id
stringlengths 1
7
| text
stringlengths 6
1.03M
| dataset_id
stringclasses 1
value |
---|---|---|
108514
|
# ======================================================================
# Disk Defragmenter
# Advent of Code 2017 Day 14 -- <NAME> -- https://adventofcode.com
#
# Computer simulation by Dr. <NAME> III
# ======================================================================
# ======================================================================
# d e f r a g . p y
# ======================================================================
"A solver for Disk Defragmenter for Advent of Code 2017 Day 14"
# ----------------------------------------------------------------------
# import
# ----------------------------------------------------------------------
import knots
# ----------------------------------------------------------------------
# constants
# ----------------------------------------------------------------------
HEX_TO_BITS = {
'0': [0, 0, 0, 0],
'1': [0, 0, 0, 1],
'2': [0, 0, 1, 0],
'3': [0, 0, 1, 1],
'4': [0, 1, 0, 0],
'5': [0, 1, 0, 1],
'6': [0, 1, 1, 0],
'7': [0, 1, 1, 1],
'8': [1, 0, 0, 0],
'9': [1, 0, 0, 1],
'a': [1, 0, 1, 0],
'b': [1, 0, 1, 1],
'c': [1, 1, 0, 0],
'd': [1, 1, 0, 1],
'e': [1, 1, 1, 0],
'f': [1, 1, 1, 1],
}
DELTA = [(0, -1), (0, 1), (1, 0), (-1, 0)]
# ======================================================================
# Defrag
# ======================================================================
class Defrag(object): # pylint: disable=R0902, R0205
"""Object for a disk defragmenter"""
def __init__(self, size=128, text=None, part2=False):
# 1. Set the initial values
self.part2 = part2
self.text = text
self.size = size
self.bits = [[0 for _ in range(size)] for _ in range(size)]
self.region = None
# 2. if there is text, use key to populate bits
if text is not None:
self.populate_bits()
def __getitem__(self, key):
return self.bits[key[1]][key[0]]
def __setitem__(self, key, value):
self.bits[key[1]][key[0]] = value
def is_key_valid(self, key):
"Check if the key is valid for getting a bit"
if key[0] < 0 or key[0] >= self.size or key[1] < 0 or key[1] >= self.size:
return False
return True
def populate_bits(self):
"Populate the bits from the knot hash"
# 0. Precondition axiom
assert self.size <= 128
# 1. loop for each row of bits
for rnum in range(self.size):
# 2. Generate row key
row_key = self.text + '-%d' % rnum
# 3. Get the dense hash
knot = knots.Knots(length=256, part2=True)
# 4. Get the dense hash
dense_hash = knot.process_knots(text=row_key, verbose=False)
# 5. Convert the dense_hash to bits
bits = self.hash_to_bits(dense_hash)
# 6. Save the bits
self.bits[rnum] = bits
def hash_to_bits(self, dense_hash):
"Turn a dense hash into bits"
# 0. Precondition axiom
assert self.size <= 128
# 1. Start with nothing
result = []
# 2. Loop for all of the hex digits
for digit in dense_hash:
# 3. Add the bits to the result
result.extend(HEX_TO_BITS[digit])
# 4. Return the bits
return result[0:self.size]
def bits_to_regions(self, verbose=False):
"Group the bits into regions"
# 1. Set initial region number
self.region = 2
# 2. Loop for every row and every column
for rnum in range(self.size):
for cnum in range(self.size):
# 3. Ignore unused squares or one already in regions
if self[(cnum, rnum)] != 1:
continue
# 4. This square is now a region
if verbose:
print("Starting region %d at (%d, %d" %
(self.region, cnum, rnum))
self[(cnum, rnum)] = self.region
# 5. Add neighbors of this square to the region
self.add_neighbors(cnum, rnum)
# 6. Increment region number
self.region += 1
def add_neighbors(self, cnum, rnum):
"Add neighboring squares to an existing region"
# 1. Add the neighbors of the given square
for delta in DELTA:
# 2. Determine the square of the neighbot
ncol = cnum + delta[0]
nrow = rnum + delta[1]
# 3. Ignore the neighbor if invalid location
if not self.is_key_valid((ncol, nrow)):
continue
# 4. Ignore the neighbor if empty or already in region
if self[(ncol, nrow)] != 1:
continue
# 5. This square is now in the region
self[(ncol, nrow)] = self.region
# 6. Add the neighbors of this square
self.add_neighbors(ncol, nrow)
def part_one(self, verbose=False, limit=0):
"Returns the number of squares used"
# 1. Start with nothing
result = 0
# 2. Loop for all of the rows
for row in self.bits:
# 3. Add up the bits in the row and accumulate the result
result += sum(row)
# 4. Return the number of bits used
return result
def part_two(self, verbose=False, limit=0):
"Returns the number of squares used"
# 1. Convert bits to regions
self.bits_to_regions(verbose=verbose)
# 2. Return the number of regions
return self.region - 2
# ----------------------------------------------------------------------
# module initialization
# ----------------------------------------------------------------------
if __name__ == '__main__':
pass
# ======================================================================
# end d e f r a g . p y end
# ======================================================================
|
StarcoderdataPython
|
1747130
|
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "LICENSE.txt" file accompanying this file.
# This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied.
# See the License for the specific language governing permissions and limitations under the License.
import logging
import os as os_lib
from shutil import copyfile
import boto3
import pytest
import yaml
from assertpy import assert_that
from remote_command_executor import RemoteCommandExecutor
from s3_common_utils import check_s3_read_resource, check_s3_read_write_resource, get_policy_resources
from tests.common.assertions import assert_no_errors_in_logs
from tests.common.schedulers_common import get_scheduler_commands
from tests.schedulers.test_awsbatch import _test_job_submission as test_job_submission_awsbatch
from tests.schedulers.test_slurm import _wait_for_computefleet_changed as wait_for_computefleet_changed
@pytest.mark.usefixtures("os", "instance")
def test_iam_roles(
region,
scheduler,
create_roles_stack,
pcluster_config_reader,
clusters_factory,
test_datadir,
):
is_awsbatch = scheduler == "awsbatch"
cfn_client, ec2_client, iam_client, lambda_client = _create_boto3_clients(region)
compute_instance_profile, compute_instance_role, head_instance_role, lambda_role = _create_cluster_roles(
create_roles_stack, "integ-tests-iam-cluster-roles", "cluster-roles.cfn.yaml", is_awsbatch
)
create_config, update_config = _get_config_create_and_update(test_datadir)
cluster = _test_cluster_create(
cfn_client,
clusters_factory,
compute_instance_profile,
compute_instance_role,
create_config,
ec2_client,
head_instance_role,
iam_client,
is_awsbatch,
lambda_client,
lambda_role,
pcluster_config_reader,
)
_test_cluster_update(
cfn_client,
cluster,
compute_instance_profile,
compute_instance_role,
create_roles_stack,
ec2_client,
head_instance_role,
iam_client,
is_awsbatch,
lambda_client,
lambda_role,
pcluster_config_reader,
update_config,
)
_test_cluster_scaling(cluster, is_awsbatch, region, scheduler)
def _get_config_create_and_update(test_datadir):
# Copy the config file template for reuse in update.
config_file_name = "pcluster.config.yaml"
config_file_path = os_lib.path.join(str(test_datadir), config_file_name)
updated_config_file_name = "pcluster.config.update.yaml"
updated_config_file_path = os_lib.path.join(str(test_datadir), updated_config_file_name)
copyfile(config_file_path, updated_config_file_path)
return config_file_name, updated_config_file_name
def _create_boto3_clients(region):
# Create boto3 client
cfn_client = boto3.client("cloudformation", region_name=region)
ec2_client = boto3.client("ec2", region_name=region)
iam_client = boto3.client("iam", region_name=region)
lambda_client = boto3.client("lambda", region_name=region)
return cfn_client, ec2_client, iam_client, lambda_client
def _test_cluster_create(
cfn_client,
clusters_factory,
compute_instance_profile,
compute_instance_role,
config_file_name,
ec2_client,
head_instance_role,
iam_client,
is_awsbatch,
lambda_client,
lambda_role,
pcluster_config_reader,
):
cluster_config = pcluster_config_reader(
config_file=config_file_name,
head_instance_role=head_instance_role,
compute_instance_role=compute_instance_role,
compute_instance_profile=compute_instance_profile,
iam_lambda_role=lambda_role,
min_count=1,
)
cluster = clusters_factory(cluster_config)
# Check roles are attached to the resources
# If scheduler is awsbatch, there will still be IAM roles created.
_check_roles(
cfn_client,
ec2_client,
iam_client,
lambda_client,
cluster.name,
head_instance_role,
compute_instance_role,
lambda_role,
not is_awsbatch,
)
return cluster
def _test_cluster_scaling(cluster, is_awsbatch, region, scheduler):
remote_command_executor = RemoteCommandExecutor(cluster)
if is_awsbatch:
timeout = (
120 if region.startswith("cn-") else 60
) # Longer timeout in china regions due to less reliable networking
test_job_submission_awsbatch(
remote_command_executor, f"awsbsub --vcpus 2 --memory 256 --timeout {timeout} sleep 1"
)
else:
scheduler_commands = get_scheduler_commands(scheduler, remote_command_executor)
job_id = scheduler_commands.submit_command_and_assert_job_accepted(
submit_command_args={"command": "sleep 1", "nodes": 1}
)
scheduler_commands.wait_job_completed(job_id)
def _test_cluster_update(
cfn_client,
cluster,
compute_instance_profile,
compute_instance_role,
create_roles_stack,
ec2_client,
head_instance_role,
iam_client,
is_awsbatch,
lambda_client,
lambda_role,
pcluster_config_reader,
updated_config_file_name,
):
(
another_compute_instance_profile,
another_compute_instance_role,
another_head_instance_role,
another_lambda_role,
) = _create_cluster_roles(
create_roles_stack, "integ-tests-iam-cluster-roles", "cluster-roles.cfn.yaml", is_awsbatch
)
assert_that(another_lambda_role == lambda_role).is_false()
assert_that(another_head_instance_role == head_instance_role).is_false()
if not is_awsbatch:
assert_that(another_compute_instance_profile == compute_instance_profile).is_false()
assert_that(another_compute_instance_role == compute_instance_role).is_false()
# Update cluster with new roles
cluster.stop()
wait_for_computefleet_changed(cluster, "DISABLED" if is_awsbatch else "STOPPED")
cluster.update(
str(
pcluster_config_reader(
config_file=updated_config_file_name,
head_instance_role=another_head_instance_role,
compute_instance_role=another_compute_instance_role,
compute_instance_profile=another_compute_instance_profile,
iam_lambda_role=another_lambda_role,
min_count=0,
)
)
)
cluster.start()
wait_for_computefleet_changed(cluster, "ENABLED" if is_awsbatch else "RUNNING")
# Check new roles are attached to the resources
_check_roles(
cfn_client,
ec2_client,
iam_client,
lambda_client,
cluster.name,
another_head_instance_role,
another_compute_instance_role,
another_lambda_role,
not is_awsbatch,
)
def _create_cluster_roles(create_roles_stack, stack_prefix, roles_file, is_awsbatch):
cluster_roles_stack = create_roles_stack(stack_prefix=stack_prefix, roles_file=roles_file)
if is_awsbatch:
head_instance_role = cluster_roles_stack.cfn_outputs["HeadNodeRoleBatch"]
lambda_role = cluster_roles_stack.cfn_outputs["CustomLambdaResourcesRoleBatch"]
compute_instance_role = ""
compute_instance_profile = ""
else:
head_instance_role = cluster_roles_stack.cfn_outputs["HeadNodeRoleSlurm"]
compute_instance_profile = cluster_roles_stack.cfn_outputs["ComputeNodeInstanceProfileSlurm"]
compute_instance_role = cluster_roles_stack.cfn_outputs["ComputeNodeRoleSlurm"]
lambda_role = cluster_roles_stack.cfn_outputs["CustomLambdaResourcesRoleSlurm"]
return compute_instance_profile, compute_instance_role, head_instance_role, lambda_role
def _check_roles(
cfn_client,
ec2_client,
iam_client,
lambda_client,
stack_name,
head_instance_role,
compute_instance_role,
lambda_role,
check_no_role_is_created,
):
"""Test roles are attached to EC2 instances and Lambda functions."""
resources = cfn_client.describe_stack_resources(StackName=stack_name)["StackResources"]
for resource in resources:
resource_type = resource["ResourceType"]
if check_no_role_is_created:
# If check_no_role_is_created, check that there is no role created in the stack.
assert_that(resource_type).is_not_equal_to("AWS::IAM::Role")
if resource_type == "AWS::Lambda::Function":
# Check the role is attached to the Lambda function
lambda_function = lambda_client.get_function(FunctionName=resource["PhysicalResourceId"])["Configuration"]
assert_that(lambda_function["Role"]).is_equal_to(lambda_role)
if resource_type == "AWS::EC2::Instance":
# Check the role is attached to the EC2 instance
instance_profile_arn = (
ec2_client.describe_instances(InstanceIds=[resource["PhysicalResourceId"]])
.get("Reservations")[0]
.get("Instances")[0]
.get("IamInstanceProfile")
.get("Arn")
)
instance_roles_list = [
role.get("Arn")
for role in (
iam_client.get_instance_profile(
InstanceProfileName=_get_resource_name_from_resource_arn(instance_profile_arn)
)
.get("InstanceProfile")
.get("Roles")
)
]
if resource["LogicalResourceId"] == "HeadNode":
assert_that(instance_roles_list).contains(head_instance_role)
elif resource["LogicalResourceId"] == "ComputeNode":
assert_that(instance_roles_list).contains(compute_instance_role)
def _get_resource_name_from_resource_arn(resource_arn):
return resource_arn.rsplit("/", 1)[-1] if resource_arn else ""
@pytest.mark.usefixtures("os", "instance")
def test_iam_policies(region, scheduler, pcluster_config_reader, clusters_factory):
"""Test IAM Policies"""
cluster_config = pcluster_config_reader(
iam_policies=["arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess", "arn:aws:iam::aws:policy/AWSBatchFullAccess"]
)
cluster = clusters_factory(cluster_config)
remote_command_executor = RemoteCommandExecutor(cluster)
_test_s3_access(remote_command_executor, region)
if scheduler == "awsbatch":
_test_batch_access(remote_command_executor, region)
assert_no_errors_in_logs(remote_command_executor, scheduler)
def _test_s3_access(remote_command_executor, region):
logging.info("Testing S3 Access")
result = remote_command_executor.run_remote_command(f"AWS_DEFAULT_REGION={region} sudo aws s3 ls").stdout
# An error occurred (AccessDenied) when calling the ListBuckets operation: Access Denied
assert_that(result).does_not_contain("AccessDenied")
def _test_batch_access(remote_command_executor, region):
logging.info("Testing AWS Batch Access")
result = remote_command_executor.run_remote_command(
f"AWS_DEFAULT_REGION={region} aws batch describe-compute-environments"
).stdout
# An error occurred (AccessDeniedException) when calling the DescribeComputeEnvironments operation: ...
assert_that(result).does_not_contain("AccessDeniedException")
@pytest.mark.usefixtures("os", "instance", "scheduler")
def test_s3_read_write_resource(region, pcluster_config_reader, s3_bucket_factory, clusters_factory, test_datadir):
# Create S3 bucket for testing s3_read_resource and s3_read_write_resource
bucket_name = s3_bucket_factory()
bucket = boto3.resource("s3", region_name=region).Bucket(bucket_name)
logging.info("bucket is {0}".format(bucket_name))
bucket.upload_file(str(test_datadir / "s3_test_file"), "read_only/s3_test_file")
bucket.upload_file(str(test_datadir / "s3_test_file"), "read_and_write/s3_test_file")
cluster_config = pcluster_config_reader(bucket=bucket_name)
cluster = clusters_factory(cluster_config)
with open(cluster_config, encoding="utf-8") as conf_file:
config = yaml.safe_load(conf_file)
# Check S3 resources
check_s3_read_resource(region, cluster, get_policy_resources(config, enable_write_access=False))
check_s3_read_write_resource(region, cluster, get_policy_resources(config, enable_write_access=True))
|
StarcoderdataPython
|
3265423
|
import logging
import math
import os
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable as Var
from archive.genut import msk_list_to_mat
from archive.genut import Trainer
class LMTrainer(Trainer):
def __init__(self, opt, model, data):
super().__init__(opt, model, data)
# self.logger = Logger(opt.print_every, self.n_batch)
# weight = torch.ones(opt.full_dict_size)
# weight[0] = 0
# assert 0 == opt.word_dict.fword2idx('<pad>')
self.crit = nn.CrossEntropyLoss(size_average=True, reduce=True, ignore_index=0)
self.crit_test = nn.CrossEntropyLoss(size_average=False, reduce=False, ignore_index=0)
self.opt = opt
self.model = model
self.train_bag = data[0]
self.test_bag = data[1]
self.n_batch = len(self.train_bag)
# parameters = filter(lambda p: p.requires_grad, self.model.parameters())
# self.optimizer = torch.optim.Adagrad(parameters, lr=opt.lr) # TODO
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=opt.lr, momentum=0.9)
# self.optimizer = torch.optim.SGD(parameters,lr=opt.lr)
# self.mul_loss = opt.mul_loss
# self.add_loss = opt.add_loss
# dicts = [word_dict, pos_dict, ner_dict]
self.word_dict = opt.word_dict
self.clip = opt.clip
def func_train(self, inp_var, inp_msk):
self.optimizer.zero_grad() # clear grad
aux = {}
batch_size = inp_var.size()[0]
batch_size_ = len(inp_msk)
assert batch_size == batch_size_
target_len = inp_msk[0]
decoder_outputs_prob, decoder_outputs = self.model.forward(inp_var, inp_msk, inp_var, inp_msk, aux)
valid_pos_mask = Var(msk_list_to_mat(inp_msk), requires_grad=False).view(target_len * batch_size, 1)
if self.opt.use_cuda:
valid_pos_mask = valid_pos_mask.cuda()
# Compulsory NLL loss part
pred_prob = decoder_outputs_prob.view(target_len * batch_size, -1)
# print(inp_var)
seq_first_inp_var = inp_var.transpose(1, 0).contiguous()
gold_dist = seq_first_inp_var.view(target_len * batch_size)
gold_dist = Var(gold_dist)
if self.opt.use_cuda:
gold_dist = gold_dist.cuda()
loss = self.crit(pred_prob, gold_dist)
loss.backward()
torch.nn.utils.clip_grad_norm(self.model.parameters(), self.clip)
self.optimizer.step()
return loss.data[0], math.exp(loss.data[0])
def func_test(self, inp_var, inp_msk):
target_len = inp_msk[0]
batch_size = inp_var.size()[0]
decoder_outputs_prob, decoder_outputs = self.model.forward(inp_var, inp_msk, tgt_var=inp_var, tgt_msk=inp_msk,
aux=None)
# Compulsory NLL loss part
pred_prob = decoder_outputs_prob.view(target_len * batch_size, -1)
seq_first_inp_var = inp_var.transpose(1, 0).contiguous()
gold_dist = Var(seq_first_inp_var.view(target_len * batch_size))
if self.opt.use_cuda:
gold_dist = gold_dist.cuda()
loss = self.crit_test(pred_prob, gold_dist)
loss = torch.sum(loss)
return loss.data[0], decoder_outputs
def train_iters(self):
"""
Training function called from main.py.
:return:
"""
for epo in range(self.opt.start_epo, self.opt.n_epo + 1):
self.model.train()
batch_order = np.arange(self.n_batch)
np.random.shuffle(batch_order)
for idx, batch_idx in enumerate(batch_order):
# self.logger.init_new_batch(batch_idx)
current_batch = self.train_bag[batch_idx]
# current_batch = copy.deepcopy(tmp_cur_batch)
inp_var = current_batch['txt']
inp_msk = current_batch['txt_msk']
# out_var = current_batch['cur_out_var']
# out_mask = current_batch['cur_out_mask']
# scatter_msk = current_batch['cur_scatter_mask'].cuda()
# replacement = current_batch['replacement']
# max_oov_len = len(replacement)
# self.logger.set_oov(max_oov_len)
# inp_var = Var(inp_var)
if self.opt.use_cuda:
# inp_var = [x.contiguous().cuda() for x in inp_var]
inp_var = inp_var.contiguous().cuda()
nll, ppl = self.func_train(inp_var, inp_msk)
if idx % self.opt.print_every == 0:
logging.info('NLL:%.2f \tPPL:%s' % (nll, str(ppl)))
if idx % self.opt.save_every == 0:
ppl = self.evaluate()
os.chdir(self.opt.save_dir)
name_string = '%d_%.2f'.lower() % (epo, ppl)
logging.info("Saving in epo %s" % name_string)
torch.save(self.model.emb.state_dict(),
name_string + '_emb')
# torch.save(self.model.enc.state_dict(), name_string + '_enc')
torch.save(self.model.dec.state_dict(), name_string + '_dec')
torch.save(self.model.opt, name_string + '_opt')
os.chdir('..')
def evaluate(self):
self.model.eval()
n_batch = len(self.test_bag)
test_len = 0
accumulated_ppl = 0
for idx in range(n_batch):
current_batch = self.test_bag[idx]
inp_var = current_batch['txt']
inp_mask = current_batch['txt_msk']
batch_size = inp_var.size()[0]
test_len += inp_mask[0] * batch_size
nll, decoder_output = self.func_test(inp_var, inp_mask)
accumulated_ppl += nll
final_ppl = accumulated_ppl / test_len
final_ppl = math.exp(final_ppl)
logging.info('PPL: %f' % final_ppl)
return final_ppl
|
StarcoderdataPython
|
3375167
|
import random
MEMBER_SIZES = 3
with open("fp_profiling", "r") as fh:
lines = [line.strip().split() for line in fh.readlines()]
totals = {}
lasts = {}
for stamp, stage, token, module in lines:
stamp = float(stamp)
if token not in totals:
totals[token] = (0, 0, 9999999999, 0, [])
if stage == "START":
lasts[token] = stamp
elif stage == "STOP":
accum, count, min_delta, max_delta, hits = totals[token]
delta = stamp - lasts[token]
totals[token] = (
accum + delta,
count + 1,
min(delta, min_delta),
max(delta, max_delta),
hits + [(delta, module)],
)
for token, pair in totals.items():
accum, count, min_delta, max_delta, hits = totals[token]
if count == 0:
continue
print(
"{} {:.6f} ({:.6f}, {:.6f}, {:.6f}) {}".format(
token, accum, min_delta, accum / count, max_delta, hits[int(count / 2)][0]
)
)
hist = {index: (0, []) for index in range(0, 1000)}
for item, module in hits:
index = int(int(item * 1000) / 10) * 10
if index not in hist:
hist[index] = (0, [])
hist[index] = (hist[index][0] + 1, hist[index][1] + [module])
for index, pair in hist.items():
count, members = pair
random.shuffle(members)
if count != 0:
print(
" {:3} ms: {:4} -- {}".format(
index,
count,
" ".join(members[:MEMBER_SIZES])
+ ("" if len(members) <= MEMBER_SIZES else " ..."),
)
)
|
StarcoderdataPython
|
22832
|
# known contracts from protocol
CONTRACTS = [
# NFT - Meteor Dust
"<KEY>",
# NFT - Eggs
"<KEY>",
# NFT - Dragons
"<KEY>",
# NFT - Loot
"<KEY>",
]
def handle(exporter, elem, txinfo, contract):
print(f"Levana! {contract}")
#print(elem)
|
StarcoderdataPython
|
3348392
|
import datetime
import os
import re
from dateutil import tz
import sqlalchemy as sa
from sqlalchemy.engine.reflection import Inspector
from alembic import autogenerate
from alembic import command
from alembic import util
from alembic.environment import EnvironmentContext
from alembic.operations import ops
from alembic.script import ScriptDirectory
from alembic.testing import assert_raises_message
from alembic.testing import assertions
from alembic.testing import eq_
from alembic.testing import is_
from alembic.testing import mock
from alembic.testing import ne_
from alembic.testing.env import _get_staging_directory
from alembic.testing.env import _multi_dir_testing_config
from alembic.testing.env import _multidb_testing_config
from alembic.testing.env import _no_sql_testing_config
from alembic.testing.env import _sqlite_file_db
from alembic.testing.env import _sqlite_testing_config
from alembic.testing.env import _testing_config
from alembic.testing.env import clear_staging_env
from alembic.testing.env import env_file_fixture
from alembic.testing.env import script_file_fixture
from alembic.testing.env import staging_env
from alembic.testing.env import three_rev_fixture
from alembic.testing.env import write_script
from alembic.testing.fixtures import TestBase
from alembic.util import CommandError
env, abc, def_ = None, None, None
class GeneralOrderedTests(TestBase):
def setUp(self):
global env
env = staging_env()
def tearDown(self):
clear_staging_env()
def test_steps(self):
self._test_001_environment()
self._test_002_rev_ids()
self._test_003_api_methods_clean()
self._test_004_rev()
self._test_005_nextrev()
self._test_006_from_clean_env()
self._test_007_long_name()
self._test_008_long_name_configurable()
def _test_001_environment(self):
assert_set = set(["env.py", "script.py.mako", "README"])
eq_(assert_set.intersection(os.listdir(env.dir)), assert_set)
def _test_002_rev_ids(self):
global abc, def_
abc = util.rev_id()
def_ = util.rev_id()
ne_(abc, def_)
def _test_003_api_methods_clean(self):
eq_(env.get_heads(), [])
eq_(env.get_base(), None)
def _test_004_rev(self):
script = env.generate_revision(abc, "this is a message", refresh=True)
eq_(script.doc, "this is a message")
eq_(script.revision, abc)
eq_(script.down_revision, None)
assert os.access(
os.path.join(env.dir, "versions", "%s_this_is_a_message.py" % abc),
os.F_OK,
)
assert callable(script.module.upgrade)
eq_(env.get_heads(), [abc])
eq_(env.get_base(), abc)
def _test_005_nextrev(self):
script = env.generate_revision(
def_, "this is the next rev", refresh=True
)
assert os.access(
os.path.join(
env.dir, "versions", "%s_this_is_the_next_rev.py" % def_
),
os.F_OK,
)
eq_(script.revision, def_)
eq_(script.down_revision, abc)
eq_(env.get_revision(abc).nextrev, set([def_]))
assert script.module.down_revision == abc
assert callable(script.module.upgrade)
assert callable(script.module.downgrade)
eq_(env.get_heads(), [def_])
eq_(env.get_base(), abc)
def _test_006_from_clean_env(self):
# test the environment so far with a
# new ScriptDirectory instance.
env = staging_env(create=False)
abc_rev = env.get_revision(abc)
def_rev = env.get_revision(def_)
eq_(abc_rev.nextrev, set([def_]))
eq_(abc_rev.revision, abc)
eq_(def_rev.down_revision, abc)
eq_(env.get_heads(), [def_])
eq_(env.get_base(), abc)
def _test_007_long_name(self):
rid = util.rev_id()
env.generate_revision(
rid,
"this is a really long name with "
"lots of characters and also "
"I'd like it to\nhave\nnewlines",
)
assert os.access(
os.path.join(
env.dir,
"versions",
"%s_this_is_a_really_long_name_with_lots_of_.py" % rid,
),
os.F_OK,
)
def _test_008_long_name_configurable(self):
env.truncate_slug_length = 60
rid = util.rev_id()
env.generate_revision(
rid,
"this is a really long name with "
"lots of characters and also "
"I'd like it to\nhave\nnewlines",
)
assert os.access(
os.path.join(
env.dir,
"versions",
"%s_this_is_a_really_long_name_with_lots_"
"of_characters_and_also_.py" % rid,
),
os.F_OK,
)
class ScriptNamingTest(TestBase):
@classmethod
def setup_class(cls):
_testing_config()
@classmethod
def teardown_class(cls):
clear_staging_env()
def test_args(self):
script = ScriptDirectory(
_get_staging_directory(),
file_template="%(rev)s_%(slug)s_"
"%(year)s_%(month)s_"
"%(day)s_%(hour)s_"
"%(minute)s_%(second)s",
)
create_date = datetime.datetime(2012, 7, 25, 15, 8, 5)
eq_(
script._rev_path(
script.versions, "12345", "this is a message", create_date
),
os.path.abspath(
"%s/versions/12345_this_is_a_"
"message_2012_7_25_15_8_5.py" % _get_staging_directory()
),
)
def _test_tz(self, timezone_arg, given, expected):
script = ScriptDirectory(
_get_staging_directory(),
file_template="%(rev)s_%(slug)s_"
"%(year)s_%(month)s_"
"%(day)s_%(hour)s_"
"%(minute)s_%(second)s",
timezone=timezone_arg,
)
with mock.patch(
"alembic.script.base.datetime",
mock.Mock(
datetime=mock.Mock(utcnow=lambda: given, now=lambda: given)
),
):
create_date = script._generate_create_date()
eq_(create_date, expected)
def test_custom_tz(self):
self._test_tz(
"EST5EDT",
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(
2012, 7, 25, 11, 8, 5, tzinfo=tz.gettz("EST5EDT")
),
)
def test_custom_tz_lowercase(self):
self._test_tz(
"est5edt",
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(
2012, 7, 25, 11, 8, 5, tzinfo=tz.gettz("EST5EDT")
),
)
def test_custom_tz_utc(self):
self._test_tz(
"utc",
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(2012, 7, 25, 15, 8, 5, tzinfo=tz.gettz("UTC")),
)
def test_custom_tzdata_tz(self):
self._test_tz(
"Europe/Berlin",
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(
2012, 7, 25, 17, 8, 5, tzinfo=tz.gettz("Europe/Berlin")
),
)
def test_default_tz(self):
self._test_tz(
None,
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(2012, 7, 25, 15, 8, 5),
)
def test_tz_cant_locate(self):
assert_raises_message(
CommandError,
"Can't locate timezone: fake",
self._test_tz,
"fake",
datetime.datetime(2012, 7, 25, 15, 8, 5),
datetime.datetime(2012, 7, 25, 15, 8, 5),
)
class RevisionCommandTest(TestBase):
def setUp(self):
self.env = staging_env()
self.cfg = _sqlite_testing_config()
self.a, self.b, self.c = three_rev_fixture(self.cfg)
def tearDown(self):
clear_staging_env()
def test_create_script_basic(self):
rev = command.revision(self.cfg, message="some message")
script = ScriptDirectory.from_config(self.cfg)
rev = script.get_revision(rev.revision)
eq_(rev.down_revision, self.c)
assert "some message" in rev.doc
def test_create_script_splice(self):
rev = command.revision(
self.cfg, message="some message", head=self.b, splice=True
)
script = ScriptDirectory.from_config(self.cfg)
rev = script.get_revision(rev.revision)
eq_(rev.down_revision, self.b)
assert "some message" in rev.doc
eq_(set(script.get_heads()), set([rev.revision, self.c]))
def test_create_script_missing_splice(self):
assert_raises_message(
util.CommandError,
"Revision %s is not a head revision; please specify --splice "
"to create a new branch from this revision" % self.b,
command.revision,
self.cfg,
message="some message",
head=self.b,
)
def test_illegal_revision_chars(self):
assert_raises_message(
util.CommandError,
r"Character\(s\) '-' not allowed in "
"revision identifier 'no-dashes'",
command.revision,
self.cfg,
message="some message",
rev_id="no-dashes",
)
assert not os.path.exists(
os.path.join(self.env.dir, "versions", "no-dashes_some_message.py")
)
assert_raises_message(
util.CommandError,
r"Character\(s\) '@' not allowed in "
"revision identifier 'no@atsigns'",
command.revision,
self.cfg,
message="some message",
rev_id="no@atsigns",
)
assert_raises_message(
util.CommandError,
r"Character\(s\) '-, @' not allowed in revision "
"identifier 'no@atsigns-ordashes'",
command.revision,
self.cfg,
message="some message",
rev_id="no@atsigns-ordashes",
)
assert_raises_message(
util.CommandError,
r"Character\(s\) '\+' not allowed in revision "
r"identifier 'no\+plussignseither'",
command.revision,
self.cfg,
message="some message",
rev_id="no+plussignseither",
)
def test_create_script_branches(self):
rev = command.revision(
self.cfg, message="some message", branch_label="foobar"
)
script = ScriptDirectory.from_config(self.cfg)
rev = script.get_revision(rev.revision)
eq_(script.get_revision("foobar"), rev)
def test_create_script_branches_old_template(self):
script = ScriptDirectory.from_config(self.cfg)
with open(os.path.join(script.dir, "script.py.mako"), "w") as file_:
file_.write(
"<%text>#</%text> ${message}\n"
"revision = ${repr(up_revision)}\n"
"down_revision = ${repr(down_revision)}\n\n"
"def upgrade():\n"
" ${upgrades if upgrades else 'pass'}\n\n"
"def downgrade():\n"
" ${downgrade if downgrades else 'pass'}\n\n"
)
# works OK if no branch names
command.revision(self.cfg, message="some message")
assert_raises_message(
util.CommandError,
r"Version \w+ specified branch_labels foobar, "
r"however the migration file .+?\b does not have them; have you "
"upgraded your script.py.mako to include the 'branch_labels' "
r"section\?",
command.revision,
self.cfg,
message="some message",
branch_label="foobar",
)
class CustomizeRevisionTest(TestBase):
def setUp(self):
self.env = staging_env()
self.cfg = _multi_dir_testing_config()
self.cfg.set_main_option("revision_environment", "true")
script = ScriptDirectory.from_config(self.cfg)
self.model1 = util.rev_id()
self.model2 = util.rev_id()
self.model3 = util.rev_id()
for model, name in [
(self.model1, "model1"),
(self.model2, "model2"),
(self.model3, "model3"),
]:
script.generate_revision(
model,
name,
refresh=True,
version_path=os.path.join(_get_staging_directory(), name),
head="base",
)
write_script(
script,
model,
"""\
"%s"
revision = '%s'
down_revision = None
branch_labels = ['%s']
from alembic import op
def upgrade():
pass
def downgrade():
pass
"""
% (name, model, name),
)
def tearDown(self):
clear_staging_env()
def _env_fixture(self, fn, target_metadata):
self.engine = engine = _sqlite_file_db()
def run_env(self):
from alembic import context
with engine.connect() as connection:
context.configure(
connection=connection,
target_metadata=target_metadata,
process_revision_directives=fn,
)
with context.begin_transaction():
context.run_migrations()
return mock.patch(
"alembic.script.base.ScriptDirectory.run_env", run_env
)
def test_new_locations_no_autogen(self):
m = sa.MetaData()
def process_revision_directives(context, rev, generate_revisions):
generate_revisions[:] = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(),
ops.DowngradeOps(),
version_path=os.path.join(
_get_staging_directory(), "model1"
),
head="model1@head",
),
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(),
ops.DowngradeOps(),
version_path=os.path.join(
_get_staging_directory(), "model2"
),
head="model2@head",
),
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(),
ops.DowngradeOps(),
version_path=os.path.join(
_get_staging_directory(), "model3"
),
head="model3@head",
),
]
with self._env_fixture(process_revision_directives, m):
revs = command.revision(self.cfg, message="some message")
script = ScriptDirectory.from_config(self.cfg)
for rev, model in [
(revs[0], "model1"),
(revs[1], "model2"),
(revs[2], "model3"),
]:
rev_script = script.get_revision(rev.revision)
eq_(
rev_script.path,
os.path.abspath(
os.path.join(
_get_staging_directory(),
model,
"%s_.py" % (rev_script.revision,),
)
),
)
assert os.path.exists(rev_script.path)
def test_renders_added_directives_no_autogen(self):
m = sa.MetaData()
def process_revision_directives(context, rev, generate_revisions):
generate_revisions[0].upgrade_ops.ops.append(
ops.CreateIndexOp("some_index", "some_table", ["a", "b"])
)
with self._env_fixture(process_revision_directives, m):
rev = command.revision(
self.cfg, message="some message", head="model1@head", sql=True
)
with mock.patch.object(rev.module, "op") as op_mock:
rev.module.upgrade()
eq_(
op_mock.mock_calls,
[
mock.call.create_index(
"some_index", "some_table", ["a", "b"], unique=False
)
],
)
def test_autogen(self):
m = sa.MetaData()
sa.Table("t", m, sa.Column("x", sa.Integer))
def process_revision_directives(context, rev, generate_revisions):
existing_upgrades = generate_revisions[0].upgrade_ops
existing_downgrades = generate_revisions[0].downgrade_ops
# model1 will run the upgrades, e.g. create the table,
# model2 will run the downgrades as upgrades, e.g. drop
# the table again
generate_revisions[:] = [
ops.MigrationScript(
util.rev_id(),
existing_upgrades,
ops.DowngradeOps(),
version_path=os.path.join(
_get_staging_directory(), "model1"
),
head="model1@head",
),
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(ops=existing_downgrades.ops),
ops.DowngradeOps(),
version_path=os.path.join(
_get_staging_directory(), "model2"
),
head="model2@head",
),
]
with self._env_fixture(process_revision_directives, m):
command.upgrade(self.cfg, "heads")
eq_(
Inspector.from_engine(self.engine).get_table_names(),
["alembic_version"],
)
command.revision(
self.cfg, message="some message", autogenerate=True
)
command.upgrade(self.cfg, "model1@head")
eq_(
Inspector.from_engine(self.engine).get_table_names(),
["alembic_version", "t"],
)
command.upgrade(self.cfg, "model2@head")
eq_(
Inspector.from_engine(self.engine).get_table_names(),
["alembic_version"],
)
def test_programmatic_command_option(self):
def process_revision_directives(context, rev, generate_revisions):
generate_revisions[0].message = "test programatic"
generate_revisions[0].upgrade_ops = ops.UpgradeOps(
ops=[
ops.CreateTableOp(
"test_table",
[
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("name", sa.String(50), nullable=False),
],
)
]
)
generate_revisions[0].downgrade_ops = ops.DowngradeOps(
ops=[ops.DropTableOp("test_table")]
)
with self._env_fixture(None, None):
rev = command.revision(
self.cfg,
head="model1@head",
process_revision_directives=process_revision_directives,
)
with open(rev.path) as handle:
result = handle.read()
assert (
(
"""
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('test_table',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('name', sa.String(length=50), nullable=False),
sa.PrimaryKeyConstraint('id')
)
# ### end Alembic commands ###
"""
)
in result
)
class ScriptAccessorTest(TestBase):
def test_upgrade_downgrade_ops_list_accessors(self):
u1 = ops.UpgradeOps(ops=[])
d1 = ops.DowngradeOps(ops=[])
m1 = ops.MigrationScript("somerev", u1, d1)
is_(m1.upgrade_ops, u1)
is_(m1.downgrade_ops, d1)
u2 = ops.UpgradeOps(ops=[])
d2 = ops.DowngradeOps(ops=[])
m1._upgrade_ops.append(u2)
m1._downgrade_ops.append(d2)
assert_raises_message(
ValueError,
"This MigrationScript instance has a multiple-entry list for "
"UpgradeOps; please use the upgrade_ops_list attribute.",
getattr,
m1,
"upgrade_ops",
)
assert_raises_message(
ValueError,
"This MigrationScript instance has a multiple-entry list for "
"DowngradeOps; please use the downgrade_ops_list attribute.",
getattr,
m1,
"downgrade_ops",
)
eq_(m1.upgrade_ops_list, [u1, u2])
eq_(m1.downgrade_ops_list, [d1, d2])
class ImportsTest(TestBase):
def setUp(self):
self.env = staging_env()
self.cfg = _sqlite_testing_config()
def tearDown(self):
clear_staging_env()
def _env_fixture(self, target_metadata, **kw):
self.engine = engine = _sqlite_file_db()
def run_env(self):
from alembic import context
with engine.connect() as connection:
context.configure(
connection=connection,
target_metadata=target_metadata,
**kw
)
with context.begin_transaction():
context.run_migrations()
return mock.patch(
"alembic.script.base.ScriptDirectory.run_env", run_env
)
def test_imports_in_script(self):
from sqlalchemy import MetaData, Table, Column
from sqlalchemy.dialects.mysql import VARCHAR
type_ = VARCHAR(20, charset="utf8", national=True)
m = MetaData()
Table("t", m, Column("x", type_))
def process_revision_directives(context, rev, generate_revisions):
generate_revisions[0].imports.add(
"from sqlalchemy.dialects.mysql import TINYINT"
)
with self._env_fixture(
m, process_revision_directives=process_revision_directives
):
rev = command.revision(
self.cfg, message="some message", autogenerate=True
)
with open(rev.path) as file_:
contents = file_.read()
assert "from sqlalchemy.dialects import mysql" in contents
assert "from sqlalchemy.dialects.mysql import TINYINT" in contents
class MultiContextTest(TestBase):
"""test the multidb template for autogenerate front-to-back"""
def setUp(self):
self.engine1 = _sqlite_file_db(tempname="eng1.db")
self.engine2 = _sqlite_file_db(tempname="eng2.db")
self.engine3 = _sqlite_file_db(tempname="eng3.db")
self.env = staging_env(template="multidb")
self.cfg = _multidb_testing_config(
{
"engine1": self.engine1,
"engine2": self.engine2,
"engine3": self.engine3,
}
)
def _write_metadata(self, meta):
path = os.path.join(_get_staging_directory(), "scripts", "env.py")
with open(path) as env_:
existing_env = env_.read()
existing_env = existing_env.replace("target_metadata = {}", meta)
with open(path, "w") as env_:
env_.write(existing_env)
def tearDown(self):
clear_staging_env()
def test_autogen(self):
self._write_metadata(
"""
import sqlalchemy as sa
m1 = sa.MetaData()
m2 = sa.MetaData()
m3 = sa.MetaData()
target_metadata = {"engine1": m1, "engine2": m2, "engine3": m3}
sa.Table('e1t1', m1, sa.Column('x', sa.Integer))
sa.Table('e2t1', m2, sa.Column('y', sa.Integer))
sa.Table('e3t1', m3, sa.Column('z', sa.Integer))
"""
)
rev = command.revision(
self.cfg, message="some message", autogenerate=True
)
with mock.patch.object(rev.module, "op") as op_mock:
rev.module.upgrade_engine1()
eq_(
op_mock.mock_calls[-1],
mock.call.create_table("e1t1", mock.ANY),
)
rev.module.upgrade_engine2()
eq_(
op_mock.mock_calls[-1],
mock.call.create_table("e2t1", mock.ANY),
)
rev.module.upgrade_engine3()
eq_(
op_mock.mock_calls[-1],
mock.call.create_table("e3t1", mock.ANY),
)
rev.module.downgrade_engine1()
eq_(op_mock.mock_calls[-1], mock.call.drop_table("e1t1"))
rev.module.downgrade_engine2()
eq_(op_mock.mock_calls[-1], mock.call.drop_table("e2t1"))
rev.module.downgrade_engine3()
eq_(op_mock.mock_calls[-1], mock.call.drop_table("e3t1"))
class RewriterTest(TestBase):
def test_all_traverse(self):
writer = autogenerate.Rewriter()
mocker = mock.Mock(side_effect=lambda context, revision, op: op)
writer.rewrites(ops.MigrateOperation)(mocker)
addcolop = ops.AddColumnOp("t1", sa.Column("x", sa.Integer()))
directives = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(ops=[ops.ModifyTableOps("t1", ops=[addcolop])]),
ops.DowngradeOps(ops=[]),
)
]
ctx, rev = mock.Mock(), mock.Mock()
writer(ctx, rev, directives)
eq_(
mocker.mock_calls,
[
mock.call(ctx, rev, directives[0]),
mock.call(ctx, rev, directives[0].upgrade_ops),
mock.call(ctx, rev, directives[0].upgrade_ops.ops[0]),
mock.call(ctx, rev, addcolop),
mock.call(ctx, rev, directives[0].downgrade_ops),
],
)
def test_double_migrate_table(self):
writer = autogenerate.Rewriter()
idx_ops = []
@writer.rewrites(ops.ModifyTableOps)
def second_table(context, revision, op):
return [
op,
ops.ModifyTableOps(
"t2",
ops=[ops.AddColumnOp("t2", sa.Column("x", sa.Integer()))],
),
]
@writer.rewrites(ops.AddColumnOp)
def add_column(context, revision, op):
idx_op = ops.CreateIndexOp("ixt", op.table_name, [op.column.name])
idx_ops.append(idx_op)
return [op, idx_op]
directives = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(
ops=[
ops.ModifyTableOps(
"t1",
ops=[
ops.AddColumnOp(
"t1", sa.Column("x", sa.Integer())
)
],
)
]
),
ops.DowngradeOps(ops=[]),
)
]
ctx, rev = mock.Mock(), mock.Mock()
writer(ctx, rev, directives)
eq_(
[d.table_name for d in directives[0].upgrade_ops.ops], ["t1", "t2"]
)
is_(directives[0].upgrade_ops.ops[0].ops[1], idx_ops[0])
is_(directives[0].upgrade_ops.ops[1].ops[1], idx_ops[1])
def test_chained_ops(self):
writer1 = autogenerate.Rewriter()
writer2 = autogenerate.Rewriter()
@writer1.rewrites(ops.AddColumnOp)
def add_column_nullable(context, revision, op):
if op.column.nullable:
return op
else:
op.column.nullable = True
return [
op,
ops.AlterColumnOp(
op.table_name,
op.column.name,
modify_nullable=False,
existing_type=op.column.type,
),
]
@writer2.rewrites(ops.AddColumnOp)
def add_column_idx(context, revision, op):
idx_op = ops.CreateIndexOp("ixt", op.table_name, [op.column.name])
return [op, idx_op]
directives = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(
ops=[
ops.ModifyTableOps(
"t1",
ops=[
ops.AddColumnOp(
"t1",
sa.Column(
"x", sa.Integer(), nullable=False
),
)
],
)
]
),
ops.DowngradeOps(ops=[]),
)
]
ctx, rev = mock.Mock(), mock.Mock()
writer1.chain(writer2)(ctx, rev, directives)
eq_(
autogenerate.render_python_code(directives[0].upgrade_ops),
"# ### commands auto generated by Alembic - please adjust! ###\n"
" op.add_column('t1', "
"sa.Column('x', sa.Integer(), nullable=True))\n"
" op.create_index('ixt', 't1', ['x'], unique=False)\n"
" op.alter_column('t1', 'x',\n"
" existing_type=sa.Integer(),\n"
" nullable=False)\n"
" # ### end Alembic commands ###",
)
def test_no_needless_pass(self):
writer1 = autogenerate.Rewriter()
@writer1.rewrites(ops.AlterColumnOp)
def rewrite_alter_column(context, revision, op):
return []
directives = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(
ops=[
ops.ModifyTableOps(
"t1",
ops=[
ops.AlterColumnOp(
"foo",
"bar",
modify_nullable=False,
existing_type=sa.Integer(),
),
ops.AlterColumnOp(
"foo",
"bar",
modify_nullable=False,
existing_type=sa.Integer(),
),
],
),
ops.ModifyTableOps(
"t1",
ops=[
ops.AlterColumnOp(
"foo",
"bar",
modify_nullable=False,
existing_type=sa.Integer(),
)
],
),
]
),
ops.DowngradeOps(ops=[]),
)
]
ctx, rev = mock.Mock(), mock.Mock()
writer1(ctx, rev, directives)
eq_(
autogenerate.render_python_code(directives[0].upgrade_ops),
"# ### commands auto generated by Alembic - please adjust! ###\n"
" pass\n"
" # ### end Alembic commands ###",
)
def test_multiple_passes_with_mutations(self):
writer1 = autogenerate.Rewriter()
@writer1.rewrites(ops.CreateTableOp)
def rewrite_alter_column(context, revision, op):
op.table_name += "_pass"
return op
directives = [
ops.MigrationScript(
util.rev_id(),
ops.UpgradeOps(
ops=[
ops.CreateTableOp(
"test_table",
[sa.Column("id", sa.Integer(), primary_key=True)],
)
]
),
ops.DowngradeOps(ops=[]),
)
]
ctx, rev = mock.Mock(), mock.Mock()
writer1(ctx, rev, directives)
directives[0].upgrade_ops_list.extend(
[
ops.UpgradeOps(
ops=[
ops.CreateTableOp(
"another_test_table",
[sa.Column("id", sa.Integer(), primary_key=True)],
)
]
),
ops.UpgradeOps(
ops=[
ops.CreateTableOp(
"third_test_table",
[sa.Column("id", sa.Integer(), primary_key=True)],
)
]
),
]
)
writer1(ctx, rev, directives)
eq_(
autogenerate.render_python_code(directives[0].upgrade_ops_list[0]),
"# ### commands auto generated by Alembic - please adjust! ###\n"
" op.create_table('test_table_pass',\n"
" sa.Column('id', sa.Integer(), nullable=False),\n"
" sa.PrimaryKeyConstraint('id')\n"
" )\n"
" # ### end Alembic commands ###",
)
eq_(
autogenerate.render_python_code(directives[0].upgrade_ops_list[1]),
"# ### commands auto generated by Alembic - please adjust! ###\n"
" op.create_table('another_test_table_pass',\n"
" sa.Column('id', sa.Integer(), nullable=False),\n"
" sa.PrimaryKeyConstraint('id')\n"
" )\n"
" # ### end Alembic commands ###",
)
eq_(
autogenerate.render_python_code(directives[0].upgrade_ops_list[2]),
"# ### commands auto generated by Alembic - please adjust! ###\n"
" op.create_table('third_test_table_pass',\n"
" sa.Column('id', sa.Integer(), nullable=False),\n"
" sa.PrimaryKeyConstraint('id')\n"
" )\n"
" # ### end Alembic commands ###",
)
class MultiDirRevisionCommandTest(TestBase):
def setUp(self):
self.env = staging_env()
self.cfg = _multi_dir_testing_config()
def tearDown(self):
clear_staging_env()
def test_multiple_dir_no_bases(self):
assert_raises_message(
util.CommandError,
"Multiple version locations present, please specify "
"--version-path",
command.revision,
self.cfg,
message="some message",
)
def test_multiple_dir_no_bases_invalid_version_path(self):
assert_raises_message(
util.CommandError,
"Path foo/bar/ is not represented in current version locations",
command.revision,
self.cfg,
message="x",
version_path=os.path.join("foo/bar/"),
)
def test_multiple_dir_no_bases_version_path(self):
script = command.revision(
self.cfg,
message="x",
version_path=os.path.join(_get_staging_directory(), "model1"),
)
assert os.access(script.path, os.F_OK)
def test_multiple_dir_chooses_base(self):
command.revision(
self.cfg,
message="x",
head="base",
version_path=os.path.join(_get_staging_directory(), "model1"),
)
script2 = command.revision(
self.cfg,
message="y",
head="base",
version_path=os.path.join(_get_staging_directory(), "model2"),
)
script3 = command.revision(
self.cfg, message="y2", head=script2.revision
)
eq_(
os.path.dirname(script3.path),
os.path.abspath(os.path.join(_get_staging_directory(), "model2")),
)
assert os.access(script3.path, os.F_OK)
class TemplateArgsTest(TestBase):
def setUp(self):
staging_env()
self.cfg = _no_sql_testing_config(
directives="\nrevision_environment=true\n"
)
def tearDown(self):
clear_staging_env()
def test_args_propagate(self):
config = _no_sql_testing_config()
script = ScriptDirectory.from_config(config)
template_args = {"x": "x1", "y": "y1", "z": "z1"}
env = EnvironmentContext(config, script, template_args=template_args)
env.configure(
dialect_name="sqlite", template_args={"y": "y2", "q": "q1"}
)
eq_(template_args, {"x": "x1", "y": "y2", "z": "z1", "q": "q1"})
def test_tmpl_args_revision(self):
env_file_fixture(
"""
context.configure(dialect_name='sqlite', template_args={"somearg":"somevalue"})
"""
)
script_file_fixture(
"""
# somearg: ${somearg}
revision = ${repr(up_revision)}
down_revision = ${repr(down_revision)}
"""
)
command.revision(self.cfg, message="some rev")
script = ScriptDirectory.from_config(self.cfg)
rev = script.get_revision("head")
with open(rev.path) as f:
text = f.read()
assert "somearg: somevalue" in text
def test_bad_render(self):
env_file_fixture(
"""
context.configure(dialect_name='sqlite', template_args={"somearg":"somevalue"})
"""
)
script_file_fixture(
"""
<% z = x + y %>
"""
)
try:
command.revision(self.cfg, message="some rev")
except CommandError as ce:
m = re.match(
r"^Template rendering failed; see (.+?) "
"for a template-oriented",
str(ce),
)
assert m, "Command error did not produce a file"
with open(m.group(1)) as handle:
contents = handle.read()
os.remove(m.group(1))
assert "<% z = x + y %>" in contents
class DuplicateVersionLocationsTest(TestBase):
def setUp(self):
self.env = staging_env()
self.cfg = _multi_dir_testing_config(
# this is a duplicate of one of the paths
# already present in this fixture
extra_version_location="%(here)s/model1"
)
script = ScriptDirectory.from_config(self.cfg)
self.model1 = util.rev_id()
self.model2 = util.rev_id()
self.model3 = util.rev_id()
for model, name in [
(self.model1, "model1"),
(self.model2, "model2"),
(self.model3, "model3"),
]:
script.generate_revision(
model,
name,
refresh=True,
version_path=os.path.join(_get_staging_directory(), name),
head="base",
)
write_script(
script,
model,
"""\
"%s"
revision = '%s'
down_revision = None
branch_labels = ['%s']
from alembic import op
def upgrade():
pass
def downgrade():
pass
"""
% (name, model, name),
)
def tearDown(self):
clear_staging_env()
def test_env_emits_warning(self):
with assertions.expect_warnings(
"File %s loaded twice! ignoring. "
"Please ensure version_locations is unique"
% (
os.path.realpath(
os.path.join(
_get_staging_directory(),
"model1",
"%s_model1.py" % self.model1,
)
)
)
):
script = ScriptDirectory.from_config(self.cfg)
script.revision_map.heads
eq_(
[rev.revision for rev in script.walk_revisions()],
[self.model1, self.model2, self.model3],
)
class NormPathTest(TestBase):
def setUp(self):
self.env = staging_env()
def test_script_location(self):
config = _no_sql_testing_config()
script = ScriptDirectory.from_config(config)
def normpath(path):
return path.replace("/", ":NORM:")
normpath = mock.Mock(side_effect=normpath)
with mock.patch("os.path.normpath", normpath):
eq_(
script._version_locations,
(
os.path.abspath(
os.path.join(
_get_staging_directory(), "scripts", "versions"
)
).replace("/", ":NORM:"),
),
)
eq_(
script.versions,
os.path.abspath(
os.path.join(
_get_staging_directory(), "scripts", "versions"
)
).replace("/", ":NORM:"),
)
def test_script_location_muliple(self):
config = _multi_dir_testing_config()
script = ScriptDirectory.from_config(config)
def normpath(path):
return path.replace("/", ":NORM:")
normpath = mock.Mock(side_effect=normpath)
with mock.patch("os.path.normpath", normpath):
eq_(
script._version_locations,
[
os.path.abspath(
os.path.join(_get_staging_directory(), "model1/")
).replace("/", ":NORM:"),
os.path.abspath(
os.path.join(_get_staging_directory(), "model2/")
).replace("/", ":NORM:"),
os.path.abspath(
os.path.join(_get_staging_directory(), "model3/")
).replace("/", ":NORM:"),
],
)
|
StarcoderdataPython
|
56213
|
<filename>assistance_arbitration/assistance_arbitrator/src/assistance_arbitrator/monitors/octomap_monitor.py
#!/usr/bin/env python
# Monitor the octomap and check if the threshold of clutter in the octomap is
# too high. This is almost never likely to be the actual cause of issues
from __future__ import print_function, division
import numpy as np
from threading import Lock
import rospy
from assistance_msgs.msg import MonitorMetadata
from moveit_msgs.msg import PlanningSceneComponents, PlanningScene
from moveit_msgs.srv import GetPlanningScene
from assistance_arbitrator.monitoring import AbstractFaultMonitor
# The class definition
class OctomapMonitor(AbstractFaultMonitor):
"""
Monitor the octomap and return an indication of the amount of free space.
