id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
3223122
<reponame>Yosoyfr/tytus import libs.ply.yacc as yacc from Optimizador.lex2 import * from controllers.error_controller import ErrorController from Optimizador.clases3d import * precedence = ( ('nonassoc', 'LESS_THAN', 'LESS_EQUAL', 'GREATE_THAN', 'GREATE_EQUAL', 'EQUALS', 'EQUALS_EQUALS','NOT_EQUAL_LR', 'LEFT_CORCH', 'RIGHT_CORCH'), # Level 4 ('left', 'LEFT_PARENTHESIS', 'RIGHT_PARENTHESIS', 'COLON', 'NOT_EQUAL'), # Level 6 ('left', 'PLUS', 'REST'), # Level 7 ('left', 'ASTERISK', 'DIVISION', 'MODULAR', 'BITWISE_SHIFT_RIGHT', 'BITWISE_SHIFT_LEFT', 'BITWISE_AND', 'BITWISE_OR'), # Level 8 ('left', 'EXPONENT', 'BITWISE_XOR'), # Level 9 ('right', 'UPLUS', 'UREST'), # Level 10 ('left', 'DOT') # Level 13 ) # ponete vivo xd def p_instruction_list(p): '''instructionlist : instructionlist instruction | instruction ''' if len(p) == 3: p[1].append(p[2]) p[0] = p[1] else: p[0] = [p[1]] def p_instruction(p): '''instruction : import_instr | alias_instr | ifInstr | SINGLE_LINE_COMMENT | definition_instr | labels_instr | goto_instr | error EQUALS ''' if p.slice[1].type == 'definition_instr': p[0] = p[1] elif p.slice[1].type == 'goto_instr': p[0] = p[1] elif p.slice[1].type == 'labels_instr': p[0] = p[1] elif p.slice[1].type == 'ifInstr': p[0] = p[1] else: pass def p_import_instr(p): '''import_instr : FROM GOTO IMPORT WITH_GOTO | FROM LIST_DOT IMPORT LIST_ID | FROM LIST_DOT IMPORT ASTERISK''' def p_definition_instr(p): '''definition_instr : DEF ID LEFT_PARENTHESIS RIGHT_PARENTHESIS COLON | GLOBAL LIST_ID | PRINT LEFT_PARENTHESIS EXPRESSION RIGHT_PARENTHESIS | ID EQUALS comparasion | ID LEFT_CORCH EXPRESSION RIGHT_CORCH EQUALS comparasion | ID LEFT_PARENTHESIS RIGHT_PARENTHESIS''' if len(p) == 4: if p.slice[2].type == "EQUALS": p[0] = AsignacionID(p[1], p[3]) def p_alias_instr(p): '''alias_instr : ARROBA WITH_GOTO''' def p_list_id(p): '''LIST_ID : LIST_ID COMMA ID | ID''' def p_list_dot(p): '''LIST_DOT : LIST_DOT DOT ID | ID''' # def p_list_dot_asignacion(p): # '''LIST_DOT_ASIGNACION : LIST_DOT_ASIGNACION DOT ID LEFT_PARENTHESIS ID EXPRESSION RIGHT_PARENTHESIS # | LIST_DOT_ASIGNACION DOT ID LEFT_PARENTHESIS RIGHT_PARENTHESIS # | LIST_DOT_ASIGNACION DOT ID LEFT_PARENTHESIS LIST_DOT_ASIGNACION RIGHT_PARENTHESIS # | ID LEFT_PARENTHESIS RIGHT_PARENTHESIS # | ID LEFT_PARENTHESIS ID EXPRESSION RIGHT_PARENTHESIS''' def p_goto_instr(p): ''' goto_instr : GOTO DOT ID''' p[0] = Goto(p[3]) def p_labels_instr(p): '''labels_instr : LABEL DOT ID''' p[0] = LabelIF(p[3]) def p_ifInstr(p): '''ifInstr : IF comparasion COLON GOTO DOT ID | IF LEFT_PARENTHESIS comparasion RIGHT_PARENTHESIS COLON GOTO DOT ID''' if len(p) == 7: p[0] = ifStatement(p[2], Goto(p[6])) else: p[0] = ifStatement(p[3], Goto(p[8])) def p_comparasion(p): ''' comparasion : EXPRESSION RELOP EXPRESSION | EXPRESSION''' if len(p) == 4: p[0] = Relop(p[1], p[2], p[3]) else: p[0] = p[1] def p_expression(p): '''EXPRESSION : EXPRESSION PLUS EXPRESSION | EXPRESSION REST EXPRESSION | EXPRESSION ASTERISK EXPRESSION | EXPRESSION DIVISION EXPRESSION | EXPRESSION EXPONENT EXPRESSION | EXPRESSION MODULAR EXPRESSION | EXPRESSION DOT EXPRESSION | REST EXPRESSION %prec UREST | PLUS EXPRESSION %prec UPLUS | EXPRESSION BITWISE_SHIFT_RIGHT EXPRESSION | EXPRESSION BITWISE_SHIFT_LEFT EXPRESSION | EXPRESSION BITWISE_AND EXPRESSION | EXPRESSION BITWISE_OR EXPRESSION | EXPRESSION BITWISE_XOR EXPRESSION | BITWISE_NOT EXPRESSION %prec UREST | LEFT_CORCH comparasion RIGHT_CORCH | ID LEFT_PARENTHESIS comparasion RIGHT_PARENTHESIS | ID LEFT_PARENTHESIS RIGHT_PARENTHESIS | ID LEFT_CORCH comparasion RIGHT_CORCH | ID LEFT_CORCH ID COLON ID RIGHT_CORCH | STRING_CADENAS | INTEGER_NUMBERS''' # Si ya estas ahora xd ponete vivo x2 if len(p) == 4: if p.slice[1].type == "LEFT_CORCH": p[0] = p[2] else: p[0] = ArithmeticBinaryOperation(p[1], p[3], p[2]) elif len(p) == 2: p[0] = p[1] def p_relop(p): '''RELOP : EQUALS_EQUALS | NOT_EQUAL | GREATE_EQUAL | GREATE_THAN | LESS_THAN | LESS_EQUAL | NOT_EQUAL_LR''' p[0] = p[1] def p_string_cadenas(p): '''STRING_CADENAS : STRINGCONT | CHARCONT | ID''' p[0] = p[1] def p_integer_numbers(p): '''INTEGER_NUMBERS : INT_NUMBER | FLOAT_NUMBER ''' p[0] = p[1] def p_error(p): try: # print(str(p.value)) description = ' or near ' + str(p.value) column = find_column(p) ErrorController().add(33, 'Syntactic', description, p.lineno, column) except AttributeError: # print(number_error, description) ErrorController().add(1, 'Syntactic', '', 'EOF', 'EOF') parser = yacc.yacc() def parse_optimizacion(inpu): global input, contador_instr contador_instr = 0 ErrorController().destroy() lexer = lex.lex() lexer.lineno = 1 input = inpu get_text(input) return parser.parse(inpu, lexer=lexer)
StarcoderdataPython
145392
from typing import List from collections import defaultdict class Solution: def findingUsersActiveMinutes(self, logs: List[List[int]], k: int) -> List[int]: data = defaultdict(set) uam = dict() inverted_uam = {k:0 for k in range(1,k+1)} solution = list() for item in logs: data[item[0]].add(item[1]) for item in data: uam[item] = len(data[item]) for key, values in uam.items(): inverted_uam[values] +=1 for values in inverted_uam.values(): solution.append(values) return solution solution = Solution() print(solution.findingUsersActiveMinutes(logs = [[0,5],[1,2],[0,2],[0,5],[1,3]], k = 5)) print(solution.findingUsersActiveMinutes(logs = [[1,1],[2,2],[2,3]], k = 4))
StarcoderdataPython
109737
# coding=utf8 import numpy as np class LabelSpreading: def __init__(self, alpha=0.2, max_iter=30, tol=1e-3): """ :param alpha: clamping factor between (0,1) :param max_iter: maximum number of iterations :param tol: convergence tolerance """ self.alpha = alpha self.max_iter = max_iter self.tol = tol self.dist = None def fit(self, w, y): """ fit label spreading algorithm :param w: similarity matrix of n x n shape with n samples :param y: labels of n x c shape with c labels, where 1 denotes label of x_i or 0 otherwise. Unlabeled samples have labels set to 0. """ if type(w) != np.ndarray or type(y) != np.ndarray or len(w) != len(y): raise Exception("w and y should be numpy array with equal length") if 0 > self.alpha > 1 or self.max_iter < 0 or self.tol < 0: raise Exception("Parameters are set incorrectly") # construct the matrix S d = np.sum(w, axis=1) d[d == 0] = 1 np.power(d, -1 / 2., d) d = np.diag(d) s = np.dot(np.dot(d, w), d) # Iterate F(t+1) until convergence cur_iter = 0 err = self.tol f0 = y f1 = None while cur_iter < self.max_iter and err >= self.tol: f1 = self.alpha * np.dot(s, f0) + (1 - self.alpha) * y err = np.max(np.abs(f1 - f0)) f0 = f1 cur_iter += 1 self.dist = f1 # set distributions return self def predict(self, y): """ use model to create predictions :param y: labels of n x c shape with c labels, where 1 denotes label of x_i or 0 otherwise. Unlabeled samples have labels set to 0. :return: list with predictions """ if not np.any(y): raise Exception("Please fit model first") if type(y) != np.ndarray: raise Exception("y should be numpy array") predictions = [] for i, labels in enumerate(y): index = np.where(labels == 1)[0] if len(index) == 1: # was labeled before predictions.append(index[0]) else: # use label with highest score predictions.append(np.argmax(self.dist[i])) return predictions
StarcoderdataPython
3249709
<reponame>SteveMaverick/Python<filename>divide_and_conquer/quicksort.py import sys from typing import List sys.setrecursionlimit(10 ** 5) def partition(array: List, start: int, end: int) -> int: """ Helper function for quick_sort Partitions array around a pivot such that elements to the right of pivot are > pivot elements to the left of pivot < pivot and pivot is in the correct position and returns index of pivot in sorted array >>> array = [4,1,5,6,3,5,2] >>> p = partition(array,0,6) >>> p 3 """ pivot = array[start] # pivot element to partition the array around i = start + 1 # pointer to keep track of partition elements for j in range(i, end + 1): """ loop that runs through all elements in the sub array and partitions around the pivot """ if array[j] < pivot: array[j], array[i] = array[i], array[j] i += 1 """ Swapping pivot so that it ends up in it's right place """ array[start], array[i - 1] = array[i - 1], array[start] return i - 1 def quick_sort(array: List, start: int = 0, end: int = None) -> List: """ function that takes in a list as input and return sorted list >>> array = [4 , 1, 6, 5, 3, 2, 5] >>> sorted_array = quick_sort(array) >>> sorted_array [1, 2, 3, 4, 5, 5, 6] """ if end is None: """ Overriding default pointer to end of original array """ end = len(array) - 1 if len(array) <= 1: return array elif start >= end: return array else: pivot_index = partition(array, start, end) # partition array around a pivot array = quick_sort( array, start, pivot_index - 1 ) # run quicksort on left subarray on elements < pivot array = quick_sort( array, pivot_index + 1, end ) # run quicksort on right subarray on elements >= pivot return array if __name__ == "__main__": import doctest doctest.testmod()
StarcoderdataPython
1647116
import os import numpy as np import pytest from capreolus.benchmark.robust04 import Robust04Benchmark from capreolus.collection import Collection from capreolus.extractor.berttext import BertText from capreolus.searcher.bm25 import BM25Grid from capreolus.tests.common_fixtures import trec_index, dummy_collection_config def test_transform_qid_posdocid_negdocid(monkeypatch, tmpdir, trec_index, dummy_collection_config): collection = Collection(dummy_collection_config) pipeline_config = { "indexstops": True, "maxthreads": 1, "stemmer": "anserini", "bmax": 0.2, "k1max": 0.2, "maxqlen": 5, "maxdoclen": 10, "keepstops": True, "rundocsonly": False, } bm25_run = BM25Grid(trec_index, collection, os.path.join(tmpdir, "searcher"), pipeline_config) bm25_run.create() folds = {"s1": {"train_qids": ["301"], "predict": {"dev": ["301"], "test": ["301"]}}} benchmark = Robust04Benchmark(bm25_run, collection, pipeline_config) benchmark.create_and_store_train_and_pred_pairs(folds) feature = BertText(tmpdir, tmpdir, pipeline_config, index=trec_index, collection=collection, benchmark=benchmark) feature.build_from_benchmark() transformed = feature.transform_qid_posdocid_negdocid("301", "LA010189-0001", "LA010189-0001") assert np.array_equal( transformed["postoks"], [101, 24369, 9986, 0, 0, 0, 102, 24369, 24369, 24369, 7592, 2088, 1010, 14806, 2015, 2013, 6058, 102], ) assert np.array_equal(transformed["posmask"], [1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert np.array_equal(transformed["possegs"], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert np.array_equal(transformed["posqmask"], [1, 1, 0, 0, 0]) assert np.array_equal(transformed["posdmask"], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert np.array_equal( transformed["negtoks"], [101, 24369, 9986, 0, 0, 0, 102, 24369, 24369, 24369, 7592, 2088, 1010, 14806, 2015, 2013, 6058, 102], ) assert np.array_equal(transformed["negmask"], [1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert np.array_equal(transformed["negsegs"], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert np.array_equal(transformed["negqmask"], [1, 1, 0, 0, 0]) assert np.array_equal(transformed["negdmask"], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) assert transformed["posdocid"] == "LA010189-0001" assert transformed["negdocid"] == "LA010189-0001" assert transformed["qid"] == "301"
StarcoderdataPython
4820611
<filename>backend/initiatives/views/__init__.py from .admin_views import * from .views import *
StarcoderdataPython
1794795
<reponame>acharal/tensorflow<gh_stars>0 import tensorflow as tf from tensorflow.python.framework import function ack = function.Declare("tak", [("x", tf.int32), ("y", tf.int32), ("z", tf.int32)], [("ret", tf.int32)]) @function.Defun(tf.int32, tf.int32, tf.int32, func_name="Tak", out_names=["ret"]) def TakImpl(x,y,z): return tf.cond(tf.less(y, x), lambda: tak(tak(x-1,y,z), tak(y-1,z,x), tak(z-1,x,y)) lambda: z) TakImpl.add_to_graph(tf.get_default_graph()) x = tf.placeholder(tf.int32, shape=[]) y = tf.placeholder(tf.int32, shape=[]) z = tf.placeholder(tf.int32, shape=[]) res = tak(x,y,z) writer = tf.summary.FileWriter('./graphs', tf.get_default_graph()) sess = tf.Session() #print(tf.get_default_graph().as_graph_def()) writer.close() print(sess.run(res, feed_dict={x:24, y:16, z:8})) sess.close()
StarcoderdataPython
129957
import string size = 10 mid_line = '-'.join([string.ascii_letters[size - x] for x in range(1, size)] + [string.ascii_letters[x] for x in range(size)]) lines = [] for x in range(2,size+1): main = ''.join(string.ascii_letters[size - x] for x in range(1, x)) *main_list,_ = list(main) reverse = ''.join(x for x in reversed(main_list)) line = '-'.join(main+reverse) num = (len(mid_line)-len(line)) // 2 output_line = '-' * num + line + '-' * num lines.append(output_line) [print(x) for x in lines] print(mid_line) [print(x) for x in reversed(lines)]
StarcoderdataPython
3284618
<reponame>munniomer/Send-IT-Api-v1 """User views contains Signup and login Resources""" from app.api.v1.models.user_model import UserModel from flask import Flask, request, make_response, json, jsonify from flask_restful import Resource from validators.validators import Validators db = UserModel() validate = Validators() class SignupResource(Resource): """Resource for user registration.""" def post(self): """Method for posting user data""" request_data = request.get_json() print(request_data) fname = request_data["fname"] lname = request_data["lname"] email = request_data["email"] phone = request_data["phone"] password = request_data["password"] confirm_password = request_data["confirm_password"] city = request_data["city"] # Checks if names and city are valid if not validate.valid_name(fname) or not validate.valid_name(lname) or not validate.valid_name(city): return {'message': "PLease check if your fname, lname or city is empty or contains numbers"}, 400 # Checks if email is valid if not validate.valid_email(email): return {'message': "Please enter a valid email "}, 400 # checks if email exists check_email = db.check_email(email) if check_email: return {'message': 'That email exists. use a unique email'}, 400 # Checks if phone is valid if not isinstance(phone, int): return {'message': "Please enter a valid phone number "}, 400 # Checks if passwords are empty or less than 3 if not validate.valid_password(password) or not validate.valid_password(confirm_password): return {'message': "Please check if your password or confirm password are empty or less than 3"}, 400 # checks if confirm password is equal to password if confirm_password != password: return {"message": "confirm password does not match password"},400 data=db.add_user(fname, lname, email, phone, password, confirm_password, city) return {"All users": data, "message": "User successfully created", }, 201
StarcoderdataPython
1722891
import argparse import logging from enum import Enum from codigofacilito import unreleased, released, articles from .config import DEBUG if DEBUG: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) class Items(str, Enum): WORSHOPS = "workshops" ARTICLES = "articles" item_choices = [tag.value for tag in Items] def main(*args, **kwargs): if kwargs.get("items", None) == Items.WORSHOPS: if kwargs.get("unreleased", False): logging.info(unreleased()) else: logging.info(released()) elif kwargs.get("items", None) == Items.ARTICLES: logging.info(articles()) else: logging.error("No valid item selected.") if __name__ == '__main__': logging.debug('>>> Estamos comenzando la ejecución del paquete.') logging.debug('>>> Procesando argumentos...') parser = argparse.ArgumentParser() parser.add_argument( '--items', help='flag to choose between "workshops" or "articles"', type=str, required=True, choices=item_choices ) parser.add_argument( '--unreleased', help='flag to return unreleased workshops', dest='unreleased', action='store_true' ) parser.add_argument( '--no-unreleased', help='flag to return unreleased workshops', dest='unreleased', action='store_false' ) parser.set_defaults(unreleased=False) args = parser.parse_args() logging.debug(f'>>> {args}') main(items=args.items, unreleased=args.unreleased) logging.debug('>>> Estamos finalizando la ejecución del paquete.')
StarcoderdataPython
21067
<reponame>zhihou7/VCL<gh_stars>10-100 # -------------------------------------------------------- # Tensorflow VCL # Licensed under The MIT License [see LICENSE for details] # Written by <NAME>, based on code from Transferable-Interactiveness-Network, <NAME>, <NAME> and <NAME> # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.slim import arg_scope from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.contrib.slim.python.slim.nets import resnet_v1 from tensorflow.python.framework import ops from ult.tools import get_convert_matrix from ult.config import cfg from ult.visualization import draw_bounding_boxes_HOI import numpy as np def resnet_arg_scope(is_training=True, weight_decay=cfg.TRAIN.WEIGHT_DECAY, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': ops.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d, slim.fully_connected], weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), weights_initializer = slim.variance_scaling_initializer(), biases_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), biases_initializer = tf.constant_initializer(0.0), trainable = is_training, activation_fn = tf.nn.relu, normalizer_fn = slim.batch_norm, normalizer_params = batch_norm_params): with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc: return arg_sc class ResNet101(): def __init__(self, model_name): self.model_name = model_name self.visualize = {} self.test_visualize = {} self.intermediate = {} self.predictions = {} self.score_summaries = {} self.event_summaries = {} self.train_summaries = [] self.losses = {} self.image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image') self.spatial = tf.placeholder(tf.float32, shape=[None, 64, 64, 3], name = 'sp') self.H_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'H_boxes') self.O_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes') self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 600], name = 'gt_class_HO') self.H_num = tf.placeholder(tf.int32) # positive nums self.image_id = tf.placeholder(tf.int32) self.num_classes = 600 self.compose_num_classes = 600 self.num_fc = 1024 self.verb_num_classes = 117 self.obj_num_classes = 80 self.scope = 'resnet_v1_101' self.stride = [16, ] self.lr = tf.placeholder(tf.float32) if tf.__version__ == '1.1.0': raise Exception('wrong tensorflow version 1.1.0') else: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block self.blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), resnet_v1_block('block3', base_depth=256, num_units=23, stride=1), resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)] if self.model_name.__contains__('unique_weights') or self.model_name.__contains__('_pa3')\ or self.model_name.__contains__('_pa4'): print("add block6 unique_weights2") self.blocks.append(resnet_v1_block('block6', base_depth=512, num_units=3, stride=1)) """We copy from TIN. calculated by log(1/(n_c/sum(n_c)) c is the category and n_c is the number of positive samples""" self.HO_weight = np.array([ 9.192927, 9.778443, 10.338059, 9.164914, 9.075144, 10.045923, 8.714437, 8.59822, 12.977117, 6.2745423, 11.227917, 6.765012, 9.436157, 9.56762, 11.0675745, 11.530198, 9.609821, 9.897503, 6.664475, 6.811699, 6.644726, 9.170454, 13.670264, 3.903943, 10.556748, 8.814335, 9.519224, 12.753973, 11.590822, 8.278912, 5.5245695, 9.7286825, 8.997436, 10.699849, 9.601237, 11.965516, 9.192927, 10.220277, 6.056692, 7.734048, 8.42324, 6.586457, 6.969533, 10.579222, 13.670264, 4.4531965, 9.326459, 9.288238, 8.071842, 10.431585, 12.417501, 11.530198, 11.227917, 4.0678477, 8.854023, 12.571651, 8.225684, 10.996116, 11.0675745, 10.100731, 7.0376034, 7.463688, 12.571651, 14.363411, 5.4902234, 11.0675745, 14.363411, 8.45805, 10.269067, 9.820116, 14.363411, 11.272368, 11.105314, 7.981595, 9.198626, 3.3284247, 14.363411, 12.977117, 9.300817, 10.032678, 12.571651, 10.114916, 10.471591, 13.264799, 14.363411, 8.01953, 10.412168, 9.644913, 9.981384, 7.2197933, 14.363411, 3.1178555, 11.031207, 8.934066, 7.546675, 6.386472, 12.060826, 8.862153, 9.799063, 12.753973, 12.753973, 10.412168, 10.8976755, 10.471591, 12.571651, 9.519224, 6.207762, 12.753973, 6.60636, 6.2896967, 4.5198326, 9.7887, 13.670264, 11.878505, 11.965516, 8.576513, 11.105314, 9.192927, 11.47304, 11.367679, 9.275815, 11.367679, 9.944571, 11.590822, 10.451388, 9.511381, 11.144535, 13.264799, 5.888291, 11.227917, 10.779892, 7.643191, 11.105314, 9.414651, 11.965516, 14.363411, 12.28397, 9.909063, 8.94731, 7.0330057, 8.129001, 7.2817025, 9.874775, 9.758241, 11.105314, 5.0690055, 7.4768796, 10.129305, 9.54313, 13.264799, 9.699972, 11.878505, 8.260853, 7.1437693, 6.9321113, 6.990665, 8.8104515, 11.655361, 13.264799, 4.515912, 9.897503, 11.418972, 8.113436, 8.795067, 10.236277, 12.753973, 14.363411, 9.352776, 12.417501, 0.6271591, 12.060826, 12.060826, 12.166186, 5.2946343, 11.318889, 9.8308115, 8.016022, 9.198626, 10.8976755, 13.670264, 11.105314, 14.363411, 9.653881, 9.503599, 12.753973, 5.80546, 9.653881, 9.592727, 12.977117, 13.670264, 7.995224, 8.639826, 12.28397, 6.586876, 10.929424, 13.264799, 8.94731, 6.1026597, 12.417501, 11.47304, 10.451388, 8.95624, 10.996116, 11.144535, 11.031207, 13.670264, 13.670264, 6.397866, 7.513285, 9.981384, 11.367679, 11.590822, 7.4348736, 4.415428, 12.166186, 8.573451, 12.977117, 9.609821, 8.601359, 9.055143, 11.965516, 11.105314, 13.264799, 5.8201604, 10.451388, 9.944571, 7.7855496, 14.363411, 8.5463, 13.670264, 7.9288645, 5.7561946, 9.075144, 9.0701065, 5.6871653, 11.318889, 10.252538, 9.758241, 9.407584, 13.670264, 8.570397, 9.326459, 7.488179, 11.798462, 9.897503, 6.7530537, 4.7828183, 9.519224, 7.6492405, 8.031909, 7.8180614, 4.451856, 10.045923, 10.83705, 13.264799, 13.670264, 4.5245686, 14.363411, 10.556748, 10.556748, 14.363411, 13.670264, 14.363411, 8.037262, 8.59197, 9.738439, 8.652985, 10.045923, 9.400566, 10.9622135, 11.965516, 10.032678, 5.9017305, 9.738439, 12.977117, 11.105314, 10.725825, 9.080208, 11.272368, 14.363411, 14.363411, 13.264799, 6.9279733, 9.153925, 8.075553, 9.126969, 14.363411, 8.903826, 9.488214, 5.4571533, 10.129305, 10.579222, 12.571651, 11.965516, 6.237189, 9.428937, 9.618479, 8.620408, 11.590822, 11.655361, 9.968962, 10.8080635, 10.431585, 14.363411, 3.796231, 12.060826, 10.302968, 9.551227, 8.75394, 10.579222, 9.944571, 14.363411, 6.272396, 10.625742, 9.690582, 13.670264, 11.798462, 13.670264, 11.724354, 9.993963, 8.230013, 9.100721, 10.374427, 7.865129, 6.514087, 14.363411, 11.031207, 11.655361, 12.166186, 7.419324, 9.421769, 9.653881, 10.996116, 12.571651, 13.670264, 5.912144, 9.7887, 8.585759, 8.272101, 11.530198, 8.886948, 5.9870906, 9.269661, 11.878505, 11.227917, 13.670264, 8.339964, 7.6763024, 10.471591, 10.451388, 13.670264, 11.185357, 10.032678, 9.313555, 12.571651, 3.993144, 9.379805, 9.609821, 14.363411, 9.709451, 8.965248, 10.451388, 7.0609145, 10.579222, 13.264799, 10.49221, 8.978916, 7.124196, 10.602211, 8.9743395, 7.77862, 8.073695, 9.644913, 9.339531, 8.272101, 4.794418, 9.016304, 8.012526, 10.674532, 14.363411, 7.995224, 12.753973, 5.5157638, 8.934066, 10.779892, 7.930471, 11.724354, 8.85808, 5.9025764, 14.363411, 12.753973, 12.417501, 8.59197, 10.513264, 10.338059, 14.363411, 7.7079706, 14.363411, 13.264799, 13.264799, 10.752493, 14.363411, 14.363411, 13.264799, 12.417501, 13.670264, 6.5661197, 12.977117, 11.798462, 9.968962, 12.753973, 11.47304, 11.227917, 7.6763024, 10.779892, 11.185357, 14.363411, 7.369478, 14.363411, 9.944571, 10.779892, 10.471591, 9.54313, 9.148476, 10.285873, 10.412168, 12.753973, 14.363411, 6.0308623, 13.670264, 10.725825, 12.977117, 11.272368, 7.663911, 9.137665, 10.236277, 13.264799, 6.715625, 10.9622135, 14.363411, 13.264799, 9.575919, 9.080208, 11.878505, 7.1863923, 9.366199, 8.854023, 9.874775, 8.2857685, 13.670264, 11.878505, 12.166186, 7.616999, 9.44343, 8.288065, 8.8104515, 8.347254, 7.4738197, 10.302968, 6.936267, 11.272368, 7.058223, 5.0138307, 12.753973, 10.173757, 9.863602, 11.318889, 9.54313, 10.996116, 12.753973, 7.8339925, 7.569945, 7.4427395, 5.560738, 12.753973, 10.725825, 10.252538, 9.307165, 8.491293, 7.9161053, 7.8849015, 7.782772, 6.3088884, 8.866243, 9.8308115, 14.363411, 10.8976755, 5.908519, 10.269067, 9.176025, 9.852551, 9.488214, 8.90809, 8.537411, 9.653881, 8.662968, 11.965516, 10.143904, 14.363411, 14.363411, 9.407584, 5.281472, 11.272368, 12.060826, 14.363411, 7.4135547, 8.920994, 9.618479, 8.891141, 14.363411, 12.060826, 11.965516, 10.9622135, 10.9622135, 14.363411, 5.658909, 8.934066, 12.571651, 8.614018, 11.655361, 13.264799, 10.996116, 13.670264, 8.965248, 9.326459, 11.144535, 14.363411, 6.0517673, 10.513264, 8.7430105, 10.338059, 13.264799, 6.878481, 9.065094, 8.87035, 14.363411, 9.92076, 6.5872955, 10.32036, 14.363411, 9.944571, 11.798462, 10.9622135, 11.031207, 7.652888, 4.334878, 13.670264, 13.670264, 14.363411, 10.725825, 12.417501, 14.363411, 13.264799, 11.655361, 10.338059, 13.264799, 12.753973, 8.206432, 8.916674, 8.59509, 14.363411, 7.376845, 11.798462, 11.530198, 11.318889, 11.185357, 5.0664344, 11.185357, 9.372978, 10.471591, 9.6629305, 11.367679, 8.73579, 9.080208, 11.724354, 5.04781, 7.3777695, 7.065643, 12.571651, 11.724354, 12.166186, 12.166186, 7.215852, 4.374113, 11.655361, 11.530198, 14.363411, 6.4993753, 11.031207, 8.344818, 10.513264, 10.032678, 14.363411, 14.363411, 4.5873594, 12.28397, 13.670264, 12.977117, 10.032678, 9.609821 ], dtype='float32').reshape(1, 600) num_inst_path = cfg.ROOT_DIR + '/Data/num_inst.npy' num_inst = np.load(num_inst_path) self.num_inst = num_inst verb_to_HO_matrix, obj_to_HO_matrix = get_convert_matrix(self.verb_num_classes, self.obj_num_classes) self.obj_to_HO_matrix = tf.constant(obj_to_HO_matrix, tf.float32) self.verb_to_HO_matrix = tf.constant(verb_to_HO_matrix, tf.float32) self.gt_obj_class = tf.cast(tf.matmul(self.gt_class_HO, self.obj_to_HO_matrix, transpose_b=True) > 0, tf.float32) self.gt_verb_class = tf.cast(tf.matmul(self.gt_class_HO, self.verb_to_HO_matrix, transpose_b=True) > 0, tf.float32) def init_table(self): pass def set_ph(self, image, image_id, num_pos, Human_augmented, Object_augmented, action_HO, sp): if image is not None: self.image = image if image_id is not None: self.image_id = image_id if sp is not None: self.spatial = sp if Human_augmented is not None: self.H_boxes = Human_augmented if Object_augmented is not None: self.O_boxes = Object_augmented if action_HO is not None: self.gt_class_HO = action_HO self.H_num = num_pos self.reset_classes() def reset_classes(self): from ult.tools import get_convert_matrix verb_to_HO_matrix, obj_to_HO_matrix = get_convert_matrix(self.verb_num_classes, self.obj_num_classes) self.obj_to_HO_matrix = tf.constant(obj_to_HO_matrix, tf.float32) self.verb_to_HO_matrix = tf.constant(verb_to_HO_matrix, tf.float32) self.gt_obj_class = tf.cast(tf.matmul(self.gt_class_HO, self.obj_to_HO_matrix, transpose_b=True) > 0, tf.float32) self.gt_verb_class = tf.cast(tf.matmul(self.gt_class_HO, self.verb_to_HO_matrix, transpose_b=True) > 0, tf.float32) def build_base(self): with tf.variable_scope(self.scope, self.scope, reuse=tf.AUTO_REUSE,): net = resnet_utils.conv2d_same(self.image, 64, 7, stride=2, scope='conv1') net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]]) net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1') return net def image_to_head(self, is_training): with slim.arg_scope(resnet_arg_scope(is_training=False)): net = self.build_base() net, _ = resnet_v1.resnet_v1(net, self.blocks[0:cfg.RESNET.FIXED_BLOCKS], global_pool=False, include_root_block=False, reuse=tf.AUTO_REUSE, scope=self.scope) with slim.arg_scope(resnet_arg_scope(is_training=is_training)): if self.model_name.__contains__('unique_weights'): print("unique_weights3") stop = -3 else: stop = -2 head, _ = resnet_v1.resnet_v1(net, self.blocks[cfg.RESNET.FIXED_BLOCKS:stop], global_pool=False, include_root_block=False, reuse=tf.AUTO_REUSE, scope=self.scope) return head def sp_to_head(self): with tf.variable_scope(self.scope, self.scope, reuse=tf.AUTO_REUSE,): ends = 2 if self.model_name.__contains__('_spose'): ends = 3 conv1_sp = slim.conv2d(self.spatial[:,:,:,0:ends], 64, [5, 5], padding='VALID', scope='conv1_sp') pool1_sp = slim.max_pool2d(conv1_sp, [2, 2], scope='pool1_sp') conv2_sp = slim.conv2d(pool1_sp, 32, [5, 5], padding='VALID', scope='conv2_sp') pool2_sp = slim.max_pool2d(conv2_sp, [2, 2], scope='pool2_sp') pool2_flat_sp = slim.flatten(pool2_sp) return pool2_flat_sp def res5(self, pool5_H, pool5_O, sp, is_training, name): with slim.arg_scope(resnet_arg_scope(is_training=is_training)): if pool5_H is None: fc7_H = None else: fc7_H, _ = resnet_v1.resnet_v1(pool5_H, self.blocks[-2:-1], global_pool=False, include_root_block=False, reuse=tf.AUTO_REUSE, scope=self.scope) # fc7_H = tf.reduce_mean(fc7_H, axis=[1, 2]) if pool5_O is None: fc7_O = None else: fc7_O, _ = resnet_v1.resnet_v1(pool5_O, self.blocks[-1:], global_pool=False, include_root_block=False, reuse=tf.AUTO_REUSE, scope=self.scope) # fc7_O = tf.reduce_mean(fc7_O, axis=[1, 2]) return fc7_H, fc7_O def head_to_tail(self, fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, name): with slim.arg_scope(resnet_arg_scope(is_training=is_training)): fc7_SH = tf.reduce_mean(pool5_SH, axis=[1, 2]) fc7_SO = tf.reduce_mean(pool5_SO, axis=[1, 2]) Concat_SH = tf.concat([fc7_H, fc7_SH], 1) fc8_SH = slim.fully_connected(Concat_SH, self.num_fc, scope='fc8_SH', reuse=tf.AUTO_REUSE) fc8_SH = slim.dropout(fc8_SH, keep_prob=0.5, is_training=is_training, scope='dropout8_SH') fc9_SH = slim.fully_connected(fc8_SH, self.num_fc, scope='fc9_SH', reuse=tf.AUTO_REUSE) fc9_SH = slim.dropout(fc9_SH, keep_prob=0.5, is_training=is_training, scope='dropout9_SH') Concat_SO = tf.concat([fc7_O, fc7_SO], 1) fc8_SO = slim.fully_connected(Concat_SO, self.num_fc, scope='fc8_SO', reuse=tf.AUTO_REUSE) fc8_SO = slim.dropout(fc8_SO, keep_prob=0.5, is_training=is_training, scope='dropout8_SO') fc9_SO = slim.fully_connected(fc8_SO, self.num_fc, scope='fc9_SO', reuse=tf.AUTO_REUSE) fc9_SO = slim.dropout(fc9_SO, keep_prob=0.5, is_training=is_training, scope='dropout9_SO') Concat_SHsp = tf.concat([fc7_H, sp], 1) Concat_SHsp = slim.fully_connected(Concat_SHsp, self.num_fc, scope='Concat_SHsp', reuse=tf.AUTO_REUSE) Concat_SHsp = slim.dropout(Concat_SHsp, keep_prob=0.5, is_training=is_training, scope='dropout6_SHsp') fc7_SHsp = slim.fully_connected(Concat_SHsp, self.num_fc, scope='fc7_SHsp', reuse=tf.AUTO_REUSE) fc7_SHsp = slim.dropout(fc7_SHsp, keep_prob=0.5, is_training=is_training, scope='dropout7_SHsp') return fc9_SH, fc9_SO, fc7_SHsp def crop_pool_layer(self, bottom, rois, name): with tf.variable_scope(name) as scope: batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1]) bboxes = self.trans_boxes_by_feats(bottom, rois) if cfg.RESNET.MAX_POOL: pre_pool_size = cfg.POOLING_SIZE * 2 crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops") crops = slim.max_pool2d(crops, [2, 2], padding='SAME') else: crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [cfg.POOLING_SIZE, cfg.POOLING_SIZE], name="crops") return crops def trans_boxes_by_feats(self, bottom, rois): bottom_shape = tf.shape(bottom) height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self.stride[0]) width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self.stride[0]) x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1)) return bboxes def attention_pool_layer_H(self, bottom, fc7_H, is_training, name): with tf.variable_scope(name) as scope: fc1 = slim.fully_connected(fc7_H, 512, scope='fc1_b') fc1 = slim.dropout(fc1, keep_prob=0.8, is_training=is_training, scope='dropout1_b') fc1 = tf.reshape(fc1, [tf.shape(fc1)[0], 1, 1, tf.shape(fc1)[1]]) att = tf.reduce_mean(tf.multiply(bottom, fc1), 3, keep_dims=True) return att def attention_norm_H(self, att, name): with tf.variable_scope(name) as scope: att = tf.transpose(att, [0, 3, 1, 2]) att_shape = tf.shape(att) att = tf.reshape(att, [att_shape[0], att_shape[1], -1]) att = tf.nn.softmax(att) att = tf.reshape(att, att_shape) att = tf.transpose(att, [0, 2, 3, 1]) return att def attention_pool_layer_O(self, bottom, fc7_O, is_training, name): with tf.variable_scope(name) as scope: fc1 = slim.fully_connected(fc7_O, 512, scope='fc1_b') fc1 = slim.dropout(fc1, keep_prob=0.8, is_training=is_training, scope='dropout1_b') fc1 = tf.reshape(fc1, [tf.shape(fc1)[0], 1, 1, tf.shape(fc1)[1]]) att = tf.reduce_mean(tf.multiply(bottom, fc1), 3, keep_dims=True) return att def attention_norm_O(self, att, name): with tf.variable_scope(name) as scope: att = tf.transpose(att, [0, 3, 1, 2]) att_shape = tf.shape(att) att = tf.reshape(att, [att_shape[0], att_shape[1], -1]) att = tf.nn.softmax(att) att = tf.reshape(att, att_shape) att = tf.transpose(att, [0, 2, 3, 1]) return att def region_classification(self, fc7_H, fc7_O, fc7_SHsp, is_training, initializer, name): with tf.variable_scope(name) as scope: cls_score_H = slim.fully_connected(fc7_H, self.num_classes, weights_initializer=initializer, trainable=is_training, activation_fn=None, scope='cls_score_H') cls_prob_H = tf.nn.sigmoid(cls_score_H, name='cls_prob_H') tf.reshape(cls_prob_H, [-1, self.num_classes]) cls_score_O = slim.fully_connected(fc7_O, self.num_classes, weights_initializer=initializer, trainable=is_training, activation_fn=None, scope='cls_score_O') cls_prob_O = tf.nn.sigmoid(cls_score_O, name='cls_prob_O') tf.reshape(cls_prob_O, [-1, self.num_classes]) cls_score_sp = slim.fully_connected(fc7_SHsp, self.num_classes, weights_initializer=initializer, trainable=is_training, activation_fn=None, scope='cls_score_sp') cls_prob_sp = tf.nn.sigmoid(cls_score_sp, name='cls_prob_sp') tf.reshape(cls_prob_sp, [-1, self.num_classes]) self.predictions["cls_score_H"] = cls_score_H self.predictions["cls_prob_H"] = cls_prob_H self.predictions["cls_score_O"] = cls_score_O self.predictions["cls_prob_O"] = cls_prob_O self.predictions["cls_score_sp"] = cls_score_sp self.predictions["cls_prob_sp"] = cls_prob_sp self.predictions["cls_prob_HO"] = cls_prob_sp * (cls_prob_O + cls_prob_H) return cls_prob_H, cls_prob_O, cls_prob_sp def bottleneck(self, bottom, is_training, name, reuse=False): with tf.variable_scope(name) as scope: if reuse: scope.reuse_variables() head_bottleneck = slim.conv2d(bottom, 1024, [1, 1], scope=name) return head_bottleneck def build_network(self, is_training): initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01) # ResNet Backbone head = self.image_to_head(is_training) sp = self.sp_to_head() pool5_H = self.crop_pool_layer(head, self.H_boxes, 'Crop_H') pool5_O = self.crop_pool_layer(head, self.O_boxes[:self.H_num,:], 'Crop_O') fc7_H, fc7_O = self.res5(pool5_H, pool5_O, sp, is_training, 'res5') fc7_H = tf.reduce_mean(fc7_H, axis=[1, 2]) fc7_O = tf.reduce_mean(fc7_O, axis=[1, 2]) # Phi head_phi = slim.conv2d(head, 512, [1, 1], scope='head_phi') # g head_g = slim.conv2d(head, 512, [1, 1], scope='head_g') Att_H = self.attention_pool_layer_H(head_phi, fc7_H, is_training, 'Att_H') Att_H = self.attention_norm_H(Att_H, 'Norm_Att_H') att_head_H = tf.multiply(head_g, Att_H) Att_O = self.attention_pool_layer_O(head_phi, fc7_O, is_training, 'Att_O') Att_O = self.attention_norm_O(Att_O, 'Norm_Att_O') att_head_O = tf.multiply(head_g, Att_O) pool5_SH = self.bottleneck(att_head_H, is_training, 'bottleneck', False) pool5_SO = self.bottleneck(att_head_O, is_training, 'bottleneck', True) # fc7_O = tf.Print(fc7_O, [tf.shape(fc7_O), tf.shape(fc7_H)], message='check fc7_O:') fc7_SH, fc7_SO, fc7_SHsp = self.head_to_tail(fc7_H, fc7_O, pool5_SH, pool5_SO, sp, is_training, 'fc_HO') # fc7_SO = tf.Print(fc7_SO, [tf.shape(fc7_SO), tf.shape(fc7_SH), tf.shape(fc7_SHsp)], message='check fc7_SHsp:') cls_prob_H, cls_prob_O, cls_prob_sp = self.region_classification(fc7_SH, fc7_SO, fc7_SHsp, is_training, initializer, 'classification') self.score_summaries.update(self.predictions) self.visualize["attention_map_H"] = (Att_H - tf.reduce_min(Att_H[0,:,:,:])) / tf.reduce_max((Att_H[0,:,:,:] - tf.reduce_min(Att_H[0,:,:,:]))) self.visualize["attention_map_O"] = (Att_O - tf.reduce_min(Att_O[0,:,:,:])) / tf.reduce_max((Att_O[0,:,:,:] - tf.reduce_min(Att_O[0,:,:,:]))) return cls_prob_H, cls_prob_O, cls_prob_sp def create_architecture(self, is_training): self.build_network(is_training) # for var in tf.trainable_variables(): # self.train_summaries.append(var) if is_training: self.add_loss() layers_to_output = {} layers_to_output.update(self.losses) val_summaries = [] if is_training: with tf.device("/cpu:0"): # val_summaries.append(self.add_gt_image_summary_H()) # val_summaries.append(self.add_gt_image_summary_HO()) # tf.summary.image('ATTENTION_MAP_H', self.visualize["attention_map_H"], max_outputs=1) # tf.summary.image('ATTENTION_MAP_O', self.visualize["attention_map_O"], max_outputs=1) for key, var in self.visualize.items(): tf.summary.image(key, var, max_outputs=1) for key, var in self.event_summaries.items(): val_summaries.append(tf.summary.scalar(key, var)) # val_summaries.append(tf.summary.scalar('lr', self.lr)) self.summary_op = tf.summary.merge_all() self.summary_op_val = tf.summary.merge(val_summaries) return layers_to_output def add_loss(self): with tf.variable_scope('LOSS') as scope: cls_score_H = self.predictions["cls_score_H"] cls_score_O = self.predictions["cls_score_O"] cls_score_sp = self.predictions["cls_score_sp"] label_HO = self.gt_class_HO H_cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = label_HO[:self.H_num,:], logits = cls_score_H[:self.H_num,:])) O_cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = label_HO[:self.H_num,:], logits = cls_score_O[:self.H_num,:])) sp_cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = label_HO, logits = cls_score_sp)) self.losses['H_cross_entropy'] = H_cross_entropy self.losses['O_cross_entropy'] = O_cross_entropy self.losses['sp_cross_entropy'] = sp_cross_entropy loss = H_cross_entropy + O_cross_entropy + sp_cross_entropy self.losses['total_loss'] = loss self.event_summaries.update(self.losses) return loss def add_gt_image_summary_H(self): image = tf.py_func(draw_bounding_boxes_HOI, [tf.reverse(self.image+cfg.PIXEL_MEANS, axis=[-1]), self.H_boxes, self.gt_class_HO], tf.float32, name="gt_boxes_H") return tf.summary.image('GROUND_TRUTH_H', image) def add_gt_image_summary_HO(self): image = tf.py_func(draw_bounding_boxes_HOI, [tf.reverse(self.image+cfg.PIXEL_MEANS, axis=[-1]), self.O_boxes, self.gt_class_HO], tf.float32, name="gt_boxes_HO") return tf.summary.image('GROUND_TRUTH_HO)', image) def add_score_summary(self, key, tensor): if tensor is not None and tensor.op is not None: tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor) def add_train_summary(self, var): tf.summary.histogram('TRAIN/' + var.op.name, var) def get_feed_dict(self, blobs): feed_dict = {self.image: blobs['image'], self.H_boxes: blobs['H_boxes'], self.O_boxes: blobs['O_boxes'], self.gt_class_HO: blobs['gt_class_HO'], self.spatial: blobs['sp'], # self.lr: lr, self.H_num: blobs['H_num']} return feed_dict def train_step(self, sess, blobs, lr, train_op): feed_dict = self.get_feed_dict(blobs) loss, _ = sess.run([self.losses['total_loss'], train_op], feed_dict=feed_dict) return loss def train_step_with_summary(self, sess, blobs, lr, train_op): feed_dict = self.get_feed_dict(blobs) loss, summary, _ = sess.run([self.losses['total_loss'], self.summary_op, train_op], feed_dict=feed_dict) return loss, summary def train_step_tfr(self, sess, blobs, lr, train_op): loss, image_id, _ = sess.run([self.losses['total_loss'], self.image_id, train_op]) return loss, image_id def train_step_tfr_with_summary(self, sess, blobs, lr, train_op): loss, summary, image_id, _ = sess.run([self.losses['total_loss'], self.summary_op, self.image_id, train_op]) return loss, image_id, summary def test_image_HO(self, sess, image, blobs): feed_dict = {self.image: image, self.H_boxes: blobs['H_boxes'], self.O_boxes: blobs['O_boxes'], self.spatial: blobs['sp'], self.H_num: blobs['H_num']} cls_prob_HO = sess.run([self.predictions["cls_prob_HO"]], feed_dict=feed_dict) return cls_prob_HO def obtain_all_preds(self, sess, image, blobs): feed_dict = {self.image: image, self.H_boxes: blobs['H_boxes'], self.O_boxes: blobs['O_boxes'], self.spatial: blobs['sp'], self.H_num: blobs['H_num']} cls_prob_HO, pH, pO, pSp = sess.run([self.predictions["cls_prob_HO"], self.predictions["cls_prob_H"], self.predictions["cls_prob_O"], self.predictions["cls_prob_sp"]], feed_dict=feed_dict) return cls_prob_HO, pH, pO, pSp, pSp def obtain_all_preds_tfr(self, sess): cls_prob_HO, pH, pO, pSp = sess.run([self.predictions["cls_prob_HO"], self.predictions["cls_prob_H"], self.predictions["cls_prob_O"], self.predictions["cls_prob_sp"]]) return cls_prob_HO, pH, pO, pSp, pSp
StarcoderdataPython
30498
class O(object): pass class A(O): pass class B(O): pass class C(O): pass class D(O): pass class E(O): pass class K1(A,B,C): pass class K2(D,B,E): pass class K3(D,A): pass class Z(K1,K2,K3): pass print K1.__mro__ print K2.__mro__ print K3.__mro__ print Z.__mro__
StarcoderdataPython
1625765
""" balances simple """ import archon.broker.broker as broker import archon.exchange.exchanges as exc a = broker.Broker(setAuto=False) a.set_keys_exchange_file(path_file_apikeys="./apikeys.toml") client = a.afacade.get_client(exc.BINANCE) bal = client.get_account()["balances"] for x in bal: f,l = float(x["free"]),float(x["locked"]) a = x["asset"] total = f+l if total > 0: print (a,total)
StarcoderdataPython
1718248
#!/usr/bin/env python3 # -*- coding: utf-8 -*- assert int('89') == 89 assert int('101', 2) == 5 assert int('0B101', 2) == 5 assert int('27', 8) == 23 assert int('027', 8) == 23 assert int('22', 16) == 34 assert int('0x22', 16) == 34 assert int('0X22', 16) == 34
StarcoderdataPython
114297
<filename>piconumpy/test_cpython_capi.py import numpy as np from . import array class Tests: _array = array def test_init_array(self): a = self._array([1.0, 2.0]) assert a.size == 2 def test_init_array_numpy(self): np_a = np.array([1.0, 2.0, 0.0, 0.0]) a = self._array(np_a.tolist()) assert a.size == np_a.size assert a.tolist() == np_a.tolist() def test_multiply(self): a = self._array([1.0, 2.0]) assert (2 * a).tolist() == [2.0, 4.0] assert (a * 3).tolist() == [3.0, 6.0] def test_add(self): a = self._array([1.0, 2.0]) assert (a + 2 * a).tolist() == [3.0, 6.0] def test_divide(self): a = self._array([1.0, 2.0]) assert (a / 2).tolist() == [0.5, 1.0] def test_sequence(self): a = self._array([1.0, 2.0]) assert len(a) == 2 assert a[1] == 2.0
