id
stringlengths 1
7
| text
stringlengths 6
1.03M
| dataset_id
stringclasses 1
value |
---|---|---|
70252
|
<reponame>HaardikBhagtani/healthy
from time import time
from musiconloop import musiconloop
from lognow import log_now
print("Welcome to the Beautiful Day")
user_name = input("Enter Your name\n").capitalize()
if __name__ == '__main__':
init_water = time()
init_eyes = time()
init_exercise = time()
water_secs = 40*60 # water sound playing time every 40 minutes
exercise_secs = 30*60 # exercise sound playing time every 30 minutes
eyes_secs = 45*60 # eyes sound playing time every 30 minutes
while True:
if time() - init_water > water_secs:
print(f"Water Drinking time {user_name}.\nEnter 'drank' to stop the alarm.")
musiconloop('water.mp3', 'drank')
init_water = time()
log_now("Drank Water at ")
if time() - init_eyes > eyes_secs:
print(f"Eye exercise time {user_name}.\nEnter 'done eyes' to stop the alarm.")
musiconloop('eyes.mp3', 'done eyes')
init_eyes = time()
log_now("Eyes Relaxed at ")
if time() - init_exercise > exercise_secs:
print(f"Physical Activity Time {user_name}.\nEnter 'done exercise' to stop the alarm.")
musiconloop('physical.mp3', 'done exercise')
init_exercise = time()
log_now("Physical Activity done at ")
|
StarcoderdataPython
|
1777309
|
<filename>src/qcar/src/qcarnode.py
#!/usr/bin/env python3
from __future__ import division, print_function, absolute_import
import rospy
import numpy as np
from qcar.product_QCar import QCar
from qcar.q_interpretation import *
from std_msgs.msg import String, Float64
from geometry_msgs.msg import Vector3Stamped
from sensor_msgs.msg import BatteryState
import time
class QCarNode(object):
def __init__(self):
super().__init__()
self.battery_pub_ = rospy.Publisher('/qcar/battery_state', BatteryState, queue_size=10)
self.carvel_pub_ = rospy.Publisher('/qcar/velocity_actual', Vector3Stamped, queue_size=10)
self.myCar = QCar()
self.sample_time = 0.001
self.throttle = 0.0
self.steering = 0.0
self.velocity_sub = rospy.Subscriber('/qcar/velocity_target', Float64, self.process_velocity, queue_size=10)
self.steering_sub = rospy.Subscriber('/qcar/steering_target', Float64, self.process_steering, queue_size=10)
def looping(self):
rate = rospy.Rate(50)
while not rospy.is_shutdown():
# Generate Commands
LEDs = np.array([0, 0, 0, 0, 0, 0, 1, 1])
self.command = np.array([self.throttle, self.steering])
current, batteryVoltage, encoderCounts = self.myCar.read_write_std(self.command, LEDs)
battery_state = BatteryState()
battery_state.header.stamp = rospy.Time.now()
battery_state.header.frame_id = 'battery_voltage'
battery_state.voltage = batteryVoltage
self.battery_pub_.publish(battery_state)
longitudinal_car_speed = basic_speed_estimation(encoderCounts)
velocity_state = Vector3Stamped()
velocity_state.header.stamp = rospy.Time.now()
velocity_state.header.frame_id = 'car_velocity'
velocity_state.vector.x = float(np.cos(self.command[1]) * longitudinal_car_speed)
velocity_state.vector.y = float(np.sin(self.command[1]) * longitudinal_car_speed)
self.carvel_pub_.publish(velocity_state)
rate.sleep()
self.myCar.terminate()
def process_velocity(self, speed):
self.throttle = speed.data / 30.0
def process_steering(self, steering):
self.steering = steering.data
if __name__ == '__main__':
rospy.init_node('qcar_node')
r = QCarNode()
r.looping()
rospy.spin()
# print('Im here')
|
StarcoderdataPython
|
1610603
|
<reponame>ogorodnikov/m1
import signal
# https://stackoverflow.com/questions/492519/timeout-on-a-function-call
def plot_timeout_handler(signal_number, stack_frame):
raise TimeoutError(f"Plot timeout: {PLOT_STATEVECTOR_TIMEOUT} seconds")
def plot_statevector_figure(task_id, statevector):
signal.signal(signal.SIGALRM, plot_timeout_handler)
signal.alarm(PLOT_STATEVECTOR_TIMEOUT)
try:
figure = plot_bloch_multivector(statevector)
# time.sleep(10)
task_log(task_id, f'RUNNER figure: {figure}')
figure_path = app.static_folder + f'/figures/bloch_multivector_task_{task_id}.png'
figure.savefig(figure_path, transparent=True, bbox_inches='tight')
except TimeoutError as exception:
task_log(task_id, exception)
signal.alarm(0)
|
StarcoderdataPython
|
3319805
|
<filename>orders/tasks.py
from celery import task
from django.core.mail import send_mail
from .models import Order
@task
def order_created(order_id):
"""Task to send and email notification when an order is succesfully created."""
order = Order.objects.get(id=order_id)
subject = f'Order nr. {order_id}'
message = f'Dear {order.first_name},\n\nYou have successfully placed an order. Your order ID is {order.id}'
mail_sent = send_mail(subject, message, '<EMAIL>', [order.email])
return mail_sent
|
StarcoderdataPython
|
1668399
|
from .sql_database_backend_service import SqlDatabaseBackendService # noqa
from .sql_occ_locker_backend_service import SqlOccLockerBackendService # noqa
|
StarcoderdataPython
|
3320946
|
<gh_stars>0
class LoggingMixin():
"""
Mixin class with methods for logging of configurations.
"""
def get_option_and_log(self, key):
value = self.get_option(key)
self.config.log(f"{self.configuration_key}.{key} set to {value}")
return value
|
StarcoderdataPython
|
98570
|
<reponame>DataCanvasIO/tabular-toolbox<gh_stars>1-10
# -*- coding:utf-8 -*-
__author__ = 'yangjian'
"""
"""
import copy
import time
import dask
import dask.array as da
import dask.dataframe as dd
import numpy as np
import pandas as pd
from lightgbm.sklearn import LGBMClassifier
from sklearn import model_selection as sksel
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.metrics import roc_auc_score, matthews_corrcoef, make_scorer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from tabular_toolbox import dask_ex as dex
from tabular_toolbox import sklearn_ex as skex
from tabular_toolbox.column_selector import column_object_category_bool, column_number_exclude_timedelta
from tabular_toolbox.dataframe_mapper import DataFrameMapper
from tabular_toolbox.utils import logging
logger = logging.getLogger(__name__)
roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True)
matthews_corrcoef_scorer = make_scorer(matthews_corrcoef)
def general_preprocessor(X):
if dex.is_dask_dataframe(X):
import dask_ml.impute as dimp
import dask_ml.preprocessing as dpre
cat_steps = [('imputer_cat', dimp.SimpleImputer(strategy='constant', fill_value='')),
('encoder', dex.SafeOrdinalEncoder())]
num_steps = [('imputer_num', dimp.SimpleImputer(strategy='mean')),
('scaler', dpre.StandardScaler())]
else:
cat_steps = [('imputer_cat', SimpleImputer(strategy='constant', fill_value='')),
('encoder', skex.SafeOrdinalEncoder())]
num_steps = [('imputer_num', SimpleImputer(strategy='mean')),
('scaler', StandardScaler())]
cat_transformer = Pipeline(steps=cat_steps)
num_transformer = Pipeline(steps=num_steps)
preprocessor = DataFrameMapper(features=[(column_object_category_bool, cat_transformer),
(column_number_exclude_timedelta, num_transformer)],
input_df=True,
df_out=True)
return preprocessor
def _wrap_predict_proba(estimator):
orig_predict_proba = estimator.predict_proba
def __predict_proba(*args, **kwargs):
proba = orig_predict_proba(*args, **kwargs)
proba = dex.fix_binary_predict_proba_result(proba)
return proba
setattr(estimator, '_orig_predict_proba', orig_predict_proba)
setattr(estimator, 'predict_proba', __predict_proba)
return estimator
def _get_estimator(X, estimator=None):
def default_gbm():
return LGBMClassifier(n_estimators=50,
num_leaves=15,
max_depth=5,
subsample=0.5,
subsample_freq=1,
colsample_bytree=0.8,
reg_alpha=1,
reg_lambda=1,
importance_type='gain', )
def default_dt():
return DecisionTreeClassifier(min_samples_leaf=20, min_impurity_decrease=0.01)
def default_rf():
return RandomForestClassifier(min_samples_leaf=20, min_impurity_decrease=0.01)
def default_dask_xgb():
import dask_xgboost
return dask_xgboost.XGBClassifier(max_depth=5,
n_estimators=50,
min_child_weight=3,
gamma=1,
# reg_alpha=0.1,
# reg_lambda=0.1,
subsample=0.6,
colsample_bytree=0.6,
eval_metric='auc',
# objective='binary:logitraw',
tree_method='approx', )
if dex.is_dask_dataframe(X):
try:
estimator_ = default_dask_xgb()
estimator_ = _wrap_predict_proba(estimator_)
except ImportError: # failed to import dask_xgboost
estimator_ = default_gbm()
estimator_ = dex.wrap_local_estimator(estimator_)
else:
if estimator is None or estimator == 'gbm':
estimator_ = default_gbm()
elif estimator == 'dt':
estimator_ = default_dt()
elif estimator == 'rf':
estimator_ = default_rf()
else:
estimator_ = copy.deepcopy(estimator)
return estimator_
class FeatureSelectionCallback():
def on_round_start(self, round_no, features, ):
pass
def on_round_end(self, round_no, auc, features, remove_features, elapsed):
pass
def on_remove_shift_variable(self, shift_score, remove_features):
pass
def on_task_break(self, round_no, auc, features):
pass
def on_task_finished(self, round_no, auc, features):
pass
def feature_selection(X_train, X_test,
remove_shift_variable=True,
variable_shift_threshold=0.7,
variable_shift_scorer=None,
auc_threshold=0.55,
min_features=10, remove_size=0.1,
preprocessor=None,
estimator=None, sample_balance=True, max_test_samples=None, cv=5, random_state=9527,
copy_data=False,
callbacks=None):
logger.info('Feature selection to try to eliminate the concept drift.')
if copy_data:
X_train = X_train.copy() if isinstance(X_train, dd.DataFrame) else copy.deepcopy(X_train)
X_test = X_test.copy() if isinstance(X_test, dd.DataFrame) else copy.deepcopy(X_test)
scores = None
if remove_shift_variable:
scores = covariate_shift_score(X_train, X_test, scorer=variable_shift_scorer)
remain_features = []
remove_features = []
for col, score in scores.items():
if score <= variable_shift_threshold:
remain_features.append(col)
else:
remove_features.append(col)
logger.info(f'Remove shift variables:{col}, score:{score}')
if len(remain_features) < X_train.shape[1]:
X_train = X_train[remain_features]
X_test = X_test[remain_features]
if callbacks is not None:
for callback in callbacks:
callback.on_remove_shift_variable(scores, remove_features)
round = 1
history = []
while True:
start_time = time.time()
if callbacks is not None:
for callback in callbacks:
callback.on_round_start(round_no=round, features=X_train.columns.to_list())
logger.info(f'\nRound: {round}\n')
detector = DriftDetector(preprocessor, estimator, random_state)
detector.fit(X_train, X_test, sample_balance=sample_balance, max_test_samples=max_test_samples, cv=cv)
logger.info(f'AUC:{detector.auc_}, Features:{detector.feature_names_}')
elapsed = time.time() - start_time
history.append({'auc': detector.auc_,
'n_features': len(detector.feature_names_),
'elapsed': elapsed
})
if detector.auc_ <= auc_threshold:
logger.info(
f'AUC:{detector.auc_} has dropped below the threshold:{auc_threshold}, feature selection is over.')
if callbacks is not None:
for callback in callbacks:
callback.on_task_finished(round_no=round, auc=detector.auc_, features=detector.feature_names_)
return detector.feature_names_, history, scores
indices = np.argsort(detector.feature_importances_)
if indices.shape[0] <= min_features:
logger.warn(f'The number of remaining features is insufficient to continue remove features. '
f'AUC:{detector.auc_} '
f'Remaining features:{detector.feature_names_}')
if callbacks is not None:
for callback in callbacks:
callback.on_task_break(round_no=round, auc=detector.auc_, features=detector.feature_names_)
return detector.feature_names_, history, scores
removes = int(indices.shape[0] * remove_size)
if removes <= 0:
logger.warn(f'The number of remaining features is insufficient to continue remove features. '
f'AUC:{detector.auc_} '
f'Remaining features:({len(detector.feature_names_)}) / {detector.feature_names_}')
if callbacks is not None:
for callback in callbacks:
callback.on_task_break(round_no=round, auc=detector.auc_, features=detector.feature_names_)
return detector.feature_names_, history, scores
if (indices.shape[0] - removes) < min_features:
removes = indices.shape[0] - min_features
remain_features = list(np.array(detector.feature_names_)[indices[:-removes]])
remove_features = list(set(detector.feature_names_) - set(remain_features))
logger.info(f'Removed features: {remove_features}')
X_train = X_train[remain_features]
X_test = X_test[remain_features]
if callbacks is not None:
for callback in callbacks:
callback.on_round_end(round_no=round, auc=detector.auc_, features=detector.feature_names_,
remove_features=remove_features, elapsed=elapsed)
round += 1
class DriftDetector():
def __init__(self, preprocessor=None, estimator=None, random_state=9527):
self.preprocessor = preprocessor
self.estimator_ = estimator
self.random_state = random_state
self.auc_ = None
self.feature_names_ = None
self.feature_importances_ = None
self.fitted = False
def fit(self, X_train, X_test, sample_balance=True, max_test_samples=None, cv=5):
logger.info('Fit data for concept drift detection')
assert X_train.shape[1] == X_test.shape[1], 'The number of columns in X_train and X_test must be the same.'
assert len(set(X_train.columns.to_list()) - set(
X_test.columns.to_list())) == 0, 'The name of columns in X_train and X_test must be the same.'
if dex.exist_dask_dataframe(X_train, X_test):
import dask_ml.model_selection as dsel
train_shape, test_shape = dask.compute(X_train.shape, X_test.shape)
iterators = dsel.KFold(n_splits=cv, shuffle=True, random_state=1001)
else:
train_shape, test_shape = X_train.shape, X_test.shape
iterators = sksel.StratifiedKFold(n_splits=cv, shuffle=True, random_state=1001)
if max_test_samples is not None and max_test_samples < test_shape[0]:
X_test, _ = dex.train_test_split(X_test, train_size=max_test_samples, random_state=self.random_state)
test_shape = (max_test_samples, test_shape[0])
if sample_balance:
if test_shape[0] > train_shape[0]:
X_test, _ = dex.train_test_split(X_test, train_size=train_shape[0], random_state=self.random_state)
test_shape = (train_shape[0], test_shape[1])
elif test_shape[0] < train_shape[0]:
X_train, _ = dex.train_test_split(X_train, train_size=test_shape[0], random_state=self.random_state)
train_shape = (test_shape[0], train_shape[1])
target_col = '__drift_detection_target__'
if hasattr(X_train, 'insert'):
X_train.insert(0, target_col, 0)
else:
X_train[target_col] = 0
if hasattr(X_test, 'insert'):
X_test.insert(0, target_col, 1)
else:
X_test[target_col] = 1
X_merge = dex.concat_df([X_train, X_test], repartition=True)
y = X_merge.pop(target_col)
logger.info('Preprocessing...')
if self.preprocessor is None:
self.preprocessor = general_preprocessor(X_merge)
X_merge = self.preprocessor.fit_transform(X_merge)
self.feature_names_ = X_merge.columns.to_list()
self.feature_importances_ = []
auc_all = []
importances = []
estimators = []
if dex.is_dask_dataframe(X_merge):
X_values, y_values = X_merge.to_dask_array(lengths=True), y.to_dask_array(lengths=True)
else:
# X_values, y_values = X_merge.values, y.values
X_values, y_values = X_merge, y
for n_fold, (train_idx, valid_idx) in enumerate(iterators.split(X_values, y_values)):
logger.info(f'Fold:{n_fold + 1}')
if dex.is_dask_dataframe(X_merge):
x_train_fold, y_train_fold = X_values[train_idx], y_values[train_idx]
x_val_fold, y_val_fold = X_values[valid_idx], y_values[valid_idx]
x_train_fold = dex.array_to_df(x_train_fold, meta=X_merge)
x_val_fold = dex.array_to_df(x_val_fold, meta=X_merge)
else:
x_train_fold, y_train_fold = X_values.iloc[train_idx], y_values.iloc[train_idx]
x_val_fold, y_val_fold = X_values.iloc[valid_idx], y_values.iloc[valid_idx]
estimator = _get_estimator(X_merge, self.estimator_)
kwargs = {}
# if isinstance(estimator, dask_xgboost.XGBClassifier):
# kwargs['eval_set'] = [(x_val_fold.compute(), y_val_fold.compute())]
# kwargs['early_stopping_rounds'] = 10
if isinstance(estimator, LGBMClassifier):
kwargs['eval_set'] = (x_val_fold, y_val_fold)
kwargs['early_stopping_rounds'] = 10
kwargs['verbose'] = 0
estimator.fit(x_train_fold, y_train_fold, **kwargs)
proba = estimator.predict_proba(x_val_fold)[:, 1]
if dex.is_dask_dataframe(X_merge):
y_val_fold, proba = dex.compute(y_val_fold, proba, traverse=False)
auc = roc_auc_score(y_val_fold, proba)
logger.info(f'auc: {auc}')
auc_all.append(auc)
estimators.append(estimator)
importances.append(estimator.feature_importances_)
self.estimator_ = estimators
self.auc_ = np.mean(auc_all)
self.feature_importances_ = np.mean(importances, axis=0)
self.fitted = True
X_test.pop(target_col)
X_train.pop(target_col)
return self
def predict_proba(self, X):
assert self.fitted, 'Please fit it first.'
X = X.copy() if dex.is_dask_dataframe(X) else copy.deepcopy(X)
cat_cols = column_object_category_bool(X)
num_cols = column_number_exclude_timedelta(X)
# X.loc[:, cat_cols + num_cols] = self.preprocessor.transform(X)
Xt = self.preprocessor.transform(X)
diff_cols = set(X.columns.tolist()) - set(cat_cols + num_cols)
if diff_cols:
# X.loc[:, cat_cols + num_cols] = Xt
X = dex.concat_df([X[diff_cols], Xt[cat_cols + num_cols]], axis=1)
else:
X = Xt
oof_proba = []
for i, estimator in enumerate(self.estimator_):
proba = estimator.predict_proba(X)[:, 1]
oof_proba.append(proba)
if dex.is_dask_dataframe(X):
proba = da.mean(dex.hstack_array(oof_proba), axis=1)
else:
proba = np.mean(oof_proba, axis=0)
return proba
def train_test_split(self, X, y, test_size=0.25, remain_for_train=0.3):
if dex.exist_dask_object(X, y):
return self.train_test_split_by_dask(X, y, test_size=test_size, remain_for_train=remain_for_train)
assert remain_for_train < 1.0 and remain_for_train >= 0, '`remain_for_train` must be < 1.0 and >= 0.'
if isinstance(test_size, float):
assert test_size < 1.0 and test_size > 0, '`test_size` must be < 1.0 and > 0.'
test_size = int(X.shape[0] * test_size)
assert isinstance(test_size, int), '`test_size` can only be int or float'
split_size = int(test_size + test_size * remain_for_train)
assert split_size < X.shape[0], \
'test_size+test_size*remain_for_train must be less than the number of samples in X.'
proba = self.predict_proba(X)
sorted_indices = np.argsort(proba)
target = '__train_test_split_y__'
X.insert(0, target, y)
if remain_for_train == 0:
X_train = X.iloc[sorted_indices[:-test_size]]
X_test = X.iloc[sorted_indices[-test_size:]]
y_train = X_train.pop(target)
y_test = X_test.pop(target)
return X_train, X_test, y_train, y_test
else:
X_train_1 = X.iloc[sorted_indices[:-split_size]]
X_mixed = X.iloc[sorted_indices[-split_size:]]
X_train_2, X_test = dex.train_test_split(X_mixed, test_size=test_size, shuffle=True,
random_state=self.random_state)
X_train = pd.concat([X_train_1, X_train_2], axis=0)
y_train = X_train.pop(target)
y_test = X_test.pop(target)
return X_train, X_test, y_train, y_test
def train_test_split_by_dask(self, X, y, test_size=0.25, remain_for_train=0.3):
x_shape = dex.compute(X.shape)[0]
assert remain_for_train < 1.0 and remain_for_train >= 0, '`remain_for_train` must be < 1.0 and >= 0.'
if isinstance(test_size, float):
assert test_size < 1.0 and test_size > 0, '`test_size` must be < 1.0 and > 0.'
test_size = int(x_shape[0] * test_size)
assert isinstance(test_size, int), '`test_size` can only be int or float'
split_size = int(test_size + test_size * remain_for_train)
assert split_size < x_shape[0], \
'test_size+test_size*remain_for_train must be less than the number of samples in X.'
X = X.copy()
proba = self.predict_proba(X)
sorted_indices = np.argsort(proba.compute())
target = '__train_test_split_y__'
X[target] = y
X_values = X.to_dask_array(lengths=True)
if remain_for_train == 0:
X_train = dex.array_to_df(X_values[sorted_indices[:-test_size]], meta=X)
X_test = dex.array_to_df(X_values[sorted_indices[-test_size:]], meta=X)
y_train = X_train.pop(target)
y_test = X_test.pop(target)
return X_train, X_test, y_train, y_test
else:
X_train_1 = dex.array_to_df(X_values[sorted_indices[:-split_size]], meta=X)
X_mixed = dex.array_to_df(X_values[sorted_indices[-split_size:]], meta=X)
X_train_2, X_test = dex.train_test_split(X_mixed, test_size=test_size, shuffle=True,
random_state=self.random_state)
X_train = dex.concat_df([X_train_1, X_train_2], axis=0)
y_train = X_train.pop(target)
y_test = X_test.pop(target)
return X_train, X_test, y_train, y_test
def covariate_shift_score(X_train, X_test, scorer=None, cv=None, copy_data=True):
assert all(isinstance(x, (pd.DataFrame, dd.DataFrame)) for x in (X_train, X_test)), \
'X_train and X_test must be a pandas or dask DataFrame.'
assert len(set(X_train.columns.to_list()) - set(
X_test.columns.to_list())) == 0, 'The columns in X_train and X_test must be the same.'
if scorer is None:
scorer = roc_auc_scorer
if copy_data:
train = X_train.copy() if dex.is_dask_dataframe(X_train) else copy.deepcopy(X_train)
test = X_test.copy() if dex.is_dask_dataframe(X_test) else copy.deepcopy(X_test)
else:
train = X_train
test = X_test
# Set target value
target_col = '__hypernets_csd__target__'
if hasattr(train, 'insert'):
train.insert(0, target_col, 0)
else:
train[target_col] = 0
if hasattr(test, 'insert'):
test.insert(0, target_col, 1)
else:
test[target_col] = 1
X_merge = dex.concat_df([train, test], axis=0)
y = X_merge.pop(target_col)
if dex.is_dask_dataframe(X_merge):
y = y.compute()
logger.info('Preprocessing...')
# Preprocess data: imputing and scaling
preprocessor = general_preprocessor(X_merge)
X_merge = preprocessor.fit_transform(X_merge)
if dex.is_dask_dataframe(X_merge):
X_merge = X_merge.persist()
# Calculate the shift score for each column separately.
scores = {}
logger.info('Scoring...')
for c in X_merge.columns:
x = X_merge[[c]]
if dex.is_dask_dataframe(X_merge):
x = x.compute()
model = LGBMClassifier()
if cv is None:
mixed_x_train, mixed_x_test, mixed_y_train, mixed_y_test = sksel.train_test_split(x, y, test_size=0.3,
random_state=9527,
stratify=y)
model.fit(mixed_x_train, mixed_y_train, eval_set=(mixed_x_test, mixed_y_test), early_stopping_rounds=20,
verbose=False)
score = scorer(model, mixed_x_test, mixed_y_test)
else:
score_ = sksel.cross_val_score(model, X=x, y=y, verbose=0, scoring=scorer, cv=cv)
score = np.mean(score_)
logger.info(f'column:{c}, score:{score}')
scores[c] = score
return scores
|
StarcoderdataPython
|
136135
|
<gh_stars>100-1000
def append_text(new_text):
'''
Write the code instruction to be exported later on
Args.
new_text (str): the text that will be appended to the base string
'''
global code_base_text
code_base_text = code_base_text + new_text
|
StarcoderdataPython
|
147198
|
"""
Represent classes found in European Medicines Agency (EMA) documents
"""
class SectionLeaflet:
"""
Class to represent individual section of a Package Leaflet
"""
def __init__(self, title, section_content, entity_recognition=None):
self.title = title
self.section_content = section_content
self.is_duplicate = False
self.entity_recognition = entity_recognition
self.generated_content = None
def print_original_info(self):
""" Display original information about a section """
print("The name of the section: \n", self.title, "\n===================\n")
print("Original content of the section: \n", self.section_content, "\n===================\n")
def print_entities(self):
""" Print entities of the current section with corresponding Category, Type and Confidence Score """
if self.entity_recognition is not None:
for entity in self.entity_recognition:
print("{0} ({1}, type: {2}, score:{3:.2f})".format(entity["Text"],
entity["Category"],
entity["Type"],
entity["Score"]))
def compare_contents(self):
""" Compare original content of a section to generated content """
print("Original Content: \n", self.section_content, "\n===================\n")
print("Generated Content: \n", self.generated_content, "\n===================\n")
def print_all_info(self):
""" Display all information about a section """
print("The name of the section: \n", self.title, "\n===================\n")
print("Original content of the section: \n", self.section_content, "\n===================\n")
print("Named entity recognition: \n", self.entity_recognition, "\n===================\n")
print("Generated content of the section: \n", self.generated_content, "\n===================\n")
class Leaflet:
"""
Class to represent Package Leaflet, containing 6 sections
"""
def __init__(self, product_name, product_url, product_id, product_content,
section1=None, section2=None, section3=None, section4=None, section5=None, section6=None):
# leaflet attributes
self.product_name = product_name
self.url = product_url
self.id = product_id
self.content = product_content
# extracted sections
self.section1 = section1
self.section2 = section2
self.section3 = section3
self.section4 = section4
self.section5 = section5
self.section6 = section6
def display_info(self, full_content=True):
""" Show information about a package leaflet"""
print("Product Name: \n", self.product_name, "\n===================\n")
print("Url: \n", self.url, "\n===================\n")
print("Product ID: \n", self.id, "\n===================\n")
if full_content == True:
print("Full Leaflet Content: \n", self.content, "\n===================\n")
def print_section(self, section_type=None):
""" Display a particular section of a package leaflet """
if section_type == "1" and self.section1 is not None:
self.section1.print_all_info()
else:
print("No section1 in the current leaflet - ", self.product_name)
if section_type == "2" and self.section2 is not None:
self.section2.print_all_info()
else:
print("No section2 in the current leaflet - ", self.product_name)
if section_type == "3" and self.section3 is not None:
self.section3.print_all_info()
else:
print("No section3 in the current leaflet - ", self.product_name)
if section_type == "4" and self.section4 is not None:
self.section4.print_all_info()
else:
print("No section4 in the current leaflet - ", self.product_name)
if section_type == "5" and self.section5 is not None:
self.section5.print_all_info()
else:
print("No section5 in the current leaflet - ", self.product_name)
if section_type == "6" and self.section6 is not None:
self.section6.print_all_info()
else:
print("No section6 in the current leaflet - ", self.product_name)
|
StarcoderdataPython
|
157458
|
from pyULIS4 import *
import math
# Keep in mind the coordinate system
# starts at (0;0) in the bottom left
# corner, since we are working in an
# OpenGL context.
pool = FThreadPool()
queue = FCommandQueue( pool )
fmt = Format_RGBA8
ctx = FContext( queue, fmt )
canvas = FBlock( 800, 600, fmt )
temp = FBlock( 800, 600, fmt )
elapsed = 0.0
# Called once at the beginning of play.
def start():
global fmt
global ctx
global canvas
# Called every frame during play.
def update( delta ):
global fmt
global ctx
global canvas
global elapsed
elapsed += delta
radius = ( ( math.sin( elapsed / 1 ) + 1 ) * 100 )
eventFill = FEvent()
eventClear = FEvent()
eventCircle = FEvent()
ctx.Fill( canvas, FColor.White, event = eventFill )
ctx.Clear( temp, event = eventClear )
ctx.Finish()
ctx.DrawCircleBresenhamSP( temp, FVec2F( 400, 300 ), radius, FColor.Black, True, waitList = [ eventFill, eventClear ], event = eventCircle )
ctx.Finish()
ctx.Blend( temp, canvas, waitList = [ eventCircle ] )
ctx.Finish()
|
StarcoderdataPython
|
3291840
|
<reponame>Festusali/django-browser-reload<filename>tests/test_middleware.py
from __future__ import annotations
from django.http import HttpRequest, HttpResponse, StreamingHttpResponse
from django.test import RequestFactory, SimpleTestCase, override_settings
from django_browser_reload.middleware import BrowserReloadMiddleware
@override_settings(DEBUG=True)
class BrowserReloadMiddlewareTests(SimpleTestCase):
request_factory = RequestFactory()
def setUp(self):
self.request = self.request_factory.get("/")
self.response = HttpResponse("<html><body></body></html>")
def get_response(request: HttpRequest) -> HttpResponse:
return self.response
self.middleware = BrowserReloadMiddleware(get_response)
@override_settings(DEBUG=False)
def test_not_debug(self):
response = self.middleware(self.request)
assert response.content == b"<html><body></body></html>"
def test_streaming_response(self):
# content that the middleware could inject in if it supported streaming
# responses
content_iter = iter(["<html><body>", "</body></html>"])
self.response = StreamingHttpResponse(content_iter)
response = self.middleware(self.request)
content = b"".join(response.streaming_content)
assert content == b"<html><body></body></html>"
def test_encoded_response(self):
self.response["Content-Encoding"] = "zabble"
response = self.middleware(self.request)
assert response.content == b"<html><body></body></html>"
def test_text_response(self):
self.response["Content-Type"] = "text/plain"
response = self.middleware(self.request)
assert response.content == b"<html><body></body></html>"
def test_no_match(self):
self.response = HttpResponse("<html><body>Woops")
response = self.middleware(self.request)
assert response.content == b"<html><body>Woops"
def test_success(self):
self.response = HttpResponse("<html><body></body></html>")
self.response["Content-Length"] = len(self.response.content)
response = self.middleware(self.request)
assert response.content == (
b"<html><body>"
+ b'<script src="/static/django-browser-reload/reload-listener.js"'
+ b' data-worker-script-path="/static/django-browser-reload/'
+ b'reload-worker.js"'
+ b' data-events-path="/__reload__/events/" defer></script>'
+ b"</body></html>"
)
def test_multipart_content_type(self):
self.response["Content-Type"] = "text/html; thingy=that; charset=utf-8"
response = self.middleware(self.request)
assert response.content == (
b"<html><body>"
+ b'<script src="/static/django-browser-reload/reload-listener.js"'
+ b' data-worker-script-path="/static/django-browser-reload/'
+ b'reload-worker.js"'
+ b' data-events-path="/__reload__/events/" defer></script>'
+ b"</body></html>"
)
def test_two_matches(self):
self.response = HttpResponse("<html><body></body><body></body></html>")
response = self.middleware(self.request)
assert response.content == (
b"<html><body></body><body>"
+ b'<script src="/static/django-browser-reload/reload-listener.js"'
+ b' data-worker-script-path="/static/django-browser-reload/'
+ b'reload-worker.js"'
+ b' data-events-path="/__reload__/events/" defer></script>'
+ b"</body></html>"
)
|
StarcoderdataPython
|
1737111
|
import pytest
from app import tasks
pytestmark = [
pytest.mark.django_db,
]
@pytest.fixture(autouse=True)
def mass_update_subscription(mocker):
return mocker.patch('app.integrations.mailchimp.client.AppMailchimp.mass_update_subscription')
@pytest.fixture(autouse=True)
def set_tags(mocker):
return mocker.patch('app.integrations.mailchimp.client.AppMailchimp.set_tags')
def test_task(user, mass_update_subscription, mailchimp_member):
tasks.subscribe_to_mailchimp.delay(user.pk)
mass_update_subscription.assert_called_once_with(
list_id='123cba',
members=[mailchimp_member],
status='subscribed',
)
def test_particular_list_id(user, mass_update_subscription, mailchimp_member):
tasks.subscribe_to_mailchimp.delay(
user_id=user.pk,
list_id='TESTING-LIST-ID',
)
mass_update_subscription.assert_called_once_with(
list_id='TESTING-LIST-ID',
members=[
mailchimp_member,
],
status='subscribed',
)
def test_tags(user, mailchimp_member, set_tags):
tasks.subscribe_to_mailchimp.delay(
user_id=user.pk,
list_id='TESTING-LIST-ID',
tags=['aatag', 'bbtag'],
)
set_tags.assert_called_once_with(
list_id='TESTING-LIST-ID',
members=[mailchimp_member],
tags=['aatag', 'bbtag'],
)
def test_task_does_not_do_things_if_there_is_no_mailchimp_contact_list_id(user, mass_update_subscription, settings):
settings.MAILCHIMP_CONTACT_LIST_ID = None
tasks.subscribe_to_mailchimp.delay(user.pk)
mass_update_subscription.assert_not_called()
|
StarcoderdataPython
|
86764
|
<reponame>tdimnet/integrations-core
# (C) Datadog, Inc. 2021-present
# All rights reserved
# Licensed under a 3-clause BSD style license (see LICENSE)
import click
from ...console import CONTEXT_SETTINGS
from .pdh import pdh
ALL_COMMANDS = [pdh]
@click.group(context_settings=CONTEXT_SETTINGS, short_help='Windows utilities')
def windows():
pass
for command in ALL_COMMANDS:
windows.add_command(command)
|
StarcoderdataPython
|
65117
|
from seleniumbase import MasterQA
class MasterQATests(MasterQA):
def test_xkcd(self):
self.open("https://xkcd.com/1512/")
for i in range(4):
self.click('a[rel="next"]')
for i in range(3):
self.click('a[rel="prev"]')
self.verify()
self.open("https://xkcd.com/1520/")
for i in range(2):
self.click('a[rel="next"]')
self.verify("Can you find the moon?")
self.click('a[rel="next"]')
self.verify("Do the drones look safe?")
self.open("https://store.xkcd.com/collections/everything")
self.update_text("input.search-input", "book\n")
self.verify("Do you see books in the search results?")
self.open("https://xkcd.com/213/")
for i in range(5):
self.click('a[rel="prev"]')
self.verify("Does the page say 'Abnormal Expressions'?")
|
StarcoderdataPython
|
4801184
|
<gh_stars>0
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
from ...sipmessaging import SIPHeaderField
from ...sipmessaging import classproperty
class DateSIPHeaderField(SIPHeaderField):
# noinspection PyNestedDecorators
@classproperty
@classmethod
def canonical_field_name(cls):
return 'Date'
@classmethod
def new_for_attributes(cls, field_name="Date", field_value_string=""):
return cls.new_for_field_name_and_value_string(field_name=field_name, field_value_string=field_value_string)
@property
def is_date(self):
return True
|
StarcoderdataPython
|
1702784
|
<reponame>MasterMeng/PKCS11_example
from PyKCS11 import *
# import ptvsd
# ptvsd.enable_attach(address=('0.0.0.0', 5678))
# ptvsd.wait_for_attach()
aes_iv = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f]
class OpenCryptoKi:
def __init__(self, libpath):
self.pkcs11 = PyKCS11Lib()
self.pkcs11.load(libpath)
self.slot = self.pkcs11.getSlotList(tokenPresent=True)[0]
def login(self, userpin):
self.session = self.pkcs11.openSession(
self.slot, CKF_SERIAL_SESSION | CKF_RW_SESSION)
self.session.login(userpin, user_type=CKU_USER)
def logout(self):
self.session.logout()
self.session.closeSession()
def initpin(self, sopin, userpin):
self.session = self.pkcs11.openSession(
self.slot, CKF_SERIAL_SESSION | CKF_RW_SESSION)
self.session.login(sopin, user_type=CKU_SO)
self.session.initPin(userpin)
self.session.logout()
self.session.closeSession()
def genhamc(self, label):
tem = [
(CKA_CLASS, CKO_SECRET_KEY),
(CKA_KEY_TYPE, CKK_GENERIC_SECRET),
(CKA_VALUE_LEN, 32),
(CKA_LABEL, label),
(CKA_PRIVATE, True),
(CKA_SENSITIVE, True),
(CKA_ENCRYPT, True),
(CKA_DECRYPT, True),
(CKA_TOKEN, True),
(CKA_EXTRACTABLE, False),
]
hmacs = self.session.findObjects(
[(CKA_CLASS, CKO_SECRET_KEY), (CKA_KEY_TYPE, CKK_GENERIC_SECRET), (CKA_LABEL, label), ])
for hmac in hmacs:
self.session.destroyObject(hmac)
self.session.generateKey(
tem, mecha=Mechanism(CKM_GENERIC_SECRET_KEY_GEN))
def genmkek(self, key_type, key_len, label):
tem = [
(CKA_CLASS, CKO_SECRET_KEY),
(CKA_KEY_TYPE, key_type),
(CKA_VALUE_LEN, key_len),
(CKA_LABEL, label),
(CKA_PRIVATE, True),
(CKA_SENSITIVE, True),
(CKA_ENCRYPT, True),
(CKA_DECRYPT, True),
(CKA_TOKEN, True),
(CKA_EXTRACTABLE, False),
(CKA_SIGN, True),
(CKA_VERIFY, True),
(CKA_WRAP, True),
(CKA_UNWRAP, True),
]
mkeks = self.session.findObjects(
[(CKA_CLASS, CKO_SECRET_KEY), (CKA_KEY_TYPE, key_type), (CKA_LABEL, label), ])
for mkek in mkeks:
self.session.destroyObject(mkek)
self.session.generateKey(tem, MechanismAESGENERATEKEY)
def findobjs(self, key_class, key_type, label):
objs = self.session.findObjects(
[(CKA_CLASS, key_class), (CKA_KEY_TYPE, key_type), (CKA_LABEL, label), ])
return objs
def genkey(self, key_class, key_type, key_len, label):
tem = [
(CKA_CLASS, key_class),
(CKA_KEY_TYPE, key_type),
(CKA_VALUE_LEN, key_len),
(CKA_LABEL, label),
(CKA_PRIVATE, True),
(CKA_SENSITIVE, True),
(CKA_ENCRYPT, True),
(CKA_DECRYPT, True),
(CKA_TOKEN, True),
(CKA_EXTRACTABLE, True),
]
objs = self.session.findObjects(
[(CKA_CLASS, key_class), (CKA_KEY_TYPE, key_type), (CKA_VALUE_LEN, key_len), (CKA_LABEL, label), ])
for obj in objs:
self.session.destroyObject(obj)
self.session.generateKey(tem, MechanismRSAGENERATEKEYPAIR)
def genkeypair(self, label):
pubTem = [
(CKA_MODULUS_BITS, 0x0400),
(CKA_PUBLIC_EXPONENT, (0x01, 0x00, 0x01)),
]
priTem = [
]
return self.session.generateKeyPair(
pubTem, priTem, MechanismRSAGENERATEKEYPAIR)
def wrap(self, key, wrapping):
return self.session.wrapKey(key, wrapping, Mechanism(CKM_AES_CBC_PAD, aes_iv))
def unwrap(self, key, wrapped, wrapped_class):
return self.session.unwrapKey(key, wrapped, [(CKA_CLASS, wrapped_class)], Mechanism(CKM_AES_CBC_PAD, aes_iv))
def encrypt(self, key, msg):
enc = self.session.encrypt(
key, msg.encode('utf-8'), Mechanism(CKM_AES_CBC))
return bytes(enc)
def decrypt(self, key, enc):
dec = self.session.decrypt(key, enc, Mechanism(CKM_AES_CBC))
return bytes(dec)
if __name__ == "__main__":
t = OpenCryptoKi('/usr/local/lib/opencryptoki/libopencryptoki.so')
t.login('123456')
t.genmkek(CKK_AES, 32, 'MKEK')
# print('######## MKEK #######')
obj = t.findobjs(CKO_SECRET_KEY, CKK_AES, 'MKEK')[0]
# for obj in objs:
# print(obj)
# t.genhamc('HMAC')
# print('######## HMAC #######')
# objs = t.findobjs(CKO_SECRET_KEY,CKK_GENERIC_SECRET, 'HMAC')
# for obj in objs:
# print(obj)
pub, pri = t.genkeypair('RSA Key')
pri = t.findobjs(CKO_PRIVATE_KEY, CKK_RSA, 'RSA Key')[0]
# print(pri)
wrapped = t.wrap(obj, pri)
print(wrapped)
print(bytes(wrapped))
t.logout()
|
StarcoderdataPython
|
121108
|
# valueIterationAgents.py
# -----------------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# <NAME> (<EMAIL>) and <NAME> (<EMAIL>).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
import mdp, util
from learningAgents import ValueEstimationAgent
class ValueIterationAgent(ValueEstimationAgent):
"""
* Please read learningAgents.py before reading this.*
A ValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs value iteration
for a given number of iterations using the supplied
discount factor.