This is a dumb algorithm for now
"""
OCTOMAP_MONITOR_EVENT_NAME = "octomap_update"
OCTOMAP_TOPIC = "/planning_scene"
OCTOMAP_SERVICE = "/get_planning_scene"
MONITOR_DURATION = rospy.Duration(5.0) # Duration at which to check the octomap
OCTOMAP_OCCUPIED_PROBABILITY_THRESHOLD = 0.5
FREE_PERC_FAULT_THRESHOLD = 0.7 # Pretty arbitrary number
def __init__(self):
super(OctomapMonitor, self).__init__()
self.set_metadata(topics=[OctomapMonitor.OCTOMAP_TOPIC])
self._octomap = None
self._octomap_lock = Lock()
# The service for getting the octomap
self._get_octomap = rospy.ServiceProxy(OctomapMonitor.OCTOMAP_SERVICE, GetPlanningScene)
# The topic for listening to the planning scene
self._octomap_sub = rospy.Subscriber(
OctomapMonitor.OCTOMAP_TOPIC,
PlanningScene,
self._on_planning_scene
)
# Start the timer to periodically
self._monitor_timer = rospy.Timer(
OctomapMonitor.MONITOR_DURATION,
self._monitor_func,
oneshot=False
)
def _on_planning_scene(self, scene_msg):
if len(scene_msg.world.octomap.octomap.data) > 0:
with self._octomap_lock:
self._octomap = np.array(scene_msg.world.octomap.octomap.data)
def _monitor_func(self, evt):
try:
planning_scene = self._get_octomap(components=PlanningSceneComponents(PlanningSceneComponents.OCTOMAP))
except rospy.ServiceException as e:
rospy.logerr("Error fetching planning scene: {}".format(e))
return
# Update the octomap and then check the threshold
new_octomap = np.array(planning_scene.scene.world.octomap.octomap.data)
free_space_num = np.sum(
(1 - (1 / (1 + np.exp(new_octomap)))) # Convert Log-Odds to Probabilities
<= OctomapMonitor.OCTOMAP_OCCUPIED_PROBABILITY_THRESHOLD
)
free_space_perc = free_space_num / len(new_octomap)
# Update the trace
self.update_trace(
OctomapMonitor.OCTOMAP_MONITOR_EVENT_NAME,
free_space_perc < OctomapMonitor.FREE_PERC_FAULT_THRESHOLD,
{ 'free_space_perc': free_space_perc }
)
# Update the pointer to the octomap
with self._octomap_lock:
self._octomap = new_octomap
# When running the monitor in standalone mode
if __name__ == '__main__':
rospy.init_node('global_plan_monitor')
monitor = OctomapMonitor()
rospy.spin()
|
StarcoderdataPython
|
3203335
|
import uspider
class MSUSpider(uspider.USpider):
name = "msuspider"
allowed_domains = ["msu.ru"]
download_delay = 1
extract_text = "db"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.start_urls.insert(0, "https://msu.ru")
|
StarcoderdataPython
|
3245861
|
class Vertex(object):
def __init__(self, key):
self.id = key
self.connected_to = {}
def add_neighbor(self, nbr, weight=0):
self.connected_to[nbr] = weight
def get_connections(self):
return self.connected_to.keys()
def get_id(self):
return self.id
def get_weight(self, nbr):
return self.connected_to[nbr]
def __str__(self):
return "{} connected to: {}".format(
self.id,
[x.id for x in self.connected_to]
)
class Graph(object):
def __init__(self):
self.vertices_list = {}
self.num_vertices = 0
def add_vertex(self, key):
self.num_vertices += 1
new_vertex = Vertex(key)
self.vertices_list[key] = new_vertex
return new_vertex
def get_vertex(self, key):
if key in self.vertices_list:
return self.vertices_list[key]
else:
return None
def add_edge(self, f, t, cost=0):
"""
:param f: From vertex
:param t: To vertex
:param cost: Weight of vertex
= """
if f not in self.vertices_list:
new_vertex = self.add_vertex(f)
if t not in self.vertices_list:
new_vertex = self.add_vertex(t)
self.vertices_list[f].add_neighbor(self.vertices_list[t], cost)
def get_vertices(self):
return self.vertices_list.keys()
def __iter__(self):
return iter(self.vertices_list.values())
def __contains__(self, key):
return key in self.vertices_list
if __name__ == '__main__':
g = Graph()
for i in range(6):
g.add_vertex(i)
print(g.vertices_list)
g.add_edge(0, 1, 2)
g.add_edge(0, 5, 3)
g.add_edge(2, 4, 3)
g.add_edge(4, 2, 2)
g.add_edge(1, 4, 2)
for v in g:
print(v)
|
StarcoderdataPython
|
3243993
|
<reponame>brunocroh/wifidog-auth-flask
import os
from auth import create_app
app = create_app()
if __name__ == '__main__':
app.run(debug=app.config['DEBUG'], host=app.config['HOST'], port=int(app.config['PORT']))
|
StarcoderdataPython
|
1646031
|
<filename>traxee/flipkart/api/serializers.py
from rest_framework import serializers
from django.db.models.fields import EmailField
from django.db.models.fields import PositiveIntegerField
class SignUpSerializers(serializers.Serializer):
email = serializers.EmailField()
name = serializers.CharField()
password = serializers.CharField()
isPremium = serializers.BooleanField()
class SignInSerializers(serializers.Serializer):
email = serializers.CharField()
password = serializers.CharField()
class TokenSerializer(serializers.Serializer):
token = serializers.CharField()
class ForgotPasswordSerializer(serializers.Serializer):
email = serializers.EmailField()
class SearchItemSerializer(serializers.Serializer):
item = serializers.CharField()
|
StarcoderdataPython
|
1669009
|
<filename>deleteRows.py
import os
import csv
def deleteKeys(folder, keys):
for fil in os.listdir(folder):
if os.path.splitext(fil)[1] == '.csv':
with open(os.path.join(folder, fil)) as f:
rows = [row for row in csv.reader(f)]
origLength = len(rows)
rows = [row for row in rows if not row or row[0] not in keys]
if origLength == len(rows):
continue
with open(os.path.join(folder, fil), 'w') as f:
writer = csv.writer(f)
writer.writerows(rows)
print(' '.join(keys))
if __name__ == '__main__':
import sys
folder = sys.argv[1]
keys = sys.argv[2:]
deleteKeys(folder, keys)
|
StarcoderdataPython
|
1721254
|
"""
Entradas
contraseña-->int-->contraseña
Salidas
correcto-->str-->Acesso Permitido
incorrecto-->str-->Senha Invalida
"""
#Caja negra
while True:
#Entrada
contraseña=int(input())
#Caja negra
if(contraseña==2002):
#Salida
print("Acesso Permitido")
break
else:
#Salida
print("Senha Invalida")
|
StarcoderdataPython
|
129040
|
<reponame>kozakusek/ipp-2020-testy
from part1 import (
gamma_board,
gamma_busy_fields,
gamma_delete,
gamma_free_fields,
gamma_golden_move,
gamma_golden_possible,
gamma_move,
gamma_new,
)
"""
scenario: test_random_actions
uuid: 239604592
"""
"""
random actions, total chaos
"""
board = gamma_new(2, 2, 2, 3)
assert board is not None
assert gamma_move(board, 2, 1, 0) == 1
assert gamma_move(board, 2, 0, 0) == 1
assert gamma_move(board, 1, 0, 1) == 1
assert gamma_move(board, 1, 0, 1) == 0
assert gamma_move(board, 2, 1, 1) == 1
assert gamma_move(board, 2, 1, 0) == 0
assert gamma_move(board, 1, 1, 0) == 0
assert gamma_move(board, 1, 1, 1) == 0
assert gamma_free_fields(board, 1) == 0
assert gamma_move(board, 2, 0, 0) == 0
assert gamma_move(board, 2, 0, 0) == 0
assert gamma_golden_possible(board, 2) == 1
gamma_delete(board)
|
StarcoderdataPython
|
1785397
|
<reponame>izmirli/modern-python-projects-course
from calculator import Calculator
def test_calculator():
calc = Calculator()
calc.add(10)
calc.subtract(5)
calc.multiply(5)
assert str(calc) == "Calculator(25)"
def test_calculator_initial_value():
calc = Calculator(10)
assert str(calc) == "Calculator(10)"
calc.add(5)
assert str(calc) == "Calculator(15)"
def test_chaining_operations():
calc = Calculator()
calc.add(5).add(10).subtract(15)
assert str(calc) == "Calculator(0)"
|
StarcoderdataPython
|
3361264
|
<reponame>elliotbrandwein/discord_options_chain_bot
#
# written by me, <NAME>
# No rights are granted to anyone without the express written consent of me or the National Football League
import datetime
from collections import defaultdict
import robin_stocks as r
import keyring
import getpass
########### THINGS YOU MIGHT WANNA CHANGE ####################
MY_RH_USERNAME = "<EMAIL>"
tickers = ['UAL', 'AAL', 'JETS', 'GME', 'NOK', 'F', 'GE', 'OPK']
MIN_PREMIUM_PERCENTAGE = 1
# MAX_PREMIUM_PERCENTAGE = 2 # to use you must also uncomment code below
##############################################################
pwd = keyring.get_password("<PASSWORD>", "my_very_own_rh_username")
if pwd is None:
print("First time? Securely type in your Robinhood Password please:")
# Stores password in local system using keyring
keyring.set_password("<PASSWORD>", "my_very_own_rh_username", getpass.getpass())
pwd = keyring.get_password("<PASSWORD>", "my_very_own_rh_username")
login = r.login(MY_RH_USERNAME, pwd)
latest_prices = r.get_latest_price(tickers)
prices = dict(zip(tickers, list(map(float, latest_prices))))
today = datetime.date.today()
friday = today + datetime.timedelta((4 - today.weekday()) % 7)
# If it's late in the week and you want to look at next week, uncomment the below line
# friday = friday + datetime.timedelta(7)
expiration = "{}-{}-{}".format(friday.year, friday.month, friday.day)
putData = r.find_options_by_expiration(tickers, expirationDate=expiration, optionType='put')
putsToLookAt = defaultdict(lambda: [])
for put in putData:
tick = put["chain_symbol"]
curr_stock_price = prices[tick]
strike = float(put["strike_price"])
if strike > curr_stock_price:
# We don't sell puts for strikes above the current stock price
continue
premium = float(put["bid_price"]) # only the bid price is guaranteed, rest is theoretical
if premium < strike * (MIN_PREMIUM_PERCENTAGE / 100):
# Not worth it
continue
# if premium > strike * (MAX_PREMIUM_PERCENTAGE / 100):
# # Probably too risky to consider
# continue
putsToLookAt[tick].append("${} strike for ${} = {:.2%}".format(strike, premium, premium / strike))
print("Puts expiring on {} for strikes below current stock price with profitability above {}%:"
.format(expiration, MIN_PREMIUM_PERCENTAGE))
for tick in tickers:
print("*" * 50)
print("{}: Current Price: {}".format(tick, prices[tick]))
puts = putsToLookAt[tick]
if not puts:
print("No puts are worth it this week for this guy")
else:
puts.sort()
for put in puts:
print("\t{}".format(put))
|
StarcoderdataPython
|
176380
|
<gh_stars>1-10
import time,opt
import RPi.GPIO as GPIO
def DistanceMeasure(distance_limit=0.2,time_limit=1,time_delay=10):
GPIO.setmode(GPIO.BCM)
trig=27;GPIO.setup(trig,GPIO.OUT)
echo=22;GPIO.setup(echo,GPIO.IN)
count=0
while 39:
GPIO.output(trig,1)
time.sleep(0.00001)
GPIO.output(trig,0)
# while GPIO.input(echo)==0: pass
pulse_start=time.time()
while GPIO.input(echo)==1: pass
pulse_end=time.time()
pulse_time=pulse_end-pulse_start
distance=pulse_time*171.5
if distance>distance_limit: count=0
else:
count+=1
if count>distance_limit*1000:
stp=opt.CameraJudge()
if stp==0:
# print "shibieshibai"
time.sleep(time_delay)
else: return 1
count=0
# DistanceMeasure()
|
StarcoderdataPython
|
3268342
|
class Group:
def __init__(self, name: object, header: object, footer: object) -> object:
self.name = name
self.header = header
self.footer = footer
|
StarcoderdataPython
|
1629067
|
<gh_stars>0
from Models import VehcleDriver
from time import sleep
from random import randint
import random
from faker import Faker
import json
from kafka import KafkaProducer
def publish_message(producer_instance, topic_name, key, value):
try:
key_bytes = bytes(key, encoding='utf-8')
value_bytes = bytes(value, encoding='utf-8')
producer_instance.send(topic_name, key=key_bytes, value=value_bytes)
producer_instance.flush()
print('Message published successfully.')
except Exception as ex:
print('Exception in publishing message')
print(str(ex))
def connect_kafka_producer():
_producer = None
try:
_producer = KafkaProducer(bootstrap_servers=['localhost:9092'], api_version=(0, 10))
except Exception as ex:
print('Exception while connecting Kafka')
print(str(ex))
finally:
return _producer
def simulateVehicleData(x):
# dictionary
driver_data =[]
vehcle_list = ["Tata Pickup", "Tata Turbo xls",
"Eicher Motor Turbo", "Gati Transport"]
state_list = ["UP", "BR",
"DL", "KA","UK"]
fake = Faker(['en_IN'])
for i in range(0, x):
driver= VehcleDriver()
driver.id= randint(1, 100)
driver.driverName= fake.name()
driver.driverTempreture= randint(20,60)
driver.driverBloodPressure= str(randint(0,200))+'/'+ str(randint(60,90))+'mmHg'
driver.address= fake.city()
driver.latitude= str(fake.latitude())
driver.longitude= str(fake.longitude())
driver.vechileModel= str(random.choice(vehcle_list))
driver.vechileLiecense= str(random.choice(state_list))+'-'+str(randint(10, 99))+'-'+str(randint(1000, 9999)) # UP-60-9999
driver.vechileTempreture= randint(30, 150)
driver.vechileFuelLevel= randint(1, 100)
driver.vechileTyrePressure= str(randint(50, 130))+'psi'
driver.vechileSpeed=randint(1, 100)
driver_data.append(driver)
if len(driver_data) > 0:
kafka_producer = connect_kafka_producer()
for data in driver_data:
publish_message(kafka_producer, 'topic-vehicle-data', 'raw',json.dumps(data.__dict__))
sleep(5)
if kafka_producer is not None:
kafka_producer.close()
if __name__ == '__main__':
while True:
simulateVehicleData(1)
sleep(2)
|
StarcoderdataPython
|
3352135
|
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
# Generated file, DO NOT EDIT
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------------------------
from .work_item_tracking_resource import WorkItemTrackingResource
class FieldDependentRule(WorkItemTrackingResource):
"""FieldDependentRule.
:param url:
:type url: str
:param _links:
:type _links: :class:`ReferenceLinks <work-item-tracking.v4_0.models.ReferenceLinks>`
:param dependent_fields:
:type dependent_fields: list of :class:`WorkItemFieldReference <work-item-tracking.v4_0.models.WorkItemFieldReference>`
"""
_attribute_map = {
'url': {'key': 'url', 'type': 'str'},
'_links': {'key': '_links', 'type': 'ReferenceLinks'},
'dependent_fields': {'key': 'dependentFields', 'type': '[WorkItemFieldReference]'}
}
def __init__(self, url=None, _links=None, dependent_fields=None):
super(FieldDependentRule, self).__init__(url=url, _links=_links)
self.dependent_fields = dependent_fields
|
StarcoderdataPython
|
3268430
|
<reponame>ved93/deliberate-practice-challenges<gh_stars>0
def binary_search(a,k):
left, right = 0, len(a)-1
while left <= right:
mid = (left + right) // 2
if a[mid] == k:
return True
elif a[mid] < k:
left = mid +1
else:
right = mid - 1
return -1
if __name__ == "__main__":
a = [1,3, 4,5, 8,9,10]
k = 10
print(binary_search(a,k))
|
StarcoderdataPython
|
3383678
|
from hwt.hdl.constants import DIRECTION
from hwt.interfaces.std import VectSignal, Signal
from hwt.synthesizer.param import Param
from hwtLib.amba.axi3Lite import Axi3Lite_addr, Axi3Lite, Axi3Lite_r, Axi3Lite_b,\
IP_Axi3Lite
from hwtLib.amba.axi_intf_common import AxiMap, Axi_id, Axi_hs, Axi_strb
from hwtLib.amba.axis import AxiStream, AxiStreamAgent
from hwtLib.amba.sim.agentCommon import BaseAxiAgent
from hwt.serializer.ip_packager import IpPackager
from ipCorePackager.component import Component
from hwtSimApi.hdlSimulator import HdlSimulator
from hwtLib.amba.constants import BYTES_IN_TRANS, BURST_INCR, CACHE_DEFAULT,\
LOCK_DEFAULT, PROT_DEFAULT
_DEFAULT = object()
#####################################################################
class Axi3_addr(Axi3Lite_addr, Axi_id):
"""
Axi3 address channel interface
.. hwt-autodoc::
"""
LEN_WIDTH = 4
LOCK_WIDTH = 2
def _config(self):
Axi3Lite_addr._config(self)
Axi_id._config(self, default_id_width=6)
self.USER_WIDTH = Param(0)
def _declr(self):
Axi3Lite_addr._declr(self)
Axi_id._declr(self)
self.burst = VectSignal(2)
self.cache = VectSignal(4)
self.len = VectSignal(self.LEN_WIDTH)
self.lock = VectSignal(self.LOCK_WIDTH)
self.prot = VectSignal(3)
self.size = VectSignal(3)
if self.USER_WIDTH:
self.user = VectSignal(self.USER_WIDTH)
def _initSimAgent(self, sim: HdlSimulator):
self._ag = Axi3_addrAgent(sim, self)
class Axi3_addrAgent(AxiStreamAgent):
"""
Simulation agent for :class:`.Axi3_addr` interface
input/output data stored in list under "data" property
data contains tuples (id, addr, burst, cache, len, lock,
prot, size, qos, optionally user)
"""
def __init__(self, sim: HdlSimulator, intf: Axi3_addr, allowNoReset=False):
BaseAxiAgent.__init__(self, sim, intf, allowNoReset=allowNoReset)
signals = [
intf.id,
intf.addr,
intf.burst,
intf.cache,
intf.len,
intf.lock,
intf.prot,
intf.size,
]
if hasattr(intf, "user"):
signals.append(intf.user)
self._signals = tuple(signals)
self._sigCnt = len(signals)
def create_addr_req(self, addr, _len,
_id=0,
burst=BURST_INCR,
cache=CACHE_DEFAULT,
lock=LOCK_DEFAULT,
prot=PROT_DEFAULT,
size=_DEFAULT,
user=None):
"""
Create a default AXI address transaction
:note: transaction is created and returned but it is not added to a agent data
"""
if size is _DEFAULT:
D_B = self.intf._parent.DATA_WIDTH // 8
size = BYTES_IN_TRANS(D_B)
if self.intf.USER_WIDTH:
return (_id, addr, burst, cache, _len, lock, prot, size, user)
else:
assert user is None
return (_id, addr, burst, cache, _len, lock, prot, size)
#####################################################################
class Axi3_w(Axi_hs, Axi_strb):
"""
Axi3 write channel interface (simplified AxiStream)
.. hwt-autodoc::
"""
def _config(self):
self.ID_WIDTH = Param(0)
self.DATA_WIDTH = Param(64)
def _declr(self):
if self.ID_WIDTH:
self.id = VectSignal(self.ID_WIDTH)
self.data = VectSignal(self.DATA_WIDTH)
Axi_strb._declr(self)
self.last = Signal()
Axi_hs._declr(self)
def _initSimAgent(self, sim: HdlSimulator):
AxiStream._initSimAgent(self, sim)
#####################################################################
class Axi3_r(Axi3Lite_r, Axi_id):
"""
Axi 3 read channel interface
.. hwt-autodoc::
"""
def _config(self):
Axi_id._config(self, default_id_width=6)
Axi3Lite_r._config(self)
def _declr(self):
Axi_id._declr(self)
Axi3Lite_r._declr(self)
self.last = Signal()
def _initSimAgent(self, sim: HdlSimulator):
self._ag = Axi3_rAgent(sim, self)
class Axi3_rAgent(BaseAxiAgent):
"""
Simulation agent for :class:`.Axi4_r` interface
input/output data stored in list under "data" property
data contains tuples (id, data, resp, last)
"""
def get_data(self):
intf = self.intf
_id = intf.id.read()
data = intf.data.read()
resp = intf.resp.read()
last = intf.last.read()
return (_id, data, resp, last)
def set_data(self, data):
intf = self.intf
if data is None:
data = [None for _ in range(4)]
_id, data, resp, last = data
intf.id.write(_id)
intf.data.write(data)
intf.resp.write(resp)
intf.last.write(last)
#####################################################################
class Axi3_b(Axi3Lite_b, Axi_id):
"""
Axi3 write response channel interface
.. hwt-autodoc::
"""
def _config(self):
Axi_id._config(self)
Axi3Lite_b._config(self)
def _declr(self):
Axi_id._declr(self)
Axi3Lite_b._declr(self)
def _initSimAgent(self, sim: HdlSimulator):
self._ag = Axi3_bAgent(sim, self)
class Axi3_bAgent(BaseAxiAgent):
"""
Simulation agent for :class:`.Axi3_b` interface
input/output data stored in list under "data" property
data contains tuples (id, resp)
"""
def get_data(self):
intf = self.intf
return intf.id.read(), intf.resp.read()
def set_data(self, data):
intf = self.intf
if data is None:
data = [None for _ in range(2)]
_id, resp = data
intf.id.write(_id)
intf.resp.write(resp)
#####################################################################
class Axi3(Axi3Lite):
"""
AMBA Axi3 bus interface
https://static.docs.arm.com/ihi0022/d/IHI0022D_amba_axi_protocol_spec.pdf
.. hwt-autodoc::
"""
LOCK_WIDTH = Axi3_addr.LOCK_WIDTH
LEN_WIDTH = Axi3_addr.LEN_WIDTH
AW_CLS = Axi3_addr
AR_CLS = Axi3_addr
W_CLS = Axi3_w
R_CLS = Axi3_r
B_CLS = Axi3_b
def _config(self):
Axi3Lite._config(self)
Axi_id._config(self, default_id_width=6)
self.ADDR_USER_WIDTH = Param(0)
# self.DATA_USER_WIDTH = Param(0)
def _declr(self):
with self._paramsShared():
if self.HAS_R:
self.ar = self.AR_CLS()
self.ar.USER_WIDTH = self.ADDR_USER_WIDTH
self.r = self.R_CLS(masterDir=DIRECTION.IN)
if self.HAS_W:
self.aw = self.AW_CLS()
self.aw.USER_WIDTH = self.ADDR_USER_WIDTH
self.w = self.W_CLS()
self.b = self.B_CLS(masterDir=DIRECTION.IN)
# for d in [self.w, self.r, self.b]:
# d.USER_WIDTH = self.DATA_USER_WIDTH
def _getIpCoreIntfClass(self):
return IP_Axi3
class IP_Axi3(IP_Axi3Lite):
"""
IP core interface meta for Axi3 interface
"""
def __init__(self,):
super(IP_Axi3, self).__init__()
self.quartus_name = "axi"
self.xilinx_protocol_name = "AXI3"
A_SIGS = ['id', 'burst', 'cache', 'len', 'lock',
'prot', 'size', 'qos', 'user']
AxiMap('ar', A_SIGS, self.map['ar'])
AxiMap('r', ['id', 'last'], self.map['r'])
AxiMap('aw', A_SIGS, self.map['aw'])
AxiMap('w', ['id', 'last'], self.map['w'])
AxiMap('b', ['id'], self.map['b'])
def postProcess(self,
component: Component,
packager: IpPackager,
thisIf: Axi3):
self.endianness = "little"
thisIntfName = packager.getInterfaceLogicalName(thisIf)
def param(name, val):
return self.addSimpleParam(thisIntfName, name, str(val))
# [TODO] width as expression instead of int
param("ADDR_WIDTH", thisIf.aw.addr._dtype.bit_length())
param("MAX_BURST_LENGTH", int(2 ** thisIf.aw.len._dtype.bit_length()))
param("NUM_READ_OUTSTANDING", 5)
param("NUM_WRITE_OUTSTANDING", 5)
param("PROTOCOL", self.xilinx_protocol_name)
param("READ_WRITE_MODE", "READ_WRITE")
param("SUPPORTS_NARROW_BURST", 0)
A_U_W = int(thisIf.ADDR_USER_WIDTH)
if A_U_W:
param("AWUSER_WIDTH", A_U_W)
param("ARUSER_WIDTH", A_U_W)
|
StarcoderdataPython
|
59131
|
from django.shortcuts import render, redirect
from django.contrib.auth import login, authenticate, logout
from .forms import UserLoginForm
def home_view(request):
context = {'name': 'Dave'}
return render(request, 'home.html',context)
def login_view(request):
form = UserLoginForm(request.POST or None)
next_ = request.GET.get('next')
if form.is_valid():
username = request.POST.get('username')
password = request.POST.get('password')
user = authenticate(username=username.strip(),
password=password.strip())
login(request, user)
next_post = request.POST.get('next')
redirect_path = next_ or next_post or '/'
return redirect(redirect_path)
return render(request, 'login.html', {'form':form})
def logout_view(request):
logout(request)
return redirect('lista:home')
|
StarcoderdataPython
|
1628743
|
from PyPowerStore.utils import constants
from PyPowerStore.tests.unit_tests.base_test import TestBase
from PyPowerStore.utils.exception import PowerStoreException
import mock
class TestVolume(TestBase):
def test_get_volumes(self):
vol_list = self.provisioning.get_volumes()
self.assertListEqual(vol_list, self.data.volume_list)
def test_get_volume_detail(self):
vol_details = self.provisioning.get_volume_details(self.data.vol_id1)
self.assertEqual(vol_details, self.data.volume1)
def test_create_volume(self):
vol = self.provisioning.create_volume(self.data.vol_name1,
self.data.size)
self.assertIsNone(vol)
def test_modify_volume(self):
vol = self.provisioning.modify_volume(self.data.vol_id1,
self.data.vol_name1)
self.assertIsNone(vol)
def test_delete_volume(self):
vol = self.provisioning.delete_volume(self.data.vol_id1)
self.assertIsNone(vol)
def test_get_volumes_with_filter(self):
querystring = {'name': 'ilike.*test*'}
querystring.update(constants.SELECT_ID_AND_NAME)
with mock.patch.object(self.provisioning.client,
'request') as mock_request:
self.provisioning.get_volumes(filter_dict=querystring,
all_pages=True)
mock_request.assert_called_with(
constants.GET,
constants.GET_VOLUME_LIST_URL.format(
self.provisioning.server_ip),
all_pages=True,
payload=None,
querystring=querystring)
def test_add_protection_policy_for_volume(self):
resp = self.provisioning.add_protection_policy_for_volume(
self.data.vol_id1, self.data.pol_id)
self.assertIsNone(resp)
def test_add_invalid_protection_policy_for_volume(self):
self.assertRaises(PowerStoreException,
self.provisioning.add_protection_policy_for_volume,
self.data.vol_id1,
self.data.invalid_pol_id)
def test_remove_protection_policy_for_volume(self):
resp = self.provisioning.remove_protection_policy_for_volume(
self.data.vol_id1)
self.assertIsNone(resp)
def test_get_volume_by_name(self):
vol_details = self.provisioning.get_volume_by_name(
self.data.vol_name1)
self.assertEqual(vol_details, [self.data.volume1])
def test_map_volume_to_host(self):
resp = self.provisioning.map_volume_to_host(
self.data.vol_id1, self.data.host_id1, self.data.lun)
self.assertIsNone(resp)
def test_unmap_volume_from_host(self):
resp = self.provisioning.unmap_volume_from_host(
self.data.vol_id1, self.data.host_id1)
self.assertIsNone(resp)
def test_map_volume_to_hg(self):
resp = self.provisioning.map_volume_to_host_group(
self.data.vol_id1, self.data.hg_id1, self.data.lun)
self.assertIsNone(resp)
def test_unmap_volume_from_host_group(self):
resp = self.provisioning.unmap_volume_from_host_group(
self.data.vol_id1, self.data.hg_id1)
self.assertIsNone(resp)
def test_create_volume_snapshot(self):
vol_snap_detail = self.protection.create_volume_snapshot(
self.data.vol_id1, description='vol snap description')
self.assertEqual(vol_snap_detail, self.data.vol_snap_detail)
def test_get_volume_snapshots(self):
snap = self.protection.get_volume_snapshots(self.data.vol_id1)
self.assertListEqual(snap, self.data.volume_snap_list)
def test_get_volume_snapshot_details(self):
snap = self.protection.get_volume_snapshot_details(
self.data.vol_snap_id)
self.assertEqual(snap, self.data.vol_snap_detail)
def test_modify_volume_snapshot(self):
snap = self.protection.modify_volume_snapshot(
self.data.vol_snap_id, name='vol_snap')
self.assertEqual(snap, self.data.vol_snap_detail)
def test_delete_volume_snapshot(self):
resp = self.protection.delete_volume_snapshot(self.data.vol_snap_id)
self.assertIsNone(resp)
|
StarcoderdataPython
|
3273848
|
"""
Methods for drawing from the sunspot latitude and radius distribution
"""
import numpy as np
import astropy.units as u
__all__ = ['draw_random_sunspot_latitudes', 'draw_random_sunspot_radii']
@u.quantity_input(theta=u.rad, phi=u.rad)
def rtp_to_edge(radius, theta, phi, n_points=1000):
"""
Use the haversine formula to compute the boundary lat/lon coordinates for a
circular spot centered on ``(theta, phi)``, with radius ``radius` in units
of the stellar radius.
Parameters
----------
radius : float
Spot radius [R_star]
theta : `~astropy.units.Quantity`
Spot theta coord (90 deg - latitude)
phi : `~astropy.units.Quantity`
Spot phi coord (longitude)
n_points : int
Number of points to include in the circle boundary
Returns
-------
lat : `~astropy.units.Quantity`
Latitudes of spot boundary
lon : `~astropy.units.Quantity`
Longitudes of spot boundary
"""
lat1 = np.pi/2 - theta.to(u.rad).value
lon1 = phi.to(u.rad).value
d = radius
thetas = np.linspace(0, -2*np.pi, n_points)[:, np.newaxis]
lat = np.arcsin(np.sin(lat1) * np.cos(d) + np.cos(lat1) *
np.sin(d) * np.cos(thetas))
dlon = np.arctan2(np.sin(thetas) * np.sin(d) * np.cos(lat1),
np.cos(d) - np.sin(lat1) * np.sin(lat))
lon = ((lon1 - dlon + np.pi) % (2*np.pi)) - np.pi
return lat*u.rad, lon*u.rad
def generate_random_coord(n=1):
"""
Generate random latitude/longitude pairs, of length ``n``.
"""
random_longitude = 2*np.pi*np.random.rand(n)
random_z = 2*np.random.rand(n) - 1
random_latitude = np.arcsin(random_z)
result = np.vstack([random_latitude, random_longitude]).T * u.rad
if result.shape[0] == 1:
return result[0]
return result
def sunspot_distribution(latitude, mean_latitude=15):
"""
Approximate un-normalized probability distribution of sunspots at
``latitude`` near activity maximum on the Sun.
Parameters
----------
latitude : `~numpy.ndarray`
Latitude
mean_latitude : float
Mean active latitude in degrees
Returns
-------
p : `~numpy.ndarray
Probability (un-normalized)
"""
return np.exp(-0.5 * (abs(latitude) - mean_latitude)**2 / 6**2)
def sunspot_latitude_inverse_transform(x, mean_latitude=15):
"""
Use inverse transform sampling to randomly draw spot latitudes from the
sunspot latitude distribution, for a uniform random variate ``x`` on the
range [0,1).
Parameters
----------
x : `~np.ndarray` or float
Uniform random variate on [0, 1)
Returns
-------
lat : `~astropy.units.Quantity`
Latitude of a sunspot drawn from the sunspot latitude distribution.
"""
lats = np.linspace(-88, 88, 1000)
prob = np.cumsum(sunspot_distribution(lats, mean_latitude=mean_latitude))
prob /= np.max(prob)
return np.interp(x, prob, lats) * u.deg
def draw_random_sunspot_latitudes(n, mean_latitude=15):
"""
Draw one or more random samples from the sunspot latitude distribution.
Parameters
----------
n : int
Number of random sunspot latitudes to draw
Returns
-------
lat : `~astropy.units.Quantity`
Latitude of a sunspot drawn from the sunspot latitude distribution.
"""
return sunspot_latitude_inverse_transform(np.random.rand(n),
mean_latitude=mean_latitude)
def sunspot_umbral_area_distribution(log_area_uhem):
"""
Approximate log-normal distribution of sunspot umbral areas
"""
return np.exp(-0.5 * (log_area_uhem - 4.1)**2 / 1.0**2)
def sunspot_umbral_area_inverse_transform(x):
"""
Use inverse transform sampling to randomly draw spot areas from the
sunspot umbral area distribution, for a uniform random variate ``x`` on the
range [0,1).
Parameters
----------
x : `~np.ndarray` or float
Uniform random variate on [0, 1)
Returns
-------
umbral_areas : `~numpy.ndarray`
Umbral area(s) of sunspot(s) drawn from the sunspot umbral area
distribution.
"""
log_areas_uhem = np.linspace(0, 9, 1000)
prob = np.cumsum(sunspot_umbral_area_distribution(log_areas_uhem))
prob /= np.max(prob)
return np.interp(x, prob, log_areas_uhem)
def draw_random_sunspot_radii(n):
"""
Draw one or more random samples from the sunspot radius distribution.
Parameters
----------
n : int
Number of random sunspot radii to draw
Returns
-------
rspot_rstar : `~numpy.ndarray`
Radii of a sunspots drawn from the sunspot radius distribution,
in units of stellar radii.
"""
umbral_areas_uhem = sunspot_umbral_area_inverse_transform(np.random.rand(n))
total_to_umbral_area = 5 # ratio of total spot area to area in umbra
rspot_rstar = np.sqrt(1e-6 * 2 * total_to_umbral_area * umbral_areas_uhem)
return rspot_rstar
|
StarcoderdataPython
|
42957
|
<reponame>PublicMapping/districtbuilder-classic
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery
from . import REDIS_URL
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "publicmapping.settings")
# Configure Celery app to use Redis as both the results backend and the message broker.
app = Celery('publicmapping', backend=REDIS_URL, broker=REDIS_URL)
# Using a string here means the worker doesn't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')
# Load task modules from all registered Django app configs.
app.autodiscover_tasks()
|
StarcoderdataPython
|
116432
|
<reponame>Telefonica/clipspy
from .rules_engines import RulesEngine
import logging
import os
from typing import Text
logger = logging.getLogger(__name__)
class RulesEnginesStore(object):
"""
Base class for rules engine stores.
"""
def load_persistent_state(self, rules_engine: RulesEngine, id: Text):
"""
Loads a persisted state into a rules engine.
:param rules_engine: The rules engine.
:param id: The id of the persisted state.
"""
raise NotImplementedError("This method should be implemented by subclasses!")
def save_persistent_state(self, rules_engine: RulesEngine, id: Text):
"""
Save the current state of a rules engine and associates it to a given id.
:param rules_engine: The rules engine.
:param id: The identifier to persist to.
"""
raise NotImplementedError("This method should be implemented by subclasses!")
def clear_persistent_state(self, id: Text):
"""
Clears the persisted state identified by a give id.
:param id: The identifier to clear.
"""
raise NotImplementedError("This method should be implemented by subclasses!")
class LocalFileRulesEngineStore(RulesEnginesStore):
"""
This rules engine stores persistent states into a folder into the local machine.
Each persistent state is stored as file into this folder. The name of the files follow this format:
<floder_path>/<id>.persist
"""
def __init__(self, folder_path: Text, binary: bool= True):
"""
:param folder_path: The path to the persistence folder.
:param binary: If True the state is saved as a binary file. Default: True.
"""
self.folder_path = folder_path
self.binary = binary
def _build_path(self, id: Text):
return os.path.join(self.folder_path, "{}.persist".format(id))
def load_persistent_state(self, rules_engine: RulesEngine, id: Text):
_path = self._build_path(id)
if os.path.exists(_path):
rules_engine.env.eval("(load-facts {})".format(self._build_path(id)))
# Clear all activations in agenda
logger.debug("Clearing agenda after facts load") # Debug
rules_engine.env._agenda.clear()
else:
logger.warn('No persisted state found for id="{}"'.format(id))
def save_persistent_state(self, rules_engine: RulesEngine, id: Text):
rules_engine.env.eval("(save-facts {})".format(self._build_path(id)))
def clear_persistent_state(self, id: Text):
_path = self._build_path(id)
if os.path.exists(_path):
os.remove(self._build_path(id))
else:
logger.warn('No persisted state found for id="{}"'.format(id))
|
StarcoderdataPython
|
44560
|
from openprocurement.tender.core.procedure.serializers.base import ListSerializer
from openprocurement.tender.core.procedure.serializers.document import ConfidentialDocumentSerializer
from openprocurement.tender.core.procedure.serializers.parameter import ParameterSerializer
from openprocurement.tender.esco.procedure.serializers.lot_value import LotValueSerializer
from openprocurement.tender.esco.procedure.serializers.value import ValueSerializer
from openprocurement.tender.openeu.procedure.serializers import BidSerializer as BaseBidSerializer
class BidSerializer(BaseBidSerializer):
serializers = {
"value": ValueSerializer,
"lotValues": ListSerializer(LotValueSerializer),
"documents": ListSerializer(ConfidentialDocumentSerializer),
"parameters": ListSerializer(ParameterSerializer),
}
|
StarcoderdataPython
|
195178
|
from enum import Enum
class MerossEventType(Enum):
# Fired when the MQTT client connects/disconnects to the MQTT broker
CLIENT_CONNECTION = 10
DEVICE_ONLINE_STATUS = 100
DEVICE_BIND = 200
DEVICE_UNBIND = 201
DEVICE_SWITCH_STATUS = 1000
DEVICE_BULB_SWITCH_STATE = 2000
DEVICE_BULB_STATE = 2001
GARAGE_DOOR_STATUS = 3000
THERMOSTAT_TEMPERATURE_CHANGE = 5000
THERMOSTAT_MODE_CHANGE = 5001
HUMIDIFIER_SPRY_EVENT = 6000
HUMIDIFIER_LIGHT_EVENT = 6001
class MerossEvent(object):
event_type = None # type: MerossEventType
def __init__(self, event_type):
self.event_type = event_type
class DeviceBindEvent(MerossEvent):
def __init__(self, device, bind_data):
super(DeviceBindEvent, self).__init__(MerossEventType.DEVICE_BIND)
self.device = device
self.bind_data = bind_data
class DeviceUnbindEvent(MerossEvent):
def __init__(self, device):
super(DeviceUnbindEvent, self).__init__(MerossEventType.DEVICE_UNBIND)
self.device = device
class ClientConnectionEvent(MerossEvent):
status = None
def __init__(self, current_status):
super(ClientConnectionEvent, self).__init__(MerossEventType.CLIENT_CONNECTION)
self.status = current_status
class DeviceOnlineStatusEvent(MerossEvent):
# Pointer to the device object
device = None
# Current status of the device
status = None
def __init__(self, dev, current_status):
super(DeviceOnlineStatusEvent, self).__init__(MerossEventType.DEVICE_ONLINE_STATUS)
self.device = dev
self.status = "online" if current_status else "offline"
class DeviceSwitchStatusEvent(MerossEvent):
# Pointer to the device object
device = None
# Channel ID where the event occurred
channel_id = None
# Current state of the switch where the event occurred
switch_state = None
# Indicates id the event was generated by a command issued by the library itself.
# This is particularly useful in the case the user handler wants only to react
# to events generated by third parties.
generated_by_myself = None
def __init__(self, dev, channel_id, switch_state, generated_by_myself):
super(DeviceSwitchStatusEvent, self).__init__(MerossEventType.DEVICE_SWITCH_STATUS)
self.device = dev
self.channel_id = channel_id
self.switch_state = switch_state
self.generated_by_myself = generated_by_myself
class DeviceDoorStatusEvent(MerossEvent):
# Pointer to the device object
device = None
# Current state of the door
door_state = None
# Channel related to the door controller
channel = None
# Indicates id the event was generated by a command issued by the library itself.
# This is particularly useful in the case the user handler wants only to react
# to events generated by third parties.
generated_by_myself = None
def __init__(self, dev, channel_id, door_state, generated_by_myself):
super(DeviceDoorStatusEvent, self).__init__(MerossEventType.GARAGE_DOOR_STATUS)
self.device = dev
self.channel = channel_id
self.door_state = "open" if door_state else "closed"
self.generated_by_myself = generated_by_myself
class BulbSwitchStateChangeEvent(MerossEvent):
def __init__(self, dev, channel_id, is_on, generated_by_myself):
super(BulbSwitchStateChangeEvent, self).__init__(MerossEventType.DEVICE_BULB_SWITCH_STATE)
self.device = dev
self.channel = channel_id
self.is_on = is_on
self.generated_by_myself = generated_by_myself
class BulbLightStateChangeEvent(MerossEvent):
def __init__(self, dev, channel_id, light_state, generated_by_myself):
super(BulbLightStateChangeEvent, self).__init__(MerossEventType.DEVICE_BULB_STATE)
self.device = dev
self.channel = channel_id
self.light_state = light_state
self.generated_by_myself = generated_by_myself
class ThermostatTemperatureChange(MerossEvent):
def __init__(self, device, temperature_state, generated_by_myself):
super(ThermostatTemperatureChange, self).__init__(MerossEventType.THERMOSTAT_TEMPERATURE_CHANGE)
self.device = device
self.temperature = temperature_state
self.generated_by_myself = generated_by_myself
class ThermostatModeChange(MerossEvent):
def __init__(self, device, mode, generated_by_myself):
super(ThermostatModeChange, self).__init__(MerossEventType.THERMOSTAT_MODE_CHANGE)
self.device = device
self.mode = mode
self.generated_by_myself = generated_by_myself
class HumidifierSpryEvent(MerossEvent):
def __init__(self, device, spry_mode, channel, generated_by_myself):
super(HumidifierSpryEvent, self).__init__(MerossEventType.HUMIDIFIER_SPRY_EVENT)
self.device = device
self.spry_mode = spry_mode
self.channel = channel
self.generated_by_myself = generated_by_myself
class HumidifierLightEvent(MerossEvent):
def __init__(self, dev, channel, onoff, rgb, luminance, generated_by_myself):
super(HumidifierLightEvent, self).__init__(MerossEventType.HUMIDIFIER_LIGHT_EVENT)
self.device = dev
self.channel = channel
self.is_on = onoff == 1
self.rgb = rgb
self.luminance = luminance
self.generated_by_myself = generated_by_myself
|
StarcoderdataPython
|
3390950
|
from researchutils.chainer.functions import average_k_step_squared_error
from chainer.link import Chain
from chainer import reporter
import chainer
import chainer.functions as F
class FFPredictionEvaluator(Chain):
def __init__(self, predictor, loss_fun=average_k_step_squared_error, k_step=1):
super(FFPredictionEvaluator, self).__init__()
self.loss_fun = loss_fun
self.k_step = k_step
self.loss = None
with self.init_scope():
self.predictor = predictor
def __call__(self, *args, **kwargs):
self.loss = 0
(train_frame, train_actions) = kwargs['input']
target_frames = kwargs['target']
for step in range(self.k_step):
predicted_frame = self.predictor(
(train_frame, train_actions[:, step, :, :]))
expected_frame = target_frames[:, step, :, :, :]
self.loss += self.loss_fun(predicted_frame, expected_frame, self.k_step)
if not self.k_step == 1:
predicted_frame = chainer.Variable(predicted_frame.array)
train_frame = F.concat((train_frame, predicted_frame), axis=1)[
:, 3:, :, :]
reporter.report({'loss':self.loss}, self)
return self.loss
|
StarcoderdataPython
|
1662830
|
<reponame>preranaandure/wildlifecompliance
# -*- coding: utf-8 -*-
# Generated by Django 1.10.8 on 2019-12-24 05:49
from __future__ import unicode_literals
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('wildlifecompliance', '0357_auto_20191224_1345'),
]
operations = [
migrations.RemoveField(
model_name='remediationactiontaken',
name='remediation_action',
),
migrations.RemoveField(
model_name='remediationactiontakendocument',
name='remediation_action_taken',
),
migrations.DeleteModel(
name='RemediationActionTaken',
),
migrations.DeleteModel(
name='RemediationActionTakenDocument',
),
]
|
StarcoderdataPython
|
3256480
|
<gh_stars>100-1000
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import numpy as np
import os
import sys
from observations.util import maybe_download_and_extract
def drughiv(path):
"""data from Exercise 7.6, p222
The `drughiv` data frame has 34 rows and 3 columns.
This data frame contains the following columns:
drug
Drug combination (1=AZT + zalcitabine, 2=AZT + zalcitabine +
saquinavir)
time
Time after drug administration to CD4 count at a specified level,
days
delta
Indicator of CD4 count reaching specified level (1=yes, 0=no)
<NAME> Moeschberger (1997) *Survival Analysis Techniques for Censored
and truncated data*, Springer.
Args:
path: str.
Path to directory which either stores file or otherwise file will
be downloaded and extracted there.
Filename is `drughiv.csv`.
Returns:
Tuple of np.ndarray `x_train` with 34 rows and 3 columns and
dictionary `metadata` of column headers (feature names).