StarcoderdataPython
3360250
def move(from_position, target_position): print(f'Move disk from {from_position} to {target_position}') def hanoi(disk_count, from_position, helper_position, target_position): if not disk_count: return hanoi(disk_count - 1, from_position, helper_position, target_position) move(from_position, target_position) hanoi(disk_count - 1, helper_position, from_position, target_position) if __name__ == '__main__': hanoi(4, "A", "B", "C")
StarcoderdataPython
64409
<gh_stars>1-10 """ Author: Benny Date: Nov 2019 """ from data_utils.ModelNetDataLoader import ModelNetDataLoader import argparse import numpy as np import os import torch import datetime import logging from pathlib import Path from tqdm import tqdm import sys import provider import importlib import shutil BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(os.path.join(ROOT_DIR, 'models')) def parse_args(): '''PARAMETERS''' parser = argparse.ArgumentParser('PointNet') parser.add_argument('--batch_size', type=int, default=24, help='batch size in training [default: 24]') parser.add_argument('--model', default='pointnet_cls', help='model name [default: pointnet_cls]') parser.add_argument('--epoch', default=200, type=int, help='number of epoch in training [default: 200]') parser.add_argument('--learning_rate', default=0.001, type=float, help='learning rate in training [default: 0.001]') parser.add_argument('--gpu', type=str, default='0', help='specify gpu device [default: 0]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]') parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer for training [default: Adam]') parser.add_argument('--log_dir', type=str, default=None, help='experiment root') parser.add_argument('--decay_rate', type=float, default=1e-4, help='decay rate [default: 1e-4]') parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]') return parser.parse_args() def test(model, loader, num_class=40): mean_correct = [] class_acc = np.zeros((num_class,3)) for j, data in tqdm(enumerate(loader), total=len(loader)): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() classifier = model.eval() pred, _ = classifier(points) pred_choice = pred.data.max(1)[1] for cat in np.unique(target.cpu()): classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum() class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0]) class_acc[cat,1]+=1 correct = pred_choice.eq(target.long().data).cpu().sum() mean_correct.append(correct.item()/float(points.size()[0])) class_acc[:,2] = class_acc[:,0]/ class_acc[:,1] class_acc = np.mean(class_acc[:,2]) instance_acc = np.mean(mean_correct) return instance_acc, class_acc def main(args): def log_string(str): logger.info(str) print(str) '''HYPER PARAMETER''' os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu '''CREATE DIR''' timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')) experiment_dir = Path('./log/') experiment_dir.mkdir(exist_ok=True) experiment_dir = experiment_dir.joinpath('classification') experiment_dir.mkdir(exist_ok=True) if args.log_dir is None: experiment_dir = experiment_dir.joinpath(timestr) else: experiment_dir = experiment_dir.joinpath(args.log_dir) experiment_dir.mkdir(exist_ok=True) checkpoints_dir = experiment_dir.joinpath('checkpoints/') checkpoints_dir.mkdir(exist_ok=True) log_dir = experiment_dir.joinpath('logs/') log_dir.mkdir(exist_ok=True) '''LOG''' args = parse_args() logger = logging.getLogger("Model") logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model)) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) log_string('PARAMETER ...') log_string(args) '''DATA LOADING''' log_string('Load dataset ...') DATA_PATH = 'data/modelnet40_normal_resampled/' TRAIN_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='train', normal_channel=args.normal) TEST_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='test', normal_channel=args.normal) trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4) testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4) '''MODEL LOADING''' num_class = 40 MODEL = importlib.import_module(args.model) shutil.copy('./models/%s.py' % args.model, str(experiment_dir)) shutil.copy('./models/pointnet_util.py', str(experiment_dir)) classifier = MODEL.get_model(num_class,normal_channel=args.normal).cuda() criterion = MODEL.get_loss().cuda() try: checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth') start_epoch = checkpoint['epoch'] classifier.load_state_dict(checkpoint['model_state_dict']) log_string('Use pretrain model') except: log_string('No existing model, starting training from scratch...') start_epoch = 0 if args.optimizer == 'Adam': optimizer = torch.optim.Adam( classifier.parameters(), lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.decay_rate ) else: optimizer = torch.optim.SGD(classifier.parameters(), lr=0.01, momentum=0.9) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.7) global_epoch = 0 global_step = 0 best_instance_acc = 0.0 best_class_acc = 0.0 mean_correct = [] '''TRANING''' logger.info('Start training...') for epoch in range(start_epoch,args.epoch): log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch)) scheduler.step() for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9): points, target = data points = points.data.numpy() points = provider.random_point_dropout(points) points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3]) points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3]) points = torch.Tensor(points) target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() optimizer.zero_grad() classifier = classifier.train() pred, trans_feat = classifier(points) loss = criterion(pred, target.long(), trans_feat) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.long().data).cpu().sum() mean_correct.append(correct.item() / float(points.size()[0])) loss.backward() optimizer.step() global_step += 1 train_instance_acc = np.mean(mean_correct) log_string('Train Instance Accuracy: %f' % train_instance_acc) with torch.no_grad(): instance_acc, class_acc = test(classifier.eval(), testDataLoader) if (instance_acc >= best_instance_acc): best_instance_acc = instance_acc best_epoch = epoch + 1 if (class_acc >= best_class_acc): best_class_acc = class_acc log_string('Test Instance Accuracy: %f, Class Accuracy: %f'% (instance_acc, class_acc)) log_string('Best Instance Accuracy: %f, Class Accuracy: %f'% (best_instance_acc, best_class_acc)) if (instance_acc >= best_instance_acc): logger.info('Save model...') savepath = str(checkpoints_dir) + '/best_model.pth' log_string('Saving at %s'% savepath) state = { 'epoch': best_epoch, 'instance_acc': instance_acc, 'class_acc': class_acc, 'model_state_dict': classifier.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), } torch.save(state, savepath) global_epoch += 1 logger.info('End of training...') if __name__ == '__main__': args = parse_args() main(args)
StarcoderdataPython
3215666
# -*- coding: utf-8 -*- r""" The set `\mathbb{P}^1(\QQ)` of cusps EXAMPLES:: sage: Cusps Set P^1(QQ) of all cusps :: sage: Cusp(oo) Infinity """ # **************************************************************************** # Copyright (C) 2005 <NAME> <<EMAIL>> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # https://www.gnu.org/licenses/ # **************************************************************************** from sage.rings.all import Rational, Integer, ZZ, QQ from sage.rings.infinity import Infinity, InfinityRing from sage.structure.parent import Parent from sage.misc.fast_methods import Singleton from sage.structure.element import Element, is_InfinityElement from sage.structure.richcmp import richcmp from sage.libs.pari.all import pari, pari_gen from sage.modular.modsym.p1list import lift_to_sl2z_llong from sage.structure.element import is_Matrix class Cusp(Element): """ A cusp. A cusp is either a rational number or infinity, i.e., an element of the projective line over Q. A Cusp is stored as a pair (a,b), where gcd(a,b)=1 and a,b are of type Integer. EXAMPLES:: sage: a = Cusp(2/3); b = Cusp(oo) sage: a.parent() Set P^1(QQ) of all cusps sage: a.parent() is b.parent() True """ def __init__(self, a, b=None, parent=None, check=True): r""" Create the cusp a/b in `\mathbb{P}^1(\QQ)`, where if b=0 this is the cusp at infinity. When present, b must either be Infinity or coercible to an Integer. EXAMPLES:: sage: Cusp(2,3) 2/3 sage: Cusp(3,6) 1/2 sage: Cusp(1,0) Infinity sage: Cusp(infinity) Infinity sage: Cusp(5) 5 sage: Cusp(1/2) 1/2 sage: Cusp(1.5) 3/2 sage: Cusp(int(7)) 7 sage: Cusp(1, 2, check=False) 1/2 sage: Cusp('sage', 2.5, check=False) # don't do this! sage/2.50000000000000 :: sage: I**2 -1 sage: Cusp(I) Traceback (most recent call last): ... TypeError: unable to convert I to a cusp :: sage: a = Cusp(2,3) sage: loads(a.dumps()) == a True :: sage: Cusp(1/3,0) Infinity sage: Cusp((1,0)) Infinity TESTS:: sage: Cusp("1/3", 5) 1/15 sage: Cusp(Cusp(3/5), 7) 3/35 sage: Cusp(5/3, 0) Infinity sage: Cusp(3,oo) 0 sage: Cusp((7,3), 5) 7/15 sage: Cusp(int(5), 7) 5/7 :: sage: Cusp(0,0) Traceback (most recent call last): ... TypeError: unable to convert (0, 0) to a cusp :: sage: Cusp(oo,oo) Traceback (most recent call last): ... TypeError: unable to convert (+Infinity, +Infinity) to a cusp :: sage: Cusp(Cusp(oo),oo) Traceback (most recent call last): ... TypeError: unable to convert (Infinity, +Infinity) to a cusp Conversion from PARI is supported (see :trac:`32091`):: sage: Cusp(pari.oo()) Infinity sage: Cusp(pari(2/3)) 2/3 """ if parent is None: parent = Cusps Element.__init__(self, parent) if not check: self.__a = a self.__b = b return if b is None: if isinstance(a, Integer): self.__a = a self.__b = ZZ.one() elif isinstance(a, Rational): self.__a = a.numer() self.__b = a.denom() elif (is_InfinityElement(a) or (isinstance(a, pari_gen) and a.type() == 't_INFINITY')): self.__a = ZZ.one() self.__b = ZZ.zero() elif isinstance(a, Cusp): self.__a = a.__a self.__b = a.__b elif isinstance(a, int): self.__a = ZZ(a) self.__b = ZZ.one() elif isinstance(a, (tuple, list)): if len(a) != 2: raise TypeError("unable to convert %r to a cusp" % a) if ZZ(a[1]) == 0: self.__a = ZZ.one() self.__b = ZZ.zero() return try: r = QQ((a[0], a[1])) self.__a = r.numer() self.__b = r.denom() except (ValueError, TypeError): raise TypeError("unable to convert %r to a cusp" % a) else: try: r = QQ(a) self.__a = r.numer() self.__b = r.denom() except (ValueError, TypeError): raise TypeError("unable to convert %r to a cusp" % a) return if is_InfinityElement(b): if is_InfinityElement(a) or (isinstance(a, Cusp) and a.is_infinity()): raise TypeError("unable to convert (%r, %r) to a cusp" % (a, b)) self.__a = ZZ.zero() self.__b = ZZ.one() return elif not b: if not a: raise TypeError("unable to convert (%r, %r) to a cusp" % (a, b)) self.__a = ZZ.one() self.__b = ZZ.zero() return if isinstance(a, (Integer, Rational)): r = a / ZZ(b) elif is_InfinityElement(a): self.__a = ZZ.one() self.__b = ZZ.zero() return elif isinstance(a, Cusp): if a.__b: r = a.__a / (a.__b * b) else: self.__a = ZZ.one() self.__b = ZZ.zero() return elif isinstance(a, int): r = ZZ(a) / b elif isinstance(a, (tuple, list)): if len(a) != 2: raise TypeError("unable to convert (%r, %r) to a cusp" % (a, b)) r = ZZ(a[0]) / (ZZ(a[1]) * b) else: try: r = QQ(a) / b except (ValueError, TypeError): raise TypeError("unable to convert (%r, %r) to a cusp" % (a, b)) self.__a = r.numer() self.__b = r.denom() def __hash__(self): """ EXAMPLES:: sage: hash(Cusp(1/3)) == hash((1,3)) True sage: hash(Cusp(oo)) == hash((1,0)) True """ return hash((self.__a, self.__b)) def _richcmp_(self, right, op): """ Compare the cusps ``self`` and ``right``. Comparison is as for rational numbers, except with the cusp oo greater than everything but itself. The ordering in comparison is only really meaningful for infinity or elements that coerce to the rationals. EXAMPLES:: sage: Cusp(2/3) == Cusp(oo) False sage: Cusp(2/3) < Cusp(oo) True sage: Cusp(2/3)> Cusp(oo) False sage: Cusp(2/3) > Cusp(5/2) False sage: Cusp(2/3) < Cusp(5/2) True sage: Cusp(2/3) == Cusp(5/2) False sage: Cusp(oo) == Cusp(oo) True sage: 19/3 < Cusp(oo) True sage: Cusp(oo) < 19/3 False sage: Cusp(2/3) < Cusp(11/7) True sage: Cusp(11/7) < Cusp(2/3) False sage: 2 < Cusp(3) True """ if not self.__b: s = Infinity else: s = self._rational_() if not right.__b: o = Infinity else: o = right._rational_() return richcmp(s, o, op) def is_infinity(self): """ Returns True if this is the cusp infinity. EXAMPLES:: sage: Cusp(3/5).is_infinity() False sage: Cusp(1,0).is_infinity() True sage: Cusp(0,1).is_infinity() False """ return not self.__b def numerator(self): """ Return the numerator of the cusp a/b. EXAMPLES:: sage: x=Cusp(6,9); x 2/3 sage: x.numerator() 2 sage: Cusp(oo).numerator() 1 sage: Cusp(-5/10).numerator() -1 """ return self.__a def denominator(self): """ Return the denominator of the cusp a/b. EXAMPLES:: sage: x=Cusp(6,9); x 2/3 sage: x.denominator() 3 sage: Cusp(oo).denominator() 0 sage: Cusp(-5/10).denominator() 2 """ return self.__b def _rational_(self): """ Coerce to a rational number. EXAMPLES:: sage: QQ(Cusp(oo)) Traceback (most recent call last): ... TypeError: cusp Infinity is not a rational number sage: QQ(Cusp(-3,7)) -3/7 sage: Cusp(11,2)._rational_() 11/2 """ try: return self.__rational except AttributeError: pass if not self.__b: raise TypeError("cusp %s is not a rational number" % self) self.__rational = self.__a / self.__b return self.__rational def _integer_(self, ZZ=None): """ Coerce to an integer. EXAMPLES:: sage: ZZ(Cusp(-19)) -19 sage: Cusp(4,2)._integer_() 2 :: sage: ZZ(Cusp(oo)) Traceback (most recent call last): ... TypeError: cusp Infinity is not an integer sage: ZZ(Cusp(-3,7)) Traceback (most recent call last): ... TypeError: cusp -3/7 is not an integer """ if self.__b != 1: raise TypeError("cusp %s is not an integer" % self) return self.__a def _repr_(self): """ String representation of this cusp. EXAMPLES:: sage: a = Cusp(2/3); a 2/3 sage: a._repr_() '2/3' sage: a.rename('2/3(cusp)'); a 2/3(cusp) """ if self.__b.is_zero(): return "Infinity" if self.__b != 1: return "%s/%s" % (self.__a, self.__b) else: return str(self.__a) def _latex_(self): r""" Latex representation of this cusp. EXAMPLES:: sage: latex(Cusp(-2/7)) \frac{-2}{7} sage: latex(Cusp(oo)) \infty sage: latex(Cusp(oo)) == Cusp(oo)._latex_() True """ if self.__b.is_zero(): return "\\infty" if self.__b != 1: return "\\frac{%s}{%s}" % (self.__a, self.__b) else: return str(self.__a) def __neg__(self): """ The negative of this cusp. EXAMPLES:: sage: -Cusp(2/7) -2/7 sage: -Cusp(oo) Infinity """ return Cusp(-self.__a, self.__b) def is_gamma0_equiv(self, other, N, transformation=None): r""" Return whether self and other are equivalent modulo the action of `\Gamma_0(N)` via linear fractional transformations. INPUT: - ``other`` - Cusp - ``N`` - an integer (specifies the group Gamma_0(N)) - ``transformation`` - None (default) or either the string 'matrix' or 'corner'. If 'matrix', it also returns a matrix in Gamma_0(N) that sends self to other. The matrix is chosen such that the lower left entry is as small as possible in absolute value. If 'corner' (or True for backwards compatibility), it returns only the upper left entry of such a matrix. OUTPUT: - a boolean - True if self and other are equivalent - a matrix or an integer- returned only if transformation is 'matrix' or 'corner', respectively. EXAMPLES:: sage: x = Cusp(2,3) sage: y = Cusp(4,5) sage: x.is_gamma0_equiv(y, 2) True sage: _, ga = x.is_gamma0_equiv(y, 2, 'matrix'); ga [-1 2] [-2 3] sage: x.is_gamma0_equiv(y, 3) False sage: x.is_gamma0_equiv(y, 3, 'matrix') (False, None) sage: Cusp(1/2).is_gamma0_equiv(1/3,11,'corner') (True, 19) sage: Cusp(1,0) Infinity sage: z = Cusp(1,0) sage: x.is_gamma0_equiv(z, 3, 'matrix') ( [-1 1] True, [-3 2] ) ALGORITHM: See Proposition 2.2.3 of Cremona's book 'Algorithms for Modular Elliptic Curves', or Prop 2.27 of Stein's Ph.D. thesis. """ if transformation not in [False, True, "matrix", None, "corner"]: raise ValueError("Value %s of the optional argument transformation is not valid.") if not isinstance(other, Cusp): other = Cusp(other) N = ZZ(N) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b zero = ZZ.zero() one = ZZ.one() if transformation == "matrix": from sage.matrix.constructor import matrix if v1 == v2 and u1 == u2: if not transformation: return True elif transformation == "matrix": return True, matrix(ZZ, [[1, 0], [0, 1]]) else: return True, one # a necessary, but not sufficient condition unless N is square-free if v1.gcd(N) != v2.gcd(N): if not transformation: return False else: return False, None if (u1, v1) != (zero, one): if v1 in [zero, one]: s1 = one else: s1 = u1.inverse_mod(v1) else: s1 = 0 if (u2, v2) != (zero, one): if v2 in [zero, one]: s2 = one else: s2 = u2.inverse_mod(v2) else: s2 = zero g = (v1 * v2).gcd(N) a = s1 * v2 - s2 * v1 if a % g != 0: if not transformation: return False else: return False, None if not transformation: return True # Now we know the cusps are equivalent. Use the proof of Prop 2.2.3 # of Cremona to find a matrix in Gamma_0(N) relating them. if v1 == 0: # the first is oo if v2 == 0: # both are oo if transformation == "matrix": return (True, matrix(ZZ, [[1, 0], [0, 1]])) else: return (True, one) else: dum, s2, r2 = u2.xgcd(-v2) assert dum.is_one() if transformation == "matrix": return (True, matrix(ZZ, [[u2, r2], [v2, s2]])) else: return (True, u2) elif v2 == 0: # the second is oo dum, s1, r1 = u1.xgcd(-v1) assert dum.is_one() if transformation == "matrix": return (True, matrix(ZZ, [[s1, -r1], [-v1, u1]])) else: return (True, s1) dum, s2, r2 = u2.xgcd(-v2) assert dum.is_one() dum, s1, r1 = u1.xgcd(-v1) assert dum.is_one() a = s1 * v2 - s2 * v1 assert (a % g).is_zero() # solve x*v1*v2 + a = 0 (mod N). d, x0, y0 = (v1 * v2).xgcd(N) # x0*v1*v2 + y0*N = d = g. # so x0*v1*v2 - g = 0 (mod N) x = -x0 * ZZ(a / g) # now x*v1*v2 + a = 0 (mod N) # the rest is all added in trac #10926 s1p = s1 + x * v1 M = N // g if transformation == "matrix": C = s1p * v2 - s2 * v1 if C % (M * v1 * v2) == 0: k = - C // (M * v1 * v2) else: k = - (C / (M * v1 * v2)).round() s1pp = s1p + k * M * v1 # C += k*M*v1*v2 # is now the smallest in absolute value C = s1pp * v2 - s2 * v1 A = u2 * s1pp - r2 * v1 r1pp = r1 + (x + k * M) * u1 B = r2 * u1 - r1pp * u2 D = s2 * u1 - r1pp * v2 ga = matrix(ZZ, [[A, B], [C, D]]) assert ga.det() == 1 assert C % N == 0 assert (A * u1 + B * v1) / (C * u1 + D * v1) == u2 / v2 return (True, ga) else: # mainly for backwards compatibility and # for how it is used in modular symbols A = (u2 * s1p - r2 * v1) if u2 != 0 and v1 != 0: A = A % (u2 * v1 * M) return (True, A) def is_gamma1_equiv(self, other, N): """ Return whether self and other are equivalent modulo the action of Gamma_1(N) via linear fractional transformations. INPUT: - ``other`` - Cusp - ``N`` - an integer (specifies the group Gamma_1(N)) OUTPUT: - ``bool`` - True if self and other are equivalent - ``int`` - 0, 1 or -1, gives further information about the equivalence: If the two cusps are u1/v1 and u2/v2, then they are equivalent if and only if v1 = v2 (mod N) and u1 = u2 (mod gcd(v1,N)) or v1 = -v2 (mod N) and u1 = -u2 (mod gcd(v1,N)) The sign is +1 for the first and -1 for the second. If the two cusps are not equivalent then 0 is returned. EXAMPLES:: sage: x = Cusp(2,3) sage: y = Cusp(4,5) sage: x.is_gamma1_equiv(y,2) (True, 1) sage: x.is_gamma1_equiv(y,3) (False, 0) sage: z = Cusp(QQ(x) + 10) sage: x.is_gamma1_equiv(z,10) (True, 1) sage: z = Cusp(1,0) sage: x.is_gamma1_equiv(z, 3) (True, -1) sage: Cusp(0).is_gamma1_equiv(oo, 1) (True, 1) sage: Cusp(0).is_gamma1_equiv(oo, 3) (False, 0) """ if not isinstance(other, Cusp): other = Cusp(other) N = ZZ(N) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b g = v1.gcd(N) if ((v2 - v1) % N == 0 and (u2 - u1) % g == 0): return True, 1 elif ((v2 + v1) % N == 0 and (u2 + u1) % g == 0): return True, -1 return False, 0 def is_gamma_h_equiv(self, other, G): r""" Return a pair (b, t), where b is True or False as self and other are equivalent under the action of G, and t is 1 or -1, as described below. Two cusps `u1/v1` and `u2/v2` are equivalent modulo Gamma_H(N) if and only if `v1 = h*v2 (\mathrm{mod} N)` and `u1 = h^{(-1)}*u2 (\mathrm{mod} gcd(v1,N))` or `v1 = -h*v2 (mod N)` and `u1 = -h^{(-1)}*u2 (\mathrm{mod} gcd(v1,N))` for some `h \in H`. Then t is 1 or -1 as c and c' fall into the first or second case, respectively. INPUT: - ``other`` - Cusp - ``G`` - a congruence subgroup Gamma_H(N) OUTPUT: - ``bool`` - True if self and other are equivalent - ``int`` - -1, 0, 1; extra info EXAMPLES:: sage: x = Cusp(2,3) sage: y = Cusp(4,5) sage: x.is_gamma_h_equiv(y,GammaH(13,[2])) (True, 1) sage: x.is_gamma_h_equiv(y,GammaH(13,[5])) (False, 0) sage: x.is_gamma_h_equiv(y,GammaH(5,[])) (False, 0) sage: x.is_gamma_h_equiv(y,GammaH(23,[4])) (True, -1) Enumerating the cusps for a space of modular symbols uses this function. :: sage: G = GammaH(25,[6]) ; M = G.modular_symbols() ; M Modular Symbols space of dimension 11 for Congruence Subgroup Gamma_H(25) with H generated by [6] of weight 2 with sign 0 over Rational Field sage: M.cusps() [8/25, 1/3, 6/25, 1/4, 1/15, -7/15, 7/15, 4/15, 1/20, 3/20, 7/20, 9/20] sage: len(M.cusps()) 12 This is always one more than the associated space of weight 2 Eisenstein series. :: sage: G.dimension_eis(2) 11 sage: M.cuspidal_subspace() Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 11 for Congruence Subgroup Gamma_H(25) with H generated by [6] of weight 2 with sign 0 over Rational Field sage: G.dimension_cusp_forms(2) 0 """ from sage.modular.arithgroup.all import is_GammaH if not isinstance(other, Cusp): other = Cusp(other) if not is_GammaH(G): raise TypeError("G must be a group GammaH(N).") H = G._list_of_elements_in_H() N = ZZ(G.level()) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b g = v1.gcd(N) for h in H: v_tmp = (h * v1) % N u_tmp = (h * u2) % N if (v_tmp - v2) % N == 0 and (u_tmp - u1) % g == 0: return True, 1 if (v_tmp + v2) % N == 0 and (u_tmp + u1) % g == 0: return True, -1 return False, 0 def _acted_upon_(self, g, self_on_left): r""" Implement the left action of `SL_2(\ZZ)` on self. EXAMPLES:: sage: g = matrix(ZZ, 2, [1,1,0,1]); g [1 1] [0 1] sage: g * Cusp(2,5) 7/5 sage: Cusp(2,5) * g Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for *: 'Set P^1(QQ) of all cusps' and 'Full MatrixSpace of 2 by 2 dense matrices over Integer Ring' sage: h = matrix(ZZ, 2, [12,3,-100,7]) sage: h * Cusp(2,5) -13/55 sage: Cusp(2,5)._acted_upon_(h, False) -13/55 sage: (h*g) * Cusp(3,7) == h * (g * Cusp(3,7)) True sage: cm = sage.structure.element.get_coercion_model() sage: cm.explain(MatrixSpace(ZZ, 2), Cusps) Action discovered. Left action by Full MatrixSpace of 2 by 2 dense matrices over Integer Ring on Set P^1(QQ) of all cusps Result lives in Set P^1(QQ) of all cusps Set P^1(QQ) of all cusps """ if not self_on_left: if (is_Matrix(g) and g.base_ring() is ZZ and g.ncols() == 2 == g.nrows()): a, b, c, d = g.list() return Cusp(a * self.__a + b * self.__b, c * self.__a + d * self.__b) def apply(self, g): """ Return g(self), where g=[a,b,c,d] is a list of length 4, which we view as a linear fractional transformation. EXAMPLES: Apply the identity matrix:: sage: Cusp(0).apply([1,0,0,1]) 0 sage: Cusp(0).apply([0,-1,1,0]) Infinity sage: Cusp(0).apply([1,-3,0,1]) -3 """ return Cusp(g[0] * self.__a + g[1] * self.__b, g[2] * self.__a + g[3] * self.__b) def galois_action(self, t, N): r""" Suppose this cusp is `\alpha`, `G` a congruence subgroup of level `N` and `\sigma` is the automorphism in the Galois group of `\QQ(\zeta_N)/\QQ` that sends `\zeta_N` to `\zeta_N^t`. Then this function computes a cusp `\beta` such that `\sigma([\alpha]) = [\beta]`, where `[\alpha]` is the equivalence class of `\alpha` modulo `G`. This code only needs as input the level and not the group since the action of Galois for a congruence group `G` of level `N` is compatible with the action of the full congruence group `\Gamma(N)`. INPUT: - `t` -- integer that is coprime to N - `N` -- positive integer (level) OUTPUT: - a cusp .. WARNING:: In some cases `N` must fit in a long long, i.e., there are cases where this algorithm isn't fully implemented. .. NOTE:: Modular curves can have multiple non-isomorphic models over `\QQ`. The action of Galois depends on such a model. The model over `\QQ` of `X(G)` used here is the model where the function field `\QQ(X(G))` is given by the functions whose Fourier expansion at `\infty` have their coefficients in `\QQ`. For `X(N):=X(\Gamma(N))` the corresponding moduli interpretation over `\ZZ[1/N]` is that `X(N)` parametrizes pairs `(E,a)` where `E` is a (generalized) elliptic curve and `a: \ZZ / N\ZZ \times \mu_N \to E` is a closed immersion such that the Weil pairing of `a(1,1)` and `a(0,\zeta_N)` is `\zeta_N`. In this parameterisation the point `z \in H` corresponds to the pair `(E_z,a_z)` with `E_z=\CC/(z \ZZ+\ZZ)` and `a_z: \ZZ / N\ZZ \times \mu_N \to E` given by `a_z(1,1) = z/N` and `a_z(0,\zeta_N) = 1/N`. Similarly `X_1(N):=X(\Gamma_1(N))` parametrizes pairs `(E,a)` where `a: \mu_N \to E` is a closed immersion. EXAMPLES:: sage: Cusp(1/10).galois_action(3, 50) 1/170 sage: Cusp(oo).galois_action(3, 50) Infinity sage: c=Cusp(0).galois_action(3, 50); c 50/17 sage: Gamma0(50).reduce_cusp(c) 0 Here we compute the permutations of the action for t=3 on cusps for Gamma0(50). :: sage: N = 50; t=3; G = Gamma0(N); C = G.cusps() sage: cl = lambda z: exists(C, lambda y:y.is_gamma0_equiv(z, N))[1] sage: for i in range(5): ....: print((i, t^i)) ....: print([cl(alpha.galois_action(t^i,N)) for alpha in C]) (0, 1) [0, 1/25, 1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10, Infinity] (1, 3) [0, 1/25, 7/10, 2/5, 1/10, 4/5, 1/2, 1/5, 9/10, 3/5, 3/10, Infinity] (2, 9) [0, 1/25, 9/10, 4/5, 7/10, 3/5, 1/2, 2/5, 3/10, 1/5, 1/10, Infinity] (3, 27) [0, 1/25, 3/10, 3/5, 9/10, 1/5, 1/2, 4/5, 1/10, 2/5, 7/10, Infinity] (4, 81) [0, 1/25, 1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10, Infinity] TESTS: Here we check that the Galois action is indeed a permutation on the cusps of Gamma1(48) and check that :trac:`13253` is fixed. :: sage: G = Gamma1(48) sage: C = G.cusps() sage: for i in Integers(48).unit_gens(): ....: C_permuted = [G.reduce_cusp(c.galois_action(i,48)) for c in C] ....: assert len(set(C_permuted))==len(C) We test that Gamma1(19) has 9 rational cusps and check that :trac:`8998` is fixed. :: sage: G = Gamma1(19) sage: [c for c in G.cusps() if c.galois_action(2,19).is_gamma1_equiv(c,19)[0]] [2/19, 3/19, 4/19, 5/19, 6/19, 7/19, 8/19, 9/19, Infinity] REFERENCES: - Section 1.3 of Glenn Stevens, "Arithmetic on Modular Curves" - There is a long comment about our algorithm in the source code for this function. AUTHORS: - <NAME>, 2009-04-18 """ if self.is_infinity(): return self if not isinstance(t, Integer): t = Integer(t) # Our algorithm for computing the Galois action works as # follows (see Section 1.3 of Glenn Stevens "Arithmetic on # Modular Curves" for a proof that the action given below is # correct). We alternatively view the set of cusps as the # Gamma-equivalence classes of column vectors [a;b] with # gcd(a,b,N)=1, and the left action of Gamma by matrix # multiplication. The action of t is induced by [a;b] |--> # [a;t'*b], where t' is an inverse mod N of t. For [a;t'*b] # with gcd(a,t'*b)==1, the cusp corresponding to [a;t'*b] is # just the rational number a/(t'*b). Thus in this case, to # compute the action of t we just do a/b <--> [a;b] |---> # [a;t'*b] <--> a/(t'*b). IN the other case when we get # [a;t'*b] with gcd(a,t'*b) != 1, which can and does happen, # we have to work a bit harder. We need to find [c;d] such # that [c;d] is congruent to [a;t'*b] modulo N, and # gcd(c,d)=1. There is a standard lifting algorithm that is # implemented for working with P^1(Z/NZ) [it is needed for # modular symbols algorithms], so we just apply it to lift # [a,t'*b] to a matrix [A,B;c,d] in SL_2(Z) with lower two # entries congruent to [a,t'*b] modulo N. This exactly solves # our problem, since gcd(c,d)=1. a = self.__a b = self.__b * t.inverse_mod(N) if b.gcd(a) != 1: _, _, a, b = lift_to_sl2z_llong(a, b, N) a = Integer(a) b = Integer(b) # Now that we've computed the Galois action, we efficiently # construct the corresponding cusp as a Cusp object. return Cusp(a, b, check=False) def __pari__(self): """ Return a PARI representation of ``self``. EXAMPLES:: sage: Cusp(1, 0).__pari__() +oo sage: pari(Cusp(3, 2)) 3/2 """ b = self.__b return pari(self.__a / b) if b else pari.oo() class Cusps_class(Singleton, Parent): """ The set of cusps. EXAMPLES:: sage: C = Cusps; C Set P^1(QQ) of all cusps sage: loads(C.dumps()) == C True """ def __init__(self): r""" The set of cusps, i.e. `\mathbb{P}^1(\QQ)`. EXAMPLES:: sage: C = sage.modular.cusps.Cusps_class() ; C Set P^1(QQ) of all cusps sage: Cusps == C True """ Parent.__init__(self, self) Element = Cusp def _repr_(self): """ String representation of the set of cusps. EXAMPLES:: sage: Cusps Set P^1(QQ) of all cusps sage: Cusps._repr_() 'Set P^1(QQ) of all cusps' sage: Cusps.rename('CUSPS'); Cusps CUSPS sage: Cusps.rename(); Cusps Set P^1(QQ) of all cusps sage: Cusps Set P^1(QQ) of all cusps """ return "Set P^1(QQ) of all cusps" def _latex_(self): r""" Return latex representation of self. EXAMPLES:: sage: latex(Cusps) \mathbf{P}^1(\QQ) sage: latex(Cusps) == Cusps._latex_() True """ return r"\mathbf{P}^1(\QQ)" def __call__(self, x): """ Coerce x into the set of cusps. EXAMPLES:: sage: a = Cusps(-4/5); a -4/5 sage: Cusps(a) is a False sage: Cusps(1.5) 3/2 sage: Cusps(oo) Infinity sage: Cusps(I) Traceback (most recent call last): ... TypeError: unable to convert I to a cusp TESTS:: sage: Cusps.has_coerce_map_from(ZZ) True sage: Cusps.has_coerce_map_from(QQ) True sage: Cusps.has_coerce_map_from(GF(7)) False """ return Cusp(x) def _coerce_map_from_(self, R): if QQ.has_coerce_map_from(R): return True if R is InfinityRing: return True return False def _element_constructor_(self, x): return Cusp(x) Cusps = Cusps_class()
StarcoderdataPython
36201
# -*- coding: utf-8 -*- ############################################################################## # Author:QQ173782910 ############################################################################## import logging from apscheduler.schedulers.background import BlockingScheduler from RunUse import TradeRun format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=format, filename='log_print.txt') logger = logging.getLogger('print') logging.getLogger("apscheduler").setLevel(logging.WARNING) # 设置apscheduler. if __name__ == '__main__': RunTrade = TradeRun() scheduler = BlockingScheduler() # 定时的任务. scheduler.add_job(RunTrade.get_kline_data, trigger='cron', second='*/2') # 主计算k线 scheduler.add_job(RunTrade.get_open_orders, trigger='cron', second='*/2') # 未成交单 scheduler.add_job(RunTrade.get_position, trigger='cron', second='*/1') # 仓位 scheduler.start()
StarcoderdataPython
3345664
<reponame>cuappdev/archives<filename>tempo-api/src/app/base.py from marshmallow_sqlalchemy import ModelSchema from . import db class Base(db.Model): __abstract__ = True created_at = db.Column(db.DateTime, default = db.func.current_timestamp()) updated_at = db.Column(db.DateTime, default = db.func.current_timestamp())
StarcoderdataPython
1782292
import numpy as np import matplotlib.pyplot as plt from math import pi, cos from scipy import loadtxt, optimize import os M = 1.41 plt.figure(figsize=(10,7), dpi=80) ax = plt.axes() dat = loadtxt("./particles/particles.tsv", skiprows=0, delimiter="\t") t = dat.transpose()[0] tracers = dat.transpose()[1:] r_max = tracers.max() ax.axis([0, r_max * 1.1 / M, 0, t.max() * 1.0]) for i in range(0, len(tracers)): ax.plot(tracers[i] / M, t, label = r"m/M = {}".format((i+1)*0.2)) plot_name = r"Particle world lines" ax.set_title(plot_name) ax.set_xlabel("r/M") ax.set_ylabel("t") ax.legend() plt.show()
StarcoderdataPython
3309142
<reponame>Corleo/st_settings import re import sublime import sublime_plugin # for debugging # sublime.log_commands(True) # pattern = re.compile(r".*test.*") # match # pattern = re.compile('(?!.*(?:test)).*') # don't match class CustomBuildSystemCommand(sublime_plugin.WindowCommand): def run(self, *args, **kwargs): params = self.window.extract_variables() # print(params) if params['file_extension'] == "py": if re.match(r".*test.*", params['file_name']): variant = "pytest" else: variant = "run" self.window.run_command("build", { "build_system": "Packages/User/py3k.sublime-build", "choice_build_system": "true", "choice_variant": "true", "variant": "{}".format(variant) } ) else: # run regular build command self.window.run_command("build") # params = { # "packages": "~/.config/sublime-text-3/Packages", # "file_name": "custom_buildSystem.py", # "file": "~/.config/sublime-text-3/Packages/User/custom_buildSystem.py", # "file_extension": "py", # "platform": "Linux", # "file_base_name": "custom_buildSystem", # "file_path": "~/.config/sublime-text-3/Packages/User" # }
StarcoderdataPython
4831196
money=float(input('Quanto voce quer converter ')) dolar= money /3.91 print ('voce tem R$ {:.2f} reais ,convertido em dolar são $ {:.2f} dolares'.format(money,dolar))
StarcoderdataPython
178793
from scrapy_scylla_proxies.random_proxy import RandomProxyMiddleware
StarcoderdataPython
155616
## @package AssociateJoint Association joint that used by gait recorder ## The class that has all the information about associations class AssociateJoint: ## Constructor # @param self Object pointer # @param module Module name string # @param node Node index # @param corr Bool, correaltion: True for positive; False for negtive # @param ratio Correlation ratio def __init__(self, module, node, corr, ratio): ## Module name string self.ModuleName = module # name string ## Node index self.Node = node ## Correlation boolean value self.Correlation = corr # bool value ## Correlation ratio self.Ratio = ratio ## Current object to string # @param self Object pointer def ToString(self): return self.ModuleName+"::"+self.NodeToString(self.Node)+"::"+ \ self.CorrelationToStr(self.Correlation)+"::"+str(self.Ratio) ## Find node string name given node index # @param self Object pointer # @param node Integer, node indez def NodeToString(self, node): if node == 0: return "Front Wheel" if node == 1: return "Lft Wheel" if node == 2: return "Rgt Wheel" if node == 3: return "Central Bending" ## Correlation boolean value to string # @param self Object pointer # @param corr Correlation boolean def CorrelationToStr(self,corr): if corr: return "+" else: return "-"
StarcoderdataPython
1758335
#!/usr/bin/python # -*- coding: utf-8 -*- """ Convert the *DECOW14X* corpus into a plain text file. Is used as pre-processing step for the `word2vec <https://code.google.com/archive/p/word2vec/>`_ training. To make this this more feasible (decow is a **huge** corpus), python's :mod:`multiprocessing` is used, s.t. every part of the corpus in simultaneously processed. Afterwards, a bash command like ``cat`` can be used to merge into one single file. """ # STANDARD import codecs import gzip as gz import multiprocessing import optparse import os import re # PROJECT from src.misc.decorators import log_time from src.misc.helpers import alt, contains_tag, extract_sentence_id def main(): """ Main function. Uses command lines to start corpus processing. """ optparser = optparse.OptionParser() optparser.add_option('--in', dest='in_dir', help='Path to input directory') optparser.add_option('--out', dest='out', help='Path to output directory') optparser.add_option('--merge', dest='merge', action="store_true", help='Merge multi-word named entities?') optparser.add_option('--log', dest='log', help='Path to logfile') optparser.add_option('--log_interval', dest='inter', type='int', help='Logging interval') (options, args) = optparser.parse_args() convert_decow_to_plain(options.in_dir, options.out, options.log, options.merge, options.inter) def convert_decow_to_plain(decow_dir, out_dir, log_path, merge_nes, log_interval): """ Convert the whole corpus into plain text. Args: decow_dir (str): Path to directory with decow corpus paths. out_dir (str): Path where plain text parts should be written to. log_path (str): Path where the log files should be written to. merge_nes (bool): Flag to indicate whether multi-word expression should be merged with underscores. log_interval (int): Interval to log current process state in seconds. """ # Split logging interval into hourse - minutes - seconds m_proc, s_proc = divmod(log_interval, 60) h_proc, m_proc = divmod(m_proc, 60) # Init logfile with codecs.open(log_path, "a", "utf-8") as log_file: log_file.write(alt("Starting logging...\n")) log_file.write(alt("Corpus (parts) directory:\t%s\n" % decow_dir)) log_file.write(alt("Output directory:\t\t%s\n" % out_dir)) log_file.write(alt("Logging path:\t\t%s\n" % log_path)) log_file.write(alt("Logging intervals:\n\t Every %2dh %2dm %2ds for metalog\n" % (h_proc, m_proc, s_proc))) # Start processes @log_time(log_path, log_interval) def _convert_decow_to_plain(decow_dir, out_dir, log_path, merge_nes, log_interval): with codecs.open(log_path, "a", "utf-8") as log_file: log_file.write(alt("Preparing %i process(es)...\n" %(len(decow_dir)))) inpaths = [path for path in os.listdir(decow_dir) if ".DS_Store" not in path and "decow" in path] pool = multiprocessing.Pool(processes=len(inpaths)) log_file.write(alt("Starting process(es)!\n")) if merge_nes: pool.map(convert_part_merging, [(decow_dir + inpath, out_dir, log_path, log_interval) for inpath in inpaths]) else: pool.map(convert_part, [(decow_dir + inpath, out_dir, log_path, log_interval) for inpath in inpaths]) _convert_decow_to_plain(decow_dir, out_dir, log_path, merge_nes, log_interval) def convert_part(argstuple): """ Convert a corpus part into plain text without merging multiple word entries. Args: argstuple: Tuple of methods arguments (``inpath`` (*str*): Path to this processes' corpus part / ``dir_outpath`` (*str*): Path to this processes' output / ``log_path`` (*str*): Path to this processes' log / ``interval`` (*int*): Logging interval in seconds) """ inpath, dir_outpath, log_path, interval = argstuple @log_time(log_path, interval) def _convert_part(inpath, dir_outpath): file_n = get_file_number(inpath) outpath = dir_outpath + 'decow%s_out.txt' %(str(file_n)) with gz.open(inpath, 'rb') as infile, codecs.open(outpath, 'wb', 'utf-8') as outfile: sentence = [] for line in infile: line = line.strip().decode("utf-8") if line.startswith(u'<s'): outfile.write('%s\n' %(' '.join(sentence))) sentence = [] if not line.startswith(u'<'): sentence.append(line.split('\t')[0]) _convert_part(inpath, dir_outpath) def convert_part_merging(argstuple): """ Convert a corpus part into plain text and merging multiple word entries. Args: argstuple: Tuple of methods arguments (``inpath`` (*str*): Path to this processes' corpus part / ``dir_outpath`` (*str*): Path to this processes' output / ``log_path`` (*str*): Path to this processes' log / ``interval`` (*int*): Logging interval in seconds) """ inpath, dir_outpath, log_path, interval = argstuple @log_time(log_path, interval) def _convert_part_merging(inpath, dir_outpath, log_path): with codecs.open(log_path, "a", "utf-8") as log_file: process_name = multiprocessing.current_process().name log_file.write(alt("%s: Start logging processing of\n\t%s to \n\t%s...\n" % (process_name, inpath, dir_outpath))) file_n = get_file_number(inpath) outpath = dir_outpath + 'decow%s_out.txt' %(str(file_n)) with gz.open(inpath, 'rb') as infile, codecs.open(outpath, 'wb', 'utf-8') as outfile: sentence = [] line, lcount = infile.readline().strip().decode("utf-8"), 1 while line != "": if lcount % 100000 == 0: log_file.write(alt("%s: Processing line nr. %i...\n" % (process_name, lcount))) ne = extract_named_entity(line) # Extract possible named entity if line.startswith(u'<s'): outfile.write('%s\n' %(' '.join(sentence))) sentence = [] # If there was a named entity found, try to complete it if it's a multi-word expression elif ne is not None: while True: next_line = infile.readline().strip().decode("utf-8") lcount += 1 if not contains_tag(next_line): next_ne = extract_named_entity(next_line) if next_ne is not None and next_ne[1] == ne[1]: ne = ("%s_%s" %(ne[0], next_ne[0]), ne[1]) else: break else: break sentence.append(ne[0]) line = next_line continue elif not line.startswith(u'<'): sentence.append(line.split('\t')[0]) line, lcount = infile.readline().strip().decode("utf-8"), lcount + 1 _convert_part_merging(inpath, dir_outpath, log_path) def get_file_number(filename): """ Get the number of the current decow corpus part. Args: filename (str): Decow corpus part file name Returns: str: File number """ file_n = re.findall(re.compile("\d{2}(?=[^a])"), filename) # Retrieve file number if len(file_n) == 0: file_n = re.findall(re.compile("\d+"), filename)[len(file_n) - 1] else: file_n = file_n[len(file_n) - 1] return file_n if int(file_n) > 9 else "0" + file_n def extract_named_entity(line): """ Extract named entity from current line. Args: line (str): Current line Returns: str or None: Extracted named entity or None if no named entity is present. """ try: line_parts = line.split("\t") feature = line_parts[3] if feature != "O": return line_parts[2], line_parts[3] except IndexError: return None if __name__ == '__main__': main()
StarcoderdataPython
120178
<reponame>chulth/CRide '''users app.''' # Django #from django.app import AppConfig from django.apps import AppConfig class UsersAppConfig(AppConfig): '''users app config.''' name = 'cride.users' verbose_name = 'Users'
StarcoderdataPython
141882
<gh_stars>0 # Generated by Django 2.2.1 on 2019-05-26 03:44 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20190525_2338'), ] operations = [ migrations.RenameField( model_name='customuser', old_name='reputation', new_name='reputation_count', ), migrations.AddField( model_name='customuser', name='total_answers', field=models.IntegerField(default=0), ), migrations.AddField( model_name='customuser', name='total_questions', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='customuser', name='user', field=models.OneToOneField(on_delete='models.CASCADE', to=settings.AUTH_USER_MODEL), ), ]