"""
def __init__(self, mdp, discount = 0.9, iterations = 100):
"""
Your value iteration agent should take an mdp on
construction, run the indicated number of iterations
and then act according to the resulting policy.
Some useful mdp methods you will use:
mdp.getStates()
mdp.getPossibleActions(state)
mdp.getTransitionStatesAndProbs(state, action)
mdp.getReward(state, action, nextState)
"""
self.mdp = mdp
self.discount = discount
self.iterations = iterations
self.values = util.Counter() # A Counter is action dict with default 0
"*** YOUR CODE HERE ***"
for i in range(iterations):
self.prevBatch = self.values.copy()
for state in mdp.getStates():
qValues = util.Counter()
for action in mdp.getPossibleActions(state):
for (statePrime, tValue) in mdp.getTransitionStatesAndProbs(state, action):
qValues[action] += tValue * (mdp.getReward(state, action, statePrime) + self.discount * self.prevBatch[statePrime])
self.values[state] = qValues[qValues.argMax()]
def getValue(self, state):
"""
Return the value of the state (computed in __init__).
"""
return self.values[state]
def getQValue(self, state, action):
"""
The q-value of the state action pair
(after the indicated number of value iteration
passes). Note that value iteration does not
necessarily create this quantity and you may have
to derive it on the fly.
"""
"*** YOUR CODE HERE ***"
qValue = 0
for (sp, tValue) in self.mdp.getTransitionStatesAndProbs(state, action):
qValue += tValue * (self.mdp.getReward(state, action, sp) + self.discount * self.values[sp] )
return qValue;
#util.raiseNotDefined()
def getPolicy(self, state):
"""
The policy is the best action in the given state
according to the values computed by value iteration.
You may break ties any way you see fit. Note that if
there are no legal actions, which is the case at the
terminal state, you should return None.
"""
"*** YOUR CODE HERE ***"
if self.mdp.isTerminal(state) :
return None
else:
qValues = util.Counter()
actions = self.mdp.getPossibleActions(state)
for action in actions:
qValues[actions.index(action)] = self.getQValue(state, action)
return actions[qValues.argMax()];
#util.raiseNotDefined()
def getAction(self, state):
"Returns the policy at the state (no exploration)."
return self.getPolicy(state)
|
StarcoderdataPython
|
4810276
|
<filename>work/03_load_sql.py
#!/usr/bin/python3
import psycopg2
# connect to database
connect_str = 'host=postgres port=5432 dbname=bakery user=postgres password=<PASSWORD>'
conn = psycopg2.connect(connect_str)
conn.autocommit = True
cursor = conn.cursor()
# execute sql script
sql_file = open('bakery.sql', 'r')
sqlFile = sql_file.read()
sql_file.close()
sqlCommands = sqlFile.split(';')
for command in sqlCommands:
print(command)
if command.strip() != '':
cursor.execute(command)
# import data from csv file
with open('BreadBasket_DMS.csv', 'r') as f:
next(f) # Skip the header row.
cursor.copy_from(
f,
'transactions',
sep=',',
columns=('date', 'time', 'transaction', 'item')
)
conn.commit()
# confirm by selecting record
command = 'SELECT COUNT(*) FROM public.transactions;'
cursor.execute(command)
recs = cursor.fetchall()
print('Row count: %d' % recs[0])
|
StarcoderdataPython
|
3366977
|
<gh_stars>0
# Generated by Django 3.0.8 on 2020-07-14 08:55
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('accounts', '0002_client_instansi'),
]
operations = [
migrations.AlterField(
model_name='client',
name='instansi',
field=models.CharField(blank=True, max_length=200, null=True),
),
]
|
StarcoderdataPython
|
1709905
|
from typing import Tuple
import tensorflow as tf
from tensorflow.python.ops import gen_array_ops
def decode_png(filename: str, channels: int = 1):
"""
Read image from `filename` with `channels`.
Parameters
----------
filename : str
A filename to read.
channels : int, optional
Number of channel. 3 for RGB, 1 for Grayscale, by default 1
Returns
-------
tf.float32 `Tensor` of Image
Image Tensor
Examples
--------
>>> from imagemodel.common.utils import tf_images
>>> sample_img = tf_images.decode_png("tests/test_resources/sample.png", 3)
>>> tf.shape(sample_img)
tf.Tensor([180 180 3], shape=(3,), dtype=int32)
"""
bits = tf.io.read_file(filename)
image = tf.image.decode_png(bits, channels)
image = tf.cast(image, tf.float32)
# image = tf.image.convert_image_dtype(image, dtype=tf.float32, saturate=False)
return image
def save_img(tf_img, filename: str):
"""
Save `Tensor` of `tf_img` to file.
Parameters
----------
tf_img : `Tensor`
`Tensor` of image.
filename : str
File path to save.
Examples
--------
>>> from imagemodel.common.utils import tf_images
>>> # tf_img = ...
>>> tf_images.save_img(tf_img, "file_name.png")
"""
tf.keras.preprocessing.image.save_img(filename, tf_img)
def tf_img_to_minmax(tf_img, threshold: float, min_max: Tuple[float, float] = (0.0, 1.0)):
"""
Convert grayscale `Tensor` of image, to `Tensor` of `min_max` value.
Parameters
----------
tf_img : `Tensor` of Image
Should be grayscale image. (channel 1)
threshold : float
Threshold value to determine `min_max`
min_max : Tuple[float, float], optional
Min max value for `tf_img`, by default (0.0, 1.0)
Returns
-------
`Tensor` of Image
In image, exist only min_max values.
Examples
--------
>>> from imagemodel.common.utils import tf_images
>>> from tensorflow.python.ops import gen_array_ops
>>> grayscale_sample_img = tf_images.decode_png("tests/test_resources/sample.png", 1)
>>> min_maxed_grayscale_tf_image = tf_images.tf_img_to_minmax(grayscale_sample_img, 127, (0, 255))
>>> reshaped_min_maxed_grayscale_tf_image = tf.reshape(min_maxed_grayscale_tf_image, (-1, 1))
>>> print(gen_array_ops.unique_v2(reshaped_min_maxed_grayscale_tf_image, axis=[-2]))
UniqueV2(y=<tf.Tensor: shape=(2, 1), dtype=float32, numpy=array([[255.], [ 0.]], dtype=float32)>,
idx=<tf.Tensor: shape=(32400,), dtype=int32, numpy=array([0, 0, 0, ..., 0, 0, 0], dtype=int32)>)
>>> print(tf.math.count_nonzero(min_maxed_grayscale_tf_image))
tf.Tensor(31760, shape=(), dtype=int64)
"""
cond = tf.greater(tf_img, tf.ones_like(tf_img) * threshold)
mask = tf.where(cond, tf.ones_like(tf_img) * min_max[1], tf.ones_like(tf_img) * min_max[0])
return mask
def tf_equalize_histogram(tf_img):
"""
Tensorflow Image Histogram Equalization
https://stackoverflow.com/questions/42835247/how-to-implement-histogram-equalization-for-images-in-tensorflow
Parameters
----------
tf_img : `Tensor` of image
Input `Tensor` image `tf_img`
Returns
-------
`Tensor` of image
Equalized histogram image of input `Tensor` image `tf_img`.
"""
values_range = tf.constant([0.0, 255.0], dtype=tf.float32)
histogram = tf.histogram_fixed_width(tf.cast(tf_img, tf.float32), values_range, 256)
cdf = tf.cumsum(histogram)
cdf_min = cdf[tf.reduce_min(tf.where(tf.greater(cdf, 0)))]
img_shape = tf.shape(tf_img)
pix_cnt = img_shape[-3] * img_shape[-2]
px_map = tf.round(tf.cast(cdf - cdf_min, tf.float32) * 255.0 / tf.cast(pix_cnt - 1, tf.float32))
px_map = tf.cast(px_map, tf.uint8)
eq_hist = tf.expand_dims(tf.gather_nd(px_map, tf.cast(tf_img, tf.int32)), 2)
return eq_hist
def tf_get_all_colors(tf_img):
"""
Get all colors in `Tensor` image `tf_img`.
The result always contains [0, 0, 0].
Parameters
----------
tf_img : `Tensor` of image
Input `Tensor` image `tf_img`. Should be color image.
Returns
-------
`Tensor` array of colors
All colors in `Tensor` image.
Examples
--------
>>> from imagemodel.common.utils import tf_images
>>> sample_img = tf_images.decode_png("tests/test_resources/sample.png", 3)
>>> print(tf_images.tf_get_all_colors(sample_img))
tf.Tensor(
[[245. 245. 245.]
[ 71. 71. 71.]
[ 0. 0. 0.]
[255. 145. 77.]
[ 72. 72. 72.]], shape=(5, 3), dtype=float32)
"""
scs = tf.reshape(tf_img, (-1, 3))
scs = gen_array_ops.unique_v2(scs, axis=[-2])[0]
scs = tf.cond(
tf.reduce_any(tf.reduce_all(tf.equal(scs, [0, 0, 0]), axis=-1)),
lambda: scs,
lambda: tf.concat([tf.constant([[0, 0, 0]], dtype=tf_img.dtype), scs], axis=-2))
scs = tf.cast(scs, tf.float32)
return scs
def tf_generate_color_map(img):
img_color = tf_get_all_colors(img)
img_color_index = tf.range(tf.shape(img_color)[-2], dtype=tf.float32)
return img_color_index, img_color
def tf_image_shrink(detached_img, bin_num: int, resize_by_power_of_two: int = 0):
ratio = 2 ** resize_by_power_of_two
result = tf.map_fn(
lambda x: tf_shrink3D(x, tf.shape(x)[-3] // ratio, tf.shape(x)[-2] // ratio, bin_num),
detached_img)
result = tf.divide(result, ratio ** 2)
return result
# noinspection PyPep8Naming
def tf_shrink3D(data, rows: int, cols: int, channels: int):
"""
Shrink 3D `Tensor` data.
Parameters
----------
data : `Tensor`
`Tensor` data to shrink. Shape should be 3-dimension.
rows : int
Number of rows
cols : int
Number of columns
channels : int
Number of channels
Returns
-------
Shrinked `Tensor` array
Shrinked 3d `Tensor`
Examples
--------
>>> import numpy as np
>>> from imagemodel.common.utils import tf_images
>>> a = tf.constant(
... np.array(
... [
... [[1, 2], [3, 4]],
... [[5, 6], [7, 8]],
... [[9, 10], [11, 12]],
... [[13, 14], [15, 16]],
... ]
... )
... )
>>> print(tf_shrink3D(a,2,1,2))
tf.Tensor(
[[[16 20]] # [[[ 1+3+5+7, 2+4+6+8]],
[[48 52]]], shape=(2, 1, 2), dtype=int64) # [[9+11+13+15, 10+12+14+16]]]
>>> print(tf_shrink3D(a,2,1,1))
tf.Tensor(
[[[ 36]] # [[[ 1+3+5+7+2+4+6+8]],
[[100]]], shape=(2, 1, 1), dtype=int64) # [[9+11+13+15+10+12+14+16]]]
"""
return tf.reduce_sum(
tf.reduce_sum(
tf.reduce_sum(
tf.reshape(
data,
[
rows,
tf.shape(data)[-3] // rows,
cols,
tf.shape(data)[-2] // cols,
channels,
tf.shape(data)[-1] // channels,
]), axis=-5 # axis=1
), axis=-3 # axis=2
), axis=-1) # axis=3
def get_dynamic_size(_tensor):
return tf.where([True, True, True, True], tf.shape(_tensor), [0, 0, 0, 0])
def tf_extract_patches(tf_array, ksize, img_wh, channel):
"""
Extract Patches from `tf_array`.
Other implementation of `tf.image.extract_patches`.
Improved `tf_extract_patches`.
Should be reshape after with `tf.reshape(results, (batch, img_wh, img_wh, ksize*ksize, channel))`.
- Conditions.
- Padding is "SAME".
- Stride is 1.
- Width and Height are equal.
Parameters
----------
tf_array : `Tensor`
Tensor array to extract patches. Shape should be (batch, height, width, channel).
ksize : int
Should be odd integer.
img_wh : int
Width and Height of square image.
channel : int
Number of channels.
Returns
-------
`Tensor`
Patch extracted `tf_array`
"""
padding_size = max((ksize - 1), 0) // 2
zero_padded_image = tf.keras.layers.ZeroPadding2D((padding_size, padding_size))(tf_array)
# zero_padded_image = tf.pad(
# batch_image,
# [[0, 0], [padding_size, padding_size], [padding_size, padding_size], [0, 0]],
# )
b_size = get_dynamic_size(tf_array)
batch_size = b_size[0]
wh_indices = tf.range(ksize) + tf.range(img_wh)[:, tf.newaxis]
a1 = tf.repeat(tf.repeat(wh_indices, ksize, axis=1), img_wh, axis=0)
a2 = tf.tile(wh_indices, (img_wh, ksize))
m = tf.stack([a1, a2], axis=-1)
m = tf.expand_dims(m, axis=0)
m1 = tf.repeat(m, batch_size, axis=0)
m2 = tf.reshape(m1, (-1, img_wh, img_wh, ksize, ksize, 2))
gg = tf.gather_nd(zero_padded_image, m2, batch_dims=1)
gg2 = tf.reshape(gg, (-1, img_wh, img_wh, ksize * ksize * channel))
return gg2
|
StarcoderdataPython
|
1790102
|
import asyncio
def flatten(to_flatten):
return list(flatten_generator(to_flatten))
def flatten_generator(to_flatten):
return (
item
for sub_list_or_generator in to_flatten
for item in sub_list_or_generator
)
async def repeat_until_cancelled(context, exception_intervals, to_repeat,
to_repeat_args=(), min_duration=0):
loop = asyncio.get_running_loop()
num_exceptions_in_chain = 0
while True:
try:
start = loop.time()
await to_repeat(*to_repeat_args)
end = loop.time()
num_exceptions_in_chain = 0
await asyncio.sleep(max(min_duration - (end - start), 0))
except asyncio.CancelledError:
break
except BaseException:
interval_index = min(num_exceptions_in_chain, len(exception_intervals) - 1)
exception_interval = exception_intervals[interval_index]
num_exceptions_in_chain += 1
context.logger.exception(
'Raised exception in async_repeat_until_cancelled. '
'Waiting %s seconds until looping.', exception_interval)
context.raven_client.captureException()
try:
await asyncio.sleep(exception_interval)
except asyncio.CancelledError:
break
|
StarcoderdataPython
|
4837678
|
from datetime import date
from pathlib import Path
import re
import sys
from typing import Tuple
from invoke import task
TOP_DIR = Path(__file__).parent.resolve()
def update_file(filename: str, sub_line: Tuple[str, str], strip: str = None):
"""Utility function for tasks to read, update, and write files"""
with open(filename, "r") as handle:
lines = [
re.sub(sub_line[0], sub_line[1], line.rstrip(strip)) for line in handle
]
with open(filename, "w") as handle:
handle.write("\n".join(lines))
handle.write("\n")
@task
def update_version(_, version=""):
"""Update package version to today's date using CalVer"""
if version:
if re.match(r"20[2-9][0-9]\.1?[0-9]\.[1-3]?[0-9].*", version) is None:
sys.exit(
f"Error: Passed version ({version}) does to match a date in the format "
"YYYY.(M)M.(D)D."
)
else:
# Use today's date
today = date.today()
version = f"{today.year}.{today.month}.{today.day}"
update_file(
TOP_DIR.joinpath("tools_optimade_client/__init__.py"),
(r"__version__ = .+", f'__version__ = "{version}"'),
)
update_file(
TOP_DIR.joinpath("setup.py"), (r"version=([^,]+),", f'version="{version}",')
)
print(f"Bumped version to {version} !")
|
StarcoderdataPython
|
18039
|
#!/usr/bin/env python
#
# Creates resources
# This script creates VPC/security group/keypair if not already present
import logging
import os
import sys
import time
from . import aws_util as u
from . import util
DRYRUN = False
DEBUG = True
# Names of Amazon resources that are created. These settings are fixed across
# all runs, and correspond to resources created once per user per region.
PUBLIC_TCP_RANGES = [
22, # ssh
(8888, 8899), # ipython notebook ports
6379, # redis port
(6006, 6016) # tensorboard ports
]
PUBLIC_UDP_RANGES = [(60000, 61000)] # mosh ports
logger = logging.getLogger(__name__)
def network_setup():
"""Creates VPC if it doesn't already exists, configures it for public
internet access, returns vpc, subnet, security_group"""
ec2 = u.get_ec2_resource()
client = u.get_ec2_client()
existing_vpcs = u.get_vpc_dict()
zones = u.get_zones()
# create VPC from scratch. Remove this if default VPC works well enough.
vpc_name = u.get_vpc_name()
if u.get_vpc_name() in existing_vpcs:
logger.info("Reusing VPC " + vpc_name)
vpc = existing_vpcs[vpc_name]
else:
logger.info("Creating VPC " + vpc_name)
vpc = ec2.create_vpc(CidrBlock='192.168.0.0/16')
# enable DNS on the VPC
local_response = vpc.modify_attribute(EnableDnsHostnames={"Value": True})
assert u.is_good_response(local_response)
local_response = vpc.modify_attribute(EnableDnsSupport={"Value": True})
assert u.is_good_response(local_response)
vpc.create_tags(Tags=u.create_name_tags(vpc_name))
vpc.wait_until_available()
gateways = u.get_gateway_dict(vpc)
gateway_name = u.get_gateway_name()
if gateway_name in gateways:
logger.info("Reusing gateways " + gateway_name)
else:
logger.info("Creating internet gateway " + gateway_name)
ig = ec2.create_internet_gateway()
ig.attach_to_vpc(VpcId=vpc.id)
ig.create_tags(Tags=u.create_name_tags(gateway_name))
# check that attachment succeeded
attach_state = u.extract_attr_for_match(ig.attachments, State=-1, VpcId=vpc.id)
assert attach_state == 'available', "vpc %s is in state %s" % (vpc.id, attach_state)
route_table = vpc.create_route_table()
route_table_name = u.get_route_table_name()
route_table.create_tags(Tags=u.create_name_tags(route_table_name))
dest_cidr = '0.0.0.0/0'
route_table.create_route(DestinationCidrBlock=dest_cidr, GatewayId=ig.id)
assert len(zones) <= 16 # for cidr/20 to fit into cidr/16
ip = 0
for zone in zones:
cidr_block = '192.168.%d.0/20' % (ip,)
ip += 16
logging.info("Creating subnet %s in zone %s" % (cidr_block, zone))
subnet = vpc.create_subnet(CidrBlock=cidr_block, AvailabilityZone=zone)
subnet.create_tags(Tags=[{'Key': 'Name', 'Value': f'{vpc_name}-subnet'}, {'Key': 'Region', 'Value': zone}])
local_response = client.modify_subnet_attribute(MapPublicIpOnLaunch={'Value': True}, SubnetId=subnet.id)
assert u.is_good_response(local_response)
u.wait_until_available(subnet)
assert subnet.map_public_ip_on_launch, "Subnet doesn't enable public IP by default, why?"
route_table.associate_with_subnet(SubnetId=subnet.id)
existing_security_groups = u.get_security_group_dict(vpc.id)
security_group_name = u.get_security_group_name()
if security_group_name in existing_security_groups:
logger.info("Reusing security group " + security_group_name)
security_group = existing_security_groups[security_group_name]
assert security_group.vpc_id == vpc.id, f"Found security group {security_group} " \
f"attached to {security_group.vpc_id} but expected {vpc.id}"
else:
logging.info("Creating security group " + security_group_name)
security_group = ec2.create_security_group(
GroupName=security_group_name, Description=security_group_name,
VpcId=vpc.id)
cidr_ip = os.environ.get('SCLUSTER_SECURITY_GROUP_CidrIp', '0.0.0.0/0')
security_group.create_tags(Tags=u.create_name_tags(security_group_name))
# allow ICMP access for public ping
security_group.authorize_ingress(
CidrIp='0.0.0.0/0',
IpProtocol='icmp',
FromPort=-1,
ToPort=-1
)
# open public ports
# always include SSH port which is required for basic functionality
assert 22 in PUBLIC_TCP_RANGES, "Must enable SSH access"
for port in PUBLIC_TCP_RANGES:
if util.is_iterable(port):
assert len(port) == 2
from_port, to_port = port
else:
from_port, to_port = port, port
response = security_group.authorize_ingress(
IpProtocol="tcp",
CidrIp=cidr_ip,
FromPort=from_port,
ToPort=to_port
)
assert u.is_good_response(response)
for port in PUBLIC_UDP_RANGES:
if util.is_iterable(port):
assert len(port) == 2
from_port, to_port = port
else:
from_port, to_port = port, port
response = security_group.authorize_ingress(IpProtocol="udp",
CidrIp=cidr_ip,
FromPort=from_port,
ToPort=to_port)
assert u.is_good_response(response)
return vpc, security_group
def keypair_setup():
"""Creates keypair if necessary, saves private key locally, returns contents
of private key file."""
os.system('mkdir -p ' + u.PRIVATE_KEY_LOCATION)
keypair_name = u.get_keypair_name()
keypair = u.get_keypair_dict().get(keypair_name, None)
keypair_fn = u.get_keypair_fn()
if keypair:
print("Reusing keypair " + keypair_name)
# check that local pem file exists and is readable
assert os.path.exists(
keypair_fn), "Keypair %s exists, but corresponding .pem file %s is not found, delete keypair %s through " \
"console and run again to recreate keypair/.pem together" % (
keypair_name, keypair_fn, keypair_name)
keypair_contents = open(keypair_fn).read()
assert len(keypair_contents) > 0
else:
print("Creating keypair " + keypair_name)
ec2 = u.get_ec2_resource()
assert not os.path.exists(
keypair_fn), "previous keypair exists, delete it with 'sudo rm %s' and also delete corresponding " \
"keypair through console" % (keypair_fn)
keypair = ec2.create_key_pair(KeyName=keypair_name)
open(keypair_fn, 'w').write(keypair.key_material)
os.system('chmod 400 ' + keypair_fn)
return keypair
def placement_group_setup(group_name):
"""Creates placement_group group if necessary. Returns True if new placement_group
group was created, False otherwise."""
existing_placement_groups = u.get_placement_group_dict()
group = existing_placement_groups.get(group_name, None)
if group:
assert group.state == 'available'
assert group.strategy == 'cluster'
print("Reusing group ", group.name)
return group
print("Creating group " + group_name)
ec2 = u.get_ec2_resource()
group = ec2.create_placement_group(GroupName=group_name, Strategy='cluster')
return group
def create_resources():
logger.info(f"Creating {u.get_prefix()} resources in region {u.get_region()}")
vpc, security_group = network_setup()
keypair_setup() # saves private key locally to keypair_fn
# create EFS
efss = u.get_efs_dict()
efs_name = u.get_efs_name()
efs_id = efss.get(efs_name, '')
if not efs_id:
logger.info("Creating EFS " + efs_name)
efs_id = u.create_efs(efs_name)
else:
logger.info("Reusing EFS " + efs_name)
efs_client = u.get_efs_client()
# create mount target for each subnet in the VPC
# added retries because efs is not immediately available
max_failures = 10
retry_interval_sec = 1
for subnet in vpc.subnets.all():
for retry_attempt in range(max_failures):
try:
sys.stdout.write("Creating efs mount target for %s ... " % (subnet.availability_zone,))
sys.stdout.flush()
response = efs_client.create_mount_target(
FileSystemId=efs_id,
SubnetId=subnet.id,
SecurityGroups=[security_group.id]
)
if u.is_good_response(response):
logger.info("success")
break
except Exception as e:
if 'already exists' in str(e): # ignore "already exists" errors
logger.info('already exists')
break
# Takes couple of seconds for EFS to come online, with
# errors like this:
# Creating efs mount target for us-east-1f ... Failed with An error occurred (IncorrectFileSystemLifeCycleState) when calling the CreateMountTarget operation: None, retrying in 1 sec
logger.info("Got %s, retrying in %s sec" % (str(e), retry_interval_sec))
time.sleep(retry_interval_sec)
else:
logger.info("Giving up.")
if __name__ == '__main__':
create_resources()
|
StarcoderdataPython
|
4815304
|
<reponame>Ricyteach/candemachine
def process(ilines):
pass
|
StarcoderdataPython
|
163686
|
<filename>packages/pyre/h5/Schema.py<gh_stars>0
#-*- coding: utf-8 -*-
#
# <NAME> <<EMAIL>>
# (c) 1998-2022 all rights reserved
# superclass
from pyre.patterns.AttributeClassifier import AttributeClassifier
# the base class for my descriptors
from .Identifier import Identifier
# dataset harvester
class Schema(AttributeClassifier):
"""
Harvest dataset descriptors from h5 groups
"""
# metamethods
def __new__(cls, name, bases, attributes, **kwds):
"""
Build the class record of a new h5 group
"""
# N.B.:
# if there are any additional class variables to be attached to the class record
# they must be added carefully to make sure {__setattr__} doesn't trigger
# here, for example, we modify {attributes} before chaining up in order to build and
# attach the {pyre_identifiers}
# make a table with the known identifiers and add it to the pile of attributes
attributes["pyre_identifiers"] = {
name: identifier
for name, identifier in cls.pyre_harvestIdentifiers(attributes=attributes)
}
# build the record and return it
return super().__new__(cls, name, bases, attributes, **kwds)
def __call__(self, **kwds):
"""
Build an instance of one of my classes
"""
# build the instance
location = super().__call__(**kwds)
# and return the new instance
return location
def __getattr__(self, name):
"""
Look up the value of {name} in one of my instances
"""
# we are here only when normal attribute look up fails in one of my instances
# currently, there is nothing useful for me to do here, so complain
raise AttributeError # as of 3.10: AttributeError(name=name, obj=self)
def __setattr__(self, name, value):
"""
Assign {name} to {value} in one of my instances
"""
# check whether
try:
# {name} is one the identifiers in my {pyre_identifiers}
identifier = self.pyre_identifiers[name]
# if not
except KeyError:
# move on
pass
# if it is
else:
# interpret this assignment as an attempt to set a new default value for it
identifier.default = value
# and done
return
# if {value} is an {Identifier} instance
if isinstance(value, Identifier):
# add it to {pyre_identifiers}
self.pyre_identifiers[name] = value
# and bind it
value.__set_name__(cls=self, name=name)
# chain up to handle normal assignment
return super().__setattr__(name, value)
# implementation details
@classmethod
def pyre_harvestIdentifiers(cls, attributes):
"""
Scan {attributes} for identifiers
"""
# examine the attributes and select the identifiers
yield from cls.pyre_harvest(attributes=attributes, descriptor=Identifier)
# all done
return
# end of file
|
StarcoderdataPython
|
1669209
|
import ujson
with open("config.json") as f:
CONFIG = ujson.load(f)
|
StarcoderdataPython
|
1701156
|
<reponame>01studio-lab/MicroPython_Examples
'''
实验名称:水位传感器
版本:v1.0
日期:2021.5
作者:01Studio 【www.01Studio.org】
开发平台:01Studio 达芬奇
说明:通过水位传感器对水位测量并显示。
'''
#导入相关模块
from machine import Pin, ADC
from tftlcd import LCD43R
import time
#定义常用颜色
WHITE=(255,255,255)
BLACK = (0,0,0)
BLUE=(0,0,255)
#初始化LCD
d=LCD43R()
d.fill(WHITE)#填充白色
#初始化ADC
Water_level = ADC('B1')
#显示标题
d.printStr('01Studio Water Level Test', 10, 10, BLUE, size=4)
while True:
value=Water_level.read_u16() #获取ADC数值
#LCD显示
d.printStr('Vol:'+str('%.2f'%(value/4095*3.3))+" V", 10, 100, BLACK, size=4)
d.printStr('Value:'+str(value)+" ", 10, 200, BLACK, size=4)
d.printStr("(4095)", 300, 200, BLACK, size=4)
#判断水位,分5档
if 0 <= value <=600:
d.printStr('0cm', 10, 300, BLACK, size=4)
if 600 < value <=900:
d.printStr('1cm', 10, 300, BLACK, size=4)
if 900 < value <=1200:
d.printStr('2cm', 10, 300, BLACK, size=4)
if 1200 < value <=1300:
d.printStr('3cm ', 10, 300, BLACK, size=4)
if 1300 < value:
d.printStr('4cm ', 10, 300, BLACK, size=4)
time.sleep(1)#延时1秒
|
StarcoderdataPython
|
1436
|
import requests
from bs4 import BeautifulSoup
import urllib.request
import os
import random
import time
def html(url):
user_agents = [
'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11',
'Opera/9.25 (Windows NT 5.1; U; en)',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)',
'Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.5 (like Gecko) (Kubuntu)',
'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12',
'Lynx/2.8.5rel.1 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/1.2.9',
"Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.7 (KHTML, like Gecko) Ubuntu/11.04 Chromium/16.0.912.77 Chrome/16.0.912.77 Safari/535.7",
"Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:10.0) Gecko/20100101 Firefox/10.0 "]
user_agent = random.choice(user_agents)
headers = {
'User-Agent': user_agent,
'Accept-Encoding': 'gzip'}
req = requests.get(url=url, headers=headers)
html_doc = req.text
soup = BeautifulSoup(html_doc, "html.parser")
times = soup.select("time")
views = soup.select("p.label-key > b")
active_str = str(views[2])
active = active_str[active_str.find("title=\"") + 7:active_str.find("Z")]
answers = soup.select("#answers-header > div > h2 >span")
question_content = soup.select("div.post-text")
tags = soup.select("#question > div.post-layout > div.postcell.post-layout--right > "
"div.post-taglist.grid.gs4.gsy.fd-column > div >a")
title = soup.select("h1 >a")
tags_str = ""
item = []
for tag in tags:
tags_str += tag.get_text() + ","
answer_contetnts = []
for i in range(1, len(question_content)):
answer_contetnts.append(question_content[i])
for i in range(len(times)):
if len(times[i].get_text()) > 1:
asked_time = times[i].get("datetime").replace("T", " ")
item.append(title[
0].get_text()) # title views answersnum asked_time tag_str active_time quest_content_ text answer_content_list
item.append(views[1].get_text())
item.append(answers[0].get_text())
item.append(asked_time)
item.append(tags_str)
item.append(active)
item.append(question_content[0])
item.append(answer_contetnts)
print(item)
# updatetosql(item)
def updatetosql(item):
ansers_text = "[split]".join(item[7])
updatesql = "UPDATE `t_stackoverflow_question` " \
"SET `tags`='%s', `views`='%s', `answers_num`='%s', `asked_time`='%s', `last_active_time`='%s', `question_content`='%s', `answers_contetnt`='%s' " \
"WHERE (`question_id`='%s') " \
% (item[4], item[1], item[2], item[3], item[5], item[6], ansers_text, item[0],)
pass
if __name__ == '__main__':
html("https://stackoverflow.com/questions/50119673/nginx-fast-cgi-cache-on-error-page-404")
|
StarcoderdataPython
|
1741749
|
<reponame>drcrook1/iot_edge_starter<filename>EdgeSolution/modules/SampleModule/sample_module.py<gh_stars>0
"""
@Author: <NAME>
@Copyright: Microsoft Corporation 2022
"""
from enum import Enum
import logging
import asyncio
from azure.iot.device.aio import IoTHubModuleClient
from azure.iot.device import MethodResponse
# TODO: Module 2 Module Comms & Upstream Telemetry/Messages
class Sample_Twin_Properties():
"""
Class encapsulating the Twin Properties for this module.
"""
SleepTime : int = None
def to_dict(self) -> dict:
"""
returns a dictionary representation
"""
result = {}
for k,v in self.__dict__.items():
result[k] = v
return result
class Sample_Module():
"""
Representation of the Module Object
"""
module_client : IoTHubModuleClient = None
module_twin_properties : Sample_Twin_Properties = None
def initialize(self):
"""
Initialize the stateful object of this module.
"""
self.module_twin_properties = Sample_Twin_Properties()
self.module_twin_properties.SleepTime = 25
# Configure Client & Handlers
self.module_client = IoTHubModuleClient.create_from_edge_environment()
self.module_client.on_twin_desired_properties_patch_received = self._receive_twin_patch_handler
self.module_client.on_method_request_received = self._hello_module_command
self.module_client.on_message_received = self._handle_message_received
def _handle_message_received(self, message):
"""
Handler for receiving a message
"""
print("input: {} - data: {} - properties: {}".format(message.input_name, message.data, message.custom_properties))
async def _receive_twin_patch_handler(self, twin_patch):
"""
Receive a twin patch update.
"""
logging.info("Twin Patch received")
print("I received a twin patch")
# Did they update Temperature Threshold?
if("SleepTime" in twin_patch):
self.module_twin_properties.SleepTime = twin_patch["SleepTime"]
await self.module_client.patch_twin_reported_properties({"SleepTime" : self.module_twin_properties.SleepTime})
async def _hello_module_command(self, method_request):
"""
Receive and handle a method request/command, note,
you must respond to the command for it to read as success, otherwise it will fail.
