls == "EAP": if isinstance(self, EAP): return True elif issubtype(cls, EAP): if isinstance(self, cls): return True return super(EAP, self).haslayer(cls) def getlayer(self, cls, nb=1, _track=None, _subclass=True, **flt): return super(EAP, self).getlayer(cls, nb=nb, _track=_track, _subclass=True, **flt) def answers(self, other): if isinstance(other, EAP): if self.code == self.REQUEST: return 0 elif self.code == self.RESPONSE: if ((other.code == self.REQUEST) and (other.type == self.type)): return 1 elif other.code == self.RESPONSE: return 1 return 0 def mysummary(self): summary_str = "EAP %{eap_class}.code% %{eap_class}.type%".format( eap_class=self.__class__.__name__ ) if self.type == 1 and self.code == EAP.RESPONSE: summary_str += " %{eap_class}.identity%".format( eap_class=self.__class__.__name__ ) return self.sprintf(summary_str) def post_build(self, p, pay): if self.len is None: l = len(p) + len(pay) p = p[:2] + chb((l >> 8) & 0xff) + chb(l & 0xff) + p[4:] return p + pay def guess_payload_class(self, _): return Padding class EAP_MD5(EAP): """ RFC 3748 - "Extensible Authentication Protocol (EAP)" """ name = "EAP-MD5" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), FieldLenField("len", None, fmt="H", length_of="optional_name", adjust=lambda p, x: x + 6 + (p.value_size or 0)), ByteEnumField("type", 4, eap_types), FieldLenField("value_size", None, fmt="B", length_of="value"), XStrLenField("value", '', length_from=lambda p: p.value_size), XStrLenField("optional_name", '', length_from=lambda p: 0 if p.len is None or p.value_size is None else (p.len - p.value_size - 6)) ] class EAP_TLS(EAP): """ RFC 5216 - "The EAP-TLS Authentication Protocol" """ name = "EAP-TLS" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), FieldLenField("len", None, fmt="H", length_of="tls_data", adjust=lambda p, x: x + 10 if p.L == 1 else x + 6), ByteEnumField("type", 13, eap_types), BitField('L', 0, 1), BitField('M', 0, 1), BitField('S', 0, 1), BitField('reserved', 0, 5), ConditionalField(IntField('tls_message_len', 0), lambda pkt: pkt.L == 1), XStrLenField('tls_data', '', length_from=lambda pkt: 0 if pkt.len is None else pkt.len - (6 + 4 * pkt.L)) ] class EAP_TTLS(EAP): """ RFC 5281 - "Extensible Authentication Protocol Tunneled Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0)" """ name = "EAP-TTLS" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), FieldLenField("len", None, fmt="H", length_of="data", adjust=lambda p, x: x + 10 if p.L == 1 else x + 6), ByteEnumField("type", 21, eap_types), BitField("L", 0, 1), BitField("M", 0, 1), BitField("S", 0, 1), BitField("reserved", 0, 2), BitField("version", 0, 3), ConditionalField(IntField("message_len", 0), lambda pkt: pkt.L == 1), XStrLenField("data", "", length_from=lambda pkt: 0 if pkt.len is None else pkt.len - (6 + 4 * pkt.L)) ] class EAP_PEAP(EAP): """ draft-josefsson-pppext-eap-tls-eap-05.txt - "Protected EAP Protocol (PEAP)" """ name = "PEAP" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), FieldLenField("len", None, fmt="H", length_of="tls_data", adjust=lambda p, x: x + 10 if p.L == 1 else x + 6), ByteEnumField("type", 25, eap_types), BitField("L", 0, 1), BitField("M", 0, 1), BitField("S", 0, 1), BitField("reserved", 0, 3), BitField("version", 1, 2), ConditionalField(IntField("tls_message_len", 0), lambda pkt: pkt.L == 1), XStrLenField("tls_data", "", length_from=lambda pkt: 0 if pkt.len is None else pkt.len - (6 + 4 * pkt.L)) ] class EAP_FAST(EAP): """ RFC 4851 - "The Flexible Authentication via Secure Tunneling Extensible Authentication Protocol Method (EAP-FAST)" """ name = "EAP-FAST" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), FieldLenField("len", None, fmt="H", length_of="data", adjust=lambda p, x: x + 10 if p.L == 1 else x + 6), ByteEnumField("type", 43, eap_types), BitField('L', 0, 1), BitField('M', 0, 1), BitField('S', 0, 1), BitField('reserved', 0, 2), BitField('version', 0, 3), ConditionalField(IntField('message_len', 0), lambda pkt: pkt.L == 1), XStrLenField('data', '', length_from=lambda pkt: 0 if pkt.len is None else pkt.len - (6 + 4 * pkt.L)) ] class LEAP(EAP): """ Cisco LEAP (Lightweight EAP) https://freeradius.org/rfc/leap.txt """ name = "Cisco LEAP" fields_desc = [ ByteEnumField("code", 1, eap_codes), ByteField("id", 0), ShortField("len", None), ByteEnumField("type", 17, eap_types), ByteField('version', 1), XByteField('unused', 0), FieldLenField("count", None, "challenge_response", "B", adjust=lambda p, x: len(p.challenge_response)), XStrLenField("challenge_response", "", length_from=lambda p: 0 or p.count), StrLenField("username", "", length_from=lambda p: p.len - (8 + (0 or p.count))) ] ############################################################################# # IEEE 802.1X-2010 - MACsec Key Agreement (MKA) protocol ############################################################################# ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11.1 ######################################################################### # _parameter_set_types = { 1: "Live Peer List", 2: "Potential Peer List", 3: "MACsec SAK Use", 4: "Distributed SAK", 5: "Distributed CAK", 6: "KMD", 7: "Announcement", 255: "ICV Indicator" } # Used by MKAParamSet::dispatch_hook() to instantiate the appropriate class _param_set_cls = { 1: "MKALivePeerListParamSet", 2: "MKAPotentialPeerListParamSet", 3: "MKASAKUseParamSet", 4: "MKADistributedSAKParamSet", 255: "MKAICVSet", } class MACsecSCI(Packet): """ Secure Channel Identifier. """ ######################################################################### # # IEEE 802.1AE-2006 standard # Section 9.9 ######################################################################### # name = "SCI" fields_desc = [ SourceMACField("system_identifier"), ShortField("port_identifier", 0) ] def extract_padding(self, s): return "", s class MKAParamSet(Packet): """ Class from which every parameter set class inherits (except MKABasicParamSet, which has no "Parameter set type" field, and must come first in the list of parameter sets). """ MACSEC_DEFAULT_ICV_LEN = 16 EAPOL_MKA_DEFAULT_KEY_WRAP_LEN = 24 @classmethod def dispatch_hook(cls, _pkt=None, *args, **kargs): """ Returns the right parameter set class. """ cls = conf.raw_layer if _pkt is not None: ptype = orb(_pkt[0]) return globals().get(_param_set_cls.get(ptype), conf.raw_layer) return cls class MKABasicParamSet(Packet): """ Basic Parameter Set (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "Basic Parameter Set" fields_desc = [ ByteField("mka_version_id", 0), ByteField("key_server_priority", 0), BitField("key_server", 0, 1), BitField("macsec_desired", 0, 1), BitField("macsec_capability", 0, 2), BitField("param_set_body_len", 0, 12), PacketField("SCI", MACsecSCI(), MACsecSCI), XStrFixedLenField("actor_member_id", "", length=12), XIntField("actor_message_number", 0), XIntField("algorithm_agility", 0), PadField( XStrLenField( "cak_name", "", length_from=lambda pkt: (pkt.param_set_body_len - 28) ), 4, padwith=b"\x00" ) ] def extract_padding(self, s): return "", s class MKAPeerListTuple(Packet): """ Live / Potential Peer List parameter sets tuples (802.1X-2010, section 11.11). """ name = "Peer List Tuple" fields_desc = [ XStrFixedLenField("member_id", "", length=12), XStrFixedLenField("message_number", "", length=4), ] class MKALivePeerListParamSet(MKAParamSet): """ Live Peer List parameter sets (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "Live Peer List Parameter Set" fields_desc = [ PadField( ByteEnumField( "param_set_type", 1, _parameter_set_types ), 2, padwith=b"\x00" ), ShortField("param_set_body_len", 0), PacketListField("member_id_message_num", [], MKAPeerListTuple) ] class MKAPotentialPeerListParamSet(MKAParamSet): """ Potential Peer List parameter sets (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "Potential Peer List Parameter Set" fields_desc = [ PadField( ByteEnumField( "param_set_type", 2, _parameter_set_types ), 2, padwith=b"\x00" ), ShortField("param_set_body_len", 0), PacketListField("member_id_message_num", [], MKAPeerListTuple) ] class MKASAKUseParamSet(MKAParamSet): """ SAK Use Parameter Set (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "SAK Use Parameter Set" fields_desc = [ ByteEnumField("param_set_type", 3, _parameter_set_types), BitField("latest_key_an", 0, 2), BitField("latest_key_tx", 0, 1), BitField("latest_key_rx", 0, 1), BitField("old_key_an", 0, 2), BitField("old_key_tx", 0, 1), BitField("old_key_rx", 0, 1), BitField("plain_tx", 0, 1), BitField("plain_rx", 0, 1), BitField("X", 0, 1), BitField("delay_protect", 0, 1), BitField("param_set_body_len", 0, 12), XStrFixedLenField("latest_key_key_server_member_id", "", length=12), XStrFixedLenField("latest_key_key_number", "", length=4), XStrFixedLenField("latest_key_lowest_acceptable_pn", "", length=4), XStrFixedLenField("old_key_key_server_member_id", "", length=12), XStrFixedLenField("old_key_key_number", "", length=4), XStrFixedLenField("old_key_lowest_acceptable_pn", "", length=4) ] class MKADistributedSAKParamSet(MKAParamSet): """ Distributed SAK parameter set (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "Distributed SAK parameter set" fields_desc = [ ByteEnumField("param_set_type", 4, _parameter_set_types), BitField("distributed_an", 0, 2), BitField("confidentiality_offset", 0, 2), BitField("unused", 0, 4), ShortField("param_set_body_len", 0), XStrFixedLenField("key_number", "", length=4), ConditionalField( XStrFixedLenField("macsec_cipher_suite", "", length=8), lambda pkt: pkt.param_set_body_len > 28 ), XStrFixedLenField( "sak_aes_key_wrap", "", length=MKAParamSet.EAPOL_MKA_DEFAULT_KEY_WRAP_LEN ) ] class MKADistributedCAKParamSet(MKAParamSet): """ Distributed CAK Parameter Set (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "Distributed CAK parameter set" fields_desc = [ PadField( ByteEnumField( "param_set_type", 5, _parameter_set_types ), 2, padwith=b"\x00" ), ShortField("param_set_body_len", 0), XStrFixedLenField( "cak_aes_key_wrap", "", length=MKAParamSet.EAPOL_MKA_DEFAULT_KEY_WRAP_LEN ), XStrField("cak_key_name", "") ] class MKAICVSet(MKAParamSet): """ ICV (802.1X-2010, section 11.11). """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "ICV" fields_desc = [ PadField( ByteEnumField( "param_set_type", 255, _parameter_set_types ), 2, padwith=b"\x00" ), ShortField("param_set_body_len", 0), XStrFixedLenField("icv", "", length=MKAParamSet.MACSEC_DEFAULT_ICV_LEN) ] class MKAParamSetPacketListField(PacketListField): """ PacketListField that handles the parameter sets. """ PARAM_SET_LEN_MASK = 0b0000111111111111 def m2i(self, pkt, m): return MKAParamSet(m) def getfield(self, pkt, s): lst = [] remain = s while remain: len_bytes = struct.unpack("!H", remain[2:4])[0] param_set_len = self.__class__.PARAM_SET_LEN_MASK & len_bytes current = remain[:4 + param_set_len] remain = remain[4 + param_set_len:] current_packet = self.m2i(pkt, current) lst.append(current_packet) return remain, lst class MKAPDU(Packet): """ MACsec Key Agreement Protocol Data Unit. """ ######################################################################### # # IEEE 802.1X-2010 standard # Section 11.11 ######################################################################### # name = "MKPDU" fields_desc = [ PacketField("basic_param_set", "", MKABasicParamSet), MKAParamSetPacketListField("parameter_sets", [], MKAParamSet), ] def extract_padding(self, s): return "", s bind_layers(Ether, EAPOL, type=34958) bind_layers(Ether, EAPOL, dst='01:80:c2:00:00:03', type=34958) bind_layers(CookedLinux, EAPOL, proto=34958) bind_layers(GRE, EAPOL, proto=34958) bind_layers(EAPOL, EAP, type=0) bind_layers(SNAP, EAPOL, code=34958) bind_layers(EAPOL, MKAPDU, type=5)
StarcoderdataPython
133815
<filename>firefly/distributed/reference.py<gh_stars>100-1000 #coding:utf8 ''' Created on 2013-8-14 @author: lan (www.9miao.com) ''' from twisted.spread import pb from firefly.utils.services import Service class ProxyReference(pb.Referenceable): '''代理通道''' def __init__(self): '''初始化''' self._service = Service('proxy') def addService(self,service): '''添加一条服务通道''' self._service = service def remote_callChild(self, command,*arg,**kw): '''代理发送数据 ''' return self._service.callTarget(command,*arg,**kw)
StarcoderdataPython
3227947
#Faça um programa que leia um número inteiro e diga se ele é # ou não um número primo. tot = 0 num = int(input('Digite um numero: ')) for c in range(1,num + 1): if num % c == 0: print('\033[34m',end=' ') #se for divisivel tot += 1 # tot = tot + 1 else: print('\033[31m',end=' ') #se não for divisivel print('{}'.format (c),end=' ') print('\nO número {} foi divisivel {} vezes'.format(num,tot)) if tot == 2: print('É por isso que ele é PRIMO') else: print('Por isso ele NÃO É PRIMO')
StarcoderdataPython
1745167
<reponame>CMiksche/huntlib #!/usr/bin/env python import huntlib.data from unittest import TestCase class TestMultiReads(TestCase): def test_read_json(self): df = huntlib.data.read_json("support/*.json", lines=True) (rows, cols) = df.shape self.assertEqual(cols, 6, "The resulting DataFrame had the wrong number of columns.") self.assertEqual(rows, 3000015, "The resulting DataFrame had the wrong number of rows.") self.assertEqual(df.index.nunique(), 3000015, "DataFrame index values are not unique.") def test_read_csv(self): df = huntlib.data.read_csv("support/*.csv") (rows, cols) = df.shape self.assertEqual(cols, 3, "The resulting DataFrame had the wrong number of columns.") self.assertEqual(rows, 6, "The resulting DataFrame had the wrong number of rows.") self.assertEqual(df.index.nunique(), 6, "DataFrame index values are not unique.")
StarcoderdataPython
1620074
<reponame>costa86/pypi-scaffold from os import name from setuptools import setup #with open("README.md","r") as fh: # long_description = fh.read() name = 'special' setup( name=name, version='0.0.2', description='A short description', long_description="Please, refer to Project links to see the documentation guide for this project.", #long_description = long_description, #long_description_content_type = "text/markdown", py_modules=[name], package_dir={'': 'src'}, url="https://github.com/costa86/pypi-scaffold", author="<NAME>", author_email="<EMAIL>", license='MIT', classifiers=[ 'Programming Language :: Python :: 3.9', 'Operating System :: Microsoft :: Windows', 'Operating System :: Unix', 'Topic :: Scientific/Engineering :: GIS', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Development Status :: 5 - Production/Stable', 'Topic :: Utilities', 'Intended Audience :: Developers' ], keywords=[ 'GIS', 'latitude', 'longitude', 'coordinates', 'geolocation', 'maps' ], python_requires='>=3'#, # install_requires = [ # "lib1==1.2" # ] )
StarcoderdataPython
3389930
# -*- coding: utf-8 -*- """ Created on Thu May 10 14:36:16 2018 @author: Prodipta """ from logbook import Logger from collections import defaultdict from logbook import Logger from zipline.finance.blotter import Blotter from zipline.utils.input_validation import expect_types from zipline.assets import Asset from zipline.finance.cancel_policy import EODCancel log = Logger('LiveBlotter') warning_logger = Logger('LiveAlgoWarning') class LiveBlotter(Blotter): def __init__(self, data_frequency, broker): self.broker = broker self.data_frequency = data_frequency # these orders are aggregated by asset self.open_orders = defaultdict(list) # keep a dict of orders by their own id self.orders = {} # holding orders that have come in since the last event. self.new_orders = [] self.current_dt = None self.max_shares = int(1e+11) self.data_frequency = data_frequency self.cancel_policy = EODCancel() def __repr__(self): return """ {class_name}( open_orders={open_orders}, orders={orders}, new_orders={new_orders}, current_dt={current_dt}) """.strip().format(class_name=self.__class__.__name__, open_orders=self.open_orders, orders=self.orders, new_orders=self.new_orders, current_dt=self.current_dt) def set_date(self, dt): self.current_dt = dt @expect_types(asset=Asset) def order(self, asset, amount, style, tag): """Place an order. Parameters ---------- asset : zipline.assets.Asset The asset that this order is for. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. style : zipline.finance.execution.ExecutionStyle The execution style for the order. order_id : str, optional The unique identifier for this order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- amount > 0 :: Buy/Cover amount < 0 :: Sell/Short Market order: order(asset, amount) Limit order: order(asset, amount, style=LimitOrder(limit_price)) Stop order: order(asset, amount, style=StopOrder(stop_price)) StopLimit order: order(asset, amount, style=StopLimitOrder(limit_price, stop_price)) """ # something could be done with amount to further divide # between buy by share count OR buy shares up to a dollar amount # numeric == share count AND "$dollar.cents" == cost amount if amount == 0: # Don't bother placing orders for 0 shares. return None elif amount > self.max_shares: # Arbitrary limit of 100 billion (US) shares will never be # exceeded except by a buggy algorithm. raise OverflowError("Can't order more than %d shares" % self.max_shares) order_id = self.broker.order(asset, amount, style, tag) return order_id def cancel(self, order_id, relay_status=True): if order_id not in self.orders: return cur_order = self.orders[order_id] if cur_order.open: order_list = self.open_orders[cur_order.asset] if cur_order in order_list: order_list.remove(cur_order) if cur_order in self.new_orders: self.new_orders.remove(cur_order) cur_order.cancel() cur_order.dt = self.current_dt if relay_status: # we want this order's new status to be relayed out # along with newly placed orders. self.new_orders.append(cur_order) def cancel_all_orders_for_asset(self, asset, warn=False, relay_status=True): """ For a live blotter with EOD cancel policy we never have to do this """ raise ValueError('Unexpected cancel_all_orders_for_asset function call from blotter') def execute_cancel_policy(self, event): """ For a live blotter with EOD cancel policy we never have to do this """ raise ValueError('Unexpected execute_cancel_policy function call from blotter') def reject(self, order_id, reason=''): """ For a live blotter we never have to do this """ raise ValueError('Unexpected reject function call from blotter') def hold(self, order_id, reason=''): """ For a live blotter we never have to do this """ raise ValueError('Unexpected hold function call from blotter') def process_splits(self, splits): """ For a live blotter with EOD cancel policy we should never need this """ raise ValueError('Unexpected process_splits function call from blotter') def get_transactions(self, bar_data): """ Creates a list of transactions based on the current open orders, slippage model, and commission model. Parameters ---------- bar_data: zipline._protocol.BarData Notes ----- This method book-keeps the blotter's open_orders dictionary, so that it is accurate by the time we're done processing open orders. Returns ------- transactions_list: List transactions_list: list of transactions resulting from the current open orders. If there were no open orders, an empty list is returned. commissions_list: List commissions_list: list of commissions resulting from filling the open orders. A commission is an object with "asset" and "cost" parameters. closed_orders: List closed_orders: list of all the orders that have filled. """ closed_orders = [] transactions = [] commissions = [] if self.open_orders: for asset, asset_orders in iteritems(self.open_orders): slippage = self.slippage_models[type(asset)] for order, txn in \ slippage.simulate(bar_data, asset, asset_orders): commission = self.commission_models[type(asset)] additional_commission = commission.calculate(order, txn) if additional_commission > 0: commissions.append({ "asset": order.asset, "order": order, "cost": additional_commission }) order.filled += txn.amount order.commission += additional_commission order.dt = txn.dt transactions.append(txn) if not order.open: closed_orders.append(order) return transactions, commissions, closed_orders def prune_orders(self, closed_orders): """ Removes all given orders from the blotter's open_orders list. Parameters ---------- closed_orders: iterable of orders that are closed. Returns ------- None """ # remove all closed orders from our open_orders dict for order in closed_orders: asset = order.asset asset_orders = self.open_orders[asset] try: asset_orders.remove(order) except ValueError: continue # now clear out the assets from our open_orders dict that have # zero open orders for asset in list(self.open_orders.keys()): if len(self.open_orders[asset]) == 0: del self.open_orders[asset]
StarcoderdataPython
1797917
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from zoo.chronos.model.forecast.abstract import Forecaster from zoo.chronos.model.forecast.utils import np_to_creator, set_pytorch_seed from zoo.chronos.model.tcn import TCNPytorch from zoo.chronos.model.tcn import model_creator, optimizer_creator, loss_creator from zoo.orca.data import XShards from zoo.orca.learn.pytorch.estimator import Estimator from zoo.orca.learn.metrics import MSE, MAE import torch import numpy as np import os ORCA_METRICS = {"mse": MSE, "mae": MAE} class TCNForecaster(Forecaster): """ Example: >>> #The dataset is split into x_train, x_val, x_test, y_train, y_val, y_test >>> forecaster = TCNForecaster(past_seq_len=24, future_seq_len=5, input_feature_num=1, output_feature_num=1, ...) >>> forecaster.fit(x_train, y_train) >>> forecaster.to_local() # if you set distributed=True >>> test_pred = forecaster.predict(x_test) >>> test_eval = forecaster.evaluate(x_test, y_test) >>> forecaster.save({ckpt_name}) >>> forecaster.restore({ckpt_name}) """ def __init__(self, past_seq_len, future_seq_len, input_feature_num, output_feature_num, num_channels=[30]*7, kernel_size=3, repo_initialization=True, dropout=0.1, optimizer="Adam", loss="mse", lr=0.001, metrics=["mse"], seed=None, distributed=False, workers_per_node=1, distributed_backend="torch_distributed"): """ Build a TCN Forecast Model. TCN Forecast may fall into local optima. Please set repo_initialization to False to alleviate the issue. You can also change a random seed to work around. :param past_seq_len: Specify the history time steps (i.e. lookback). :param future_seq_len: Specify the output time steps (i.e. horizon). :param input_feature_num: Specify the feature dimension. :param output_feature_num: Specify the output dimension. :param num_channels: Specify the convolutional layer filter number in TCN's encoder. This value defaults to [30]*7. :param kernel_size: Specify convolutional layer filter height in TCN's encoder. This value defaults to 3. :param repo_initialization: if to use framework default initialization, True to use paper author's initialization and False to use the framework's default initialization. The value defaults to True. :param dropout: Specify the dropout close possibility (i.e. the close possibility to a neuron). This value defaults to 0.1. :param optimizer: Specify the optimizer used for training. This value defaults to "Adam". :param loss: Specify the loss function used for training. This value defaults to "mse". You can choose from "mse", "mae" and "huber_loss". :param lr: Specify the learning rate. This value defaults to 0.001. :param metrics: A list contains metrics for evaluating the quality of forecasting. You may only choose from "mse" and "mae" for a distributed forecaster. You may choose from "mse", "me", "mae", "mse","rmse","msle","r2", "mpe", "mape", "mspe", "smape", "mdape" and "smdape" for a non-distributed forecaster. :param seed: int, random seed for training. This value defaults to None. :param distributed: bool, if init the forecaster in a distributed fashion. If True, the internal model will use an Orca Estimator. If False, the internal model will use a pytorch model. The value defaults to False. :param workers_per_node: int, the number of worker you want to use. The value defaults to 1. The param is only effective when distributed is set to True. :param distributed_backend: str, select from "torch_distributed" or "horovod". The value defaults to "torch_distributed". """ # random seed setting set_pytorch_seed(seed) # config setting self.data_config = { "past_seq_len": past_seq_len, "future_seq_len": future_seq_len, "input_feature_num": input_feature_num, "output_feature_num": output_feature_num } self.config = { "lr": lr, "loss": loss, "num_channels": num_channels, "kernel_size": kernel_size, "repo_initialization": repo_initialization, "optim": optimizer, "dropout": dropout } self.metrics = metrics # create internal implementation self.internal = None self.distributed = distributed if self.distributed: def model_creator_tcn(config): set_pytorch_seed(seed) model = model_creator({**self.config, **self.data_config}) model.train() return model self.internal = Estimator.from_torch(model=model_creator_tcn, optimizer=optimizer_creator, loss=loss_creator, metrics=[ORCA_METRICS[name]() for name in self.metrics], backend=distributed_backend, use_tqdm=True, config={"lr": lr}, workers_per_node=workers_per_node) else: self.internal = TCNPytorch(check_optional_config=False) def fit(self, x, y, epochs=1, batch_size=32): # TODO: give an option to close validation during fit to save time. """ Fit(Train) the forecaster. :param x: A numpy array with shape (num_samples, lookback, feature_dim). lookback and feature_dim should be the same as past_seq_len and input_feature_num. :param y: A numpy array with shape (num_samples, horizon, target_dim). horizon and target_dim should be the same as future_seq_len and output_feature_num. :param epochs: Number of epochs you want to train. The value defaults to 1. :param batch_size: Number of batch size you want to train. The value defaults to 32. :return: Evaluation results on validation data. """ # input check validation_data = (x, y) self.config["batch_size"] = batch_size self._check_data(x, y) # fit on internal if self.distributed: return self.internal.fit(data=np_to_creator((x, y)), epochs=epochs, batch_size=batch_size) else: return self.internal.fit_eval(data=(x, y), validation_data=validation_data, epochs=epochs, metric=self.metrics[0], # only use the first metric **self.config) def _check_data(self, x, y): assert self.data_config["past_seq_len"] == x.shape[-2], \ "The x shape should be (batch_size, past_seq_len, input_feature_num), \ Got past_seq_len of {} in config while x input shape of {}."\ .format(self.data_config["past_seq_len"], x.shape[-2]) assert self.data_config["future_seq_len"] == y.shape[-2], \ "The y shape should be (batch_size, future_seq_len, output_feature_num), \ Got future_seq_len of {} in config while y input shape of {}."\ .format(self.data_config["future_seq_len"], y.shape[-2]) assert self.data_config["input_feature_num"] == x.shape[-1],\ "The x shape should be (batch_size, past_seq_len, input_feature_num), \ Got input_feature_num of {} in config while x input shape of {}."\ .format(self.data_config["input_feature_num"], x.shape[-1]) assert self.data_config["output_feature_num"] == y.shape[-1], \ "The y shape should be (batch_size, future_seq_len, output_feature_num), \ Got output_feature_num of {} in config while y input shape of {}."\ .format(self.data_config["output_feature_num"], y.shape[-1]) def predict(self, x, batch_size=32): """ Predict using a trained forecaster. if you want to predict on a single node(which is common practice), please call .to_local().predict(x, ...) :param x: A numpy array with shape (num_samples, lookback, feature_dim). :param batch_size: predict batch size. The value will not affect predict result but will affect resources cost(e.g. memory and time). :return: A numpy array with shape (num_samples, lookback, feature_dim). """ if self.distributed: # map input to a xshard x = XShards.partition(x) def transform_to_dict(train_data): return {"x": train_data} x = x.transform_shard(transform_to_dict) # predict with distributed fashion yhat = self.internal.predict(x, batch_size=batch_size) # collect result from xshard to numpy yhat = yhat.collect() yhat = np.concatenate([yhat[i]['prediction'] for i in range(len(yhat))], axis=0) if yhat.ndim == 2: yhat = np.expand_dims(yhat, axis=2) return yhat else: if not self.internal.model_built: raise RuntimeError("You must call fit or restore first before calling predict!") return self.internal.predict(x, batch_size=batch_size) def predict_with_onnx(self, x, batch_size=32, dirname=None): """ Predict using a trained forecaster with onnxruntime. The method can only be used when forecaster is a non-distributed version. :param x: A numpy array with shape (num_samples, lookback, feature_dim). :param batch_size: predict batch size. The value will not affect predict result but will affect resources cost(e.g. memory and time). :param dirname: The directory to save onnx model file. This value defaults to None for no saving file. :return: A numpy array with shape (num_samples, lookback, feature_dim). """ if self.distributed: raise NotImplementedError("ONNX inference has not been supported for distributed\ forecaster. You can call .to_local() to transform the\ forecaster to a non-distributed version.") if not self.internal.model_built: raise RuntimeError("You must call fit or restore first before calling predict!") return self.internal.predict_with_onnx(x, batch_size=batch_size, dirname=dirname) def evaluate(self, x, y, batch_size=32, multioutput="raw_values"): """ Evaluate using a trained forecaster. Please note that evaluate result is calculated by scaled y and yhat. If you scaled your data (e.g. use .scale() on the TSDataset) please follow the following code snap to evaluate your result if you need to evaluate on unscaled data. if you want to evaluate on a single node(which is common practice), please call .to_local().evaluate(x, y, ...) >>> from zoo.automl.common.metrics import Evaluator >>> y_hat = forecaster.predict(x) >>> y_hat_unscaled = tsdata.unscale_numpy(y_hat) # or other customized unscale methods >>> y_unscaled = tsdata.unscale_numpy(y) # or other customized unscale methods >>> Evaluator.evaluate(metric=..., y_unscaled, y_hat_unscaled, multioutput=...) :param x: A numpy array with shape (num_samples, lookback, feature_dim). :param y: A numpy array with shape (num_samples, horizon, target_dim). :param batch_size: evaluate batch size. The value will not affect evaluate result but will affect resources cost(e.g. memory and time). :param multioutput: Defines aggregating of multiple output values. String in ['raw_values', 'uniform_average']. The value defaults to 'raw_values'.The param is only effective when the forecaster is a non-distribtued version. :return: A list of evaluation results. Each item represents a metric. """ if self.distributed: return self.internal.evaluate(data=np_to_creator((x, y)), batch_size=batch_size) else: if not self.internal.model_built: raise RuntimeError("You must call fit or restore first before calling evaluate!") return self.internal.evaluate(x, y, metrics=self.metrics, multioutput=multioutput, batch_size=batch_size) def evaluate_with_onnx(self, x, y, batch_size=32, dirname=None, multioutput="raw_values"): """ Evaluate using a trained forecaster with onnxruntime. The method can only be used when forecaster is a non-distributed version. Please note that evaluate result is calculated by scaled y and yhat. If you scaled your data (e.g. use .scale() on the TSDataset) please follow the following code snap to evaluate your result if you need to evaluate on unscaled data. >>> from zoo.automl.common.metrics import Evaluator >>> y_hat = forecaster.predict(x) >>> y_hat_unscaled = tsdata.unscale_numpy(y_hat) # or other customized unscale methods >>> y_unscaled = tsdata.unscale_numpy(y) # or other customized unscale methods >>> Evaluator.evaluate(metric=..., y_unscaled, y_hat_unscaled, multioutput=...) :param x: A numpy array with shape (num_samples, lookback, feature_dim). :param y: A numpy array with shape (num_samples, horizon, target_dim). :param batch_size: evaluate batch size. The value will not affect evaluate result but will affect resources cost(e.g. memory and time). :param dirname: The directory to save onnx model file. This value defaults to None for no saving file. :param multioutput: Defines aggregating of multiple output values. String in ['raw_values', 'uniform_average']. The value defaults to 'raw_values'. :return: A list of evaluation results. Each item represents a metric. """ if self.distributed: raise NotImplementedError("ONNX inference has not been supported for distributed\ forecaster. You can call .to_local() to transform the\ forecaster to a non-distributed version.") if not self.internal.model_built: raise RuntimeError("You must call fit or restore first before calling evaluate!") return self.internal.evaluate_with_onnx(x, y, metrics=self.metrics, dirname=dirname, multioutput=multioutput, batch_size=batch_size) def save(self, checkpoint_file): """ Save the forecaster. :param checkpoint_file: The location you want to save the forecaster. """ if self.distributed: self.internal.save(checkpoint_file) else: if not self.internal.model_built: raise RuntimeError("You must call fit or restore first before calling save!") self.internal.save(checkpoint_file) def restore(self, checkpoint_file): """ restore the forecaster. :param checkpoint_file: The checkpoint file location you want to load the forecaster. """ if self.distributed: self.internal.load(checkpoint_file) else: self.internal.restore(checkpoint_file) def to_local(self): """ Transform a distributed forecaster to a local (non-distributed) one. Common practice is to use distributed training (fit) and predict/ evaluate with onnx or other frameworks on a single node. To do so, you need to call .to_local() and transform the forecaster to a non- distributed one. The optimizer is refreshed, incremental training after to_local might have some problem. :return: a forecaster instance. """ # TODO: optimizer is refreshed, which is not reasonable if not self.distributed: raise RuntimeError("The forecaster has become local.") model = self.internal.get_model() state = { "config": {**self.data_config, **self.config}, "model": model.state_dict(), "optimizer": optimizer_creator(model, {"lr": self.config["lr"]}).state_dict(), } self.shutdown() self.internal = TCNPytorch(check_optional_config=False) self.internal.load_state_dict(state) self.distributed = False return self def shutdown(self, force=False): """ Only used when you what to shut down a distributed forecaster's workers and releases resources. :param force: bool, if force to shut down the resources. """ if not self.distributed: raise RuntimeError("A local forecaster does not need shutdown.") self.internal.shutdown(force)
StarcoderdataPython
3231468
<gh_stars>0 from abc import ABC, abstractmethod ALLOWED_EXTENSIONS = ['html', 'csv', 'mp3', 'mp4', 'txt'] class AbstractRenderer(ABC): @abstractmethod def render(self): pass class HTMLRenderer(AbstractRenderer): def render(self): print("Render using HTMLRemderer.") class Mp4Renderer(AbstractRenderer): def render(self): print("Render mp3 streamer.") class Mp3Renderer(AbstractRenderer): def render(self): print("Render mp4 streamer.") class FileHandler: created_files = list() def __init__(self, filename): self.filename = filename @property def extension(self): return self.filename.split('.')[-1] @classmethod def create(cls, filename): if filename.split('.')[-1] not in ALLOWED_EXTENSIONS: print(f"{filename}: Not accepted") return False print(f"{filename}: Accepted successfully.") FileHandler.created_files.append(filename) return cls(filename) def render(self): handler_dict = { "html": HTMLRenderer, 'mp3': Mp3Renderer, 'mp4': Mp4Renderer } handler = handler_dict[self.extension] return handler().render() if __name__ == "__main__": f1 = FileHandler.create('doc.pdf') f2 = FileHandler.create('doc.html') f3 = FileHandler.create('doc.mp2') f4 = FileHandler.create('doc.mp4') for file_name in FileHandler.created_files: FileHandler(file_name).render()
StarcoderdataPython
4835441
from models import Fetcher class ArtisanAndRecipe(): def getArtisan(self, server="eu", artisanSlug='blacksmith', locale="en_US"): self.route = '/d3/data/artisan/{}'.format(artisanSlug) return Fetcher.fetchData( server=server, locale=locale, route=self.route) def getRecipe(self, server="eu", artisanSlug='blacksmith', recipeSlug='apprentice-flamberge', locale="en_US"): self.route = '/d3/data/artisan/{}/recipe/{}'.format( artisanSlug, recipeSlug) return Fetcher.fetchData( server=server, locale=locale, route=self.route)