StarcoderdataPython
3249885
#!/usr/bin/env python # Run the tests as below from the root folder of this python project: # cd [THE_ROOT_FOLDER] # python -m unittest discover -s tests """Tests for `epsg_constants` package.""" import unittest from epsg_constants.epsg_number import EpsgNumber class TestEpsg_constants(unittest.TestCase): """Tests for `epsg_constants` package.""" def test_someConstants(self): self.assertEqual( EpsgNumber.WORLD__WGS_84__4326, 4326 ) self.assertEqual( EpsgNumber.SWEDEN__SWEREF99_TM__3006, 3006 ) self.assertEqual( EpsgNumber.SWEDEN__12_00__SWEREF99_12_00__3007, 3007 )
StarcoderdataPython
1766044
# Initial imports import pandas as pd import numpy as np import datetime as dt from pathlib import Path %matplotlib inline # Reading whale returns # Rading the whale returs dataset using the pandas built in function read_csv and converting the Date column into datetime format. df = pd.read_csv('./Resources/whale_returns.csv',index_col="Date", parse_dates=True, infer_datetime_format=True) df.sort_index(axis=0) # Count nulls # Checking the null values and counting them using pandas built in function sum. df.isnull().sum().sum() # Drop nulls # Droping the row which contain null values using pandas build in function dropna. df.dropna(inplace=True) # Reading algorithmic returns # Rading the algorithmic returns dataset using the pandas built in function read_csv and converting the Date column into datetime format. df_algo = pd.read_csv('./Resources/algo_returns.csv',index_col="Date", parse_dates=True, infer_datetime_format=True) df_algo.sort_index(axis=0) # Count nulls # Checking the null values and counting them using pandas built in function sum. df_algo.isnull().sum().sum() # Drop nulls # Droping the row which contain null values using pandas build in function dropna. df_algo.dropna(inplace=True) # Reading S&P 500 Closing Prices # Rading the S&P 500 Closing Prices dataset using the pandas built in function read_csv and converting the Date column into datetime format df_SP = pd.read_csv('./Resources/sp500_history.csv',index_col="Date", parse_dates=True, infer_datetime_format=True) df_SP['Close'] = df_SP['Close'] df_SP.sort_index(axis=0) # Check Data Types # Checking the data type of the specific column using the dtype. data_type=df_SP['Close'].dtype # Fix Data Types # Removing the special character from the Close column and converting it into float. df_SP['Close'] = df_SP['Close'].str.replace(r'\D','').astype(float) # Calculate Daily Returns # Calculating the daily returns using the pct_change function. df_SP['Close'] = df_SP['Close'].pct_change() # Drop nulls # Droping the row which contain null values using pandas build in function dropna. df_SP.dropna(inplace=True)
StarcoderdataPython
1769215
<reponame>fish159753/python_projects<filename>coin_flip_runs.py """ File: coin_flip_runs.py Name: <NAME> ----------------------- This program should simulate coin flip(s) with the number of runs input by users. A 'run' is defined as consecutive results on either 'H' or 'T'. For example, 'HHHHHTHTT' is regarded as a 2-run result. Your program should stop immediately after your coin flip results reach the runs! """ import random as r def main(): """ The same number is regarded as a run. Decide what you want the run is. """ print("Let's flip a coin!") num_run = int(input('Number of runs: ')) run = 0 is_in_a_row = False # To tell the number in a row. roll1 = r.randint(1, 2) if roll1 == 1: print('H', end='') else: print('T', end='') while True: if run != num_run: roll2 = r.randint(1, 2) if roll2 == 1: print('H', end='') else: print('T', end='') if roll1 == roll2: if not is_in_a_row: # The latter number is like the former number. run += 1 is_in_a_row = True # Avoid the same pair of the run, to effect the run number. else: is_in_a_row = False roll1 = roll2 else: break ###### DO NOT EDIT CODE BELOW THIS LINE ###### if __name__ == "__main__": main()
StarcoderdataPython
1665837
""" Project.x Author: <NAME> """ from __future__ import print_function, absolute_import from six import iteritems from six.moves import range import ast from types import ModuleType, FunctionType # noinspection PyUnresolvedReferences from six.moves import builtins import math import keyword _builtins = dir(builtins) _builtins.extend(dir(math)) _builtins.extend(keyword.kwlist) _builtins = set(_builtins) def parse_equation_01(eqn_str, func_name='function_name'): eqn_str = eqn_str.replace("'", "").replace('{', '').replace('}', '').replace('=', '').replace('^', '**') vars = [ node.id for node in ast.walk(ast.parse(eqn_str)) if isinstance(node, ast.Name) ] vars_ = list(vars) for var in vars_: if var in _builtins: vars.remove(var) eqn_str = """from math import *\ndef %s%s:\n return %s""" % (func_name, str(tuple(vars)).replace("'", ""), eqn_str) # print(eqn_str) try: compiled = compile(eqn_str, '', 'exec') except Exception: print(1) return None, None module = ModuleType(func_name) try: exec(compiled, module.__dict__) except Exception: print(2) return None, None _function = getattr(module, func_name) if not isinstance(_function, FunctionType): print(3) return None, None return _function, vars if __name__ == '__main__': eqn = "max(0, 1)" print(parse_equation_01(eqn)[0]())
StarcoderdataPython
3200521
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os import random import tempfile import unittest from . import train class TrainTest(unittest.TestCase): def setUp(self): self.job_dir = tempfile.mkdtemp() self.num_checkpoints = 10 self.checkpoint_files = [] self.checkpoint_steps = 100 self.test_job_dir = tempfile.mkdtemp() self.test_job_file_glob = os.path.join(self.test_job_dir, "*") # Note that hyperparameters are intended to be constant across checkpoints self.hyperparameter_1 = 17 self.hyperparameter_2 = 3.14159 for i in range(self.num_checkpoints): path = os.path.join( self.job_dir, "dummy-checkpoint-{}.json".format(i) ) checkpoint_data = { "steps": i*self.checkpoint_steps, "hyperparameters": { "hyperparameter_1": self.hyperparameter_1, "hyperparameter_2": self.hyperparameter_2 }, "model": random.random() } with open(path, "w") as fp: json.dump(checkpoint_data, fp) self.checkpoint_files.append(path) self.garbage_file = os.path.join(self.job_dir, "garbage") with open(self.garbage_file, "w") as gf: gf.write("garbage") def tearDown(self): os.remove(self.garbage_file) for path in self.checkpoint_files: os.remove(path) os.rmdir(self.job_dir) test_job_files = glob.glob(self.test_job_file_glob) for path in test_job_files: os.remove(path) os.rmdir(self.test_job_dir) def test_get_checkpoints(self): checkpoints = train.get_checkpoints(self.job_dir) self.assertSetEqual(set(checkpoints), set(self.checkpoint_files)) def test_checkpoint_index(self): indices = map(train.checkpoint_index, self.checkpoint_files) self.assertListEqual(indices, range(self.num_checkpoints)) def test_latest_checkpoint_1(self): latest_checkpoint = train.latest_checkpoint( random.sample(self.checkpoint_files, self.num_checkpoints) ) self.assertEqual( latest_checkpoint, (self.checkpoint_files[-1], self.num_checkpoints-1) ) def test_latest_checkpoint_2(self): latest_checkpoint = train.latest_checkpoint([]) self.assertEqual(latest_checkpoint, (None, None)) def test_save_checkpoint(self): self.assertEqual(len(glob.glob(self.test_job_file_glob)), 0) checkpoint_data = { "test_key": "test_value" } checkpoint_file = train.save_checkpoint( self.test_job_dir, 1, checkpoint_data ) self.assertEqual(len(glob.glob(self.test_job_file_glob)), 1) with open(checkpoint_file) as fp: saved_object = json.load(fp) self.assertDictEqual(saved_object, checkpoint_data) def test_runner(self): self.assertEqual(len(glob.glob(self.test_job_file_glob)), 0) hyperparameters = { "hyperparameter_1": self.hyperparameter_1, "hyperparameter_2": self.hyperparameter_2 } train_steps = 100 checkpoint_steps = 10 train.runner( train.generate_trainer, self.test_job_dir, train_steps, checkpoint_steps, hyperparameters ) self.assertEqual( len(glob.glob(self.test_job_file_glob)), int(train_steps/checkpoint_steps) + 1 ) if __name__ == "__main__": unittest.main()
StarcoderdataPython
82687
#!/usr/bin/env python3 """Tools to generate a Snakemake-based BIDS app.""" import os import pathlib import subprocess import argparse import logging import sys import yaml import bids import snakemake from snakemake.io import load_configfile # We define Path here in addition to pathlib to put both variables in globals() # This way, users specifying a path type in their config.yaml can indicate # either Path or pathlib.Path Path = pathlib.Path bids.config.set_option("extension_initial_dot", True) logger = logging.Logger(__name__) class ConfigError(Exception): """Exception raised for errors with the Snakebids config.""" def __init__(self, msg): self.msg = msg Exception.__init__() class KeyValue(argparse.Action): """Class for accepting key=value pairs in argparse""" # Constructor calling def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, dict()) for value in values: # split it into key and value key, value = value.split("=") # assign into dictionary getattr(namespace, self.dest)[key] = value class SnakemakeHelpAction(argparse.Action): """Class for printing snakemake usage in argparse""" def __call__(self, parser, namespace, values, option_string=None): run("snakemake -h") sys.exit(0) def run(command, env=None): """Helper function for running a system command while merging stderr/stdout to stdout. Parameters ---------- command : list of str command to run env : dict, optional environment variable to set before running the command """ if env is None: env = {} merged_env = os.environ merged_env.update(env) process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, env=merged_env, ) while True: line = process.stdout.readline() line = str(line, "utf-8")[:-1] print(line) if line == "" and process.poll() is not None: break if process.returncode != 0: raise Exception("Non zero return code: %d" % process.returncode) def get_time_hash(): """ currently unused """ import hashlib import time hash = hashlib.sha1() hash.update(str(time.time()).encode('utf-8')) return hash.hexdigest()[:8] def resolve_path(path_candidate): """Helper function to resolve any paths or list of paths it's passed. Otherwise, returns the argument unchanged. Parameters ---------- command : list, os.Pathlike, object command to run Returns ------- list, os.Pathlike, object If os.Pathlike or list of os.Pathlike, the same paths resolved. Otherwise, the argument unchanged. """ if isinstance(path_candidate, list): return [resolve_path(p) for p in path_candidate] if isinstance(path_candidate, os.PathLike): return path_candidate.resolve() return path_candidate SNAKEFILE_CHOICES = [ "Snakefile", "snakefile", "workflow/Snakefile", "workflow/snakefile", ] CONFIGFILE_CHOICES = [ "config/snakebids.yml", "config/snakebids.json", "snakebids.yml", "snakebids.json", "config.yml", "config.json", "config/config.json", "config/config.yml"] class SnakeBidsApp: """Snakebids app with config and arguments. Parameters ---------- snakemake_dir : str Root directory of the snakebids app, containing the config file and workflow files. skip_parse_args : bool, optional If true, the Snakebids app will not attempt to parse input arguments, and will only handle the config file. out_configfile : str Path to the updated configfile (YAML or JSON), relative to the output working directory. This should be the same as the `configfile: ` used in your workflow. (default: 'config/snakebids.yml') Attributes ---------- config : dict Contains all the configuration variables parsed from the config file and generated during the initialization of the SnakeBidsApp. parser_include_snakemake : ArgumentParser Parser including the generic Snakemake parser as a parent. This will contain all arguments a Snakemake app can receive. parser : ArgumentParser Parser including only the arguments specific to this Snakebids app, as specified in the config file. snakefile : str Absolute path to the input Snakefile join(snakemake_dir, snakefile_path) configfile_path : str Relative path to config file (relative to snakemake_dir) updated_config : str Absolute path to the updated config file to write """ def __init__(self, snakemake_dir, skip_parse_args=False): # input argument is the dir where snakemake would be run # we use this to locate the config file, and snakefile adding them to # generated_config and also add the snakemake_dir to the # generated_config, so the workflow can use it to source files from # it (e.g. atlases etc..) # look for snakebids.yml in the snakemake_dir, quit if not found self.configfile_path = None for path in CONFIGFILE_CHOICES: if Path(snakemake_dir, path).exists(): self.configfile_path = path break if self.configfile_path is None: raise ConfigError( f"Error: no config file found, tried {', '.join(CONFIGFILE_CHOICES)}." ) # look for snakefile in the snakemake_dir, quit if not found self.snakefile = None for snakefile_path in SNAKEFILE_CHOICES: if Path(snakemake_dir, snakefile_path).exists(): self.snakefile = Path(snakemake_dir, snakefile_path) break if self.snakefile is None: raise ConfigError( f"Error: no Snakefile found, tried {', '.join(SNAKEFILE_CHOICES)}." ) self.config = load_configfile(Path(snakemake_dir, self.configfile_path)) if self.config.get("debug", False): logging.basicConfig(level=logging.DEBUG) # add path to snakefile to the config -- so workflows can grab files # relative to the snakefile folder self.config["snakemake_dir"] = snakemake_dir self.config["snakefile"] = self.snakefile self.parser_include_snakemake = self.__create_parser( include_snakemake=True ) self.parser = self.__create_parser() if not skip_parse_args: self.__parse_args() def __create_parser(self, include_snakemake=False): """Create a parser with snakemake parser as parent solely for displaying help and checking conflicts, but then for actual parsing use snakebids parser to parse known args, then pass remaining to snakemake. """ if include_snakemake: # get snakemake parser smk_parser = snakemake.get_argument_parser() # create parser parser = argparse.ArgumentParser( description="Snakebids helps build BIDS Apps with Snakemake", add_help=False, parents=[smk_parser], ) else: parser = argparse.ArgumentParser( description="Snakebids helps build BIDS Apps with Snakemake" ) # add option for printing out snakemake usage parser.add_argument( "--help_snakemake", nargs=0, action=SnakemakeHelpAction, help=( "Options to Snakemake can also be passed directly at the " "command-line, use this to print Snakemake usage" ), ) # create parser group for app options app_group = parser.add_argument_group( "SNAKEBIDS", "Options for snakebids app" ) # update the parser with config options for name, parse_args in self.config["parse_args"].items(): # Convert type annotations from strings to class types # We first check that the type annotation is, in fact, # a str to allow the edge case where it's already # been converted if "type" in parse_args and isinstance(parse_args["type"], str): try: parse_args["type"] = globals()[parse_args["type"]] except KeyError as err: raise TypeError( f"{parse_args['type']} is not available " + f"as a type for {name}" ) from err app_group.add_argument(name, **parse_args) # general parser for # --filter_{input_type} {key1}={value1} {key2}={value2}... # create filter parsers, one for each input_type filter_opts = parser.add_argument_group( "BIDS FILTERS", "Filters to customize PyBIDS get() as key=value pairs", ) for input_type in self.config["pybids_inputs"].keys(): argname = f"--filter_{input_type}" arglist_default = [ f"{key}={value}" for (key, value) in self.config["pybids_inputs"][input_type][ "filters" ].items() ] arglist_default_string = " ".join(arglist_default) filter_opts.add_argument( argname, nargs="+", action=KeyValue, help=f"(default: {arglist_default_string})", ) # general parser for # --wildcards_{input_type} {wildcard1} {wildcard2} ... # create wildcards parsers, one for each input_type wildcards_opts = parser.add_argument_group( "INPUT WILDCARDS", "File path entities to use as wildcards in snakemake", ) for input_type in self.config["pybids_inputs"].keys(): argname = f"--wildcards_{input_type}" arglist_default = [ f"{wc}" for wc in self.config["pybids_inputs"][input_type]["wildcards"] ] arglist_default_string = " ".join(arglist_default) wildcards_opts.add_argument( argname, nargs="+", help=f"(default: {arglist_default_string})", ) override_opts = parser.add_argument_group( "PATH OVERRIDE", ( "Options for overriding BIDS by specifying absolute paths " "that include wildcards, e.g.: " "/path/to/my_data/{subject}/t1.nii.gz" ), ) # create path override parser for input_type in self.config["pybids_inputs"].keys(): argname = f"--path_{input_type}" override_opts.add_argument(argname, default=None) return parser def __parse_args(self): # use snakebids parser to parse the known arguments # will pass the rest of args when running snakemake all_args = self.parser.parse_known_args() args = all_args[0] snakemake_args = all_args[1] # resolve all path items to get absolute paths args.__dict__ = { k: resolve_path(v) for k, v in args.__dict__.items() } # add snakebids arguments to config self.config.update(args.__dict__) # add snakemake arguments to config self.config.update({"snakemake_args": snakemake_args}) # argparse adds filter_{input_type} to the config # we want to update the pybids_inputs dict with this, then remove the # filter_{input_type} dict for input_type in self.config["pybids_inputs"].keys(): arg_filter_dict = self.config[f"filter_{input_type}"] if arg_filter_dict is not None: self.config["pybids_inputs"][input_type]["filters"].update( arg_filter_dict ) del self.config[f"filter_{input_type}"] # add cmdline defined wildcards from the list: # wildcards_{input_type} for input_type in self.config["pybids_inputs"].keys(): wildcards_list = self.config[f"wildcards_{input_type}"] if wildcards_list is not None: self.config["pybids_inputs"][input_type][ "wildcards" ] += wildcards_list del self.config[f"wildcards_{input_type}"] # add custom input paths to # config['pybids_inputs'][input_type]['custom_path'] for input_type in self.config["pybids_inputs"].keys(): custom_path = self.config[f"path_{input_type}"] if custom_path is not None: self.config["pybids_inputs"][input_type][ "custom_path" ] = Path(custom_path).resolve() del self.config[f"path_{input_type}"] # replace paths with realpaths self.config["bids_dir"] = Path(self.config["bids_dir"]).resolve() self.config["output_dir"] = Path(self.config["output_dir"]).resolve() def write_updated_config(self): """Create an updated snakebids config file in the output dir.""" self.updated_config = Path(self.config["output_dir"], self.configfile_path) # create the output folder if needed self.updated_config.parent.mkdir(parents = True, exist_ok=True) time_hash = get_time_hash() # TODO: copy to a time-hashed file too # for provenance? # unused as of now.. with open(self.updated_config, "w") as f: # write either as JSON or YAML if self.updated_config.suffix == '.json': import json json.dump(self.config, f, indent=4) else: #if not json, then should be yaml or yml from collections import OrderedDict #this is needed to make the output yaml clean yaml.add_representer(OrderedDict, lambda dumper,data: dumper.represent_mapping( 'tag:yaml.org,2002:map', data.items())) # Represent any PathLikes as str. path2str = lambda dumper, data: dumper.represent_scalar('tag:yaml.org,2002:str',str(data)) yaml.add_representer(pathlib.PosixPath, path2str) yaml.add_representer(pathlib.WindowsPath, path2str) yaml.dump(dict(self.config), f, default_flow_style=False, sort_keys=False) def run_snakemake(self): """Run snake make with that config. Workflow snakefile will read snakebids config, create inputs_config, and read that in. """ # write updated config self.write_updated_config() # running the chosen participant level analysis_level = self.config["analysis_level"] # runs snakemake, using the workflow config and inputs config to # override # run snakemake command-line (passing any leftover args from argparse) snakemake_cmd_list = [ "snakemake", f"--snakefile {self.snakefile}", f"--directory {self.config['output_dir']}", *self.config["snakemake_args"], *self.config["targets_by_analysis_level"][analysis_level], ] snakemake_cmd = " ".join(snakemake_cmd_list) run(snakemake_cmd)
StarcoderdataPython
169644
# -*- coding: utf8 -*- from __future__ import absolute_import import os from celery import Celery from django.conf import settings os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'docato_proj.settings') #app = Celery('docato_proj') app = Celery('docato_proj',backend='rpc://') #,include=['test_celery.tasks'] # broker='amqp://admin:mypass@rabbit:5672' # Using a string here means the worker will not have to # pickle the object when using Windows. app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS, force=True) # подстрахуюсь try: import docato.tasks except ImportError: import docato.docato.tasks print('app.tasks=', app.tasks) app.conf.update( # BROKER_URL='amqp://admin:mypass@rabbit:5672', #BROKER_URL='amqp://admin:[email protected]:5673', )
StarcoderdataPython
168253
import pdb from collections import namedtuple from pathlib import Path import z3 import sage.all import helpers.vcommon as CM from helpers.miscs import Miscs import data.prog import settings DBG = pdb.set_trace mlog = CM.getLogger(__name__, settings.logger_level) class SymbsVals(namedtuple("SymbsVals", ("ss", "vs"))): """ " ((x, y), (3, 4)) """ def __new__(cls, ss, vs): assert isinstance(ss, tuple), ss assert isinstance(vs, tuple), vs return super().__new__(cls, ss, vs) def __str__(self): return ",".join(f"{s}={v}" for s, v in zip(self.ss, self.vs)) def mkExpr(self, ss): # create z3 expression assert len(ss) == len(self.vs), (ss, self.vs) try: exprs = [s == v for s, v in zip(ss, self.vs)] except Exception: exprs = [s == int(v) for s, v in zip(ss, self.vs)] return z3.And(exprs) class SymbsValsSet(set): def __init__(self, myset=set()): assert all(isinstance(t, SymbsVals) for t in myset), myset super().__init__(myset) def __contains__(self, t): assert isinstance(t, SymbsVals), t return super().__contains__(t) def add(self, t): assert isinstance(t, SymbsVals), t return super().add(t) class Trace(SymbsVals): @property def mydict(self): # use for expression substitution try: return self._mydict except AttributeError: self._mydict = { sage.all.var(s): v for s, v in zip(self.ss, self.vs) if "!" not in s } return self._mydict @property def mydict_str(self): # use for maxplus eval try: return self._mydict_str except AttributeError: self._mydict_str = {s: v for s, v in zip(self.ss, self.vs) if "!" not in s} return self._mydict_str @classmethod def parse(cls, ss, vs): assert isinstance(ss, (tuple, list)), ss assert isinstance(vs, (tuple, list)), vs vs = tuple(Miscs.rat2str(t) for t in vs) return Trace(ss, vs) @classmethod def fromDict(cls, d): # {'y': 1, 'x': 2, 'r': 2, 'b': 2} ss = tuple(sorted(d)) vs = tuple(d[s] for s in ss) return cls(ss, vs) def myeval(self, expr): assert Miscs.is_expr(expr), expr rs = expr.subs(self.mydict) return rs class Traces(SymbsValsSet): def __str__(self, printDetails=False): if printDetails: return ", ".join(map(str, sorted(self))) else: return str(len(self)) # @property # def maxdeg(self): # return Miscs.guess_maxdeg(self.mydicts2) def myeval(self, expr, pred=None): assert Miscs.is_expr(expr), expr if pred is None: return [trace.myeval(expr) for trace in self] else: return any(pred(trace.myeval(expr)) for trace in self) @classmethod def extract(cls, cexs, useOne=True): """ cexs is a dict{inv: [dict]} for each disproved inv, use just 1 cex """ if useOne: cexs = [cexs[inv][0] for inv in cexs] else: cexs = [cex for inv in cexs for cex in cexs[inv]] cexs = [Trace.fromDict(cex) for cex in cexs] cexs = Traces(cexs) return cexs @property def mydicts(self): return (trace.mydict for trace in self) @property def mydicts2(self): myd = {} for trace in sorted(self): d = trace.mydict for k in d: if k not in myd: myd[k] = [] myd[k].append(d[k]) return myd def instantiate(self, term, ntraces): assert Miscs.is_expr(term), term assert ntraces is None or ntraces >= 1, ntraces exprs = set() if ntraces is None: for t in self.mydicts: exprs = set(term.subs(t) for t in self.mydicts) else: ntracesExtra = ntraces * settings.TRACE_MULTIPLIER for t in self.mydicts: expr = term.subs(t) if expr not in exprs: exprs.add(expr) if len(exprs) >= ntracesExtra: break # instead of doing this, can find out the # 0's in traces # the more 0's , the better exprs = sorted(exprs, key=lambda expr: len(Miscs.get_vars(expr))) exprs = set(exprs[:ntraces]) return exprs def padzeros(self, ss): new_traces = Traces() for t in self: tss = set(t.ss) if len(tss) < len(ss): ss_ = ss - tss newss = t.ss + tuple(ss_) newvs = t.vs + (0,) * len(ss_) t = Trace(newss, newvs) new_traces.add(t) return new_traces class DTraces(dict): """ {loc: Traces} """ @property def siz(self): return sum(map(len, self.values())) def __str__(self, printDetails=False): return "\n".join( f"{loc}: {traces.__str__(printDetails)}" for loc, traces in self.items() ) def add(self, loc, trace): assert isinstance(loc, str) and loc, loc assert isinstance(trace, Trace), trace if loc not in self: self[loc] = Traces() not_in = trace not in self[loc] if not_in: self[loc].add(trace) return not_in def merge(self, new_traces): """ add new traces and return those that are really new """ new_traces_ = DTraces() for loc in new_traces: for trace in new_traces[loc]: not_in = self.add(loc, trace) if not_in: new_traces_.add(loc, trace) else: mlog.warning(f"trace {trace} exist") return new_traces_ @classmethod def mk(cls, locs): assert locs return cls({loc: Traces() for loc in locs}) @staticmethod def parse(trace_str, inv_decls): """ parse trace for new traces trace_str = ['vtrace1: 0 285 1 9 285 9 ', 'vtrace1: 0 285 2 18 285 9 ', 'vtrace1: 0 285 4 36 285 9 '] """ assert isinstance(inv_decls, data.prog.DSymbs) and inv_decls, inv_decls lines = [l.strip() for l in trace_str] lines = [l for l in lines if l] dtraces = DTraces() for l in lines: # 22: 8460 16 0 1 16 8460 parts = l.split(":") assert len(parts) == 2, parts loc, tracevals = parts[0], parts[1] loc = loc.strip() # 22 if loc not in inv_decls: """ No symbolic states for this loc, so will not collect concrete states here """ continue ss = inv_decls[loc].names vs = tracevals.strip().split() mytrace = Trace.parse(ss, vs) dtraces.add(loc, mytrace) return dtraces def vwrite(self, inv_decls, tracefile): """ write traces to file each loc will have its own file file 'traces_loc.csv' var1, var2, var3 v1, v2, v2 ... """ assert inv_decls and isinstance(inv_decls, data.prog.DSymbs), inv_decls assert isinstance(tracefile, Path), tracefile ss = [] for loc in self: traces = [inv_decls[loc]] traces.extend([", ".join(map(str, t.vs)) for t in self[loc]]) traces = [f"{loc}: {trace}" for trace in traces] ss.extend(traces) tracefile.write_text("\n".join(ss)) @classmethod def vread(cls, tracefile): assert tracefile.is_file(), tracefile trace_str = [] # determine variable declarations for different locations inv_decls = data.prog.DSymbs() for line in tracefile.read_text().splitlines(): line = line.strip() if not line or line.startswith("#"): continue loc, contents = line.split(":") if loc not in inv_decls: inv_decls[loc] = data.prog.Symbs.mk(contents) # I x, I y else: trace_str.append(line.replace(",", " ")) dtraces = DTraces.parse(trace_str, inv_decls) return inv_decls, dtraces class Inp(SymbsVals): pass class Inps(SymbsValsSet): def merge(self, ds, ss): """ ds can be 1. cexs = {loc:{inv: {'x': val, 'y': val}}} 2. [cexs] 3. [inp] """ if not ds: return Inps() def f(d): inps = [] for loc in d: for inv in d[loc]: for d_ in d[loc][inv]: try: inp = tuple(d_[s] for s in ss) inps.append(inp) except KeyError: # happens when the cex does not contain inp var # e.g., when we only have symstates over # non input vars # see Hola 01.div.c pass return inps if isinstance(ds, list) and all(isinstance(d, dict) for d in ds): new_inps = [inp for d in ds for inp in f(d)] elif isinstance(ds, dict): new_inps = f(ds) else: assert isinstance(ds, set) and all(isinstance(d, tuple) for d in ds), ds new_inps = [inp for inp in ds] new_inps = [Inp(ss, inp) for inp in new_inps] new_inps = set(inp for inp in new_inps if inp not in self) for inp in new_inps: self.add(inp) return Inps(new_inps)
StarcoderdataPython
12510
""" DB operations for Targets """ from api.models.base import DBModel class TargetDB(DBModel): '''DBModel for the targets table''' tablename = 'targets'
StarcoderdataPython
1640472
from django.db import models from datetime import datetime as dt # from polymorphic.manager import PolymorphicManager from polymorphic.managers import PolymorphicManager class ActividadQuerySet(models.QuerySet): def en_espera(self): return self.filter(estado='espera') def rechazado(self): return self.filter(estado='rechazado') def aprobado(self): return self.filter(estado='aprobado') def puede_aprobar(self, usuario): return self.filter(estado='espera', departamento=usuario.perfil.departamento) def propias(self, usuario): return self.filter(usuario=usuario) def actuales(self): fecha = dt.now() return self.filter(fecha__year=fecha.year) class ActividadManager(PolymorphicManager): def get_queryset(self): return ActividadQuerySet(self.model, using=self._db) def en_espera(self): return self.get_queryset().en_espera() def rechazado(self): return self.get_queryset().rechazado() def aprobado(self): return self.get_queryset().aprobado() def puede_aprobar(self, usuario): return self.get_queryset().puede_aprobar(usuario) def propias(self, usuario): return self.get_queryset().propias(usuario) def actuales(self): return self.get_queryset().actuales()
StarcoderdataPython
4823402
<filename>src2/reader.py # Reads cleans and parses data from wordle dictionaries. class Reader: def load_lists(solution_corpus_path, guess_corpus_path): solution_corpus = Reader.get_word_list(solution_corpus_path) guess_corpus = Reader.get_word_list(guess_corpus_path) full_corpus = solution_corpus + guess_corpus full_corpus = Reader.unique(full_corpus) return (solution_corpus, full_corpus) def get_word_list(input_path): translation_table = { ord('"'): None, ord(','): ' ', ord('['): None, ord(']'): None } with open(input_path) as file: words = file.read() # Replace data structure characters and separate words by spaces. words = words.translate(translation_table) # Remove any excess new lines or spaces. words = words.strip() # Convert into array of words. words = words.split() unique_word_list = Reader.unique(words) return unique_word_list def unique(word_list): return list(set(word_list))
StarcoderdataPython
38313
# graph from datetime import date import numpy as np from bokeh.client import push_session from bokeh.io import output_server, show, vform from bokeh.palettes import RdYlBu3 from bokeh.plotting import figure, curdoc, vplot, output_server from bokeh.models import ColumnDataSource from bokeh.models.widgets import DataTable, DateFormatter, TableColumn from random import randint # create a plot and style its properties p = figure(x_range=(0, 100), y_range=(0, 100)) p.border_fill_color = 'black' p.background_fill_color = 'black' p.outline_line_color = None p.grid.grid_line_color = None # add a text renderer to out plot (no data yet) r = p.text(x=[], y=[], text=[], text_color=[], text_font_size="20pt", text_baseline="middle", text_align="center") session = push_session(curdoc()) data = dict( dates=[date(2014, 3, i+1) for i in range(10)], downloads=[randint(0, 100) for i in range(10)], ) source = ColumnDataSource(data) columns = [ TableColumn(field="dates", title="Date", formatter=DateFormatter()), TableColumn(field="downloads", title="Downloads"), ] data_table = DataTable(source=source, columns=columns, width=400, height=280) curdoc().add_root(vform(data_table)) session.show()
StarcoderdataPython
4809778
<gh_stars>100-1000 import os import numpy as np import zarr from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder from torch.utils.data import random_split from tqdm import tqdm def as_array(image): return np.asarray(image).swapaxes(2, 0) def convert_data_set(path, data_set, batch_size=1000): loader = DataLoader( data_set, batch_size=batch_size, shuffle=False, num_workers=4) num_examples = len(data_set) os.makedirs(path, exist_ok=True) with zarr.LMDBStore(path) as store: root = zarr.group(store=store, overwrite=True) images_set = root.zeros( 'images', shape=(num_examples, 3, 96, 96), chunks=(1, None, None, None), dtype='u1') labels_set = root.zeros( 'labels', shape=(num_examples, ), chunks=(1, ), dtype='u1') current_iter = 0 for images, labels in tqdm(loader): size = images.shape[0] images_set[current_iter:current_iter + size] = images labels_set[current_iter:current_iter + size] = labels current_iter += size def main(): data_set = ImageFolder(root='anime-faces', transform=as_array) val_ratio = 0.1 val_size = int(len(data_set) * val_ratio) train_size = len(data_set) - val_size train_set, val_set = random_split(data_set, [train_size, val_size]) confs = [ ('data/anime_faces/train.lmdb', train_set), ('data/anime_faces/val.lmdb', val_set), ] for path, data_set in confs: convert_data_set(path, data_set) if __name__ == '__main__': main()
StarcoderdataPython
1612332
## Copyright 2015-2019 <NAME>, <NAME> ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## http://www.apache.org/licenses/LICENSE-2.0 ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import os import json from Qt import QtCore, QtGui from PyFlow.Core.Common import * from PyFlow.Input import InputAction, InputManager, InputActionType @SingletonDecorator class ConfigManager(object): """Responsible for registering configuration files, reading/writing values to registered config files by aliases, providing QSettings from registered aliases.""" CONFIGS_STORAGE = {} CONFIGS_DIR = os.path.join(os.path.abspath(os.path.dirname(__file__)), "Configs") INPUT_CONFIG_PATH = os.path.join(CONFIGS_DIR, "input.json") def __init__(self, *args, **kwargs): self.registerConfigFile("PREFS", os.path.join(self.CONFIGS_DIR, "prefs.ini")) self.registerConfigFile("APP_STATE", os.path.join(self.CONFIGS_DIR, "config.ini")) if not os.path.exists(self.INPUT_CONFIG_PATH): self.createDefaultInput() data = InputManager().serialize() if not os.path.exists(os.path.dirname(self.INPUT_CONFIG_PATH)): os.makedirs(os.path.dirname(self.INPUT_CONFIG_PATH)) with open(self.INPUT_CONFIG_PATH, "w") as f: json.dump(data, f) else: with open(self.INPUT_CONFIG_PATH, "r") as f: data = json.load(f) InputManager().loadFromData(data) @staticmethod def shouldRedirectOutput(): return ConfigManager().getPrefsValue("PREFS", "General/RedirectOutput") == "true" def registerConfigFile(self, alias, absPath): if alias not in self.CONFIGS_STORAGE: self.CONFIGS_STORAGE[alias] = absPath return True return False def getSettings(self, alias): if alias in self.CONFIGS_STORAGE: settings = QtCore.QSettings(self.CONFIGS_STORAGE[alias], QtCore.QSettings.IniFormat) return settings def getPrefsValue(self, configAlias, valueKey): settings = self.getSettings(configAlias) if settings: if settings.contains(valueKey): return settings.value(valueKey) def createDefaultInput(self): InputManager().registerAction(InputAction(name="Canvas.Pan", actionType=InputActionType.Mouse, group="Navigation", mouse=QtCore.Qt.MouseButton.MiddleButton)) InputManager().registerAction(InputAction(name="Canvas.Pan", actionType=InputActionType.Mouse, group="Navigation", mouse=QtCore.Qt.MouseButton.LeftButton, modifiers=QtCore.Qt.AltModifier)) InputManager().registerAction(InputAction(name="Canvas.Zoom", actionType=InputActionType.Mouse, group="Navigation", mouse=QtCore.Qt.MouseButton.RightButton)) InputManager().registerAction(InputAction(name="Canvas.FrameSelected", actionType=InputActionType.Keyboard, group="Navigation", key=QtCore.Qt.Key_F)) InputManager().registerAction(InputAction(name="Canvas.FrameAll", actionType=InputActionType.Keyboard, group="Navigation", key=QtCore.Qt.Key_H)) InputManager().registerAction(InputAction(name="Canvas.ZoomIn", actionType=InputActionType.Keyboard, group="Navigation", key=QtCore.Qt.Key_Equal, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.ZoomOut", actionType=InputActionType.Keyboard, group="Navigation", key=QtCore.Qt.Key_Minus, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.ResetScale", actionType=InputActionType.Keyboard, group="Navigation", key=QtCore.Qt.Key_R, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.AlignLeft", actionType=InputActionType.Keyboard, group="Refactoring", modifiers=QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier, key=QtCore.Qt.Key_Left)) InputManager().registerAction(InputAction(name="Canvas.AlignTop", actionType=InputActionType.Keyboard, group="Refactoring", modifiers=QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier, key=QtCore.Qt.Key_Up)) InputManager().registerAction(InputAction(name="Canvas.AlignRight", actionType=InputActionType.Keyboard, group="Refactoring", modifiers=QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier, key=QtCore.Qt.Key_Right)) InputManager().registerAction(InputAction(name="Canvas.AlignBottom", actionType=InputActionType.Keyboard, group="Refactoring", modifiers=QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier, key=QtCore.Qt.Key_Down)) InputManager().registerAction(InputAction(name="Canvas.Undo", actionType=InputActionType.Keyboard, group="Editing", modifiers=QtCore.Qt.ControlModifier, key=QtCore.Qt.Key_Z)) InputManager().registerAction(InputAction(name="Canvas.Redo", actionType=InputActionType.Keyboard, group="Editing", modifiers=QtCore.Qt.ControlModifier, key=QtCore.Qt.Key_Y)) InputManager().registerAction(InputAction(name="Canvas.KillSelected", actionType=InputActionType.Keyboard, group="Editing", key=QtCore.Qt.Key_Delete)) InputManager().registerAction(InputAction(name="Canvas.CopyNodes", actionType=InputActionType.Keyboard, group="Editing", key=QtCore.Qt.Key_C, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.CutNodes", actionType=InputActionType.Keyboard, group="Editing", key=QtCore.Qt.Key_X, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.DragCopyNodes", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.LeftButton, modifiers=QtCore.Qt.AltModifier)) InputManager().registerAction(InputAction(name="Canvas.DragCopyNodes", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.MiddleButton, modifiers=QtCore.Qt.AltModifier)) InputManager().registerAction(InputAction(name="Canvas.DragNodes", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.MiddleButton)) InputManager().registerAction(InputAction(name="Canvas.DragNodes", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.LeftButton)) InputManager().registerAction(InputAction(name="Canvas.DragChainedNodes", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.MiddleButton)) InputManager().registerAction(InputAction(name="Canvas.PasteNodes", actionType=InputActionType.Keyboard, group="Editing", key=QtCore.Qt.Key_V, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.DuplicateNodes", actionType=InputActionType.Keyboard, group="Editing", key=QtCore.Qt.Key_D, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="Canvas.DisconnectPin", actionType=InputActionType.Mouse, group="Editing", mouse=QtCore.Qt.MouseButton.LeftButton, modifiers=QtCore.Qt.AltModifier)) InputManager().registerAction(InputAction(name="App.NewFile", actionType=InputActionType.Keyboard, group="IO", key=QtCore.Qt.Key_N, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="App.Save", actionType=InputActionType.Keyboard, group="IO", key=QtCore.Qt.Key_S, modifiers=QtCore.Qt.ControlModifier)) InputManager().registerAction(InputAction(name="App.SaveAs", actionType=InputActionType.Keyboard, group="IO", key=QtCore.Qt.Key_S, modifiers=QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier)) InputManager().registerAction(InputAction(name="App.Load", actionType=InputActionType.Keyboard, group="IO", key=QtCore.Qt.Key_O, modifiers=QtCore.Qt.ControlModifier))
StarcoderdataPython
3206009
import requests from faker import Faker import random fake = Faker() Genres = [ "Action", "Comedy", "Drama", "Fantasy", "Horror", "Mystery", "Romance", "Thriller", "Western", ] Book_Numbers = 51 for i in range(1, Book_Numbers): # Book requests.post( "http://localhost:8000/api/books/", json={ "BookID": i, "Date_Published": random.randint(1985, 2022), "Genre": random.choice(Genres), }, ) # Author for j in range(1, random.randint(1, 4)): requests.post( "http://localhost:8000/api/authors/", json={ "name": fake.name(), "age": random.randint(15, 85), "email": fake.email(), "country": fake.country(), "BookID": i, }, ) # Editor for k in range(1, random.randint(1, 4)): requests.post( "http://localhost:8000/api/editors/", json={ "name": fake.name(), "age": random.randint(15, 85), "email": fake.email(), "country": fake.country(), "BookID": i, }, ) # Publisher requests.post( "http://localhost:8000/api/publishers/", json={"name": fake.name(), "country": fake.country(), "BookID": i}, )
StarcoderdataPython
1739438