"""
print("HELLO!!!!!")
method_response = MethodResponse.create_from_method_request(method_request, 200, "HELLO!!!!")
await self.module_client.send_method_response(method_response)
|
StarcoderdataPython
|
1709723
|
<gh_stars>0
from ConfigLoader import ConfigLoader
import numpy as np
from numpy import linalg as LA
from Plotter import Plotter
class FindEquilibria:
'''
this class implements the algorithms to find the equilibria of the system
'''
def __init__(self):
config = ConfigLoader()
self.config = config.params
self.a, self.b = self.setParameters()
self.plotter = Plotter()
self.k, self.sigma = self.setPositiveControlParameters()
def setParameters(self):
a = [[self.config['a11'], self.config['a12'], self.config['a13'], self.config['a14']], \
[self.config['a21'], self.config['a22'], self.config['a23'], self.config['a24']], \
[self.config['a31'], self.config['a32'], self.config['a33'], self.config['a34']], \
[self.config['a41'], self.config['a42'], self.config['a43'], self.config['a44']]]
b = [self.config['b1'], self.config['b2'], self.config['b3'], self.config['b4']]
if 'X' in self.config and 'Y' in self.config:
X = self.config['X']
Y = self.config['Y']
a[1][2] = -X
a[2][1] = X/2
a[1][3] = -Y
a[3][1] = Y/2
return a, b
def setPositiveControlParameters(self):
k = [self.config['k1'], self.config['k2'], self.config['k3'], self.config['k4']]
sigma = self.config['sigma']
return k, sigma
def setParametersAgain(self):
self.a, self.b = self.setParameters()
def findEquilibria(self, printEq=True):
eq = np.matmul(np.linalg.inv(np.array(self.a)), self.b).tolist()
if self.config['printEquilibria']:
print('The equilibria of the system are:\n')
if printEq:
for el in eq:
print(str(el) + '\n')
return eq
def linearise(self, equilibrium, considerControl:bool=False, *args):
# linearised dynamics
b = self.b
a = self.a
k = self.k
x0 = equilibrium[0]
y0 = equilibrium[1]
z0 = equilibrium[2]
w0 = equilibrium[3]
for el in args:
u = el
break
if self.config['useControl'] and considerControl and self.config['usePositiveControl']:
dyn_lin = [[b[0] - 2*a[0][0]*x0 - a[0][1]*y0 - a[0][2]*z0 - a[0][3]*w0 + k[0]*u, -a[0][1]*x0, -a[0][2]*x0, -a[0][3]*x0], \
[-a[1][0]*y0, b[1] - a[1][0]*x0 - 2*a[1][1]*y0 - a[1][2]*z0 - a[1][3]*w0 + k[1]*u, -a[1][2]*y0, -a[1][3]*y0], \
[-a[2][0]*z0, -a[2][1]*z0, b[2] - a[2][0]*x0 - a[2][1]*y0 - 2*a[2][2]*z0 - a[2][3]*w0 + k[2]*u, -a[2][3]*z0], \
[-a[3][0]*w0, -a[3][1]*w0, -a[3][2]*w0, b[3] - a[3][0]*x0 - a[3][1]*y0 - a[3][2]*z0 - 2*a[3][3]*w0 + k[3]*u]]
else:
dyn_lin = [[b[0] - 2*a[0][0]*x0 - a[0][1]*y0 - a[0][2]*z0 - a[0][3]*w0, -a[0][1]*x0, -a[0][2]*x0, -a[0][3]*x0], \
[-a[1][0]*y0, b[1] - a[1][0]*x0 - 2*a[1][1]*y0 - a[1][2]*z0 - a[1][3]*w0, -a[1][2]*y0, -a[1][3]*y0], \
[-a[2][0]*z0, -a[2][1]*z0, b[2] - a[2][0]*x0 - a[2][1]*y0 - 2*a[2][2]*z0 - a[2][3]*w0, -a[2][3]*z0], \
[-a[3][0]*w0, -a[3][1]*w0, -a[3][2]*w0, b[3] - a[3][0]*x0 - a[3][1]*y0 - a[3][2]*z0 - 2*a[3][3]*w0]]
if self.config['printEquilibria']:
print(equilibrium)
print('---')
print(dyn_lin)
return dyn_lin
def getEigens(self):
eq = self.findEquilibria()
dyn_lin = self.linearise(eq)
eigenvalues, _ = LA.eig(dyn_lin)
if self.config['plotEigenvalues'] and not self.config['plotStabilityXY']:
self.plotter.plotEigen(eigenvalues)
return eigenvalues
|
StarcoderdataPython
|
147918
|
<filename>tests/mock-webserver.py
#!/usr/bin/env python
'''
A bottle+gevent based webservice suitable for testing CoCrawler
'''
try:
from gevent import monkey
monkey.patch_all()
except ImportError:
print('gevent not present; that\'s OK for test purposes')
pass
import os
import random
from bottle import route, run, request, abort, redirect
def generate_robots(host):
if host.startswith('robotsdenyall'):
return 'User-Agent: *\nDisallow: /\n'
if host.startswith('404'):
abort(404, 'No robots.txt here')
if host.startswith('500'):
abort(500, 'I don\'t know what I\'m doing!')
if host.startswith('302'):
# unfortunately, we can't use a fake hostname here.
# XXX figure out how to get this constant out of here... header?
redirect('http://127.0.0.1:8080/robots.txt.302')
if host.startswith('pdfrobots'):
return '%PDF-1.3\n'
return 'User-Agent: *\nDisallow: /denied/\n'
def generate_robots_302(host):
host = 'do-not-redirect-me'
return generate_robots(host)
siteheader = '''<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
'''
sitelink = '<url><loc>/ordinary/{}</loc></url>\n'
sitefooter = '</urlset>\n'
def generate_sitemap(host):
mylinks = ''
for i in range(10):
mylinks += sitelink.format(i)
return siteheader + mylinks + sitefooter
header = '''
<html><head><title>Title</title></head><body>
'''
links = '''<ul>
<li><a href="{}">next link</a>
<li><a href="{}">next link</a>
<li><a href="/denied/">but not this one</a>
</ul>
'''
trailer = '''
</body></html>
'''
def generate_ordinary(name, host):
# send 302.foo/ordinary/0 to 302.foo/ordinary/1, which will not be a redirect
if host.startswith('302') and name <= 0:
redirect('/ordinary/{}'.format(name+1))
if host.startswith('503'):
abort(503, 'Slow down, you move too fast. You got to make the morning last.\n')
mylinks = links.format((name+1) % 1000, (2*name) % 1000)
return header + mylinks + trailer
def generate_ordinary_503s(name, host):
if random.randint(1, 9) < 2: # 10% chance
abort(503, 'Slow down, you move too fast. You got to make the morning last.\n')
return generate_ordinary(name, host)
def generate_code(code, host):
abort(code, 'Here is your code {}; host is {}\n'.format(code, host))
def generate_trap(name, host):
mylinks = links.format(name+1, 2*name)
return header + mylinks + trailer
# bottle stuff ------------------------------------------------------------
@route('/hello')
def hello():
return 'Hello World! Host is {}\n'.format(request.get_header('Host'))
@route('/robots.txt')
def robots():
host = request.get_header('Host')
return generate_robots(host)
@route('/robots.txt.302')
def robots302():
host = request.get_header('Host')
return generate_robots_302(host)
@route('/sitemap.xml')
def sitemap():
host = request.get_header('Host')
return generate_sitemap(host)
@route('/ordinary/<name:int>')
def ordinary(name):
host = request.get_header('Host')
return generate_ordinary(name, host)
@route('/ordinary-with-503s/<name:int>')
def ordinary503(name):
host = request.get_header('Host')
return generate_ordinary_503s(name, host, ua)
@route('/code/<code:int>')
def code(code):
host = request.get_header('Host')
return generate_code(code, host)
@route('/trap/<name:int>/')
def trap(name):
host = request.get_header('Host')
return generate_trap(name, host)
port = os.getenv('PORT') or 8080
run(host='localhost', port=port)
|
StarcoderdataPython
|
1737054
|
import random
import time
import matplotlib.pyplot as plt
# ------------------------------------------------------------------------------
def objective_function(O):
x = O[0]
y = O[1]
nonlinear_constraint = (x - 1) ** 3 - y + 1
linear_constraint = x + y - 2
if nonlinear_constraint > 0:
penalty1 = 1
else:
penalty1 = 0
if linear_constraint > 0:
penalty2 = 1
else:
penalty2 = 0
z = (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 + penalty1 + penalty2
return z
bounds = [(-1.5, 1.5), (-0.5, 2.5)] # upper and lower bounds of variables
nv = 2 # number of variables
mm = -1 # if minimization problem, mm = -1; if maximization problem, mm = 1
# PARAMETERS OF PSO
particle_size = 120 # number of particles
iterations = 200 # max number of iterations
w = 0.8 # inertia constant
c1 = 1 # cognative constant
c2 = 2 # social constant
# Visualization
fig = plt.figure()
ax = fig.add_subplot()
fig.show()
plt.title('Evolutionary process of the objective function value')
plt.xlabel("Iteration")
plt.ylabel("Objective function")
# ------------------------------------------------------------------------------
class Particle:
def __init__(self, bounds):
self.particle_position = [] # particle position
self.particle_velocity = [] # particle velocity
self.local_best_particle_position = [] # best position of the particle
self.fitness_local_best_particle_position = initial_fitness # initial objective function value of the best particle position
self.fitness_particle_position = initial_fitness # objective function value of the particle position
for i in range(nv):
self.particle_position.append(
random.uniform(bounds[i][0], bounds[i][1])) # generate random initial position
self.particle_velocity.append(random.uniform(-1, 1)) # generate random initial velocity
def evaluate(self, objective_function):
self.fitness_particle_position = objective_function(self.particle_position)
if mm == -1:
if self.fitness_particle_position < self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position # update the fitness of the local best
if mm == 1:
if self.fitness_particle_position > self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position # update the fitness of the local best
def update_velocity(self, global_best_particle_position):
for i in range(nv):
r1 = random.random()
r2 = random.random()
cognitive_velocity = c1 * r1 * (self.local_best_particle_position[i] - self.particle_position[i])
social_velocity = c2 * r2 * (global_best_particle_position[i] - self.particle_position[i])
self.particle_velocity[i] = w * self.particle_velocity[i] + cognitive_velocity + social_velocity
def update_position(self, bounds):
for i in range(nv):
self.particle_position[i] = self.particle_position[i] + self.particle_velocity[i]
# check and repair to satisfy the upper bounds
if self.particle_position[i] > bounds[i][1]:
self.particle_position[i] = bounds[i][1]
# check and repair to satisfy the lower bounds
if self.particle_position[i] < bounds[i][0]:
self.particle_position[i] = bounds[i][0]
class PSO:
def __init__(self, objective_function, bounds, particle_size, iterations):
fitness_global_best_particle_position = initial_fitness
global_best_particle_position = []
swarm_particle = []
for i in range(particle_size):
swarm_particle.append(Particle(bounds))
A = []
for i in range(iterations):
for j in range(particle_size):
swarm_particle[j].evaluate(objective_function)
if mm == -1:
if swarm_particle[j].fitness_particle_position < fitness_global_best_particle_position:
global_best_particle_position = list(swarm_particle[j].particle_position)
fitness_global_best_particle_position = float(swarm_particle[j].fitness_particle_position)
if mm == 1:
if swarm_particle[j].fitness_particle_position > fitness_global_best_particle_position:
global_best_particle_position = list(swarm_particle[j].particle_position)
fitness_global_best_particle_position = float(swarm_particle[j].fitness_particle_position)
for j in range(particle_size):
swarm_particle[j].update_velocity(global_best_particle_position)
swarm_particle[j].update_position(bounds)
A.append(fitness_global_best_particle_position) # record the best fitness
# Visualization
ax.plot(A, color='r')
fig.canvas.draw()
ax.set_xlim(left=max(0, i - iterations), right=i + 3)
time.sleep(0.001)
print('RESULT:')
print('Optimal solution:', global_best_particle_position)
print('Objective function value:', fitness_global_best_particle_position)
# ------------------------------------------------------------------------------
if mm == -1:
initial_fitness = float("inf") # for minimization problem
if mm == 1:
initial_fitness = -float("inf") # for maximization problem
# ------------------------------------------------------------------------------
# Main PSO
PSO(objective_function, bounds, particle_size, iterations)
plt.show()
|
StarcoderdataPython
|
3365406
|
<reponame>sacherjj/array_devices<gh_stars>1-10
from .array3710 import Load, Program, ProgramStep
|
StarcoderdataPython
|
15177
|
<gh_stars>0
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 24 23:18:54 2018
@author: Rupesh
"""
# Multiple Linear Regression
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use("ggplot")
# loading dependies
df = pd.read_csv("50_Startups.csv")
df.head()
X = df.iloc[:, :-1].values
y = df.iloc[:, 4].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
X_cat = LabelEncoder()
X[:, 3] = X_cat.fit_transform(X[:, 3])
onehot = OneHotEncoder(categorical_features = [3])
X = onehot.fit_transform(X).toarray()
# avoiding the dummy variable trap
X = X[:, 1:]
# train test split
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
# model
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)
# predict
y_pred = reg.predict(X_test)
import skl
|
StarcoderdataPython
|
3323415
|
'''
Created on Aug 21, 2014
@author: moloyc
'''
import os
import sys
sys.path.insert(0,os.path.abspath(os.path.dirname(__file__) + '/' + '../..')) #trick to make it run from CLI
import unittest
from jnpr.openclos.util import *
class TestFunctions(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def testLoadDefaultConfig(self):
self.assertIsNotNone(loadConfig())
def testLoadNonExistingConfig(self):
self.assertIsNone(loadConfig('non-existing.yaml'))
def testGetPortNamesForDeviceFamilyNullConf(self):
with self.assertRaises(ValueError) as ve:
getPortNamesForDeviceFamily(None, None)
def testGetPortNamesForDeviceFamilyUnknownFamily(self):
with self.assertRaises(ValueError) as ve:
getPortNamesForDeviceFamily('unknown', {'QFX5100-24Q': {}})
error = ve.exception.message
self.assertTrue('unknown' in error)
def testGetPortNamesForDeviceFamily24Q(self):
portNames = getPortNamesForDeviceFamily('QFX5100-24Q', {'QFX5100-24Q': {'ports':'et-0/0/[0-23]'}})
self.assertEqual(0, len(portNames['uplinkPorts']))
self.assertEqual(0, len(portNames['downlinkPorts']))
self.assertEqual(24, len(portNames['ports']))
def testGetPortNamesForDeviceFamily48S(self):
portNames = getPortNamesForDeviceFamily('QFX5100-48S', {'QFX5100-48S': {'uplinkPorts':'et-0/0/[48-53]', 'downlinkPorts': 'xe-0/0/[0-47]'}})
self.assertEqual(6, len(portNames['uplinkPorts']))
self.assertEqual(48, len(portNames['downlinkPorts']))
self.assertEqual(0, len(portNames['ports']))
def testGetPortNamesForDeviceFamily96S(self):
portNames = getPortNamesForDeviceFamily('QFX5100-96S', {'QFX5100-96S': {'uplinkPorts':'et-0/0/[96-103]', 'downlinkPorts': 'xe-0/0/[0-95]'}})
self.assertEqual(8, len(portNames['uplinkPorts']))
self.assertEqual(96, len(portNames['downlinkPorts']))
self.assertEqual(0, len(portNames['ports']))
def testExpandPortNameBadRegex1(self):
with self.assertRaises(ValueError) as ve:
expandPortName('xe-0/0/[1-1000]')
def testExpandPortNameBadRegex2(self):
with self.assertRaises(ValueError) as ve:
expandPortName('xe-0//[1-10]')
def testExpandPortNameBadRegex3(self):
with self.assertRaises(ValueError) as ve:
expandPortName('-0/0/[1-10]')
def testExpandPortNameEmpty(self):
portNames = expandPortName('')
self.assertEqual(0, len(portNames))
portNames = expandPortName(None)
self.assertEqual(0, len(portNames))
def testExpandPortName(self):
portNames = expandPortName('xe-0/0/[1-10]')
self.assertEqual(10, len(portNames))
self.assertEqual('xe-0/0/1', portNames[0])
self.assertEqual('xe-0/0/10', portNames[9])
def testFixSqlliteDbUrlForRelativePath(self):
dbUrl = fixSqlliteDbUrlForRelativePath('sqlite:////absolute-path/sqllite3.db')
self.assertEqual(5, dbUrl.count('/'))
dbUrl = fixSqlliteDbUrlForRelativePath('sqlite:///relative-path/sqllite3.db')
if isPlatformWindows():
self.assertTrue("C:\\" in dbUrl)
else:
self.assertTrue(dbUrl.count('/') > 4)
if __name__ == "__main__":
#import sys;sys.argv = ['', 'Test.testName']
unittest.main()
|
StarcoderdataPython
|
1655872
|
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import onqg.dataset.Constants as Constants
from onqg.models.modules.Attention import ConcatAttention
from onqg.models.modules.MaxOut import MaxOut
from onqg.models.modules.DecAssist import StackedRNN, DecInit
class RNNDecoder(nn.Module):
"""
Input: (1) inputs['tgt_seq']
(2) inputs['src_seq']
(3) inputs['src_indexes']
(4) inputs['enc_output']
(5) inputs['hidden']
(6) inputs['feat_seqs']
Output: (1) rst['pred']
(2) rst['attn']
(3) rst['context']
(4) rst['copy_pred']; rst['copy_gate']
(5) rst['coverage_pred']
"""
def __init__(self, n_vocab, ans_n_vocab, d_word_vec, d_model, n_layer,
rnn, d_k, feat_vocab, d_feat_vec, d_enc_model, n_enc_layer,
input_feed, copy, answer, separate, coverage, layer_attn,
maxout_pool_size, dropout, device=None, encoder_word_emb=None):
self.name = 'rnn'
super(RNNDecoder, self).__init__()
self.n_layer = n_layer
self.layer_attn = layer_attn
self.separate = separate
self.coverage = coverage
self.copy = copy
self.maxout_pool_size = maxout_pool_size
self.n_vocab_size = n_vocab
input_size = d_word_vec
self.input_feed = input_feed
if input_feed:
input_size += d_enc_model
self.ans_emb_weight = encoder_word_emb
self.answer = answer
tmp_in = d_word_vec if answer else d_enc_model
self.decInit = DecInit(d_enc=tmp_in, d_dec=d_model, n_enc_layer=n_enc_layer)
self.feature = False if not feat_vocab else True
if self.feature:
self.feat_embs = nn.ModuleList([
nn.Embedding(n_f_vocab, d_feat_vec, padding_idx=Constants.PAD) for n_f_vocab in feat_vocab
])
# input_size += len(feat_vocab) * d_feat_vec # PS: only for test !!!
feat_size = len(feat_vocab) * d_feat_vec if self.feature else 0
self.d_enc_model = d_enc_model
self.word_emb_type = ans_n_vocab == n_vocab
self.word_emb = nn.Embedding(n_vocab, d_word_vec, padding_idx=Constants.PAD)
self.rnn = StackedRNN(n_layer, input_size, d_model, dropout, rnn=rnn)
self.attn = ConcatAttention(d_enc_model + feat_size, d_model, d_k, coverage)
self.readout = nn.Linear((d_word_vec + d_model + self.d_enc_model), d_model)
self.maxout = MaxOut(maxout_pool_size)
if copy:
self.copy_switch = nn.Linear(d_enc_model + d_model, 1)
self.hidden_size = d_model
self.dropout = nn.Dropout(dropout)
self.device = device
@classmethod
def from_opt(cls, opt):
return cls(opt['n_vocab'], opt['ans_n_vocab'], opt['d_word_vec'], opt['d_model'], opt['n_layer'],
opt['rnn'], opt['d_k'], opt['feat_vocab'], opt['d_feat_vec'],
opt['d_enc_model'], opt['n_enc_layer'], opt['input_feed'], opt['copy'], opt['answer'], opt['separate'],
opt['coverage'], opt['layer_attn'], opt['maxout_pool_size'], opt['dropout'],
opt['device'], opt['encoder_word_emb'])
def attn_init(self, context):
if isinstance(context, list):
context = context[-1]
if isinstance(context, tuple):
context = torch.cat(context, dim=-1)
batch_size = context.size(0)
hidden_sizes = (batch_size, self.d_enc_model)
return Variable(context.data.new(*hidden_sizes).zero_(), requires_grad=False)
def forward(self, inputs, max_length=300, rl_type='', generator=None):
tgt_seq, src_seq, src_indexes = inputs['tgt_seq'], inputs['src_seq'], inputs['src_indexes']
if self.answer:
ans_seq = inputs['ans_seq']
enc_output, hidden, feat_seqs = inputs['enc_output'], inputs['hidden'], inputs['feat_seqs']
src_pad_mask = Variable(src_seq.data.eq(50256).float(), requires_grad=False, volatile=False) # TODO: fix this magic number later
if self.layer_attn:
n_enc_layer = len(enc_output)
src_pad_mask = src_pad_mask.repeat(1, n_enc_layer)
enc_output = torch.cat(enc_output, dim=1)
feat_inputs = None
if self.feature:
feat_inputs = [feat_emb(feat_seq) for feat_seq, feat_emb in zip(feat_seqs, self.feat_embs)]
feat_inputs = torch.cat(feat_inputs, dim=2)
if self.layer_attn:
feat_inputs = feat_inputs.repeat(1, n_enc_layer, 1)
# enc_output = torch.cat((enc_output, feat_inputs), dim=2) # PS: only for test !!!
cur_context = self.attn_init(enc_output)
if self.answer:
ans_words = torch.sum(F.embedding(ans_seq, self.ans_emb_weight), dim=1)
hidden = self.decInit(ans_words).unsqueeze(0)
else:
hidden = self.decInit(hidden).unsqueeze(0)
self.attn.apply_mask(src_pad_mask)
if rl_type:
return self.rl_forward(rl_type, generator, tgt_seq, cur_context, hidden, enc_output,
feat_inputs, src_indexes)
else:
return self.nll_forward(tgt_seq, cur_context, hidden, enc_output, feat_inputs, src_indexes)
def nll_forward(self, tgt_seq, cur_context, hidden, enc_output, feat_inputs, src_indexes):
tmp_context, tmp_coverage = None, None
dec_outputs, coverage_output, copy_output, copy_gate_output = [], [], [], []
dec_input = self.word_emb(tgt_seq)
dec_input = dec_input.transpose(0, 1)
for seq_idx, dec_input_emb in enumerate(dec_input.split(1)):
dec_input_emb = dec_input_emb.squeeze(0)
raw_dec_input_emb = dec_input_emb
if self.input_feed:
dec_input_emb = torch.cat((dec_input_emb, cur_context), dim=1)
dec_output, hidden = self.rnn(dec_input_emb, hidden)
if self.coverage:
if tmp_coverage is None:
tmp_coverage = Variable(torch.zeros((enc_output.size(0), enc_output.size(1))))
if self.device:
tmp_coverage = tmp_coverage.to(self.device)
cur_context, attn, tmp_context, next_coverage = self.attn(dec_output, enc_output, precompute=tmp_context,
coverage=tmp_coverage, feat_inputs=feat_inputs,
feature=self.feature)
avg_tmp_coverage = tmp_coverage / max(1, seq_idx)
coverage_loss = torch.sum(torch.min(attn, avg_tmp_coverage), dim=1)
tmp_coverage = next_coverage
coverage_output.append(coverage_loss)
else:
cur_context, attn, tmp_context = self.attn(dec_output, enc_output, precompute=tmp_context,
feat_inputs=feat_inputs, feature=self.feature)
if self.copy:
copy_prob = self.copy_switch(torch.cat((dec_output, cur_context), dim=1))
copy_prob = torch.sigmoid(copy_prob)
if self.layer_attn:
attn = attn.view(attn.size(0), len(enc_output), -1)
attn = attn.sum(1)
if self.separate:
out = torch.zeros([len(attn), max_length], device=self.device if self.device else None)
for i in range(len(attn)):
data_length = src_indexes[i]
out[i].narrow(0, 1, data_length - 1).copy_(attn[i][1:src_indexes[i]])
attn = out
norm_term = attn.sum(1, keepdim=True)
attn = attn / norm_term
copy_output.append(attn)
copy_gate_output.append(copy_prob)
readout = self.readout(torch.cat((raw_dec_input_emb, dec_output, cur_context), dim=1))
maxout = self.maxout(readout)
output = self.dropout(maxout)
dec_outputs.append(output)
dec_output = torch.stack(dec_outputs).transpose(0, 1)
rst = {}
rst['pred'], rst['attn'], rst['context'] = dec_output, attn, cur_context
if self.copy:
copy_output = torch.stack(copy_output).transpose(0, 1)
copy_gate_output = torch.stack(copy_gate_output).transpose(0, 1)
rst['copy_pred'], rst['copy_gate'] = copy_output, copy_gate_output
if self.coverage:
coverage_output = torch.stack(coverage_output).transpose(0, 1)
rst['coverage_pred'] = coverage_output
return rst
def rl_forward(self, rl_type, generator, tgt_seq, cur_context, hidden, enc_output,
feat_inputs, src_indexes):
tmp_context, tmp_coverage, seq_idx = None, None, 0
dec_outputs, coverage_output, copy_output, copy_gate_output = [], [], [], []
max_length, input_seq = tgt_seq.size(-1), tgt_seq.transpose(0, 1)[0]
rand_input_seq = input_seq.clone().detach()
decoded_text, rand_decoded_text = [], []
init_tokens = torch.zeros(input_seq.size(), device=input_seq.device).long()
rand_tokens = torch.zeros(input_seq.size(), device=input_seq.device).long()
rand_choice_list = [0, 102] + [idd for idd in range(1001, self.n_vocab_size)]
for i in range(max_length):
decoded_text.append(input_seq.long())
rand_decoded_text.append(rand_input_seq.long())
dec_input_emb = self.word_emb(input_seq.long())
raw_dec_input_emb = dec_input_emb
if self.input_feed:
dec_input_emb = torch.cat((dec_input_emb, cur_context), dim=1)
dec_output, hidden = self.rnn(dec_input_emb, hidden)
if self.coverage:
if tmp_coverage is None:
tmp_coverage = Variable(torch.zeros((enc_output.size(0), enc_output.size(1))))
if self.device:
tmp_coverage = tmp_coverage.to(self.device)
cur_context, attn, tmp_context, next_coverage = self.attn(dec_output, enc_output, precompute=tmp_context,
coverage=tmp_coverage, feat_inputs=feat_inputs,
feature=self.feature)
avg_tmp_coverage = tmp_coverage / max(1, seq_idx)
coverage_loss = torch.sum(torch.min(attn, avg_tmp_coverage), dim=1)
tmp_coverage = next_coverage
coverage_output.append(coverage_loss)
else:
cur_context, attn, tmp_context = self.attn(dec_output, enc_output, precompute=tmp_context,
feat_inputs=feat_inputs, feature=self.feature)
if self.copy:
copy_prob = self.copy_switch(torch.cat((dec_output, cur_context), dim=1))
copy_prob = torch.sigmoid(copy_prob)
if self.layer_attn:
attn = attn.view(attn.size(0), len(enc_output), -1)
attn = attn.sum(1)
if self.separate:
out = torch.zeros([len(attn), max_length], device=self.device if self.device else None)
for i in range(len(attn)):
data_length = src_indexes[i]
out[i].narrow(0, 1, data_length - 1).copy_(attn[i][1:src_indexes[i]])
attn = out
norm_term = attn.sum(1, keepdim=True)
attn = attn / norm_term
copy_output.append(attn)
copy_gate_output.append(copy_prob)
readout = self.readout(torch.cat((raw_dec_input_emb, dec_output, cur_context), dim=1))
maxout = self.maxout(readout)
output = self.dropout(maxout)
dec_outputs.append(output)
paddings = (input_seq.eq(Constants.PAD).float() + input_seq.eq(102).float()).eq(0).float() # TODO magic number [SEP]
rand_paddings = (rand_input_seq.eq(Constants.PAD).float() + rand_input_seq.eq(102).float()).eq(0).float()
##=== next token predict ===##
token_dict = F.softmax(generator(output), dim=-1)
for b in range(input_seq.size(0)):
## sampling strategy 1
selected_idx = token_dict[b].multinomial(1, replacement=False).view(-1).data[0]
## sampling strategy 2
# topk = torch.topk(token_dict[b], k=5, dim=-1) # TODO magic number
# selected_idx = topk[1][random.choice(range(5))].data
init_tokens[b] = selected_idx.item()
rand_tokens[b] = random.choice(rand_choice_list)
input_seq = torch.where(paddings > 0, init_tokens, paddings.long())
rand_input_seq = torch.where(rand_paddings > 0, rand_tokens, rand_paddings.long())
seq_idx += 1
decoded_text.append(input_seq)
rand_decoded_text.append(rand_input_seq)
dec_output = torch.stack(dec_outputs).transpose(0, 1)
rst = {}
rst['pred'], rst['attn'], rst['context'] = dec_output, attn, cur_context
rst['decoded_text'] = torch.stack(decoded_text).transpose(0, 1)
rst['rand_decoded_text'] = torch.stack(rand_decoded_text).transpose(0, 1)
if self.copy:
copy_output = torch.stack(copy_output).transpose(0, 1)
copy_gate_output = torch.stack(copy_gate_output).transpose(0, 1)
rst['copy_pred'], rst['copy_gate'] = copy_output, copy_gate_output
if self.coverage:
coverage_output = torch.stack(coverage_output).transpose(0, 1)
rst['coverage_pred'] = coverage_output
return rst
|
StarcoderdataPython
|
78232
|
<filename>non_semantic_speech_benchmark/eval_embedding/finetune/models_test.py<gh_stars>1-10
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for non_semantic_speech_benchmark.eval_embedding.finetune.models."""
from absl.testing import absltest
from absl.testing import parameterized
import tensorflow as tf
from non_semantic_speech_benchmark.eval_embedding.finetune import models
class ModelTest(parameterized.TestCase):
@parameterized.parameters(
{'num_clusters': 0, 'alpha_init': 0},
{'num_clusters': 4, 'alpha_init': 0},
{'num_clusters': 0, 'alpha_init': 1.0},
)
def test_basic_model(self, num_clusters, alpha_init):
m = models.get_keras_model(num_classes=5, input_length=16000,
num_clusters=num_clusters, alpha_init=alpha_init)
o = m(tf.zeros([4, 16000], dtype=tf.float32))
self.assertEqual(o.shape, (4, 5))
if __name__ == '__main__':
absltest.main()
|
StarcoderdataPython
|
1769703
|
"""
Lhs functions are inspired by
https://github.com/clicumu/pyDOE2/blob/
master/pyDOE2/doe_lhs.py
"""
import numpy as np
from sklearn.utils import check_random_state
from scipy import spatial
from ..space import Space, Categorical
from .base import InitialPointGenerator
def _random_permute_matrix(h, random_state=None):
rng = check_random_state(random_state)
h_rand_perm = np.zeros_like(h)
samples, n = h.shape
for j in range(n):
order = rng.permutation(range(samples))
h_rand_perm[:, j] = h[order, j]
return h_rand_perm
class Lhs(InitialPointGenerator):
"""Latin hypercube sampling
Parameters
----------
lhs_type : str, default='classic'
- 'classic' - a small random number is added
- 'centered' - points are set uniformly in each interval
criterion : str or None, default='maximin'
When set to None, the LHS is not optimized
- 'correlation' : optimized LHS by minimizing the correlation
- 'maximin' : optimized LHS by maximizing the minimal pdist
- 'ratio' : optimized LHS by minimizing the ratio
`max(pdist) / min(pdist)`
iterations : int
Defines the number of iterations for optimizing LHS
"""
def __init__(self, lhs_type="classic", criterion="maximin",
iterations=1000):
self.lhs_type = lhs_type
self.criterion = criterion
self.iterations = iterations
def generate(self, dimensions, n_samples, random_state=None):
"""Creates latin hypercube samples.
Parameters
----------
dimensions : list, shape (n_dims,)
List of search space dimensions.
Each search dimension can be defined either as
- a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(lower_bound, upper_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
n_samples : int
The order of the LHS sequence. Defines the number of samples.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
Returns
-------
np.array, shape=(n_dim, n_samples)
LHS set
"""
rng = check_random_state(random_state)
space = Space(dimensions)
transformer = space.get_transformer()
n_dim = space.n_dims
space.set_transformer("normalize")
if self.criterion is None or n_samples == 1:
h = self._lhs_normalized(n_dim, n_samples, rng)
h = space.inverse_transform(h)
space.set_transformer(transformer)
return h
else:
h_opt = self._lhs_normalized(n_dim, n_samples, rng)
h_opt = space.inverse_transform(h_opt)
if self.criterion == "correlation":
mincorr = np.inf
for i in range(self.iterations):
# Generate a random LHS
h = self._lhs_normalized(n_dim, n_samples, rng)
r = np.corrcoef(np.array(h).T)
if len(np.abs(r[r != 1])) > 0 and \
np.max(np.abs(r[r != 1])) < mincorr:
mincorr = np.max(np.abs(r - np.eye(r.shape[0])))
h_opt = h.copy()
h_opt = space.inverse_transform(h_opt)
elif self.criterion == "maximin":
maxdist = 0
# Maximize the minimum distance between points
for i in range(self.iterations):
h = self._lhs_normalized(n_dim, n_samples, rng)
d = spatial.distance.pdist(np.array(h), 'euclidean')
if maxdist < np.min(d):
maxdist = np.min(d)
h_opt = h.copy()
h_opt = space.inverse_transform(h_opt)
elif self.criterion == "ratio":
minratio = np.inf
# Maximize the minimum distance between points
for i in range(self.iterations):
h = self._lhs_normalized(n_dim, n_samples, rng)
p = spatial.distance.pdist(np.array(h), 'euclidean')
if np.min(p) == 0:
ratio = np.max(p) / 1e-8
else:
ratio = np.max(p) / np.min(p)
if minratio > ratio:
minratio = ratio
h_opt = h.copy()
h_opt = space.inverse_transform(h_opt)
else:
raise ValueError("Wrong criterion."
"Got {}".format(self.criterion))
space.set_transformer(transformer)
return h_opt
def _lhs_normalized(self, n_dim, n_samples, random_state):
rng = check_random_state(random_state)
x = np.linspace(0, 1, n_samples + 1)
u = rng.rand(n_samples, n_dim)
h = np.zeros_like(u)
if self.lhs_type == "centered":
for j in range(n_dim):
h[:, j] = np.diff(x) / 2.0 + x[:n_samples]
elif self.lhs_type == "classic":
for j in range(n_dim):
h[:, j] = u[:, j] * np.diff(x) + x[:n_samples]
else:
raise ValueError("Wrong lhs_type. Got ".format(self.lhs_type))
return _random_permute_matrix(h, random_state=rng)
|
StarcoderdataPython
|
163915
|
from pytest import raises, warns
from bidso.find import find_in_bids, find_root, _generate_pattern
from .paths import BIDS_PATH, task_ieeg
filename = task_ieeg.get_filename(BIDS_PATH)
def test_find_root():
assert find_root(filename).name == 'bids'
assert find_root(filename, target='subject').name == 'sub-bert'
assert find_root(filename, target='session').name == 'ses-day02'
def test_find_in_bids_01():
found = find_in_bids(filename, subject='bert', session='day01', run='1',
extension='.nii.gz', upwards=True)
assert found.name == 'sub-bert_ses-day01_task-motor_run-1_bold.nii.gz'
with warns(UserWarning):
find_in_bids(filename, subject='bert', useless='xxx', task='motor',
modality='channels', upwards=True)
def test_find_in_bids_02():
with raises(FileNotFoundError):
find_in_bids(filename, upwards=True, subject='xxx')
def test_find_in_bids_03():
with raises(FileNotFoundError):
find_in_bids(filename, upwards=True, subject='bert')
def test_find_in_bids_04():
assert sum(1 for x in find_in_bids(BIDS_PATH, generator=True, subject='bert')) == 21
def test_find_in_bids_05():
with raises(FileNotFoundError):
find_in_bids(BIDS_PATH, subject='xxx')
with raises(StopIteration):
next(find_in_bids(BIDS_PATH, subject='xxx', generator=True))
def test_find_in_bids_06():
with raises(ValueError):
find_in_bids(BIDS_PATH, upwards=True, generator=True)
def test_generate_pattern():
assert _generate_pattern(True, dict(subject='test')) == 'sub-test_*.*'
assert _generate_pattern(False, dict(subject='test')) == 'sub-test.*'
assert _generate_pattern(True, dict(subject='test', session='sess')) == 'sub-test_ses-sess_*.*'
assert _generate_pattern(True, dict(subject='test', modality='mod')) == 'sub-test_*_mod.*'
assert _generate_pattern(True, dict(session='sess', extension='.nii.gz')) == '*_ses-sess_*.nii.gz'
assert _generate_pattern(True, dict(modality='mod', extension='.nii.gz')) == '*_mod.nii.gz'
def test_wildcard_subject():
with raises(ValueError):
_generate_pattern(False, dict())
|
StarcoderdataPython
|
4820252
|
<filename>example/blog/models.py<gh_stars>1-10
# coding: utf-8
from __future__ import unicode_literals
import random
try:
from django.urls import reverse
except ImportError:
from django.core.urlresolvers import reverse
from django.utils.encoding import python_2_unicode_compatible
from django.db import models
@python_2_unicode_compatible
class Category(models.Model):
title = models.CharField('title', max_length=255)
class Meta:
verbose_name = 'category'
verbose_name_plural = 'categories'
def __str__(self):
return self.title
@python_2_unicode_compatible
class Tag(models.Model):
title = models.CharField('title', max_length=255)
class Meta:
verbose_name = 'tag'
verbose_name_plural = 'tags'
def __str__(self):
return self.title
@property
def colour_class(self):
"""Return a random CSS class for the tag."""
choices = ['primary', 'secondary', 'success', 'danger', 'warning', 'info', 'dark']
return random.choice(choices)
@python_2_unicode_compatible
class BlogPost(models.Model):
title = models.CharField('title', max_length=255)
lead = models.TextField('lead')
body = models.TextField('body')
category = models.ForeignKey(
Category, related_name='blog_posts', blank=True, null=True, on_delete=models.PROTECT)
tags = models.ManyToManyField(Tag, related_name='blog_post')
class Meta:
verbose_name = 'blog post'
verbose_name_plural = 'blog posts'
def __str__(self):
return self.title
def get_absolute_url(self):
return reverse('blog_post_detail', kwargs={'pk': self.pk})
@python_2_unicode_compatible
class TextBlock(models.Model):
blog_post = models.ForeignKey(BlogPost, related_name='blocks', on_delete=models.PROTECT)
title = models.CharField('title', max_length=255)
body = models.TextField('body')
class Meta:
verbose_name = 'text block'
verbose_name_plural = 'text blocks'
def __str__(self):
return self.title
|
StarcoderdataPython
|
1768616
|
<gh_stars>0
# Array; Greedy; Queue
# Given a char array representing tasks CPU need to do. It contains capital letters A to Z where different letters represent different tasks.Tasks could be done without original order. Each task could be done in one interval. For each interval, CPU could finish one task or just be idle.
#
# However, there is a non-negative cooling interval n that means between two same tasks, there must be at least n intervals that CPU are doing different tasks or just be idle.