StarcoderdataPython
4822366
<gh_stars>1-10 #Only for use in Python 2.6.0a2 and later from __future__ import print_function import sys import os dirpath = os.path.dirname(os.path.abspath(__file__)) sys.path.append( '.' ) sys.path.append( dirpath + '/../' ) from linkedList.linkedList import LinkedList class ArrayStack: def __init__(self, data=None): self.stack = [None] * 10 if data is None else [data] + [None] * 9 self.size = 1 if data is not None else 0 self.top = 0 if data is not None else -1 def isEmpty(self): if self.top == -1: return True return False def peek(self): if self.isEmpty(): print("Stack is empty") return None return self.stack[self.top] def push(self, x): self.top += 1 if self.top > len(self.stack)-1: self.resize() self.stack[self.top] = x self.size += 1 def pop(self): if self.isEmpty(): print("Stack is empty") return None self.top -= 1 self.size -= 1 return self.stack[self.top+1] def printStack(self): print("Stack is:", end=" ") for i in range(self.size): print(self.stack[i], end=" ") print("") def resize(self): newArr = [None] * (len(self.stack)*2) for i in range(0, len(self.stack)): newArr[i] = self.stack[i] self.stack = newArr class LinkedListStack: def __init__(self, data=None): self.stack = LinkedList(data) self.size = self.stack.size def isEmpty(self): if self.size <= 0: return True return False def peek(self): return self.stack.head.data def push(self, x): self.stack.insertHead(x) self.size += 1 def pop(self): x = self.stack.head.data self.stack.deleteHead() return x def printStack(self): print("Stack", end="") self.stack.printList() def checkBalancedParentheses(s): stack = ArrayStack() for i in s: if i == "(" or i == "{" or i == "[": stack.push(i) elif i == ")" or i == "}" or i =="]": if stack.isEmpty(): return False x = stack.pop() if i == ")" and x != "(": return False if i == "}" and x != "{": return False if i == "]" and x != "]": return False if stack.isEmpty(): return True else: return False def evalPostfix(exp): s = LinkedListStack() for i in exp: if i == "*" or i == "/" or i == "+" or i == "-": op2 = s.pop() op1 = s.pop() res = 0; if i == "*": res = op1 * op2 elif i == "/": res = op1 / op2 elif i == "+": res = op1 + op2 elif i == "-": res = op1 - op2 s.push(res) else: s.push(int(i)) return s.pop() def evalPrefix(exp): s = LinkedListStack() for x in range(len(exp), 0, -1): i = exp[x - 1] if i == "*" or i == "/" or i == "+" or i == "-": op1 = s.pop() op2 = s.pop() res = 0; if i == "*": res = op1 * op2 elif i == "/": res = op1 / op2 elif i == "+": res = op1 + op2 elif i == "-": res = op1 - op2 s.push(res) else: s.push(int(i)) return s.pop() def infixToPostfix(exp): s = ArrayStack() res = [] for i in exp: print("i is: ", end="") print(i) if i == "*" or i == "/" or i == "+" or i == "-": while s.isEmpty() == False and s.peek() != "(" and getPrecedence(s.peek(), i) == s.peek(): res.append(s.pop()) print("appended ", end=" ") print(i) s.push(i) print("pushed: ", end="") print(i) elif i == "(": s.push(i) elif i == ")": while s.isEmpty() == False and s.peek() != "(": res.append(s.pop()) s.pop() else: res.append(i) while s.isEmpty() == False: res.append(s.pop()) print("Whileloop after case") arr = "".join(res) return arr def getPrecedence(x, y): if x == y: return x elif x == "*" or x == "/" and y == "+" or y == "-": return x else: return y
StarcoderdataPython
184682
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["setup", "update_list", "update_database", "write_tweet"] import os import json import nltk import tweepy import string import numpy as np import cPickle as pickle from collections import defaultdict PROJECTNAME = "parrotization" DATABASE_FILE = "{0}.pkl".format(PROJECTNAME) SETTINGS_FILE = "{0}.json".format(PROJECTNAME) START = "<S>" STOP = "</S>" def load_settings(): if os.path.exists(SETTINGS_FILE): with open(SETTINGS_FILE, "r") as f: settings = json.load(f) else: settings = {} return settings def save_settings(settings): with open(SETTINGS_FILE, "w") as f: json.dump(settings, f, indent=2) def get_api(): settings = load_settings() auth = tweepy.OAuthHandler(settings["consumer_key"], settings["consumer_secret"]) auth.secure = True auth.set_access_token(settings["user_key"], settings["user_secret"]) return tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) def _default(): return defaultdict(int) def load_db(): if not os.path.exists(DATABASE_FILE): bigrams = defaultdict(_default) trigrams = defaultdict(_default) return (bigrams, trigrams) with open(DATABASE_FILE, "r") as f: return pickle.load(f) def save_db(db): with open(DATABASE_FILE, "wb") as f: return pickle.dump(db, f, -1) def setup(clobber=False): settings = load_settings() # Get the app information. if (clobber or "consumer_key" not in settings or "consumer_secret" not in settings): print("Enter some info about your app") settings["consumer_key"] = raw_input("Consumer key: ") settings["consumer_secret"] = raw_input("Consumer secret: ") # Authorize the user. if clobber or "user_key" not in settings or "user_secret" not in settings: auth = tweepy.OAuthHandler(settings["consumer_key"], settings["consumer_secret"], "oob") url = auth.get_authorization_url() print("Go to this URL:\n{0}".format(url)) pin = raw_input("Enter the PIN: ") auth.get_access_token(pin) settings["user_key"] = auth.access_token settings["user_secret"] = auth.access_token_secret save_settings(settings) def update_list(): # Get the initial settings. api = get_api() settings = load_settings() if "list_slug" not in settings: settings["list_slug"] = api.create_list("cast").slug save_settings(settings) if "screen_name" not in settings: settings["screen_name"] = api.me().screen_name save_settings(settings) # Add all the followers to the list. owner, list_slug = settings["screen_name"], settings["list_slug"] api.add_list_members(user_id=api.followers_ids(), owner_screen_name=owner, slug=list_slug) def update_database(): # Get all of the recent tweets in the timeline. api = get_api() settings = load_settings() bigrams, trigrams = load_db() owner, list_slug = api.me().screen_name, settings["list_slug"] for tweet in tweepy.Cursor(api.list_timeline, owner_screen_name=owner, since_id=settings.get("since_id", None), include_rts=False, slug=list_slug).items(1000): # Tokenize the tweet. text = tweet.text a, b = "://", "URLURLURL" text = text.replace(a, b) tokens = [w.replace(b, a) for w in nltk.word_tokenize(text)] tokens = [START, START]+tokens+[STOP, STOP] # Update the id of the most recently seen tweet. settings["since_id"] = max(tweet.id, settings.get("since_id", 0)) # Update the bigram and trigram dictionaries. for i in range(2, len(tokens)): bigrams[tokens[i-1]][tokens[i]] += 1 trigrams[tokens[i-2]+" "+tokens[i-1]][tokens[i]] += 1 # Save the database and the settings file. save_db((bigrams, trigrams)) save_settings(settings) def build_tweet(words, api, settings): s = " " for i, w in enumerate(words): if i > 0 and words[i-1] == "@": try: f, _ = api.show_friendship( source_screen_name=settings["screen_name"], target_screen_name=w) except tweepy.error.TweepError: is_follower = False else: is_follower = f.followed_by if is_follower: s += w + " " else: s = s[:-1] + "." + w + " " elif w.startswith("'") or w in ["n't"]: s = s[:-1] + w + " " elif not len(w.strip(string.punctuation)): if w in ["(", "{", "@", "#", "&", "``"]: s += w else: s = s[:-1] + w + " " else: s += w + " " s = s.strip() # Finally match any missing parens. if "(" in s and ")" not in s: s += ")" if ")" in s and "(" not in s: s = "(" + s s = s.replace("``", "\"").replace("''", "\"") return s def write_tweet(alpha=0.6): api = get_api() settings = load_settings() bigrams, trigrams = load_db() tweet = [START, START] while True: b_prob = bigrams[tweet[-1]] t_prob = trigrams[tweet[-2]+" "+tweet[-1]] b_norm = sum(b_prob.values()) t_norm = sum(t_prob.values()) if b_norm < 1 or t_norm < 1: continue words, probs = [], [] for w in set(b_prob.keys()) | set(t_prob.keys()): words.append(w) probs.append(alpha * t_prob.get(w, 0.0)/t_norm + (1-alpha) * b_prob.get(w, 0.0)/b_norm) word = np.random.choice(words, p=probs) if word == STOP: if len(tweet) > 6: break # Too short. tweet = [START, START] continue tweet.append(word) sent = build_tweet(tweet[2:], api, settings) if len(sent) > 140: # Too long. tweet = [START, START] return sent if __name__ == "__main__": import sys if "setup" in sys.argv: setup() elif "update" in sys.argv: update_list() update_database() elif "print" in sys.argv: print(write_tweet()) elif "tweet" in sys.argv: tweet = write_tweet() print(tweet) api = get_api() api.update_status(tweet)
StarcoderdataPython
84540
import math import torch import torch.nn as nn from torch.distributions import Normal from torch.nn import init FixedNormal = Normal log_prob_normal = FixedNormal.log_prob FixedNormal.log_probs = lambda self, actions: log_prob_normal(self, actions).sum(-1, keepdim=True) entropy = FixedNormal.entropy FixedNormal.entropy = lambda self: entropy(self).sum(-1) FixedNormal.mode = lambda self: self.mean class SiLU(nn.Module): def __init__(self): super().__init__() def silu(input): return input * torch.sigmoid(input) def forward(self, input): return self.silu(input) class GuaussianAction(nn.Module): def __init__(self, size_in, size_out): super().__init__() self.fc_mean = nn.Linear(size_in, size_out) # ====== INITIALIZATION ====== self.fc_mean.weight.data.mul_(0.1) self.fc_mean.bias.data.mul_(0.0) self.logstd = torch.zeros(1, size_out) def forward(self, x): action_mean = self.fc_mean(x) # print(action_mean.shape, self.logstd.shape) return FixedNormal(action_mean, self.logstd.exp()) class NoisyLinear(nn.Module): """Factorised Gaussian NoisyNet""" def __init__(self, in_features, out_features, sigma0=0.5): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) self.bias = nn.Parameter(torch.Tensor(out_features)) self.noisy_weight = nn.Parameter( torch.Tensor(out_features, in_features)) self.noisy_bias = nn.Parameter(torch.Tensor(out_features)) self.noise_std = sigma0 / math.sqrt(self.in_features) self.reset_parameters() self.register_noise() def register_noise(self): in_noise = torch.FloatTensor(self.in_features) out_noise = torch.FloatTensor(self.out_features) noise = torch.FloatTensor(self.out_features, self.in_features) self.register_buffer('in_noise', in_noise) self.register_buffer('out_noise', out_noise) self.register_buffer('noise', noise) def sample_noise(self): self.in_noise.normal_(0, self.noise_std) self.out_noise.normal_(0, self.noise_std) self.noise = torch.mm( self.out_noise.view(-1, 1), self.in_noise.view(1, -1)) def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) self.noisy_weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) self.noisy_bias.data.uniform_(-stdv, stdv) def forward(self, x): """ Note: noise will be updated if x is not volatile """ normal_y = nn.functional.linear(x, self.weight, self.bias) if self.training: # update the noise once per update self.sample_noise() noisy_weight = self.noisy_weight * self.noise noisy_bias = self.noisy_bias * self.out_noise noisy_y = nn.functional.linear(x, noisy_weight, noisy_bias) return noisy_y + normal_y def __repr__(self): return self.__class__.__name__ + '(' \ + 'in_features=' + str(self.in_features) \ + ', out_features=' + str(self.out_features) + ')' class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class BaseActorCriticNetwork(nn.Module): def __init__(self, input_size, output_size, use_noisy_net=False, use_continuous=False): super(BaseActorCriticNetwork, self).__init__() if use_noisy_net: linear = NoisyLinear else: linear = nn.Linear self.use_continuous = use_continuous # self.feature = nn.Sequential( # linear(input_size, 128), # nn.ReLU(), # linear(128, 128), # nn.ReLU() # ) self.actor = nn.Sequential( linear(input_size, 128), nn.ReLU(), linear(128, 64), nn.ReLU(), GuaussianAction(64, output_size) if use_continuous else linear(64, output_size) ) self.critic = nn.Sequential( linear(input_size, 128), nn.ReLU(), linear(128, 64), nn.ReLU(), linear(64, 1) ) for p in self.modules(): if isinstance(p, nn.Conv2d): init.xavier_normal_(p.weight) p.bias.data.zero_() if isinstance(p, nn.Linear): init.xavier_normal_(p.weight) p.bias.data.zero_() def forward(self, state): # x = self.feature(state) policy = self.actor(state) value = self.critic(state) return policy, value class DeepCnnActorCriticNetwork(nn.Module): def __init__(self, input_size, output_size, use_noisy_net=False): super(DeepCnnActorCriticNetwork, self).__init__() if use_noisy_net: print('use NoisyNet') linear = NoisyLinear else: linear = nn.Linear self.feature = nn.Sequential( nn.Conv2d(in_channels=4, out_channels=32, kernel_size=4, stride=1), nn.ReLU(), nn.Conv2d( in_channels=32, out_channels=64, kernel_size=5, stride=2), nn.ReLU(), nn.Conv2d( in_channels=64, out_channels=128, kernel_size=4, stride=1), nn.ReLU(), nn.Conv2d( in_channels=128, out_channels=256, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=4), nn.ReLU(), Flatten(), linear(50176, 512), nn.ReLU() ) self.actor = linear(512, output_size) self.critic = linear(512, 1) for p in self.modules(): if isinstance(p, nn.Conv2d): init.kaiming_uniform_(p.weight) p.bias.data.zero_() if isinstance(p, nn.Linear): init.kaiming_uniform_(p.weight, a=1.0) p.bias.data.zero_() def forward(self, state): x = self.feature(state) policy = self.actor(x) value = self.critic(x) return policy, value class CnnActorCriticNetwork(nn.Module): def __init__(self, input_size, output_size, use_noisy_net=False): super(CnnActorCriticNetwork, self).__init__() if use_noisy_net: print('use NoisyNet') linear = NoisyLinear else: linear = nn.Linear self.feature = nn.Sequential( nn.Conv2d( in_channels=4, out_channels=32, kernel_size=8, stride=4), nn.LeakyReLU(), nn.Conv2d( in_channels=32, out_channels=64, kernel_size=4, stride=2), nn.LeakyReLU(), nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.LeakyReLU(), Flatten(), linear( 7 * 7 * 64, 512), nn.LeakyReLU(), ) self.actor = linear(512, output_size) self.critic = linear(512, 1) for p in self.modules(): if isinstance(p, nn.Conv2d): init.kaiming_uniform_(p.weight) p.bias.data.zero_() if isinstance(p, nn.Linear): init.kaiming_uniform_(p.weight, a=1.0) p.bias.data.zero_() def forward(self, state): x = self.feature(state) policy = self.actor(x) value = self.critic(x) return policy, value class CuriosityModel(nn.Module): def __init__(self, input_size, output_size): super(CuriosityModel, self).__init__() self.input_size = input_size self.output_size = output_size feature_output = 7 * 7 * 64 self.feature = nn.Sequential( nn.Conv2d( in_channels=4, out_channels=32, kernel_size=8, stride=4), nn.LeakyReLU(), nn.Conv2d( in_channels=32, out_channels=64, kernel_size=4, stride=2), nn.LeakyReLU(), nn.Conv2d( in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.LeakyReLU(), Flatten(), ) self.inverse_net = nn.Sequential( nn.Linear(feature_output * 2, 512), nn.LeakyReLU(), nn.Linear(512, output_size) ) self.forward_net = nn.Sequential( nn.Linear(output_size + feature_output, 512), nn.LeakyReLU(), nn.Linear(512, feature_output) ) for p in self.modules(): if isinstance(p, nn.Conv2d): init.kaiming_uniform_(p.weight) p.bias.data.zero_() if isinstance(p, nn.Linear): init.kaiming_uniform_(p.weight, a=1.0) p.bias.data.zero_() def forward(self, inputs): state, next_state, action = inputs encode_state = self.feature(state) # get pred action pred_action = torch.cat((encode_state, self.feature(next_state)), 1) pred_action = self.inverse_net(pred_action) # --------------------- # get pred next state pred_next_state_feature = torch.cat((encode_state, action), 1) pred_next_state_feature = self.forward_net(pred_next_state_feature) real_next_state_feature = self.feature(next_state) return real_next_state_feature, pred_next_state_feature, pred_action
StarcoderdataPython
1774883
#!/usr/bin/env python # # Copyright (C) 2013 Google Inc. # # This file is part of YouCompleteMe. # # YouCompleteMe is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # YouCompleteMe is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with YouCompleteMe. If not, see <http://www.gnu.org/licenses/>. from nose.tools import eq_ from ycm.completers.all import identifier_completer def GetCursorIdentifier_StartOfLine_test(): eq_( 'foo', identifier_completer._GetCursorIdentifier( { 'column_num': 0, 'line_value': 'foo' } ) ) eq_( 'fooBar', identifier_completer._GetCursorIdentifier( { 'column_num': 0, 'line_value': 'fooBar' } ) ) def GetCursorIdentifier_EndOfLine_test(): eq_( 'foo', identifier_completer._GetCursorIdentifier( { 'column_num': 2, 'line_value': 'foo' } ) ) def GetCursorIdentifier_PastEndOfLine_test(): eq_( '', identifier_completer._GetCursorIdentifier( { 'column_num': 10, 'line_value': 'foo' } ) ) def GetCursorIdentifier_NegativeColumn_test(): eq_( '', identifier_completer._GetCursorIdentifier( { 'column_num': -10, 'line_value': 'foo' } ) ) def GetCursorIdentifier_StartOfLine_StopsAtNonIdentifierChar_test(): eq_( 'foo', identifier_completer._GetCursorIdentifier( { 'column_num': 0, 'line_value': 'foo(goo)' } ) ) def GetCursorIdentifier_AtNonIdentifier_test(): eq_( 'goo', identifier_completer._GetCursorIdentifier( { 'column_num': 3, 'line_value': 'foo(goo)' } ) ) def GetCursorIdentifier_WalksForwardForIdentifier_test(): eq_( 'foo', identifier_completer._GetCursorIdentifier( { 'column_num': 0, 'line_value': ' foo' } ) ) def GetCursorIdentifier_FindsNothingForward_test(): eq_( '', identifier_completer._GetCursorIdentifier( { 'column_num': 4, 'line_value': 'foo ()***()' } ) ) def GetCursorIdentifier_SingleCharIdentifier_test(): eq_( 'f', identifier_completer._GetCursorIdentifier( { 'column_num': 0, 'line_value': ' f ' } ) ) def GetCursorIdentifier_StartsInMiddleOfIdentifier_test(): eq_( 'foobar', identifier_completer._GetCursorIdentifier( { 'column_num': 3, 'line_value': 'foobar' } ) ) def GetCursorIdentifier_LineEmpty_test(): eq_( '', identifier_completer._GetCursorIdentifier( { 'column_num': 11, 'line_value': '' } ) )
StarcoderdataPython
59162
<gh_stars>0 from django.db import models from django.utils.translation import pgettext_lazy from saleor.core.permissions import MODELS_PERMISSIONS # Add in the permissions specific to our models. MODELS_PERMISSIONS += [ 'collection_extensions.view', 'collection_extensions.edit' ] class CollectionExtension(models.Model): collection = models.OneToOneField( 'product.Collection', on_delete=models.CASCADE, related_name='extension') alternative_name = models.CharField(max_length=255, blank=True) content = models.TextField(help_text=pgettext_lazy( 'Collection extension', 'CMS-able content.'), blank=True) added = models.DateTimeField(auto_now_add=True) class Meta: app_label = 'collection_extensions' permissions = ( ('view', pgettext_lazy('Permission description', 'Can view collection extensions') ), ('edit', pgettext_lazy('Permission description', 'Can edit collection extensions'))) def __str__(self): return self.collection.name
StarcoderdataPython
3251918
import os import pandas import math import ntpath from BirdRoostLocation.ReadData import Labels import numpy as np from BirdRoostLocation import utils from BirdRoostLocation.PrepareData import NexradUtils from BirdRoostLocation import LoadSettings as settings from BirdRoostLocation.BuildModels.CNN import model as shallow_model import tensorflow as tf from keras.models import model_from_json import keras class Batch_Generator: """This class organized the machine learning labels and creates ML batches. Class Variables: self.root_dir: The directory where the radar images are stored self.ml_sets: A dictionary containing a list of files that are part of the given ml set self.batch_size: the size of the minibatch learning batches self.label_dict: A dictionary of the labels, the key is the filename, and the value is a ML_Label object. """ def __init__( self, ml_label_csv, ml_split_csv, validate_k_index=3, test_k_index=4, default_batch_size=settings.DEFAULT_BATCH_SIZE, root_dir=utils.RADAR_IMAGE_DIR, ): self.label_dict = {} self.root_dir = root_dir self.no_roost_sets = {} self.roost_sets = {} self.no_roost_sets_V06 = {} self.roost_sets_V06 = {} self.batch_size = default_batch_size print("ML LABEL CSV") print(ml_label_csv) self.__set_ml_sets(ml_split_csv, validate_k_index, test_k_index) def __set_ml_sets(self, ml_split_csv, validate_k_index, test_k_index): """Create Train, test, and Validation set from k data folds. The k data folds are saved out to ml_split_csv. The fold at the given test and train indices as set to their corresponding set. The rest of the data is put into train. This method will initialize the following class variables: self.train, self.validation, and self.test. Each of these contains a list of filenames that correspond with the set. Args: ml_split_csv: A path to a csv file, where the csv has three columns, 'AWS_file', 'Roost', and 'split_index'. validate_k_index: The index of the validation set. test_k_index: The index of the test set. """ print("ML SPLIT CSV") print(ml_split_csv) ml_split_pd = pandas.read_csv(ml_split_csv) # Remove files that weren't found all_files = utils.getListOfFilesInDirectory(self.root_dir + "data", ".png") print("ROOT DIR") print(self.root_dir + "data") all_files_dict = {} for i in range(len(all_files)): all_files_dict[os.path.basename(all_files[i])[2:25]] = True for index, row in ml_split_pd.iterrows(): if all_files_dict.get(row["AWS_file"]) is None: ml_split_pd.drop(index, inplace=True) print("LENGTHS OF NO ROOST/ROOST:") print(len(ml_split_pd[ml_split_pd.Roost != True])) print(len(ml_split_pd[ml_split_pd.Roost])) print("BEFORE self.__set_ml_sets_helper - NO ROOST") self.__set_ml_sets_helper( self.no_roost_sets, self.no_roost_sets_V06, ml_split_pd[ml_split_pd.Roost != True], validate_k_index, test_k_index, ) print("AFTER self.__set_ml_sets_helper - NO ROOST") self.__set_ml_sets_helper( self.roost_sets, self.roost_sets_V06, ml_split_pd[ml_split_pd.Roost], validate_k_index, test_k_index, ) print("AFTER self.__set_ml_sets_helper - ROOST") def __set_ml_sets_helper(self, ml_sets, ml_sets_V06, ml_split_pd, val_k, test_k): no_val_pd = ml_split_pd[ml_split_pd.split_index != val_k] ml_sets[utils.ML_Set.training] = list( no_val_pd[no_val_pd.split_index != test_k]["AWS_file"] ) ml_sets[utils.ML_Set.validation] = list( ml_split_pd[ml_split_pd.split_index == val_k]["AWS_file"] ) ml_sets[utils.ML_Set.testing] = list( ml_split_pd[ml_split_pd.split_index == test_k]["AWS_file"] ) print("ml_sets[utils.ML_Set....]") for key in list(ml_sets.keys()): ml_sets_V06[key] = [] for item in ml_sets[key]: if int(item[-1]) >= 6: ml_sets_V06[key].append(item) np.random.shuffle(ml_sets[key]) np.random.shuffle(ml_sets_V06[key]) def get_batch_indices(self, ml_sets, ml_set, num_temporal_data=0): indices = np.random.randint( low=0, high=len(ml_sets[ml_set]), size=int(self.batch_size / 2) ) return indices def get_batch(self, ml_set, dualPol, radar_product=None): ground_truths = [] train_data = [] filenames = [] roost_sets = self.roost_sets no_roost_sets = self.no_roost_sets if dualPol: roost_sets = self.roost_sets_V06 no_roost_sets = self.no_roost_sets_V06 return train_data, ground_truths, filenames, roost_sets, no_roost_sets def single_product_batch_param_helper( self, filename, filenames, radar_product, problem, model_type, train_data, ground_truths, images, ): is_roost = int(self.label_dict[filename][0].is_roost) polar_radius = [ float(self.label_dict[filename][i].polar_radius) for i in range(len(self.label_dict[filename])) ] polar_theta = [ float(self.label_dict[filename][i].polar_theta) for i in range(len(self.label_dict[filename])) ] roost_size = [ float(self.label_dict[filename][i].radius) for i in range(len(self.label_dict[filename])) ] if images != []: if problem == "detection": if np.array(train_data).size == 0: train_data = images train_data = np.array(train_data) else: train_data = np.concatenate((train_data, np.array(images)), axis=0) if np.array(ground_truths).size == 0: ground_truths = [[is_roost, 1 - is_roost]] * np.array(images).shape[ 0 ] else: ground_truths = np.concatenate( ( ground_truths, [[is_roost, 1 - is_roost]] * np.array(images).shape[0], ), axis=0, ) print("ground truths shape") print(np.array(ground_truths).shape) else: # localization all_radii = np.array([]) all_thetas = np.array([]) for k in range(len(polar_radius)): radii = np.array([polar_radius[k]] * np.array(images).shape[0]) if not np.isnan(np.sum(radii)): mask_radii = [(radius / 300) * (240 / 2) for radius in radii] thetas = [] for i in range(len(images)): thetas.append( adjustTheta( self, polar_theta[k], self.label_dict[filename][0].images[radar_product][ i ], ) ) all_radii = np.append(all_radii, np.array(mask_radii)) all_thetas = np.append(all_thetas, np.array(thetas)) all_radii = np.reshape( all_radii, ( len(self.label_dict[filename]), int(len(all_radii) / len(self.label_dict[filename])), ), ) all_thetas = np.reshape( all_thetas, ( len(self.label_dict[filename]), int(len(all_thetas) / len(self.label_dict[filename])), ), ) masks = np.zeros((len(all_radii[0]), 240, 240)) if type(roost_size) != float or math.isnan(roost_size): roost_size = 28.0 else: roost_size = roost_size / 1000 # convert to km mask_roost_size = (roost_size / 300) * (240 / 2) vconvert_to_cart = np.vectorize(convert_to_cart) try: cart_x, cart_y = vconvert_to_cart(all_radii, all_thetas) except ValueError as e: return train_data, ground_truths for k in range(cart_x.shape[0]): for j in range(cart_x.shape[1]): try: masks[j][ 120 - int(round(cart_y[k][j])), 120 + int(round(cart_x[k][j])), ] = 1.0 color_pts = points_in_circle_np( mask_roost_size, y0=120 - int(round(cart_y[k][j])), x0=120 + int(round(cart_x[k][j])), ) for pt in color_pts: masks[j][pt[0], pt[1]] = 1.0 except IndexError as e: pass if np.array(train_data).size == 0: train_data = images train_data = np.array(train_data) else: train_data = np.concatenate((train_data, np.array(images)), axis=0) if np.array(ground_truths).size == 0: ground_truths = masks else: ground_truths = np.concatenate((ground_truths, masks), axis=0) train_data = np.array(train_data) return train_data, ground_truths def single_product_batch_params( self, ground_truths, train_data, filenames, roost_sets, no_roost_sets, ml_set, radar_product, model_type, problem, is_eval=False, ): extended_filenames = np.array([]) print("FILENAMES") print(filenames) if filenames == []: for ml_sets in [roost_sets, no_roost_sets]: if ml_sets[ml_set]: # in case you only train on true or false labels indices = Batch_Generator.get_batch_indices(self, ml_sets, ml_set) for i, index in enumerate(indices): filename = ml_sets[ml_set][index] print(filename) if filename not in extended_filenames: images = self.label_dict[filename][0].get_image( radar_product ) if images != []: train_data, ground_truths = Batch_Generator.single_product_batch_param_helper( self, filename, filenames, radar_product, problem, model_type, train_data, ground_truths, images, ) #### !!!! if is_eval == False: extended_filenames = np.append( extended_filenames, filename ) else: extended_filenames = np.append( extended_filenames, [filename] * (len(train_data) - len(extended_filenames)), ) else: for filename in filenames: images = self.label_dict[filename][0].get_image(radar_product) if images != []: train_data, ground_truths = Batch_Generator.single_product_batch_param_helper( self, filename, filenames, radar_product, problem, model_type, train_data, ground_truths, images, ) ### !!!! if is_eval == False: extended_filenames = np.append(extended_filenames, filename) else: extended_filenames = np.append( extended_filenames, [filename] * (len(train_data) - len(extended_filenames)), ) truth_shape = np.array(ground_truths).shape print("truth shape: ") print(truth_shape) try: if problem == "detection": ground_truths = np.array(ground_truths).reshape( truth_shape[0], truth_shape[1] ) train_data_np = np.array(train_data) shape = train_data_np.shape train_data_np = train_data_np.reshape( shape[0], shape[1], shape[2], shape[3] ) print("RETURN SHAPES") print(train_data_np.shape) print(ground_truths.shape) print(extended_filenames.shape) return train_data_np, np.array(ground_truths), np.array(extended_filenames) except IndexError as e: print(e) return None, None, None class Single_Product_Batch_Generator(Batch_Generator): def __init__( self, ml_label_csv, ml_split_csv, validate_k_index=3, test_k_index=4, default_batch_size=settings.DEFAULT_BATCH_SIZE, root_dir=utils.RADAR_IMAGE_DIR, high_memory_mode=False, ): Batch_Generator.__init__( self, ml_label_csv, ml_split_csv, validate_k_index, test_k_index, default_batch_size, root_dir, ) ml_label_pd = pandas.read_csv(ml_label_csv) for _, row in ml_label_pd.iterrows(): if row["AWS_file"] not in self.label_dict: self.label_dict[row["AWS_file"]] = [] self.label_dict[row["AWS_file"]].append( Labels.ML_Label(row["AWS_file"], row, self.root_dir, high_memory_mode) ) def get_batch( self, ml_set, dualPol, radar_product=None, num_temporal_data=0, model_type="cnn", problem="detection", filenames=[], is_eval=False, ): """Get a batch of data for machine learning. As a default, a batch contains data from a single radar product. Args: ml_set: ML_Set enum value, train, test, or validation. radar_product: Radar_Product enum value, reflectivity, velocity, zdr, or rho_hv. Returns: train_data, ground_truth, filenames: The ground truth is an array of batch size, where each item in the array contains a single ground truth label. The train_data is an array of images, corresponding to the ground truth values. filenames is an array of filenames, corresponding to the ground truth values. """ if len(filenames) == 0: ground_truths, train_data, filenames, roost_sets, no_roost_sets = Batch_Generator.get_batch( self, ml_set, dualPol, radar_product ) else: ground_truths, train_data, _, roost_sets, no_roost_sets = Batch_Generator.get_batch( self, ml_set, dualPol, radar_product ) return Batch_Generator.single_product_batch_params( self, ground_truths, train_data, filenames, roost_sets, no_roost_sets, ml_set, radar_product, model_type, problem, is_eval, ) class Multiple_Product_Batch_Generator(Batch_Generator): def __init__( self, ml_label_csv, ml_split_csv, validate_k_index=3, test_k_index=4, default_batch_size=settings.DEFAULT_BATCH_SIZE, root_dir=utils.RADAR_IMAGE_DIR, high_memory_mode=False, ): Batch_Generator.__init__( self, ml_label_csv, ml_split_csv, validate_k_index, test_k_index, default_batch_size, root_dir, ) print("after Batch_Generator.__init__") print(ml_label_csv) ml_label_pd = pandas.read_csv(ml_label_csv) print(ml_label_pd.shape) for _, row in ml_label_pd.iterrows(): if row["AWS_file"] not in self.label_dict: self.label_dict[row["AWS_file"]] = [ Labels.ML_Label( row["AWS_file"], row, self.root_dir, high_memory_mode ) ] else: self.label_dict[row["AWS_file"]].append( Labels.ML_Label( row["AWS_file"], row, self.root_dir, high_memory_mode ) ) # channels will be RGB values, first dimension will be radar products def get_batch( self, ml_set, dualPol, batch_size=settings.DEFAULT_BATCH_SIZE, loaded_models=None, num_temporal_data=0, model_type="cnn", problem="detection", ): """Get a batch of data for machine learning. This batch contains data with four channels in it, one for each radar product. For dualPol data this will be four radar products, and for legacy data this will be two radar products. Args: ml_set: ML_Set enum value, train, test, or validation. dualPol: Boolean, true if the data is dual pol, false if the radar data is legacy. Returns: train_data, ground_truth, filenames: The ground truth is an array of batch size, where each item in the array contains a single ground truth label. The train_data is an array of images, corresponding to the ground truth values. filenames is an array of filenames, corresponding to the ground truth values. """ ground_truths, train_data, filenames, roost_sets, no_roost_sets = Batch_Generator.get_batch( self, ml_set, dualPol, radar_product=None ) train_list = [] truth_list = [] pred_list = [] file_list = [] radar_products = [ utils.Radar_Products.cc, utils.Radar_Products.diff_reflectivity, utils.Radar_Products.reflectivity, utils.Radar_Products.velocity, ] for k, product in enumerate(radar_products): print(product) print("BEFORE") print(len(filenames)) train, truth, filenames = Batch_Generator.single_product_batch_params( self, ground_truths, train_data, filenames, roost_sets, no_roost_sets, ml_set, product, model_type, problem, ) print("AFTER") print(len(filenames)) print("train.shape") print(np.array(train).shape) print("truth.shape") print(np.array(truth).shape) print("filenames.shape") print(np.array(filenames).shape) predictions = np.array([]) for i in range(0, len(train), batch_size): train_batch = [] for j in range(0, batch_size): if (i + j) < len(train): train_batch.append(train[i + j]) train_batch = np.array(train_batch) if len(train_batch) > 0: if problem == "detection": pred = loaded_models[k].predict_proba(train_batch) else: pred = loaded_models[k].predict(train_batch) predictions = np.append(predictions, np.array(pred)) predictions = np.reshape(predictions, (-1, 240, 240)) print("predictions.shape") print(predictions.shape) train_list.append(np.array(train)) truth_list.append(np.array(truth)) file_list.append(np.array(filenames)) print("train_list.shape") print(np.array(train_list).shape) print("truth_list.shape") print(np.array(truth_list).shape) print("file_list.shape") print(np.array(file_list).shape) print("predictions.shape") print(np.array(predictions).shape) # try: if problem == "detection": predictions = np.reshape( predictions, (np.array(truth_list).shape[1], 2) ) else: predictions = np.reshape(predictions, (-1, 240, 240)) print(np.array(truth_list).shape) pred_list.append(predictions) print("train_list, truth_list, pred_list, file_list") print(np.array(train_list).shape) print(np.array(truth_list).shape) print(np.array(pred_list).shape) print(np.array(file_list).shape) return ( np.array(train_list), np.array(truth_list), np.array(pred_list), np.array(file_list), ) def normalize(self, x, maxi, mini): if type(x) is list: return [(y - mini) / (maxi - mini) for y in x] else: return (x - mini) / (maxi - mini) def adjustTheta(self, theta, path): filename = os.path.splitext(ntpath.basename(path))[0] parts = filename.split("_") if "flip" in parts: if theta > 180.0: theta = 540 - theta else: theta = 180 - theta # rotation try: if "noise" in parts: degree_offset = int(parts[-2]) else: degree_offset = int(parts[-1]) theta += degree_offset except ValueError: return theta return theta def convert_to_cart(radius, theta): return radius * math.cos(theta), radius * math.sin(theta) def points_in_circle_np(radius, y0=0, x0=0): x_ = np.arange(x0 - radius - 1, x0 + radius + 1, dtype=int) y_ = np.arange(y0 - radius - 1, y0 + radius + 1, dtype=int) y, x = np.where((y_[:, np.newaxis] - y0) ** 2 + (x_ - x0) ** 2 <= radius ** 2) for y, x in zip(y_[y], x_[x]): yield y, x
StarcoderdataPython
3391849
#!/usr/bin/env python3 """PyTest tests for the get_datatype.py module. """ import os import sys sys.path.append(os.path.join(os.path.dirname(sys.path[0]),'amoebaelib')) # Customize. from data.datatype_test_seqs import testseq1 from get_datatype import \ get_datatype_for_sequence_string, \ get_dbtype def test_get_datatype_for_sequence_string(): """Test the get_datatype_for_sequence_string function in the get_datatype.py file. """ ########################## # Arrange. x1 = 'ATGC'*3 + 'Y' x2 = 'atgc'*3 + 'y' x3 = 'ATGCV' x4 = 'atgcv' x5 = 'tccaaaaaatcgaaTTATYttattccccaccttcttttctcattttttga' x6 = testseq1 ########################## # Act. dbtype_1 = get_datatype_for_sequence_string(x1) dbtype_2 = get_datatype_for_sequence_string(x2) dbtype_3 = get_datatype_for_sequence_string(x3) dbtype_4 = get_datatype_for_sequence_string(x4) dbtype_5 = get_datatype_for_sequence_string(x5) dbtype_6 = get_datatype_for_sequence_string(x6) ########################## # Assert. assert dbtype_1 == 'nucl' assert dbtype_2 == 'nucl' assert dbtype_3 == 'prot' assert dbtype_4 == 'prot' assert dbtype_5 == 'nucl' assert dbtype_6 == 'nucl' def test_get_dbtype(): # ***Incomplete test """Test the get_dbtype function in the get_datatype.py file. """ ########################## # Arrange. f = "f" ########################## # Act. #x = get_dbtype(f) ########################## # Assert. assert True == True # ***Temporary.