<reponame>benjyz/ape from copy import deepcopy from typing import Dict, List, Optional from .abstract import ( FileMixin, SerializableType, update_dict_params, update_list_params, update_params, ) from .contract import Compiler, ContractInstance, ContractType, Source class PackageMeta(SerializableType): authors: Optional[List[str]] = None license: Optional[str] = None description: Optional[str] = None keywords: Optional[List[str]] = None links: Optional[Dict[str, str]] = None class PackageManifest(FileMixin, SerializableType): # NOTE: Must not override this key manifest: str = "ethpm/3" # NOTE: `name` and `version` should appear together # NOTE: `name` must begin lowercase, and be comprised of only `[a-z0-9-]` chars # NOTE: `name` should not exceed 255 chars in length name: Optional[str] = None # NOTE: `version` should be valid SemVer version: Optional[str] = None # NOTE: `meta` should be in all published packages meta: Optional[PackageMeta] = None # NOTE: `sources` source tree should be necessary and sufficient to compile # all `ContractType`s in manifest sources: Optional[Dict[str, Source]] = None # NOTE: `contractTypes` should only include types directly computed from manifest # NOTE: `contractTypes` should not include abstracts contractTypes: Optional[Dict[str, ContractType]] = None compilers: Optional[List[Compiler]] = None # NOTE: Keys must be a valid BIP122 URI chain definition # NOTE: Values must be a dict of `ContractType.contractName` => `ContractInstance` objects deployments: Optional[Dict[str, Dict[str, ContractInstance]]] = None # NOTE: keys must begin lowercase, and be comprised of only `[a-z0-9-]` chars # (like `PackageManifest.name`) # NOTE: keys should not exceed 255 chars in length (like `PackageManifest.name`) # NOTE: values must be a Content Addressible URI that conforms to the same manifest # version as `manifest` buildDependencies: Optional[Dict[str, str]] = None def __getattr__(self, attr_name: str): if self.contractTypes and attr_name in self.contractTypes: return self.contractTypes[attr_name] else: raise AttributeError(f"{self.__class__.__name__} has no attribute '{attr_name}'") @classmethod def from_dict(cls, params: Dict): params = deepcopy(params) update_params(params, "meta", PackageMeta) update_dict_params(params, "sources", Source) # NOTE: Special 1-level dict with key in type as arg if "contractTypes" in params and params["contractTypes"]: for name in params["contractTypes"]: params["contractTypes"][name] = ContractType.from_dict( # type: ignore { # NOTE: We inject this parameter ourselves, remove it when serializing "contractName": name, **params["contractTypes"][name], } ) update_list_params(params, "compilers", Compiler) # NOTE: Special 2-level dict if "deployments" in params and params["deployments"]: for name in params["deployments"]: update_dict_params(params["deployments"], name, ContractInstance) return cls(**params) # type: ignore
StarcoderdataPython
4803067
<reponame>dewrin/img_scanner_en_django from django.shortcuts import render, redirect from django.views.generic import View from django.core.files.storage import FileSystemStorage from PIL import Image from pytesseract import image_to_string from django.shortcuts import render from django.http import HttpResponse import json, os import time, urllib.request class OCR(View): def index(request): response_data = {} response_data["success"] = True response_data["url"] = None response_data["code"] = None if request.method == "GET": try: url = request.GET["url"] response_data["url"] = url file = "%s"%time.time() urllib.request.urlretrieve(url, file) im = Image.open(file) text = image_to_string(im) response_data["code"] = text response_data["message"] = file os.remove(file) except Exception as e: response_data["message"]="%s"%e return HttpResponse(json.dumps(response_data),content_type="application/json") class IMGView(View): template_name = "index.html" def get(self, request, *args, **kwargs): return render(request, self.template_name, {}) def post(self, request, *args, **kwargs): if request.FILES: myimg = request.FILES['img'] context = {} try: im = Image.open(myimg) text = image_to_string(im) if text == '': context['message'] = 'Sorry, This is an empty image :(' else: fs = FileSystemStorage() filename = fs.save(myimg.name, myimg) uploaded_file_url = fs.url(filename) context['imgurl'] = uploaded_file_url context['alt'] = myimg.name context['content'] = text except Exception as ex: context['message'] = ex return render(request, self.template_name, context) else: return redirect('img')
StarcoderdataPython
1784542
#!/usr/bin/env python """Amalgamates all specified file references from a main source file into one large source file. Searches through the main source file for a 'hotword:source_file' phrase. Replaces this line with the full contents of the specified 'source_file'. """ __author__ = "<NAME>" __copyright__ = "Copyright 2017" __license__ = "MIT" import argparse import shutil def amalgamacate(): # Set up Command line argument detection parser = argparse.ArgumentParser(description='Amalgamate source files into one large file') parser.add_argument('main', help='the file that contains the main process') parser.add_argument('output', help='the destination file') parser.add_argument('-hw', '--hotword', help='the hot word to look for, default="AMALGAMACATE:"') args = parser.parse_args() if args.hotword is None: args.hotword = 'AMALGAMACATE' # if no file type is given, copy the 'main's file type if '.' not in args.output: file_suffix = args.main.split('.') if len(file_suffix) > 1: args.output += "." + file_suffix[-1].rstrip() exit() with open(args.main, 'r') as infile, open(args.output, 'w+') as outfile: for line in infile: if line.__contains__(args.hotword): hotline = line.split(':') with open(hotline[1].rstrip()) as external_file: shutil.copyfileobj(external_file, outfile) else: outfile.write(line) print('Files successfully amalgamacated into one!') if __name__ == "__main__": amalgamacate()
StarcoderdataPython
130130
<gh_stars>0 # AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from ..analysis import CoherenceAnalyzer def test_CoherenceAnalyzer_inputs(): input_map = dict( NFFT=dict(usedefault=True, ), TR=dict(), figure_type=dict(usedefault=True, ), frequency_range=dict(usedefault=True, ), in_TS=dict(), in_file=dict( extensions=None, requires=('TR', ), ), n_overlap=dict(usedefault=True, ), output_csv_file=dict(extensions=None, ), output_figure_file=dict(extensions=None, ), ) inputs = CoherenceAnalyzer.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_CoherenceAnalyzer_outputs(): output_map = dict( coherence_array=dict(), coherence_csv=dict(extensions=None, ), coherence_fig=dict(extensions=None, ), timedelay_array=dict(), timedelay_csv=dict(extensions=None, ), timedelay_fig=dict(extensions=None, ), ) outputs = CoherenceAnalyzer.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
StarcoderdataPython
3311160
<filename>tensorflow_federated/python/core/impl/test.py # Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General purpose test utilities for TFF.""" import functools from absl import logging from tensorflow_federated.python.core.api import computations def tf1_and_tf2(fn): """A decorator for creating test parameterized by TF computation decorators. Args: fn: A test function to be decorated. It must accept two arguments: self (a `TestCase`), and tf_computation (either a `tff.tf_computation` or `tff.tf2_computation`). Returns: A decorated function, which executes `fn` using both decorators. """ @functools.wraps(fn) def wrapped_fn(self): logging.info('Testing under tff.tf2_computation') fn(self, computations.tf2_computation) logging.info('Testing under tff.tf_computation') fn(self, computations.tf_computation) return wrapped_fn def tf1(fn): """A decorator for testing the `tff.tf_computation` decorator.""" @functools.wraps(fn) def wrapped_fn(self): fn(self, computations.tf_computation) return wrapped_fn def tf2(fn): """A decorator for testing the `tff.tf2_computation` decorator.""" @functools.wraps(fn) def wrapped_fn(self): fn(self, computations.tf2_computation) return wrapped_fn
StarcoderdataPython
4802464
<reponame>adamgreig/momobot import feedparser class Woot: """ Returns the current item on sale at Woot.com, according to the woot rss. """ def __init__(self, bot): self.bot = bot bot.register_command('woot', self.woot) print "hello woot world" self.bot.say('I exist') def woot(self, data): print "Wooting! {}".format(self.get_woot()) self.bot.say('The current sale at www.woot.com is ' + self.get_woot(), data['channel']) def get_woot(self): woot = feedparser.parse("http://www.woot.com/blog/rss.aspx") sale = "No woots? How is this possible!?" for item in woot['entries']: if item.category == 'Woot': sale = item.title break return sale
StarcoderdataPython
10825
<gh_stars>0 from django.db import models from django.db.models.deletion import CASCADE from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # Create your models here. class Profile(models.Model): """Model for handling User Profile""" user = models.OneToOneField(User, on_delete= models.CASCADE) username = models.CharField(max_length = 25) signup_date = models.DateTimeField(auto_now_add= True) profile_photo = CloudinaryField('images') followers = models.ManyToManyField(User, related_name='followers', blank= True) bio = models.CharField(max_length= 70) def __str__(self): return self.name def total_followers(self): """Method to return total numberof followers""" return self.followers.count() def save_profile(self): """Method to save profile to the database""" self.save() def delete_profile(self): """Method to delete profile from the database""" self.delete() def update_profile(self,new): """Method to update user profile Args: new([type]): [description] """ self.username = new.username self.bio = new.bio self.profile_photo = new.profile_pic self.save() @classmethod def get_following(cls,user): """Method to return all users a specific user is following """ following = user.followers.all() users = [] for profile in following: user = User.objects.get(profile = profile) users.append(user) return users @classmethod def search_profile(cls,search_term): """Method to return profiles with a provided search term""" profiles = cls.objects.filter(username_icontains = search_term) return profiles class Likes(models.Model): """Model for handling Image likes""" likes = models.IntegerField(default=0) class Image(models.Model): """Model for handling Image posts by users""" user = models.ForeignKey(User,on_delete= models.CASCADE) image = CloudinaryField('images') image_name = models.CharField(max_length= 25) caption = models.CharField(max_length= 100) profile = models.ForeignKey(Profile, on_delete=models.CASCADE, default= None) likes = models.ForeignKey(Likes, on_delete=CASCADE, default=None) comment = models.CharField(max_length= 120) time_posted = models.DateTimeField(auto_now_add= True) def __str__(self): return self.name def save_image(self): """Method to save Image to Database""" self.save() def delete_image(self): """Method to delete Image """ self.delete() def like_image(self,user): """Method to add user as an image liker""" self.likes.add(user) def get_total_likes(self): """Method to get the total number of likess on an Image""" return self.likes.count() def update_caption(self,caption): """Method to updat eimage captions in database""" self.caption = caption self.save() @classmethod def get_images(cls,users): """Method to get a specific image""" posts = [] for user in users: images = Image.objects.filter(user = user) for image in images: posts.append(image) return posts def get_comments(self): """Method to get all comments related to a post""" comments = Comments.objects.filter(image = self) return comments class Comments(models.Model): """Method to define attributes of a comment""" user = models.ForeignKey(User, on_delete=models.CASCADE) image = models.ForeignKey(Image,on_delete=models.CASCADE) comment = models.TextField() def __str__(self): return self.comment
StarcoderdataPython
1793274
<gh_stars>0 import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'Grpc.Tls' : { 'meta_info' : _MetaInfoClass('Grpc.Tls', False, [ _MetaInfoClassMember('enable', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable TLS ''', 'enable', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('trustpoint', ATTRIBUTE, 'str' , None, None, [], [], ''' Trustpoint Name ''', 'trustpoint', 'Cisco-IOS-XR-man-ems-cfg', False), ], 'Cisco-IOS-XR-man-ems-cfg', 'tls', _yang_ns._namespaces['Cisco-IOS-XR-man-ems-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_man_ems_cfg' ), }, 'Grpc' : { 'meta_info' : _MetaInfoClass('Grpc', False, [ _MetaInfoClassMember('address-family', ATTRIBUTE, 'str' , None, None, [], [], ''' Address family identifier type ''', 'address_family', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('enable', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable GRPC ''', 'enable', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('max-request-per-user', ATTRIBUTE, 'int' , None, None, [('1', '32')], [], ''' Maximum concurrent requests per user ''', 'max_request_per_user', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('max-request-total', ATTRIBUTE, 'int' , None, None, [('1', '256')], [], ''' Maximum concurrent requests in total ''', 'max_request_total', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('port', ATTRIBUTE, 'int' , None, None, [('10000', '57999')], [], ''' Server listening port ''', 'port', 'Cisco-IOS-XR-man-ems-cfg', False), _MetaInfoClassMember('tls', REFERENCE_CLASS, 'Tls' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_man_ems_cfg', 'Grpc.Tls', [], [], ''' Transport Layer Security (TLS) ''', 'tls', 'Cisco-IOS-XR-man-ems-cfg', False), ], 'Cisco-IOS-XR-man-ems-cfg', 'grpc', _yang_ns._namespaces['Cisco-IOS-XR-man-ems-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_man_ems_cfg' ), }, } _meta_table['Grpc.Tls']['meta_info'].parent =_meta_table['Grpc']['meta_info']
StarcoderdataPython
3343991
"""Library to access del.icio.us data via Python. An introduction to the project is given in the README. pydelicious is released under the FreeBSD License. See license.txt for details and the copyright holders. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import sys import os import time import datetime import locale import httplib import urllib2 from urllib import urlencode, quote_plus from StringIO import StringIO from pprint import pformat try: # Python >= 2.5 from hashlib import md5 except ImportError: from md5 import md5 try: from elementtree.ElementTree import parse as parse_xml except ImportError: # Python 2.5 and higher from xml.etree.ElementTree import parse as parse_xml try: import feedparser except ImportError: print >>sys.stderr, \ "Feedparser not available, no RSS parsing." feedparser = None ### Static config # pydoc and distutils supported exports __version__ = '0.6' __author__ = "Berend (.mpe)" __author_email__ = "dev,<EMAIL>" #__date__ = "$Date$"[] __credits__ = """<NAME> (original author), and in no particular order: <NAME>, me.gooz, mohangk, stumble.then.rise, clupprich""" __license__ = 'FreeBSD' __rcs_id__ = "$Id: __init__.py 68 2010-11-21 13:58:04Z berend.van.berkum $"[3:-1] __url__ = 'http://code.google.com/p/pydelicious/' __docformat__ = "restructuredtext en" __description__ = "Access delicious.com API's with Python" __long_description__ = "A complete Python interface to del.icio.us Bookmarks' HTTP API's." DLCS_OK_MESSAGES = ('done', 'ok') "Known text values of positive del.icio.us <result/> answers" DLCS_WAIT_TIME = 4 "Time to wait between API requests" DLCS_REQUEST_TIMEOUT = 444 "Seconds before socket triggers timeout" DLCS_API_REALM = 'del.icio.us API' DLCS_API_HOST = 'api.del.icio.us' DLCS_API_PATH = 'v1' DLCS_API = "https://%s/%s" % (DLCS_API_HOST, DLCS_API_PATH) DLCS_RSS = 'http://previous.delicious.com/v2/rss/' "Old RSS feeds, formerly <http://del.icio.us/rss/>" DLCS_FEEDS = 'http://feeds.delicious.com/v2/' PREFERRED_ENCODING = locale.getpreferredencoding() # XXX: might need to check sys.platform/encoding combinations here, ie #if sys.platform == 'darwin' || PREFERRED_ENCODING == 'macroman: # PREFERRED_ENCODING = 'utf-8' if not PREFERRED_ENCODING: PREFERRED_ENCODING = 'iso-8859-1' ISO_8601_DATETIME = '%Y-%m-%dT%H:%M:%SZ' USER_AGENT = 'pydelicious/%s %s' % (__version__, __url__) DEBUG = 0 if 'DLCS_DEBUG' in os.environ: DEBUG = int(os.environ['DLCS_DEBUG']) if DEBUG: print >>sys.stderr, \ "Set DEBUG to %i from DLCS_DEBUG env." % DEBUG HTTP_PROXY = os.environ.get('HTTP_PROXY', None) HTTPS_PROXY = os.environ.get('HTTPS_PROXY', HTTP_PROXY) if DEBUG and (HTTP_PROXY or HTTPS_PROXY): print >>sys.stderr, \ "Set proxies to %s, %s from env." % (HTTP_PROXY, HTTPS_PROXY, ) ### Timeoutsocket hack taken from FeedParser.py # timeoutsocket allows feedparser to time out rather than hang forever on ultra- # slow servers. Python 2.3 now has this functionality available in the standard # socket library, so under 2.3 you don't need to install anything. But you # probably should anyway, because the socket module is buggy and timeoutsocket # is better. try: import timeoutsocket # http://www.timo-tasi.org/python/timeoutsocket.py timeoutsocket.setDefaultSocketTimeout(DLCS_REQUEST_TIMEOUT) except ImportError: import socket if hasattr(socket, 'setdefaulttimeout'): socket.setdefaulttimeout(DLCS_REQUEST_TIMEOUT) if DEBUG: print >>sys.stderr, \ "Set socket timeout to %s seconds" % DLCS_REQUEST_TIMEOUT ### Utility classes class _Waiter: """Waiter makes sure a certain amount of time passes between successive calls of `Waiter()`. Some attributes: :last: time of last call :wait: the minimum time needed between calls :waited: the number of calls throttled pydelicious.Waiter is an instance created when the module is loaded. """ def __init__(self, wait): self.wait = wait self.waited = 0 self.lastcall = 0; def __call__(self): tt = time.time() wait = self.wait timeago = tt - self.lastcall if timeago < wait: wait = wait - timeago if DEBUG>0: print >>sys.stderr, "Waiting %s seconds." % wait time.sleep(wait) self.waited += 1 self.lastcall = tt + wait else: self.lastcall = tt Waiter = _Waiter(DLCS_WAIT_TIME) class PyDeliciousException(Exception): """Standard pydelicious error""" class PyDeliciousThrottled(Exception): pass class PyDeliciousUnauthorized(Exception): pass class DeliciousError(Exception): """Raised when the server responds with a negative answer""" @staticmethod def raiseFor(error_string, path, **params): if error_string == 'item already exists': raise DeliciousItemExistsError, params['url'] else: raise DeliciousError, "%s, while calling <%s?%s>" % (error_string, path, urlencode(params)) class DeliciousItemExistsError(DeliciousError): """Raised then adding an already existing post.""" class DeliciousHTTPErrorHandler(urllib2.HTTPDefaultErrorHandler): def http_error_401(self, req, fp, code, msg, headers): raise PyDeliciousUnauthorized, "Check credentials." def http_error_503(self, req, fp, code, msg, headers): # Retry-After? errmsg = "Try again later." if 'Retry-After' in headers: errmsg = "You may try again after %s" % headers['Retry-After'] raise PyDeliciousThrottled, errmsg ### Utility functions def dict0(d): "Removes empty string values from dictionary" return dict([(k,v) for k,v in d.items() if v=='' and isinstance(v, basestring)]) def delicious_datetime(str): """Parse a ISO 8601 formatted string to a Python datetime ... """ return datetime.datetime(*time.strptime(str, ISO_8601_DATETIME)[0:6]) def http_request(url, user_agent=USER_AGENT, retry=4, opener=None): """Retrieve the contents referenced by the URL using urllib2. Retries up to four times (default) on exceptions. """ request = urllib2.Request(url, headers={'User-Agent':user_agent}) if not opener: opener = urllib2.build_opener() # Remember last error e = None # Repeat request on time-out errors tries = retry; while tries: try: return opener.open(request) except urllib2.HTTPError, e: # reraise unexpected protocol errors as PyDeliciousException raise PyDeliciousException, "%s" % e except urllib2.URLError, e: # xxx: Ugly check for time-out errors #if len(e)>0 and 'timed out' in arg[0]: print >> sys.stderr, "%s, %s tries left." % (e, tries) Waiter() tries = tries - 1 #else: # tries = None # Give up raise PyDeliciousException, \ "Unable to retrieve data at '%s', %s" % (url, e) def build_api_opener(host, user, passwd, extra_handlers=() ): """ Build a urllib2 style opener with HTTP Basic authorization for one host and additional error handling. If HTTP_PROXY is set a proxyhandler is also added. """ global DEBUG, HTTP_PROXY, HTTPS_PROXY, DLCS_API_REALM password_manager = urllib2.HTTPPasswordMgr() password_manager.add_password(DLCS_API_REALM, host, user, passwd) auth_handler = urllib2.HTTPBasicAuthHandler(password_manager) handlers = ( auth_handler, DeliciousHTTPErrorHandler(), ) + extra_handlers if DEBUG: httpdebug = urllib2.HTTPHandler(debuglevel=DEBUG) handlers += ( httpdebug, ) if HTTP_PROXY or HTTPS_PROXY: proto = {} if HTTPS_PROXY: proto['https'] = HTTPS_PROXY if HTTP_PROXY: proto['http'] = HTTP_PROXY handlers += ( urllib2.ProxyHandler( proto ), ) o = urllib2.build_opener(*handlers) return o def dlcs_api_opener(user, passwd): "Build an opener for DLCS_API_HOST, see build_api_opener()" return build_api_opener(DLCS_API_HOST, user, passwd) def dlcs_api_request(path, params=None, user='', passwd='', throttle=True, opener=None): """Retrieve/query a path within the del.icio.us API. This implements a minimum interval between calls to avoid throttling. [#]_ Use param 'throttle' to turn this behaviour off. .. [#] http://del.icio.us/help/api/ """ if throttle: Waiter() if params: url = "%s/%s?%s" % (DLCS_API, path, urlencode(params)) else: url = "%s/%s" % (DLCS_API, path) if DEBUG: print >>sys.stderr, \ "dlcs_api_request: %s" % url if not opener: opener = dlcs_api_opener(user, passwd) fl = http_request(url, opener=opener) if DEBUG>2: print >>sys.stderr, \ pformat(fl.info().headers) return fl def dlcs_encode_params(params, usercodec=PREFERRED_ENCODING, encoded=False): """Turn all param values (int, list, bool) into utf8 encoded strings. """ if params: for key in params.keys(): if isinstance(params[key], bool): if params[key]: params[key] = 'yes' else: params[key] = 'no' elif isinstance(params[key], int): params[key] = str(params[key]) elif not params[key]: # strip/ignore empties other than False or 0 del params[key] continue elif isinstance(params[key], list): params[key] = " ".join(params[key]) if encoded: assert isinstance(params[key], str) else: params[key] = params[key].decode(usercodec) assert isinstance(params[key], basestring) if not encoded: params = dict([ (k, v.encode('utf8')) for k, v in params.items() if v]) return params def dlcs_parse_xml(data, split_tags=False): """Parse any del.icio.us XML document and return Python data structure. Recognizes all XML document formats as returned by the version 1 API and translates to a JSON-like data structure (dicts 'n lists). Returned instance is always a dictionary. Examples:: {'posts': [{'url':'...','hash':'...',},],} {'tags':['tag1', 'tag2',]} {'dates': [{'count':'...','date':'...'},], 'tag':'', 'user':'...'} {'result':(True, "done")} # etcetera. """ # TODO: split_tags is not implemented if DEBUG>3: print >>sys.stderr, "dlcs_parse_xml: parsing from ", data if not hasattr(data, 'read'): data = StringIO(data) doc = parse_xml(data) root = doc.getroot() fmt = root.tag # Split up into three cases: Data, Result or Update if fmt in ('tags', 'posts', 'dates', 'bundles'): # Data: expect a list of data elements, 'resources'. # Use `fmt` (without last 's') to find data elements, elements # don't have contents, attributes contain all the data we need: # append to list elist = [el.attrib for el in doc.findall(fmt[:-1])] # Return list in dict, use tagname of rootnode as keyname. data = {fmt: elist} # Root element might have attributes too, append dict. data.update(root.attrib) return data elif fmt == 'result': # Result: answer to operations if root.attrib.has_key('code'): msg = root.attrib['code'] else: msg = root.text # XXX: Return {'result':(True, msg)} for /known/ O.K. messages, # use (False, msg) otherwise. Move this to DeliciousAPI? v = msg in DLCS_OK_MESSAGES return {fmt: (v, msg)} elif fmt == 'update': # Update: "time" return {fmt: { 'time':time.strptime(root.attrib['time'], ISO_8601_DATETIME) }} else: raise PyDeliciousException, "Unknown XML document format '%s'" % fmt ## Feed util def dlcs_rss_request(tag="", popular=0, user="", url=''): """Parse a RSS request, old style. This requests old (now undocumented?) URL paths that still seem to work. - http://del.icio.us/rss/url/{urimd5} - http://del.icio.us/rss/{user}/{tag} - http://del.icio.us/rss/{user} - http://del.icio.us/rss - http://del.icio.us/rss/tag/{tag} - http://del.icio.us/rss/popular - http://del.icio.us/rss/popular/{tag} """ tag = quote_plus(tag) user = quote_plus(user) if url != '': url = DLCS_RSS + 'url/%s' % md5(url).hexdigest() elif user != '' and tag != '': url = DLCS_RSS + '%(user)s/%(tag)s' % {'user':user, 'tag':tag} elif user != '' and tag == '': url = DLCS_RSS + '%s' % user elif popular == 0 and tag == '': url = DLCS_RSS elif popular == 0 and tag != '': url = DLCS_RSS + "tag/%s" % tag elif popular == 1 and tag == '': url = DLCS_RSS + 'popular' elif popular == 1 and tag != '': url = DLCS_RSS + 'popular/%s' % tag if DEBUG: print 'dlcs_rss_request', url rss = http_request(url).read() # assert feedparser, "requires feedparser to be installed." if not feedparser: return rss rss = feedparser.parse(rss) posts = [] for e in rss.entries: if e.has_key("links") and e["links"]!=[] and e["links"][0].has_key("href"): url = e["links"][0]["href"] elif e.has_key("link"): url = e["link"] elif e.has_key("id"): url = e["id"] else: url = "" if e.has_key("title"): description = e['title'] elif e.has_key("title_detail") and e["title_detail"].has_key("title"): description = e["title_detail"]['value'] else: description = '' try: tags = [tag['term'] for tag in e['tags']] except: try: tags = [e["category"]] except: tags = [] if e.has_key("modified"): dt = e['modified'] else: dt = "" if e.has_key("summary"): extended = e['summary'] elif e.has_key("summary_detail"): e['summary_detail']["value"] else: extended = "" if e.has_key("author"): user = e['author'] else: user = "" # time = dt ist weist auf ein problem hin # die benennung der variablen ist nicht einheitlich # api senden und # xml bekommen sind zwei verschiedene schuhe :( posts.append({'url':url, 'description':description, 'tags':tags, 'dt':dt, 'extended':extended, 'user':user}) return posts """ Bookmarks from the hotlist: {format} Recent bookmarks: {format}/recent Recent bookmarks by tag: {format}/tag/{tag[+tag+...+tag]} Popular bookmarks: {format}/popular Popular bookmarks by tag: {format}/popular/{tag} Recent site alerts (as seen in the top-of-page alert bar on the site): {format}/alerts Public summary information about a user (as seen in the network badge): {format}/userinfo/{username} A list of all public tags for a user: {format}/tags/{username} A list of related public tags for a user tag comination: {format}/tags/{username}/{tag[+tag+...+tag]} Bookmarks from a user's subscriptions: {format}/subscriptions/{username} Private feed for a user's inbox bookmarks from others: {format}/inbox/{username}?private={key} Bookmarks from members of a user's network: {format}/network/{username} Bookmarks from members of a user's private network: {format}/network/{username}?private={key} Bookmarks from members of a user's network by tag: {format}/network/{username}/{tag[+tag+...+tag]} Bookmarks from members of a user's private network by tag: {format}/network/{username}/{tag[+tag+...+tag]}?private={key} A list of a user's network members: {format}/networkmembers/{username} A list of a user's network fans: {format}/networkfans/{username} Recent bookmarks for a URL: {format}/url/{url md5} Summary information about a URL (as seen in the tagometer): json/urlinfo/{url md5} """ delicious_v2_feeds = { # Bookmarks from the hotlist 'hotlist': "%(format)s", #"Recent bookmarks" 'recent': "%(format)s/recent", #"Recent bookmarks by tag" 'tagged': "%(format)s/tag/%(tag)s", #"Popular bookmarks" 'popular': "%(format)s/popular", #"Popular bookmarks by tag" 'popular_tagged': "%(format)s/popular/%(tag)s", #"Recent site alerts (as seen in the top-of-page alert bar on the site)" 'alerts': "%(format)s/alerts", # Bookmarks for a specific user: 'user': "%(format)s/%(username)s", # Private bookmarks for a specific user: 'user_private': "%(format)s/%(username)s?private=%(key)s", # Bookmarks for a specific user by tag(s) 'user_tagged': "%(format)s/%(username)s/%(tag)s", # Private bookmarks for a specific user by tag(s): 'user_tagged_private': "%(format)s/%(username)s/%(tag)s?private=%(key)s", #"Public summary information about a user (as seen in the network badge)" 'user_info': "%(format)s/userinfo/%(username)s", #"A list of all public tags for a user" 'user_tags': "%(format)s/tags/%(username)s", #"Bookmarks from a user's subscriptions" 'user_subscription': "%(format)s/subscriptions/%(username)s", #"Private feed for a user's inbox bookmarks from others" 'user_inbox': "%(format)s/inbox/%(username)s?private=%(key)s", #"Bookmarks from members of a user's network" 'user_network': "%(format)s/network/%(username)s", #"Bookmarks from members of a user's network by tag" 'user_network_tagged': "%(format)s/network/%(username)s/%(tag)s", #"A list of a user's network members" 'user_network_member': "%(format)s/networkmembers/%(username)s", #"A list of a user's network fans" 'user_network_fan': "%(format)s/networkfans/%(username)s", #"Recent bookmarks for a URL" 'url': "%(format)s/url/%(urlmd5)s", #"Summary information about a URL (as seen in the tagometer)" 'urlinfo': "json/urlinfo/%(urlmd5)s", } def dlcs_feed(name_or_url, url_map=delicious_v2_feeds, count=15, **kwds): """ Request and parse a feed. Count should be between 1 and 100, default 15. Format values include 'rss' and 'json', defaults to json. - http://www.delicious.com/help/feeds """ #if fancy == True: # '?fancy' #elif fancy != None: # '?plain' format = kwds.setdefault('format', 'json') kwds.setdefault('count', count) if not name_or_url: name_or_url = 'hotlist' if name_or_url in url_map: params = dict([(k, quote_plus(str(v))) for k,v in kwds.items()]) url = DLCS_FEEDS + url_map[name_or_url] % params else: url = name_or_url if DEBUG: print 'dlcs_feed', url feed = http_request(url).read() if format == 'rss': if feedparser: rss = feedparser.parse(feed) return rss else: return feed elif format == 'json': return feed ### Main module class class DeliciousAPI: """A single-user Python facade to the del.icio.us HTTP API. See http://delicious.com/help/api. Methods ``request`` and ``request_raw`` represent the core. For all API paths there are furthermore methods (e.g. posts_add for 'posts/all') with an explicit declaration of parameters and documentation. """ def __init__(self, user, passwd, codec=PREFERRED_ENCODING, api_request=dlcs_api_request, xml_parser=dlcs_parse_xml, build_opener=dlcs_api_opener, encode_params=dlcs_encode_params, encoded=False): """Initialize access to the API for ``user`` with ``passwd``. ``codec`` sets the encoding of the arguments, which defaults to the users preferred locale. The ``api_request`` and ``xml_parser`` parameters by default point to functions within this package with standard implementations which request and parse a resource. See ``dlcs_api_request()`` and ``dlcs_parse_xml()``. Parameter ``build_opener`` is a callable that, provided with the credentials, should build a urllib2 opener for the delicious API server with HTTP authentication. See ``dlcs_api_opener()`` for the default implementation. ``encode_params`` finally preprocesses API parameters before they are passed to ``api_request``. """ assert user != "" self.user = user self.passwd = <PASSWORD> self.codec = codec # Implement communication to server and parsing of respons messages: assert callable(encode_params) self._encode_params = encode_params self._encoded = encoded assert callable(build_opener) self._opener = build_opener(user, passwd) assert callable(api_request) self._api_request = api_request assert callable(xml_parser) self._parse_response = xml_parser ### Core functionality def request(self, path, _raw=False, **params): """Sends a request message to `path` in the API, and parses the results from XML. Use with ``_raw=True`` or ``call request_raw()`` directly to get the filehandler and process the response message manually. Calls to some paths will return a `result` message, i.e.:: <result code="..." /> or:: <result>...</result> These should all be parsed to ``{'result':(Boolean, MessageString)}``, this method raises a ``DeliciousError`` on negative `result` answers. Positive answers are silently accepted and nothing is returned. Using ``_raw=True`` bypasses all parsing and never raises ``DeliciousError``. See ``dlcs_parse_xml()`` and ``self.request_raw()``.""" if _raw: # return answer return self.request_raw(path, **params) else: params = self._encode_params(params, self.codec, encoded=self._encoded) # get answer and parse fl = self._api_request(path, params=params, opener=self._opener) rs = self._parse_response(fl) if type(rs) == dict and 'result' in rs: if not rs['result'][0]: # Raise an error for negative 'result' answers errmsg = "" if len(rs['result'])>0: errmsg = rs['result'][1] DeliciousError.raiseFor(errmsg, path, **params) else: # not out-of-the-oridinary result, OK return return rs def request_raw(self, path, **params): """Calls the path in the API, returns the filehandle. Returned file- like instances have an ``HTTPMessage`` instance with HTTP header information available. Use ``filehandle.info()`` or refer to the ``urllib2.openurl`` documentation. """ # see `request()` on how the response can be handled params = self._encode_params(params, self.codec, encoded=self._encoded) return self._api_request(path, params=params, opener=self._opener) ### Explicit declarations of API paths, their parameters and docs # Tags def tags_get(self, **kwds): """Returns a list of tags and the number of times it is used by the user. :: <tags> <tag tag="TagName" count="888"> """ return self.request("tags/get", **kwds) def tags_delete(self, tag, **kwds): """Delete an existing tag. &tag={TAG} (required) Tag to delete """ return self.request('tags/delete', tag=tag, **kwds) def tags_rename(self, old, new, **kwds): """Rename an existing tag with a new tag name. Returns a `result` message or raises an ``DeliciousError``. See ``self.request()``. &old={TAG} (required) Tag to rename. &new={TAG} (required) New tag name. """ return self.request("tags/rename", old=old, new=new, **kwds) # Posts def posts_update(self, **kwds): """Returns the last update time for the user. Use this before calling `posts_all` to see if the data has changed since the last fetch. :: <update time="CCYY-MM-DDThh:mm:ssZ"> """ return self.request("posts/update", **kwds) def posts_dates(self, tag="", **kwds): """Returns a list of dates with the number of posts at each date. :: <dates> <date date="CCYY-MM-DD" count="888"> &tag={TAG} (optional) Filter by this tag """ return self.request("posts/dates", tag=tag, **kwds) def posts_get(self, tag="", dt="", url="", hashes=[], meta=True, **kwds): """Returns posts matching the arguments. If no date or url is given, most recent date will be used. :: <posts dt="CCYY-MM-DD" tag="..." user="..."> <post ...> &tag={TAG} {TAG} ... {TAG} (optional) Filter by this/these tag(s). &dt={CCYY-MM-DDThh:mm:ssZ} (optional) Filter by this date, defaults to the most recent date on which bookmarks were saved. &url={URL} (optional) Fetch a bookmark for this URL, regardless of date. &hashes={MD5} {MD5} ... {MD5} (optional) Fetch multiple bookmarks by one or more URL MD5s regardless of date. &meta=yes (optional) Include change detection signatures on each item in a 'meta' attribute. Clients wishing to maintain a synchronized local store of bookmarks should retain the value of this attribute - its value will change when any significant field of the bookmark changes. """ return self.request("posts/get", tag=tag, dt=dt, url=url, hashes=hashes, meta=meta, **kwds) def posts_recent(self, tag="", count="", **kwds): """Returns a list of the most recent posts, filtered by argument. :: <posts tag="..." user="..."> <post ...> &tag={TAG} (optional) Filter by this tag. &count={1..100} (optional) Number of items to retrieve (Default:15, Maximum:100). """ return self.request("posts/recent", tag=tag, count=count, **kwds) def posts_all(self, tag="", start=None, results=None, fromdt=None, todt=None, meta=True, hashes=False, **kwds): """Returns all posts. Please use sparingly. Call the `posts_update` method to see if you need to fetch this at all. :: <posts tag="..." user="..." update="CCYY-MM-DDThh:mm:ssZ"> <post ...> &tag (optional) Filter by this tag. &start={#} (optional) Start returning posts this many results into the set. &results={#} (optional) Return this many results. &fromdt={CCYY-MM-DDThh:mm:ssZ} (optional) Filter for posts on this date or later &todt={CCYY-MM-DDThh:mm:ssZ} (optional) Filter for posts on this date or earlier &meta=yes (optional) Include change detection signatures on each item in a 'meta' attribute. Clients wishing to maintain a synchronized local store of bookmarks should retain the value of this attribute - its value will change when any significant field of the bookmark changes. &hashes (optional, exclusive) Do not fetch post details but a posts manifest with url- and meta-hashes. Other options do not apply. """ if hashes: return self.request("posts/all", hashes=hashes, **kwds) else: return self.request("posts/all", tag=tag, fromdt=fromdt, todt=todt, start=start, results=results, meta=meta, **kwds) def posts_add(self, url, description, extended="", tags="", dt="", replace=False, shared=True, **kwds): """Add a post to del.icio.us. Returns a `result` message or raises an ``DeliciousError``. See ``self.request()``. &url (required) the url of the item. &description (required) the description of the item. &extended (optional) notes for the item. &tags (optional) tags for the item (space delimited). &dt (optional) datestamp of the item (format "CCYY-MM-DDThh:mm:ssZ"). Requires a LITERAL "T" and "Z" like in ISO8601 at http://www.cl.cam.ac.uk/~mgk25/iso-time.html for example: "1984-09-01T14:21:31Z" &replace=no (optional) - don't replace post if given url has already been posted. &shared=yes (optional) - wether the item is public. """ return self.request("posts/add", url=url, description=description, extended=extended, tags=tags, dt=dt, replace=replace, shared=shared, **kwds) def posts_delete(self, url, **kwds): """Delete a post from del.icio.us. Returns a `result` message or raises an ``DeliciousError``. See ``self.request()``. &url (required) the url of the item. """ return self.request("posts/delete", url=url, **kwds) # Bundles def bundles_all(self, **kwds): """Retrieve user bundles from del.icio.us. :: <bundles> <bundel name="..." tags=..."> """ return self.request("tags/bundles/all", **kwds) def bundles_set(self, bundle, tags, **kwds): """Assign a set of tags to a single bundle, wipes away previous settings for bundle. Returns a `result` messages or raises an ``DeliciousError``. See ``self.request()``. &bundle (required) the bundle name. &tags (required) list of tags. """ if type(tags)==list: tags = " ".join(tags) return self.request("tags/bundles/set", bundle=bundle, tags=tags, **kwds) def bundles_delete(self, bundle, **kwds): """Delete a bundle from del.icio.us. Returns a `result` message or raises an ``DeliciousError``. See ``self.request()``. &bundle (required) the bundle name. """ return self.request("tags/bundles/delete", bundle=bundle, **kwds) ### Utils # Lookup table for del.icio.us url-path to DeliciousAPI method. paths = { 'tags/get': 'tags_get', 'tags/delete': 'tags_delete', 'tags/rename': 'tags_rename', 'posts/update': 'posts_update', 'posts/dates': 'posts_dates', 'posts/get': 'posts_get', 'posts/recent': 'posts_recent', 'posts/all': 'posts_all', 'posts/add': 'posts_add', 'posts/delete': 'posts_delete', 'tags/bundles/all': 'bundles_all', 'tags/bundles/set': 'bundles_set', 'tags/bundles/delete': 'bundles_delete', } def get_method(self, path): return getattr(self, self.paths[path]) def get_url(self, url): """Return the del.icio.us url at which the HTML page with posts for ``url`` can be found. """ return "http://del.icio.us/url/?url=%s" % (url,) def __repr__(self): return "DeliciousAPI(%s)" % self.user ### Quick API access def apiNew(user, passwd): "Creates a new DeliciousAPI object, requires user(name) and passwd." return DeliciousAPI(user=user, passwd=passwd) def add(user, passwd, url, description, tags="", extended="", dt=None, replace=False): "Add a post for user. " apiNew(user, passwd).posts_add(url=url, description=description, extended=extended, tags=tags, dt=dt, replace=replace) def get(user, passwd, tag="", dt=None, count=0, hashes=[]): "Returns a list of posts for the user using the API. " posts = apiNew(user, passwd).posts_get( tag=tag, dt=dt, hashes=hashes)['posts'] if count: posts = posts[:count] return posts def get_update(user, passwd): "Returns the last update time for the user. " return apiNew(user, passwd).posts_update()['update']['time'] def get_all(user, passwd, tag="", start=0, results=100, fromdt=None, todt=None): "Returns a list with all posts. Please use sparingly. See `get_updated`" return apiNew(user, passwd).posts_all(tag=tag, start=start, results=results, fromdt=fromdt, todt=todt, meta=True)['posts'] def get_tags(user, passwd): "Returns a list with all tags for user." return apiNew(user=user, passwd=passwd).tags_get()['tags'] def delete(user, passwd, url): "Delete the URL from the del.icio.us account." apiNew(user, passwd).posts_delete(url=url) def rename_tag(user, passwd, oldtag, newtag): "Rename the tag for the del.icio.us account." apiNew(user=user, passwd=passwd).tags_rename(old=oldtag, new=newtag) ### Old RSS def getrss(tag="", popular=0, url='', user=""): """Get posts from del.icio.us via parsing RSS. tag (opt) sort by tag popular (opt) look for the popular stuff user (opt) get the posts by a user, this striks popular url (opt) get the posts by url """ return dlcs_rss_request(tag=tag, popular=popular, user=user, url=url) def get_userposts(user): "parse RSS for user" return getrss(user=user) def get_tagposts(tag): "parse RSS for tag" return getrss(tag=tag) def get_urlposts(url): "parse RSS for URL" return getrss(url=url) def get_popular(tag=""): "parse RSS for popular URLS for tag" return getrss(tag=tag, popular=1) ### Feeds (RSS/JSON/?) def user_posts(user=None, tag=None, key=None, **params): """ Bookmarks for a specific user: {format}/{username} Private bookmarks for a specific user: {format}/{username}?private={key} Bookmarks for a specific user by tag(s): {format}/{username}/{tag[+tag+...+tag]} Private bookmarks for a specific user by tag(s): {format}/{username}/{tag[+tag+...+tag]}?private={key} """ assert username if tag and key: path = 'user_tagged_private' elif tag: path = 'user_tagged' elif key: path = 'user_private' else: path = 'user' return dlcs_feed(path, user=user, tag=tag, key=key, **params) def json_tags(user, atleast, count, sort='alpha', raw=True, callback=None): """ user atleast=### include only tags for which there are at least ### number of posts. count=### include ### tags, counting down from the top. sort={alpha|count} construct the object with tags in alphabetic order (alpha), or by count of posts (count). callback=NAME wrap the object definition in a function call NAME(...), thus invoking that function when the feed is executed. raw a pure JSON object is returned, instead of code that will construct an object named Delicious.tags. """ url = 'http://del.icio.us/feeds/json/tags/' + \ dlcs_encode_params({0:user})[0] return dlcs_feed(url, atleast=atleast, count=count, sort=sort, raw=raw, callback=callback) def json_network(user, raw=True, callback=None): """ callback=NAME wrap the object definition in a function call NAME(...) ?raw a raw JSON object is returned, instead of an object named Delicious.posts """ url = 'http://del.icio.us/feeds/json/network/' + \ dlcs_encode_params({0:user})[0] return dlcs_feed(url, raw=raw, callback=callback) def json_fans(user, raw=True, callback=None): """ callback=NAME wrap the object definition in a function call NAME(...) ?raw a pure JSON object is returned, instead of an object named Delicious. """ url = 'http://del.icio.us/feeds/json/fans/' + \ dlcs_encode_params({0:user})[0] return dlcs_feed(url, raw=raw, callback=callback) ### delicious V2 feeds def getfeed(name, **params): return dlcs_feed(name, **params)