#
# You need to return the least number of intervals the CPU will take to finish all the given tasks.
#
#
#
# Example:
#
# Input: tasks = ["A","A","A","B","B","B"], n = 2
# Output: 8
# Explanation: A -> B -> idle -> A -> B -> idle -> A -> B.
#
#
# Note:
#
# The number of tasks is in the range [1, 10000].
# The integer n is in the range [0, 100].
class Solution:
def leastInterval(self, tasks, n):
"""
:type tasks: List[str]
:type n: int
:rtype: int
"""
tasksDict = collections.Counter(tasks)
valList = tasksDict.values()
maxLen = max(valList)
output = (maxLen-1) * (n+1)
for val in valList:
output += val == maxLen and 1 or 0
return max(len(tasks), output)
|
StarcoderdataPython
|
19089
|
<filename>src/arch/riscv/RiscvCPU.py<gh_stars>1-10
# Copyright 2021 Google, Inc.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from m5.objects.BaseAtomicSimpleCPU import BaseAtomicSimpleCPU
from m5.objects.BaseNonCachingSimpleCPU import BaseNonCachingSimpleCPU
from m5.objects.BaseTimingSimpleCPU import BaseTimingSimpleCPU
from m5.objects.BaseO3CPU import BaseO3CPU
from m5.objects.BaseMinorCPU import BaseMinorCPU
from m5.objects.RiscvDecoder import RiscvDecoder
from m5.objects.RiscvMMU import RiscvMMU
from m5.objects.RiscvInterrupts import RiscvInterrupts
from m5.objects.RiscvISA import RiscvISA
class RiscvCPU:
ArchDecoder = RiscvDecoder
ArchMMU = RiscvMMU
ArchInterrupts = RiscvInterrupts
ArchISA = RiscvISA
class RiscvAtomicSimpleCPU(BaseAtomicSimpleCPU, RiscvCPU):
mmu = RiscvMMU()
class RiscvNonCachingSimpleCPU(BaseNonCachingSimpleCPU, RiscvCPU):
mmu = RiscvMMU()
class RiscvTimingSimpleCPU(BaseTimingSimpleCPU, RiscvCPU):
mmu = RiscvMMU()
class RiscvO3CPU(BaseO3CPU, RiscvCPU):
mmu = RiscvMMU()
class RiscvMinorCPU(BaseMinorCPU, RiscvCPU):
mmu = RiscvMMU()
|
StarcoderdataPython
|
41488
|
try:
print('enter try statement')
raise Exception()
print('exit try statement')
except Exception as inst:
print(inst.__class__.__name__)
|
StarcoderdataPython
|
1783722
|
#!/usr/bin/env python3
from scipy.stats import kendalltau
from sklearn.metrics import accuracy_score, recall_score
import numpy as np
def get_combined_score(pr_mean, tr_mean, rr_std, pred_ids, labels):
'''
Get combined performance score
'''
k_pr_mean = kendalltau(pr_mean, labels[:, 0])[0]
k_tr_mean = kendalltau(tr_mean, labels[:, 1])[0]
k_rr_std = kendalltau(rr_std, labels[:, 2])[0]
label_acc = recall_score(
labels[:, 3], pred_ids, average='macro')
label_acc = (1 - ((1 - label_acc)/(1-1/32)))
kendall_avg = np.mean([k_pr_mean, k_tr_mean, k_rr_std])
combined_score = np.power(
k_rr_std * k_pr_mean * k_tr_mean * label_acc, 0.25)
message = "Kendall TR: {} \n".format(k_tr_mean)
message += "Kendall RR: {} \n".format(k_rr_std)
message += "Kendall PR: {} \n".format(k_pr_mean)
message += "ID acc: {} \n".format(label_acc)
message += "Avg Kendall: {} \n".format(kendall_avg)
message += "Combined: {} \n".format(combined_score)
return message
|
StarcoderdataPython
|
3320849
|
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 16 13:32:08 2020
@author: ingvord
"""
from flask import request
from flask_restful import Resource
from functools import reduce
import time
class PiController(Resource):
def get(self, id):
return {'version': request.pi_device.qVER()}
class PiControllerServoMode(Resource):
def get(self, **kwargs):
return request.pi_device.qSVO()
def put(self, **kwargs):
data = request.json
request.pi_device.SVO(data)
return request.pi_device.qSVO()
class PiControllerReference(Resource):
def get(self, **kwargs):
return request.pi_device.qFRF()
def put(self, **kwargs):
data = request.json
request.pi_device.FRF(data)
stopped = False
while not stopped:
time.sleep(0.1)
stopped = not reduce(lambda a, b: a or b, request.pi_device.IsMoving(data).values())
return request.pi_device.qPOS()
class PiControllerPosition(Resource):
def get(self, **kwargs):
return request.pi_device.qPOS()
def put(self, **kwargs):
data = request.json
request.pi_device.MOV(data)
stopped = False
while not stopped:
time.sleep(0.1)
stopped = not reduce(lambda a, b: a or b, request.pi_device.IsMoving(list(data.keys())).values())
return request.pi_device.qPOS()
class PiControllerHome(Resource):
def put(self, **kwargs):
# TODO send to home all axis
pass
class PiControllerStop(Resource):
def put(self, **kwargs):
data = request.json
request.pi_device.HLT(data, True)
pass
class PiControllerReboot(Resource):
def put(self, **kwargs):
request.pi_device.RBT()
pass
|
StarcoderdataPython
|
1739155
|
<reponame>xuziheng1002/django-river<gh_stars>0
from __future__ import unicode_literals
from django.db import models, transaction
from django.db.models import PROTECT
from django.db.models.signals import post_save, pre_delete
from django.utils.translation import ugettext_lazy as _
from river.config import app_config
from river.models import Workflow
from river.models.base_model import BaseModel
from river.models.managers.transitionmetada import TransitionApprovalMetadataManager
from river.models.transitionmeta import TransitionMeta
__author__ = 'ahmetdal'
class TransitionApprovalMeta(BaseModel):
class Meta:
app_label = 'river'
verbose_name = _("Transition Approval Meta")
verbose_name_plural = _("Transition Approval Meta")
unique_together = [('workflow', 'transition_meta', 'priority')]
objects = TransitionApprovalMetadataManager()
workflow = models.ForeignKey(Workflow, verbose_name=_("Workflow"), related_name='transition_approval_metas', on_delete=PROTECT)
transition_meta = models.ForeignKey(TransitionMeta, verbose_name=_("Transition Meta"), related_name='transition_approval_meta', on_delete=PROTECT)
permissions = models.ManyToManyField(app_config.PERMISSION_CLASS, verbose_name=_('Permissions'), blank=True)
groups = models.ManyToManyField(app_config.GROUP_CLASS, verbose_name=_('Groups'), blank=True)
priority = models.IntegerField(default=0, verbose_name=_('Priority'), null=True)
parents = models.ManyToManyField('self', verbose_name='parents', related_name='children', symmetrical=False, db_index=True, blank=True)
def __str__(self):
return 'Transition: %s,Permissions: %s, Groups: %s, Order: %s' % (
self.transition_meta,
','.join(self.permissions.values_list('name', flat=True)),
','.join(self.groups.values_list('name', flat=True)), self.priority)
def post_save_model(sender, instance, *args, **kwargs):
parents = TransitionApprovalMeta.objects \
.filter(workflow=instance.workflow, transition_meta__destination_state=instance.transition_meta.source_state) \
.exclude(pk__in=instance.parents.values_list('pk', flat=True)) \
.exclude(pk=instance.pk)
children = TransitionApprovalMeta.objects \
.filter(workflow=instance.workflow, transition_meta__source_state=instance.transition_meta.destination_state) \
.exclude(parents__in=[instance.pk]) \
.exclude(pk=instance.pk)
instance = TransitionApprovalMeta.objects.get(pk=instance.pk)
if parents:
instance.parents.add(*parents)
for child in children:
child.parents.add(instance)
@transaction.atomic
def pre_delete_model(sender, instance, *args, **kwargs):
from river.models.transitionapproval import PENDING
instance.transition_approvals.filter(status=PENDING).delete()
post_save.connect(post_save_model, sender=TransitionApprovalMeta)
pre_delete.connect(pre_delete_model, sender=TransitionApprovalMeta)
|
StarcoderdataPython
|
96115
|
import os
import datetime
import subprocess
import os.path
def normalize_time(month, day, hour, minute, round_to_nearest_5m=True):
if int(month) <= 9:
month = "0" + month
if int(day) <= 9:
day = "0" + day
if int(hour) <= 9:
hour = "0" + hour
if int(minute) <= 9:
minute = "0" + minute
return [month, day, hour, minute]
def generate_timestamp(time):
print("Generating timestamp for " + str(time))
month = str(time.month)
day = str(time.day)
year = str(time.year)[-2::]
hour = str(time.hour)
minute = str(time.minute)
month, day, hour, minute = normalize_time(month, day, hour, minute)
return str(month + day + year + "_" + hour + minute)
def launch_kiwiclient(server, port, frequency, mode, filename, out_directory, time):
args = ['python', 'kiwirecorder.py', '-s', server, '-p', str(port), '-f', str(frequency), '-m', mode,
'--filename', filename, '--time-limit', f'{time+1}', '--dir', out_directory]
for item in args:
print(item + " ", end='')
os.chdir(out_directory)
output_file = out_directory + filename + ".wav"
file_already_exists = os.path.exists(output_file)
print(os.listdir())
this_dir = os.path.dirname(os.path.realpath(__file__))
os.chdir(this_dir)
os.chdir("./kiwiclient-master")
print("File exists: " + str(file_already_exists))
if not file_already_exists:
print("\n" + output_file + " doesn't exist; recording...")
process = subprocess.Popen(args)
else:
print("Error: " + output_file + " already exists; is another recording of this station currently in progress?")
return
# Sometimes the --time-limit argument sporadically doesn't work; This will just forcefully kill kiwirecorder
# at the time limit in case it isn't already dead...
try:
print(f"Recording for {time} seconds... (PID={process.pid})")
process.wait(timeout=time)
except subprocess.TimeoutExpired:
print('Time is up... killing', process.pid)
process.kill()
print("Done")
def record(server, port, name, frequency, mode, time, start_time, out_directory):
current_directory = os.path.realpath(os.getcwd())
this_dir = os.path.dirname(os.path.realpath(__file__))
# Switch to the directory containing this file
os.chdir(this_dir)
os.chdir("./kiwiclient-master")
timestamp = generate_timestamp(start_time)
filename = name + "_" + timestamp
frequency = frequency.strip(',').strip("kHz")
launch_kiwiclient(server, port, frequency, mode, filename, out_directory, time)
os.chdir(current_directory)
|
StarcoderdataPython
|
3218230
|
<reponame>hettlage/salt-data-quality-site
def title():
return ''
def content():
return 'This is a placeholder for plots displaying telescope statistics for a week.'
|
StarcoderdataPython
|
1636244
|
# noqa
if __name__ == "__main__":
from dotenv import load_dotenv
load_dotenv('.flaskenv')
from robotehr.models import Base, engine
from robotehr.models.cohort import *
from robotehr.models.training import *
from robotehr.models.data import *
from robotehr.models.predictor import *
Base.metadata.create_all(engine)
print("Database schema update complete ...")
|
StarcoderdataPython
|
4809336
|
<reponame>sergiors/pyramda<gh_stars>100-1000
from .assert_dicts_equal import assert_dicts_equal
from .assert_domain import assert_in_domain, assert_not_in_domain
from .assert_equal import assert_equal, assert_not_equal
from .assert_iterables_equal import assert_iterables_equal
from .assert_pred import assert_pred_cases, true_case, false_case
|
StarcoderdataPython
|
3201779
|
import copy
from zopeskel import abstract_buildout
from zopeskel.base import var, EASY, EXPERT
from zopeskel.vars import StringVar, StringChoiceVar
class SilvaBuildout(abstract_buildout.AbstractBuildout):
_template_dir = 'templates/silva_buildout'
summary = "A buildout for Silva projects"
help = """
This template creates an installation of Silva
(http://www.infrae.com/products/silva).
"""
post_run_msg = """
Generation finished.
You probably want to run python bootstrap.py and then edit
buildout.cfg before running bin/buildout -v".
See README.txt for details.
"""
required_templates = []
use_cheetah = True
vars = copy.deepcopy(abstract_buildout.AbstractBuildout.vars)
vars.extend([
abstract_buildout.VAR_Z2_INSTALL,
StringChoiceVar(
'silva_distribution',
title='Silva Distribution',
description='Version of Silva to install, "stable" or "development"',
default="stable",
modes=(EASY, EXPERT),
page='Main',
choices=('stable','development'),
),
abstract_buildout.VAR_ZOPE_USER,
abstract_buildout.VAR_ZOPE_PASSWD,
abstract_buildout.VAR_HTTP,
abstract_buildout.VAR_DEBUG_MODE,
abstract_buildout.VAR_VERBOSE_SEC,
]
)
|
StarcoderdataPython
|
118975
|
"""Incorporate ETH Zurich's BIWI (EWAP) dataset into simple gridworld."""
import os
from pathlib import Path
from matplotlib.image import imread
import matplotlib.pyplot as plt
import numpy as np
from .simple_gw import SimpleGridworld
# Grid constants
OBSTACLE = 2
GOAL = 6
PERSON = 9
ROBOT = 15
class EwapDataset:
"""
Contains all relevant information for EWAP dataset.
"""
def __init__(
self,
dataset_root='datasets/ewap_dataset',
sequence='seq_hotel'
):
dataset_path = Path(os.path.abspath(__file__)).parents[0]
self.sequence_path = dataset_path / dataset_root / sequence
# get obstacle map
obs_map_path = self.sequence_path / 'hmap.png'
self.obstacle_map = imread(str(obs_map_path.resolve()))
# get pedestrian position and velocity data (obsmat.txt)
self.pedestrian_data = np.loadtxt(self.sequence_path / 'obsmat.txt')
# get shift and scale amount for this sequence
self.pos_shift = np.loadtxt(self.sequence_path / 'shift.txt')
self.scale_factor = np.loadtxt(self.sequence_path / 'scale.txt')
self.frame_id = 0
self.processed_data = self.process_data()
def scale(self, raw_data):
scaled_data = raw_data.copy()
scaled_data[:, 2:] *= self.scale_factor
return scaled_data
def shift(self, scaled_ped_data):
shifted_ped_data = scaled_ped_data.copy()
shifted_ped_data[:, 2] = shifted_ped_data[:, 2] - self.pos_shift[0]
shifted_ped_data[:, 4] = shifted_ped_data[:, 4] - self.pos_shift[1]
return shifted_ped_data
def discretize(self, scaled_shifted_data):
discrete_data = np.round(scaled_shifted_data).astype(np.int64)
return discrete_data
def normalize_frames(self, unnormalied_data):
"""
Normalizers the data frames, so first frame is integer 0.
"""
normalized_data = unnormalied_data.copy()
normalized_data[:, 0] -= np.min(normalized_data[:, 0])
normalized_data[:, 0] = normalized_data[:, 0] / 10
return normalized_data
def process_data(self):
"""
scales, shifts, and discretizes input data according to parameters
generated by map2world.py script. normalizes frame numbers.
"""
scaled_data = self.scale(self.pedestrian_data)
shifted_data = self.shift(scaled_data)
discrete_data = self.discretize(shifted_data)
# normalize frames
processed_data = self.normalize_frames(discrete_data)
return processed_data
def pad_dataset(self, pad_amount):
"""
Pad dataset with obstacle pixels to ensure 2*vision_radius+1 squares
are possible for feature extractor.
"""
self.obstacle_map = np.pad(
self.obstacle_map,
pad_amount + 1, # for when agent runs into edges
mode='constant',
constant_values=1.0
)
# shift dataset to accomodate padding
self.processed_data[:, 2] += pad_amount
self.processed_data[:, 4] += pad_amount
def pedestrian_goal(self, pedestrian_id):
"""Return goal of pedestrian with the given ID.
:param pedestrian_id: ID of pedestrian.
"""
pedestrian_mask = (self.processed_data[:, 1] == pedestrian_id)
pedestrian_traj = self.processed_data[pedestrian_mask]
return (pedestrian_traj[-1, 2], pedestrian_traj[-1, 4])
def get_max_frame(self):
return np.max(self.processed_data[:, 0])
class EwapGridworld(SimpleGridworld):
"""
Env that incorporates ETHZ BIWI (EWAP) dataset.
make sure the correct directory sturcture exists in order to run, i.e.
/envs/datasets/ewap_dataset/seq_eth
/envs/datasets/ewap_dataset/seq_hotel
folders exist. Additionally, run script map2world.py for both sequences,
instruction found in the script at /envs/datasets/ewap_dataset/map2world.py
"""
def __init__(
self,
ped_id,
sequence='seq_hotel',
dataset_root='datasets/ewap_dataset',
person_thickness=2,
vision_radius=40,
render=False,
):
"""
Initialize EWAP gridworld. Make sure all files in the correct
directories as specified above!
:param ped_id: ID of pedestrian whose goal we adopt.
:param sequence: Sequence to base world on. example: 'seq_hotel'
:param dataset_root: path to root of dataset directory.
:param person_thickness: The dimensions of the nxn boxes that will
represent people.
"""
self.dataset = EwapDataset(
sequence=sequence,
dataset_root=dataset_root
)
self.vision_radius = vision_radius
self.speed = 4
self.dataset.pad_dataset(vision_radius + 2 * self.speed)
self.person_thickness = person_thickness
obstacle_array = np.where(self.dataset.obstacle_map == 1.0)
obstacle_array = np.array(obstacle_array).T
goals = self.dataset.pedestrian_goal(ped_id)
super().__init__(
self.dataset.obstacle_map.shape,
obstacle_array,
goals
)
# agent velociy
self.player_vel = np.zeros(2)
# construct goal map
self.adopt_goal(ped_id)
# seperate for people position incase we want to do processing.
self.person_map = self.obstacle_grid.copy()
self.person_map.fill(0)
# Play only until video exists
self.max_steps = self.dataset.get_max_frame()
# counters for debuggging data
self.png_number = 0
# rendering
self.render = render
if self.render:
self.enable_rendering()
def enable_rendering(self):
self.render = True
self.fig = plt.figure()
self.gridspec = self.fig.add_gridspec(4, 2)
# setup axis
ax_obs = self.fig.add_subplot(self.gridspec[0, 0])
ax_persons = self.fig.add_subplot(self.gridspec[0, 1])
ax_goal = self.fig.add_subplot(self.gridspec[1, 0])
ax_gridworld = self.fig.add_subplot(self.gridspec[2:, :])
dummy_surrounding = np.eye(2, 2)
self.im_obs = ax_obs.imshow(dummy_surrounding)
self.im_persons = ax_persons.imshow(dummy_surrounding)
self.im_goal = ax_goal.imshow(dummy_surrounding)
self.im_gridworld = ax_gridworld.imshow(self.obstacle_grid)
self.im_gridworld.set_clim(vmin=0, vmax=ROBOT)
self.fig.canvas.draw()
plt.pause(0.000001)
def disable_rendering(self):
self.render = False
def thicken(self, grid, target_thickness):
"""
thicken pixel by specified target_thickness parameter in supplied grid.
:param target_thickness: thickness amount.
:param grid: grid in which pixels reside.
"""
row_ind, col_ind = np.where(grid != 0)
thick = grid.copy()
assert row_ind.size == col_ind.size
for i in range(row_ind.size):
row = row_ind[i]
col = col_ind[i]
thick[
row - target_thickness:row + target_thickness + 1,
col - target_thickness:col + target_thickness + 1
] = thick[row, col]
return thick
def populate_person_map(self, frame_num):
"""Populates the person map based on input frame_num, which is the
frame id of EWAP database's footage.
:param frame_num: frame to get positions from.
"""
# clear person map
self.person_map.fill(0)
# Get data for current frame of simulation.
frame_pedestrians = self.dataset.processed_data[
self.dataset.processed_data[:, 0] == frame_num
]
self.person_map[frame_pedestrians[:, 2],
frame_pedestrians[:, 4]] = 1.0
self.person_map = self.thicken(self.person_map, self.person_thickness)
def adopt_goal(self, pedestrian_id):
"""Change the goal to the one used by pedestrian.
:param pedestrian_id: ID of pedestrian whose goal we adopt.
"""
self.goal_pos = self.dataset.pedestrian_goal(pedestrian_id)
self.goal_grid[self.goal_pos] = 1.0
# thicken the goal, making it area instead of pixel
goal_thickness = self.person_thickness * 5
self.goal_grid = self.thicken(self.goal_grid, goal_thickness)
def reset(self):
"""
reset gridworld to initial positon, with all trajectories starting
again at first frame.
"""
super().reset()
assert self.step_number == 0, 'Step number non-zero after reset!'
self.player_vel = np.zeros(2)
self.populate_person_map(self.step_number)
return self.state_extractor().astype('float32')
def reward_function(self, state, action, next_state):
reward = np.array(0.0)
if self.goal_grid[tuple(self.player_pos)] == 1.0:
reward += 1.0
if self.obstacle_grid[tuple(self.player_pos)] == 1.0:
reward += -1.0
if self.person_map[tuple(self.player_pos)] == 1.0:
reward += -2.0
dist_to_goal = np.sum(np.abs(state[-2:] - state[-4:-2]))
next_dist_to_goal = np.sum(np.abs(next_state[-2:] - next_state[-4:-2]))
if next_dist_to_goal > dist_to_goal:
reward -= 0.001
elif next_dist_to_goal < dist_to_goal:
reward += 0.001
return reward
def state_extractor(self):
"""
Extract state for CURRENT internal state of gridworld.
"""
row_low = self.player_pos[0] - self.vision_radius
row_high = self.player_pos[0] + self.vision_radius + 1
col_low = self.player_pos[1] - self.vision_radius
col_high = self.player_pos[1] + self.vision_radius + 1
obstacles = self.obstacle_grid[row_low: row_high, col_low: col_high]
people = self.person_map[row_low: row_high, col_low: col_high]
goals = self.goal_grid[row_low: row_high, col_low: col_high]
if self.render:
self.im_obs.set_data(obstacles)
self.im_persons.set_data(people)
self.im_goal.set_data(goals)
expected_shape = (
2 * self.vision_radius + 1,
2 * self.vision_radius + 1
)
assert obstacles.shape == expected_shape
assert people.shape == expected_shape
assert goals.shape == expected_shape
# state vector is surroundings concatenated with player pos and goal
# pos, hence the +4 size
state = np.zeros(obstacles.size + people.size + goals.size + 6)
local_map = np.concatenate(
(
obstacles.flatten(),
people.flatten(),
goals.flatten()
)
)
# populate state vector
state[:-6] = local_map
state[-6:-4] = self.player_pos
state[-4:-2] = self.player_vel
state[-2:] = np.array(self.goal_pos)
return state
def step(self, action):
"""
Advance the gridworld player based on action.
'done' is set when environment reaches goal, hits obstacle, or exceeds
max step number, which is heuristically set to length*height of
gridworld.
:param action: Action peformed by player.
:return (next_state, reward, done, False)
"""
assert self.action_space.contains(action), "Invalid action!"
# extract current
state = self.state_extractor().astype('float32')
# advance player based on action
action_vector = self.speed * self.action_dict[action]
self.player_vel = action_vector
next_pos = self.player_pos + action_vector
self.step_number += 1
# update pedestrian positions
self.populate_person_map(self.step_number)
# extract next state
self.player_pos = next_pos
next_state = self.state_extractor().astype('float32')
# reward function r(s_t, a_t, s_t+1)
reward = self.reward_function(state, action, next_state)
# position reset condition
goal_reached = (self.goal_grid[tuple(self.player_pos)] == 1.0)
obstacle_hit = (self.obstacle_grid[tuple(self.player_pos)] == 1.0)
person_hit = (self.person_map[tuple(self.player_pos)] == 1.0)
if obstacle_hit or person_hit:
self.reset_player_pos()
# temrination conditions
max_steps_elapsed = self.step_number > self.max_steps
done = max_steps_elapsed
if self.render:
self.render_gridworld()
return next_state, reward, done, max_steps_elapsed
def overlay(self, overlay, overlaid_on, const):
"""Overlays value 'const' on numpy array 'overlaid_on' in indices where
'overlay' is non-zero.
:param overlay: numpy to overlay on another array.
:param overlaid_on: overlay is applied on this array.
:param const: constant to overlay with, e.g. const=2 will put 2s where
overlay is nonzero.
"""
output = np.copy(overlaid_on)
output[overlay != 0.0] = const
return output
def render_gridworld(self):
to_render = self.obstacle_grid.copy() * OBSTACLE
to_render = self.overlay(self.person_map, to_render, PERSON)
to_render = self.overlay(self.goal_grid, to_render, GOAL)
to_render[tuple(self.player_pos)] = ROBOT
self.im_gridworld.set_data(to_render)
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def dump_png(self, path='./png_dumps/'):
"""Saves a PNG image of current state.
:param path: path to save image to.
"""
impath = Path(path)
image_name = str(self.png_number) + '.png'
to_save = self.obstacles_map + self.goal_grid + self.obstacle_grid
to_save[tuple(self.player_pos)] = ROBOT
plt.imsave(str((impath / image_name).resolve()), to_save)
self.png_number += 1
|
StarcoderdataPython
|
3233847
|
<filename>PackageTests/test_namespace.py
import unittest
import spelling
class TestNameSpace(unittest.TestCase):
def test_predict(self):
# As such because the built in model is not trained, only all words are added
self.assertIn(spelling.predict("bway"), ["way", "bay", "away", "sway", "tway", "bray"])
|
StarcoderdataPython
|
191719
|
<reponame>huawei-cloud/compass<filename>compass/tests/config_management/utils/test_config_merger_callbacks.py
import unittest2
from compass.config_management.utils import config_merger_callbacks
from compass.config_management.utils import config_reference
class TestAssignRoles(unittest2.TestCase):
def test_assign_roles(self):
lower_configs = {
1: {'roles': ['control']},
2: {'roles': ['api', 'compute']},
3: {'roles': []},
4: {},
5: {},
}
lower_refs = {}
for hostid, config in lower_configs.items():
lower_refs[hostid] = config_reference.ConfigReference(config)
roles = ['control', 'api', 'compute']
maxs = {'control': 1, 'api': 2, 'compute': -1}
default_min = 1
exclusives = ['control']
assigned = config_merger_callbacks.assign_roles(
None, None, lower_refs, 'roles', roles=roles,
maxs=maxs,
default_min=default_min,
exclusives=exclusives)
self.assertEqual(assigned, {1: ['control'],
2: ['api', 'compute'],
3: ['api'],
4: ['compute'],
5: ['compute']})
default_min = 2
maxs = {'control': 1, 'api': 2, 'compute': 2}
lower_configs = {
1: {'roles': ['control']},
2: {'roles': ['api', 'compute']},
3: {'roles': []},
4: {},
5: {},
}
lower_refs = {}
for hostid, config in lower_configs.items():
lower_refs[hostid] = config_reference.ConfigReference(config)
assigned = config_merger_callbacks.assign_roles(
None, None, lower_refs, 'roles', roles=roles,
maxs=maxs, default_min=default_min,
exclusives=exclusives)
self.assertEqual(assigned, {1: ['control'],
2: ['api', 'compute'],
3: ['control'],
4: ['api'],
5: ['compute']})
default_min = 1
roles = ['control', 'api', 'compute', 'mysql']
maxs = {'control': 1, 'api': 2, 'compute': -1, 'mysql': 2}
bundles = [['control', 'api']]
lower_configs = {
1: {},
2: {},
3: {},
4: {},
5: {},
}
lower_refs = {}
for hostid, config in lower_configs.items():
lower_refs[hostid] = config_reference.ConfigReference(config)
assigned = config_merger_callbacks.assign_roles(
None, None, lower_refs, 'roles', roles=roles,
maxs=maxs, default_min=default_min,
exclusives=exclusives, bundles=bundles)
self.assertEqual(assigned, {1: ['control', 'api'],
2: ['compute'],
3: ['mysql'],
4: ['mysql'],
5: ['compute']})
if __name__ == '__main__':
unittest2.main()
|
StarcoderdataPython
|
173619
|
from sys import maxsize
class Contact:
def __init__(self, first_name=None, middle_name=None, last_name=None, nick_name=None, title=None, company=None, address=None, home_phone=None,
mobile_phone=None, work_phone=None, fax=None, email=None, email2=None, email3=None, home_page=None, bday=None, bmonth=None, byear=None,
aday=None, amonth=None, ayear=None, address2=None, phone2=None, notes=None, id=None, all_phones_from_home_page=None, all_email_from_home_page=None):
self.first_name = first_name
self.middle_name = middle_name
self.last_name = last_name
self.nick_name = nick_name
self.title = title
self.company = company
self.address = address
self.home_phone = home_phone
self.mobile_phone = mobile_phone
self.work_phone = work_phone
self.fax = fax
self.email = email
self.email2 = email2
self.email3 = email3
self.home_page = home_page
self.bday = bday
self.bmonth = bmonth
self.byear = byear
self.aday = aday
self.amonth = amonth
self.ayear = ayear
self.address2 = address2
self.phone2 = phone2
self.notes = notes
self.id = id
self.all_phones_from_home_page = all_phones_from_home_page
self.all_email_from_home_page = all_email_from_home_page
def __repr__(self):
return "%s---%s---%s---%s---%s---%s" % (self.id, self.last_name, self.first_name, self.mobile_phone, self.bday, self.bmonth)
def __eq__(self, other):
return (self.id is None or other.id is None or self.id == other.id) and self.first_name == other.first_name and\
self.last_name == other.last_name
def id_or_max(self):
if self.id:
return int(self.id)
else:
return maxsize
|
StarcoderdataPython
|
3238314
|
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for voxel generation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import os
import numpy as np
from six.moves import xrange
import tensorflow as tf
import input_generator
import utils
slim = tf.contrib.slim
class Im2Vox(object):
"""Defines the voxel generation model."""
__metaclass__ = abc.ABCMeta
def __init__(self, params):
self._params = params
@abc.abstractmethod
def get_metrics(self, inputs, outputs):
"""Gets dictionaries from metrics to value `Tensors` & update `Tensors`."""
pass
@abc.abstractmethod
def get_loss(self, inputs, outputs):
pass
@abc.abstractmethod
def get_regularization_loss(self, scopes):
pass
def set_params(self, params):
self._params = params
def get_inputs(self,
dataset_dir,
dataset_name,
split_name,
batch_size,
image_size,
vox_size,
is_training=True):
"""Loads data for a specified dataset and split."""
del image_size, vox_size
with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
common_queue_min = 64
common_queue_capacity = 256
num_readers = 4
inputs = input_generator.get(
dataset_dir,
dataset_name,
split_name,
shuffle=is_training,
num_readers=num_readers,
common_queue_min=common_queue_min,
common_queue_capacity=common_queue_capacity)
images, voxels = tf.train.batch(
[inputs['image'], inputs['voxel']],
batch_size=batch_size,
num_threads=8,
capacity=8 * batch_size,
name='batching_queues/%s/%s' % (dataset_name, split_name))
outputs = dict()
outputs['images'] = images
outputs['voxels'] = voxels
outputs['num_samples'] = inputs['num_samples']
return outputs
def preprocess(self, raw_inputs, step_size):
"""Selects the subset of viewpoints to train on."""
(quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2]
inputs = dict()
inputs['voxels'] = raw_inputs['voxels']
for k in xrange(step_size):
inputs['images_%d' % (k + 1)] = []
inputs['matrix_%d' % (k + 1)] = []
for n in xrange(quantity):
selected_views = np.random.choice(num_views, step_size, replace=False)
for k in xrange(step_size):
view_selected = selected_views[k]
inputs['images_%d' %
(k + 1)].append(raw_inputs['images'][n, view_selected, :, :, :])
tf_matrix = self.get_transform_matrix(view_selected)
inputs['matrix_%d' % (k + 1)].append(tf_matrix)
for k in xrange(step_size):
inputs['images_%d' % (k + 1)] = tf.stack(inputs['images_%d' % (k + 1)])
inputs['matrix_%d' % (k + 1)] = tf.stack(inputs['matrix_%d' % (k + 1)])
return inputs
def get_init_fn(self, scopes):
"""Initialization assignment operator function used while training."""
if not self._params.init_model:
return None
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
self._params.init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
def get_train_op_for_scope(self, loss, optimizer, scopes):
"""Train operation function for the given scope used file training."""
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
update_ops = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
return slim.learning.create_train_op(
loss,
optimizer,
update_ops=update_ops,
variables_to_train=var_list,
clip_gradient_norm=self._params.clip_gradient_norm)
def write_disk_grid(self,
global_step,
log_dir,
input_images,
gt_projs,
pred_projs,
pred_voxels=None):
"""Function called by TF to save the prediction periodically."""
summary_freq = self._params.save_every
def write_grid(input_images, gt_projs, pred_projs, pred_voxels,
global_step):
"""Native python function to call for writing images to files."""
grid = _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels)
if global_step % summary_freq == 0:
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
utils.save_image(grid, img_path)
with open(
os.path.join(log_dir, 'pred_voxels_%s' % str(global_step)),
'w') as fout:
np.save(fout, pred_voxels)
with open(
os.path.join(log_dir, 'input_images_%s' % str(global_step)),
'w') as fout:
np.save(fout, input_images)
return grid
py_func_args = [
input_images, gt_projs, pred_projs, pred_voxels, global_step
]
save_grid_op = tf.py_func(write_grid, py_func_args, [tf.uint8],
'wrtie_grid')[0]
slim.summaries.add_image_summary(
tf.expand_dims(save_grid_op, axis=0), name='grid_vis')
return save_grid_op
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels):
"""Build the visualization grid with py_func."""
quantity, img_height, img_width = input_images.shape[:3]
for row in xrange(int(quantity / 3)):
for col in xrange(3):
index = row * 3 + col
input_img_ = input_images[index, :, :, :]
gt_proj_ = gt_projs[index, :, :, :]
pred_proj_ = pred_projs[index, :, :, :]
pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0])
pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width)
if col == 0:
tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_],
1)
else:
tmp_ = np.concatenate(
[tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1)
if row == 0:
out_grid = tmp_
else:
out_grid = np.concatenate([out_grid, tmp_], 0)
out_grid = out_grid.astype(np.uint8)
return out_grid
|
StarcoderdataPython
|
82535
|
<reponame>misads/torch_image_template
import os
tags = ['fold_1', 'fold_2']
for tag in tags:
cmd = "python3 test.py --load %s" % tag
print(cmd)
os.system(cmd)
|
StarcoderdataPython
|
96295
|
from arcgis import GIS
from arcgis.features import GeoAccessor, GeoSeriesAccessor
import arcpy
from arcpy import env
from arcpy.sa import *
import numpy as np
import os
import pandas as pd
#####
arcpy.env.overwriteOutput = True
arcpy.CheckOutExtension("Spatial")
def select_feature_by_attributes_arcgis(input,Attri_NM,Attri_v,output):
where_clause = '"%s" IN' % (Attri_NM)
where_clause = where_clause + " ("
for i in range(0,len(Attri_v)):
if i == 0:
where_clause = where_clause + str(Attri_v[i])
else:
where_clause = where_clause + "," + str(Attri_v[i])
where_clause = where_clause + ")"
arcpy.Select_analysis(input, output, where_clause)
return
##################
def Remove_Unselected_Lake_Attribute_In_Finalcatinfo_Arcgis(finalcat_ply, Conn_Lake_Ids):
"""Functions will set lake id not in Conn_Lake_Ids to -1.2345 in attribute
table of Path_Finalcatinfo
----------
Notes
-------
Returns:
-------
None, the attribute table of Path_shpfile will be updated
"""
mask1 = np.logical_not(finalcat_ply['HyLakeId'].isin(Conn_Lake_Ids))
mask2 = finalcat_ply['Lake_Cat'] != 2
mask = np.logical_and(mask1,mask2)
finalcat_ply.loc[mask,'HyLakeId'] = 0
finalcat_ply.loc[mask,'LakeVol'] = 0
finalcat_ply.loc[mask,'LakeArea'] = 0
finalcat_ply.loc[mask,'LakeDepth'] = 0
finalcat_ply.loc[mask,'Laketype'] =0
finalcat_ply.loc[mask,'Lake_Cat'] = 0
return finalcat_ply
def save_modified_attributes_to_outputs(mapoldnew_info,tempfolder,OutputFolder,cat_name,riv_name,Path_final_riv,dis_col_name='SubId'):
mapoldnew_info.spatial.to_featureclass(location=os.path.join(tempfolder,'updateattri.shp'),overwrite=True,sanitize_columns=False)
arcpy.Dissolve_management(os.path.join(tempfolder,'updateattri.shp'), os.path.join(OutputFolder,cat_name), [dis_col_name])
arcpy.JoinField_management(os.path.join(OutputFolder,cat_name), dis_col_name, os.path.join(tempfolder,'updateattri.shp'), dis_col_name)
arcpy.DeleteField_management(os.path.join(OutputFolder,cat_name),
["SubId_1", "Id","nsubid2", "nsubid","ndownsubid","Old_SubId","Old_DowSub","Join_Count","TARGET_FID","Id","SubID_Oldr","HRU_ID_N_1","HRU_ID_N_2","facters"]
)
if riv_name != '#':
arcpy.CalculateGeometryAttributes_management(os.path.join(OutputFolder, cat_name), [["centroid_x", "CENTROID_X"], ["centroid_y", "CENTROID_Y"]])
cat_colnms = mapoldnew_info.columns
drop_cat_colnms = cat_colnms[cat_colnms.isin(["SHAPE","SubId_1", "Id","nsubid2", "nsubid","ndownsubid","Old_DowSub","Join_Count","TARGET_FID","Id","SubID_Oldr","HRU_ID_N_1","HRU_ID_N_2","facters","Old_DowSubId"])]
cat_pd = mapoldnew_info.drop(columns=drop_cat_colnms)
riv_pd = pd.DataFrame.spatial.from_featureclass(Path_final_riv)
riv_pd['Old_SubId'] = riv_pd['SubId']
# remove all columns
riv_pd = riv_pd[['SHAPE','Old_SubId']]
riv_pd = pd.merge(riv_pd, cat_pd, on='Old_SubId', how='left')
riv_pd = riv_pd.drop(columns=['Old_SubId'])
riv_pd.spatial.to_featureclass(location=os.path.join(tempfolder,'riv_attri.shp'),overwrite=True,sanitize_columns=False)
arcpy.Dissolve_management(os.path.join(tempfolder,'riv_attri.shp'), os.path.join(OutputFolder,riv_name), ["SubId"])
arcpy.JoinField_management(os.path.join(OutputFolder,riv_name), "SubId", os.path.join(tempfolder,'riv_attri.shp'), "SubId")
arcpy.DeleteField_management(os.path.join(OutputFolder,riv_name),
["SubId_1", "Id","nsubid2", "nsubid","ndownsubid","Old_SubId","Old_DowSub","Join_Count","TARGET_FID","Id","SubID_Oldr","HRU_ID_N_1","HRU_ID_N_2","facters"]
)
def clean_attribute_name_arcgis(table,names):
remove_column_names = table.columns[np.logical_not(np.isin(table.columns,names))]
table = table.drop(columns=remove_column_names)
return table
|
StarcoderdataPython
|
91339
|
<reponame>Slewentogzz/hk_ros_2021<filename>hk_ros_2021/scripts/scan.py
#! /usr/bin/env python
import rospy
from sensor_msgs.msg import LaserScan
from darknet_ros_msgs.msg import BoundingBoxes
import tf2_ros
import tf2_msgs.msg
import geometry_msgs.msg
#def callback(msg):
#class animal_pos:
# def __init__(self):
# self.angle = 0
# self.dist = 0
class Callbacks:
def __init__(self):
self.lidar_list = []
self.object = geometry_msgs.msg.TransformStamped()
self.lidar = rospy.Subscriber('/scan', LaserScan, self.lidar_callback)
self.darknet = rospy.Subscriber('/darknet_ros/bounding_boxes', BoundingBoxes, self.darknet_callback)
self.pub_tf = rospy.Publisher("/tf",tf2_msgs.msg.TFMessage,queue_size=1)
def darknet_callback(self, darknet):
for i in darknet.bounding_boxes:
if (i.Class == 'cat' or i.Class == 'dog' or i.Class == 'cow') and i.probability > 0.3:
#rospy.loginfo("len: "+str(len(self.lidar_list)) + " index:"+str(int(round((i.xmin+i.xmax)*62.5/(2*638)-31.25))))
print str(i.Class) + " prob: "+str(i.probability)#xMax: " + str(i.xmax) +"\nxmin: " + str(i.xmin)+"\npos: "+str((i.xmin+i.xmax)*62.5/(2*638)-31.25)+"\ndist: "+str(self.lidar_list[int(round((i.xmin+i.xmax)*62.5/(2*638)-31.25))])
#self.object = geometry_msgs.msg.TransformStamped()
rospy.sleep(0.1)
self.object.header.frame_id = "camera"
self.object.header.stamp = rospy.Time.now()
self.object.child_frame_id = "animal"
self.object.transform.translation.x = 0.0
self.object.transform.translation.y = 0.0
self.object.transform.translation.z = 0.0
self.object.transform.rotation.x = 0.0
self.object.transform.rotation.y = 0.0
angle = int(-round((i.xmin+i.xmax)*62.5/(2*638)-31.25))
self.object.transform.rotation.z = angle
smallest = self.lidar_list[angle]
for i in range(-10,10):
if self.lidar_list[angle+i] < smallest and self.lidar_list[angle+i] > 0.0:
smallest = self.lidar_list[angle+i]
self.object.transform.rotation.z = angle+i
self.object.transform.rotation.w = smallest
self.pub_tf.publish(tf2_msgs.msg.TFMessage([self.object]))
def lidar_callback(self, lidar):
self.lidar_list = lidar.ranges[:]
def talker(self):
#pub = rospy.Publisher('animal_pos',tfMessage,queue_size = 10)
#rospy.init_node('talker',anonymous=True)
#rate = Rate(10) #behovs?
rospy.loginfo("Loginfo????")
