id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
26681
from django import template register = template.Library() @register.filter def has_group(user, name): return user.groups.filter(name=name).exists()
StarcoderdataPython
3267177
# Generated by Django 2.0.2 on 2018-02-19 14:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notifications', '0005_auto_20160504_1520'), ] operations = [ migrations.AlterField( model_name='notification', name='deleted', field=models.BooleanField(db_index=True, default=False), ), migrations.AlterField( model_name='notification', name='emailed', field=models.BooleanField(db_index=True, default=False), ), migrations.AlterField( model_name='notification', name='public', field=models.BooleanField(db_index=True, default=True), ), migrations.AlterField( model_name='notification', name='unread', field=models.BooleanField(db_index=True, default=True), ), ]
StarcoderdataPython
34073
<reponame>asuol/worky """ MIT License Copyright (c) 2020 <NAME> <<EMAIL>.lousa.<EMAIL>ques at gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from flask import Flask, request, redirect from flask.templating import render_template from datetime import datetime, timedelta from worky.models.index_model import IndexModel from worky.models.completed_model import CompletedModel from worky.models.create_task_model import CreateTaskModel from worky.models.update_task_model import UpdateTaskModel from worky.models.confirm_form_model import ConfirmFormModel from worky.storage import Storage from waitress import serve app = Flask(__name__) def run(db, host, port): app.config['STORAGE'] = Storage(db) serve(app, host=host, port=port) @app.route('/') def index(): storage = app.config['STORAGE'] overdue_tasks = storage.get_overdue_tasks() active_tasks = storage.get_active_tasks() index_model = IndexModel(active_tasks, overdue_tasks) return render_template("index.html", model=index_model) @app.route('/createForm') def create_form(): default_due_date = datetime.utcnow() + timedelta(weeks=2) default_due_date = datetime.strftime(default_due_date, '%Y-%m-%d') create_task_model = CreateTaskModel("/createTask", default_due_date) return render_template("createTask.html", model=create_task_model) @app.route('/createTask') def create_task(): storage = app.config['STORAGE'] description = request.args.get('description') due_date = request.args.get('dueDate') storage.create_task(description, due_date) return redirect("/", code=302) @app.route('/updateForm') def update_form(): storage = app.config['STORAGE'] task_id = request.args.get('id') task = storage.get_task(task_id) update_task_model = UpdateTaskModel("/updateTask", task.due_date, task) return render_template("updateTask.html", model=update_task_model) @app.route('/updateTask') def update_task(): storage = app.config['STORAGE'] task_id = request.args.get('id') description = request.args.get('description') due_date = request.args.get('dueDate') storage.update_task(task_id, description, due_date) return redirect("/", code=302) @app.route('/deleteForm') def delete_form(): storage = app.config['STORAGE'] task_id = request.args.get('id') task = storage.get_task(task_id) action = "Delete" form_action = "/deleteTask" confirm_model = ConfirmFormModel(form_action, task.due_date, task, action) return render_template("confirmForm.html", model=confirm_model) @app.route('/deleteTask') def delete_task(): storage = app.config['STORAGE'] task_id = request.args.get('id') storage.delete_task(task_id) return redirect("/", code=302) @app.route('/completeForm') def complete_form(): storage = app.config['STORAGE'] task_id = request.args.get('id') task = storage.get_task(task_id) action = "Complete" form_action = "/completeTask" confirm_model = ConfirmFormModel(form_action, task.due_date, task, action) return render_template("confirmForm.html", model=confirm_model) @app.route('/completeTask') def complete_task(): storage = app.config['STORAGE'] task_id = request.args.get('id') storage.complete_task(task_id) return redirect("/", code=302) @app.route('/completed') def completed(): storage = app.config['STORAGE'] completed_tasks = storage.get_completed_tasks() completed_model = CompletedModel(completed_tasks) return render_template("completed.html", model=completed_model)
StarcoderdataPython
30126
<filename>app/__init__.py<gh_stars>1-10 import os import sys from instance.config import DATABASE_URI from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_compress import Compress app = Flask(__name__) Compress(app) app.config['SQLALCHEMY_DATABASE_URI'] = DATABASE_URI app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) from app import bot from app import web
StarcoderdataPython
3277041
'''For computing flag vector of product in various bases >>> product_formula(2,3) array([[[ 1, 12, 30, 34, 120, 21, 120, 180], [ 1, 15, 39, 44, 159, 26, 159, 240], [ 1, 18, 45, 48, 180, 27, 180, 270]], <BLANKLINE> [[ 1, 16, 40, 44, 160, 26, 160, 240], [ 1, 20, 52, 57, 212, 32, 212, 320], [ 1, 24, 60, 62, 240, 33, 240, 360]]]) ''' # For Python2 compatibility from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals __metaclass__ = type import numpy from .fibonacci import FIB_WORDS from .data import P_flag from .matrices import fib_zeros_array def word_from_IC(s): return b''.join( {'C': b'\x01', 'D': b'\x02'}[c] for c in s.replace('IC', 'D') ) def index_from_IC(s): return FIB_WORDS.index(word_from_IC(s)) def change_product_basis(product_triple, a, b, c): n_a, n_b, n_c = product_triple.shape value = numpy.zeros(product_triple.shape, int) rows = numpy.reshape(product_triple, (n_a * n_b, n_c)) for i in range(n_a): for j in range(n_b): # Convolve the columns to get coefficients. coefficients = [ r * s # White space is to slow reader - pay attention. for r in a[ :, i] for s in b[ :, j] ] join_ic = sum( c * r for (c, r) in zip(coefficients, rows) ) join_cd = numpy.dot(c, join_ic) value[i, j, : ] = join_cd return value # TODO: Check this - it only looks right. def product_formula(n, m): value = fib_zeros_array(n, m, n + m) for line in P_flag[n + m]: pieces = line.split() keys, column = pieces[0], tuple(map(int, pieces[1:])) keys = keys[2:-1].split(',') i = index_from_IC(keys[0])[1] j = index_from_IC(keys[1])[1] if len(keys[0]) == n: value[i, j, : ] = column if len(keys[0]) == m: value[j, i, : ] = column return value
StarcoderdataPython
83704
<reponame>ecly/adventofcode2020 import sys from collections import defaultdict def parse(): lines = sys.stdin.read().strip().split("\n") rules_fwd = defaultdict(list) rules_bwd = defaultdict(list) for line in lines: if not line.strip(): continue bag, rest = line.split(" bags contain ") for rule in rest.split(", "): if rule == "no other bags.": continue count, adj1, adj2, _ = rule.split() tgt = f"{adj1} {adj2}" rules_fwd[tgt].append(bag) rules_bwd[bag].append((int(count), tgt)) return rules_fwd, rules_bwd def part1(rules): seen = set() queue = rules["shiny gold"] while queue: c = queue.pop() seen.add(c) for color in rules[c]: if color not in seen: queue.append(color) return len(seen) def count_bags(color, rules): count = 0 for cnt, clr in rules[color]: count += cnt count += cnt * count_bags(clr, rules) return count def part2(rules): return count_bags("shiny gold", rules) def main(): rules_fwd, rules_bwd = parse() print(part1(rules_fwd)) print(part2(rules_bwd)) if __name__ == "__main__": main()
StarcoderdataPython
3341008
<filename>profiles/serializers_test.py<gh_stars>10-100 # pylint: disable=unused-argument,too-many-arguments,redefined-outer-name """ Tests for serializers for profiles REST APIS """ import pytest import factory from django.core.files.uploadedfile import SimpleUploadedFile from rest_framework.exceptions import ValidationError from profiles.factories import UserWebsiteFactory from profiles.models import Profile, PERSONAL_SITE_TYPE, FACEBOOK_DOMAIN from profiles.serializers import ( UserSerializer, ProfileSerializer, UserWebsiteSerializer, ) small_gif = ( b"\x47\x49\x46\x38\x39\x61\x01\x00\x01\x00\x00\x00\x00\x21\xf9\x04" b"\x01\x0a\x00\x01\x00\x2c\x00\x00\x00\x00\x01\x00\x01\x00\x00\x02" b"\x02\x4c\x01\x00\x3b" ) def test_serialize_user(user): """ Test serializing a user """ profile = user.profile assert UserSerializer(user).data == { "id": user.id, "username": user.username, "profile": { "name": profile.name, "image": profile.image, "image_small": profile.image_small, "image_medium": profile.image_medium, "image_file": profile.image_file.url, "image_small_file": profile.image_small_file.url, "image_medium_file": profile.image_medium_file.url, "profile_image_small": profile.image_small_file.url, "profile_image_medium": profile.image_medium_file.url, "bio": profile.bio, "headline": profile.headline, "username": profile.user.username, "placename": profile.location["value"], }, } def test_serialize_create_user(db, mocker): """ Test creating a user """ profile = { "name": "name", "image": "image", "image_small": "image_small", "image_medium": "image_medium", "email_optin": True, "toc_optin": True, "bio": "bio", "headline": "headline", "placename": "", } get_or_create_auth_tokens_stub = mocker.patch( "channels.api.get_or_create_auth_tokens" ) enrollment_job_mock = mocker.patch( "authentication.api.update_enrollments_for_email.delay" ) serializer = UserSerializer(data={"email": "test<EMAIL>", "profile": profile}) serializer.is_valid(raise_exception=True) user = serializer.save() get_or_create_auth_tokens_stub.assert_called_once_with(user) enrollment_job_mock.assert_called_once_with(user.email) del