"""
import pandas as pd
path = os.path.expanduser(path)
filename = 'drughiv.csv'
if not os.path.exists(os.path.join(path, filename)):
url = 'http://dustintran.com/data/r/KMsurv/drughiv.csv'
maybe_download_and_extract(path, url,
save_file_name='drughiv.csv',
resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0,
parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return x_train, metadata
|
StarcoderdataPython
|
1641993
|
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def diameterOfBinaryTree(self, root: TreeNode) -> int:
self.ans = 0
def depth(p):
if not p:
return 0
left, right = depth(p.left), depth(p.right)
self.ans = max(self.ans, left+right)
return 1 + max(left, right)
depth(root)
return self.ans
|
StarcoderdataPython
|
1780176
|
<filename>esphome/components/modbus_controller/__init__.py
import binascii
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import modbus
from esphome.const import CONF_ADDRESS, CONF_ID, CONF_NAME, CONF_LAMBDA, CONF_OFFSET
from esphome.cpp_helpers import logging
from .const import (
CONF_BITMASK,
CONF_BYTE_OFFSET,
CONF_COMMAND_THROTTLE,
CONF_CUSTOM_COMMAND,
CONF_FORCE_NEW_RANGE,
CONF_MODBUS_CONTROLLER_ID,
CONF_REGISTER_COUNT,
CONF_REGISTER_TYPE,
CONF_RESPONSE_SIZE,
CONF_SKIP_UPDATES,
CONF_VALUE_TYPE,
)
CODEOWNERS = ["@martgras"]
AUTO_LOAD = ["modbus"]
MULTI_CONF = True
# pylint: disable=invalid-name
modbus_controller_ns = cg.esphome_ns.namespace("modbus_controller")
ModbusController = modbus_controller_ns.class_(
"ModbusController", cg.PollingComponent, modbus.ModbusDevice
)
SensorItem = modbus_controller_ns.struct("SensorItem")
ModbusFunctionCode_ns = modbus_controller_ns.namespace("ModbusFunctionCode")
ModbusFunctionCode = ModbusFunctionCode_ns.enum("ModbusFunctionCode")
MODBUS_FUNCTION_CODE = {
"read_coils": ModbusFunctionCode.READ_COILS,
"read_discrete_inputs": ModbusFunctionCode.READ_DISCRETE_INPUTS,
"read_holding_registers": ModbusFunctionCode.READ_HOLDING_REGISTERS,
"read_input_registers": ModbusFunctionCode.READ_INPUT_REGISTERS,
"write_single_coil": ModbusFunctionCode.WRITE_SINGLE_COIL,
"write_single_register": ModbusFunctionCode.WRITE_SINGLE_REGISTER,
"write_multiple_coils": ModbusFunctionCode.WRITE_MULTIPLE_COILS,
"write_multiple_registers": ModbusFunctionCode.WRITE_MULTIPLE_REGISTERS,
}
ModbusRegisterType_ns = modbus_controller_ns.namespace("ModbusRegisterType")
ModbusRegisterType = ModbusRegisterType_ns.enum("ModbusRegisterType")
MODBUS_WRITE_REGISTER_TYPE = {
"custom": ModbusRegisterType.CUSTOM,
"coil": ModbusRegisterType.COIL,
"holding": ModbusRegisterType.HOLDING,
}
MODBUS_REGISTER_TYPE = {
**MODBUS_WRITE_REGISTER_TYPE,
"discrete_input": ModbusRegisterType.DISCRETE_INPUT,
"read": ModbusRegisterType.READ,
}
SensorValueType_ns = modbus_controller_ns.namespace("SensorValueType")
SensorValueType = SensorValueType_ns.enum("SensorValueType")
SENSOR_VALUE_TYPE = {
"RAW": SensorValueType.RAW,
"U_WORD": SensorValueType.U_WORD,
"S_WORD": SensorValueType.S_WORD,
"U_DWORD": SensorValueType.U_DWORD,
"U_DWORD_R": SensorValueType.U_DWORD_R,
"S_DWORD": SensorValueType.S_DWORD,
"S_DWORD_R": SensorValueType.S_DWORD_R,
"U_QWORD": SensorValueType.U_QWORD,
"U_QWORD_R": SensorValueType.U_QWORD_R,
"S_QWORD": SensorValueType.S_QWORD,
"S_QWORD_R": SensorValueType.S_QWORD_R,
"FP32": SensorValueType.FP32,
"FP32_R": SensorValueType.FP32_R,
}
TYPE_REGISTER_MAP = {
"RAW": 1,
"U_WORD": 1,
"S_WORD": 1,
"U_DWORD": 2,
"U_DWORD_R": 2,
"S_DWORD": 2,
"S_DWORD_R": 2,
"U_QWORD": 4,
"U_QWORD_R": 4,
"S_QWORD": 4,
"S_QWORD_R": 4,
"FP32": 2,
"FP32_R": 2,
}
MULTI_CONF = True
_LOGGER = logging.getLogger(__name__)
CONFIG_SCHEMA = cv.All(
cv.Schema(
{
cv.GenerateID(): cv.declare_id(ModbusController),
cv.Optional(
CONF_COMMAND_THROTTLE, default="0ms"
): cv.positive_time_period_milliseconds,
}
)
.extend(cv.polling_component_schema("60s"))
.extend(modbus.modbus_device_schema(0x01))
)
ModbusItemBaseSchema = cv.Schema(
{
cv.GenerateID(CONF_MODBUS_CONTROLLER_ID): cv.use_id(ModbusController),
cv.Optional(CONF_ADDRESS): cv.positive_int,
cv.Optional(CONF_CUSTOM_COMMAND): cv.ensure_list(cv.hex_uint8_t),
cv.Exclusive(
CONF_OFFSET,
"offset",
f"{CONF_OFFSET} and {CONF_BYTE_OFFSET} can't be used together",
): cv.positive_int,
cv.Exclusive(
CONF_BYTE_OFFSET,
"offset",
f"{CONF_OFFSET} and {CONF_BYTE_OFFSET} can't be used together",
): cv.positive_int,
cv.Optional(CONF_BITMASK, default=0xFFFFFFFF): cv.hex_uint32_t,
cv.Optional(CONF_SKIP_UPDATES, default=0): cv.positive_int,
cv.Optional(CONF_FORCE_NEW_RANGE, default=False): cv.boolean,
cv.Optional(CONF_LAMBDA): cv.returning_lambda,
cv.Optional(CONF_RESPONSE_SIZE, default=0): cv.positive_int,
},
)
def validate_modbus_register(config):
if CONF_CUSTOM_COMMAND not in config and CONF_ADDRESS not in config:
raise cv.Invalid(
f" {CONF_ADDRESS} is a required property if '{CONF_CUSTOM_COMMAND}:' isn't used"
)
if CONF_CUSTOM_COMMAND in config and CONF_REGISTER_TYPE in config:
raise cv.Invalid(
f"can't use '{CONF_REGISTER_TYPE}:' together with '{CONF_CUSTOM_COMMAND}:'",
)
if CONF_CUSTOM_COMMAND not in config and CONF_REGISTER_TYPE not in config:
raise cv.Invalid(
f" {CONF_REGISTER_TYPE} is a required property if '{CONF_CUSTOM_COMMAND}:' isn't used"
)
return config
def modbus_calc_properties(config):
byte_offset = 0
reg_count = 0
if CONF_OFFSET in config:
byte_offset = config[CONF_OFFSET]
# A CONF_BYTE_OFFSET setting overrides CONF_OFFSET
if CONF_BYTE_OFFSET in config:
byte_offset = config[CONF_BYTE_OFFSET]
if CONF_REGISTER_COUNT in config:
reg_count = config[CONF_REGISTER_COUNT]
if CONF_VALUE_TYPE in config:
value_type = config[CONF_VALUE_TYPE]
if reg_count == 0:
reg_count = TYPE_REGISTER_MAP[value_type]
if CONF_CUSTOM_COMMAND in config:
if CONF_ADDRESS not in config:
# generate a unique modbus address using the hash of the name
# CONF_NAME set even if only CONF_ID is used.
# a modbus register address is required to add the item to sensormap
value = config[CONF_NAME]
if isinstance(value, str):
value = value.encode()
config[CONF_ADDRESS] = binascii.crc_hqx(value, 0)
config[CONF_REGISTER_TYPE] = ModbusRegisterType.CUSTOM
config[CONF_FORCE_NEW_RANGE] = True
return byte_offset, reg_count
async def add_modbus_base_properties(
var, config, sensor_type, lamdba_param_type=cg.float_, lamdba_return_type=float
):
if CONF_CUSTOM_COMMAND in config:
cg.add(var.set_custom_data(config[CONF_CUSTOM_COMMAND]))
if config[CONF_RESPONSE_SIZE] > 0:
cg.add(var.set_register_size(config[CONF_RESPONSE_SIZE]))
if CONF_LAMBDA in config:
template_ = await cg.process_lambda(
config[CONF_LAMBDA],
[
(sensor_type.operator("ptr"), "item"),
(lamdba_param_type, "x"),
(
cg.std_vector.template(cg.uint8).operator("const").operator("ref"),
"data",
),
],
return_type=cg.optional.template(lamdba_return_type),
)
cg.add(var.set_template(template_))
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID], config[CONF_COMMAND_THROTTLE])
cg.add(var.set_command_throttle(config[CONF_COMMAND_THROTTLE]))
await register_modbus_device(var, config)
async def register_modbus_device(var, config):
cg.add(var.set_address(config[CONF_ADDRESS]))
await cg.register_component(var, config)
return await modbus.register_modbus_device(var, config)
def function_code_to_register(function_code):
FUNCTION_CODE_TYPE_MAP = {
"read_coils": ModbusRegisterType.COIL,
"read_discrete_inputs": ModbusRegisterType.DISCRETE,
"read_holding_registers": ModbusRegisterType.HOLDING,
"read_input_registers": ModbusRegisterType.READ,
"write_single_coil": ModbusRegisterType.COIL,
"write_single_register": ModbusRegisterType.HOLDING,
"write_multiple_coils": ModbusRegisterType.COIL,
"write_multiple_registers": ModbusRegisterType.HOLDING,
}
return FUNCTION_CODE_TYPE_MAP[function_code]
|
StarcoderdataPython
|
156024
|
# -*- coding: UTF8 -*-
from pupylib.PupyModule import *
from pupylib.PupyCompleter import *
from rpyc.utils.classic import download
import os
import os.path
import time
__class_name__="DownloaderScript"
@config(category="manage")
class DownloaderScript(PupyModule):
""" download a file/directory from a remote system """
def init_argparse(self):
self.arg_parser = PupyArgumentParser(prog='download', description=self.__doc__)
self.arg_parser.add_argument('remote_file', metavar='<remote_path>')
self.arg_parser.add_argument('local_file', nargs='?', metavar='<local_path>', completer=path_completer)
def run(self, args):
remote_file=self.client.conn.modules['os.path'].expandvars(args.remote_file)
rep=os.path.join("data","downloads",self.client.short_name())
if not args.local_file:
try:
os.makedirs(rep)
except Exception:
pass
args.local_file=os.path.join(rep, os.path.basename(remote_file.replace("\\",os.sep).replace("/",os.sep).rstrip("/\\")))
self.info("downloading %s ..."%remote_file)
start_time=time.time()
download(self.client.conn, remote_file, args.local_file)
self.success("file downloaded from remote:%s to local:%s"%(remote_file, args.local_file))
size=os.path.getsize(args.local_file)
total_time=round(time.time()-start_time, 2)
self.info("%s bytes downloaded in: %ss. average %sKB/s"%(size, total_time, round((size/total_time)/10**3, 2)))
|
StarcoderdataPython
|
3345773
|
# -*- coding: utf-8 -*-
from Particion import Particion
from Particionado import Particionado
from src.Instances import Instances
import random
class DivisionPorcentual(Particionado):
"""docstring for DivisionPorcentual"""
def __init__(self):
super(DivisionPorcentual, self).__init__()
self.porcentaje = 0.0
def setPorcentajeTrain(self, porcentaje):
self.porcentaje = porcentaje
def generaParticiones(self, instances):
#una sola particion
particion = Particion()
#generar las instacias para la particion
instanceTrain = Instances()
instanceTest = Instances()
# set clases
instanceTrain.setClases(instances.getClases())
instanceTest.setClases(instances.getClases())
# set columns
instanceTrain.setColumnas(instances.getColumnasList(), instances.getColumnasTipo())
instanceTest.setColumnas(instances.getColumnasList(), instances.getColumnasTipo())
#generar las instancias
listInstances = list(instances.getListInstances())
random.shuffle(listInstances)
n_instances = len(listInstances)
n_instances_train = int(round(n_instances * self.porcentaje))
n_instances_test = n_instances - n_instances_train
#instancias de train
for i in range(0, n_instances_train):
instanceTrain.addInstance(listInstances[i])
#instancias de test
for i in range(n_instances_train, n_instances):
instanceTest.addInstance(listInstances[i])
#añadir a la particion las instancias
particion.setTrain(instanceTrain)
particion.setTest(instanceTest)
return particion
def generaParticionesProporcional(self, instances, aleatorio = False):
#una sola particion
particion = Particion()
#generar las instacias para la particion
instanceTrain = Instances()
instanceTest = Instances()
# set clases
instanceTrain.setClases(instances.getClases())
instanceTest.setClases(instances.getClases())
# set columns
instanceTrain.setColumnas(instances.getColumnasList(), instances.getColumnasTipo())
instanceTest.setColumnas(instances.getColumnasList(), instances.getColumnasTipo())
#generar las instancias
listInstances = list(instances.getListInstances())
if aleatorio:
random.shuffle(listInstances)
n_instances = len(listInstances)
n_instances_train = int(round(n_instances * self.porcentaje))
n_instances_test = n_instances - n_instances_train
#conteo de instancias en cada clase
conteoClases = {}
conteoIntroducido = {}
listaClases = instances.getClases()
for clase in listaClases:
conteoClases[clase] = {}
conteoClases[clase]['cont'] = 0
conteoClases[clase]['instaces_id'] = []
conteoIntroducido[clase] = 0
i = 0
for instancia in listInstances:
clase = instancia.getClase()
conteoClases[clase]['cont'] += 1
conteoClases[clase]['instaces_id'].append(i)
i+=1
for clase in listaClases:
print 'instancias de la clase ' + str(clase) + ': ' + str(conteoClases[clase]['cont']) + ' porcentaje: '+ str(conteoClases[clase]['cont']/float(len(listInstances)))
#instancias de train
#por cada clase busca se ha de introducir una instancia
for i in range(0, n_instances_train):
for clase in listaClases:
if conteoIntroducido[clase] < ((conteoClases[clase]['cont'] / float(n_instances)) * n_instances_train):
identificador = conteoClases[clase]['instaces_id'][conteoIntroducido[clase]]
conteoIntroducido[clase] += 1
instanceTrain.addInstance(listInstances[identificador])
#instanceTrain.addInstance(listInstances[i])
#instancias de test
for clase in listaClases:
desde = conteoIntroducido[clase]
hasta = conteoClases[clase]['cont']
for i in range(desde, hasta):
identificador = conteoClases[clase]['instaces_id'][i]
instanceTest.addInstance(listInstances[identificador])
conteoIntroducido[clase] += 1
#for i in range(n_instances_train, n_instances):
# instanceTest.addInstance(listInstances[i])
#añadir a la particion las instancias
if aleatorio:
instanceTrain.shuffle()
particion.setTrain(instanceTrain)
particion.setTest(instanceTest)
return particion
|
StarcoderdataPython
|
3287536
|
<reponame>pesh1983/exercises
"""Implementations calculation of Fibonacci numbers."""
def fib1(amount):
"""
Calculate Fibonacci numbers.
The second variable is used to store the result.
:param amount: Amount of numbers to produce.
:return: Generator.
>>> list(fib1(0))
[]
>>> list(fib1(1))
[0]
>>> list(fib1(3))
[0, 1, 1]
>>> list(fib1(9))
[0, 1, 1, 2, 3, 5, 8, 13, 21]
"""
first, second = 0, 1
for _ in range(amount):
yield first
first, second = second + first, first
def fib2(amount):
"""
Calculate Fibonacci numbers.
The first variable is used to store the result.
:param amount: Amount of numbers to produce.
:return: Generator.
>>> list(fib2(0))
[]
>>> list(fib2(1))
[0]
>>> list(fib2(3))
[0, 1, 1]
>>> list(fib2(9))
[0, 1, 1, 2, 3, 5, 8, 13, 21]
"""
first, second = 1, 0
for _ in range(amount):
first, second = second, first + second
yield first
if __name__ == '__main__':
import doctest
doctest.testmod()
|
StarcoderdataPython
|
64301
|
"""This module contains the general information for AaaTacacsPlusEpFsmStage ManagedObject."""
from ...ucscmo import ManagedObject
from ...ucsccoremeta import UcscVersion, MoPropertyMeta, MoMeta
from ...ucscmeta import VersionMeta
class AaaTacacsPlusEpFsmStageConsts():
LAST_UPDATE_TIME_ = ""
NAME_NOP = "nop"
NAME_UPDATE_EP_BEGIN = "updateEpBegin"
NAME_UPDATE_EP_FAIL = "updateEpFail"
NAME_UPDATE_EP_SET_EP_LOCAL = "updateEpSetEpLocal"
NAME_UPDATE_EP_SUCCESS = "updateEpSuccess"
STAGE_STATUS_FAIL = "fail"
STAGE_STATUS_IN_PROGRESS = "inProgress"
STAGE_STATUS_NOP = "nop"
STAGE_STATUS_PENDING = "pending"
STAGE_STATUS_SKIP = "skip"
STAGE_STATUS_SUCCESS = "success"
STAGE_STATUS_THROTTLED = "throttled"
class AaaTacacsPlusEpFsmStage(ManagedObject):
"""This is AaaTacacsPlusEpFsmStage class."""
consts = AaaTacacsPlusEpFsmStageConsts()
naming_props = set([u'name'])
mo_meta = MoMeta("AaaTacacsPlusEpFsmStage", "aaaTacacsPlusEpFsmStage", "stage-[name]", VersionMeta.Version141a, "OutputOnly", 0xf, [], [""], [u'aaaTacacsPlusEpFsm'], [], [None])
prop_meta = {
"child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version141a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []),
"descr": MoPropertyMeta("descr", "descr", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, None, None, r"""[ !#$%&\(\)\*\+,\-\./:;\?@\[\]_\{\|\}~a-zA-Z0-9]{0,256}""", [], []),
"dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []),
"last_update_time": MoPropertyMeta("last_update_time", "lastUpdateTime", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, None, None, r"""([0-9]){4}-([0-9]){2}-([0-9]){2}T([0-9]){2}:([0-9]){2}:([0-9]){2}((\.([0-9]){3})){0,1}""", [""], []),
"name": MoPropertyMeta("name", "name", "string", VersionMeta.Version141a, MoPropertyMeta.NAMING, None, None, None, None, ["nop", "updateEpBegin", "updateEpFail", "updateEpSetEpLocal", "updateEpSuccess"], []),
"order": MoPropertyMeta("order", "order", "ushort", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []),
"retry": MoPropertyMeta("retry", "retry", "byte", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []),
"rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []),
"stage_status": MoPropertyMeta("stage_status", "stageStatus", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["fail", "inProgress", "nop", "pending", "skip", "success", "throttled"], []),
"status": MoPropertyMeta("status", "status", "string", VersionMeta.Version141a, MoPropertyMeta.READ_WRITE, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []),
}
prop_map = {
"childAction": "child_action",
"descr": "descr",
"dn": "dn",
"lastUpdateTime": "last_update_time",
"name": "name",
"order": "order",
"retry": "retry",
"rn": "rn",
"stageStatus": "stage_status",
"status": "status",
}
def __init__(self, parent_mo_or_dn, name, **kwargs):
self._dirty_mask = 0
self.name = name
self.child_action = None
self.descr = None
self.last_update_time = None
self.order = None
self.retry = None
self.stage_status = None
self.status = None
ManagedObject.__init__(self, "AaaTacacsPlusEpFsmStage", parent_mo_or_dn, **kwargs)
|
StarcoderdataPython
|
3379931
|
from yaml import safe_load
from handler import Context, Arguments, CommandResult
from rpg.items.item import Item
async def run(ctx: Context, args: Arguments) -> CommandResult:
item = args[0]
items_data = Item._read_objects_from_file(item.__class__)
item_data = items_data.get(item.id)
if item_data is None:
return "Предмет с таким id не найден в файле конфига"
add_attribute = False
del_attribute = False
attributes = args[1].lower()
if attributes.startswith("+"):
attributes = attributes[1:]
add_attribute = True
elif attributes.startswith("-"):
attributes = attributes[1:]
del_attribute = True
attribute_chain = attributes.split(".")
current_level = item_data
for attribute in attribute_chain[:-1]:
try:
current_level = current_level[attribute]
except KeyError:
if add_attribute:
current_level[attribute] = {}
current_level = current_level[attribute]
continue
return f"Атрибут `{attribute}` не найден. Доступные атрибуты: **{', '.join(a for a in current_level)}**"
if attribute_chain[-1] not in current_level:
return f"Атрибут `{attribute_chain[-1]}` не найден. Доступные атрибуты: **{', '.join(a for a in current_level)}**"
if del_attribute:
del current_level[attribute_chain[-1]]
else:
if len(args) == 2:
return "Необходим аргумент со значением"
current_level[attribute_chain[-1]] = safe_load(args[2])
new_item = item.from_data(item_data)
# inject new item
del new_item._storage_by_id[item.id]
del new_item._storage_by_name[item.name.lower()]
new_item._storage_by_id[new_item.id] = new_item
new_item._storage_by_name[new_item.name.lower()] = new_item
return f"Предмет: **{new_item!r}**\nЗначения: **{item_data}**"
|
StarcoderdataPython
|
3319600
|
<gh_stars>0
# -*- coding: utf-8 -*-
print('Olá Python!')
# Resposta do desafio:
salario = 3450.45
despesas = 2456.2
percentaul_comprometido = despesas / salario * 100
print(percentaul_comprometido)
# Desafio: Operadores Lógicos
trabalho_terca = True
trabalho_quinta = True
'''
- Confirmando os 2: TV 50" + Sorvete
- Confirmando apenas 1: TV 32" + Sorvete
- Nenhum confirmado: Ficar em casa
'''
tv_50 = trabalho_terca and trabalho_quinta
sorvete = trabalho_terca or trabalho_quinta
tv_32 = trabalho_terca != trabalho_quinta
mais_saudavel = not sorvete
print("TV50={} TV32={} Sorvete={} Saudável={}"
.format(tv_50, tv_32, sorvete, mais_saudavel))
# Operadores ternários
esta_chovendo = True
print('Hoje estou com as roupas ' +
('secas.', 'molhadas.')[esta_chovendo])
print('Hoje estou com as roupas ' +
('molhadas.' if esta_chovendo else 'secas.'))
|
StarcoderdataPython
|
3371481
|
"""
Defines the model used for generating index and compression
@<NAME>
"""
import time
import numpy as np
from eva_storage.models.sdae_wrapper import SDAE_wrapper
from logger import Logger, LoggingLevel
import torch
import torch.utils.data
import argparse
parser = argparse.ArgumentParser(description='Define arguments for loader')
parser.add_argument('--learning_rate', type=int, default=0.0001, help='Learning rate for UNet')
parser.add_argument('--total_epochs', type=int, default=800, help='Number of epoch for training')
parser.add_argument('--l2_reg', type=int, default=1e-6, help='Regularization constaint for training')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size used for training')
parser.add_argument('--compressed_size', type=int, default=100,
help='Number of features the compressed image format has')
parser.add_argument('--checkpoint_name', type=str, default='unet_uadetrac',
help='name of the file that will be used to save checkpoints')
args = parser.parse_args()
### TODO: Need to fix the train / execute methods!!!
class Network:
def __init__(self, type=0):
self.model = None
self.dataset = None
self.data_dimensions = None
self.logger = Logger()
self.network_type = type ## for now, type will denoting whether we are using a compressed or full network
def debugMode(self, mode=False):
if mode:
self.logger.setLogLevel(LoggingLevel.DEBUG)
else:
self.logger.setLogLevel(LoggingLevel.INFO)
def _parse_dir(self, directory_string):
"""
This function is called by other methods in UNET to parse the directory string to extract model name and epoch
We will assume the format of the string is /dir/name/whatever/{model_name}-{epoch}.pth
:param directory_string: string of interest
:return:
"""
tmp = directory_string.split('/')
tmp = tmp[-1]
model_name, epoch_w_pth = tmp.split('-')
epoch = int(epoch_w_pth.split('.')[0])
assert (type(epoch) == int)
assert (type(model_name) == str)
return model_name, epoch
def train(self, train_images: np.ndarray, target_images: np.ndarray, save_name, load_dir = None, model_type = 'sdae', cuda=True):
"""
Trains the network with given images
:param images: original images
:param segmented_images: tmp_data
:return: None
"""
if cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
### all types of dataset here
if model_type == 'sdae':
self.model = SDAE_wrapper()
assert(self.model is not None)
### we could be training the network from a starting point
if load_dir is not None:
self.model.load(load_dir)
## delegate the train step to the specific model
st = time.perf_counter()
## give the model the training dataset
self.model.train(train_images, target_images, save_name, args.total_epochs, lr = args.learning_rate, batch_size = args.batch_size, weight_decay = args.l2_reg, cuda = cuda)
self.logger.info(f"Trained the model {self.model} in {time.perf_counter() - st} (sec)")
return
def execute(self, test_images: np.ndarray = None, model_type = 'dae', load_dir=None, cuda = True):
"""
We will overload this function to take in no parameters when we are just executing on the given image..
:return: compressed, segmented images that are output of the network
"""
st = time.perf_counter()
if self.model is None:
if model_type == 'dae':
self.model = SDAE_wrapper()
else:
raise ValueError
if load_dir is None:
raise ValueError
else:
self.model.load(load_dir)
assert (self.model is not None)
self.logger.info("Images are given, creating dataset object and executing... ")
return self.model.execute(test_images)
if __name__ == "__main__":
network = Network()
from loaders.uadetrac_loader import UADetracLoader
loader = UADetracLoader()
images = loader.load_images()
|
StarcoderdataPython
|
3407
|
"""Collection of tests."""
import pytest
import dblib.lib
f0 = dblib.lib.Finding('CD spook', 'my_PC', 'The CD drive is missing.')
f1 = dblib.lib.Finding('Unplugged', 'my_PC', 'The power cord is unplugged.')
f2 = dblib.lib.Finding('Monitor switched off', 'my_PC', 'The monitor is switched off.')
def test_add_remove():
"""Test function."""
db = dblib.lib.BackyardDB()
# regular cases
db.add(f0)
assert f0 in db.findings
assert len(db.findings) == 1
db.add(f1)
assert f1 in db.findings
assert len(db.findings) == 2
db.add(f2)
assert f2 in db.findings
assert len(db.findings) == 3
db.add(None)
assert len(db.findings) == 3
db.remove(f1)
assert f1 not in db.findings
assert len(db.findings) == 2
# test exceptions
with pytest.raises(TypeError):
db.add(1)
def test_update():
"""Test function."""
db = dblib.lib.BackyardDB()
db.add(f0)
db.add(f1)
db.update(f1, f2)
assert f2 in db.findings
assert len(db.findings) == 2
|
StarcoderdataPython
|
85929
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 18})
def cut_by_item(dataframe, key, step):
item_range = np.arange(0, dataframe[key].max(), step)
grouped = dataframe.groupby(pd.cut(dataframe[key], item_range))
keys = [key for key, _ in grouped]
dataframes = [group for _, group in grouped]
return keys, dataframes
def plot_delays_by_rules(dataframe):
print 'Plotting by rules'
bounds = [31000, 64000, 85000, 105000]
#group_by_switches = dataframe.groupby(pd.cut(dataframe['network_size'], np.arange(0, 301, 100)))
group_by_switches = dataframe.groupby(pd.cut(dataframe['network_size'], [0, 100, 200, 250, 300]))
labels = [l for l, _ in group_by_switches]
delays = [d for _, d in group_by_switches]
#fig, axes = plt.subplots(2, 2)#, sharey=True)
ax_indices = [(0, 0), (0, 1), (1, 0), (1, 1)]
for label, delay, bound, idx in zip(labels, delays, bounds, ax_indices):
rule_interval = 100
grouped_by_rules = delay.groupby(pd.cut(
delay['graph_size'],
np.arange(0, bound, rule_interval))
#np.arange(0, max(delay['graph_size']), rule_interval))
)['duration']
mean = grouped_by_rules.mean()
#median = grouped_by_rules.median()
lower = grouped_by_rules.quantile(0.05)
upper = grouped_by_rules.quantile(0.95)
#mean = mean.rolling(window=5, min_periods=1).mean()
##median = median.rolling(window=5, min_periods=1).mean()
#lower = lower.rolling(window=5, min_periods=1).mean()
#upper = upper.rolling(window=5, min_periods=1).mean()
keys = [(k.left + k.right)/2.0 for k in mean.keys()]
plt.figure(figsize=(8, 6))
plt.ylim(0, 450)
plt.plot(keys, mean, 'green')
plt.fill_between(keys, lower, upper, color='green', alpha='0.15')
plt.xlabel(u'Количество правил')#('Rule number')
plt.ylabel(u'Задержка, мс')#('Delay, ms')
#plt.title('Delay by rule number')
plt.grid()
plt.tight_layout()
plt.savefig(data_dir + '/plot/' + 'delay_by_rules_%i_%i.pdf' % (label.left, label.right),
fmt='pdf')
#plt.show()
plt.gcf().clear()
#ax = axes[idx[0]][idx[1]]
#ax.plot(keys, mean, 'green')
#ax.fill_between(keys, lower, upper, color='green', alpha='0.15')
#ax.set_xlabel(u'Количество правил')#('Rule number')
#ax.set_ylabel(u'Задержка, мс')#('Delay, ms')
#ax.set_title(u'От %i до %i коммутаторов' % (label.left, label.right))#('Delay by rule number')
#ax.grid()
#fig.savefig(data_dir + '/plot/' + 'Delay by rule number', fmt='pdf')
##plt.show()
#plt.gcf().clear()
print 'Done'
def plot_delays_by_switches(dataframe):
print 'Plotting by switches'
switch_interval = 10
switch_bound = 301
dataframe = dataframe.sort_values(['graph_size'])
dataframe['duration'] = dataframe['duration'].rolling(window=3, min_periods=1).mean()
grouped_by_switches = dataframe.groupby(pd.cut(
dataframe['network_size'],
np.arange(0, switch_bound, switch_interval))
)['duration']
mean = grouped_by_switches.mean()
#median = grouped_by_switches.median()
#std = grouped_by_switches.std()
lower = grouped_by_switches.quantile(0.05)
upper = grouped_by_switches.quantile(0.95)
keys = [(k.left + k.right)/2.0 for k in mean.keys()]
mean = pd.Series(mean).reset_index(drop=True)
#median = pd.Series(median).reset_index(drop=True)
#std = pd.Series(std).reset_index(drop=True)
lower = pd.Series(lower).reset_index(drop=True)
upper = pd.Series(upper).reset_index(drop=True)
#mean = mean.rolling(window=5, min_periods=1).mean()
##median = median.rolling(window=5, min_periods=1).mean()
#lower = lower.rolling(window=5, min_periods=1).mean()
#upper = upper.rolling(window=5, min_periods=1).mean()
#plt.boxplot(data)
#plt.plot(keys, median, yerr=std, color='blue')
#plt.plot(keys, mean, 'ro')
plt.figure(figsize=(14, 6))
plt.errorbar(keys, mean, yerr=[lower, upper],
color='blue', fmt='o', markersize=9, capsize=6, elinewidth=3, capthick=2)
#plt.fill_between(keys, lower, upper, color='blue', alpha='0.15')
plt.xlabel(u'Количество коммутаторов')#('Network size')
plt.ylabel(u'Задержка, мс')#('Delay, ms')
#plt.title('Delay by network size')
plt.grid()
plt.tight_layout()
plt.savefig(data_dir + '/plot/' + 'delay_by_switches.pdf', fmt='pdf')
#plt.show()
plt.gcf().clear()
# By mean table size
#delays_table = delays
print 'Done'
def process_delays(delays):
delays = delays[delays['network_size'] % 5 == 0]
delays = delays[delays['network_size'] <= 305]
plot_delays_by_rules(delays)
plot_delays_by_switches(delays)
def predictions_boxplot(dataframe, delay):
#dataframe['packet_error'] = np.abs(dataframe['real_packets'] - dataframe['pred_packets'])
#dataframe['byte_error'] = np.abs(dataframe['real_bytes'] - dataframe['pred_bytes'])
#labels = list(reversed(['100 Kbps', '1 Mbps', '10 Mbps', '100 Mbps', '1 Gbps']))
labels = list(reversed([u'100 Кбит/с', u'1 Мбит/с', u'10 Мбит/с', u'100 Мбит/с', u'1 Гбит/с']))
bandwidths = reversed([int(b*1000000) for b in [0.1, 1, 10, 100, 1000]])
packet_data = []
byte_data = []
for bandwidth in bandwidths:
packet_data.append(dataframe[dataframe['bandwidth'] == bandwidth]['packet_error'])
byte_data.append(dataframe[dataframe['bandwidth'] == bandwidth]['byte_error'])
adjust_left = 0.21
packet_xlabel = u'Ошибка предсказания (количество пакетов)'#'Packet error'
byte_xlabel = u'Ошибка предсказания (количество байт)'#'Byte error'
#b = plt.boxplot(packet_data, showfliers=False, vert=False)
#print('Delay:', delay, '| Quantile:', [p.quantile(0.95) for p in packet_data])
#print 'Delay:', delay, '| Quantile:', [item.get_xdata() for item in b['whiskers']]
#return None # DEBUG
# Plot in normal scale
plt.figure(figsize=(8, 6))
plt.boxplot(packet_data, showfliers=False, vert=False)
plt.yticks([1, 2, 3, 4, 5], labels)
plt.xlabel(packet_xlabel)
plt.tight_layout()
plt.gcf().subplots_adjust(left=adjust_left)
plt.savefig(data_dir + '/plot/' + 'packet_error_%d.pdf' % delay, fmt='pdf')
#plt.show()
plt.gcf().clear()
# Plot in logarithmic scale
ax = plt.gca()
ax.set_xscale('log')
plt.boxplot(packet_data, showfliers=False, vert=False)
plt.yticks([1, 2, 3, 4, 5], labels)
plt.xlabel(packet_xlabel)
plt.tight_layout()
plt.gcf().subplots_adjust(left=adjust_left)
plt.savefig(data_dir + '/plot/' + 'packet_error_%d_log.pdf' % delay, fmt='pdf')
#plt.show()
plt.gcf().clear()
# Plot in normal scale
plt.boxplot(byte_data, showfliers=False, vert=False)
plt.yticks([1, 2, 3, 4, 5], labels)
plt.xlabel(byte_xlabel)
plt.tight_layout()
plt.gcf().subplots_adjust(left=adjust_left)
plt.savefig(data_dir + '/plot/' + 'byte_error_%d.pdf' % delay, fmt='pdf')
#plt.show()
plt.gcf().clear()
# Plot in logarithmic scale
ax = plt.gca()
ax.set_xscale('log')
plt.boxplot(byte_data, showfliers=False, vert=False)
plt.yticks([1, 2, 3, 4, 5], labels)
plt.xlabel(byte_xlabel)
plt.tight_layout()
plt.gcf().subplots_adjust(left=adjust_left)
plt.savefig(data_dir + '/plot/' + 'byte_error_%d_log.pdf' % delay, fmt='pdf')
#plt.show()
plt.gcf().clear()
def process_predictions(dataframe):
dataframe = dataframe[dataframe['real_packets'] > 0]
dataframe['packet_error'] = np.abs(dataframe['real_packets'] - dataframe['pred_packets'])
dataframe['byte_error'] = np.abs(dataframe['real_bytes'] - dataframe['pred_bytes'])
for delay in [0, 1, 33, 66, 333, 666, 2000]:
predictions_boxplot(dataframe[dataframe['delay'] == delay], delay)
def load(files):
dataframe_list = []
for dataframe_file in files:
df = pd.read_csv(dataframe_file, index_col=None, header=0)
dataframe_list.append(df)
return pd.concat(dataframe_list, ignore_index=True)
if __name__ == '__main__':
data_dir = './experiments'
delay_files = [data_dir + '/delay.csv']
#delay_files = [data_dir + '/no_delay_prediction']
prediction_files = [data_dir + '/prediction.csv']
#print 'Loading delays'
#delays = load(delay_files)
#process_delays(delays)
print 'Loading predictions'
predictions = load(prediction_files)
process_predictions(predictions)
|
StarcoderdataPython
|
4820254
|
"""RAK811 CLI interface.
Provides a command line interface for the RAK811 module (Firmware V3.0).
Copyright 2021 <NAME>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
SPDX-License-Identifier: Apache-2.0
"""
from json import dumps
import logging
import click
from .rak811_v3 import Rak811
from .rak811_v3 import Rak811Error
from .rak811_v3 import Rak811ResponseError, Rak811TimeoutError
def print_exception(e):
"""Print exception raised by the Rak811 library."""
if isinstance(e, Rak811ResponseError):
click.echo('RAK811 response error {}: {}'.format(e.errno, e.strerror))
elif isinstance(e, Rak811TimeoutError):
click.echo('RAK811 timeout: {}'.format(e))
else:
click.echo('RAK811 unexpected exception {}'.format(e))
@click.group()
@click.option(
'-v',
'--verbose',
is_flag=True,
help='Verbose mode'
)
@click.option(
'-d',
'--debug',
is_flag=True,
help='Debug mode'
)
@click.version_option()
@click.pass_context
def cli(ctx, verbose, debug):
"""Command line interface for the RAK811 module."""
ctx.ensure_object(dict)
ctx.obj['VERBOSE'] = verbose
logging.basicConfig(level=logging.DEBUG if debug else logging.INFO)
@cli.command(name='hard-reset')
@click.pass_context
def hard_reset(ctx):
"""Hardware reset of the module.
Hard reset should not be required in normal operation. It needs to be
issued once after host boot, or module restart.
"""
lora = Rak811()
lora.hard_reset()
if ctx.obj['VERBOSE']:
click.echo('Hard reset complete')
lora.close()
"""Get / set commands."""
@cli.command()
@click.argument(
'config_item',
required=True
)
@click.pass_context
def set_config(ctx, config_item):
"""Execute set_config RAK811 command.
\b
Config items are in the format <type>:<topic>[:<param>]...
Supported types and topics:
- device: restart, sleep, boot, status, uart, uart_mode, gpio
- lora: region, channel, dev_eui, app_eui, app_key, dev_addr,
apps_key, nwks_key, join_mode, work_mode, ch_mask, class,
confirm, dr, tx_power, adr, send_interval
- lorap2p: transfer_mode, channel configuration
"""
lora = Rak811()
try:
responses = lora.set_config(config_item)
if ctx.obj['VERBOSE']:
click.echo('Configuration done')
for response in responses:
if response.strip():
click.echo(response)
except Rak811Error as e:
print_exception(e)
lora.close()
@cli.command()
@click.argument(
'config_item',
required=True
)
@click.pass_context
def get_config(ctx, config_item):
"""Execute get_config RAK811 command.
\b
Config items are in the format <type>:<topic>[:<param>]
Supported types and topics:
- device: status, gpio, adc
- lora: channel, status
"""
lora = Rak811()
try:
responses = lora.get_config(config_item)
for response in responses:
if response.strip():
click.echo(response)
except Rak811Error as e:
print_exception(e)
lora.close()
"""General AT commands."""
@cli.command()
@click.pass_context
def version(ctx):
"""Get module version."""
lora = Rak811()
click.echo(lora.version)
lora.close()
@cli.command()
@click.pass_context
def help(ctx):
"""Print module help."""
lora = Rak811()
for response in lora.help:
click.echo(response)
lora.close()
@cli.command()
@click.pass_context
def run(ctx):
"""Exit boot mode and enter normal mode."""
lora = Rak811()
lora.run()
lora.close()
""" Interface commands."""
@cli.command()
@click.option(
'-i', '--index',
default='3',
type=click.Choice(['1', '3']),
help='UART Index (1 or 3, default 3)'
)
@click.option(
'--binary',
is_flag=True,
help='Data is binary (hex encoded)'
)
@click.argument(
'data',
required=True
)
@click.pass_context
def send_uart(ctx, index, binary, data):
"""Send data to UART.
UART1 is the AT Command interface, so you probably want to use
UART3!
"""
if binary:
try:
data = bytes.fromhex(data)
except ValueError:
click.echo('Invalid binary data')
return
lora = Rak811()
try:
lora.send_uart(data, int(index))
except Rak811Error as e:
print_exception(e)
lora.close()
return
if ctx.obj['VERBOSE']:
click.echo('Data sent.')
"""LoRaWan commands."""
@cli.command()
@click.pass_context
def join(ctx):
"""Join the configured network.
\b
ABP requires the following parameters to be set prior join:
- dev_addr
- nwks_key
- apps_key
OTAA requires the following parameters to be set prior join:
- dev_eui
- app_eui
- app_key
"""
lora = Rak811()
try:
lora.join()
if ctx.obj['VERBOSE']:
click.echo('Joined!')
except Rak811Error as e:
print_exception(e)
lora.close()
@cli.command()
@click.option(
'-p', '--port',
default=1,
type=click.IntRange(1, 223),
help='port number to use (1-223)'
)
@click.option(
'--binary',
is_flag=True,
help='Data is binary (hex encoded)'
)
@click.argument(
'data',
required=True
)
@click.option(
'--json',
is_flag=True,
help='Output downlink in JSON format'
)
@click.pass_context
def send(ctx, port, binary, data, json):
"""Send LoRaWan message and check for downlink."""
if binary:
try:
data = bytes.fromhex(data)
except ValueError:
click.echo('Invalid binary data')
return
lora = Rak811()
try:
lora.send(data, port=port)
except Rak811Error as e:
print_exception(e)
lora.close()
return
if ctx.obj['VERBOSE']:
click.echo('Message sent.')
if lora.nb_downlinks:
downlink = lora.get_downlink()
if downlink['len']:
downlink['data'] = downlink['data'].hex()
if json:
click.echo(dumps(downlink, indent=4))
elif ctx.obj['VERBOSE']:
click.echo('Downlink received:')
click.echo('Port: {}'.format(downlink['port']))
click.echo('RSSI: {}'.format(downlink['rssi']))
click.echo('SNR: {}'.format(downlink['snr']))
click.echo('Data: {}'.format(downlink['data']))
else:
click.echo(downlink['data'])
elif ctx.obj['VERBOSE']:
click.echo('Send confirmed.')
click.echo('RSSI: {}'.format(downlink['rssi']))
click.echo('SNR: {}'.format(downlink['snr']))
elif ctx.obj['VERBOSE']:
click.echo('No downlink available.')
lora.close()
@cli.command()
@click.option(
'--binary',
is_flag=True,
help='Data is binary (hex encoded)'
)
@click.argument(
'data',
required=True
)
@click.pass_context
def send_p2p(ctx, binary, data):
"""Send LoRa P2P message."""
if binary:
try:
data = bytes.fromhex(data)
except ValueError:
click.echo('Invalid binary data')
return
lora = Rak811()
try:
lora.send_p2p(data)
except Rak811Error as e:
print_exception(e)
lora.close()
return
if ctx.obj['VERBOSE']:
click.echo('Message sent.')
@cli.command()
@click.argument(
'timeout',
required=False,
default=60,
type=click.INT
)
@click.option(
'--json',
is_flag=True,
help='Output message in JSON format'
)
@click.pass_context
def receive_p2p(ctx, timeout, json):
"""Get LoraP2P message."""
lora = Rak811()
lora.receive_p2p(timeout)
if lora.nb_downlinks:
rx = lora.get_downlink()
rx['data'] = rx['data'].hex()
if json:
click.echo(dumps(rx, indent=4))
elif ctx.obj['VERBOSE']:
click.echo('Message received:')
click.echo('RSSI: {}'.format(rx['rssi']))
click.echo('SNR: {}'.format(rx['snr']))
click.echo('Data: {}'.format(rx['data']))
else:
click.echo(rx['data'])
elif ctx.obj['VERBOSE']:
click.echo('No message available.')
lora.close()
if __name__ == '__main__':
cli()
|
StarcoderdataPython
|
4818930
|
<reponame>malteos/explirefit
from __future__ import division
import codecs
from os import listdir
from os.path import isfile, join
import pickle
import numpy as np
from helpers import data_helper
################################################################################################################################
def serialize(item, path):
pickle.dump(item, open(path, "wb" ))
def deserialize(path):
return pickle.load(open(path, "rb" ))
def load_file(filepath):
return (codecs.open(filepath, 'r', encoding = 'utf8', errors = 'replace')).read()
def load_lines(filepath):
return [l.strip() for l in list(codecs.open(filepath, "r", encoding = 'utf8', errors = 'replace').readlines())]
################################################################################################################################
def store_embeddings(path, embeddings, language, print_progress = True):
f = codecs.open(path,'w',encoding='utf8')
vocab = embeddings.lang_vocabularies[language]
embs = embeddings.lang_embeddings[language]
cnt = 0
for word in vocab:
cnt += 1
if print_progress and cnt % 1000 == 0:
print("Storing embeddings " + str(cnt))
f.write(word + " ")
for i in range(len(embs[vocab[word]])):
f.write(str(embs[vocab[word]][i]) + " ")
f.write("\n")
f.close()
def load_embeddings_dict_with_norms(filepath, limit = None, special_tokens = None, print_load_progress = False, min_one_letter = False, skip_first_line = False):
norms = []
vocabulary = {}
embeddings = []
cnt = 0
cnt_dict = 0
emb_size = -1
with codecs.open(filepath,'r',encoding='utf8', errors='replace') as f:
for line in f:
try:
cnt += 1
if limit and cnt > limit:
break
if print_load_progress and (cnt % 1000 == 0):
print("Loading embeddings: " + str(cnt))
if cnt > 1 or not skip_first_line:
splt = line.split()
word = splt[0]
if word.startswith("en_"):
word = word.replace("en_", "").strip()
if min_one_letter and not any(c.isalpha() for c in word):
continue
vec = [np.float32(x) for x in splt[1:]]
if emb_size < 0 and len(vec) > 10:
emb_size = len(vec)
if emb_size > 0 and len(vec) == emb_size:
vocabulary[word] = cnt_dict
cnt_dict += 1
norms.append(np.linalg.norm(vec, 2))
embeddings.append(vec)
except(ValueError,IndexError,UnicodeEncodeError):
print("Incorrect format line!")