StarcoderdataPython
188799
''' URL: https://leetcode.com/problems/minimum-distance-between-bst-nodes/description/ Time complexity: O(n) Space complexity: O(n) ''' class Solution(object): def minDiffInBST(self, root): """ :type root: TreeNode :rtype: int """ sorted_lst = [] self.sort_vals(root, sorted_lst) min_diff = -1 for i in range(len(sorted_lst)-1): curr_diff = abs(sorted_lst[i] - sorted_lst[i+1]) if min_diff == -1: min_diff = curr_diff else: min_diff = min(min_diff, curr_diff) return min_diff def sort_vals(self, node, sorted_lst): if node is None: return None self.sort_vals(node.left, sorted_lst) sorted_lst.append(node.val) self.sort_vals(node.right, sorted_lst)
StarcoderdataPython
186478
<reponame>sifrovacky-cz/kachna from django.db import models from django.contrib.auth.models import User # Create your models here. #User profile model, one to one relation to User model #Note: User = team, participants = team members class UserProfile (models.Model): user = models.OneToOneField(User, on_delete = models.CASCADE) #participants participant_one = models.CharField(max_length=100) participant_two = models.CharField(max_length=100,blank=True) participant_three = models.CharField(max_length=100,blank=True) participant_four = models.CharField(max_length=100,blank=True) def __str__(self): return self.user.username
StarcoderdataPython
176354
<filename>Crawler/filecrawler.py<gh_stars>0 from apiproxy import ApiProxy, RestApiResponse from model import AmbarFileMeta,AmbarCrawlerSettings from logger import AmbarLogger from abc import * from hashlib import sha256 import hashlib import re class FileCrawler: def __init__(self, ApiProxy, CrawlerSettings): """Initializing file crawler CrawlerSettings - AmbarCrawlerSettings object from model ApiProxy - initilized ApiProxy object """ self.settings = CrawlerSettings self.apiProxy = ApiProxy self.regex = re.compile(self.settings.file_regex, re.I) self.logger = AmbarLogger(self.apiProxy, self.settings.uid, self.settings.verbose) self.logger.LogMessage('info', 'filecrawler initialized'.format(self.settings.uid)) @abstractmethod def Crawl(self): """Crawling method Should call ProcessFileCallback() on every file that should be processed """ pass def ProcessFileCallback(self, FileDataStream, FileSize, CreateTime, UpdateTime, ShortName, FullName): """Callback method for file crawler FileDataStream - ByteIO object """ fileMeta = AmbarFileMeta.Init(CreateTime, UpdateTime, ShortName, FullName, self.settings.id) sha = sha256(FileDataStream.getvalue()).hexdigest() ## checking content existance apiResp = self.apiProxy.CheckIfAmbarFileParsedContentExists(sha) if not apiResp.Success: self.logger.LogMessage('error', 'error checking content existance {0} {1}'.format(fileMeta.full_name, apiResp.message)) return if not (apiResp.Found or apiResp.NotFound): self.logger.LogMessage('error', 'unexpected response on checking content existance {0} {1} {2}'.format(fileMeta.full_name, apiResp.code, apiResp.message)) return if apiResp.NotFound: self.logger.LogMessage('verbose', 'content not found {0}'.format(fileMeta.full_name)) ## creating content createContentApiResp = self.apiProxy.CreateAmbarFileContent(FileDataStream, sha) if not createContentApiResp.Success: self.logger.LogMessage('error', 'error creating content {0} {1}'.format(fileMeta.full_name, createContentApiResp.message)) return if not (createContentApiResp.Found or createContentApiResp.Created): self.logger.LogMessage('error', 'unexpected response on create content {0} {1} {2}'.format(fileMeta.full_name, createContentApiResp.code, createContentApiResp.message)) return if createContentApiResp.Found: self.logger.LogMessage('verbose', 'content found {0}'.format(fileMeta.full_name)) if createContentApiResp.Created: self.logger.LogMessage('verbose', 'content created {0}'.format(fileMeta.full_name)) if apiResp.Found: self.logger.LogMessage('verbose', 'content found {0}'.format(fileMeta.full_name)) ## sending meta to pipeline apiResp = self.apiProxy.AddAmbarFileMeta(fileMeta, sha, FileSize, self.settings.index_name, self.settings.uid) if not apiResp.Success: self.logger.LogMessage('error', 'error adding meta {0} {1}'.format(fileMeta.full_name, apiResp.message)) return if apiResp.BadRequest: self.logger.LogMessage('verbose', 'bad meta, ignoring... {0}'.format(fileMeta.full_name)) return if apiResp.InsufficientStorage: raise Exception('insufficient storage') return if not apiResp.Ok: self.logger.LogMessage('error', 'unexpected response on adding meta {0} {1} {2}'.format(fileMeta.full_name, apiResp.code, apiResp.message)) return self.logger.LogMessage('verbose', 'meta added {0}'.format(fileMeta.full_name)) def TurboCheckMetaExistanceCallback(self, CreateTime, UpdateTime, ShortName, FullName): """Callback method for turbo checking meta existance """ amFileMeta = AmbarFileMeta.Init(CreateTime, UpdateTime, ShortName, FullName, self.settings.id) apiResp = self.apiProxy.CheckIfAmbarFileMetaExists(amFileMeta, self.settings.index_name) if not apiResp.Success: self.logger.LogMessage('error', 'error checking meta existance {0} {1}'.format(FullName, apiResp.message)) return None if apiResp.Ok: return True if apiResp.NotFound: return False self.logger.LogMessage('error', 'unexpected response on turbo check meta existance {0} {1} {2}'.format(FullName, apiResp.code, apiResp.message)) return None
StarcoderdataPython
45320
<filename>elationmagic.py """ @copyright: 2013 Single D Software - All Rights Reserved @summary: Elation Magic 260 MIDI interface for Light Maestro. """ # Standard library imports import logging # Additional library imports import rtmidi import rtmidi.midiconstants # Application imports import console # Named logger for this module _logger = logging.getLogger(__name__) class ElationMagic(console.Console): """The console class that communicates with the Elation Magic 260.""" def _sendmidi(self, channel, note): try: self._midi.send_message((rtmidi.midiconstants.NOTE_ON | channel, note, 127)) _logger.debug('Sent note {0} to channel {1}'.format(note, channel)) except RuntimeError: raise console.CommunicationError def getstatus(self): """ Provide status information for the connection to the console. @return: Dictionary containing status information """ status = super().getstatus() status['condition'] = 'operational' if self._midi else 'nonoperational' return status def getchannels(self): raise console.NotSupportedError def loadchannels(self, data, sceneid=None): raise console.NotSupportedError def getscenes(self): raise console.NotSupportedError def getscene(self, sceneid): raise console.NotSupportedError def loadscene(self, sceneid): try: channel, note = divmod(int(sceneid) - 1, 72) self._sendmidi(channel, note) except ValueError: _logger.warning('Non-numeric scenes are not supported.') def savescene(self, sceneid, fade=5, scene=None): raise console.NotSupportedError def deletescene(self, sceneid): raise console.NotSupportedError def __init__(self, parameter='USB'): self._midi = rtmidi.MidiOut() for p, portname in enumerate(self._midi.get_ports()): if parameter in portname: self._midi.open_port(p) _logger.info('Connected to MIDI device "{0}"'.format(self._midi.get_port_name(p))) super().__init__() return _logger.warning('No USB MIDI device found')
StarcoderdataPython
3389691
#!/usr/bin/env python3 import asyncio import logging from random import randint import aiohttp from asyncpraw import Reddit from asyncpraw.models import Comment from asyncprawcore.exceptions import ServerError from dynaconf import Dynaconf from discord_logging import DiscordWebhookHandler config = Dynaconf(settings_files=["settings.toml", ".secrets.toml"]) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter(fmt="[{levelname}] {message}", style="{")) stream_handler.setLevel(logging.DEBUG) logger.addHandler(stream_handler) if config.webhook: discord_handler = DiscordWebhookHandler(config.webhook, min_emit_interval=0.0) discord_handler.setFormatter( logging.Formatter( fmt="[{levelname} | {asctime}] {message}", datefmt="%Y-%m-%d %H:%M:%S %Z", style="{", ) ) discord_handler.setLevel(logging.INFO) logger.addHandler(discord_handler) url = f"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze?key={config.credentials.perspective.api_key}" params = { "languages": ["en"], "requestedAttributes": { "TOXICITY": {}, "SEVERE_TOXICITY": {}, "IDENTITY_ATTACK": {}, "INSULT": {}, "THREAT": {}, }, "communityId": f"reddit.com/r/{config.subreddit}", } async def authenticate_reddit(username: str) -> Reddit: reddit_instance = Reddit( username=username, user_agent=f"web:mod.{config.subreddit}.{username}.Perspective:v{config.version} by {config.author})", **config.credentials[username], ) logger.info(f"Authenticated as {await reddit_instance.user.me()}!") return reddit_instance async def main(): mod_reddit = await authenticate_reddit(config.mod_username) stream_reddit = await authenticate_reddit(config.stream_username) subreddit = await stream_reddit.subreddit(config.subreddit) while True: try: async for comment in subreddit.stream.comments(skip_existing=False): await process_comment(comment, mod_reddit) except ServerError as e: sleep_duration = randint(25, 35) logger.warning(f"Server error, retrying in {sleep_duration}s", exc_info=e) await asyncio.sleep(sleep_duration) except Exception as e: logger.error(f"Encountered exception:", exc_info=e) raise e async def process_comment(comment: Comment, mod_reddit: Reddit) -> None: results = await evaluate_comment(comment) cleaned_permalink = comment.permalink.replace(comment.permalink.split("/")[5], "_") log_content = ( f"New comment {comment.id} by {comment.author}\n" f"https://www.reddit.com{cleaned_permalink}\n" f"{comment.body[:1500]}\n\n" ) log_func = logger.debug for attribute, score in results.items(): log_content += f"{attribute:16s}: {score:6.2%}\n" if score >= config.threshold[attribute]: log_func = logger.info # handoff to mod account to enable free-form report comment = await mod_reddit.comment(comment.id, lazy=True) await comment.report( f"{attribute}: {score:.2%} | threshold: {config.threshold[attribute]:.2%}" ) log_func(log_content) async def evaluate_comment(comment: Comment) -> dict[str, float]: params["comment"] = {"text": comment.body} async with aiohttp.ClientSession() as session: # sleep to avoid hitting rate limit await asyncio.sleep(1) async with session.post(url, json=params) as response: response_dict = await response.json() return { attribute.lower(): val["summaryScore"]["value"] for attribute, val in response_dict["attributeScores"].items() } if __name__ == "__main__": try: asyncio.run(main()) except KeyboardInterrupt: pass
StarcoderdataPython
1617335
import pickle import numpy as np from tqdm.auto import tqdm import moses from moses import CharVocab class NGram: def __init__(self, max_context_len=10, verbose=False): self.max_context_len = max_context_len self._dict = dict() self.vocab = None self.default_probs = None self.zero_probs = None self.verbose = verbose def fit(self, data): self.vocab = CharVocab.from_data(data) self.default_probs = np.hstack([np.ones(len(self.vocab)-4), np.array([0., 1., 0., 0.])]) self.zero_probs = np.zeros(len(self.vocab)) if self.verbose: print('fitting...') data = tqdm(data, total=len(data)) for line in data: t_line = tuple(self.vocab.string2ids(line, True, True)) for i in range(len(t_line)): for shift in range(self.max_context_len): if i + shift + 1 >= len(t_line): break context = t_line[i:i+shift+1] cid = t_line[i+shift+1] probs = self._dict.get(context, self.zero_probs.copy()) probs[cid] += 1. self._dict[context] = probs def fit_update(self, data): if self.verbose: print('fitting...') data = tqdm(data, total=len(data)) for line in data: t_line = tuple(self.vocab.string2ids(line, True, True)) for i in range(len(t_line)): for shift in range(self.max_context_len): if i + shift + 1 >= len(t_line): break context = t_line[i:i+shift+1] cid = t_line[i+shift+1] probs = self._dict.get(context, self.zero_probs.copy()) probs[cid] += 1. self._dict[context] = probs def generate_one(self, l_smooth=0.01, context_len=None, max_len=100): if self.vocab is None: raise RuntimeError('Error: Fit the model before generating') if context_len is None: context_len = self.max_context_len elif context_len <= 0 or context_len > self.max_context_len: context_len = self.max_context_len res = [self.vocab.bos] while res[-1] != self.vocab.eos and len(res) < max_len: begin_index = max(len(res)-context_len, 0) context = tuple(res[begin_index:]) while context not in self._dict: context = context[1:] probs = self._dict[context] smoothed = probs + self.default_probs*l_smooth normed = smoothed / smoothed.sum() next_symbol = np.random.choice(len(self.vocab), p=normed) res.append(next_symbol) return self.vocab.ids2string(res) def nll(self, smiles, l_smooth=0.01, context_len=None): if self.vocab is None: raise RuntimeError('Error: model is not trained') if context_len is None: context_len = self.max_context_len elif context_len <= 0 or context_len > self.max_context_len: context_len = self.max_context_len tokens = tuple(self.vocab.string2ids(smiles, True, True)) likelihood = 0. for i in range(1, len(tokens)): begin_index = max(i-context_len, 0) context = tokens[begin_index:i] while context not in self._dict: context = context[1:] probs = self._dict[context] + self.default_probs normed = probs / probs.sum() prob = normed[tokens[i]] if prob == 0.: return np.inf likelihood -= np.log(prob) return likelihood def generate(self, n, l_smooth=0.01, context_len=None, max_len=100): generator = (self.generate_one(l_smooth, context_len, max_len) for i in range(n)) if self.verbose: print('generating...') generator = tqdm(generator, total=n) return list(generator) def save(self, path): """ Saves a model using pickle Arguments: path: path to .pkl file for saving """ if self.vocab is None: raise RuntimeError("Can't save empty model." " Fit the model first") data = { '_dict': self._dict, 'vocab': self.vocab, 'default_probs': self.default_probs, 'zero_probs': self.zero_probs, 'max_context_len': self.max_context_len } with open(path, 'wb') as f: pickle.dump(data, f) @classmethod def load(cls, path): """ Loads saved model Arguments: path: path to saved .pkl file Returns: Loaded NGramGenerator """ with open(path, "rb") as f: data = pickle.load(f) model = cls() model._dict = data['_dict'] model.vocab = data['vocab'] model.default_probs = data['default_probs'] model.zero_probs = data['zero_probs'] model.max_context_len = data['max_context_len'] return model def reproduce(seed, samples_path=None, metrics_path=None, n_jobs=1, device='cpu', verbose=False, samples=30000): data = moses.get_dataset('train') model = NGram(10, verbose=verbose) model.fit(data) np.random.seed(seed) smiles = model.generate(samples, l_smooth=0.01) metrics = moses.get_all_metrics(smiles, n_jobs=n_jobs, device=device) if samples_path is not None: with open(samples_path, 'w') as out: out.write('SMILES\n') for s in smiles: out.write(s+'\n') if metrics_path is not None: with open(metrics_path, 'w') as out: for key, value in metrics.items(): out.write("%s,%f\n" % (key, value)) return smiles, metrics
StarcoderdataPython
3332552
<filename>src/server/TCGA/TCGACaller.py __author__ = 'guorongxu' import os import subprocess import itertools from datetime import datetime tumor_types = ["PRAD", "STES"] #tumor_types = ["ACC", "BLCA", "BRCA", "CESC", "CHOL", "COAD", "COADREAD", "DLBC", # "ESCA", "GBM", "GBMLGG", "HNSC", "KICH", "KIPAN", "KIRC", "KIRP", # "LAML", "LGG", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", # "PRAD", "READ", "SARC", "SKCM", "STAD", "STES", "TGCT", "THCA", # "THYM", "UCEC", "UCS", "UVM"] ## To download raw data from TCGA website. def download(workspace, data_set, release_year, release_month, release_day): root_raw_dir = workspace + "/" + data_set + "/raw_data" for tumor_type in tumor_types: subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "download", root_raw_dir, tumor_type, release_year, release_month, release_day]) ## To parse the raw data and output the expression tables def parse(workspace, data_set, release_year, release_month, release_day): root_raw_dir = workspace + "/" + data_set + "/raw_data" root_expression_dir = workspace + "/" + data_set + "/expression_files" for tumor_type in tumor_types: print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is parsing " + tumor_type + " miRNA data." subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "parse_mirna", root_raw_dir, root_expression_dir, tumor_type, release_year, release_month, release_day]) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is parsing " + tumor_type + " RNASeq data." subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "parse_rnaseq", root_raw_dir, root_expression_dir, tumor_type, release_year, release_month, release_day]) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is parsing " + tumor_type + " mutation data." subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "parse_mutation", root_raw_dir, root_expression_dir, tumor_type, release_year, release_month, release_day]) ## To calculate the correlations. def calculate(workspace, data_set): ## Iterate all combinations root_expression_dir = workspace + "/" + data_set + "/expression_files" root_correlation_dir = workspace + "/" + data_set + "/correlation_files" data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: for combination in combinations: input_file_0 = root_expression_dir + "/" + tumor_type + "/" + combination[0] + "_matrix.txt" input_file_1 = root_expression_dir + "/" + tumor_type + "/" + combination[1] + "_matrix.txt" output_file = root_correlation_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + ".cor" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is calculating correlation with " \ + tumor_type + ": " + combination[0] + "_vs_" + combination[1] + "." threshold = "0.0" if combination[0] == "rnaseq" or combination[0] == "mutation": subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "calculate", output_file, input_file_0, input_file_1, threshold]) else: subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "calculate", output_file, input_file_0, input_file_1, threshold]) ## To filter the correlation edges with less than cutoff. def filter(workspace, data_set, cut_off=0.5): root_correlation_dir = workspace + "/" + data_set + "/correlation_files" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: for combination in combinations: input_file = root_correlation_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + ".cor" output_file = root_correlation_dir + "/" + tumor_type + "/" \ + combination[0] + "_vs_" + combination[1] + "_" + str(cut_off) + ".cor" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is filtering " + tumor_type \ + ": " + combination[0] + "_vs_" + combination[1] subprocess.call(["qsub", "-pe", "smp", "8", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "filter", input_file, output_file, str(cut_off)]) ## To cluster the input correlation file and output to the cluster directory. def louvain_cluster(workspace, data_set): root_correlation_dir = workspace + "/" + data_set + "/correlation_files" root_cluster_dir = workspace + "/" + data_set + "/louvain_cluster_files/" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: for combination in combinations: input_file = root_correlation_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_0.5.cor" for gamma in [1, 4, 7, 11, 14, 17, 20]: output_folder = root_cluster_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) output_file = output_folder + "/" + combination[0] + "_vs_" \ + combination[1] + "_gamma_" + str(gamma) + ".louvain.tsv" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is clustering " + input_file subprocess.call(["qsub", "-pe", "smp", "2", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "louvain_cluster", input_file, output_file, str(gamma)]) ## To cluster the input correlation file and output to the cluster directory. def dedup_louvain_cluster(workspace, data_set): root_cluster_dir = workspace + "/" + data_set + "/louvain_cluster_files" root_unique_cluster_dir = workspace + "/" + data_set + "/louvain_unique_cluster_files" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: for combination in combinations: input_folder = root_cluster_dir + "/" + tumor_type output_folder = root_unique_cluster_dir + "/" + tumor_type if not os.path.exists(os.path.dirname(output_folder)): os.makedirs(os.path.dirname(output_folder)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is clustering " + input_folder subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "dedup_louvain_cluster", input_folder, output_folder, combination[0] + "_vs_" + combination[1]]) ## To cluster the input correlation file and output to the cluster directory. def oslom_undirected_cluster(workspace, data_set): root_correlation_dir = workspace + "/" + data_set + "/correlation_files" root_cluster_dir = workspace + "/" + data_set + "/oslom_undirected_cluster_files/" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: for combination in combinations: input_file = root_correlation_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_0.5.cor" for gamma in [1]: output_folder = root_cluster_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) output_file = output_folder + "/" + combination[0] + "_vs_" \ + combination[1] + "_gamma_" + str(gamma) + ".oslom_undirected.tsv" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) if not os.path.exists(output_file): print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is clustering " + input_file subprocess.call(["qsub", "-pe", "smp", "8", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "oslom_undirected_cluster", input_file, output_file, str(gamma)]) ## To cluster the input correlation file and output to the cluster directory. def ivanovska_cluster(workspace, data_set): root_correlation_dir = workspace + "/" + data_set + "/correlation_files" root_cluster_dir = workspace + "/" + data_set + "/cluster_files" ## Iterate all combinations data_types = ["mirna", "rnaseq"] for tumor_type in tumor_types: input_file = root_correlation_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" + data_types[1] + ".cor" for gamma in [1]: output_file = root_cluster_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" \ + data_types[1] + "_gamma_" + str(gamma) + ".ivanovska.tsv" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is clustering " + input_file subprocess.call(["qsub", "-pe", "smp", "8", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "ivanovska_cluster", input_file, output_file, str(gamma)]) ## To replace the correlation values in the cluster RNAseq_vs_RNAseq. def replace_cluster(workspace, data_set): root_correlation_dir = workspace + "/" + data_set + "/correlation_files" root_cluster_dir = workspace + "/" + data_set + "/oslom_undirected_cluster_files" ## Iterate all combinations data_types = ["rnaseq","rnaseq"] for tumor_type in tumor_types: input_file = root_correlation_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" + data_types[1] + "_0.5.cor" for gamma in [1]: cluster_folder = root_cluster_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" + data_types[1] + "_gamma_" + str(gamma) cluster_file = cluster_folder + "/" + data_types[0] + "_vs_" \ + data_types[1] + "_gamma_" + str(gamma) + ".oslom_undirected.tsv" print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is clustering " + input_file subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "replace_cluster", input_file, cluster_file, str(gamma)]) ## To parse the cluster file and then print json file. def print_louvain_json(workspace, data_set): prefix = "clusters_tcga_louvain" root_cluster_dir = workspace + "/" + data_set + "/louvain_unique_cluster_files" root_louvain_json_dir = workspace + "/" + data_set + "/louvain_json_files" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) print "printing louvain json..." for tumor_type in tumor_types: ## Print cluster json files for combination in combinations: for gamma in [1, 4, 7, 11, 14, 17, 20]: input_folder = root_cluster_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) input_file = input_folder + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) + ".louvain.unique.tsv" output_folder = root_louvain_json_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) output_file = output_folder + "/" + combination[0] + "_vs_" + combination[1] \ + "_gamma_" + str(gamma) + ".json" if os.path.exists(os.path.dirname(input_file)): if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing " + input_file subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "print_louvain_json", workspace, input_file, output_file, tumor_type, combination[0] + "_vs_" + combination[1], prefix]) ## Print star json files #print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing " + tumor_type #subprocess.call(["qsub", "-pe", "smp", "4", "-o", "search_engine.log", "-e", "search_engine.log", # workspace + "/codes/" + data_set + "/tcga.sh", "print_star_json", workspace, data_set, tumor_type]) ## To parse the cluster file and then print json file. def print_oslom_undirected_json(workspace, data_set): prefix = "clusters_tcga_oslom" root_cluster_dir = workspace + "/" + data_set + "/oslom_undirected_cluster_files" root_louvain_json_dir = workspace + "/" + data_set + "/oslom_undirected_json_files" ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] combinations = list(itertools.combinations_with_replacement(data_types, 2)) for tumor_type in tumor_types: ## Print cluster json files for combination in combinations: for gamma in [1]: input_folder = root_cluster_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) input_file = input_folder + "/" + combination[0] + "_vs_" + combination[1] + "_gamma_" + str(gamma) + ".oslom_undirected.tsv" output_file = root_louvain_json_dir + "/" + tumor_type + "/" + combination[0] + "_vs_" + combination[1] \ + "_gamma_" + str(gamma) + ".json" if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing " + input_file subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "print_oslom_json", workspace, input_file, output_file, tumor_type, combination[0] + "_vs_" + combination[1], prefix]) ## Print star json files #print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing " + tumor_type #subprocess.call(["qsub", "-pe", "smp", "4", "-o", "search_engine.log", "-e", "search_engine.log", # workspace + "/codes/" + data_set + "/tcga.sh", "print_star_oslom_json", workspace, data_set, tumor_type]) ## To parse the cluster file and then print json file. def print_ivanovska_json(workspace, data_set): prefix = "clusters_tcga_ivanovska" root_cluster_dir = workspace + "/" + data_set + "/cluster_files" root_ivanovska_json_dir = workspace + "/" + data_set + "/ivanovska_json_files" ## Iterate all combinations data_types = ["mirna", "rnaseq"] for tumor_type in tumor_types: ## Print cluster json files for gamma in [1]: input_file = root_cluster_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" \ + data_types[1] + "_gamma_" + str(gamma) + ".tsv" output_file = root_ivanovska_json_dir + "/" + tumor_type + "/" + data_types[0] + "_vs_" + data_types[1] \ + "_gamma_" + str(gamma) + ".ivanovska.json" if os.path.exists(os.path.dirname(input_file)): if not os.path.exists(os.path.dirname(output_file)): os.makedirs(os.path.dirname(output_file)) print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing " + input_file subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "print_ivanovska_json", workspace, input_file, output_file, tumor_type, data_types[0] + "_vs_" + data_types[1], prefix]) ## To print labels def print_label(workspace, data_set): ## Iterate all combinations data_types = ["mirna", "rnaseq", "mutation"] for tumor_type in tumor_types: for data_type in data_types: ## Print label print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing labels of " + tumor_type subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "print_label", workspace, data_set, tumor_type, data_type]) ## To print schema def print_schema(workspace, data_set): print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is printing schema of TCGA" subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "print_schema", workspace, data_set]) ## To append id into json files def append_id(workspace, data_set): print datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": System is appending id into TCGA json files" subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/tcga.sh", "append_id", workspace, data_set])
StarcoderdataPython
3354663
"""BleBox climate entities tests.""" import json from blebox_uniapi.box_types import get_latest_api_level from .conftest import CommonEntity, DefaultBoxTest, future_date, jmerge # TODO: remove SUPPORT_TARGET_TEMPERATURE = 1 HVAC_MODE_OFF = "hvac mode off" HVAC_MODE_HEAT = "hvac mode heat" CURRENT_HVAC_OFF = "current hvac mode off" CURRENT_HVAC_HEAT = "current hvac mode heat" CURRENT_HVAC_IDLE = "current hvac mode idle" ATTR_TEMPERATURE = "temperature" TEMP_CELSIUS = "celsius" class ClimateDevice: def __init__(self): self._state = None @property def state(self): if self._feature.is_on is None: return None if not self._feature.is_on: return HVAC_MODE_OFF return HVAC_MODE_HEAT @property def device_class(self): return None class BleBoxClimateEntity(CommonEntity, ClimateDevice): def __init__(self, feature): super().__init__(feature) ClimateDevice.__init__(self) pass """Representation of a BleBox climate feature.""" @property def supported_features(self): """Return the supported climate features.""" return SUPPORT_TARGET_TEMPERATURE @property def hvac_mode(self): """Return the desired HVAC mode.""" return {None: None, False: HVAC_MODE_OFF, True: HVAC_MODE_HEAT}[ self._feature.is_on ] @property def hvac_action(self): """Return the actual current HVAC action.""" on = self._feature.is_on if not on: return None if on is None else CURRENT_HVAC_OFF states = {None: None, False: CURRENT_HVAC_IDLE, True: CURRENT_HVAC_HEAT} heating = self._feature.is_heating return states[heating] @property def hvac_modes(self): """Return a list of possible HVAC modes.""" return (HVAC_MODE_OFF, HVAC_MODE_HEAT) @property def temperature_unit(self): """Return the temperature unit.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._feature.current @property def max_temp(self): """Return the maximum thermostat setting.""" return self._feature.max_temp @property def min_temp(self): """Return the minimum thermostat setting.""" return self._feature.min_temp @property def target_temperature(self): """Return the desired thermostat temperature.""" return self._feature.desired async def async_set_hvac_mode(self, hvac_mode): """Set the climate entity mode.""" modemap = {HVAC_MODE_OFF: "async_off", HVAC_MODE_HEAT: "async_on"} await getattr(self._feature, modemap[hvac_mode])() async def async_set_temperature(self, **kwargs): """Set the thermostat temperature.""" value = kwargs[ATTR_TEMPERATURE] await self._feature.async_set_temperature(value) class TestSauna(DefaultBoxTest): """Tests for entities representing a BleBox saunaBox.""" DEVCLASS = "climates" ENTITY_CLASS = BleBoxClimateEntity DEV_INFO_PATH = "api/heat/extended/state" DEVICE_INFO = json.loads( """ { "device": { "deviceName": "My SaunaBox", "type": "saunaBox", "fv": "0.176", "hv": "0.6", "apiLevel": "20180604", "id": "1afe34db9437", "ip": "192.168.1.11" } } """ ) def patch_version(apiLevel): """Generate a patch for a JSON state fixture.""" return f""" {{ "device": {{ "apiLevel": {apiLevel} }} }} """ DEVICE_INFO_FUTURE = jmerge(DEVICE_INFO, patch_version(future_date())) DEVICE_INFO_LATEST = jmerge( DEVICE_INFO, patch_version(get_latest_api_level("saunaBox")) ) DEVICE_INFO_UNSUPPORTED = jmerge(DEVICE_INFO, patch_version(20180603)) DEVICE_INFO_UNSPECIFIED_API = json.loads( """ { "device": { "deviceName": "My SaunaBox", "type": "saunaBox", "fv": "0.176", "hv": "0.6", "id": "1afe34db9437", "ip": "192.168.1.11" } } """ ) def patch_state(state, current, desired): """Generate a patch for a JSON state fixture.""" return f""" {{ "heat": {{ "state": {state}, "desiredTemp": {desired}, "sensors": [ {{ "value": {current} }} ] }} }} """ STATE_DEFAULT = json.loads( """ { "heat": { "state": 0, "desiredTemp": 6428, "maximumTemp": 12166, "minimumTemp": -5166, "sensors": [ { "type": "temperature", "id": 0, "value": 3996, "trend": 0, "state": 2, "elapsedTimeS": 0 } ] } } """ ) STATE_OFF_BELOW = STATE_DEFAULT STATE_NEEDS_HEATING = jmerge(STATE_DEFAULT, patch_state(1, 2320, 3871)) STATE_OFF_ABOVE = jmerge(STATE_DEFAULT, patch_state(0, 3871, 2876)) STATE_NEEDS_COOLING = jmerge(STATE_DEFAULT, patch_state(1, 3871, 2876)) STATE_REACHED = jmerge(STATE_DEFAULT, patch_state(1, 2320, 2320)) STATE_THERMO_SET = jmerge(STATE_DEFAULT, patch_state(1, 2320, 4320)) async def test_init(self, aioclient_mock): """Test default state.""" await self.allow_get_info(aioclient_mock) entity = (await self.async_entities(aioclient_mock))[0] assert entity.name == "My SaunaBox (saunaBox#thermostat)" assert entity.unique_id == "BleBox-saunaBox-1afe34db9437-thermostat" assert entity.device_class is None assert entity.supported_features & SUPPORT_TARGET_TEMPERATURE assert entity.hvac_modes == (HVAC_MODE_OFF, HVAC_MODE_HEAT) assert entity.hvac_mode is None assert entity.hvac_action is None assert entity.target_temperature is None assert entity.temperature_unit == TEMP_CELSIUS assert entity.state is None assert entity.max_temp is None assert entity.min_temp is None async def test_device_info(self, aioclient_mock): await self.allow_get_info(aioclient_mock, self.DEVICE_INFO) entity = (await self.async_entities(aioclient_mock))[0] assert entity.device_info["name"] == "My SaunaBox" assert entity.device_info["mac"] == "1afe34db9437" assert entity.device_info["manufacturer"] == "BleBox" assert entity.device_info["model"] == "saunaBox" assert entity.device_info["sw_version"] == "0.176" async def test_update(self, aioclient_mock): """Test updating.""" entity = await self.updated(aioclient_mock, self.STATE_DEFAULT) assert entity.hvac_mode == HVAC_MODE_OFF assert entity.hvac_action == CURRENT_HVAC_OFF assert entity.target_temperature == 64.3 assert entity.current_temperature == 40.0 assert entity.temperature_unit == TEMP_CELSIUS assert entity.max_temp == 121.7 assert entity.min_temp == -51.7 async def test_on_when_below_target(self, aioclient_mock): """Test when temperature is below desired.""" entity = await self.updated(aioclient_mock, self.STATE_OFF_BELOW) assert entity.state == entity.hvac_mode == HVAC_MODE_OFF assert entity.hvac_action == CURRENT_HVAC_OFF self.allow_get(aioclient_mock, "/s/1", self.STATE_NEEDS_HEATING) await entity.async_set_hvac_mode(HVAC_MODE_HEAT) assert entity.target_temperature == 38.7 assert entity.current_temperature == 23.2 assert entity.state == entity.hvac_mode == HVAC_MODE_HEAT assert entity.hvac_action == CURRENT_HVAC_HEAT async def test_on_when_above_target(self, aioclient_mock): """Test when temperature is below desired.""" entity = await self.updated(aioclient_mock, self.STATE_OFF_ABOVE) assert entity.state == entity.hvac_mode == HVAC_MODE_OFF assert entity.hvac_action == CURRENT_HVAC_OFF self.allow_get(aioclient_mock, "/s/1", self.STATE_NEEDS_COOLING) await entity.async_set_hvac_mode(HVAC_MODE_HEAT) assert entity.target_temperature == 28.8 assert entity.current_temperature == 38.7 assert entity.state == entity.hvac_mode == HVAC_MODE_HEAT assert entity.hvac_action == CURRENT_HVAC_IDLE async def test_on_when_at_target(self, aioclient_mock): """Test when temperature is below desired.""" entity = await self.updated(aioclient_mock, self.STATE_OFF_ABOVE) assert entity.state == entity.hvac_mode == HVAC_MODE_OFF assert entity.hvac_action == CURRENT_HVAC_OFF self.allow_get(aioclient_mock, "/s/1", self.STATE_REACHED) await entity.async_set_hvac_mode(HVAC_MODE_HEAT) assert entity.target_temperature == 23.2 assert entity.current_temperature == 23.2 assert entity.state == entity.hvac_mode == HVAC_MODE_HEAT assert entity.hvac_action == CURRENT_HVAC_IDLE async def test_off(self, aioclient_mock): """Test turning off.""" entity = await self.updated(aioclient_mock, self.STATE_REACHED) self.allow_get(aioclient_mock, "/s/0", self.STATE_OFF_BELOW) await entity.async_set_hvac_mode(HVAC_MODE_OFF) assert entity.target_temperature == 64.3 assert entity.current_temperature == 40.0 assert entity.state == entity.hvac_mode == HVAC_MODE_OFF assert entity.hvac_action == CURRENT_HVAC_OFF async def test_set_thermo(self, aioclient_mock): """Test setting thermostat.""" entity = await self.updated(aioclient_mock, self.STATE_REACHED) self.allow_get(aioclient_mock, "/s/t/4321", self.STATE_THERMO_SET) await entity.async_set_temperature(**{ATTR_TEMPERATURE: 43.21}) assert entity.current_temperature == 23.2 # no change yet assert entity.target_temperature == 43.2 assert entity.state == entity.hvac_mode == HVAC_MODE_HEAT assert entity.hvac_action == CURRENT_HVAC_HEAT
StarcoderdataPython
3212640
<gh_stars>0 from unittest import TestCase from unittest.mock import patch, MagicMock, PropertyMock from bson import ObjectId from django_mock_queries.query import MockSet from mlplaygrounds.datasets.tests.mocks.managers import MockDatasetManager from ..models import User, CustomUserManager class TestUserModel(TestCase): def setUp(self): mock_manager = MockDatasetManager() mock_manager.collection.insert_many([ {'_id': 1, 'user_id': 'john', 'name': 'jdata', 'data': {}}, {'_id': 2, 'user_id': 'test', 'name': 'test', 'data': {}} ]) self.manager_patcher = patch( 'mlplaygrounds.users.models.Dataset.objects', new_callable=PropertyMock(return_value=mock_manager) ) self.manager_patcher.start() def test_datasets(self): expected_dataset = {'uid': 2, 'name': 'test'} user = User() user.username = 'test' user_datasets = [ {'uid': dataset.uid, 'name': dataset.name} for dataset in user.datasets ] self.assertEqual(user_datasets, [expected_dataset]) def tearDown(self): self.manager_patcher.stop() class TestUserManager(TestCase): def setUp(self): self.save_patcher = patch( 'mlplaygrounds.users.models.User.save', return_value=MagicMock() ) self.save_patcher.start() def tearDown(self): self.save_patcher.stop() @patch('mlplaygrounds.users.models.CustomUserManager._credentials_already_in_use') def test_create_user(self, mock_credentials_in_use): mock_credentials_in_use.return_value = False manager = CustomUserManager() user = manager.create_user('usr', 'pass', 'email', 'name', 'sname') self.assertEqual(user.username, 'usr') @patch('mlplaygrounds.users.models.CustomUserManager._credentials_already_in_use') def test_create_invalid_user(self, mock_credentials_in_use): mock_credentials_in_use.return_value = True manager = CustomUserManager() with self.assertRaises(ValueError): manager.create_user('usr', 'pass', 'email', 'name', 'sname') @patch('mlplaygrounds.users.models.CustomUserManager._credentials_already_in_use') def test_create_superuser(self, mock_credentials_in_use): mock_credentials_in_use.return_value = False manager = CustomUserManager() user = manager.create_superuser('susr', 'pass', 'semail', 'name', 'sname') self.assertEqual(user.is_superuser, True) @patch('mlplaygrounds.users.models.CustomUserManager._credentials_already_in_use') def test_create_invalid_superuser(self, mock_credentials_in_use): mock_credentials_in_use.return_value = True manager = CustomUserManager() with self.assertRaises(ValueError): manager.create_superuser('susr', 'pass', 'semail', 'name', 'sname') @patch('mlplaygrounds.users.models.User.objects') def test_check_credentials_in_use(self, mock_objects): mock_objects.filter.return_value = mock_objects mock_objects.exists.return_value = True manager = CustomUserManager() in_use = manager._credentials_already_in_use('mary', '<EMAIL>') self.assertEqual(in_use, True) @patch('mlplaygrounds.users.models.User.objects') def test_check_credentials_not_in_use(self, mock_objects): mock_objects.filter.return_value = mock_objects mock_objects.exists.return_value = False manager = CustomUserManager() in_use = manager._credentials_already_in_use('patrick', '<EMAIL>') self.assertEqual(in_use, False)
StarcoderdataPython
68580
import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import datetime import seaborn as sns from matplotlib.colors import ListedColormap import numpy as np df = pd.read_excel('data/R1_5_results_only.xlsx') rc = {'figure.figsize': (10, 5), 'axes.facecolor': 'white', 'axes.grid': True, 'grid.color': '.8', 'font.family': 'Arial Narrow', 'font.size': 15} plt.rcParams.update(rc) colors = ["#0F6FC6", "#009DD9", '#0BD0D9', '#10CF9B', '#7CCA62', '#A5C249'] # Set your custom color palette sns.set_palette(sns.color_palette(colors)) f, axes = plt.subplots(1, 3, figsize=(20, 8)) f.suptitle('Performance Analysis Quintile Portfolios') sub1 = sns.stripplot(x='Quintile', y="Mean_Annual", data=df, s=10, ax=axes[0], cmap=sns.color_palette(colors)) sub1.set(xlabel="Quintile", ylabel="Annualized Return") axes[0].set_title('Total Return Analysis') sub2 = sns.stripplot(x='Quintile', y="Std_Annualized", data=df, s=10, ax=axes[1]) sub2.set(xlabel="Quintile", ylabel="Std. Dev.") axes[1].set_title('Volatility Analysis') # axes[1].get_legend().remove() sub3 = sns.stripplot(x='Quintile', y="Sharpe_Ratio", data=df, s=10, ax=axes[2]) sub3.set(xlabel="Quintile", ylabel="Sharpe Ratio") axes[2].set_title('Risk adjusted Performance') # axes[2].get_legend().remove() sns.despine(top=False, right=False, left=False, bottom=False, offset=None, trim=False) plt.subplots_adjust(left=0.05, right=0.95) # # todo uncomment to save to respective file_types plt.savefig('graphs_presentation_arial_narrow/R1_5_sharpe_ratio_v2.eps', dpi=300) # plt.savefig('graphs/R1_5_sharpe_ratio_v2.png', dpi=300) # plt.savefig('graphs/R1_5_sharpe_ratio_v2.pdf', dpi=300) plt.show()
StarcoderdataPython
3316949