profile["email_optin"] # is write-only del profile["toc_optin"] # is write-only profile.update( { "image_file": None, "image_small_file": None, "image_medium_file": None, "profile_image_small": "image_small", "profile_image_medium": "image_medium", "username": user.username, } ) assert UserSerializer(user).data == { "id": user.id, "username": user.username, "profile": profile, } @pytest.mark.parametrize( "key,value", [ ("name", "name_value"), ("image", "image_value"), ("image_small", "image_small_value"), ("image_medium", "image_medium_value"), ("email_optin", True), ("email_optin", False), ("bio", "bio_value"), ("headline", "headline_value"), ("toc_optin", True), ("toc_optin", False), ], ) def test_update_user_profile(mocker, user, key, value): """ Test updating a profile via the UserSerializer """ mock_after_profile_created_or_updated = mocker.patch( "profiles.serializers.after_profile_created_or_updated" ) profile = user.profile serializer = UserSerializer( instance=user, data={"profile": {key: value}}, partial=True ) serializer.is_valid(raise_exception=True) serializer.save() profile2 = Profile.objects.get(user=user) for prop in ( "name", "image", "image_small", "image_medium", "email_optin", "toc_optin", "bio", "headline", ): if prop == key: if isinstance(value, bool): assert getattr(profile2, prop) is value else: assert getattr(profile2, prop) == value else: assert getattr(profile2, prop) == getattr(profile, prop) mock_after_profile_created_or_updated.assert_called_once_with(profile) @pytest.mark.parametrize( "data,is_valid", [ ({}, True), ("notjson", False), ({"bad": "json"}, False), (None, True), ({"value": "city"}, True), ], ) def test_location_validation(user, data, is_valid): """Test that lcoation validation works correctly""" serializer = ProfileSerializer( instance=user.profile, data={"location": data}, partial=True ) assert serializer.is_valid(raise_exception=False) is is_valid @pytest.mark.parametrize( "key,value", [ ("name", "name_value"), ("bio", "bio_value"), ("headline", "headline_value"), ("location", {"value": "Hobbiton, The Shire, Middle-Earth"}), ( "image_file", SimpleUploadedFile("small.gif", small_gif, content_type="image/gif"), ), ], ) def test_update_profile(mocker, user, key, value): """ Test updating a profile via the ProfileSerializer """ mock_after_profile_created_or_updated = mocker.patch( "profiles.serializers.after_profile_created_or_updated" ) profile = user.profile serializer = ProfileSerializer( instance=user.profile, data={key: value}, partial=True ) serializer.is_valid(raise_exception=True) serializer.save() profile2 = Profile.objects.first() for prop in ( "name", "image_file", "email_optin", "toc_optin", "bio", "headline", "location", ): if prop == key: if isinstance(value, bool): assert getattr(profile2, prop) is value elif key == "image_file": assert getattr(profile2, prop).read() == small_gif else: assert getattr(profile2, prop) == value else: assert getattr(profile2, prop) == getattr(profile, prop) mock_after_profile_created_or_updated.assert_called_once_with(profile) def test_serialize_profile_websites(user): """Tests that the ProfileSerializer includes UserWebsite information when an option is set via the context""" profile = user.profile user_websites = UserWebsiteFactory.create_batch( 2, profile=profile, site_type=factory.Iterator([PERSONAL_SITE_TYPE, FACEBOOK_DOMAIN]), ) serialized_profile = ProfileSerializer( profile, context={"include_user_websites": True} ).data serialized_sites = UserWebsiteSerializer(user_websites, many=True).data assert len(serialized_profile["user_websites"]) == 2 # Check that the two lists of OrderedDicts are equivalent assert sorted( [list(data.items()) for data in serialized_profile["user_websites"]] ) == sorted([list(data.items()) for data in serialized_sites]) class TestUserWebsiteSerializer: """UserWebsiteSerializer tests""" def test_serialize(self): """ Test serializing a user website """ user_website = UserWebsiteFactory.build() assert UserWebsiteSerializer(user_website).data == { "id": user_website.id, "url": user_website.url, "site_type": user_website.site_type, } def test_deserialize(self, mocker, user): """ Test deserializing a user website """ url = "https://example.com" site_type = "dummy" patched_get_site_type = mocker.patch( "profiles.serializers.get_site_type_from_url", return_value=site_type ) user_website_data = {"username": user.username, "url": url} serializer = UserWebsiteSerializer(data=user_website_data) is_valid = serializer.is_valid(raise_exception=True) assert is_valid is True assert serializer.validated_data["url"] == url assert serializer.validated_data["site_type"] == site_type assert serializer.validated_data["profile"] == user.profile patched_get_site_type.assert_called_once_with(url) @pytest.mark.parametrize( "input_url,exp_result_url", [("HTtPS://AbC.COM", "https://abc.com"), ("AbC.cOM", "http://abc.com")], ) def test_user_website_url(self, mocker, user, input_url, exp_result_url): """ Test that deserializing a user website url adds a protocol if necessary and forces lowercase. """ site_type = "dummy" mocker.patch( "profiles.serializers.get_site_type_from_url", return_value=site_type ) user_website_data = {"username": user.username, "url": input_url} serializer = UserWebsiteSerializer(data=user_website_data) is_valid = serializer.is_valid(raise_exception=True) assert is_valid is True assert serializer.validated_data["url"] == exp_result_url def test_site_uniqueness(self, user): """ Test that a user can only save one of a specific type of site """ UserWebsiteFactory.create( profile=user.profile, url="facebook.com/1", site_type=FACEBOOK_DOMAIN ) user_website_data = {"username": user.username, "url": "facebook.com/2"} serializer = UserWebsiteSerializer(data=user_website_data) with pytest.raises( ValidationError, match="A website of this type has already been saved." ): serializer.is_valid(raise_exception=True) serializer.save()
StarcoderdataPython
1694857
<gh_stars>0 from flask import Flask import os app = Flask(__name__, static_url_path='') app.config.from_object('config') # __file__ refers to the file settings.py APP_ROOT = os.path.dirname(os.path.abspath(__file__)) # refers to application_top APP_STATIC = os.path.join(APP_ROOT, 'static') from app.routes import index
StarcoderdataPython
1710415
#!/usr/bin/env python # Author: <NAME> # Description: a.k.a. foo.py as posted at https://www.biostars.org/p/95929/ # Solves the problem of orphan reads in a pair that may remain after retaining # only those that align uniquely (i.e., after filtering using grep -v "XS:i:") # This script is invoked by samtools_PE_RNAseq_mapping_pipeline.sh import csv import sys # ajt: added line for generating Unix (rather than Windows) text file csv.register_dialect("unixEOL", delimiter="\t", lineterminator="\n") f = csv.reader(sys.stdin, dialect="unixEOL") of = csv.writer(sys.stdout, dialect="unixEOL") last_read = None for line in f : #take care of the header if(line[0][0] == "@") : of.writerow(line) continue if(last_read == None) : last_read = line else : if(last_read[0] == line[0]) : of.writerow(last_read) of.writerow(line) last_read = None else : last_read = line
StarcoderdataPython
3337280
from django.apps import AppConfig class GallerysConfig(AppConfig): name = 'gallerys'
StarcoderdataPython
1716064
import pandas as pd import numpy as np import aif360.datasets # generators for biased data by models def feature_bias(rho_a, rho_z, N, d, mu): ''' Bias that occurs when different protected attributes have different means (mu) Parameters ----------- rho_a : float p(a = 1) rho_z : float p(z = 1) N : int number of samples mu : matrix like, 2xD mu[0] is the mean for a=0, mu[0][0] is the mean for a=0, z=0, D = len(mu[0][0]) = number of features d : int total number of features Returns -------- df : DataFrame a data frame with N rows and columns: a,y,z, x0:xD ''' # portion of disadvantaged group p_a = [1-rho_a, rho_a] # portion of allocation of target variable p_z = [1-rho_z, rho_z] cov = np.eye(d) a = np.random.choice([0,1], p=p_a, size=N) z = np.random.choice([0,1], p=p_z, size=N) y = z x = [np.random.multivariate_normal(mu[a_i][z_i],cov) for a_i, z_i in zip(a,z)] x = np.asarray(x) # concatenate the data and p data = np.concatenate([np.asarray([a,z,y]).T,x],axis=1) labels =['a','z','y'] labels.extend(['x'+str(i) for i in range(d)]) df = pd.DataFrame(data=data, columns = labels) return df def subspace_bias(rho_a, rho_z, N, d, d_shared, mu): ''' Bias that occurs when different features are informative for different protected classes (d not shared) Parameters ----------- rho_a : float p(a = 1) rho_z : float p(z=1) N : int number of samples mu : matrix like, 2xD mu[0] is the mean for z=0, D = len(mu[0]) = number of features d : int total number of features d_shared : int number of shared features Returns -------- df : DataFrame a data frame with N rows and columns: a,y,z, x0:xD ''' p_a = [1-rho_a, rho_a] p_z = [1-rho_z, rho_z] cov = np.eye(d) d_noise = d-d_shared # noise dims per row d_total = d + d_noise # total dims a = np.random.choice([0,1], p=p_a, size=N) z = np.random.choice([0,1], p=p_z, size=N) y = z labels_protected = np.asarray([a,z,y]).T x_z = [np.random.multivariate_normal(mu[z_i],cov) for z_i in z] x_n = np.random.multivariate_normal([0]*d_noise,np.eye(d_noise),N) # functions for combining noise and true vectors x_a = {0: lambda x,n: np.concatenate((x,n)), 