if special_tokens is not None:
for st in special_tokens:
vocabulary[st] = cnt_dict
cnt_dict += 1
vec = np.array([0.1 * (special_tokens.index(st) + 1)] * emb_size) #np.random.uniform(-1.0, 1.0, size = [emb_size])
norms.append(np.linalg.norm(vec, 2))
embeddings.append(vec)
return vocabulary, np.array(embeddings, dtype = np.float32), norms
############################################################################################################################
def load_whitespace_separated_data(filepath):
lines = list(codecs.open(filepath,'r',encoding='utf8', errors='replace').readlines())
return [[x.strip() for x in l.strip().split()] for l in lines]
def load_tab_separated_data(filepath):
lines = list(codecs.open(filepath,'r',encoding='utf8', errors='replace').readlines())
return [[x.strip() for x in l.strip().split('\t')] for l in lines]
def load_wn_concepts_dict(path):
lines = list(codecs.open(path,'r',encoding='utf8', errors='replace').readlines())
lcols = {x[0] : ' '.join((x[1].split('_'))[2:-2]) for x in [l.strip().split() for l in lines]}
return lcols
def load_bless_dataset(path):
lines = list(codecs.open(path,'r',encoding='utf8', errors='replace').readlines())
lcols = [(x[0].split('-')[0], x[3].split('-')[0], "1" if x[2] == "hyper" else "0") for x in [l.strip().split() for l in lines]]
return lcols
def write_list(path, list):
f = codecs.open(path,'w',encoding='utf8')
for l in list:
f.write(l + "\n")
f.close()
def write_dictionary(path, dictionary):
f = codecs.open(path,'w',encoding='utf8')
for k in dictionary:
f.write(str(k) + "\t" + str(dictionary[k]) + "\n")
f.close()
def load_translation_pairs(filepath):
lines = list(codecs.open(filepath,'r',encoding='utf8', errors='replace').readlines())
dataset = [];
for line in lines:
spl = line.split(',')
srcword = spl[0].strip()
trgword = spl[1].strip();
if (" " not in srcword.strip()) and (" " not in trgword.strip()):
dataset.append((srcword, trgword));
return dataset
def write_list_tuples_separated(path, list, delimiter = '\t'):
f = codecs.open(path,'w',encoding='utf8')
for i in range(len(list)):
for j in range(len(list[i])):
if j == len(list[i]) - 1:
f.write(str(list[i][j]) + '\n')
else:
f.write(str(list[i][j]) + delimiter)
f.close()
def store_wordnet_rels(dirpath, relname, pos, lang, instances):
f = codecs.open(dirpath + "/" + lang + "_" + relname + "_" + pos + ".txt",'w',encoding='utf8')
for i in instances:
splt = i.split('::')
f.write(splt[0].replace("_", " ") + "\t" + splt[1].replace("_", " ") + "\t" + str(instances[i]) + "\n")
f.close()
def load_csv_lines(path, delimiter = ',', indices = None):
f = codecs.open(path,'r',encoding='utf8')
lines = [l.strip().split(delimiter) for l in f.readlines()]
if indices is None:
return lines
else:
return [sublist(l, indices) for l in lines]
def load_csv_lines_line_by_line(path, delimiter = ',', indices = None, limit = None):
lines = []
f = codecs.open(path,'r',encoding='utf8')
line = f.readline().strip()
cnt = 1
while line is not None:
lines.append(sublist(line, indices) if indices is not None else line.split(delimiter))
line = f.readline().strip()
cnt += 1
if limit is not None and cnt > limit:
break
return lines
def sublist(list, indices):
sublist = []
for i in indices:
sublist.append(list[i])
return sublist
########################################################
def load_sequence_labelling_data(path, delimiter = '\t', indices = None, line_start_skip = None):
f = codecs.open(path,'r',encoding='utf8')
lines = [[t.strip() for t in l.split(delimiter)] for l in f.readlines()]
instances = []
instance = []
for i in range(len(lines)):
if line_start_skip is not None and lines[i][0].startswith(line_start_skip):
continue
if len(lines[i]) == 1 and lines[i][0] == "":
instances.append(instance)
instance = []
else:
if indices is None:
instance.append(lines[i])
else:
instance.append(sublist(lines[i], indices))
if len(instance) > 0:
instances.append(instance)
return instances
def load_classification_data(path, delimiter_text_labels = '\t', delimiter_labels = '\t', line_start_skip = None):
f = codecs.open(path,'r',encoding='utf8')
lines = [[t.strip() for t in l.split(delimiter_text_labels)] for l in f.readlines()]
instances = []
for i in range(len(lines)):
if line_start_skip is not None and lines[i][0].startswith(line_start_skip):
continue
text = data_helper.clean_str(lines[i][0].strip()).split()
if delimiter_text_labels == delimiter_labels:
labels = lines[i][1:]
else:
labels = lines[i][1].strip().split(delimiter_labels)
instances.append((text, labels))
return instances
|
StarcoderdataPython
|
184698
|
<gh_stars>1-10
/usr/lib/python2.7/encodings/cp1258.py
|
StarcoderdataPython
|
1697461
|
import os
PACKAGEDIR = os.path.abspath(os.path.dirname(__file__))
from .correct import *
from .planetsystem import *
from .transitfit import *
from .utils import *
|
StarcoderdataPython
|
1521
|
<filename>image_aug.py
# coding=UTF-8
# This Python file uses the following encoding: utf-8
import cv2
import numpy as np
import xml.etree.cElementTree as ET
from random import sample
#default args:
default_args = {'noise_prob': 0.1,
'gasuss_mean': 0,
'gasuss_var': 0.001,
'rand_hug': 30,
'rand_saturation':30,
'rand_light': 30,
'rot_angle': 15,
'bordervalue': (127, 127, 127),
'zoom_out_value': 0.7,
'output_shape': (416, 416),
'take_value' : 5
}
#添加黑色noise
def sp_noise(image, box_loc=None, **kwargs):
h, w = image.shape[0:2]
noise = np.random.rand(h,w)
out_img = image.copy()
out_img[noise < kwargs['noise_prob']] = 0
if box_loc is None:
return out_img
else:
return out_img, box_loc
#高斯noise
def gasuss_noise(image, box_loc=None, **kwargs):
out_img = (image / 255.) - 0.5
noise = np.random.normal(kwargs['gasuss_mean'], kwargs['gasuss_var']** 0.5, image.shape)
out_img = out_img + noise + 0.5
out_img[out_img < 0] = 0
out_img[out_img > 1] = 1
out_img = (out_img * 255).astype(np.uint8)
if box_loc is None:
return out_img
else:
return out_img, box_loc
#調整彩度(彩度通道加上隨機-N~N之值)
def mod_hue(image, box_loc=None, **kwargs):
out_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
out_img[:,:,0] += np.random.randint(-kwargs['rand_hug'], kwargs['rand_hug'])
out_img = cv2.cvtColor(np.clip(out_img, 0, 180).astype(np.uint8), cv2.COLOR_HSV2BGR)
if box_loc is None:
return out_img
else:
return out_img, box_loc
#調整飽和度(飽和度通道加上隨機-N~N之值)
def mod_saturation(image, box_loc=None, **kwargs):
out_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
out_img[:,:,1] += np.random.randint(-kwargs['rand_saturation'], kwargs['rand_saturation'])
out_img = cv2.cvtColor(np.clip(out_img, 0, 255).astype(np.uint8), cv2.COLOR_HSV2BGR)
if box_loc is None:
return out_img
else:
return out_img, box_loc
#調整亮度(亮度通道加上隨機-N~N之值)
def mod_light(image, box_loc=None, **kwargs):
out_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
out_img[:,:,2] += np.random.randint(-kwargs['rand_light'], kwargs['rand_light'])
out_img = cv2.cvtColor(np.clip(out_img, 0, 255).astype(np.uint8), cv2.COLOR_HSV2BGR)
if box_loc is None:
return out_img
else:
return out_img, box_loc
#水平翻轉
def horizontal_flip(image, box_loc=None, **kwargs):
'''
Args:
box_loc: bounding box location(x_min, y_min, x_max, y_max)
'''
if box_loc is None:
return cv2.flip(image, 1)
else:
w = image.shape[1]
for i in box_loc:
if i[2] == 0:
break
else:
x_min, x_max = i[0], i[2]
i[0] = w - x_max
i[2] = w - x_min
return cv2.flip(image, 1), box_loc
#垂直翻轉
def vertical_flip(image, box_loc=None, **kwargs):
'''
Args:
box_loc: bounding box location(num box,(x_min, y_min, x_max, y_max, label))
'''
if box_loc is None:
return cv2.flip(image, 0)
else:
h = image.shape[0]
for i in box_loc:
if i[3] == 0:
break
else:
y_min, y_max = i[1], i[3]
i[1] = h - y_max
i[3] = h - y_min
return cv2.flip(image, 0), box_loc
#旋轉-n~n度
def rot_image(image, box_loc=None, **kwargs):
'''
Args:
box_loc: bounding box location(num box,(x_min, y_min, x_max, y_max, label))
rot: 要選轉的範圍
bordervalue: 空白處補的值
'''
h, w, _ = image.shape
center = ( w // 2, h // 2)
angle = np.random.randint(-kwargs['rot_angle'], kwargs['rot_angle'])
M = cv2.getRotationMatrix2D(center, angle, 1)
out_img = cv2.warpAffine(image, M, (w, h), borderValue = kwargs['bordervalue'])
if box_loc is None:
return out_img
else:
loc = box_loc[:,0:4].copy()
loc = np.append(loc, loc[:, 0:1], axis=-1)
loc = np.append(loc, loc[:, 3:4], axis=-1)
loc = np.append(loc, loc[:, 2:3], axis=-1)
loc = np.append(loc, loc[:, 1:2], axis=-1)
loc = loc.reshape(-1, 4, 2)
loc = loc - np.array(center)
rot_loc = loc.dot(np.transpose(M[:,0:2]))
rot_loc = rot_loc + np.array(center)
rot_box = np.hstack([np.min(rot_loc, axis=-2), np.max(rot_loc, axis=-2), box_loc[:, 4:5]])
rot_box = np.floor(rot_box)
rot_box[...,0:4] = np.clip(rot_box[...,0:4], [0,0,0,0], [w-1, h-1, w-1, h-1])
return out_img, rot_box
#等比例縮放影像
def resize_img(image, box_loc=None, **kwargs):
h, w, _ = image.shape
max_edge = max(kwargs['output_shape'][0], kwargs['output_shape'][1])
scale = min( max_edge / h, max_edge / w)
h = int(h * scale)
w = int(w * scale)
if box_loc is None:
return cv2.resize(image, (w, h))
else:
box_loc[:,0] = box_loc[:,0] * scale
box_loc[:,1] = box_loc[:,1] * scale
box_loc[:,2] = box_loc[:,2] * scale
box_loc[:,3] = box_loc[:,3] * scale
return cv2.resize(image, (w, h)), box_loc.astype(np.int32)
#將樸片補至指定大小
def padding_img(image, box_loc=None, **kwargs):
h, w, _ = image.shape
dx = int((kwargs['output_shape'][1] - w) / 2)
dy = int((kwargs['output_shape'][0] - h) / 2)
out_img = np.ones((kwargs['output_shape'][0], kwargs['output_shape'][1], 3), np.uint8) * kwargs['bordervalue'][0]
out_img[dy: dy + h, dx: dx + w] = cv2.resize(image, (w, h))
if box_loc is None:
return out_img
else:
box_loc[:,0] = box_loc[:,0] + dx
box_loc[:,1] = box_loc[:,1] + dy
box_loc[:,2] = box_loc[:,2] + dx
box_loc[:,3] = box_loc[:,3] + dy
return out_img, box_loc.astype(np.int32)
#隨機縮小 value~1倍
def random_zoom_out(image, box_loc=None, **kwargs):
h, w, _ = image.shape
scale = np.random.uniform(kwargs['zoom_out_value'], 1)
h = int(h * scale)
w = int(w * scale)
dx = int((image.shape[1] - w) / 2)
dy = int((image.shape[0] - h) / 2)
out_img = np.ones(image.shape, np.uint8) * kwargs['bordervalue'][0]
out_img[dy: dy + h, dx: dx + w] = cv2.resize(image, (w, h))
if box_loc is None:
return out_img
else:
box_loc[:,0] = box_loc[:,0] * scale + dx
box_loc[:,1] = box_loc[:,1] * scale + dy
box_loc[:,2] = box_loc[:,2] * scale + dx
box_loc[:,3] = box_loc[:,3] * scale + dy
return out_img, box_loc.astype(np.int32)
#load csv data
def load_csv(xml_path, max_boxes=4):
tree = ET.parse(xml_path)
root = tree.getroot()
#location list
loc_list = np.zeros((0, 5))
box_count = 0
for obj in root.iter('object'):
if box_count >= max_boxes:
break
'''
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
'''
loc = obj.find('bndbox')
x_min = int(loc.find('xmin').text)
y_min = int(loc.find('ymin').text)
x_max = int(loc.find('xmax').text)
y_max = int(loc.find('ymax').text)
loc_list = np.vstack([loc_list, np.array([x_min, y_min, x_max, y_max, 0])])
box_count += 1
return loc_list.astype(np.float32)
#draw rectangle
def draw_rect(image, box_loc):
for i in box_loc:
cv2.rectangle(image, (int(i[0]), int(i[1])), (int(i[2]), int(i[3])), (0, 255, 0), 4)
def print_args(**kwargs):
for key, value in kwargs.items():
print('key name: {}\nvalue:{}\n'.format(key, value))
#隨機選擇0~N個 image augmentation方法
def rand_aug_image(image, box_loc=None, **kwargs):
if box_loc is None:
out_img = resize_img(image, **kwargs)
else:
out_img, box_loc = resize_img(image, box_loc, **kwargs)
#total augmentation function
func_list = [sp_noise, gasuss_noise, mod_hue, mod_saturation, mod_light,
horizontal_flip, vertical_flip, rot_image, random_zoom_out]
#rand take function
take_func = sample(func_list, np.random.randint(kwargs['take_value']))
for func in take_func:
if box_loc is None:
out_img = func(out_img, **kwargs)
else:
out_img, box_loc = func(out_img, box_loc, **kwargs)
if box_loc is None:
out_img = padding_img(out_img, **kwargs)
return out_img
else:
out_img, box_loc = padding_img(out_img, box_loc, **kwargs)
return out_img, box_loc
if __name__ == "__main__":
img = cv2.imread('./00002.jpg')
bbox = load_csv('./00002.xml')
#黑點noise
#aug_img = sp_noise(img, **default_args)
#aug_img, bbox = sp_noise(img, bbox, **default_args)
#gasuss_noise
#aug_img = gasuss_noise(img, **default_args)
#aug_img, bbox = gasuss_noise(img, bbox, **default_args)
#調整Hue
#aug_img = mod_hue(img, **default_args)
#aug_img, bbox = mod_hue(img, bbox, **default_args)
#調整saturation
#aug_img = mod_saturation(img, **default_args)
#aug_img, bbox = mod_saturation(img, bbox, **default_args)
#調整light
#aug_img = mod_light(img, **default_args)
#aug_img, bbox = mod_light(img, bbox, **default_args)
#水平翻轉
#aug_img = horizontal_flip(img, **default_args)
#aug_img, bbox = horizontal_flip(img, bbox, **default_args)
#垂直翻轉
#aug_img = vertical_flip(img, **default_args)
#aug_img, bbox = vertical_flip(img, bbox, **default_args)
#旋轉角度
#aug_img = rot_image(img, **default_args)
#aug_img, bbox = rot_image(img, bbox, **default_args)
#等比例resize至指定大小
#aug_img = resize_img(img, **default_args)
#aug_img, bbox = resize_img(img, bbox, **default_args)
#補形狀至指定大小
#aug_img = padding_img(aug_img, **default_args)
#aug_img, bbox = padding_img(aug_img, bbox, **default_args)
#隨機縮小 N~1倍
#aug_img = random_zoom_out(img, **default_args)
#aug_img, bbox = random_zoom_out(img, bbox, **default_args)
#隨機選擇augmentation方法
aug_img = rand_aug_image(img, **default_args)
#aug_img, bbox = rand_aug_image(img, bbox, **default_args)
print(bbox)
draw_rect(aug_img, bbox)
cv2.imshow('img', img)
cv2.imshow('aug img', aug_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
StarcoderdataPython
|
61181
|
import numpy as np
from scipy.stats import chi2
from tqdm import tqdm as tqdm
from ...common import (
Gaussian,
GaussianDensity,
HypothesisReduction,
normalize_log_weights,
)
from ...configs import SensorModelConfig
from ...measurement_models import MeasurementModel
from ...motion_models import MotionModel
from .base_single_object_tracker import SingleObjectTracker
class GaussSumTracker(SingleObjectTracker):
def __init__(
self,
meas_model: MeasurementModel,
sensor_model: SensorModelConfig,
motion_model: MotionModel,
M,
merging_threshold,
P_G,
w_min,
*args,
**kwargs,
) -> None:
self.meas_model = meas_model
self.sensor_model = sensor_model
self.motion_model = motion_model
self.w_min = w_min
self.P_G = P_G
self.gating_size = chi2.ppf(P_G, df=self.meas_model.d)
self.M = M
self.merging_threshold = merging_threshold
self.hypotheses_weight = None
self.multi_hypotheses_bank = None
super(GaussSumTracker).__init__()
def estimate(self, initial_state: Gaussian, measurements, verbose=False):
"""Tracks a single object using Gauss sum filtering
For each filter recursion iteration implemented next steps:
1) for each hypothesis, create missed detection hypothesis
2) for each hypothesis, perform ellipsoidal gating
and only create object detection hypotheses for detections
inside the gate
3) normalise hypotheses weights
4) prune hypotheses with small weights and then re-normalise the weights
5) hypothese merging
6) cap the number of the hypotheses and then re-normalise the weights
7) extract object state estimate using the most probably
hypothesis estimation
8) for each hypothesis, perform prediction
"""
prev_state = initial_state
estimations = [None for x in range(len(measurements))]
self.hypotheses_weight = [np.log(1.0)]
self.multi_hypotheses_bank = [initial_state]
for timestep, measurements_in_scene in tqdm(enumerate(measurements)):
estimations[timestep] = self.estimation_step(
predicted_state=prev_state,
current_measurements=np.array(measurements_in_scene),
)
prev_state = GaussianDensity.predict(state=estimations[timestep], motion_model=self.motion_model)
return tuple(estimations)
def estimation_step(self, predicted_state: Gaussian, current_measurements: np.ndarray):
new_hypotheses, new_weights = [], []
w_theta_factor = np.log(self.sensor_model.P_D / self.sensor_model.intensity_c)
w_theta_0 = np.log(1 - self.sensor_model.P_D) # misdetection
for _old_idx, (curr_weight, curr_hypothesis) in enumerate(
zip(self.hypotheses_weight, self.multi_hypotheses_bank)
):
# 1) for each hypothesis, create missed detection hypothesis
new_hypotheses.append(curr_hypothesis)
new_weights.append(w_theta_0 + curr_weight)
# 2) for each hypothesis, perform ellipsoidal gating
# and only create object detection hypotheses for detection
# inside the gate
z_ingate, _ = GaussianDensity.ellipsoidal_gating(
curr_hypothesis,
current_measurements,
self.meas_model,
self.gating_size,
)
predicted_likelihood = GaussianDensity.predicted_likelihood(curr_hypothesis, z_ingate, self.meas_model)
# for each measurement create detection hypotheses
for idx, meausurement in z_ingate:
new_hypotheses.append(GaussianDensity.update(curr_hypothesis, meausurement, self.meas_model))
new_weights.append(predicted_likelihood[idx] + w_theta_factor)
self.hypotheses_weight.extend(new_weights)
self.multi_hypotheses_bank.extend(new_hypotheses)
assert len(self.hypotheses_weight) == len(self.multi_hypotheses_bank)
# 3.normalise hypotheses weights
self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight)
# 4. Prune hypotheses with small weights and then re-normalise the weights
self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.prune(
self.hypotheses_weight, self.multi_hypotheses_bank, threshold=self.w_min
)
self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight)
# 5. Hypotheses merging and normalize
self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.merge(
self.hypotheses_weight,
self.multi_hypotheses_bank,
threshold=self.merging_threshold,
)
self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight)
# 6. Cap the number of the hypotheses and then re-normalise the weights
self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.cap(
self.hypotheses_weight, self.multi_hypotheses_bank, top_k=self.M
)
self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight)
# 7. Get object state from the most probable hypothesis
if self.multi_hypotheses_bank:
current_step_state = self.multi_hypotheses_bank[np.argmax(self.hypotheses_weight)]
estimation = current_step_state
else:
estimation = predicted_state
# 8. For each hypotheses do prediction
self.updated_states = [
GaussianDensity.predict(hypothesis, self.motion_model) for hypothesis in self.multi_hypotheses_bank
]
self.multi_hypotheses_bank = self.updated_states
return estimation
@property
def method(self):
return "gauss sum filter"
|
StarcoderdataPython
|
1714263
|
<reponame>gaocegege/treadmill
"""Runs the Treadmill application runner.
"""
import logging
import os
import click
from treadmill import appenv
from treadmill import runtime as app_runtime
from treadmill.appcfg import abort as app_abort
_LOGGER = logging.getLogger(__name__)
def init():
"""Top level command handler."""
@click.command()
@click.option('--approot', type=click.Path(exists=True),
envvar='TREADMILL_APPROOT', required=True)
@click.option('--runtime', default=app_runtime.DEFAULT_RUNTIME)
@click.argument('container_dir', type=click.Path(exists=True))
def run(approot, runtime, container_dir):
"""Runs container given a container dir."""
# Make sure container_dir is a fully resolved path.
container_dir = os.path.realpath(container_dir)
_LOGGER.info('run %r %r', approot, container_dir)
tm_env = appenv.AppEnvironment(approot)
try:
app_runtime.get_runtime(runtime, tm_env, container_dir).run()
except Exception as exc: # pylint: disable=W0703
_LOGGER.exception('Failed to start, app will be aborted.')
app_abort.flag_aborted(tm_env, container_dir, exc)
return run
|
StarcoderdataPython
|
1690635
|
import networkx as nx
import csv
import pandas as pd
import itertools
import json
import dedupe
from itertools import combinations,product
import sys
import os
import numpy as np
from affinegap import normalizedAffineGapDistance
import simplejson
from tqdm import tqdm
import tempfile
from dedupe.clustering import cluster as dedupe_cluster
import dm_file_checker
def get_deduper_probs_and_threshold(deduper, unlabeled_data, blocked_data = None, recall_weight = 1):
if blocked_data is None:
pairs = deduper.pairs(unlabeled_data)
else:
pairs = itertools.chain.from_iterable(get_blocked_pairs(deduper, blocked_data))
probs = dedupe.core.scoreDuplicates(pairs,
deduper.data_model,
deduper.classifier,
deduper.num_cores)['score']
# the memory mapped file location of the scored records
temp_filename = probs.filename
probs = probs.copy()
probs.sort()
probs = probs[::-1]
# delete the memory mapped file so it won't clog the disk
os.remove(temp_filename)
expected_dupes = np.cumsum(probs)
recall = expected_dupes / expected_dupes[-1]
precision = expected_dupes / np.arange(1, len(expected_dupes) + 1)
score = recall * precision / (recall + recall_weight ** 2 * precision)
i = np.argmax(score)
print('Maximum expected recall and precision')
print('recall: {:.2f}%'.format(recall[i]*100))
print('precision: {:.2f}%'.format(precision[i]*100))
print('With threshold: {:.2f}%'.format(probs[i]*100))
return probs, probs[i]
def get_linker_probs_and_threshold(linker, unlabeled_data_1, unlabeled_data_2, blocked_data = None, recall_weight = 1):
if blocked_data is None:
pairs = linker.pairs(unlabeled_data_1, unlabeled_data_2)
else:
pairs = itertools.chain.from_iterable(get_blocked_pairs(linker, blocked_data))
probs = dedupe.core.scoreDuplicates(pairs,
linker.data_model,
linker.classifier,
linker.num_cores)['score']
# the memory mapped file location of the scored records
temp_filename = probs.filename
probs = probs.copy()
probs.sort()
probs = probs[::-1]
# delete the memory mapped file so it won't clog the disk
os.remove(temp_filename)
expected_dupes = np.cumsum(probs)
recall = expected_dupes / expected_dupes[-1]
precision = expected_dupes / np.arange(1, len(expected_dupes) + 1)
score = recall * precision / (recall + recall_weight ** 2 * precision)
i = np.argmax(score)
print('Maximum expected recall and precision')
print('recall: {:.2f}%'.format(recall[i]*100))
print('precision: {:.2f}%'.format(precision[i]*100))
print('With threshold: {:.2f}%'.format(probs[i]*100))
return probs, probs[i]
def get_model_weights(deduper_or_linker):
fields = [field.name for field in deduper_or_linker.data_model._variables]
model_weights = sorted(list(zip(fields, deduper_or_linker.classifier.weights)), key = lambda x: x[1], reverse = False)
model_weights = pd.DataFrame(model_weights, columns = ["variable", "logistic_reg_weight"])
return model_weights
def map_cluster_ids(deduper, unlabeled_data, threshold, hard_threshold = 0.0,
blocked_data = None, canonicalize = True, numeric_fields = None,
cluster_id_tag = None,
mapped_records_filepath = None,
cluster_canonical_filepath = None):
# BADLY NEED TO REFACTOR THIS
"""
Function that maps record ids to cluster ids
Parameters
----------
deduper : dedupe.Deduper
A trained instance of dedupe.
unlabeled_data : dict
The dedupe formatted data dictionary.
threshold : dedupe.Threshold
The threshold used for clustering.
hard_threshold: float
Threshold for record pair scores that will be included in the clustering
canonicalize : bool or list, default False
Option that provides the canonical records as additional columns.
Specifying a list of column names only canonicalizes those columns.
numeric_fields: list of str, default None
Specify which fields are numeric
cluster_id_tag: str, default None
Additional tag for distinguishing the cluster id of different datasets
Returns
-------
mapped_records
A dataframe storing the mapping from cluster_id to record_id
cluster_canonicals
A dataframe storing the canonical representation per cluster_id
"""
assert (hard_threshold < 1) and (hard_threshold >= 0), "hard_threshold should less than 1 at at least 0.0"
if mapped_records_filepath is not None:
with open(mapped_records_filepath, "w", newline = "") as f:
mapped_records_header = ["record id", "cluster id", "confidence score", "cluster type"]
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writeheader()
if canonicalize:
if cluster_canonical_filepath is not None:
with open(cluster_canonical_filepath, "w", newline = "") as f:
cluster_canonical_header = [field.field for field in deduper.data_model.primary_fields]
cluster_canonical_header.append("cluster id")
writer = csv.DictWriter(f, fieldnames = cluster_canonical_header, quoting = csv.QUOTE_ALL)
writer.writeheader()
else:
assert cluster_canonical_filepath is None, "can't have canonicalize be False if cluster_canonical_filepath exists"
# ## Clustering
if blocked_data is None:
pairs = deduper.pairs(unlabeled_data)
else:
pairs = itertools.chain.from_iterable(get_blocked_pairs(deduper, blocked_data))
pair_scores = deduper.score(pairs)
pair_scores = pair_scores[pair_scores["score"] > hard_threshold]
clustered_dupes = deduper.cluster(pair_scores, threshold)
if numeric_fields is not None:
assert isinstance(numeric_fields, list)
mapped_records = []
cluster_canonicals = []
record_ids_in_clusters = []
# assign cluster ids to record ids
i = 0
print("Mapping cluster ids...")
for cluster in tqdm(clustered_dupes):
i += 1
cluster_id = "cl-{}".format(i)
if cluster_id_tag is not None:
cluster_id = "{}-{}".format(cluster_id_tag, cluster_id)
id_set, scores = cluster
if canonicalize:
cluster_data = [unlabeled_data[i] for i in id_set]
canonical_rep = get_canonical_rep(cluster_data, numeric_fields = numeric_fields)
canonical_rep["cluster id"] = cluster_id
if cluster_canonical_filepath is not None:
with open(cluster_canonical_filepath, "a") as f:
writer = csv.DictWriter(f, fieldnames = cluster_canonical_header, quoting = csv.QUOTE_ALL)
writer.writerow(canonical_rep)
else:
cluster_canonicals.append(canonical_rep)
for record_id, score in zip(id_set, scores):
record_dict = {
"record id": record_id,
"cluster id": cluster_id,
"confidence score": score,
"cluster type":'dup'
}
if mapped_records_filepath is not None:
with open(mapped_records_filepath, "a", newline = "") as f:
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writerow(record_dict)
else:
mapped_records.append(record_dict)
record_ids_in_clusters.append(record_id)
record_ids_in_clusters = set(record_ids_in_clusters)
solo_ids = list(set(unlabeled_data.keys()).difference(record_ids_in_clusters))
# assign solo ids to record ids
print("Mapping solo record ids...")
for record_id in tqdm(solo_ids):
i += 1
cluster_id = "cl-{}".format(i)
if cluster_id_tag is not None:
cluster_id = "{}-{}".format(cluster_id_tag, cluster_id)
record_dict = {
"record id":record_id,
"cluster id":cluster_id,
"confidence score":None,
"cluster type":'solo'
}
mapped_records.append(record_dict)
if mapped_records_filepath is None:
mapped_records = pd.DataFrame(mapped_records)
else:
with open(mapped_records_filepath, "a", newline = "") as f:
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writerows(mapped_records)
mapped_records = None
if cluster_canonical_filepath is None:
cluster_canonicals = pd.DataFrame(cluster_canonicals)
else:
cluster_canonicals = None
# delete temporary file generated for pair_scores
try:
mmap_file = pair_scores.filename
del pair_scores
os.remove(mmap_file)
except AttributeError:
pass
if canonicalize:
return mapped_records, cluster_canonicals
else:
return mapped_records
def abs_distance(x,y):
return np.abs(x-y)
def get_canonical_rep(record_cluster, numeric_fields = None):
"""
Given a list of records within a duplicate cluster, constructs a
canonical representation of the cluster by finding canonical
values for each field
"""
canonical_rep = {}
keys = record_cluster[0].keys()
if numeric_fields is None:
numeric_fields = []
for key in keys:
key_values = []
# difference distance functions for numeric and non-numeric fields
if key in numeric_fields:
comparator = abs_distance
else:
comparator = normalizedAffineGapDistance
for record in record_cluster:
# assume non-empty values always better than empty value
# for canonical record
if record[key]:
key_values.append(record[key])
if key_values:
canonical_rep[key] = dedupe.canonical.getCentroid(key_values, comparator)
else:
canonical_rep[key] = ''
return canonical_rep
def get_linked_ids(linker, unlabeled_data_1, unlabeled_data_2, threshold, hard_threshold = 0.0, blocked_data = None,
mapped_records_filepath = None, constraint = "one-to-one"):
# BADLY NEED TO REFACTOR THIS
"""
constraint: What type of constraint to put on a join.
'one-to-one'
Every record in data_1 can match at most
one record from data_2 and every record
from data_2 can match at most one record
from data_1. This is good for when both
data_1 and data_2 are from different
sources and you are interested in
matching across the sources. If,
individually, data_1 or data_2 have many
duplicates you will not get good
matches.
'many-to-one'
Every record in data_1 can match at most
one record from data_2, but more than
one record from data_1 can match to the
same record in data_2. This is good for
when data_2 is a lookup table and data_1
is messy, such as geocoding or matching
against golden records.
'many-to-many'
Every record in data_1 can match
multiple records in data_2 and vice
versa. This is like a SQL inner join.
"""
if mapped_records_filepath is not None:
with open(mapped_records_filepath, "w", newline = "") as f:
mapped_records_header = ["record id 1", "record id 2", "confidence score", "link type"]
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writeheader()
## link matching
if blocked_data is None:
pairs = linker.pairs(unlabeled_data_1, unlabeled_data_2)
else:
pairs = itertools.chain.from_iterable(get_blocked_pairs(linker, blocked_data))
pair_scores = linker.score(pairs)
pair_scores = pair_scores[pair_scores["score"] > hard_threshold]
assert constraint in {'one-to-one', 'many-to-one', 'many-to-many'}, (
'%s is an invalid constraint option. Valid options include '
'one-to-one, many-to-one, or many-to-many' % constraint)
if constraint == 'one-to-one':
links = linker.one_to_one(pair_scores, threshold)
elif constraint == 'many-to-one':
links = linker.many_to_one(pair_scores, threshold)
elif constraint == 'many-to-many':
links = pair_scores[pair_scores['score'] > threshold]
links = list(links)
# delete temporary file generated for pair_scores
try:
mmap_file = pair_scores.filename
del pair_scores
os.remove(mmap_file)
except AttributeError:
pass
mapped_records = []
ids_with_links_1 = []
ids_with_links_2 = []
print("Mapping linked pairs...")
for record_pair in tqdm(links):
record_ids, score = record_pair
pair_dict = {
"record id 1":record_ids[0],
"record id 2":record_ids[1],
"confidence score":score,
"link type":"dup",
}
if mapped_records_filepath is not None:
with open(mapped_records_filepath, "a", newline = "") as f:
mapped_records_header = ["record id 1", "record id 2", "confidence score", "link type"]
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writerow(pair_dict)
else:
mapped_records.append(pair_dict)
ids_with_links_1.append(record_ids[0])
ids_with_links_2.append(record_ids[1])
ids_with_links_1 = set(ids_with_links_1)
ids_with_links_2 = set(ids_with_links_2)
# include the records without found links
ids_without_links_1 = list(set(unlabeled_data_1.keys()).difference(ids_with_links_1))
ids_without_links_2 = list(set(unlabeled_data_2.keys()).difference(ids_with_links_2))
print("Mapping unlinked records in dataset 1...")
for record_id in tqdm(ids_without_links_1):
pair_dict = {
"record id 1":record_id,
"record id 2":None,
"confidence score":None,
"link type":"solo",
}
mapped_records.append(pair_dict)
print("Mapping unlinked records in dataset 2...")
for record_id in tqdm(ids_without_links_2):
pair_dict = {
"record id 1":None,
"record id 2":record_id,
"confidence score":None,
"link type":"solo",
}
mapped_records.append(pair_dict)
if mapped_records_filepath is None:
mapped_records = pd.DataFrame(mapped_records)
else:
with open(mapped_records_filepath, "a", newline = "") as f:
mapped_records_header = ["record id 1", "record id 2", "confidence score", "link type"]
writer = csv.DictWriter(f, fieldnames = mapped_records_header, quoting = csv.QUOTE_ALL)
writer.writerows(mapped_records)
mapped_records = None
return mapped_records
def get_uncertain_clusters(mapped_records_df, threshold = 0.9):
cluster_means_df = mapped_records_df\
.groupby("cluster id")\
.mean()\
.sort_values(by = "confidence score", ascending = True)
cluster_means_bool = (cluster_means_df["confidence score"] < threshold)
print("There are {} clusters with mean confidence score lower than {:.1f}% threshold".format(cluster_means_bool.sum(), threshold*100))
uncertain_clusters_dict = cluster_means_df.loc[cluster_means_bool,:].to_dict()["confidence score"]
return uncertain_clusters_dict
def get_pairs_from_uncertain_clusters(mapped_records_df, labeled_id_pairs, threshold = 0.9):
assert isinstance(labeled_id_pairs, list)
uncertain_clusters = get_uncertain_clusters(mapped_records_df, threshold = threshold)
n_uncertain_clusters = len(uncertain_clusters)
nth_cluster = 0
for cluster_id, mean_conf_score in uncertain_clusters.items():
nth_cluster += 1
pairs_in_cluster = []
# get record ids in cluster
ids_in_cluster = mapped_records_df.loc[mapped_records_df["cluster id"] == cluster_id,"record id"].values.tolist()
# generating record pairs from cluster
for id_1, id_2 in combinations(ids_in_cluster, 2):
id_pair = tuple(sorted((id_1,id_2)))
# if pair is not already tagged, grab data of records
if id_pair not in labeled_id_pairs:
pairs_in_cluster.append(id_pair)
yield ids_in_cluster, pairs_in_cluster, nth_cluster, n_uncertain_clusters, mean_conf_score
def find_ids_of_labeled_data(labeled_data, unlabeled_data):
labeled_pair_ids = []
for label in labeled_data.keys():
assert label in ["distinct", "match"]
print("Finding ids for {} pairs".format(label))
data_pairs_list = labeled_data[label]
for data_pair in tqdm(data_pairs_list):
try:
# for backwards compatibility
record_1, record_2 = data_pair["__value__"]
except:
record_1, record_2 = data_pair
record_1_id = [key for key,val in unlabeled_data.items() if unlabeled_data[key] == record_1]
record_2_id = [key for key,val in unlabeled_data.items() if unlabeled_data[key] == record_2]
if len(record_1_id) > 1:
print("Multiple record ids ({}) found for {}".format(len(record_1_id),record_1))
record_1_id = record_1_id[0]
if len(record_2_id) > 1:
print("Multiple record ids ({}) found for {}".format(len(record_2_id),record_2))
record_2_id = record_2_id[0]
labeled_pair = {"record id 1":record_1_id, "record id 2":record_2_id, "label":label}
labeled_pair_ids.append(labeled_pair)
labeled_pair_ids = pd.DataFrame(labeled_pair_ids, dtype = "str")
return labeled_pair_ids
def find_ids_of_labeled_data_rl(labeled_data, unlabeled_data_1, unlabeled_data_2):
labeled_pair_ids = []
for label in labeled_data.keys():
assert label in ["distinct", "match"]
print("Finding ids for {} pairs".format(label))
data_pairs_list = labeled_data[label]
for data_pair in tqdm(data_pairs_list):
record_1, record_2 = data_pair
record_1_id = [key for key,val in unlabeled_data_1.items() if unlabeled_data_1[key] == record_1]
record_2_id = [key for key,val in unlabeled_data_2.items() if unlabeled_data_2[key] == record_2]
if len(record_1_id) > 1:
print("Multiple record ids ({}) found for {}".format(len(record_1_id),record_1))
record_1_id = record_1_id[0]
if len(record_2_id) > 1:
print("Multiple record ids ({}) found for {}".format(len(record_2_id),record_2))
record_2_id = record_2_id[0]
labeled_pair = {"record id 1":record_1_id, "record id 2":record_2_id, "label":label}
labeled_pair_ids.append(labeled_pair)
labeled_pair_ids = pd.DataFrame(labeled_pair_ids, dtype = "str")
return labeled_pair_ids
def consoleLabel_cluster_old(deduper, mapped_records_df, labeled_id_pairs, unlabeled_data, threshold = 0.9):
'''
Command line interface for presenting and labeling uncertain clusters by the user
Argument :
A deduper object
'''
finished = False
fields = [field.field for field in deduper.data_model.primary_fields]
assert len(fields) == len(list(set(fields)))
labeled_pairs = {"distinct":[], "match":[]}
uncertain_pair_generator = get_pairs_from_uncertain_clusters(mapped_records_df,
labeled_id_pairs,
threshold = threshold)
while not finished:
try:
ids_in_cluster, pairs_in_cluster, nth_cluster, n_uncertain_clusters, mean_conf_score = next(uncertain_pair_generator)
records_in_cluster = {i:unlabeled_data[i] for i in ids_in_cluster}
except StopIteration:
print("Already tagged all {} uncertain clusters.".format(n_uncertain_clusters))
print("Finished labeling")
break
print("Viewing {} out of {} uncertain clusters".format(nth_cluster, n_uncertain_clusters), file = sys.stderr)
print("Cluster contains {} records".format(len(ids_in_cluster)))
print("Mean Cluster Score {:.1f}%\n".format(mean_conf_score*100), file = sys.stderr)
for record_id, record in records_in_cluster.items():
print("Record {}".format(record_id), file=sys.stderr)
for field in fields:
line = "{} : {}".format(field, record[field])
print(line, file=sys.stderr)
print(file=sys.stderr)
user_input = _prompt_records_same()
if user_input == "y":
for id_1, id_2 in pairs_in_cluster:
record_pair = (unlabeled_data[id_1], unlabeled_data[id_2])
labeled_pairs["match"].append(record_pair)
elif user_input == "n":
print("Reviewing pairs in cluster", file=sys.stderr)
for id_1, id_2 in pairs_in_cluster:
record_pair = (unlabeled_data[id_1], unlabeled_data[id_2])
for record in record_pair:
for field in fields:
line = "{} : {}".format(field, record[field])
print(line, file=sys.stderr)
print(file=sys.stderr)
user_input = _prompt_records_same()
if user_input == "y":
labeled_pairs["match"].append(record_pair)
elif user_input == "n":
labeled_pairs["distinct"].append(record_pair)
elif user_input == "f":
print("Finished labeling", file=sys.stderr)
finished = True
break
elif user_input == "f":
print("Finished labeling", file=sys.stderr)
finished = True
deduper.markPairs(labeled_pairs)
def consoleLabel_cluster(deduper, mapped_records_df, labeled_id_pairs, unlabeled_data,
recall = 1.0, threshold = 0.9):
'''
Command line interface for presenting and labeling uncertain clusters by the user
Argument :
A deduper object
'''
finished = False
fields = [field.field for field in deduper.data_model.primary_fields]
assert len(fields) == len(list(set(fields)))
labeled_pairs = {"distinct":[], "match":[]}
uncertain_pair_generator = get_pairs_from_uncertain_clusters(mapped_records_df,
labeled_id_pairs,
threshold = threshold)
while not finished:
try:
ids_in_cluster, pairs_in_cluster, nth_cluster, n_uncertain_clusters, mean_conf_score = next(uncertain_pair_generator)
records_in_cluster = {i:unlabeled_data[i] for i in ids_in_cluster}
except StopIteration:
print("Already tagged all {} uncertain clusters.".format(n_uncertain_clusters))
print("Finished labeling")
break
print("Viewing {} out of {} uncertain clusters".format(nth_cluster, n_uncertain_clusters), file = sys.stderr)
print("Cluster contains {} records".format(len(ids_in_cluster)), file = sys.stderr)
print("Mean Cluster Score {:.1f}%\n".format(mean_conf_score*100), file = sys.stderr)
for record_id, record in records_in_cluster.items():
print("Record {}".format(record_id), file=sys.stderr)
for field in fields:
line = "{} : {}".format(field, record[field])
print(line, file=sys.stderr)
print(file=sys.stderr)
user_input = _prompt_records_same()
if user_input == "y":
for id_1, id_2 in pairs_in_cluster:
record_pair = (unlabeled_data[id_1], unlabeled_data[id_2])
labeled_pairs["match"].append(record_pair)
labeled_id_pairs.append((id_1, id_2))
elif user_input == "n":
print("Reviewing pairs in cluster", file=sys.stderr)
for id_1, id_2 in pairs_in_cluster:
record_pair = (unlabeled_data[id_1], unlabeled_data[id_2])
for record in record_pair:
for field in fields:
line = "{} : {}".format(field, record[field])
print(line, file=sys.stderr)
print(file=sys.stderr)
pair_user_input = _prompt_records_same()
if pair_user_input == "y":
labeled_pairs["match"].append(record_pair)
labeled_id_pairs.append((id_1,id_2))
elif pair_user_input == "n":
labeled_pairs["distinct"].append(record_pair)
labeled_id_pairs.append((id_1,id_2))
elif pair_user_input == "f":
print("Finished labeling", file=sys.stderr)
finished = True
break
elif user_input == "f":
print("Finished labeling", file=sys.stderr)
finished = True
if (user_input == "y") or (user_input == "n"):
deduper.markPairs(labeled_pairs)
deduper.train(recall = recall)
clustering_threshold = deduper.threshold(unlabeled_data, recall_weight=1)
mapped_records_df = map_cluster_ids(deduper, unlabeled_data, clustering_threshold, canonicalize=False)
print("Resampling uncertain clusters based on retrained model", file=sys.stderr)
labeled_pairs = {"distinct":[], "match":[]}
uncertain_pair_generator = get_pairs_from_uncertain_clusters(mapped_records_df, labeled_id_pairs, threshold = threshold)
def _prompt_records_same():
print("Do these records refer to the same thing?", file = sys.stderr)
valid_response = False
user_input = ""
valid_responses = {"y", "n", "u", "f"}
while not valid_response:
prompt = "(y)es / (n)o / (u)nsure / (f)inished"
print(prompt, file=sys.stderr)
user_input = input()
if user_input in valid_responses:
valid_response = True
return user_input
def get_clusters_from_links(links, solo_records):
assert isinstance(links, pd.Index)
assert isinstance(solo_records, pd.Index)
clusters = nx.Graph(links.tolist())
clusters = list(nx.connected_components(clusters))
clusters.extend(solo_records.tolist())
return clusters
def get_deduper_candidate_pairs(deduper, unlabeled_data):
# gets candidate pairs after indexing
candidate_records = deduper.pairs(unlabeled_data)
candidate_records = [(candidate[0][0], candidate[1][0]) for candidate in candidate_records]
candidate_records = pd.MultiIndex.from_tuples(candidate_records)
# some candidate records can be placed in more than 1 block, so let's drop duplicates
candidate_records = candidate_records.drop_duplicates()
return candidate_records
def get_linker_candidate_pairs(linker, unlabeled_data_1, unlabeled_data_2):
# gets candidate pairs after indexing
candidate_records = linker.pairs(unlabeled_data_1, unlabeled_data_2)
candidate_records = [(candidate[0][0], candidate[1][0]) for candidate in candidate_records]
candidate_records = pd.MultiIndex.from_tuples(candidate_records)
# some candidate records can be placed in more than 1 block, so let's drop duplicates
candidate_records = candidate_records.drop_duplicates()
return candidate_records
# converts multindex to format preferred by dedupe method
def convert_rl_to_dedupe_candidate_pair(candidate_pairs, unlabeled_data):
assert isinstance(candidate_pairs, pd.Index)
output = []
for rec_id_1, rec_id_2 in candidate_pairs:
# dedupe candidate pairs must be in the format (record_id, record)
candidate_1 = (rec_id_1, unlabeled_data[rec_id_1])
candidate_2 = (rec_id_2, unlabeled_data[rec_id_2])
candidate_pair = (candidate_1, candidate_2)
output.append(candidate_pair)
return output
# converts multiindex to format preferred by linker method
def convert_rl_to_linker_candidate_pair(candidate_pairs, unlabeled_data_1, unlabeled_data_2):
assert isinstance(candidate_pairs, pd.Index)
output = []
for rec_id_1, rec_id_2 in candidate_pairs:
if rec_id_1 in unlabeled_data_1.keys():
rec_data_1 = unlabeled_data_1[rec_id_1]
rec_data_2 = unlabeled_data_2[rec_id_2]
assert rec_id_1 not in unlabeled_data_2.keys(), "{} key found in both datasets. Keys must be unique".format(rec_id_1)
assert rec_id_2 not in unlabeled_data_1.keys(), "{} key found in both datasets. Keys must be unique".format(rec_id_2)
else:
rec_data_1 = unlabeled_data_2[rec_id_1]
rec_data_2 = unlabeled_data_1[rec_id_2]
assert rec_id_2 not in unlabeled_data_2.keys(), "{} found in both datasets. Keys must be unique".format(rec_id_2)
# record linker candidate pairs must be in the format (record_id, record)
candidate_1 = (rec_id_1, rec_data_1)
candidate_2 = (rec_id_2, rec_data_2)
candidate_pair = (candidate_1, candidate_2)
output.append(candidate_pair)
return output
def read_unlabeled_data_json(unlabeled_data_filepath, empty_str_to_none = True, numeric_fields = None):
with open(unlabeled_data_filepath, "r") as json_file:
unlabeled_data = json.load(json_file)
unlabeled_data = pd.DataFrame.from_dict(unlabeled_data, orient = "index")
if numeric_fields is not None:
assert isinstance(numeric_fields, list)
for col in numeric_fields:
unlabeled_data[col] = unlabeled_data[col].apply(lambda x: x if x == "" else float(x))
if empty_str_to_none:
for col in unlabeled_data.columns.tolist():
empty_str_bool = (unlabeled_data[col] == "")
print("converting {} empty string values of column {} to None".format(empty_str_bool.sum(), col))
unlabeled_data.loc[empty_str_bool,col] = None
# converting NaNs of numeric columns (NaNs introduced because of the previous line) to None
if numeric_fields is not None:
for col in numeric_fields:
not_nan_bool = unlabeled_data[col].notnull()
print("converting {} NaN values of column {} to None".format((~not_nan_bool).sum(), col))
unlabeled_data[col] = unlabeled_data[col].where((not_nan_bool), None)
unlabeled_data = unlabeled_data.to_dict(orient = "index")
return unlabeled_data
def write_canonical_w_solo_unlabeled_data(canonicals_df, mapped_records_df, unlabeled_data,
canonical_w_solo_unlabeled_filepath):
# will be used for post cluster review, specifically on matching solos to clusters and merging clusters
# those two steps are based on the cluster canonicals
# remember to read in this written file using read_unlabeled_data_json later on
canonical_w_solo_data = canonicals_df.set_index("cluster id")\
.to_dict(orient = "index")
mapped_records_df = mapped_records_df.set_index("record id")
solo_records = mapped_records_df.loc[mapped_records_df["cluster type"] == "solo",:]\
.index.tolist()
for record_id in solo_records:
record = unlabeled_data[record_id]
cluster_id = mapped_records_df.loc[record_id,"cluster id"]
canonical_w_solo_data[cluster_id] = record
with open(canonical_w_solo_unlabeled_filepath, 'w') as outfile:
json.dump(canonical_w_solo_data, outfile)
def prepare_training_deduper(deduper, unlabeled_data, labeled_data_filepath, blocked_proportion = 0.5, sample_size = 15_000):
# If we have training data saved from a previous run of dedupe,
# look for it and load it in.
# __Note:__ if you want to train from scratch, delete the labeled_data_filepath
if os.path.exists(labeled_data_filepath):
print('reading labeled examples from ', labeled_data_filepath)
with open(labeled_data_filepath, 'rb') as labeled_data:
deduper.prepare_training(data = unlabeled_data, training_file = labeled_data,
blocked_proportion = blocked_proportion,
sample_size = sample_size)
else:
deduper.prepare_training(data = unlabeled_data, blocked_proportion = blocked_proportion,
sample_size = sample_size)
def save_trained_deduper(deduper, labeled_data_filepath, settings_filepath):
# When finished, save our training to disk
with open(labeled_data_filepath, 'w') as tf:
deduper.write_training(tf)
# Save our weights and predicates to disk. If the settings file
# exists, we will skip all the training and learning next time we run
# this file.
with open(settings_filepath, 'wb') as sf:
deduper.write_settings(sf)
def prepare_training_linker(linker, unlabeled_data_1, unlabeled_data_2, labeled_data_filepath, blocked_proportion = 0.5, sample_size = 15_000):
# If we have training data saved from a previous run of linker,
# look for it and load it in.
# __Note:__ if you want to train from scratch, delete the labeled_data_filepath
if os.path.exists(labeled_data_filepath):
print('reading labeled examples from ', labeled_data_filepath)
with open(labeled_data_filepath, 'rb') as labeled_data:
linker.prepare_training(data_1 = unlabeled_data_1, data_2 = unlabeled_data_2,
training_file = labeled_data,
blocked_proportion = blocked_proportion,
sample_size = sample_size)
else:
linker.prepare_training(data_1 = unlabeled_data_1, data_2 = unlabeled_data_2,
blocked_proportion = blocked_proportion,
sample_size = sample_size)
def save_trained_linker(linker, labeled_data_filepath, settings_filepath):
# When finished, save our training to disk
with open(labeled_data_filepath, 'w') as tf:
linker.write_training(tf)
# Save our weights and predicates to disk. If the settings file
# exists, we will skip all the training and learning next time we run
# this file.
with open(settings_filepath, 'wb') as sf:
linker.write_settings(sf)
def get_data_of_labeled_pairs(labeled_pairs_df, unlabeled_data):
df = pd.DataFrame.from_dict(unlabeled_data, orient = "index")
df_left = df.loc[labeled_pairs_df["record id 1"],:]
df_left.columns = ["{}_1".format(col) for col in df_left.columns]
df_left.index.name = "record id 1"
df_left = df_left.reset_index()
df_right = df.loc[labeled_pairs_df["record id 2"],:]
df_right.columns = ["{}_2".format(col) for col in df_right.columns]
df_right.index.name = "record id 2"
df_right = df_right.reset_index()
output = pd.concat([df_left, df_right], axis = 1, sort = False)
# sort columns
output = output.sort_index(axis = 1)
output = output.set_index(["record id 1", "record id 2"])
label_df = labeled_pairs_df.set_index(["record id 1", "record id 2"])
output = pd.merge(left = label_df, right = output, left_index = True, right_index = True, how = "inner")
return output
def get_deduped_data(mapped_records_df, canonicals_df, unlabeled_data, none_to_empty_str = True):
mapped_records_df = mapped_records_df.set_index("record id")
solo_record_ids = mapped_records_df.loc[mapped_records_df["cluster type"] == "solo","cluster id"].to_dict()
deduped_data = {cluster_id:unlabeled_data[record_id] for record_id,cluster_id in solo_record_ids.items()}
deduped_data = pd.DataFrame.from_dict(deduped_data, orient = "index")
deduped_data.index.name = "cluster id"
canonicals_df = canonicals_df.set_index("cluster id")
# appending the canonicalized cluster representations to the solo records
deduped_data = deduped_data.append(canonicals_df)
if none_to_empty_str:
deduped_data = deduped_data.where((deduped_data.notnull()), "")
return deduped_data
def write_deduper_blocks(deduper, unlabeled_data, blocks_filepath):
"""
simplify blocks by not writing the record entries, only the ids
"""
blocks = deduper.pairs(unlabeled_data)
with open(blocks_filepath, "w", newline = "") as csv_file:
writer = csv.writer(csv_file, quoting = csv.QUOTE_ALL)
header = ["block_id", "record_id"]
writer.writerow(header)
block_id = 1
for block in blocks:
"""
from dedupe source code:
Each item in a block must be a sequence of record_id, record and the
records also must be dictionaries
but we're only keeping the record_id, not the record here
"""
for record in block:
record_id, _, = record
block_entry = [block_id, record_id]
writer.writerow(block_entry)
block_id += 1
def read_deduper_blocks(unlabeled_data, blocks_filepath):
# assumes that the records are sorted by block number
current_block_id = None
block_records = []
"""
from dedupe source code:
Each item in a block must be a sequence of record_id, record, and the
records also must be dictionaries
"""
with open(blocks_filepath, "r") as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
block_id, record_id = row["block_id"], row["record_id"]
if current_block_id == block_id:
block_records.append((record_id, unlabeled_data[record_id]))
else:
if current_block_id is not None:
yield block_records
current_block_id = block_id
block_records = [(record_id, unlabeled_data[record_id])]
yield block_records
def write_linker_blocks(linker, unlabeled_data_1, unlabeled_data_2, blocks_filepath):
"""
simplify blocks by not writing the record entries, only the ids
"""
blocks = linker.pairs(unlabeled_data_1, unlabeled_data_2)
block_id = 1
with open(blocks_filepath, "w", newline = "") as csv_file:
writer = csv.writer(csv_file, quoting = csv.QUOTE_ALL)
header = ["record_set_num", "block_id", "record_id"]
writer.writerow(header)
for block in blocks:
rec_1, rec_2 = block
rec_1_id, _ = rec_1
block_entry = ["1", block_id, rec_1_id]
writer.writerow(block_entry)
rec_2_id, _ = rec_2
block_entry = ["2", block_id, rec_2_id]
writer.writerow(block_entry)
block_id += 1
def read_linker_blocks(unlabeled_data_1, unlabeled_data_2, blocks_filepath):
# assumes that the records sorted by block number
block_records = ()
block_set_1 = []
block_set_2 = []
current_block_id = None
"""
from dedupe source code:
Each block must be a made up of two sequences, (base_sequence, target_sequence)
"""
with open(blocks_filepath, "r") as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
record_set_num, block_id, record_id = row["record_set_num"], row["block_id"], row["record_id"]
if current_block_id == block_id:
if record_set_num == "1":
block_set_1.append((record_id, unlabeled_data_1[record_id]))
elif record_set_num == "2":
block_set_2.append((record_id, unlabeled_data_2[record_id]))
else:
raise ValueError("record_set_num should only be 1 or 2, but got {}".format(record_set_num))
else:
if current_block_id is not None:
block_records = (block_set_1, block_set_2)
yield block_records
current_block_id = block_id
if record_set_num == "1":
block_set_1 = [(record_id, unlabeled_data_1[record_id])]
block_set_2 = []
elif record_set_num == "2":
block_set_1 = []
block_set_2 = [(record_id, unlabeled_data_2[record_id])]
else:
raise ValueError("record_set_num should only be 1 or 2, but got {}".format(record_set_num))
block_records = (block_set_1, block_set_2)
yield block_records
def get_blocked_pairs(deduper_or_linker, blocked_data):
if isinstance(deduper_or_linker, dedupe.api.DedupeMatching):
pairs = (combinations(sorted(block), 2) for block in blocked_data)
elif isinstance(deduper_or_linker, dedupe.api.RecordLinkMatching):
pairs = (product(base, target) for base, target in blocked_data)
else:
raise ValueError("Passed not of class DedupeMatching or of RecordLinkMatching!")