# -*- coding: utf-8 -*- import localhostrunner import os.path from django.conf import settings from django.test.runner import DiscoverRunner class LocalhostTestRunner(DiscoverRunner): def run_suite(self, suite, **kwargs): return localhostrunner.LocalhostTestRunner(**kwargs).run(suite)
StarcoderdataPython
103696
<gh_stars>1-10 df.groupby('Pclass')['Fare'].hist(alpha=0.4);
StarcoderdataPython
1765275
import re from . import Mod def remove_comments(output): output = re.sub(r'(\/\*[\w\'\s\n\*]*\*\/)', r'', output) # multi-line comments output = re.sub(r'((?:[\s;]+)|^)(\/\/.*$)', r'\1', output) # single-line comments return output mod_remove_comments = Mod(remove_comments)
StarcoderdataPython
3339449
<reponame>caosenqi/Edward1 import numpy as np import tensorflow as tf from edward.data import Data from edward.util import logit, get_session def evaluate(metrics, model, variational, data): """ Evaluate fitted model using a set of metrics. Parameters ---------- metric : list or str List of metrics or a single metric. Returns ------- list or float A list of evaluations or a single evaluation. """ sess = get_session() # Monte Carlo estimate the mean of the posterior predictive: # 1. Sample a batch of latent variables from posterior xs = data.data n_minibatch = 100 zs, samples = variational.sample(xs, size=n_minibatch) feed_dict = variational.np_sample(samples, n_minibatch) # 2. Make predictions, averaging over each sample of latent variables y_pred, y_true = model.predict(xs, zs) # Evaluate y_pred according to y_true for all metrics. evaluations = [] if isinstance(metrics, str): metrics = [metrics] for metric in metrics: if metric == 'accuracy' or metric == 'crossentropy': # automate binary or sparse cat depending on max(y_true) support = tf.reduce_max(y_true).eval() if support <= 1: metric = 'binary_' + metric else: metric = 'sparse_categorical_' + metric if metric == 'binary_accuracy': evaluations += [sess.run(binary_accuracy(y_true, y_pred), feed_dict)] elif metric == 'categorical_accuracy': evaluations += [sess.run(categorical_accuracy(y_true, y_pred), feed_dict)] elif metric == 'sparse_categorical_accuracy': evaluations += [sess.run(sparse_categorical_accuracy(y_true, y_pred), feed_dict)] elif metric == 'log_loss' or metric == 'binary_crossentropy': evaluations += [sess.run(binary_crossentropy(y_true, y_pred), feed_dict)] elif metric == 'categorical_crossentropy': evaluations += [sess.run(categorical_crossentropy(y_true, y_pred), feed_dict)] elif metric == 'sparse_categorical_crossentropy': evaluations += [sess.run(sparse_categorical_crossentropy(y_true, y_pred), feed_dict)] elif metric == 'hinge': evaluations += [sess.run(hinge(y_true, y_pred), feed_dict)] elif metric == 'squared_hinge': evaluations += [sess.run(squared_hinge(y_true, y_pred), feed_dict)] elif metric == 'mse' or metric == 'MSE' or \ metric == 'mean_squared_error': evaluations += [sess.run(mean_squared_error(y_true, y_pred), feed_dict)] elif metric == 'mae' or metric == 'MAE' or \ metric == 'mean_absolute_error': evaluations += [sess.run(mean_absolute_error(y_true, y_pred), feed_dict)] elif metric == 'mape' or metric == 'MAPE' or \ metric == 'mean_absolute_percentage_error': evaluations += [sess.run(mean_absolute_percentage_error(y_true, y_pred), feed_dict)] elif metric == 'msle' or metric == 'MSLE' or \ metric == 'mean_squared_logarithmic_error': evaluations += [sess.run(mean_squared_logarithmic_error(y_true, y_pred), feed_dict)] elif metric == 'poisson': evaluations += [sess.run(poisson(y_true, y_pred), feed_dict)] elif metric == 'cosine' or metric == 'cosine_proximity': evaluations += [sess.run(cosine_proximity(y_true, y_pred), feed_dict)] elif metric == 'log_lik' or metric == 'log_likelihood': evaluations += [sess.run(y_pred, feed_dict)] else: raise NotImplementedError() if len(evaluations) == 1: return evaluations[0] else: return evaluations def ppc(model, variational=None, data=Data(), T=None, size=100): """ Posterior predictive check. (Rubin, 1984; Meng, 1994; <NAME>, and Stern, 1996) If variational is not specified, it defaults to a prior predictive check (Box, 1980). PPC's form an empirical distribution for the predictive discrepancy, p(T) = \int p(T(yrep) | z) p(z | y) dz by drawing replicated data sets yrep and calculating T(yrep) for each data set. Then it compares it to T(y). Parameters ---------- model : Model class object with a 'sample_likelihood' method variational : Variational, optional latent variable distribution q(z) to sample from. It is an approximation to the posterior, e.g., a variational approximation or an empirical distribution from MCMC samples. If not specified, samples will be obtained from model with a 'sample_prior' method. data : Data, optional Observed data to compare to. If not specified, will return only the reference distribution with an assumed replicated data set size of 1. T : function, optional Discrepancy function written in TensorFlow. Default is identity. It is a function taking in a data set y and optionally a set of latent variables z as input. size : int, optional number of replicated data sets Returns ------- list List containing the reference distribution, which is a Numpy vector of size elements, (T(yrep^{1}, z^{1}), ..., T(yrep^{size}, z^{size})); and the realized discrepancy, which is a NumPy vector of size elements, (T(y, z^{1}), ..., T(y, z^{size})). """ sess = get_session() y = data.data if y == None: N = 1 else: N = data.N if T == None: T = lambda y, z=None: y # 1. Sample from posterior (or prior). # We must fetch zs out of the session because sample_likelihood() # may require a SciPy-based sampler. if variational != None: zs, samples = variational.sample(y, size=size) feed_dict = variational.np_sample(samples, size) zs = sess.run(zs, feed_dict) else: zs = model.sample_prior(size=size) zs = zs.eval() # 2. Sample from likelihood. yreps = model.sample_likelihood(zs, size=N) # 3. Calculate discrepancy. Tyreps = [] Tys = [] for yrep, z in zip(yreps, tf.unpack(zs)): Tyreps += [T(yrep, z)] if y != None: Tys += [T(y, z)] if y == None: return sess.run(tf.pack(Tyreps), feed_dict) else: return sess.run([tf.pack(Tyreps), tf.pack(Tys)], feed_dict) # Classification metrics def binary_accuracy(y_true, y_pred): """ Binary prediction accuracy, also known as 0/1-loss. Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s. y_pred : tf.Tensor Tensor of probabilities. """ y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(tf.round(y_pred), tf.float32) return tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32)) def categorical_accuracy(y_true, y_pred): """ Multi-class prediction accuracy. One-hot representation for y_true. Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s, where the outermost dimension of size K has only one 1 per row. y_pred : tf.Tensor Tensor of probabilities, with same shape as y_true. The outermost dimension denote the categorical probabilities for that data point per row. """ y_true = tf.cast(tf.argmax(y_true, len(y_true.get_shape()) - 1), tf.float32) y_pred = tf.cast(tf.argmax(y_pred, len(y_pred.get_shape()) - 1), tf.float32) return tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32)) def sparse_categorical_accuracy(y_true, y_pred): """ Multi-class prediction accuracy. Label {0, 1, .., K-1} representation for y_true. Parameters ---------- y_true : tf.Tensor Tensor of integers {0, 1, ..., K-1}. y_pred : tf.Tensor Tensor of probabilities, with shape (y_true.get_shape(), K). The outermost dimension are the categorical probabilities for that data point. """ y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(tf.argmax(y_pred, len(y_pred.get_shape()) - 1), tf.float32) return tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32)) def binary_crossentropy(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s. y_pred : tf.Tensor Tensor of probabilities. """ y_true = tf.cast(y_true, tf.float32) y_pred = logit(tf.cast(y_pred, tf.float32)) return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(y_pred, y_true)) def categorical_crossentropy(y_true, y_pred): """ Multi-class cross entropy. One-hot representation for y_true. Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s, where the outermost dimension of size K has only one 1 per row. y_pred : tf.Tensor Tensor of probabilities, with same shape as y_true. The outermost dimension denote the categorical probabilities for that data point per row. """ y_true = tf.cast(y_true, tf.float32) y_pred = logit(tf.cast(y_pred, tf.float32)) return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_pred, y_true)) def sparse_categorical_crossentropy(y_true, y_pred): """ Multi-class cross entropy. Label {0, 1, .., K-1} representation for y_true. Parameters ---------- y_true : tf.Tensor Tensor of integers {0, 1, ..., K-1}. y_pred : tf.Tensor Tensor of probabilities, with shape (y_true.get_shape(), K). The outermost dimension are the categorical probabilities for that data point. """ y_true = tf.cast(y_true, tf.int64) y_pred = logit(tf.cast(y_pred, tf.float32)) return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y_pred, y_true)) def hinge(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s. y_pred : tf.Tensor Tensor of real value. """ y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) return tf.reduce_mean(tf.maximum(1.0 - y_true * y_pred, 0.0)) def squared_hinge(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor Tensor of 0s and 1s. y_pred : tf.Tensor Tensor of real value. """ y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) return tf.reduce_mean(tf.square(tf.maximum(1.0 - y_true * y_pred, 0.0))) # Regression metrics def mean_squared_error(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ return tf.reduce_mean(tf.square(y_pred - y_true)) def mean_absolute_error(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ return tf.reduce_mean(tf.abs(y_pred - y_true)) def mean_absolute_percentage_error(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ diff = tf.abs((y_true - y_pred) / tf.clip_by_value(tf.abs(y_true), 1e-8, np.inf)) return 100.0 * tf.reduce_mean(diff) def mean_squared_logarithmic_error(y_true, y_pred): """ Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ first_log = tf.log(tf.clip_by_value(y_pred, 1e-8, np.inf) + 1.0) second_log = tf.log(tf.clip_by_value(y_true, 1e-8, np.inf) + 1.0) return tf.reduce_mean(tf.square(first_log - second_log)) def poisson(y_true, y_pred): """ Negative Poisson log-likelihood of data y_true given predictions y_pred (up to proportion). Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ return tf.reduce_sum(y_pred - y_true * tf.log(y_pred + 1e-8)) def cosine_proximity(y_true, y_pred): """ Cosine similarity of two vectors. Parameters ---------- y_true : tf.Tensor y_pred : tf.Tensor Tensors of same shape and type. """ y_true = tf.nn.l2_normalize(y_true, len(y_true.get_shape()) - 1) y_pred = tf.nn.l2_normalize(y_pred, len(y_pred.get_shape()) - 1) return tf.reduce_sum(y_true * y_pred)
StarcoderdataPython
3227742
<filename>src/train.py from tensorflow import keras import tensorflow as tf import archs from utils import data_utils, train_utils, augment, argmanager from utils.loss import multinomial_nll import numpy as np import random import string import math import os import json def subsample_nonpeak_data(nonpeak_seqs, nonpeak_cts, peak_data_size, negative_sampling_ratio): #Randomly samples a portion of the non-peak data to use in training num_nonpeak_samples = int(negative_sampling_ratio * peak_data_size) nonpeak_indices_to_keep = np.random.choice(len(nonpeak_seqs), size=num_nonpeak_samples, replace=False) nonpeak_seqs = nonpeak_seqs[nonpeak_indices_to_keep] nonpeak_cts = nonpeak_cts[nonpeak_indices_to_keep] return nonpeak_seqs, nonpeak_cts class BatchGenerator(keras.utils.Sequence): """ This generator randomly crops (=jitter) and revcomps training examples for every epoch """ def __init__(self, peak_seqs, nonpeak_seqs, peak_cts, nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size): """ seqs: B x L' x 4 cts: B x M' inputlen: int (L <= L'), L' is greater to allow for cropping (= jittering) outputlen: int (M <= M'), M' is greater to allow for cropping (= jittering) batch_size: int (B) """ self.peak_seqs, self.nonpeak_seqs = peak_seqs, nonpeak_seqs self.peak_cts, self.nonpeak_cts = peak_cts, nonpeak_cts self.negative_sampling = negative_sampling self.negative_sampling_ratio = negative_sampling_ratio self.inputlen = inputlen self.outputlen = outputlen self.batch_size = batch_size # random crop training data to the desired sizes, revcomp augmentation self.crop_revcomp_data() def __len__(self): return math.ceil(self.seqs.shape[0]/self.batch_size) def crop_revcomp_data(self): # random crop training data to inputlen and outputlen (with corresponding offsets), revcomp augmentation # shuffle required since otherwise peaks and nonpeaks will be together #Sample a fraction of the negative samples according to the specified ratio if self.negative_sampling: self.sampled_nonpeak_seqs, self.sampled_nonpeak_cts = subsample_nonpeak_data(self.nonpeak_seqs, self.nonpeak_cts, len(self.peak_seqs), self.negative_sampling_ratio) self.seqs = np.vstack([self.peak_seqs, self.sampled_nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.sampled_nonpeak_cts]) else: self.seqs = np.vstack([self.peak_seqs, self.nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.nonpeak_cts]) self.cur_seqs, self.cur_cts = augment.crop_revcomp_augment( self.seqs, self.cts, self.inputlen, self.outputlen, shuffle=True ) def __getitem__(self, idx): batch_seq = self.cur_seqs[idx*self.batch_size:(idx+1)*self.batch_size] batch_cts = self.cur_cts[idx*self.batch_size:(idx+1)*self.batch_size] return batch_seq, [batch_cts, np.log(1+batch_cts.sum(-1, keepdims=True))] def on_epoch_end(self): self.crop_revcomp_data() def train_loop(model, inputlen, outputlen, train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, val_peak_seqs, val_nonpeak_seqs, val_peak_cts, val_nonpeak_cts, negative_sampling, negative_sampling_ratio, batch_size, epochs, early_stop, output_prefix): if negative_sampling: np.random.seed(1248) val_nonpeak_seqs, val_nonpeak_cts = subsample_nonpeak_data(val_nonpeak_seqs, val_nonpeak_cts, len(val_peak_seqs), negative_sampling_ratio) val_seqs = np.vstack([val_peak_seqs, val_nonpeak_seqs]) val_cts = np.vstack([val_peak_cts, val_nonpeak_cts]) # need generator to crop and revcomp aug training examples, but not for # validation. train_generator = BatchGenerator(train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size) callbacks = train_utils.get_callbacks(early_stop, output_prefix) history = model.fit(train_generator, epochs=epochs, validation_data=(val_seqs, [val_cts, np.log(1+val_cts.sum(-1, keepdims=True))]), callbacks=callbacks) return history def main(): args = argmanager.fetch_train_args() print(args) if os.path.exists("{}.h5".format(args.output_prefix)): raise OSError('File {}.h5 already exists'.format(args.output_prefix)) # load data train_peaks_seqs, train_peaks_cts, train_nonpeaks_seqs, train_nonpeaks_cts,\ val_peaks_seqs, val_peaks_cts, val_nonpeaks_seqs, val_nonpeaks_cts = \ data_utils.load_train_val_data( args.peaks, args.nonpeaks, args.genome, args.bigwig, args.val_chr, args.test_chr, args.inputlen, args.outputlen, args.max_jitter, outlier=0.9999 ) # compute loss weight factor for counts loss counts_loss_weight = train_utils.get_counts_stat(train_peaks_cts, args.outputlen) * args.counts_weight print("\nCounts loss weight : {:.2f}\n".format(counts_loss_weight)) # prepare model model = archs.bpnet_seq(args.inputlen, args.outputlen, args.filters, args.ndil) opt = keras.optimizers.Adam(learning_rate=args.learning_rate) model.compile( optimizer=opt, loss=[multinomial_nll, 'mse'], loss_weights = [1, counts_loss_weight] ) history = train_loop(model, args.inputlen, args.outputlen, train_peaks_seqs, train_nonpeaks_seqs, train_peaks_cts, train_nonpeaks_cts, val_peaks_seqs, val_nonpeaks_seqs, val_peaks_cts, val_nonpeaks_cts, args.negative_sampling, args.negative_sampling_ratio, args.batch_size, args.epochs, args.early_stop, args.output_prefix) with open("{}.history.json".format(args.output_prefix), "w") as f: json.dump(history.history, f, ensure_ascii=False, indent=4) if __name__=="__main__": main()
StarcoderdataPython
3347505
from threading import Lock from typing import Any DRIVER_CACHE_LOCK = Lock() NOT_SET_MARKER = object() def singleton_setup(obj: object, key: str, factory, *args, **kwargs) -> Any: """ Does: obj.key = factory(*args, **kwargs) # but only once and in a thread safe manner return obj.key """ v = getattr(obj, key, NOT_SET_MARKER) if v is not NOT_SET_MARKER: return v with DRIVER_CACHE_LOCK: v = getattr(obj, key, NOT_SET_MARKER) if v is not NOT_SET_MARKER: # very rare multi-thread only event. # Other thread did it first but after this thread's initial check above. # Disable test cover return v # pragma: no cover v = factory(*args, **kwargs) setattr(obj, key, v) return v
StarcoderdataPython
1629702
<reponame>RobertCraigie/prisma-client-py import json from typing import Any import httpx from ._types import Method from .http_abstract import AbstractResponse, AbstractHTTP __all__ = ('HTTP', 'Response', 'client') class HTTP(AbstractHTTP[httpx.AsyncClient, httpx.Response]): # pylint: disable=invalid-overridden-method,attribute-defined-outside-init session: httpx.AsyncClient async def download(self, url: str, dest: str) -> None: # pyright thinks that stream() doesn't return a context manager # due to how httpx handles compatability imports # https://github.com/encode/httpx/discussions/1829 async with self.session.stream( 'GET', url, timeout=None ) as resp: # pyright: reportGeneralTypeIssues=false resp.raise_for_status() with open(dest, 'wb') as fd: async for chunk in resp.aiter_bytes(): fd.write(chunk) async def request(self, method: Method, url: str, **kwargs: Any) -> 'Response': return Response(await self.session.request(method, url, **kwargs)) def open(self) -> None: self.session = httpx.AsyncClient(**self.session_kwargs) async def close(self) -> None: if not self.closed: await self.session.aclose() # mypy doesn't like us assigning None as the type of # session is not optional, however the argument that # the setter takes is optional, so this is fine self.session = None # type: ignore[assignment] client: HTTP = HTTP() class Response(AbstractResponse[httpx.Response]): # pylint: disable=invalid-overridden-method @property def status(self) -> int: return self.original.status_code async def json(self, **kwargs: Any) -> Any: return json.loads(await self.original.aread(), **kwargs) async def text(self, **kwargs: Any) -> str: return ''.join([part async for part in self.original.aiter_text(**kwargs)])
StarcoderdataPython
1670585
from server import app, db # Import model definitions and then create the database db.create_all() db.session.commit() if __name__ == "__main__": app.run(debug=True)
StarcoderdataPython
3229124
DEBUG = False BCRYPT_LOG_ROUNDS = 12
StarcoderdataPython
4818752
from datetime import datetime, timedelta from django.conf import settings from rest_framework import generics from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework_jwt.utils import jwt_encode_handler, jwt_payload_handler from .models import StoreUser class UserView(generics.CreateAPIView): queryset = StoreUser.objects.all() # serializer_class = StoreSerializer permission_classes = [AllowAny, ] def post(self, request): if not self.request.data.get('phone_number'): return Response({"message": "Invalid Request"}) if StoreUser.objects.filter(phone_number=request.data.get('phone_number')): return Response({"message": "phone number already registered"}) user_obj = StoreUser.objects.create( phone_number=self.request.data.get('phone_number')) user_obj.set_password(request.data.get('password')) user_obj.is_active = True user_obj.save() create_success_message = 'Your registration is completed successfully. Activate your account by entering the OTP which we have sent to your email.' return Response({'message': create_success_message}) @api_view(['POST']) @permission_classes((AllowAny, )) def login(request): phone_number = request.data.get('phone_number') password = request.data.get('password') if not (phone_number and password): return Response({"message": "Invalid Request"}) user_obj_query = StoreUser.objects.filter( phone_number=phone_number) if not user_obj_query.exists(): return Response({"message": "user not found"}) user_obj = user_obj_query.first() if not user_obj.is_active: return Response({"message": "user not active"}) payload = jwt_payload_handler(user_obj) token = jwt_encode_handler(payload) expiration = datetime.utcnow( ) + settings.JWT_AUTH['JWT_EXPIRATION_DELTA'] expiration_epoch = expiration.timestamp() data = { "token": token, "token_expiration": expiration_epoch } return Response({'data': data})
StarcoderdataPython
3389004
<filename>codegen.py from ifelse_stmt import * from stmt import * from while_stmt import * from block import * from program import * from declare import * from assign_stmt import * from call_stmt import * from read_stmt import * from write_stmt import * from pl0yacc import * from op import * def getop(ast): return ast[0] code = [] currlevel = 0 currM = {} names = {} def codegen(ast): global currlevel,currM,code op = getop(ast) if op == 'program': codegen(program_block(ast)) code.append(('OPR', 0, 'OPR_RET')) elif op == 'block': if currlevel not in currM: currM[currlevel] = 0 currM[currlevel] += 3 code.append(('INC', 0, 3)) codegen(const_dec(ast)) codegen(var_dec(ast)) codegen(proc_dec(ast)) codegen(block_stmts(ast)) elif op == 'const': if not const_is_empty(ast): for con in const_list(ast): names[con[0]] = ['const',con[1]] elif op == 'var': if not var_is_empty(ast): for var in var_list(ast): if not currlevel in currM: currM[currlevel] = 0 names[var] = ['var',currlevel,currM[currlevel]] currM[currlevel] += 1 code.append(('INC',0,len(var_list(ast)))) elif op == 'proc': if not proc_is_empty(ast): for proc in proc_list(ast): names[proc] = ['proc', currlevel, len(code) + 1] currlevel += 1 tmpBegin = len(code) code.append(('JMP',0,0)) codegen(procs[proc]) code.append(('OPR',0,'OPR_RET')) currlevel -= 1 code[tmpBegin] = ('JMP',0,len(code)) elif op == ':=': codegen(assign_right(ast)) lexeme = assign_left(ast) code.append(('STO',abs(names[lexeme][1]-currlevel),names[lexeme][2])) elif op == 'call': lexeme = call_proc(ast) code.append(('CAL',abs(names[lexeme][1]-currlevel),names[lexeme][2])) elif op == 'stmt': stmt = get_stmt(ast) if stmt is not None: codegen(stmt) next_stmt = get_next_stmt(ast) if next_stmt is not None: codegen(next_stmt) elif op == 'if': codegen(get_if_cond(ast)) tmpBeginOne = len(code) stmt = get_if_then(ast) code.append(('JPC', 0, 0)) codegen(stmt) code.append(('JMP',0,0)) code[tmpBeginOne] = ('JPC',0,len(code)) elif op == 'if-else': codegen(get_if_cond(ast)) tmpBeginOne = len(code) code.append(('JPC', 0, 0)) codegen(get_if_then(ast)) tmpBeginTwo = len(code) code.append(('JMP', 0, 0)) code[tmpBeginOne] = ('JPC', 0, len(code)) codegen(get_if_else(ast)) code[tmpBeginTwo] = ('JMP',0,len(code)) elif op == 'while': tmpBeginOne = len(code) codegen(get_while_cond(ast)) tmpBeginTwo = len(code) code.append(('JPC',0,0)) codegen(get_while_stmt(ast)) code.append(('JMP',0,tmpBeginOne)) code[tmpBeginTwo] = ('JPC',0,len(code)) elif op == 'read': lexeme = read_ident(ast) code.append(('SIO_IN',0,2)) code.append(('STO',abs(names[lexeme][1]-currlevel),names[lexeme][2])) elif op == 'write': expr = write_expr(ast) codegen(expr) code.append(('SIO_OUT',0,1)) elif op == 'odd': pass elif op == '=': codegen(eql_left(ast)) codegen(eql_right(ast)) code.append(('OPR',0,'OPR_EQL')) elif op == '<>': codegen(neq_left(ast)) codegen(neq_right(ast)) code.append(('OPR',0,'OPR_NEQ')) elif op == '<': codegen(less_left(ast)) codegen(less_right(ast)) code.append(('OPR',0,'OPR_LSS')) elif op == '<=': codegen(leq_left(ast)) codegen(leq_right(ast)) code.append(('OPR',0,'OPR_LEQ')) elif op == '>': codegen(grt_left(ast)) codegen(grt_right(ast)) code.append(('OPR',0,'OPR_GTR')) elif op == '>=': codegen(grq_left(ast)) codegen(grt_right(ast)) code.append(('OPR',0,'OPR_GEQ')) elif op == '*': codegen(mul_left(ast)) codegen(mul_right(ast)) code.append(('OPR',0,'OPR_MUL')) elif op == '/': codegen(div_left(ast)) codegen(div_right(ast)) code.append(('OPR',0,'OPR_DIV')) elif op == '-': if len(ast) == 2: codegen(ast[1]) code.append(('OPR',0,'OPR_NEG')) else: codegen(minus_left(ast)) codegen(minus_right(ast)) code.append(('OPR',0,'OPR_SUB')) elif op == '+': codegen(plus_left(ast)) codegen(plus_right(ast)) code.append(('OPR',0,'OPR_ADD')) elif op == 'ident': lexeme = ast[1] if names[lexeme][0] == 'var': code.append(('LOD',abs(names[lexeme][1]-currlevel),names[lexeme][2])) elif names[lexeme][0] == 'const': code.append(('LIT',0,names[lexeme][1])) else: pass elif op == 'number': lexeme = ast[1] code.append(('LIT', 0, lexeme)) else: pass return code
StarcoderdataPython
35156
<reponame>jykntr/rest-cli-client import argparse from profile import Profile PROXY = 'proxy' VERIFY = 'verify' DEBUG = 'verbose' class CliParser(): def __init__(self, requests, profiles, options): self.requests = requests self.profiles = profiles self.options = options self.args = None # Use a pre-parser to get options that aren't data driven by the config file. # Pre-parser checks global options and specified profile preparser = argparse.ArgumentParser(add_help=False) preparser = self._add_global_options(preparser) known_args, _ = preparser.parse_known_args() # Now build real parser self.parser = argparse.ArgumentParser() # Add options that can be specified with or without a request sub-command self._add_global_options(self.parser) # Get specified profile (or empty profile if none specified) profile = self._get_profile(known_args.profile) # Add saved requests as sub commands subparsers = self.parser.add_subparsers( title='Requests', help='The request to execute' ) for request in self.requests: # Add sub-parser for request request_parser = subparsers.add_parser( request.name, description=request.__str__(), formatter_class=argparse.RawDescriptionHelpFormatter ) # Set variable name to request name so we can tell the request that is specified request_parser.set_defaults(request=request.name) # Add options common to all sub-commands self._add_global_options(request_parser) # Add HTTP request options like proxy and SSL verification options_group = request_parser.add_argument_group( title='Options', description='Options to use when making HTTP requests' ) options_group.add_argument( '--' + PROXY, default=[], action='append', metavar='host:port', help='Maps a protocol to a proxy. For example: "http://user:[email protected]:8080". ' + 'Multiple proxies can be defined for different protocols.' ) no_verify_mx_group = options_group.add_mutually_exclusive_group() no_verify_mx_group.add_argument( '--' + VERIFY, dest=VERIFY, action='store_true', help='Verify SSL certificates.' ) no_verify_mx_group.add_argument( '--no-' + VERIFY, action='store_false', dest=VERIFY, help='Do not verify SSL certificates.' ) # Get default verify setting from options no_verify_mx_group.set_defaults(verify=self.options.get_verify()) # Setup optional and required variables for each request. Optional variables have a name-value pair # in the user specified profile and required variables don't. optional_group = None # Only create the group if it is needed required_group = None for variable in request.get_variable_list(): if variable in profile.properties: # Variable exists in profile, so it should be optional if not optional_group: # Create optional group if it doesn't exist optional_group = request_parser.add_argument_group( title='Optional variable arguments', description='Variables that have a default value in the active profile ' + '(' + profile.name + ')' ) optional_group.add_argument( '--'+variable, help='Default value from profile: ' + profile.properties.get(variable), default=profile.properties.get(variable) ) else: # Variable does not exist in the profile so it is required if not required_group: # Create required group if it doesn't exist required_group = request_parser.add_argument_group( title='Required variable arguments', description='Variables that have no default value in the active profile ' + '(' + profile.name + ')' ) required_group.add_argument(variable) def parse_args(self): dictionary_args = vars(self.parser.parse_args()) # The proxy key will contain a list of proxies in the format: # ['http://proxy.com:8080', 'https://proxy.com:8081'] # Remove the list of proxies from the cli args and put an # empty dictionary in its place. proxy_list = dictionary_args.pop(PROXY, []) dictionary_args[PROXY] = {} for proxy in proxy_list: # Split the proxy into protocol and hostname split_proxy = proxy.split(':', 1) dictionary_args[PROXY][split_proxy[0]] = proxy self.args = dictionary_args return self.args def get_profile(self, default): if self.args.no_profile: return None if self.args.profile is not None: return self.args.profile else: return default def _get_profile_names(self): profile_names = list() for profile in self.profiles: profile_names.append(str(profile.name)) return profile_names def _get_profile(self, name): empty_profile = Profile({'name': 'none'}) for profile in self.profiles: if name == profile.name: return profile return empty_profile def _add_global_options(self, parser): profiles_group = parser.add_argument_group( title='Profiles', description='Indicates which profile to use, if any, for variable substitution' ) profiles_mx_group = profiles_group.add_mutually_exclusive_group() profiles_mx_group.add_argument( '--profile', '-p', choices=self._get_profile_names(), help='The name of the profile to use for variable substitution' ) profiles_mx_group.add_argument( '--no-profile', action="store_true", default=False, help='No profile will be used for variable substitution' ) parser.add_argument( '--' + DEBUG, '-d', action='store_true', help=argparse.SUPPRESS ) return parser
StarcoderdataPython
3312891
# We use word2vec instead of glove embedding in this file # This word2vec is a self-trained one import argparse import json import os import pickle from itertools import chain import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas import seaborn as sns from gensim.models import Word2Vec from tensorflow.python.keras import Sequential from tensorflow.python.keras.layers import Bidirectional, Embedding, Dropout, SpatialDropout1D, Dense, LSTM, \ BatchNormalization from tensorflow.python.keras.optimizer_v2.adam import Adam from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.python.ops.init_ops import Constant from tqdm import trange # Set up a argument parser parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, default=300, required=False) parser.add_argument("--bs", type=int, default=64, required=False) parser.add_argument("--lr", type=float, default=0.001, required=False) parser.add_argument("--model", type=str, choices=["lstm_bilstm", "bilstm", "bilstm_bilstm"], default="bilstm_bilstm", required=False, help="The model to train the NER") parser.add_argument("--layers", type=int, default=2, required=False, help="The number of BiLSTM layers you want to try") args = parser.parse_args() print(args) # Set up some parameter we can use epochs = args.epoch BS = args.bs LR = args.lr # Load the data for three splits train_dict = pickle.load(open("./data/train.pkl", 'rb')) val_dict = pickle.load(open("./data/val.pkl", 'rb')) test_dict = pickle.load(open("./data/test.pkl", 'rb')) total_list = train_dict["word_seq"] + val_dict["word_seq"] + test_dict["word_seq"] model = Word2Vec(total_list, size=300, window=5, min_count=1, workers=4) # model.train(val_dict["word_seq"], total_examples=2950, epochs=5) # model.train(test_dict["word_seq"], total_examples=2950, epochs=5) print("Train word2vec model down.") # Give all the words appeared in our corpus their glove embedding, for those who are not exist, random initialize them encoded_dict = {} count = 0 total = 0 word2vec_keys = model.wv.vocab.keys() dimension = 300 for i in [train_dict, val_dict, test_dict]: for j in trange(len(i['word_seq'])): for word in i['word_seq'][j]: if word not in word2vec_keys: encoded_dict[word] = np.random.rand(1, dimension)[0] count += 1 total += 1 else: encoded_dict[word] = model.wv[word] total += 1 # Test how many words are found in glove and how many are randomly initialized print("words not found {}".format(count)) print("words total {}".format(total)) print(len(encoded_dict)) if not os.path.exists('./word2vec'): os.mkdir('./word2vec/') np.save("./word2vec/encoded_dict_{}d.npy".format(dimension), encoded_dict) # Build a dict that records the word to a single unique integer, and our encoded matrix for word embedding encoded_word2id = {} encoded_matrix = np.zeros((len(encoded_dict.keys()), dimension), dtype=float) for i, word in enumerate(encoded_dict.keys()): encoded_word2id[word] = i encoded_matrix[i] = encoded_dict[word] print(encoded_matrix.shape) np.save("./word2vec/encoded_matrix_{}d.npy".format(dimension), encoded_matrix) # Build the tag <--> index dictionary and add PAD tag into it tag_list = list(set(chain(*train_dict["tag_seq"]))) tag_to_index_dict = {t: i for i, t in enumerate(tag_list)} index_to_tag_dict = {i: t for i, t in enumerate(tag_list)} # save out dictionary for generation if not os.path.exists('./lstm_model'): os.mkdir('./lstm_model/') if not os.path.exists('./lstm_results'): os.mkdir('./lstm_results') np.save("./lstm_model/model_tag2id_e{}_bs{}.npy".format(epochs, BS), tag_to_index_dict) np.save("./lstm_model/model_id2tag_e{}_bs{}.npy".format(epochs, BS), index_to_tag_dict) # Load some parameters for deep learning embedding_dim = dimension num_words = len(encoded_dict) input_length = 128 n_tags = len(tag_to_index_dict) print(embedding_dim, num_words, input_length, n_tags) # Set our model def get_bi_lstm_model(): model = Sequential() model.add( Embedding(num_words, embedding_dim, embeddings_initializer=Constant(encoded_matrix), input_length=input_length, trainable=True)) model.add(SpatialDropout1D(0.2)) model.add(BatchNormalization()) if args.model == "lstm_bilstm": model.add(LSTM(128, return_sequences=True)) elif args.model == "bilstm_bilstm": for _ in range(args.layers): model.add(Bidirectional(LSTM(128, return_sequences=True))) model.add(BatchNormalization()) model.add(Dropout(0.15)) adam = Adam(lr=LR, beta_1=0.9, beta_2=0.999) model.add(Dense(units=n_tags, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer=adam, metrics=['accuracy']) model.summary() return model # Define the function to train our model def train_model(X, y, val_X, val_y, model): hist = model.fit(X, y, batch_size=BS, verbose=1, epochs=epochs, validation_data=(val_X, val_y), shuffle=True) return hist # build our model and print the summary model_bi_lstm_lstm = get_bi_lstm_model() try: plot_model(model_bi_lstm_lstm, show_shapes=True) except ImportError: pass # Use the dict we've prepared before to do the embedding and transformation train_input = np.array( [[encoded_word2id[word] for word in train_dict['word_seq'][i]] for i in range(len(train_dict['word_seq']))]) val_input = np.array( [[encoded_word2id[word] for word in val_dict['word_seq'][i]] for i in range(len(val_dict['word_seq']))]) test_input = np.array( [[encoded_word2id[word] for word in test_dict['word_seq'][i]] for i in range(len(test_dict['word_seq']))]) train_output = np.array( [[tag_to_index_dict[tag] for tag in train_dict['tag_seq'][i]] for i in range(len(train_dict['tag_seq']))]) val_output = np.array( [[tag_to_index_dict[tag] for tag in val_dict['tag_seq'][i]] for i in range(len(val_dict['tag_seq']))]) # Check the shape of our input, their first dimension must be the same print(train_input.shape, val_input.shape, test_input.shape) print(train_output.shape, val_output.shape) # Train our model and save the loss recording history = train_model(train_input, train_output, val_input, val_output, model_bi_lstm_lstm) # Do some visualization sns.set_style(style="darkgrid") sns.set(font_scale=1.75) plt.rcParams["figure.figsize"] = (30, 15) mpl.use('Agg') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') # plt.show() plt.savefig( './lstm_results/accuracy_BS{}E{}LR{}_{}d_{}layer.png'.format(BS, epochs, LR, dimension, args.layers)) plt.clf() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') # plt.show() plt.savefig( './lstm_results/model_loss_BS{}E{}LR{}_{}d_{}layers.png'.format(BS, epochs, LR, dimension, args.layers)) print("save images down.") # Save the validation accuracy for us to find the best model trained np.save( './lstm_results/model_results_val_BS{}E{}LR{}_{}d_{}layers.npy'.format(BS, epochs, LR, dimension, args.layers), history.history['val_accuracy']) print("save history validation data down.") # Save our trained model and open up a answer csv, initialize all the id # try: # model_bi_lstm_lstm.save( # './lstm_model/model_BS{}E{}LR{}_{}d_{}layers.pkl'.format(BS, epochs, LR, dimension, args.layers)) # except: # pass answer = pandas.DataFrame(columns=['id', 'labels']) answer['id'] = test_dict['id'] # Predict on the test dict and save it to answer csv file predict = model_bi_lstm_lstm.predict(test_input) for i in range(len(answer)): sentence_tag = [] for j in range(128): tag = index_to_tag_dict[np.argmax(predict[i][j])] sentence_tag.append(tag) answer.loc[i, 'labels'] = json.dumps(sentence_tag) answer.to_csv( './lstm_results/answer_BS{}E{}LR{}_{}d_{}layers.csv'.format(BS, epochs, LR, dimension, args.layers), index=True) print("save results csv down.")
StarcoderdataPython
4819546
from mmdet.models.losses import FocalLoss, SmoothL1Loss, binary_cross_entropy from .chamfer_distance import ChamferDistance, chamfer_distance __all__ = [ 'FocalLoss', 'SmoothL1Loss', 'binary_cross_entropy', 'ChamferDistance', 'chamfer_distance' ]
StarcoderdataPython
1790093
from torch.utils.data import Dataset import pymongo import json from collections import OrderedDict import logging logger = logging.getLogger(__name__) class MongoWrapper: """ Load single turn Q,A data """ def __init__(self, config_path, filter_func=None): """ 1. MongoDB collection들을 통합된 인덱스로 접근할 수 있음 2. 개별 collection의 idx는 개수, 순서, 유니크를 보장해야함 :param config_path: db config 경로 """ with open(config_path) as fp: db_config = json.load(fp) self.db_config = db_config self.filter_func = filter_func conn_str = db_config['MONGO_CONNECTION_STRING'] con_db = db_config['MONGO_CONNECTION_DB'] collection_list = db_config['COLLECTIONS'] self.connection = pymongo.MongoClient(conn_str) self.db = self.connection.get_database(con_db) self.collections = self._load_collections(collection_list) self.meta_info = self._load_metainfo(collection_list) self.ndoc = None logging.info("[Mongo]: Loaded %s" % self.meta_info) def __len__(self): if not self.ndoc: ndoc = 0 for value in self.meta_info.values(): ndoc += value['num_docs'] self.ndoc = ndoc return self.ndoc def __getitem__(self, idx): docs = [] if isinstance(idx, slice): for nidx in range(idx.start, idx.stop): collection_name, idx = self._convert_idx(nidx) data = self.collections[collection_name].find({'idx': idx})[0] if self.filter_func: data = self.filter_func(data) doc = {'data': data, 'collection_name': collection_name} docs.append(doc) return docs else: collection_name, idx = self._convert_idx(idx) data = self.collections[collection_name].find({'idx': idx})[0] if self.filter_func: data = self.filter_func(data) doc = {'data': data, 'collection_name': collection_name} docs.append(doc) return docs def _load_collections(self, collection_list): if not isinstance(collection_list, list): collection_list = [collection_list] collections = dict() for col in collection_list: collections[col] = self.db[col] logger.info("[Mongo]: %s is loaded" % col) return collections def _load_metainfo(self, collection_list): meta_info_conn = self.db['meta_info'] meta_info = OrderedDict() for item in list(meta_info_conn.find({})): if item['collection_name'] not in collection_list: continue collection_name = item['collection_name'] sub_dict = {'num_docs': item['num_docs']} meta_info.update({collection_name: sub_dict}) prev = 0 for name, info in meta_info.items(): sub_info = {'sidx': prev, 'eidx': prev + info['num_docs']} prev = prev + info['num_docs'] info.update(sub_info) return meta_info def _convert_idx(self, idx): """ collection 따라서 idx 를 변환하기 :param idx: :return: """ collection_name = None for name, info in self.meta_info.items(): if idx >= info['sidx'] and idx < info['eidx']: idx = idx - info['sidx'] collection_name = name break return collection_name, idx def _get_update_op(self, doc, fields): if not isinstance(fields, list): fields = [fields] set_dict = dict() for f in fields: set_dict[f] = doc[f] return pymongo.UpdateOne({'_id': doc['_id']}, {"$set": set_dict}, upsert=True) def _get_insert_op(self, doc): return pymongo.InsertOne(doc) def update_docs(self, docs, fields): if not isinstance(docs, list): docs = [docs] ops = [] for doc in docs: op = self._get_update_op(doc, fields) ops.append(op) return ops def insert_docs(self, docs, collection_name): if collection_name not in self.collections: raise KeyError if not isinstance(docs, list): docs = [docs] ops = [] for doc in docs: op = self._get_insert_op(doc) ops.append(op) # logging.info(ops[:10]) self.collections[collection_name].bulk_write(ops, ordered=False) def update_meta_info(self, collection_name): is_update = False if collection_name in self.meta_info: is_update = True total_docs = self.collections[collection_name].count_documents({}) logging.info("[Update]: collection - %s " % collection_name) logging.info("[Update]: total docs - %s " % total_docs) logging.info("[Update]: meta info - %s " % is_update) if is_update: self.db['meta_info'].update_one({'collection_name': collection_name}, {'$set':{'num_docs': total_docs}}) else: self.db['meta_info'].insert_one({'collection_name': collection_name, 'num_docs': total_docs}) collection_list = self.db_config['COLLECTIONS'] self.meta_info = self._load_metainfo(collection_list) def export_to_file(self, fpath, collection_name): logging.info("[Export]: %s" % fpath) info = self.meta_info[collection_name] info = dict(info) num_docs = int(info['num_docs']) with open(fpath, 'w') as fp: text_lines = [] for idx in range(num_docs): doc = self.__getitem__(idx)[0] text = doc['data']['filt_text'] text += '\n' text_lines.append(text) if idx % 10000 == 0: fp.writelines(text_lines) text_lines = [] logging.info("[Write]: %d" % idx) def create_single_index(self, collection_name, index_name, order=1): self.collections[collection_name].create_index([(index_name, order)])