self.pub_tf.publish(tf2_msgs.msg.TFMessage([self.object]))
if __name__ == '__main__':
rospy.init_node('scan_values')
values = Callbacks()
rospy.spin()
#rospy.init_node('scan_values')
#sub = rospy.Subscriber('/scan', LaserScan, callback)
#rospy.spin()
|
StarcoderdataPython
|
3382903
|
from .utils import getNormBackground, getNormBackground, getNormBackground
|
StarcoderdataPython
|
1675208
|
from request_validation import BaseValidator, RequestParamError, add_into_dtype_map
@add_into_dtype_map
class CommaStringListValidator(BaseValidator):
dtype = "commalist"
def _validate(self, data):
if self.dtype is not str:
raise RequestParamError(f"{self._log_prefix} need to be string")
data = data.split(",")
return data
def main():
return
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
4810216
|
<reponame>rexzhang/ddns-clienter
from dataclasses import dataclass, asdict as dataclass_as_dict
from datetime import timedelta
from logging import getLogger
from django.conf import settings
from django.forms.models import model_to_dict
from django.utils import timezone
from ddns_clienter_core.constants import AddressInfo, EventLevel
from ddns_clienter_core import models
from ddns_clienter_core.runtimes.config import AddressConfig, TaskConfig
from ddns_clienter_core.runtimes.address_providers import (
get_ip_address_from_provider,
AddressProviderException,
)
from ddns_clienter_core.runtimes.dns_providers import (
update_address_to_dns_provider,
DDNSProviderException,
)
from ddns_clienter_core.runtimes.event import send_event
logger = getLogger(__name__)
@dataclass
class AddressDataItem:
config: AddressConfig
config_changed: bool
ipv4_changed: bool
ipv6_changed: bool
newest_address: AddressInfo
@property
def there_ars_changes(self) -> bool:
"""config changed or address changed"""
if self.config_changed or self.ipv4_changed or self.ipv6_changed:
return True
return False
class CannotMatchAddressException(Exception):
pass
def compare_and_update_from_dataclass_to_db(dc_obj, db_obj) -> bool:
changed = False
data = model_to_dict(db_obj)
for k, v in dataclass_as_dict(dc_obj).items():
if data.get(k) != v:
changed = True
db_obj.__setattr__(k, v)
return changed
class AddressHub:
# 导入 Address Config+DB 信息
# 计算获取 需要获取的 addresses 清单,交给 address_provider 去并行处理
# 等待并导入所有并行处理结果
# 获得已经改变的 changed_address_names
_data: dict[str, AddressDataItem]
_changed_names: set[str]
@staticmethod
def _compare_and_update_from_config_to_db(
address_c: AddressConfig,
) -> (bool, AddressInfo):
address_db = models.Address.objects.filter(name=address_c.name).first()
if address_db is None:
address_db = models.Address(**dataclass_as_dict(address_c))
address_db.save()
logger.info(
"Cannot found address:{} from db, create it.".format(address_c.name)
)
return True, AddressInfo()
changed = compare_and_update_from_dataclass_to_db(address_c, address_db)
if changed:
address_db.save()
logger.info(
"The address[{}]'s config has changed, update to db.".format(
address_c.name
)
)
return (
True,
AddressInfo(
address_db.ipv4_last_address,
address_db.ipv6_last_address,
),
)
logger.debug("The address[{}] no change in config".format(address_c.name))
return (
False,
AddressInfo(
address_db.ipv4_last_address,
address_db.ipv6_last_address,
),
)
def __init__(self, addresses_c: dict[str, AddressConfig]):
self._data = dict()
for address_c in addresses_c.values():
(config_changed, address_info) = self._compare_and_update_from_config_to_db(
address_c
)
self._data.update(
{
address_c.name: AddressDataItem(
address_c, config_changed, False, False, address_info
)
}
)
@property
def to_be_update_addresses(self) -> list[AddressConfig]:
data = list()
for item in self._data.values():
data.append(item.config)
logger.debug("To be update addresses:{}".format(data))
return data
def update_ip_address(
self,
name: str,
newest_address: AddressInfo,
):
address_data = self._data.get(name)
now = timezone.now()
address_db = models.Address.objects.filter(name=name).first()
if (
newest_address.ipv4_address is not None
and newest_address.ipv4_address != address_data.newest_address.ipv4_address
):
address_data.ipv4_changed = True
address_data.newest_address.ipv4_address = newest_address.ipv4_address
address_db.ipv4_previous_address = address_db.ipv4_last_address
address_db.ipv4_last_address = newest_address.ipv4_address
address_db.ipv4_last_change_time = now
message = "{}'s ipv4 changed:{}->{}".format(
name,
address_db.ipv4_previous_address,
address_db.ipv4_last_address,
)
logger.info(message)
send_event(message)
if newest_address.ipv6_address is not None and (
newest_address.ipv6_address != address_data.newest_address.ipv6_address
):
message = "{}'s ipv6 changed:{}->{}/{}".format(
name,
address_db.ipv6_last_address, # last
newest_address.ipv6_address, # new
address_data.config.ipv6_prefix_length,
)
logger.info(message)
send_event(message)
# update to self._data
address_data.ipv6_changed = True
address_data.newest_address.ipv6_address = newest_address.ipv6_address
address_data.newest_address.ipv6_prefix_length = (
address_data.config.ipv6_prefix_length
)
# update to db
address_db.ipv6_previous_address = address_db.ipv6_last_address
address_db.ipv6_last_address = newest_address.ipv6_address
address_db.ipv6_prefix_length = address_data.config.ipv6_prefix_length
address_db.ipv6_last_change_time = now
address_db.save()
def get_address_info_if_changed(
self, name: str, force_update: bool # TODO
) -> AddressInfo | None:
address_data = self._data.get(name)
if address_data is None:
raise CannotMatchAddressException()
if force_update or address_data.there_ars_changes:
return address_data.newest_address
return None
@dataclass
class TaskDataItem:
config: TaskConfig
_config_changed: bool
_last_update_success: bool
_force_update_intervals_timeout: bool
@property
def force_update(self) -> bool:
return (
self._config_changed
or not self._last_update_success
or self._force_update_intervals_timeout
)
class TaskHub:
# 根据 changed_address_names 获取更新信息清单,交给 dns_provider 去并行处理
# 等待并导入所有并行处理结果
# 将更新任务结果存储到 DB
_data: dict[str, TaskDataItem]
@staticmethod
def _compare_and_update_from_config_to_db(task_c: TaskConfig) -> (bool, bool):
task_db = models.Task.objects.filter(name=task_c.name).first()
if task_db is None:
task_db = models.Task(**dataclass_as_dict(task_c))
task_db.save()
logger.info(
"Cannot found task:{} from db, create it in db.".format(task_c.name)
)
return True, False
changed = compare_and_update_from_dataclass_to_db(task_c, task_db)
if changed:
task_db.save()
logger.info(
"The task[{}]'s config has changed, update to db.".format(task_c.name)
)
return True, task_db.last_update_success
logger.debug("The task[{}] no change in config".format(task_c.name))
return False, task_db.last_update_success
def __init__(self, tasks_c: dict[str, TaskConfig]):
self._data = dict()
for tasks_c in tasks_c.values():
(
config_changed,
last_update_success,
) = self._compare_and_update_from_config_to_db(tasks_c)
self._data.update(
{
tasks_c.name: TaskDataItem(
tasks_c,
config_changed,
last_update_success,
False,
)
}
)
@property
def to_be_update_tasks(self) -> list[TaskDataItem]:
now = timezone.now()
data = list()
for item in self._data.values():
task_db = models.Task.objects.filter(name=item.config.name).first()
if task_db.last_update_success_time is None or (
task_db.last_update_success_time
+ timedelta(minutes=settings.CONFIG.common.force_update_intervals)
< now
):
# force_update_intervals timeout
item._force_update_intervals_timeout = True
data.append(item)
continue
# other task
data.append(item)
logger.debug("To be update tasks:{}".format(data))
return data
@staticmethod
def set_task_skipped(name: str):
task_db = models.Task.objects.filter(name=name).first()
task_db.save()
@staticmethod
def save_update_status_to_db(
name: str, address_info: AddressInfo, update_success: bool
):
db_task = models.Task.objects.filter(name=name).first()
now = timezone.now()
if update_success:
new_addresses = str()
if db_task.ipv4 and address_info.ipv4_address is not None:
new_addresses += address_info.ipv4_address_str
if db_task.ipv6 and address_info.ipv6_address is not None:
if len(new_addresses) != 0:
new_addresses += ","
new_addresses += address_info.ipv6_address_str_with_prefix
db_task.last_update_time = now
db_task.last_update_success = True
db_task.previous_ip_addresses = db_task.last_ip_addresses
db_task.last_ip_addresses = new_addresses
db_task.last_update_success_time = now
else:
db_task.last_update_time = now
db_task.last_update_success = False
db_task.save()
def check_and_update(config_file_name: str | None = None, real_update: bool = True):
if config_file_name is not None:
raise "TODO"
# import address data from config and db
ah = AddressHub(settings.CONFIG.addresses)
# get ip address, update ip address into hub
for address_c in ah.to_be_update_addresses:
try:
address_info = get_ip_address_from_provider(address_c)
except AddressProviderException as e:
message = str(e)
logger.error(message)
send_event(message, level=EventLevel.ERROR)
continue
ah.update_ip_address(address_c.name, address_info)
logger.debug("address info:{}, {}".format(address_c.name, address_info))
# import address data from config and db
th = TaskHub(settings.CONFIG.tasks)
# update to DNS provider
for task in th.to_be_update_tasks:
try:
address_info = ah.get_address_info_if_changed(
task.config.address_name, task.force_update
)
except CannotMatchAddressException:
message = "Cannot found address:{}".format(task.config.address_name)
logger.warning(message)
send_event(message, level=EventLevel.WARNING)
continue
if address_info is None:
logger.debug(
"Skip task:{}, because address have not any change".format(
task.config.name
)
)
th.set_task_skipped(task.config.name)
continue
if address_info.ipv4_address is None and address_info.ipv6_address is None:
message = "{}: ipv4_address and ipv6_address both None".format(
task.config.address_name
)
logger.warning(message)
send_event(message, level=EventLevel.WARNING)
th.set_task_skipped(task.config.name)
continue
# check ip address
if not task.config.ipv4:
address_info.ipv4_address = None
if not task.config.ipv6:
address_info.ipv6_address = None
address_info.ipv6_prefix_length = None
if address_info.ipv4_address is None and address_info.ipv6_address is None:
message = "Skip task:{}, because address do not need update".format(
task.config.name
)
logger.warning(message)
send_event(message, level=EventLevel.WARNING)
th.set_task_skipped(task.config.name)
continue
try:
update_success, update_message = update_address_to_dns_provider(
task.config, address_info, real_update
)
except DDNSProviderException as e:
message = str(e)
logger.error(message)
send_event(message, level=EventLevel.ERROR)
continue
if update_success:
message = "update task:{} finished".format(task.config.name)
logger.info(message)
send_event(message)
else:
message = "update task:{} failed".format(task.config.name)
logger.warning(message)
send_event(message, level=EventLevel.WARNING)
th.save_update_status_to_db(task.config.name, address_info, update_success)
|
StarcoderdataPython
|
3323250
|
<filename>scripts/3_training/train.py
import os
import sys
curr_path = os.getcwd()
package_path = (os.path.abspath(os.path.join(curr_path, os.pardir))).replace('\\', '/')+'/'
sys.path.insert(1, package_path)
from config.config import *
from processing_scripts.model_preprocessing import *
df_full= pd.read_csv(Train_path_final)
df_full.drop(['Unnamed: 0'] , axis=1 , inplace=True)
df_train= get_model_data(df_full , train_years)
df_valid = get_model_data(df_full , valid_years)
X_full , y_full = df_full.drop(["status","launch_year","deadline"], axis=1) , df_full['status']
X_train , y_train = df_train.drop(["status","launch_year","deadline"] , axis=1) , df_train['status']
X_valid , y_valid = df_valid.drop(["status","launch_year","deadline"] , axis=1) , df_valid['status']
print("Training.....")
scores = XG_score(X_train ,y_train ,X_valid , y_valid)
print("Accuracy of the model on validation set-2019")
print(scores)
print("Final Training Model.....")
model = XG_train(X_full , y_full)
try:
os.remove(model_path)
print("removed the model file")
except:
pass
print("saving the model")
joblib.dump(model, model_path)
|
StarcoderdataPython
|
1761933
|
<filename>test_logtailer.py
import unittest
import logtailer
class TestConstructor(unittest.TestCase):
def setUp(self):
self.matches = []
self.tail = logtailer.Tail("test_file.txt", [])
def dummy_callback_function(self, index, matched_pattern):
self.matches.append({index, matched_pattern})
def test_initiate(self):
pattern = ['.*', 'Error']
log_tail = logtailer.Tail("sample_file.txt", pattern)
self.assertEqual("sample_file.txt", log_tail.file_name)
self.assertListEqual(pattern, log_tail.pattern_list)
def test_initialize(self):
pattern = ['.*', 'Error']
log_tail = logtailer.Tail()
self.assertEqual("", log_tail.file_name)
self.assertListEqual(['.*'], log_tail.pattern_list)
# Initialize class
log_tail.initialize("sample_file.txt", pattern)
self.assertEqual("sample_file.txt", log_tail.file_name)
self.assertListEqual(pattern, log_tail.pattern_list)
def test_start_empty_file_name(self):
log_tail = logtailer.Tail()
self.assertFalse(log_tail.start(self.dummy_callback_function))
def test_add_pattern(self):
log_tail = logtailer.Tail("test_file.txt", [])
log_tail.add_pattern('.*')
self.assertListEqual(['.*'], log_tail.pattern_list)
log_tail.add_pattern('Error')
self.assertListEqual(['.*', 'Error'], log_tail.pattern_list)
def test_remove_pattern(self):
pattern = ['.*', 'Error']
log_tail = logtailer.Tail("test_file.txt", pattern)
self.assertTrue(log_tail.remove_pattern(1))
self.assertListEqual(['.*'], log_tail.pattern_list)
# Remove out of range element
self.assertFalse(log_tail.remove_pattern(10))
self.assertFalse(log_tail.remove_pattern(-10))
if __name__ == '__main__':
unittest.main()
|
StarcoderdataPython
|
179016
|
<gh_stars>0
#/usr/bin/env python3
'''
这是书中1.5节的练习3
创建一些词汇列表,比如,冠词("the", "a"等)、主题("cat", "dog", "man", "woman")、动词(“sang”, "ran", "jumped")与状语("loudly", "quietly", "well")等,
之后循环5次,每次迭代中,使用random.choice()函数选取冠词、主题、动词、状语等内容。
使用random.randint()函数在两种语句结构之间进行选择:
冠词、主题、动词、状语;
只包括冠词、主题与动词,之后打印语句。
输入:awfulpoetry1_ans.py
输出例子:
another boy laughed badly
the woman jumped
a boy hoped
a horse jumped
another man laughed rudely
tip: 可以使用random包
'''
import random
art = ["another", "a", "no", "any"]
theme = ["dog", "man", "book", "game", "Lanister", "cat", "taylor"]
verb = ["paid", "got", "played", "laughed", "hoped", "ran", "fucked", "knew"]
adv = ["sadly", "well", "rudely", "only", "quietly", "badly", "widely", "quickly", "slowly"]
struct1 = [art, theme, verb, adv]
struct2 = [art, theme, verb]
Struct = [struct1, struct2]
time = 0
while time<5:
line = ""
struct = Struct[random.randint(0,1)]
for word in struct:
line += random.choice(word)
line += " "
print(line)
time += 1
|
StarcoderdataPython
|
4832260
|
<reponame>Hadrien-Montanelli/chebpy<gh_stars>1-10
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 2 15:37:10 2020
Copyright 2020 by <NAME>.
"""
# %% Imports.
# Standard library import:
from math import pi
import numpy as np
# Chebpy imports:
from chebpy.trig import coeffs2vals, trigpts, vals2coeffs
# %% Transforms (1D) on [-1,1].
f = lambda x: np.cos(10000*pi*x) + np.cos(5*pi*x)
n = 100
x = trigpts(n)
error = coeffs2vals(vals2coeffs(f(x))) - f(x)
print(f'Error (1D): {np.max(np.abs(error)):.2e}')
# %% Transforms (1D) on [0,2*pi].
f = lambda x: np.exp(np.cos(10*pi*x)**2)
n = 120
x = trigpts(n, [0, 2*pi])
error = coeffs2vals(vals2coeffs(f(x))) - f(x)
print(f'Error (1D): {np.max(np.abs(error)):.2e}')
# %% Transforms (2D) on [-1,1]x[-1,1].
f = lambda x, y: np.exp(np.cos(10*pi*x)**2)*np.sin(pi*y)**2
n = 100
x = trigpts(n)
y = trigpts(n)
X, Y = np.meshgrid(x, y)
values = f(X, Y)
coeffs = vals2coeffs(vals2coeffs(values).T).T
values2 = coeffs2vals(coeffs2vals(coeffs).T).T
error = values2 - values
print(f'Error (2D): {np.max(np.abs(error)):.2e}')
# %% Transforms (2D) on [-pi,pi]x[0,4*pi].
f = lambda x, y: np.exp(np.cos(10*pi*x)**2)*np.sin(pi*y)**2
n = 100
x = trigpts(n, [-pi, pi])
y = trigpts(n, [0, 4*pi])
X, Y = np.meshgrid(x, y)
values = f(X, Y)
coeffs = vals2coeffs(vals2coeffs(values).T).T
values2 = coeffs2vals(coeffs2vals(coeffs).T).T
error = values2 - values
print(f'Error (2D): {np.max(np.abs(error)):.2e}')
|
StarcoderdataPython
|
3388943
|
<filename>python/add_pixscale.py
"""
Does exactly what the name says, adds a pixel scale (given in arcsec/pix) to
a fits file. This code does _not_ change the crpix or crval -- only the
pixel scale.
"""
import sys
import glob
from astropy.io import fits as pf
""" Check the command line syntax """
if len(sys.argv) < 3:
print('')
print('Usage: python add_pixscale.py [pixscale] '
'[file / file list / wildcard]')
print('')
print('Examples:')
print(' python add_pixscale 0.211 myobj.fits')
print(' python add_pixscale 0.211 my*fits')
print('')
print('NOTE: the pixel scale should be in arcsec/pix')
print('')
exit()
""" Get the information from the command line """
try:
pixscale = float(sys.argv[1]) / 3600.
except:
print('')
print('ERROR: Expected the first passed parameter to be a number')
print('')
infiles = sys.argv[2:]
""" Add the pixel scale to the input files """
print('')
for i in infiles:
hdu = pf.open(i, mode='update')
hdr = hdu[0].header
""" Delete any old CD matrix that may exist """
for j in ['cd1_1', 'cd1_2', 'cd2_1', 'cd2_2']:
if j in hdr.keys():
del hdr[j]
""" Add in the new pixel information """
hdr['cdelt1'] = -1.*pixscale
hdr['cdelt2'] = pixscale
hdu.flush()
print('Added pixel scale information to %s' % i)
print('')
|
StarcoderdataPython
|
90149
|
#!/usr/bin/env python
# -*- coding: utf-8 -*- #
from __future__ import unicode_literals
# This file is only used if you use `make publish` or
# explicitly specify it as your config file.
import os
import sys
sys.path.append(os.curdir)
from pelicanconf import *
SITEURL = 'https://ankursinha.in'
FEED_DOMAIN = SITEURL
FEED_ALL_ATOM = 'feeds/all.atom.xml'
FEED_ALL_RSS = 'feeds/all.rss.xml'
CATEGORY_FEED_ATOM = 'feeds/categories/{slug}.atom.xml'
CATEGORY_FEED_RSS = 'feeds/categories/{slug}.rss.xml'
TAG_FEED_ATOM = 'feeds/tags/{slug}.atom.xml'
TAG_FEED_RSS = 'feeds/tags/{slug}.rss.xml'
AUTHOR_FEED_ATOM = 'feeds/authors/{slug}.atom.xml'
AUTHOR_FEED_RSS = 'feeds/authors/{slug}.rss.xml'
FEED_MAX_ITEMS = 10
DELETE_OUTPUT_DIRECTORY = False
DISQUS_SITENAME = u'ankursinha'
GOOGLE_ANALYTICS = "UA-60261100-1"
|
StarcoderdataPython
|
78557
|
<gh_stars>0
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from neutron._i18n import _
class _FeatureFlag(object):
def is_compatible(self, value):
if value == self.requires:
return True
if value and self.supports:
return True
return False
def __init__(self, supports, requires):
self.supports = supports
self.requires = requires
if requires and not supports:
raise RuntimeError(_("A driver can't require a feature and not "
"support it."))
UNSUPPORTED = _FeatureFlag(supports=False, requires=False)
OPTIONAL = _FeatureFlag(supports=True, requires=False)
MANDATORY = _FeatureFlag(supports=True, requires=True)
class L3ServiceProvider(object):
"""Base class for L3 service providers.
On __init__ this will be given a handle to the l3 plugin. It is then the
responsibility of the driver to subscribe to the events it is interested
in (e.g. router_create, router_update, router_delete, etc).
The 'ha' and 'distributed' attributes below are used to determine if a
router request with the 'ha' or 'distributed' attribute can be supported
by this particular driver. These attributes must be present.
"""
ha_support = UNSUPPORTED
distributed_support = UNSUPPORTED
def __init__(self, l3plugin):
self.l3plugin = l3plugin
|
StarcoderdataPython
|
1755346
|
<filename>moler/cmd/unix/gunzip.py
# -*- coding: utf-8 -*-
"""
Gunzip command module.
"""
__author__ = '<NAME>'
__copyright__ = 'Copyright (C) 2018, Nokia'
__email__ = '<EMAIL>'
from moler.cmd.unix.genericunix import GenericUnixCommand
from moler.exceptions import CommandFailure
from moler.exceptions import ParsingDone
import re
class Gunzip(GenericUnixCommand):
def __init__(self, connection, archive_name, output_file_name=None, options=None, overwrite=False,
prompt=None, newline_chars=None, runner=None):
super(Gunzip, self).__init__(connection=connection, prompt=prompt, newline_chars=newline_chars, runner=runner)
self.archive_name = archive_name
self.output_file_name = output_file_name
self.options = options
self.overwrite = overwrite
self.keys = list()
self.current_ret['RESULT'] = list()
# private variables
self._answered_file = None
self._asks_to_overwrite_send = False
def build_command_string(self):
cmd = 'gunzip'
if self.options:
cmd = '{} {}'.format(cmd, self.options)
if self.archive_name:
for file in self.archive_name:
cmd = '{} {}'.format(cmd, file)
if self.output_file_name:
cmd = '{} > {}'.format(cmd, self.output_file_name)
return cmd
def on_new_line(self, line, is_full_line):
try:
self._parse_info_output(line)
self._asks_to_overwrite(line)
self._create_dictionary_at_l_option(line)
self._command_failure(line)
except ParsingDone:
pass
return super(Gunzip, self).on_new_line(line, is_full_line)
_re_info_output = re.compile(r" -- replaced with")
def _parse_info_output(self, line):
if self._regex_helper.search_compiled(Gunzip._re_info_output, line):
self.current_ret['RESULT'].append(line)
raise ParsingDone
_re_overwrite = re.compile(r"gzip:\s+(?P<FILE_NAME>.*)\s+already exists", re.IGNORECASE)
def _asks_to_overwrite(self, line):
if self._regex_helper.search_compiled(Gunzip._re_overwrite, line):
current_file = self._regex_helper.group("FILE_NAME")
if current_file != self._answered_file:
if self.overwrite:
self.connection.sendline('y')
else:
self.connection.sendline('n')
self.set_exception(CommandFailure(self, "ERROR: {} already exists".format(current_file)))
self._answered_file = current_file
raise ParsingDone
_re_l_option = re.compile(r"(?P<L_OPTION> compressed\s*uncompressed\s*ratio\s*uncompressed_name.*)", re.IGNORECASE)
def _create_dictionary_at_l_option(self, line):
if self.keys and not self.current_ret['RESULT']:
self.values = line.strip().split()
if 'date' in self.keys:
self.values = self.values[:2] + ['{} {}'.format(self.values[2], self.values[3])] + self.values[4:]
self.current_ret['RESULT'].append(dict(zip(self.keys, self.values)))
raise ParsingDone
if self._regex_helper.search_compiled(Gunzip._re_l_option, line):
self.keys = line.strip().split()
raise ParsingDone
_re_error = re.compile(r"gzip:\s(?P<ERROR_MSG>.*)", re.IGNORECASE)
def _command_failure(self, line):
if self._regex_helper.search_compiled(Gunzip._re_error, line):
self.set_exception(CommandFailure(self, "ERROR: {}".format(self._regex_helper.group("ERROR_MSG"))))
raise ParsingDone
COMMAND_OUTPUT_without_options = """
xyz@debian:~$ gunzip new.gz
xyz@debian:~$"""
COMMAND_KWARGS_without_options = {
'archive_name': ['new.gz']
}
COMMAND_RESULT_without_options = {
'RESULT': []
}
COMMAND_OUTPUT_loud_options = """
xyz@debian:~$ gunzip -v new.gz
new.gz: -7.7% -- replaced with new
xyz@debian:~$"""
COMMAND_KWARGS_loud_options = {
'archive_name': ['new.gz'],
'options': '-v'
}
COMMAND_RESULT_loud_options = {
'RESULT': ['new.gz:\t -7.7% -- replaced with new']
}
COMMAND_OUTPUT_overwrite = """
xyz@debian:~$ gunzip new.gz
gzip: new already exists; do you wish to overwrite (y or n)? xyz@debian:~$"""
COMMAND_KWARGS_overwrite = {
'archive_name': ['new.gz'],
'overwrite': 'True'
}
COMMAND_RESULT_overwrite = {
'RESULT': []
}
COMMAND_OUTPUT_send_to_another_directory = """
xyz@debian:~$ gunzip afile.gz > sed/afile
xyz@debian:~$"""
COMMAND_KWARGS_send_to_another_directory = {
'archive_name': ['afile.gz'],
'output_file_name': 'sed/afile'
}
COMMAND_RESULT_send_to_another_directory = {
'RESULT': []
}
COMMAND_OUTPUT_on_l_option = """
xyz@debian:~$ gunzip -l afile.gz
compressed uncompressed ratio uncompressed_name
26 0 0.0% afile
xyz@debian:~$"""
COMMAND_KWARGS_on_l_option = {
'archive_name': ['afile.gz'],
'options': '-l'
}
COMMAND_RESULT_on_l_option = {
'RESULT': [{'compressed': '26', 'uncompressed': '0', 'ratio': '0.0%', 'uncompressed_name': 'afile'}]
}
COMMAND_OUTPUT_on_vl_option = """
xyz@debian:~$ gunzip -vl afile.gz
method crc date time compressed uncompressed ratio uncompressed_name
defla 00000000 Aug 9 12:27 26 0 0.0% afile
xyz@debian:~$"""
COMMAND_KWARGS_on_vl_option = {
'archive_name': ['afile.gz'],
'options': '-vl'
}
COMMAND_RESULT_on_vl_option = {
'RESULT': [{'method': 'defla', 'crc': '00000000', 'date': 'Aug 9', 'time': '12:27', 'compressed': '26',
'uncompressed': '0', 'ratio': '0.0%', 'uncompressed_name': 'afile'}]
}
|
StarcoderdataPython
|
1767624
|
<reponame>CD3/BaseballSimulator
# from .Simulator import *
# from .Pitchers import *
|
StarcoderdataPython
|
3340738
|
class NewRecreationPage():
def __init__(self, page):
self.page = page
def open(self):
self.page.goto("/places/new")
|
StarcoderdataPython
|
1640932
|
<filename>reddit_user.py
# -*- coding: utf-8 -*-
import csv
import datetime
import re
import json
import time
import sys
import calendar
from collections import Counter
from itertools import groupby
from urlparse import urlparse
import requests
import pytz
from subreddits import subreddits_dict, ignore_text_subs, default_subs
from text_parser import TextParser
parser = TextParser()
class UserNotFoundError(Exception):
pass
class NoDataError(Exception):
pass
class Util:
"""
Contains a collection of common utility methods.
"""
@staticmethod
def sanitize_text(text):
"""
Returns text after removing unnecessary parts.
"""
MAX_WORD_LENGTH = 1024
_text = " ".join([
l for l in text.strip().split("\n") if (
not l.strip().startswith(">")
)
])
substitutions = [
(r"\[(.*?)\]\((.*?)\)", r""), # Remove links from Markdown
(r"[\"](.*?)[\"]", r""), # Remove text within quotes
(r" \'(.*?)\ '", r""), # Remove text within quotes
(r"\.+", r". "), # Remove ellipses
(r"\(.*?\)", r""), # Remove text within round brackets
(r"&", r"&"), # Decode HTML entities
(r"http.?:\S+\b", r" ") # Remove URLs
]
for pattern, replacement in substitutions:
_text = re.sub(pattern, replacement, _text, flags=re.I)
# Remove very long words
_text = " ".join(
[word for word in _text.split(" ") if len(word) <= MAX_WORD_LENGTH]
)
return _text
@staticmethod
def coalesce(l):
"""
Given a list, returns the last element that is not equal to "generic".
"""
l = [x for x in l if x.lower() != "generic"]
return next(iter(l[::-1]), "")
@staticmethod
def humanize_days(days):
"""
Return text with years, months and days given number of days.
"""
y = days/365 if days > 365 else 0
m = (days - y*365)/31 if days > 30 else 0
d = (days - m*31 - y*365)
yy = str(y) + " year" if y else ""
if y > 1:
yy += "s"
mm = str(m) + " month" if m else ""
if m > 1:
mm += "s"
dd = str(d) + " day"
if d>1 or d==0:
dd += "s"
return (yy + " " + mm + " " + dd).strip()
@staticmethod
def scale(val, src, dst):
"""
Scale the given value from the scale of src to the scale of dst.
"""
return ((val - src[0])/(src[1] - src[0])) * (dst[1]-dst[0]) + dst[0]
# Base class for comments and submissions
class Post(object):
"""
A class for "posts" - a post can either be a submission or a comment.
"""
def __init__(
self, id, subreddit, text, created_utc, score, permalink, gilded
):
# Post id
self.id = id
# Subreddit in which this comment or submission was posted
self.subreddit = subreddit
# For comments, the comment body and for submissions, the self-text
self.text = text
# UTC timestamp when post was created
self.created_utc = created_utc
# Post score
self.score = score
# Permalink to post
self.permalink = permalink
# Gilded
self.gilded = gilded
class Comment(Post):
"""
A class for comments derived from Post.
"""
def __init__(
self, id, subreddit, text, created_utc, score,
permalink, submission_id, edited, top_level, gilded
):
super(Comment, self).__init__(
id, subreddit, text, created_utc, score, permalink, gilded
)
# Link ID where comment was posted
self.submission_id = submission_id
# Edited flag
self.edited = edited
# Top-level flag
self.top_level = top_level
class Submission(Post):
"""
A class for submissions derived from Post.
"""
def __init__(
self, id, subreddit, text, created_utc, score,
permalink, url, title, is_self, gilded, domain
):
super(Submission, self).__init__(
id, subreddit, text, created_utc, score, permalink, gilded
)
# Submission link URL
self.url = url
# Submission title
self.title = title
# Self post?
self.is_self = is_self
# Domain
self.domain = domain
class RedditUser:
"""
Models a redditor object. Contains methods for processing
comments and submissions.
"""
# If user has posted in a sub 3 times or more, they are
# probably interested in the topic.
MIN_THRESHOLD = 3
MIN_THRESHOLD_FOR_DEFAULT = 10
HEADERS = {
'User-Agent': 'Sherlock v0.1 by /u/orionmelt'
}
IMAGE_DOMAINS = ["imgur.com", "flickr.com"]
VIDEO_DOMAINS = ["youtube.com", "youtu.be", "vimeo.com", "liveleak.com"]
IMAGE_EXTENSIONS = ["jpg", "png", "gif", "bmp"]
def __init__(self, username, json_data=None):
# Populate username and about data
self.username = username
self.comments = []
self.submissions = []
if not json_data:
# Retrieve about
self.about = self.get_about()
if not self.about:
raise UserNotFoundError
# Retrieve comments and submissions
self.comments = self.get_comments()
self.submissions = self.get_submissions()
else:
data = json.loads(json_data)
self.about = {
"created_utc" : datetime.datetime.fromtimestamp(
data["about"]["created_utc"], tz=pytz.utc
),
"link_karma" : data["about"]["link_karma"],
"comment_karma" : data["about"]["comment_karma"],
"name" : data["about"]["name"],
"reddit_id" : data["about"]["id"],
"is_mod" : data["about"]["is_mod"]
}
for c in data["comments"]:
self.comments.append(
Comment(
id=c["id"],
subreddit=c["subreddit"],
text=c["text"],
created_utc=c["created_utc"],
score=c["score"],
permalink=c["permalink"],
submission_id=c["submission_id"],
edited=c["edited"],
top_level=c["top_level"],
gilded=c["gilded"]
)
)
for s in data["submissions"]:
self.submissions.append(
Submission(
id=s["id"],
subreddit=s["subreddit"],
text=s["text"],
created_utc=s["created_utc"],
score=s["score"],
permalink=s["permalink"],
url=s["url"],
title=s["title"],
is_self=s["is_self"],
gilded=s["gilded"],
domain=s["domain"]
)
)
self.username = self.about["name"]
self.signup_date = self.about["created_utc"]
self.link_karma = self.about["link_karma"]
self.comment_karma = self.about["comment_karma"]
self.reddit_id = self.about["reddit_id"]
self.is_mod = self.about["is_mod"]
# Initialize other properties
self.today = datetime.datetime.now(tz=pytz.utc).date()
start = self.signup_date.date()
self.age_in_days = (self.today - start).days
self.first_post_date = None
self.earliest_comment = None
self.latest_comment = None
self.best_comment = None
self.worst_comment = None
self.earliest_submission = None
self.latest_submission = None
self.best_submission = None
self.worst_submission = None
self.metrics = {
"date" : [],
"weekday" : [],
"hour" : [],
"subreddit" : [],
"heatmap" : [],
"recent_karma" : [],
"recent_posts" : []
}
self.submissions_by_type = {
"name" : "All",
"children" : [
{
"name" : "Self",
"children" : []
},
{
"name" : "Image",
"children" : []
},
{
"name" : "Video",
"children" : []
},
{
"name" : "Other",
"children" : []
}
]
}
self.metrics["date"] = [
{
"date" : (year, month),
"comments" : 0,
"submissions": 0,
"comment_karma": 0,
"submission_karma": 0
} for (year, month) in sorted(
list(
set([
(
(self.today - datetime.timedelta(days=x)).year,
(self.today - datetime.timedelta(days=x)).month
) for x in range(0, (self.today - start).days)
])
)
)
]
self.metrics["heatmap"] = [0] * 24 * 61
self.metrics["recent_karma"] = [0] * 61
self.metrics["recent_posts"] = [0] * 61
self.metrics["hour"] = [
{
"hour": hour,
"comments": 0,
"submissions": 0,
"comment_karma": 0,
"submission_karma": 0
} for hour in range(0, 24)
]
self.metrics["weekday"] = [
{
"weekday": weekday,
"comments": 0,
"submissions": 0,
"comment_karma": 0,
"submission_karma": 0
} for weekday in range(0, 7)
]
self.genders = []
self.orientations = []
self.relationship_partners = []
# Data that we are reasonably sure that *are* names of places.
self.places_lived = []
# Data that looks like it could be a place, but we're not sure.
self.places_lived_extra = []
# Data that we are reasonably sure that *are* names of places.
self.places_grew_up = []
# Data that looks like it could be a place, but we're not sure.
self.places_grew_up_extra = []
self.family_members = []
self.pets = []
self.attributes = []
self.attributes_extra = []
self.possessions = []
self.possessions_extra = []
self.actions = []
self.actions_extra = []
self.favorites = []
self.sentiments = []
self.derived_attributes = {
"family_members" : [],
"gadget" : [],
"gender" : [],
"locations" : [],
"orientation" : [],
"physical_characteristics" : [],
"political_view" : [],
"possessions" : [],
"religion and spirituality" : []
}
self.corpus = ""
self.commented_dates = []
self.submitted_dates = []
self.lurk_period = None
self.comments_gilded = 0
self.submissions_gilded = 0
self.process()
def __str__(self):
return str(self.results())
def get_about(self):
"""
Returns basic data about redditor.
"""
url = r"http://www.reddit.com/user/%s/about.json" % self.username
response = requests.get(url, headers=self.HEADERS)
response_json = response.json()
if "error" in response_json and response_json["error"] == 404:
return None
about = {
"created_utc" : datetime.datetime.fromtimestamp(
response_json["data"]["created_utc"], tz=pytz.utc
),
"link_karma" : response_json["data"]["link_karma"],
"comment_karma" : response_json["data"]["comment_karma"],
"name" : response_json["data"]["name"],
"reddit_id" : response_json["data"]["id"],
"is_mod" : response_json["data"]["is_mod"]
}
return about
def get_comments(self, limit=None):
"""
Returns a list of redditor's comments.
"""
comments = []
more_comments = True
after = None
base_url = r"http://www.reddit.com/user/%s/comments/.json?limit=100" \
% self.username
url = base_url
while more_comments:
response = requests.get(url, headers=self.HEADERS)
response_json = response.json()
# TODO - Error handling for user not found (404) and
# rate limiting (429) errors
for child in response_json["data"]["children"]:
id = child["data"]["id"].encode("ascii", "ignore")
subreddit = child["data"]["subreddit"].\
encode("ascii", "ignore")
text = child["data"]["body"].encode("ascii", "ignore")
created_utc = child["data"]["created_utc"]
score = child["data"]["score"]
submission_id = child["data"]["link_id"].\
encode("ascii", "ignore").lower()[3:]
edited = child["data"]["edited"]
top_level = True \
if child["data"]["parent_id"].startswith("t3") else False
gilded = child["data"]["gilded"]
permalink = "http://www.reddit.com/r/%s/comments/%s/_/%s" \
% (subreddit, submission_id, id)
comment = Comment(
id=id,
subreddit=subreddit,
text=text,
created_utc=created_utc,
score=score,
permalink=permalink,
submission_id=submission_id,
edited=edited,
top_level=top_level,
gilded=gilded
)
comments.append(comment)
after = response_json["data"]["after"]
if after:
url = base_url + "&after=%s" % after
# reddit may rate limit if we don't wait for 2 seconds
# between successive requests. If that happens,
# uncomment and increase sleep time in the following line.
#time.sleep(0.5)
else:
more_comments = False
return comments
def get_submissions(self, limit=None):
"""
Returns a list of redditor's submissions.
"""
submissions = []
more_submissions = True
after = None
base_url = r"http://www.reddit.com/user/%s/submitted/.json?limit=100" \
% self.username
url = base_url
while more_submissions:
response = requests.get(url, headers=self.HEADERS)
response_json = response.json()
# TODO - Error handling for user not found (404) and
# rate limiting (429) errors
for child in response_json["data"]["children"]:
id = child["data"]["id"].encode("ascii","ignore")
subreddit = child["data"]["subreddit"].\
encode("ascii", "ignore")
text = child["data"]["selftext"].\
encode("ascii", "ignore").lower()
created_utc = child["data"]["created_utc"]
score = child["data"]["score"]
permalink = "http://www.reddit.com" + \
child["data"]["permalink"].\
encode("ascii", "ignore").lower()
url = child["data"]["url"].encode("ascii", "ignore").lower()
title = child["data"]["title"].encode("ascii", "ignore")
is_self = child["data"]["is_self"]
gilded = child["data"]["gilded"]
domain = child["data"]["domain"]
submission = Submission(
id=id,
subreddit=subreddit,
text=text,
created_utc=created_utc,
score=score,
permalink=permalink,
url=url,
title=title,
is_self=is_self,
gilded=gilded,
domain=domain
)
submissions.append(submission)
after = response_json["data"]["after"]
if after:
url = base_url + "&after=%s" % after
# reddit may rate limit if we don't wait for 2 seconds
# between successive requests. If that happens,
# uncomment and increase sleep time in the following line.
#time.sleep(0.5)
else:
more_submissions = False
return submissions
def process(self):
"""
Retrieves redditor's comments and submissions and
processes each of them.