StarcoderdataPython
1758704
import traceback from spikeforest2_utils import AutoRecordingExtractor class Recording: def __init__(self): super().__init__() self._recording = None def javascript_state_changed(self, prev_state, state): self._set_status('running', 'Running Recording') if not self._recording: self._set_status('running', 'Loading recording') recording0 = state.get('recording', None) if not recording0: self._set_error('Missing: recording') return try: self._recording = AutoRecordingExtractor(recording0) except Exception as err: traceback.print_exc() self._set_error('Problem initiating recording: {}'.format(err)) return self._set_status('running', 'Loading recording data') try: channel_locations = self._recording.get_channel_locations() except: channel_locations = None self.set_state(dict( num_channels=self._recording.get_num_channels(), channel_ids=self._recording.get_channel_ids(), channel_locations=channel_locations, num_timepoints=self._recording.get_num_frames(), samplerate=self._recording.get_sampling_frequency(), status_message='Loaded recording.' )) self._set_status('finished', '') def _set_state(self, **kwargs): self.set_state(kwargs) def _set_error(self, error_message): self._set_status('error', error_message) def _set_status(self, status, status_message=''): self._set_state(status=status, status_message=status_message)
StarcoderdataPython
4834973
<reponame>fabric-testbed/ActorBase #!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # # Author: <NAME> (<EMAIL>) from __future__ import annotations import pickle from typing import TYPE_CHECKING, List from fabric_cf.actor.core.common.constants import Constants from fabric_cf.actor.core.common.exceptions import DatabaseException from fabric_cf.actor.core.apis.abc_actor_mixin import ABCActorMixin, ActorType from fabric_cf.actor.core.apis.abc_container_database import ABCContainerDatabase from fabric_cf.actor.db.psql_database import PsqlDatabase if TYPE_CHECKING: from fabric_cf.actor.core.apis.abc_management_object import ABCManagementObject from fabric_cf.actor.core.util.id import ID class ContainerDatabase(ABCContainerDatabase): """ Implements Container Interface to various Database operations """ PropertyTime = "time" PropertyContainer = "container" def __init__(self, *, user: str, password: str, database: str, db_host: str, logger): self.user = user self.password = password self.database = database self.db_host = db_host self.db = PsqlDatabase(user=user, password=password, database=database, db_host=db_host, logger=logger) self.initialized = False self.reset_state = False self.logger = logger def __getstate__(self): state = self.__dict__.copy() self.db = PsqlDatabase(user=self.user, password=<PASSWORD>, database=self.database, db_host=self.db_host, logger=self.logger) del state['initialized'] del state['reset_state'] del state['logger'] def __setstate__(self, state): self.__dict__.update(state) self.initialized = False self.reset_state = False def initialize(self): """ Initialize """ if not self.initialized: self.db.create_db() if self.reset_state: self.db.reset_db() self.initialized = True def set_reset_state(self, *, value: bool): """ Set Reset State """ self.reset_state = value def reset_db(self): """ Reset the database """ self.db.reset_db() def add_actor(self, *, actor: ABCActorMixin): """ Add an actor @param actor actor """ properties = pickle.dumps(actor) self.db.add_actor(name=actor.get_name(), guid=str(actor.get_guid()), act_type=actor.get_type().value, properties=properties) def remove_actor(self, *, actor_name: str): """ Remove an actor @param actor_name actor name """ self.db.remove_actor(name=actor_name) def remove_actor_database(self, *, actor_name: str): """ Remove an actor @param actor_name actor name """ self.db.remove_actor(name=actor_name) def get_actors(self, *, name: str = None, actor_type: int = None) -> List[ABCActorMixin]: """ Get Actors @param name actor name @param actor_type actor type @return list of actors """ result = None try: act_dict_list = None if name is None and actor_type is None: act_dict_list = self.db.get_actors() elif name is not None and actor_type is not None: name = "%{}%".format(name) if actor_type != ActorType.All.value: act_dict_list = self.db.get_actors_by_name_and_type(actor_name=name, act_type=actor_type) else: act_dict_list = self.db.get_actors_by_name(act_name=name) if act_dict_list is not None: result = [] for a in act_dict_list: pickled_actor = a.get(Constants.PROPERTY_PICKLE_PROPERTIES) act_obj = pickle.loads(pickled_actor) result.append(act_obj) return result except Exception as e: self.logger.error(e) return result def get_actor(self, *, actor_name: str) -> dict: """ Get Actor @param name actor name @return actor """ result = None try: act_dict = self.db.get_actor(name=actor_name) if act_dict is not None: pickled_actor = act_dict.get(Constants.PROPERTY_PICKLE_PROPERTIES) return pickle.loads(pickled_actor) except Exception as e: self.logger.error(e) return result def get_actor_id(self, *, actor_name: str) -> dict: """ Get Actor @param name actor name @return actor """ result = None try: act_dict = self.db.get_actor(name=actor_name) if act_dict is not None: return act_dict['act_id'] except Exception as e: self.logger.error(e) return result def add_time(self, *, properties: dict): """ Add time @param properties properties """ self.db.add_miscellaneous(name=self.PropertyTime, properties=properties) def get_time(self) -> dict: """ Get Time @param time properties """ result = None try: result = self.db.get_miscellaneous(name=self.PropertyTime) except Exception as e: self.logger.error(e) return result def add_container_properties(self, *, properties: dict): """ Add container properties @param properties properties """ self.db.add_miscellaneous(name=self.PropertyContainer, properties=properties) def get_container_properties(self) -> dict: """ Get Container Properties @return properties """ result = None try: result = self.db.get_miscellaneous(name=self.PropertyContainer) except Exception as e: self.logger.error(e) return result def get_manager_objects_by_actor_name(self, *, actor_name: str) -> list: """ Get Management Object by actor name @param actor_name actor name @return list of management objects """ result = None try: result = self.db.get_manager_objects_by_actor_name(act_name=actor_name) except Exception as e: self.logger.error(e) return result def get_manager_container(self) -> List[dict]: """ Get Management Container @return list of management objects for containers """ result = None try: result = self.db.get_manager_containers() except Exception as e: self.logger.error(e) return result def add_manager_object(self, *, manager: ABCManagementObject): """ Add Management object @param manager management object """ properties = manager.save() act_id = None actor_name = manager.get_actor_name() if actor_name is not None: act_id = self.get_actor_id(actor_name=actor_name) self.db.add_manager_object(manager_key=str(manager.get_id()), properties=properties, act_id=act_id) def remove_manager_object(self, *, mid: ID): """ Remove management object @param mid management object id """ self.db.remove_manager_object(manager_key=str(mid))
StarcoderdataPython
101605
<reponame>pennucci/enterprise<filename>tests/test_gp_priors.py #!/usr/bin/env python # -*- coding: utf-8 -*- """ test_gp_priors ---------------------------------- Tests for GP priors and bases. """ import unittest import numpy as np from tests.enterprise_test_data import datadir from enterprise.pulsar import Pulsar from enterprise.signals import parameter from enterprise.signals import gp_signals from enterprise.signals import gp_priors from enterprise.signals import gp_bases import scipy.stats class TestGPSignals(unittest.TestCase): @classmethod def setUpClass(cls): """Setup the Pulsar object.""" # initialize Pulsar class cls.psr = Pulsar(datadir + "/B1855+09_NANOGrav_9yv1.gls.par", datadir + "/B1855+09_NANOGrav_9yv1.tim") def test_turnover_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.turnover( log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7), lf0=parameter.Uniform(-9, -7.5), kappa=parameter.Uniform(2.5, 5), beta=parameter.Uniform(0.01, 1), ) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters log10_A, gamma, lf0, kappa, beta = -14.5, 4.33, -8.5, 3, 0.5 params = { "B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma, "B1855+09_red_noise_lf0": lf0, "B1855+09_red_noise_kappa": kappa, "B1855+09_red_noise_beta": beta, } # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for turnover." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.turnover(f2, log10_A=log10_A, gamma=gamma, lf0=lf0, kappa=kappa, beta=beta) msg = "Spectrum incorrect for turnover." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for turnover." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_free_spec_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.free_spectrum(log10_rho=parameter.Uniform(-10, -4, size=30)) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters rhos = np.random.uniform(-10, -4, size=30) params = {"B1855+09_red_noise_log10_rho": rhos} # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for free spectrum." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.free_spectrum(f2, log10_rho=rhos) msg = "Spectrum incorrect for free spectrum." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for free spectrum." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_t_process_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.t_process( log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7), alphas=gp_priors.InvGamma(alpha=1, gamma=1, size=30), ) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters alphas = scipy.stats.invgamma.rvs(1, scale=1, size=30) log10_A, gamma = -15, 4.33 params = { "B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma, "B1855+09_red_noise_alphas": alphas, } # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for free spectrum." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.t_process(f2, log10_A=log10_A, gamma=gamma, alphas=alphas) msg = "Spectrum incorrect for free spectrum." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for free spectrum." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_adapt_t_process_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.t_process_adapt( log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7), alphas_adapt=gp_priors.InvGamma(), nfreq=parameter.Uniform(5, 25), ) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters alphas = scipy.stats.invgamma.rvs(1, scale=1, size=1) log10_A, gamma, nfreq = -15, 4.33, 12 params = { "B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma, "B1855+09_red_noise_alphas_adapt": alphas, "B1855+09_red_noise_nfreq": nfreq, } # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for free spectrum." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.t_process_adapt(f2, log10_A=log10_A, gamma=gamma, alphas_adapt=alphas, nfreq=nfreq) msg = "Spectrum incorrect for free spectrum." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for free spectrum." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_turnover_knee_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.turnover_knee( log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7), lfb=parameter.Uniform(-9, -7.5), lfk=parameter.Uniform(-9, -7.5), kappa=parameter.Uniform(2.5, 5), delta=parameter.Uniform(0.01, 1), ) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters log10_A, gamma, lfb = -14.5, 4.33, -8.5 lfk, kappa, delta = -8.5, 3, 0.5 params = { "B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma, "B1855+09_red_noise_lfb": lfb, "B1855+09_red_noise_lfk": lfk, "B1855+09_red_noise_kappa": kappa, "B1855+09_red_noise_delta": delta, } # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for turnover." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.turnover_knee(f2, log10_A=log10_A, gamma=gamma, lfb=lfb, lfk=lfk, kappa=kappa, delta=delta) msg = "Spectrum incorrect for turnover." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for turnover." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_broken_powerlaw_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.broken_powerlaw( log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7), log10_fb=parameter.Uniform(-9, -7.5), kappa=parameter.Uniform(0.1, 1.0), delta=parameter.Uniform(0.01, 1), ) basis = gp_bases.createfourierdesignmatrix_red(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters log10_A, gamma, log10_fb, kappa, delta = -14.5, 4.33, -8.5, 1, 0.5 params = { "B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma, "B1855+09_red_noise_log10_fb": log10_fb, "B1855+09_red_noise_kappa": kappa, "B1855+09_red_noise_delta": delta, } # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_red(self.psr.toas, nmodes=30) msg = "F matrix incorrect for turnover." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.broken_powerlaw(f2, log10_A=log10_A, gamma=gamma, log10_fb=log10_fb, kappa=kappa, delta=delta) msg = "Spectrum incorrect for turnover." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for turnover." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg def test_powerlaw_genmodes_prior(self): """Test that red noise signal returns correct values.""" # set up signal parameter pr = gp_priors.powerlaw_genmodes(log10_A=parameter.Uniform(-18, -12), gamma=parameter.Uniform(1, 7)) basis = gp_bases.createfourierdesignmatrix_chromatic(nmodes=30) rn = gp_signals.BasisGP(priorFunction=pr, basisFunction=basis, name="red_noise") rnm = rn(self.psr) # parameters log10_A, gamma = -14.5, 4.33 params = {"B1855+09_red_noise_log10_A": log10_A, "B1855+09_red_noise_gamma": gamma} # basis matrix test F, f2 = gp_bases.createfourierdesignmatrix_chromatic(self.psr.toas, self.psr.freqs, nmodes=30) msg = "F matrix incorrect for turnover." assert np.allclose(F, rnm.get_basis(params)), msg # spectrum test phi = gp_priors.powerlaw_genmodes(f2, log10_A=log10_A, gamma=gamma) msg = "Spectrum incorrect for turnover." assert np.all(rnm.get_phi(params) == phi), msg # inverse spectrum test msg = "Spectrum inverse incorrect for turnover." assert np.all(rnm.get_phiinv(params) == 1 / phi), msg # test shape msg = "F matrix shape incorrect" assert rnm.get_basis(params).shape == F.shape, msg
StarcoderdataPython
3326620
<filename>data_wrangler.py import csv import json import os # Manages the retrieval and storage of CSV data class DataManager: CSVFiles = [] # Stores all of the csv file names def __init__(self): for filename in os.listdir("CSV"): self.CSVFiles.append("CSV/" + filename) # returns the data of a chosen csv (by index) as json def csv_json(self, index: int = 0): file = self.CSVFiles[index] data = {} # Reads in data from csv file, stores it in data dictionary # JSON and Python dictionaries are functionally the same with open(file) as csvFile: csvReader = csv.DictReader(csvFile) for row in csvReader: id = row['sequence'] data[id] = row return data # Returns the data of all the local csv's as json def csv_json_all(self): data = {} for file in self.CSVFiles: currData = {} with open(file) as csvFile: csvReader = csv.DictReader(csvFile) for row in csvReader: id = row['sequence'] currData[id] = row data[file] = currData return data # Writes the given json data to a csv file def write_json_csv(self, json_data, data_columns): with open('new_example.csv', 'w') as file_output: file_output.write("{0},{1},{2}\n".format(data_columns[0], data_columns[1], data_columns[2])) for row in json_data: file_output.write("{0},{1},{2}\n".format(row.name, row.description, row.index))
StarcoderdataPython
3355347
<reponame>ubikpt/PyXtal from structure import * allpassed = True for sg in range(1, 231): print("Calculating spacegroup " + str(sg)) wyckoffs = get_wyckoffs(sg) for index, wp in enumerate(wyckoffs): v = np.random.random(3) for i in range(3): if np.random.random() < 0.5: v[i] *= -1 # v = SymmOp.from_rotation_and_translation(np.zeros([3,3]), v) points = [] for p in wp: points.append(p.operate(v)) for i, p in enumerate(points): for j in range(3): a = np.random.random() if a < 1 / 3: points[i][j] += 1 elif a < 2 / 3: points[i][j] -= 1 if check_wyckoff_position(points, sg) is not False: pass else: allpassed = False print("sg: " + str(sg) + ", index: " + str(index)) print("points:") for p in points: print(p) if allpassed is True: print("All spacegroups passed.")
StarcoderdataPython
4826647
<reponame>rbirger/OxfordHCVNonSpatial # -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # ###Description and preliminary code for Continuous-Time Markov Chain Model # # This model will test the importance of including a spatial component in the system. We will use ODEs to describe the dynamics of each lineage and competition between lineages. The model includes a second latent class that keeps cells latently infected for longer before becoming infectious, and also allows for proliferation of infected cells by allowing cells to be reborn into the latent class # # * Healthy Hepatocytes # # * Latently Infected Hepatocytes # # * Long-lived Latently Infected Hepatocytes # # * Infected Hepatocytes # # * Dead Infected Hepatocytes # # * Dead Healthy Hepatocytes # # Healthy cells are regenerated from Dead cells. Interacting with Infected cells, they become Latently Infected, and after the eclipse phase, Latent Infections become Infectious. Both Healthy and Infected Hepatocytes die, with Infected being eliminated by the immune response faster than natural death rates. Dead cells regenerate, but those dead after being infected with HCV have a lower probability of regenerating. Some cells regenerate into infectious cells. # # Adapting the Perelson/Neumann model, we have # # $\begin{eqnarray*} # \frac{dT}{dt}& =& \phi_{DT} D_T + (1-\kappa)\phi_{DI} D_I - (\lambda_{virions} + \lambda_{local} +\nu_T) T\\ # \frac{dE}{dt}& =& (1-\eta)(\lambda_{virions} + \lambda_{local} )T - (\alpha +\nu_T)E\\ # \frac{dEX}{dt}& =& \eta(\lambda_{virions} + \lambda_{local} )T - (\alpha_X +\nu_T)E\\ # \frac{dI}{dt}& =& \kappa\phi_{DI} D_I+ \alpha E- \nu_I I\\ # \frac{dD_T}{dt}& =& \nu_T(T+E+EX) - \phi_{DT} D_T\\ # \frac{dD_I}{dt}& =& \nu_I I - \phi_{DI} D_I\\\ # \end{eqnarray*}$ # # To translate these equations into a continuous-time Markov Chain model, we can calculate the transition probabilities from the parameters above. Let $\vec{X(t)} = [T(t), E(t), EX(t) I(t), D_T(t), D_I(t)]$, so the probability of state change is defined as Prob$\{\Delta \vec{X(t)} = (a, b, c, d, e, f)|\vec{X(t)}\}$, where $a$ represents the change in state $T$, $b$ in state $E$, etc. We assume that the time step is small enough that each change is only in one cell, so $a - f$ can only take the values 0 or $\pm 1$. The transition probabilities are as follows # # # $$\begin{cases} # (1-\eta)(\lambda_{virions} + \lambda_{local}) T\ \Delta t + o(\Delta t), & a = -1, b = 1\\ # \eta(\lambda_{virions} + \lambda_{local}) T\ \Delta t + o(\Delta t), & a = -1, c = 1\\ # \nu_T T \Delta t + o(\Delta t), & a = -1, e = 1\\ # \alpha E \Delta t + o(\Delta t), & b = -1, d = 1\\ # \nu_T E \Delta t + o(\Delta t), & b = -1, e = 1\\ # \alpha_X EX \Delta t + o(\Delta t), & c = -1, d = 1\\ # \nu_T EX \Delta t + o(\Delta t), & c = -1, e = 1\\ # \nu_I I \Delta t + o(\Delta t), & d = -1, f = 1 \\ # \phi_{DT} D_T \Delta t + o(\Delta t), & d = -1, a = 1\\ # \kappa\phi_{DI} D_I \Delta t + o(\Delta t), & f = -1, d = 1\\ # (1-\kappa)\phi_{DI} D_I \Delta t + o(\Delta t), & f = -1, a = 1\\ # \end{cases}$$ # # The generator matrix $\mathbf{Q}$ derived from these transition probabilities is thus as follows # # # $$ \mathbf{Q} = # \left[ \begin{array}{cccccc} # 0& (1-\eta)(\lambda_{virions} + \lambda_{local}) T& \eta(\lambda_{virions} + \lambda_{local}) T& 0 & \nu_T T &0\\ # 0 & 0 & \alpha E &0 &\nu_T E & 0\\ # 0 & 0 & \alpha_X EX &0 &\nu_T E & 0\\ # 0 & 0 & 0 & 0 & 0&\nu_I I \\ # \phi_{DT} D_T &0 &0 & 0&0&0\\ # (1-\kappa)\phi_{DI} D_I & 0 & 0& \kappa \phi_{DI}& 0&0\\ # \end{array} \right] $$ # <codecell> %matplotlib inline from __future__ import division import numpy as np import matplotlib.pyplot as plt import random # <codecell> class HCVHepatocyte: def __init__(self, cellID, parentID, infType, tLat, cellType, tInf = None, tDead = None): self.cellID = cellID #ID of cell self.parentID = parentID #ID of infector, whether it is virus or infected cell self.infType = infType #type of infection (from virus or from infected cell) self.tLat = tLat #time of infection of cell (time cell became latently infected) self.cellType = cellType #type of cell latent, longterm, infectious, infectious from longterm, #dead, dead from long term self.tInf = tInf #time to become infectious self.tDead = tDead #time of death if cellType in ('Infected', 'InfectedL'): if tInf == None: print("Error: Infectious cells must have time Infectious") elif cellType in ('Dead', 'DeadL'): if tInf == None: print("Error: Dead cells must have time of death") #define method for infecting a susceptible cell def InfectCell(self, newID, simTime, newInfType): ''' Method for infecting new cell''' if self.cellType not in ['Infected', 'InfectedL']: print("Error: Latent Cell cannot infect") else: return HCVHepatocyte(newID, self.cellID, 'Cell', simTime, newInfType) # <codecell> #Create function to randomly select one cell to infect def CreateLatent(cellHandle, newID, state_idx, simTime): if state_idx in [0,1]: newLatent = cellHandle.InfectCell(newID, simTime, 'Latent') return newLatent elif state_idx in [2,3]: newLatent = cellHandle.InfectCell(newID, simTime, 'LatentL') return newLatent else: print("Error: State is not an infecting transition") # <codecell> #Create function to Kill Infected cell def KillInfected(cellHandle, time): cellHandle.tDead = time if cellHandle.cellType == 'Infected': cellHandle.cellType = 'Dead' elif cellHandle.cellType == 'InfectedL': cellHandle.cellType = 'DeadL' else: print("Error: Cannot kill uninfected cell") return cellHandle # <codecell> #Create function to move latent to infectious def LatentInfectious(cellHandle, time): cellHandle.tInf = time if cellHandle.cellType == 'Latent': cellHandle.cellType = 'Infected' elif cellHandle.cellType == 'LatentL': cellHandle.cellType = 'InfectedL' else: print("Error: Cell not Latent") return cellHandle # <codecell> #Number of state transitions to observe M = int(1e8) # time vector time = np.zeros(M) #Define parameters init=10 #10 #initial number of infected hepatocytes v_init = 0#initial viral load ALT_init = 100 #initial ALT level rho = 8.18 #viral export rate c = 22.3 #viral clearance rate gamma = 1500 #scaling factor - R = 4.1825 #average HCV RNA in infected hepatocyte N_liver = int(1e11) #Number of cells in liver alpha = 1 #1/latent period (days) alpha_x = 1.3e-2 #1/long-term latent period nu_T = 1.4e-2 #death rate of healthy cells nu_I = 1/7 #death rate of infected cells phi_T = 10*nu_T #regeneration rate of dead healthy cells phi_I = .8*phi_T #regeneration rate of dead infected cells beta_V = .5e-8 #viral transmision rate beta_L = R*1e-5/(60*24) #cell-cell transmission rate eta = .01 #proportion of infected cells that go long-term latent kappa = 0 #.1 #proportion of dead infected cells regenerated as infected cells changes = 13; delta = .33 #ALT degradation rate N=N_liver/1e7 #initial number of hepatocytes eps = (delta*ALT_init)/(nu_T*N) #rate of ALT production Q = np.zeros(changes) Q[0] = (1-eta)*(beta_L*init) #Infection of Target cell by cell-> latent Q[1] = (1-eta)*beta_V*v_init #Infection of Target cell by virus -> latent Q[2] = eta*beta_L*init #Infection of Target cell by cell -> long-term latent Q[3] = eta*beta_V*v_init #Infection of Target cell by virus -> long-term latent Q[4] = nu_T; #Death of target cell Q[5] = alpha; #latent cell becomes infected Q[6] = nu_T; #latent cell dies Q[7] = alpha_x #long-term latent cell becomes infected Q[8] = nu_T #long-term latent cell dies Q[9] = nu_I; #Infected cell dies Q[10] = phi_T; #Healthy cell regenerates Q[11] = (1-kappa)*phi_I; #Infected cell regenerates into healthy cell Q[12] = kappa*phi_I #Construct matrix of state transition vectors trans_vecs = np.zeros([6, changes]) #state 1: infection of healthy cell by cell-> latent trans_vecs[0,0] = -1; trans_vecs[1,0] = 1; #state 2: infection of healthy cell by virus -> latent trans_vecs[0,1] = -1; trans_vecs[1,1] = 1; #state 3: infection of healthy cell by cell -> long-term latent trans_vecs[0,2] = -1; trans_vecs[2,2] = 1; #state 4: infection of healthy cell by virus -> long-term latent trans_vecs[0,3] = -1; trans_vecs[2,3] = 1; #state 5: death of healthy cell trans_vecs[0,4] = -1; trans_vecs[4,4] = 1; #state 6: movement of latent cell into infected trans_vecs[1,5] = -1; trans_vecs[3,5] = 1; #state 7: death of latent cell trans_vecs[1,6] = -1; trans_vecs[4,6] = 1; #state 8: movement of long-term latent cell into infected trans_vecs[2,7] = -1; trans_vecs[3,7] = 1; #state 9: death of long-term latent cell trans_vecs[2,8] = -1; trans_vecs[4,8] = 1; #state 10: death of infected cell trans_vecs[3,9] = -1; trans_vecs[5,9] = 1; #state 11: regeneration of dead healthy cell trans_vecs[4,10] = -1; trans_vecs[0,10] = 1; #state 12: regeneration of dead infected cell into healthy cell trans_vecs[5,11] = -1; trans_vecs[0,11] = 1; #state 13: regeneration of dead infected cell into infected cell trans_vecs[5,12] = -1; trans_vecs[3,12] = 1; #Initialize state variable vectors T = np.zeros(M) E = np.zeros(M) Ex = np.zeros(M) I = np.zeros(M) Dt = np.zeros(M) Di = np.zeros(M) VL = np.zeros(M) ALT = np.zeros(M) state_vec = np.zeros(M) InfectionChain = [] # dict() Infecteds = [] # dict() #Initialize Infected Hepatocyte objects InfectedDict = {} for i in range(0,int(init/2)): x = HCVHepatocyte(i, None, 'Initial', -1, 'Infected', 0) InfectedDict[i] = x for i in range(int(init/2),init): x = HCVHepatocyte(i, None, 'Initial', -83, 'InfectedL', 0) InfectedDict[i] = x LatentDict = {} LatentLDict = {} DeadDict = {} lastCellID = init-1 #get last cellID #Input initial conditions I[0] = init; T[0] = N-init; VL[0] = v_init j =0 InfectionArray = [] while I[j] >= 0 and j<M-1: #print [T[j],E[j],I[j],Dt[j],Di[j]] #Update Q to reflect new number of infected cells and viruses Q[0] = (1-eta)*beta_L*I[j] Q[1] = (1-eta)*beta_V*VL[j] Q[2] = eta*beta_L*I[j] Q[3] = eta*beta_V*VL[j] #Calculate transition matrix Qij = Q*[T[j],T[j],T[j], T[j],T[j], E[j],E[j], Ex[j], Ex[j], I[j], Dt[j], Di[j], Di[j]] #Draw from exponential distributions of waiting times time_vec = -np.log(np.random.random(changes))/Qij #np.random.exponential([1/Qij])[0] # #find minimum waiting time and obtain index to ascertain next state jump newTime = min(time_vec) time_vecL = time_vec.tolist() state_idx = time_vecL.index(min(time_vecL)) state_vec[j] = state_idx [T[j+1],E[j+1],Ex[j+1],I[j+1],Dt[j+1],Di[j+1]]=[T[j],E[j],Ex[j],I[j],Dt[j],Di[j]]+ trans_vecs[:,state_idx] #make adjustments to hepatocyte dictionaries according to state transition #Infection of healthy cell by cell or virus -> latent or longterm latent if state_idx in [0,1,2,3]: Infector = InfectedDict[random.choice(list(InfectedDict.keys()))] #choose random infector cell newCellID = lastCellID + 1 lastCellID = newCellID newLatent = CreateLatent(Infector, newCellID, state_idx, time[j]) #newLatent = CreateLatentNumba(Infector, newCellID, state_idx, time[j]) if state_idx in [0,1]: LatentDict[newCellID] = newLatent elif state_idx in [2,3]: LatentLDict[newCellID] = newLatent else: print('Incorrect State') #Latent cell becomes infectious elif state_idx in [5,7]: if state_idx == 5: LatCell = LatentDict[random.choice(list(LatentDict.keys()))] del LatentDict[LatCell.cellID] #remove cell from Latent Dict elif state_idx == 7: LatCell = LatentLDict[random.choice(list(LatentLDict.keys()))] del LatentLDict[LatCell.cellID] else: print('Incorrect State') InfectedDict[LatCell.cellID] = LatentInfectious(LatCell, time[j]) #add cell to Infected Dict #Latent cell dies elif state_idx == 6: del LatentDict[random.choice(list(LatentDict.keys()))] #LatentL cell dies elif state_idx == 8: del LatentLDict[random.choice(list(LatentLDict.keys()))] #Infected cell dies elif state_idx == 9: KilledCell = InfectedDict[random.choice(list(InfectedDict.keys()))] #choose random infector cell del InfectedDict[KilledCell.cellID] KilledCell.cellType = 'Dead' KilledCell.tDead = time[j] #newDead = KillInfected(KilledCell,time[j]) #DeadDict[newDead.cellID] = newDead DeadDict[KilledCell.cellID] = KilledCell #Dead infected cell regenerates into health cell -- just delete from dead dict elif state_idx == 11: del DeadDict[random.choice(list(DeadDict.keys()))] #Infected cell regenerated from Dead cell elif state_idx == 12: newCellID = lastCellID + 1 lastCellID = newCellID DeadGen = DeadDict[random.choice(list(DeadDict.keys()))] del DeadDict[DeadGen.cellID] newInfected = HCVHepatocyte(newCellID,DeadGen.cellID,'DeadGen', DeadGen.tDead, 'Infected', time[j]) InfectedDict[newInfected.cellID] = newInfected #Output Infection chain and infecteds at each time step #check lengths of InfectionChain and Infecteds if len(InfectionChain)< int(time[j])+1: InfectionChain.append([]) if len(Infecteds) < int(time[j])+1: Infecteds.append([]) #add to array of infections with timestep if state_idx in [0,1,2,3]: #if int(time[j]) in InfectionChain: # InfectionChain[int(time[j])].append([Infector.cellID, newCellID]) #else: # InfectionChain[int(time[j])] = [[Infector.cellID, newCellID]] InfectionChain[int(time[j])].append([Infector.cellID, newCellID]) elif state_idx == 12: #if int(time[j]) in InfectionChain: # InfectionChain[int(time[j])].append([DeadGen.cellID, newInfected.cellID]) #else: # InfectionChain[int(time[j])] = [DeadGen.cellID, newInfected.cellID] InfectionChain[int(time[j])].append([DeadGen.cellID, newInfected.cellID]) #else: # InfectionChain.append([]) #Infecteds.append(int([time[j]),list(InfectedDict.keys())]) #if int(time[j]) in Infecteds: Infecteds[int(time[j])] = list(set(Infecteds[int(time[j])] + InfectedDict.keys() +LatentDict.keys() +LatentLDict.keys())) #else: # Infecteds[int(time[j])] = InfectedDict.keys() +LatentDict.keys() +LatentLDict.keys() #update viral load and ALT VL[j+1] = np.floor(rho*N_liver*(I[j+1]/N)*R/(gamma*c)) #VL[j] + (I[j]/N)*rho*N_liver*newTime - c*gamma*VL[j]*newTime # ALT[j+1] = ALT[j] + (eps*(nu_T*(T[j] + E[j] + Ex[j]) + nu_I*I[j])-delta*ALT[j])*newTime time[j+1] = time[j] + newTime j+=1 # <codecell> # <codecell> #Sort Infecteds and Infection chain, and break up infection chain InfectedsSort = dict() for key, item in enumerate(Infecteds): InfectedsSort[key] = sorted(Infecteds[i]) InfectionChainSort = dict() for key, item in enumerate(InfectionChain): a = sorted(list(InfectionChain[i]), key=lambda x: x[0]) InfectionChainSort[key] = [b for c in a for b in c] import csv f = open('Infecteds.txt', 'w') writer = csv.writer(f, delimiter = ' ') for key, value in InfectedsSort.iteritems(): writer.writerow([key] + value) f = open('InfectionChain.txt', 'w') writer = csv.writer(f, delimiter = ' ') for key, value in InfectionChainSort.iteritems(): writer.writerow([key] + value) # <codecell> plt.plot(time,T, label = 'Susc') plt.plot(time,I, label = 'Infected') plt.plot(time,Dt, label = 'Dead (healthy)') plt.plot(time,Di, label = 'Dead (infected)') plt.legend(loc = 'upper right') # <codecell> plt.plot(time,VL) # <codecell> from NonSpatialFns import * # <codecell> kwargs = {'T' : T, 'E' : E, 'Ex': Ex, 'I': I, 'Dt':Dt, 'Di' : Di, 'time' :time, 'VL':VL, 'ALT' : ALT, 'Infecteds' :Infecteds, 'InfectionChain' : InfectionChain} saveWorkspace(kwargs) # <codecell>
StarcoderdataPython
3232245
# Importing necessary packages for this project import cv2 import numpy as np import matplotlib.pyplot as plt # Setting seed for reproducibility UBIT = 'damirtha' np.random.seed(sum([ord(c) for c in UBIT])) # Function to apply a mask on an image def pointMask(image, mask): img_list = [] for img_row in range(int(len(mask)/2), len(image)-int(len(mask)/2)): for img_col in range(int(len(mask[0])/2), len(image[0])-int(len(mask[0])/2)): img_list.append(np.mean(np.multiply(image[img_row-int(len(mask)/2):img_row+int(len(mask)/2)+1, img_col-int(len(mask[0])/2):img_col+int(len(mask[0])/2)+1] , mask))) return np.pad(np.array(img_list).reshape(-1,len(image[0])-len(mask[0])+1), int(len(mask)/2),'edge') image=cv2.imread('Images/point.jpg', cv2.IMREAD_GRAYSCALE) # Laplacian mask for point detection mask = -np.array([[0,0,-1,0,0],[0,-1,-2,-1,0],[-1,-2,16,-2,-1],[0,-1,-2,-1,0],[0,0,-1,0,0]]) masked_image = pointMask(image, mask) # Thresholding the masked image to get good points x, y = np.where(masked_image>np.max(masked_image)*0.9) image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) print("Points detected: ") for i, j in zip(x, y): cv2.circle(image, (j,i), 5, [0,0,255], thickness=2, lineType=8, shift=0) print((i,j)) cv2.imwrite('Results/res_point.jpg',image)
StarcoderdataPython
71166
<gh_stars>0 # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature analysis functionality. """ import logging from math import log import numbers import random import _registries import _tokenizer import _transforms import apache_beam as beam from apache_beam.typehints import Dict from apache_beam.typehints import Tuple from apache_beam.typehints import Union from apache_beam.typehints import with_input_types from apache_beam.typehints import with_output_types import numpy as np from google.cloud.ml.util import _dataflow as dfutil class _ExtractValues(beam.DoFn): """Extract values from all feature columns.""" def __init__(self, sorted_feature_columns): self._sorted_feature_columns = sorted_feature_columns # TODO(user): Remove the context param and try catch after sdk update def start_bundle(self, context=None): self._extractors = [ _registries.analyzer_registry.get_analyzer(column).extract_value for column in self._sorted_feature_columns ] def process(self, element): try: element = element.element except AttributeError: pass try: instance = element yield [ extract_value(instance, column_index) for column_index, extract_value in enumerate(self._extractors) ] except Exception as ex: # pylint: disable=broad-except try: yield beam.pvalue.TaggedOutput('errors', (ex, element)) except AttributeError: yield beam.pvalue.SideOutputValue('errors', (ex, element)) class AnalyzeData(beam.PTransform): """A PTransform to analyze feature data to create metadata for preprocessing. The input to this PTransform is a PCollection representing the source dataset, with each element of the collection being a dictionary. The keys of which correspond to the columns referenced in the feature spec provided when constructing this transform. """ def __init__(self, features, input_format=None, format_metadata=None, error_threshold=0, return_bad_elements=False): """Construct an AnalyzeData PTransform. Args: features: A list of Features for the data. input_format: Optional, whether the input was csv or json. format_metadata: Optional, arguments to store in the metadata for the input_format. error_threshold: How many errors are allowed before the job fails. return_bad_elements: Should elements with errors be returned as a side output. Defaults to False. """ super(AnalyzeData, self).__init__('Analyze Data') self._features = features self._format = input_format self._format_metadata = format_metadata self._error_threshold = error_threshold self._return_bad_elements = return_bad_elements self._sorted_feature_columns = _transforms.sorted_columns_from_features( self._features) # TODO(b/33677990): Remove apply method. def apply(self, data): return self.expand(data) def expand(self, data): """Analyzes each of the columns in the feature spec to generate metadata. Args: data: The input PCollection. Returns: Just the metadata if return_bad_elements is False, otherwise a tuple of the metadata and the bad elements side output. """ rows, errors = data | 'Extract Columns' >> beam.ParDo( _ExtractValues(self._sorted_feature_columns)).with_outputs( 'errors', main='rows') _ = data | dfutil.CountPCollection('ml-analyze-input') _ = errors | dfutil.CountPCollection('ml-analyze-errors') _ = (errors, data) | dfutil.CheckErrorThreshold(self._error_threshold) analysis_list = [] combine_fn_analyzers = {} for ix, column in enumerate(self._sorted_feature_columns): analyzer = _registries.analyzer_registry.get_analyzer(column) if isinstance(analyzer, CombineFnColumnAnalyzer): combine_fn_analyzers[ix] = analyzer else: values = rows | 'extract_%s' % column.name >> beam.Map( lambda row, ix=ix: row[ix]) analysis_list.append(values | analyzer) if combine_fn_analyzers: analysis_list.append(rows | 'Analyze CombineFn Features' >> _MultiColumnAnalyzer(combine_fn_analyzers)) columns = analysis_list | beam.Flatten() | beam.combiners.ToDict() metadata = columns | 'Generate Metadata' >> beam.Map(self._create_metadata) if self._return_bad_elements: return metadata, errors else: return metadata def _get_version(self): # Version numbers are stored in the top level package. # Which we can't import at the top as it would be a circular reference. import google.cloud.ml as ml # pylint: disable=g-import-not-at-top return ml.__version__ def _create_metadata(self, columns): features = {} stats = {} metadata = { 'sdk_version': self._get_version(), 'columns': columns, 'features': features, 'stats': stats, } if self._format: metadata['format'] = self._format if self._format_metadata: metadata[self._format] = self._format_metadata for feature in self._features: feature_size = 0 feature_type = 'dense' feature_dtype = 'int64' feature_cols = [] for feature_column in feature.columns: column_name = feature_column.name column = columns.get(column_name, None) if not column: logging.warning('%s not processed because it has no metadata', column_name) continue value_type = column['type'] if value_type == 'target' and hasattr(feature_column, 'scenario'): column['scenario'] = feature_column.scenario transformer = _registries.transformation_registry.get_transformer( column) if transformer.dtype != 'int64': # If we're combining an int with anything else, the "other" dtype # takes precedence. For numeric columns, this will be 'float' and for # anything else, this will likely be 'bytes' # TODO(user). Some unexpected behaviour could result from the # assignment of dtypes here (i.e. in the loop) with respect to # incompatible types getting combined mistakenly. At the time of # b/32318252 has been opened to track refactoring this logic so that # it is clearer to the reader. feature_dtype = transformer.dtype if transformer.feature_type == 'sparse': # If we're combining dense transforms with sparse transforms, the # resulting feature will be sparse. # TODO(user): Consider having an enum for 'sparse' and 'dense' feature_type = 'sparse' feature_size += transformer.feature_size if value_type == 'key': stats['instances'] = column['count'] elif value_type == 'target': if 'vocab' in column: stats['labels'] = len(column['vocab']) if 'mean' in column: stats['mean'] = column['mean'] feature_cols.append(column_name) features[feature.name] = { 'name': feature.name, 'size': feature_size, 'type': feature_type, 'dtype': feature_dtype, 'columns': feature_cols } return metadata class _MultiColumnAnalyzer(beam.PTransform): def __init__(self, analyzers): self._analyzers = analyzers # TODO(b/33677990): Remove apply method. def apply(self, rows): return self.expand(rows) def expand(self, rows): value_indices, value_analyzers = zip(*self._analyzers.items()) assert all( isinstance(analyzer, CombineFnColumnAnalyzer) for analyzer in value_analyzers) return ( rows | 'Extract' >> beam.Map(lambda row: [row[ix] for ix in value_indices]) | 'Combine' >> beam.CombineGlobally(beam.combiners.TupleCombineFn( *[a.combine_fn for a in value_analyzers])).without_defaults() | 'PairWithName' >> beam.FlatMap(lambda combined_values: [ # pylint: disable=g-long-lambda (a.column_name, a.combined_value_to_dict(c)) for a, c in zip(value_analyzers, combined_values)])) class ColumnAnalyzer(beam.PTransform): """Base class for column analyzers. """ def __init__(self, column): super(ColumnAnalyzer, self).