StarcoderdataPython
1619897
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:48 ms, 在所有 Python3 提交中击败了94.04% 的用户 内存消耗:15.3 MB, 在所有 Python3 提交中击败了26.11% 的用户 解题思路: 递归 具体实现见代码注释 """ class Solution: def hasPathSum(self, root: TreeNode, sum: int) -> bool: def find(root, current): if root: current += root.val if root.left: if find(root.left, current): # 处理左子树 return True if root.right: if find(root.right, current): # 处理右子树 return True if not (root.left or root.right): # 如果是叶节点,判断当前和 if current == sum: return True if find(root, 0): return True else: return False
StarcoderdataPython
1658865
<reponame>tarvitz/face-check<gh_stars>0 from django.contrib.auth.models import AbstractUser from django.db import models from django.utils.translation import ugettext_lazy as _ class User(AbstractUser): """ standard django user """ is_verified = models.BooleanField( _('is verified'), default=False, help_text=_("flag that shows if user is verified and can " "obtain main functionality") ) class Secret(models.Model): content = models.TextField( _("content"), help_text=_("secret content, i.e. password or something you should " "not tell without using secure channels") ) created_at = models.DateField(auto_now=True) updated_at = models.DateField(auto_now_add=True) def __str__(self): return self.content class Meta: verbose_name = _("Secret") verbose_name_plural = _("Secrets") ordering = ['-created_at']
StarcoderdataPython
1638900
<reponame>arrdem/source import os import re import sys def main(opts, args): """Usage: python rollback.py date Parse /var/log/pacman.log, enumerating package transactions since the specified date and building a plan for restoring the state of your system to what it was at the specified date. Assumes: - /var/log/pacman.log has not been truncated - /var/cache/pacman/pkg has not been flushed and still contains all required packages - The above paths are Arch default and have not been customized - That it is not necessary to remove any "installed" packages Note: no attempt is made to inspect the dependency graph of packages to be downgraded to detect when a package is already transitively listed for downgrading. This can create some annoying errors where eg. systemd will be downgraded, meaning libsystemd will also be downgraded, but pacman considers explicitly listing the downgrade of libsystemd when it will already be transitively downgraded an error. """ date, = args print("Attempting to roll back package state to that of {0}...\n" .format(date), file=sys.stderr) # These patterns can't be collapsed because we want to select different # version identifying strings depending on which case we're in. Not ideal, # but it works. # Ex. [2017-04-01 09:51] [ALPM] upgraded filesystem (2016.12-2 -> 2017.03-2) upgraded_pattern = re.compile( ".*? upgraded (?P<name>\w+) \((?P<from>[^ ]+) -> (?P<to>[^\)]+)\)") # Ex: [2018-02-23 21:18] [ALPM] downgraded emacs (25.3-3 -> 25.3-2) downgraded_pattern = re.compile( ".*? downgraded (?P<name>\w+) \((?P<to>[^ ]+) -> (?P<from>[^\)]+)\)") # Ex: [2017-03-31 07:05] [ALPM] removed gdm (3.22.3-1) removed_pattern = re.compile( ".*? removed (?P<name>\w+) \((?P<from>[^ ]+)\)") checkpoint = {} flag = False with open("/var/log/pacman.log") as logfile: for line in logfile: if date in line: flag = True elif not flag: continue match = re.match(upgraded_pattern, line)\ or re.match(downgraded_pattern, line)\ or re.match(removed_pattern, line) if match: package = match.group("name") from_rev = match.group("from") if package not in checkpoint: checkpoint[package] = from_rev continue print("Checkpoint state:") for k in checkpoint.keys(): print("{0} -> {1}".format(k, checkpoint[k]), file=sys.stderr) pkgcache = "/var/cache/pacman/pkg" pkgs = os.listdir(pkgcache) pkgnames = ["{0}-{1}".format(k, v) for k, v in checkpoint.items()] selected_pkgs = set([os.path.join(pkgcache, p) for n in pkgnames for p in pkgs if n in p]) print("Suggested incantation:\n", file=sys.stderr) print("sudo pacman --noconfirm -U {}" .format("\\\n ".join(selected_pkgs))) if __name__ == "__main__": main(None, sys.argv[1:])
StarcoderdataPython
1616411
import sys import argparse import os from video_classification.generator.attention_cnn_lstm_classifer import BidirectionalLSTMVideoClassifier def check_args(args): if not os.path.exists(args.model_path): print('Model path {} does not exist, please check.') exit(1) if not os.path.exists(args.video_path): print('Video path {} does not exist, please check.') exit(1) if not os.path.exists(args.config_path): print('Config file {} does not exist, please check.') exit(1) return args def parse_args(args): parser = argparse.ArgumentParser(description='Simple script for attention integrated CNN + LSTM video classification') parser.add_argument('cnn_model', help='Specify which CNN model is used (VGG16/VGG19/InceptionV3/Resnet50/Xception') parser.add_argument('model_path', help='Specify the model path') parser.add_argument('video_path', help='Specify the input video path') parser.add_argument('config_path', help='Specify the config file path') return parser.parse_args(args) def main(args=None): if args is None: args = sys.argv[1:] args = parse_args(args) classifier = BidirectionalLSTMVideoClassifier(args.cnn_model, args.model_path) predicted_label = classifier.predict(args.video_path, args.config_path) print('{} belongs to {}'.format(args.video_path, predicted_label)) if __name__ == '__main__': main()
StarcoderdataPython
3349317
import csv class IngAutCSV(csv.Dialect): delimiter = ";" quotechar = '"' quoting = csv.QUOTE_MINIMAL lineterminator = "\r\n" def do_import(filename, store): ing_file = open(filename, newline="", encoding="latin1") # Convert the actual data for record in csv.DictReader(ing_file, dialect=IngAutCSV): t = store.new_transaction() t.Date = record["ValutaDatum"].replace(".", "/") t.Memo = record["Text"] t.Inflow = record["Haben"] t.Outflow = record["Soll"] store.record_transaction(t)
StarcoderdataPython
193309
import pickle from collections import defaultdict, namedtuple import numpy as np import argparse import os import model.config as config import preprocessing.util as util from termcolor import colored import tensorflow as tf class VocabularyCounter(object): """counts the frequency of each word and each character in the corpus. With each file that it processes it increases the counters. So one frequency vocab for all the files that it processes.""" def __init__(self, lowercase_emb=False): import gensim self.model = gensim.models.KeyedVectors.load_word2vec_format( config.base_folder+"data/basic_data/wordEmbeddings/Word2Vec/GoogleNews-vectors-negative300.bin", binary=True) """lowercase_emb=False if True then we lowercase the word for counting of frequencies and hence for finding the pretrained embedding.""" self.word_freq = defaultdict(int) self.char_freq = defaultdict(int) # how many times each character is encountered self.lowercase_emb = lowercase_emb self.not_in_word2vec_cnt = 0 self.all_words_cnt = 0 def add(self, filepath): """the file must be in the new dataset format.""" with open(filepath) as fin: for line in fin: if line.startswith("DOCSTART_") or line.startswith("DOCEND") or\ line.startswith("MMSTART_") or line.startswith("MMEND") or \ line.startswith("*NL*"): continue line = line.rstrip() # omit the '\n' character word = line.lower() if self.lowercase_emb else line self.all_words_cnt += 1 if word not in self.model: self.not_in_word2vec_cnt += 1 else: self.word_freq[word] += 1 for c in line: self.char_freq[c] += 1 def print_statistics(self, word_edges=None, char_edges=None): """Print some statistics about word and char frequency.""" if word_edges is None: word_edges = [1, 2, 3, 6, 11, 21, 31, 51, 76, 101, 201, np.inf] if char_edges is None: char_edges = [1, 6, 11, 21, 51, 101, 201, 501, 1001, 2001, np.inf] print("not_in_word2vec_cnt = ", self.not_in_word2vec_cnt) print("all_words_cnt = ", self.all_words_cnt) print("some frequency statistics. The bins are [...) ") for d, name, edges in zip([self.word_freq, self.char_freq], ["word", "character"], [word_edges, char_edges]): hist_values, _ = np.histogram(list(d.values()), edges) cum_sum = np.cumsum(hist_values[::-1]) print(name, " frequency histogram, edges: ", edges) print("absolute values: ", hist_values) print("absolute cumulative (right to left): ", cum_sum[::-1]) print("probabilites cumulative (right to left):", (cum_sum / np.sum(hist_values))[::-1]) def serialize(self, folder=None, name="vocab_freq.pickle"): if folder is None: folder = config.base_folder+"data/vocabulary/" if not os.path.exists(folder): os.makedirs(folder) with open(folder+name, 'wb') as handle: pickle.dump((self.word_freq, self.char_freq), handle) def count_datasets_vocabulary(self): # **YD** change the directory location new_dataset_folder = config.base_folder+"data/new_datasets/" # new_dataset_folder = config.base_folder + "data/yd_datasets/" """ datasets = ['aida_train.txt', 'aida_dev.txt', 'aida_test.txt', 'ace2004.txt', 'aquaint.txt', 'clueweb.txt', 'msnbc.txt', 'wikipedia.txt'] """ for dataset in util.get_immediate_files(new_dataset_folder): dataset = os.path.basename(os.path.normpath(dataset)) print("Processing dataset: ", dataset) self.add(new_dataset_folder+dataset) self.print_statistics() self.serialize(folder=config.base_folder+"data/vocabulary/", name="vocab_freq.pickle") def build_word_char_maps(): output_folder = config.base_folder+"data/tfrecords/"+args.experiment_name+"/" if not os.path.exists(output_folder): os.makedirs(output_folder) with open(config.base_folder+"data/vocabulary/vocab_freq.pickle", 'rb') as handle: word_freq, char_freq = pickle.load(handle) word2id = dict() id2word = dict() char2id = dict() id2char = dict() wcnt = 0 # unknown word word2id["<wunk>"] = wcnt id2word[wcnt] = "<wunk>" wcnt += 1 ccnt = 0 # unknown character char2id["<u>"] = ccnt id2char[ccnt] = "<u>" ccnt += 1 # for every word in the corpus (we have already filtered out the words that are not in word2vec) for word in word_freq: if word_freq[word] >= args.word_freq_thr: word2id[word] = wcnt id2word[wcnt] = word wcnt += 1 for c in char_freq: if char_freq[c] >= args.char_freq_thr: char2id[c] = ccnt id2char[ccnt] = c ccnt += 1 assert(len(word2id) == wcnt) assert(len(char2id) == ccnt) print("words in vocabulary: ", wcnt) print("characters in vocabulary: ", ccnt) with open(output_folder+"word_char_maps.pickle", 'wb') as handle: pickle.dump((word2id, id2word, char2id, id2char, args.word_freq_thr, args.char_freq_thr), handle) import gensim model = gensim.models.KeyedVectors.load_word2vec_format( config.base_folder+"data/basic_data/wordEmbeddings/Word2Vec/GoogleNews-vectors-negative300.bin", binary=True) embedding_dim = len(model['queen']) embeddings_array = np.empty((wcnt, embedding_dim)) # id2emb embeddings_array[0] = np.zeros(embedding_dim) for i in range(1, wcnt): embeddings_array[i] = model[id2word[i]] np.save(output_folder+'embeddings_array.npy', embeddings_array) return word2id, char2id def build_word_char_maps_restore(): output_folder = config.base_folder+"data/tfrecords/"+args.experiment_name+"/" with open(output_folder+"word_char_maps.pickle", 'rb') as handle: word2id, _, char2id, _, _, _ = pickle.load(handle) return word2id, char2id class Chunker(object): def __init__(self): self.separator = args.chunking self.chunk_ending = {'DOCEND'} if self.separator == "per_paragraph": self.chunk_ending.add('*NL*') if self.separator == "per_sentence": self.chunk_ending.add('.') self.chunk_ending.add('*NL*') self.parsing_errors = 0 def new_chunk(self): self.chunk_words = [] self.begin_gm = [] # the starting positions of gold mentions self.end_gm = [] # the end positions of gold mentions self.ground_truth = [] # list with the correct entity ids def compute_result(self, docid): chunk_id = docid if self.separator == "per_paragraph": chunk_id = chunk_id + "&*" + str(self.par_cnt) if self.separator == "per_sentence": chunk_id = chunk_id + "&*" + str(self.par_cnt) + "&*" + str(self.sent_cnt) result = (chunk_id, self.chunk_words, self.begin_gm, self.end_gm, self.ground_truth) # correctness checks. not necessary no_errors_flag = True if len(self.begin_gm) != len(self.end_gm) or \ len(self.begin_gm) != len(self.ground_truth): no_errors_flag = False for b, e in zip(self.begin_gm, self.end_gm): if e <= b or b >= len(self.chunk_words) or e > len(self.chunk_words): no_errors_flag = False self.new_chunk() if no_errors_flag == False: self.parsing_errors += 1 print("chunker parse error: ", result) return None else: return result def process(self, filepath): with open(filepath) as fin: self.new_chunk() docid = "" # paragraph and sentence counter are not actually useful. only for debugging purposes. self.par_cnt = 0 # paragraph counter (useful if we work per paragraph) self.sent_cnt = 0 # sentence counter (useful if we work per sentence) for line in fin: line = line.rstrip() # omit the '\n' character if line in self.chunk_ending: if len(self.chunk_words) > 0: # if we have continues *NL* *NL* do not return empty chunks temp = self.compute_result(docid) if temp is not None: yield temp # do not add the chunk separator, no use if line == '*NL*': self.par_cnt += 1 self.sent_cnt = 0 if line == '.': self.sent_cnt += 1 elif line == '*NL*': self.par_cnt += 1 self.sent_cnt = 0 # do not add this in our words list elif line == '.': self.sent_cnt += 1 self.chunk_words.append(line) elif line.startswith('MMSTART_'): ent_id = line[8:] # assert that ent_id in wiki_name_id_map self.ground_truth.append(ent_id) self.begin_gm.append(len(self.chunk_words)) elif line == 'MMEND': self.end_gm.append(len(self.chunk_words)) elif line.startswith('DOCSTART_'): docid = line[9:] self.par_cnt = 0 self.sent_cnt = 0 else: self.chunk_words.append(line) print(filepath, " chunker parsing errors: ", self.parsing_errors) self.parsing_errors = 0 GmonlySample = namedtuple("GmonlySample", ["chunk_id", "chunk_words", 'begin_gm', "end_gm", "ground_truth", "cand_entities", "cand_entities_scores"]) AllspansSample = namedtuple("AllspansSample", ["chunk_id", "chunk_words", "begin_spans", "end_spans", "ground_truth", "cand_entities", "cand_entities_scores", "begin_gm", "end_gm"]) class SamplesGenerator(object): def __init__(self, mode="allspans"): self.mode = mode self._generator = Chunker() self.fetchFilteredCoreferencedCandEntities = util.FetchFilteredCoreferencedCandEntities(args) self.all_gm_misses = 0 self.all_gt_misses = 0 self.all_gm = 0 # all the gm encountered in all the datasets def set_gmonly_mode(self): self.mode = "gmonly" def set_allspans_mode(self): self.mode = "allspans" def is_gmonly_mode(self): return True if self.mode == "gmonly" else False def is_allspans_mode(self): return True if self.mode == "allspans" else False def process(self, filepath): if self.is_allspans_mode(): return self._process_allspans(filepath) else: return self._process_gmonly(filepath) def _process_allspans(self, filepath): gt_misses = 0 gm_misses = 0 gm_this_file = 0 # how many gold mentions are in this document - dataset. so we can find percentage for misses max_mention_width_violations = 0 for chunk in self._generator.process(filepath): self.fetchFilteredCoreferencedCandEntities.init_coref(el_mode=True) begin_spans = [] end_spans = [] cand_entities = [] # list of lists candidate entities cand_entities_scores = [] chunk_id, chunk_words, begin_gm, end_gm, ground_truth = chunk gm_this_file += len(begin_gm) for left, right in self.all_spans(chunk_words): cand_ent, scores = self.fetchFilteredCoreferencedCandEntities.process(left, right, chunk_words) if cand_ent is not None: begin_spans.append(left) end_spans.append(right) cand_entities.append(cand_ent) cand_entities_scores.append(scores) if args.calculate_stats: # check if gold mentions are inside the candidate spans and if yes check if ground truth is in cand ent. gm_spans = list(zip(begin_gm, end_gm)) # [(3, 5), (10, 11), (15, 18)] all_spans = list(zip(begin_spans, end_spans)) for i, gm_span in enumerate(gm_spans): if gm_span not in all_spans: gm_misses += 1 #print("gm not in spans\t\t\t", colored(' '.join(chunk_words[gm_span[0]:gm_span[1]]), 'red')) elif ground_truth[i] not in cand_entities[all_spans.index(gm_span)]: gt_misses += 1 #print("gt not in cand ent", colored(' '.join(chunk_words[gm_span[0]:gm_span[1]]), 'green')) #print("gt: ", ground_truth[i], "cand_ent: ", cand_entities[all_spans.index(gm_span)]) for b, e in zip(begin_gm, end_gm): if e - b > args.max_mention_width: max_mention_width_violations += 1 if begin_spans: # there are candidate spans in the processed text yield AllspansSample(chunk_id, chunk_words, begin_spans, end_spans, ground_truth, cand_entities, cand_entities_scores, begin_gm, end_gm) if args.calculate_stats: print("max_mention_width_violations :", max_mention_width_violations) print("gt_misses", gt_misses) print("gm_misses", gm_misses) print("gm_this_file: ", gm_this_file) print("recall % : ", (1 - (gm_misses+gt_misses)/gm_this_file)*100, " %") self.all_gt_misses += gt_misses self.all_gm_misses += gm_misses self.all_gm += gm_this_file @staticmethod def all_spans(chunk_words): # this function produces all possible text spans that do not include spans separators (fullstops). # divide the list of words to lists of lists based on spans_separator. # e.g. if chunk_words is for the whole document divide it to sentences (a list of # sentences) since no span extend above a fullstop. separation_indexes = [] spans_separator = set(config.spans_separators) for idx, word in enumerate(chunk_words): if word in spans_separator: separation_indexes.append(idx) separation_indexes.append(len(chunk_words)) def all_spans_aux(begin_idx, end_idx): for left_idx in range(begin_idx, end_idx): for length in range(1, args.max_mention_width + 1): if left_idx + length > end_idx: break yield left_idx, left_idx + length begin_idx = 0 for end_idx in separation_indexes: for left, right in all_spans_aux(begin_idx, end_idx): # print(left, right, chunk_words[left:right]) # print(left, right, ' '.join(chunk_words[left:right]) yield left, right begin_idx = end_idx + 1 def _process_gmonly(self, filepath): gt_misses = 0 gm_misses = 0 gm_this_file = 0 max_mention_width_violations = 0 for chunk in self._generator.process(filepath): self.fetchFilteredCoreferencedCandEntities.init_coref(el_mode=False) cand_entities = [] # list of lists candidate entities cand_entities_scores = [] chunk_id, chunk_words, begin_gm, end_gm, ground_truth = chunk gm_this_file += len(begin_gm) for left, right, gt in zip(begin_gm, end_gm, ground_truth): cand_ent, scores = self.fetchFilteredCoreferencedCandEntities.process(left, right, chunk_words) if cand_ent is None: gm_misses += 1 cand_ent, scores = [], [] #print("gm not in p_e_m\t\t\t", colored(' '.join(chunk_words[left:right]), 'red')) elif args.calculate_stats and gt not in cand_ent: gt_misses += 1 #print("gt not in cand ent", colored(' '.join(chunk_words[left:right]), 'green')) #print("gt: ", gt, "cand_ent: ", cand_ent) if right - left > args.max_mention_width: max_mention_width_violations += 1 #print(' '.join(chunk_words[left:right]) #print(cand_ent, scores) cand_entities.append(cand_ent) cand_entities_scores.append(scores) if begin_gm: #not emtpy yield GmonlySample(chunk_id, chunk_words, begin_gm, end_gm, ground_truth, cand_entities, cand_entities_scores) if args.calculate_stats: print("max_mention_width_violations :", max_mention_width_violations) print("gt_misses", gt_misses) print("gm_misses", gm_misses) print("gm_this_file", gm_this_file) print("recall % : ", (1 - (gm_misses+gt_misses)/gm_this_file)*100, " %") self.all_gt_misses += gt_misses self.all_gm_misses += gm_misses self.all_gm += gm_this_file SampleEncoded = namedtuple("SampleEncoded", ["chunk_id", "words", 'words_len', # list, scalar 'chars', 'chars_len', # list of lists, list 'begin_spans', "end_spans", 'spans_len', # the first 2 are lists, last is scalar "cand_entities", "cand_entities_scores", 'cand_entities_labels', # lists of lists 'cand_entities_len', # list "ground_truth", "ground_truth_len", 'begin_gm', 'end_gm']) # list class EncoderGenerator(object): """receives samples Train or Test samples and encodes everything to numbers ready to be transformed to tfrecords. Also filters out candidate entities that are not in the entity universe.""" def __init__(self): self._generator = SamplesGenerator() self._word2id, self._char2id = build_word_char_maps() #self._word2id, self._char2id = build_word_char_maps_restore() # alternative self._wikiid2nnid = util.load_wikiid2nnid(args.entity_extension) def set_gmonly_mode(self): self._generator.set_gmonly_mode() def set_allspans_mode(self): self._generator.set_allspans_mode() def is_gmonly_mode(self): return self._generator.is_gmonly_mode() def is_allspans_mode(self): return self._generator.is_allspans_mode() def process(self, filepath): ground_truth_errors_cnt = 0 cand_entities_not_in_universe_cnt = 0 samples_with_errors = 0 for sample in self._generator.process(filepath): words = [] chars = [] for word in sample.chunk_words: words.append(self._word2id[word] if word in self._word2id else self._word2id["<wunk>"]) chars.append([self._char2id[c] if c in self._char2id else self._char2id["<u>"] for c in word]) chars_len = [len(word) for word in chars] ground_truth_enc = [self._wikiid2nnid[gt] if gt in self._wikiid2nnid else self._wikiid2nnid["<u>"] for gt in sample.ground_truth] ground_truth_errors_cnt += ground_truth_enc.count(self._wikiid2nnid["<u>"]) # it is always zero #print(colored("New sample", 'red')) #print(sample) if len(sample.begin_gm) != len(sample.end_gm) or \ len(sample.begin_gm) != len(ground_truth_enc): samples_with_errors += 1 continue if isinstance(sample, GmonlySample): cand_entities, cand_entities_scores, cand_entities_labels, not_in_universe_cnt = \ self._encode_cand_entities_and_labels( sample.cand_entities, sample.cand_entities_scores, sample.ground_truth) yield SampleEncoded(chunk_id=sample.chunk_id, words=words, words_len=len(words), chars=chars, chars_len=chars_len, begin_spans=sample.begin_gm, end_spans=sample.end_gm, spans_len=len(sample.begin_gm), cand_entities=cand_entities, cand_entities_scores=cand_entities_scores, cand_entities_labels=cand_entities_labels, cand_entities_len=[len(t) for t in cand_entities], ground_truth=ground_truth_enc, ground_truth_len=len(sample.ground_truth), begin_gm=[], end_gm=[]) elif isinstance(sample, AllspansSample): if len(sample.begin_spans) != len(sample.end_spans): samples_with_errors += 1 continue # for each span i have the gt or the value -1 if this span is not a gm # and then i work in the same way as above span_ground_truth = [] gm_spans = list(zip(sample.begin_gm, sample.end_gm)) # [(3, 5), (10, 11), (15, 18)] for left, right in zip(sample.begin_spans, sample.end_spans): if (left, right) in gm_spans: span_ground_truth.append(sample.ground_truth[gm_spans.index((left, right))]) else: span_ground_truth.append(-1) # this span is not a gm cand_entities, cand_entities_scores, cand_entities_labels, not_in_universe_cnt = \ self._encode_cand_entities_and_labels( sample.cand_entities, sample.cand_entities_scores, span_ground_truth) yield SampleEncoded(chunk_id=sample.chunk_id, words=words, words_len=len(words), chars=chars, chars_len=chars_len, begin_spans=sample.begin_spans, end_spans=sample.end_spans, spans_len=len(sample.begin_spans), cand_entities=cand_entities, cand_entities_scores=cand_entities_scores, cand_entities_labels=cand_entities_labels, cand_entities_len=[len(t) for t in cand_entities], ground_truth=ground_truth_enc, ground_truth_len=len(sample.ground_truth), begin_gm=sample.begin_gm, end_gm=sample.end_gm) cand_entities_not_in_universe_cnt += not_in_universe_cnt print("ground_truth_errors_cnt =", ground_truth_errors_cnt) print("cand_entities_not_in_universe_cnt =", cand_entities_not_in_universe_cnt) print("encoder samples_with_errors =", samples_with_errors) def _encode_cand_entities_and_labels(self, cand_entities_p, cand_entities_scores_p, ground_truth_p): """receives cand_entities (list of lists), and ground_truth (list) and does the following: 1) removes cand ent that are not in our universe 2) creates a label 0, 1 if this candidate is correct or not (i.e. if the span is indeed a gold mention (row of candidate entities array) and this specific candidate entity (column of candidate entities array) is correct. Returns the filtered cand_entities and the corresponding label (they have the same shape)""" cand_entities = [] cand_entities_scores = [] cand_entities_labels = [] not_in_universe_cnt = 0 for cand_ent_l, cand_scores_l, gt in zip(cand_entities_p, cand_entities_scores_p, ground_truth_p): ent_l = [] score_l = [] label_l = [] for cand_ent, score in zip(cand_ent_l, cand_scores_l): if cand_ent in self._wikiid2nnid: # else continue, this entity not in our universe ent_l.append(self._wikiid2nnid[cand_ent]) score_l.append(score) label_l.append(1 if cand_ent == gt else 0) else: not_in_universe_cnt += 1 cand_entities.append(ent_l) cand_entities_scores.append(score_l) cand_entities_labels.append(label_l) return cand_entities, cand_entities_scores, cand_entities_labels, not_in_universe_cnt class TFRecordsGenerator(object): def __init__(self): self._generator = EncoderGenerator() def set_gmonly_mode(self): self._generator.set_gmonly_mode() def set_allspans_mode(self): self._generator.set_allspans_mode() def is_gmonly_mode(self): return self._generator.is_gmonly_mode() def is_allspans_mode(self): return self._generator.is_allspans_mode() @staticmethod def _to_sequence_example(sample): def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # Those two create a simple feature. The first a simple feature with one integer, whereas the second a simple # list of integers as one feature. def _int64_feature(value): """value is a simple integer.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _int64list_feature(value): """value is a list of integers.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _int64_feature_list(values): """ values is a list of integers like the words (words = [2,4,6,8,10]) a feature list where each feature has only one number (a list with fixed number of elements, specifically only one)""" return tf.train.FeatureList(feature=[_int64_feature(v) for v in values]) def _int64list_feature_list(values): """ like the chars = [[1,2,3], [4,5], [6], [7,8], [9,10,11,12]] a feature list where each feature can have variable number of ements""" return tf.train.FeatureList(feature=[_int64list_feature(v) for v in values]) def _floatlist_feature_list(values): """ like the chars = [[0.1,0.2,0.3], [0.4,0.5]] a feature list where each feature can have variable number of ements""" def _floatlist_feature(value): """value is a list of integers.""" return tf.train.Feature(float_list=tf.train.FloatList(value=value)) return tf.train.FeatureList(feature=[_floatlist_feature(v) for v in values]) context = tf.train.Features(feature={ "chunk_id": _bytes_feature(sample.chunk_id.encode('utf-8')), "words_len": _int64_feature(sample.words_len), "spans_len": _int64_feature(sample.spans_len), "ground_truth_len": _int64_feature(sample.ground_truth_len) }) feature_list = { "words": _int64_feature_list(sample.words), "chars": _int64list_feature_list(sample.chars), "chars_len": _int64_feature_list(sample.chars_len), "begin_span": _int64_feature_list(sample.begin_spans), "end_span": _int64_feature_list(sample.end_spans), "cand_entities": _int64list_feature_list(sample.cand_entities), "cand_entities_scores": _floatlist_feature_list(sample.cand_entities_scores), "cand_entities_labels": _int64list_feature_list(sample.cand_entities_labels), "cand_entities_len": _int64_feature_list(sample.cand_entities_len), "ground_truth": _int64_feature_list(sample.ground_truth) } if isinstance(sample, SampleEncoded): feature_list["begin_gm"] = _int64_feature_list(sample.begin_gm) feature_list["end_gm"] = _int64_feature_list(sample.end_gm) feature_lists = tf.train.FeatureLists(feature_list=feature_list) sequence_example = tf.train.SequenceExample(context=context, feature_lists=feature_lists) return sequence_example def process(self, filepath): print("processing file: ", filepath) #the name of the dataset. just extract the last part of path filename = os.path.basename(os.path.normpath(filepath))[:-4] # omit the '.txt' output_folder = config.base_folder+"data/tfrecords/"+args.experiment_name+"/" output_folder += "gmonly/" if self.is_gmonly_mode() else "allspans/" if not os.path.exists(output_folder): os.makedirs(output_folder) writer = tf.python_io.TFRecordWriter(output_folder+filename) records_cnt = 0 for sample in self._generator.process(filepath): #print(sample) sequence_example = self._to_sequence_example(sample) # write it to file if sequence_example is not None: writer.write(sequence_example.SerializeToString()) records_cnt += 1 writer.close() print("records_cnt = ", records_cnt) def create_tfrecords(): #new_dataset_folder = config.base_folder+"data/new_datasets/" # **YD** new_dataset_folder = config.base_folder + "data/yd_datasets/" datasets = [os.path.basename(os.path.normpath(d)) for d in util.get_immediate_files(new_dataset_folder)] print("datasets: ", datasets) tfrecords_generator = TFRecordsGenerator() tfrecords_generator.set_gmonly_mode() for file in datasets: tfrecords_generator.process(filepath=new_dataset_folder+file) tfrecords_generator.set_allspans_mode() for file in datasets: tfrecords_generator.process(filepath=new_dataset_folder+file) class PrintSamples(object): def __init__(self, only_misses=True): _, self.wiki_id_name_map = util.load_wiki_name_id_map() self.only_misses = only_misses def print_candidates(self, ent_ids_list): """takes as input a list of ent_id and returns a string. This string has each ent_id together with the corresponding name (in the name withspaces are replaced by underscore) and candidates are separated with a single space. e.g. ent_id,Barack_Obama ent_id2,US_President""" acc = [] for ent_id in ent_ids_list: acc.append(ent_id + "," + self.wiki_id_name_map[ent_id].replace(' ', '_')) return ' '.join(acc) def print_sample(self, sample): chunk_words, begin_gm, end_gm, ground_truth, cand_entities = \ sample.chunk_words, sample.begin_gm, sample.end_gm, sample.ground_truth, sample.cand_entities if isinstance(sample, GmonlySample): misses_idx = [] for i, (gt, cand_ent) in enumerate(zip(ground_truth, cand_entities)): if gt not in cand_ent: misses_idx.append(i) # miss detected if self.only_misses and misses_idx: print(colored("New sample", 'red')) print(' '.join(chunk_words)) for i in misses_idx: message = ' '.join(chunk_words[begin_gm[i]:end_gm[i]]) + "\tgt=" + \ self.print_candidates([ground_truth[i]]) + \ "\tCandidates: " + self.print_candidates(cand_entities[i]) print(colored(message, 'yellow')) if self.only_misses == False: print(colored("New sample", 'red')) print(' '.join(chunk_words)) for i in range(len(begin_gm)): message = ' '.join(chunk_words[begin_gm[i]:end_gm[i]]) + "\tgt=" + \ self.print_candidates([ground_truth[i]]) + \ "\tCandidates: " + self.print_candidates(cand_entities[i]) print(colored(message, 'yellow' if i in misses_idx else 'white')) elif isinstance(sample, AllspansSample): begin_spans, end_spans = sample.begin_spans, sample.end_spans gm_spans = list(zip(begin_gm, end_gm)) # [(3, 5), (10, 11), (15, 18)] all_spans = list(zip(begin_spans, end_spans)) print(colored("New sample", 'red')) print(' '.join(chunk_words)) for i, gm_span in enumerate(gm_spans): if gm_span not in all_spans: message = ' '.join(chunk_words[begin_gm[i]:end_gm[i]]) + "\tgt=" + \ self.print_candidates([ground_truth[i]]) + "\tgm_miss" print(colored(message, 'magenta')) elif ground_truth[i] not in cand_entities[all_spans.index(gm_span)]: message = ' '.join(chunk_words[begin_gm[i]:end_gm[i]]) + "\tgt=" + \ self.print_candidates([ground_truth[i]]) + "\tgt_miss Candidates: " + \ self.print_candidates(cand_entities[all_spans.index(gm_span)]) print(colored(message, 'yellow')) if self.only_misses == False: # then also print all the spans and their candidate entities for left, right, cand_ent in zip(begin_spans, end_spans, cand_entities): # if span is a mention and includes gt then green color, otherwise white if (left, right) in gm_spans and ground_truth[gm_spans.index((left, right))] in cand_ent: message = ' '.join(chunk_words[left:right]) + "\tgt=" + \ self.print_candidates([ground_truth[gm_spans.index((left, right))]]) + \ "\tgm_gt_hit Candidates: " + \ self.print_candidates(cand_ent) print(colored(message, 'green')) else: message = ' '.join(chunk_words[left:right]) + \ "\t not a mention Candidates: " + \ self.print_candidates(cand_ent) print(colored(message, 'white')) def create_entity_universe(gmonly_files=None, allspans_files=None, printSamples=None): new_dataset_folder = config.base_folder+"data/new_datasets/" if gmonly_files is None: gmonly_files = [] if allspans_files is None: allspans_files = ['aida_train.txt', 'aida_dev.txt', 'aida_test.txt', 'ace2004.txt', 'aquaint.txt', 'clueweb.txt', 'msnbc.txt', 'wikipedia.txt'] print("gmonly_files: ", gmonly_files) print("allspans_files: ", allspans_files) def create_entity_universe_aux(generator, datasets): entities_universe = set() for dataset in datasets: print("Processing dataset: ", dataset) for sample in generator.process(filepath=new_dataset_folder+dataset): entities_universe.update(*sample.cand_entities) entities_universe.update(sample.ground_truth) if printSamples: printSamples.print_sample(sample) print("Overall statistics: ") print("all_gm_misses: ", generator.all_gm_misses) print("all_gt_misses: ", generator.all_gt_misses) print("all_gm: ", generator.all_gm) print("recall % : ", (1 - (generator.all_gm_misses+generator.all_gt_misses)/generator.all_gm)*100, " %") print("len(entities_universe):\t\t\t", colored(len(entities_universe), 'red')) return entities_universe gmonly_entities, allspans_entities = set(), set() samplesGenerator = SamplesGenerator() if gmonly_files: print("gmonly files statistics: ") samplesGenerator.set_gmonly_mode() gmonly_entities = create_entity_universe_aux(samplesGenerator, gmonly_files) if allspans_files: print("Test files statistics: ") samplesGenerator.set_allspans_mode() allspans_entities = create_entity_universe_aux(samplesGenerator, allspans_files) all_entities = gmonly_entities | allspans_entities print("len(all_entities) = ", len(all_entities)) # print the entities of our universe to a file together with the name with open(config.base_folder+"data/entities/entities_universe.txt", "w") as fout: _, wiki_id_name_map = util.load_wiki_name_id_map() for ent_id in all_entities: fout.write(ent_id + "\t" + wiki_id_name_map[ent_id].replace(' ', '_') + "\n") return all_entities def create_necessary_folders(): if not os.path.exists(config.base_folder+"data/tfrecords/"): os.makedirs(config.base_folder+"data/tfrecords/") def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--chunking", default="per_document", help="per_sentence or per_paragraph or per_article" "per_document: each document is processed as one example" "per_paragraph: each paragraph is processed as a separate example") parser.add_argument("--p_e_m_choice", default="yago", help="'wiki' p(e|m) constructed only from wikipedia dump (prob_wikipedia_p_e_m.txt file),\ 'crosswiki' constructed from wikipedia dump + crosswiki (prob_crosswikis_wikipedia_p_e_m.txt),\ 'yago' (prob_yago_crosswikis_wikipedia_p_e_m.txt)") parser.add_argument("--cand_ent_num", type=int, default=30, help="how many candidate entities to keep for each mention") parser.add_argument("--lowercase_p_e_m", type=bool, default=False) parser.add_argument("--lowercase_spans", type=bool, default=False) parser.add_argument("--calculate_stats", type=bool, default=True) parser.add_argument("--experiment_name", default="corefmerge", help="under folder data/tfrecords/") parser.add_argument("--include_wikidumpRLTD", type=bool, default=False) parser.add_argument("--word_freq_thr", type=int, default=1, help="words that have freq less than this are not included in our" "vocabulary.") parser.add_argument("--char_freq_thr", type=int, default=1) parser.add_argument("--max_mention_width", type=int, default=10, help="in allspans mode consider all spans with" "length <= to this value as candidate entities to be linked") parser.add_argument("--entity_extension", default=None, help="extension_entities or extension_entities_all etc") parser.add_argument("--persons_coreference", type=bool, default=True) parser.add_argument("--persons_coreference_merge", type=bool, default=True) parser.add_argument("--create_entity_universe", type=bool, default=False) return parser.parse_args() def log_args(folderpath): if not os.path.exists(folderpath): os.makedirs(folderpath) with open(folderpath+"prepro_args.txt", "w") as fout: attrs = vars(args) fout.write('\n'.join("%s: %s" % item for item in attrs.items())) with open(folderpath+"prepro_args.pickle", 'wb') as handle: pickle.dump(args, handle) if __name__ == "__main__": args = _parse_args() print(args) create_necessary_folders() log_args(config.base_folder+"data/tfrecords/"+args.experiment_name+"/") vocabularyCounter = VocabularyCounter() vocabularyCounter.count_datasets_vocabulary() if args.create_entity_universe: create_entity_universe(gmonly_files=[], allspans_files=['aida_train.txt', 'aida_dev.txt', 'aida_test.txt' # ]) , 'ace2004.txt', 'aquaint.txt', 'msnbc.txt']) else: create_tfrecords()
StarcoderdataPython
4842635
<filename>lib/dynamic_screening_solutions/constants/__init__.py # HTK Imports from htk.lib.dynamic_screening_solutions.constants.general import *
StarcoderdataPython
1732404
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2020-05-06 23:16 from edparser.utils.io_util import load_pickle, save_pickle from iwpt2020 import cdroot import numpy as np import matplotlib.pyplot as plt cdroot() gold_file = 'data/iwpt2020/test-udpipe/en.fixed.conllu' template = 'data/model/iwpt2020/bert/dep/en.conllu' def load_conll(path): with open(path) as src: text = src.read() sents = text.split('\n\n') sents = [x for x in sents if x.strip()] return sents def load_sent(text: str): return [x for x in text.split('\n') if not x.startswith('#')] iv = set() for each in load_conll('data/iwpt2020/train-dev-combined/en/train.conllu'): for cell in load_sent(each): form = cell.split('\t')[1].lower() iv.add(form) def calc_f1(path): correct = 0 ngold = 0 npred = 0 for gold, pred in zip(load_conll(gold_file), load_conll(path)): gt = set() pt = set() for gold, pred in zip(load_sent(gold), load_sent(pred)): gf = gold.split('\t')[1].lower() pf = pred.split('\t')[1].lower() if gf in iv: continue idx = gold.split('\t')[0] for rel in gold.split('\t')[8].split('|'): gt.add((idx,) + tuple(rel.split(':'))) for rel in pred.split('\t')[8].split('|'): pt.add((idx,) + tuple(rel.split(':'))) ngold += len(gt) npred += len(pt) correct += len(gt & pt) p = correct / npred r = correct / ngold f1 = 2 * p * r / (p + r) return f1 fig, ax = plt.subplots() ind = np.arange(3) width = 0.35 try: cache = load_pickle('cache_f1.pkl') except FileNotFoundError: cache = {} for lang in ['mbert', 'bert']: f1s = [] for model, color in zip(['dep', 'sdp', 'ens'], 'rgb'): key = f'{lang}-{model}' if key in cache: f1 = cache[key] else: pred_file = template.replace('bert', lang).replace('dep', model) f1 = calc_f1(pred_file) cache[key] = f1 f1s.append(f1) print(key) ax.bar(ind + (width if lang == 'bert' else 0), f1s, width, label='multilingual' if lang.startswith('m') else 'language-specific') save_pickle(cache, 'cache_f1.pkl') ax.set_xticks(ind + width / 2) ax.set_xticklabels(['DTP', 'DGP', 'ENS']) plt.ylabel('ELAS of OOV') ax.legend() plt.savefig('oov.pdf') plt.show()
StarcoderdataPython
1650674
<filename>logwrap/__init__.py # Copyright 2016-2018 <NAME> aka penguinolog # # Copyright 2016 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """logwrap module. Contents: 'logwrap', 'pretty_repr', 'pretty_str' Original code was made for Mirantis Inc by <NAME>, later it has been reworked and extended for support of special cases. """ import pkg_resources from .repr_utils import PrettyFormat, PrettyRepr, PrettyStr, pretty_repr, pretty_str from .log_wrap import logwrap, LogWrap, BoundParameter, bind_args_kwargs __all__ = ( "LogWrap", "logwrap", "PrettyFormat", "PrettyRepr", "PrettyStr", "pretty_repr", "pretty_str", "BoundParameter", "bind_args_kwargs", ) try: # pragma: no cover __version__ = pkg_resources.get_distribution(__name__).version except pkg_resources.DistributionNotFound: # pragma: no cover # package is not installed, try to get from SCM try: import setuptools_scm # type: ignore __version__ = setuptools_scm.get_version() except ImportError: pass __author__ = "<NAME>" __author_email__ = "<EMAIL>" __maintainers__ = { "<NAME>": "<EMAIL>", "<NAME>": "<EMAIL>", "<NAME>": "<EMAIL>", } __url__ = "https://github.com/python-useful-helpers/logwrap" __description__ = "Decorator for logging function arguments and return value by human-readable way" __license__ = "Apache License, Version 2.0"
StarcoderdataPython
1727324
from django.urls import path from . import views urlpatterns = [ path('login/', views.loginUser, name='login'), path('logout/', views.logoutUser, name='logout'), path('register/', views.registerUser, name='register'), path('', views.index, name='list'), path('update_task/<str:pk>', views.updateTask, name='update_task' ), path('delete/<str:pk>', views.deleteTask, name='delete' ), ]