1: lambda x,n: np.concatenate((n, x[d_shared-1:d], x[:d_noise]))} x = [x_a[a](x_zi,x_ni) for a,x_zi,x_ni in zip(a,x_z,x_n)] x = np.asarray(x) # concatenate the data and p data = np.concatenate([labels_protected,x],axis=1) labels =['a','z','y'] labels.extend(['x'+str(i) for i in range(d_total)]) df = pd.DataFrame(data=data, columns = labels) return df def label_bias(rho_a, rho_z, beta, N, d, mu): ''' Bias where the labeling errors are correlated with the protected attribute Parameters ----------- rho_a : float p(a = 1) rho_z : float p(z=1) beta : float error rate in y, p(y=z) = 1-beta N : int number of samples d : int number of features mu : matrix like, 2xD mu[0] is the mean for z=0, D = len(mu[0]) = number of features Returns -------- df : DataFrame a data frame with N rows and columns: a,y,z, x0:xD ''' p_a = [1-rho_a, rho_a] p_z = [1-rho_z, rho_z] cov = np.eye(d) a = np.random.choice([0,1], p=p_a, size=N) z = np.random.choice([0,1], p=p_z, size=N) x = [np.random.multivariate_normal(mu[z_i],cov) for z_i in z] y = [np.random.choice([zi,1-zi],p=[1-beta[ai], beta[ai]]) for ai,zi in zip(a,z)] # convert to numpy arrays and reshape labels_protected = np.asarray([a,z,y]).T x = np.asarray(x) # concatenate the data and p data = np.concatenate([labels_protected,x],axis=1) labels =['a','z','y'] labels.extend(['x'+str(i) for i in range(len(mu[0]))]) df = pd.DataFrame(data=data, columns = labels) return df def convert_to_dataset(df, label_names, protected_attribute_names): ''' Converts a dataframe created by one of the above functions into a dataset usable in IBM 360 package Parameters ----------- df : pandas dataframe label_names : optional, a list of strings describing each label protected_attribute_names : optional, a list of strings describing features corresponding to protected attributes Returns -------- aif360.datasets.BinaryLabelDataset ''' return aif360.datasets.BinaryLabelDataset(1.0, 0.0, df = df, label_names = label_names, protected_attribute_names = protected_attribute_names)
StarcoderdataPython
11481
<gh_stars>1-10 import unittest from ....providers.aws.interactive import requires_replacement def generate_resource_change(replacement=True): resource_change = { "Action": "Modify", "Details": [], "LogicalResourceId": "Fake", "PhysicalResourceId": "arn:aws:fake", "Replacement": "True" if replacement else "False", "ResourceType": "AWS::Fake", "Scope": ["Properties"], } return { "ResourceChange": resource_change, "Type": "Resource", } class TestInteractiveProvider(unittest.TestCase): def test_requires_replacement(self): changeset = [ generate_resource_change(), generate_resource_change(replacement=False), generate_resource_change(), ] replacement = requires_replacement(changeset) self.assertEqual(len(replacement), 2) for resource in replacement: self.assertEqual(resource["ResourceChange"]["Replacement"], "True")
StarcoderdataPython
3281330
<gh_stars>0 # coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Const Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.chart from enum import IntFlag from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME _DYNAMIC = False if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: _DYNAMIC = True if not TYPE_CHECKING and _DYNAMIC: from com.sun.star.chart import ChartDataCaption as ChartDataCaption if hasattr(ChartDataCaption, '_constants') and isinstance(ChartDataCaption._constants, dict): ChartDataCaption._constants['__ooo_ns__'] = 'com.sun.star.chart' ChartDataCaption._constants['__ooo_full_ns__'] = 'com.sun.star.chart.ChartDataCaption' ChartDataCaption._constants['__ooo_type_name__'] = 'const' def build_enum(): global ChartDataCaptionEnum ls = [f for f in dir(ChartDataCaption) if not callable(getattr(ChartDataCaption, f)) and not f.startswith('__')] _dict = {} for name in ls: _dict[name] = getattr(ChartDataCaption, name) ChartDataCaptionEnum = IntFlag('ChartDataCaptionEnum', _dict) build_enum() else: from ...lo.chart.chart_data_caption import ChartDataCaption as ChartDataCaption class ChartDataCaptionEnum(IntFlag): """ Enum of Const Class ChartDataCaption These values specify how the captions of data points are displayed. **since** LibreOffice 7.1 """ NONE = ChartDataCaption.NONE """ No captions are displayed. """ VALUE = ChartDataCaption.VALUE """ The caption contains the value of the data point in the number format of the axis that is attached to the respective data series. """ PERCENT = ChartDataCaption.PERCENT """ The caption contains the value of the data point in percent of all data points of one category. That means, if a data point is the first one of a series, the percentage is calculated by using the first data points of all available series. """ TEXT = ChartDataCaption.TEXT """ The caption contains the category name of the category to which a data point belongs. """ FORMAT = ChartDataCaption.FORMAT """ The number formatter is always used for displaying the value as value. So this setting is deprecated. """ SYMBOL = ChartDataCaption.SYMBOL """ The symbol of data column/row is additionally displayed in the caption. """ CUSTOM = ChartDataCaption.CUSTOM """ The caption contains a custom text, which belongs to a data point label. **since** LibreOffice 7.1 """ DATA_SERIES = ChartDataCaption.DATA_SERIES """ The name of the data series is additionally displayed in the caption. **since** LibreOffice 7.2 """ __all__ = ['ChartDataCaption', 'ChartDataCaptionEnum']
StarcoderdataPython
3336654
<filename>ansibleplaybookgrapher/__init__.py __version__ = "0.9.1" __prog__ = "ansible-playbook-grapher"
StarcoderdataPython
1724971
x:[int] = None x = [] x[0] = 4
StarcoderdataPython
3397664
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Core module for pypcurve """ from .pypcurve import PCurve __all__ = ["PCurve"] __version__ = PCurve.__version__
StarcoderdataPython
3265910
# -*- coding: utf-8 -*- """! Test OPM Archive library. @author zer0 @date 2015-12-16 """ import unittest import os import __main__ as main import libopm.archive as Archive ARCHIVE_NAME = 'test_archive' CURRENT_SCRIPT = os.path.basename(main.__file__) class TestArchive(unittest.TestCase): @classmethod def setUpClass(cls): Archive.compressArchive(ARCHIVE_NAME, [CURRENT_SCRIPT]) @classmethod def tearDownClass(cls): if os.path.exists(ARCHIVE_NAME): os.remove(ARCHIVE_NAME) def testDefault(self): self.assertTrue(os.path.exists(ARCHIVE_NAME)) def testReadFileListWithArchive(self): filelist = Archive.readFileListWithArchive(ARCHIVE_NAME) self.assertEquals(len(filelist), 1) self.assertEquals(filelist[0].name, CURRENT_SCRIPT) def testReadStringWithArchive(self): content = Archive.readStringWithArchive(ARCHIVE_NAME, CURRENT_SCRIPT) self.assertGreater(len(content), 1) self.assertTrue(content.find(ARCHIVE_NAME)) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1718803
from django.urls import path from django.views.generic import TemplateView from . import views from . import views_v1_1 from . import views_v1_2 urlpatterns = [ path('', TemplateView.as_view(template_name='index.html'), name='index'), path('data', views.rest_get, name='rest_get'), path('v1.1/data', views_v1_1.rest_get, name='rest_get_v1_1'), path('v1.1/data/<int:id_distribuidor>', views_v1_1.rest_get_single, name='rest_get_single_v1_1'), path('v1.2/data', views_v1_2.rest_get, name='rest_get_v1_2'), path('v1.2/data/<int:id_distribuidor>', views_v1_2.rest_get_single, name='rest_get_single_v1_2'), path('v1.2/data/<int:id_distribuidor>', views_v1_2.rest_get_single, name='rest_get_single_v1_2'), path('formulario/', TemplateView.as_view(template_name='index.html'), name='formulario'), path('formulario/data', views_v1_2.rest_post_distribuidor_potencial, name='rest_post_distribuidor_potencial_v1_2') ]
StarcoderdataPython
1630237
import os import asyncio if os.name == 'nt': from hotplug.windows_notifier import WindowsNotifier as Notifier else: from hotplug.linux_notifier import LinuxNotifier as Notifier __instance = None def get_notifier(): global __instance if __instance is not None: return __instance __instance = Notifier() asyncio.create_task(__instance.start()) return __instance def __getattr__(name): global __instance if __instance is None: __instance = get_notifier() if hasattr(__instance, name): return getattr(__instance, name) raise AttributeError(f"module '{__name__}' has no attribute '{name}'")
StarcoderdataPython
3225648
__version__ = "3.0.2" from .formatter import ConllFormatter from .utils import init_parser
StarcoderdataPython
4839326
import os import pytest from . import run from .conditions import has_http def test_unit(cmake, unittest): cwd = cmake( ["sentry_test_unit"], {"SENTRY_BACKEND": "none", "SENTRY_TRANSPORT": "none"} ) env = dict(os.environ) run(cwd, "sentry_test_unit", ["--no-summary", unittest], check=True, env=env) @pytest.mark.skipif(not has_http, reason="tests need http transport") def test_unit_transport(cmake, unittest): cwd = cmake(["sentry_test_unit"], {"SENTRY_BACKEND": "none"}) env = dict(os.environ) run(cwd, "sentry_test_unit", ["--no-summary", unittest], check=True, env=env)
StarcoderdataPython
1765007