__init__('Analyze ' + column.name) self._column = column def extract_value(self, instance, index): """Extracts the column value from an element (represented as a dict). By default, extracts the value by column name, returning None if it does not exist. May be overridden to compute this value and/or throw an error if the column value is not valid. Args: instance: The input instance to extract from. index: The index for the feature column being analyzed. Returns: The column from this instance. """ return instance[index] def _get_column_metadata(self): """Returns a dictionary of the needed metadata. Sets name, type and transforms args if there are any. Returns: A dictionary of the needed metadata. """ column_metadata = {'name': self._column.name} if self._column.default is not None: column_metadata['default'] = self._column.default if self._column.value_type: column_metadata['type'] = self._column.value_type transform_name = self._column._transform # pylint: disable=protected-access if transform_name: column_metadata['transform'] = transform_name if transform_name and self._column.transform_args: column_metadata[transform_name] = self._column.transform_args return column_metadata class IdentityColumnAnalyzer(ColumnAnalyzer): """This is the default analyzer, and only generates simple metatada. Disregards the values and returns a PCollection with a single entry. A tuple in the same format as all the other metadata. """ # TODO(b/33677990): Remove apply method. def apply(self, values): return self.expand(values) def expand(self, values): return ['empty'] | 'Identity Metadata' >> beam.Map( self._ret_val) # run once def _ret_val(self, _): return (self._column.name, self._get_column_metadata()) class CombineFnColumnAnalyzer(ColumnAnalyzer): """Analyzes columns using a CombineFn. Subclasses MUST NOT override the apply method, as an alternative (cross-feature) PTransform may be used instead. """ def __init__(self, column, combine_fn, output_name='combined_value'): assert self.apply.im_func is CombineFnColumnAnalyzer.apply.im_func, ( 'Subclass %s of CombineFnColumnAnalyzer must not overload apply.' % type(self)) super(CombineFnColumnAnalyzer, self).__init__(column) self._combine_fn = combine_fn self._output_name = output_name @property def combine_fn(self): return self._combine_fn @property def column_name(self): return self._column.name # TODO(b/33677990): Remove apply method. def apply(self, values): return self.expand(values) def expand(self, values): return ( values | beam.CombineGlobally(self._combine_fn).without_defaults() | beam.Map(lambda c: (self.column_name, self.combined_value_to_dict(c)))) def combined_value_to_dict(self, aggregate): return dict(self._get_column_metadata(), **{self._output_name: aggregate}) @_registries.register_analyzer('key') class IdColumnAnalyzer(CombineFnColumnAnalyzer): """Analyzes id columns to produce a count of instances. """ def __init__(self, column): super(IdColumnAnalyzer, self).__init__(column, beam.combiners.CountCombineFn(), 'count') def combined_value_to_dict(self, count): return {'name': self._column.name, 'type': 'key', 'count': count} @_registries.register_analyzer('numeric') @with_input_types(Union[int, long, float]) @with_output_types(Tuple[str, Dict[Union[str, unicode], float]]) class NumericColumnAnalyzer(CombineFnColumnAnalyzer): """Analyzes numeric columns to produce a min/max/mean statistics. """ def __init__(self, column): super(NumericColumnAnalyzer, self).__init__( column, self.MinMeanMax(getattr(column, 'log_base', None))) def extract_value(self, instance, index): value = instance[index] if value is not None and not isinstance(value, numbers.Number): return float(value) else: return value def combined_value_to_dict(self, combined_value): return dict(self._get_column_metadata(), **combined_value) class MinMeanMax(beam.core.CombineFn): """Aggregator to combine values within a numeric column. """ def __init__(self, log_base=None): self._log_base = log_base def create_accumulator(self): return (float('+inf'), float('-inf'), 0, 0) def add_input(self, stats, element): if element is None: return stats (min_value, max_value, total, count) = stats if self._log_base: element = log(element, self._log_base) return (min(min_value, element), max(max_value, element), total + element, count + 1) def merge_accumulators(self, accumulators): min_values, max_values, totals, counts = zip(*accumulators) return (min(min_values), max(max_values), sum(totals), sum(counts)) def extract_output(self, stats): (min_value, max_value, total, count) = stats return { 'min': min_value, 'max': max_value, 'mean': 0 if count == 0 else total / float(count), } @_registries.register_analyzer('categorical') @with_input_types(Union[str, unicode]) @with_output_types(Tuple[str, Dict[Union[str, unicode], float]]) class CategoricalColumnAnalyzer(ColumnAnalyzer): """Analyzes categorical columns to produce a dictionary of discrete values. Returns a tuple (column_name, metadata_dictionary). (This will return an empty list, if no values appear more than frequency threshold times. b/30843722) """ def __init__(self, column): super(CategoricalColumnAnalyzer, self).__init__(column) # Need to make these checks because all columns will not have these # attributes. This is true for TargetFeatureColumns which get this analyzer # by default if we're in a classification problem. if hasattr(column, 'frequency_threshold'): self._frequency_threshold = column.frequency_threshold else: self._frequency_threshold = 0 if hasattr(column, 'tokenizer_args'): tokenizer_args = column.tokenizer_args # Although create_flat_tokenizer also deals with empty split_regex, it is # useful to skip the tokenization step since it ammounts to a noop. if tokenizer_args and tokenizer_args['split_regex']: # Create a tokenizer that matches the one used by the categorical column # transform. self._tokenizer_fn = _tokenizer.create_flat_tokenizer( split_regex=tokenizer_args['split_regex'], stop_words=tokenizer_args['stop_words'], use_stemmer=tokenizer_args['use_stemmer'], ngrams=tokenizer_args['ngrams'], strip_html=tokenizer_args['strip_html'], removable_tags=tokenizer_args['removable_tags']) else: self._tokenizer_fn = None else: self._tokenizer_fn = None self._aggregator = CategoricalColumnAnalyzer.Aggregator( self._get_column_metadata()) # TODO(b/33677990): Remove apply method. def apply(self, values): return self.expand(values) def expand(self, values): if self._tokenizer_fn: values |= 'Tokenize Categorical' >> beam.FlatMap(self._tokenizer_fn) values |= 'count' >> beam.combiners.Count.PerElement() if self._frequency_threshold > 1: values |= 'filter by threshold' >> beam.Filter( lambda x: x[1] >= self._frequency_threshold) return (values | 'Analysis' >> beam.core.CombineGlobally(self._aggregator).without_defaults()) class Aggregator(beam.core.CombineFn): """Aggregator to combine values within a categorical column. """ def __init__(self, column): self._column = column def create_accumulator(self): return set() def add_input(self, accumulator, element): if element[0] is not None: accumulator.add(element[0]) return accumulator def merge_accumulators(self, accumulators): return set.union(*accumulators) def extract_output(self, accumulator): items = dict(zip(sorted(accumulator), xrange(len(accumulator)))) column = self._column column['vocab'] = items column['idf'] = {} return (self._column['name'], column) @_registries.register_analyzer('text') @with_input_types(Union[str, unicode]) @with_output_types(Tuple[str, Dict[Union[str, unicode], float]]) class TextColumnAnalyzer(ColumnAnalyzer): """Analyzes text columns to produce a dict and mapping of words to indices. """ def __init__(self, column): super(TextColumnAnalyzer, self).__init__(column) self._tokenizer_fn = _tokenizer.create_flat_tokenizer( split_regex=column.split_regex, stop_words=column.stop_words, use_stemmer=column.use_stemmer, ngrams=column.ngrams, strip_html=column.strip_html, removable_tags=column.removable_tags) self._aggregator = TextColumnAnalyzer.Aggregator(self._get_column_metadata( )) self._word2vec_dict = column.word2vec_dict if not self._word2vec_dict: self._n = column.transform_args['vocab_size'] self._sampling_percentage = column.sampling_percentage self._ngrams = column.ngrams self._use_tf_idf = column.use_tf_idf self._frequency_threshold = column.frequency_threshold # TODO(b/33677990): Remove apply method. def apply(self, values): return self.expand(values) def expand(self, values): if self._sampling_percentage < 100.0: values |= 'Sampling %s/100' % self._sampling_percentage >> beam.ParDo( SamplingFn(self._sampling_percentage)) ngram_list_list = values | 'Tokenize index' >> beam.Map(self._tokenizer_fn) if self._word2vec_dict: max_doc_size = beam.pvalue.AsSingleton( self._get_max_tokens_in_doc(ngram_list_list)) metadata_column = (self._column.name, self._get_column_metadata()) return [metadata_column] | 'create metadata' >> beam.Map( self._add_doc_size, max_doc_size) ngram_counts = (ngram_list_list | 'FlatMap' >> beam.FlatMap(lambda x: x) | 'Count' >> beam.combiners.Count.PerElement()) if self._frequency_threshold > 1: ngram_counts |= ('Filter categories' >> beam.Filter(lambda a: a[1] >= self._frequency_threshold)) top_n_grams = (ngram_counts | 'TopNCount' >> beam.combiners.Top.Of( self._n, compare=lambda a, b: (a[1], a[0]) < (b[1], b[0]))) vocab_grams = top_n_grams vocab_column = vocab_grams | 'Analysis' >> beam.core.CombineGlobally( self._aggregator).without_defaults() if self._use_tf_idf: docs_count = beam.pvalue.AsSingleton(values | 'Count Documents' >> beam.combiners.Count.Globally()) vocab_set = vocab_column | 'Get Vocab Set' >> beam.Map( lambda x: set(x[1]['vocab'].keys())) idf_dict = self._get_idf_dict(ngram_list_list, vocab_set, docs_count) return (idf_dict | beam.Map(self.convert_idf_dict, beam.pvalue.AsSingleton(vocab_column))) else: return vocab_column def _add_doc_size(self, column, max_doc_size): (name, column_dict) = column column_dict['word2vec']['max_doc_size'] = max_doc_size return (name, column_dict) def _get_idf_dict(self, ngram_list_list, vocab_set, docs_count): return (ngram_list_list # flatten ngrams lol, take set | 'Unique Ngrams per doc' >> beam.FlatMap(set) | beam.combiners.Count.PerElement() | 'Vocab Filter' >> beam.FlatMap(self.vocab_filter, beam.pvalue.AsSingleton(vocab_set)) | 'compute idf' >> beam.ParDo(self.idf, docs_count) | beam.combiners.ToDict()) def _get_max_tokens_in_doc(self, ngram_list_list): return (ngram_list_list | 'Count of words doc' >> beam.FlatMap(lambda x: [len(x)]) | beam.CombineGlobally(self.MaxFn())) # TODO(user): Investigate doing this Max with native dataflow transforms. def vocab_filter(self, kv, vocab): (k, v) = kv if k in vocab: yield (k, v) def convert_idf_dict(self, word_to_idf, column): """Convert idf dict from word-> idf score, to word_vocab_index-> idf score. Args: word_to_idf: Dictionary with word to idf mapping. column: The metadata column. Returns: The column name and column dictionary. """ (column_name, column_dict) = column id_to_idf = np.zeros(len(word_to_idf)) for word in word_to_idf.keys(): word_idx = column_dict['vocab'].get(word, -1) if word_idx >= 0: # if word in final vocab id_to_idf[word_idx] = word_to_idf[word] column_dict['idf'] = id_to_idf.tolist() return (column_name, column_dict) def idf(self, kv, docs_count): """Calculate inverse document frequency for a word. Args: kv: key-value of (word, number of documents it appears in). docs_count: number of total documents Raises: ValueError: If the number of documents is negative. Yields: A tuple of key and idf. """ (key, v) = kv if v <= 0: raise ValueError('Number of documents word %s appeared is %d' % (key, v)) idf = log(docs_count / float(v)) + 1 # +1 for smoothing - to avoid 0's yield (key, idf) class MaxFn(beam.CombineFn): """A CombineFn to find the max of the input PCollection. """ def create_accumulator(self): return -1 def add_input(self, current_min, x): return max(current_min, x) def merge_accumulators(self, accumulators): return max(accumulators) def extract_output(self, x): return x class Aggregator(beam.core.CombineFn): """Aggregator to combine values within a text column. """ def __init__(self, column): self._column = column def create_accumulator(self): return set() def add_input(self, accumulator, element): for (word, _) in element: if word is not None: accumulator.add(word) return accumulator def merge_accumulators(self, accumulators): return set.union(*accumulators) def extract_output(self, accumulator): vocab = dict(zip(sorted(accumulator), xrange(len(accumulator)))) column = self._column column['vocab'] = vocab column['idf'] = None return (self._column['name'], column) class SamplingFn(beam.DoFn): def __init__(self, sampling_percentage): super(SamplingFn, self).__init__('Sampling') self._sampling_percentage = sampling_percentage # TODO(user): Remove the try catch after sdk update def process(self, element): try: element = element.element except AttributeError: pass random_sample = random.uniform(0.0, 100.0) if random_sample <= self._sampling_percentage: yield element
StarcoderdataPython
3267403
import random def Partition(A): if (len(A)==1): return 0 v = len(A)-1 i = 0 j = len(A)-2 while (i <= j): if ( (A[i] < A[v]) and (A[j] >= A[v]) ): i += 1 j -= 1 if ( (A[i] >= A[v]) and (A[j] < A[v]) ): A[i], A[j] = A[j], A[i] i += 1 j -= 1 if ( (A[i] < A[v]) and (A[j] < A[v]) ): i += 1 if ( (A[i] >= A[v]) and (A[j] >= A[v]) ): j -= 1 A[i], A[v] = A[v], A[i] return i def QuickSort(A): p = Partition(A) # NIE: A[:p-1] left = A[:p] # A[p] pozostaje niezmieniony right = A[p+1:] if len(left) > 0: QuickSort(left) if len(right) > 0: QuickSort(right) # NIE: A = left + mid + right A[:p] = left # A[p] pozostaje niezmieniony A[p+1:] = right # list = [10, 9, 6, 3, 2] list = random.choices(range(1,100), k=10) print("Input:") print(list) print(sum(list)) print("Quick sort:") QuickSort(list) print(list) print(sum(list))
StarcoderdataPython
178527
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from common.mymako import render_mako_context import datetime import json from django.contrib.auth.models import Group from django.core import serializers from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.db import connection, transaction from django.db.models import Min, Avg, Max, Sum,Count from django.http import HttpResponse from common.mymako import render_mako_context,render_json from home_application.models import TInspectPlan,AccountBkuser def home(request): """ 首页 """ return render_mako_context(request, '/home_application/home.html') def dev_guide(request): """ 开发指引 """ return render_mako_context(request, '/home_application/dev_guide.html') def contactus(request): """ 联系我们 """ return render_mako_context(request, '/home_application/contact.html') class ComplexEncoder2(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, datetime.date): return obj.strftime('%Y-%m-%d') else: return json.JSONEncoder.default(self, obj) def getUserInfo(request): userInfo={} menuInfo = {} loginInfo = {} if request.user.is_authenticated(): user = request.user # print current_user_set # current_group_set = Group.objects.get(user=current_user_set) # print current_group_set # print current_user_set.get_group_permissions() userInfo['username'] = user.username userInfo['qq'] = user.qq userInfo['id'] = user.id userInfo['email'] = user.email userInfo['fullname'] = 'administrator' user = AccountBkuser.objects.filter(username='admin') user = user[0] user.__dict__.pop("_state") ujs = json.dumps(user.__dict__, cls=ComplexEncoder2, ensure_ascii=False) menu =[] #TPlanMenu.objects.all() L = [] for p in menu: p.__dict__.pop("_state") L.append(p.__dict__) dict =[] # TPlanDict.objects.all() list = [] for p in dict: p.__dict__.pop("_state") list.append(p.__dict__) loginInfo['menus'] = L loginInfo['dict'] = list loginInfo['userInfo'] = user.__dict__ json_data = json.dumps(loginInfo, cls=ComplexEncoder2, ensure_ascii=False) return HttpResponse(json_data, content_type='application/json') def userList(request): index = request.GET.get('index') size = request.GET.get('size') userid = request.GET.get('userid') fromdate = request.GET.get('fromdate') todate = request.GET.get('todate') type = request.GET.get('type') menu =AccountBkuser.objects.all().order_by('-id') maxid = AccountBkuser.objects.aggregate(Count('id')) maxid = maxid['id__count'] paginator = Paginator(menu, size) # Show 25 contacts per page menu = paginator.page(index) L = [] for p in menu: p.__dict__.pop("_state") L.append(p.__dict__) json_data = json.dumps(L, cls=ComplexEncoder2, ensure_ascii=False) # serializers.serialize("json", menu, ensure_ascii=False,encoding='UTF-8') # 只有数据没页码 json_data = json_data.replace("null", '""'); result = {'success': True, 'rows': json.loads(json_data), 'pageIndex': index, 'pageSize': size, 'pageCount': 5, 'total': maxid} return render_json(result) def inpectList(request): index = request.GET.get('index') size = request.GET.get('size') userid = request.GET.get('userid') fromdate = request.GET.get('fromdate') todate = request.GET.get('todate') type = request.GET.get('type') menu = TInspectPlan.objects.all().order_by('-id') maxid = TInspectPlan.objects.aggregate(Count('id')) maxid = maxid['id__count'] paginator = Paginator(menu, size) # Show 25 contacts per page menu = paginator.page(index) L = [] for p in menu: p.__dict__.pop("_state") L.append(p.__dict__) json_data = json.dumps(L, cls=ComplexEncoder2, ensure_ascii=False) # serializers.serialize("json", menu, ensure_ascii=False,encoding='UTF-8') # 只有数据没页码 json_data = json_data.replace("null", '""'); result = {'success': True, 'rows': json.loads(json_data), 'pageIndex': index, 'pageSize': size, 'pageCount': 5, 'total': maxid} return render_json(result) def userDetail(request): id = request.GET.get('id') user = PlatUser.objects.filter(id=id) user = user[0] user.__dict__.pop("_state") userinfo = {} userinfo['obj'] = user.__dict__ json_data = json.dumps(userinfo, cls=ComplexEncoder2, ensure_ascii=False) json_data = json_data.replace("null", '""'); return HttpResponse(json_data, content_type='application/json') def taskDetail(request): id = request.GET.get('id') user = PlatUser.objects.filter(id=id) user = user[0] user.__dict__.pop("_state") userinfo = {} userinfo['obj'] = user.__dict__ json_data = json.dumps(userinfo, cls=ComplexEncoder2, ensure_ascii=False) json_data = json_data.replace("null", '""'); return HttpResponse(json_data, content_type='application/json') def inpectSave(request): dictStr = request.GET.get('json') dict = json.loads(dictStr) if hasattr(dict, 'pid'): dict.pid = -1 else: dict['pid'] = -1 maxid = TInspectPlan.objects.aggregate(Max('id')) maxid = maxid['id__max'] autoid = 'D{0:0>6}'.format(7) if dict['id'] > 0: res = TInspectPlan(id=dict['id'],cron_expression=dict['cron_expression'],ip=dict['ip'], plan_name=dict['plan_name'], begin_time=dict['begin_time'], end_time=dict['end_time'], sys_type=dict['sys_type'], plan_status=0, plan_desc=dict['plan_desc'],create_time=datetime.datetime.now()).save() else: res = TInspectPlan(cron_expression=dict['cron_expression'], ip=dict['ip'], plan_name=dict['plan_name'], begin_time=dict['begin_time'], end_time=dict['end_time'], sys_type=dict['sys_type'], plan_status=0, plan_desc=dict['plan_desc'], create_time=datetime.datetime.now()).save() if res: result = {'success': True, 'msg': 'ok'} else: result = {'success': True, 'msg': 'ok'} return render_json(result) def userSave(request): dictStr = request.GET.get('json') dict = json.loads(dictStr) maxid = AccountBkuser.objects.aggregate(Max('id')) maxid = maxid['id__max'] autoid = 'D{0:0>6}'.format(7) if dict['id']>0: res = AccountBkuser(id=dict['id'],chname=dict['chname'],qq=dict['qq'], phone=dict['phone'], username=dict['username'], is_superuser=dict['is_superuser'], email=dict['email'], is_staff=0, company=dict['company'], date_joined=datetime.datetime.now(), last_login=datetime.datetime.now()).save() else: res = AccountBkuser(chname=dict['chname'], qq=dict['qq'], phone=dict['phone'], username=dict['username'], is_superuser=dict['is_superuser'], email=dict['email'], is_staff=0, company=dict['company'],date_joined=datetime.datetime.now(),last_login=datetime.datetime.now()).save() if res: result = {'success': True, 'msg': 'ok'} else: result = {'success': True, 'msg': 'ok'} return render_json(result) def inpectDelIds(request): ids = request.GET.get('ids') ids = ids.split(',') for id in ids: TInspectPlan.objects.get(id=id).delete() result = {"success": True, "message": "删除成功"} return render_json(result) def inpectDel(request): id = request.GET.get('id') TInspectPlan.objects.get(id=id).delete() result = {"success": True, "message": "删除成功"} return render_json(result) def userDel(request): id = request.GET.get('id') AccountBkuser.objects.get(id=id).delete() result = {"success": True, "message": "删除成功"} return render_json(result)
StarcoderdataPython
4839199
<gh_stars>100-1000 # -*- test-case-name: txdav.common.datastore.upgrade.sql.test -*- ## # Copyright (c) 2011-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## from txweb2.dav.resource import TwistedQuotaUsedProperty, TwistedGETContentMD5 from twisted.internet.defer import inlineCallbacks from twistedcaldav import caldavxml, customxml from twistedcaldav.config import config from txdav.base.propertystore.base import PropertyName from txdav.common.datastore.sql_tables import schema from txdav.common.datastore.upgrade.sql.upgrades.util import updateCalendarDataVersion, \ removeProperty, cleanPropertyStore, logUpgradeStatus, doToEachHomeNotAtVersion from txdav.xml import element """ Data upgrade from database version 4 to 5 """ UPGRADE_TO_VERSION = 5 BATCH_SIZE = 100 @inlineCallbacks def doUpgrade(sqlStore): """ Do the required upgrade steps. """ yield updateCalendarHomes(sqlStore, config.UpgradeHomePrefix) # Don't do remaining upgrade if we are only process a subset of the homes if not config.UpgradeHomePrefix: yield removeOtherProperties(sqlStore) # Always bump the DB value yield updateCalendarDataVersion(sqlStore, UPGRADE_TO_VERSION) @inlineCallbacks def updateCalendarHomes(sqlStore, prefix=None): """ For each calendar home, update the associated properties on the home or its owned calendars. """ yield doToEachHomeNotAtVersion(sqlStore, schema.CALENDAR_HOME, UPGRADE_TO_VERSION, updateCalendarHome, "Update Calendar Home", filterOwnerUID=prefix) @inlineCallbacks def updateCalendarHome(txn, homeResourceID): """ For this calendar home, update the associated properties on the home or its owned calendars. """ home = yield txn.calendarHomeWithResourceID(homeResourceID) yield moveCalendarTimezoneProperties(home) yield moveCalendarAvailabilityProperties(home) yield cleanPropertyStore() @inlineCallbacks def moveCalendarTimezoneProperties(home): """ Need to move all the CalDAV:calendar-timezone properties in the RESOURCE_PROPERTY table to the new CALENDAR_BIND table columns, extracting the new value from the XML property. """ # Iterate over each calendar (both owned and shared) calendars = (yield home.loadChildren()) for calendar in calendars: if calendar.isInbox(): continue prop = calendar.properties().get(PropertyName.fromElement(caldavxml.CalendarTimeZone)) if prop is not None: yield calendar.setTimezone(prop.calendar()) del calendar.properties()[PropertyName.fromElement(caldavxml.CalendarTimeZone)] @inlineCallbacks def moveCalendarAvailabilityProperties(home): """ Need to move all the CS:calendar-availability properties in the RESOURCE_PROPERTY table to the new CALENDAR_BIND table columns, extracting the new value from the XML property. """ inbox = (yield home.calendarWithName("inbox")) if inbox is not None: prop = inbox.properties().get(PropertyName.fromElement(customxml.CalendarAvailability)) if prop is not None: yield home.setAvailability(prop.calendar()) del inbox.properties()[PropertyName.fromElement(customxml.CalendarAvailability)] @inlineCallbacks def removeOtherProperties(sqlStore): """ Remove the following properties: DAV:acl DAV:getcontenttype DAV:resource-id {urn:ietf:params:xml:ns:caldav}originator {urn:ietf:params:xml:ns:caldav}recipient {urn:ietf:params:xml:ns:caldav}supported-calendar-component-set {http://calendarserver.org/ns/}getctag {http://twistedmatrix.com/xml_namespace/dav/private/}quota-used {http://twistedmatrix.com/xml_namespace/dav/}getcontentmd5 {http://twistedmatrix.com/xml_namespace/dav/}schedule-auto-respond """ logUpgradeStatus("Starting Calendar Remove Other Properties") sqlTxn = sqlStore.newTransaction(label="calendar_upgrade_from_4_to_5.removeOtherProperties") yield removeProperty(sqlTxn, PropertyName.fromElement(element.ACL)) yield removeProperty(sqlTxn, PropertyName.fromElement(element.GETContentType)) yield removeProperty(sqlTxn, PropertyName.fromElement(element.ResourceID)) yield removeProperty(sqlTxn, PropertyName(caldavxml.caldav_namespace, "originator")) yield removeProperty(sqlTxn, PropertyName(caldavxml.caldav_namespace, "recipient")) yield removeProperty(sqlTxn, PropertyName.fromElement(caldavxml.SupportedCalendarComponentSet)) yield removeProperty(sqlTxn, PropertyName.fromElement(customxml.GETCTag)) yield removeProperty(sqlTxn, PropertyName.fromElement(TwistedQuotaUsedProperty)) yield removeProperty(sqlTxn, PropertyName.fromElement(TwistedGETContentMD5)) yield removeProperty(sqlTxn, PropertyName(element.twisted_dav_namespace, "schedule-auto-respond")) yield sqlTxn.commit() yield cleanPropertyStore() logUpgradeStatus("End Calendar Remove Other Properties")
StarcoderdataPython
178071
<filename>magenta/models/nsynth/wavenet/eval.py # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""The evaluation script. This script requires tensorflow 1.1.0-rc1 or beyond. As of 04/05/17 this requires installing tensorflow from source, (https://github.com/tensorflow/tensorflow/releases) So that it works locally, the default worker_replicas and total_batch_size are set to 1. For training in 200k iterations, they both should be 32. """ import tensorflow as tf import tensorflow_probability as tfp import numpy as np import os import pickle from magenta.models.nsynth import utils slim = tf.contrib.slim FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string("master", "", "BNS name of the TensorFlow master to use.") tf.app.flags.DEFINE_string("config", "h512_bo16", "Model configuration name") tf.app.flags.DEFINE_integer("task", 0, "Task id of the replica running the training.") tf.app.flags.DEFINE_integer("worker_replicas", 1, "Number of replicas. We train with 32.") tf.app.flags.DEFINE_integer("ps_tasks", 0, "Number of tasks in the ps job. If 0 no ps job is " "used. We typically use 11.") tf.app.flags.DEFINE_integer("total_batch_size", 1, "Batch size spread across all sync replicas." "We use a size of 32.") tf.app.flags.DEFINE_integer("sample_length", 64000, "Raw sample length of input.") tf.app.flags.DEFINE_integer("num_evals", None, "number of evauaitons -- None does entire dataset") tf.app.flags.DEFINE_string("logdir", "/tmp/nsynth", "The log directory for this experiment.") tf.app.flags.DEFINE_string("checkpoint_dir", "/tmp/nsynth", "Where the checkpoints are stored") tf.app.flags.DEFINE_string("checkpoint_path", None, "path of checkpoint -- if none use checkpoint_dir") tf.app.flags.DEFINE_string("problem", "nsynth", "Which problem setup (i.e. dataset) to use") tf.app.flags.DEFINE_string("eval_path", "", "The path to the train tfrecord.") tf.app.flags.DEFINE_string("log", "INFO", "The threshold for what messages will be logged." "DEBUG, INFO, WARN, ERROR, or FATAL.") tf.app.flags.DEFINE_bool("vae", False, "Whether or not to train variationally") tf.app.flags.DEFINE_bool("small", False, "Whether to use full model i.e. 30 layers in decoder/encoder or reduced model") tf.app.flags.DEFINE_integer("asymmetric", 0, "Whether to have equal number of layers in decoder/encoder or a weaker decoder") tf.app.flags.DEFINE_bool("kl_annealing", False, "Whether to use kl_annealing") tf.app.flags.DEFINE_float("aux_coefficient", 0, "coefficient for auxilliary loss") tf.app.flags.DEFINE_float("annealing_loc", 1750., "params of normal cdf for annealing") tf.app.flags.DEFINE_float("annealing_scale", 150., "params of normal cdf for annealing") tf.app.flags.DEFINE_float("kl_threshold", None, "Threshold with which to bound KL-Loss") tf.app.flags.DEFINE_float("input_dropout", 1, "How much dropout at input to add") def main(unused_argv=None): tf.logging.set_verbosity(FLAGS.log) if FLAGS.config is None: raise RuntimeError("No config name specified.") if FLAGS.vae: config = utils.get_module("wavenet." + FLAGS.config).VAEConfig( FLAGS.eval_path, sample_length=FLAGS.sample_length, problem=FLAGS.problem, small=FLAGS.small, asymmetric=FLAGS.asymmetric, aux=FLAGS.aux_coefficient, dropout=FLAGS.input_dropout) else: config = utils.get_module("wavenet." + FLAGS.config).Config( FLAGS.eval_path, sample_length=FLAGS.sample_length, problem=FLAGS.problem, small=FLAGS.small, asymmetric=FLAGS.asymmetric) logdir = FLAGS.logdir tf.logging.info("Saving to %s" % logdir) with tf.Graph().as_default(): total_batch_size = FLAGS.total_batch_size assert total_batch_size % FLAGS.worker_replicas == 0 worker_batch_size = total_batch_size / FLAGS.worker_replicas # Run the Reader on the CPU cpu_device = "/job:localhost/replica:0/task:0/cpu:0" if FLAGS.ps_tasks: cpu_device = "/job:worker/cpu:0" with tf.device(cpu_device): inputs_dict = config.get_batch(worker_batch_size, is_training=False) with tf.device( tf.train.replica_device_setter(ps_tasks=FLAGS.ps_tasks, merge_devices=True)): global_step = tf.get_variable( "global_step", [], tf.int32, initializer=tf.constant_initializer(0), trainable=False) # build the model graph outputs_dict = config.build(inputs_dict, is_training=False) if FLAGS.vae: if FLAGS.kl_annealing: dist = tfp.distributions.Normal(loc=FLAGS.annealing_loc, scale=FLAGS.annealing_scale) annealing_rate = dist.cdf(tf.to_float(global_step)) # how to adjust the annealing else: annealing_rate = 0. kl = outputs_dict["loss"]["kl"] rec = outputs_dict["loss"]["rec"] aux = outputs_dict["loss"]["aux"] tf.summary.scalar("kl", kl) tf.summary.scalar("rec", rec) tf.summary.scalar("annealing_rate", annealing_rate) if FLAGS.kl_threshold is not None: kl = tf.maximum(tf.cast(FLAGS.kl_threshold, dtype=kl.dtype), kl) if FLAGS.aux_coefficient > 0: tf.summary.scalar("aux", aux) loss = rec + annealing_rate*kl + tf.cast(FLAGS.aux_coefficient, dtype=tf.float32)*aux else: loss = outputs_dict["loss"] tf.summary.scalar("train_loss", loss) labels = inputs_dict["parameters"] x_in = inputs_dict["wav"] batch_size, _ = x_in.get_shape().as_list() predictions = outputs_dict["predictions"] _, pred_dim = predictions.get_shape().as_list() predictions = tf.reshape(predictions, [batch_size, -1, pred_dim]) encodings = outputs_dict["encoding"] session_config = tf.ConfigProto(allow_soft_placement=True) # Define the metrics: if FLAGS.vae: names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'eval/kl': slim.metrics.streaming_mean(kl), 'eval/rec': slim.metrics.streaming_mean(rec), 'eval/loss': slim.metrics.streaming_mean(loss), 'eval/predictions': slim.metrics.streaming_concat(predictions), 'eval/labels': slim.metrics.streaming_concat(labels), 'eval/encodings': slim.metrics.streaming_concat(encodings), 'eval/audio': slim.metrics.streaming_concat(x_in) }) else: names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'eval/loss': slim.metrics.streaming_mean(loss), 'eval/predictions': slim.metrics.streaming_concat(predictions), 'eval/labels': slim.metrics.streaming_concat(labels), 'eval/encodings': slim.metrics.streaming_concat(encodings), 'eval/audio': slim.metrics.streaming_concat(x_in) }) print('Running evaluation Loop...') if FLAGS.checkpoint_path is not None: checkpoint_path = FLAGS.checkpoint_path else: checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) metric_values = slim.evaluation.evaluate_once( num_evals=FLAGS.num_evals, master=FLAGS.master, checkpoint_path=checkpoint_path, logdir=FLAGS.logdir, eval_op=names_to_updates.values(), final_op=names_to_values.values(), session_config=session_config) names_to_values = dict(zip(names_to_values.keys(), metric_values)) losses = {} data_name = FLAGS.eval_path.split('/')[-1].split('.')[0] outpath = os.path.join(FLAGS.logdir, data_name) for k, v in names_to_values.items(): name = k.split('/')[-1] if name in ['predictions', 'encodings', 'labels', 'audio']: out = outpath+'-{}'.format(name) if name == 'predictions': v = np.argmax(v, axis = -1) v = utils.inv_mu_law_numpy(v - 128) np.save(out, v) else: losses[name] = v out_loss = outpath+'-losses.pickle' with open(out_loss, 'w') as w: pickle.dump(losses, w) def console_entry_point(): tf.app.run(main) if __name__ == "__main__": console_entry_point()
StarcoderdataPython
3307301
import numpy as np import qpimage from drymass import search def test_basic(): size = 200 image = np.zeros((size, size), dtype=float) x = np.arange(size).reshape(-1, 1) y = np.arange(size).reshape(1, -1) cx = 80 cy = 120 radius = 30 r = np.sqrt((x - cx)**2 + (y - cy)**2) image[r < radius] = 1.3 rois = search.search_objects_base(image=image, size=2 * radius) roi = rois[0] assert np.allclose(roi.equivalent_diameter, 2 * radius, atol=.2, rtol=0) assert np.allclose(roi.centroid, (cx, cy)) def test_bg_overlap(): size = 200 x = np.arange(size).reshape(-1, 1) y = np.arange(size).reshape(1, -1) # 5 px between regions cx1 = 100 cy1 = 100 cx2 = 100 cy2 = 145 radius = 20 r1 = np.sqrt((x - cx1)**2 + (y - cy1)**2) r2 = np.sqrt((x - cx2)**2 + (y - cy2)**2) raw_pha = (r1 < radius) * 1.3 bg_pha = (r2 < radius) * 1.2 # create data set qpi = qpimage.QPImage(data=raw_pha, bg_data=bg_pha, which_data="phase", meta_data={"pixel size": 1e-6}) slices1 = search.search_phase_objects(qpi=qpi, size_m=2 * radius * qpi["pixel size"], exclude_overlap=0) slices2 = search.search_phase_objects(qpi=qpi, size_m=2 * radius * 1e-6, exclude_overlap=10) assert len(slices1) == 1 assert len(slices2) == 0 def test_padding(): size = 200 x = np.arange(size).reshape(-1, 1) y = np.arange(size).reshape(1, -1) cx = 80 cy = 120 radius = 30 r = np.sqrt((x - cx)**2 + (y - cy)**2) image = (r < radius) * 1.3 pxsize = 1e-6 qpi = qpimage.QPImage(data=image, which_data="phase", meta_data={"pixel size": pxsize}) paddiff = 7 [slice1] = search.search_phase_objects(qpi=qpi, size_m=2 * radius * pxsize, pad_border=0, ) [slice2] = search.search_phase_objects(qpi=qpi, size_m=2 * radius * pxsize, pad_border=paddiff, ) [slice3] = search.search_phase_objects(qpi=qpi, size_m=2 * radius * pxsize, pad_border=100, ) dx1 = slice1[0].stop - slice1[0].start dy1 = slice1[1].stop - slice1[1].start dx2 = slice2[0].stop - slice2[0].start dy2 = slice2[1].stop - slice2[1].start dx3 = slice3[0].stop - slice3[0].start dy3 = slice3[1].stop - slice3[1].start assert dx2 - dx1 == 2 * paddiff assert dy2 - dy1 == 2 * paddiff assert dx3 == size assert dy3 == size assert slice3[0].start == 0 assert slice3[1].start == 0 def test_threshold_float(): size = 200 image = np.zeros((size, size), dtype=float) x = np.arange(size).reshape(-1, 1) y = np.arange(size).reshape(1, -1) cx = 80 cy = 120 radius = 30 r = np.sqrt((x - cx)**2 + (y - cy)**2) image[r < radius] = 1.3 # test with correct threshold rois = search.search_objects_base(image=image, size=2*radius, threshold=1) roi = rois[0] assert np.allclose(roi.equivalent_diameter, 2 * radius, atol=.2, rtol=0) assert np.allclose(roi.centroid, (cx, cy)) # test with bad threshold rois2 = search.search_objects_base(image=image, size=2*radius, threshold=2) assert len(rois2) == 0 if __name__ == "__main__": # Run all tests loc = locals() for key in list(loc.keys()): if key.startswith("test_") and hasattr(loc[key], "__call__"): loc[key]()
StarcoderdataPython
4808122
############################################################################### # TransientLogSpiralPotential: a transient spiral potential ############################################################################### import numpy from ..util import conversion from .planarPotential import planarPotential _degtorad= numpy.pi/180. class TransientLogSpiralPotential(planarPotential): """Class that implements a steady-state spiral potential .. math:: \\Phi(R,\\phi) = \\frac{\\mathrm{amp}(t)}{\\alpha}\\,\\cos\\left(\\alpha\,\ln R - m\\,(\\phi-\\Omega_s\\,t-\\gamma)\\right) where .. math:: \\mathrm{amp}(t) = \\mathrm{amp}\\,\\times A\\,\\exp\\left(-\\frac{[t-t_0]^2}{2\\,\\sigma^2}\\right) """ def __init__(self,amp=1.,omegas=0.65,A=-0.035, alpha=-7.,m=2,gamma=numpy.pi/4.,p=None, sigma=1.,to=0.,ro=None,vo=None): """ NAME: __init__ PURPOSE: initialize a transient logarithmic spiral potential localized around to INPUT: amp - amplitude to be applied to the potential (default: 1., A below) gamma - angle between sun-GC line and the line connecting the peak of the spiral pattern at the Solar radius (in rad; default=45 degree; can be Quantity) A - amplitude (alpha*potential-amplitude; default=0.035; can be Quantity) omegas= - pattern speed (default=0.65; can be Quantity) m= number of arms to= time at which the spiral peaks (can be Quantity) sigma= "spiral duration" (sigma in Gaussian amplitude; can be Quantity) Either provide: a) alpha= b) p= pitch angle (rad; can be Quantity) OUTPUT: (none) HISTORY: 2011-03-27 - Started - Bovy (NYU) """ planarPotential.__init__(self,amp=amp,ro=ro,vo=vo) gamma= conversion.parse_angle(gamma) p= conversion.parse_angle(p) A= conversion.parse_energy(A,vo=self._vo) omegas= conversion.parse_frequency(omegas,ro=self._ro,vo=self._vo) to= conversion.parse_time(to,ro=self._ro,vo=self._vo) sigma= conversion.parse_time(sigma,ro=self._ro,vo=self._vo) self._omegas= omegas self._A= A self._m= m self._gamma= gamma self._to= to self._sigma2= sigma**2. if not p is None: self._alpha= self._m/numpy.tan(p) else: self._alpha= alpha self.hasC= True def _evaluate(self,R,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,phi,t INPUT: R - Galactocentric cylindrical radius phi - azimuth t - time OUTPUT: Phi(R,phi,t) HISTORY: 2011-03-27 - Started - Bovy (NYU) """ return self._A*numpy.exp(-(t-self._to)**2./2./self._sigma2)\ /self._alpha*numpy.cos(self._alpha*numpy.log(R) -self._m*(phi-self._omegas*t-self._gamma)) def _Rforce(self,R,phi=0.,t=0.): """ NAME: _Rforce PURPOSE: evaluate the radial force for this potential INPUT: R - Galactocentric cylindrical radius phi - azimuth t - time OUTPUT: the radial force HISTORY: 2010-11-24 - Written - Bovy (NYU) """ return self._A*numpy.exp(-(t-self._to)**2./2./self._sigma2)\ /R*numpy.sin(self._alpha*numpy.log(R) -self._m*(phi-self._omegas*t-self._gamma)) def _phiforce(self,R,phi=0.,t=0.): """ NAME: _phiforce PURPOSE: evaluate the azimuthal force for this potential INPUT: R - Galactocentric cylindrical radius phi - azimuth t - time OUTPUT: the azimuthal force HISTORY: 2010-11-24 - Written - Bovy (NYU) """ return -self._A*numpy.exp(-(t-self._to)**2./2./self._sigma2)\ /self._alpha*self._m*numpy.sin(self._alpha*numpy.log(R) -self._m*(phi-self._omegas*t -self._gamma)) def OmegaP(self): """ NAME: OmegaP PURPOSE: return the pattern speed INPUT: (none) OUTPUT: pattern speed HISTORY: 2011-10-10 - Written - Bovy (IAS) """ return self._omegas
StarcoderdataPython
3388374
from pypower import idx_bus, idx_gen, idx_brch import numpy as np from cim2busbranch import ext_pypower pytest_plugins = 'cim2busbranch.test.support' def test_create(case, ppc): res = ext_pypower.create(case) assert res['version'] == ppc['version'] assert res['baseMVA'] == ppc['baseMVA'] assert (res['bus'] == ppc['bus']).all() assert (res['gen'] == ppc['gen']).all() assert (res['branch'] == ppc['branch']).all() def test_write_results_to_case(case, ppc): ppc['bus'][0][idx_bus.VM] = 0.5 ppc['bus'][0][idx_bus.VA] = 0.3 ppc['bus'][1][idx_bus.PD] = 3.4 ppc['bus'][1][idx_bus.QD] = 4.2 ppc['gen'][0][idx_gen.PG] = 2.3 ppc['gen'][0][idx_gen.QG] = 1.7 ppc['branch'][0][idx_brch.PF] = 1.1 ppc['branch'][0][idx_brch.QF] = 1.2 ppc['branch'][0][idx_brch.PT] = 1.3 ppc['branch'][0][idx_brch.QT] = 1.4 ext_pypower.write_results_to_case(ppc, case) assert case.buses[0].vm == 0.5 assert case.buses[0].va == 0.3 assert case.buses[0].pd == 1 assert case.buses[0].qd == 2 assert case.buses[1].vm == 15 assert case.buses[1].va == 16 assert case.buses[1].pd == 3.4 assert case.buses[1].qd == 4.2 assert case.generators[0].pg == 2.3 assert case.generators[0].qg == 1.7 assert case.branches[0].p_from == 1.1 assert case.branches[0].q_from == 1.2 assert case.branches[0].p_to == 1.3 assert case.branches[0].q_to == 1.4 def test__make_bus_list(case, ppc): ret = ext_pypower._make_bus_list(case) assert (ret == ppc['bus']).all() def test__fill_bus_array(case, ppc): for bc, bp in zip(case.buses, ppc['bus']): ret = np.zeros(13, dtype=np.float64) ext_pypower._fill_bus_array(ret, bc, case.bus_ids[bc]) assert (ret == bp).all() def test__make_gen_list(case, ppc): ret = ext_pypower._make_gen_list(case.generators, case.bus_ids) assert (ret == ppc['gen']).all() def test__fill_gen_array(case, ppc): for gc, gp in zip(case.generators, ppc['gen']): ret = np.zeros(21, dtype=np.float64) ext_pypower._fill_gen_array(ret, gc, case.bus_ids) assert (ret == gp).all() def test__make_branch_list(case, ppc): ret = ext_pypower._make_branch_list(case.branches, case.bus_ids) assert (ret == ppc['branch']).all() def test__fil_branch_array(case, ppc): for bc, bp in zip(case.branches, ppc['branch']): ret = np.zeros(17, dtype=np.float64) ext_pypower._fill_branch_array(ret, bc, case.bus_ids) assert (ret == bp).all()
StarcoderdataPython
3231714
import enum import math import numpy as np from pylot.control.utils import get_angle class BehaviorPlannerState(enum.Enum): """ States in which the FSM behavior planner can be in.""" READY = 1 KEEP_LANE = 2 PREPARE_LANE_CHANGE_LEFT = 3 LANGE_CHANGE_LEFT = 4 PREPARE_LANE_CHANGE_RIGHT = 5 LANE_CHANGE_RIGHT = 6 def get_xy_vector_dist(loc1, loc2): vec = np.array([loc1.x, loc1.y] - np.array([loc2.x, loc2.y])) dist = math.sqrt(vec[0]**2 + vec[1]**2) if abs(dist) < 0.00001: return vec, dist else: return vec / dist, dist def get_waypoint_vector_and_angle(wp_transform, ego_transform): wp_vector, wp_mag = get_xy_vector_dist( wp_transform.location, ego_transform.location) if wp_mag > 0: wp_angle = get_angle( wp_vector, [ego_transform.orientation.x, ego_transform.orientation.y]) else: wp_angle = 0 return wp_vector, wp_angle def get_distance(loc1, loc2): """ Computes the Euclidian distance between two 2D points.""" x_diff = loc1.x - loc2.x y_diff = loc1.y - loc2.y return math.sqrt(x_diff**2 + y_diff**2)
StarcoderdataPython
130042
<filename>monitoring/monitorlib/locality.py from enum import Enum class Locality(str, Enum): """Operating locations and their respective regulation and technical variations.""" CHE = 'CHE' """Switzerland""" @property def is_uspace_applicable(self) -> bool: return self in {Locality.CHE} @property def allow_same_priority_intersections(self) -> bool: return self in set()
StarcoderdataPython
1761864
<reponame>athaun/Python-ai-assistant import re import time import requests import json from jarvis.skills.skill import AssistantSkill class LightSkills (AssistantSkill): @classmethod def toggle_light(cls, voice_transcript, skill, **kwargs): """ Toggles ceiling light on or off. """ try: r = requests.post("http://192.168.1.20:5000/", data=b"lightSwitch", ) cls.response("TOGGLED LIGHT") except Exception as e: cls.console(error_log=e) cls.response("Unable to toggle light.")