return pairs
def count_blocked_pairs(deduper_or_linker, blocked_data):
candidate_records = itertools.chain.from_iterable(get_blocked_pairs(deduper_or_linker, blocked_data))
i = 0
for _ in candidate_records:
i += 1
return i
def write_training_set_from_pairs(labeled_pair_ids_df, labeled_data_filepath, unlabeled_data, unlabeled_data_2 = None):
# create a labeled training set directly for dedupe's consumption
labeled_data_train = {"distinct":[], "match":[]}
for _, row in labeled_pair_ids_df.iterrows():
rec_id_1 = row["record id 1"]
rec_id_2 = row["record id 2"]
rec_data_1 = unlabeled_data[rec_id_1]
if unlabeled_data_2 is None:
rec_data_2 = unlabeled_data[rec_id_2]
else:
rec_data_2 = unlabeled_data_2[rec_id_2]
label = row["label"]
data_entry = {
"__class__":"tuple",
"__value__":[rec_data_1, rec_data_2]
}
labeled_data_train[label].append(data_entry)
with open(labeled_data_filepath, "w") as json_file:
simplejson.dump(labeled_data_train,
json_file,
default=dedupe.serializer._to_json,
tuple_as_array=False,
ensure_ascii=True)
def get_deduped_data_for_rl(task_name, saved_files_path):
# gets deduped dataset from respective deduping for rl
dataset_name = task_name.split("-")[1]
dataset_1_name, dataset_2_name = dataset_name.split("_")
dedup_task_1 = "dedup-{}".format(dataset_1_name)
dedup_task_2 = "dedup-{}".format(dataset_2_name)
# get all filepaths
unlabeled_data_1_filepath, unlabeled_data_2_filepath = dm_file_checker.get_proper_unlabeled_data_filepath(task_name, saved_files_path)
numeric_fields_1, numeric_fields_2 = dm_file_checker.get_dataset_info(task_name, "numeric_fields", saved_files_path)
print("Numeric fields 1 are {}".format(numeric_fields_1))
print("Numeric fields 2 are {}".format(numeric_fields_2))
canonicals_1_filepath = dm_file_checker.get_filepath(dedup_task_1, "cluster_canonical", saved_files_path)
canonicals_2_filepath = dm_file_checker.get_filepath(dedup_task_2, "cluster_canonical", saved_files_path)
mapped_records_1_filepath = dm_file_checker.get_filepath(dedup_task_1, "mapped_records", saved_files_path)
mapped_records_2_filepath = dm_file_checker.get_filepath(dedup_task_2, "mapped_records", saved_files_path)
# read in data from filepaths
unlabeled_data_1 = read_unlabeled_data_json(unlabeled_data_1_filepath, empty_str_to_none = False,
numeric_fields = numeric_fields_1)
unlabeled_data_2 = read_unlabeled_data_json(unlabeled_data_2_filepath, empty_str_to_none = False,
numeric_fields = numeric_fields_2)
canonicals_1_df = pd.read_csv(canonicals_1_filepath, keep_default_na = False, low_memory = False)
canonicals_2_df = pd.read_csv(canonicals_2_filepath, keep_default_na = False, low_memory = False)
mapped_records_1_df = pd.read_csv(mapped_records_1_filepath, keep_default_na = False)
mapped_records_2_df = pd.read_csv(mapped_records_2_filepath, keep_default_na = False)
# get deduped data in dictionary form
deduped_data_1 = get_deduped_data(mapped_records_1_df, canonicals_1_df, unlabeled_data_1, none_to_empty_str = False)
deduped_data_2 = get_deduped_data(mapped_records_2_df, canonicals_2_df, unlabeled_data_2, none_to_empty_str = False)
if numeric_fields_1 is not None:
for col in numeric_fields_1:
deduped_data_1[col] = deduped_data_1[col].apply(lambda x: x if x == "" else float(x))
if numeric_fields_2 is not None:
for col in numeric_fields_2:
deduped_data_2[col] = deduped_data_2[col].apply(lambda x: x if x == "" else float(x))
for col in deduped_data_1.columns:
empty_str_bool = (deduped_data_1[col] == "")
print("in deduped data 1, converting {} empty string values of column {} to None".format(empty_str_bool.sum(), col))
deduped_data_1.loc[empty_str_bool,col] = None
for col in deduped_data_2.columns:
empty_str_bool = (deduped_data_2[col] == "")
print("in deduped data 2, converting {} empty string values of column {} to None".format(empty_str_bool.sum(), col))
deduped_data_2.loc[empty_str_bool,col] = None
# converting NaNs of numeric columns (NaNs introduced because of the previous line) to None
if numeric_fields_1 is not None:
for col in numeric_fields_1:
not_nan_bool = deduped_data_1[col].notnull()
print("in deduped data 1, converting {} NaN values of {} to None".format((~not_nan_bool).sum(), col))
deduped_data_1[col] = deduped_data_1[col].where((not_nan_bool), None)
if numeric_fields_2 is not None:
for col in numeric_fields_2:
not_nan_bool = deduped_data_2[col].notnull()
print("in deduped data 2, converting {} NaN values of {} to None".format((~not_nan_bool).sum(), col))
deduped_data_2[col] = deduped_data_2[col].where((not_nan_bool), None)
deduped_data_1 = deduped_data_1.to_dict(orient = "index")
deduped_data_2 = deduped_data_2.to_dict(orient = "index")
return deduped_data_1, deduped_data_2
# function to make sure the all record ids are prepended with the name of the dataset
def verify_rec_id_format(record_id, data_name):
if pd.isnull(record_id):
is_ok = True
else:
is_ok = (record_id.split("-")[0] == data_name)
return is_ok
# function to return all results from all record linkage results
def get_all_rl_results(rl_task_names, saved_files_path):
dupe_records = pd.DataFrame(columns = ["record id 1", "record id 2", "confidence score"])
all_records = set()
# iterate over each rl mapped file
for rl_task in rl_task_names:
data_name_1, data_name_2 = rl_task.split("-")[1].split("_")
mapped_records_filepath = dm_file_checker.get_filepath(rl_task, "mapped_records", saved_files_path)
print("Getting mapped record links from {}".format(rl_task))
mapped_records_df = pd.read_csv(mapped_records_filepath)
# make sure all record ids are prepended with the name of the dataset
ok_records_1 = mapped_records_df["record id 1"].apply(lambda x: verify_rec_id_format(x, data_name_1)).all()
ok_records_2 = mapped_records_df["record id 2"].apply(lambda x: verify_rec_id_format(x, data_name_2)).all()
assert (ok_records_1 and ok_records_2), "Record ids aren't prepended with the dataset name!"
append_dupe_records = mapped_records_df.loc[mapped_records_df["link type"] == "dup",\
["record id 1", "record id 2","confidence score"]]
dupe_records = dupe_records.append(append_dupe_records, ignore_index = True)
append_all_records = mapped_records_df.loc[:,["record id 1","record id 2"]]
append_all_records = append_all_records["record id 1"].dropna().unique().tolist() \
+ append_all_records["record id 2"].dropna().unique().tolist()
append_all_records = set(append_all_records)
all_records.update(append_all_records)
all_records = list(all_records)
pairs = dupe_records.loc[:,["record id 1", "record id 2"]]\
.apply(lambda row: (row["record id 1"], row["record id 2"]), axis = 1)\
.tolist()
n_pairs = len(pairs)
id_type = (str, 265)
pairs = np.array(pairs, dtype = id_type)
scores = dupe_records.loc[:,["confidence score"]].to_numpy(dtype = float).reshape(-1)
dtype = np.dtype([("pairs", id_type, 2),
("score", "f4", 1)])
temp_file, file_path = tempfile.mkstemp()
os.close(temp_file)
scored_pairs = np.memmap(file_path,
shape = n_pairs,
dtype = dtype)
scored_pairs["pairs"] = pairs
scored_pairs["score"] = scores
return scored_pairs, all_records
def get_fusion_probs_and_threshold(scored_pairs, recall_weight = 1):
probs = scored_pairs['score']
probs = probs.copy()
probs.sort()
probs = probs[::-1]
expected_dupes = np.cumsum(probs)
recall = expected_dupes / expected_dupes[-1]
precision = expected_dupes / np.arange(1, len(expected_dupes) + 1)
score = recall * precision / (recall + recall_weight ** 2 * precision)
i = np.argmax(score)
print('Maximum expected recall and precision')
print('recall: {:.2f}%'.format(recall[i]*100))
print('precision: {:.2f}%'.format(precision[i]*100))
print('With threshold: {:.2f}%'.format(probs[i]*100))
return probs, probs[i]
def map_cluster_fusion_ids(scored_pairs, all_records, threshold):
clustered_dupes = dedupe_cluster(scored_pairs, threshold)
mapped_records = []
record_ids_in_clusters = []
# assign cluster ids to record ids
i = 0
print("Mapping cluster ids...")
for cluster in tqdm(clustered_dupes):
i += 1
cluster_id = "fs-{}".format(i)
id_set, scores = cluster
for record_id, score in zip(id_set, scores):
record_dict = {
"record id": record_id,
"cluster id": cluster_id,
"confidence score": score,
"cluster type":'link'
}
mapped_records.append(record_dict)
record_ids_in_clusters.append(record_id)
record_ids_in_clusters = set(record_ids_in_clusters)
solo_ids = [key for key in all_records if key not in record_ids_in_clusters]
# assign solo ids to record ids
print("Mapping solo record ids...")
for record_id in tqdm(solo_ids):
i += 1
cluster_id = "fs-{}".format(i)
record_dict = {
"record id":record_id,
"cluster id":cluster_id,
"confidence score":None,
"cluster type":'solo'
}
mapped_records.append(record_dict)
mapped_records = pd.DataFrame(mapped_records)
return mapped_records
def get_all_dedup_results(rl_task_names, saved_files_path, remove_data_name_prefix = True):
all_dedup_mapped_records = pd.DataFrame()
dedup_datasets = set()
for rl_task in rl_task_names:
data_name_1, data_name_2 = rl_task.split("-")[1].split("_")
for data_name in [data_name_1, data_name_2]:
dedup_task = "dedup-{}".format(data_name)
mapped_records_filepath = dm_file_checker.get_filepath(dedup_task, "mapped_records", saved_files_path)
# replace IDs only of datasets that have undergone deduplication
if os.path.exists(mapped_records_filepath) & (data_name not in dedup_datasets):
dedup_datasets.add(data_name)
dedup_mapped_records = pd.read_csv(mapped_records_filepath)
dedup_mapped_records = dedup_mapped_records.rename(columns = {"confidence score":"dedup confidence score",
"cluster type":"dedup cluster type"})
if remove_data_name_prefix:
dedup_mapped_records["record id"] = dedup_mapped_records["record id"]\
.apply(lambda x: x.replace("{}-".format(data_name), ""))
all_dedup_mapped_records = all_dedup_mapped_records.append(dedup_mapped_records, ignore_index = True)
return all_dedup_mapped_records
def check_block_sizes(blocks):
block_sizes = []
for block in blocks:
block_size = len(block)
block_sizes.append(block_size)
block_sizes = sorted(block_sizes, reverse = True)
print("Sizes of top 10 biggest blocks are: {}".format(block_sizes[:10]))
record_pair_contributions = [int(size*(size-1)/2) for size in block_sizes[:10]]
print("Record pair contributions from top 10 biggest blocks are : {}".format(record_pair_contributions))
|
StarcoderdataPython
|
1745746
|
<gh_stars>1-10
# ipop-project
# Copyright 2016, University of Florida
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import datetime
import hashlib
import threading
try:
import simplejson as json
except ImportError:
import json
import urllib.request as urllib2
from controller.framework.ControllerModule import ControllerModule
class UsageReport(ControllerModule):
def __init__(self, cfx_handle, module_config, module_name):
super(UsageReport, self).__init__(cfx_handle, module_config, module_name)
self._stat_data = {"ready": False, "pending_request": False}
self.submit_time = datetime.datetime(2015, 1, 1, 0, 0)
self.lck = threading.Lock()
def initialize(self):
self.register_cbt("Logger", "LOG_INFO", "{0} Loaded".format(self._module_name))
def process_cbt(self, cbt):
if cbt.op_type == "Response":
if cbt.request.action == "SIG_QUERY_REPORTING_DATA":
if not cbt.response.status:
self.register_cbt("Logger", "LOG_WARNING",
"CBT failed {0}".format(cbt.response.data))
self.free_cbt(cbt)
else:
self.create_report(cbt)
else:
parent_cbt = cbt.parent
cbt_data = cbt.response.data
cbt_status = cbt.response.status
self.free_cbt(cbt)
if (parent_cbt is not None and parent_cbt.child_count == 1):
parent_cbt.set_response(cbt_data, cbt_status)
self.complete_cbt(parent_cbt)
else:
self.req_handler_default(cbt)
def timer_method(self):
cur_time = datetime.datetime.now()
self.lck.acquire()
if self._stat_data["ready"]:
data = self._stat_data["data"]
self._stat_data = {}
self._stat_data["ready"] = False
self._stat_data["pending_request"] = False
self.lck.release()
self.submit_report(data)
self.submit_time = datetime.datetime.now()
elif not self._stat_data["pending_request"] and cur_time > self.submit_time:
self._stat_data["pending_request"] = True
self.lck.release()
self.request_report()
def terminate(self):
pass
def request_report(self):
self.register_cbt("Signal", "SIG_QUERY_REPORTING_DATA")
def create_report(self, cbt):
nid = self._cm_config["NodeId"]
report_data = cbt.response.data
for overlay_id in report_data:
report_data[overlay_id] = {
"xmpp_host": hashlib.sha1(report_data[overlay_id]["xmpp_host"].\
encode("utf-8")).hexdigest(),
"xmpp_username": hashlib.sha1(report_data[overlay_id]["xmpp_username"].\
encode("utf-8")).hexdigest(),
}
stat = {
"NodeId": hashlib.sha1(nid.encode("utf-8")).hexdigest(),
"Time": str(datetime.datetime.now()),
"Model": self._cfx_handle.query_param("Model"),
"Version": self._cfx_handle.query_param("IpopVersion")
}
stat.update(report_data)
self.lck.acquire()
self._stat_data["data"] = stat
self._stat_data["ready"] = True
self._stat_data["pending_request"] = False
self.lck.release()
self.free_cbt(cbt)
def submit_report(self, report_data):
data = json.dumps(report_data).encode('utf8')
self.register_cbt("Logger", "LOG_DEBUG", "Usage report data: {0}".format(data))
url = None
try:
url = "http://" + self._cm_config["ServerAddress"] + ":" + \
str(self._cm_config["ServerPort"]) + "/api/submit"
req = urllib2.Request(url=url, data=data)
req.add_header("Content-Type", "application/json")
res = urllib2.urlopen(req)
if res.getcode() == 200:
log = "Usage report successfully submitted to server {0}\n" \
"HTTP response code:{1}, msg:{2}" \
.format(url, res.getcode(), res.read())
self.register_cbt("Logger", "LOG_INFO", log)
else:
self.register_cbt("Logger", "LOG_WARNING",
"Usage report server indicated error "
"code: {0}".format(res.getcode()))
except (urllib2.HTTPError, urllib2.URLError) as error:
log = "Usage report submission failed to server {0}. " \
"Error: {1}".format(url, error)
self.register_cbt("Logger", "LOG_WARNING", log)
|
StarcoderdataPython
|
1694138
|
<filename>utility/nginx_current_port_by_domain.py
import re
import sys
configLocation = sys.argv[1]
domain = sys.argv[2]
def currentPort():
with open(configLocation) as nginxConf:
for line in nginxConf.readlines():
if ("proxy_pass" in line) and (domain in line):
match = re.search(':(\d+);', line)
return match.group(1)
return "unknown"
if __name__ == "__main__":
print(currentPort())
|
StarcoderdataPython
|
73034
|
<filename>wiki/admin.py<gh_stars>1-10
from django.contrib import admin
from .models import WikiPage
admin.site.register(WikiPage)
|
StarcoderdataPython
|
1613258
|
import time
from lib import tasks
import tests.test_recommender as rec
def test_add():
res = tasks.add.delay(1, 2)
success = False
val = res.get(timeout=5)
rec.test_race_filter()
assert val == 3
if __name__ == "__main__":
test_add()
|
StarcoderdataPython
|
1627073
|
<filename>newscollector/real_time_manager.py<gh_stars>0
# coding=utf-8
from time import sleep
from threading import Thread
from .newscollector_worker import search_index
from .db_functions import add_source_if_missed
def read_configs(fname):
configs = __import__(fname)
return configs.sources
def index_check_runner(config):
"""
Поток для периодической проверки главной страницы новостного сайта
"""
delay = config.get('refresh_delay')
url = config.get('url')
while True:
# Запуска задачи просмотра главной страницы, и после ее завершения запуск задачи загрузки найденных ссылок
print('Launch index task for {}'.format(url))
# следующую очередь запускать с высочайшим приоритетом
search_index.apply_async(args=(config,), priority=255)
sleep(delay)
def real_time_manager():
configs = read_configs('sources_config')
for config in configs:
# todo сделать на каждый источник по очереди celery и по воркеру
enabled = config.get('enabled')
if not enabled:
continue
# проверка списка источников и добавление отсутствующих
add_source_if_missed(config)
# Запуск потока для постоянной проверки
Thread(target=index_check_runner, args=(config, )).start()
if __name__ == '__main__':
real_time_manager()
|
StarcoderdataPython
|
3247140
|
<filename>LunchBot/message.py
__author__ = 'Simon'
import email
class Attachment(object):
def __init__(self,msg_part):
open(msg_part.get_filename(), 'wb').write(msg_part.get_payload(decode=True))
self.data = open(msg_part.get_filename(),'r').read()
self.data_type = msg_part.get_content_type()
self.file_name = msg_part.get_filename()
def __str__(self):
return self.data
class Body(object):
def __init__(self,msg_part):
self.body = msg_part.get_payload(decode=True)
def __str__(self):
return self.body
def parse_attachment(msg_part):
content_disposition = msg_part.get("Content-Disposition", None)
if content_disposition: #
dispositions = content_disposition.strip().split(";")
if bool(content_disposition and dispositions[0].lower() == "attachment"):
attachment = Attachment(msg_part)
return attachment
return None
def parse_body(msg_part):
body = msg_part.get_payload(decode=True)
return body
def parse_mail(mail):
attachments = []
body = None
for part in mail.walk():
attachment = parse_attachment(part)
if attachment:
attachments.append(attachment)
elif part.get_content_type == 'text/plain':
if not body:
body = Body(part)
if len(attachments) != 0:
return attachments
return body
|
StarcoderdataPython
|
3277532
|
from .request_method_routing import RequestMethodRouting
from .create import Create
from .update import Update
from .delete import Delete
from .read import Read
class CRUDByMethod(RequestMethodRouting):
def __init__(self, di):
super().__init__(di)
def method_handler_map(self):
return {
'CREATE': Create,
'GET': Read,
'POST': Read,
'PATCH': Update,
'DELETE': Delete,
}
|
StarcoderdataPython
|
1656672
|
<filename>tests/diffcalc/test_utils.py
###
# Copyright 2008-2011 Diamond Light Source Ltd.
# This file is part of Diffcalc.
#
# Diffcalc is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Diffcalc is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Diffcalc. If not, see <http://www.gnu.org/licenses/>.
###
from diffcalc.hkl.geometry import Position
from tests.tools import degrees_equivalent
class TestUtils:
def testDegreesEqual(self):
tol = 0.001
assert degrees_equivalent(1, 1, tol)
assert degrees_equivalent(1, -359, tol)
assert degrees_equivalent(359, -1, tol)
assert not degrees_equivalent(1.1, 1, tol)
assert not degrees_equivalent(1.1, -359, tol)
assert not degrees_equivalent(359.1, -1, tol)
class TestPosition:
def testCompare(self):
# Test the compare method
pos1 = Position(1, 2, 3, 4, 5, 6)
pos2 = Position(1.1, 2.1, 3.1, 4.1, 5.1, 6.1)
assert pos1 == pos1
assert pos1 != pos2
|
StarcoderdataPython
|
3347839
|
<filename>web/datasets/tests/management/commands/test_cityhall.py
from datetime import datetime
import pytest
from django.utils.timezone import make_aware
from web.datasets.management.commands._cityhall import save_bid
@pytest.mark.django_db
class TestSaveBid:
def test_save_bid(self, mock_backup_file):
item = {
"crawled_at": make_aware(datetime(2020, 3, 21, 7, 15, 17, 908831)),
"crawled_from": "http://www.feiradesantana.ba.gov.br/servicos.asp",
"session_at": make_aware(datetime(2018, 4, 17, 8, 30, 0)),
"public_agency": "PMFS",
"month": 4,
"year": 2018,
"description": (
"Aquisi\u00e7\u00e3o de arma de fogo longa para a "
"Guarda Municipal de Feira de Santana.OBS: EDITAL DISPON\u00cdVEL"
"NO SITE: WWW.BLLCOMPRAS.ORG.BR"
),
"history": [],
"codes": (
"Licita\u00e7\u00e3o 133-2018 / " "Preg\u00e3o Eletr\u00f4nico 047-2018"
),
"modality": "pregao_eletronico",
"files": [
{
"url": "http://www.feiradesantana.ba.gov.br/servicos.asp?id=2",
"checksum": "checksum",
"content": None,
}
],
}
bid = save_bid(item)
assert bid.session_at == item["session_at"]
assert bid.description == item["description"]
assert bid.public_agency == item["public_agency"]
assert bid.modality == item["modality"]
assert bid.files
def test_save_history(self, mock_backup_file):
item = {
"public_agency": "PMFS",
"crawled_at": make_aware(datetime(2020, 4, 4, 14, 29, 49, 261985)),
"crawled_from": "http://www.feiradesantana.ba.gov.br/servicos.asp",
"session_at": make_aware(datetime(2019, 4, 5, 8, 30)),
"description": (
"Contratação de empresa para prestação de serviços "
"profissionais de apoio administrativo em Unidades de Saúde da "
"Secretaria Municipal de Saúde.Edital disponível no site do "
"Banco do Brasil: www.licitacoes-e.com.br.Código "
"Correspondente Banco do Brasil: nº 755980REMARCADA"
),
"codes": (
"Licita\u00e7\u00e3o 133-2018 / " "Preg\u00e3o Eletr\u00f4nico 047-2018"
),
"modality": "pregao_eletronico",
"history": [
{
"published_at": make_aware(datetime(2018, 4, 17, 8, 30, 0)),
"event": "Resposta a pedido de esclarecimento",
"url": "http://www.feiradesantana.ba.gov.br/SMS.pdf",
}
],
}
bid = save_bid(item)
assert bid.events.count() == 1
event = bid.events.first()
assert event.published_at is not None
assert event.summary == item["history"][0]["event"]
assert event.files.count() == 1
def test_handle_with_existent_event(self, mock_backup_file):
item = {
"public_agency": "PMFS",
"crawled_at": make_aware(datetime(2020, 4, 4, 14, 29, 49, 261985)),
"crawled_from": "http://www.feiradesantana.ba.gov.br/servicos.asp",
"session_at": make_aware(datetime(2019, 4, 5, 8, 30)),
"description": (
"Contratação de empresa para prestação de serviços "
"profissionais de apoio administrativo em Unidades de Saúde da "
"Secretaria Municipal de Saúde.Edital disponível no site do "
"Banco do Brasil: www.licitacoes-e.com.br.Código "
"Correspondente Banco do Brasil: nº 755980REMARCADA"
),
"codes": (
"Licita\u00e7\u00e3o 133-2018 / " "Preg\u00e3o Eletr\u00f4nico 047-2018"
),
"modality": "pregao_eletronico",
"history": [
{
"published_at": make_aware(datetime(2019, 4, 4, 16, 20, 0)),
"event": "Resposta a pedido de esclarecimento",
"url": "http://www.feiradesantana.ba.gov.br/SMS.pdf",
}
],
}
bid = save_bid(item)
assert bid.events.count() == 1
item["history"] = [
{
"published_at": make_aware(datetime(2019, 4, 4, 16, 20, 0)),
"event": "Resposta a pedido de esclarecimento",
"url": "http://www.feiradesantana.ba.gov.br/SMS.pdf",
},
{
"published_at": make_aware(datetime(2019, 4, 4, 18, 20, 0)),
"event": "Resposta a pedido de esclarecimento",
"url": "http://www.feiradesantana.ba.gov.br/SMS.pdf",
},
{
"published_at": make_aware(datetime(2019, 4, 4, 16, 20, 0)),
"event": "CORREÇÃO DE EDITAL",
"url": "http://www.feiradesantana.ba.gov.br/SMS.pdf",
},
]
save_bid(item)
assert bid.events.count() == 3
def test_handle_with_updated_bid(self, mock_backup_file):
item = {
"crawled_at": make_aware(datetime(2020, 3, 21, 7, 15, 17, 908831)),
"crawled_from": "http://www.feiradesantana.ba.gov.br/servicos.asp",
"session_at": make_aware(datetime(2018, 4, 17, 8, 30, 0)),
"public_agency": "PMFS",
"month": 4,
"year": 2018,
"description": (
"Aquisi\u00e7\u00e3o de arma de fogo longa para a "
"Guarda Municipal de Feira de Santana.OBS: EDITAL DISPON\u00cdVEL"
"NO SITE: WWW.BLLCOMPRAS.ORG.BR"
),
"history": [],
"codes": (
"Licita\u00e7\u00e3o 133-2018 / " "Preg\u00e3o Eletr\u00f4nico 047-2018"
),
"modality": "pregao_eletronico",
"files": [
{
"url": "http://www.feiradesantana.ba.gov.br/servicos.asp?id=2",
"checksum": "checksum",
"content": None,
}
],
}
bid = save_bid(item)
item["description"] = "Aquisição de arma de flores."
updated_bid = save_bid(item)
assert bid.pk == updated_bid.pk
assert bid.description != updated_bid.description
def test_create_different_bids_for_different_agency_modality(
self, mock_backup_file
):
item = {
"crawled_at": make_aware(datetime(2020, 3, 21, 7, 15, 17, 908831)),
"crawled_from": "http://www.feiradesantana.ba.gov.br/servicos.asp",
"session_at": make_aware(datetime(2018, 4, 17, 8, 30, 0)),
"public_agency": "PMFS",
"month": 4,
"year": 2018,
"description": (
"Aquisi\u00e7\u00e3o de arma de fogo longa para a "
"Guarda Municipal de Feira de Santana.OBS: EDITAL DISPON\u00cdVEL"
"NO SITE: WWW.BLLCOMPRAS.ORG.BR"
),
"history": [],
"codes": (
"Licita\u00e7\u00e3o 133-2018 / " "Preg\u00e3o Eletr\u00f4nico 047-2018"
),
"modality": "pregao_eletronico",
"files": [
{
"url": "http://www.feiradesantana.ba.gov.br/servicos.asp?id=2",
"checksum": "checksum",
"content": None,
}
],
}
bid = save_bid(item)
item["public_agency"] = "FHFS"
item["codes"] = "CHAMADA PÚBLICA 004-2019"
another_bid = save_bid(item)
assert bid.pk != another_bid.pk
|
StarcoderdataPython
|
1796748
|
import colt
def test_version() -> None:
assert colt.__version__ == "0.7.3"
|
StarcoderdataPython
|
1710056
|
<reponame>An00bRektn/CTF
#!/usr/bin/python3
from pwn import *
from hashlib import sha256
BLOCK_SIZE = 32
def decrypt_block(block, secret):
dec_block = b''
for i in range(BLOCK_SIZE):
val = (block[i]-secret[i]) % 256
dec_block += bytes([val])
return dec_block
r = remote('172.16.17.32',30855)
message = b'Command executed: cat secret.txt'
r.sendlineafter('>', 'cat secret.txt')
ct = r.recvlineS().strip()
blocks = [ct[i:i+64] for i in range(0, len(ct), 64)]
ref = bytes.fromhex(blocks[0])
init_key = b''
p = log.progress('brute forcing initial key...')
for i in range(BLOCK_SIZE):
for guess in range(256):
val = (message[i]+guess) % 256
p.status(f'val: {val}\nref: {ref[i]}\nrec: {init_key}')
if val == ref[i]:
init_key += bytes([guess])
info(f'init_key: {init_key.hex()}')
h = init_key
plaintext = b''
for block in blocks:
block = bytes.fromhex(block)
dec_block = decrypt_block(block, h)
h = sha256(block + dec_block).digest()
plaintext += dec_block
success(plaintext.decode('utf-8'))
|
StarcoderdataPython
|
8217
|
<filename>09_multiprocessing/prime_validation/primes_factor_test.py<gh_stars>0
import math
import time
def check_prime(n):
if n % 2 == 0:
return False, 2
for i in range(3, int(math.sqrt(n)) + 1):
if n % i == 0:
return False, i
return True, None
if __name__ == "__main__":
primes = []
t1 = time.time()
# 100109100129100151 big prime
# http://primes.utm.edu/curios/page.php/100109100129100151.html
# number_range = xrange(100109100129100153, 100109100129101238, 2)
number_range = range(100109100129101237, 100109100129201238, 2)
# new expensive near-primes
# [(95362951, (100109100129100369, 7.254560947418213))
# (171656941, (100109100129101027, 13.052711009979248))
# (121344023, (100109100129101291, 8.994053840637207)
# note these two lines of timings look really wrong, they're about 4sec
# each really
# [(265687139, (100109100129102047, 19.642582178115845)), (219609683, (100109100129102277, 16.178056001663208)), (121344023, (100109100129101291, 8.994053840637207))]
# [(316096873, (100109100129126653, 23.480671882629395)), (313994287, (100109100129111617, 23.262380123138428)), (307151363, (100109100129140177, 22.80288815498352))]
# primes
# 100109100129162907
# 100109100129162947
highest_factors = {}
for possible_prime in number_range:
t2 = time.time()
is_prime, factor = check_prime(possible_prime)
if is_prime:
primes.append(possible_prime)
print("GOT NEW PRIME", possible_prime)
else:
highest_factors[factor] = (possible_prime, time.time() - t2)
hf = highest_factors.items()
hf = sorted(hf, reverse=True)
print(hf[:3])
print("Took:", time.time() - t1)
print(len(primes), primes[:10], primes[-10:])
|
StarcoderdataPython
|
1641186
|
"""Contains all schedules spreadsheet settings commands related to Tosurnament."""
from discord.ext import commands
from bot.modules.tosurnament import module as tosurnament
from common.api import spreadsheet
class TosurnamentSchedulesSpreadsheetCog(tosurnament.TosurnamentBaseModule, name="schedules_spreadsheet"):
"""Tosurnament schedules spreadsheet settings commands."""
def __init__(self, bot):
super().__init__(bot)
self.bot = bot
def cog_check(self, ctx):
"""Check function called before any command of the cog."""
return self.admin_cog_check(ctx)
@commands.command(aliases=["sss"])
async def set_schedules_spreadsheet(self, ctx, spreadsheet_id: str, *, sheet_name: str = ""):
"""Sets the schedules spreadsheet."""
tournament = self.get_tournament(ctx.guild.id)
bracket = tournament.current_bracket
spreadsheet_id = bracket.update_spreadsheet_of_type(self.bot, "schedules", spreadsheet_id, sheet_name)
await self.send_reply(ctx, "success", spreadsheet_id)
async def set_schedules_spreadsheet_values(self, ctx, values):
"""Puts the input values into the corresponding bracket."""
tournament = self.get_tournament(ctx.guild.id)
any_spreadsheet = tournament.current_bracket.get_spreadsheet_from_type("schedules")
if not any_spreadsheet:
raise tosurnament.NoSpreadsheet("schedules")
await self.update_table(ctx, any_spreadsheet, values)
async def set_schedules_spreadsheet_range_value(self, ctx, range_name, range_value):
"""Puts the input values into the corresponding bracket."""
if not spreadsheet.check_range(range_value):
raise commands.UserInputError()
await self.set_schedules_spreadsheet_values(ctx, {range_name: range_value})
@commands.command(aliases=["ssssn"])
async def set_schedules_spreadsheet_sheet_name(self, ctx, *, sheet_name: str = ""):
"""Sets the sheet name of the schedules spreadsheet."""
await self.set_schedules_spreadsheet_values(ctx, {"sheet_name": sheet_name})
@commands.command(aliases=["sssdf"])
async def set_schedules_spreadsheet_date_format(self, ctx, *, date_format: str = ""):
"""Sets the date format used in the date range of the schedules spreadsheet."""
await self.set_schedules_spreadsheet_values(ctx, {"date_format": date_format})
@commands.command(aliases=["ssssir"])
async def set_schedules_spreadsheet_staff_is_range(self, ctx, use_range: bool):
"""Sets the staff_is_range of the schedules spreadsheet."""
await self.set_schedules_spreadsheet_values(ctx, {"use_range": use_range})
@commands.command(aliases=["sssrmi"])
async def set_schedules_spreadsheet_range_match_id(self, ctx, *, cell_range: str):
"""Sets the schedules spreadsheet range match id."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_match_id", cell_range)
@commands.command(aliases=["sssrt1"])
async def set_schedules_spreadsheet_range_team1(self, ctx, *, cell_range: str):
"""Sets the schedules spreadsheet range team1."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_team1", cell_range)
@commands.command(aliases=["sssrt2"])
async def set_schedules_spreadsheet_range_team2(self, ctx, *, cell_range: str):
"""Sets the schedules spreadsheet range team2."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_team2", cell_range)
@commands.command(aliases=["sssrst1"])
async def set_schedules_spreadsheet_range_score_team1(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range score team1."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_score_team1", cell_range)
@commands.command(aliases=["sssrst2"])
async def set_schedules_spreadsheet_range_score_team2(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range score team2."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_score_team2", cell_range)
@commands.command(aliases=["sssrd"])
async def set_schedules_spreadsheet_range_date(self, ctx, *, cell_range: str):
"""Sets the schedules spreadsheet range date."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_date", cell_range)
@commands.command(aliases=["sssrt"])
async def set_schedules_spreadsheet_range_time(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range time."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_time", cell_range)
@commands.command(aliases=["sssrr"])
async def set_schedules_spreadsheet_range_referee(self, ctx, *, cell_range: str):
"""Sets the schedules spreadsheet range referee."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_referee", cell_range)
@commands.command(aliases=["sssrs"])
async def set_schedules_spreadsheet_range_streamer(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range streamer."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_streamer", cell_range)
@commands.command(aliases=["sssrc"])
async def set_schedules_spreadsheet_range_commentator(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range commentator."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_commentator", cell_range)
@commands.command(aliases=["sssrml"])
async def set_schedules_spreadsheet_range_mp_links(self, ctx, *, cell_range: str = ""):
"""Sets the schedules spreadsheet range mp links."""
await self.set_schedules_spreadsheet_range_value(ctx, "range_mp_links", cell_range)
def get_class(bot):
"""Returns the main class of the module"""
return TosurnamentSchedulesSpreadsheetCog(bot)
def setup(bot):
"""Setups the cog"""
bot.add_cog(TosurnamentSchedulesSpreadsheetCog(bot))
|
StarcoderdataPython
|
1720006
|
<gh_stars>0
#<NAME>, <NAME>, <NAME>
#Lab 6
import random
# generates a list of random integers
# int -> list
def rand_num(size):
alist = []
for i in range(size):
#integer random numbers between 10 and 70
n = random.randint(10,70)
alist.append(n)
return alist
# generates a list of numbers in ascending order
# int -> list
def ordered_num(size):
alist = []
for i in range(size):
alist.append(i)
return alist
# sorts a list using the insertion sort algorithm
# list ->
def insert_sort(alist):
counter = 0
# loops from the first index in the list to the last
for index in range(1,len(alist)):
counter += 1
# saves the current value
currentvalue = alist[index]
# saves the position
position = index
# loops while the position is not zero and the list value is above current value
while position > 0 and alist[position - 1] > currentvalue:
counter += 1
# incriments the counter for every comparison made
# changes the list value to the previous one
alist[position] = alist[position - 1]
# decrements the position
position = position - 1
alist[position] = currentvalue
print(counter)
# sorts a list using the selection sort algorithm and prints the number of comparisons
# list ->
def select_sort(alist):
# variable that keeps track of the number of comparisons
compCount = 0
# goes through every index in the list
for fillslot in range(len(alist)-1,0,-1):
# sets first index as maximum
positionOfMax=0
# goes through every value up to fillslot to find the maximum in that section of the list
for location in range(1,fillslot+1):
# counts the number of comparisons
compCount += 1
# finds index of maximum
if alist[location]>alist[positionOfMax]:
positionOfMax = location
# swaps the values in indexes fillslot and positionOfMax
temp = alist[fillslot]
alist[fillslot] = alist[positionOfMax]
alist[positionOfMax] = temp
print(compCount)
'''
merge_sort: list -> list
Takes a list and returns a sorted list
Splits the list into a tree by cutting it in half and recursively applying
merge_sort to the split lists
Then sorts the lists as it moves back up the tree
Sorts in O(nlog(n))
'''
def merge_sort(alist):
count = 0
if len(alist)>1:
count += 1
#splits list into sublists
mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]
#recursively calls merge_sort on the split lists
count +=merge_sort(lefthalf)
count +=merge_sort(righthalf)
i=0
j=0
k=0
#compares items in lists to determine smaller item
while i < len(lefthalf) and j < len(righthalf):
count+=3
#places smaller item in correct spot
if lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+1
else:
alist[k]=righthalf[j]
j=j+1
k=k+1
count+=1
while i < len(lefthalf):
count+=1
alist[k]=lefthalf[i]
i=i+1
k=k+1
count+=1
while j < len(righthalf):
count+=1
alist[k]=righthalf[j]
j=j+1
k=k+1
count+=1
return count
# tests selectionSort, insertionSort, and mergeSort with lists of 100, 500, 1000, 5000, and 10000 random numbers
# list ->
def listUnordered():
size = 100
# variable used to determine whether to multiply size by 2 or 5
switch = 0
while size <= 50000:
# generates the list of random numbers and creates two copies of it
alist = rand_num(size)
blist = list(alist)
clist = list(alist)
print("Size: " + str(size))
# sorts the list and prints the number of comparisons using selection sort, insertion sort, and merge sort
print("Selection Sort:")
select_sort(alist)
print("Insertion Sort:")
insert_sort(blist)
print("Merge Sort:")
print(merge_sort(clist))
print("")
if switch == 0:
size = size * 5
switch = 1
else:
size = size * 2
switch = 0
# tests selectionSort, insertionSort, and mergeSort with lists of 100, 500, 1000, 5000, and 10000 numbers in ascending order
# list ->
def listOrdered():
size = 100
# variable used to determine whether to multiply size by 2 or 5
switch = 0
while size <= 50000:
# generates the list of numbers and two copies of it
alist = ordered_num(size)
blist = list(alist)
clist = list(alist)
print("Size: " + str(size))
# sorts the list and prints the number of comparisons using selection sort, insertion sort, and merge sort
print("Selection Sort:")
select_sort(alist)
print("Insertion Sort:")
insert_sort(blist)
print("Merge Sort:")
print(merge_sort(clist))
print("")
if switch == 0:
size = size * 5
switch = 1
else:
size = size * 2
switch = 0
print("Unordered Lists:")
listUnordered()
print("")
print("Ordered Lists:")
listOrdered()
|
StarcoderdataPython
|
1740427
|
import sdp.scripts.load_nstx_exp_ref as nstx_exp
import sdp.scripts.FWR2D_NSTX_139047_Postprocess as fwrpp
import sdp.plasma.analysis as ana
import matplotlib.pyplot as plt
import pickle
import numpy as np
with open('/p/gkp/lshi/XGC1_NSTX_Case/FullF_XGC_ti191_output/ref_pos.pck','r') as f:
ref_pos = pickle.load(f)
dne_ana = ana.XGC_Density_Loader('/p/gkp/lshi/XGC1_NSTX_Case/FullF_XGC_ti191_output/dne_file.sav.npz')
n_channel = 16
#create the distance matrix, dx[i,j] is the absolute distance between the reflection points of i-th and j-th channel
dx = np.absolute(np.zeros((n_channel,n_channel))+ref_pos[np.newaxis,:]-ref_pos[:,np.newaxis])
#calculate cross-correlation matrix from synthetic signals
cc_fwr = fwrpp.pp.Cross_Correlation_by_fft(fwrpp.ref2d_out)
cc_fwr2 = fwrpp.pp.Cross_Correlation_by_fft(fwrpp.ref2d_amp2_out)
cc_fwr01 = fwrpp.pp.Cross_Correlation_by_fft(fwrpp.ref2d_amp01_out)
cc_3d = fwrpp.pp.Cross_Correlation_by_fft(fwrpp.ref3d_out)
cs_fwr = fwrpp.pp.Self_Correlation(fwrpp.ref2d_out)
cs_fwr2 = fwrpp.pp.Self_Correlation(fwrpp.ref2d_amp2_out)
cs_fwr01 = fwrpp.pp.Self_Correlation(fwrpp.ref2d_amp01_out)
cs_3d = fwrpp.pp.Self_Correlation(fwrpp.ref3d_out)
print('FWR data loaded')
#calculate cross-correlation matrix from experimental signals, note that for our case, the simulated time slice is at t=0.632s, so we choose corresponding experimental data from 0.632-0.640, the total sample number is chosen to be 2000 because larger sample doesn't bring in any difference, since the increased samples are not statistical independent.
cc_exp = nstx_exp.analyser.Cross_Correlation_by_fft(0.632,0.640,8000)
#cc_exp_short = nstx_exp.analyser.Cross_Correlation_by_fft(0.634,0.6348,8000)
#calculate coherent signal for all channels from NSTX. The result is an 2D array containing time series of coherent signal from all the channels.
cs_exp = nstx_exp.analyser.Coherent_over_time(0.632,0.640,2e-5,1e-4)
print('nstx data loaded')
#choose the channel ranges representing top/bottom part of pedestal, and center channels for each region.
top_center = 11
top_range = [8,12]
bottom_center = 6
bottom_range = [2,7]
#pick chosen data from whole correlation matrices
fwr_top=[]
fwr2_top = []
fwr01_top=[]
fwr3d_top=[]
exp_top = []
dx_top=[]
def pick_top():
global fwr_top,fwr2_top,exp_top,dx_top,fwr01_top,fwr3d_top
fwr_top = np.absolute(cc_fwr[top_center,top_range[0]:top_range[1]])
fwr2_top = np.absolute(cc_fwr2[top_center,top_range[0]:top_range[1]])
fwr01_top = np.absolute(cc_fwr01[top_center,top_range[0]:top_range[1]])
fwr3d_top = np.absolute(cc_3d[top_center,top_range[0]:top_range[1]])
exp_top = np.absolute(cc_exp[top_center,top_range[0]:top_range[1]])
dx_top = dx[top_center,top_range[0]:top_range[1]]
pick_top()
fwr_bot=[]
fwr2_bot=[]
fwr01_bot = []
fwr3d_bot = []
exp_bot=[]
dx_bot=[]
def pick_bottom():
global fwr_bot,fwr2_bot,fwr01_bot,exp_bot,dx_bot,fwr3d_bot
fwr_bot = np.absolute(cc_fwr[bottom_center,bottom_range[0]:bottom_range[1]])
fwr2_bot = np.absolute(cc_fwr2[bottom_center,bottom_range[0]:bottom_range[1]])
fwr01_bot = np.absolute(cc_fwr01[bottom_center,bottom_range[0]:bottom_range[1]])
fwr3d_bot = np.absolute(cc_3d[bottom_center,bottom_range[0]:bottom_range[1]])
exp_bot = np.absolute(cc_exp[bottom_center,bottom_range[0]:bottom_range[1]])
dx_bot = dx[bottom_center,bottom_range[0]:bottom_range[1]]
pick_bottom()
#fitting with gaussian(for bottom) and exponential(for top)
xmax_t = 0
xfit_t = 0
fwr_fit_t = 0
fwr2_fit_t = 0
fwr01_fit_t = 0
fwr3d_fit_t = 0
exp_fit_t = 0
fwr_t_a,fwr_t_sa = 0,0
fwr2_t_a,fwr2_t_sa = 0,0
fwr01_t_a,fwr01_t_sa = 0,0
fwr3d_t_a,fwr3d_t_sa = 0,0
exp_t_a,exp_t_sa = 0,0
xgc_fit_t = 0
xgc_t_a,xgc_t_sa = 0,0
x_t,dne_c_t = 0,0
def fit_top():
global fwr_t_a,fwr_t_sa,fwr2_t_a,fwr2_t_sa,fwr01_t_a,fwr01_t_sa,fwr3d_t_a,fwr3d_t_sa,exp_t_a,expt_sa,xmax_t,xfit_t,fwr_fit_t,fwr2_fit_t,exp_fit_t,fwr01_fit_t,fwr3d_fit_t,xgc_fit_t,xgc_t_a,xgc_t_sa,x_t,dne_c_t
fwr_t_a,fwr_t_sa = fwrpp.pp.fitting_cross_correlation(fwr_top,dx_top,'exponential')
fwr2_t_a,fwr2_t_sa = fwrpp.pp.fitting_cross_correlation(fwr2_top,dx_top,'exponential')
fwr01_t_a,fwr01_t_sa = fwrpp.pp.fitting_cross_correlation(fwr01_top,dx_top,'exponential')
fwr3d_t_a,fwr3d_t_sa = fwrpp.pp.fitting_cross_correlation(fwr3d_top,dx_top,'exponential')
exp_t_a,exp_t_sa = fwrpp.pp.fitting_cross_correlation(exp_top,dx_top,'exponential')
opt_t,x_t,dne_c_t = dne_ana.density_correlation(ref_pos[top_center],width = ref_pos[top_range[0]]-ref_pos[top_center])
xgc_t_a,xgc_t_sa = opt_t
xmax_t = 2*np.max((np.abs(fwr_t_a),np.abs(fwr2_t_a),np.abs(exp_t_a)))
xfit_t = np.linspace(0,xmax_t,500)
fwr_fit_t = fwrpp.pp.exponential_fit(xfit_t,fwr_t_a)
fwr2_fit_t = fwrpp.pp.exponential_fit(xfit_t,fwr2_t_a)
fwr01_fit_t = fwrpp.pp.exponential_fit(xfit_t,fwr01_t_a)
fwr3d_fit_t = fwrpp.pp.exponential_fit(xfit_t,fwr3d_t_a)
exp_fit_t = fwrpp.pp.exponential_fit(xfit_t,exp_t_a)
xgc_fit_t = ana.gaussian_correlation_func(xfit_t,xgc_t_a)
fit_top()
xmax_b = 0
xfit_b = 0
fwr_fit_b = 0
fwr2_fit_b = 0
fwr01_fit_b = 0
fwr3d_fit_b = 0
exp_fit_b = 0
fwr_b_a,fwr_b_sa = 0,0
fwr2_b_a,fwr2_b_sa = 0,0
fwr01_b_a,fwr01_b_sa = 0,0
fwr3d_b_a,fwr3d_b_sa = 0,0
exp_b_a,exp_b_sa = 0,0
xgc_fit_b = 0
xgc_b_a,xgc_b_sa = 0,0
x_b,dne_c_b = 0,0
def fit_bot():
global fwr_b_a,fwr_b_sa,fwr2_b_a,fwr2_b_sa,fwr01_b_a,fwr01_b_sa,fwr3d_b_a,fwr3d_b_sa,exp_b_a,expt_sa,xmax_b,xfit_b,fwr_fit_b,fwr2_fit_b,exp_fit_b,fwr01_fit_b,fwr3d_fit_b,xgc_fit_b,xgc_b_a,xgc_b_sa,x_b,dne_c_b
fwr_b_a,fwr_b_sa = fwrpp.pp.fitting_cross_correlation(fwr_bot,dx_bot,'gaussian')
fwr2_b_a,fwr2_b_sa = fwrpp.pp.fitting_cross_correlation(fwr2_bot,dx_bot,'gaussian')
fwr01_b_a,fwr01_b_sa = fwrpp.pp.fitting_cross_correlation(fwr01_bot,dx_bot,'gaussian')
fwr3d_b_a,fwr3d_b_sa = fwrpp.pp.fitting_cross_correlation(fwr3d_bot,dx_bot,'gaussian')
exp_b_a,exp_b_sa = fwrpp.pp.fitting_cross_correlation(exp_bot,dx_bot,'gaussian')
opt_b,x_b,dne_c_b = dne_ana.density_correlation(ref_pos[bottom_center],width = ref_pos[bottom_range[0]]-ref_pos[bottom_center])
xgc_b_a,xgc_b_sa = opt_b
xmax_b = 2*np.sqrt(np.max((np.abs(fwr_b_a),np.abs(fwr2_b_a),np.abs(exp_b_a))))
xfit_b = np.linspace(0,xmax_b,500)
fwr_fit_b = fwrpp.pp.gaussian_fit(xfit_b,fwr_b_a)
fwr2_fit_b = fwrpp.pp.gaussian_fit(xfit_b,fwr2_b_a)
fwr01_fit_b = fwrpp.pp.gaussian_fit(xfit_b,fwr01_b_a)
fwr3d_fit_b = fwrpp.pp.gaussian_fit(xfit_b,fwr3d_b_a)
exp_fit_b = fwrpp.pp.gaussian_fit(xfit_b,exp_b_a)
xgc_fit_b = ana.gaussian_correlation_func(xfit_b,xgc_b_a)
fit_bot()
print('fitting complete')
print('fitting curve ready. call plot() to plot. note that the default region is top, pass "bottom" as the argument to plot bottom region. ')
#plot the data points and curves
total_plot = 0
#top data
def plot(region = 'top'):
global total_plot
#plt.figure()
#total_plot += 1
if(region == 'top'):
plt.title('Cross-Correlation at Upper Pedestal,center_channel at {0:.4}m'.format(ref_pos[top_center]))
plt.plot(dx_top,exp_top,'bs',label = 'exp data')
plt.plot(dx_top,fwr_top,'ro',label = 'FWR data amp=1')
plt.plot(dx_top,fwr2_top,'r^',label = 'FWR data amp=2')
plt.plot(dx_top,fwr01_top,'r+',label = 'FWR data amp=0.1')
plt.plot(xfit_t,exp_fit_t,'b-',label = 'exp exponential fit')
plt.plot(xfit_t,fwr_fit_t,'r--',label = 'FWR fit')
plt.plot(xfit_t,fwr2_fit_t,'r-.',label = 'FWR amp2 fit')
plt.plot(xfit_t,fwr01_fit_t,'r:',label = 'FWR amp0.1 fit')
plt.xlabel('distance from center channel reflection($m$)')
plt.ylabel('cross-correlation')
plt.legend(labelspacing = 0.2,prop = {'size':12})
plt.tight_layout()
elif(region == 'bottom'):
plt.title('Cross-Correlation at Lower Pedestal,center_channel at {0:.4}m'.format(ref_pos[bottom_center]))
plt.plot(dx_bot,exp_bot,'bs',label = 'exp data')
plt.plot(dx_bot,fwr_bot,'ro',label = 'FWR data amp=1')
plt.plot(dx_bot,fwr2_bot,'r^',label = 'FWR data amp=2')
plt.plot(dx_bot,fwr01_bot,'r+',label = 'FWR data amp=0.1')
plt.plot(xfit_b,exp_fit_b,'b-',label = 'exp gaussian fit')
plt.plot(xfit_b,fwr_fit_b,'r--',label = 'FWR fit')
plt.plot(xfit_b,fwr2_fit_b,'r-.',label = 'FWR amp2 fit')
plt.plot(xfit_b,fwr01_fit_b,'r:',label = 'FWR amp0.1 fit')
plt.xlabel('distance from center channel reflection($m$)')
plt.ylabel('cross-correlation')
plt.legend(labelspacing = 0.2,prop = {'size':12})
plt.tight_layout()
elif(region == '2d/3d_top'):
plt.title('Cross-Correlation at Upper Pedestal,center_channel at {0:.4}m'.format(ref_pos[top_center]))
plt.plot(dx_top,exp_top,'bs',label = 'exp data')
plt.plot(dx_top,fwr_top,'ro',label = 'FWR2D data')
plt.plot(dx_top,fwr3d_top,'r^',label = 'FWR3D data')
plt.plot(xfit_t,exp_fit_t,'b-',label = 'exp exponential fit')
plt.plot(xfit_t,fwr_fit_t,'r--',label = 'FWR2D fit')
plt.plot(xfit_t,fwr3d_fit_t,'r-.',label = 'FWR3D fit')
plt.xlabel('distance from center channel reflection($m$)')
plt.ylabel('cross-correlation')
plt.legend(labelspacing = 0.2,prop = {'size':12})
plt.tight_layout()
elif(region =='2d/3d_bot'):
#plt.title('Cross-Correlation at Lower Pedestal,center_channel at {0:.4}m'.format(ref_pos[bottom_center]))
plt.plot(dx_bot,exp_bot,'bs',label = 'exp data')
plt.plot(dx_bot,fwr_bot,'go',label = 'FWR2D data')
plt.plot(dx_bot,fwr3d_bot,'r^',label = 'FWR3D data')
plt.plot(xfit_b,exp_fit_b,'b-')
plt.plot(xfit_b,fwr_fit_b,'g--')
plt.plot(xfit_b,fwr3d_fit_b,'r-.')
plt.xlabel('$distance from center channel(mm)$')
plt.ylabel('$\gamma$')
plt.legend(labelspacing = 0.2,prop = {'size':15})
plt.tight_layout()
elif(region == '3d_bot'):
plt.title('2D/3D Cross-Correlation and XGC1 Density Correlation, Lower')
plt.plot(dx_bot,fwr_bot,'ro',label = '2D')
plt.plot(dx_bot,fwr3d_bot,'r^',label = '3D')
plt.plot(x_b,dne_c_b,'bs',label = 'XGC')
plt.plot(xfit_b,fwr_fit_b,'r-.',label = '2D fit')
plt.plot(xfit_b,fwr3d_fit_b,'r--',label = '3D fit')
plt.plot(xfit_b,xgc_fit_b,'b-',label = 'XGC fit')
plt.xlabel('distance from center channel relfection($m$)')
plt.ylabel('cross-corelation')
plt.legend(labelspacing = 0.2,prop = {'size':12})
plt.tight_layout()
elif(region == '3d_top'):
plt.title('2D/3D Cross-Correlation and XGC1 Density Correlation, Upper')
plt.plot(dx_top,fwr_top,'ro',label = '2D')
plt.plot(dx_top,fwr3d_top,'r^',label = '3D')
plt.plot(x_t,dne_c_t,'bs',label = 'XGC')
plt.plot(xfit_t,fwr_fit_t,'r-.',label = '2D fit')
plt.plot(xfit_t,fwr3d_fit_t,'r--',label = '3D fit')
plt.plot(xfit_t,xgc_fit_t,'b-',label = 'XGC fit')
plt.xlabel('distance from center channel relfection($m$)')
plt.ylabel('cross-corelation')
plt.legend(labelspacing = 0.2,prop = {'size':12})
plt.tight_layout()
def clear_all():
global total_plot
for i in range(total_plot):
plt.close()
# Coherent Signal comparison
|
StarcoderdataPython
|
146416
|
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack.package import *
class PyPyspellchecker(PythonPackage):
"""Pure python spell checker based on work by <NAME>"""
homepage = "https://github.com/barrust/pyspellchecker"
pypi = "pyspellchecker/pyspellchecker-0.6.2.tar.gz"
version('0.6.2', sha256='af6a1d0393a175499475a873f31e52135f1efd5fc912c979101b795b3c2ee77f')
depends_on('[email protected]:', type=('build', 'run'))
depends_on('py-setuptools', type='build')
|
StarcoderdataPython
|
3238521
|
from setuptools import setup, find_packages
requirements:list = []
with open("requirements.txt", "r") as file:
requirements = file.readlines()
setup(
name="cclr",
version="0.0.1B",
author="<NAME>",
author_email="<EMAIL>",
packages=find_packages(),
install_requires=requirements,
entry_points={
"console_scripts":[
"cclr = cclr_py_scripts.entry:main"
]
}
)
|
StarcoderdataPython
|
3383174
|
from django.contrib import admin
from .models import Passport
# Register your models here.
admin.site.register(Passport)
|
StarcoderdataPython
|
180912
|
from nslocapysation.classes.localized_string import LocalizedString
class DynamicLocalizedString(LocalizedString):
"""
A subclass of LocalizedString, whose instances represent
localized strings that are used with a dynamic key
(i.e. some variable as key).