from __future__ import unicode_literals import frappe import json from frappe import _ from frappe.utils import floor, flt, today, cint, cstr @frappe.whitelist() def calculate_deductible_hours(self,method): deductible_hours = 0 if self.status == "Present": if flt(self.working_hours) < 7.5 and flt(self.working_hours) > 5: self.ind_deductible_hours = 7.5 - self.working_hours @frappe.whitelist() def validate_approved_hours(self,method): if self.ind_approved_hours>self.ind_deductible_hours: frappe.throw(_("Approved hours cannot be more than deducted hours")) @frappe.whitelist() def calculate_deductible_hours_salary_slip(self,method): attendance = frappe.db.sql("""SELECT sum(ind_deductible_hours) AS 'ind_deductible_hours', sum(ind_approved_hours) AS 'ind_approved_hours' FROM `tabAttendance` WHERE employee=%s AND attendance_date BETWEEN %s AND %s""",(self.employee,self.start_date,self.end_date),as_dict=1) if len(attendance) >= 1: self.ind_hours = attendance[0].ind_deductible_hours self.ind_approved_hours = attendance[0].ind_approved_hours # if (self.ind_approved_hours<=self.ind_hours): # else : # self.ind_approved_hours=self.ind_hours
StarcoderdataPython
166572
# Shoot! # by KidsCanCode 2014 # A generic space shooter - prototype (no art) # For educational purposes only import pygame import sys import random # define some colors BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) BGCOLOR = BLACK class Meteor(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) # start with a random speed self.speed = random.randrange(3, 12) self.image = pygame.Surface([36, 54]) self.image.fill(RED) self.rect = self.image.get_rect() # start off the top of the screen self.rect.y = random.randrange(-50, -30) self.rect.x = random.randrange(WIDTH) def update(self): # move the sprite self.rect.y += self.speed if self.rect.y > HEIGHT + 10: self.rect.y = random.randrange(-50, 30) self.rect.x = random.randrange(WIDTH) class Player(pygame.sprite.Sprite): speed = 12 def __init__(self): pygame.sprite.Sprite.__init__(self) self.speed_x = 0 self.level = 0 self.score = 0 self.shoot_sound = pygame.mixer.Sound("snd/laser4.wav") self.hit_snd = pygame.mixer.Sound("snd/explode.wav") self.explode_snd = pygame.mixer.Sound("snd/die.wav") self.image = pygame.Surface([36, 54]) self.image.fill(GREEN) self.rect = self.image.get_rect() self.rect.x = WIDTH / 2 self.rect.bottom = HEIGHT - 10 def update(self): # move the sprite self.rect.x += self.speed_x # check for edges if self.rect.left < 0: self.rect.left = 0 self.speed_x = 0 if self.rect.right > WIDTH: self.rect.right = WIDTH self.speed_x = 0 def go(self, dir): if dir == 'L': self.speed_x = -self.speed elif dir == 'R': self.speed_x = self.speed def stop(self): self.speed_x = 0 def shoot(self): bullet = Bullet(self.rect.midtop, self.rect.y, self.level) active_sprite_list.add(bullet) bullet_sprite_list.add(bullet) self.shoot_sound.play() class Bullet(pygame.sprite.Sprite): speed = -15 def __init__(self, x, y, level): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([10, 20]) self.image.fill(RED) self.rect = self.image.get_rect() self.rect.midtop = x self.rect.y = y def update(self): self.rect.y += self.speed if self.rect.bottom < 0: self.kill() def draw_text(text, size, x, y): # utility function to draw text on screen font_name = pygame.font.match_font('arial') font = pygame.font.Font(font_name, size) text_surface = font.render(text, True, WHITE) text_rect = text_surface.get_rect() text_rect.midtop = (x, y) screen.blit(text_surface, text_rect) def show_start_screen(): # Display the starting screen screen.fill(BGCOLOR) draw_text("Shoot!", 72, WIDTH/2, HEIGHT/4) draw_text("Move with the arrow keys", 24, WIDTH/2, HEIGHT/2) draw_text("Shoot the meteors", 24, WIDTH/2, HEIGHT*5/8) draw_text("Press a key to begin", 24, WIDTH/2, HEIGHT*3/4) pygame.display.update() # wait for a keypress to start wait_for_key() while True: if wait_for_key(): pygame.event.get() return def show_go_screen(score): # display the Game Over screen screen.fill(BGCOLOR) draw_text("GAME OVER", 58, WIDTH/2, HEIGHT/4) text = "Score: %s" % score draw_text(text, 24, WIDTH/2, HEIGHT/2) draw_text("Press a key to begin", 24, WIDTH/2, HEIGHT*3/4) pygame.display.update() # pause for a moment and then wait for key pygame.time.wait(500) wait_for_key() while True: if wait_for_key(): pygame.event.get() return def wait_for_key(): # utility function to pause waiting for a keypress # still allow Esc to exit # Actually, we look for KEYUP event, not KEYPRESS if len(pygame.event.get(pygame.QUIT)) > 0: pygame.quit() sys.exit() keyup_events = pygame.event.get(pygame.KEYUP) if len(keyup_events) == 0: return None if keyup_events[0].key == pygame.K_ESCAPE: pygame.quit() sys.exit() return keyup_events[0].key # basic constants for your game options WIDTH = 360 HEIGHT = 480 FPS = 30 # initialize pygame pygame.init() # initialize sound - remove if you're not using sound pygame.mixer.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("Shoot!") clock = pygame.time.Clock() running = True show_start_screen() while True: active_sprite_list = pygame.sprite.Group() meteor_sprite_list = pygame.sprite.Group() bullet_sprite_list = pygame.sprite.Group() player = Player() active_sprite_list.add(player) for i in range(10): meteor = Meteor() active_sprite_list.add(meteor) meteor_sprite_list.add(meteor) # play the game! while running: clock.tick(FPS) # check for all your events for event in pygame.event.get(): # this one checks for the window being closed if event.type == pygame.QUIT: pygame.quit() sys.exit() # now check for keypresses elif event.type == pygame.KEYDOWN: # this one quits if the player presses Esc if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() if event.key == pygame.K_LEFT: player.go('L') if event.key == pygame.K_RIGHT: player.go('R') if event.key == pygame.K_SPACE: player.shoot() elif event.type == pygame.KEYUP: if event.key in (pygame.K_LEFT, pygame.K_RIGHT): player.stop() # add any other key events here # Game logic goes here ######### active_sprite_list.update() # check for collisions # first, ship with meteors hit = pygame.sprite.spritecollideany(player, meteor_sprite_list) if hit: # you die player.explode_snd.play() pygame.time.wait(500) running = False # next, check bullets with meteors hits = pygame.sprite.groupcollide(meteor_sprite_list, bullet_sprite_list, True, True) # for each meteor destroyed, spawn a new one for hit in hits: player.hit_snd.play() player.score += 10 newmeteor = Meteor() active_sprite_list.add(newmeteor) meteor_sprite_list.add(newmeteor) # Draw/update screen ######## screen.fill(BGCOLOR) active_sprite_list.draw(screen) text = 'Score: %s' % player.score draw_text(text, 18, 45, 10) # after drawing, flip the display pygame.display.flip() show_go_screen(player.score) running = True
StarcoderdataPython
178263
#!/usr/bin/env python3 import rospy from std_msgs.msg import Int32 zodiac_num = 0 print("卯") def cb(message): global zodiac_num zodiac_num = message.data zodiac_num = zodiac_num - 1995 while zodiac_num > 12: if zodiac_num > 12: zodiac_num = zodiac_num - 12 elif zodiac_num <= 12: zodiac_num = zodiac_num if zodiac_num % 12 == 0: print("亥") elif zodiac_num % 11 == 0: print("戌") elif zodiac_num % 10 == 0: print("酉") elif zodiac_num % 9 == 0: print("申") elif zodiac_num % 8 == 0: print("未") elif zodiac_num % 7 == 0: print("午") elif zodiac_num % 6 == 0: print("巳") elif zodiac_num % 5 == 0: print("辰") elif zodiac_num % 4 == 0: print("卯") elif zodiac_num % 3 == 0: print("寅") elif zodiac_num % 2 == 0: print("丑") elif zodiac_num % 1 == 0: print("子") if __name__ == '__main__': rospy.init_node('twice') sub = rospy.Subscriber('count_up', Int32, cb) pub = rospy.Publisher('twice', Int32, queue_size=1) rate = rospy.Rate(1) while not rospy.is_shutdown(): pub.publish(zodiac_num) rate.sleep()
StarcoderdataPython
1692499
from abc import ABCMeta, abstractmethod class AbstractDataHandler(object): """Abstract Data Handler Class The data handler is an abstract base class providing an interface for all subsequent (inherited) data handlers (both live and historic). The goal of a (derived) data handler object is to output a generated set of bars for each symbol requested. This will replicate how a live strategy would function as current market data would be sent 'down the pipe'. Thus a historic and live system will be treated identically by the rest of the backtesting suite. """ __metaclass__ = ABCMeta def __init__(self, events, symbol_handler, price_handler): """Initialize parameters of the abstract data handler object.""" self.events = events self.symbol_handler = symbol_handler self.price_handler = price_handler self.continue_trading = True @abstractmethod def update(self): """Objects that implement the data handler abstract base class must implement a method for obtaining new bars from the data source. This method places the most recently available bars onto a data structure for access by methods and objects requiring access to the underlying financial data. """ raise NotImplementedError() @abstractmethod def request_prices(self): """Request the current price of assets.""" raise NotImplementedError()
StarcoderdataPython
3242158