StarcoderdataPython
130188
<gh_stars>1-10 __author__ = 'Ivan' import objectness_python import tracker_python from Dataset import VOT2015Dataset import numpy as np import matplotlib.pyplot as plt import cv2 from matplotlib import gridspec import re import os import time import math import copy class ObjectnessVizualizer(object): """Class to perform objectness visualization""" def __init__(self, dataset, superpixels = 200, inner=0.9): """Constructor for ObjectnessVizualizer""" self.dataset = dataset self.superpixels = superpixels self.inner = inner @staticmethod def combinePlotsWithMean(full_image, H, img, mean, filename = None, axis_str = None): gs = gridspec.GridSpec(1, 3, width_ratios=[4, 2, 2]) ax0 = plt.subplot(gs[0]) ax0.imshow(full_image) ax0.axis('off') zvals = np.array(H) zvals2 = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #zvals = np.transpose(zvals) zvals = np.flipud(zvals) zvals2 = np.flipud(zvals2) cmap1 = plt.cm.jet cmap2 = plt.cm.gray cmap2._init() # create the _lut array, with rgba valuesHH alphas = np.linspace(0, 0.6, cmap2.N+3) cmap2._lut[:,-1] = alphas ax1 = plt.subplot(gs[1]) ax1.imshow(zvals, interpolation='nearest', cmap=cmap1, origin='lower') ax1.imshow(zvals2, interpolation='nearest', cmap=cmap2, origin='lower') ax1.axis('off') if axis_str is not None: ax0.set_title(axis_str) ax1.set_title("Straddling") ax2=plt.subplot(gs[2]) ax2.matshow(mean) ax2.axis('off') ax2.set_title("Mean") if filename is None: #plt.show() plt.draw() time.sleep(1) else: plt.savefig(filename,bbox_inches='tight', dpi = 100) plt.close() @staticmethod def combinePlots(full_image, H, img,filename = None, axis_str = None): gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) ax0 = plt.subplot(gs[0]) ax0.imshow(full_image) ax0.axis('off') zvals = np.array(H) #min_z = np.min(zvals.flatten(1)) #max_z = np.max(zvals.flatten(1)) #zvals = (zvals - min_z)/(max_z - min_z) zvals2 = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #zvals = np.transpose(zvals) zvals = np.flipud(zvals) zvals2 = np.flipud(zvals2) cmap1 = plt.cm.jet cmap2 = plt.cm.gray cmap2._init() # create the _lut array, with rgba valuesHH alphas = np.linspace(0, 0.6, cmap2.N+3) cmap2._lut[:,-1] = alphas ax1 = plt.subplot(gs[1]) ax1.imshow(zvals, interpolation='nearest', cmap=cmap1, origin='lower') ax1.imshow(zvals2, interpolation='nearest', cmap=cmap2, origin='lower') ax1.axis('off') if axis_str is not None: ax0.set_title(axis_str) if filename is None: #plt.show() plt.draw() time.sleep(1) else: plt.savefig(filename,bbox_inches='tight', dpi = 100) plt.close() @staticmethod def correctDims(box, width, height, R): min_x = max(box[0]-R, 0) min_y = max(box[1]-R, 0) max_x = min(box[0]+R +box[2], width -1) max_y = min(box[1]+R+box[3], height -1) return (min_x, min_y, max_x, max_y) @staticmethod def drawRectangle(image, box, R): n = image.shape[0] m = image.shape[1] c_x = n/2 c_y = m/2 pt1 = (max(c_y - R, box[2]/2), max(c_x - R, box[3]/2)) pt2 = (min(c_y + R, m - box[2]/2), min(c_x + R, n - box[3]/2)) cv2.rectangle(image, pt1, pt2, (0,255,100), 2) return image def evaluateImageAverageStraddling(self, video_number, frame_number = 0, saveFolder = None): video = self.dataset.video_folders[video_number] boxes = self.dataset.readGroundTruthAll(video) print video print len(boxes) images = self.dataset.getListOfImages(video) R = 60 scale_R = 60 min_size_half = 10 min_scales=-15 max_scales =8 downsample=1.03 shrink_one_size = 0 s=re.split('/',video) video_name = s[len(s)-1] fig = plt.figure(figsize=(8, 6)) plt.ion() plt.show() i = frame_number obj = objectness_python.Objectness() box=boxes[i] im_name = images[i] img = cv2.imread(im_name,1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height = img.shape[0] width = img.shape[1] (min_x, min_y, max_x, max_y) = self.correctDims(box, width, height, R) small_image = img[min_y:max_y, min_x :max_x] obj.readImage(im_name) obj.smallImage(R, box[0], box[1], box[2], box[3]) a = obj.process(self.superpixels, self.inner, 0, R, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) #obj.plot() c_x = box[0] - min_x + int(box[2]/2.0) c_y = box[1] - min_y + int(box[3]/2.0) counter = 1 # reshuffle the list a bit a = a[1:min_scales] + [a[0]] + a[min_scales:len(a)] sums =np.zeros((len(a[0]),len(a[0][0]))) counts = np.zeros((len(a[0]),len(a[0][0]))) normalized=list() delay = 5 for H,i in zip(a, range(0,len(a))): prevExists = (i-delay>=0) if (prevExists): objs_delay = np.array(a[i - delay]) objs = np.array(H) mat = np.zeros((len(a[0]),len(a[0][0]))) print np.max(H) for x in range(0,objs.shape[0]): for y in range(0, objs.shape[1]): # get the new data if objs[x,y]!=0: counts[x,y]= counts[x,y]+1 sums[x,y] = sums[x,y] +objs[x,y] # keep the moving average moving if prevExists: sums[x,y] = sums[x,y] - objs_delay[x,y] if (objs_delay[x,y]!=0): counts[x,y] = counts[x,y] -1 if counts[x,y]!= 0: mat[x,y] = sums[x,y] / float(counts[x,y]) normalized.append(mat) for H,h in zip(normalized,a): h=np.array(h) image_full = copy.deepcopy(img) small_image_copy = image_full[min_y:max_y, min_x :max_x] if ( counter == 1): half_width = box[2]/2.0 half_height = box[3]/2.0 width = box[2] height = box[3] else: half_width = ((box[2]/2)*math.pow(downsample, min_scales + counter - 1)) half_height = ((box[3]/2)*math.pow(downsample, min_scales + counter - 1)) width = int(half_width*2) height = int(half_height*2) pt1=(int(c_x - half_width), int(c_y - half_height)) pt2=(int(c_x + half_width), int(c_y + half_height)) cv2.rectangle(image_full, (pt1[0]+min_x, pt1[1]+min_y),(pt2[0]+min_x, pt2[1]+min_y), (100,0,150), 2) cv2.rectangle(image_full, (min_x, min_y), (max_x, max_y), (0,255,200),2) small_image_copy = self.drawRectangle(small_image_copy, (0,0,width, height) , R) print "processing image: ", " " , counter ,"/", len(a) if saveFolder is not None: directory = saveFolder + "/" + video_name+"/" if not os.path.exists(directory): os.makedirs(directory) saveImage = directory+ str(1000 + counter) + ".png" if(os.path.isfile(saveImage)): counter = counter + 1 continue else: saveImage = None axis_str = str(round(width/float(box[2])*100,2)) +"%" self.combinePlotsWithMean(image_full, H, small_image_copy,h,filename = saveImage, axis_str=axis_str) counter = counter + 1 plt.close() def evaluateImage(self, video_number, frame_number = 0, saveFolder = None): video = self.dataset.video_folders[video_number] boxes = self.dataset.readGroundTruthAll(video) print video print len(boxes) images = self.dataset.getListOfImages(video) R = 60 scale_R = 60 min_size_half = 10 min_scales=-15 max_scales =8 downsample=1.03 shrink_one_size = 0 s=re.split('/',video) video_name = s[len(s)-1] fig = plt.figure(figsize=(8, 6)) plt.ion() plt.show() i = frame_number obj = objectness_python.Objectness() box=boxes[i] im_name = images[i] img = cv2.imread(im_name,1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height = img.shape[0] width = img.shape[1] (min_x, min_y, max_x, max_y) = self.correctDims(box, width, height, R) small_image = img[min_y:max_y, min_x :max_x] obj.readImage(im_name) obj.smallImage(R, box[0], box[1], box[2], box[3]) a = obj.process(self.superpixels, self.inner, R, 0, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) #obj.plot() c_x = box[0] - min_x + int(box[2]/2.0) c_y = box[1] - min_y + int(box[3]/2.0) counter = 1 mean =np.zeros((len(a[0]),len(a[0][0]))) counts = np.zeros((len(a[0]),len(a[0][0]))) for H in a: objs = np.array(H) for x in range(0,objs.shape[0]): for y in range(0, objs.shape[1]): if objs[x,y]!=0: counts[x,y]= counts[x,y]+1 mean[x,y] = mean[x,y] +objs[x,y] for x in range(0,objs.shape[0]): for y in range(0, objs.shape[1]): if counts[x,y]!=0: mean[x,y] = mean[x,y]/float(counts[x,y]) for H in a: image_full = copy.deepcopy(img) small_image_copy = image_full[min_y:max_y, min_x :max_x] if ( counter == 1): half_width = box[2]/2.0 half_height = box[3]/2.0 width = box[2] height = box[3] else: half_width = ((box[2]/2)*math.pow(downsample, min_scales + counter - 1)) half_height = ((box[3]/2)*math.pow(downsample, min_scales + counter - 1)) width = int(half_width*2) height = int(half_height*2) pt1=(int(c_x - half_width), int(c_y - half_height)) pt2=(int(c_x + half_width), int(c_y + half_height)) cv2.rectangle(image_full, (pt1[0]+min_x, pt1[1]+min_y),(pt2[0]+min_x, pt2[1]+min_y), (100,0,150), 2) cv2.rectangle(image_full, (min_x, min_y), (max_x, max_y), (0,255,200),2) small_image_copy = self.drawRectangle(small_image_copy, (0,0,width, height) , R) print "processing image: ", " " , counter ,"/", len(a) if saveFolder is not None: directory = saveFolder + "/" + video_name+"/" if not os.path.exists(directory): os.makedirs(directory) saveImage = directory+ str(1000 + counter) + ".png" if(os.path.isfile(saveImage)): counter = counter + 1 continue else: saveImage = None axis_str = str(round(width/float(box[2])*100,2)) +"%" self.combinePlotsWithMean(image_full, H, small_image_copy, mean,filename = saveImage, axis_str=axis_str) counter = counter + 1 plt.close() def evaluateDiscriminativeFunction(self, video_number, together=False, saveFolder=None): video = self.dataset.video_folders[video_number] boxes = self.dataset.readGroundTruthAll(video) print video print len(boxes) images = self.dataset.getListOfImages(video) bbox = boxes[0] R = 60 scale_R = 60 min_size_half = 10 min_scales=0 max_scales =0 downsample=1.05 shrink_one_size = 0 s=re.split('/',video) video_name = s[len(s)-1] tracker = tracker_python.Antrack() tracker.initializeTracker() print images[0], bbox tracker.initialize(images[0], bbox[0], bbox[1], bbox[2], bbox[3]) fig = plt.figure(figsize=(8, 6)) plt.ion() plt.show() for i in range(1, len(images)): print "processing image: ", " " , i ,"/", len(images) if saveFolder is not None: directory = saveFolder + "/" + video_name+"/" if not os.path.exists(directory): os.makedirs(directory) saveImage = directory+ str(1000 + i) + ".png" if(os.path.isfile(saveImage)): continue else: saveImage = None box=boxes[i] im_name = images[i] img = cv2.imread(im_name,1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height = img.shape[0] width = img.shape[1] (min_x, min_y, max_x, max_y) = self.correctDims(box, width, height, R) small_image = img[min_y:max_y, min_x :max_x] im_name = images[i] out = tracker.track(im_name) if i == 100: if together: obj = objectness_python.Objectness() obj.readImage(im_name) obj.smallImage(R, box[0], box[1], box[2], box[3]) a_s = obj.processEdge(self.superpixels,self.inner, 0, R, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) a_e = obj.processEdge(self.superpixels,self.inner, 0, R, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) H_s=np.array(a_s[0]) H_e=np.array(a_e[0]) a = tracker.calculateDiscriminativeFunction(im_name) H=np.array(a) H=H[min_x:max_x, min_y :max_y] H = np.transpose(H) if together: min_z = np.min(H.flatten(1)) max_z = np.max(H.flatten(1)) H = (H - min_z)/(max_z - min_z) H = H + 0.3* H_s + 0.3 * H_e print H.shape self.combinePlots(img, H, small_image, saveImage) def evaluateVideoEdge(self, video_number, saveFolder=None): video = self.dataset.video_folders[video_number] boxes = self.dataset.readGroundTruthAll(video) print video print len(boxes) images = self.dataset.getListOfImages(video) R = 60 scale_R = 60 min_size_half = 10 min_scales=0 max_scales =0 downsample=1.05 shrink_one_size = 0 s=re.split('/',video) video_name = s[len(s)-1] fig = plt.figure(figsize=(8, 6)) plt.ion() plt.show() for i in range(0, len(images)): print "processing image: ", " " , i ,"/", len(images) if saveFolder is not None: directory = saveFolder + "/" + video_name+"/" if not os.path.exists(directory): os.makedirs(directory) saveImage = directory+ str(1000 + i) + ".png" if(os.path.isfile(saveImage)): continue else: saveImage = None obj = objectness_python.Objectness() box=boxes[i] im_name = images[i] img = cv2.imread(im_name,1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height = img.shape[0] width = img.shape[1] (min_x, min_y, max_x, max_y) = self.correctDims(box, width, height, R) small_image = img[min_y:max_y, min_x :max_x] obj.readImage(im_name) pt1=(box[0] - min_x, box[1] - min_y) pt2=(box[0] - min_x + box[2], box[1] -min_y + box[3]) cv2.rectangle(small_image, pt1,pt2, (100,0,150), 2) cv2.rectangle(img, (min_x, min_y), (max_x, max_y), (0,255,200),2) small_image = self.drawRectangle(small_image, box , R) obj.smallImage(R, box[0], box[1], box[2], box[3]) a = obj.processEdge(self.superpixels,self.inner, 0, R, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) #obj.plot() H = a[0] print len(H), len(H[0]) self.combinePlots(img, H, small_image, saveImage) def evaluateVideo(self, video_number, saveFolder=None): video = self.dataset.video_folders[video_number] boxes = self.dataset.readGroundTruthAll(video) print video print len(boxes) images = self.dataset.getListOfImages(video) R = 60 scale_R = 60 min_size_half = 10 min_scales=0 max_scales =0 downsample=1.05 shrink_one_size = 0 s=re.split('/',video) video_name = s[len(s)-1] fig = plt.figure(figsize=(8, 6)) plt.ion() plt.show() for i in range(0, len(images)): print "processing image: ", " " , i ,"/", len(images) if saveFolder is not None: directory = saveFolder + "/" + video_name+"/" if not os.path.exists(directory): os.makedirs(directory) saveImage = directory+ str(1000 + i) + ".png" if(os.path.isfile(saveImage)): continue else: saveImage = None obj = objectness_python.Objectness() box=boxes[i] im_name = images[i] img = cv2.imread(im_name,1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height = img.shape[0] width = img.shape[1] (min_x, min_y, max_x, max_y) = self.correctDims(box, width, height, R) small_image = img[min_y:max_y, min_x :max_x] obj.readImage(im_name) pt1=(box[0] - min_x, box[1] - min_y) pt2=(box[0] - min_x + box[2], box[1] -min_y + box[3]) cv2.rectangle(small_image, pt1,pt2, (100,0,150), 2) cv2.rectangle(img, (min_x, min_y), (max_x, max_y), (0,255,200),2) #small_image = self.drawRectangle(small_image, box , R) obj.smallImage(R, box[0], box[1], box[2], box[3]) a = obj.process(self.superpixels,self.inner, 0, R, scale_R, min_size_half, min_scales, max_scales, downsample, shrink_one_size, box[0], box[1], box[2], box[3]) #obj.plot() H = a[0] self.combinePlots(img, H, small_image, saveImage) def straddlingInTime(save = False): root_folder = '/Users/Ivan/Code/Tracking/Antrack/matlab/vot-toolkit/vot2015/sequences' vot = VOT2015Dataset(root_folder) superpixels = 200 obj = ObjectnessVizualizer(vot) #videos = [3, 30, 25] videos = [3] if save: saveOutputFolder = '/Users/Ivan/Files/Results/Tracking/VOT2015_straddling_in_time' else: saveOutputFolder = None for v in videos: obj.evaluateVideo(v, saveOutputFolder) def edgeDensityInTime(save = False): root_folder = '/Users/Ivan/Code/Tracking/Antrack/matlab/vot-toolkit/vot2015/sequences' vot = VOT2015Dataset(root_folder) obj = ObjectnessVizualizer(vot) #videos = [3, 30, 25] videos = [3] if save: saveOutputFolder = '/Users/Ivan/Files/Results/Tracking/VOT2015_edgeDensity_in_time' else: saveOutputFolder = None for v in videos: obj.evaluateVideoEdge(v, saveOutputFolder) def discriminativeFunctionInTime(together = True, save = False): root_folder = '/Users/Ivan/Code/Tracking/Antrack/matlab/vot-toolkit/vot2015/sequences' vot = VOT2015Dataset(root_folder) obj = ObjectnessVizualizer(vot) #videos = [3, 30, 25] videos = [3] if save: saveOutputFolder = '/Users/Ivan/Files/Results/Tracking/VOT2015_discriminative_in_time' else: saveOutputFolder = None for v in videos: obj.evaluateDiscriminativeFunction(v,together=together, saveFolder=saveOutputFolder) def straddlingInSpace( save = False): root_folder = '/Users/Ivan/Code/Tracking/Antrack/matlab/vot-toolkit/vot2015/sequences' vot = VOT2015Dataset(root_folder) superpixels = 200 obj = ObjectnessVizualizer(vot, superpixels) videos = [3, 30, 25] #videos = [30] if save: saveOutputFolder = '/Users/Ivan/Files/Results/Tracking/VOT2015_straddling_in_space' else: saveOutputFolder = None for v in videos: obj.evaluateImage(v, saveFolder=saveOutputFolder) def straddelingAverageInSpace(save = False): root_folder = '/Users/Ivan/Code/Tracking/Antrack/matlab/vot-toolkit/vot2015/sequences' vot = VOT2015Dataset(root_folder) superpixels = 200 obj = ObjectnessVizualizer(vot, superpixels) videos = [3, 30, 25] videos = [30] if save: saveOutputFolder = '/Users/Ivan/Files/Results/Tracking/VOT2015_straddling_in_space_average' else: saveOutputFolder = None for v in videos: obj.evaluateImageAverageStraddling(v, saveFolder=saveOutputFolder) if __name__ == "__main__": discriminativeFunctionInTime(together=True, save=True) #straddlingInTime(True) #edgeDensityInTime(False)
StarcoderdataPython
121544
<gh_stars>0 total = caros = cont = 0 barato = '' print('==' * 20) print(' <NAME> ') print('==' * 20) while True: nome = str(input('Nome do Produto: ')).strip().title() preco = float(input('Preço: R$ ')) op = ' ' while op not in 'SN': op = str(input('Quer Continuar ? [S/N] ')).strip().upper()[0] total += preco if preco > 1000: caros += 1 if cont == 0: barato = nome p_barato = preco cont += 1 elif preco < p_barato: barato = nome p_barato = preco if op == 'N': break print('--' * 20) print(f'O total gasto em compras foi R${total:.2f}') print(f'Ao todo {caros} produtos custam mais de R$ 1000') print(f'O produto mais barato foi {barato} com um preço de R${p_barato:.2f}.')
StarcoderdataPython
3220643
import boto3 def get_s3_object_last_modified(bucket_name, prefix): """ Get last modified S3 object in specified bucket_name with prefix :param str bucket_name: Name of bucket to chewck for last modified object :param str prefix: Prefix of object key :return Object: AWS S3 Object """ # Based on https://stackoverflow.com/a/62864288 s3 = boto3.client("s3") paginator = s3.get_paginator("list_objects_v2") page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix) last_modified = None for page in page_iterator: if "Contents" in page: last_modified2 = max(page["Contents"], key=lambda x: x["LastModified"]) if last_modified is None or last_modified2["LastModified"] > last_modified["LastModified"]: last_modified = last_modified2 return last_modified
StarcoderdataPython
82994
import json import os import threading import time import socket import getpass from datetime import datetime from wandb import util import wandb METADATA_FNAME = 'wandb-metadata.json' class Meta(object): """Used to store metadata during and after a run.""" HEARTBEAT_INTERVAL_SECONDS = 15 def __init__(self, api, out_dir='.'): self.fname = os.path.join(out_dir, METADATA_FNAME) self._api = api self._shutdown = False try: self.data = json.load(open(self.fname)) except (IOError, ValueError): self.data = {} self.lock = threading.Lock() self.setup() self._thread = threading.Thread(target=self._thread_body) self._thread.daemon = True def start(self): self._thread.start() def setup(self): self.data["root"] = os.getcwd() if self._api.git.enabled: self.data["git"] = { "remote": self._api.git.remote_url, "commit": self._api.git.last_commit } self.data["email"] = self._api.git.email self.data["root"] = self._api.git.root or self.data["root"] self.data["startedAt"] = datetime.utcfromtimestamp( wandb.START_TIME).isoformat() self.data["host"] = socket.gethostname() self.data["username"] = os.getenv("WANDB_USERNAME", getpass.getuser()) try: import __main__ self.data["program"] = __main__.__file__ except (ImportError, AttributeError): self.data["program"] = '<python with no main file>' self.data["state"] = "running" self.write() def write(self): self.lock.acquire() try: self.data["heartbeatAt"] = datetime.utcnow().isoformat() with open(self.fname, 'w') as f: s = util.json_dumps_safer(self.data, indent=4) f.write(s) f.write('\n') finally: self.lock.release() def shutdown(self): self._shutdown = True try: self._thread.join() # Incase we never start it except RuntimeError: pass def _thread_body(self): seconds = 0 while True: if seconds > self.HEARTBEAT_INTERVAL_SECONDS or self._shutdown: self.write() seconds = 0 if self._shutdown: break else: time.sleep(2) seconds += 2
StarcoderdataPython
3276205
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields,osv from openerp import tools from .. import crm AVAILABLE_STATES = [ ('draft','Draft'), ('open','Open'), ('cancel', 'Cancelled'), ('done', 'Closed'), ('pending','Pending') ] MONTHS = [ ('01', 'January'), ('02', 'February'), ('03', 'March'), ('04', 'April'), ('05', 'May'), ('06', 'June'), ('07', 'July'), ('08', 'August'), ('09', 'September'), ('10', 'October'), ('11', 'November'), ('12', 'December') ] class crm_lead_report(osv.osv): """ CRM Lead Analysis """ _name = "crm.lead.report" _auto = False _description = "CRM Lead Analysis" _rec_name = 'deadline_day' _columns = { # grouping fields based on Deadline Date 'deadline_year': fields.char('Ex. Closing Year', size=10, readonly=True, help="Expected closing year"), 'deadline_month':fields.selection(MONTHS, 'Exp. Closing Month', readonly=True, help="Expected closing month"), 'deadline_day': fields.char('Exp. Closing Day', size=10, readonly=True, help="Expected closing day"), # grouping fields based on Create Date 'creation_year': fields.char('Creation Year', size=10, readonly=True, help="Creation year"), 'creation_month': fields.selection(MONTHS, 'Creation Month', readonly=True, help="Creation month"), 'creation_day': fields.char('Creation Day', size=10, readonly=True, help="Creation day"), # other date fields 'create_date': fields.datetime('Create Date', readonly=True), 'opening_date': fields.date('Opening Date', readonly=True), 'date_closed': fields.date('Close Date', readonly=True), # durations 'delay_open': fields.float('Delay to Open',digits=(16,2),readonly=True, group_operator="avg",help="Number of Days to open the case"), 'delay_close': fields.float('Delay to Close',digits=(16,2),readonly=True, group_operator="avg",help="Number of Days to close the case"), 'delay_expected': fields.float('Overpassed Deadline',digits=(16,2),readonly=True, group_operator="avg"), 'user_id':fields.many2one('res.users', 'User', readonly=True), 'country_id':fields.many2one('res.country', 'Country', readonly=True), 'section_id':fields.many2one('crm.case.section', 'Sales Team', readonly=True), 'channel_id':fields.many2one('crm.case.channel', 'Channel', readonly=True), 'type_id':fields.many2one('crm.case.resource.type', 'Campaign', readonly=True), 'state': fields.selection(AVAILABLE_STATES, 'Status', size=16, readonly=True), 'company_id': fields.many2one('res.company', 'Company', readonly=True), 'probability': fields.float('Probability',digits=(16,2),readonly=True, group_operator="avg"), 'planned_revenue': fields.float('Planned Revenue',digits=(16,2),readonly=True), 'probable_revenue': fields.float('Probable Revenue', digits=(16,2),readonly=True), 'stage_id': fields.many2one ('crm.case.stage', 'Stage', readonly=True, domain="[('section_ids', '=', section_id)]"), 'partner_id': fields.many2one('res.partner', 'Partner' , readonly=True), 'nbr': fields.integer('# of Cases', readonly=True), 'company_id': fields.many2one('res.company', 'Company', readonly=True), 'priority': fields.selection(crm.AVAILABLE_PRIORITIES, 'Priority'), 'type':fields.selection([ ('lead','Lead'), ('opportunity','Opportunity'), ],'Type', help="Type is used to separate Leads and Opportunities"), } def init(self, cr): """ CRM Lead Report @param cr: the current row, from the database cursor """ tools.drop_view_if_exists(cr, 'crm_lead_report') cr.execute(""" CREATE OR REPLACE VIEW crm_lead_report AS ( SELECT id, to_char(c.date_deadline, 'YYYY') as deadline_year, to_char(c.date_deadline, 'MM') as deadline_month, to_char(c.date_deadline, 'YYYY-MM-DD') as deadline_day, to_char(c.create_date, 'YYYY') as creation_year, to_char(c.create_date, 'MM') as creation_month, to_char(c.create_date, 'YYYY-MM-DD') as creation_day, to_char(c.date_open, 'YYYY-MM-DD') as opening_date, to_char(c.date_closed, 'YYYY-mm-dd') as date_closed, c.state, c.user_id, c.probability, c.stage_id, c.type, c.company_id, c.priority, c.section_id, c.channel_id, c.type_id, c.partner_id, c.country_id, c.planned_revenue, c.planned_revenue*(c.probability/100) as probable_revenue, 1 as nbr, date_trunc('day',c.create_date) as create_date, extract('epoch' from (c.date_closed-c.create_date))/(3600*24) as delay_close, abs(extract('epoch' from (c.date_deadline - c.date_closed))/(3600*24)) as delay_expected, extract('epoch' from (c.date_open-c.create_date))/(3600*24) as delay_open FROM crm_lead c WHERE c.active = 'true' )""") crm_lead_report() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
StarcoderdataPython
132028
import pathlib from setuptools import find_packages, setup here = pathlib.Path(__file__).parent.resolve() # Get the long description from the README file long_description = (here / "README.md").read_text(encoding="utf-8") # Arguments marked as "Required" below must be included for upload to PyPI. # Fields marked as "Optional" may be commented out. setup( name="chainlibpy", version="1.0.0", description="Tools for Crypto.com wallet management and offline transaction signing", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/crypto-com/chainlibpy", author="Linfeng.Yuan", author_email="<EMAIL>", classifiers=[ "Intended Audience :: Developers", "Topic :: Software Development :: Libraries :: Python Modules", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3 :: Only", ], keywords="CRO, blockchain, signature, crypto.com", packages=find_packages(), python_requires=">=3.6, <4", install_requires=[ "ecdsa>=0.14.0, <0.17.0", "bech32~=1.1.0", "mnemonic>=0.19, <0.20", "hdwallets~=0.1.0", ], extras_require={ "test": ["pytest", "pytest-cov", "pytest-randomly"], }, project_urls={ "Bug Reports": "https://github.com/crypto-com/chainlibpy/issues", "Funding": "https://donate.pypi.org", "Say Thanks!": "https://github.com/hukkinj1/cosmospy", "Source": "https://github.com/crypto-com/chainlibpy", }, )
StarcoderdataPython
3246886
""" Copyright (C) Cortic Technology Corp. - All Rights Reserved Written by <NAME> <<EMAIL>>, 2021 """ from abc import abstractmethod class BaseVisionProcessing: def __init__(self, processor_type): self.processor_type = processor_type @abstractmethod def config_worker(self, params): pass @abstractmethod def preprocess_input(self, input_data): pass @abstractmethod def run_inference(self, params): pass @abstractmethod def postprocess_result(self, inference_outputs): pass
StarcoderdataPython
21466
<filename>src/service/uri_generator.py """Generates pre-signed uri's for blob handling.""" from boto3 import client import os s3_client = client('s3') def create_uri(repo_name, resource_oid, upload=False, expires_in=300): """Create a download uri for the given oid and repo.""" action = 'get_object' if upload: action = 'put_object' params = {'Bucket': os.environ['LFS_S3_BUCKET_NAME'], 'Key': repo_name + '/' + resource_oid} return s3_client.generate_presigned_url(action, Params=params, ExpiresIn=expires_in) def file_exists(repo_name, resource_oid): """Check if the file exists within the bucket.""" key = repo_name + '/' + resource_oid response = s3_client.list_objects_v2( Bucket=os.environ['LFS_S3_BUCKET_NAME'], Prefix=key) for obj in response.get('Contents', []): if obj['Key'] == key: return True return False
StarcoderdataPython
3376526
<reponame>uint0/pylicy from typing import Any, Dict, List import pytest from hypothesis import given from hypothesis import strategies as st from pylicy import models, rules def test_load_rules_bad_version() -> None: with pytest.raises(AttributeError): rules.load({}, []) with pytest.raises(NotImplementedError): rules.load({"version": 9999}, []) @given( st.lists( st.fixed_dictionaries( { "name": st.text(), "weight": st.integers(), "resources": st.one_of(st.text(), st.lists(st.text())), "policies": st.one_of(st.text(), st.lists(st.text())), "description": st.one_of(st.none(), st.text()), "context": st.one_of(st.none(), st.dictionaries(st.text(), st.text())), } ) ), st.lists(st.text()), ) def test_load_v1_rules_correct_hypo(rule_set: List[Dict[str, Any]], policies: List[str]) -> None: loaded = rules.load({"version": 1, "rules": rule_set}, policies) assert all(isinstance(rule, models.Rule) for rule in loaded) def test_load_v1_rules_correct() -> None: assert rules.load({"version": 1, "rules": []}, []) == [] assert rules.load( { "version": 1, "rules": [ { "name": "enforce_all", "weight": 1, "resources": "*", "policies": "*", }, { "name": "allow_admin_wildcards", "description": "Allow admins to have wildcards", "resources": "admin_*", "policies": ["!token_no_wildcard"], }, { "name": "frank_extend_time", "description": "Frank can have longer times betwen token rotation", "resources": "frank_*", "policies": ["token_age"], "context": {"max_rotation_time": 365}, }, ], }, ["token_age", "token_no_wildcard"], ) == [ models.Rule( name="enforce_all", description="enforce_all", weight=1, resource_patterns=["*"], policy_patterns=["*"], context=None, ), models.Rule( name="allow_admin_wildcards", description="Allow admins to have wildcards", weight=100, resource_patterns=["admin_*"], policy_patterns=["!token_no_wildcard"], context=None, ), models.Rule( name="frank_extend_time", description="Frank can have longer times betwen token rotation", weight=100, resource_patterns=["frank_*"], policy_patterns=["token_age"], context={"max_rotation_time": 365}, ), ] def test_resolve_user_rules() -> None: assert rules.resolve_user_rule( models.UserRule( name="enforce_all", weight=1, resources="*", policies="*", ), ["token_age", "token_no_wildcard"], ) == models.Rule( name="enforce_all", description="enforce_all", weight=1, resource_patterns=["*"], policy_patterns=["*"], context=None, ) assert rules.resolve_user_rule( models.UserRule( name="allow_admin_wildcards", description="Allow admins to have wildcards", resources="admin_*", policies=["!token_no_wildcard"], ), ["token_age", "token_no_wildcard"], ) == models.Rule( name="allow_admin_wildcards", description="Allow admins to have wildcards", weight=100, resource_patterns=["admin_*"], policy_patterns=["!token_no_wildcard"], context=None, ) assert rules.resolve_user_rule( models.UserRule( name="frank_extend_time", description="Frank can have longer times betwen token rotation", resources="frank_*", policies=["token_age"], context={"max_rotation_time": 365}, ), ["token_age", "token_no_wildcard"], ) == models.Rule( name="frank_extend_time", description="Frank can have longer times betwen token rotation", weight=100, resource_patterns=["frank_*"], policy_patterns=["token_age"], context={"max_rotation_time": 365}, ) def test_load_v1_rules_no_rules() -> None: with pytest.raises(AttributeError): rules.load({"version": 1}, []) with pytest.raises(TypeError): rules.load({"version": 1, "rules": {}}, []) def test_load_v1_rules_invalid_rule() -> None: with pytest.raises(TypeError): rules.load({"version": 1, "rules": ["hello"]}, []) with pytest.raises(ValueError): rules.load({"version": 1, "rules": [{}]}, []) with pytest.raises(ValueError): rules.load( { "version": 1, "rules": [ { "name": "test", "resources": [], "policies": [], "weight": "not a int", } ], }, [], )
StarcoderdataPython
1753475
<filename>app.py # This file is derived from this source: https://github.com/bhavaniravi/rasa-site-bot # The original file is licensed under "the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version." # Hence this file is also licensed under GNU GPL version 3 # All other files within this repo (https://github.com/Glane13/OpenDataFinder) except appy.py and bind.js are governed by an MIT licence from flask import Flask from flask import render_template,jsonify,request import requests import random import sys import sys app = Flask(__name__) app.secret_key = '12345' @app.route('/') def hello_world(): return render_template('home.html') @app.route('/chat',methods=["POST"]) def chat(): user_message = request.form["text"] response = requests.post('http://localhost:5005/webhooks/rest/webhook', json={"sender": "Graham","message":user_message}) response = response.json()[0]['text'] if not response: response = "error: no response" return jsonify({"status":"success","response": response}) app.config["DEBUG"] = True if __name__ == "__main__": app.run(port=8080)
StarcoderdataPython
1768740
# Used to create html file from function open_movies_page import fresh_tomatoes # Used to get access to class Movies import media # This section is accessing the module media.py toy_story = media.Movie( "Toy Story", "A story of a boy and his toys that come to life", "https://upload.wikimedia.org/wikipedia/en/1/13/Toy_Story.jpg", "https://www.youtube.com/watch?v=KYz2wyBy3kc") # NOQA avatar = media.Movie( "Avatar", "A Marine on an Alien Planet", "https://upload.wikimedia.org/wikipedia/en/b/b0/Avatar-Teaser-Poster.jpg", "https://www.youtube.com/watch?v=5PSNL1qE6VY") # NOQA lion_king = media.Movie( "The Lion King", "About a lion who lost everything and thought he should give up..." "But when he was needed the most he remebered who he was", "https://upload.wikimedia.org/wikipedia/en/3/3d/The_Lion_King_poster.jpg", "https://www.youtube.com/watch?v=4sj1MT05lAA") # NOQA pulp_fiction = media.Movie( "Pulp Fiction", "Don't mess with Marcell", "https://upload.wikimedia.org/wikipedia/en/3/3b/" "Pulp_Fiction_%281994%29_poster.jpg", "https://www.youtube.com/watch?v=s7EdQ4FqbhY") # NOQA forgetting_sarah_marshall = media.Movie( "Forgetting <NAME>", "A man on vacation after a terrible breakup" "runs into his old lover while finding new love", "https://upload.wikimedia.org/wikipedia/en/7/7c/" "Forgetting_sarah_marshall_ver2.jpg", "https://www.youtube.com/watch?v=PyVEHIO6jZ0") # NOQA three_hundred = media.Movie( "300", "This is Sparta!", "https://vignette4.wikia.nocookie.net/theflophouse/images/7/" "7e/300-movie-poster.jpg/revision/latest?cb=20111111170631", "https://www.youtube.com/watch?v=UrIbxk7idYA") # NOQA # This creates an array for all the movies and their instances movies = [toy_story, avatar, lion_king, pulp_fiction, forgetting_sarah_marshall, three_hundred] # This will run the application fresh_tomatoes.open_movies_page(movies)
StarcoderdataPython
163677
import os from newsapi import NewsApiClient import datetime # Init api_key = os.environ.get('api_key') newsapi = NewsApiClient(api_key=api_key) #sources sources = 'abc-news, al-jazeera-english,ars-technica,bbc-news,bbc-sport,bleacher-report,bloomberg,business-insider,buzzfeed,cnn,crypto-coins-news, entertainment-weekly,espn,football-italia,fox-news,fox-sports,hacker-news,medical-news-today,msnbc,mtv-news,mtv-news-uk,national-geographic,national-review,news24,new-scientist,new-york-magazine,nfl-news,techcrunch,techradar,the-verge,the-wall-street-journal,the-washington-post,wired', # Today's date date_today = datetime.date.today() # Date five days ago timedelta = datetime.timedelta(days=5) start_date = (date_today - timedelta) # get content def get_all_content(content_about): content = newsapi.get_everything(q=content_about, language="en" , from_param=start_date, to=date_today, sources=str(sources), sort_by="relevancy", page_size=50 ) content = content.get('articles') return content # General headlines def get_headlines(): content = newsapi.get_top_headlines( sources=str(sources), language="en" , page_size=50, ) content = content.get('articles') return content
StarcoderdataPython
1694099
from .constants import BASE_URL from .api.stores import BestBuyStoresAPI from .api.bulk import BestBuyBulkAPI from .api.products import BestBuyProductsAPI from .api.categories import BestBuyCategoryAPI __version__ = "2.0.0" class BestBuyAPI: def __init__(self, api_key): """API's base class :params: :api_key (str): best buy developer API key. """ self.api_key = api_key.strip() self.bulk = BestBuyBulkAPI(self.api_key) self.products = BestBuyProductsAPI(self.api_key) self.category = BestBuyCategoryAPI(self.api_key) self.stores = BestBuyStoresAPI(self.api_key)
StarcoderdataPython
71694
<gh_stars>1-10 # """ Unit tests for conv encoders. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import tensorflow as tf import texar.tf as tx from texar.tf.modules.encoders.conv_encoders import Conv1DEncoder class Conv1DEncoderTest(tf.test.TestCase): """Tests :class:`~texar.tf.modules.Conv1DEncoder` class. """ def test_encode(self): """Tests encode. """ encoder_1 = Conv1DEncoder() self.assertEqual(len(encoder_1.layers), 4) self.assertTrue(isinstance(encoder_1.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in encoder_1.layers[0].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_1 = tf.ones([64, 16, 300], tf.float32) outputs_1 = encoder_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], "other_conv_kwargs": {"padding": "same"}, # Pooling layers "pooling": "AveragePooling", "pool_size": 2, "pool_strides": 1, # Dense layers "num_dense_layers": 3, "dense_size": [128, 128, 10], "dense_activation": "relu", "other_dense_kwargs": {"use_bias": False}, # Dropout "dropout_conv": [0, 1, 2], "dropout_dense": 2 } encoder_2 = Conv1DEncoder(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(encoder_2.layers), 1 + 1 + 1 + 3 + 4 + 1) self.assertTrue(isinstance(encoder_2.layer_by_name("conv_pool_1"), tx.core.MergeLayer)) for layer in encoder_2.layers[1].layers: self.assertTrue(isinstance(layer, tx.core.SequentialLayer)) inputs_2 = tf.ones([64, 16, 300], tf.float32) outputs_2 = encoder_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) def test_unknown_seq_length(self): """Tests use of pooling layer when the seq_length dimension of inputs is `None`. """ encoder_1 = Conv1DEncoder() inputs_1 = tf.placeholder(tf.float32, [64, None, 300]) outputs_1 = encoder_1(inputs_1) self.assertEqual(outputs_1.shape, [64, 128]) hparams = { # Conv layers "num_conv_layers": 2, "filters": 128, "kernel_size": [[3, 4, 5], 4], # Pooling layers "pooling": "AveragePooling", "pool_size": [2, None], # Dense layers "num_dense_layers": 1, "dense_size": 10, } encoder = Conv1DEncoder(hparams) # nlayers = nconv-pool + nconv + npool + ndense + ndropout + flatten self.assertEqual(len(encoder.layers), 1 + 1 + 1 + 1 + 1 + 1) self.assertTrue(isinstance(encoder.layer_by_name('pool_2'), tx.core.AverageReducePooling1D)) inputs = tf.placeholder(tf.float32, [64, None, 300]) outputs = encoder(inputs) self.assertEqual(outputs.shape, [64, 10]) hparams_2 = { # Conv layers "num_conv_layers": 1, "filters": 128, "kernel_size": 4, "other_conv_kwargs": {'data_format': 'channels_first'}, # Pooling layers "pooling": "MaxPooling", "other_pool_kwargs": {'data_format': 'channels_first'}, # Dense layers "num_dense_layers": 1, "dense_size": 10, } encoder_2 = Conv1DEncoder(hparams_2) inputs_2 = tf.placeholder(tf.float32, [64, 300, None]) outputs_2 = encoder_2(inputs_2) self.assertEqual(outputs_2.shape, [64, 10]) if __name__ == "__main__": tf.test.main()
StarcoderdataPython
3360742
<reponame>mail2nsrajesh/neutron-vpnaas # Copyright (c) 2015 Canonical, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from oslo_config import cfg from oslo_log import log as logging from neutron.agent.linux import ip_lib from neutron.agent.linux import utils from neutron_lib import constants from neutron_vpnaas._i18n import _ from neutron_vpnaas.services.vpn.device_drivers import ipsec LOG = logging.getLogger(__name__) TEMPLATE_PATH = os.path.dirname(os.path.abspath(__file__)) strongswan_opts = [ cfg.StrOpt( 'ipsec_config_template', default=os.path.join( TEMPLATE_PATH, 'template/strongswan/ipsec.conf.template'), help=_('Template file for ipsec configuration.')), cfg.StrOpt( 'strongswan_config_template', default=os.path.join( TEMPLATE_PATH, 'template/strongswan/strongswan.conf.template'), help=_('Template file for strongswan configuration.')), cfg.StrOpt( 'ipsec_secret_template', default=os.path.join( TEMPLATE_PATH, 'template/strongswan/ipsec.secret.template'), help=_('Template file for ipsec secret configuration.')), cfg.StrOpt( 'default_config_area', default=os.path.join( TEMPLATE_PATH, '/etc/strongswan.d'), help=_('The area where default StrongSwan configuration ' 'files are located.')) ] cfg.CONF.register_opts(strongswan_opts, 'strongswan') NS_WRAPPER = 'neutron-vpn-netns-wrapper' class StrongSwanProcess(ipsec.BaseSwanProcess): # ROUTED means route created. (only for auto=route mode) # CONNECTING means route created, connection tunnel is negotiating. # INSTALLED means route created, # also connection tunnel installed. (traffic can pass) DIALECT_MAP = dict(ipsec.BaseSwanProcess.DIALECT_MAP) STATUS_DICT = { 'ROUTED': constants.DOWN, 'CONNECTING': constants.DOWN, 'INSTALLED': constants.ACTIVE } STATUS_RE = '([a-f0-9\-]+).* (ROUTED|CONNECTING|INSTALLED)' STATUS_NOT_RUNNING_RE = 'Command:.*ipsec.*status.*Exit code: [1|3] ' def __init__(self, conf, process_id, vpnservice, namespace): self.DIALECT_MAP['v1'] = 'ikev1' self.DIALECT_MAP['v2'] = 'ikev2' self.DIALECT_MAP['sha256'] = 'sha256' self._strongswan_piddir = self._get_strongswan_piddir() LOG.debug("strongswan piddir is '%s'" % (self._strongswan_piddir)) super(StrongSwanProcess, self).__init__(conf, process_id, vpnservice, namespace) def _get_strongswan_piddir(self): return utils.execute( cmd=[self.binary, "--piddir"], run_as_root=True).strip() def _check_status_line(self, line): """Parse a line and search for status information. If a given line contains status information for a connection, extract the status and mark the connection as ACTIVE or DOWN according to the STATUS_MAP. """ m = self.STATUS_PATTERN.search(line) if m: connection_id = m.group(1) status = self.STATUS_MAP[m.group(2)] return connection_id, status return None, None def _execute(self, cmd, check_exit_code=True, extra_ok_codes=None): """Execute command on namespace. This execute is wrapped by namespace wrapper. The namespace wrapper will bind /etc/ and /var/run """ ip_wrapper = ip_lib.IPWrapper(namespace=self.namespace) return ip_wrapper.netns.execute( [NS_WRAPPER, '--mount_paths=/etc:%s/etc,%s:%s/var/run' % ( self.config_dir, self._strongswan_piddir, self.config_dir), '--cmd=%s' % ','.join(cmd)], check_exit_code=check_exit_code, extra_ok_codes=extra_ok_codes) def copy_and_overwrite(self, from_path, to_path): # NOTE(toabctl): the agent may run as non-root user, so rm/copy as root if os.path.exists(to_path): utils.execute( cmd=["rm", "-rf", to_path], run_as_root=True) utils.execute( cmd=["cp", "-a", from_path, to_path], run_as_root=True) def ensure_configs(self): """Generate config files which are needed for StrongSwan. If there is no directory, this function will create dirs. """ self.ensure_config_dir(self.vpnservice) self.ensure_config_file( 'ipsec.conf', cfg.CONF.strongswan.ipsec_config_template, self.vpnservice) self.ensure_config_file( 'strongswan.conf', cfg.CONF.strongswan.strongswan_config_template, self.vpnservice) self.ensure_config_file( 'ipsec.secrets', cfg.CONF.strongswan.ipsec_secret_template, self.vpnservice, 0o600) self.copy_and_overwrite(cfg.CONF.strongswan.default_config_area, self._get_config_filename('strongswan.d')) def get_status(self): return self._execute([self.binary, 'status'], extra_ok_codes=[1, 3]) def restart(self): """Restart the process.""" self.reload() def reload(self): """Reload the process. Sends a USR1 signal to ipsec starter which in turn reloads the whole configuration on the running IKE daemon charon based on the actual ipsec.conf. Currently established connections are not affected by configuration changes. """ self._execute([self.binary, 'reload']) def start(self): """Start the process for only auto=route mode now. Note: if there is no namespace yet, just do nothing, and wait next event. """ if not self.namespace: return self._execute([self.binary, 'start']) # initiate ipsec connection for ipsec_site_conn in self.vpnservice['ipsec_site_connections']: self._execute([self.binary, 'stroke', 'up-nb', ipsec_site_conn['id']]) def stop(self): self._execute([self.binary, 'stop']) self.connection_status = {} class StrongSwanDriver(ipsec.IPsecDriver): def create_process(self, process_id, vpnservice, namespace): return StrongSwanProcess( self.conf, process_id, vpnservice, namespace)
StarcoderdataPython
190293
<reponame>vishalbelsare/pysonDB import json import os from typing import Any from typing import Dict from uuid import uuid4 from .errors import DataError def verify_data(data: Dict[str, Any], db: Dict[str, Dict[str, Any]]) -> bool: if db: if sorted(list(db.values())[0]) == sorted(list(data)): return True else: raise DataError( "The data provided does not comply with the schema of the intially provided data" ) return True def get_id(db: Dict[str, Dict[str, Any]]) -> str: """Generates a new uuid and then checks whether it exists in the DB""" def get_id() -> str: _id = str(uuid4().int)[:18] if _id in db: return get_id() else: return _id return get_id() def create_db(filename: str, create_file: bool = True) -> None: def create(filename: str, data: str) -> None: with open(filename, "w") as db_file: db_file.write(data) if filename.endswith(".json"): if create_file and not os.path.exists(filename): create(filename, json.dumps({})) # just simply write empty data
StarcoderdataPython
160962
<reponame>kipsang01/art-gallery from django.shortcuts import render from django.http import HttpResponse, Http404 from django.core.exceptions import ObjectDoesNotExist from .models import Category, Image,Location # Create your views here. def home(request): images = Image.objects.all() categories = Category.objects.all() locations = Location.objects.all() context={ 'categories':categories, 'images' : images, 'locations':locations, } return render(request, 'home.html', context) def image_view(request,image_id): categories = Category.objects.all() try: image = Image.get_image_by_id(image_id) except Image.DoesNotExist: raise Http404() context={ 'categories':categories, 'image' : image, } return render(request, 'image.html', context) def search_results(request): categories = Category.objects.all() if 'search' in request.GET and request.GET["search"]: search_term = request.GET.get("search") searched_images = Image.search_image(search_term) message = f"{search_term}" context={ 'categories':categories, 'images': searched_images, 'message':message } return render(request, 'search.html',context) else: message = "You haven't searched for any term" return render(request, 'search.html',{"message":message}) def get_category(request,category): categories = Category.objects.all() images = Image.image_cat(category) context={ 'categories':categories, 'images' : images, } return render(request, 'category.html', context) def get_by_locations(request,location): categories = Category.objects.all() images = Image.images_by_location(location) context={ 'categories':categories, 'images' : images, } return render(request, 'category.html', context)