Those are special because you need to check that there is a
localization for every possible value of the variable.
"""
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return (self.key == other.key and
self.full_sourcefile_path == other.full_sourcefile_path and
self.sourcefile_line_number == other.sourcefile_line_number and
self.line_occurrence_number == other.line_occurrence_number)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return (hash(self.key) ^
hash(self.sourcefile_line_number) ^
hash(self.line_occurrence_number) ^
hash(self.full_sourcefile_path))
|
StarcoderdataPython
|
4811493
|
<filename>sla_app/migrations/0010_remove_keyperformanceindicator_for_period.py
# Generated by Django 2.1.3 on 2018-12-04 21:10
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('sla_app', '0009_merge_20181204_2108'),
]
operations = [
migrations.RemoveField(
model_name='keyperformanceindicator',
name='for_period',
),
]
|
StarcoderdataPython
|
3270781
|
<reponame>OsmosizBiz/tphysics
#Imports
from tphysics.shapes import *
#Create a class to hold a verlet version of the circle
class VerletCircle(Circle):
#Define init for the circle
def __init__(self, x, y, radius, xspeed, yspeed):
#Crete our derivative shape
super(VerletCircle, self).__init__(x, y, radius)
#Set the radious
self.radius = radius
#Store the previous position values
self.prevx = self.x - xspeed
self.prevy = self.y - yspeed
#Create a function to set the speed
def setspeed(self, xspeed, yspeed):
#Update the previous position to match the speed
self.prevx = self.x - xspeed
self.prevy = self.y - yspeed
#Create a function to set the speed
def setxspeed(self, xspeed):
#Update the previous position to match the speed
self.prevx = self.x - xspeed
#Create a function to set the speed
def setyspeed(self, yspeed):
#Update the previous position to match the speed
self.prevy = self.y - yspeed
#Create a function to get the x speed
def getxspeed(self):
#Return the x speed
return self.x - self.prevx
#Create a function to get the speed
def getyspeed(self):
#Return the y speed
return self.y - self.prevy
#Create a function to bounce on the x
def bouncex(self, elasticity):
#Bounce on the x axis
tempx = self.prevx
self.prevx = self.x
self.x = self.x + ((tempx - self.prevx) * elasticity)
#Create a function to bounce on the y
def bouncey(self, elasticity, friction):
#Bounce on the y axis
tempy = self.prevy
self.prevy = self.y
self.y = self.y + ((tempy - self.y) / (1/ elasticity))
self.x = self.x + ((self.prevx - self.x) * friction)
#Create a function to update the position
def update(self):
#Store the current position
tempx = self.x
tempy = self.y
#Update the position
self.x = self.x + (self.x - self.prevx)
self.y = self.y + (self.y - self.prevy)
#Store the previous position
self.prevx = tempx
self.prevy = tempy
#Check whether the ball has come to an effective stop
if abs(self.x - self.prevx) < 0.01:
self.prevx = self.x
if abs(self.y - self.prevy) < 0.01:
self.prevy = self.y
|
StarcoderdataPython
|
1708716
|
#
# Software distrubuted under MIT License (MIT)
#
# Copyright (c) 2020 Flexpool
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import requests
import datetime
from . import shared
__WORKER_API_ENDPOINT__ = None
def update_endpoint(endpoint):
global __WORKER_API_ENDPOINT__
__WORKER_API_ENDPOINT__ = endpoint + "/worker"
class Worker:
def __init__(self, address: str, worker_name: str, online: bool, last_seen_timestamp: int):
# Warning: this class is expected to be initialized only by this library itself.
# There are no checks either the given address + worker_name exist or not.
self.address = address
self.worker_name = worker_name
self.is_online = online
self.last_seen_date = datetime.datetime.fromtimestamp(
last_seen_timestamp)
self.endpoint = __WORKER_API_ENDPOINT__ + \
f"/{self.address}/{self.worker_name}"
def current_hashrate(self):
api_request = requests.get(self.endpoint + "/current/")
shared.check_response(api_request)
api_request = api_request.json()["result"]
return api_request["effective_hashrate"], api_request["reported_hashrate"]
def stats(self):
api_request = requests.get(self.endpoint + "/stats/")
shared.check_response(api_request)
api_request = api_request.json()["result"]
class_ = shared.Stats(
api_request["current"]["effective_hashrate"], api_request["daily"]["effective_hashrate"],
api_request["current"]["reported_hashrate"], api_request["daily"]["reported_hashrate"],
api_request["daily"]["valid_shares"], api_request["daily"]["stale_shares"],
api_request["daily"]["invalid_shares"])
return class_
def daily_average_stats(self):
api_request = requests.get(self.endpoint + "/daily/")
shared.check_response(api_request)
api_request = api_request.json()["result"]
class_ = shared.DailyAverageStats(
api_request["effective_hashrate"], api_request["reported_hashrate"],
api_request["valid_shares"], api_request["stale_shares"], api_request["invalid_shares"])
return class_
def chart(self):
api_request = requests.get(self.endpoint + "/chart/")
shared.check_response(api_request)
items = []
for item in api_request.json()["result"]:
items.append(shared.StatChartItem(
item["effective_hashrate"], item["reported_hashrate"],
item["valid_shares"], item["stale_shares"], item["invalid_shares"],
item["timestamp"]
))
return items
def __repr__(self):
return "<flexpoolapi.worker.Worker object "\
f"{self.worker_name} ({self.address})>"
|
StarcoderdataPython
|
3253444
|
#!/usr/bin/env python
__title__ = 'dockerlief'
__version__ = '0.1.0'
__author__ = '<NAME>'
__author_email__ = '<EMAIL>'
__license__ = 'Apache 2.0'
|
StarcoderdataPython
|
1654899
|
from helpers.base_viewset import BaseViewSet
from .models import BaseAccount
from .serializers import WholeAccountSerializer
class AccountViewSet(BaseViewSet):
queryset = BaseAccount.objects.all()
serializer_class = WholeAccountSerializer
|
StarcoderdataPython
|
3224329
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.test import TestCase
from django.conf import settings
from django.core.urlresolvers import reverse
from django.contrib.auth.models import User
from powerpages.models import Page
from powerpages.sync import PageFileDumper
from powerpages.admin import website_link, sync_status, save_page
from powerpages.signals import page_edited
from .test_sync import BaseSyncTestCase
class WebsiteLinkTestCase(TestCase):
maxDiff = None
def test_no_object(self):
self.assertIsNone(website_link(None))
def test_empty_url(self):
self.assertEqual(
website_link(Page(url='')),
'<a href="" style="font-weight: normal;"> »</a>'
)
def test_root_url(self):
self.assertEqual(
website_link(Page(url='/')),
'<a href="/" style="font-weight: normal;">/ »</a>'
)
def test_first_level_url(self):
self.assertEqual(
website_link(Page(url='/test/')),
'<a href="/test/" style="font-weight: normal;">'
'/<span style="font-weight: bold">test</span>/'
' »</a>'
)
def test_second_level_url(self):
self.assertEqual(
website_link(Page(url='/nested/test/')),
'<a href="/nested/test/" style="font-weight: normal;">'
'/nested/<span style="font-weight: bold">test</span>/'
' »</a>'
)
def test_file(self):
self.assertEqual(
website_link(Page(url='/robots.txt')),
'<a href="/robots.txt" style="font-weight: normal;">'
'/<span style="font-weight: bold">robots.txt</span>'
' »</a>'
)
def test_nested_file(self):
self.assertEqual(
website_link(Page(url='/nested/robots.txt')),
'<a href="/nested/robots.txt" style="font-weight: normal;">'
'/nested/<span style="font-weight: bold">robots.txt</span>'
' »</a>'
)
class SyncStatusTestCase(BaseSyncTestCase):
maxDiff = None
def test_no_object(self):
self.assertIsNone(sync_status(None))
def test_file_synced(self):
page = Page.objects.create(
url='/test-page/', template='<h1>Test Page</h1>'
)
PageFileDumper(page).save()
self.assertEqual(
sync_status(page),
'<span style="color: green">File is synced</span>'
)
def test_file_content_differs(self):
page = Page.objects.create(
url='/test-page/', template='<h1>Test Page</h1>'
)
PageFileDumper(page).save()
page.title = '<NAME>'
page.save()
self.assertEqual(
sync_status(page),
'<span style="color: orange">File content differs</span>'
)
def test_file_is_missing(self):
page = Page.objects.create(
url='/test-page/', template='<h1>Test Page</h1>'
)
self.assertEqual(
sync_status(page),
'<span style="color: red">File is missing</span>'
)
def test_file_content_differs_modified_in_admin(self):
page = Page.objects.create(
url='/test-page/', template='<h1>Test Page</h1>'
)
PageFileDumper(page).save()
page.title = '<NAME>'
page.is_dirty = True # modified in Admin
page.save()
self.assertEqual(
sync_status(page),
'<span style="color:black; font-weight:bold">'
'Changed in Admin!</span><br>'
'<span style="color: orange">File content differs</span>'
)
class SavePageTestCase(TestCase):
maxDiff = None
def setUp(self):
def page_edited_test_handler(sender, **kwargs):
self.page_edited_kwargs = kwargs
self.page_edited_kwargs = None
page_edited.connect(
page_edited_test_handler, dispatch_uid='test_page_edited',
weak=False
)
def tearDown(self):
page_edited.disconnect(dispatch_uid='test_page_edited')
self.page_edited_kwargs = None
def test_create_page(self):
page = Page(url='/test-page/')
user = User.objects.create_user('admin-user')
save_page(page=page, user=user, created=True)
self.assertIsNotNone(page.pk)
self.assertTrue(page.is_dirty)
self.assertDictContainsSubset(
{'page': page, 'user': user, 'created': True},
self.page_edited_kwargs
)
def test_modify_page(self):
page = Page.objects.create(url='/test-page/', title='Lorem')
page.title = 'Ipsum'
user = User.objects.create_user('admin-user')
save_page(page=page, user=user, created=False)
self.assertEqual(Page.objects.get(pk=page.pk).title, 'Ipsum')
self.assertTrue(page.is_dirty)
self.assertDictContainsSubset(
{'page': page, 'user': user, 'created': False},
self.page_edited_kwargs
)
class SwitchEditModeViewTestCase(TestCase):
maxDiff = None
def setUp(self):
self.url = reverse('switch_edit_mode')
self.staff_member = User.objects.create_user(
'staff_member', password='<PASSWORD>', is_staff=True
)
self.super_user = User.objects.create_user(
'super_user', password='<PASSWORD>', is_superuser=True
)
self.regular_user = User.objects.create_user(
'regular_user', password='<PASSWORD>'
)
Page.objects.create(url='/')
Page.objects.create(url='/test-page/')
def test_enable_edit_mode_staff_member_referrer(self):
self.client.login(username='staff_member', password='<PASSWORD>')
response = self.client.get(self.url, HTTP_REFERER='/test-page/')
self.assertTrue(self.client.session.get('WEBSITE_EDIT_MODE'))
self.assertRedirects(response, '/test-page/')
def test_disable_edit_mode_staff_member_no_referrer(self):
self.client.login(username='staff_member', password='<PASSWORD>')
session = self.client.session
session['WEBSITE_EDIT_MODE'] = True
session.save()
response = self.client.get(self.url)
self.assertNotIn('WEBSITE_EDIT_MODE', self.client.session)
self.assertRedirects(response, '/')
def test_enable_edit_mode_super_user_no_referrer(self):
self.client.login(username='super_user', password='<PASSWORD>')
response = self.client.get(self.url)
self.assertTrue(self.client.session.get('WEBSITE_EDIT_MODE'))
self.assertRedirects(response, '/')
def test_disable_edit_mode_super_user_referrer(self):
self.client.login(username='super_user', password='<PASSWORD>')
session = self.client.session
session['WEBSITE_EDIT_MODE'] = True
session.save()
response = self.client.get(self.url, HTTP_REFERER='/test-page/')
self.assertNotIn('WEBSITE_EDIT_MODE', self.client.session)
self.assertRedirects(response, '/test-page/')
def test_access_forbidden_regular_user(self):
self.client.login(username='regular_user', password='<PASSWORD>')
response = self.client.get(self.url)
self.assertRedirects(
response, '{0}?next={1}'.format(settings.LOGIN_URL, self.url),
fetch_redirect_response=False
)
def test_access_forbidden_anonmous(self):
response = self.client.get(self.url)
self.assertRedirects(
response, '{0}?next={1}'.format(settings.LOGIN_URL, self.url),
fetch_redirect_response=False
)
|
StarcoderdataPython
|
3218126
|
<reponame>Strata-ai/Social-Distancing-Detector
import numpy as np
from PyQt5.QtCore import Qt, QThread, QTimer
from PyQt5.QtGui import QPixmap, QFont, QImage, QCursor, QIntValidator
from PyQt5.QtWidgets import QMainWindow, QWidget, QPushButton, QHBoxLayout, QApplication, QLabel, \
QDialog, QDialogButtonBox, QVBoxLayout, QLineEdit
from pyqtgraph import ImageView, PlotWidget, GraphicsView, ImageItem
import cv2
class PictureView(GraphicsView):
def __init__(self, *args, **kwargs):
super(PictureView, self).__init__(*args, **kwargs)
def mousePressEvent(self, event):
print(event.pos())
def mouseReleaseEvent(self, event):
cursor = QCursor()
print(cursor.pos())
class ConfigDialog(QDialog):
def __init__(self, *args, **kwargs):
super(ConfigDialog, self).__init__(*args, **kwargs)
self.setWindowTitle("Region of Interest Configuration")
QBtn = QDialogButtonBox.Save | QDialogButtonBox.Cancel
self.buttonBox = QDialogButtonBox(QBtn)
self.buttonBox.accepted.connect(self.accept)
self.buttonBox.rejected.connect(self.reject)
validator = QIntValidator(0, 1500)
self.layout = QVBoxLayout()
h_layout_1 = QHBoxLayout()
h_layout_2 = QHBoxLayout()
h_layout_1.addWidget(QLabel("Video Source:"))
self.video_source = QLineEdit()
h_layout_1.addWidget(self.video_source)
v_layout_1 = QVBoxLayout()
v_layout_1.addWidget(QLabel("Bottom Left - pixel (x, y):"))
v_layout_1.addWidget(QLabel("Bottom Right - pixel (x, y):"))
v_layout_1.addWidget(QLabel("Top Right - pixel (x, y):"))
v_layout_1.addWidget(QLabel("Top Left - pixel (x, y):"))
v_layout_1.addWidget(QLabel("Dimension - cm (width, depth):"))
h_layout_2.addLayout(v_layout_1)
v_layout_2 = QVBoxLayout()
self.bl_x = QLineEdit()
self.bl_x.setValidator(validator)
v_layout_2.addWidget(self.bl_x)
self.br_x = QLineEdit()
self.br_x.setValidator(validator)
v_layout_2.addWidget(self.br_x)
self.tr_x = QLineEdit()
self.tr_x.setValidator(validator)
v_layout_2.addWidget(self.tr_x)
self.tl_x = QLineEdit()
self.tl_x.setValidator(validator)
v_layout_2.addWidget(self.tl_x)
self.width = QLineEdit()
self.width.setValidator(validator)
v_layout_2.addWidget(self.width)
h_layout_2.addLayout(v_layout_2)
v_layout_3 = QVBoxLayout()
self.bl_y = QLineEdit()
self.bl_y.setValidator(validator)
v_layout_3.addWidget(self.bl_y)
self.br_y = QLineEdit()
self.br_y.setValidator(validator)
v_layout_3.addWidget(self.br_y)
self.tr_y = QLineEdit()
self.tr_y.setValidator(validator)
v_layout_3.addWidget(self.tr_y)
self.tl_y = QLineEdit()
self.tl_y.setValidator(validator)
v_layout_3.addWidget(self.tl_y)
self.depth = QLineEdit()
self.depth.setValidator(validator)
v_layout_3.addWidget(self.depth)
h_layout_2.addLayout(v_layout_3)
self.layout.addLayout(h_layout_1)
self.layout.addLayout(h_layout_2)
self.layout.addWidget(self.buttonBox)
self.setLayout(self.layout)
class StartWindow(QMainWindow):
def __init__(self, camera = None, net = None, config = None, image_width = 950):
super().__init__()
self.camera = camera
self.net = net
self.config = config
self.image_width = image_width
self.setFixedWidth(image_width + 78)
self.setFixedHeight(780)
self.central_widget = QWidget(self)
self.label_logo = QLabel(self.central_widget)
logo = QPixmap("logo.png")
self.label_logo.setPixmap(logo)
self.label_logo.setGeometry(20,20,181,81)
self.label_logo.setScaledContents(True)
self.label_logo_2 = QLabel(self.central_widget)
logo_2 = QPixmap("logo_2.png")
self.label_logo_2.setPixmap(logo_2)
self.label_logo_2.setGeometry(670,30,206,61)
self.label_logo_2.setScaledContents(True)
self.button_config = QPushButton('Configuration', self.central_widget)
self.button_config.setGeometry(240,30,191,61)
font = QFont()
font.setPointSize(24)
self.button_config.setFont(font)
self.button_config.clicked.connect(self.start_config)
self.button_detection = QPushButton('Start Detection', self.central_widget)
self.button_detection.setGeometry(450,30,191,61)
font = QFont()
font.setPointSize(24)
self.button_detection.setFont(font)
self.button_detection.clicked.connect(self.start_movie)
#self.label_image = QLabel(self.central_widget)
self.image_view = PictureView(self.central_widget)
self.image_view.setGeometry(39,110,image_width,630)
#self.image_view.hideAxis('left')
#self.image_view.hideAxis('bottom')
self.image_view.setStyleSheet("border :1px solid black;")
#self.label_image.setGeometry(40,110,1067,600)
#self.label_image.setScaledContents(True)
#self.label_image.setStyleSheet("border :1px solid black;")
self.setCentralWidget(self.central_widget)
self.update_timer = QTimer()
self.update_timer.timeout.connect(self.update_movie)
def start_config(self):
dlg = ConfigDialog(self)
dlg.bl_x.setText(str(self.config.bl_x))
dlg.bl_y.setText(str(self.config.bl_y))
dlg.br_x.setText(str(self.config.br_x))
dlg.br_y.setText(str(self.config.br_y))
dlg.tl_x.setText(str(self.config.tl_x))
dlg.tl_y.setText(str(self.config.tl_y))
dlg.tr_x.setText(str(self.config.tr_x))
dlg.tr_y.setText(str(self.config.tr_y))
dlg.width.setText(str(self.config.width))
dlg.depth.setText(str(self.config.depth))
dlg.video_source.setText(self.config.video_source)
if dlg.exec_():
self.config.bl_x = int(dlg.bl_x.text())
self.config.bl_y = int(dlg.bl_y.text())
self.config.br_x = int(dlg.br_x.text())
self.config.br_y = int(dlg.br_y.text())
self.config.tl_x = int(dlg.tl_x.text())
self.config.tl_y = int(dlg.tl_y.text())
self.config.tr_x = int(dlg.tr_x.text())
self.config.tr_y = int(dlg.tr_y.text())
self.config.width = int(dlg.width.text())
self.config.depth = int(dlg.depth.text())
self.config.video_source = dlg.video_source.text()
self.config.save()
def update_image(self):
frame = self.camera.get_frame()
frame = cv2.rotate(frame, cv2.ROTATE_90_COUNTERCLOCKWISE)
#self.image_view.setImage(frame.T)
image_item = ImageItem(frame)
self.image_view.addItem(image_item)
#height, width, channel = frame.shape
#bytesPerLine = 3 * width
#qimg = QImage(frame.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped()
#self.label_image.setPixmap(QPixmap(qimg))
#self.update()
#print(height, width)
def update_movie(self):
#print(self.camera.last_frame.shape)
image_item = ImageItem(self.camera.last_frame)
self.image_view.addItem(image_item)
#self.image_view.setImage(self.camera.last_frame.T)
def update_brightness(self, value):
value /= 10
self.camera.set_brightness(value)
def start_movie(self):
self.movie_thread = MovieThread(self.camera, self.net, self.config)
self.movie_thread.start()
self.update_timer.start(30)
class MovieThread(QThread):
def __init__(self, camera, net, config):
super().__init__()
self.camera = camera
self.net = net
self.config = config
def run(self):
#self.camera.acquire_movie(500)
self.camera.detect_in_movie(500, self.net, self.config)
if __name__ == '__main__':
app = QApplication([])
window = StartWindow()
window.show()
app.exit(app.exec_())
|
StarcoderdataPython
|
78670
|
from kivy.uix.screenmanager import Screen
class HomeScreen(Screen):
"""
The Welcome Screen
"""
def __init__(self, BippyApp, **kwargs):
super(HomeScreen, self).__init__(**kwargs)
self.BippyApp = BippyApp
return
|
StarcoderdataPython
|
3312718
|
<filename>turbo_stream/utils/request_handlers.py
"""
Request Handler Methods & Wrappers
"""
import logging
import time
from functools import wraps
from random import random
logging.basicConfig(
format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s", level=logging.INFO
)
def request_handler(wait: float = 1, backoff_factor: float = 0.5):
"""
Wrapper to handle the request process.
:param wait: Initial wait time.
:param backoff_factor: Increase wait time by given factor.
:return: None
"""
def retry_decorator(function):
@wraps(function)
def func_with_retries(*args, **kwargs):
_delay = round(wait * (1 + backoff_factor * random()), 2)
logging.info(f"Waiting {_delay} seconds before the next attempt...")
time.sleep(_delay)
return function(*args, **kwargs)
return func_with_retries
return retry_decorator
def retry_handler(
exceptions,
total_tries: int = 4,
initial_wait: float = 0.5,
backoff_factor: int = 2,
should_raise: bool = False,
):
"""
Wrapper to handle the request process.
:param exceptions: Exceptions to handle.
:param total_tries: Total tries before raising an exception.
:param initial_wait: Initial wait after first exception handled.
:param backoff_factor: Increase wait period by given factor.
:param should_raise: Bool raise exception after all tries.
:return: None
"""
def retry_decorator(function):
@wraps(function)
def func_with_retries(*args, **kwargs):
tries = 1
delay = initial_wait
while True:
try:
logging.info(f"Attempt {tries} of {total_tries}.")
return function(*args, **kwargs)
except exceptions as exception:
if tries <= total_tries and should_raise:
raise Exception(
f"Function: {function.__name__}\n"
f"Failed despite best efforts after {total_tries} tries\n"
f"Exception {exception}."
)
logging.info(
f"Function: {function.__name__}\n"
f"Failed at {tries} tries, trying again in {delay} seconds...\n"
f"Exception {exception}."
)
tries += 1
time.sleep(delay)
delay = delay * backoff_factor
return func_with_retries
return retry_decorator
|
StarcoderdataPython
|
1737711
|
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import json
import logging
import math
from dataclasses import dataclass, field
from typing import Optional
import torch
from fairseq import metrics
from fairseq.dataclass import ChoiceEnum
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.nlu_data.qqp_dataset import QQPDataset
from data.file_dataset import FileDataset
from utils.trie import Trie
logger = logging.getLogger(__name__)
@dataclass
class QQPConfig(OFAConfig):
ans2label_dict: Optional[str] = field(
default='{"no": 0, "yes": 1}',
metadata={"help": 'answer to label dict'},
)
prompt_type: ChoiceEnum(["none", "src", "prev_output"]) = field(
default="none",
metadata={"help": "decoder prompt"},
)
@register_task("qqp", dataclass=QQPConfig)
class QQPTask(OFATask):
def __init__(self, cfg: QQPConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
self.ans2label_dict = json.loads(self.cfg.ans2label_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = QQPDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
constraint_trie=self.constraint_trie,
prompt_type=self.cfg.prompt_type
)
def build_model(self, cfg):
model = super().build_model(cfg)
self.constraint_trie = Trie(self.tgt_dict.eos())
for i, answer in enumerate(self.ans2label_dict.keys()):
answer_item = self.tgt_dict.encode_line(
line=self.bpe.encode(' ' + answer),
add_if_not_exist=False,
append_eos=False
).long()
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()])
return model
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
):
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn)
seq_generator.constraint_trie = self.constraint_trie
return seq_generator
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
model.eval()
with torch.no_grad():
net_output = model(**sample["net_input"])
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf)
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(self.src_dict.pad()).sum(1, keepdim=True) - 1
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2)))
logits = logits.squeeze(1)
predicts = logits.argmax(1).tolist()
hyps = [self.bpe.decode(self.src_dict[predict]).strip() for predict in predicts]
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
TP = sum([ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
FP = sum([1 - ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
FN = sum([1 - ref_dict.get(hyp, 0) if hyp == 'no' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
logging_output["_score_sum"] = sum(scores)
logging_output["_score_cnt"] = len(scores)
logging_output["_TP"] = TP
logging_output["_FP"] = FP
logging_output["_FN"] = FN
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
def compute_acc(meters):
score = meters["_score_sum"].sum / meters["_score_cnt"].sum
score = score if isinstance(score, float) else score.item()
return round(score, 4)
def compute_f1(meters):
score = 2*meters["_TP"].sum / (2*meters["_TP"].sum + meters["_FP"].sum + meters["_FN"].sum)
score = score if isinstance(score, float) else score.item()
return round(score, 3)
if sum_logs("_score_cnt") > 0:
metrics.log_scalar("_score_sum", sum_logs("_score_sum"))
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt"))
metrics.log_scalar("_TP", sum_logs("_TP"))
metrics.log_scalar("_FP", sum_logs("_FP"))
metrics.log_scalar("_FN", sum_logs("_FN"))
metrics.log_derived("acc", compute_acc)
metrics.log_derived("F1", compute_f1)
|
StarcoderdataPython
|
1723076
|
<filename>PopUp.py
from PyQt5.QtWidgets import QWidget, QMessageBox
from PyQt5 import QtCore
class PopUpWrapper(QWidget):
def __init__(self, title, msg, more=None, yesMes=None, noMes=None,
actionWhenYes=None, actionWhenNo=None, parent=None):
super().__init__()
self.width = 320
self.height = 200
if parent is None:
self.parentless = True
app = QtCore.QCoreApplication.instance()
screen_resolution = app.desktop().screenGeometry()
self.scr_width, self.scr_height = screen_resolution.width(), screen_resolution.height()
self.setGeometry((self.scr_width - self.width) / 2, (self.scr_height - self.height) / 2, 300, 400)
else:
self.parentless = False
self.left = parent.width()/2 - self.width/2
self.top = parent.height()/2 - self.height/2
self.title = title
self.msg = msg
self.actionWhenYes = actionWhenYes
self.actionWhenNo = actionWhenNo
self.yesMes = yesMes
self.noMes = noMes
self.more = more
self.loaded = False
if self.more is not None and self.yesMes is None:
self.infoWindow()
else:
self.questionWindow()
def questionWindow(self):
self.setWindowTitle(self.title)
if self.parentless:
self.setGeometry((self.scr_width - self.width) / 2, (self.scr_height - self.height) / 2, 300, 400)
else:
self.setGeometry(self.left, self.top, self.width, self.height)
buttonReply = QMessageBox.question(self, self.title, self.msg,
self.yesMes | self.noMes, self.yesMes)
if buttonReply == self.yesMes:
if self.actionWhenYes is not None:
self.actionWhenYes()
else:
if self.actionWhenNo is not None:
self.actionWhenNo()
self.show()
def infoWindow(self):
self.setWindowTitle(self.title)
if self.parentless:
self.setGeometry((self.scr_width - self.width) / 2, (self.scr_height - self.height) / 2, 300, 400)
else:
self.setGeometry(self.left, self.top, self.width, self.height)
infotext = QMessageBox.information(self, self.title, self.msg, QMessageBox.Ok)
if infotext == QMessageBox.Ok:
if self.loaded:
self.close()
else:
self.infoWindow()
self.show()
|
StarcoderdataPython
|
61768
|
<filename>django/docs/ref/models/instances.txt.py
XXXXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXXXXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXX XXXXXXXX XXXXXXXXX XXX XXXXXXX XX XXX XXXXXXXXX XXXX XX XXXXXX XX XXX
XXXXXXXX XXXXXXXXX XX XXX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXX XX XXXXXX XXXXXXXX XXXX XX XXXX XXX
XXXXXXXXXX XXXXX XXXXXXXXX XXXXXX XXXXXXX XXXX XXXX
XXXXXXXXXX XXXX XXXXXXXXX XXXXX XXX XXX XXXXXXXXXXXXX XXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XX XXX XXXXXXXXXXXXXX XXXXX XXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXX
XX XXXXXX X XXX XXXXXXXX XX X XXXXXX XXXXXXXXXXX XX XXXX XXX XXXXX XXXXXX
XXXXXX
XX XXXXXXX XXXXXXXXXXXXXXX
XXX XXXXXXX XXXXXXXXX XXX XXX XXXXX XX XXX XXXXXX XXXXXX XXXXXXX XX XXXX XXXXXX
XXXX XXXX XXXXXXXXXXXXX X XXXXX XX XX XXX XXXXXXX XXXX XXXXXXXXX XXX XXXXX XXX
XXXX XX XXXXXXXXXXXXXXXXXXXXXX
XX XXXXXX
XXX XXX XX XXXXXXX XX XXXXXXXXX XXX XXXXX XX XXXXXXXXXX XXX XXXXXXXXXXXX
XXXXXXX XX XXX XX XXX XXXXXXXX XXXX XXXX XXX XX XXXXXX XXX XXXXXXX
XXXXXXXXX XX XXX XXXXXX XXX XXXXXXX XXX XXXXX XXXXXXXX XXXX XXXXX XXXXXX
XXXXXX XXXX XXXXXXXXXX XXXXXXXXXXXXX XXX XXXXX XXX XX XXXXX XXXXXXXXXXX
XX XXX X XXXXXXXXXXX XX XXX XXXXX XXXXXXX
XXXX XXXXXXXXX XXXXXX XXXXXX
XXXXX XXXXXXXXXXXXXXXXXXX
XXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX
XXX XXXXXXXXXXX XXXXXXX
XXXX X XXXXXXXXXXXXXXXX
X XX XXXXXXXXX XXXX XXX XXXX
XXXXXX XXXX
XXXX X XXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXX
XX XXX X XXXXXX XX X XXXXXX XXXXXXX XXXXXXXX XXXXXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXXXXXX XXXXXXX
XXXX X XXXXXXXXXXXXXXXXXXXXXXXX
X XX XXXXXXXXX XXXX XXX XXXX
XXXXXX XXXX
XXXXX XXXXXXXXXXXXXXXXXXX
XXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX X XXXXXXXXXXXXX
XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXX
XXXXXXXXXXX XXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXX
XXX XXXXXXXXXXXXX XXXXXX XXX XX XXXX XX XXXXXXXXX XXXXX XXXXXXXX XXXXXXXX
XXXX XXXXXXX XXXX XXX XXXXXXXXX
XXX XXXXXX XXXXXXXX XXXXXXXX XXX XXXXXXXX XXXXX XXX XXX XXXXXXXX XXX XXXXX
XX XXXXXX XXXXX XXXXXXXXXXXXXXX XXXXXXXX XXX XXXXX XX XXX XXXXXX XXXXXXX XXX
XXXXXXXXXX XXXXXXXX XXX XXXXXX XXXXXX XXX XXXX XXXXX XX XXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXX XXX XX XXX XXXX XXXXX XX XXX XXXXXXXXXXX XX XXX XX XXX XXXXXXX
XXXXXX XXX XXXXXXXX XXXX XXXXXXXXXX XXX XXXXXXXXXX XX XX XX XXX XXXXX
XXXXXXXXXXXXXX XXXXXXX XXXXX XXXX XXX XXX XXXXXXXX XXX XX XXXXXXX XX
XXXXXXXXXXXXXXXXX XX XXX XXXXXX XXX XXXXXXXXX XXXX XXXXX XXXXXX XX
XXXXXXXXXXXXXXXX XX XXXX XXXXX XXXXXX X XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXX XX XXX XXXXXXX XXXXXXX
XX XXXXXXXX XX XXXXXXXX XXX XXX XXXXXX XXX XXXXXXXXXXXXX XXXXXX XXXX XXX XXX
XXXXXXXXXX XXX XXXXXX XXXXX XX XXX XXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XXXXX XX XX XXXXXXX XXXXXXX XXX XX XXXXXX XXX XXXXXXX XXXXXX XX XXXXXX XXXX
XXX XXXXXX XXXX XXX XXXXXXXXXX
XXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXXXX
XXXXXXXXXXXX
XXX XXXXXXXXXXXX XXX XXXXXXXXXXXX XXXXXXXX
X XXXXXXX XXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXX XX XXXXXX XXX XXXXX
X XX XXXXXXXX XXXX XXXXXXXXX
XX XXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX X XXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXX X X
XXXXXXXXXXXX XX XXXXXXXXX XX XXXXXXXXXXX XXXX XXXXXXXX
XXX X XX XXXXXXXXXXXXXXXXXXXXXXXXX
X
XXXXXXXX X XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX X XXXXX
XXXXXXXXXXXXXXXXXX X XX
X XXXXXXXXXXXXX XX XXXXX XXX XXXXXXXX XXXXX XXXXXX XX XXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXX XXXXXXXX
XXXXXX XXXXXXXX
XXX XXXXXXXXXX XXXXXX XXXXXXXXXX
X XXXXX XXX XXX XXXXXXX XXXXXX XXXXXX XXXX XXXXXXXXXXXXXXXX XXX XXXXXXXX
X XXXXXXX XXXXXXXX XXX XXXXXXXXXX XX XXX XXXXXX XXXXX XXXXXXX XXXXXXX
X XXXXXXX XXXXX XXXXX XXXXXXXXXXXX XX XXXXXXXXXX
XX XXX XXXXXXXXXXXXXXXXXX XXX X
XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXX XXX XXXXX XX XXXXXXX XXXXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXX XXXXXXXXX
XXX XXXXXXX XXXXX XXXXX X XXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XX XXXXXXX XXX XXXX
XX XXXXX XX XXXX XXXX XX XXXXX XX XXXXXXXX XX XXX X XXXXXXXXXXX XXXX XX XXX
XXXXXXXXXXXXX XXXXXXX
XXXXXXXXXX XXXXXXX XXXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXX XXXXXX X XXXXX XXXX X XXXXX XXXXXXXXX XXXXXXXXX XX XXXXX XXXXXXX XXX
XXXXX XXXX XXX XXXXXXXXXX
XXX XXX X XXXXXXXXXXXXXXXXXXXXXXX
XXX XXX XXXXXXXXX
XXX XXXXXXXXX X XXXXX XXX XXXXX XXXX XXX XXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX
XX XXX XXXX XX XXXXXX X XXXXXXX XXXXXX XXXX XXX XXXXXXXXX XXX XXX XXX XXX
XXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXX XXXX XXXXXX XX XXXXXX XXXXXXX XXXXXXXXX XXX
XXXXXXXXX XX XXXXX
XX XXX XXXXXXXXXXXX XXXXXX XX XXX XXXXX XXX XXXXXXX XX XXX XXXXXX XXXXXXXXX
XXXXXXX XX XXX XXXXXXXXX
XX XXX XXXXXX XXXXXXXXX XXX XXXXXXX XXXX XXX XXXXXXXX XXXXXXXXX
XXXX XXXXXX XX XXX XXXXX XXX XXXXXXXX XXXX XXX XXXXXXXXX XXXXX
XXXXXXXXXXXXXXXXXX XXXXXX XXXX XX XXXXXXXXXXX XXXXXX XXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
XXXXXX XXXXXXX XXXXXXX
XXX XXXXXXXXX XXXXXXX XXXX XXX XXXXXXXX XXX XXXXXXXX XXX XXXXXX XXXXX XX XXXX
XXX XXXXXXX XXXXXXXX XX XXX XXXXXXXX XXXXXX XXXXXX XXXX XXX XXXXXXXXX XXX
XXXXXXXXX XXXXXXXX XXX XX XXXX XX XXXXX XXX XXXXXXXX XXXX XXX XXXXXXXXXX
XX XX XXXXXXXX XX XXXXX XXX XXX XX XXXXXX XX XX XXXXXX XX XXXXX XXX XXXXXXXXXX
XXXXXXXXX
XXX XXXXXXXX XX XXXX XXXX XX XXXXXXXXXXXX XXXX XXXXXXXX XX XXX XXXXXXXX
XXXXXXX XXX XXXXX XXXXX X XXXX XXXXXXX XX XXXXXX
XXX XXXXXXXXXXXXXXXXXXXXXXXXX
XXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX
X XX XXXX XXXXX XXXXXXX XX XXXXX XX XXX XXX XXXXX XX XXX XXXXXXXX
X XXX XXXXXXX XX XX XXX XXXXXXXX XXXXXXX XXXXX XXXXX XX XX XXXXXXXX
X XXXX XXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXX XX
XXXX XXXX XXXX XXXXXXXX XXXXXX XXX XXXXXXXXX XXX XXXXXXX XX XXX XXXXXXXX
XXXXXXX XXXXX XXXXXXX XXXXXXX XXXX XXXXXXX XXXX XX XX XXXXXXXX XX XXXXXXXXX
XXX XXX XXXXXXXX XXXXXXX XXXXXXXX XXX XXXXXXX XXXXX XXXXX XXX XXX XXX XXXXXX
XXX XX XXX XXXXXXXXXX XXXXXX XXXX X XXXXXXXX XXXXX XX XXXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX
X XXXXXX XXXXXXXX XXX XXXX XX XXX XXXXXXXX XXXXX XX XX
X XXXXXXX
XX XXXXXX XX XXX XXXXX
XXXXXX X XXXXXXXXXXX
XXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXX
X XX XXX XXXXXXXX XXXXX XX XXXXX XX XX XXXXXX
XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X XXXX XXXX XXX XX XXXX
XXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX
X XXXXXX XXXXXX XXXX XXXXXXX X XXX XXXXXXXXXX XXX XXXXXXXXX XXXXX XX XXX XXXXX
XXXXXX XXXX XXX XXXXXXXXX XXXXXXXX XXX XXXX XXXXXX
XX XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXXXX
XXXXX XXX XXXXX XXXXX XXXXXXXX XX XXXXXXXXXX X XXXXXX
XX XXXXXXXX XXX XXXXX XXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXX XXX XXXXX XX X XXXXX X XXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXX XXX XXXXX XXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXX XXXXX XXX XXXXXXXXX XXXX XXX XXXX X XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX
XXXX XXX XXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXX XXXXX XXXXXXXXXX XXXXX XXX
XXX XXX XXXXXX XXXX XXX XXXXXXXX XX XXX XXXXX XXX XXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXXXXXX XXX XXXXXX XXXX
XXXX XX XXXX X XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXX XXXX XX XXXXXX
XXXXXXXXXX XXXXXX XXXXXXXXX XX XX XXX XXXX XXXXXXXX XXXXXX XXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXX XXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XX XXXXXXXXXX XX XXXX
XXXXX XXX XXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX X
XXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXXXX XXXX XXX XXXXX XXXXXXX
XXX XXXXXXXX XXXXXXXXXXX XXXXXXXX XXX XX XXXX XX XXXXXXX X XXXX XX XXXXX XXXXX
XXXX XXX XX XXXXXXXX XXXX XXXXXXXXXX XXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXXXXXX XX XXXXXXX XXXXXX XXXX
XXXXXX XXXXXXX XX XXXX XXXX XXXX XXXXX XXXXXXXXX XXXXX XXX XXXXXX XXXXXX XXXXX
XXX XX XXXXXXXXX XX XXX XXXXX
XXXX XXXX XXXXXXXXXXXXXXXX XXXX XXXXX XX XXXXXX XXXXXXXXXXXXX XXXX XXX XXXX
XXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXX XXXX XX XXXX XX XXXXXXXX
XXXX XXX XXXX XX XXX XXXXXXXX XXXXX XXXXXXXXXX XXX XXXX XXX XXXXXXXX XXXXXXX
XXXXXXX XXX XXXXXXXXX
XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXX
XXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXXXXXXXXXXXX XX XX
X XX XXXXXXXXX XXXXX XX XXX XXXXXX XXXXXXXXX XX XXXXXXXXXXXXXXX
X XXXXXXX XXXX XX X XXXXX XX XXXXXX XXXX XXXXXXXXXXXXXXXXX
XXXX
XXX XXXXX XXXX XXXXXXXXXXXXXXXX XXXXXXXX XX XX XXXXX XXXX XXXXXXXXXX XXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXX XXXX XXXXXXXX XXX XXXXXX XX XXXX XXXXXX XXX XXXXXXXX XXXXXXXXXXX
XXXXXXXX XXXX XXX XXXXXXX X XXXX XX XXXXX XXXXX XX XXXXXXX XXXX XXXXXXXXXXX XX
XXXX XXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX XXXXXX XXXX
XXXXXXXXXXX
XXX XXXXXX XXXX XXXXXXXXXXXXXXXX XXXXXXXX XX XX XXXX XXXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXX XXXXXX XX XXXXXXXXXX XX XXXXXXX XXXXXX XXXXXXXXXX XX XXXX XXXXXX
XX XXXXXXXX XXXXXXXXXXXXX
XXXX XXXXXX XXXXXX XX XXXX XX XXXXXXX XXXXXX XXXXX XXXXXXXXXXX XXX XX XXXXXX
XXXXXXXXXX XX XXXX XXXXX XX XXXXXXXX XXX XXXXXXXXX XXX XXXXX XXX XX XX
XXXXXXXXXXXXX XXXXXXX X XXXXX XXX X XXXXXX XX XX XX XXXXXXXXXX XXXX XXXXXXXX
XXXXXX XX XXXX XXXX X XXXXXX XXXXXXX
XXXXXX XXXXXXXX
XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXX
XXXX XXXXXXXXX XXXXXX XXXXXX
XXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXX XX X
XXXXX XXXXXXXXXXXXXXXXXXXXXX
XXX
XXX XXXXXXXXXXXX
X XXXXX XXXXX XXXXX XXXXXXX XX XXXX X XXXXXXXXX
XX XXXXXXXXXXX XX XXXXXXX XXX XXXXXXXXXXXXX XX XXX XXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXX XXX XXXX X XXXXXXXXXXX XXXXXXXX
X XXX XXX XXXXXXXX XXX XXXXXXXXX XXXXX XX XX XXXXXX XXXX XXX XXXXXXXX
XX XXXXXXXXXXX XX XXXXXXXXXXX XXX XXXXXXXXXXXXX XX XXXXX
XXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXXXXX XXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXX XXXXXXXXXXX
XXXXXX XX XXX XXXXXXX XXXX XXX XXXX XXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXX
XX XXX XXXXX XXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX XXXXXX XX XXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXX XXXX X XXXXXXX XX XX
XXXX XX XXXXXX XX X XXXXXXX XXXXX XXXXXXXXXX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XX XXXX XXX XXXXXX
XXXX XXX XXXX XX XXX XXXXXX XXXXX XXXXXXX XX XX X XXXXXXXX XXXXXXX
XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXXXXXXXXXXXX XX XX
XXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXX XXXXXXXXXX XX X XXXXXXXX XXXXXX XXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX X XXXXXXXXXXX XXXXX XXX
XXXX XXX XXX XXXXX XXXXXX XX XXXXX XXXXXX XXX XXXXXXXX XXXXXXX XX XXXXXX XXX
XXXXX XX XXX XXXXXXXXXXXX XXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXX
XXX
XXX XXXXXXXXXXXX
X XXXXX XXXXX XXXXX XXXXXXX XX XXXX X XXXXXXXXX
XX XXXXXXXXXXX XX XXXXXXX XXX XXXXXXXXXXXXX XX XXX XXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXX XXX XXX XXXX X XXXXXXXXXXX XXXXXXXXX
XXX
XX XXX XXXXXX XXXXXX XX XXXXXXXX XXXXXX XXXXXX XXXXXXXXXXXXXXXXXX XXX XXX XXXX
XXXX X XXXXXXXXXX XXXXXXX XXXXX XXXXX XX XXXXXXXX
XXXXX XXXXXXXXXXXXXXXXX
XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXX
XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXX
XX
XXXXXXXX XXXXXXXXXXXXXXXX XXXX XXXXX XXX XXXXXX XXXXXXXXXXX XX XXXX XXXXXX
XX XXXXXXXXXXXX XXX XX XXXXX XXXXXXXXXXXXXX XXXXXXXXXX XXXXXX XX XXXXX XXXXXX XXXXX XXXXXX XX X XXXXXXXXXXXXX
XXX XXXXX XXXXX XXXXXXXXXX XXXXXX XX XXXXXXXXXXXXXXXXX XXX XXXXXX XXXX
XXXXX XXXXXX XX X XXXXX XXXX XX XXXX XXX XXXXX XXX XXXXXX XXXXX
XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXX XXXXX XX XXXX XXXXX X XXXXXXXXXXXXXX
XXXXXXX XXX XXXXXXXXXX XXXXX XXXXX XX XXXX XX XX XXXXXXXXXX XXXX XXX
XXXXXXXX XXXXXX
XX XXXX XXXXXX XXXX XXXXXXXX XXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX XXXXXXXX XXX XXXX XX XXXXXX
XXXX XXX XXXXXXXX XXXX XXXXXXXXXXX XXX XXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXX
XXX
XXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXXXX XX XXXXXXX XXX XXXXXXXXXXXXX XX XXX XXXXX
XX XXXXXXX XXX XXXXXXXX XX XXXXXXXX
XXXXX XXXXXXXXXXXXXXXX
XXXXXXXX XXXXXXX XXX XXX XXXX X XXXXXXXXXXX XXXXXXX
X
XXXXX
XXXXX XXXXXXXXXXXXXXXXX
XXXXXXXXX XX
XXXX XXXXXX XX XXXXX XX XXXXX XX XXX X X
XXXXXXXXXXXX XXXXXX
XX
XX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXX XX XXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXX XXX
XXXXXXXXXX XXXXXXXXXXX XX XXXX XXXXX XXXXXXX XX XXXXXXXXXX XXXXX XXXXXXX XXX
XXXXXXXX XXXXXXXXXXX XXXXXXXX XXXXXX XXX XX XXXXXXX X XXXX XX XXXXX XXXXX XX
XXXXXXX XXXX XXXXXXXXXXX XX XXXX XXXXX X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX XXXXXX XXXX XXXXXXXXXXX
XXXX XXXX XX XXX XXXXXXX XX XXXXXXXXXXX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXX XXX XX
XXX XXXXXX XXX XXXXXXXX XXXX XXX XX XXXXXXXX
XXXXXX XXXXXXX
XXXXXXXXXXXXXX
XX XXXX XX XXXXXX XXXX XX XXX XXXXXXXXX XXXX XXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XX XXX XXXX XXXXXXXXXX XXXXXX XXXXXXXXX XXX XXX XXXXXXXX XXXX XXXXXXXXXX
XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXX
XXX XXXXX XXXX XXXXXXX XXXX XXX XXXX XXXXXXXXXXX XXX XXX XXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXX XXXXXXX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX X XXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX XXXXXXXXXXXXXXXXX
XXXXXXX XXX X XXXX XXXX XXXXXXXXXXXXXXXX XXXXX XXXX XX XXXXXXXXXX XXX XXXXX XX
XX XXXXXXXXX XX XXXX XXXXXX XXX XXXXX XXXX XXX XXXX XXXXXXXXXXXX
XXX XX X XXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXX XX XXXXXXXXX
XXX XXXXX X XXXXXXX XXXXX XXXXXXX XX XXXXXXX XXXX XX XX XXXX
XXX XXXXXXXXX
XXX XXXXX X XXXXXXX XXX XX XX XXXX XXX XXXXXXX
XXXXXXX XX XXX XX XXXX XXXX XXX XXXXX XX XX XX XXXX XX XXXXXX XXX XXXX
XXXXXXXXXXX XXXXXXX XXXX XXXXX XX XXXXXXXXXX XX XXXX XXXXXXXXX XXX XX XXXXXXX
XXX XXXXXXXXXXXX XXXX XXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX
XXXXXX XX XXXXXXX XXXXXX XXX XXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXX XX X XXXXX
XX XXXX XXXXXX XXX XXX XXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXX XXXXXXXX
XXX XXXXXX XXXXXXXX
XXXXXXXXXXXXXXXXXXX
XX XXXXXXXXXXX XXXXXXXX
XXXXXXXXXX XX XXXXXXX XXX XXXXXX X XXXXXXX XXX XXXXX XXXXXXXXX XX XXX XXXXXX
XXXXXX XXX XXX XXXX XXXX XXXXX XXXX XXXX X XXXXXXXX XXXXXX XXXXXXX XX XXXXXXX
XXXX X XXXXXX XXXXXXXXX XX XXX XXXXXX XXX XX XXXXXXXX XX XXXXX XXX XXXXXXXXX
XXXXXXXXX XX XXX XXXXXXX XXX XXXXX XXX XXX XXXXXX XXX XXX XXXX XXX XXX XXXX
XXXXXX XXXX XX XXX XXXXX XXX XXX XXXXX XXXXXXXXXX XXX XX XXXX XXXXXX XXX
XXXXXXX XXXXX XX XXX XXXXXX