"""
if self.comments:
self.process_comments()
if self.submissions:
self.process_submissions()
if self.comments or self.submissions:
self.derive_attributes()
def process_comments(self):
"""
Process list of redditor's comments.
"""
if not self.comments:
return
self.earliest_comment = self.comments[-1]
self.latest_comment = self.comments[0]
self.best_comment = self.comments[0]
self.worst_comment = self.comments[0]
for comment in self.comments:
self.process_comment(comment)
def process_submissions(self):
"""
Process list of redditor's submissions.
"""
if not self.submissions:
return
self.earliest_submission = self.submissions[-1]
self.latest_submission = self.submissions[0]
self.best_submission = self.submissions[0]
self.worst_submission = self.submissions[0]
for submission in self.submissions:
self.process_submission(submission)
def process_comment(self, comment):
"""
Process a single comment.
* Updates metrics
* Sanitizes and extracts chunks from comment.
"""
# Sanitize comment text.
text = Util.sanitize_text(comment.text)
# Add comment text to corpus.
self.corpus += text.lower()
comment_timestamp = datetime.datetime.fromtimestamp(
comment.created_utc, tz=pytz.utc
)
self.commented_dates.append(comment_timestamp)
self.comments_gilded += comment.gilded
days_ago_60 = self.today - datetime.timedelta(60)
if (comment_timestamp.date() - days_ago_60).days > 0:
self.metrics["heatmap"][
(comment_timestamp.date() - days_ago_60).days*24 + \
comment_timestamp.hour
] += 1
self.metrics["recent_karma"][
(comment_timestamp.date() - days_ago_60).days
] += comment.score
self.metrics["recent_posts"][
(comment_timestamp.date() - days_ago_60).days
] += 1
# Update metrics
for i, d in enumerate(self.metrics["date"]):
if d["date"] == (
comment_timestamp.date().year,
comment_timestamp.date().month
):
d["comments"] += 1
d["comment_karma"] += comment.score
self.metrics["date"][i] = d
break
for i, h in enumerate(self.metrics["hour"]):
if h["hour"] == comment_timestamp.hour:
h["comments"] += 1
h["comment_karma"] += comment.score
self.metrics["hour"][i] = h
break
for i, w in enumerate(self.metrics["weekday"]):
if w["weekday"] == comment_timestamp.date().weekday():
w["comments"] += 1
w["comment_karma"] += comment.score
self.metrics["weekday"][i] = w
break
if comment.score > self.best_comment.score:
self.best_comment = comment
elif comment.score < self.worst_comment.score:
self.worst_comment = comment
# If comment is in a subreddit in which comments/self text
# are to be ignored (such as /r/jokes, /r/writingprompts, etc),
# do not process it further.
if comment.subreddit in ignore_text_subs:
return False
# If comment text does not contain "I" or "my", why even bother?
if not re.search(r"\b(i|my)\b", text, re.I):
return False
# Now, this is a comment that needs to be processed.
(chunks, sentiments) = parser.extract_chunks(text)
self.sentiments += sentiments
for chunk in chunks:
self.load_attributes(chunk, comment)
return True
def process_submission(self, submission):
"""
Process a single submission.
* Updates metrics
* Sanitizes and extracts chunks from self text.
"""
if(submission.is_self):
text = Util.sanitize_text(submission.text)
self.corpus += text.lower()
submission_timestamp = datetime.datetime.fromtimestamp(
submission.created_utc, tz=pytz.utc
)
self.submitted_dates.append(submission_timestamp)
self.submissions_gilded += submission.gilded
days_ago_60 = self.today - datetime.timedelta(60)
if (submission_timestamp.date() - days_ago_60).days>0:
self.metrics["heatmap"][
((submission_timestamp.date() - days_ago_60).days-1)*24 + \
submission_timestamp.hour
] += 1
self.metrics["recent_karma"][
(submission_timestamp.date() - days_ago_60).days
] += submission.score
self.metrics["recent_posts"][
(submission_timestamp.date() - days_ago_60).days
] += 1
for i, d in enumerate(self.metrics["date"]):
if d["date"] == (
submission_timestamp.date().year,
submission_timestamp.date().month
):
d["submissions"] += 1
d["submission_karma"] += submission.score
self.metrics["date"][i] = d
break
for i, h in enumerate(self.metrics["hour"]):
if h["hour"] == submission_timestamp.hour:
h["submissions"] += 1
h["submission_karma"] += submission.score
self.metrics["hour"][i] = h
break
for i, w in enumerate(self.metrics["weekday"]):
if w["weekday"] == submission_timestamp.date().weekday():
w["submissions"] += 1
w["submission_karma"] += submission.score
self.metrics["weekday"][i] = w
break
submission_type = None
submission_domain = None
submission_url_path = urlparse(submission.url).path
if submission.domain.startswith("self."):
submission_type = "Self"
submission_domain = submission.subreddit
elif (
submission_url_path.endswith(tuple(self.IMAGE_EXTENSIONS)) or
submission.domain.endswith(tuple(self.IMAGE_DOMAINS))
):
submission_type = "Image"
submission_domain = submission.domain
elif submission.domain.endswith(tuple(self.VIDEO_DOMAINS)):
submission_type = "Video"
submission_domain = submission.domain
else:
submission_type = "Other"
submission_domain = submission.domain
t = [
x for x in self.submissions_by_type["children"] \
if x["name"]==submission_type
][0]
d = (
[x for x in t["children"] if x["name"]==submission_domain] or \
[None]
)[0]
if d:
d["size"] += 1
else:
t["children"].append({
"name" : submission_domain,
"size" : 1
})
if submission.score > self.best_submission.score:
self.best_submission = submission
elif submission.score < self.worst_submission.score:
self.worst_submission = submission
# If submission is in a subreddit in which comments/self text
# are to be ignored (such as /r/jokes, /r/writingprompts, etc),
# do not process it further.
if submission.subreddit in ignore_text_subs:
return False
# Only process self texts that contain "I" or "my"
if not submission.is_self or not re.search(r"\b(i|my)\b",text,re.I):
return False
(chunks, sentiments) = parser.extract_chunks(text)
self.sentiments += sentiments
for chunk in chunks:
self.load_attributes(chunk, submission)
return True
def load_attributes(self, chunk, post):
"""
Given an extracted chunk, load appropriate attribtues from it.
"""
# Is this chunk a possession/belonging?
if chunk["kind"] == "possession" and chunk["noun_phrase"]:
# Extract noun from chunk
noun_phrase = chunk["noun_phrase"]
noun_phrase_text = " ".join([w for w, t in noun_phrase])
norm_nouns = " ".join([
parser.normalize(w, t) \
for w,t in noun_phrase if t.startswith("N")
])
noun = next(
(w for w, t in noun_phrase if t.startswith("N")), None
)
if noun:
# See if noun is a pet, family member or a relationship partner
pet = parser.pet_animal(noun)
family_member = parser.family_member(noun)
relationship_partner = parser.relationship_partner(noun)
if pet:
self.pets.append((pet, post.permalink))
elif family_member:
self.family_members.append((family_member, post.permalink))
elif relationship_partner:
self.relationship_partners.append(
(relationship_partner, post.permalink)
)
else:
self.possessions_extra.append((norm_nouns, post.permalink))
# Is this chunk an action?
elif chunk["kind"] == "action" and chunk["verb_phrase"]:
verb_phrase = chunk["verb_phrase"]
verb_phrase_text = " ".join([w for w, t in verb_phrase])
# Extract verbs, adverbs, etc from chunk
norm_adverbs = [
parser.normalize(w,t) \
for w, t in verb_phrase if t.startswith("RB")
]
adverbs = [w.lower() for w, t in verb_phrase if t.startswith("RB")]
norm_verbs = [
parser.normalize(w,t) \
for w, t in verb_phrase if t.startswith("V")
]
verbs = [w.lower() for w, t in verb_phrase if t.startswith("V")]
prepositions = [w for w, t in chunk["prepositions"]]
noun_phrase = chunk["noun_phrase"]
noun_phrase_text = " ".join(
[w for w, t in noun_phrase if t not in ["DT"]]
)
norm_nouns = [
parser.normalize(w,t) \
for w, t in noun_phrase if t.startswith("N")
]
proper_nouns = [w for w, t in noun_phrase if t == "NNP"]
determiners = [
parser.normalize(w, t) \
for w, t in noun_phrase if t.startswith("DT")
]
prep_noun_phrase = chunk["prep_noun_phrase"]
prep_noun_phrase_text = " ".join([w for w, t in prep_noun_phrase])
pnp_prepositions = [
w.lower() for w, t in prep_noun_phrase if t in ["TO", "IN"]
]
pnp_norm_nouns = [
parser.normalize(w, t) \
for w, t in prep_noun_phrase if t.startswith("N")
]
pnp_determiners = [
parser.normalize(w, t) \
for w, t in prep_noun_phrase if t.startswith("DT")
]
full_noun_phrase = (
noun_phrase_text + " " + prep_noun_phrase_text
).strip()
# TODO - Handle negative actions (such as I am not...),
# but for now:
if any(
w in ["never", "no", "not", "nothing"] \
for w in norm_adverbs+determiners
):
return
# I am/was ...
if (len(norm_verbs) == 1 and "be" in norm_verbs and
not prepositions and noun_phrase):
# Ignore gerund nouns for now
if (
"am" in verbs and
any(n.endswith("ing") for n in norm_nouns)
):
self.attributes_extra.append(
(full_noun_phrase, post.permalink)
)
return
attribute = []
for noun in norm_nouns:
gender = None
orientation = None
if "am" in verbs:
gender = parser.gender(noun)
orientation = parser.orientation(noun)
if gender:
self.genders.append((gender, post.permalink))
elif orientation:
self.orientations.append(
(orientation, post.permalink)
)
# Include only "am" phrases
elif "am" in verbs:
attribute.append(noun)
if attribute and (
(
# Include only attributes that end
# in predefined list of endings...
any(
a.endswith(
parser.include_attribute_endings
) for a in attribute
) and not (
# And exclude...
# ...certain lone attributes
(
len(attribute) == 1 and
attribute[0] in parser.skip_lone_attributes and
not pnp_norm_nouns
)
or
# ...predefined skip attributes
any(a in attribute for a in parser.skip_attributes)
or
# ...attributes that end in predefined
# list of endings
any(
a.endswith(
parser.exclude_attribute_endings
) for a in attribute
)
)
) or
(
# And include special attributes with different endings
any(a in attribute for a in parser.include_attributes)
)
):
self.attributes.append(
(full_noun_phrase, post.permalink)
)
elif attribute:
self.attributes_extra.append(
(full_noun_phrase, post.permalink)
)
# I live(d) in ...
elif "live" in norm_verbs and prepositions and norm_nouns:
if any(
p in ["in", "near", "by"] for p in prepositions
) and proper_nouns:
self.places_lived.append(
(
" ".join(prepositions) + " " + noun_phrase_text,
post.permalink
)
)
else:
self.places_lived_extra.append(
(
" ".join(prepositions) + " " + noun_phrase_text,
post.permalink
)
)
# I grew up in ...
elif "grow" in norm_verbs and "up" in prepositions and norm_nouns:
if any(
p in ["in", "near", "by"] for p in prepositions
) and proper_nouns:
self.places_grew_up.append(
(
" ".join(
[p for p in prepositions if p != "up"]
) + " " + noun_phrase_text,
post.permalink
)
)
else:
self.places_grew_up_extra.append(
(
" ".join(
[p for p in prepositions if p != "up"]
) + " " + noun_phrase_text,
post.permalink
)
)
elif(
len(norm_verbs) == 1 and "prefer" in norm_verbs and
norm_nouns and not determiners and not prepositions
):
self.favorites.append((full_noun_phrase, post.permalink))
elif norm_nouns:
actions_extra = " ".join(norm_verbs)
self.actions_extra.append((actions_extra, post.permalink))
def derive_attributes(self):
"""
Derives attributes using activity data.
"""
for name, count in self.commented_subreddits():
subreddit = subreddits_dict[name] \
if name in subreddits_dict else None
if (
subreddit and subreddit["attribute"] and
count >= self.MIN_THRESHOLD
):
self.derived_attributes[subreddit["attribute"]].append(
subreddit["value"].lower()
)
for name, count in self.submitted_subreddits():
subreddit = subreddits_dict[name] \
if name in subreddits_dict else None
if (
subreddit and subreddit["attribute"] and
count >= self.MIN_THRESHOLD
):
self.derived_attributes[subreddit["attribute"]].append(
subreddit["value"].lower()
)
# If someone mentions their wife,
# they should be male, and vice-versa (?)
if "wife" in [v for v, s in self.relationship_partners]:
self.derived_attributes["gender"].append("male")
elif "husband" in [v for v, s in self.relationship_partners]:
self.derived_attributes["gender"].append("female")
commented_dates = sorted(self.commented_dates)
submitted_dates = sorted(self.submitted_dates)
active_dates = sorted(self.commented_dates + self.submitted_dates)
min_date = datetime.datetime(datetime.MINYEAR, 1, 1, tzinfo=pytz.utc)
first_comment_date = \
min(commented_dates) if commented_dates else min_date
first_submission_date = \
min(submitted_dates) if submitted_dates else min_date
self.first_post_date = max(first_comment_date, first_submission_date)
active_dates += [datetime.datetime.now(tz=pytz.utc)]
commented_dates += [datetime.datetime.now(tz=pytz.utc)]
submitted_dates += [datetime.datetime.now(tz=pytz.utc)]
# Find the longest period of inactivity
comment_lurk_period = max(
[
{
"from" : calendar.timegm(d1.utctimetuple()),
"to" : calendar.timegm(d2.utctimetuple()),
"days" : (d2 - d1).seconds,
} for d1, d2 in zip(
commented_dates[:-1], commented_dates[1:]
)
], key=lambda x:x["days"]
) if len(commented_dates) > 1 else {"days":-1}
submission_lurk_period = max(
[
{
"from" : calendar.timegm(d1.utctimetuple()),
"to" : calendar.timegm(d2.utctimetuple()),
"days" : (d2 - d1).seconds,
} for d1, d2 in zip(
submitted_dates[:-1], submitted_dates[1:]
)
], key=lambda x:x["days"]
) if len(submitted_dates) > 1 else {"days":-1}
post_lurk_period = max(
[
{
"from" : calendar.timegm(d1.utctimetuple()),
"to" : calendar.timegm(d2.utctimetuple()),
"days" : (d2 - d1).seconds,
} for d1, d2 in zip(
active_dates[:-1], active_dates[1:]
)
], key=lambda x:x["days"]
)
self.lurk_period = min(
[
x for x in [
comment_lurk_period,
submission_lurk_period,
post_lurk_period
] if x["days"]>=0
],
key=lambda x:x["days"]
)
del self.lurk_period["days"]
def commented_subreddits(self):
"""
Returns a list of subreddits redditor has commented on.
"""
return [
(name, count) for (name, count) in Counter(
[comment.subreddit for comment in self.comments]
).most_common()
]
def submitted_subreddits(self):
"""
Returns a list of subreddits redditor has submitted to.
"""
return [
(name,count) for (name,count) in Counter(
[submission.subreddit for submission in self.submissions]
).most_common()
]
def results(self):
"""
Returns accumulated data as JSON.
"""
# Redditor has no data?
if not (self.comments or self.submissions):
raise NoDataError
# Format metrics
metrics_date = []
for d in self.metrics["date"]:
metrics_date.append(
{
"date" : "%d-%02d-01" % (d["date"][0], d["date"][1]),
"comments" : d["comments"],
"submissions" : d["submissions"],
"posts" : d["comments"] + d["submissions"],
"comment_karma" : d["comment_karma"],
"submission_karma" : d["submission_karma"],
"karma" : d["comment_karma"] + d["submission_karma"]
}
)
metrics_hour = []
for h in self.metrics["hour"]:
metrics_hour.append(
{
"hour" : h["hour"],
"comments" : h["comments"],
"submissions" : h["submissions"],
"posts" : h["comments"] + h["submissions"],
"comment_karma" : h["comment_karma"],
"submission_karma" : h["submission_karma"],
"karma" : h["comment_karma"] + h["submission_karma"]
}
)
weekdays = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
metrics_weekday = []
for w in self.metrics["weekday"]:
metrics_weekday.append(
{
"weekday" : weekdays[w["weekday"]],
"comments" : w["comments"],
"submissions" : w["submissions"],
"posts" : w["comments"] + w["submissions"],
"comment_karma" : w["comment_karma"],
"submission_karma" : w["submission_karma"],
"karma" : w["comment_karma"] + w["submission_karma"]
}
)
metrics_subreddit = {
"name" : "All",
"children" : []
}
for (name, [comments, comment_karma]) in [
(s, [sum(x) for x in zip(*[(1, r[1]) for r in group])]) \
for s, group in groupby(
sorted(
[
(p.subreddit, p.score) for p in self.comments
], key=lambda x: x[0]
), lambda x: x[0]
)
]:
subreddit = subreddits_dict[name] \
if name in subreddits_dict else None
if subreddit and subreddit["topic_level1"] != "Other":
topic_level1 = subreddit["topic_level1"]
else:
topic_level1 = "Other"
level1 = (
[
t for t in metrics_subreddit["children"] \
if t["name"] == topic_level1
] or [None]
)[0]
if level1:
level1["children"].append(
{
"name" : name,
"comments" : comments,
"submissions" : 0,
"posts" : comments,
"comment_karma" : comment_karma,
"submission_karma" : 0,
"karma" : comment_karma
}
)
else:
metrics_subreddit["children"].append(
{
"name" : topic_level1,
"children" : [
{
"name" : name,
"comments" : comments,
"submissions" : 0,
"posts" : comments,
"comment_karma" : comment_karma,
"submission_karma" : 0,
"karma" : comment_karma
}
]
}
)
for (name, [submissions, submission_karma]) in [
(s, [sum(x) for x in zip(*[(1,r[1]) for r in group])]) \
for s, group in groupby(
sorted(
[
(p.subreddit, p.score) for p in self.submissions
], key=lambda x: x[0]
), lambda x: x[0]
)
]:
subreddit = subreddits_dict[name] \
if name in subreddits_dict else None
if subreddit and subreddit["topic_level1"] != "Other":
topic_level1 = subreddit["topic_level1"]
else:
topic_level1 = "Other"
level1 = (
[
t for t in metrics_subreddit["children"] \
if t["name"] == topic_level1
] or [None]
)[0]
if level1:
sub_in_level1 = (
[
s for s in level1["children"] if s["name"] == name
] or [None]
)[0]
if sub_in_level1:
sub_in_level1["submissions"] = submissions
sub_in_level1["submission_karma"] = submission_karma
sub_in_level1["posts"] += submissions
sub_in_level1["karma"] += submission_karma
else:
level1["children"].append(
{
"name" : name,
"comments" : 0,
"submissions" : submissions,
"posts" : submissions,
"comment_karma" : 0,
"submission_karma" : submission_karma,
"karma" : submission_karma
}
)
else:
metrics_subreddit["children"].append(
{
"name" : topic_level1,
"children" : [
{
"name" : name,
"comments" : 0,
"submissions" : submissions,
"posts" : submissions,
"comment_karma" : 0,
"submission_karma" : submission_karma,
"karma" : submission_karma
}
]
}
)
metrics_topic = {
"name" : "All",
"children" : []
}
# We need both topics (for Posts across topics) and
# synopsis_topics (for Synopsis) because we want to include only
# topics that meet the threshold limits in synopsis_topics
synopsis_topics = []
for name, count in Counter(
[s.subreddit for s in self.submissions] +
[c.subreddit for c in self.comments]
).most_common():
if (
name in default_subs and
count >= self.MIN_THRESHOLD_FOR_DEFAULT
) or count >= self.MIN_THRESHOLD:
subreddit = subreddits_dict[name] \
if name in subreddits_dict else None
if subreddit:
topic = subreddit["topic_level1"]
if subreddit["topic_level2"]:
topic += ">" + subreddit["topic_level2"]
else:
topic += ">" + "Generic"
if subreddit["topic_level3"]:
topic += ">" + subreddit["topic_level3"]
else:
topic += ">" + "Generic"
synopsis_topics += [topic] * count
topics = []
for comment in self.comments:
subreddit = subreddits_dict[comment.subreddit] \
if comment.subreddit in subreddits_dict else None
if subreddit and subreddit["topic_level1"] != "Other":
topic = subreddit["topic_level1"]
if subreddit["topic_level2"]:
topic += ">" + subreddit["topic_level2"]
else:
topic += ">" + "Generic"
if subreddit["topic_level3"]:
topic += ">" + subreddit["topic_level3"]
else:
topic += ">" + "Generic"
topics.append(topic)
else:
topics.append("Other")
for submission in self.submissions:
subreddit = subreddits_dict[submission.subreddit] \
if submission.subreddit in subreddits_dict else None
if subreddit and subreddit["topic_level1"] != "Other":
topic = subreddit["topic_level1"]
if subreddit["topic_level2"]:
topic += ">" + subreddit["topic_level2"]
else:
topic += ">" + "Generic"
if subreddit["topic_level3"]:
topic += ">" + subreddit["topic_level3"]
else:
topic += ">" + "Generic"
topics.append(topic)
else:
topics.append("Other")
for topic, count in Counter(topics).most_common():
level_topics = filter(None, topic.split(">"))
current_node = metrics_topic
for i, level_topic in enumerate(level_topics):
children = current_node["children"]
if i+1 < len(level_topics):
found_child = False
for child in children:
if child["name"] == level_topic:
child_node = child
found_child = True
break
if not found_child:
child_node = {
"name" : level_topic,
"children" : []
}
children.append(child_node)
current_node = child_node
else:
child_node = {
"name" : level_topic,
"size" : count
}
children.append(child_node)
common_words = [
{
"text" : word,
"size" : count
} for word, count in Counter(
parser.common_words(self.corpus)
).most_common(200)
]
total_word_count = parser.total_word_count(self.corpus)
unique_word_count = parser.unique_word_count(self.corpus)
# Let's use an average of 40 WPM
hours_typed = round(total_word_count/(40.00*60.00), 2)
gender = []
for value, count in Counter(
[value for value, source in self.genders]
).most_common(1):
sources = [s for v, s in self.genders if v == value]
gender.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
orientation = []
for value, count in Counter(
[value for value, source in self.orientations]
).most_common(1):
sources = [s for v, s in self.orientations if v == value]
orientation.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
relationship_partner = []
for value, count in Counter(
[value for value, source in self.relationship_partners]
).most_common(1):
sources = [s for v, s in self.relationship_partners if v == value]
relationship_partner.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
places_lived = []
for value, count in Counter(
[value for value, source in self.places_lived]
).most_common():
sources = [s for v, s in self.places_lived if v == value]
places_lived.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
places_lived_extra = []
for value, count in Counter(
[value for value, source in self.places_lived_extra]
).most_common():
sources = [s for v, s in self.places_lived_extra if v == value]
places_lived_extra.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
places_grew_up = []
for value, count in Counter(
[value for value, source in self.places_grew_up]
).most_common():
sources = [s for v, s in self.places_grew_up if v == value]
places_grew_up.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
places_grew_up_extra = []
for value, count in Counter(
[value for value, source in self.places_grew_up_extra]
).most_common():
sources = [s for v, s in self.places_grew_up_extra if v == value]
places_grew_up_extra.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
family_members = []
for value, count in Counter(
[value for value, source in self.family_members]
).most_common():
sources = [s for v, s in self.family_members if v == value]
family_members.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
pets = []
for value, count in Counter(
[value for value, source in self.pets]
).most_common():
sources = [s for v, s in self.pets if v == value]
pets.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
favorites = []
for value, count in Counter(
[value for value, source in self.favorites]
).most_common():
sources = [s for v, s in self.favorites if v == value]
favorites.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
attributes = []
for value, count in Counter(
[value for value, source in self.attributes]
).most_common():
sources = [s for v, s in self.attributes if v == value]
attributes.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
attributes_extra = []
for value, count in Counter(
[value for value, source in self.attributes_extra]
).most_common():
sources = [s for v, s in self.attributes_extra if v == value]
attributes_extra.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
possessions = []
for value, count in Counter(
[value for value, source in self.possessions]
).most_common():
sources = [s for v, s in self.possessions if v == value]
possessions.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
possessions_extra = []
for value, count in Counter(
[value for value, source in self.possessions_extra]
).most_common():
sources = [s for v, s in self.possessions_extra if v == value]
possessions_extra.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
actions = []
for value, count in Counter(
[value for value, source in self.actions]
).most_common():
sources = [s for v, s in self.actions if v == value]
actions.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
actions_extra = []
for value, count in Counter(
[value for value, source in self.actions_extra]
).most_common():
sources = [s for v, s in self.actions_extra if v == value]
actions_extra.append(
{
"value" : value,
"count" : count,
"sources" : sources
}
)
synopsis = {}
if gender:
synopsis["gender"] = {
"data" : gender
}
if orientation:
synopsis["orientation"] = {
"data" : orientation
}
if relationship_partner:
synopsis["relationship_partner"] = {
"data" : relationship_partner
}
if places_lived:
synopsis["places_lived"] = {
"data" : places_lived
}
if places_lived_extra:
if "places_lived" in synopsis:
synopsis["places_lived"].update(
{
"data_extra" : places_lived_extra
}
)
else:
synopsis["places_lived"] = {
"data_extra" : places_lived_extra
}
if places_grew_up:
synopsis["places_grew_up"] = {
"data" : places_grew_up
}
if places_grew_up_extra:
if "places_grew_up" in synopsis:
synopsis["places_grew_up"].update(
{
"data_extra" : places_grew_up_extra
}
)
else:
synopsis["places_grew_up"] = {
"data_extra" : places_grew_up_extra
}
if family_members:
synopsis["family_members"] = {
"data" : family_members
}
if pets:
synopsis["pets"] = {
"data" : pets
}
if favorites:
synopsis["favorites"] = {
"data" : favorites
}
if attributes:
synopsis["attributes"] = {
"data" : attributes
}
if attributes_extra:
if "attributes" in synopsis:
synopsis["attributes"].update(
{
"data_extra" : attributes_extra
}
)
else:
synopsis["attributes"] = {
"data_extra" : attributes_extra
}
if possessions:
synopsis["possessions"] = {
"data" : possessions
}
if possessions_extra:
if "possessions" in synopsis:
synopsis["possessions"].update(
{
"data_extra" : possessions_extra
}
)
else:
synopsis["possessions"] = {
"data_extra" : possessions_extra
}
''' Will work on actions later
if actions:
synopsis["actions"] = {
"data" : actions
}
if actions_extra:
if "actions" in synopsis:
synopsis["actions"].update(
{
"data_extra" : actions_extra
}
)
else:
synopsis["actions"] = {
"data_extra" : actions_extra
}
'''
level1_topic_groups = [
"business","entertainment", "gaming", "hobbies and interests", "lifestyle",
"locations", "music", "science", "sports", "technology",
"news and politics"
]
level2_topic_groups = [
"television", "books", "celebrities", # Entertainment
"religion and spirituality", # Lifestyle
]
exclude_topics = ["general", "drugs", "meta", "adult and nsfw", "other"]
exclude_coalesced_topics = [
"religion and spirituality", "more interests", "alternative"
]
topic_min_levels = {
"business" : 2,
"entertainment" : 3,
"gaming" : 2,
"hobbies and interests" : 2,
"lifestyle" : 2,
"locations" : 3,
"music" : 2,
"science" : 2,
"sports" : 2,
"technology" : 2,
"news and politics" : 2
}
for topic, count in Counter(synopsis_topics).most_common():
if count < self.MIN_THRESHOLD:
continue
level_topics = [
x.lower() for x in topic.split(">") if x.lower() != "generic"
]
key = None
if level_topics[0] not in exclude_topics:
m = 2
if level_topics[0] in level1_topic_groups:
m = topic_min_levels[level_topics[0]]
if (
len(level_topics) >= m and
level_topics[1] in level2_topic_groups and
level_topics[1] not in exclude_topics
):
key = level_topics[1]
elif (
len(level_topics) >= m and
level_topics[1] not in exclude_topics
):
key = level_topics[0]
elif level_topics[0] not in level1_topic_groups:
key = "other"
coalesced_topic = Util.coalesce(level_topics).lower()
if key and coalesced_topic not in exclude_coalesced_topics:
if key in synopsis:
if key not in ["gender", "religion and spirituality"]:
synopsis[key]["data"].append(
{
"value" : coalesced_topic,
"count" : count
}
)
else:
synopsis[key] = {
"data" : [
{
"value" : coalesced_topic,
"count" : count
}
]
}
for k in {k: v for k, v in self.derived_attributes.items() if len(v)}:
dd = [
{
"value" : v,
"count" : c,
"sources" : None
} for v, c in Counter(self.derived_attributes[k]).most_common()
]
if k in ["gender", "religion and spirituality"]:
dd = dd[:1]
if k in synopsis:
synopsis[k].update(
{
"data_derived" : dd
}
)
else:
synopsis[k] = {
"data_derived" : dd
}
computed_comment_karma = sum(
[x["comment_karma"] for x in metrics_date]
)
computed_submission_karma = sum(
[x["submission_karma"] for x in metrics_date]
)
hmin = min(self.metrics["heatmap"])*1.0 or 1.0
hmax = max(self.metrics["heatmap"])*1.0
if hmin < hmax:
heatmap = ''.join(
[
hex(
int(Util.scale(h, (hmin, hmax), (1, 15)))
)[2:] if h > 0 else "0" for h in self.metrics["heatmap"]
]
)
else:
heatmap = "0" * 1464
results = {
"username" : self.username,
"version" : 8,
"metadata" : {
"reddit_id" : self.reddit_id,
"latest_comment_id" : self.latest_comment.id \
if self.latest_comment else None,
"latest_submission_id" : self.latest_submission.id \
if self.latest_submission else None
},
"summary" : {
"signup_date" : calendar.timegm(
self.signup_date.utctimetuple()
),
"first_post_date" : calendar.timegm(
self.first_post_date.utctimetuple()
),
"lurk_period" : self.lurk_period,
"comments" : {
"count" : len(self.comments),
"gilded" : self.comments_gilded,
"best" : {
"text" : self.best_comment.text \
if self.best_comment else None,
"permalink" : self.best_comment.permalink \
if self.best_comment else None
},
"worst" : {
"text" : self.worst_comment.text \
if self.worst_comment else None,
"permalink" : self.worst_comment.permalink \
if self.worst_comment else None
},
"all_time_karma" : self.comment_karma,
"computed_karma" : computed_comment_karma,
"average_karma" : round(
computed_comment_karma/(len(self.comments) or 1), 2
),
"total_word_count" : total_word_count,
"unique_word_count" : unique_word_count,
"hours_typed" : hours_typed,
"karma_per_word" : round(
computed_comment_karma/(total_word_count*1.00 or 1), 2
)
},
"submissions" : {
"count" : len(self.submissions),
"gilded" : self.submissions_gilded,
"best" : {
"title" : self.best_submission.title \
if self.best_submission else None,
"permalink" : self.best_submission.permalink \
if self.best_submission else None
},
"worst" : {
"title" : self.worst_submission.title \
if self.worst_submission else None,
"permalink" : self.worst_submission.permalink \
if self.worst_submission else None
},
"all_time_karma" : self.link_karma,
"computed_karma" : computed_submission_karma,
"average_karma" : round(
computed_submission_karma /
(len(self.submissions) or 1), 2
),
"type_domain_breakdown" : self.submissions_by_type
}
},
"synopsis" : synopsis,
"metrics" : {
"date" : metrics_date,
"hour" : metrics_hour,
"weekday" : metrics_weekday,
"subreddit" : metrics_subreddit,
"topic" : metrics_topic,
"common_words" : common_words,
"recent_activity_heatmap" : heatmap,
"recent_karma" : self.metrics["recent_karma"],
"recent_posts" : self.metrics["recent_posts"]
}
}
return json.dumps(results)
|
StarcoderdataPython
|
118402
|
DynamoTable # unused import (dynamo_query/__init__.py:8)
DynamoRecord # unused variable (dynamo_query/__init__.py:12)
create # unused function (dynamo_query/data_table.py:119)
memo # unused variable (dynamo_query/data_table.py:137)
filter_keys # unused function (dynamo_query/data_table.py:299)
get_column # unused function (dynamo_query/data_table.py:472)
drop_duplicates # unused function (dynamo_query/data_table.py:734)
sanitize_key # unused function (dynamo_query/dictclasses/dictclass.py:127)
compute_key # unused function (dynamo_query/dictclasses/dictclass.py:131)
sanitize # unused function (dynamo_query/dictclasses/dictclass.py:351)
get_field_names # unused function (dynamo_query/dictclasses/dynamo_dictclass.py:32)
DynamoAutoscaler # unused class (dynamo_query/dynamo_autoscaler.py:17)
deregister_auto_scaling # unused function (dynamo_query/dynamo_autoscaler.py:47)
register_auto_scaling # unused function (dynamo_query/dynamo_autoscaler.py:76)
get_last_evaluated_key # unused function (dynamo_query/dynamo_query_main.py:648)
reset_start_key # unused function (dynamo_query/dynamo_query_main.py:677)
get_raw_responses # unused function (dynamo_query/dynamo_query_main.py:684)
DynamoTable # unused class (dynamo_query/dynamo_table.py:63)
delete_table # unused function (dynamo_query/dynamo_table.py:232)
invalidate_cache # unused function (dynamo_query/dynamo_table.py:546)
cached_batch_get # unused function (dynamo_query/dynamo_table.py:552)
batch_get_records # unused function (dynamo_query/dynamo_table.py:729)
batch_delete_records # unused function (dynamo_query/dynamo_table.py:747)
batch_upsert_records # unused function (dynamo_query/dynamo_table.py:762)
cached_get_record # unused function (dynamo_query/dynamo_table.py:829)
upsert_record # unused function (dynamo_query/dynamo_table.py:851)
delete_record # unused function (dynamo_query/dynamo_table.py:920)
clear_records # unused function (dynamo_query/dynamo_table.py:1131)
NE # unused variable (dynamo_query/enums.py:58)
IN # unused variable (dynamo_query/enums.py:59)
EXISTS # unused variable (dynamo_query/enums.py:65)
NOT_EXISTS # unused variable (dynamo_query/enums.py:66)
CONTAINS # unused variable (dynamo_query/enums.py:68)
default # unused function (dynamo_query/json_tools.py:40)
pluralize # unused function (dynamo_query/utils.py:91)
get_nested_item # unused function (dynamo_query/utils.py:112)
|
StarcoderdataPython
|
1628739
|
<filename>hyperts/utils/tstoolbox.py
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split as sklearn_tts
from hypernets.tabular.toolbox import ToolBox
from hyperts.utils import tscvsplit, ensemble
from hyperts.utils import consts, metrics as metrics_
from hyperts.utils.holidays import get_holidays
class TSToolBox(ToolBox):
@staticmethod
def DataFrame(data=None, index = None, columns = None, dtype = None, copy = False):
"""Two-dimensional, size-mutable, potentially heterogeneous tabular data.
Parameters
----------
data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects.
.. versionchanged:: 0.23.0
If data is a dict, column order follows insertion-order for
Python 3.6 and later.
.. versionchanged:: 0.25.0
If data is a list of dicts, column order follows insertion-order
for Python 3.6 and later.
index : Index or array-like
Index to use for resulting frame. Will default to RangeIndex if
no indexing information part of input data and no index provided.
columns : Index or array-like
Column labels to use for resulting frame. Will default to
RangeIndex (0, 1, 2, ..., n) if no column labels are provided.
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer.
copy : bool, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input.
"""
return pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy)
@staticmethod
def join_df(df1: pd.DataFrame, df2: pd.DataFrame, on: None):
"""Join columns of another DataFrame.
Parameters
----------
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
"""
return df1.join(df2.set_index(on), on=on)
@staticmethod
def to_datetime(df: pd.DataFrame, **kwargs):
"""Convert argument to datetime.
"""
return pd.to_datetime(df, **kwargs)
@staticmethod
def date_range(start=None, end=None, periods=None, freq=None, **kwargs):
"""Return a fixed frequency DatetimeIndex.
Parameters
----------
start : str or datetime-like, optional
Left bound for generating dates.
end : str or datetime-like, optional
Right bound for generating dates.
periods : int, optional
Number of periods to generate.
freq : str or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'. See
:ref:`here <timeseries.offset_aliases>` for a list of
frequency aliases.
"""
return pd.date_range(start=start, end=end, periods=periods, freq=freq, **kwargs)
@staticmethod
def datetime_format(df: pd.DataFrame, format='%Y-%m-%d %H:%M:%S'):
"""Convert datetime format.
"""
if format != None:
return pd.to_datetime(df.astype('str')).dt.strftime(format)
else:
return pd.to_datetime(df.astype('str'))
@staticmethod
def select_1d_forward(arr, indices):
"""
Select by indices from the first axis(0) with forward.
"""
if hasattr(arr, 'iloc'):
return arr.iloc[:indices]
else:
return arr[:indices]
@staticmethod
def select_1d_reverse(arr, indices):
"""
Select by indices from the first axis(0) with reverse.
"""
if hasattr(arr, 'iloc'):
return arr.iloc[-indices:]
else:
return arr[-indices:]
@staticmethod
def columns_values(df: pd.DataFrame):
"""
Get column values.
"""
return df.columns.values
@staticmethod
def sort_values(df: pd.DataFrame, ts_name: str = consts.TIMESTAMP):
"""
Sort in time order.
"""
return df.sort_values(by=[ts_name])
@staticmethod
def drop(df: pd.DataFrame, labels=None, index=None, columns=None, axis: int = 0, inplace: bool = False):
"""
Drop specified labels from rows or columns.
"""
return df.drop(labels=labels, axis=axis, index=index, columns=columns, inplace=inplace)
@staticmethod
def arange(*args):
"""
Return evenly spaced values within a given interval.
"""
return np.arange(*args)
@staticmethod
def infer_ts_freq(df: pd.DataFrame, ts_name: str = consts.TIMESTAMP):
""" Infer the frequency of the time series.
Parameters
----------
ts_name: 'str', time column name.
"""
return _infer_ts_freq(df, ts_name)
@staticmethod
def multi_period_loop_imputer(df: pd.DataFrame, freq: str, offsets: list = None, max_loops: int = 10):
"""Multiple period loop impute NAN.
Parameters
----------
freq: str
'S' - second
'T' - minute
'H' - hour
'D' - day
'M' - month
'Y','A', A-DEC' - year
offsets: list, offset lag.
max_loops: 'int', maximum number of loop imputed.