StarcoderdataPython
190449
import csv import camelot IN_PATH = 'student_attendance.pdf' OUT_PATH = f'{IN_PATH[:-3]}csv' class Converter: def __init__(self, input_path, output_path): self.in_path = input_path self.out_path = output_path def table_to_csv(self, tables): with open(self.out_path, 'w', newline='') as f: writer = csv.writer(f) for t, table in enumerate(tables): if t == 0: table.df[2][1], table.df[3][1] = "Enrollment No.", "Registration No." writer.writerows(table.df.values) def convert(self): tables = camelot.read_pdf('student_attendance.pdf', pages='all', split_text=True, strip_text='\n') self.table_to_csv(tables) if __name__ == '__main__': Converter(IN_PATH, OUT_PATH).convert()
StarcoderdataPython
1690403
<gh_stars>0 import os import re import numpy as np def main(): refs = [] outs = [] for file in os.scandir('../results'): with open(file.path, "r") as f: results = f.read() try: ref = re.search(R"(?<=Creversible=yes Clevels=5 Cdecomp=\"B\(-:-:-\),B\(-:-:-\),B\(-:-:-\),B\(-:-:-\),B\(-:-:-\)\": )[\d.]+", results).group(0) except AttributeError: ref = re.search(R"(?<=Creversible=yes: )[\d.]+", results).group(0) refs.append(float(ref)) out = re.findall(R"(?<=: )[\d.]+", results) outs.append(min(map(float, out))) delta = [] for ref, out in zip(refs, outs): delta.append((out - ref) / ref * 100) print(f"mean: {np.mean(delta)}") print(f"stddev: {np.std(delta)}") print(f"min: {np.min(delta)}") print(f"max: {np.max(delta)}") if __name__ == '__main__': main()
StarcoderdataPython
1656502
import json from erdos.op import Op from pylot.utils import is_obstacles_stream class BoundingBoxLoggerOp(Op): def __init__(self, name, flags): super(BoundingBoxLoggerOp, self).__init__(name) self._flags = flags self._msg_cnt = 0 @staticmethod def setup_streams(input_streams): input_streams.filter(is_obstacles_stream).add_callback( BoundingBoxLoggerOp.on_detected_objs_msg) return [] def on_detected_objs_msg(self, msg): self._msg_cnt += 1 if self._msg_cnt % self._flags.log_every_nth_frame != 0: return bboxes = [det_obj.get_bbox_label() for det_obj in msg.detected_objects] timestamp = msg.timestamp.coordinates[0] # Write the bounding boxes. file_name = '{}bboxes-{}.json'.format(self._flags.data_path, timestamp) with open(file_name, 'w') as outfile: json.dump(bboxes, outfile)
StarcoderdataPython
3204070
import serial port = None def init(dev, baud): global port if port == None: port = serial.Serial(dev, baud) port.readline() def shake(): global port port.write("1\r\n") port.readline()
StarcoderdataPython
3213915
<reponame>ArthurHowardMorris/ling_features import re import numpy as np from numpy import dot from numpy.linalg import norm # Compute cosine similarity between two vectors def compute_cos_sim(vector_a, vector_b): if not np.all(vector_a == 0) and not np.all(vector_b == 0): cos_sim = dot(vector_a, vector_b)/(norm(vector_a) * norm(vector_b)) else: cos_sim = 0 return cos_sim # Assemble the regexes for function words def assemble_regexes(words): regex_list = {} for word in words: key = "func_" + re.sub("\*|\'", "_", word.lower()) regex = r"\b(?:" + re.sub('\*(?:\s*$)?', "[a-z0-9]*(')?[a-z0-9]*", word.lower()) + r")(?=(?:[^a-zA-Z0-9_']|$))" regex_list[key] = re.compile(regex) return regex_list
StarcoderdataPython
1771087
from django.db import models from django.contrib .auth.models import User from django.utils.translation import ugettext as _ class Employer(models.Model): owner = models.ForeignKey(to=User, on_delete=models.CASCADE, blank=True, null=True) name = models.CharField(max_length=50) updated_at = models.DateTimeField('Updated at', auto_now=True) created_at = models.DateTimeField('Created at', auto_now_add=True) class Meta: verbose_name = 'Employer' verbose_name_plural = 'Employers' def __str__(self): return self.name class Task(models.Model): title = models.CharField(max_length=50) description = models.CharField(max_length=100) employer = models.ForeignKey(Employer, models.SET_NULL, null=True, blank=True, related_name="tasks", help_text="employer_id") completed = models.BooleanField(default=False) updated_at = models.DateTimeField('Updated at', auto_now=True) created_at = models.DateTimeField('Created at', auto_now_add=True) class Meta: verbose_name = 'Task' verbose_name_plural = 'Tasks' def __str__(self): return self.title def check_owner(self, task, user): if task.employer.owner.username == user.username: return True return False
StarcoderdataPython
3322854
<filename>fieldkit/test/test_lattice.py """ Unit tests for lattice data structures. """ import unittest import numpy as np import fieldkit class LatticeTest(unittest.TestCase): """ Test cases for :py:class:`~fieldkit.lattice.Lattice` and :py:class:`~fieldkit.lattice.HOOMDLattice`. """ def test(self): """ Test for basic properties of a skewed lattice. """ lattice = fieldkit.Lattice([1,0,0],[0,2,2],[0,0,3]) # size of lattice np.testing.assert_almost_equal(lattice.L, [1,np.sqrt(8),3]) # lattice vectors np.testing.assert_almost_equal(lattice.a, [1,0,0]) np.testing.assert_almost_equal(lattice.b, [0,2,2]) np.testing.assert_almost_equal(lattice.c, [0,0,3]) # cell matrix np.testing.assert_almost_equal(lattice.matrix, ((1,0,0),(0,2,0),(0,2,3))) # inverse cell matrix np.testing.assert_almost_equal(lattice.inverse, ((1,0,0),(0,0.5,0),(0,-1./3.,1./3.))) # volume self.assertAlmostEqual(lattice.volume, 6) def test_hoomd(self): """ Test for creation of various lattices in the hoomd / lammps definition. """ # cube lattice = fieldkit.HOOMDLattice(L=2) np.testing.assert_almost_equal(lattice.L, (2.0,2.0,2.0)) np.testing.assert_almost_equal(np.diag(lattice.matrix), (2.0,2.0,2.0)) np.testing.assert_almost_equal(lattice.matrix-np.diag(lattice.L), np.zeros((3,3))) self.assertAlmostEqual(lattice.volume, 2**3) # orthorhombic lattice = fieldkit.HOOMDLattice(L=(0.2,0.3,0.4)) np.testing.assert_almost_equal(lattice.L, (0.2,0.3,0.4)) np.testing.assert_almost_equal(np.diag(lattice.matrix), (0.2,0.3,0.4)) np.testing.assert_almost_equal(lattice.matrix-np.diag(lattice.L), np.zeros((3,3))) self.assertAlmostEqual(lattice.volume, 0.2*0.3*0.4) # tilted in xy lattice = fieldkit.HOOMDLattice(L=4.,tilt=(0.5,0.,0.)) np.testing.assert_almost_equal(lattice.matrix, ((4.,2.,0.),(0.,4.,0.),(0.,0.,4.))) self.assertAlmostEqual(lattice.volume, 4**3) # tilted in xy and yz lattice = fieldkit.HOOMDLattice(L=4.,tilt=(0.5,0.,0.5)) np.testing.assert_almost_equal(lattice.matrix, ((4.,2.,0.),(0.,4.,2.),(0.,0.,4.))) self.assertAlmostEqual(lattice.volume, 4**3) # tilted in xy, xz, and yz lattice = fieldkit.HOOMDLattice(L=4.,tilt=(0.5,0.5,0.5)) np.testing.assert_almost_equal(lattice.matrix, ((4.,2.,2.),(0.,4.,2.),(0.,0.,4.))) self.assertAlmostEqual(lattice.volume, 4**3) def test_coordinate(self): """ Test for mapping of fractional coordinates to real coordinates. """ lattice = fieldkit.HOOMDLattice(L=(1,2,4)) r = lattice.as_coordinate((0.5, 0.25, 0.125)) np.testing.assert_array_almost_equal(r, (0.5, 0.5, 0.5)) # two at once r = lattice.as_coordinate(((0., 0., 0.),(1.0,1.0,1.0))) np.testing.assert_array_almost_equal(r, ((0,0,0),(1,2,4))) lattice = fieldkit.HOOMDLattice(L=4, tilt=(0.5,0.,0.)) r = lattice.as_coordinate((0.5, 0.5, 0.5)) np.testing.assert_array_almost_equal(r, (3., 2., 2.)) lattice = fieldkit.HOOMDLattice(L=4, tilt=(0.5,0.,0.5)) r = lattice.as_coordinate((0.5, 0.5, 0.5)) np.testing.assert_array_almost_equal(r, (3., 3., 2.)) def test_fraction(self): """ Test for mapping of real coordinates to fractional coordinates. """ lattice = fieldkit.HOOMDLattice(L=(1,2,4)) f = lattice.as_fraction((0.5,0.5,0.5)) np.testing.assert_almost_equal(f, (0.5, 0.25, 0.125)) # two at once f = lattice.as_fraction(((0,0,0),(1, 2, 4))) np.testing.assert_array_almost_equal(f, ((0.,0.,0.),(1.,1.,1.))) lattice = fieldkit.HOOMDLattice(L=4, tilt=(0.5,0.,0.)) f = lattice.as_fraction((3.,2.,2.)) np.testing.assert_almost_equal(f, (0.5, 0.5, 0.5)) lattice = fieldkit.HOOMDLattice(L=4, tilt=(0.5,0.,0.5)) f = lattice.as_fraction((3.,3.,2.)) np.testing.assert_almost_equal(f, (0.5, 0.5, 0.5)) def test_orthorhombic(self): """ Test for construction of orthorhombic basis from triclinic lattice. """ tri = fieldkit.HOOMDLattice(L=(2.,3.,4.), tilt=(0.5, 0.5, 0.5)) ortho = tri.to_orthorhombic() self.assertAlmostEqual(ortho.volume, tri.volume) np.testing.assert_almost_equal(ortho.a, (2,0,0)) np.testing.assert_almost_equal(ortho.b, (0,3,0)) np.testing.assert_almost_equal(ortho.c, (0,0,4))
StarcoderdataPython
1612344
from __future__ import unicode_literals from frappe import _ def get_data(): return { 'fieldname': 'case_level', 'transactions': [ { 'label': _('Case Log'), 'items': ['Case Log'] } ] }
StarcoderdataPython
3223921
<reponame>ConsenSys/Legions #!/usr/bin/env python3 # Legion - <NAME>, ConsenSys Diligence import argparse from legions.context import LegionContext from legions.statusbar import LegionStatusBar from nubia import PluginInterface, CompletionDataSource from nubia.internal.blackcmd import CommandBlacklist class LegionPlugin(PluginInterface): """ The PluginInterface class is a way to customize nubia for every customer use case. It allowes custom argument validation, control over command loading, custom context objects, and much more. """ def create_context(self): """ Must create an object that inherits from `Context` parent class. The plugin can return a custom context but it has to inherit from the correct parent class. """ return LegionContext() def validate_args(self, args): """ This will be executed when starting nubia, the args passed is a dict-like object that contains the argparse result after parsing the command line arguments. The plugin can choose to update the context with the values, and/or decide to raise `ArgsValidationError` with the error message. """ pass def get_opts_parser(self, add_help=True): """ Builds the ArgumentParser that will be passed to , use this to build your list of arguments that you want for your shell. """ opts_parser = argparse.ArgumentParser( description="Legion - EVM Node Security Toolkit", formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=add_help, ) opts_parser.add_argument( "--config", "-c", default="", type=str, help="Configuration File" ) opts_parser.add_argument( "--verbose", "-v", action="count", default=0, help="Increase verbosity, can be specified " "multiple times", ) opts_parser.add_argument( "--stderr", "-s", action="store_true", help="By default the logging output goes to a " "temporary file. This disables this feature " "by sending the logging output to stderr", ) return opts_parser def get_completion_datasource_for_global_argument(self, argument): if argument == "--config": return ConfigFileCompletionDataSource() return None def create_usage_logger(self, context): """ Override this and return you own usage logger. Must be a subtype of UsageLoggerInterface. """ return None def get_status_bar(self, context): """ This returns the StatusBar object that handles the bottom status bar and the right-side per-line status """ return LegionStatusBar(context) def getBlacklistPlugin(self): blacklister = CommandBlacklist() blacklister.add_blocked_command("be-blocked") return blacklister class ConfigFileCompletionDataSource(CompletionDataSource): def get_all(self): return ["/tmp/c1", "/tmp/c2"]
StarcoderdataPython
3242221
<filename>dwcontents/utils.py # dwcontents # Copyright 2018 data.world, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the # License. # # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # # This product includes software developed at # data.world, Inc.(http://data.world/). from __future__ import unicode_literals, print_function import time from builtins import str from itertools import groupby import nbformat from nbformat import v1, v2, v3, v4 str('Use str() once to force PyCharm to keep import') def directory_path(path): path = normalize_path(path) return path if path == '' else '{}/'.format(path) def normalize_path(*parts): return '/'.join([part.strip('/') for part in parts if part is not None and part != '']) def relative_path(path, parent): path = normalize_path(path) parent = normalize_path(parent) return normalize_path(path[len(parent):]) def split_parent(path): path = normalize_path(path) parent, _, name = path.rpartition('/') return directory_path(parent), name def to_api_path(dw_path, root_dir=''): rel_path = relative_path(dw_path, root_dir) return rel_path def to_dw_path(path, root_dir='', prefix=''): path = normalize_path(path) if path == prefix: path = root_dir else: path = normalize_path( root_dir, relative_path(path, prefix)) path_parts = path.split('/', 2) owner = path_parts[0] if path_parts[0] != '' else None dataset_id = path_parts[1] if len(path_parts) > 1 else None file_path = path_parts[2] if len(path_parts) > 2 else None return owner, dataset_id, file_path def to_nb_json(content, version_specific=False): if not version_specific: return nbformat.from_dict(content) else: # Not sure why this is needed instead of from_dict, sometimes versions = { 1: v1, 2: v2, 3: v3, 4: v4, } major = content.get('nbformat', 1) minor = content.get('nbformat_minor', 0) nb = versions[major].to_notebook_json(content, minor=minor) return nb def unique_justseen(iterable, key=None): sorted_items = sorted(iterable, key=key) groups = groupby(sorted_items, key=key) return (next(v) for k, v in groups) class MWT(object): """Memoize With Timeout""" _caches = {} _timeouts = {} def __init__(self, timeout=2): self.timeout = timeout def collect(self): """Clear cache of results which have timed out""" for func in self._caches: cache = {} for key in self._caches[func]: if ((time.time() - self._caches[func][key][1]) < self._timeouts[func]): cache[key] = self._caches[func][key] self._caches[func] = cache def invalidate(self): for func in self._caches: self._caches[func].clear() def __call__(self, f): self.cache = self._caches[f] = {} self._timeouts[f] = self.timeout def func(*args, **kwargs): kw = sorted(kwargs.items()) key = (args, tuple(kw)) try: v = self.cache[key] if (time.time() - v[1]) > self.timeout: raise KeyError except KeyError: v = self.cache[key] = f(*args, **kwargs), time.time() return v[0] func.func_name = f.__name__ return func
StarcoderdataPython
1692783
import argparse import os import torch import yaml from train.train import train os.environ['NCCL_LL_THRESHOLD'] = '0' parser = argparse.ArgumentParser(description='Train model on multiple cards') parser.add_argument('--config', help='path to yaml config file') parser.add_argument('--local_rank', type=int, help='local gpu id') args = parser.parse_args() config = yaml.safe_load(open(args.config)) torch.distributed.init_process_group(backend='nccl', init_method='env://') config['local_rank'] = args.local_rank torch.cuda.set_device(args.local_rank) train(config)
StarcoderdataPython
1632222
<reponame>egromero/chat_app_flask # Copyright (c) 2009-2015 <NAME> and gevent contributors. See LICENSE for details. from __future__ import absolute_import import os from gevent._util import copy_globals try: if os.environ.get('GEVENT_CORE_CFFI_ONLY'): raise ImportError("Not attempting corecext") from gevent.libev import corecext as _core except ImportError: if os.environ.get('GEVENT_CORE_CEXT_ONLY'): raise # CFFI/PyPy from gevent.libev import corecffi as _core copy_globals(_core, globals()) __all__ = _core.__all__
StarcoderdataPython
1649400
#!/usr/bin/env python # -*- coding: utf-8 -*- # # nnutil2 - Tensorflow utilities for training neural networks # Copyright (c) 2020, <NAME> <<EMAIL>> # # This file is part of 'nnutil2'. # # This file may be modified and distributed under the terms of the 3-clause BSD # license. See the LICENSE file for details. import tensorflow as tf from .. import util def flatten_vector(value, inner_structure): """ Returns nested structure as a flat tensor (batch, inner_size) """ batch_shape = util.batch_shape(value, inner_structure) batch_size = batch_shape.num_elements() flat_values = [tf.reshape(x, shape=(batch_size, util.as_shape(s).num_elements())) for x, s in zip(tf.nest.flatten(value), tf.nest.flatten(inner_structure))] if len(flat_values) == 1: flat_vector = flat_values[0] else: flat_vector = tf.concat(flat_values, axis=-1) return flat_vector def unflatten_vector(value, inner_structure, batch_shape): """ Unflattens a batch of vectors (batch, inner_size) into a nested structure """ batch_shape = util.as_shape(batch_shape) inner_shape = util.as_shape(inner_structure) flat_inner_shape = tf.nest.flatten(inner_shape) assert value.shape.rank == 2 batch_size = value.shape[0] inner_size = value.shape[1] assert batch_size == batch_shape.num_elements() assert inner_size == util.num_elements(inner_shape) if len(flat_inner_shape) == 1: flat_values = [value] else: flat_values = tf.split(value, num_or_size_splits=[s.num_elements() for s in flat_inner_shape], axis=1) unflat_values = [tf.reshape(x, shape=batch_shape + s) for x, s in zip(flat_values, flat_inner_shape)] unflat_values = tf.nest.pack_sequence_as(inner_structure, unflat_values) return unflat_values
StarcoderdataPython
3232849
<gh_stars>0 import pandas as pd import numpy as np import torch.nn as nn from torchvision import transforms from torch.utils.data import Dataset from collections import Counter import torch from PIL import Image from skimage import io #from data_util import TrainProtsDataset, ValProtsDataset, TestProtsDataset from torch.utils.data import DataLoader # from model from tqdm import tqdm import torch.optim as optim from sklearn.metrics import f1_score import torch.nn.functional as F #from model import PretrainedResnet50
StarcoderdataPython
3356680
<filename>src/posts/models.py import os from django.db import models from django.urls import reverse from tagging.registry import register from tagging.fields import TagField def rename_file_with_slug(old_filename, slug): filename, file_extension = os.path.splitext(old_filename) truncated_slug = slug[:25] if len(slug) > 25 else slug return '{0}{1}'.format(truncated_slug, file_extension) def generate_featured_image_path(instance, filename): return 'posts/uploads/{0}'.format(rename_file_with_slug(filename, instance.slug)) class PublishedPostManager(models.Manager): def get_queryset(self): return super().get_queryset() \ .filter(is_published=True) \ .order_by('-published_at') class Post(models.Model): objects = models.Manager() published_objects = PublishedPostManager() is_published = models.BooleanField(default=False) title = models.CharField(max_length=100) slug = models.SlugField(max_length=50, unique=True) excerpt = models.TextField() body = models.TextField() tags = TagField() featured_image = models.ImageField(upload_to=generate_featured_image_path, null=True) created_at = models.DateTimeField('date created', auto_now_add=True) updated_at = models.DateTimeField('last modified', auto_now=True) published_at = models.DateTimeField('date published', null=True, blank=True) def get_absolute_url(self): return reverse('posts:detail', kwargs={'slug': self.slug}) def get_others(self): return Post.published_objects.exclude(pk=self.pk) def get_next_published(self): try: published_gte = self.get_others().filter(published_at__gte=self.published_at) return published_gte.order_by('published_at')[0] except IndexError: raise Post.DoesNotExist def get_previous_published(self): try: published_lte = self.get_others().filter(published_at__lte=self.published_at) return published_lte.order_by('-published_at')[0] except IndexError: raise Post.DoesNotExist def __str__(self): return self.title register(Post, 'post_tags')
StarcoderdataPython
3315177
<filename>botfile/sender.py import discord from discord.ext import commands import asyncio class Sender(commands.Cog): def __init__(self,bot): self.bot =bot @commands.command() async def url(self,ctx,mid:int,cid:int=ctx.channel.id): try: g = ctx.guild ch = bot.get_channel(cid) msg = ch.fetch_messsage(mid) except: await ctx.send('メッセージ取得に失敗') else: atc_list = msg.attachments if atc_list != None: await ctx.send('ファイルが存在しません。') elif len(atc_list) >= 2: await ctx.send('ファイルが二つ以上添付されています。1つのみの対応です。') else: for atc in atc_list: await ctx.send(atc.url) @commands.command() async def send(self,ctx,ctg_id:int): #カテゴリの取得 ctg = ctx.guild.get_channel(ctg_id) if ctg == None: await ctx.send('カテゴリの取得に失敗しました') return elif ctg.type != discord.ChannelType.category: await ctx.send('カテゴリIDを指定してください') return elif ctg.type == discord.ChannelType.category: embed = discord.Embed(title='送信オプションの確認',description='メンション確認',colour=discord.Colour.blue()) embed.add_field(name='everyoneメンションする',value='\u2705',inline=False) embed.add_field(name='everyoneメンションしない',value='\u274E',inline=False) mention_msg = await ctx.send(embed=embed) await mention_msg.add_reaction('\u2705') await mention_msg.add_reaction('\u274E') await mention_msg.add_reaction('\u26D4') def check(reaction,user): return user==ctx.author and reaction.message==mention_msg try: reaction,user = await self.bot.wait_for('reaction_add',timeout=60,check=check) except asyncio.TimeoutError: await ctx.send('60秒間無操作だったため操作を中止しました。') else: if str(reaction.emoji) == '\u2705': do_mention = True elif str(reaction.emoji) == '\u274E': do_mention = False elif str(reaction.emoji) == '\u26D4': await ctx.send('終了しました') return type_msg = await ctx.send('送信メッセージをこのチャンネルに送信してください。') def msgcheck(m): return m.author == ctx.author and m.channnel == ctx.channel try: m = await self.bot.wait_for('message',timeout=60,check=msgcheck) except asyncio.TimeoutError: await ctx.send('60秒間無操作だったため操作を中止しました') return else: send_content = m.content if do_mention == True: everyone = ctx.guild.get_role(ctx.guild.id) send_message = everyone.mention + "\n" + send_content else: send_message = send_content for ch in ctg.text_channels: await ch.send(send_message) def setup(bot): bot.add_command(Sender(bot))
StarcoderdataPython
3227296
<filename>tests/test_binary_search.py import unittest from random import randint from big_o import big_o, complexities from src.binary_search import binary_search class TestBinarySearch(unittest.TestCase): def test_find(self): self.assertEqual(binary_search([1, 3, 5, 7, 9], 3), 1) def test_not_find(self): self.assertEqual(binary_search([1, 2, 3, 4, 5], 6), None) def test_complexity(self): best, _ = big_o( lambda arr: binary_search(arr, arr[randint(0, len(arr) - 1)]), lambda x: list(range(x)), n_repeats=1000 ) self.assertIsInstance(best, complexities.Logarithmic)
StarcoderdataPython
129934
<filename>test_split.py from itertools import chain, repeat from hypothesis import given import hypothesis.strategies as st import pytest from split import chunks, groupby, partition, split expected_keys = (1, 2, 3, 4, 5) expected_groups = ((1, 1), (2, 2), (3, 3), (4, 4), (5, 5)) def call(*args, **kwargs): return args, kwargs @pytest.fixture() def data(): return chain.from_iterable(repeat(expected_keys, 2)) def test_groupby_keys(data): assert expected_keys == tuple(key for key, group in groupby(data)) def test_groupby_values(data): assert expected_groups == tuple(tuple(group) for key, group in groupby(data)) def test_partition(): expected = (1, 3, 5, 7, 9), (0, 2, 4, 6, 8) assert expected == tuple(map(tuple, partition(lambda x: x % 2 != 0, range(10)))) @given(st.text()) def test_split(s): assert list(map(''.join, split('a', s))) == s.split('a') @pytest.mark.parametrize( 'call,expected', ( (call(range(10), 3), [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, None, None)]), ) ) def test_chunks(call, expected): args, kwargs = call assert expected == list(chunks(*args, **kwargs))
StarcoderdataPython
1707699
def comp_L2(self, L2_ref=None): """Compute and set the Rotor phase inductance for the equivalent electrical circuit Parameters ---------- self : EEC_SCIM an EEC_SCIM object L2_ref : float reference inductance """ if L2_ref is None: raise Exception("L2 parameter for EEC_SCIM must be enforced !") if self.type_comp_Lr == 1: # analytic calculation # L2 = machine.rotor.slot.comp_inductance_leakage_ANL() #TODO pass else: # FEA calculation # L2 = machine.rotor.slot.comp_inductance_leakage_FEA() #TODO pass self.L2 = L2_ref * self.Xke_skinR
StarcoderdataPython
123062
#!/usr/bin/env python # encoding: utf8 # # Grab http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt # from __future__ import print_function import os, sys from argparse import ArgumentParser from robofab.objects.objectsRF import OpenFont from unicode_util import parseUnicodeDataFile, MainCategories as UniMainCategories lightBlueColor = (0.86, 0.92, 0.97, 1.0) lightTealColor = (0.8, 0.94, 0.95, 1.0) lightYellowColor = (0.97, 0.95, 0.83, 1.0) lightPurpleColor = (0.93, 0.9, 0.98, 1.0) lightGreyColor = (0.94, 0.94, 0.94, 1.0) mediumGreyColor = (0.87, 0.87, 0.87, 1.0) lightGreenColor = (0.89, 0.96, 0.92, 1.0) mediumGreenColor = (0.77, 0.95, 0.76, 1.0) lightRedColor = (0.98, 0.89, 0.89, 1.0) lightOrangeColor = (1.0, 0.89, 0.82, 1.0) redColor = (1, 0.3, 0.3, 1) colorsByGlyphName = [ (set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'), lightBlueColor), # light blue 1 ] colorsByUCMainCategory = { # UniMainCategories.Letter: (1, 1, 1, 1), UniMainCategories.Mark: lightRedColor, UniMainCategories.Punctuation: lightGreyColor, UniMainCategories.Format: lightGreyColor, UniMainCategories.Number: lightGreenColor, UniMainCategories.Symbol: lightTealColor, UniMainCategories.Separator: lightPurpleColor, UniMainCategories.Control: redColor, UniMainCategories.Surrogate: redColor, UniMainCategories.PrivateUse: lightYellowColor, UniMainCategories.Unassigned: lightYellowColor, UniMainCategories.Other: lightOrangeColor, } def colorForGlyph(name, unicodes, ucd): for nameSet, color in colorsByGlyphName: if name in nameSet: return color for uc in unicodes: cp = ucd.get(uc) if cp is None: continue return colorsByUCMainCategory.get(cp.mainCategory) if len(unicodes) == 0: if name.find('.cn') != -1: # pure component return mediumGreenColor else: # precomposed return mediumGreyColor return None def main(): argparser = ArgumentParser( description='Set robofont color marks on glyphs based on unicode categories') argparser.add_argument( '-dry', dest='dryRun', action='store_const', const=True, default=False, help='Do not modify anything, but instead just print what would happen.') argparser.add_argument( '-ucd', dest='ucdFile', metavar='<file>', type=str, help='UnicodeData.txt file from http://www.unicode.org/') argparser.add_argument( 'fontPaths', metavar='<ufofile>', type=str, nargs='+', help='UFO fonts to update') args = argparser.parse_args() dryRun = args.dryRun markLibKey = 'com.typemytype.robofont.mark' ucd = {} if args.ucdFile: ucd = parseUnicodeDataFile(args.ucdFile) for fontPath in args.fontPaths: font = OpenFont(fontPath) for g in font: rgba = colorForGlyph(g.name, g.unicodes, ucd) if rgba is None: if markLibKey in g.lib: del g.lib[markLibKey] else: g.lib[markLibKey] = [float(n) for n in rgba] print('Write', fontPath) if not dryRun: font.save() if __name__ == '__main__': main()
StarcoderdataPython
1651081
from django.conf.urls import patterns, include, url from django.views.generic import TemplateView from .views import location urlpatterns = patterns('', url(r'^(?P<locationname>[A-Za-z]+)/$', location, name='location'), url(r'^(?P<locationname>[A-Za-z]+)/(?P<placeofinterest>[A-Za-z]+)/$', location, name = 'placeofinterest'), )
StarcoderdataPython
4815775
import types def isclass(obj): """ Helper. Identical to Python 2.7 's inspect.isclass. isclass in Python 2.6 also returns True when the passed object has a __bases__ attribute. (like in case of an instance.) """ return isinstance(obj, (type, types.ClassType)) from .network import * from .string_utils import *
StarcoderdataPython
1699406
#!/usr/bin/env python from eth_tester.exceptions import TransactionFailed from utils import longTo32Bytes, longToHexString, fix, AssertLog, stringToBytes, EtherDelta, PrintGasUsed, BuyWithCash, TokenDelta, EtherDelta, nullAddress from pytest import raises, mark, fixture as pytest_fixture from reporting_utils import proceedToNextRound from decimal import Decimal from math import floor APPROVAL_AMOUNT = 2**255 def test_uniswap_router(contractsFixture, cash, reputationToken): weth = contractsFixture.contracts["WETH9"] uniswap = contractsFixture.contracts["UniswapV2Router01"] account = contractsFixture.accounts[0] deadline = contractsFixture.eth_tester.backend.chain.header.timestamp + 1000000 # We'll provide some liquidity to the REP/DAI exchange cashAmount = 100 * 10**18 repAmount = 10 * 10**18 cash.faucet(cashAmount) reputationToken.faucet(repAmount) cash.approve(uniswap.address, APPROVAL_AMOUNT) reputationToken.approve(uniswap.address, APPROVAL_AMOUNT) uniswap.addLiquidity(reputationToken.address, cash.address, repAmount, cashAmount, 0, 0, account, deadline) # We'll provide liquidity to the ETH/DAI exchange now cashAmount = 1000 * 10**18 ethAmount = 10 * 10**18 cash.faucet(cashAmount) uniswap.addLiquidityETH(cash.address, cashAmount, cashAmount, ethAmount, account, deadline, value=ethAmount) # Now lets do some swaps. We'll pay some DAI get an exact amount of REP first exactRep = 10**17 maxDAI = 1.1 * 10**18 cash.faucet(maxDAI) with TokenDelta(reputationToken, exactRep, account, "REP token balance wrong"): uniswap.swapTokensForExactTokens(exactRep, maxDAI, [cash.address, reputationToken.address], account, deadline) # Now we'll pay an exact amount of DAI to get some REP exactDAI = 10**18 minRep = .95 * 10**17 cash.faucet(exactDAI) with TokenDelta(cash, -exactDAI, account, "Cash token balance wrong"): uniswap.swapExactTokensForTokens(exactDAI, minRep, [cash.address, reputationToken.address], account, deadline) # Now lets pay some DAI to get an exact amount of ETH. We pay gas to execute this so we subtract a dust value to account for that exactETH = 10**16 cash.faucet(maxDAI) initialETHBalance = contractsFixture.eth_tester.get_balance(account) uniswap.swapTokensForExactETH(exactETH, maxDAI, [cash.address, weth.address], account, deadline) newETHBalance = contractsFixture.eth_tester.get_balance(account) dust = 10**7 assert newETHBalance - initialETHBalance > exactETH - dust # Now we pay an exact amount of DAI to get some ETH minETH = .95 * 10**16 cash.faucet(exactDAI) with TokenDelta(cash, -exactDAI, account, "Cash token balance wrong"): uniswap.swapExactTokensForETH(exactDAI, minETH, [cash.address, weth.address], account, deadline) # Now lets pay some ETH to get an exact amount of DAI. maxETH = 1.1 * 10**16 uniswap.swapETHForExactTokens(exactDAI, [weth.address, cash.address], account, deadline, value=maxETH) # Finally we pay an exact amount of ETH to get some DAI. minDAI = .95 * 10**18 uniswap.swapExactETHForTokens(minDAI, [weth.address, cash.address], account, deadline, value=exactETH)
StarcoderdataPython
3358669
<reponame>bradmontgomery/django-redis-metrics from __future__ import unicode_literals from django.core.management.base import BaseCommand, CommandError from optparse import make_option from redis_metrics.utils import generate_test_metrics class Command(BaseCommand): args = '<metric-name> [<metric-name> ...]' help = "Creates Lots of Dummy Metrics" option_list = BaseCommand.option_list + ( make_option( '-r', '--randomize', action='store_true', dest='randomize', default=True, help='Randomize Metric Data' ), make_option( '--no-randomize', action='store_false', dest='randomize', default=True, help='Do not randomize Metric Data' ), make_option( '-n', '--num-days', action='store', dest='num_days', type="int", default=365 * 3, # Default to 3 years help='Number of Days worth of data to generate' ), make_option( '-c', '--cap', action='store', dest='cap', default=None, help='Cap the maximum metric value' ), ) def handle(self, *args, **options): if len(args) == 0: raise CommandError("You must provide at least one metric name") slugs = args cap = options["cap"] days = options["num_days"] randomize = options["randomize"] self.stdout.write("\nGenerating metrics using the following:\n") self.stdout.write("Slugs: {0}\n".format(u", ".join(slugs))) self.stdout.write("Days: {0}\n".format(days)) self.stdout.write("Randomize: {0}\n".format(randomize)) self.stdout.write("Cap: {0}\n".format(cap)) for slug in slugs: generate_test_metrics(slug, num=days, randomize=randomize, cap=cap)
StarcoderdataPython
1695113
<filename>src/products/views.py # Here we are going to render the contents of the products database in these pages. # This is a good case of dedicating each app to specific roles. # This views.py has it's own template folder 'products/templates/'. # Also checkout pages/views.py to see some comments that can help you understand some # things on this page, # and checkout the logic in the context(s) are here. Very modular. from django.shortcuts import render, get_object_or_404, redirect from .forms import ProductForm # Checkout forms.py from .models import Product # From: https://www.w3schools.com/tags/ref_httpmethods.asp # GET is used to request data from a specified resource. # GET is one of the most common HTTP methods. # Note that the query string (name/value pairs) is sent in the URL of a GET request: # /test/demo_form.php?name1=value1&name2=value2 # Some other notes on GET requests: # GET requests can be cached # GET requests remain in the browser history # GET requests can be bookmarked # GET requests should never be used when dealing with sensitive data # GET requests have length restrictions # GET requests is only used to request data (not modify) # From: https://www.w3schools.com/tags/ref_httpmethods.asp # POST is used to send data to a server to create/update a resource. # The data sent to the server with POST is stored in the request body of the HTTP request: # POST /test/demo_form.php HTTP/1.1 # Host: w3schools.com # name1=value1&name2=value2 # POST is one of the most common HTTP methods. # Some other notes on POST requests: # POST requests are never cached # POST requests do not remain in the browser history # POST requests cannot be bookmarked # POST requests have no restrictions on data length # This is how you will create a record to DB though webpage. def product_create_view(request): form = ProductForm(request.POST or None) #Default param is request.GET if form.is_valid(): # Has to follow logic from forms.py form.save() form = ProductForm() context = { 'form': form } return render(request, "products/product_create.html", context) def product_update_view(request, id=id): obj = get_object_or_404(Product, id=id) # This one line is how you handle a page not found or 404. You could also do it this way: https://docs.djangoproject.com/en/2.2/topics/http/views/#django.http.Http404 check comment below this function. Needs to be imported. form = ProductForm(request.POST or None, instance=obj) if form.is_valid(): form.save() context = { 'form': form } return render(request, "products/product_create.html", context) #http://127.0.0.1:8000/product/<int:id>/update # Example of another 404 handling: # from django.http import Http404 # try: # obj = Product.objects.get(id=1) # except Product.DoesNotExist: # raise Http404 def product_list_view(request): queryset = Product.objects.all() # list of objects context = { "object_list": queryset } return render(request, "products/product_list.html", context) # Checkout http://127.0.0.1:8000/products/ def product_detail_view(request, id): obj = get_object_or_404(Product, id=id) context = { "object": obj } return render(request, "products/product_detail.html", context) def product_delete_view(request, id): obj = get_object_or_404(Product, id=id) if request.method == "POST": # Make sure it's a POST request! obj.delete() # This one line is how you delete the specific Object QuerySet called by 'obj = get_object_or_404(Product, id=id)' return redirect('../../') # Go back to the '/product/<int:someID>' page. Needs to be imported. context = { "object": obj } return render(request, "products/product_delete.html", context) #http://1172.16.58.3:8000/product/<int:id>/delete
StarcoderdataPython
3270062
"""Particle filtering and smoothing.""" from ._particle_filter import ( ParticleFilter, effective_number_of_events, resample_categorical, ) from ._particle_filter_posterior import ParticleFilterPosterior
StarcoderdataPython
3280395
# -*- coding: utf-8 -*- """ Conftest. """ import pytest from pathlib import Path @pytest.fixture(scope="session", autouse=True) def data_path() -> Path: """Path to test data.""" return Path(__file__).parent / "data" @pytest.fixture(scope="session") def cal_data(data_path: Path): return data_path / "Receiver01_25C_2019_11_26_040_to_200MHz" @pytest.fixture(scope="session", autouse=True) def tmpdir(tmp_path_factory): return tmp_path_factory.mktemp("edges-cal")
StarcoderdataPython
3276865
<reponame>Cougargriff/SK-Purple-Convert import csv from os import system, name def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') blue_f = open('blue_zero_point_foods.csv') purple_f = open('purple_zero_point_foods.csv') blue_csv = csv.reader(blue_f) purple_csv = csv.reader(purple_f) diff_foods = [] progress = 0 def print_progress(p): progress = "" for x in range(0, p / 3): progress += "." print progress # loop through purple foods and check if in blue foods for p in purple_csv: clear() print_progress(progress) in_list = False for b in blue_csv: diff = p[0].strip().lower() == b[0].strip().lower() # print "{} == {} = {}".format(p[0], b[0], diff) if diff == True: in_list = True blue_csv = csv.reader(open('blue_zero_point_foods.csv')) print "." if in_list == False: diff_foods.append(p) progress += 1 print "Found {} foods in purple plan not included in blue plan.".format(len(diff_foods)) # output new csv containing the difference of purple with open('in_purple_not_blue.csv', 'wb') as csvfile: filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) filewriter.writerow('Diff_Foods') for food in diff_foods: filewriter.writerow(food)
StarcoderdataPython
3225657
class SimModule(object): def initialize(self, sim): pass def save(self, sim, **kwargs): pass def finalize(self, sim): pass
StarcoderdataPython
1725102