#!/usr/bin/env python import functools import subprocess import re import shutil import os import git import pathlib from copy import deepcopy from cached_property import cached_property from packaging.version import Version, InvalidVersion from packaging.specifiers import SpecifierSet from astropy.table import Table from scalpl import Cut import numpy as np import astropy.units as u from pathlib import Path from schema import Or from dataclasses import dataclass, field, replace from typing import Union from tollan.utils.dataclass_schema import add_schema from tollan.utils import rupdate from tollan.utils import call_subprocess_with_live_output from tollan.utils.log import get_logger, timeit from tollan.utils import ensure_abspath from tollan.utils.fmt import pformat_yaml from .base import PipelineEngine, PipelineEngineError from ...utils import get_user_data_dir from ...utils.misc import get_nested_keys from ...utils.common_schema import RelPathSchema, PhysicalTypeSchema from ...utils.runtime_context import yaml_load REMOTE_CITLALI_REPO_URL = 'https://github.com/toltec-astro/citlali.git' LOCAL_CITLALI_REPO_PATH = get_user_data_dir().joinpath("engines/citlali") GIT_REMOTE_TIMEOUT = 10. @functools.lru_cache(maxsize=1) def _get_local_citlali_repo(): """Return the Citlali git repo made available in the user data directory. This repo is maintained by this package for check commit histories and comparing versions. """ logger = get_logger() if LOCAL_CITLALI_REPO_PATH.exists(): repo = git.Repo(LOCAL_CITLALI_REPO_PATH) try: repo.remote(name='origin').fetch( kill_after_timeout=GIT_REMOTE_TIMEOUT) return repo except Exception: logger.debug( f"error fetching local citlali repo in " f"{LOCAL_CITLALI_REPO_PATH}") return repo logger.debug(f"setup local citlali repo in ${LOCAL_CITLALI_REPO_PATH}") # class _Progress(git.remote.RemoteProgress): # def update(self, op_code, cur_count, max_count=None, message=''): # logger.debug(self._cur_line) repo = git.Repo.clone_from( REMOTE_CITLALI_REPO_URL, LOCAL_CITLALI_REPO_PATH, # progress=_Progress() ) return repo UNKNOWN_VERSION = 'unknown' """Value used when the version is unknown.""" class CitlaliExec(object): """A low level wrapper class to run Citlali executable.""" logger = get_logger() def __init__(self, path): path = self._path = ensure_abspath(path) version = self._version = self.get_version(path) if version is UNKNOWN_VERSION: raise ValueError(f"invalid Citlali executable path {path}") def __repr__(self): return f'{self.__class__.__name__}(version={self.version})' @property def path(self): """The path of the Citlali executable.""" return self._path @property def version(self): """The version of the Citlali executable.""" return self._version @cached_property def semver(self): """The semantic version of the Citlali executable.""" return self._ver_to_semver(self._version) @classmethod def get_version(cls, path): """Get the version of the Citlali.""" output = subprocess.check_output( (path, '--version'), stderr=subprocess.STDOUT, ).decode() cls.logger.debug(f'check version of {path}:\n{output}') r = re.compile( r'^(?P<name>citlali\s)?(?P<version>.+)\s\((?P<timestamp>.+)\)$', re.MULTILINE) m0 = re.search(r, output) # import pdb # pdb.set_trace() if m0 is None: cls.logger.warning( f"unable to parse citlali version: \n{output}") version = UNKNOWN_VERSION else: m = m0.groupdict() version = m['version'] return cls._norm_ver(version) def get_default_config(self): """Get the default config of the Citlali.""" path = self.path output = subprocess.check_output( (path, '--dump_config'), stderr=subprocess.STDOUT, ).decode() self.logger.debug(f'dump config of {path}:\n{output}') return yaml_load(output) @staticmethod def _norm_ver(ver, with_rev=True): # removes any non-standard suffix if with_rev: return re.sub(r'(-dirty)$', '', ver) return re.sub(r'(-dirty|~\d+|-\d+-.+)$', '', ver) @classmethod def _ver_to_semver(cls, ver): """Convert version string (tag, rev hash, etc.) to SemVer. This is done by querying the local Citlali repo history. """ try: return Version(ver) except InvalidVersion: pass # try find the latest version tag in the history repo = _get_local_citlali_repo() try: _ver = cls._norm_ver(repo.git.describe(ver, contains=True), with_rev=False) except Exception: _ver = cls._norm_ver(repo.git.describe(ver, contains=False), with_rev=False) cls.logger.debug(f"version {ver} -> semver {_ver}") return Version(_ver) def check_version(self, version): verspec = SpecifierSet(version) self.logger.debug(f"check {self.semver} against {verspec}") return self.semver in verspec def check_for_update(self): """Check the current Citlali version agains the Github remote head. """ logger = get_logger() repo = _get_local_citlali_repo() def get_git_changelog(v1, v2): changelog = repo.git.log(f'{v1}..{v2}', oneline=True) if changelog == '': # same revision changelog = None return changelog # get remote head version remote_rev = repo.git.rev_parse('origin/HEAD', short=True) changelog = get_git_changelog(self.version, remote_rev) if changelog is not None: changelog_section = ( f"\n" f"###################### Attention #######################\n" f"You are using an outdated version of Citlali. The latest\n" f"version has the following changes:\n\n" f"{changelog}\n" f"########################################################" f"\n" ) else: changelog_section = 'Citlali is update-to-date!' logger.info( f"\n\n" f"* Executable path: {self.path}" f"* Remote Citlali rev: {remote_rev}\n" f"* Local Citlali version: {self.version}\n" f'{changelog_section}' ) @staticmethod @functools.lru_cache(maxsize=1) def _get_line_buf_cmd(): stdbuf = shutil.which('stdbuf') if stdbuf is not None: return [stdbuf, '-oL'] return list() def run(self, config_file, log_level="INFO", **kwargs): exec_path = self.path citlali_cmd = [ exec_path.as_posix(), '-l', log_level.lower(), config_file.as_posix(), ] cmd = self._get_line_buf_cmd() + citlali_cmd self.logger.info( "run {} cmd: {}".format(self, ' '.join(citlali_cmd))) return call_subprocess_with_live_output(cmd, **kwargs) @functools.lru_cache(maxsize=None) def _get_citlali_exec(path): # This caches all the found exec. return CitlaliExec(path=path) class Citlali(PipelineEngine): """A wrapper class of Citlali, the TolTEC data reduction pipeline engine. It searches for instances of ``citlali`` executables and check their versions against the required version. The latest one is adopted if multiple are found. Parameters ---------- path : str, `pathlib.Path`, list The path to search the executable for. A list of paths is accepted which searches the executable in the list in order. version : str A version specifier/predicate that specifies the required version of pipeline. use_env_path : bool If True, the system PATH env var is consulted. """ logger = get_logger() def __init__( self, path=None, version=None, use_env_path=True): citlali_executables = self.find_citlali_executables( path=path, version=version, use_env_path=use_env_path) if len(citlali_executables) == 0: raise PipelineEngineError( f"Cannot find Citlali executables for " f"version {version}") elif len(citlali_executables) > 1: self.logger.warning( f"Found multiple Citlali executables for " f"version={version}\n" # f"{citlali_executables['path', 'version', 'timestamp']}" ) else: pass citlali_exec = self._citlali_exec = citlali_executables[0] self.logger.debug(f"use citlali executable: {citlali_exec}") def __repr__(self): return f'{self.__class__.__name__}(version={self.version})' @property def exec_path(self): return self._citlali_exec.path @property def version(self): return self._citlali_exec.version def get_default_config(self): return self._citlali_exec.get_default_config() def check_for_update(self): return self._citlali_exec.check_for_update() def run(self, *args, **kwargs): return self._citlali_exec.run(*args, **kwargs) @classmethod def find_citlali_executables( cls, path=None, version=None, use_env_path=True): """Return a list of `CitlaliExec` objects that satisfy the version constraints.""" exec_name = 'citlali' if path is None: path = [] elif isinstance(path, (str, pathlib.Path)): path = [path] else: pass if use_env_path: # check if the executable is in env path exec_path = shutil.which(exec_name, path=None) if exec_path is not None: path.append(exec_path) # now go over each item in path and get executable for checking paths = dict() def _check_and_add_path(exec_path): try: exec = CitlaliExec(path=exec_path) paths[exec_path] = exec except Exception: cls.logger.debug( f"skip invalid cialali exec {exec_path}") cls.logger.debug( f"find citali executables in paths:\n{pformat_yaml(path)}") for p in path: p = ensure_abspath(p) if p.is_dir(): _check_and_add_path(shutil.which('citlali', path=p)) elif p.is_file() and os.access(p, os.X_OK): _check_and_add_path(p) else: cls.logger.debug(f'skip invalid path {p}') cls.logger.debug( f"found {len(paths)} citlali executables:\n{pformat_yaml(paths)}") # now check each executable with version if version is None: cls.logger.debug("skip checking executable versions") return list(paths.values()) valid_execs = list() cls.logger.debug("check executable versions") for e in paths.values(): if e.check_version(version): valid_execs.append(e) cls.logger.debug(f"{e} version satisfies {version}") else: cls.logger.debug(f"{e} version does not satisfies {version}") return valid_execs @timeit def proc_context(self, config): """Return a `CitlaliProc` that run reduction for given input dataset. """ return CitlaliProc(citlali=self, config=config) class CitlaliProc(object): """A context class for running Citlali.""" logger = get_logger() def __init__(self, citlali, config): self._citlali = citlali self._config = replace( config, low_level=self._resolve_low_level_config(config.low_level) ) @property def citlali(self): return self._citlali @property def config(self): return self._config def __enter__(self): return self def __exit__(self, *args): pass def __call__( self, dataset, output_dir, log_level='INFO', logger_func=None): # resolve the dataset to input items tbl = dataset.index_table grouped = tbl.group_by( ['obsnum', 'subobsnum', 'scannum', 'master', 