"""
if not isinstance(freq, str):
return df
if freq is consts.DISCRETE_FORECAST:
offsets = [-1, 1]
elif offsets is None and freq in 'W' or 'W-' in freq or 'WOM-' in freq:
offsets = [-1, -2, -3, -4, 1, 2, 3, 4]
elif offsets is None and freq in ['M', 'MS', 'BM', 'CBM', 'CBMS']:
offsets = [-1, -2, -3, -4, 1, 2, 3, 4]
elif offsets is None and freq in ['SM', '15D', 'SMS']:
offsets = [-1, -2, -4, -6, -8, 1, 2, 4, 6, 8]
elif offsets is None and 'Q' in freq or 'Q-' in freq or 'BQ' in freq or 'BQ-' in freq or 'QS-' in freq or 'BQS-' in freq:
offsets = [-1, -4, -8, -12, 1, 4, 8, 12]
elif offsets is None and freq in ['A', 'Y'] or 'A-' in freq or 'BA-' in freq or 'AS-' in freq or 'BAS-' in freq:
offsets = [-1, -2, -3, -4, 1, 2, 3, 4]
elif offsets is None and 'S' in freq or 'T' in freq or 'min' in freq:
offsets = [-60*4, -60*3, -60*2, -60*1, -1, 1, 60*1, 60*2, 60*3, 60*4]
elif offsets is None and 'H' in freq:
offsets = [-24*4, -24*3, -24*2, -24*1, -1, 1, 24*1, 24*2, 24*3, 24*4,
-168*4, -168*3, -168*2, -168*1, 168*1, 168*2, 168*3, 168*4]
elif offsets is None and 'BH' in freq or '8H' in freq:
offsets = [-8*4, -8*3, -8*2, -8*1, -1, 1, 8*1, 8*2, 8*3, 8*4,
-40*4, -40*3, -40*2, -40*1, 40*1, 40*2, 40*3, 40*4]
elif offsets is None and 'D' in freq:
offsets = [-1, -7, -7*2, 7*3, -7*4, 1, 7, 7*2, 7*3, 7*4]
elif offsets is None and freq in ['C', 'B']:
offsets = [-1, -5, -5*2, 5*3, -5*4, 1, 5, 5*2, 5*3, 5*4]
elif offsets is None and 'L' in freq or 'U' in freq or 'N' in freq or 'ms' in freq:
offsets = [-1, -50, -100, -200, -1000, 1, 50, 100, 200, 1000]
elif offsets == None:
offsets = [-1, 1]
if freq != consts.DISCRETE_FORECAST:
offsets = _expand_list(freq=freq, pre_list=offsets)
values = df.values.copy()
loop, missing_rate = 0, 1
while loop < max_loops and missing_rate > 0:
values, missing_rate = _impute(values, offsets)
loop += 1
values[np.where(np.isnan(values))] = np.nanmean(values)
fill_df = pd.DataFrame(values, columns=df.columns)
return fill_df
@staticmethod
def forward_period_imputer(df: pd.DataFrame, offset: int):
""" Forward period imputer.
Parameters
----------
offsets: 'int', offset lag.
"""
fill_df = df.fillna(df.rolling(window=offset, min_periods=1).agg(lambda x: x.iloc[0]))
return fill_df
@staticmethod
def simple_numerical_imputer(df: pd.DataFrame, mode='mean'):
"""Fill NaN with mean, mode, 0."""
if mode == 'mean':
df = df.fillna(df.mean().fillna(0).to_dict())
elif mode == 'mode':
df = df.fillna(df.mode().fillna(0).to_dict())
else:
df = df.fillna(0)
return df
@staticmethod
def drop_duplicated_ts_rows(df: pd.DataFrame, ts_name: str = consts.TIMESTAMP, keep_data: str = 'last'):
"""Returns without duplicate time series, the last be keeped by default.
Example:
TimeStamp y
2021-03-01 3.4
2021-03-02 5.2
2021-03-03 9.3
2021-03-03 9.5
2021-03-04 6.7
2021-03-05 2.3
>>
TimeStamp y
2021-03-01 3.4
2021-03-02 5.2
2021-03-03 9.5
2021-03-04 6.7
2021-03-05 2.3
"""
assert isinstance(df, pd.DataFrame)
drop_df = df.drop_duplicates(subset=[ts_name], keep=keep_data)
drop_df.reset_index(drop=True, inplace=True)
return drop_df
@staticmethod
def smooth_missed_ts_rows(df: pd.DataFrame, freq: str = None, ts_name: str = consts.TIMESTAMP):
"""Returns full time series.
Example:
TimeStamp y
2021-03-01 3.4
2021-03-02 5.2
2021-03-04 6.7
2021-03-05 2.3
>>
TimeStamp y
2021-03-01 3.4
2021-03-02 5.2
2021-03-03 NaN
2021-03-04 6.7
2021-03-05 2.3
"""
assert isinstance(df, pd.DataFrame)
if freq == None:
freq = _infer_ts_freq(df, ts_name)
if df[ts_name].dtypes == object:
df[ts_name] = pd.to_datetime(df[ts_name])
df = df.sort_values(by=ts_name)
if freq is not None and freq is not consts.DISCRETE_FORECAST:
start, end = df[ts_name].iloc[0], df[ts_name].iloc[-1]
full_ts = pd.DataFrame(pd.date_range(start=start, end=end, freq=freq), columns=[ts_name])
if full_ts[ts_name].iloc[-1] == df[ts_name].iloc[-1]:
df = full_ts.join(df.set_index(ts_name), on=ts_name)
return df
@staticmethod
def clip_to_outliers(df, std_threshold: int = 3):
"""Replace outliers above threshold with that threshold.
Parameters
----------
std_threshold: 'float', the number of standard deviations away from mean to count as outlier.
"""
if not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df)
df_std = df.std(axis=0, skipna=True)
df_mean = df.mean(axis=0, skipna=True)
lower = df_mean - (df_std * std_threshold)
upper = df_mean + (df_std * std_threshold)
df_outlier = df.clip(lower=lower, upper=upper, axis=1)
return df_outlier
@staticmethod
def nan_to_outliers(df, std_threshold: int = 3):
"""Replace outliers above threshold with that threshold.
Parameters
----------
std_threshold: 'float', the number of standard deviations away from mean to count as outlier.
"""
if not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df)
df_outlier = df.copy()
df_std = df.std(axis=0, skipna=True)
df_mean = df.mean(axis=0, skipna=True)
outlier_indices = np.abs(df - df_mean) > df_std * std_threshold
df_outlier = df_outlier.mask(outlier_indices, other=np.nan)
return df_outlier
@staticmethod
def infer_window_size(max_size: int, freq: str):
"""Infer window of neural net.
Parameters
----------
max_size: int, maximum time window allowed.
freq: str or DateOffset.
"""
if freq in 'W' or 'W-' in freq or 'WOM-' in freq:
window = list(filter(lambda x: x<=max_size, [7, 7*2, 7*3, 7*4, 52]))
elif freq in ['SM', 'M', 'MS', 'SMS', 'BM', 'CBM', 'CBMS', '15D']:
window = list(filter(lambda x: x <= max_size, [6, 12, 24, 36, 48]))
elif 'Q' in freq or 'Q-' in freq or 'BQ' in freq or 'BQ-' in freq or 'QS-' in freq or 'BQS-' in freq:
window = list(filter(lambda x: x <= max_size, [4, 8, 12, 16, 16*2, 16*3]))
elif freq in ['A', 'Y'] or 'A-' in freq or 'BA-' in freq or 'AS-' in freq or 'BAS-' in freq:
window = list(filter(lambda x: x<=max_size, [3, 6, 12, 24]))
elif 'S' in freq or 'T' in freq or 'min' in freq:
window = list(filter(lambda x: x<=max_size, [10, 30, 60, 60*2, 60*3]))
elif 'H' in freq:
window = list(filter(lambda x: x<=max_size, [24, 48, 48*2, 24*7]))
elif 'BH' in freq or '8H' in freq:
window = list(filter(lambda x: x<=max_size, [8, 16, 24, 24*2, 24*7]))
elif 'D' in freq:
window = list(filter(lambda x: x<=max_size, [7, 14, 21, 21*2, 21*3]))
elif freq in ['C', 'B']:
window = list(filter(lambda x: x<=max_size, [10, 15, 20, 20*2, 20*3]))
elif 'L' in freq or 'U' in freq or 'N' in freq or 'ms' in freq:
window = list(filter(lambda x: x <= max_size, [50, 100, 200, 500, 1000]))
else:
window = list(filter(lambda x: x <= max_size, [5, 7, 12, 24, 24*2, 24*3, 24*7]))
final_win_list = _expand_list(freq=freq, pre_list=window)
while 0 in final_win_list:
final_win_list.remove(0)
if len(final_win_list) != 0:
return final_win_list
else:
raise RuntimeError('Unable to infer the sliding window size of dl, please specify dl_forecast_window.')
@staticmethod
def fft_infer_period(data):
"""Fourier inference period.
References
----------
https://github.com/xuawai/AutoPeriod/blob/master/auto_period.ipynb
"""
try:
if isinstance(data, pd.DataFrame):
data = data.values.reshape(-1,)
ft = np.fft.rfft(data)
freqs = np.fft.rfftfreq(len(data), 1)
mags = abs(ft)
inflection = np.diff(np.sign(np.diff(mags)))
peaks = (inflection < 0).nonzero()[0] + 1
peak = peaks[mags[peaks].argmax()]
signal_freq = freqs[peak]
period = int(1 / signal_freq)
except:
period = 2
return period
@staticmethod
def generate_ts_covariables(start_date, periods, freq='H'):
"""Generate covariates about time.
Parameters
----------
start_date: 'str' or datetime-like.
Left bound for generating dates.
periods: 'int'.
Number of periods to generate.
freq: str or DateOffset, default 'H'.
"""
dstime = pd.date_range(start_date, periods=periods, freq=freq)
fds = pd.DataFrame(dstime, columns={'TimeStamp'})
fds['Hour'] = fds['TimeStamp'].dt.hour
fds['WeekDay'] = fds['TimeStamp'].dt.weekday
period_dict = {
23: 0, 0: 0, 1: 0,
2: 1, 3: 1, 4: 1,
5: 2, 6: 2, 7: 2,
8: 3, 9: 3, 10: 3, 11: 3,
12: 4, 13: 4,
14: 5, 15: 5, 16: 5, 17: 5,
18: 6,
19: 7, 20: 7, 21: 7, 22: 7,
}
fds['TimeSegmnet'] = fds['Hour'].map(period_dict)
fds['MonthStart'] = fds['TimeStamp'].apply(lambda x: x.is_month_start * 1)
fds['MonthEnd'] = fds['TimeStamp'].apply(lambda x: x.is_month_end * 1)
fds['SeasonStart'] = fds['TimeStamp'].apply(lambda x: x.is_quarter_start * 1)
fds['SeasonEnd'] = fds['TimeStamp'].apply(lambda x: x.is_quarter_end * 1)
fds['Weekend'] = fds['TimeStamp'].apply(lambda x: 1 if x.dayofweek in [5, 6] else 0)
# public_holiday_list = get_holidays(year=int(start_date[:4]))
# public_holiday_list = public_holiday_list['Date'].to_list()
fds['Date'] = fds['TimeStamp'].apply(lambda x: x.strftime('%Y%m%d'))
# fds['Holiday'] = fds['Date'].apply(lambda x: 1 if x in public_holiday_list else 0)
fds.drop(['Date'], axis=1, inplace=True)
return fds
@staticmethod
def df_mean_std(data: pd.DataFrame):
"""Get the mean and standard deviation of the data.
"""
mean = data.mean()
std = data.std()
return mean, std
@staticmethod
def infer_forecast_interval(forecast, prior_mu, prior_sigma, n: int = 5, confidence_level: float = 0.9):
"""A corruption of Bayes theorem.
It will be sensitive to the transformations of the data.
"""
from scipy.stats import norm
p_int = 1 - ((1 - confidence_level) / 2)
adj = norm.ppf(p_int)
upper_forecast, lower_forecast = pd.DataFrame(), pd.DataFrame()
for index, row in forecast.iterrows():
data_mu = row
post_mu = ((prior_mu / prior_sigma ** 2) + ((n * data_mu) / prior_sigma ** 2)
) / ((1 / prior_sigma ** 2) + (n / prior_sigma ** 2))
lower = pd.DataFrame(post_mu - adj * prior_sigma).transpose()
lower = lower.where(lower <= data_mu, data_mu, axis=1)
upper = pd.DataFrame(post_mu + adj * prior_sigma).transpose()
upper = upper.where(upper >= data_mu, data_mu, axis=1)
lower_forecast = pd.concat([lower_forecast, lower], axis=0)
upper_forecast = pd.concat([upper_forecast, upper], axis=0)
lower_forecast.index = forecast.index
upper_forecast.index = forecast.index
return upper_forecast, lower_forecast
@staticmethod
def from_3d_array_to_nested_df(data: np.ndarray,
columns: str = None,
cells_as_array: bool = False):
"""Convert Numpy ndarray with shape (nb_samples, series_length, nb_variables)
into nested pandas DataFrame (with time series as numpy array or pandas Series in cells)
Parameters
----------
data : np.ndarray
3-dimensional Numpy array to convert to nested pandas DataFrame format
columns: list-like, default = None
Optional list of names to use for naming nested DataFrame's columns
cells_as_array : bool, default = False
If True, then nested cells contain Numpy array
If False, then nested cells contain pandas Series
Returns
----------
df : pd.DataFrame
References
----------
sktime_data_processing: https://github.com/Riyabelle25/sktime/blob/main/sktime/utils/data_processing.py
"""
df = pd.DataFrame()
nb_samples, series_length, nb_variables = data.shape
cell = np.array if cells_as_array else pd.Series
if columns is None:
columns = [f'Var_{i}' for i in range(nb_variables)]
else:
if len(columns) != nb_variables:
raise ValueError(f'The number of column names supplied [{len(columns)}] \
does not match the number of data variables [{nb_variables}].')
for i, columns_name in enumerate(columns):
df[columns_name] = [cell(data[j, :, i]) for j in range(nb_samples)]
return df
@staticmethod
def from_nested_df_to_3d_array(data: pd.DataFrame):
"""Convert nested pandas DataFrame (with time series as numpy array or pandas Series in cells)
into Numpy ndarray with shape (nb_samples, series_length, nb_variables).
Parameters
----------
data : pd.DataFrame
Nested pandas DataFrame
Returns
-------
data_3d : np.arrray
3-dimensional NumPy array
References
----------from_nested_to_3d_numpy
sktime_data_processing: https://github.com/Riyabelle25/sktime/blob/main/sktime/utils/data_processing.py
"""
nested_col_mask = [*data.applymap(lambda cell: isinstance(cell, (np.ndarray, pd.Series))).any().values]
if nested_col_mask.count(True) == len(nested_col_mask):
res = np.stack(data.applymap(lambda cell: cell.to_numpy() if isinstance(cell, pd.Series) else cell)
.apply(lambda row: np.stack(row), axis=1)
.to_numpy())
else:
raise ValueError
return res.transpose(0, 2, 1)
@staticmethod
def is_nested_dataframe(data: pd.DataFrame):
"""Determines whether data is a nested Dataframe.
Returns
-------
bool : True or False.
"""
is_dataframe = isinstance(data, pd.DataFrame)
is_nested = isinstance(data.iloc[0, 0], (np.ndarray, pd.Series))
return is_dataframe and is_nested
@staticmethod
def random_train_test_split(*arrays,
test_size=None,
train_size=None,
random_state=None,
shuffle=True,
stratify=None):
"""Split arrays or matrices into random train and test subsets. This
is a wrapper of scikit-learn's ``train_test_split`` that has shuffle.
"""
results = sklearn_tts(*arrays,
test_size=test_size,
train_size=train_size,
random_state=random_state,
shuffle=shuffle,
stratify=stratify)
return results
@staticmethod
def temporal_train_test_split(*arrays,
test_size=None,
train_size=None,
test_horizon=None):
"""Split arrays or matrices into sequential train and test subsets.This
is a wrapper of scikit-learn's ``train_test_split`` that does not shuffle.
Parameters
----------
*arrays : sequence of indexables with same length / shape[0] Allowed inputs
are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.
test_size : float, int or None, optional (default=None)
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.25.
train_size : float, int, or None, (default=None)
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
test_horizon: int or None, (default=None)
If int, represents the forecast horizon length.
Returns
-------
splitting : list, length=2 * len(arrays)
List containing train-test split of inputs.
"""
test_size = test_horizon if test_horizon != None else test_size
if test_horizon != None and test_horizon > arrays[0].shape[0]:
raise ValueError(f'{test_horizon} is greater than data shape {arrays[0].shape[0]}.')
results = sklearn_tts(
*arrays,
test_size=test_size,
train_size=train_size,
shuffle=False,
stratify=None)
return [pd.DataFrame(item) if isinstance(item, pd.Series) else item for item in results]
@staticmethod
def list_diff(p: list, q: list):
"""Gets the difference set of two lists.
Parameters
----------
p: list.
q: list.
Returns
A list.
-------
Example
p = [1, 2, 3, 4, 5], q = [2, 4]
>> list_diff(p, q)
>> [1, 3, 5]
p = [1, 2, 3, 4, 5], q = []
>> list_diff(p, q)
>> [1, 2, 3, 4, 5]
"""
if q is not None and len(q) > 0:
# return list(set(p).difference(set(q)))
return list(filter(lambda x: x not in q, p))
else:
return p
@staticmethod
def infer_pos_label(y_true, task, pos_label=None):
y_true = np.array(y_true) if not isinstance(y_true, np.ndarray) else y_true
if task in consts.TASK_LIST_CLASSIFICATION and pos_label is None:
if 1 in y_true:
pos_label = 1
elif 'yes' in y_true:
pos_label = 'yes'
elif 'true' in y_true:
pos_label = 'true'
else:
pos_label = y_true[0]
elif task in consts.TASK_LIST_CLASSIFICATION and pos_label is not None:
if pos_label in y_true:
pos_label = pos_label
else:
pos_label = y_true[0]
else:
pos_label = None
return pos_label
metrics = metrics_.Metrics
_preqfold_cls = tscvsplit.PrequentialSplit
_greedy_ensemble_cls = ensemble.TSGreedyEnsemble
@classmethod
def preqfold(cls, strategy='preq-bls', base_size=None, n_splits=5, stride=1, *, max_train_size=None,
test_size=None, gap_size=0):
return cls._preqfold_cls(strategy=strategy, base_size=base_size, n_splits=n_splits, stride=stride,
max_train_size=max_train_size, test_size=test_size, gap_size=gap_size)
@classmethod
def greedy_ensemble(cls, task, estimators, need_fit=False, n_folds=5, method='soft', random_state=9527,
target_dims=1, scoring='neg_log_loss', ensemble_size=0):
return cls._greedy_ensemble_cls(task, estimators, need_fit=need_fit, n_folds=n_folds, method=method,
target_dims=target_dims, random_state=random_state, scoring=scoring,
ensemble_size=ensemble_size)
def _infer_ts_freq(df: pd.DataFrame, ts_name: str = consts.TIMESTAMP):
""" Infer the frequency of the time series.
Parameters
----------
ts_name: 'str', time column name.
"""
df[ts_name] = pd.to_datetime(df[ts_name])
df = df.sort_values([ts_name])
dateindex = pd.DatetimeIndex(df[ts_name])
freq = pd.infer_freq(dateindex)
if freq is not None:
return freq
else:
for i in range(len(df)):
freq = pd.infer_freq(dateindex[i:i + 3])
if freq != None:
return freq
return None
def _impute(values, offsets):
""" Index slide imputation.
Parameters
----------
offsets: list, offset lag.
"""
indices0, indices1 = np.where(np.isnan(values))
if len(indices0) > 0 and len(indices1) > 0:
padding = []
for offset in offsets:
offset_indices0 = indices0 + offset
start_bound_limit = np.where(indices0 + offset < 0)
end_bound_limit = np.where(indices0 + offset > len(values) - 1)
offset_indices0[start_bound_limit] = indices0[start_bound_limit]
offset_indices0[end_bound_limit] = indices0[end_bound_limit]
padding.append(values[(offset_indices0, indices1)])
values[(indices0, indices1)] = np.nanmean(padding, axis=0)
missing_rate = np.sum(np.isnan(values)) / values.size
else:
missing_rate = 0.
return values, missing_rate
def _expand_list(freq, pre_list):
try:
import re
s = int(re.findall(r'\d+', freq)[0])
return list(map(lambda x: x // s + 1, pre_list))
except:
return pre_list
__all__ = [
TSToolBox.__name__,
]
|
StarcoderdataPython
|
1655707
|
<filename>multiexplorer/wallet/migrations/0005_delete_cachedtransaction.py<gh_stars>10-100
# -*- coding: utf-8 -*-
# Generated by Django 1.9.2 on 2016-04-25 01:12
from __future__ import unicode_literals
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('wallet', '0004_cachedtransaction'),
]
operations = [
migrations.DeleteModel(
name='CachedTransaction',
),
]
|
StarcoderdataPython
|
81707
|
<gh_stars>10-100
# -*- coding: utf-8 -*-
from datetime import timedelta
from django.http import HttpResponse
from django.template import RequestContext
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from gui.utils import parse_date_range, country_sites
from gui.forms import TrendsPanelForm, SUM, AVERAGE
from core.decorators import log_activity
from core.general import catch_error, get_status, permission_required
from core.models import SITE_MODEL, ITEM_MODEL, user_country_access
from core.analytics import items_sum, items_average
@catch_error
@log_activity
@login_required
@permission_required
def trends_listings(request):
context = get_status(request)
context['app'] = 'items_panel'
context['country_sites'] = country_sites(user_country_access(request.user))
context['form'] = TrendsPanelForm(
user=request.user,
initial=request.session.get('form_session'))
return render_to_response('trends_panel.html', context,
context_instance=RequestContext(request))
@catch_error
@login_required
@permission_required
def trends_div(request):
context = get_status(request)
form = TrendsPanelForm(user=request.user, data=request.GET)
if not form.is_valid():
return render_to_response('main/form_error.html', context)
start_date, end_date = parse_date_range(form)
sites = [SITE_MODEL.objects.get(id=site_id) for site_id in
[int(site_id) for site_id in form.cleaned_data['players']]]
fields = form.cleaned_data['fields']
metric = form.cleaned_data['metric']
def get_items(start_date, end_date):
return ITEM_MODEL.objects.filter(site__in=sites,
date_time__gte=start_date,
date_time__lte=end_date)
def analyze_items(items, field):
if metric == SUM:
return items_sum(items, field)
elif metric == AVERAGE:
return items_average(items, field)
evolution = {}
for field in fields:
# Find how the field has evolved over time
# Step over every day between the start and end date
delta = (end_date - start_date)
metric_evolution = []
for i in range(delta.days + 1):
start_day = (start_date + timedelta(days=i))
end_day = start_day + timedelta(days=1)
items = get_items(start_day, end_day)
analysis = analyze_items(items, field)
if analysis:
metric_evolution += [(start_day.strftime('%s'), analysis)]
evolution[field] = metric_evolution
context['evolution'] = evolution
return render_to_response('trends_div.html', context,
context_instance=RequestContext(request))
|
StarcoderdataPython
|
20397
|
import torch
import numpy as np
PAD_TOKEN_INDEX = 0
def pad_masking(x, target_len):
# x: (batch_size, seq_len)
batch_size, seq_len = x.size()
padded_positions = x == PAD_TOKEN_INDEX # (batch_size, seq_len)
pad_mask = padded_positions.unsqueeze(1).expand(batch_size, target_len, seq_len)
return pad_mask
def subsequent_masking(x):
# x: (batch_size, seq_len - 1)
batch_size, seq_len = x.size()
subsequent_mask = np.triu(np.ones(shape=(seq_len, seq_len)), k=1).astype('uint8')
subsequent_mask = torch.tensor(subsequent_mask).to(x.device)
subsequent_mask = subsequent_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len)
return subsequent_mask
|
StarcoderdataPython
|
55179
|
from django.apps import AppConfig
class RealmConfig(AppConfig):
name = 'etools_permissions'
|
StarcoderdataPython
|
1770429
|
<filename>arxiv_latex_cleaner.py
# coding=utf-8
# Copyright 2018 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleans the LaTeX code of your paper to submit to arXiv."""
import argparse
import collections
import json
import os
import re
import shutil
from PIL import Image
# Fix for Windows: Even if '\' (os.sep) is the standard way of making paths on
# Windows, it interferes with regular expressions. We just change os.sep to '/'
# and os.path.join to a version using '/' as Windows will handle it the right
# way.
if os.name == 'nt':
global old_os_path_join
def new_os_join(path, *args):
res = old_os_path_join(path, *args)
res = res.replace('\\','/')
return res
old_os_path_join = os.path.join
os.sep = '/'
os.path.join = new_os_join
def _create_dir_erase_if_exists(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def _create_dir_if_not_exists(path):
if not os.path.exists(path):
os.makedirs(path)
def _keep_pattern(haystack, patterns_to_keep):
"""Keeps the strings that match 'patterns_to_keep'."""
out = []
for item in haystack:
if any((re.findall(rem, item) for rem in patterns_to_keep)):
out.append(item)
return out
def _remove_pattern(haystack, patterns_to_remove):
"""Removes the strings that match 'patterns_to_remove'."""
return [
item for item in haystack
if item not in _keep_pattern(haystack, patterns_to_remove)
]
def _list_all_files(in_folder, ignore_dirs=None):
if ignore_dirs is None:
ignore_dirs = []
to_consider = [
os.path.join(os.path.relpath(path, in_folder), name)
for path, _, files in os.walk(in_folder)
for name in files
]
return _remove_pattern(to_consider, ignore_dirs)
def _copy_file(filename, params):
_create_dir_if_not_exists(
os.path.join(params['output_folder'], os.path.dirname(filename)))
shutil.copy(
os.path.join(params['input_folder'], filename),
os.path.join(params['output_folder'], filename))
def _remove_comments(text):
"""Removes the comments from the string 'text'."""
if 'auto-ignore' in text:
return text
if text.lstrip(' ').startswith('%'):
return ''
match = re.search(r'(?<!\\)%', text)
if match:
return text[:match.end()] + '\n'
else:
return text
def _read_file_content(filename):
with open(filename, 'r') as fp:
return fp.readlines()
def _write_file_content(content, filename):
with open(filename, 'w') as fp:
return fp.write(content)
def _read_remove_comments_and_write_file(filename, parameters):
"""Reads a file, erases all LaTeX comments in the content, and writes it."""
_create_dir_if_not_exists(
os.path.join(parameters['output_folder'], os.path.dirname(filename)))
content = _read_file_content(
os.path.join(parameters['input_folder'], filename))
content_out = [_remove_comments(line) for line in content]
_write_file_content(''.join(content_out),
os.path.join(parameters['output_folder'], filename))
def _resize_and_copy_figure(filename,
origin_folder,
destination_folder,
dest_size=600):
"""Copies a file while erasing all the LaTeX comments in its content."""
_create_dir_if_not_exists(
os.path.join(destination_folder, os.path.dirname(filename)))
if os.path.splitext(filename)[1].lower() in ['.jpg', '.jpeg', '.png']:
im = Image.open(os.path.join(origin_folder, filename))
if max(im.size) > dest_size:
im = im.resize(
tuple([int(x * float(dest_size) / max(im.size)) for x in im.size]),
Image.ANTIALIAS)
if os.path.splitext(filename)[1].lower() in ['.jpg', '.jpeg']:
im.save(os.path.join(destination_folder, filename), 'JPEG', quality=90)
elif os.path.splitext(filename)[1].lower() in ['.png']:
im.save(os.path.join(destination_folder, filename), 'PNG')
else:
shutil.copy(
os.path.join(origin_folder, filename),
os.path.join(destination_folder, filename))
def _resize_and_copy_figures(parameters, splits):
out_size = collections.defaultdict(lambda: parameters['im_size'])
out_size.update(parameters['images_whitelist'])
for image_file in _keep_only_referenced(
splits['figures'],
[os.path.join(parameters['output_folder'], fn) for fn in splits['tex']]):
_resize_and_copy_figure(
image_file,
parameters['input_folder'],
parameters['output_folder'],
dest_size=out_size[image_file])
def _keep_only_referenced(filenames, container_files):
"""Returns the filenames referenced from the content of container_files."""
referenced = set()
for container in container_files:
with open(container, 'r') as fp:
data = fp.read()
for fn in filenames:
if os.path.splitext(fn)[0] in data:
referenced.add(fn)
return referenced
def _split_all_files(parameters):
"""Splits the files into types or location to know what to do with them."""
file_splits = {
'all':
_list_all_files(
parameters['input_folder'], ignore_dirs=['.git' + os.sep]),
'in_root': [
f for f in os.listdir(parameters['input_folder'])
if os.path.isfile(os.path.join(parameters['input_folder'], f))
]
}
file_splits['not_in_root'] = [
f for f in file_splits['all'] if f not in file_splits['in_root']
]
file_splits['to_copy_in_root'] = _remove_pattern(
file_splits['in_root'], parameters['to_delete_in_root'] +
parameters['figures_to_copy_if_referenced'])
file_splits['to_copy_not_in_root'] = _remove_pattern(
file_splits['not_in_root'], parameters['to_delete_in_root'] +
parameters['figures_to_copy_if_referenced'])
file_splits['figures'] = _keep_pattern(
file_splits['all'], parameters['figures_to_copy_if_referenced'])
file_splits['tex'] = _keep_pattern(
file_splits['to_copy_in_root'] + file_splits['to_copy_not_in_root'],
['.tex$'])
file_splits['non_tex'] = _remove_pattern(
file_splits['to_copy_in_root'] + file_splits['to_copy_not_in_root'],
['.tex$'])
return file_splits
def _create_out_folder(input_folder):
"""Creates the output folder, erasing it if existed."""
out_folder = input_folder.rstrip(os.sep) + '_arXiv'
_create_dir_erase_if_exists(out_folder)
return out_folder
def _handle_arguments():
"""Defines and returns the arguments."""
parser = argparse.ArgumentParser(
description=('Clean the LaTeX code of your paper to submit to arXiv. '
'Check the README for more information on the use.'))
parser.add_argument(
'input_folder', type=str, help='Input folder containing the LaTeX code.')
parser.add_argument(
'--im_size',
default=500,
type=int,
help=('Size of the output images (in pixels, longest side). Fine tune '
'this to get as close to 10MB as possible.'))
parser.add_argument(
'--images_whitelist',
default={},
type=json.loads,
help=('Images that won\'t be resized to the default resolution, but the '
'one provided here in a dictionary as follows '
'\'{"path/to/im.jpg": 1000}\''))
return vars(parser.parse_args())
def _run_arxiv_cleaner(parameters):
"""Core of the code, runs the actual arXiv cleaner."""
parameters.update({
'to_delete_in_root': [
'.aux$', '.sh$', '.bib$', '.blg$', '.log$', '.out$', '.ps$', '.dvi$',
'.synctex.gz$', '~$', '.backup$', '.gitignore$', '.DS_Store$', '.svg$'
],
'to_delete_not_in_root': ['.DS_Store$', '.gitignore$', '.svg$'],
'figures_to_copy_if_referenced': ['.png$', '.jpg$', '.jpeg$', '.pdf$']
})
splits = _split_all_files(parameters)
parameters['output_folder'] = _create_out_folder(parameters['input_folder'])
for non_tex_file in splits['non_tex']:
_copy_file(non_tex_file, parameters)
for tex_file in splits['tex']:
_read_remove_comments_and_write_file(tex_file, parameters)
_resize_and_copy_figures(parameters, splits)
def main():
command_line_parameters = _handle_arguments()
_run_arxiv_cleaner(command_line_parameters)
if __name__ == '__main__':
main()
|
StarcoderdataPython
|
1687307
|
# This file is part of rinohtype, the Python document preparation system.
#
# Copyright (c) <NAME>.
#
# Use of this source code is subject to the terms of the GNU Affero General
# Public License v3. See the LICENSE file or http://www.gnu.org/licenses/.
import os
from os import path
import docutils
from docutils.nodes import GenericNodeVisitor, SkipNode
from sphinx import addnodes
from sphinx.builders import Builder
from sphinx.locale import _
from sphinx.util.console import bold, darkgreen, brown
from sphinx.util.nodes import inline_all_toctrees
from sphinx.util.osutil import ensuredir, os_path, SEP
from sphinx.util import logging
from rinoh.flowable import StaticGroupedFlowables
from rinoh.highlight import pygments_style_to_stylesheet
from rinoh.index import IndexSection, IndexLabel, IndexEntry
from rinoh.language import Language
from rinoh.paper import A4, LETTER
from rinoh.style import StyleSheet
from rinoh.template import (DocumentTemplate, TemplateConfiguration,
TemplateConfigurationFile)
from rinoh.text import SingleStyledText
from rinoh import __version__ as rinoh_version
from rinoh.frontend.rst import ReStructuredTextReader
from . import nodes
logger = logging.getLogger(__name__)
class RinohTreePreprocessor(GenericNodeVisitor):
"""Preprocess the docutils document tree to prepare it for mapping to the
rinohtype document tree"""
def __init__(self, document, builder):
super().__init__(document)
self.default_highlight_language = builder.config.highlight_language
self.highlight_stack = [self.default_highlight_language]
self.current_docname = None
def default_visit(self, node):
try:
if 'refid' in node:
node['refid'] = fully_qualified_id(self.current_docname,
node['refid'])
elif 'refuri' in node and node.get('internal', False):
node['refid'] = node.attributes.pop('refuri')
ids, module_ids = [], []
for id in node['ids']:
if id.startswith('module-'):
module_ids.append(id)
else:
ids.append(fully_qualified_id(self.current_docname, id))
node['ids'] = ids + module_ids
except (TypeError, KeyError):
pass
def default_departure(self, node):
pass
def visit_start_of_file(self, node):
self.current_docname = node['docname']
self.highlight_stack.append(self.default_highlight_language)
def depart_start_of_file(self, node):
self.highlight_stack.pop()
def visit_highlightlang(self, node):
self.highlight_stack[-1] = node.get('lang')
raise SkipNode
def visit_rubric(self, node):
if node.children[0].astext() in ('Footnotes', _('Footnotes')):
node.tagname = 'footnotes-rubric' # mapped to a DummyFlowable
raise SkipNode
def visit_literal_block(self, node):
self.default_visit(node)
if 'language' not in node.attributes:
node.attributes['language'] = self.highlight_stack[-1]
class RinohBuilder(Builder):
"""Renders to a PDF using rinohtype."""
name = 'rinoh'
format = 'pdf'
supported_image_types = ['application/pdf', 'image/png', 'image/jpeg']
def get_outdated_docs(self):
return 'all documents'
def get_target_uri(self, docname, typ=None):
return '%' + docname
def get_relative_uri(self, from_, to, typ=None):
# ignore source
return self.get_target_uri(to, typ)
def preprocess_tree(self, tree):
"""Transform internal refuri targets in reference nodes to refids and
transform footnote rubrics so that they do not end up in the output"""
visitor = RinohTreePreprocessor(tree, self)
tree.walkabout(visitor)
def prepare_writing(self, docnames):
# toc = self.env.get_toctree_for(self.config.master_doc, self, False)
pass
def assemble_doctree(self, indexfile, toctree_only):
docnames = set([indexfile])
logger.info(darkgreen(indexfile) + " ", nonl=1)
tree = self.env.get_doctree(indexfile)
tree['docname'] = indexfile
new_tree = docutils.utils.new_document(tree['source'])
if toctree_only:
# extract toctree nodes from the tree and put them in a
# fresh document
for node in tree.traverse(addnodes.toctree):
new_tree += node
else:
for node in tree.children:
if node.tagname == 'section':
for child in node.children:
if child.tagname != 'title':
new_tree += child
else:
new_tree += node
largetree = inline_all_toctrees(self, docnames, indexfile, new_tree,
darkgreen, [indexfile])
largetree['docname'] = indexfile
logger.info("resolving references...")
self.env.resolve_references(largetree, indexfile, self)
# resolve :ref:s to distant tex files -- we can't add a cross-reference,
# but append the document name
for pendingnode in largetree.traverse(addnodes.pending_xref):
docname = pendingnode['refdocname']
sectname = pendingnode['refsectname']
newnodes = [nodes.emphasis(sectname, sectname)]
for subdir, title in self.titles:
if docname.startswith(subdir):
newnodes.append(nodes.Text(_(' (in '), _(' (in ')))
newnodes.append(nodes.emphasis(title, title))
newnodes.append(nodes.Text(')', ')'))
break
else:
pass
pendingnode.replace_self(newnodes)
return largetree, docnames
def generate_indices(self, docnames):
def index_flowables(content):
for section, entries in content:
yield IndexLabel(str(section))
for (name, subtype, docname, anchor, _, _, _) in entries:
target_ids = ([anchor] if anchor else None)
entry_name = SingleStyledText(name, style='domain')
yield IndexEntry(entry_name, level=2 if subtype == 2 else 1,
target_ids=target_ids)
indices_config = self.config.rinoh_domain_indices
if indices_config:
for domain in self.env.domains.values():
for indexcls in domain.indices:
indexname = '%s-%s' % (domain.name, indexcls.name)
if isinstance(indices_config, list):
if indexname not in indices_config:
continue
content, collapsed = indexcls(domain).generate(docnames)
if not content:
continue
index_section_label = str(indexcls.localname)
yield IndexSection(SingleStyledText(index_section_label),
index_flowables(content))
def init_document_data(self):
document_data = []
preliminary_document_data = [list(entry)
for entry in self.config.rinoh_documents]
if not preliminary_document_data:
logger.warning('no "rinoh_documents" config value found; '
'no documents will be written')
return
# assign subdirs to titles
self.titles = []
for entry in preliminary_document_data:
docname = entry[0]
if docname not in self.env.all_docs:
logger.warning('"rinoh_documents" config value references unknown '
'document %s' % docname)
continue
document_data.append(entry)
if docname.endswith(SEP + 'index'):
docname = docname[:-5]
self.titles.append((docname, entry[2]))
return document_data
def write(self, *ignored):
document_data = self.init_document_data()
for entry in document_data:
docname, targetname, title, author = entry[:4]
toctree_only = entry[4] if len(entry) > 4 else False
logger.info("processing " + targetname + "... ", nonl=1)
doctree, docnames = self.assemble_doctree(docname, toctree_only)
self.preprocess_tree(doctree)
self.post_process_images(doctree)
logger.info("rendering... ")
doctree.settings.author = author
doctree.settings.title = title
doctree.settings.docname = docname
self.write_doc(docname, doctree, docnames, targetname)
logger.info("done")
def write_doc(self, docname, doctree, docnames, targetname):
config = self.config
parser = ReStructuredTextReader()
rinoh_tree = parser.from_doctree(doctree['source'], doctree)
template_cfg = template_from_config(config, self.confdir, logger.warning)
rinoh_document = template_cfg.document(rinoh_tree)
extra_indices = StaticGroupedFlowables(self.generate_indices(docnames))
rinoh_document.insert('back_matter', extra_indices, 0)
rinoh_logo = config.rinoh_logo
if rinoh_logo:
rinoh_document.metadata['logo'] = rinoh_logo
rinoh_document.metadata['title'] = doctree.settings.title
rinoh_document.metadata['subtitle'] = ('Release {}'
.format(config.release))
rinoh_document.metadata['author'] = doctree.settings.author
outfilename = path.join(self.outdir, os_path(targetname))
ensuredir(path.dirname(outfilename))
rinoh_document.render(outfilename)
def template_from_config(config, confdir, warn):
template_cfg = {}
if isinstance(config.rinoh_template, str):
tmpl_path = path.join(confdir, config.rinoh_template)
if path.isfile(tmpl_path):
template_cfg['base'] = TemplateConfigurationFile(tmpl_path)
template_cls = template_cfg['base'].template
else:
template_cls = DocumentTemplate.from_string(config.rinoh_template)
elif isinstance(config.rinoh_template, TemplateConfiguration):
template_cfg['base'] = config.rinoh_template
template_cls = config.rinoh_template.template
else:
template_cls = config.rinoh_template
if isinstance(config.rinoh_stylesheet, str):
stylesheet_path = path.join(confdir, config.rinoh_stylesheet)
stylesheet = StyleSheet.from_string(stylesheet_path
if path.isfile(stylesheet_path)
else config.rinoh_stylesheet)
else:
stylesheet = config.rinoh_stylesheet
if config.pygments_style is not None:
if stylesheet is not None:
base = stylesheet
elif 'base' in template_cfg:
base = template_cfg['base']['stylesheet']
else:
base = template_cls.stylesheet.default_value
stylesheet = pygments_style_to_stylesheet(config.pygments_style, base)
if stylesheet is not None:
template_cfg['stylesheet'] = stylesheet
language = config.language
if language:
try:
template_cfg['language'] = Language.from_string(language)
except KeyError:
warn('The language "{}" is not supported by rinohtype.')
variables = {}
if config.rinoh_paper_size:
variables['paper_size'] = config.rinoh_paper_size
sphinx_config = template_cls.Configuration('Sphinx conf.py options',
**template_cfg)
sphinx_config.variables.update(variables)
return sphinx_config
def fully_qualified_id(docname, id):
return id if id.startswith('%') else '%' + docname + '#' + id
def info_config_conversion(config_option, latex_option=None):
latex_option = latex_option or config_option
print("'rinoh_{0}' config variable not set, automatically converting "
"from 'latex_{0}'".format(latex_option))
def default_documents(config):
def latex_document_to_rinoh_document(entry):
startdocname, targetname, title, author, documentclass = entry[:5]
toctree_only = entry[5] if len(entry) > 5 else False
targetname_root, _ = os.path.splitext(targetname)
return startdocname, targetname_root, title, author, toctree_only
info_config_conversion('documents')
return [latex_document_to_rinoh_document(entry)
for entry in config.latex_documents]
def default_paper_size(config):
info_config_conversion('elements/papersize')
latex_paper_size = config.latex_elements.get('papersize', 'letterpaper')
return dict(a4paper=A4, letterpaper=LETTER)[latex_paper_size]
def default_logo(config):
info_config_conversion('logo')
return config.latex_logo
def default_domain_indices(config):
info_config_conversion('domain_indices')
return config.latex_domain_indices
def setup(app):
app.add_builder(RinohBuilder)
app.add_config_value('rinoh_documents', default_documents, 'env')
app.add_config_value('rinoh_stylesheet', None, 'html')
app.add_config_value('rinoh_paper_size', default_paper_size, 'html')
app.add_config_value('rinoh_logo', default_logo, 'html')
app.add_config_value('rinoh_domain_indices', default_domain_indices, 'html')
app.add_config_value('rinoh_template', 'book', 'html')
return dict(version=rinoh_version)
|
StarcoderdataPython
|
4823462
|
<reponame>Puriney/scanpy
try:
from bbknn import bbknn
except ImportError:
def bbknn(*args, **kwargs):
raise ImportError('Please install BBKNN: `pip3 install bbknn`')
|
StarcoderdataPython
|
1749910
|
import numpy as np
def merge_data(data, metric):
merged_outcomes = {}
for key in data.keys():
results = data[key]
if metric == 1:
merged_outcomes[key] = list(map(np.mean, zip(*results)))
if metric == 2:
merged_outcomes[key] = list(map(min, zip(*results)))
if metric == 3:
merged_outcomes[key] = list(map(max, zip(*results)))
return merged_outcomes
|
StarcoderdataPython
|
3290797
|
<reponame>lowrybg/PythonAdvanced
def concatenate(*args):
return ''.join(args)
print(concatenate("Soft", "Uni", "Is", "Great", "!"))
|
StarcoderdataPython
|
98287
|
#!/usr/bin/env python
"""
MiP Sound tester.