# -------- BEGIN LICENSE BLOCK -------- # Copyright 2022 FZI Forschungszentrum Informatik # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of the {copyright_holder} nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # -------- END LICENSE BLOCK -------- import operator import math from ros_bt_py_msgs.msg import Node as NodeMsg from ros_bt_py.exceptions import BehaviorTreeException from ros_bt_py.node import Leaf, define_bt_node from ros_bt_py.node_config import NodeConfig, OptionRef from ros_bt_py.helpers import MathUnaryOperator, MathBinaryOperator from ros_bt_py.helpers import MathOperandType, MathUnaryOperandType @define_bt_node(NodeConfig( version='0.9.0', options={'input_type': type, 'output_type': type}, inputs={'in': OptionRef('input_type')}, outputs={'out': OptionRef('output_type')}, max_children=0, tags=['math', 'convert', 'variable'])) class Convert(Leaf): """Convert between certain types. Useful in many cases indeed.""" def __init__(self, options=None, debug_manager=None, name=None): super(Convert, self).__init__(options, debug_manager, name) # check the possible conversions here if self.options['input_type'] is self.options['output_type']: pass elif self.options['output_type'] is str: # that should almost always work pass elif self.options['input_type'] is float and self.options['output_type'] is int: self.logwarn('loss of precission in conversion from float to int') elif self.options['input_type'] is bool and self.options['output_type'] is int: self.loginfo('interpreting False as 0 and True as 1') elif self.options['input_type'] is int and self.options['output_type'] is bool: self.loginfo('interpreting 0 as False and != 0 as True') elif (self.options['input_type'] in [int, float] and self.options['output_type'] in [int, float]): pass else: raise BehaviorTreeException('Conversion between "%s" and "%s" not implemented' % ( self.options['input_type'], self.options['output_type'])) def _do_setup(self): pass def _do_tick(self): if self.options['input_type'] is self.options['output_type']: # passthrough self.outputs['out'] = self.inputs['in'] elif self.options['output_type'] is str: # that should almost always work self.outputs['out'] = str(self.inputs['in']) elif self.options['input_type'] is int and self.options['output_type'] is bool: if self.inputs['in'] == 0: self.outputs['out'] = False else: self.outputs['out'] = True elif self.options['input_type'] is bool and self.options['output_type'] is int: if self.inputs['in']: self.outputs['out'] = 1 else: self.outputs['out'] = 0 elif (self.options['input_type'] in [int, float] and self.options['output_type'] in [int, float]): if self.options['input_type'] is int: if self.options['output_type'] is float: self.outputs['out'] = float(self.inputs['in']) elif self.options['input_type'] is float: if self.options['output_type'] is int: self.outputs['out'] = int(self.inputs['in']) return NodeMsg.SUCCEEDED def _do_shutdown(self): pass def _do_reset(self): return NodeMsg.IDLE def _do_untick(self): return NodeMsg.IDLE # Uncomment this if your node provides a utility calculation # # def _do_calculate_utility(self): # pass @define_bt_node(NodeConfig( version='0.9.0', options={'operand_type': MathOperandType, 'operator': MathBinaryOperator}, inputs={}, outputs={}, max_children=0, tags=['math', 'operator', 'operation', 'calculation', 'result', 'variable', '+-/*%', 'add', 'div', 'sub', 'mul', 'mod', 'and', 'or', 'xor', 'shift', 'pow'])) class Operation(Leaf): """Performs the desired binary operation on the inputs a and b.""" def __init__(self, options=None, debug_manager=None, name=None): super(Operation, self).__init__(options, debug_manager, name) self.operators = dict() self.operators['add'] = operator.add self.operators['+'] = operator.add self.operators['and'] = operator.__and__ self.operators['&'] = operator.__and__ self.operators['div'] = operator.truediv self.operators['/'] = operator.truediv self.operators['floordiv'] = operator.floordiv self.operators['//'] = operator.floordiv self.operators['lshift'] = operator.lshift self.operators['<<'] = operator.lshift self.operators['mod'] = operator.mod self.operators['%'] = operator.mod self.operators['mul'] = operator.mul self.operators['*'] = operator.mul self.operators['or'] = operator.__or__ self.operators['|'] = operator.__or__ self.operators['pow'] = operator.pow self.operators['**'] = operator.pow self.operators['rshift'] = operator.rshift self.operators['>>'] = operator.rshift self.operators['sub'] = operator.sub self.operators['-'] = operator.sub self.operators['truediv'] = operator.truediv self.operators['xor'] = operator.xor self.operators['^'] = operator.xor if self.options['operator'].operator not in self.operators: raise BehaviorTreeException( 'Operator %s is not recognized.' % self.options['operator'].operator) self.operand_type = None if self.options['operand_type'].operand_type == 'int': self.operand_type = int elif self.options['operand_type'].operand_type == 'float': self.operand_type = float elif self.options['operand_type'].operand_type == 'bool': self.operand_type = bool node_inputs = {} node_inputs['a'] = self.operand_type node_inputs['b'] = self.operand_type node_outputs = {} node_outputs['result'] = self.operand_type self.node_config.extend(NodeConfig( options={}, inputs=node_inputs, outputs=node_outputs, max_children=0)) self._register_node_data(source_map=node_inputs, target_map=self.inputs) self._register_node_data(source_map=node_outputs, target_map=self.outputs) def _do_setup(self): pass def _do_tick(self): self.outputs['result'] = self.operators[self.options['operator'].operator]( self.inputs['a'], self.inputs['b'] ) return NodeMsg.SUCCEEDED def _do_shutdown(self): pass def _do_reset(self): return NodeMsg.IDLE def _do_untick(self): return NodeMsg.IDLE # Uncomment this if your node provides a utility calculation # # def _do_calculate_utility(self): # pass @define_bt_node(NodeConfig( version='0.9.0', options={'operand_type': MathUnaryOperandType, 'operator': MathUnaryOperator}, inputs={}, outputs={}, max_children=0, tags=['math', 'operator', 'operation', 'calculation', 'result', 'variable', 'not', 'inv', 'log', 'ceil', 'floor', 'sqrt', 'sin', 'cos', 'tan', 'degrees', 'radians', 'error', 'erf', 'gamma'])) class UnaryOperation(Leaf): """Performs the desired unary operation on the inputs a and b.""" def __init__(self, options=None, debug_manager=None, name=None): super(UnaryOperation, self).__init__(options, debug_manager, name) self.operators = dict() self.operators['not'] = operator.not_ self.operators['inv'] = operator.inv self.operators['~'] = operator.inv self.operators['neg'] = operator.neg self.operators['-'] = operator.neg self.operators['pos'] = operator.pos self.operators['+'] = operator.pos self.operators['exp'] = math.exp self.operators['expm1'] = math.expm1 self.operators['log'] = math.log self.operators['log1p'] = math.log1p self.operators['log10'] = math.log10 self.operators['ceil'] = math.ceil self.operators['fabs'] = math.fabs self.operators['factorial'] = math.factorial self.operators['floor'] = math.floor self.operators['sqrt'] = math.sqrt self.operators['acos'] = math.acos self.operators['asin'] = math.asin self.operators['atan'] = math.atan self.operators['acosh'] = math.acosh self.operators['asinh'] = math.asinh self.operators['atanh'] = math.atanh self.operators['cos'] = math.cos self.operators['sin'] = math.sin self.operators['tan'] = math.tan self.operators['cosh'] = math.cosh self.operators['sinh'] = math.sinh self.operators['tanh'] = math.tanh self.operators['degrees'] = math.degrees self.operators['radians'] = math.radians self.operators['erf'] = math.erf self.operators['erfc'] = math.erfc self.operators['gamma'] = math.gamma self.operators['lgamma'] = math.lgamma if self.options['operator'].operator not in self.operators: raise BehaviorTreeException( 'Operator %s is not recognized.' % self.options['operator'].operator) self.operand_type = None if self.options['operand_type'].operand_type == 'int': self.operand_type = int elif self.options['operand_type'].operand_type == 'float': self.operand_type = float node_inputs = {} node_inputs['in'] = self.operand_type node_outputs = {} node_outputs['result'] = self.operand_type self.node_config.extend(NodeConfig( options={}, inputs=node_inputs, outputs=node_outputs, max_children=0)) self._register_node_data(source_map=node_inputs, target_map=self.inputs) self._register_node_data(source_map=node_outputs, target_map=self.outputs) def _do_setup(self): pass def _do_tick(self): self.outputs['result'] = self.operators[self.options['operator'].operator]( self.inputs['in'] ) return NodeMsg.SUCCEEDED def _do_shutdown(self): pass def _do_reset(self): return NodeMsg.IDLE def _do_untick(self): return NodeMsg.IDLE # Uncomment this if your node provides a utility calculation # # def _do_calculate_utility(self): # pass
StarcoderdataPython
3225938
#!/usr/bin/env python # run: # python3 -mvenv ../ve3 # ../ve3/bin/pip install wheel # ../ve3/bin/pip install --editable . # ../ve3/bin/ag-pserver --listen tcp:8001 --controller tcp:localhost:8002 # the provisioning webpage is in html/index.html , edit it in place from setuptools import setup import os setup( name="ag-pserver", description="provisioning server for Agoric testnet", license="MIT", package_dir={"": "src"}, packages=["ag_pserver"], package_data={"ag_pserver": ['html/*']}, install_requires=[ "twisted[tls]", "magic-wormhole", "treq", ], entry_points={ "console_scripts": [ "ag-pserver = ag_pserver.main:main" ], }, include_package_data=True, version="0.0.1", )
StarcoderdataPython
3291450
<filename>stack.py from linked_list import * class Stack (object): def __init__(self): self.linked_list = LinkedList () def stack_size (self): return self.linked_list.size_of_linked_list() def is_empty (self): return self.linked_list.size_of_linked_list() == 0 def push (self, data): self.linked_list.insert_at_start(data) def pop (self): if not self.is_empty(): data = self.linked_list.get_first_element() self.linked_list.remove(data) return data else: raise Exception("No more entries in stack.") def peek (self): if not self.is_empty(): return self.linked_list.get_first_element() if __name__ == '__main__': s1 = Stack () s1.push (10) s1.push (9) s1.push (8) print (s1.peek()) while not s1.is_empty(): print (s1.pop())
StarcoderdataPython
4820167
import os class Config(object): DEBUG = True TESTING = True SECRET_KEY = "<KEY>" DATABASE_URL = os.environ.get("TRUNKS_DATABASE_URL")
StarcoderdataPython
3354831
<gh_stars>0 import pdb def spam(eggs): print('eggs:', eggs) if __name__ == '__main__': pdb.set_trace() for i in range(5): spam(i)
StarcoderdataPython
3528
<filename>pysc2/lib/actions.py # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define the static list of types and actions for SC2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numbers import six from pysc2.lib import point from s2clientprotocol import spatial_pb2 as sc_spatial from s2clientprotocol import ui_pb2 as sc_ui def no_op(action): del action def move_camera(action, minimap): """Move the camera.""" minimap.assign_to(action.action_feature_layer.camera_move.center_minimap) def select_point(action, select_point_act, screen): """Select a unit at a point.""" select = action.action_feature_layer.unit_selection_point screen.assign_to(select.selection_screen_coord) select.type = select_point_act def select_rect(action, select_add, screen, screen2): """Select units within a rectangle.""" select = action.action_feature_layer.unit_selection_rect out_rect = select.selection_screen_coord.add() screen_rect = point.Rect(screen, screen2) screen_rect.tl.assign_to(out_rect.p0) screen_rect.br.assign_to(out_rect.p1) select.selection_add = bool(select_add) def select_idle_worker(action, select_worker): """Select an idle worker.""" action.action_ui.select_idle_worker.type = select_worker def select_army(action, select_add): """Select the entire army.""" action.action_ui.select_army.selection_add = select_add def select_warp_gates(action, select_add): """Select all warp gates.""" action.action_ui.select_warp_gates.selection_add = select_add def select_larva(action): """Select all larva.""" action.action_ui.select_larva.SetInParent() # Adds the empty proto field. def select_unit(action, select_unit_act, select_unit_id): """Select a specific unit from the multi-unit selection.""" select = action.action_ui.multi_panel select.type = select_unit_act select.unit_index = select_unit_id def control_group(action, control_group_act, control_group_id): """Act on a control group, selecting, setting, etc.""" select = action.action_ui.control_group select.action = control_group_act select.control_group_index = control_group_id def unload(action, unload_id): """Unload a unit from a transport/bunker/nydus/etc.""" action.action_ui.cargo_panel.unit_index = unload_id def build_queue(action, build_queue_id): """Cancel a unit in the build queue.""" action.action_ui.production_panel.unit_index = build_queue_id def cmd_quick(action, ability_id, queued): """Do a quick command like 'Stop' or 'Stim'.""" action_cmd = action.action_feature_layer.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued def cmd_screen(action, ability_id, queued, screen): """Do a command that needs a point on the screen.""" action_cmd = action.action_feature_layer.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued screen.assign_to(action_cmd.target_screen_coord) def cmd_minimap(action, ability_id, queued, minimap): """Do a command that needs a point on the minimap.""" action_cmd = action.action_feature_layer.unit_command action_cmd.ability_id = ability_id action_cmd.queue_command = queued minimap.assign_to(action_cmd.target_minimap_coord) def autocast(action, ability_id): """Toggle autocast.""" action.action_ui.toggle_autocast.ability_id = ability_id class ArgumentType(collections.namedtuple( "ArgumentType", ["id", "name", "sizes", "fn"])): """Represents a single argument type. Attributes: id: The argument id. This is unique. name: The name of the argument, also unique. sizes: The max+1 of each of the dimensions this argument takes. fn: The function to convert the list of integers into something more meaningful to be set in the protos to send to the game. """ __slots__ = () def __str__(self): return "%s/%s %s" % (self.id, self.name, list(self.sizes)) @classmethod def enum(cls, options): """Create an ArgumentType where you choose one of a set of known values.""" return cls(-1, "<none>", (len(options),), lambda a: options[a[0]]) @classmethod def scalar(cls, value): """Create an ArgumentType with a single scalar in range(value).""" return cls(-1, "<none>", (value,), lambda a: a[0]) @classmethod def point(cls): # No range because it's unknown at this time. """Create an ArgumentType that is represented by a point.Point.""" return cls(-1, "<none>", (0, 0), lambda a: point.Point(*a).floor()) @classmethod def spec(cls, id_, name, sizes): """Create an ArgumentType to be used in ValidActions.""" return cls(id_, name, sizes, None) class Arguments(collections.namedtuple("Arguments", [ "screen", "minimap", "screen2", "queued", "control_group_act", "control_group_id", "select_point_act", "select_add", "select_unit_act", "select_unit_id", "select_worker", "build_queue_id", "unload_id"])): """The full list of argument types. Take a look at TYPES and FUNCTION_TYPES for more details. Attributes: screen: A point on the screen. minimap: A point on the minimap. screen2: The second point for a rectangle. This is needed so that no function takes the same type twice. queued: Whether the action should be done now or later. control_group_act: What to do with the control group. control_group_id: Which control group to do it with. select_point_act: What to do with the unit at the point. select_add: Whether to add the unit to the selection or replace it. select_unit_act: What to do when selecting a unit by id. select_unit_id: Which unit to select by id. select_worker: What to do when selecting a worker. build_queue_id: Which build queue index to target. unload_id: Which unit to target in a transport/nydus/command center. """ ___slots__ = () @classmethod def types(cls, **kwargs): """Create an Arguments of the possible Types.""" named = {name: type_._replace(id=Arguments._fields.index(name), name=name) for name, type_ in six.iteritems(kwargs)} return cls(**named) # The list of known types. TYPES = Arguments.types( screen=ArgumentType.point(), minimap=ArgumentType.point(), screen2=ArgumentType.point(), queued=ArgumentType.enum([False, True]), # (now vs add to queue) control_group_act=ArgumentType.enum([ sc_ui.ActionControlGroup.Recall, sc_ui.ActionControlGroup.Set, sc_ui.ActionControlGroup.Append, sc_ui.ActionControlGroup.SetAndSteal, sc_ui.ActionControlGroup.AppendAndSteal, ]), control_group_id=ArgumentType.scalar(10), select_point_act=ArgumentType.enum([ sc_spatial.ActionSpatialUnitSelectionPoint.Select, sc_spatial.ActionSpatialUnitSelectionPoint.Toggle, sc_spatial.ActionSpatialUnitSelectionPoint.AllType, sc_spatial.ActionSpatialUnitSelectionPoint.AddAllType, ]), select_add=ArgumentType.enum([False, True]), # (select vs select_add) select_unit_act=ArgumentType.enum([ sc_ui.ActionMultiPanel.SingleSelect, sc_ui.ActionMultiPanel.DeselectUnit, sc_ui.ActionMultiPanel.SelectAllOfType, sc_ui.ActionMultiPanel.DeselectAllOfType, ]), select_unit_id=ArgumentType.scalar(500), # Depends on current selection. select_worker=ArgumentType.enum([ sc_ui.ActionSelectIdleWorker.Set, sc_ui.ActionSelectIdleWorker.Add, sc_ui.ActionSelectIdleWorker.All, sc_ui.ActionSelectIdleWorker.AddAll, ]), build_queue_id=ArgumentType.scalar(10), # Depends on current build queue. unload_id=ArgumentType.scalar(500), # Depends on the current loaded units. ) # Which argument types do each function need? FUNCTION_TYPES = { no_op: [], move_camera: [TYPES.minimap], select_point: [TYPES.select_point_act, TYPES.screen], select_rect: [TYPES.select_add, TYPES.screen, TYPES.screen2], select_unit: [TYPES.select_unit_act, TYPES.select_unit_id], control_group: [TYPES.control_group_act, TYPES.control_group_id], select_idle_worker: [TYPES.select_worker], select_army: [TYPES.select_add], select_warp_gates: [TYPES.select_add], select_larva: [], unload: [TYPES.unload_id], build_queue: [TYPES.build_queue_id], cmd_quick: [TYPES.queued], cmd_screen: [TYPES.queued, TYPES.screen], cmd_minimap: [TYPES.queued, TYPES.minimap], autocast: [], } # Which ones need an ability? ABILITY_FUNCTIONS = {cmd_quick, cmd_screen, cmd_minimap, autocast} # Which ones require a point? POINT_REQUIRED_FUNCS = { False: {cmd_quick, autocast}, True: {cmd_screen, cmd_minimap, autocast}} always = lambda _: True class Function(collections.namedtuple( "Function", ["id", "name", "ability_id", "general_id", "function_type", "args", "avail_fn"])): """Represents a function action. Attributes: id: The function id, which is what the agent will use. name: The name of the function. Should be unique. ability_id: The ability id to pass to sc2. general_id: 0 for normal abilities, and the ability_id of another ability if it can be represented by a more general action. function_type: One of the functions in FUNCTION_TYPES for how to construct the sc2 action proto out of python types. args: A list of the types of args passed to function_type. avail_fn: For non-abilities, this function returns whether the function is valid. """ __slots__ = () @classmethod def ui_func(cls, id_, name, function_type, avail_fn=always): """Define a function representing a ui action.""" return cls(id_, name, 0, 0, function_type, FUNCTION_TYPES[function_type], avail_fn) @classmethod def ability(cls, id_, name, function_type, ability_id, general_id=0): """Define a function represented as a game ability.""" assert function_type in ABILITY_FUNCTIONS return cls(id_, name, ability_id, general_id, function_type, FUNCTION_TYPES[function_type], None) @classmethod def spec(cls, id_, name, args): """Create a Function to be used in ValidActions.""" return cls(id_, name, None, None, None, args, None) def __hash__(self): # So it can go in a set(). return self.id def __str__(self): return self.str() def str(self, space=False): """String version. Set space=True to line them all up nicely.""" return "%s/%s (%s)" % (str(self.id).rjust(space and 4), self.name.ljust(space and 50), "; ".join(str(a) for a in self.args)) class Functions(object): """Represents the full set of functions. Can't use namedtuple since python3 has a limit of 255 function arguments, so build something similar. """ def __init__(self, functions): self._func_list = functions self._func_dict = {f.name: f for f in functions} if len(self._func_dict) != len(self._func_list): raise ValueError("Function names must be unique.") def __getattr__(self, name): return self._func_dict[name] def __getitem__(self, key): if isinstance(key, numbers.Number): return self._func_list[key] return self._func_dict[key] def __iter__(self): return iter(self._func_list) def __len__(self): return len(self._func_list) # pylint: disable=line-too-long FUNCTIONS = Functions([ Function.ui_func(0, "no_op", no_op), Function.ui_func(1, "move_camera", move_camera), Function.ui_func(2, "select_point", select_point), Function.ui_func(3, "select_rect", select_rect), Function.ui_func(4, "select_control_group", control_group), Function.ui_func(5, "select_unit", select_unit, lambda obs: obs.ui_data.HasField("multi")), Function.ui_func(6, "select_idle_worker", select_idle_worker, lambda obs: obs.player_common.idle_worker_count > 0), Function.ui_func(7, "select_army", select_army, lambda obs: obs.player_common.army_count > 0), Function.ui_func(8, "select_warp_gates", select_warp_gates, lambda obs: obs.player_common.warp_gate_count > 0), Function.ui_func(9, "select_larva", select_larva, lambda obs: obs.player_common.larva_count > 0), Function.ui_func(10, "unload", unload, lambda obs: obs.ui_data.HasField("cargo")), Function.ui_func(11, "build_queue", build_queue, lambda obs: obs.ui_data.HasField("production")), # Everything below here is generated with gen_actions.py Function.ability(12, "Attack_screen", cmd_screen, 3674), Function.ability(13, "Attack_minimap", cmd_minimap, 3674), Function.ability(14, "Attack_Attack_screen", cmd_screen, 23, 3674), Function.ability(15, "Attack_Attack_minimap", cmd_minimap, 23, 3674), Function.ability(16, "Attack_AttackBuilding_screen", cmd_screen, 2048, 3674), Function.ability(17, "Attack_AttackBuilding_minimap", cmd_minimap, 2048, 3674), Function.ability(18, "Attack_Redirect_screen", cmd_screen, 1682, 3674), Function.ability(19, "Scan_Move_screen", cmd_screen, 19, 3674), Function.ability(20, "Scan_Move_minimap", cmd_minimap, 19, 3674), Function.ability(21, "Behavior_BuildingAttackOff_quick", cmd_quick, 2082), Function.ability(22, "Behavior_BuildingAttackOn_quick", cmd_quick, 2081), Function.ability(23, "Behavior_CloakOff_quick", cmd_quick, 3677), Function.ability(24, "Behavior_CloakOff_Banshee_quick", cmd_quick, 393, 3677), Function.ability(25, "Behavior_CloakOff_Ghost_quick", cmd_quick, 383, 3677), Function.ability(26, "Behavior_CloakOn_quick", cmd_quick, 3676), Function.ability(27, "Behavior_CloakOn_Banshee_quick", cmd_quick, 392, 3676), Function.ability(28, "Behavior_CloakOn_Ghost_quick", cmd_quick, 382, 3676), Function.ability(29, "Behavior_GenerateCreepOff_quick", cmd_quick, 1693), Function.ability(30, "Behavior_GenerateCreepOn_quick", cmd_quick, 1692), Function.ability(31, "Behavior_HoldFireOff_quick", cmd_quick, 3689), Function.ability(32, "Behavior_HoldFireOff_Ghost_quick", cmd_quick, 38, 3689), Function.ability(33, "Behavior_HoldFireOff_Lurker_quick", cmd_quick, 2552, 3689), Function.ability(34, "Behavior_HoldFireOn_quick", cmd_quick, 3688), Function.ability(35, "Behavior_HoldFireOn_Ghost_quick", cmd_quick, 36, 3688), Function.ability(36, "Behavior_HoldFireOn_Lurker_quick", cmd_quick, 2550, 3688), Function.ability(37, "Behavior_PulsarBeamOff_quick", cmd_quick, 2376), Function.ability(38, "Behavior_PulsarBeamOn_quick", cmd_quick, 2375), Function.ability(39, "Build_Armory_screen", cmd_screen, 331), Function.ability(40, "Build_Assimilator_screen", cmd_screen, 882), Function.ability(41, "Build_BanelingNest_screen", cmd_screen, 1162), Function.ability(42, "Build_Barracks_screen", cmd_screen, 321), Function.ability(43, "Build_Bunker_screen", cmd_screen, 324), Function.ability(44, "Build_CommandCenter_screen", cmd_screen, 318), Function.ability(45, "Build_CreepTumor_screen", cmd_screen, 3691), Function.ability(46, "Build_CreepTumor_Queen_screen", cmd_screen, 1694, 3691), Function.ability(47, "Build_CreepTumor_Tumor_screen", cmd_screen, 1733, 3691), Function.ability(48, "Build_CyberneticsCore_screen", cmd_screen, 894), Function.ability(49, "Build_DarkShrine_screen", cmd_screen, 891), Function.ability(50, "Build_EngineeringBay_screen", cmd_screen, 322), Function.ability(51, "Build_EvolutionChamber_screen", cmd_screen, 1156), Function.ability(52, "Build_Extractor_screen", cmd_screen, 1154), Function.ability(53, "Build_Factory_screen", cmd_screen, 328), Function.ability(54, "Build_FleetBeacon_screen", cmd_screen, 885), Function.ability(55, "Build_Forge_screen", cmd_screen, 884), Function.ability(56, "Build_FusionCore_screen", cmd_screen, 333), Function.ability(57, "Build_Gateway_screen", cmd_screen, 883), Function.ability(58, "Build_GhostAcademy_screen", cmd_screen, 327), Function.ability(59, "Build_Hatchery_screen", cmd_screen, 1152), Function.ability(60, "Build_HydraliskDen_screen", cmd_screen, 1157), Function.ability(61, "Build_InfestationPit_screen", cmd_screen, 1160), Function.ability(62, "Build_Interceptors_quick", cmd_quick, 1042), Function.ability(63, "Build_Interceptors_autocast", autocast, 1042), Function.ability(64, "Build_MissileTurret_screen", cmd_screen, 323), Function.ability(65, "Build_Nexus_screen", cmd_screen, 880), Function.ability(66, "Build_Nuke_quick", cmd_quick, 710), Function.ability(67, "Build_NydusNetwork_screen", cmd_screen, 1161), Function.ability(68, "Build_NydusWorm_screen", cmd_screen, 1768), Function.ability(69, "Build_PhotonCannon_screen", cmd_screen, 887), Function.ability(70, "Build_Pylon_screen", cmd_screen, 881), Function.ability(71, "Build_Reactor_quick", cmd_quick, 3683), Function.ability(72, "Build_Reactor_screen", cmd_screen, 3683), Function.ability(73, "Build_Reactor_Barracks_quick", cmd_quick, 422, 3683), Function.ability(74, "Build_Reactor_Barracks_screen", cmd_screen, 422, 3683), Function.ability(75, "Build_Reactor_Factory_quick", cmd_quick, 455, 3683), Function.ability(76, "Build_Reactor_Factory_screen", cmd_screen, 455, 3683), Function.ability(77, "Build_Reactor_Starport_quick", cmd_quick, 488, 3683), Function.ability(78, "Build_Reactor_Starport_screen", cmd_screen, 488, 3683), Function.ability(79, "Build_Refinery_screen", cmd_screen, 320), Function.ability(80, "Build_RoachWarren_screen", cmd_screen, 1165), Function.ability(81, "Build_RoboticsBay_screen", cmd_screen, 892), Function.ability(82, "Build_RoboticsFacility_screen", cmd_screen, 893), Function.ability(83, "Build_SensorTower_screen", cmd_screen, 326), Function.ability(84, "Build_SpawningPool_screen", cmd_screen, 1155), Function.ability(85, "Build_SpineCrawler_screen", cmd_screen, 1166), Function.ability(86, "Build_Spire_screen", cmd_screen, 1158), Function.ability(87, "Build_SporeCrawler_screen", cmd_screen, 1167), Function.ability(88, "Build_Stargate_screen", cmd_screen, 889), Function.ability(89, "Build_Starport_screen", cmd_screen, 329), Function.ability(90, "Build_StasisTrap_screen", cmd_screen, 2505), Function.ability(91, "Build_SupplyDepot_screen", cmd_screen, 319), Function.ability(92, "Build_TechLab_quick", cmd_quick, 3682), Function.ability(93, "Build_TechLab_screen", cmd_screen, 3682), Function.ability(94, "Build_TechLab_Barracks_quick", cmd_quick, 421, 3682), Function.ability(95, "Build_TechLab_Barracks_screen", cmd_screen, 421, 3682), Function.ability(96, "Build_TechLab_Factory_quick", cmd_quick, 454, 3682), Function.ability(97, "Build_TechLab_Factory_screen", cmd_screen, 454, 3682), Function.ability(98, "Build_TechLab_Starport_quick", cmd_quick, 487, 3682), Function.ability(99, "Build_TechLab_Starport_screen", cmd_screen, 487, 3682), Function.ability(100, "Build_TemplarArchive_screen", cmd_screen, 890), Function.ability(101, "Build_TwilightCouncil_screen", cmd_screen, 886), Function.ability(102, "Build_UltraliskCavern_screen", cmd_screen, 1159), Function.ability(103, "BurrowDown_quick", cmd_quick, 3661), Function.ability(104, "BurrowDown_Baneling_quick", cmd_quick, 1374, 3661), Function.ability(105, "BurrowDown_Drone_quick", cmd_quick, 1378, 3661), Function.ability(106, "BurrowDown_Hydralisk_quick", cmd_quick, 1382, 3661), Function.ability(107, "BurrowDown_Infestor_quick", cmd_quick, 1444, 3661), Function.ability(108, "BurrowDown_InfestorTerran_quick", cmd_quick, 1394, 3661), Function.ability(109, "BurrowDown_Lurker_quick", cmd_quick, 2108, 3661), Function.ability(110, "BurrowDown_Queen_quick", cmd_quick, 1433, 3661), Function.ability(111, "BurrowDown_Ravager_quick", cmd_quick, 2340, 3661), Function.ability(112, "BurrowDown_Roach_quick", cmd_quick, 1386, 3661), Function.ability(113, "BurrowDown_SwarmHost_quick", cmd_quick, 2014, 3661), Function.ability(114, "BurrowDown_Ultralisk_quick", cmd_quick, 1512, 3661), Function.ability(115, "BurrowDown_WidowMine_quick", cmd_quick, 2095, 3661), Function.ability(116, "BurrowDown_Zergling_quick", cmd_quick, 1390, 3661), Function.ability(117, "BurrowUp_quick", cmd_quick, 3662), Function.ability(118, "BurrowUp_autocast", autocast, 3662), Function.ability(119, "BurrowUp_Baneling_quick", cmd_quick, 1376, 3662), Function.ability(120, "BurrowUp_Baneling_autocast", autocast, 1376, 3662), Function.ability(121, "BurrowUp_Drone_quick", cmd_quick, 1380, 3662), Function.ability(122, "BurrowUp_Hydralisk_quick", cmd_quick, 1384, 3662), Function.ability(123, "BurrowUp_Hydralisk_autocast", autocast, 1384, 3662), Function.ability(124, "BurrowUp_Infestor_quick", cmd_quick, 1446, 3662), Function.ability(125, "BurrowUp_InfestorTerran_quick", cmd_quick, 1396, 3662), Function.ability(126, "BurrowUp_InfestorTerran_autocast", autocast, 1396, 3662), Function.ability(127, "BurrowUp_Lurker_quick", cmd_quick, 2110, 3662), Function.ability(128, "BurrowUp_Queen_quick", cmd_quick, 1435, 3662), Function.ability(129, "BurrowUp_Queen_autocast", autocast, 1435, 3662), Function.ability(130, "BurrowUp_Ravager_quick", cmd_quick, 2342, 3662), Function.ability(131, "BurrowUp_Ravager_autocast", autocast, 2342, 3662), Function.ability(132, "BurrowUp_Roach_quick", cmd_quick, 1388, 3662), Function.ability(133, "BurrowUp_Roach_autocast", autocast, 1388, 3662), Function.ability(134, "BurrowUp_SwarmHost_quick", cmd_quick, 2016, 3662), Function.ability(135, "BurrowUp_Ultralisk_quick", cmd_quick, 1514, 3662), Function.ability(136, "BurrowUp_Ultralisk_autocast", autocast, 1514, 3662), Function.ability(137, "BurrowUp_WidowMine_quick", cmd_quick, 2097, 3662), Function.ability(138, "BurrowUp_Zergling_quick", cmd_quick, 1392, 3662), Function.ability(139, "BurrowUp_Zergling_autocast", autocast, 1392, 3662), Function.ability(140, "Cancel_quick", cmd_quick, 3659), Function.ability(141, "Cancel_AdeptPhaseShift_quick", cmd_quick, 2594, 3659), Function.ability(142, "Cancel_AdeptShadePhaseShift_quick", cmd_quick, 2596, 3659), Function.ability(143, "Cancel_BarracksAddOn_quick", cmd_quick, 451, 3659), Function.ability(144, "Cancel_BuildInProgress_quick", cmd_quick, 314, 3659), Function.ability(145, "Cancel_CreepTumor_quick", cmd_quick, 1763, 3659), Function.ability(146, "Cancel_FactoryAddOn_quick", cmd_quick, 484, 3659), Function.ability(147, "Cancel_GravitonBeam_quick", cmd_quick, 174, 3659), Function.ability(148, "Cancel_LockOn_quick", cmd_quick, 2354, 3659), Function.ability(149, "Cancel_MorphBroodlord_quick", cmd_quick, 1373, 3659), Function.ability(150, "Cancel_MorphGreaterSpire_quick", cmd_quick, 1221, 3659), Function.ability(151, "Cancel_MorphHive_quick", cmd_quick, 1219, 3659), Function.ability(152, "Cancel_MorphLair_quick", cmd_quick, 1217, 3659), Function.ability(153, "Cancel_MorphLurker_quick", cmd_quick, 2333, 3659), Function.ability(154, "Cancel_MorphLurkerDen_quick", cmd_quick, 2113, 3659), Function.ability(155, "Cancel_MorphMothership_quick", cmd_quick, 1848, 3659), Function.ability(156, "Cancel_MorphOrbital_quick", cmd_quick, 1517, 3659), Function.ability(157, "Cancel_MorphOverlordTransport_quick", cmd_quick, 2709, 3659), Function.ability(158, "Cancel_MorphOverseer_quick", cmd_quick, 1449, 3659), Function.ability(159, "Cancel_MorphPlanetaryFortress_quick", cmd_quick, 1451, 3659), Function.ability(160, "Cancel_MorphRavager_quick", cmd_quick, 2331, 3659), Function.ability(161, "Cancel_MorphThorExplosiveMode_quick", cmd_quick, 2365, 3659), Function.ability(162, "Cancel_NeuralParasite_quick", cmd_quick, 250, 3659), Function.ability(163, "Cancel_Nuke_quick", cmd_quick, 1623, 3659), Function.ability(164, "Cancel_SpineCrawlerRoot_quick", cmd_quick, 1730, 3659), Function.ability(165, "Cancel_SporeCrawlerRoot_quick", cmd_quick, 1732, 3659), Function.ability(166, "Cancel_StarportAddOn_quick", cmd_quick, 517, 3659), Function.ability(167, "Cancel_StasisTrap_quick", cmd_quick, 2535, 3659), Function.ability(168, "Cancel_Last_quick", cmd_quick, 3671), Function.ability(169, "Cancel_HangarQueue5_quick", cmd_quick, 1038, 3671), Function.ability(170, "Cancel_Queue1_quick", cmd_quick, 304, 3671), Function.ability(171, "Cancel_Queue5_quick", cmd_quick, 306, 3671), Function.ability(172, "Cancel_QueueAddOn_quick", cmd_quick, 312, 3671), Function.ability(173, "Cancel_QueueCancelToSelection_quick", cmd_quick, 308, 3671), Function.ability(174, "Cancel_QueuePasive_quick", cmd_quick, 1831, 3671), Function.ability(175, "Cancel_QueuePassiveCancelToSelection_quick", cmd_quick, 1833, 3671), Function.ability(176, "Effect_Abduct_screen", cmd_screen, 2067), Function.ability(177, "Effect_AdeptPhaseShift_screen", cmd_screen, 2544), Function.ability(178, "Effect_AutoTurret_screen", cmd_screen, 1764), Function.ability(179, "Effect_BlindingCloud_screen", cmd_screen, 2063), Function.ability(180, "Effect_Blink_screen", cmd_screen, 3687), Function.ability(181, "Effect_Blink_Stalker_screen", cmd_screen, 1442, 3687), Function.ability(182, "Effect_ShadowStride_screen", cmd_screen, 2700, 3687), Function.ability(183, "Effect_CalldownMULE_screen", cmd_screen, 171), Function.ability(184, "Effect_CausticSpray_screen", cmd_screen, 2324), Function.ability(185, "Effect_Charge_screen", cmd_screen, 1819), Function.ability(186, "Effect_Charge_autocast", autocast, 1819), Function.ability(187, "Effect_ChronoBoost_screen", cmd_screen, 261), Function.ability(188, "Effect_Contaminate_screen", cmd_screen, 1825), Function.ability(189, "Effect_CorrosiveBile_screen", cmd_screen, 2338), Function.ability(190, "Effect_EMP_screen", cmd_screen, 1628), Function.ability(191, "Effect_Explode_quick", cmd_quick, 42), Function.ability(192, "Effect_Feedback_screen", cmd_screen, 140), Function.ability(193, "Effect_ForceField_screen", cmd_screen, 1526), Function.ability(194, "Effect_FungalGrowth_screen", cmd_screen, 74), Function.ability(195, "Effect_GhostSnipe_screen", cmd_screen, 2714), Function.ability(196, "Effect_GravitonBeam_screen", cmd_screen, 173), Function.ability(197, "Effect_GuardianShield_quick", cmd_quick, 76), Function.ability(198, "Effect_Heal_screen", cmd_screen, 386), Function.ability(199, "Effect_Heal_autocast", autocast, 386), Function.ability(200, "Effect_HunterSeekerMissile_screen", cmd_screen, 169), Function.ability(201, "Effect_ImmortalBarrier_quick", cmd_quick, 2328), Function.ability(202, "Effect_ImmortalBarrier_autocast", autocast, 2328), Function.ability(203, "Effect_InfestedTerrans_screen", cmd_screen, 247), Function.ability(204, "Effect_InjectLarva_screen", cmd_screen, 251), Function.ability(205, "Effect_KD8Charge_screen", cmd_screen, 2588), Function.ability(206, "Effect_LockOn_screen", cmd_screen, 2350), Function.ability(207, "Effect_LocustSwoop_screen", cmd_screen, 2387), Function.ability(208, "Effect_MassRecall_screen", cmd_screen, 3686), Function.ability(209, "Effect_MassRecall_Mothership_screen", cmd_screen, 2368, 3686), Function.ability(210, "Effect_MassRecall_MothershipCore_screen", cmd_screen, 1974, 3686), Function.ability(211, "Effect_MedivacIgniteAfterburners_quick", cmd_quick, 2116), Function.ability(212, "Effect_NeuralParasite_screen", cmd_screen, 249), Function.ability(213, "Effect_NukeCalldown_screen", cmd_screen, 1622), Function.ability(214, "Effect_OracleRevelation_screen", cmd_screen, 2146), Function.ability(215, "Effect_ParasiticBomb_screen", cmd_screen, 2542), Function.ability(216, "Effect_PhotonOvercharge_screen", cmd_screen, 2162), Function.ability(217, "Effect_PointDefenseDrone_screen", cmd_screen, 144), Function.ability(218, "Effect_PsiStorm_screen", cmd_screen, 1036), Function.ability(219, "Effect_PurificationNova_screen", cmd_screen, 2346), Function.ability(220, "Effect_Repair_screen", cmd_screen, 3685), Function.ability(221, "Effect_Repair_autocast", autocast, 3685), Function.ability(222, "Effect_Repair_Mule_screen", cmd_screen, 78, 3685), Function.ability(223, "Effect_Repair_Mule_autocast", autocast, 78, 3685), Function.ability(224, "Effect_Repair_SCV_screen", cmd_screen, 316, 3685), Function.ability(225, "Effect_Repair_SCV_autocast", autocast, 316, 3685), Function.ability(226, "Effect_Salvage_quick", cmd_quick, 32), Function.ability(227, "Effect_Scan_screen", cmd_screen, 399), Function.ability(228, "Effect_SpawnChangeling_quick", cmd_quick, 181), Function.ability(229, "Effect_SpawnLocusts_screen", cmd_screen, 2704), Function.ability(230, "Effect_Spray_screen", cmd_screen, 3684), Function.ability(231, "Effect_Spray_Protoss_screen", cmd_screen, 30, 3684), Function.ability(232, "Effect_Spray_Terran_screen", cmd_screen, 26, 3684), Function.ability(233, "Effect_Spray_Zerg_screen", cmd_screen, 28, 3684), Function.ability(234, "Effect_Stim_quick", cmd_quick, 3675), Function.ability(235, "Effect_Stim_Marauder_quick", cmd_quick, 253, 3675), Function.ability(236, "Effect_Stim_Marauder_Redirect_quick", cmd_quick, 1684, 3675), Function.ability(237, "Effect_Stim_Marine_quick", cmd_quick, 380, 3675), Function.ability(238, "Effect_Stim_Marine_Redirect_quick", cmd_quick, 1683, 3675), Function.ability(239, "Effect_SupplyDrop_screen", cmd_screen, 255), Function.ability(240, "Effect_TacticalJump_screen", cmd_screen, 2358), Function.ability(241, "Effect_TimeWarp_screen", cmd_screen, 2244), Function.ability(242, "Effect_Transfusion_screen", cmd_screen, 1664), Function.ability(243, "Effect_ViperConsume_screen", cmd_screen, 2073), Function.ability(244, "Effect_VoidRayPrismaticAlignment_quick", cmd_quick, 2393), Function.ability(245, "Effect_WidowMineAttack_screen", cmd_screen, 2099), Function.ability(246, "Effect_WidowMineAttack_autocast", autocast, 2099), Function.ability(247, "Effect_YamatoGun_screen", cmd_screen, 401), Function.ability(248, "Hallucination_Adept_quick", cmd_quick, 2391), Function.ability(249, "Hallucination_Archon_quick", cmd_quick, 146), Function.ability(250, "Hallucination_Colossus_quick", cmd_quick, 148), Function.ability(251, "Hallucination_Disruptor_quick", cmd_quick, 2389), Function.ability(252, "Hallucination_HighTemplar_quick", cmd_quick, 150), Function.ability(253, "Hallucination_Immortal_quick", cmd_quick, 152), Function.ability(254, "Hallucination_Oracle_quick", cmd_quick, 2114), Function.ability(255, "Hallucination_Phoenix_quick", cmd_quick, 154), Function.ability(256, "Hallucination_Probe_quick", cmd_quick, 156), Function.ability(257, "Hallucination_Stalker_quick", cmd_quick, 158), Function.ability(258, "Hallucination_VoidRay_quick", cmd_quick, 160), Function.ability(259, "Hallucination_WarpPrism_quick", cmd_quick, 162), Function.ability(260, "Hallucination_Zealot_quick", cmd_quick, 164), Function.ability(261, "Halt_quick", cmd_quick, 3660), Function.ability(262, "Halt_Building_quick", cmd_quick, 315, 3660), Function.ability(263, "Halt_TerranBuild_quick", cmd_quick, 348, 3660), Function.ability(264, "Harvest_Gather_screen", cmd_screen, 3666), Function.ability(265, "Harvest_Gather_Drone_screen", cmd_screen, 1183, 3666), Function.ability(266, "Harvest_Gather_Mule_screen", cmd_screen, 166, 3666), Function.ability(267, "Harvest_Gather_Probe_screen", cmd_screen, 298, 3666), Function.ability(268, "Harvest_Gather_SCV_screen", cmd_screen, 295, 3666), Function.ability(269, "Harvest_Return_quick", cmd_quick, 3667), Function.ability(270, "Harvest_Return_Drone_quick", cmd_quick, 1184, 3667), Function.ability(271, "Harvest_Return_Mule_quick", cmd_quick, 167, 3667), Function.ability(272, "Harvest_Return_Probe_quick", cmd_quick, 299, 3667), Function.ability(273, "Harvest_Return_SCV_quick", cmd_quick, 296, 3667), Function.ability(274, "HoldPosition_quick", cmd_quick, 18), Function.ability(275, "Land_screen", cmd_screen, 3678), Function.ability(276, "Land_Barracks_screen", cmd_screen, 554, 3678), Function.ability(277, "Land_CommandCenter_screen", cmd_screen, 419, 3678), Function.ability(278, "Land_Factory_screen", cmd_screen, 520, 3678), Function.ability(279, "Land_OrbitalCommand_screen", cmd_screen, 1524, 3678), Function.ability(280, "Land_Starport_screen", cmd_screen, 522, 3678), Function.ability(281, "Lift_quick", cmd_quick, 3679), Function.ability(282, "Lift_Barracks_quick", cmd_quick, 452, 3679), Function.ability(283, "Lift_CommandCenter_quick", cmd_quick, 417, 3679), Function.ability(284, "Lift_Factory_quick", cmd_quick, 485, 3679), Function.ability(285, "Lift_OrbitalCommand_quick", cmd_quick, 1522, 3679), Function.ability(286, "Lift_Starport_quick", cmd_quick, 518, 3679), Function.ability(287, "Load_screen", cmd_screen, 3668), Function.ability(288, "Load_Bunker_screen", cmd_screen, 407, 3668), Function.ability(289, "Load_Medivac_screen", cmd_screen, 394, 3668), Function.ability(290, "Load_NydusNetwork_screen", cmd_screen, 1437, 3668), Function.ability(291, "Load_NydusWorm_screen", cmd_screen, 2370, 3668), Function.ability(292, "Load_Overlord_screen", cmd_screen, 1406, 3668), Function.ability(293, "Load_WarpPrism_screen", cmd_screen, 911, 3668), Function.ability(294, "LoadAll_quick", cmd_quick, 3663), Function.ability(295, "LoadAll_CommandCenter_quick", cmd_quick, 416, 3663), Function.ability(296, "Morph_Archon_quick", cmd_quick, 1766), Function.ability(297, "Morph_BroodLord_quick", cmd_quick, 1372), Function.ability(298, "Morph_Gateway_quick", cmd_quick, 1520), Function.ability(299, "Morph_GreaterSpire_quick", cmd_quick, 1220), Function.ability(300, "Morph_Hellbat_quick", cmd_quick, 1998), Function.ability(301, "Morph_Hellion_quick", cmd_quick, 1978), Function.ability(302, "Morph_Hive_quick", cmd_quick, 1218), Function.ability(303, "Morph_Lair_quick", cmd_quick, 1216), Function.ability(304, "Morph_LiberatorAAMode_quick", cmd_quick, 2560), Function.ability(305, "Morph_LiberatorAGMode_screen", cmd_screen, 2558), Function.ability(306, "Morph_Lurker_quick", cmd_quick, 2332), Function.ability(307, "Morph_LurkerDen_quick", cmd_quick, 2112), Function.ability(308, "Morph_Mothership_quick", cmd_quick, 1847), Function.ability(309, "Morph_OrbitalCommand_quick", cmd_quick, 1516), Function.ability(310, "Morph_OverlordTransport_quick", cmd_quick, 2708), Function.ability(311, "Morph_Overseer_quick", cmd_quick, 1448), Function.ability(312, "Morph_PlanetaryFortress_quick", cmd_quick, 1450), Function.ability(313, "Morph_Ravager_quick", cmd_quick, 2330), Function.ability(314, "Morph_Root_screen", cmd_screen, 3680), Function.ability(315, "Morph_SpineCrawlerRoot_screen", cmd_screen, 1729, 3680), Function.ability(316, "Morph_SporeCrawlerRoot_screen", cmd_screen, 1731, 3680), Function.ability(317, "Morph_SiegeMode_quick", cmd_quick, 388), Function.ability(318, "Morph_SupplyDepot_Lower_quick", cmd_quick, 556), Function.ability(319, "Morph_SupplyDepot_Raise_quick", cmd_quick, 558), Function.ability(320, "Morph_ThorExplosiveMode_quick", cmd_quick, 2364), Function.ability(321, "Morph_ThorHighImpactMode_quick", cmd_quick, 2362), Function.ability(322, "Morph_Unsiege_quick", cmd_quick, 390), Function.ability(323, "Morph_Uproot_quick", cmd_quick, 3681), Function.ability(324, "Morph_SpineCrawlerUproot_quick", cmd_quick, 1725, 3681), Function.ability(325, "Morph_SporeCrawlerUproot_quick", cmd_quick, 1727, 3681), Function.ability(326, "Morph_VikingAssaultMode_quick", cmd_quick, 403), Function.ability(327, "Morph_VikingFighterMode_quick", cmd_quick, 405), Function.ability(328, "Morph_WarpGate_quick", cmd_quick, 1518), Function.ability(329, "Morph_WarpPrismPhasingMode_quick", cmd_quick, 1528), Function.ability(330, "Morph_WarpPrismTransportMode_quick", cmd_quick, 1530), Function.ability(331, "Move_screen", cmd_screen, 16), Function.ability(332, "Move_minimap", cmd_minimap, 16), Function.ability(333, "Patrol_screen", cmd_screen, 17), Function.ability(334, "Patrol_minimap", cmd_minimap, 17), Function.ability(335, "Rally_Units_screen", cmd_screen, 3673), Function.ability(336, "Rally_Units_minimap", cmd_minimap, 3673), Function.ability(337, "Rally_Building_screen", cmd_screen, 195, 3673), Function.ability(338, "Rally_Building_minimap", cmd_minimap, 195, 3673), Function.ability(339, "Rally_Hatchery_Units_screen", cmd_screen, 212, 3673), Function.ability(340, "Rally_Hatchery_Units_minimap", cmd_minimap, 212, 3673), Function.ability(341, "Rally_Morphing_Unit_screen", cmd_screen, 199, 3673), Function.ability(342, "Rally_Morphing_Unit_minimap", cmd_minimap, 199, 3673), Function.ability(343, "Rally_Workers_screen", cmd_screen, 3690), Function.ability(344, "Rally_Workers_minimap", cmd_minimap, 3690), Function.ability(345, "Rally_CommandCenter_screen", cmd_screen, 203, 