'repeat']) self.logger.debug(f"collected {len(grouped)} raw obs") for key, group in zip(grouped.groups.keys, grouped.groups): self.logger.debug( '****** obs name={obsnum}_{subobsnum}_{scannum} ' '*******'.format(**key)) self.logger.debug(f'{group}\n') input_items = [ self._resolve_input_item(d) for d in grouped.groups] # create low level config object and dump to file # the low level has been resolved to a dict when __init__ is called cfg = deepcopy(self.config.low_level) rupdate(cfg, { 'inputs': input_items, 'runtime': { # TODO get rid of the trailing slash 'output_dir': output_dir.as_posix() + '/' } }) cfg_hl = self._resolve_high_level_config(self.config) rupdate(cfg, cfg_hl) self.logger.debug( f'resolved low level config:\n{pformat_yaml(cfg)}') # show the high level config entries that over writes the low level # values chl = Cut(cfg_hl) cll = Cut(self.config.low_level) updated_entries = [] for key in get_nested_keys(cfg_hl): if key not in cll: continue new = chl[key] old = cll[key] if new == old: continue updated_entries.append((key, old, new)) if updated_entries: updated_entries = Table( rows=updated_entries, names=['low_level_config_key', 'default', 'updated']) self.logger.info( f"low level config entries overwitten by high level config:\n\n" f"{updated_entries}\n") name = input_items[0]['meta']['name'] output_name = f'citlali_o{name}_c{len(input_items)}.yaml' cfg_filepath = output_dir.joinpath(output_name) with open(cfg_filepath, 'w') as fo: fo.write(pformat_yaml(cfg)) # yaml_dump(cfg, fo) success = self._citlali.run( cfg_filepath, log_level=log_level, logger_func=logger_func) # TODO implement the logic to locate the generated output files # which will be used to create data prod object. if success: return output_dir raise RuntimeError( f"failed to run {self.citlali} with config file {cfg_filepath}") def _resolve_low_level_config(self, low_level): """Return a low-level config dict from low_level config entry.""" if low_level is None: return self.citlali.get_default_config() if isinstance(low_level, Path): with open(low_level, 'r') as fo: return yaml_load(fo) # a dict already return low_level def _resolve_high_level_config(self, high_level): """Return a low level config dict from high level dict.""" # image_frame_params cfg = Cut(dict()) pixel_size = high_level.image_frame_params.pixel_size if pixel_size is not None: cfg.setdefault( 'mapmaking.pixel_size_arcsec', pixel_size.to_value(u.arcsec)) return cfg.data @classmethod def _resolve_input_item(cls, index_table): """Return an citlali input list entry from index table.""" tbl = index_table d0 = tbl[0] meta = { 'name': f'{d0["obsnum"]}_{d0["subobsnum"]}_{d0["scannum"]}' } data_items = list() cal_items = list() for entry in tbl: instru = entry['instru'] interface = entry['interface'] source = entry['source'] extra = dict() if instru == 'toltec': c = data_items elif interface == 'lmt': c = data_items elif interface == 'apt': c = cal_items # TODO implement in citlali the proper # ecsv handling source = _fix_apt(source) extra = {'type': 'array_prop_table'} else: continue c.append(dict({ 'filepath': source, 'meta': { 'interface': interface } }, **extra) ) cls.logger.debug( f"collected input item name={meta['name']} " f"n_data_items={len(data_items)} " f"n_cal_items={len(cal_items)}") # this is a hack. TODO fix the proper ordering of data items data_items = sorted( data_items, key=lambda d: ( int(d['meta']['interface'][6:]) if d['meta']['interface'].startswith('toltec') else -1) ) return { 'meta': meta, 'data_items': data_items, 'cal_items': cal_items, } def _fix_apt(source): # this is a temporary fix to make citlali work with the # apt tbl = Table.read(source, format='ascii.ecsv') tbl_new = Table() tbl_new['nw'] = np.array(tbl['nw'], dtype='d') tbl_new['array'] = np.array(tbl['array'], dtype='d') tbl_new['flxscale'] = np.array(tbl['flxscale'], dtype='d') tbl_new['x_t'] = tbl['x_t'].quantity.to_value(u.deg) tbl_new['y_t'] = tbl['y_t'].quantity.to_value(u.deg) tbl_new['a_fwhm'] = tbl['a_fwhm'].quantity.to_value(u.deg) tbl_new['b_fwhm'] = tbl['b_fwhm'].quantity.to_value(u.deg) source_new = source.replace('.ecsv', '_trimmed.ecsv') tbl_new.write(source_new, format='ascii.ecsv', overwrite=True) return source_new # High level config classes # TODO some of these config can be made more generic and does not needs to # be citlali specific. @add_schema @dataclass class ImageFrameParams(object): """Params related to 2D image data shape and WCS.""" pixel_size: u.Quantity = field( default=None, metadata={ 'description': 'The pixel size of image.', 'schema': PhysicalTypeSchema('angle') } ) @add_schema @dataclass class CitlaliConfig(object): """The high-level config for Citlali.""" low_level: Union[None, Path, dict] = field( default=None, metadata={ 'description': 'The low level config used as the base.', 'schema': Or(RelPathSchema(), dict) } ) image_frame_params: ImageFrameParams = field( default_factory=ImageFrameParams, metadata={ 'description': 'The params related to the output image data shape and WCS.' } ) class Meta: schema = { 'ignore_extra_keys': False, 'description': 'The high level config for Citlali.' }
StarcoderdataPython
3380991
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # <NAME> and <NAME>, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 import cl for pauli in ['y', 'xyz','-zzz', ['yy','-yy','jyy','-jyy','xi','-xi','jxi','-jxi']] : if (not isinstance(pauli,list)) : pauli = [pauli] matrix = cl.pauli_to_matrix(pauli) print(matrix) print(pauli) print(cl.matrix_to_pauli(matrix))
StarcoderdataPython
3292961
#!/usr/bin/env python2 """Stego Helper Identification Tool - Hide""" from scipy.misc import imread as read_img import numpy as np import util import os import json ############################################################################### ######################################################################## bit ## ############################################################################### def decode_msg_from_bit(img_array, stegobit): img_bit_array = util.unpack_img_to_bits(img_array) bitmsg = [byte[stegobit] for byte in img_bit_array] msg = np.packbits(bitmsg) return''.join(chr(x) for x in msg if x != 0) def decode_nth_bit(inp, stegobit): """Retrieves a text message in a specific colour value bit of an image""" assert os.path.isfile(inp), '%s is not a file.' % inp assert 0 <= stegobit <= 7, '%d is an invalid bit value.' %stegobit img = read_img(inp) res = decode_msg_from_bit(img, stegobit) print res return res ############################################################################### ################################################################## patchwork ## ############################################################################### def decode_msg_with_patchwork(img_array, key_array_A, key_array_B): value = [] for a, b in zip(key_array_A, key_array_B): value.append(img_array[tuple(a)] - img_array[tuple(b)]) return ''.join(chr(v[0]) for v in value) def decode_patchwork(inp, key_array_A, key_array_B): """Retrieves a text message which is hidden by patchwork steganography""" assert os.path.isfile(inp), '%s is not a file.' % inp img = read_img(inp) key_array_A = json.loads(key_array_A) key_array_B = json.loads(key_array_B) res = decode_msg_with_patchwork(img, key_array_A, key_array_B) print res return res METHODS = { 'bit': { 'function': decode_nth_bit, 'arguments': ( {'name': 'stegobit', 'type': int, 'help': 'Bit where the message is hidden'}, {'name': 'inp', 'metavar': 'input_path', 'help': 'Path to image'}, ) }, 'patchwork': { 'function': decode_patchwork, 'arguments': ( {'name': 'inp', 'metavar': 'input_path', 'help': 'Path to image'}, {'name': 'key_array_A', 'help': 'First key stream'}, {'name': 'key_array_B', 'help': 'Second key stream'}, ) } } if __name__ == '__main__': util.start(__doc__, METHODS) # path = "C:\\Users\\juckef34\\ss15\\project\\tests\\files\\diffpixels_test.png" # b = 7 # bit(path, b)
StarcoderdataPython
1631330
import pandas as pd from flask import Flask, jsonify, request, Response import pickle import base64 import jsonpickle import numpy as np import cv2 import json from PIL import Image # app app = Flask(__name__) prototxt = 'model/bvlc_googlenet.prototxt' model = 'model/bvlc_googlenet.caffemodel' labels = 'model/synset_words.txt' # load the class labels from disk rows = open(labels).read().strip().split("\n") classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows] # load our serialized model from disk net = cv2.dnn.readNetFromCaffe(prototxt, model) # routes @app.route('/', methods=['POST', 'GET']) def predict(): return 'Homepage Backend' @app.route('/api/test', methods=['POST', 'GET']) def test(): try: if request.method == 'POST': r = request img = Image.open(r.files['file_field']) image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) cv2.imwrite('image.jpg', image) # our CNN requires fixed spatial dimensions for our input image(s) # so we need to ensure it is resized to 224x224 pixels while # performing mean subtraction (104, 117, 123) to normalize the input; # after executing this command our "blob" now has the shape: # (1, 3, 224, 224) blob = cv2.dnn.blobFromImage(image, 1, (224, 224), (104, 117, 123)) # set the blob as input to the network and perform a forward-pass to # obtain our output classification net.setInput(blob) preds = net.forward() # sort the indexes of the probabilities in descending order (higher # probabilitiy first) and grab the top-5 predictions idxs = np.argsort(preds[0])[::-1][:50] listResults = [] # loop over the top-5 predictions and display them for (i, idx) in enumerate(idxs): # draw the top prediction on the input image if i == 0: text = "Label: {}, {:.2f}%".format(classes[idx], preds[0][idx] * 100) cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # display the predicted label + associated probability to the console output = ("{}, {}, {:.5}".format(i + 1, classes[idx], preds[0][idx])) listResults.append(output) response = {'results' : listResults} response_pickled = jsonpickle.encode(response) return Response(response=response_pickled, status=200, mimetype="application/json") else: return ('[ERROR] La richiesta non è in POST') except Exception as e: response = {'Error' : str(e)} if __name__ == '__main__': app.run(port = 5000, debug=True)