To Use:
mip_test_sound.py -i hci0 -b D0:39:72:C4:7A:01 -s <n>
<n> 1 - 106
1 = beep
2 = burp
3 = ewwp - ah
4 = la la la la (lower)
5 = small raspberry?
6 = rerrr
7 = punching sound
8 = punching sound
9 = harder punching sound
10 = lep
11 = lep
12 = lep
13 = lep
14 = ahhh! (interested)
15 = arhhh! (disapointed)
16 = oh yeah
17 = meh (derogatory?)
18 = beh
19 = see yah?
20 = bad a bad a bad a (MiP talking to himself?)
21 = bad a bad a bad a (MiP talking to himself?)
22 = stop?
23 = goodnight?
24 = bang of drum
25 = bang of drum (different)
26 = Hi Yah!
27 = some word.. gay?
28 = Ha Ha Ha lep
29 = lets go!
30 = bah bah bah (low)
31 = her (low)
32 = eigh (something horrible)
33 = narrrh
34 = lets go it?
35 = hellllooo (sexy)
36 = bah? (questioning)
37 = ohaye
38 = huh?
39 = dur dur dur dur dooo (humming to himself)
40 = la la la la laaa (humming to himself)
41 = hah ha hah, hah hah hahaha...
42 = heaaahhh
43 = harp sound plus he says something
44 = lets MiP?
45 = talks to himself
46 = 'kay (as when in training mode)
47 = Music (part one)
48 = Music (part two)
49 = Out of power sound
50 = Happy!
51 = yeuh (collision warning sound in roam mode)
52 = Yah ha ha ha
53 = Music (MiP says music not plays it)
54 = oh ah (collision warning sound in roam mode)
55 = Oh Oh (something bad) (part of power down noise?)
56 = Oh yeah!
57 = high pitch 'Happy!'
58 = howell (sound when MiP sees a wall in cage mode?)
59 = howell (higher pitch)
60 = play
61 = lets fish?
62 = fire?
63 = click click
64 = rar
65 = la la la la la (derogatory sound)
66 = ah-choo (sneeze?)
67 = snoring
68 = feck?
69 = whish (sound made when recognising a gesture)
70 = whish (sound made when recognising a gesture)
71 = X?
72 = lets trick
73 = duh duh duh duh duh duh (cage escape sound)
74 = waaaah
75 = wakey wakey?
76 = yay
0xfd = 77 = roam whistle
78 = waaaaahhhh
79 = wuuuy (higher pitch)
80 = yeuh
81 = Yeah!
82 = You (low pitch)
83 = happy/snappy? (low pitch)
84 = oooee (low pitch)
85 = aaeeeh (higher pitch)
86 = ribit
87 = Boring
88 = errr (low pich)
89 = lets go
90 = yipppee! (higher pitch)
91 = ho ho ho ho ho
92 = crafteee?
93 = crafty
94 = ha ha
95 = this is mip (low pitch)
96 = sigharhhh
97 = MiP crying (lost the cage game?)
98 = nuh (low pitch)
99 = snifty?
100 = Aaahhhh (large sigh)
101 = funny little beeping sound
102 = drum
103 = laser beam
104 = swanny whistle sound
105 = No sound - stop sound playing
106 = mip
"""
import mippy
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test MiP Sounds.')
mippy.add_arguments(parser)
parser.add_argument(
'-s',
'--sound',
default=0x4d,
help='Specify sound number (1-106). 105 is no sound', type=int)
args = parser.parse_args()
gt = mippy.GattTool(args.adaptor, args.device)
mip = mippy.Mip(gt)
# roam whistle
mip.playSound(args.sound)
|
StarcoderdataPython
|
3375382
|
# Importing boto3, pickle
import boto3
import _pickle as pickle
# Creating the connection
ec2Client = boto3.client('ec2',
region_name='ap-south-1'
)
ec2 = boto3.resource('ec2',
region_name='ap-south-1',
)
# Checking what instances are running and specs
def printInstances():
instances = ec2.instances.filter(
Filters=[{'Name': 'instance-state-name', 'Values': ['running']}])
for instance in instances:
inst_names = [tag['Value'] for tag in instance.tags if tag['Key'] == 'Name']
print(inst_names, instance.id, instance.cpu_options, instance.instance_type, instance.architecture, instance.image_id,
instance.key_name) # Print Instance name, ID, CPU Spec, CPU Architecture, AMI ID, ssh-key name
# Generating ssh-key pairs
def sshKeyGen():
outfile = open('id_rsa_mainak.pem', 'w')
key_pair = ec2.create_key_pair(KeyName='id_rsa_mainak')
KeyPairOut = key_pair.key_material
print(str(KeyPairOut))
outfile.write(KeyPairOut)
outfile.close()
# Launch an instance
def launchInstance():
print("Input 1 for Intel instance \n"
"Input 2 for ARM instance")
num_input = int(input())
if num_input == 1:
ami_id = 'ami-0c1a7f89451184c8b'
instance_type = 't2.medium'
vm_name = 'intel-vm'
elif num_input == 2:
ami_id = 'ami-0d18acc6e813fd2e0'
instance_type = 't4g.medium'
vm_name = 'arm-vm'
else:
exit()
instance_list1 = ec2.create_instances(ImageId=ami_id,
MinCount=1,
MaxCount=1,
InstanceType=instance_type,
KeyName='id_rsa_mainak',
TagSpecifications=[
{
'ResourceType': 'instance',
'Tags': [{
'Key': 'Name',
'Value': vm_name
}]
}
],
BlockDeviceMappings=[
{
'DeviceName': '/dev/sda1',
'Ebs': {
'DeleteOnTermination': True,
'VolumeSize': 50,
'VolumeType': 'standard'
},
},
]
)
instance_list1[0].wait_until_running() # Waiting to launch before assigning the elastic IP address
eip = ec2Client.allocate_address(Domain='vpc')
print(eip)
with open('allocation.txt', 'wb') as f:
pickle.dump(eip, f)
with open('instance_id.txt', 'wb') as f:
pickle.dump(instance_list1[0].id, f)
ec2Client.associate_address(
InstanceId=instance_list1[0].id,
AllocationId=eip["AllocationId"])
# Release Elastic IP
def releaseEip():
with open("allocation.txt", 'rb') as f:
eip = pickle.load(f)
print(eip)
ec2Client.release_address(AllocationId=eip['AllocationId'])
print('Address released')
# Terminate Instances
def termInstance():
with open("instance_id.txt", 'rb') as f:
i_id = pickle.load(f)
ec2Client.terminate_instances(InstanceIds=[i_id])
print("Instance Terminated")
# Main function
if __name__ == "__main__":
print("Input 1 for List all VMs, Template IDs and CPU architectures \n"
"Input 2 for generate public and private key pairs \n"
"Input 3 for Launching VM Instance \n"
"Input 4 for Release Elastic IP \n"
"Input 5 for Delete VM ")
num = int(input())
if num == 1:
printInstances()
elif num == 2:
sshKeyGen()
elif num == 3:
launchInstance()
elif num == 4:
releaseEip()
elif num == 5:
termInstance()
else:
exit()
|
StarcoderdataPython
|
51763
|
<reponame>marcgarrofe/Twitter-Sentiment-Analysis
import pandas as pd
import numpy as np
def count_class_type(dataset: pd.DataFrame, column_label: str):
"""
Counts de class type of the dataset
:param dataset: Input data
:param column_label: Name of the column to be analyzed
"""
assert dataset.size > 0, 'count_class_type() : dataset empty'
assert column_label in dataset.columns, 'count_class_type() : column_label not in dataset'
zero_count = 0
one_count = 0
for value in dataset[column_label]:
if value == 0:
zero_count += 1
elif value == 1:
one_count += 1
print('\nClass Counter :')
print(' 0 appeared ', zero_count, ' times')
print(' 1 appeared ', one_count, ' times\n')
def confusion_matrix(actual: np.ndarray, predicted: np.ndarray):
"""
Given the actual classification (or true classification) and the predicted by the algorithm,
returns the confusion matrix
:param actual: True classification
:param predicted: Classification of the implemented algorithm. Example [[27, 2],[5, 22]]
:return:
"""
assert actual.size == predicted.size, 'confusion_matrix() : actual and predicted not the same size'
assert actual.size > 0, 'confusion_matrix() : actual empty'
matrix = np.array([[0, 0], [0, 0]])
for i in range(actual.size):
if actual[i] == predicted[i]:
if actual[i] == 1:
matrix[0][0] += 1
else:
matrix[1][1] += 1
else:
if actual[i] == 1:
matrix[1][0] += 1
else:
matrix[0][1] += 1
return matrix
def accuracy(conf_matrix: np.ndarray):
"""
Accuracy = ( TP + TN ) / ( TP + FP + FN + TN )
:param conf_matrix: Input confusion matrix
:return: accuracy calculated from the confusion matrix
"""
return (conf_matrix[0][0] + conf_matrix[1][1]) / (conf_matrix[0][0] + conf_matrix[0][1]
+ conf_matrix[1][0] + conf_matrix[1][1])
def precision(conf_matrix: np.ndarray):
"""
Precision = TP / ( TP + FP )
:param conf_matrix: Input confusion matrix
:return: precision calculated from the confusion matrix
"""
return conf_matrix[0][0] / (conf_matrix[0][0] + conf_matrix[0][1])
def recall(conf_matrix: np.ndarray):
"""
Recall = TP / ( TP + FN )
:param conf_matrix: Input confusion matrix
:return: recall calculated from the confusion matrix
"""
return conf_matrix[0][0] / (conf_matrix[0][0] + conf_matrix[1][0])
|
StarcoderdataPython
|
3374929
|
<filename>tests/test_pandas.py
import os
import bln
import pandas as pd
bln.pandas.register(pd)
def test_pandas_read():
"""Test the `read_bln` method."""
project_id = "UHJvamVjdDpiZGM5NmU1MS1kMzBhLTRlYTctODY4Yi04ZGI4N2RjMzQ1ODI="
file_name = "ia.csv"
tier = os.getenv("BLN_TEST_ENV", "dev")
df = pd.read_bln(project_id, file_name, tier=tier)
assert len(df) > 0
def test_pandas_write():
"""Test the `writer_bln` method."""
df = pd.read_csv("tests/test.csv")
project_id = "UHJvamVjdDpiZGM5NmU1MS1kMzBhLTRlYTctODY4Yi04ZGI4N2RjMzQ1ODI="
file_name = "test.csv"
tier = os.getenv("BLN_TEST_ENV", "dev")
df.to_bln(project_id, file_name, tier=tier, index=False)
|
StarcoderdataPython
|
174996
|
from apiclient import errors
from apiclient.http import BatchHttpRequest
class Gmail(object):
def __init__(self, http, service):
self.connected = False
self.labels = {}
self.events = {
'on_message': []
}
self._http = http
self._service = service
self._users = service.users()
self._labels = self._get_labels()
self._start()
self.connected = True
def _start(self):
for label in self._labels:
self.labels[label['id']] = label['name']
def _get_labels(self):
try:
results = self._users.labels().list(userId='me').execute()
labels = results.get('labels', [])
except errors.HttpError:
labels = {}
return labels
def _get_message_ids(self, max_results, label_ids, page_token):
try:
if not page_token:
response = self._users.messages().list(userId='me',
labelIds=label_ids,
maxResults=max_results
).execute()
else:
response = self._users.messages().list(userId='me',
labelIds=label_ids,
maxResults=max_results,
pageToken=page_token
).execute()
return response
except (errors.HttpError, ConnectionResetError):
return None
def get_messages(self, max_results=10, request_format=None,
label_ids=[], page_token=None):
response = self._get_message_ids(max_results, label_ids, page_token)
if not response:
return []
if not request_format:
request_format = 'metadata'
messages = []
def on_get_message(request_id, response, exception):
if exception is not None:
return
messages.append(response)
batch = BatchHttpRequest(callback=on_get_message)
try:
for message in response['messages']:
# message_ids.append(message['id'])
batch.add(self._users.messages().get(id=message['id'],
userId='me',
format=request_format))
batch.execute(http=self._http)
except KeyError:
return messages
return messages
def get_message_raw(self, message_id):
response = self._users.messages().get(id=message_id,
userId='me',
format='raw').execute()
return response['raw']
def modify_message(self, message_id, removeLabelIds=[], addLabelIds=[]):
try:
body = {'addLabelIds': addLabelIds,
'removeLabelIds': removeLabelIds}
response = self._users.messages().modify(id=message_id,
userId='me',
body=body).execute()
return response
except errors.HttpError as error:
print(error)
def trash_message(self, message_id):
try:
self._users.messages().trash(id=message_id,
userId='me').execute()
except errors.HttpError as error:
print(error)
|
StarcoderdataPython
|
6782
|
from selenium import webdriver
from time import sleep
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
def Dm(driver,user,message):
''' This function is used to direct message a single user/group '''
driver.get('https://www.instagram.com/direct/inbox/')
send_message_button = WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="react-root"]/section/div/div[2]/div/div/div[2]/div/div[3]/div/button'))).click()
search_user = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div[5]/div/div/div[2]/div[1]/div/div[2]/input')))
search_user.send_keys(user)
selector = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div[5]/div/div/div[2]/div[2]/div/div/div[3]/button/span'))).click()
next_button = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div[5]/div/div/div[1]/div/div[2]/div/button/div'))).click()
try:
text = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="react-root"]/section/div/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div/div[2]/textarea')))
text.send_keys(message)
send = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="react-root"]/section/div/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div/div[3]/button'))).click()
driver.get('https://www.instagram.com/direct/inbox/')
except:
print('No message sent to '+user)
driver.get('https://www.instagram.com/direct/inbox/')
|
StarcoderdataPython
|
76806
|
<gh_stars>0
from flask import Blueprint, render_template, url_for, flash, redirect, session, request
from werkzeug.security import generate_password_hash, check_password_hash
from forms import UserForm, NewsForm
from functools import wraps
from application import db
from modules import User, News
from datetime import datetime
admin = Blueprint('admin', __name__)
# 定义一个实现访问控制的装饰器 admin_login_require
def admin_login_require(f):
# 使用functools.wraps装饰器装饰内函数wrapper,从而可以保留被修饰的函数属性
@wraps(f)
def wrapper(*args, **kwargs):
# 判断是否登录
if 'userid' not in session:
# 如果session中没有userid的键名,则重定向到登录页
return redirect(url_for('admin.login'))
return f(*args, **kwargs)
return wrapper
@admin.route('/login', methods=['GET', 'POST'])
def login():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
user = User.query.filter_by(username=username, is_valid=1).first()
if user and check_password_hash(user.password, password):
session['username'] = user.username
session['userid'] = user.id
return redirect(url_for('admin.index'))
else:
flash("您输入的用户名或密码错误", category='error')
return render_template('admin/login.html')
@admin.route('/')
@admin_login_require
def index():
return render_template('admin/index.html')
# 退出
@admin.route('/logout')
# @admin_login_require
def logout():
session.pop('username', None)
session.pop('userid', None)
return redirect(url_for('admin.login'))
# 修改密码
@admin.route('/changePassword', methods=['GET', 'POST'])
@admin_login_require
def changePassword():
print(session['username'],session['userid'])
_id = session['userid']
user1 = User.query.get(_id)
form = UserForm(obj=user1)
if form.validate_on_submit():
user1.password = generate_password_hash(form.password.data)
db.session.add(user1)
db.session.commit()
flash('修改密码成功! 请重新登录')
return redirect(url_for('admin.login'))
return render_template('admin/changePassword.html', form=form)
@admin.errorhandler(404)
def get_error(error):
return render_template('admin/error.html'), 404
@admin.route('/user/')
@admin.route('/user/<int:page>')
@admin_login_require
def manager_user(page=None):
# 分页查询
if page is None:
page = 1
# 接收查询的值
keyword = request.args.get('search')
if keyword:
try:
user_list = User.query.filter(User.username.contains(keyword)).\
order_by(User.id).\
paginate(page=page, per_page=2)
condition = "?search=" + keyword
return render_template('admin/user_index.html', user_list=user_list, condition=condition)
except:
flash('搜索失败!')
else:
user_list = User.query.paginate(page=page, per_page=5)
return render_template('admin/user_index.html', user_list=user_list)
@admin.route('/user/add', methods=['GET', 'POST'])
@admin_login_require
def user_add():
form = UserForm()
# print(form.__dict__)
# 判断表单是否通过
try:
if form.validate_on_submit():
user = User(form.username.data,
form.password.data,
form.is_valid.data)
db.session.add(user)
db.session.commit()
flash('添加成功!')
return redirect(url_for('admin.manager_user'))
except:
flash('你输入的用户名已存在!', category='error')
return render_template('admin/user_add.html', form=form)
@admin.route('/user/delete/<int:_id>')
@admin_login_require
def delete_user(_id=None):
try:
user = User.query.get(_id)
db.session.delete(user)
db.session.commit()
flash('删除成功!')
return redirect(url_for('admin.manager_user'))
except:
flash('删除失败!', category='error')
@admin.route('/user/update/<int:_id>', methods=['GET', 'POST'])
@admin_login_require
def update_user(_id):
user = User.query.get(_id)
if user is None:
return redirect(url_for('admin.manager_user'))
form = UserForm(obj=user)
if form.validate_on_submit():
try:
user.username = form.username.data
user.password = <PASSWORD>_password_hash(form.password.data)
user.is_valid = form.is_valid.data
db.session.add(user)
db.session.commit()
flash('成功修改管理员')
except:
flash('您输入的用户名已存在!', category='error')
return render_template('admin/user_update.html', form=form)
@admin.route('/detail')
@admin_login_require
def news_detail():
news_list = News.query.all()
return render_template('admin/news_detail.html', news_list=news_list)
@admin.route('/detail/add', methods=['GET', 'POST'])
@admin_login_require
def news_add():
form = NewsForm()
form.created_at.data = datetime.now()
try:
if form.validate_on_submit():
news = News(form.title.data,
form.content.data,
form.types.data,
form.img_url.data,
form.author.data,
form.view_count.data,
form.created_at.data,
form.is_valid.data,
form.is_recommend.data)
db.session.add(news)
db.session.commit()
flash('添加新闻成功!')
return redirect(url_for('admin.news_detail'))
except:
flash('添加新闻失败!', category='error')
return render_template('admin/news_add.html', form=form)
|
StarcoderdataPython
|
1775058
|
<gh_stars>1-10
import cv2
from plantcv.plantcv import rgb2gray
def test_rgb2gray(test_data):
"""Test for PlantCV."""
# Read in test data
img = cv2.imread(test_data.small_rgb_img)
gray_img = rgb2gray(rgb_img=img)
# Assert that the output image has the dimensions of the input image but is only a single channel
assert img.shape[:2] == gray_img.shape
|
StarcoderdataPython
|
69877
|
import re
import pytest
import responses
from quickbuild import QBError
DASHBOARDS_XML = r"""<?xml version="1.0" encoding="UTF-8"?>
<list>
<com.pmease.quickbuild.model.Dashboard>
<id>1</id>
<user>1</user>
<name>Default</name>
<description>System default dashboard</description>
<primary>false</primary>
<columns>
<com.pmease.quickbuild.web.page.dashboard.LayoutColumn>
<width>100</width>
<gadgetDOMs>
<com.pmease.quickbuild.web.gadget.ConfigurationTreeGadget revision="0.0.1">
<title>All Configurations</title>
<treeRoot>1</treeRoot>
<displayTreeRoot>true</displayTreeRoot>
<displaySchedule>false</displaySchedule>
<displayRequestCount>true</displayRequestCount>
<displayHistoryCount>true</displayHistoryCount>
</com.pmease.quickbuild.web.gadget.ConfigurationTreeGadget>
</gadgetDOMs>
</com.pmease.quickbuild.web.page.dashboard.LayoutColumn>
</columns>
</com.pmease.quickbuild.model.Dashboard>
</list>
"""
DASHBOARD_INFO_XML = r"""<?xml version="1.0" encoding="UTF-8"?>
<com.pmease.quickbuild.model.Dashboard>
<id>1</id>
<user>1</user>
<name>Default</name>
<description>System default dashboard</description>
<primary>false</primary>
<columns>
<com.pmease.quickbuild.web.page.dashboard.LayoutColumn>
<width>100</width>
<gadgetDOMs>
<com.pmease.quickbuild.web.gadget.ConfigurationTreeGadget revision="0.0.1">
<title>All Configurations</title>
<treeRoot>1</treeRoot>
<displayTreeRoot>true</displayTreeRoot>
<displaySchedule>false</displaySchedule>
<displayRequestCount>true</displayRequestCount>
<displayHistoryCount>true</displayHistoryCount>
</com.pmease.quickbuild.web.gadget.ConfigurationTreeGadget>
<com.pmease.quickbuild.plugin.report.changes.gadget.CommitStatsGadget revision="0.0.0.0.0.0">
<title>Commits</title>
<configurationPath>root</configurationPath>
<reportsets/>
<indicators>
<string>Commits</string>
<string>Modifications</string>
</indicators>
<groupBy>BY_DAY</groupBy>
<excludingFailed>false</excludingFailed>
<ignoreNoBuildDays>false</ignoreNoBuildDays>
</com.pmease.quickbuild.plugin.report.changes.gadget.CommitStatsGadget>
</gadgetDOMs>
</com.pmease.quickbuild.web.page.dashboard.LayoutColumn>
</columns>
</com.pmease.quickbuild.model.Dashboard>
"""
DASHBOARD_INFO_JSON = """{
"id" : 1,
"user" : 1,
"name" : "Default",
"description" : "System default dashboard",
"primary" : false,
"columns" : [ {
"width" : 100,
"gadgetDOMs" : [ {
"title" : "All Configurations",
"treeRoot" : 1,
"displayTreeRoot" : true,
"displaySchedule" : false,
"displayRequestCount" : true,
"displayHistoryCount" : true,
"@class" : "com.pmease.quickbuild.web.gadget.ConfigurationTreeGadget"
}, {
"title" : "Commits",
"configurationPath" : "root",
"reportsets" : [ ],
"indicators" : [ "Commits", "Modifications" ],
"groupBy" : "BY_DAY",
"excludingFailed" : false,
"ignoreNoBuildDays" : false,
"@class" : "com.pmease.quickbuild.plugin.report.changes.gadget.CommitStatsGadget"
} ]
} ]
}
"""
@responses.activate
def test_get(client):
responses.add(
responses.GET,
re.compile(r'.*/rest/dashboards'),
content_type='application/xml',
body=DASHBOARDS_XML,
)
response = client.dashboards.get()
assert len(response) == 1
assert response[0]['id'] == 1
assert response[0]['user'] == 1
assert response[0]['name'] == 'Default'
assert response[0]['primary'] is False
assert response[0]['columns'][0]['width'] == 100
@responses.activate
def test_get_info(client):
responses.add(
responses.GET,
re.compile(r'.*/rest/dashboards'),
content_type='application/xml',
body=DASHBOARD_INFO_XML,
)
response = client.dashboards.get_info(1)
assert response['@class'] == 'com.pmease.quickbuild.model.Dashboard'
assert response['id'] == 1
assert response['columns'][0]['gadgetDOMs'][0]['@revision'] == '0.0.1'
@responses.activate
def test_update(client):
responses.add(
responses.POST,
re.compile(r'.*/rest/dashboards'),
content_type='application/xml',
body='10',
)
response = client.dashboards.update(DASHBOARD_INFO_XML)
assert response == 10
@responses.activate
def test_create(client):
responses.add(
responses.POST,
re.compile(r'.*/rest/dashboards'),
content_type='application/xml',
body='11',
)
configuration_without_id = DASHBOARD_INFO_XML.replace('<id>1</id>', '')
response = client.dashboards.create(configuration_without_id)
assert response == 11
with pytest.raises(QBError):
client.dashboards.create(DASHBOARD_INFO_XML)
with pytest.raises(QBError):
client.dashboards.create(DASHBOARD_INFO_JSON)
@responses.activate
def test_delete(client):
responses.add(
responses.DELETE,
re.compile(r'.*/rest/dashboards'),
body='12',
)
response = client.dashboards.delete(12)
assert response == 12
|
StarcoderdataPython
|
3392951
|
<filename>server/inv/site.py
from flask import Blueprint, redirect, url_for, render_template
site = Blueprint('site',__name__,template_folder='templates')
@site.route('/', methods=['GET'])
def home():
return redirect(url_for('site.about'))
@site.route('/about', methods=['GET'])
def about():
return render_template('about.html')
@site.route('/doc', methods=['GET'])
def doc():
return render_template('doc.html')
@site.route('/support', methods=['GET'])
def support():
return render_template('support.html')
|
StarcoderdataPython
|
1621581
|
from django.contrib import admin
from django.utils.translation import ugettext_lazy as _
from flier.admin import register
from flier.utils import render
class MailAdmin(admin.ModelAdmin):
list_filter = ('status', )
list_excludes = ('body', 'html', )
list_additionals = ('instance_link', )
readonly_fields = ('instance_link', )
raw_id_fields = ('sender', )
def instance_link(self, obj):
p = dict(
id=obj.instance.id, a=obj.instance._meta.app_label,
m=obj.instance._meta.model_name)
p['u'] = "admin:{a}_{m}_change".format(**p)
return render(u'''
<a href="{% url u id %}">{{a}}.{{m}}</a>
''', **p)
instance_link.short_description = _('Concret Instance')
class MailTemplateAdmin(admin.ModelAdmin):
list_excludes = ('body', 'html', )
class NotificationAdmin(admin.ModelAdmin):
raw_id_fields = ['sender', 'content_type', ]
register(__name__, globals())
|
StarcoderdataPython
|
160498
|
#!/usr/bin/env /Users/alexrudy/.pyenv/versions/bitly-boto/bin/python
import subprocess
import click
import re
import tempfile
import shlex
import os
import typing as t
from pathlib import Path
from collections import OrderedDict
@click.command()
@click.option(
"--name", type=str, help="Name of the GCE instance to query for.", required=True
)
@click.option("--username", type=str, help="Username for the GCE instance")
@click.option("--hostname", type=str, help="Hostname in the SSH Config.")
@click.option("--config", type=str, help="Path to the SSH Config to update.")
@click.option(
"--key-file", type=str, default="~/.ssh/id_rsa", help="Path to SSH key file"
)
@click.option("--zone", type=str, help="GCE Zone")
def main(name, hostname, username, config, key_file, zone):
"""Find a GCE box by name and print the IP address for it.
Optionally, update the `HOSTNAME` line in an SSH config
"""
key_file = os.path.expanduser(key_file)
args = [
"gcloud",
"compute",
"ssh",
f"{username}@{name}",
f"--ssh-key-file={key_file}",
"--dry-run",
]
if zone:
args.append(f"--zone={zone}")
raw_cmd = subprocess.check_output(
args
).decode('utf-8').strip()
args = shlex.split(raw_cmd)
user, address = args[-1].split("@", 1)
config_options = {}
for i, arg in enumerate(args):
if arg == "-o":
copt = args[i + 1]
name, value = copt.split("=", 1)
config_options[name.lower()] = value
click.echo(f"IP: {address}")
config_options['hostname'] = address
config_options['user'] = user
if config is not None and hostname is not None:
click.echo(f"Updating {config!s} {hostname}")
update_config(config, hostname, config_options)
def update_config(config, hostname, config_options):
"""Update the SSH Config with a new IP address"""
target = Path(config)
with tempfile.TemporaryDirectory() as tmpdirname:
target_backup = Path(tmpdirname) / target.name
with target_backup.open("w") as out_stream, target.open("r") as in_stream:
for line in iter_new_config(in_stream, hostname, config_options):
out_stream.write(line)
target_backup.replace(target)
class Entry(t.NamedTuple):
line: str
match: t.Optional[re.Match]
@property
def key(self) -> t.Optional[str]:
return self.match.group('key').lower() if self.match else None
@property
def value(self) -> t.Optional[str]:
return self.match.group('value')
@classmethod
def parse(cls, line) -> t.Optional["Entry"]:
m = re.match(r"^(?P<indent>\s*)(?P<key>\w+)(?P<sep>=|\s+)(?P<value>\S.+\S?)(?P<comment>\s+#.+)?$", line, flags=re.I)
return cls(line, m)
def replace(self, value: str):
return self.match.expand("\g<indent>\g<key>\g<sep>") + value + self.match.expand("\g<comment>") + "\n"
def iter_new_config(lines, target_host, new_options):
options = set()
new_options = {k.lower().strip():v for k,v in new_options.items()}
# Construct the entire config in memory
config = OrderedDict()
current_hosts = frozenset()
for line in lines:
entry = Entry.parse(line)
if entry.key == 'host':
current_hosts = frozenset(entry.value.split())
config[current_hosts] = host_config = OrderedDict()
host_config[entry.key] = entry
else:
host_config[entry.key] = entry
# Iterate and retrun modified configuration
for hosts, host_config in config.items():
for entry in host_config.values():
line = entry.line
if target_host in hosts and entry.key in new_options:
new_value = new_options[entry.key]
if new_value != entry.value:
line = entry.replace(new_value)
options.add(entry.key)
yield line
if not options:
raise ValueError("No options were replaced")
if __name__ == "__main__":
main(auto_envvar_prefix="GET_GCP_IP")
|
StarcoderdataPython
|
3299655
|
"""Comment CRUD functionality"""
from app.api.v2.dbmodel import QuestionerDb
class CommentModel:
"""Comment class model"""
def create_comment(self, question, comment):
"""Method to create a comment"""
comment_query = """INSERT INTO comments
(question, comment)
VALUES (%s, %s)
RETURNING question, comment"""
comment_tuple = (question, comment)
response = QuestionerDb.add_to_db(comment_query, comment_tuple)
return response
|
StarcoderdataPython
|
144508
|
<gh_stars>0
import os
import re
import sys
import subprocess
# Use the official chef lex file
# Compile from source each time
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'swedish_chef.l')
COMPILE_CMD = "lex -o /tmp/swedish_chef.c {0} && cc /tmp/swedish_chef.c -o /tmp/swedish_chef -ll".format(path)
subprocess.Popen(COMPILE_CMD, stdout=subprocess.PIPE, shell=True).wait()
RUN_CMD = "/tmp/swedish_chef"
def filter(text):
"""
>>> filter("Turn flash on.")
'Toorn flesh oon.'
>>> filter("Cancel")
'Cuncel'
>>> filter("card.io")
'cerd.iu'
"""
p = subprocess.Popen(RUN_CMD, stdout=subprocess.PIPE, stdin=subprocess.PIPE)
stdout, stderr = p.communicate(input=text)
return stdout
if __name__ == "__main__":
import doctest
doctest.testmod()
|
StarcoderdataPython
|
1739710
|
#!/usr/bin/env python3
import argparse
import os
import sys
import json
import numpy as np
PROG = os.path.basename(sys.argv[0])
def main():
parser = argparse.ArgumentParser(
description='Fix a raman.json file created before 99e7a42a5 (June 14)',
)
parser.add_argument('INPUT', nargs='*')
parser.add_argument(
'--temperature', type=float,
help="specify temperature, for double checking that the missing prefactor matches expectation.",
)
parser.add_argument(
'--mistake-no', type=parse_mistake, default=1,
help="which mistake defines our expectation?"
" 1: first mistake (completely missing),"
" 2: second mistake (missing sqrt),"
" *: any of the above mistakes",
)
args = parser.parse_args()
for path in args.INPUT:
corrected_loc = path + '.corrected'
with open(path) as f:
d = json.load(f)
frequencies = np.array(d['frequency'])
correct_averages = np.array(d['average-3d'])
recorded_tensors = np.array(d['raman-tensor'])
actual_averages = np.sum(recorded_tensors**2, axis=(1,2)) / 9
if np.allclose(correct_averages, actual_averages, rtol=1e-10, atol=0):
continue
missing_prefactors = correct_averages / actual_averages
missing_prefactors[frequencies <= 0] = 0
if args.temperature is not None:
if check_expected_prefactors(frequencies, temperature=args.temperature, mistake=args.mistake_no, missing_prefactors=missing_prefactors):
warn(f"{path} has missing prefactors that match expectation")
else:
warn(f"{path} has missing prefactors that DO NOT match expectation!!")
# print(np.hstack([correct_averages[:, None], actual_averages[:, None]]), file=sys.stderr)
# print(np.hstack([expected_prefactors[:, None], missing_prefactors[:, None]]), file=sys.stderr)
else:
warn(f"{path} has missing prefactors")
warn(f"Writing {corrected_loc}")
correct_tensors = recorded_tensors * np.sqrt(missing_prefactors[:, None, None])
d['raman-tensor'] = correct_tensors.tolist()
with open(corrected_loc, 'w') as f:
json.dump(d, f)
print(file=f)
ANY_MISTAKE = object()
def parse_mistake(s):
if s == '*':
return ANY_MISTAKE
elif s in '12':
return int(s)
else:
raise ValueError(f'invalid mistake: {repr(s)}')
def check_expected_prefactors(frequencies, temperature, missing_prefactors, mistake):
if mistake is ANY_MISTAKE:
return any(
check_expected_prefactors(
frequencies=frequencies,
temperature=temperature,
missing_prefactors=missing_prefactors,
mistake=m,
) for m in [1, 2]
)
hk = 0.22898852319
if temperature == 0:
bose_occupation = 1
else:
expm1 = np.expm1(hk * frequencies / temperature)
bose_occupation = (1.0 + 1.0 / expm1)
prefactors = bose_occupation / frequencies
if mistake == 1:
expected_prefactors = np.where(frequencies <= 0.0, 0.0, prefactors)
elif mistake == 2:
expected_prefactors = np.where(frequencies <= 0.0, 0.0, prefactors ** -1)
else:
raise ValueError('mistake')
return np.allclose(expected_prefactors, missing_prefactors, atol=0)
# ------------------------------------------------------
def warn(*args, **kw):
print(f'{PROG}:', *args, file=sys.stderr, **kw)
def die(*args, code=1):
warn('Fatal:', *args)
sys.exit(code)
# ------------------------------------------------------
if __name__ == '__main__':
main()
|
StarcoderdataPython
|
4818816
|
from . import basicauth, jwt
from .. import exceptions
token_identifiers = [
jwt.parse,
basicauth.parse,
]
def identify(region, service, headers):
for fn in token_identifiers:
try:
return fn(region, service, headers)
except exceptions.Unsigned:
continue
raise exceptions.Unsigned()
|
StarcoderdataPython
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.