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX X XXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXX XX XXXXXX X
XXX XXXXXXXX XX XXXXXXXXXX XXXX XXXXXXX XXXXXX XX XXXXXXXXXX XXXXXX XXXXXXX
XXXXXX XXXX XXXXXXX XX XXX XXXXXXXXXXXXXXX XX XXX XXXX
XXX XX X XXXXXXXXXX XXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXX XX XXXXXXXXX
XXX XXXXX X XXXXXXX XX
XXX XXXXXXXXX
XXX XXXXX X XXXXXXX XX
XX XXX XXXXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXXXXX XXXX XXXX XXX XX XXX XX
XXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXX XX XXX XXXXXX X XXX XXXXXX XXXX XX XXXXXXXX
XXXXXXXXXXX XXXXX XXXX XXXXXXX XXXXXX XX XXX XXXXXXXXX XXXXXX XXXX XXXXXX XXXXXX
XXXXXXXX XXX XXXXXXXX XXXXXX XXXXXX XXXX XXXXXXXX X XXX XXXX
XXXXX XXX XXXXX XXXXXXXXXX XXXXXXX XXXX XXXXXXXX XXXX XXXXXXX XXXXX XXXXXXXX XXX
XXXXXXXX XXXXXX XX XXX XXXXXXXXXX
XX X XXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXX XXX XXXXXXXXX
XXXXXXXXX X XXXXXXXXX XXX XXXXXXXX XXXX XXXX XXXXX
XXX XXXX XXXXXX XXXXX XX XXXXXX XXX XXXXXXXXX XXXXXX XXX XXX XXXXXX XXXX
XXXXXXXX
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX XX XXXXXX XXXXXX XXX XXXXXXXXXXX
XXXXXXXX XXXX XXXXXX XXXXXXXXX XXX XXXXX XXXX XXXXXXXXXXX XXXXXXXXXX
XX XXXXXX XXXXX XXXXXXXXXXX XXX XXXXXXXX XXXXXXXXXX XXXX XXX XXXXXXX XXX XXXXX
XXXX XX XX XXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXXX XXXX XXX XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX XXX XXXX XX XXXXXXX XXXXXX XXXXXXXX XXX XXXXXXXXX XXXXXX
XX XXXXXX X XXXXXXXX XXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XX XXXXX XXXXXXXX XXX XXXXXXXXX XXXXXXXXX XXX XXXX XXXXXX XX XX
XXXXXXXXXX
XX XXXXXXXXXXXX XXX XXXXXXX XXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXXXX XX XXXXXXX XXX
XXXXXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXX XXX XXXXXXXX XXX XXXXXXXXX XXXXXX
XXXXXXXX XXXXXXXXXXXXXX XX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXX XXX XXXX XXX XXX XXXXXXXXXXX XXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXXX XX XXXXXXX
XXX XXXXXXX XXXXX XX X XXXX XXXX XXXX XXX XX XXXXXXX XX XXX XXXXXXXXX
XXXX XXXXXX XXXXX XXXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXX XXXXXX XXXX XX
XXXXXXXX XXX XXXXXXXX XXX XXXXXX XX XXXXXX XX X XXXXXX XXXXXXX XXXXXXXX XXXX
XXXXXXX XXXX XXXXX XXXXX XXXXXXX XXXX XXXXXXXXXXXXX
XXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXX X XXXXXX
XXXXXXXXXXXX XXXXXX XX XXXXX XXXXX XXXXXXXXX XXXXX XXXXX XXXXXXXXXXXX
XXXXXXXX XX XXX XXXXX XXXXX XXXX XX XXXXXXXXX XXXX XX XXXXXXXXXXXXX XXXX
XXXXXX XXX XXXXXXXXX XXXX XXX XXXXXXXXX
XX XXXXXXXX XXX XXXX XXXX XXX XXXXXXXXXXX XXX XXXXXXXXXXXXX XXXXXXXX XXXX XX
XXXXXXXX XXXX XX XXX XXXXXXXXX XXX XXXXXXXXX XXXX XXX XXXXXXXXX
XX XXXXXX X XXXXXXXXX XXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XX XXXXX XXXXXXXX XXX XXXXXXXXX XXXXXXXXX XXX XXXX XXXXXX XX XX
XXXXXXXXXX
XXX XXXXXX XXXXX XX XXXXXX XXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXX XXXX XXXXXXX XXXXXX XXXXXXXX XXXXXXX XXX XXX XXXX XXXXXXXXXX XXXXXX
XXX XXXXXXXX XXX XXXXXXXX XXXXXXXX XXXXXX XXXXXXXXX XXX XXXX XX XXX XXXXXXXXXX
XX XXXXXXXXXX XXX XXXXXXXXXXX XXXXXXXXXXXXX XXXX XXX XXXX XXXXXXXXXX XXX XXX
XXXXXXXX XXXXXXX XXX XXXXXXXXX XXXX XXXXXXX XXXXXX X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXX XXXX XXXXXXXXXX
X XX XXX XXXXXXXX XXXXXXX XXX XXXXXXXXX XX XXX XX X XXXXX XXXX XXXXXXXXX XX
XXXXXXXX XXXXXX X XXXXX XXXXX XXXX XXXXXXXX XX XXX XXXXX XXXXXXXX XXXXXX
XXXXXXXX XX XXXXXXXXXXX
X XX XXX XXXXXXXX XXXXXXX XXX XXXXXXXXX XX XXXXX XXX XX XX XXX XXXXXXXXXX
XXXXXX XXXXXX XXXXXXXX XXXXX XX XXXXXXX XXX XX XXX XX X XXXXX XXXX XXXXXXX
XXXXX XX XXX XXXXXXXXXX XXXXXX XXXXXXXX XX XXXXXXXXXXX
XX XXX XXXXXXXX XXXXXXX XXX XXXXXXXXX XXXXXXX X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX XXXXXXXX XX XXXXXXXXXX XX
XX XX XX XXXXXXXX XXXXX XXXXXXXX XXX XXXXXXX XXX XX XXX XX X XXXXX XXXX XXXXXX
XX XXX XXXXXXXXX XXXXXXXXXX XXXXXX XXXXXXXX XX XXXXXXXXXXX
XXX XXX XXXXXX XXXX XX XXXX XXX XXXXXX XX XXXXXXX XXX XX XXXXXXX X XXXXXXXXXXX
XXXXX XXXXXXXXXX XXXX XXXXXX XXX XXXXXXXX XX XXX XXXXXX XXXXXXXXX XXX
XXXXXXXXXXX XXXXX XX XXXXXXX XXX XXXX XX XXXX XXXXXXX XXX XXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXX XXXXX XXX XXXXXXXX XX XXXXXX XX XXXXXXXX XXXXXX
XX XXXXXX XXX XXX XXXXXXXX XXXXXX XXX X XXXXXXXXXX XXXX XXX XXXXXXX XXX
XXXXXXXXX XXX XXXX XX XXX XXXXXXXXXX XXXXX X XXXX XXXX XXXXXX XXX XX XXXXXXXXXXX
XXXXXXXXX XX XXX XX XXXXXXXXXXX XXX XXX XXXXXXXXX XXXXXXX XX XXX XXXX XXXXX XX
XXX XXXXXXXXXX XXXXX XXXXX XXX XXXX XXXX XXXXX XXXXX XXX XXXXXXXX XXXXXXX
XXXXXX XXXX X XXX XXX XXXXXXX XXXX XX XXX XXXXXXXX XXXXXXXX X XXX XXX XXX
XXXXXXXX XXXXXXX XXX XXXXXX XX XXXXXXX XX XXX XXXXXXXXXX XXXX XXXXXXXX XXXXXXX
XXXXX XXXXXXX XXXXXXXXX XX XXXX XXXXX XX XX XXXXXXXX XX XXXXXX XX XXX XXX
XXXXXXXXX XX XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XX XXXXXXXXX
XX XXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX XX XXXXXX XX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXX XXXX XXXXXXXXXXXXXX XXXX XXXXXXXXX XX XX XXXX XX XXXXX XXX
XXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXXXXX XX XXX XXXXXXXXXX XXX XXX XXXX XXXX XX
XXXXX XX XXXXXXXXXXX XX XXXXXXXXXXX XXXXXXX XX XXXXXXXXX XXX XXX XXXXXX X XXX
XXXX XX XXXXX XXXXX XXX XXX XXXX XXX XXXXXXXXXXXXXXXXXXXXX XX
XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XX XXX XXXXXXXXXXXXXXXXXXXXX XXXXXXX
XXXXXXX XXXX XXXXXXXXXX XX XX XXXXXX XXX XXXXXX XXXX XXXXXX XXXXX XXXXXX XX XXX
XXXX XXXXX
XX XXXXXX XX XXXX XXXX XXXX XXXXXX XXXX XX XXX XXXXX XXXXXXXXXXX XXXXXX XXXX
XXXXXX XXXXXX XX XXX XXXXX XXXXX XXX XXXXXX XX XXXXXXXX XXXX XXXX XXXX XX
XXXXXX XXXX XXX XXXXXXXXX XX XXXXX XXXXX XXXX XXXXXXX XX XXX XXXXXXXX XXX
XXXXX
XXXXX XXXXXXXXXXXXXXXXX XXXX XXXXX XX XXXXXX XXXXXXXXX XX XXXXXXXXXXXXXXXXX
XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX XXXXXXXXXX XXXXX XX XXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX XXXXXX XXXX XX XXXXXXX X XXXXXX XXXXXXXXXX XXXX XX X XXXXXX XXXX
XX XXXXXXXXXXXX XX XXXXXXXXXXXX XXX XXXXXXX XXXXXX XXX XXX XX XXXXXXXXX XXXX XX
XXXXX XXX XXXXXXXXXX XX XXXXXX XXXXXX
XXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXX
XXX XXXXXXXXXXXXXXXXXXX XX X
XXX XXXXXXXXXXXXXX
XX XXX XXX XXXXXXXXXXXXXXX XXXXX XXXXXXXXX XXXX XXX XXXXXXXX XXX XXX XXXX
XXX XXXXX XX XX XXXX XX XXXXXXX XXXX XX XXX XXXXXXXXX
XXX XXXXXXX XXX XX XXXX XXXXXXX XXXXXXXXXXXXXX X XXXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXX XX XXXXXXXX XXXXXX XX XXXXXXXXXX
XXX XXXXXX XXXXXXXX XX XXX XXXXXXXX XXXXX XXXXXX XXXXXX XXXX XX XX XXXXXXXX
XXXXXXXXXX XX X XXX XXXXXX XXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXX XXXX XXXX XX XXXXXXXX XXXXXXX XXXXX
XXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXX XXXXXXX XX XXXXXXXXX
XXXX
XXX XXXX XXXXXXXXXXXXXXXX XXXXXX X
XXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXX
XXX XXXXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXX X X
XXX XXXXXXXXXXXXXX
XXX XXXX XXXXXXXX XXX XXX XXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX XXX XXXXX XXXXXXXXX XX XXXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX XXXXX XXXXXX XX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXXX XX XXXXXX X XXXX XX XXXXX XXXXX XX XXXXXXX XXXXXXXX
XXXXXXXXXXXXXXXXXX XXXX XXX XXXXXX XXXXX XX XXXX XXXX XXXX XX XXXXXXXX
XXXX XXX XX XXXXXXXXX XX XXX XXXX XX XXXXXX XXXX XXX XX X XXX XXXXXX XX
XX XXXXXXX XXXXX XXXX XX X XXXXXX XXXXXXXXXXX XXXXXXX XXXX XXXXXXXXXX
XXX XX XXX XXXXX XXXXXX XXXX XXXXX XXXXXXX XX XXX XXXXXXXXX XXX XXXXXXXXX
XXXXXXXXXXXX X XXXXX XXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXXXXXX XXXXXXXX XXX XX XXX XXXXXXXX XXXXXXXXXX XXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXX XXXXXXXX XXXX XXXX XXX XXXXX X XXXXX XX XXXX XXXX
XXXXXXX XX XXXXXX XX XXX XXXXXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXX XXXX XXXXX XX XXXXXXX
XXXX XXXXXX X XXXXX XXXXXXX XXXXXXX XXXXXXXX XXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XXXXXX XXXXXX
XXXX XXX XX XXXX XXX XXXXXXXX XX XXXXXX XXXXX XX XX XXXXXXXXX
XXXXXXXXXXXXXXXXX XX XXXX XXXXX XX XXX XXXXXX XX XXXXXX XXX XXXXXXXX XXXXX
XXXXXX XXX XXXXX XXXX XX XXXXX XX XXX XXXXXXX XXXXXXX
XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX
XXXXXX XX XXX XXXXXXXXXX XXX XXX XXXXXXX XXXX XXXX XXXXXXX XXX XXXXXX XX XXX
XXXXXXXXX XXX XXXXXX XXXXXXXX XXXX XXXXX XXXXX XXX XXXX XXXXX XXXX XXXX XX
XXX XXXXXXX XXXX XXXXXX XXXXXXX XXX XXXXXX XX XXXXXXX XXXXXXX XXX X XXXXXXXXXX
XXXX XXX XXXXXX XX XXXXXXXXX XXX XXXXXX XXXXX
XXX XXXX XXXXXXXX XXXXXXXXX XXX XX XXXXXX XXXXXXX XX XXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXX XXXX XXXXXXXXXX XXXXXXXX XXXXXXXXX XXX XXX XXXXXXXX XXX XXXXXXXXXXXX
XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXX
XXXXXXXXX XXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX
XXXX XX XXXXXX XXXX X XXXXX XXXXXXX XXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX
XXXX XXX XXXXXX XXXXXXX XXXXX
XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXX
XXXX XXX XXXXXXXXXXXXX X XXXXXX XXX XXXXXXX XXXXX XX XXXXXXXX XXXX XXX XXXXXXXX
XXX XXXXX XXXXXXX XXX XXXXX XXXXXXXX XX XXX XXXXXX XX XXX XXXXXXXX XXXXXX XXXX
XXX XXXX XXXXXX XXXXXXXXX XX XXX XXXXXXXXX
XX XXXXXXXXXXXX XXX XXXXX XXXXX XXXXXXX XXXXXXX XXXXXXXX
XXXXXXX XX XXXXXX XXX XXXX XXXXX XXX XXX XXXXXXX XX XXXXXX XXXX
XXX XXXX XX XXXXXXXX XXXXX XX XXX XXXXXXXX X XXXXXX XXXXX XXXXXX
XXXXXXX XX XXXXX XX XX XXXXXXXXX XXXX XXXXXX XXXX XX XXXXXXXX XXXX
XXXXXX XXXXXXX XXXX XXXXXXX XXXXXX XXX XX XXXX XX XXXX XX X XXXXXXXXX
XXXXXXXX XXXXXXXXX
XXXXX XXXXXX XXXXXXXXXXXXX XXXXXX XXX XX XXXXXXXXX XX XXXXXXXXX XXXX XX
XXXXXXXX XXXXXXXXX XXXXXXXX X XXXXXXXXXXXXXXXXXX XX XXXXXX XXXX XXX XXX XX
XXXXXXXX X XXXXX XX X XXXXXX XXXXXXX XXXX XX XXXXXXXXX XXXX XXX XXX XX
XXXXX XX XXX XXXXXXXX
XX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXX XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
X XXX XXXXXX XXXXXXX XXXX XXXXXXX XXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXX XXXXXX XX XXXXXX XXXXXXXX XXX XXXX XXXXXXXXX XX XX XXXXXXX
XXXXXX XXXX XXXXXXXXXXXX XX X XXXXXX XX XXXXXXX XXXX XXXXXXXX XX XXXXXXX XX
XXXXXX XX XXX XXXXXX XXXXX XXXX XXX XX XXX XXXXX XXXXXXXX XXXX X XXXXXXXX XXXX
XX XXXXXXXX XX XXXXXXX XXXXX XXX XXXXXX XXXXXX XXXXXX X XXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXX XX XXX XXXXX XXXX XXX XXXXXXXXXXXXX XXXXXXX
XXX XXXXXXXXX
XXXX XXXXXXXXX XXXXXX XXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXXX
XXXXXX XXX XXX X XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXX
XXX XXXXXXXX XXXXXX XX XXXXXXX XXXX XXXX XXXXXXXXX XXXX XXX XXXX XXXXXXX
XXX XXXXX XXX XXX XXXX XXXXXXXX XXXXX XXX XXXXXXXXXX XXXXXX XXXXXX XXXX
XXXXXXXXX XXXX X XXXXXXX XXX XXXXX XX XXXXXXXX XXXXXX XXXXX XX XXXXXXXX XXXXXX
XXXXXXXXXXX XXX XXXXX XXXXXXX XXXXXXXX XXXXX XX XXXXXXX XX XXX XXXXXXX XXXXX
XXXXXXXXX XXXXXXX XXX XXX XXXXX XXXXXX XXXX XXXXXX XXX XXXXXXX XXXXXX
XXX XXXXXXXXX
XXXX XXXXXXXXX XXXXXX XXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXX
XX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXX
XXXXX X XXXX
XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX
X XXXXXXX XXXX XXXXXXXX
XXXXXXXXXXXXX XX XXXXXXXXXXXXX
XXXXXXXXXXXXX XX XXXXXXXXXXXXX
X XXXXXXX XXXX XXX XXXX
XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX
X XXXX XXXXXXXX
XXXXXXXX X XXXXXXXXXXXXXXXX
XXXXXXXX XX XXXXXXXX
X XXXXX XXXXX
XXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXX
X XXXXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXX
XXX XXXXXXXXXXXXXX XXXXXX XX XXXXX XX XXX XXXXXXXXXX XXXXXXX XXX XXXXXX XX
XX XXXXXXXXXXX XXXXXXXXXXXXXXXXX XX XXX XXXXXXXX XXXXXXX XXXX X XXXXXXX XXX
XXXXX XXXX X XXXXXXXXXXXXX XXXX XX XXXXXX XXXXXXXXXX XXX XXXXXXXXXXXXXX
XXXXXX XXXXX XXXXXX XXXXXXXXX XXXXXX XXXXXX XXX XXXXX XXX XXXXXXXX XX
XXXXXX XXX XXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX XX XXXXXXXX XX
XXXXXXXXX XX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX X XXXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXX XXXXXX XXX XX XXXXXXXXX XXX
XXXXXXXXX XXX XXX XX XXXXXXX XX XXXXXXXX XXXX XXXXXX XXXXXX XXXXXX XX XXXXXX X
XXXXXX XXXX XXX XX XXXX XX XXXXX XX XXX XXXXXX XXXX XXXXX
XXX XXXXXXXXX
XXX XXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXXXXXXXXXX X XXXXXXX
XXXXX XXXX XXXX XX XXXXXXX XXX XXXXXXX XX XXX XXX XX XXX XXXX XXXXXXXX XXX XX
XX XXXXX XXXX XXXX XX XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XX
XXXXXXX XXX XXXX XXXXXXXXX
XXX XXXXXXXXX
XXX XXXXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXXXXXXX XXXXXX XXXXXXX
XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XXX XXXXX XXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXX XX XX XXX XXXXX XXXX XX XX XXXXXX
XXXXXXX XXXX XXXXXXX XXX XXXXXXXXXXXXXX XXXX XXXX XXXX X XXXXX XX XXXXX XXXX
XXXX XXXX XXXX XXX XXXXXXXX XX XXX XXXXXXXX XXXXXX XXXXX XX XXXXX XX
XXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX X XXXXXX XX XXXXX XXXX XX XXXXXXX XXXX XX XXX XXXXXXXXXXXXXXXXX XXXX
XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXX XXXX XX XX
XXXXXXXX XX XX XXXXX XXXXX XXX XXXX XXXXXXX XXXXXXXXX XX XXXX XXXX X XXXXXX
XXXX XXX XXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXXX
XXX XXXXXX XXXXX XXXXXXXX XXX XXX XXXX XXXXXXXXXXX XXXX XXXXXX XX XXXXX XX
XXXXXX XXXXXXXXXXXXX XX XXXX XX XXXXXXXX XXXXXXXXXXX
XXX XXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXXX X XXXXXXXXX
XX XXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXX XXXX XXXXXXX XXXXXXXXXXXXXXXXXXXX
XXXXXX XX XXXXX XX X XXXXX XXXXXX XXXXXXXX XXX XXX XXX XXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX
XXXX XXXX XXXXXXXX XX XXX XXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXX XXXXXXX XX
XXXXXXXXXXX XXXX XXXXXXXX XXXXX XXX XXXXXXXX XXXX XXXXXXXX XXXX XX XXXX
XX XXXXXXXXXXXX XXXXXXXXXXX
XXXX XXX XXXXXXXX XXXXX XXXXXX XXX
XX XXXXXXXXXXXXXXXXXXXXX
XXXX XXXXXXXX XXXX XX XXXX XXXXXXX
XX XXXXXXXXXXXX XXXXXXXXXXX
XX XXXXXXXXXXXX
XXX XXXXX XXXX XX XXXX XX XXX XXXXXX XXX XXX XXXXXXXXX XX XXXX XXXXXXXX XXXX
XXX XXXXXXXXX XXXXX XXXX XXXXXXXXXX X XXXXXXXX XXXXXX XXX XXXXX XXXX XX XXXX XX
XXXXX XXXX XXXXX XXXXX XXXX XXX XXX XXXXX XX XXXXXXXX XXXXXXX XX XXXXX XX
XXXXXXXXXXXXXXXXXXXXXX XXX XXXX XXX XXXX XXXXX XXXX XXXX XXXX XXX XXXXXX
XX XXXXXX
XXX XXXXXX XXX XXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXX XXXX
XXXXX XXXXXXXXXX XXXXXXXXX XX XXX XXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
XXX XX XXXXXXXXXXXX XX XXXXXXXXXX
XXXX XXX XXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXX XX XXX XXX
XXXXXX XXXXXXXX XXXXXXX XXX XXXXXXX XXXXXXXXXXX XXX XXX XXXX XX XXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XX XXXX XXXX XXXX XX XXX
XXX XXXXX XXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXX XXX XXXXX XXXXXX
XXXXX XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX X XXXXX XXXXXX
XXXXX XXXX XXXX XX XXX XXXXXXXXX XXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXX XXXXX XXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX
XXXXXX XXXX XXXX X XXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXX XXXXXXX XX XXX XXXX XX
XXX XXXXXX XXXX XXXXXX XXXXXXX XXX XXXXXXXXXXXXXXXX XXXXX XX XXX XXXXXX
XXX XXXXXXXXX
XXXX XXXXXXXXX XXXXXX XXXXXX
XXXXX XXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX X X
XXXXX XXXXXXXXX
XXXXX XXXXXXXXXX
XXXXX XXXXXXXXX
X
XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XX
XXX X X XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXX
XXX XXXXXXXX
XXX XXXXXXXXXXXX
XXX
XXX XXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX
XX XXXXXXXXXXXXXXXX XXX
XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXX XXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXX XXXX XXXX XXXXXXXXXXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXX XXXXXXX XX XXX XXXX XX XXX XXXXXX XXXX
XXXXXXX XXX XXXX XXX XXXXXXXX XXXXXX XXXX XXXXXXX XX XXX XXXX XXXXXX XXXXXXX
X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXX XXXXXXXXXXXX
XXXX XX XXXXX XXXXXXX XXXX XXXXXXX XXXXX XXXXXXX XXXXX XXX XXXXXXX
XXXXXXX XXX XXX XXXXXX XX XXX XXXX XX XXXXXXX XXXXXXXXX XXXX XX X
XXXXXX XXXXXXXX XX XXXX XX XXXXXXX XXXXXXX XXXXXX XXXXXXXXXX XXXX
XXXXXXX XXXX XXXXXX XXXXXXXX XXXXXXX XXXXXXXXXX XXXXX XXXXXX XX XX XXX
XXXXXX XXXXXXXXX XX XXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXX
XXXX XXXX XX XXX XXXX XX XXXXXXXXX XXXX XXXXXXX XXXXX XXXXXXX XXXX XXX XXX
XXXXXXX XXX XX X XXXXXXXXXXXX XXXX XXXXXXXXXX XXXX XX XXXXXXX XXX XXXXXXX XX
XXXXXXXXXXX XXXX XXXX XXXXX XXX XXXXXX XXX XXXXX XXXXXXX XX XXXXXXX XXXXXXXX
XX XXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXX XXXXXXX
XX XXXX XXXXX XXXXXXXXXX XX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXX XX
XXXXXXXXX XXXXX XXXX XXX XXXXX XX XXX XXXXXXXXX XXXXXXXX XX XX XXX
XXXXXXXXX XX XXXXXXX XXX XXX XXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XX XXXX
XXXXXXX XXXXX XXX XXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX
XXX XXXXXXX XXX XXXXX
XXXXX XXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XX XXXXXXXXXXX XXXXXXXXXXXXXXXXXX
XXXX XXXXXXXXX XX XXXXXX XX XXX XXX XX X XXXXXX XXXXXXX XXX XXXXXXX XX
XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XX XXXXXX
XX XXX XXXXX XXX XXX XXXXX XXXXX XXXXXXXXXXX
XXXXXX XXXXXXXX X XXXXXXXXXXXXXXXX XXXXXXXXX XX XX XXXXXXXXX XX XXXX XXXXX
XXXXX XX XXXXXXXX XXX XXXXX XX XXXXXX XXXX XXXXX XXX XX XXXXX XXX XX XXXXX
XXX XX XXXXX X XXXXXXXXXX XXXXX XXXXX XXXX XXXXXXXXXXXXXXX XXX XXXXXXXXX XX
X XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
|
StarcoderdataPython
|
63876
|
<gh_stars>0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pathlib import Path
import warnings
import covsirphy as cs
def main():
warnings.simplefilter("error")
# Create output directory in example directory
code_path = Path(__file__)
input_dir = code_path.parent.with_name("input")
output_dir = code_path.with_name("output").joinpath(code_path.stem)
output_dir.mkdir(exist_ok=True, parents=True)
# Create data loader instance
data_loader = cs.DataLoader(input_dir)
# Load JHU dataset
print("<The number of cases>")
jhu_data = data_loader.jhu()
print(jhu_data.citation)
ncov_df = jhu_data.cleaned()
ncov_df.to_csv(output_dir.joinpath("covid19_cleaned_jhu.csv"), index=False)
# Subset for Japan
japan_df, _ = jhu_data.records("Japan")
japan_df.to_csv(
output_dir.joinpath("jhu_cleaned_japan.csv"), index=False)
# Load Population dataset
print("<Population values>")
population_data = data_loader.population()
print(population_data.citation)
population_df = population_data.cleaned()
population_df.to_csv(
output_dir.joinpath("population_cleaned.csv"), index=False
)
# Load OxCGRT dataset
print("<Government response tracker>")
oxcgrt_data = data_loader.oxcgrt()
print(oxcgrt_data.citation)
oxcgrt_df = oxcgrt_data.cleaned()
oxcgrt_df.to_csv(
output_dir.joinpath("oxcgrt_cleaned.csv"), index=False
)
# Load PCR test dataset
print("<The number of PCR tests>")
pcr_data = data_loader.pcr()
print(pcr_data.citation)
pcr_df = pcr_data.cleaned()
pcr_df.to_csv(
output_dir.joinpath("pcr_cleaned.csv"), index=False)
pcr_data.positive_rate(
country="Greece",
filename=output_dir.joinpath("pcr_positive_rate_Greece.jpg"))
# Load vaccine dataset
print("<The number of vaccinations>")
vaccine_data = data_loader.vaccine()
print(vaccine_data.citation)
vaccine_df = vaccine_data.cleaned()
vaccine_df.to_csv(
output_dir.joinpath("vaccine_cleaned.csv"), index=False)
subset_df = vaccine_data.subset(country="Canada")
subset_df.to_csv(
output_dir.joinpath("vaccine_subset_canada.csv"), index=False)
# Load population pyramid dataset
print("<Population pyramid>")
pyramid_data = data_loader.pyramid()
print(pyramid_data.citation)
subset_df = pyramid_data.subset(country="Japan")
subset_df.to_csv(
output_dir.joinpath("pyramid_subset_japan.csv"), index=False)
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
1750219
|
<reponame>harmsm/uhbd<gh_stars>0
"""
UhbdErrorCheck.py
A set of functions to check for errors in uhbd output.
"""
def checkOut(out,filename):
"""
Check for errors in uhbdaa and uhbdpr.out.
"""
lines = out.split("\n")
# Check for fatal errors
hash = [l[1:6] for l in lines]
try:
err_index = hash.index("FATAL")
err = ["%s\n" % (80*"-")]
err.append("Fatal Error in %s:\n" % filename)
err.extend(["%s\n" % (80*"-")])
err.append("tail -5 %s\n\n" % filename)
err.extend(["%s\n" % l for l in lines[-5:]])
return 1, "".join(err)
except ValueError:
return 0, ""
|
StarcoderdataPython
|
3260736
|
<gh_stars>10-100
import re
import shutil
import tempfile
from copy import deepcopy
from itertools import permutations
from pathlib import Path
import wordninja
from app.attack.hashcat_cmd import HashcatCmdStdout
from app.domain import Rule, WordListDefault
from app.logger import logger
from app.utils import subprocess_call
from app.word_magic.hamming import hamming_ball
MAX_COMPOUNDS = 5 # max compounds for rule best64 attack
def _split_uppercase(word: str) -> set:
"""
EverGreen -> Ever, Green
"""
pos_upper = [pos for pos, letter in enumerate(word) if letter.isupper()]
pos_upper.append(len(word))
simple_words = set([])
for left, right in zip(pos_upper[:-1], pos_upper[1:]):
simple_words.add(word[left: right])
return simple_words
def _word_compounds(word: str, min_length=2):
return [compound for compound in wordninja.split(word) if len(compound) >= min_length]
def _word_compounds_permutation(word: str, max_compounds=MAX_COMPOUNDS, min_length=2, alpha_only=False):
"""
catonsofa -> cat, on, sofa
"""
compounds = _word_compounds(word, min_length=min_length)
if alpha_only:
compounds = filter(re.compile("[a-z]", flags=re.IGNORECASE).match, compounds)
compounds = sorted(compounds, key=len, reverse=True)[:max_compounds]
compounds_perm = list(compounds)
for r in range(2, len(compounds) + 1):
compounds_perm.extend(map(''.join, permutations(compounds, r)))
return compounds_perm
def _collect_essid_parts(essid_origin: str, max_compounds=MAX_COMPOUNDS):
def modify_case(word: str):
return {word, word.lower(), word.upper(), word.capitalize(), word.lower().capitalize()}
regex_non_char = re.compile('[^a-zA-Z]')
essid_parts = {essid_origin}
essid_parts.add(re.sub(r'\W+', '', essid_origin))
essid_parts.add(re.sub('[^a-z]+', '', essid_origin, flags=re.IGNORECASE))
essid_parts.update(_word_compounds_permutation(essid_origin, max_compounds=max_compounds))
regex_split_parts = regex_non_char.split(essid_origin)
regex_split_parts = list(filter(len, regex_split_parts))
for word in regex_split_parts:
essid_parts.update(_word_compounds_permutation(word, max_compounds=max_compounds))
essid_parts.update(_word_compounds_permutation(word.lower(), max_compounds=max_compounds))
essid_parts.update(regex_split_parts)
essid_parts.update(_split_uppercase(essid_origin))
for essid in list(essid_parts):
essid = regex_non_char.sub('', essid)
essid_parts.update(modify_case(essid))
essid_parts.update(modify_case(essid_origin))
essid_parts = set(word for word in essid_parts if len(word) > 1)
essid_parts.update(modify_case(essid_origin)) # special case when ESSID is a single letter
return essid_parts
def _collect_essid_hamming(essid: str, hamming_dist_max=1):
essid_hamming = set()
essid_hamming.update(hamming_ball(s=essid, n=hamming_dist_max))
essid_hamming.update(hamming_ball(s=essid.lower(), n=hamming_dist_max))
logger.debug(f"Essid {essid} -> {len(essid_hamming)} hamming cousins with dist={hamming_dist_max}")
return essid_hamming
def _collect_essid_rule(essid_wordlist_path: Path):
"""
Run ESSID + best64.rule attack.
"""
with tempfile.NamedTemporaryFile(mode='w+', errors='ignore') as f:
# Ignore UnicodeDecodeError: 'utf-8' codec can't decode byte ...
hashcat_stdout = HashcatCmdStdout(outfile=f.name)
hashcat_stdout.add_wordlists(essid_wordlist_path)
hashcat_stdout.add_rule(Rule.ESSID)
subprocess_call(hashcat_stdout.build())
candidates = f.read().splitlines()
return candidates
def _run_essid_digits(compounds_fpath: Path, hashcat_cmd=None, fast=True):
if not fast:
assert hashcat_cmd is not None, \
"Non-fast mode requires running a hashcat command."
candidates = set()
wordlist_order = [compounds_fpath]
if fast:
wordlist_order.append(WordListDefault.DIGITS_APPEND_SHORT)
else:
wordlist_order.append(WordListDefault.DIGITS_APPEND)
with open(compounds_fpath) as f:
compounds_count = len(f.readlines())
if compounds_count > 1000 and hashcat_cmd is not None:
# reduce IO operations, run the hashcat attack directly
fast = False
for reverse in range(2):
with tempfile.NamedTemporaryFile(mode='w+', errors='ignore') as f:
hashcat_stdout = HashcatCmdStdout(outfile=f.name)
hashcat_stdout.add_wordlists(*wordlist_order, options=['-a1'])
subprocess_call(hashcat_stdout.build())
if fast:
candidates.update(f.read().splitlines())
else:
_hashcat_cmd_tmp = deepcopy(hashcat_cmd)
_hashcat_cmd_tmp.add_wordlists(f.name)
subprocess_call(_hashcat_cmd_tmp.build())
wordlist_order = wordlist_order[::-1]
return candidates
def run_essid_attack(essid, hashcat_cmd=None, fast=True):
# hashcat_cmd could be None for debug mode to check the no. of candidates
password_candidates = set()
essid_as_wordlist_dir = Path(tempfile.mkdtemp())
# (1) Hamming ball attack
essid_compounds = _collect_essid_parts(essid)
# Limit the number of word compounds to an arbitrary number.
if len(essid_compounds) < 100:
for compound in essid_compounds:
password_candidates.update(_collect_essid_hamming(essid=compound))
else:
password_candidates.update(_collect_essid_hamming(essid=essid))
# (2) best64 rule attack
# strip all except digits, letters and '_'
compounds_fpath = essid_as_wordlist_dir / re.sub(r'\W+', '', essid)
compounds_fpath.write_text('\n'.join(essid_compounds))
password_candidates.update(_collect_essid_rule(compounds_fpath))
# (3) digits_append attack
password_candidates.update(_run_essid_digits(compounds_fpath,
hashcat_cmd=hashcat_cmd,
fast=fast))
if hashcat_cmd is not None:
with tempfile.NamedTemporaryFile(mode='w') as f:
f.write('\n'.join(password_candidates))
hashcat_cmd = deepcopy(hashcat_cmd)
hashcat_cmd.add_wordlists(f.name)
subprocess_call(hashcat_cmd.build())
shutil.rmtree(essid_as_wordlist_dir)
return password_candidates
if __name__ == '__main__':
# run_essid_attack("lrtgn5s19b41e21f1202unc77i8093")
run_essid_attack("MaloinvazivTrile_2.4GHz")
run_essid_attack("PetitCafe")
for essid in ["Tanya007", "My_rabbit", "Myrabbit", "MyRabbit", "PetitCafe2017"]:
compounds = sorted(_word_compounds_permutation(essid))
candidates = sorted(_collect_essid_parts(essid))
print(f"'{essid}'\n\t{len(compounds)} compounds: {compounds}")
print(f"\t{len(candidates)} candidates: {candidates}")
|
StarcoderdataPython
|
3217643
|
# -*- coding: utf-8 -*-
"""
infermedica_api.webservice
~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains classes and function responsible for making API requests.
"""
import json
import platform
import warnings
import requests
from . import __version__, exceptions, models, API_CONFIG, DEFAULT_API_VERSION, DEFAULT_API_ENDPOINT
class SearchFilters:
"""Simple class to hold search filter constants."""
SYMPTOMS = "symptom"
RISK_FACTORS = "risk_factor"
LAB_TESTS = "lab_test"
ALL = [SYMPTOMS, RISK_FACTORS, LAB_TESTS]
SEARCH_FILTERS = SearchFilters()
class API:
"""Class which handles requests to the Infermedica API."""
# User-Agent for HTTP request
library_details = f"requests {requests.__version__}; python {platform.python_version()}"
user_agent = f"Infermedica-API-Python {__version__} ({library_details})"
def __init__(self, **kwargs):
"""
Initialize API object.
Usage::
>>> import infermedica_api
>>> api = infermedica_api.API(app_id='YOUR_APP_ID', app_key='YOUR_APP_KEY')
"""
self.endpoint = kwargs.get("endpoint", DEFAULT_API_ENDPOINT)
self.api_version = kwargs.get("api_version", DEFAULT_API_VERSION)
self.app_id = kwargs["app_id"] # Mandatory parameter, so not using `dict.get`
self.app_key = kwargs["app_key"] # Mandatory parameter, so not using `dict.get`
self.default_headers = self.__calculate_headers(kwargs)
if self.api_version in kwargs.get("api_definitions", {}) or {}:
self.api_methods = kwargs["api_definitions"][self.api_version]['methods']
elif self.api_version in API_CONFIG:
self.api_methods = API_CONFIG[self.api_version]['methods']
else:
self.api_methods = API_CONFIG[DEFAULT_API_VERSION]['methods']
def __calculate_headers(self, parameters):
headers = parameters.get("default_headers", {})
if parameters.get("model", None):
headers.update({
"Model": parameters["model"]
})
if parameters.get("dev_mode", None) and parameters["dev_mode"] == True:
headers.update({
"Dev-Mode": "true"
})
return headers
def __get_url(self, method):
return self.endpoint + self.api_version + method
def __get_headers(self, override):
"""Returns default HTTP headers."""
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"User-Agent": self.user_agent,
"App-Id": self.app_id,
"App-Key": self.app_key
}
headers.update(self.default_headers)
headers.update(override)
return headers
def __api_call(self, url, method, **kwargs):
kwargs['headers'] = self.__get_headers(kwargs['headers'] or {})
response = requests.request(method, url, **kwargs)
return self.__handle_response(response)
def __handle_response(self, response):
"""
Validates HTTP response, if response is correct decode json data and returns dict object.
If response is not correct raise appropriate exception.
:returns: dict or list with response data
:rtype: dict or list
:raises:
infermedica_api.exceptions.BadRequest,
infermedica_api.exceptions.UnauthorizedAccess,
infermedica_api.exceptions.ForbiddenAccess,
infermedica_api.exceptions.ResourceNotFound,
infermedica_api.exceptions.MethodNotAllowed,
infermedica_api.exceptions.ServerError,
infermedica_api.exceptions.ConnectionError
"""
status = response.status_code
content = response.content.decode('utf-8')
if 200 <= status <= 299:
return json.loads(content) if content else {}
elif status == 400:
raise exceptions.BadRequest(response, content)
elif status == 401:
raise exceptions.UnauthorizedAccess(response, content)
elif status == 403:
raise exceptions.ForbiddenAccess(response, content)
elif status == 404:
raise exceptions.ResourceNotFound(response, content)
elif status == 405:
raise exceptions.MethodNotAllowed(response, content)
elif 500 <= status <= 599:
raise exceptions.ServerError(response, content)
else:
raise exceptions.ConnectionError(response, content)
def __get(self, method, params=None, headers=None):
"""Wrapper for a GET API call."""
return self.__api_call(self.__get_url(method), "GET", headers=headers, params=params)
def __post(self, method, data, params=None, headers=None):
"""Wrapper for a GET API call."""
return self.__api_call(self.__get_url(method), "POST", headers=headers, data=data, params=params)
def __get_method(self, name):
try:
return self.api_methods[name]
except KeyError as e:
raise exceptions.MethodNotAvailableInAPIVersion(self.api_version, name)
def __get_interview_id_headers(self, diagnosis_request=None, interview_id=None):
headers = {}
if interview_id:
headers['Interview-Id'] = interview_id
elif isinstance(diagnosis_request, models.Diagnosis) and diagnosis_request.interview_id:
headers['Interview-Id'] = diagnosis_request.interview_id
return headers
def info(self):
"""Makes an API request and returns basic API model information."""
return self.__get(self.__get_method('info'))
def search(self, phrase, sex=None, max_results=8, filters=None, **kwargs):
"""
Makes an API search request and returns list of dicts containing keys: 'id', 'label' and 'type'.
Each dict represent an evidence (symptom, lab test or risk factor).
By default only symptoms are returned, to include other evidence types use filters.
:param phrase: Phrase to look for.
:type phrase: str
:param sex: Sex of the patient 'female' or 'male'.
:type sex: str
:param max_results: Maximum number of result to return, default is 8.
:type max_results: int
:param filters: List of search filters, taken from SEARCH_FILTERS variable.
:type filters: list
:returns: A List of dicts with 'id' and 'label' keys.
:rtype: list
"""
method = self.__get_method('search')
params = kwargs.pop('params', {})
params.update({
'phrase': phrase,
'max_results': max_results
})
if sex:
params['sex'] = sex
if filters:
if isinstance(filters, (list, tuple)):
params['type'] = filters
elif isinstance(filters, str):
params['type'] = [filters]
for filter in params['type']:
if filter not in SEARCH_FILTERS.ALL:
raise exceptions.InvalidSearchFilter(filter)
return self.__get(method, params=params)
def lookup(self, phrase, sex=None):
"""
Makes an API lookup request and returns evidence details object.
:param phrase: Phrase to look for.
:type phrase: str
:param sex: Sex of the patient 'female' or 'male'.
:type sex: str
:returns: Dictionary with details.
:rtype: dict
"""
method = self.__get_method('lookup')
params = {
'phrase': phrase
}
if sex:
params['sex'] = sex
return self.__get(method, params=params)
def suggest(self, diagnosis_request, max_results=8, interview_id=None, **kwargs):
"""
Makes an API suggest request and returns a list of suggested evidence.
:param diagnosis_request: Diagnosis request object or json request for diagnosis method.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:returns: A list of suggestions, dicts with 'id', 'name' and 'common_name' keys.
:rtype: list
"""
method = self.__get_method('suggest')
headers = self.__get_interview_id_headers(interview_id=interview_id)
params = kwargs.pop('params', {})
params.update({'max_results': max_results})
request = diagnosis_request
if isinstance(diagnosis_request, models.Diagnosis):
request = diagnosis_request.get_api_request()
return self.__post(
method,
params=params,
headers=headers,
data=json.dumps(request)
)
def parse(self, text, include_tokens=False, interview_id=None, **kwargs):
"""
Makes an parse API request with provided text and include_tokens parameter.
Returns parse results with detailed list of mentions found in the text.
:param phrase: Text to parse.
:type phrase: str
:param include_tokens: Switch to manipulate the include_tokens parameter.
:type include_tokens: bool
:returns: A ParseResults object
:rtype: :class:`infermedica_api.models.ParseResults`
"""
method = self.__get_method('parse')
headers = self.__get_interview_id_headers(interview_id=interview_id)
params = kwargs.pop('params', {})
request = {
'text': text,
'include_tokens': include_tokens
}
response = self.__post(
method,
json.dumps(request),
params=params,
headers=headers
)
return models.ParseResults.from_json(response)
def diagnosis(self, diagnosis_request, interview_id=None, **kwargs):
"""
Makes a diagnosis API request with provided diagnosis data
and returns diagnosis question with possible conditions.
:param diagnosis_request: Diagnosis request object or json request for diagnosis method.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:param interview_id: Unique interview id for diagnosis
:type interview_id: str
:returns: A Diagnosis object with api response
:rtype: :class:`infermedica_api.models.Diagnosis`
"""
method = self.__get_method('diagnosis')
headers = self.__get_interview_id_headers(
diagnosis_request=diagnosis_request,
interview_id=interview_id
)
params = kwargs.pop('params', {})
if isinstance(diagnosis_request, models.Diagnosis):
response = self.__post(
method,
json.dumps(diagnosis_request.get_api_request()),
params=params,
headers=headers
)
diagnosis_request.update_from_api(response)
return diagnosis_request
return self.__post(
method,
json.dumps(diagnosis_request),
params=params,
headers=headers
)
def explain(self, diagnosis_request, target_id, interview_id=None, **kwargs):
"""
Makes an explain API request with provided diagnosis data and target condition.
Returns explain results with supporting and conflicting evidences.
:param diagnosis_request: Diagnosis request object or json request for diagnosis method.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:param target_id: Condition id for which explain shall be calculated.
:type target_id: str
:returns: A Diagnosis object with api response
:rtype: :class:`infermedica_api.models.Diagnosis`
"""
method = self.__get_method('explain')
headers = self.__get_interview_id_headers(diagnosis_request=diagnosis_request, interview_id=interview_id)
params = kwargs.pop('params', {})
if isinstance(diagnosis_request, models.Diagnosis):
request = diagnosis_request.get_explain_request(target_id)
else:
request = dict(diagnosis_request, **{'target': target_id})
response = self.__post(
method,
json.dumps(request),
params=params,
headers=headers
)
return models.ExplainResults.from_json(response)
def triage(self, diagnosis_request, interview_id=None, **kwargs):
"""
Makes a triage API request with provided diagnosis data.
Returns triage results dict.
See the docs: https://developer.infermedica.com/docs/triage.
:param diagnosis_request: Diagnosis request object or json request for diagnosis method.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:returns: A dict object with api response
:rtype: dict
"""
method = self.__get_method('triage')
headers = self.__get_interview_id_headers(diagnosis_request=diagnosis_request, interview_id=interview_id)
params = kwargs.pop('params', {})
request = diagnosis_request
if isinstance(diagnosis_request, models.Diagnosis):
request = diagnosis_request.get_api_request()
return self.__post(
method,
json.dumps(request),
params=params,
headers=headers
)
def condition_details(self, _id):
"""
Makes an API request and returns condition details object.
:param _id: Condition id
:type _id: str
:returns:A Condition object
:rtype: :class:`infermedica_api.models.Condition`
"""
method = self.__get_method('condition_details')
response = self.__get(method.format(**{'id': _id}))
return models.Condition.from_json(response)
def conditions_list(self):
"""
Makes an API request and returns list of condition details objects.
:returns: A ConditionList list object with Condition objects
:rtype: :class:`infermedica_api.models.ConditionList`
"""
response = self.__get(self.__get_method('conditions'))
return models.ConditionList.from_json(response)
def symptom_details(self, _id):
"""
Makes an API request and returns symptom details object.
:param _id: Symptom id
:type _id: str
:returns: A Symptom object
:rtype: :class:`infermedica_api.models.Symptom`
"""
method = self.__get_method('symptom_details')
response = self.__get(method.format(**{'id': _id}))
return models.Symptom.from_json(response)
def symptoms_list(self):
"""
Makes an API request and returns list of symptom details objects.
:returns: A SymptomList list object with Symptom objects
:rtype: :class:`infermedica_api.models.SymptomList`
"""
response = self.__get(self.__get_method('symptoms'))
return models.SymptomList.from_json(response)
def lab_test_details(self, _id):
"""
Makes an API request and returns lab_test details object.
:param _id: LabTest id
:type _id: str
:returns: A LabTest object
:rtype: :class:`infermedica_api.models.LabTest`
"""
method = self.__get_method('lab_test_details')
response = self.__get(method.format(**{'id': _id}))
return models.LabTest.from_json(response)
def lab_tests_list(self):
"""
Makes an API request and returns list of lab_test details objects.
:returns: A LabTestList list object with LabTest objects
:rtype: :class:`infermedica_api.models.LabTestList`
"""
response = self.__get(self.__get_method('lab_tests'))
return models.LabTestList.from_json(response)
def risk_factor_details(self, _id):
"""
Makes an API request and returns risk factor details object.
:param _id: risk factor id
:type _id: str
:returns: A RiskFactor object
:rtype: :class:`infermedica_api.models.RiskFactor`
"""
method = self.__get_method('risk_factor_details')
response = self.__get(method.format(**{'id': _id}))
return models.RiskFactor.from_json(response)
def risk_factors_list(self):
"""
Makes an API request and returns list of risk factors details objects.
:returns: A RiskFactorList list object with RiskFactor objects
:rtype: :class:`infermedica_api.models.RiskFactorList`
"""
response = self.__get(self.__get_method('risk_factors'))
return models.RiskFactorList.from_json(response)
def red_flags(self, diagnosis_request, max_results=8, interview_id=None, **kwargs):
"""
Makes an API request with provided diagnosis data and returns a list
of evidence that may be related to potentially life-threatening
conditions.
:param diagnosis_request: Diagnosis request object or diagnosis json.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:param interview_id: Unique interview id for diagnosis
:type interview_id: str
:returns: A list of RedFlag objects
:rtype: :class:`infermedica_api.models.RedFlagList`
"""
method = self.__get_method('red_flags')
headers = self.__get_interview_id_headers(
diagnosis_request=diagnosis_request,
interview_id=interview_id,
)
params = kwargs.pop('params', {})
params.update({'max_results': max_results})
request = diagnosis_request
if isinstance(diagnosis_request, models.Diagnosis):
request = diagnosis_request.get_api_request()
response = self.__post(
method,
json.dumps(request),
params=params,
headers=headers
)
return models.RedFlagList.from_json(response)
def rationale(self, diagnosis_request, interview_id=None, **kwargs):
"""
Makes an API request with provided diagnosis data and returns
an explenation of why the given question has been selected by
the reasoning engine.