StarcoderdataPython
1796009
<reponame>WalkingMachine/sara_behaviors #!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from sara_flexbe_states.SetKey import SetKey from flexbe_states.log_key_state import LogKeyState from sara_flexbe_states.sara_set_head_angle import SaraSetHeadAngle from sara_flexbe_states.list_entities_by_name import list_entities_by_name from flexbe_states.flexible_calculation_state import FlexibleCalculationState from flexbe_states.wait_state import WaitState from sara_flexbe_states.sara_say import SaraSay from sara_flexbe_states.for_loop import ForLoop from sara_flexbe_behaviors.action_turn_sm import action_turnSM from sara_flexbe_states.SetRosParam import SetRosParam # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Sat Jun 1 2018 @author: <NAME> ''' class Action_countSM(Behavior): ''' Count instances of entity class around sara (will only rotate, won't move). ''' def __init__(self): super(Action_countSM, self).__init__() self.name = 'Action_count' # parameters of this behavior # references to used behaviors self.add_behavior(action_turnSM, 'action_turn') # Additional initialization code can be added inside the following tags # [MANUAL_INIT] # [/MANUAL_INIT] # Behavior comments: def create(self): # x:475 y:412, x:73 y:374 _state_machine = OperatableStateMachine(outcomes=['done', 'failed'], input_keys=['className'], output_keys=['Count']) _state_machine.userdata.className = "bottle" _state_machine.userdata.Count = 0 # Additional creation code can be added inside the following tags # [MANUAL_CREATE] # [/MANUAL_CREATE] # x:756 y:397 _sm_move_head_0 = OperatableStateMachine(outcomes=['finished'], input_keys=['className', 'Count'], output_keys=['Count']) with _sm_move_head_0: # x:19 y:95 OperatableStateMachine.add('set left', SaraSetHeadAngle(pitch=-0.6, yaw=1.2), transitions={'done': 'wait1'}, autonomy={'done': Autonomy.Off}) # x:5 y:229 OperatableStateMachine.add('count', list_entities_by_name(frontality_level=0, distance_max=2), transitions={'found': 'add', 'none_found': 'add'}, autonomy={'found': Autonomy.Off, 'none_found': Autonomy.Off}, remapping={'name': 'className', 'entity_list': 'entity_list', 'number': 'number'}) # x:10 y:326 OperatableStateMachine.add('add', FlexibleCalculationState(calculation=lambda x: x[0]+x[1], input_keys=["Count", "number"]), transitions={'done': 'gen text'}, autonomy={'done': Autonomy.Off}, remapping={'Count': 'Count', 'number': 'number', 'output_value': 'Count'}) # x:241 y:88 OperatableStateMachine.add('set center', SaraSetHeadAngle(pitch=-0.6, yaw=0), transitions={'done': 'wait 2'}, autonomy={'done': Autonomy.Off}) # x:266 y:154 OperatableStateMachine.add('wait 2', WaitState(wait_time=10), transitions={'done': 'count2'}, autonomy={'done': Autonomy.Off}) # x:245 y:224 OperatableStateMachine.add('count2', list_entities_by_name(frontality_level=0, distance_max=2), transitions={'found': 'add2', 'none_found': 'add2'}, autonomy={'found': Autonomy.Off, 'none_found': Autonomy.Off}, remapping={'name': 'className', 'entity_list': 'entity_list', 'number': 'number'}) # x:252 y:321 OperatableStateMachine.add('add2', FlexibleCalculationState(calculation=lambda x: x[0]+x[1], input_keys=["Count", "number"]), transitions={'done': 'geb text 2'}, autonomy={'done': Autonomy.Off}, remapping={'Count': 'Count', 'number': 'number', 'output_value': 'Count'}) # x:24 y:162 OperatableStateMachine.add('wait1', WaitState(wait_time=12), transitions={'done': 'count'}, autonomy={'done': Autonomy.Off}) # x:445 y:90 OperatableStateMachine.add('set right', SaraSetHeadAngle(pitch=-0.6, yaw=-1.2), transitions={'done': 'wait 3'}, autonomy={'done': Autonomy.Off}) # x:464 y:164 OperatableStateMachine.add('wait 3', WaitState(wait_time=10), transitions={'done': 'count3'}, autonomy={'done': Autonomy.Off}) # x:443 y:237 OperatableStateMachine.add('count3', list_entities_by_name(frontality_level=0, distance_max=2), transitions={'found': 'add3', 'none_found': 'add3'}, autonomy={'found': Autonomy.Off, 'none_found': Autonomy.Off}, remapping={'name': 'className', 'entity_list': 'entity_list', 'number': 'number'}) # x:457 y:334 OperatableStateMachine.add('add3', FlexibleCalculationState(calculation=lambda x: x[0]+x[1], input_keys=["Count", "number"]), transitions={'done': 'gen text3'}, autonomy={'done': Autonomy.Off}, remapping={'Count': 'Count', 'number': 'number', 'output_value': 'Count'}) # x:30 y:412 OperatableStateMachine.add('gen text', FlexibleCalculationState(calculation=lambda x: "I see "+ str(x[0])+ " "+ str(x[1]), input_keys=["number", "classname"]), transitions={'done': 'say_1'}, autonomy={'done': Autonomy.Off}, remapping={'number': 'number', 'classname': 'className', 'output_value': 'text'}) # x:253 y:392 OperatableStateMachine.add('geb text 2', FlexibleCalculationState(calculation=lambda x: "I see "+ str(x[0])+ " "+ str(x[1]), input_keys=["number", "classname"]), transitions={'done': 'sara_2'}, autonomy={'done': Autonomy.Off}, remapping={'number': 'number', 'classname': 'className', 'output_value': 'text'}) # x:461 y:405 OperatableStateMachine.add('gen text3', FlexibleCalculationState(calculation=lambda x: "I see "+ str(x[0])+ " "+ str(x[1]), input_keys=["number", "classname"]), transitions={'done': 'Say_3'}, autonomy={'done': Autonomy.Off}, remapping={'number': 'number', 'classname': 'className', 'output_value': 'text'}) # x:53 y:492 OperatableStateMachine.add('say_1', SaraSay(sentence=lambda x: x, input_keys=[], emotion=0, block=True), transitions={'done': 'set center'}, autonomy={'done': Autonomy.Off}) # x:264 y:471 OperatableStateMachine.add('sara_2', SaraSay(sentence=lambda x: x, input_keys=[], emotion=0, block=True), transitions={'done': 'set right'}, autonomy={'done': Autonomy.Off}) # x:486 y:485 OperatableStateMachine.add('Say_3', SaraSay(sentence=lambda x: x, input_keys=[], emotion=0, block=True), transitions={'done': 'finished'}, autonomy={'done': Autonomy.Off}) with _state_machine: # x:55 y:34 OperatableStateMachine.add('init count', SetKey(Value=0), transitions={'done': 'set angle'}, autonomy={'done': Autonomy.Off}, remapping={'Key': 'Count'}) # x:444 y:326 OperatableStateMachine.add('Log Count', LogKeyState(text="Found: {} objects", severity=Logger.REPORT_HINT), transitions={'done': 'done'}, autonomy={'done': Autonomy.Off}, remapping={'data': 'Count'}) # x:40 y:183 OperatableStateMachine.add('Move head', _sm_move_head_0, transitions={'finished': 'for 1'}, autonomy={'finished': Autonomy.Inherit}, remapping={'className': 'className', 'Count': 'Count'}) # x:419 y:254 OperatableStateMachine.add('Look Center Found', SaraSetHeadAngle(pitch=-0.4, yaw=0), transitions={'done': 'Log Count'}, autonomy={'done': Autonomy.Off}) # x:234 y:227 OperatableStateMachine.add('for 1', ForLoop(repeat=0), transitions={'do': 'action_turn', 'end': 'Log Count'}, autonomy={'do': Autonomy.Off, 'end': Autonomy.Off}, remapping={'index': 'index'}) # x:38 y:275 OperatableStateMachine.add('action_turn', self.use_behavior(action_turnSM, 'action_turn'), transitions={'finished': 'Move head', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}, remapping={'rotation': 'rotation'}) # x:56 y:102 OperatableStateMachine.add('set angle', SetKey(Value=3.14159), transitions={'done': 'Move head'}, autonomy={'done': Autonomy.Off}, remapping={'Key': 'rotation'}) # x:417 y:37 OperatableStateMachine.add('store count', SetRosParam(ParamName="behavior/Count/CountedObjets"), transitions={'done': 'concat'}, autonomy={'done': Autonomy.Off}, remapping={'Value': 'Count'}) # x:400 y:114 OperatableStateMachine.add('concat', FlexibleCalculationState(calculation=lambda x: "I counted "+str(x[0])+" "+str(x[1])+".", input_keys=["Count", "className"]), transitions={'done': 'say_count'}, autonomy={'done': Autonomy.Off}, remapping={'Count': 'Count', 'className': 'className', 'output_value': 'Text'}) # x:419 y:186 OperatableStateMachine.add('say_count', SaraSay(sentence=lambda x: x, input_keys=[], emotion=1, block=True), transitions={'done': 'Look Center Found'}, autonomy={'done': Autonomy.Off}) return _state_machine # Private functions can be added inside the following tags # [MANUAL_FUNC] # [/MANUAL_FUNC]
StarcoderdataPython
1647675
import pytest from ocdeployer.images import ImageImporter, import_images @pytest.fixture def mock_oc(mocker): _mock_oc = mocker.patch("ocdeployer.images.oc") mocker.patch("ocdeployer.images.get_json", return_value={}) yield _mock_oc def _check_oc_calls(mocker, mock_oc): assert mock_oc.call_count == 2 calls = [ mocker.call( "import-image", "image1:tag", "--from=docker.url/image1:sometag", "--confirm", "--scheduled=True", _reraise=True, ), mocker.call( "import-image", "image2:tag", "--from=docker.url/image2:sometag", "--confirm", "--scheduled=True", _reraise=True, ), ] mock_oc.assert_has_calls(calls) def test_images_short_style_syntax(mocker, mock_oc): config_content = { "images": [ {"image1:tag": "docker.url/image1:sometag"}, {"image2:tag": "docker.url/image2:sometag"}, ] } ImageImporter.imported_istags = [] import_images(config_content, []) _check_oc_calls(mocker, mock_oc) def test_images_long_style_syntax(mocker, mock_oc): config_content = { "images": [ {"istag": "image1:tag", "from": "docker.url/image1:sometag"}, {"istag": "image2:tag", "from": "docker.url/image2:sometag"}, ] } ImageImporter.imported_istags = [] import_images(config_content, []) _check_oc_calls(mocker, mock_oc) def test_images_old_style_syntax(mocker, mock_oc): config_content = { "images": { "image1:tag": "docker.url/image1:sometag", "image2:tag": "docker.url/image2:sometag", } } ImageImporter.imported_istags = [] import_images(config_content, []) _check_oc_calls(mocker, mock_oc) def test_images_mixed_style_syntax(mocker, mock_oc): config_content = { "images": [ {"image1:tag": "docker.url/image1:sometag"}, {"istag": "image2:tag", "from": "docker.url/image2:sometag"}, ] } ImageImporter.imported_istags = [] import_images(config_content, []) _check_oc_calls(mocker, mock_oc) def test_images_conditional_images(mocker, mock_oc): config_content = { "images": [ {"istag": "image1:tag", "from": "docker.url/image1:sometag", "envs": ["qa", "prod"]}, {"istag": "image2:tag", "from": "docker.url/image2:sometag"}, ] } ImageImporter.imported_istags = [] import_images(config_content, ["prod"]) _check_oc_calls(mocker, mock_oc) def test_images_conditional_ignore_image(mocker, mock_oc): config_content = { "images": [ {"istag": "image1:tag", "from": "docker.url/image1:sometag", "envs": ["qa", "prod"]}, {"istag": "image2:tag", "from": "docker.url/image2:sometag"}, ] } ImageImporter.imported_istags = [] import_images(config_content, ["foo"]) assert mock_oc.call_count == 1 calls = [ mocker.call( "import-image", "image2:tag", "--from=docker.url/image2:sometag", "--confirm", "--scheduled=True", _reraise=True, ) ] mock_oc.assert_has_calls(calls)
StarcoderdataPython
3338868
<filename>hatespeech_core/modules/pattern_classifier/PatternVectorizer.py import regex import pandas as pd import numpy as np class PatternVectorizer: def __init__(self, patterns, binary=False): self.binary = binary vocabulary = pd.DataFrame() vocabulary['patterns'] = patterns vocabulary['regex'] = vocabulary.patterns.apply( lambda p: regex.compile(PatternVectorizer.pattern_to_regexp(p)) ) self.vocabulary = vocabulary def transform(self, documents): X = np.array([*map(lambda doc: self.count_vocab(doc), documents)], dtype=np.int32) if self.binary: X[X>0] = 1 return X def count_vocab(self, text): return self.vocabulary.regex.apply(lambda voc: len(voc.findall(text))) @classmethod def token_to_regexp(cls, token): tok_to_reg = { '.+': "((?![@,#])[\\p{L}\\p{M}*\\p{N}_]+|(?![@,#])\\p{Punct}+)", '<hashtag>': "#([\\p{L}\\p{M}*\\p{N}_]+|(?![@,#])\\p{Punct}+)", '<usermention>': "@([\\p{L}\\p{M}*\\p{N}_]+|(?![@,#])\\p{Punct}+)", '<url>': "http://([\\p{L}\\p{M}*\\p{N}_\\.\\/]+|(?![@,#])\\p{Punct}+)" } return tok_to_reg.get(token) or token @classmethod def pattern_to_regexp(cls, pattern_str): delimRegex = "((?![@,#])\\b|\\p{Z}+|$|^|(?![@,#])\\p{Punct})" patt = pattern_str.strip() tokens = patt.split(" ") tokens_reg = map(lambda t: cls.token_to_regexp(t),tokens) pattern = delimRegex + delimRegex.join(tokens_reg) + delimRegex return pattern
StarcoderdataPython
3347241
from KLS_EDA import new_kls_df from sklearn.model_selection import train_test_split # Splitting the data into training data and test data X = new_kls_df[1:4].to_numpy().reshape(new_kls_df[1:4].size//3, 3) y = new_kls_df.loc['Karachi Electric'].to_numpy().reshape(-1) others_blamed_train, others_blamed_test, ke_train, ke_test = train_test_split(X, y, test_size = 0.3, random_state = 1, stratify = y)
StarcoderdataPython
83310
<gh_stars>1-10 import secrets import string def main(): ''' Generates a password of the length specified by the user. ''' password_length = input("How many characters long should the password be?: ") if password_length.isdecimal(): password_length = int(password_length) # Generates password. if password_length > 0: character_set = string.ascii_letters + string.digits password = "" for i in range(password_length): password = password + secrets.choice(character_set) print(password) else: print("Invalid length.") else: print("Invalid length.") input() if __name__ == '__main__': main()
StarcoderdataPython
1756247
from django.shortcuts import render,redirect from .models import Profile,Project from django.contrib.auth.decorators import login_required from .forms import ProjectForm,VoteForm,EditProfile from rest_framework.response import Response from rest_framework.views import APIView from .serializer import ProjectSerializer,ProfileSerializer # Create your views here. def welcome(request): projects = Project.objects.all() # prof = Profile.objects.filter(user=request.user) return render(request,'welcome.html',{"projects":projects}) @login_required(login_url='/accounts/login/') def ProjectsUpload(request): logged_user = request.user if request.method == 'POST': form = ProjectForm(request.POST,request.FILES) if form.is_valid(): ProjectsUpload = form.save(commit=False) ProjectsUpload.Project = logged_user ProjectsUpload.save() return redirect('welcome') else: form = ProjectForm() return render(request,'project.html',{'form':form}) @login_required(login_url='/accounts/login/') def review(request): logged_user = request.user if request.method == 'POST': form = VoteForm(request.POST,request.FILES) if form.is_valid(): review = form.save(commit=False) review.Project = logged_user review.save() return redirect('welcome') else: form = VoteForm() return render(request,'review.html',{'form':form}) @login_required(login_url='/accounts/login/') def edit_profile(request): logged_user = request.user if request.method == 'POST': form = EditProfile(request.POST,request.FILES) if form.is_valid(): edit = form.save(commit=False) edit.user = logged_user edit.save() return redirect('welcome') else: form = EditProfile() return render(request,'profile.html',{'form':form}) @login_required(login_url='/accounts/login/') def view_profile(request): current_user = request.user projects = Project.objects.filter(project_user = current_user) try: prof = Profile.objects.get(user=current_user) except Exception as e: return redirect('EditProfile') return render(request,'view_profile.html',{'profile':prof,'projects':projects}) def search(request): if 'title' in request.GET and request.GET["title"]: search_term = request.GET.get("title") searched_title = Project.search_by_title(search_term) message = f"{search_term}" return render(request, 'search.html',{"message":message,"project":searched_title}) else: message = "You haven't searched for any term" return render(request, 'search.html',{"message":searched_title }) class project_list(APIView): def get(self, request, format=None): project = Project.objects.all() serializer = ProjectSerializer(project, many=True) return Response(serializer.data) class profile_list(APIView): def get(self, request, format=None): profile = Profile.objects.all() serializer = ProfileSerializer(profile, many=True) return Response(serializer.data)
StarcoderdataPython
1653425
from datetime import datetime from app.core.config import STRFTIME from app.db.db import database from app.db.schemas import weights from app.models.models import WeightDB from app.models.models import WeightSchema from loguru import logger from sqlalchemy import desc def _log_query(query: str, query_params: dict = None) -> None: logger.debug(f"query: {str(query)}, values: {query_params}") async def post(payload: WeightSchema) -> int: query = weights.insert().values( weight=payload.weight, created_at=datetime.now().strftime(STRFTIME) if not payload.created_at else payload.created_at, ) _log_query(query=str(query), query_params=query.parameters) return await database.execute(query) async def get(id: int) -> WeightDB: query = weights.select().where(id == weights.c.id) _log_query(query=str(query).replace("\n", ""), query_params=id) return await database.fetch_one(query=query) async def get_all(fromdate: datetime = None, todate: datetime = None): if fromdate or todate: query = ( weights.select() .where(weights.c.created_at <= todate) .where(weights.c.created_at >= fromdate) ) else: query = weights.select() _log_query(query=str(query).replace("\n", ""), query_params="") return await database.fetch_all(query=query) async def get_latest(): query = weights.select().order_by(desc(weights.c.created_at)).limit(1) return await database.fetch_one(query=query) async def put(id: int, payload: WeightSchema) -> WeightDB: query = ( weights.update() .where(id == weights.c.id) .values(payload) .returning( weights.c.id, weights.c.updated_at, weights.c.created_at, weights.c.weight ) ) _log_query(query=str(query).replace("\n", ""), query_params=payload) return await database.fetch_all(query=query) async def delete(id: int) -> WeightDB: query = weights.delete().where(id == weights.c.id) _log_query(query=str(query).replace("\n", ""), query_params=id) return await database.execute(query=query)
StarcoderdataPython
3395778
# Generated by Django 2.1.2 on 2018-10-10 10:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("pyazo_core", "0007_upload_mime_type"), ] operations = [ migrations.AddField( model_name="upload", name="thumbnail", field=models.FileField(blank=True, upload_to="thumbnail/"), ), ]
StarcoderdataPython
198087
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations def move_dossier(apps, schema_editor): Company = apps.get_model("core", "Company") for c in Company.objects.all(): c.city_uk = c.city c.street_uk = c.street c.appt_uk = c.appt c.wiki_uk = c.wiki c.other_founders_uk = c.other_founders c.other_recipient_uk = c.other_recipient c.other_owners_uk = c.other_owners c.other_managers_uk = c.other_managers c.bank_name_uk = c.bank_name c.sanctions_uk = c.sanctions c.save() class Migration(migrations.Migration): dependencies = [ ('core', '0086_auto_20160419_0250'), ] operations = [ migrations.RunPython( move_dossier, reverse_code=migrations.RunPython.noop), ]
StarcoderdataPython
3310093
<gh_stars>0 from db import db from flask_restful_swagger import swagger @swagger.model class CreatorModel(db.Model): __tablename__ = 'creators' id = db.Column(db.Integer, primary_key=True) firstname = db.Column(db.String(80)) lastname = db.Column(db.String(80)) def __init__(self, lastname, firstname=None): if firstname: self.firstname = firstname if lastname: self.lastname = lastname def delete_from_db(self): db.session.delete(self) db.session.commit() def json(self): return { 'id':self.id, 'firstname' : self.firstname, 'lastname':self.lastname} def save_to_db(self): db.session.add(self) db.session.commit() @classmethod def find_by_id(cls, _id): return cls.query.filter_by(id=_id).first() @classmethod def find_by_lastname(cls, lastname): #users = User.query.filter(func.soundex(User.name) == func.soundex('Tina')).all() return cls.query.filter(db.func.soundex(CreatorModel.lastname) == db.func.soundex(lastname)).first() @classmethod def find(cls, lastname=None, firstname=None): filters = [] if lastname: filters.append(db.func.soundex(CreatorModel.lastname) == db.func.soundex(lastname)) if firstname: filters.append(db.func.soundex(CreatorModel.firstname) == db.func.soundex(firstname)) if len(filters) > 0: return cls.query.filter(*filters).all() else: return cls.query.all()
StarcoderdataPython
3204651
<reponame>daniel-keogh/graph-theory #!/usr/bin/env python3 import unittest # Enables executing this module directly. # Ref: Remi - https://stackoverflow.com/a/9806045 import os import sys sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from match.regex import ( match, InvalidRegexError ) class MatchTest(unittest.TestCase): def test_match(self): self.assertTrue(match("a.b|b*", "bbbbbbb")) self.assertFalse(match("a.b|b*", "bbbbbx")) def test_concat(self): self.assertTrue(match("h.e.l.l.o", "hello")) def test_optional(self): self.assertTrue(match("a?.b", "b")) self.assertTrue(match("a?.b", "ab")) def test_alternation(self): self.assertTrue(match("a|b", "b")) self.assertFalse(match("a|b", "x")) def test_group(self): self.assertTrue(match("(a.b)*", "ababab")) self.assertTrue(match("(a.b)+", "ababab")) def test_invalid_group(self): self.assertRaises(InvalidRegexError, match, "a|b)", "a") def test_invalid_regex(self): self.assertRaises(InvalidRegexError, match, ".a|b", "a") def test_empty_kleene(self): self.assertTrue(match("b*", "")) def test_empty_plus(self): self.assertFalse(match("b+", "")) if __name__ == '__main__': unittest.main()
StarcoderdataPython
167376
<reponame>jamesreinhold/vigolend from datetime import datetime from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from vigolend.users.models import User from helpers.common.basemodel import BaseModel from helpers.common.choices import ModelChoices from locations.models import Country class KycApplication(BaseModel): """ A KYC or Know Your Customer is used to gather information on user in a regular interval. The KYCs collect information such as where they live, collecting their updated or different ID information, and their risk level at that point in time. Know Your Client (KYC) is a requirement that protects both financial institutions and their users. Financial institutions are required to formally verify the identity of all users and understand the purpose of trading, expected volumes and jurisdictions their users will use. Identity verification is a requirement for companies across a range of industries. Veriff offers compliance, fraud prevention and global scalability. """ # region Fields legal_first_names = models.CharField( max_length=255, verbose_name=_('Legal First names'), blank=True, null=True, help_text=_("First name of the user submitting KYC application - As shown in documents.")) legal_last_names = models.CharField( max_length=255, verbose_name=_('Legal Last names'), blank=True, null=True, help_text=_("First name of the user submitting KYC application - As shown in documents.")) birth_date = models.DateField( verbose_name=_('Date of Birth'), blank=True, null=True, help_text=_("""The user's date of birth as per the identification document. The date of birth must match The user's ID""")) email = models.EmailField( verbose_name=_('Email Address'), max_length=150, blank=True, help_text=_("The primary e-mail address of the user submitting KYC application")) address_line_1 = models.CharField( max_length=255, verbose_name=_('Address Line 1'), help_text=_("""The Address Line 1 of the user submitting KYC application. Must be from The user's country of Residence indicated at the time of registration.""")) address_line_2 = models.CharField( max_length=255, blank=True, null=True, verbose_name=_('Address Line 2'), help_text=_("""The Address Line 2 of the user submitting KYC application. Must be from The user's country of Residence indicated at the time of registration.""")) state = models.CharField( max_length=255, verbose_name=_('State/Region'), help_text=_("""The State/Region/Province of the user submitting KYC application. Must be from The user's country of Residence indicated at the time of registration.""")) zip_code = models.CharField( max_length=10, verbose_name=_('Zip Code'), help_text=_("""The zip code or postal code of the user submitting KYC application. Must be from The user's country of Residence indicated at the time of registration.""")) city = models.CharField( max_length=255, verbose_name=_('City'), help_text=_("""The city of the user submitting KYC application. Must be from the users country of Residence indicated at the time of registration.""")) identification_type = models.CharField( max_length=21, choices=ModelChoices.PHOTO_IDENTIFICATION_TYPE, default='national_id', verbose_name=_('Photo ID Type'), help_text=_("""The type of identification document that the user has provided to the bank such as passport or national ID card. Chosen credential must not be expired. Document should be good condition and clearly visible. File is at least 1 MB in size and has at least 300 dpi resolution.""")) address_proof_type = models.CharField( max_length=21, choices=ModelChoices.PROOF_OF_ADDRESS_TYPE, default=ModelChoices.BANK_STATEMENT, verbose_name=_('Proof of Address type'), help_text=_("""Document that serves as a Proof of address. Chosen credential must not be expired. Document should be good condition and clearly visible. File is at least 1 MB in size and has at least 300 dpi resolution.""")) proof_of_address_document = models.FileField( storage="uploads/kyc/", verbose_name=_('Proof of Address'), help_text=_("""The document must contain your name, the address and should not be older than 90 days. Chosen credential must not be expired. Document should be good condition and clearly visible. File is at least 1 MB in size and has at least 300 dpi resolution.""")) photo_id = models.FileField( storage="uploads/kyc/", verbose_name=_('Photo ID(front)'), help_text=_("""The front side of The user's Photo Identitification. Chosen credential must not be expired. Document should be good condition and clearly visible. File is at least 1 MB in size and has at least 300 dpi resolution.""")) photo_id_back = models.FileField( storage="uploads/kyc/", verbose_name=_('Photo ID(back)'), blank=True, null=True, help_text=_("""The back side of The user's Photo Identitification. Chosen credential must not be expired. Document should be good condition and clearly visible. File is at least 1 MB in size and has at least 300 dpi resolution.""")) selfie_with_id = models.FileField( storage="uploads/kyc/", verbose_name=_('Selfie with ID'), help_text=_( """Upload a photo with yourself and your Passport or both sides of the ID Card. The face and the document must be clearly visible."""), blank=True, null=True) kyc_status = models.CharField( max_length=28, choices=ModelChoices.KYC_STATUS, default='Pending', verbose_name=_('KYC Status'), help_text=_("The KYC status of the user. The default is `Unverified`.")) kyc_status_note = models.TextField( max_length=255, blank=True, null=True, editable=False, verbose_name=_('KYC Status Note'), help_text=_("State the reason for issuing this status.")) status_update_date = models.DateTimeField( default=timezone.now, editable=False, verbose_name=_('Status Update Time'), help_text=_('Timestamp at which the resource status was updated.')) politically_exposed_person = models.CharField( verbose_name=_('Politically Exposed Person(PEP)'), choices=ModelChoices.PEP_CHOICES, max_length=16, default='not_pep', help_text=_("""A politically exposed person is one who has been entrusted with a prominent public function. A PEP generally presents a higher risk for potential involvement in bribery and corruption by virtue of their position and the influence that they may hold. `not_pep` implies user is not Politically Exposed Person and `pep` implies user is a Politically Exposed Person. Default is `not_pep` etc.""")) place_of_birth = models.CharField( verbose_name=_("Place of birth"), blank=True, null=True, max_length=255, help_text=_("The place of birth of the user.")) identification_number = models.CharField( max_length=50, help_text=_( "The number of the identification document provided by the person such as the passport number or the national ID card number."), blank=True, null=True, verbose_name=_('Photo Identification number')) identification_issue_date = models.DateField( blank=True, null=True, help_text=_("""The date of issue of the identification document provided by the user"""), verbose_name=_('ID Issue date')) identification_expiry = models.DateField( blank=True, null=True, help_text=_("""The date of expiry of the identification document provided by the user"""), verbose_name=_('ID Expiry date')) kyc_submitted_ip_address = models.GenericIPAddressField( blank=True, null=True, verbose_name=_('KYC Submitted IP'), editable=False, help_text=_("""The IP address of the user recorded at the time of registration.""")) registered_ip_address = models.GenericIPAddressField( blank=True, null=True, verbose_name=_('Registered IP'), editable=False, help_text=_("""The IP address of the user recorded at the time of registration. Registered IP address is compared with the Submitted IP address to make sure client is within the same region.""")) # reference = models.CharField( # default=Generators.generate_reference, # max_length=8, # verbose_name=_('Reference'), # help_text=_("""Auto-generated reference for KYC application. This is for internal purposes ONLY. A transaction Reference number helps an identify transactions in records and used to monitor transactions associated with a card payment.""")) us_citizen_tax_resident = models.BooleanField( default=False, verbose_name=_("US Citizen or Tax Resident"), help_text=_("""Indication of whether user is a citizen of the United States or a tax resident. Defaults to `False`.""")) accept_terms = models.BooleanField( default=False, verbose_name=_('Accepted Terms'), help_text=_("""Agreements collected from the user, such as acceptance of terms and conditions, or opt in for marketing. This defaults to False.""")) agreed_to_data_usage = models.BooleanField( default=False, verbose_name=_('Agreed to Data Usage'), help_text=_("""Consent to us using the provided data, including consent for us to verify the identity of relevant individuals with our service providers and database owners in accordance with the Identity Verification Terms. This defaults to False.""")) # endregion # region Navigation Fields citizenship = models.ForeignKey( Country, verbose_name=_('Citizenship'), on_delete=models.CASCADE, related_name='+', help_text=_("""The citizenship of the user submitting KYC application. A proof of such citizenship is required by form of National ID or Passport.""")) second_citizenship = models.ForeignKey( Country, verbose_name=_('Second Citizenship'), on_delete=models.CASCADE, help_text=_("The user's second Nationality (if he/she has dual Nationality)."), blank=True, null=True, related_name='+') country_residence = models.ForeignKey( Country, blank=True, verbose_name=_('Country of Residence'), on_delete=models.CASCADE, help_text=_("""The country in which the person primarily resides. A proof of residence is required and requested upon change of residence.""")) kyc_country = models.ForeignKey( Country, on_delete=models.PROTECT, blank=True, null=True, verbose_name=_('KYC Country'), help_text=_("""Country for which KYC has been performed against user. Each country may have different set of fields for KYC. This flag drives the system to show or hide the necessary fields."""), related_name='kyc_country') user = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name=_('KYC User'), help_text=_('Unique identifier of the user that owns the activity.')) reviewer = models.ForeignKey( User, blank=True, null=True, verbose_name=_('Reviewer'), on_delete=models.SET_NULL, related_name='kyc_reviewer', help_text=_("The KYC staff or representative who checked and reviewed KYC application.")) kyc_review_date = models.DateTimeField( blank=True, null=True, editable=False, verbose_name=_('KYC Checked Date'), help_text=_("""Date on which KYC check was performed.""")) reviewer_ip_address = models.GenericIPAddressField( blank=True, null=True, verbose_name=_('Staff Submitted IP'), editable=False, help_text=_("Recorded IP address of the staff reviewing KYC application.")) kyc_refused_code = models.CharField( verbose_name=_("KYC Refused Code"), max_length=34, choices=ModelChoices.KYC_REFUSE_REASON_CODE, blank=True, null=True, help_text=_("The type of reason for refusal") ) # endregion # region Metadata class Meta: verbose_name = _('KYC Application') verbose_name_plural = _('KYC Applications') db_table = 'kyc_applications' permissions = [ ("verify_kyc", _("Verify KYC Application")), ("reject_kyc", _("Reject KYC Application")), ("merge_kyc", _("Merge KYC data with user Information")), ] # endregion # region Methods def __str__(self): return _("KYC #: ") + self.reference @property def age(self): return int((datetime.now().date() - self.birth_date).days / 365.25) def get_user(self): return str(self.user.pk) get_object_user = property(get_user) # def clean_fields(self, exclude=None): # super().clean_fields(exclude=exclude) # if self.identification_issue_date == self.identification_expiry: # raise ValidationError( # { # 'identification_issue_date': _( # "ID issue date and Expiry date cannot be the same." # ), # } # ) # if self.identification_issue_date > date.today(): # raise ValidationError({ # 'identification_issue_date': _( # "We cannot time-travel into the future at the moment." # ), # } # ) # if self.identification_expiry == date.today() or self.identification_expiry < date.today(): # raise ValidationError({ # 'identification_expiry': _( # "We cannot travel back in time. ID has expired." # ), # } # ) # endregion
StarcoderdataPython
1688548
import json from typing import Any, ClassVar, Dict, Iterable, List, Tuple import attr from ...parameters import Parameter from .converter import to_json_schema_recursive @attr.s(slots=True, eq=False) class OpenAPIParameter(Parameter): """A single Open API operation parameter.""" example_field: ClassVar[str] examples_field: ClassVar[str] nullable_field: ClassVar[str] supported_jsonschema_keywords: ClassVar[Tuple[str, ...]] @property def example(self) -> Any: """The primary example defined for this parameter.""" if self._example: return self._example if self._schema_example: # It is processed only if there are no `example` / `examples` in the root, overridden otherwise # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#fixed-fields-10 # We mimic this behavior for Open API 2.0 return self._schema_example @property def location(self) -> str: """Where this parameter is located. E.g. "query". """ return {"formData": "body"}.get(self.raw_location, self.raw_location) @property def raw_location(self) -> str: """Open API specific location name.""" return self.definition["in"] @property def name(self) -> str: """Parameter name.""" return self.definition["name"] @property def is_required(self) -> bool: return self.definition.get("required", False) @property def is_header(self) -> bool: raise NotImplementedError @property def _example(self) -> Any: """A not-named example, defined in the parameter root. { "in": "query", "name": "key", "type": "string" "example": "foo", # This one } """ return self.definition.get(self.example_field) @property def _schema_example(self) -> Any: """Example defined on the schema-level. { "in": "query", (only "body" is possible for Open API 2.0) "name": "key", "schema": { "type": "string", "example": "foo", # This one } } """ return self.definition.get("schema", {}).get("example") def as_json_schema(self) -> Dict[str, Any]: """Convert parameter's definition to JSON Schema.""" schema = self.from_open_api_to_json_schema(self.definition) return self.transform_keywords(schema) def transform_keywords(self, schema: Dict[str, Any]) -> Dict[str, Any]: """Transform Open API specific keywords into JSON Schema compatible form.""" definition = to_json_schema_recursive(schema, self.nullable_field) # Headers are strings, but it is not always explicitly defined in the schema. By preparing them properly, we # can achieve significant performance improvements for such cases. # For reference (my machine) - running a single test with 100 examples with the resulting strategy: # - without: 4.37 s # - with: 294 ms # # It also reduces the number of cases when the "filter_too_much" health check fails during testing. if self.is_header: definition.setdefault("type", "string") return definition def from_open_api_to_json_schema(self, open_api_schema: Dict[str, Any]) -> Dict[str, Any]: """Convert Open API's `Schema` to JSON Schema.""" return { key: value for key, value in open_api_schema.items() # Allow only supported keywords or vendor extensions if key in self.supported_jsonschema_keywords or key.startswith("x-") or key == self.nullable_field } def serialize(self) -> str: # For simplicity, JSON Schema semantics is not taken into account (e.g. 1 == 1.0) # I.e. two semantically equal schemas may have different representation return json.dumps(self.as_json_schema(), sort_keys=True) @attr.s(slots=True, eq=False) class OpenAPI20Parameter(OpenAPIParameter): """Open API 2.0 parameter. https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameterObject """ example_field = "x-example" examples_field = "x-examples" nullable_field = "x-nullable" # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameterObject # Excluding informative keywords - `title`, `description`, `default`. # `required` is not included because it has a different meaning here. It determines whether or not this parameter # is required, which is not relevant because these parameters are later constructed # into an "object" schema, and the value of this keyword is used there. # The following keywords are relevant only for non-body parameters. supported_jsonschema_keywords: ClassVar[Tuple[str, ...]] = ( "$ref", "type", # only as a string "format", "items", "maximum", "exclusiveMaximum", "minimum", "exclusiveMinimum", "maxLength", "minLength", "pattern", "maxItems", "minItems", "uniqueItems", "enum", "multipleOf", ) @property def is_header(self) -> bool: return self.location == "header" @property def _schema_example(self) -> Any: # There is no "schema" in non-body parameters return None @attr.s(slots=True, eq=False) class OpenAPI30Parameter(OpenAPIParameter): """Open API 3.0 parameter. https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#parameter-object """ example_field = "example" examples_field = "examples" nullable_field = "nullable" # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#schema-object # Excluding informative keywords - `title`, `description`, `default`. # In contrast with Open API 2.0 non-body parameters, in Open API 3.0, all parameters have the `schema` keyword. supported_jsonschema_keywords = ( "$ref", "multipleOf", "maximum", "exclusiveMaximum", "minimum", "exclusiveMinimum", "maxLength", "minLength", "pattern", "maxItems", "minItems", "uniqueItems", "maxProperties", "minProperties", "required", "enum", "type", "allOf", "oneOf", "anyOf", "not", "items", "properties", "additionalProperties", "format", ) @property def is_header(self) -> bool: return self.location in ("header", "cookie") def from_open_api_to_json_schema(self, open_api_schema: Dict[str, Any]) -> Dict[str, Any]: open_api_schema = get_parameter_schema(open_api_schema) return super().from_open_api_to_json_schema(open_api_schema) @attr.s(slots=True, eq=False) class OpenAPIBody(OpenAPIParameter): media_type: str = attr.ib() @property def location(self) -> str: return "body" @property def name(self) -> str: # The name doesn't matter but is here for the interface completeness. return "body" @attr.s(slots=True, eq=False) class OpenAPI20Body(OpenAPIBody, OpenAPI20Parameter): """Open API 2.0 body variant.""" # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject # The `body` parameter contains the `schema` keyword that represents the `Schema Object`. # It has slightly different keywords than other parameters. Informational keywords are excluded as well. supported_jsonschema_keywords = ( "$ref", "format", "multipleOf", "multipleOf", "maximum", "exclusiveMaximum", "minimum", "exclusiveMinimum", "maxLength", "minLength", "pattern", "maxItems", "minItems", "uniqueItems", "maxProperties", "minProperties", "enum", "type", "items", "allOf", "properties", "additionalProperties", ) # NOTE. For Open API 2.0 bodies, we still give `x-example` precedence over the schema-level `example` field to keep # the precedence rules consistent. def as_json_schema(self) -> Dict[str, Any]: """Convert body definition to JSON Schema.""" # `schema` is required in Open API 2.0 when the `in` keyword is `body` schema = self.definition["schema"] return self.transform_keywords(schema) @property def _schema_example(self) -> Any: # In Open API 2.0, there is the `example` keyword, # so we use the default behavior of the `OpenAPIParameter` class return super(OpenAPI20Parameter, self)._schema_example FORM_MEDIA_TYPES = ("multipart/form-data", "application/x-www-form-urlencoded") @attr.s(slots=True, eq=False) class OpenAPI30Body(OpenAPIBody, OpenAPI30Parameter): """Open API 3.0 body variant. We consider each media type defined in the schema as a separate variant that can be chosen for data generation. The value of the `definition` field is essentially the Open API 3.0 `MediaType`. """ # The `required` keyword is located above the schema for concrete media-type; # Therefore, it is passed here explicitly required: bool = attr.ib(default=False) def as_json_schema(self) -> Dict[str, Any]: """Convert body definition to JSON Schema.""" schema = get_media_type_schema(self.definition) return self.transform_keywords(schema) def transform_keywords(self, schema: Dict[str, Any]) -> Dict[str, Any]: definition = super().transform_keywords(schema) if self.is_form: # It significantly reduces the "filtering" part of data generation. definition.setdefault("type", "object") return definition @property def is_form(self) -> bool: """Whether this payload represent a form.""" return self.media_type in FORM_MEDIA_TYPES @property def is_required(self) -> bool: return self.required @attr.s(slots=True, eq=False) class OpenAPI20CompositeBody(OpenAPIBody, OpenAPI20Parameter): """A special container to abstract over multiple `formData` parameters.""" definition: List[OpenAPIParameter] = attr.ib() @classmethod def from_parameters(cls, *parameters: Dict[str, Any], media_type: str) -> "OpenAPI20CompositeBody": return cls( definition=[OpenAPI20Parameter(parameter) for parameter in parameters], media_type=media_type, ) @property def is_required(self) -> bool: # We generate an object for formData - it is always required. return bool(self.definition) @property def _example(self) -> Any: return {parameter.name: parameter._example for parameter in self.definition if parameter._example} @property def _schema_example(self) -> Any: return {parameter.name: parameter._schema_example for parameter in self.definition if parameter._schema_example} def as_json_schema(self) -> Dict[str, Any]: """The composite body is transformed into an "object" JSON Schema.""" return parameters_to_json_schema(self.definition) def parameters_to_json_schema(parameters: Iterable[OpenAPIParameter]) -> Dict[str, Any]: """Create an "object" JSON schema from a list of Open API parameters. :param List[OpenAPIParameter] parameters: A list of Open API parameters related to the same location. All of them are expected to have the same "in" value. For each input parameter, there will be a property in the output schema. This: [ { "in": "query", "name": "id", "type": "string", "required": True } ] Will become: { "properties": { "id": {"type": "string"} }, "additionalProperties": False, "type": "object", "required": ["id"] } We need this transformation for locations that imply multiple components with a unique name within the same location. For example, "query" - first, we generate an object that contains all defined parameters and then serialize it to the proper format. """ properties = {} required = [] for parameter in parameters: name = parameter.name properties[name] = parameter.as_json_schema() if parameter.is_required: required.append(name) return {"properties": properties, "additionalProperties": False, "type": "object", "required": required} def get_parameter_schema(data: Dict[str, Any]) -> Dict[str, Any]: """Extract `schema` from Open API 3.0 `Parameter`.""" # In Open API 3.0, there could be "schema" or "content" field. They are mutually exclusive. if "schema" in data: return data["schema"] # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#fixed-fields-10 # > The map MUST only contain one entry. options = iter(data["content"].values()) media_type_object = next(options) return get_media_type_schema(media_type_object) def get_media_type_schema(definition: Dict[str, Any]) -> Dict[str, Any]: """Extract `schema` from Open API 3.0 `MediaType`.""" # The `schema` keyword is optional, and we treat it as the payload could be any value of the specified media type # Note, the main reason to have this function is to have an explicit name for the action we're doing. return definition.get("schema", {})
StarcoderdataPython