3690), Function.ability(346, "Rally_CommandCenter_minimap", cmd_minimap, 203, 3690), Function.ability(347, "Rally_Hatchery_Workers_screen", cmd_screen, 211, 3690), Function.ability(348, "Rally_Hatchery_Workers_minimap", cmd_minimap, 211, 3690), Function.ability(349, "Rally_Nexus_screen", cmd_screen, 207, 3690), Function.ability(350, "Rally_Nexus_minimap", cmd_minimap, 207, 3690), Function.ability(351, "Research_AdeptResonatingGlaives_quick", cmd_quick, 1594), Function.ability(352, "Research_AdvancedBallistics_quick", cmd_quick, 805), Function.ability(353, "Research_BansheeCloakingField_quick", cmd_quick, 790), Function.ability(354, "Research_BansheeHyperflightRotors_quick", cmd_quick, 799), Function.ability(355, "Research_BattlecruiserWeaponRefit_quick", cmd_quick, 1532), Function.ability(356, "Research_Blink_quick", cmd_quick, 1593), Function.ability(357, "Research_Burrow_quick", cmd_quick, 1225), Function.ability(358, "Research_CentrifugalHooks_quick", cmd_quick, 1482), Function.ability(359, "Research_Charge_quick", cmd_quick, 1592), Function.ability(360, "Research_ChitinousPlating_quick", cmd_quick, 265), Function.ability(361, "Research_CombatShield_quick", cmd_quick, 731), Function.ability(362, "Research_ConcussiveShells_quick", cmd_quick, 732), Function.ability(363, "Research_DrillingClaws_quick", cmd_quick, 764), Function.ability(364, "Research_ExtendedThermalLance_quick", cmd_quick, 1097), Function.ability(365, "Research_GlialRegeneration_quick", cmd_quick, 216), Function.ability(366, "Research_GraviticBooster_quick", cmd_quick, 1093), Function.ability(367, "Research_GraviticDrive_quick", cmd_quick, 1094), Function.ability(368, "Research_GroovedSpines_quick", cmd_quick, 1282), Function.ability(369, "Research_HiSecAutoTracking_quick", cmd_quick, 650), Function.ability(370, "Research_HighCapacityFuelTanks_quick", cmd_quick, 804), Function.ability(371, "Research_InfernalPreigniter_quick", cmd_quick, 761), Function.ability(372, "Research_InterceptorGravitonCatapult_quick", cmd_quick, 44), Function.ability(373, "Research_MagFieldLaunchers_quick", cmd_quick, 766), Function.ability(374, "Research_MuscularAugments_quick", cmd_quick, 1283), Function.ability(375, "Research_NeosteelFrame_quick", cmd_quick, 655), Function.ability(376, "Research_NeuralParasite_quick", cmd_quick, 1455), Function.ability(377, "Research_PathogenGlands_quick", cmd_quick, 1454), Function.ability(378, "Research_PersonalCloaking_quick", cmd_quick, 820), Function.ability(379, "Research_PhoenixAnionPulseCrystals_quick", cmd_quick, 46), Function.ability(380, "Research_PneumatizedCarapace_quick", cmd_quick, 1223), Function.ability(381, "Research_ProtossAirArmor_quick", cmd_quick, 3692), Function.ability(382, "Research_ProtossAirArmorLevel1_quick", cmd_quick, 1565, 3692), Function.ability(383, "Research_ProtossAirArmorLevel2_quick", cmd_quick, 1566, 3692), Function.ability(384, "Research_ProtossAirArmorLevel3_quick", cmd_quick, 1567, 3692), Function.ability(385, "Research_ProtossAirWeapons_quick", cmd_quick, 3693), Function.ability(386, "Research_ProtossAirWeaponsLevel1_quick", cmd_quick, 1562, 3693), Function.ability(387, "Research_ProtossAirWeaponsLevel2_quick", cmd_quick, 1563, 3693), Function.ability(388, "Research_ProtossAirWeaponsLevel3_quick", cmd_quick, 1564, 3693), Function.ability(389, "Research_ProtossGroundArmor_quick", cmd_quick, 3694), Function.ability(390, "Research_ProtossGroundArmorLevel1_quick", cmd_quick, 1065, 3694), Function.ability(391, "Research_ProtossGroundArmorLevel2_quick", cmd_quick, 1066, 3694), Function.ability(392, "Research_ProtossGroundArmorLevel3_quick", cmd_quick, 1067, 3694), Function.ability(393, "Research_ProtossGroundWeapons_quick", cmd_quick, 3695), Function.ability(394, "Research_ProtossGroundWeaponsLevel1_quick", cmd_quick, 1062, 3695), Function.ability(395, "Research_ProtossGroundWeaponsLevel2_quick", cmd_quick, 1063, 3695), Function.ability(396, "Research_ProtossGroundWeaponsLevel3_quick", cmd_quick, 1064, 3695), Function.ability(397, "Research_ProtossShields_quick", cmd_quick, 3696), Function.ability(398, "Research_ProtossShieldsLevel1_quick", cmd_quick, 1068, 3696), Function.ability(399, "Research_ProtossShieldsLevel2_quick", cmd_quick, 1069, 3696), Function.ability(400, "Research_ProtossShieldsLevel3_quick", cmd_quick, 1070, 3696), Function.ability(401, "Research_PsiStorm_quick", cmd_quick, 1126), Function.ability(402, "Research_RavenCorvidReactor_quick", cmd_quick, 793), Function.ability(403, "Research_RavenRecalibratedExplosives_quick", cmd_quick, 803), Function.ability(404, "Research_ShadowStrike_quick", cmd_quick, 2720), Function.ability(405, "Research_Stimpack_quick", cmd_quick, 730), Function.ability(406, "Research_TerranInfantryArmor_quick", cmd_quick, 3697), Function.ability(407, "Research_TerranInfantryArmorLevel1_quick", cmd_quick, 656, 3697), Function.ability(408, "Research_TerranInfantryArmorLevel2_quick", cmd_quick, 657, 3697), Function.ability(409, "Research_TerranInfantryArmorLevel3_quick", cmd_quick, 658, 3697), Function.ability(410, "Research_TerranInfantryWeapons_quick", cmd_quick, 3698), Function.ability(411, "Research_TerranInfantryWeaponsLevel1_quick", cmd_quick, 652, 3698), Function.ability(412, "Research_TerranInfantryWeaponsLevel2_quick", cmd_quick, 653, 3698), Function.ability(413, "Research_TerranInfantryWeaponsLevel3_quick", cmd_quick, 654, 3698), Function.ability(414, "Research_TerranShipWeapons_quick", cmd_quick, 3699), Function.ability(415, "Research_TerranShipWeaponsLevel1_quick", cmd_quick, 861, 3699), Function.ability(416, "Research_TerranShipWeaponsLevel2_quick", cmd_quick, 862, 3699), Function.ability(417, "Research_TerranShipWeaponsLevel3_quick", cmd_quick, 863, 3699), Function.ability(418, "Research_TerranStructureArmorUpgrade_quick", cmd_quick, 651), Function.ability(419, "Research_TerranVehicleAndShipPlating_quick", cmd_quick, 3700), Function.ability(420, "Research_TerranVehicleAndShipPlatingLevel1_quick", cmd_quick, 864, 3700), Function.ability(421, "Research_TerranVehicleAndShipPlatingLevel2_quick", cmd_quick, 865, 3700), Function.ability(422, "Research_TerranVehicleAndShipPlatingLevel3_quick", cmd_quick, 866, 3700), Function.ability(423, "Research_TerranVehicleWeapons_quick", cmd_quick, 3701), Function.ability(424, "Research_TerranVehicleWeaponsLevel1_quick", cmd_quick, 855, 3701), Function.ability(425, "Research_TerranVehicleWeaponsLevel2_quick", cmd_quick, 856, 3701), Function.ability(426, "Research_TerranVehicleWeaponsLevel3_quick", cmd_quick, 857, 3701), Function.ability(427, "Research_TunnelingClaws_quick", cmd_quick, 217), Function.ability(428, "Research_WarpGate_quick", cmd_quick, 1568), Function.ability(429, "Research_ZergFlyerArmor_quick", cmd_quick, 3702), Function.ability(430, "Research_ZergFlyerArmorLevel1_quick", cmd_quick, 1315, 3702), Function.ability(431, "Research_ZergFlyerArmorLevel2_quick", cmd_quick, 1316, 3702), Function.ability(432, "Research_ZergFlyerArmorLevel3_quick", cmd_quick, 1317, 3702), Function.ability(433, "Research_ZergFlyerAttack_quick", cmd_quick, 3703), Function.ability(434, "Research_ZergFlyerAttackLevel1_quick", cmd_quick, 1312, 3703), Function.ability(435, "Research_ZergFlyerAttackLevel2_quick", cmd_quick, 1313, 3703), Function.ability(436, "Research_ZergFlyerAttackLevel3_quick", cmd_quick, 1314, 3703), Function.ability(437, "Research_ZergGroundArmor_quick", cmd_quick, 3704), Function.ability(438, "Research_ZergGroundArmorLevel1_quick", cmd_quick, 1189, 3704), Function.ability(439, "Research_ZergGroundArmorLevel2_quick", cmd_quick, 1190, 3704), Function.ability(440, "Research_ZergGroundArmorLevel3_quick", cmd_quick, 1191, 3704), Function.ability(441, "Research_ZergMeleeWeapons_quick", cmd_quick, 3705), Function.ability(442, "Research_ZergMeleeWeaponsLevel1_quick", cmd_quick, 1186, 3705), Function.ability(443, "Research_ZergMeleeWeaponsLevel2_quick", cmd_quick, 1187, 3705), Function.ability(444, "Research_ZergMeleeWeaponsLevel3_quick", cmd_quick, 1188, 3705), Function.ability(445, "Research_ZergMissileWeapons_quick", cmd_quick, 3706), Function.ability(446, "Research_ZergMissileWeaponsLevel1_quick", cmd_quick, 1192, 3706), Function.ability(447, "Research_ZergMissileWeaponsLevel2_quick", cmd_quick, 1193, 3706), Function.ability(448, "Research_ZergMissileWeaponsLevel3_quick", cmd_quick, 1194, 3706), Function.ability(449, "Research_ZerglingAdrenalGlands_quick", cmd_quick, 1252), Function.ability(450, "Research_ZerglingMetabolicBoost_quick", cmd_quick, 1253), Function.ability(451, "Smart_screen", cmd_screen, 1), Function.ability(452, "Smart_minimap", cmd_minimap, 1), Function.ability(453, "Stop_quick", cmd_quick, 3665), Function.ability(454, "Stop_Building_quick", cmd_quick, 2057, 3665), Function.ability(455, "Stop_Redirect_quick", cmd_quick, 1691, 3665), Function.ability(456, "Stop_Stop_quick", cmd_quick, 4, 3665), Function.ability(457, "Train_Adept_quick", cmd_quick, 922), Function.ability(458, "Train_Baneling_quick", cmd_quick, 80), Function.ability(459, "Train_Banshee_quick", cmd_quick, 621), Function.ability(460, "Train_Battlecruiser_quick", cmd_quick, 623), Function.ability(461, "Train_Carrier_quick", cmd_quick, 948), Function.ability(462, "Train_Colossus_quick", cmd_quick, 978), Function.ability(463, "Train_Corruptor_quick", cmd_quick, 1353), Function.ability(464, "Train_Cyclone_quick", cmd_quick, 597), Function.ability(465, "Train_DarkTemplar_quick", cmd_quick, 920), Function.ability(466, "Train_Disruptor_quick", cmd_quick, 994), Function.ability(467, "Train_Drone_quick", cmd_quick, 1342), Function.ability(468, "Train_Ghost_quick", cmd_quick, 562), Function.ability(469, "Train_Hellbat_quick", cmd_quick, 596), Function.ability(470, "Train_Hellion_quick", cmd_quick, 595), Function.ability(471, "Train_HighTemplar_quick", cmd_quick, 919), Function.ability(472, "Train_Hydralisk_quick", cmd_quick, 1345), Function.ability(473, "Train_Immortal_quick", cmd_quick, 979), Function.ability(474, "Train_Infestor_quick", cmd_quick, 1352), Function.ability(475, "Train_Liberator_quick", cmd_quick, 626), Function.ability(476, "Train_Marauder_quick", cmd_quick, 563), Function.ability(477, "Train_Marine_quick", cmd_quick, 560), Function.ability(478, "Train_Medivac_quick", cmd_quick, 620), Function.ability(479, "Train_MothershipCore_quick", cmd_quick, 1853), Function.ability(480, "Train_Mutalisk_quick", cmd_quick, 1346), Function.ability(481, "Train_Observer_quick", cmd_quick, 977), Function.ability(482, "Train_Oracle_quick", cmd_quick, 954), Function.ability(483, "Train_Overlord_quick", cmd_quick, 1344), Function.ability(484, "Train_Phoenix_quick", cmd_quick, 946), Function.ability(485, "Train_Probe_quick", cmd_quick, 1006), Function.ability(486, "Train_Queen_quick", cmd_quick, 1632), Function.ability(487, "Train_Raven_quick", cmd_quick, 622), Function.ability(488, "Train_Reaper_quick", cmd_quick, 561), Function.ability(489, "Train_Roach_quick", cmd_quick, 1351), Function.ability(490, "Train_SCV_quick", cmd_quick, 524), Function.ability(491, "Train_Sentry_quick", cmd_quick, 921), Function.ability(492, "Train_SiegeTank_quick", cmd_quick, 591), Function.ability(493, "Train_Stalker_quick", cmd_quick, 917), Function.ability(494, "Train_SwarmHost_quick", cmd_quick, 1356), Function.ability(495, "Train_Tempest_quick", cmd_quick, 955), Function.ability(496, "Train_Thor_quick", cmd_quick, 594), Function.ability(497, "Train_Ultralisk_quick", cmd_quick, 1348), Function.ability(498, "Train_VikingFighter_quick", cmd_quick, 624), Function.ability(499, "Train_Viper_quick", cmd_quick, 1354), Function.ability(500, "Train_VoidRay_quick", cmd_quick, 950), Function.ability(501, "Train_WarpPrism_quick", cmd_quick, 976), Function.ability(502, "Train_WidowMine_quick", cmd_quick, 614), Function.ability(503, "Train_Zealot_quick", cmd_quick, 916), Function.ability(504, "Train_Zergling_quick", cmd_quick, 1343), Function.ability(505, "TrainWarp_Adept_screen", cmd_screen, 1419), Function.ability(506, "TrainWarp_DarkTemplar_screen", cmd_screen, 1417), Function.ability(507, "TrainWarp_HighTemplar_screen", cmd_screen, 1416), Function.ability(508, "TrainWarp_Sentry_screen", cmd_screen, 1418), Function.ability(509, "TrainWarp_Stalker_screen", cmd_screen, 1414), Function.ability(510, "TrainWarp_Zealot_screen", cmd_screen, 1413), Function.ability(511, "UnloadAll_quick", cmd_quick, 3664), Function.ability(512, "UnloadAll_Bunker_quick", cmd_quick, 408, 3664), Function.ability(513, "UnloadAll_CommandCenter_quick", cmd_quick, 413, 3664), Function.ability(514, "UnloadAll_NydasNetwork_quick", cmd_quick, 1438, 3664), Function.ability(515, "UnloadAll_NydusWorm_quick", cmd_quick, 2371, 3664), Function.ability(516, "UnloadAllAt_screen", cmd_screen, 3669), Function.ability(517, "UnloadAllAt_minimap", cmd_minimap, 3669), Function.ability(518, "UnloadAllAt_Medivac_screen", cmd_screen, 396, 3669), Function.ability(519, "UnloadAllAt_Medivac_minimap", cmd_minimap, 396, 3669), Function.ability(520, "UnloadAllAt_Overlord_screen", cmd_screen, 1408, 3669), Function.ability(521, "UnloadAllAt_Overlord_minimap", cmd_minimap, 1408, 3669), Function.ability(522, "UnloadAllAt_WarpPrism_screen", cmd_screen, 913, 3669), Function.ability(523, "UnloadAllAt_WarpPrism_minimap", cmd_minimap, 913, 3669), ]) # pylint: enable=line-too-long # Some indexes to support features.py and action conversion. ABILITY_IDS = collections.defaultdict(set) # {ability_id: {funcs}} for func in FUNCTIONS: if func.ability_id >= 0: ABILITY_IDS[func.ability_id].add(func) ABILITY_IDS = {k: frozenset(v) for k, v in six.iteritems(ABILITY_IDS)} FUNCTIONS_AVAILABLE = {f.id: f for f in FUNCTIONS if f.avail_fn} class FunctionCall(collections.namedtuple( "FunctionCall", ["function", "arguments"])): """Represents a function call action. Attributes: function: Store the function id, eg 2 for select_point. arguments: The list of arguments for that function, each being a list of ints. For select_point this could be: [[0], [23, 38]]. """ __slots__ = () @classmethod def all_arguments(cls, function, arguments): """Helper function for creating `FunctionCall`s with `Arguments`. Args: function: The value to store for the action function. arguments: The values to store for the arguments of the action. Can either be an `Arguments` object, a `dict`, or an iterable. If a `dict` or an iterable is provided, the values will be unpacked into an `Arguments` object. Returns: A new `FunctionCall` instance. """ if isinstance(arguments, dict): arguments = Arguments(**arguments) elif not isinstance(arguments, Arguments): arguments = Arguments(*arguments) return cls(function, arguments) class ValidActions(collections.namedtuple( "ValidActions", ["types", "functions"])): """The set of types and functions that are valid for an agent to use. Attributes: types: A namedtuple of the types that the functions require. Unlike TYPES above, this includes the sizes for screen and minimap. functions: A namedtuple of all the functions. """ __slots__ = ()
StarcoderdataPython
1604125
import sys import subprocess res = subprocess.check_output(["sf", "-json",sys.argv[1][2:]]) for line in res.splitlines(): subprocess.call(["aws","sns","publish","--topic-arn","arn:aws:sns:eu-west-2:247222723249:fileformat-check-result-dev","--message",line])
StarcoderdataPython
1672079
from ....Classes.Arc1 import Arc1 from ....Classes.SurfLine import SurfLine def get_surface_active(self, alpha=0, delta=0): """Return the full winding surface Parameters ---------- self : SlotW22 A SlotW22 object alpha : float float number for rotation (Default value = 0) [rad] delta : complex complex number for translation (Default value = 0) Returns ------- surf_wind: Surface Surface corresponding to the Winding Area """ # get the name of the lamination st = self.get_name_lam() # Create curve list curve_list = self.build_geometry()[1:-1] curve_list.append( Arc1( begin=curve_list[-1].get_end(), end=curve_list[0].get_begin(), radius=-abs(curve_list[-1].get_end()), is_trigo_direction=False, ) ) # Create surface if self.is_outwards(): Zmid = self.get_Rbo() + self.H0 + self.H2 / 2 else: Zmid = self.get_Rbo() - self.H0 - self.H2 / 2 surface = SurfLine( line_list=curve_list, label="Wind_" + st + "_R0_T0_S0", point_ref=Zmid ) # Apply transformation surface.rotate(alpha) surface.translate(delta) return surface
StarcoderdataPython
36300
<gh_stars>0 #!/usr/bin/env python # import required modules: # import os import sys import string import random from random import shuffle from pathlib2 import Path import linecache import time # This class shuffles songs without repeating and keeps track of where # it left off. See '-help' option for more details. # class shuffler: # define constructor, take arguments as parameters # def __init__(self): self.argv_a = [] # end of constructor # Method to print arguments from command line provided # def printArgs(self): print "Arguments provided are: ", self.argv_a return # Set command line arguments provided, do not include script name # def setter(self, commandArgs): # Set data # self.argv_a = commandArgs[1:] return # Check for a '-help' option and print help information # def check_options(self): for args in self.argv_a: if args == '-help': print "\nsynopsis: This class shuffles the files in the provided command line argument path, then plays each song unrepeated until all songs have been played. Then it will reshuffle the songs and continue the same process.\n" print "desc: see above.\n" print "example: provide a path /songs/. Will capture the length of files in that directory and begin the shuffle.\n" print "options: supports a '-help' option as shown here.\n" print "arguments: path to files to be shuffled and '-help'.\n" print "man page: none.\n" # Exit program if help argument provided # sys.exit() return # Method to play the shuffler # def play(self): # Get file list from data path in command line argument # for root, dir, files in os.walk(self.argv_a[0]): # store the files from the path as a list in 'mysongs' # mysongs = files # Start an infinite loop # while True: # Check if counter file exists, if not, generate one to hold the counter # in a scratch file. Also check if the counter has surpassed the number # of songs # my_file = Path("./counter.txt") if not my_file.is_file() or open("./counter.txt").readline() >= str(len(mysongs)): # Set counter to 1 for first line in a file # songcounter = 1 # Write (or overwrite) song counter to file. Open, write, close the file. # counterOut = open("./counter.txt", "w") counterOut.write(str(songcounter)) counterOut.close() # Shuffle songs and write (or overwrite them) to a file line by line for each song # # Shuffle the list of songs fromt the arguments # shuffledList = mysongs random.shuffle(shuffledList) shuffleOut = open("./shuffle.txt", "w") # Write shuffled list into file # for i in shuffledList: shuffleOut.write("%s\n" % i) # Loop over songs in list # for j in range(0, len(mysongs)): # Get counter for index from file, cast to int, then print counter # tempCounter = int(open("./counter.txt").readline()) print tempCounter # Get random song from the shuffle.txt file according to # the counter above # currentSong = linecache.getline("./shuffle.txt", tempCounter) # Print the song # print currentSong # Increment counter, overwrite scratch file, and close # songcounter = tempCounter songcounter += 1 counterOut = open("./counter.txt", "w") counterOut.write(str(songcounter)) counterOut.close() # Sleep for 1 second as to print 1 song per second # time.sleep(1) # Exit gracefully return # main: this is the main function of this Python script # def main(argv): # Create instance of the shuffler class # myshuffle = shuffler() # Set the command line arguments as the input for the class # myshuffle.setter(argv) # Check if the help option is invoked # myshuffle.check_options() # Print the arguments provided to the class from the setter method # myshuffle.printArgs() # Play the shuffler # myshuffle.play() # End gracefully # return # begin gracefully # if __name__ == "__main__": main(sys.argv[0:]) # # end of file
StarcoderdataPython
1618710
<reponame>kaiergin/Quadcopter_simulator import numpy as np import math import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as Axes3D import sys class GUI(): # 'quad_list' is a dictionary of format: quad_list = {'quad_1_name':{'position':quad_1_position,'orientation':quad_1_orientation,'arm_span':quad_1_arm_span}, ...} def __init__(self, quads): self.quads = quads self.fig = plt.figure() self.ax = Axes3D.Axes3D(self.fig) self.ax.set_xlim3d([-2.0, 2.0]) self.ax.set_xlabel('X') self.ax.set_ylim3d([-2.0, 2.0]) self.ax.set_ylabel('Y') self.ax.set_zlim3d([0, 5.0]) self.ax.set_zlabel('Z') self.ax.set_title('Quadcopter Simulation') self.init_plot() self.fig.canvas.mpl_connect('key_press_event', self.keypress_routine) def rotation_matrix(self,angles): ct = math.cos(angles[0]) cp = math.cos(angles[1]) cg = math.cos(angles[2]) st = math.sin(angles[0]) sp = math.sin(angles[1]) sg = math.sin(angles[2]) R_x = np.array([[1,0,0],[0,ct,-st],[0,st,ct]]) R_y = np.array([[cp,0,sp],[0,1,0],[-sp,0,cp]]) R_z = np.array([[cg,-sg,0],[sg,cg,0],[0,0,1]]) R = np.dot(R_z, np.dot( R_y, R_x )) return R def init_plot(self): for key in self.quads: self.quads[key]['l1'], = self.ax.plot([],[],[],color='blue',linewidth=3,antialiased=False) self.quads[key]['l2'], = self.ax.plot([],[],[],color='red',linewidth=3,antialiased=False) self.quads[key]['hub'], = self.ax.plot([],[],[],marker='o',color='green', markersize=6,antialiased=False) def update(self): for key in self.quads: R = self.rotation_matrix(self.quads[key]['orientation']) L = self.quads[key]['L'] points = np.array([ [-L,0,0], [L,0,0], [0,-L,0], [0,L,0], [0,0,0], [0,0,0] ]).T points = np.dot(R,points) points[0,:] += self.quads[key]['position'][0] points[1,:] += self.quads[key]['position'][1] points[2,:] += self.quads[key]['position'][2] self.quads[key]['l1'].set_data(points[0,0:2],points[1,0:2]) self.quads[key]['l1'].set_3d_properties(points[2,0:2]) self.quads[key]['l2'].set_data(points[0,2:4],points[1,2:4]) self.quads[key]['l2'].set_3d_properties(points[2,2:4]) self.quads[key]['hub'].set_data(points[0,5],points[1,5]) self.quads[key]['hub'].set_3d_properties(points[2,5]) plt.pause(0.000000000000001) def keypress_routine(self,event): sys.stdout.flush() if event.key == 'x': y = list(self.ax.get_ylim3d()) y[0] += 0.2 y[1] += 0.2 self.ax.set_ylim3d(y) elif event.key == 'w': y = list(self.ax.get_ylim3d()) y[0] -= 0.2 y[1] -= 0.2 self.ax.set_ylim3d(y) elif event.key == 'd': x = list(self.ax.get_xlim3d()) x[0] += 0.2 x[1] += 0.2 self.ax.set_xlim3d(x) elif event.key == 'a': x = list(self.ax.get_xlim3d()) x[0] -= 0.2 x[1] -= 0.2 self.ax.set_xlim3d(x)
StarcoderdataPython
144423
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import List import numpy as np import torch from pytext.models.representations.transformer import ( TransformerLayer, MultiheadSelfAttention, ) from pytext.models.roberta import RoBERTaEncoder from torch import nn, Tensor torch.ops.load_library("//pytorch/FasterTransformers3.1:faster_transformers") @torch.jit.script def sequence_mask(neg_padding_mask: Tensor) -> Tensor: neg_padding_mask = neg_padding_mask.half() mask = neg_padding_mask.view( neg_padding_mask.size(0), 1, 1, neg_padding_mask.size(1) ) m2 = mask.transpose(2, 3) return mask * m2 def to_fast_transformer_weights(layer): attn_qw, attn_kw, attn_vw = layer.attention.input_projection.weight.chunk(3, dim=0) attn_qb, attn_kb, attn_vb = layer.attention.input_projection.bias.chunk(3, dim=0) attn_ow = layer.attention.output_projection.weight attn_ob = layer.attention.output_projection.bias attn_nw = layer.attention_layer_norm.weight attn_nb = layer.attention_layer_norm.bias inter_w = layer.residual_mlp.mlp.__getattr__("0").weight inter_b = layer.residual_mlp.mlp.__getattr__("0").bias output_w = layer.residual_mlp.mlp.__getattr__("3").weight output_b = layer.residual_mlp.mlp.__getattr__("3").bias norm_w = layer.final_layer_norm.weight norm_b = layer.final_layer_norm.bias fast_transformer_weights = [ attn_qw.transpose(-1, -2).contiguous(), attn_qb, attn_kw.transpose(-1, -2).contiguous(), attn_kb, attn_vw.transpose(-1, -2).contiguous(), attn_vb, attn_ow.transpose(-1, -2).contiguous(), attn_ob, attn_nw, attn_nb, inter_w.transpose(-1, -2).contiguous(), inter_b, output_w.transpose(-1, -2).contiguous(), output_b, norm_w, norm_b, torch.tensor(0), ] return [t.half().cuda() for t in fast_transformer_weights] # Hide custom class behind torch.jit.script as jit.trace doesn't support custom classes. class NVTransformerStack(nn.Module): def __init__(self, layers): super().__init__() self.layers = layers self.layer_num = len(layers) def forward(self, encoded: Tensor, neg_padding_mask: Tensor) -> List[Tensor]: # seq_lengths: [B,] sequence_lengths = neg_padding_mask.sum(dim=1, dtype=torch.int32) # Note - this does a HtoD copy/stream synchronization # Necessary because our implementation does not handle the zero-token case. if sequence_lengths.sum().item() == 0: return [encoded.transpose(0, 1)] + [ torch.zeros_like(encoded.transpose(0, 1)) for _ in range(self.layer_num) ] # Note - this also does a HtoD copy/stream synchronization. ( hidden_states, sequence_id_offset, ) = torch.ops.fastertransformer.build_mask_remove_padding( encoded, sequence_lengths ) # attention_mask: [B, 1, T, T] attention_mask = sequence_mask(neg_padding_mask).half() # trt_seq_len: [B + 1,] trt_seq_len = torch.cumsum( torch.cat( [ torch.zeros( 1, device=sequence_lengths.device, dtype=sequence_lengths.dtype ), sequence_lengths, ], dim=0, ), dim=0, dtype=torch.int32, ) all_hidden_states = [hidden_states] for i in range(self.layer_num): hidden_states = self.layers[i].forward( hidden_states, attention_mask, trt_seq_len, sequence_id_offset ) all_hidden_states.append(hidden_states) # Remap back to padded [B, T, D] representation, and transpose to [T, B, D]. states = [] for hidden_states in all_hidden_states: # Ideally jit.tracer will eliminate unncessary ones as the corresponding # output tensor would be unused. It doesn't seem to currently, though. state = torch.ops.fastertransformer.rebuild_padding( hidden_states, sequence_id_offset, attention_mask, 0 ) # Convert to [T, B, D] representation. states.append(state.transpose(1, 0)) return states class NVFasterTransformerEncoder(nn.Module): def __init__(self, old_transformer): super().__init__() remove_padding = True use_trt_kernel = True allow_gemm_test = False int8_mode = 0 self.layer_num = len(old_transformer.layers) self.int8_mode = int8_mode self.token_embedding = old_transformer.token_embedding self.positional_embedding = old_transformer.positional_embedding self.embedding_layer_norm = old_transformer.embedding_layer_norm self.dropout = old_transformer.dropout self.padding_idx = old_transformer.padding_idx num_headss, scalings, embed_dims = set(), set(), set() for layer in old_transformer.layers: assert isinstance(layer, TransformerLayer) att = layer.attention assert isinstance(att, MultiheadSelfAttention) num_headss.add(att.num_heads) scalings.add(att.scaling) embed_dims.add(att.embed_dim) # TODO: ResidualMLP check. # ensure values match. (num_heads,) = num_headss (scaling,) = scalings (embed_dims,) = embed_dims head_dim = embed_dims // num_heads np.testing.assert_allclose(scaling, 1.0 / np.sqrt(head_dim)) encoders = [] for i in range(self.layer_num): encoders.append( torch.classes.FasterTransformer.Encoder( *to_fast_transformer_weights(old_transformer.layers[i]), num_heads, head_dim, remove_padding, int8_mode, self.layer_num, i, allow_gemm_test, use_trt_kernel ) ) self.encoder = torch.jit.script(NVTransformerStack(encoders)) def forward(self, tokens: Tensor) -> List[Tensor]: # Vanilla transformer prelude neg_padding_mask = tokens.ne(self.padding_idx) embedded = self.token_embedding(tokens) embedded_positions = self.positional_embedding(tokens) normed = self.embedding_layer_norm(embedded + embedded_positions) normed = self.dropout(normed) padded_normed = normed * neg_padding_mask.unsqueeze(-1) # encoded: [B, T, C] encoded = padded_normed.half() states = self.encoder(encoded, neg_padding_mask) # commonly you can retrieve a single "sentence representation" as # states[-1].transpose(0, 1) return states # Swap a transformer for only RoBERTaEncoder encoders def swap_modules_for_faster_transformer(model): if hasattr(model, "encoder") and isinstance(model.encoder, RoBERTaEncoder): old_transformer = model.encoder.encoder.transformer model.encoder.encoder.transformer = NVFasterTransformerEncoder(old_transformer) return model else: return model
StarcoderdataPython
3315789
<gh_stars>0 import noise import numpy as np from PIL import Image import math import io import json from scipy.misc import toimage shape = (1024, 1024) scale = 150 octaves = 4 persistence = 0.5 lacunarity = 2.0 threshold = 0.05 seed = np.random.randint(0, 500) black = [0, 0, 0] blue = [65,105,225] green = [34,139,34] beach = [238, 214, 175] snow = [255, 250, 250] mountain = [139, 137, 137] lightblue = [0,191,255] darkgreen = [0,100,0] sandy = [210,180,140] def add_color2(world): color_world = np.zeros(world.shape+(3,)) for i in range(shape[0]): for j in range(shape[1]): if world[i][j] < threshold + 0.05: color_world[i][j] = blue elif world[i][j] < threshold + 0.055: color_world[i][j] = sandy elif world[i][j] < threshold + 0.1: color_world[i][j] = beach elif world[i][j] < threshold + 0.25: color_world[i][j] = green elif world[i][j] < threshold + 0.6: color_world[i][j] = darkgreen elif world[i][j] < threshold + 0.7: color_world[i][j] = mountain elif world[i][j] < threshold + 1.0: color_world[i][j] = snow return color_world world = np.zeros(shape) for i in range(shape[0]): for j in range(shape[1]): world[i][j] = noise.pnoise2(i / scale, j / scale, octaves=octaves, persistence=persistence, lacunarity=lacunarity, repeatx=2048, repeaty=2048, base=seed) center_x, center_y = shape[1] // 2, shape[0] // 2 circle_grad = np.zeros_like(world) for y in range(world.shape[0]): for x in range(world.shape[1]): distx = abs(x - center_x) disty = abs(y - center_y) dist = math.sqrt(distx*distx + disty*disty) circle_grad[y][x] = dist # get it between -1 and 1 max_grad = np.max(circle_grad) circle_grad = circle_grad / max_grad circle_grad -= 0.5 circle_grad *= 2.0 circle_grad = -circle_grad # shrink gradient for y in range(world.shape[0]): for x in range(world.shape[1]): if circle_grad[y][x] > 0: circle_grad[y][x] *= 20 # get it between 0 and 1 max_grad = np.max(circle_grad) circle_grad = circle_grad / max_grad with io.open("grad.json", "w") as file: file.write(json.dumps({ "grad": circle_grad.tolist()})) toimage(circle_grad).show() world_noise = np.zeros_like(world) for i in range(shape[0]): for j in range(shape[1]): world_noise[i][j] = (world[i][j] * circle_grad[i][j]) if world_noise[i][j] > 0: world_noise[i][j] *= 20 # get it between 0 and 1 max_grad = np.max(world_noise) world_noise = world_noise / max_grad island_world_grad = add_color2(world_noise) toimage(island_world_grad).show()
StarcoderdataPython
3294445
<filename>fairseq/criterions/masked_adlm.py # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion('masked_adlm') class MaskedAdLmLoss(FairseqCriterion): """ Implementation for the loss used in masked language model (MLM) training. """ def __init__(self, args, task): super(MaskedAdLmLoss, self).__init__(args, task) self.vocab = self.task.source_dictionary print(len(self.vocab.count)) self.register_buffer('margins', torch.zeros((len(self.vocab.count), 1))) self.margins.requires_grad = False self.margin_lambda = args.margin_lambda self.margin_lr = args.margin_lr self.margin_norm = args.margin_norm @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" super(MaskedAdLmLoss, MaskedAdLmLoss).add_args(parser) parser.add_argument('--margin_lambda', default=0.5, type=float, metavar='D', help='weight for the adaptive margin loss') parser.add_argument('--margin_lr', default=0.0001, type=float, metavar='D', help='weight for the adaptive margin loss') parser.add_argument('--margin-norm', default='l1', type=str, help='Type of margin norm in the loss') def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ # compute MLM loss #self.margins.requires_grad = model.training masked_tokens = sample['target'].ne(self.padding_idx) sample_size = masked_tokens.int().sum().item() # (Rare case) When all tokens are masked, the model results in empty # tensor and gives CUDA error. if sample_size == 0: masked_tokens = None logits = model(**sample['net_input'], masked_tokens=masked_tokens)[0] targets = model.get_targets(sample, [logits]) #import IPython #IPython.embed() if sample_size != 0: targets = targets[masked_tokens] # targets shape: [x] # logits.shape: [x, 32769] one_hot = F.one_hot(targets, len(self.vocab.count)) # [x, 32769] #import IPython #IPython.embed() m = F.embedding(targets, self.margins) # [x, 1] #m = self.margins(targets).squeeze(dim=-1) margin = m * one_hot # [x, 32769] #import IPython #IPython.embed() logits_minus_margin = logits - margin log_softmax = F.log_softmax( logits_minus_margin.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) # [x, 32769] adm_loss = F.nll_loss( log_softmax, targets.view(-1), reduction='sum', ignore_index=self.padding_idx, ) # cal margin grad with torch.no_grad(): margin_log_grad = torch.gather(log_softmax.detach(), dim=-1, index=targets.unsqueeze(-1)) # [x, 1] margin_grad_cross = torch.exp(margin_log_grad) - \ torch.ones_like(margin_log_grad) if self.margin_norm == 'l1': margin_grad = margin_grad_cross - torch.ones_like(m) * self.margin_lambda else: # l2 norm margin_grad = margin_grad_cross - m * self.margin_lambda * 2.0 margin_update = -1.0 * margin_grad * self.margin_lr self.margins.scatter_add_(0, targets.unsqueeze(-1), margin_update.half()) # for logging below! margin_norm; normal loss margin_norm = torch.mean(self.margins) * sample['nsentences']# used for log! normal_loss = F.nll_loss( F.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ), targets.view(-1), reduction='sum', ignore_index=self.padding_idx, ) logging_output = { 'loss': utils.item(normal_loss.data) if reduce else normal_loss.data, 'margin_n':utils.item(margin_norm.data) if reduce else margin_norm.data, 'ntokens': sample['ntokens'], 'nsentences': sample['nsentences'], 'sample_size': sample_size, 'admloss': utils.item(adm_loss.data) if reduce else adm_loss.data, } return adm_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get('loss', 0) for log in logging_outputs) admloss_sum = sum(log.get('admloss', 0) for log in logging_outputs) margin_n = sum(log.get('margin_n', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) nsentences = sum(log.get('nsentences', 0) for log in logging_outputs) metrics.log_scalar('loss', loss_sum / sample_size / math.log(2), sample_size, round=3) metrics.log_scalar('admloss', admloss_sum / sample_size / math.log(2), sample_size, round=3) metrics.log_scalar('margin_norm', margin_n / nsentences, 32, round=3) metrics.log_derived('ppl', lambda meters: round(2**meters['loss'].avg, 3)) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
StarcoderdataPython
4810114
from opentrons import protocol_api import pandas as pd import decimal, math metadata = {'apiLevel': '2.8'} def run(protocol: protocol_api.ProtocolContext): # number of regular plates regular_plates = 4 # pipette name pipette_name = 'p300_multi_gen2' # labware name for regular plates regular_plate_name = 'opentrons_96_tiprack_300ul' # volTip = volume dispense to each well of a regular plate volTip = 100 deepplate = protocol.load_labware('nest_96_wellplate_2ml_deep',1) tiprack_1 = protocol.load_labware('opentrons_96_tiprack_300ul',2) pipette = protocol.load_instrument(pipette_name,'right', tip_racks=[tiprack_1]) # determine the amount to aspirate to multi-dispense if pipette_name == 'p20_multi_gen2': aspireVol = 20 minVol = 2 elif pipette_name == 'p300_multi' or pipette_name == 'p300_multi_gen2': aspireVol = 300 minVol = 30 # constrains and labware compatibility check # print ERROR when volume set for each well exceeds max pipette volume if volTip > aspireVol: print("ERROR: Volume exceeds pipette capacity.", "Consider using a higher capacity pipette.") # optimization suggestion when using p20 # and each aspiration can only dispense to one well at most elif aspireVol < 2*volTip and aspireVol == 20: print("WARNING: The current pipette only allows one dispensation per aspiration.", "Optimize by using a higher capacity pipette") # add regular plates to a list list_of_regular_plates = [] plate = "plate_" for i in range(regular_plates): plate_name = plate + str(i+1) plate_num = str(plate_name) # set position for plates starting at 4 plate_num = protocol.load_labware(regular_plate_name,i+4) list_of_regular_plates.append(plate_num) #pipette from A1 - A12 curVol = 0 for i in range(0,12): well_range = "A" + str(i+1) pipette.pick_up_tip(tiprack_1[well_range]) #pipette to x number of regular_plates for i in list_of_regular_plates: if curVol < volTip or curVol <= minVol: pipette.aspirate(float(aspireVol-curVol), deepplate[well_range]) curVol = aspireVol pipette.dispense(volTip,i[well_range]) curVol -= volTip curVol = 0 pipette.drop_tip()
StarcoderdataPython
1616685
<reponame>Keesiu/meta-kaggle<filename>data/external/repositories_2to3/141822/AXA_Telematics-master/Features/combine_output_files_Forest.py import numpy as np from sklearn.ensemble import GradientBoostingRegressor from random import sample import os import sys import time import csv from modules_janto.paths import * blockresults = os.path.join(FEATURES,"blocks","results") print('\n\nCombining block outputs Random Forest (feature set 3)...\n') def break_input_file_features(combined_file): output_file = open(combined_file, 'wb') output_csv = csv.writer(output_file) cnt=0 for i in range(1,29): input_found = 0 try: telematics_input = open(os.path.join(blockresults,"Telematics_results_Forest_Run3_block_" + str(i)+ ".csv"),'rU') telematics_csv = csv.reader(telematics_input) input_found = 1 except: input_found = 0 if (i < 28 ): print(("Don't have ",i)) cnt+=1 if (input_found ==1): header = next(telematics_csv) if (i==1 ): output_csv.writerow(['driver_trip','prob']) cnt1 = 0 for row in telematics_csv: output_csv.writerow(row) cnt1 += 1 if (cnt1 != 20000 and i != 28): print((" Not Finished ",i)) #print("Finished Combining Block ",i, j) print((" total not found ",cnt)) output_file.close() return combined_file = os.path.join(MODELS,"RF_Telematics_results_Forest_featureset3.csv") break_input_file_features(combined_file) print('Combined output written to\n\t', MODELS, '\n\n')
StarcoderdataPython
1619534
#!/usr/bin/env python3 """Common functions for Flask webUI""" import os import sqlite3 import sys sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) import constants # noqa def initial_state(): """ Set the factory settings for the application. The settings are stored in a dictionary. Returns: An empty dict() """ defstate = dict() return defstate class Fles: """ Class for a supporting object """ def __init__(self): # app info : # path to this file as a list of elements self.HERE = os.path.realpath(__file__).split('/') self.MYLEVEL = 4 # kimnaty =1, bin =2, fles =3 # # element that contains the appname (given the location of this file) # self.MYAPP = self.HERE[-self.MYLEVEL] # # absolute path to the app's root self.MYROOT = "/".join(self.HERE[0:-self.MYLEVEL]) # self.NODE = os.uname()[1] # name of the host # self.ROOM_ID = self.NODE[-2:] # inferred room-id self.DATABASE = constants.KIMNATY['database'] self.CONFIG = f'{self.MYROOT}/.config/kimdata.json' def get_latest_data(self, fields): """Retrieve the most recent datapoints from the database.""" db_con = sqlite3.connect(self.DATABASE) with db_con: db_cur = db_con.cursor() db_cur.execute(f"SELECT {fields} FROM data \ WHERE sample_epoch = (SELECT MAX(sample_epoch) \ FROM kimnaty) \ ;") db_data = db_cur.fetchall() return list(db_data[0])
StarcoderdataPython
175685
<reponame>openhealthcare/python-fp17 import datetime from fp17 import treatments, exemptions def annotate(bcds1): bcds1.patient.surname = "BARNES" bcds1.patient.forename = "SUSAN" bcds1.patient.address = ["34 HIGH STREET"] bcds1.patient.sex = 'F' bcds1.patient.date_of_birth = datetime.date(1969, 7, 9) bcds1.date_of_acceptance = datetime.date(2017, 4, 1) bcds1.date_of_completion = datetime.date(2017, 4, 1) # "Expectant Mother" bcds1.exemption_remission = { 'code': exemptions.EXPECTANT_MOTHER.EVIDENCE_SEEN, } # Treatments: "Examination" bcds1.treatments = [ treatments.TREATMENT_CATEGORY(1), treatments.EXAMINATION, ] return bcds1
StarcoderdataPython
3295375
<filename>features/utils.py<gh_stars>1-10 from typing import Dict from typing import Iterable from typing import List from javalang.tokenizer import JavaToken, Identifier, Keyword, Literal from javalang.tree import Node def identifiers(tokens: List[JavaToken]) -> List[Identifier]: return [it for it in tokens if isinstance(it, Identifier)] def keywords(tokens: List[JavaToken]) -> List[Keyword]: return [it for it in tokens if isinstance(it, Keyword)] def literals(tokens: List[JavaToken]) -> List[Literal]: return [it for it in tokens if isinstance(it, Literal)] def children(node: Node) -> List: nodes = [] for it in node.children: if isinstance(it, List): nodes += it else: nodes.append(it) return nodes def non_empty_lines(code: str) -> List[str]: return [line for line in code.split('\n') if line.strip() != ''] def get_nodes(node, node_type) -> List: result = [] if isinstance(node, node_type): result.append(node) for it in children(node): if isinstance(it, Node): result += get_nodes(it, node_type) return result def get_nodes_count(node, node_type) -> int: return len(get_nodes(node, node_type)) def build_mapping_to_ids(values: Iterable) -> Dict: values = sorted(set(values)) return {key: value for key, value in zip(values, range(len(values)))}
StarcoderdataPython