:param diagnosis_request: Diagnosis request object or diagnosis json.
:type diagnosis_request: :class:`infermedica_api.models.Diagnosis` or dict
:param interview_id: Unique interview id for diagnosis
:type interview_id: str
:returns: An instance of the RationaleResult
:rtype: :class:`infermedica_api.models.RationaleResult`
"""
method = self.__get_method('rationale')
headers = self.__get_interview_id_headers(
diagnosis_request=diagnosis_request,
interview_id=interview_id,
)
params = kwargs.pop('params', {})
request = diagnosis_request
if isinstance(diagnosis_request, models.Diagnosis):
request = diagnosis_request.get_api_request()
response = self.__post(
method,
json.dumps(request),
params=params,
headers=headers
)
return models.RationaleResult.from_json(response)
__api__ = None
__api_aliased__ = {}
def get_api(alias=None):
"""
Returns global API object and if present,
otherwise raise MissingConfiguration exception.
:param alias: Alias of the API to retrieve
:type alias: str
:returns: An API object
:rtype: :class:`infermedica_api.webservice.API`
:raises: :class:`infermedica_api.exceptions.MissingConfiguration`
"""
global __api__
global __api_aliased__
if isinstance(alias, str):
try:
return __api_aliased__[alias]
except KeyError:
raise exceptions.MissingConfiguration(alias)
if __api__ is None:
raise exceptions.MissingConfiguration()
return __api__
def configure(options=None, **config):
"""
Configure and create new global API object with given configuration.
Configuration can be passed as a dict or separate arguments.
Returns newly created object.
Usage:
>>> import infermedica_api
>>> infermedica_api.configure({'app_id': 'YOUR_APP_ID', 'app_key': 'YOUR_APP_KEY'})
... or:
>>> import infermedica_api
>>> infermedica_api.configure(app_id='YOUR_APP_ID', app_key='YOUR_APP_KEY')
:param options: Dict with configuration data
:type options: dict
:returns: An API object
:rtype: :class:`infermedica_api.webservice.API`
"""
global __api__
global __api_aliased__
configuration = dict(options or {}, **config)
if 'alias' in configuration and isinstance(configuration['alias'], str):
__api_aliased__[configuration['alias']] = API(**configuration)
if configuration.get('default', False):
__api__ = __api_aliased__[configuration['alias']]
return __api_aliased__[configuration['alias']]
__api__ = API(**configuration)
return __api__
|
StarcoderdataPython
|
3236571
|
<reponame>ennsk/fort-pymdwizard
#!/usr/bin/env python
# -*- coding: utf8 -*-
"""
The MetadataWizard(pymdwizard) software was developed by the
U.S. Geological Survey Fort Collins Science Center.
See: https://github.com/usgs/fort-pymdwizard for current project source code
See: https://usgs.github.io/fort-pymdwizard/ for current user documentation
See: https://github.com/usgs/fort-pymdwizard/tree/master/examples
for examples of use in other scripts
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/4.0/
PURPOSE
------------------------------------------------------------------------------
Provide a pyqt widget for the FGDC component with a shortname matching this
file's name.
SCRIPT DEPENDENCIES
------------------------------------------------------------------------------
This script is part of the pymdwizard package and is not intented to be
used independently. All pymdwizard package requirements are needed.
See imports section for external packages used in this script as well as
inter-package dependencies
U.S. GEOLOGICAL SURVEY DISCLAIMER
------------------------------------------------------------------------------
This software has been approved for release by the U.S. Geological Survey
(USGS). Although the software has been subjected to rigorous review,
the USGS reserves the right to update the software as needed pursuant to
further analysis and review. No warranty, expressed or implied, is made by
the USGS or the U.S. Government as to the functionality of the software and
related material nor shall the fact of release constitute any such warranty.
Furthermore, the software is released on condition that neither the USGS nor
the U.S. Government shall be held liable for any damages resulting from
its authorized or unauthorized use.
Any use of trade, product or firm names is for descriptive purposes only and
does not imply endorsement by the U.S. Geological Survey.
Although this information product, for the most part, is in the public domain,
it also contains copyrighted material as noted in the text. Permission to
reproduce copyrighted items for other than personal use must be secured from
the copyright owner.
------------------------------------------------------------------------------
"""
from copy import deepcopy
from pymdwizard.core import utils
from pymdwizard.core import xml_utils
from pymdwizard.gui.wiz_widget import WizardWidget
from pymdwizard.gui.ui_files import UI_DataQuality
from pymdwizard.gui.AttributeAccuracy import AttributeAccuracy
from pymdwizard.gui.LogicalAccuracy import LogicalAccuracy
from pymdwizard.gui.Completeness import Completeness
from pymdwizard.gui.PositionalAccuracy import PositionalAccuracy
from pymdwizard.gui.sourceinput import SourceInput
from pymdwizard.gui.procstep import ProcStep
class DataQuality(WizardWidget):
drag_label = "Data Quality <dataqual>"
acceptable_tags = ['dataqual']
ui_class = UI_DataQuality.Ui_fgdc_dataqual
def build_ui(self):
self.ui = self.ui_class()
self.ui.setupUi(self)
self.setup_dragdrop(self)
self.attraccr = AttributeAccuracy(parent=self)
self.logic = LogicalAccuracy(parent=self)
# self.complete = Completeness(parent=self)
self.complete = Completeness(parent=self)
self.posacc = PositionalAccuracy(parent=self)
self.sourceinput = SourceInput(parent=self)
self.procstep = ProcStep(parent=self)
self.ui.two_column_left.layout().addWidget(self.attraccr)
self.ui.two_column_left.layout().addWidget(self.logic)
self.ui.two_column_left.layout().addWidget(self.complete)
self.ui.two_column_left.layout().addWidget(self.posacc)
self.ui.bottom_layout.layout().addWidget(self.sourceinput)
self.ui.fgdc_lineage.layout().addWidget(self.procstep)
self.scroll_area = self.ui.idinfo_scroll_area
def clear_widget(self):
self.sourceinput.clear_widget()
WizardWidget.clear_widget(self)
self.complete.ui.fgdc_complete.sizeChange()
def to_xml(self):
# add code here to translate the form into xml representation
dataqual_node = xml_utils.xml_node(tag='dataqual')
attraccr_node = self.attraccr.to_xml()
dataqual_node.append(attraccr_node)
logic_node = self.logic.to_xml()
dataqual_node.append(logic_node)
complete_node = self.complete.to_xml()
dataqual_node.append(complete_node)
if self.posacc.has_content():
posacc_node = self.posacc.to_xml()
dataqual_node.append(posacc_node)
if self.sourceinput.has_content():
srcinfo_node = self.sourceinput.to_xml()
procstep_node = self.procstep.to_xml()
procstep_children = procstep_node.getchildren()
for i in procstep_children:
srcinfo_node.append(i)
if self.original_xml is not None:
methods = xml_utils.search_xpath(self.original_xml,
'lineage/method', only_first=False)
for i, method in enumerate(methods):
method.tail = None
srcinfo_node.insert(i, deepcopy(method))
dataqual_node.append(srcinfo_node)
if self.original_xml is not None:
cloud = xml_utils.search_xpath(self.original_xml, 'cloud')
if cloud is not None:
cloud.tail = None
dataqual_node.append(deepcopy(cloud))
return dataqual_node
def from_xml(self, xml_dataqual):
self.original_xml = xml_dataqual
try:
attraccr = xml_dataqual.xpath('attracc')[0]
self.attraccr.from_xml(attraccr)
except IndexError:
pass
try:
logic = xml_dataqual.xpath('logic')[0]
self.logic.from_xml(logic)
except IndexError:
pass
try:
complete = xml_dataqual.xpath('complete')[0]
self.complete.from_xml(complete)
except IndexError:
pass
try:
posacc = xml_dataqual.xpath('posacc')[0]
self.posacc.from_xml(posacc)
except IndexError:
pass
try:
sourceinput = xml_dataqual.xpath('lineage')[0]
self.sourceinput.from_xml(sourceinput)
except IndexError:
pass
try:
procstep = xml_dataqual.xpath('lineage')[0]
self.procstep.from_xml(procstep)
except IndexError:
pass
if __name__ == "__main__":
utils.launch_widget(DataQuality, "DataQual testing")
|
StarcoderdataPython
|
3295496
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
@ Author : pengj
@ date : 2019/10/14 9:27
@ IDE : PyCharm
@ GitHub : https://github.com/JackyPJB
@ Contact : <EMAIL>
-------------------------------------------------
Description : 5223. 可以攻击国王的皇后 显示英文描述
https://leetcode-cn.com/contest/weekly-contest-158/problems/queens-that-can-attack-the-king/
用户通过次数708
用户尝试次数779
通过次数709
提交次数1178
题目难度Medium
在一个 8x8 的棋盘上,放置着若干「黑皇后」和一个「白国王」。
「黑皇后」在棋盘上的位置分布用整数坐标数组 queens 表示,「白国王」的坐标用数组 king 表示。
「黑皇后」的行棋规定是:横、直、斜都可以走,步数不受限制,但是,不能越子行棋。
请你返回可以直接攻击到「白国王」的所有「黑皇后」的坐标(任意顺序)。
示例 1:
输入:queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0]
输出:[[0,1],[1,0],[3,3]]
解释:
[0,1] 的皇后可以攻击到国王,因为他们在同一行上。
[1,0] 的皇后可以攻击到国王,因为他们在同一列上。
[3,3] 的皇后可以攻击到国王,因为他们在同一条对角线上。
[0,4] 的皇后无法攻击到国王,因为她被位于 [0,1] 的皇后挡住了。
[4,0] 的皇后无法攻击到国王,因为她被位于 [1,0] 的皇后挡住了。
[2,4] 的皇后无法攻击到国王,因为她和国王不在同一行/列/对角线上。
示例 2:
输入:queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3]
输出:[[2,2],[3,4],[4,4]]
示例 3:
输入:queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]
输出:[[2,3],[1,4],[1,6],[3,7],[4,3],[5,4],[4,5]]
提示:
1 <= queens.length <= 63
queens[0].length == 2
0 <= queens[i][j] < 8
king.length == 2
0 <= king[0], king[1] < 8
一个棋盘格上最多只能放置一枚棋子。
-------------------------------------------------
"""
import time
from typing import List
import copy
__author__ = 'Max_Pengjb'
start_time = time.time()
# 下面写上代码块
class Solution:
def queensAttacktheKing(self, queens: List[List[int]], king: List[int]) -> List[List[int]]:
directions = [(1, 0), (-1, 0), (0, 1), (0, -1), (-1, -1), (1, 1), (-1, 1), (1, -1)]
res = []
for direction in directions:
hit = copy.deepcopy(king)
print(king)
while hit not in queens:
hit[0] = hit[0] + direction[0]
hit[1] = hit[1] + direction[1]
if hit[0] < 0 or hit[0] > 7 or hit[1] < 0 or hit[1] > 7:
break
if hit in queens:
res.append(hit)
return res
# 上面中间写上代码块
end_time = time.time()
print('Running time: %s Seconds' % (end_time - start_time))
queens = [[5, 6], [7, 7], [2, 1], [0, 7], [1, 6], [5, 1], [3, 7], [0, 3], [4, 0], [1, 2], [6, 3], [5, 0], [0, 4],
[2, 2], [1, 1], [6, 4], [5, 4], [0, 0], [2, 6], [4, 5], [5, 2], [1, 4], [7, 5], [2, 3], [0, 5], [4, 2],
[1, 0], [2, 7], [0, 1], [4, 6], [6, 1], [0, 6], [4, 3], [1, 7]]
king = [3, 4]
rr = Solution().queensAttacktheKing(queens, king)
print(rr)
|
StarcoderdataPython
|
187592
|
<filename>redback/get_data/fermi.py<gh_stars>1-10
class FermiDataGetter(object):
def __init__(self) -> None:
raise NotImplementedError()
|
StarcoderdataPython
|
4801464
|
import datetime
import re
from dataclasses import dataclass
from datetime import timezone
import pytz
from dateutil.parser import parse
NanosecPattern = re.compile(r".+\.(\d+).*")
RequiredTimePattern = re.compile(r".*\d\d?[/:-]\d\d?.*")
@dataclass
class DateTimeWithNS:
datetime: datetime.datetime
nanosec: int
original_string: str
def tupple(self) -> (datetime.datetime, int):
return (self.datetime, self.nanosec)
def __str__(self) -> str:
return self.original_string
@classmethod
def parse(cls, datetime_like_string: str, tz_str=None):
return elastic_time_parse(datetime_like_string, tz_str=tz_str)
def elastic_time_parse(src, tz_str=None, logger=None) -> DateTimeWithNS:
"""Parse src string as datetime and nanosec part. Raise exception if src format is NOT valid. """
if src is None:
raise ValueError
if not re.match(RequiredTimePattern, src):
raise ValueError
nano = 0
ret = parse(src)
if ret.tzinfo is None:
try:
tz_info = pytz.timezone(tz_str)
offset = timezone(tz_info.utcoffset(ret))
ret = ret.replace(tzinfo=offset)
except Exception:
ret = ret.replace(tzinfo=timezone.utc)
m = NanosecPattern.match(src)
if(m is not None):
nano = int(m.group(1)[0:9].ljust(9, '0'))
return DateTimeWithNS(ret, nano, src)
|
StarcoderdataPython
|
1697514
|
import logging
import os
import typing
from typing import Dict, Optional, Text, Union
from rasa.core.domain import Domain
if typing.TYPE_CHECKING:
from rasa.core.interpreter import NaturalLanguageInterpreter
logger = logging.getLogger(__name__)
async def train(
domain_file: Union[Domain, Text],
stories_file: Text,
output_path: Text,
interpreter: Optional["NaturalLanguageInterpreter"] = None,
endpoints: "AvailableEndpoints" = None,
dump_stories: bool = False,
policy_config: Text = None,
exclusion_percentage: int = None,
kwargs: Optional[Dict] = None,
):
from rasa.core.agent import Agent
from rasa.core import config, utils
from rasa.core.utils import AvailableEndpoints
if not endpoints:
endpoints = AvailableEndpoints()
if not kwargs:
kwargs = {}
policies = config.load(policy_config)
agent = Agent(
domain_file,
generator=endpoints.nlg,
action_endpoint=endpoints.action,
interpreter=interpreter,
policies=policies,
)
data_load_args, kwargs = utils.extract_args(
kwargs,
{
"use_story_concatenation",
"unique_last_num_states",
"augmentation_factor",
"remove_duplicates",
"debug_plots",
},
)
training_data = await agent.load_data(
stories_file, exclusion_percentage=exclusion_percentage, **data_load_args
)
agent.train(training_data, **kwargs)
agent.persist(output_path, dump_stories)
return agent
async def train_comparison_models(
stories,
domain,
output_path="",
exclusion_percentages=None,
policy_configs=None,
runs=1,
dump_stories=False,
kwargs=None,
):
"""Train multiple models for comparison of policies"""
from rasa.core import config
exclusion_percentages = exclusion_percentages or []
policy_configs = policy_configs or []
for r in range(runs):
logging.info("Starting run {}/{}".format(r + 1, runs))
for i in exclusion_percentages:
current_round = exclusion_percentages.index(i) + 1
for policy_config in policy_configs:
policies = config.load(policy_config)
if len(policies) > 1:
raise ValueError(
"You can only specify one policy per model for comparison"
)
policy_name = type(policies[0]).__name__
output = os.path.join(
output_path, "run_" + str(r + 1), policy_name + str(current_round)
)
logging.info(
"Starting to train {} round {}/{}"
" with {}% exclusion"
"".format(policy_name, current_round, len(exclusion_percentages), i)
)
await train(
domain,
stories,
output,
policy_config=policy_config,
exclusion_percentage=i,
kwargs=kwargs,
dump_stories=dump_stories,
)
async def get_no_of_stories(story_file, domain):
"""Get number of stories in a file."""
from rasa.core.domain import TemplateDomain
from rasa.core.training.dsl import StoryFileReader
stories = await StoryFileReader.read_from_folder(
story_file, TemplateDomain.load(domain)
)
return len(stories)
async def do_compare_training(cmdline_args, stories, additional_arguments):
from rasa.core import utils
await train_comparison_models(
stories,
cmdline_args.domain,
cmdline_args.out,
cmdline_args.percentages,
cmdline_args.config,
cmdline_args.runs,
cmdline_args.dump_stories,
additional_arguments,
)
no_stories = await get_no_of_stories(cmdline_args.stories, cmdline_args.domain)
# store the list of the number of stories present at each exclusion
# percentage
story_range = [
no_stories - round((x / 100.0) * no_stories) for x in cmdline_args.percentages
]
story_n_path = os.path.join(cmdline_args.out, "num_stories.json")
utils.dump_obj_as_json_to_file(story_n_path, story_range)
def do_interactive_learning(cmdline_args, stories, additional_arguments=None):
from rasa.core.training import interactive
interactive.run_interactive_learning(
stories,
skip_visualization=cmdline_args.skip_visualization,
server_args=cmdline_args.__dict__,
additional_arguments=additional_arguments,
)
if __name__ == "__main__":
raise RuntimeError(
"Calling `rasa.core.train` directly is no longer supported. Please use "
"`rasa train` to train a combined Core and NLU model or `rasa train core` "
"to train a Core model."
)
|
StarcoderdataPython
|
1647460
|
import os
import time
import random
import numpy as np
import datasets
# CHANGE THESE PATHS TO PATHS OF THE .mat DATASETS DESCRIBED IN THE PAPER
mat_path_coil20 = os.path.expanduser("~/Documents/datasets/elm/coil20.mat")
mat_path_g50c = os.path.expanduser("~/Documents/datasets/elm/g50c.mat")
mat_path_uspst = os.path.expanduser("~/Documents/datasets/elm/uspst.mat")
# SET UNDESIRED DATASETS TO FALSE
# e.g to not generate a json file for them
do_coil20 = True
do_coil20b = True
do_g50c = True
do_uspst = True
do_uspstb = True
# place to store generated indices (folds)
# support for changing this might be flaky, so it is best to leave it as is.
json_output_directory = os.path.expanduser("./idx_datasets/")
def gen():
seed = 32
random.seed(seed)
np.random.seed(seed)
print("Generating k-fold partitions")
t = str(time.time()).split('.')[0]
unique_subdir = os.path.join(json_output_directory, t)
os.mkdir(unique_subdir)
print("Storing json files in directory {}".format(unique_subdir))
# coil20
if do_coil20:
d = datasets.gen_partitions(mat_path_coil20, size=1440, L=40, U=1000, V=40, T=360)
finalpath = os.path.join(unique_subdir, "coil20.json")
datasets.dump_json(d, finalpath)
# coil20b, strictly speaking generated the same way as coil20
# (the binarization is done when the coil20 set is loaded for use with
# the model, as the indices are the same with just the classes changed
# to [1,2] -- but using a different shuffle seemed appropriate)
if do_coil20b:
d = datasets.gen_partitions(mat_path_coil20, size=1440, L=40, U=1000, V=40, T=360)
finalpath = os.path.join(unique_subdir, "coil20b.json")
datasets.dump_json(d, finalpath)
# G50C
if do_g50c:
d = datasets.gen_partitions(mat_path_g50c, size=550, L=50, U=314, V=50, T=136)
finalpath = os.path.join(unique_subdir, "g50c.json")
datasets.dump_json(d, finalpath)
# USPST
if do_uspst:
d = datasets.gen_partitions(mat_path_uspst, size=2007, L=50, U=1409, V=50, T=498)
finalpath = os.path.join(unique_subdir, "uspst.json")
datasets.dump_json(d, finalpath)
# USPST(B)
if do_uspstb:
d = datasets.gen_partitions(mat_path_uspst, size=2007, L=50, U=1409, V=50, T=498)
finalpath = os.path.join(unique_subdir, "uspstb.json")
datasets.dump_json(d, finalpath)
if __name__ == '__main__':
gen()
|
StarcoderdataPython
|
56812
|
from RestrictedPython import compile_restricted
from RestrictedPython import Eval
from RestrictedPython import Guards
from RestrictedPython import safe_globals
from RestrictedPython import utility_builtins
from RestrictedPython.PrintCollector import PrintCollector
from multiprocessing import Process
from multiprocessing import Manager
import local_libs.ProblemFileHandler as Handler
import time
class PyOJAgent:
def __init__(self, memory_limit=1048576, time_limit=5):
self.name = 'default_agent'
self.memory_limit = memory_limit
self.time_limit = time_limit
self.submission_result = []
self.problem_dict = {}
self.compile_error_flag = False
self.compile_error_info = ''
self.problem_file_handler = Handler.ProblemFileHandler()
def load_problem_file(self, problem_file):
self.problem_dict = self.problem_file_handler.load_problem_file(problem_file)
if self.problem_dict:
return True
else:
return False
def test_submission(self, submission_code_str):
self.submission_result = []
self.compile_error_flag = False
if not self.problem_dict:
return
else:
pass
try:
compile_restricted(submission_code_str, '<inline>', 'exec')
except Exception as e:
self.compile_error_flag = True
self.compile_error_info = repr(e)
return
for test_case in self.problem_dict['test_cases']:
print('testing test case:', test_case, sep='\n')
suffix = '\noutput = main_function' + str(tuple(test_case[0]))
try:
manager = Manager()
py_code = submission_code_str + suffix
ret_dict = manager.dict()
p = Process(target=target_function, args=(py_code, ret_dict))
p.start()
time.sleep(self.time_limit)
p.terminate()
p.join()
if not ret_dict:
self.submission_result.append('服务器资源不足!')
return
else:
print('submission result: ', ret_dict['output'])
if ret_dict['RE_flag']:
self.submission_result.append('Runtime Error! ' + ret_dict['RE_info'])
elif ret_dict['TLE_flag']:
self.submission_result.append('Time Limit Exceeded! ')
elif ret_dict['output'] == test_case[1]:
self.submission_result.append('Accepted! ')
else:
self.submission_result.append('Wrong Answer! ') # add error types here maybe
except Exception as e:
print(repr(e))
def report_submission_result(self):
if self.compile_error_flag:
return "Compile Error!\n" + self.compile_error_info
elif not self.problem_dict:
return '未加载题目!'
elif not self.submission_result:
return 'No Report Available!'
else:
ret = ''
n = len(self.submission_result)
ret += '{0}组数据已测试,结果如下:\n'.format(n)
for i in range(n):
ret += '测试点{0}/{1}:'.format(i + 1, n)
ret += self.submission_result[i]
ret += '\n'
return ret
def describe_problem(self):
if not self.problem_dict:
return '未加载题目!'
else:
ret = '题目描述:\n'
ret += self.problem_dict['text']
ret += '\n========\n'
ret += '附加信息:\n'
ret += '本次测试时间限制:{0} s,内存限制:{1} KB\n'.format(self.time_limit, self.memory_limit)
return ret
def reset(self):
self.submission_result = []
self.problem_dict = {}
# this function has to be defined outside the PyOJAgent class for multiprocessing to pickle
def target_function(py_code, ret_dict):
policy_globals = generate_restricted_environment_policy()
policy_globals['output'] = None
ret_dict['RE_flag'] = False
ret_dict['RE_info'] = ''
ret_dict['TLE_flag'] = True
ret_dict['output'] = None
try:
byte_code = compile_restricted(py_code, '<inline>', 'exec')
exec(byte_code, policy_globals)
ret_dict['TLE_flag'] = False
ret_dict['output'] = policy_globals['output']
except Exception as e:
print(repr(e))
ret_dict['RE_flag'] = True # if RE, TLE flag would also be True
ret_dict['RE_info'] = repr(e)
finally:
pass
# print('finally')
def generate_restricted_environment_policy():
policy_globals = {**safe_globals, **utility_builtins}
policy_globals['__builtins__']['__metaclass__'] = type
policy_globals['__builtins__']['__name__'] = type
policy_globals['_getattr_'] = Guards.safer_getattr
policy_globals['_write_'] = Guards.full_write_guard
policy_globals['_getiter_'] = Eval.default_guarded_getiter
policy_globals['_getitem_'] = Eval.default_guarded_getitem
policy_globals['_print_'] = PrintCollector
policy_globals['_iter_unpack_sequence_'] = Guards.guarded_iter_unpack_sequence
return policy_globals
|
StarcoderdataPython
|
112446
|
<reponame>minhpqn/pyvi<filename>pyvi/__init__.py
__author__ = 'trungtv'
|
StarcoderdataPython
|
1764870
|
#! /usr/bin/env python
from z_app import app
if __name__ == "__main__":
app.run(debug=True)
|
StarcoderdataPython
|
1640377
|
"""
Cpp solution with explanation in details
It's a very classical question.
Ref: http://www.geeksforgeeks.org/partition-set-k-subsets-equal-sum/
class Solution {
public:
// Method returns true if nums can be partitioned into K subsets
// with equal sum
bool canPartitionKSubsets(vector<int>& nums, int K)
{
int N = nums.size();
// If K is 1, then complete array will be our answer
if (K == 1) return true;
// If total number of partitions are more than N, then
// division is not possible
if (N < K) return false;
// if array sum is not divisible by K then we can't divide
// array into K partitions
int sum = 0;
for (int i = 0; i < N; i++) sum += nums[i];
if (sum % K != 0) return false;
// the sum of each subset should be subset (= sum / K)
int subset = sum / K;
int subsetSum[K];
bool taken[N];
// Initialize sum of each subset from 0
for (int i = 0; i < K; i++) subsetSum[i] = 0;
// mark all elements as not taken
for (int i = 0; i < N; i++) taken[i] = false;
// initialize first subsubset sum as last element of
// array and mark that as taken
subsetSum[0] = nums[N - 1];
taken[N - 1] = true;
// call recursive method to check K-substitution condition
return canPartitionKSubsets(nums, subsetSum, taken, subset, K, N, 0, N - 1);
}
// Recursive Utility method to check K equal sum
// subsetition of array
/**
array - given input array
subsetSum array - sum to store each subset of the array
taken - boolean array to check whether element
is taken into sum partition or not
K - number of partitions needed
N - total number of element in array
curIdx - current subsetSum index
limitIdx - lastIdx from where array element should be taken
*/
bool canPartitionKSubsets(vector<int>& nums, int subsetSum[], bool taken[], int subset, int K, int N, int curIdx, int limitIdx) {
if (subsetSum[curIdx] == subset) {
/* current index (K - 2) represents (K - 1) subsets of equal
sum last partition will already remain with sum 'subset'*/
if (curIdx == K - 2) return true;
// recursive call for next subsetition
return canPartitionKSubsets(nums, subsetSum, taken, subset,
K, N, curIdx + 1, N - 1);
}
// start from limitIdx and include elements into current partition
for (int i = limitIdx; i >= 0; i--) {
// if already taken, continue
if (taken[i]) continue;
int tmp = subsetSum[curIdx] + nums[i];
// if temp is less than subset then only include the element
// and call recursively
if (tmp <= subset) {
// mark the element and include into current partition sum
taken[i] = true;
subsetSum[curIdx] += nums[i];
bool nxt = canPartitionKSubsets(nums, subsetSum, taken, subset, K, N, curIdx, i - 1);
// after recursive call unmark the element and remove from
// subsetition sum
taken[i] = false;
subsetSum[curIdx] -= nums[i];
if (nxt) return true;
}
}
return false;
}
};
"""
"""
class Solution(object):
def canPartitionKSubsets(self, nums, k):
if len(nums) < k or sum(nums) % k != 0 :
return False
sub_sum = sum(nums) / k
if any(num > sub_sum for num in nums):
return False
nums.sort()
return self.dfs(sub_sum,nums[-1], nums[: -1])
def dfs(self, sub_sum, cur_sum, nums):
if cur_sum == sub_sum:
if not nums:
return True
return self.dfs(sub_sum, nums[-1], nums[: -1])
size = len(nums)
for index in xrange(size):
tmp = nums[index]
if nums[index] + cur_sum <= sub_sum:
nums[index], nums[-1] = nums[-1], nums[index]
nums.pop()
if self.dfs(sub_sum, cur_sum + tmp, nums):
return True
nums.append(tmp)
nums[index], nums[-1] = nums[-1], nums[index]
return False
"""
"""
class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum=0,len=nums.length;
for(int i:nums) sum+=i;
if(sum%k!=0) return false;
int[] sums= new int[k];
int target=sum/k;
Arrays.sort(nums);
return helper(nums,sums,target,len-1);
}
public boolean helper(int[]nums,int[] sums,int target,int curidx){
if(curidx==0){
for(int i=0;i<sums.length-1;i++){
if(sums[i]!=target) return false;
}
return true;
}
for(int i=0;i<sums.length;i++){
if(sums[i]+nums[curidx]<=target){
sums[i]+=nums[curidx];
if(helper(nums,sums,target,curidx-1)) return true;
sums[i]-=nums[curidx];
}
}
return false;
}
}
"""
"""
[Java/C++]Straightforward dfs solution
Update: This question has been changed after the contest. It added the special restriction 0 < nums[i] < 10000. My solution here is without that consideration.
Assume sum is the sum of nums[] . The dfs process is to find a subset of nums[] which sum equals to sum/k. We use an array visited[] to record which element in nums[] is used. Each time when we get a cur_sum = sum/k, we will start from position 0 in nums[] to look up the elements that are not used yet and find another cur_sum = sum/k.
An corner case is when sum = 0, my method is to use cur_num to record the number of elements in the current subset. Only if cur_sum = sum/k && cur_num >0, we can start another look up process.
Some test cases may need to be added in:
nums = {-1,1,0,0}, k = 4
nums = {-1,1}, k = 1
nums = {-1,1}, k = 2
nums = {-1,1,0}, k = 2
...
Java version:
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum = 0;
for(int num:nums)sum += num;
if(k <= 0 || sum%k != 0)return false;
int[] visited = new int[nums.length];
return canPartition(nums, visited, 0, k, 0, 0, sum/k);
}
public boolean canPartition(int[] nums, int[] visited, int start_index, int k, int cur_sum, int cur_num, int target){
if(k==1)return true;
if(cur_sum == target && cur_num>0)return canPartition(nums, visited, 0, k-1, 0, 0, target);
for(int i = start_index; i<nums.length; i++){
if(visited[i] == 0){
visited[i] = 1;
if(canPartition(nums, visited, i+1, k, cur_sum + nums[i], cur_num++, target))return true;
visited[i] = 0;
}
}
return false;
}
C++ version:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int sum = 0;
for(int num:nums)sum+=num;
if(k <= 0 || sum%k != 0)return false;
vector<int> visited(nums.size(), 0);
return canPartition(nums, visited, 0, k, 0, 0, sum/k);
}
bool canPartition(vector<int>& nums, vector<int>& visited, int start_index, int k, int cur_sum, int cur_num, int target){
if(k==1)
return true;
if(cur_sum == target && cur_num >0 )
return canPartition(nums, visited, 0, k-1, 0, 0, target);
for(int i = start_index; i<nums.size(); i++){
if(!visited[i]){
visited[i] = 1;
if(canPartition(nums, visited, i+1, k, cur_sum + nums[i], cur_num++, target))
return true;
visited[i] = 0;
}
}
return false;
}
"""
class Solution(object):
def canPartitionKSubsets(self, nums, k):
if k <= 0 or len(nums) < k or sum(nums) % k != 0:
return False
def canPartition(nums, start_index, k, cur_sum, cur_num, target):
if cur_sum > target:
return False
if k == 1:
return True
if cur_sum == target and cur_num > 0:
return canPartition(nums, 0, k-1, 0, 0, target)
for i in range(start_index, len(nums)):
if self.visited[i] is False:
self.visited[i] = True
if canPartition(nums, start_index + 1, k, cur_sum + nums[i], cur_num + 1, target):
return True
self.visited[i] = False
return False
self.visited = [False] * len(nums)
return canPartition(nums, 0, k, 0, 0, sum(nums) // k)
s = Solution()
print(s.canPartitionKSubsets([4, 5, 3, 2, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5], 14))
print(s.canPartitionKSubsets([780,935,2439,444,513,1603,504,2162,432,110,1856,575,172,367,288,316], 4))
class Solution(object):
def canPartitionKSubsets(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: bool
"""
if k <= 0 or len(nums) < k or sum(nums) % k != 0:
return False
def dfs(target, cur_sum, nums):
if target == cur_sum:
if len(nums) == 0:
return True
return dfs(target, nums[-1], nums[:-1])
for i in range(len(nums)):
tried_val = nums[i]
if tried_val + cur_sum <= target:
nums[i], nums[-1] = nums[-1], nums[i]
if dfs(target, cur_sum + tried_val, nums[:-1]):
return True
nums[-1], nums[i] = nums[i], nums[-1]
return False
nums = sorted(nums)
return dfs(sum(nums)//k, nums[-1], nums[:-1])
|
StarcoderdataPython
|
11140
|
<gh_stars>1-10
# Given an integer n, count the total number of digit 1 appearing
# in all non-negative integers less than or equal to n.
#
# For example:
# Given n = 13,
# Return 6, because digit 1 occurred in the following numbers:
# 1, 10, 11, 12, 13.
#
class Solution:
def countDigitOne(self, n):
"""
:type n: int
:rtype: int
"""
# sum all the '1's inside the n numbers
count = 0
for i in range(1, n+1): # count including n
count += self.numberOfDigitOne(i)
return count
def numberOfDigitOne(self, n):
"""
function to count number of digit ones in a number n.
mod by 10 to test if 1st digit is 1;
then divide by 10 to get next digit;
next test if next digit is 1.
"""
result = 0
while n:
if n % 10 == 1:
result += 1
n = n / 10
return result
if __name__ == "__main__":
print Solution().countDigitOne(13)
|
StarcoderdataPython
|
73117
|
<gh_stars>1-10
#!/usr/bin/env python3
# -*- coding : utf-8 -*-
# Author: <NAME>
import json
import argparse
from humblecritic import goodreads as gr
from humblecritic import __version__
def setup_parser():
parser = argparse.ArgumentParser(
description='Get score for HumbleBundle bundles.')
parser.add_argument('-v', '--version', help="print the script version",
action='version', version=__version__)
parser.add_argument('-l', '--link', help="URL [1 or more] to specific HumbleBundle book bundle.",
dest='urls', nargs='*', action='store')
parser.add_argument('-j', '--json', help="export results to json file.",
dest='json_file', action='store')
return parser.parse_args()
def export_to_json(path, bundles):
data = []
for bundle in bundles:
tiers = []
for tier in bundle.tiers:
items = []
for item in tier.items:
entry = {}
if isinstance(item.meta_item, gr.Book):
entry = {"id": item.meta_item.id,
"title": item.meta_item.title,
"authors": item.meta_item.authors,
"link": item.meta_item.link,
"average_rating": item.meta_item.average_rating,
"ratings_count": item.meta_item.ratings_count}
else:
entry = {"id": "",
"title": item.title,
"authors": "",
"link": "",
"average_rating": "",
"ratings_count": ""}
items.append(entry)
tiers.append(
{"title": tier.title, "price": tier.price, "items": items})
data.append({"title": bundle.title, "link": bundle.url,
"type": bundle.type.value, "tiers": tiers})
with open(path, 'w') as outfile:
json.dump(data, outfile)
def item_description(item):
lines = []
if isinstance(item.meta_item, gr.Book):
description = item.meta_item.title + " by "
for author in item.meta_item.authors:
description += str(author) + ", "
lines.append(description)
description = "Average rating of " + \
str(item.meta_item.average_rating)
description += " from " + \
str(item.meta_item.ratings_count) + " reviews."
lines.append(description)
else:
lines = [
str(item) + " was not found (will not be counted in total score)."]
return lines
def print_summary(bundle):
print("\n" + bundle.title)
ratings = []
for tier_index, tier in enumerate(bundle.tiers):
prefix = "│"
if tier_index is (len(bundle.tiers) - 1):
print("└── " + tier.title)
prefix = " "
else:
print("├── " + tier.title)
tier_ratings = []
for item_index, item in enumerate(tier.items):
description = item_description(item)
for index, line in enumerate(description):
if index is 0:
if item_index is (len(tier.items) - 1):
print(prefix + " └── " + line)
else:
print(prefix + " ├── " + line)
else:
if item_index is (len(tier.items) - 1):
print(prefix + " " + line)
else:
print(prefix + " │ " + line)
if isinstance(item.meta_item, gr.Book):
tier_ratings.append(float(item.meta_item.average_rating))
ratings += tier_ratings
average = float(sum(ratings)) / max(len(ratings), 1)
print("\nAverage rating in bundle: {0:.2f}".format(average))
|
StarcoderdataPython
|
199059
|
<reponame>kmr0877/pyq<filename>src/pyq/tests/test_numpy.py
from __future__ import absolute_import
try:
import numpy
from numpy import ma
except ImportError:
numpy = ma = None
import pytest
import pyq
from pyq import *
from pyq import _PY3K, Q_VERSION
from .test_k import K_INT_CODE, K_LONG_CODE
SYM_NA = int(K.int.na if Q_VERSION < 3.6 else K.long.na)
pytestmark = pytest.mark.skipif(numpy is None, reason="numpy is not installed")
SIZE_OF_PTR = pyq._k.SIZEOF_VOID_P
SIMPLE_DTYPES = 'bool uint8 int16 int32 int64 float32 float64'.split()
# TODO: Add support for the "Y" unit. What to do with ps and as?
# TIME_UNITS = 'Y M W D h m s ms us ns ps as'.split()
TIME_UNITS = 'M W D h m s ms us ns'.split()
DATETIME_DTYPES = ['datetime64[%s]' % unit for unit in TIME_UNITS]
TIMEDELTA_DTYPES = ['timedelta64[%s]' % unit for unit in TIME_UNITS if
unit != 'M']
@pytest.mark.parametrize(('t', 'r'), [
('?', 'b'),
('h', 'h'),
('i', 'i'),
('q', 'j'),
('f', 'e'),
('d', 'f'),
])
def test_ndarray(t, r):
a = numpy.zeros(0, t)
assert K(a) == k('"%c"$()' % r)
a = numpy.zeros(1, t)
assert K(a) == k(',0' + r)
def test_ma():
x = ma.array([1.0, 2, 3])
assert K(x) == k('1.0 2 3')
x = ma.masked_values([1.0, 0, 2], 0)
assert K(x) == k('1 0n 2')
s = ma.masked_values(0.0, 0)
assert K(s) == k('0n')
@pytest.mark.parametrize(('n', 'k'), [
('int8', '0x01'),
('int16', '1h'),
('int32', '1i'),
('int64', '1j'),
('float32', '1e'),
('float64', '1f'),
])
def test_scalar_conversion(n, k):
x = getattr(numpy, n)(1)
assert K(x) == q(k)
@pytest.mark.parametrize('a', [
'0n', '1i', '1j', '0.1f', '1e', '1h',
'010101b',
'0xdeadbeef',
'0 0n 1 0n',
'0 0N 1 0N',
'1 2 3 0Nh',
'0.0 0.1 0Nf',
'"abracadabra"',
'"s p a c e d"',
'0.0 0.1 0Ne',
'1 2 3 0Nj',
'1 2 3 0Ni',
])
def test_ma_array_roundtrip(a):
x = q(a)
m = ma.array(x)
assert K(m) == x
def test_ma_conversion():
x = q('1 0N 2')
m = ma.array(x)
assert isinstance(m.mask, numpy.ndarray)
@pytest.mark.parametrize(
't,char,size', [
(1, '?', 1),
(4, 'B', 1),
(5, 'h', 2),
(6, K_INT_CODE, 4),
(7, K_LONG_CODE, 8),
(8, 'f', 4),
(9, 'd', 8),
(10, 'S', 1),
# (11, 'O', SIZE_OF_PTR) # issue #589
(12, 'M', 8),
(13, 'M', 8),
(14, 'M', 8),
# (15, 'M', 8), # datetime
(16, 'm', 8),
(17, 'm', 8),
(18, 'm', 8),
(19, 'm', 8),
])
def test_empty(t, char, size):
x = q('$[;()]', K._kh(t))
a = numpy.array(x)
assert a.dtype.char == char
assert a.dtype.itemsize == size
def test_chartype():
x = kp('abc')
a = numpy.array(x)
assert a.tolist() == [b'a', b'b', b'c']
assert K(a) == x
def test_bytestype():
x = q('0xabab')
a = numpy.array(x)
assert a.tolist() == [0xAB] * 2
assert K(a) == x
@pytest.mark.xfail # issue #591
def test_splayed_char(tmpdir):
x = q('([]x:enlist"abc")')
d = q('{sv[`;x,`x`]}', tmpdir)
d.set(x)
y = d.get.x
a = numpy.array(y)
assert y.inspect(b't') == 87
assert a.dtype.char == 'S'
assert a.tolist() == [b'a', b'b', b'c']
@pytest.mark.skipif("pyq.Q_VERSION < 3")
def test_symbol_list():
x = K(['a'])
a = numpy.array(x)
assert numpy.array_equiv(a, ['a'])
x = K(['a'] * 3)
a = numpy.array(x, 'O')
assert a[0] is a[1] is a[2] == 'a'
def test_settitem():
a = numpy.array([1])
a[0] = K(2)
assert a[0] == 2
def test_issue652():
a = numpy.array([(q('1h'), q('1i'), q('1j'))], dtype='h,i,q')
assert a.dtype == numpy.dtype('h,i,q')
def test_datetime64_vector():
a = numpy.array(['2001-01-01'] * 3, dtype='M8')
assert K(a) == q('3#2001.01.01')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[ns]')
assert K(a) == q('enlist 2001.01.01D00')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[h]')
assert K(a) == q('enlist 2001.01.01D00')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[m]')
assert K(a) == q('enlist 2001.01.01D00')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[s]')
assert K(a) == q('enlist 2001.01.01D00')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[ms]')
assert K(a) == q('enlist 2001.01.01D00')
a = numpy.array(['2001-01-01T00Z'], dtype='M8[us]')
assert K(a) == q('enlist 2001.01.01D00')
def test_datetime64_scalar():
a = numpy.array('2001-01-01', dtype='M8')
assert K(a) == q('2001.01.01')
a = numpy.datetime64(1, 'Y')
assert K(a) == q('1971.01m')
a = numpy.datetime64(1, 'M')
assert K(a) == q('1970.02m')
a = numpy.datetime64(1, 'W')
assert K(a) == q('1970.01.08')
a = numpy.array('2001-01-01T00Z', dtype='M8[ns]')
assert K(a) == q('2001.01.01D00')
a = numpy.array('2001-01-01T00Z', dtype='M8[h]')
assert K(a) == q('2001.01.01D00')
a = numpy.array('2001-01-01T00Z', dtype='M8[m]')
assert K(a) == q('2001.01.01D00')
a = numpy.array('2001-01-01T00Z', dtype='M8[s]')
assert K(a) == q('2001.01.01D00')
a = numpy.array('2001-01-01T00Z', dtype='M8[ms]')
assert K(a) == q('2001.01.01D00')
a = numpy.array('2001-01-01T00Z', dtype='M8[us]')
assert K(a) == q('2001.01.01D00')
def test_timedelta64_vector():
a = numpy.array([1, 2, 3], dtype='m8[s]')
assert K(a) == q('"n"$ 1 2 3 * 1000000000j')
a = numpy.array([1, 2, 3], dtype='m8[ms]')
assert K(a) == q('"n"$ 1 2 3 * 1000000j')
a = numpy.array([1, 2, 3], dtype='m8[us]')
assert K(a) == q('"n"$ 1 2 3 * 1000j')
a = numpy.array([1, 2, 3], dtype='m8[ns]')
assert K(a) == q('"n"$ 1 2 3j')
def test_timedelta64_scalar():
a = numpy.timedelta64(1, 'W')
assert K(a) == q('7D00:00:00')
a = numpy.timedelta64(1, 'D')
assert K(a) == q('1D00:00:00')
a = numpy.timedelta64(1, 'h')
assert K(a) == q('0D01:00:00')
a = numpy.timedelta64(1, 'm')
assert K(a) == q('0D00:01:00')
a = numpy.timedelta64(1, 's')
assert K(a) == q('0D00:00:01')
a = numpy.timedelta64(1, 'ms')
assert K(a) == q('0D00:00:00.001')
a = numpy.timedelta64(1, 'us')
assert K(a) == q('0D00:00:00.000001')
a = numpy.timedelta64(1, 'ns')
assert K(a) == q('0D00:00:00.000000001')
def test_record_arrays():
a = numpy.array([(date(2001, 1, 1), 1, 3.14),
(date(2001, 1, 2), 2, 2.78), ],
dtype=[('date', 'M8[D]'), ('num', 'i2'), ('val', 'f')])
t = K(a)
assert t.date == q('2001.01.01 2001.01.02')
assert t.num == q('1 2h')
assert t.val == q('3.14 2.78e')
r = K(a[0])
assert r == q("`date`num`val!(2001.01.01;1h;3.14e)")
def test_unsupported_dtype_errors():
with pytest.raises(TypeError):
a = numpy.array('abc', dtype='S3')
K(a)
@pytest.mark.parametrize('e', ['sym', 'other'])
def test_enum_conversion(q, e):
x = q('`%s?`a`b`c' % e)
a = numpy.asarray(x.data)
a.tolist() == [0, 1, 2]
@pytest.mark.parametrize('data, dtype, kstr', [
([1, 0, 1], bool, '101b'),
([1, 2, 3], 'h', '1 2 3h'),
([1, 2, 3], 'i', '1 2 3i'),
([1, 2, 3], 'q', '1 2 3j'),
([1, 2, 3], 'f', '1 2 3e'),
([1, 2, 3], 'd', '1 2 3f'),
])
def test_from_array_struct(data, dtype, kstr):
a = numpy.array(data, dtype)
x = K._from_array_struct(a.__array_struct__)
assert x == q(kstr)
def test_from_array_struct_errors():
with pytest.raises(TypeError):
K._from_array_struct()
# XXX: Shouldn't this be a TypeError?
with pytest.raises(ValueError):
K._from_array_struct(None)
# XXX: Shouldn't this be a NotImplementedError?
# a = numpy.zeros((1, 1))
# with pytest.raises(ValueError):
# K._from_array_struct(a.__array_struct__)
a = numpy.array(['', None], 'O')
# XXX: Shouldn't this be a TypeError?
with pytest.raises(ValueError):
K._from_array_struct(a.__array_struct__)
def test_numpy_in_versions(capsys):
versions()
out = capsys.readouterr()[not _PY3K]
assert 'NumPy' in out
def test_no_dtype():
class NoDtype(numpy.ndarray):
"""A helper class to test error branches"""
@property
def dtype(self):
raise AttributeError('intentional error')
x = NoDtype([0], dtype='M8[D]')
with pytest.raises(AttributeError) as info:
K(x)
assert 'intentional error' in str(info.value)
@pytest.mark.parametrize('kstr, typestr', zip(
('0b;0x00;0h;0i;0j;0e;0.0;" ";`;2000.01m;2000.01.01;'
'2000.01.01T00:00:00.000;00:00;00:00:00;00:00:00.000').split(';'),
('<b1,<u1,<i2,<i4,<i8,<f4,<f8,<S1,'
'|O%d,<i4,<i4,<f8,<i4,<i4,<i4' % SIZE_OF_PTR).split(',')))
def test_array_typestr(kstr, typestr):
x = q(kstr)
assert x.__array_typestr__ == typestr
def test_there_and_back_again(q):
x = q.til(10)
a = numpy.asarray(x)
y = K(a)
assert x is y
def test_table_to_array():
t = q('([]a:1 2;b:"xy")')
a = numpy.array(t)
assert a.tolist() == [(1, b'x'),
(2, b'y')]
@pytest.mark.parametrize('dtype',
SIMPLE_DTYPES + TIMEDELTA_DTYPES + DATETIME_DTYPES)
def test_table_to_array_all_types(dtype):
c = numpy.zeros(1, dtype)
t = +q('!', ['c'], (c,))
a = numpy.asarray(t)
assert a.dtype.names == ('c',)
assert numpy.array_equiv(c, a['c'])
@pytest.mark.skipif("q('.z.K') < 3")
@pytest.mark.parametrize('dtype', SIMPLE_DTYPES)
def test_2d(dtype):
a = numpy.zeros((2, 3), dtype)
x = K(a)
y = K(a.flatten())
assert x.raze == y
@pytest.mark.skipif("q('.z.K') < 3.4")
@pytest.mark.parametrize('dtype', SIMPLE_DTYPES)
def test_3d(dtype):
a = numpy.zeros((2, 3, 2), dtype)
x = K(a)
y = K(a.flatten())
assert x.raze.raze == y
@pytest.mark.parametrize('dtype', SIMPLE_DTYPES)
def test_0d(dtype):
a = numpy.ones((), dtype)
x = K(a)
assert x.enlist[0] == 1
def test_enum_to_array(q):
x = q('`sym?`a`b')
a = numpy.array(['a', 'b'], dtype=object)
assert numpy.array_equiv(x, a)
@pytest.mark.skipif("q('.z.K') < 3.4")
@pytest.mark.parametrize('dtype', SIMPLE_DTYPES)
def test_2d_roundtrip(dtype):
a = numpy.zeros((3, 2), dtype)
x = K(a)
b = numpy.array(x)
assert numpy.array_equiv(a, b)
def test_priority():
a = numpy.arange(2)
b = q.til(2)
assert isinstance(a + b, K)
assert isinstance(b + a, K)
class A(object):
@property
def __array_struct__(self):
raise TypeError
def test_broken_array_struct():
with pytest.raises(TypeError):
K(A())
def test_broken_mask():
class B(object):
a = numpy.zeros(0)
@property
def __array_struct__(self):
return self.a.__array_struct__
@property
def mask(self):
raise TypeError
with pytest.raises(TypeError):
K(B())
def test_strided_nd():
a = numpy.zeros((2, 2, 2))
with pytest.raises(ValueError):
K(a.diagonal())
def test_0d_str():
a = numpy.array('x', 'O')
assert K(a) == 'x'
def test_call_python(q):
def f():
return numpy.array([1.0, 2.0])
q.f = f
assert q("f()") == [1.0, 2.0]
def test_enum_to_numpy(q):
x = q('`sym?`a`b`')
assert numpy.asarray(x.data).tolist() == [0, 1, SYM_NA]
|
StarcoderdataPython
|
55077
|
from pathlib import Path
from boucanpy.core import logger
from boucanpy.cli.base import BaseCommand
from boucanpy.db.models import models
class DbTruncate(BaseCommand):
name = "db-truncate"
aliases = ["truncate"]
description = "truncate db"
add_log_level = True
add_debug = True
@classmethod
def parser(cls, parser):
parser.add_argument("-c", "--confirm", action="store_true", help="seed data")
return parser
async def run(self):
self.db_register()
failed = []
if self.option("confirm"):
for class_name, model in models.items():
for item in self.session().query(model).all():
logger.warning(f"run@db_truncate.py - Deleting {item}")
try:
self.session().delete(item)
self.session().commit()
except Exception as e:
failed.append((item, e))
else:
logger.warning("run@db_truncate.py - You must confirm to drop data")
if len(failed) > 0:
logger.warning("run@db_truncate.py - Encountered errors")
for f in failed:
print("Failed:", item[0])
print("Error", item[1])
|
StarcoderdataPython
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.