StarcoderdataPython
1638372
"""Module containing class `PluginTypePluginType`.""" from vesper.plugin.plugin_type_plugin_interface_1_0 import \ PluginTypePluginInterface_1_0 import vesper.plugin.plugin_utils as plugin_utils class PluginTypePluginType(PluginTypePluginInterface_1_0): """ The plugin type of plugin types. This plugin type is also known as the *root plugin type*, since it is the root of the plugin type hierarchy. Note that this plugin is its own plugin type. This makes sense since it is intended to be the parent of all plugin types, and is itself a plugin type. """ # Plugin attributes. name = 'Plugin Type' version = '1.0.0' description = 'The plugin type of plugin types.' author = '<NAME>' license = 'MIT' # Note that we cannot set the `type` attribute of this class here, # since the class to which we want to set it (i.e. this class) does # not yet exist (since we are still in the process of defining it). # Instead, we set the attribute (along with the `interface` # attribute) below, after the end of the class definition. # Plugin type attributes. entry_point_group_name = 'vesper.plugin_types' supported_interfaces = (PluginTypePluginInterface_1_0,) def _load_plugins(self): # Load plugin types other than this one. plugins = super()._load_plugins() return (self,) + plugins # TODO: Perform extra validation needed for plugin types. # Set root plugin type `type` and `interface` attributes. See note # above regarding why we do this here rather than within the # `PluginTypePluginType` class. plugin_utils._set_plugin_type_attributes( PluginTypePluginType, PluginTypePluginType)
StarcoderdataPython
3219970
<gh_stars>0 def romanToDecimal(roman_number): roman_list = {'I':1, 'V':5, 'X':10, 'L':50, 'C':100, 'D':500, 'M':1000} result = 0 for index,current_number in enumerate(roman_number): if (index+1) == len(roman_number) or roman_list[current_number] >= roman_list[roman_number[index+1]]: result+=roman_list[current_number] else: result-=roman_list[current_number] return result ''' arabes=['I','II','III','IV','V','VI','VII','VIII','IX','X','XI','XII','XIII','XIV','XV','XVI','XVII','XVIII','XIX','XX','XXI','XXII','XXIII','XXIV','XXV','XXVI','XXVII','XXVIII','XXIX','XXX','XXXI','XXXII','XXXIII','XXXIV','XXXV','XXXVI','XXXVII','XXXVIII','XXXIX','XL','XLI','XLII','XLIII','XLIV','XLV','XLVI','XLVII','XLVIII','XLIX','L'] for i in arabes: roman_to_decimal(i) ''' def sortRoman(names): listOrdererByName = [] listOrdererByNumber = [] middleList = [] tempList = [] # To generate the equivalent decimal number in a list of tuples for currentName in names: listOrdererByName.append((currentName.split(' ')[0],currentName.split(' ')[1],romanToDecimal(currentName.split(' ')[1]))) # To order by name listOrdererByName=sorted(listOrdererByName) # To split equal list of names for index,currentName in enumerate(listOrdererByName): if index == 0: tempList.append(currentName) else: # If the current name is equal to the previous, then append it in the same sublist if currentName[0] == listOrdererByName[index-1][0]: tempList.append(currentName) # Ultimo nombre if index == (len(listOrdererByName)-1): middleList.append(tempList) # In other case, append it in a new sublist else: middleList.append(tempList) tempList=[] tempList.append(currentName) # Last iteration if index == (len(listOrdererByName)-1): middleList.append(tempList) # To order sublist for subList in middleList: tempList=[] tempList.append(sorted(subList,key=lambda x:x[2])) # Finally, generate the resulting list for index,currentName in enumerate(tempList[0]): listOrdererByNumber.append(currentName[0]+' '+currentName[1]) return print(listOrdererByNumber) def main(): names=['<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','<NAME>'] sortRoman(names) names=['<NAME>','<NAME>'] sortRoman(names) if __name__ == '__main__': main()
StarcoderdataPython
1652812
from deepleaps.dataloader.transforms import * """ All transform methods are registered here. If the default transform method path is here, import the transform method. """ TRANSFORM = {} TRANSFORM['ToTensor'] = ToTensor TRANSFORM['ToNumpy'] = ToNumpy
StarcoderdataPython
3388597
<gh_stars>0 import sys import time import requests from tqdm import tqdm import pickle import os.path delay = 0.50 def delay_call(clock_since_call): delay_since_call = time.time() - clock_since_call if delay_since_call < delay: time.sleep(delay - delay_since_call) def save(item, file_name): with open(file_name + '.pickle', 'wb') as handle: pickle.dump(item, handle, protocol=pickle.HIGHEST_PROTOCOL) def load(file_name): with open(file_name + '.pickle', 'rb') as handle: return pickle.load(handle) def get_meta_from_mint(mint): url = "http://api-mainnet.magiceden.dev/v2/tokens/" + mint response = requests.request("GET", url) return response.json() def get_how_collections(): url = "https://api.howrare.is/v0.1/collections" response = requests.request("GET", url) response = response.json() list = response['result']['data'] ret = {} for i in list: ret[i['url'].replace('/', '')] = i['floor'] return ret def get_first_mint(HR_symbol): url = "https://api.howrare.is/v0.1/collections/" + HR_symbol + "/only_rarity/" try: response = requests.request("GET", url) response = response.json() return response['result']['data']['items'][0]['mint'] except: return None def get_me_symbol(HR_symbol): mint = get_first_mint(HR_symbol) try: return get_meta_from_mint(mint)['collection'] except: return None def gen_magic_how_pair(HR_symbols): ret = {} for sym in tqdm(HR_symbols): clock_since_call = time.time() try: ret[sym] = get_me_symbol(sym) delay_call(clock_since_call) except: print("Could not add: " + sym) return ret def update_magic_how_pair(HR_symbols, ME_HR_map): for sym in tqdm(HR_symbols): if sym not in ME_HR_map.keys(): clock_since_call = time.time() try: ME_HR_map[sym] = get_me_symbol(sym) delay_call(clock_since_call) except: print("Could not add: " + sym) return ME_HR_map def get_attr_floor_new(collection, all): price_map = {} if not all: print(collection + ": Fetching current listings (this will take a minute)") listed = 0 clock_since_call = time.time() try: url = "https://api-mainnet.magiceden.dev/v2/collections/" + collection + "/stats" response = requests.request("GET", url) listed = response.json()['listedCount'] delay_call(clock_since_call) clock_since_call = time.time() url = "https://api-mainnet.magiceden.dev/v2/collections/" + collection + "/listings?offset=" + str(listed - 20) + "&limit=20" response = requests.request("GET", url) listings = response.json() delay_call(clock_since_call) except: return {} for listing in listings: try: price_map[listing['tokenMint']] = listing['price'] except: continue return price_map def get_attr_floor(collection, all): price_map = {} if not all: print(collection + ": Fetching current listings (this will take a minute)") i = 0 while True: clock_since_call = time.time() try: url = "https://api-mainnet.magiceden.dev/v2/collections/" + collection + "/listings?offset=" + str(i*20) + "&limit=20" response = requests.request("GET", url) listings = response.json() except: break; if response.json() == []: break; for listing in listings: price_map[listing['tokenMint']] = listing['price'] delay_call(clock_since_call) i+=1 return price_map def filter(ME_HR_map, syms, bounds): for hr_name in list(syms): if not (hr_name in syms.keys() and float(syms[hr_name]) >= bounds[0] and float(syms[hr_name]) <= bounds[1]): ME_HR_map.pop(hr_name, None) return ME_HR_map def filter_bound(deals, bound, price_map): for mint in list(deals): if not (mint in price_map.keys() and float(price_map[mint]) <= bound): deals.pop(mint, None) return deals def get_rarity(collection): url = "https://api.howrare.is/v0.1/collections/" + collection + "/only_rarity/" try: response = requests.request("GET", url) response = response.json() data = response['result']['data']['items'] except: return None size = len(data) rarity = {} for nft in data: rarity[nft['mint']] = nft['rank'] return rarity def get_rarity_price(rarity_map, price_map): rarity_price_map = {} size = len(rarity_map.keys()) for mint in price_map.keys(): if mint in rarity_map.keys() and mint in price_map.keys(): rarity_price_map[mint] = (float(rarity_map[mint]) / size) * price_map[mint] else: rarity_price_map[mint] = 9999999 return rarity_price_map if "-a" in sys.argv: top_n = 10 if len(sys.argv) <= 2 else int(sys.argv[2]) bound = [float(sys.argv[3]), float(sys.argv[4])] if len(sys.argv) >= 5 else None syms = get_how_collections() if os.path.isfile('./ME_HR_map.pickle'): print("Checking for new HowRare-ME key mappings") ME_HR_map = load('ME_HR_map') ME_HR_map = update_magic_how_pair(syms.keys(), ME_HR_map) else: print("Downloading HowRare-ME key mapping") ME_HR_map = gen_magic_how_pair(syms.keys()) save(ME_HR_map, 'ME_HR_map') price_map = {} rarity_map = {} rarity_price_map = {} if bound != None: ME_HR_map = filter(ME_HR_map, syms, bound) print("Fetching deals per collection") for hr_name in tqdm(ME_HR_map.keys()): if ME_HR_map[hr_name] == None: continue tmp_price_map = get_attr_floor_new(ME_HR_map[hr_name], True) price_map.update(tmp_price_map) tmp_rarity_map = get_rarity(hr_name) rarity_map.update(tmp_rarity_map) tmp_rarity_price_map = get_rarity_price(tmp_rarity_map, tmp_price_map) rarity_price_map.update(tmp_rarity_price_map) if bound != None: rarity_price_map = filter_bound(rarity_price_map, bound[1], price_map) deals = dict(sorted(rarity_price_map.items(), key=lambda item: item[1])) print("=================================================================") if bound != None: print("Top " + str(top_n) + " deals on MagicEden priced between " + str(bound[0]) + "-" + str(bound[1]) + " SOL ") else: print("Top " + str(top_n) + " deals on MagicEden") top_deals = list(deals.keys())[:top_n] for i in range(0, len(top_deals)): print("\t- Rank " + str(rarity_map[top_deals[i]]) + ", " + str(price_map[top_deals[i]]) + " SOL: https://magiceden.io/item-details/" + top_deals[i]) print("=================================================================\n") else: ME_name = sys.argv[1] HR_name = sys.argv[2] top_n = 10 if len(sys.argv) <= 3 else int(sys.argv[3]) price_map = get_attr_floor(ME_name, False) rarity_map = get_rarity(HR_name) rarity_price_map = get_rarity_price(rarity_map, price_map) deals = dict(sorted(rarity_price_map.items(), key=lambda item: item[1])) print("=================================================================") print("Top " + str(top_n) + " " + ME_name + " deals on MagicEden") top_deals = list(deals.keys())[:top_n] for i in range(0, len(top_deals)): print("\t- Rank " + str(rarity_map[top_deals[i]]) + ", " + str(price_map[top_deals[i]]) + " SOL: https://magiceden.io/item-details/" + top_deals[i]) print("=================================================================\n")
StarcoderdataPython
47012
<reponame>Speedy1991/graphene-django-jwt from django.contrib.auth.models import AnonymousUser from graphene_django_jwt.blacklist import Blacklist from graphene_django_jwt.shortcuts import get_user_by_token from graphene_django_jwt.utils import get_credentials, get_payload def _load_user(request): token = get_credentials(request) if token is not None: refresh_token = get_payload(token)['refresh_token'] if Blacklist.is_blacklisted(refresh_token): return None return get_user_by_token(token) class JSONWebTokenMiddleware: def __init__(self, *args, **kwargs): self._skip = False def resolve(self, next, root, info, **kwargs): if self._skip: return next(root, info, **kwargs) if not info.context.user.is_authenticated: user = _load_user(info.context) info.context.user = user or AnonymousUser() self._skip = True return next(root, info, **kwargs)
StarcoderdataPython
3327014
from django.urls import include, path from rest_framework.routers import DefaultRouter from .views import PreApprovedSalesViewSet, RegisteredSaleViewSet app_name = "core" router = DefaultRouter() router.register("preapproved", PreApprovedSalesViewSet) router.register("sale", RegisteredSaleViewSet) urlpatterns = [ path("", include(router.urls)), ]
StarcoderdataPython
105068
<gh_stars>1-10 """ Tests to ensure that flows get stratified correctly. That is, when a stratification is applied, there are the right number of flows, connected to the right compartments, with the right adjustments applied. """ import pytest from summer import AgeStratification from summer import Compartment as C from summer import CompartmentalModel, StrainStratification, Stratification from summer.adjust import Multiply, Overwrite from summer.flows import ( CrudeBirthFlow, DeathFlow, ImportFlow, InfectionFrequencyFlow, TransitionFlow, ) def test_stratify_entry_flows__with_no_explicit_adjustments(): """ Ensure entry flows are stratified correctly when no adjustments are requested. Expect flow to be conserved, split evenly over the new strata. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_importation_flow("imports", 10, "S", split_imports=False) expected_flows = [ImportFlow("imports", C("S"), 10)] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) expected_flows = [ ImportFlow("imports", C("S", {"location": "urban"}), 10, [Multiply(0.5)]), ImportFlow("imports", C("S", {"location": "rural"}), 10, [Multiply(0.5)]), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) strat = Stratification("age", ["young", "old"], ["S", "I", "R"]) model.stratify_with(strat) expected_flows = [ ImportFlow( "imports", C("S", {"location": "urban", "age": "young"}), 10, [Multiply(0.5), Multiply(0.5)], ), ImportFlow( "imports", C("S", {"location": "urban", "age": "old"}), 10, [Multiply(0.5), Multiply(0.5)], ), ImportFlow( "imports", C("S", {"location": "rural", "age": "young"}), 10, [Multiply(0.5), Multiply(0.5)], ), ImportFlow( "imports", C("S", {"location": "rural", "age": "old"}), 10, [Multiply(0.5), Multiply(0.5)], ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_entry_flows__with_split_imports(): """ Ensure split_import entry flows are scaled correctly (when added post-stratification) """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) strat = Stratification("age", ["young", "old"], ["S", "I", "R"]) model.stratify_with(strat) model.add_importation_flow("imports", 10, "S", split_imports=True) expected_flows = [ ImportFlow( "imports", C("S", {"age": "young"}), 10, [Multiply(0.5)], ), ImportFlow( "imports", C("S", {"age": "old"}), 10, [Multiply(0.5)], ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) strat.set_flow_adjustments("imports", {"urban": None, "rural": Multiply(0.7)}) model.stratify_with(strat) expected_flows = [ ImportFlow( "imports", C("S", {"age": "young", "location": "urban"}), 10, [Multiply(0.5)], ), ImportFlow( "imports", C("S", {"age": "young", "location": "rural"}), 10, [Multiply(0.5), Multiply(0.7)], ), ImportFlow( "imports", C("S", {"age": "old", "location": "urban"}), 10, [Multiply(0.5)], ), ImportFlow( "imports", C("S", {"age": "old", "location": "rural"}), 10, [Multiply(0.5), Multiply(0.7)], ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_entry_flows__with_explicit_adjustments(): """ Ensure entry flows are stratified correctly when adjustments are requested. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_importation_flow("imports", 10, "S", split_imports=False) expected_flows = [ImportFlow("imports", C("S"), 10)] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) strat.set_flow_adjustments("imports", {"urban": Multiply(0.9), "rural": None}) model.stratify_with(strat) expected_flows = [ ImportFlow( "imports", C("S", {"location": "urban"}), 10, [Multiply(0.9)], ), ImportFlow( "imports", C("S", {"location": "rural"}), 10, [], ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) strat = Stratification("age", ["young", "old"], ["S", "I", "R"]) strat.set_flow_adjustments("imports", {"young": Multiply(0.8), "old": Overwrite(1)}) model.stratify_with(strat) expected_flows = [ ImportFlow( "imports", C("S", {"location": "urban", "age": "young"}), 10, [Multiply(0.9), Multiply(0.8)], ), ImportFlow( "imports", C("S", {"location": "urban", "age": "old"}), 10, [Multiply(0.9), Overwrite(1)], ), ImportFlow( "imports", C("S", {"location": "rural", "age": "young"}), 10, [Multiply(0.8)], ), ImportFlow( "imports", C("S", {"location": "rural", "age": "old"}), 10, [Overwrite(1)], ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_add_entry_flows_post_stratification(): """ Ensure we can add flows after a model is stratified. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) with pytest.raises(AssertionError): model.add_importation_flow("imports", 10, "S", split_imports=False, expected_flow_count=1) assert len(model._flows) == 0 model.add_importation_flow("imports", 10, "S", split_imports=False, expected_flow_count=2) assert len(model._flows) == 2 expected_flows = [ ImportFlow("imports", C("S", {"location": "urban"}), 10, []), ImportFlow("imports", C("S", {"location": "rural"}), 10, []), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_add_entry_flows_post_stratification__with_filter(): """ Ensure we can add flows after a model is stratified when a strata filter is applied """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) assert len(model._flows) == 0 model.add_importation_flow( "imports", 10, "S", dest_strata={"location": "urban"}, split_imports=False, expected_flow_count=1 ) assert len(model._flows) == 1 expected_flows = [ ImportFlow("imports", C("S", {"location": "urban"}), 10, []), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify__age__validate_ageing_flows_added(): """ Ensure, when using an age stratification, that ageing flows are automatically added and that birth flows are all sent to age 0. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 model.add_crude_birth_flow("births", 0.02, "S") assert len(model._flows) == 1 strat = AgeStratification("age", ["0", "5", "15"], ["S", "I", "R"]) model.stratify_with(strat) # Expect ageing flows amongst age group and a birth flow that only goes to age 0. expected_flows = [ CrudeBirthFlow("births", C("S", {"age": "0"}), 0.02), TransitionFlow( "ageing_SXage_0_to_SXage_5", C("S", {"age": "0"}), C("S", {"age": "5"}), 0.2 ), TransitionFlow( "ageing_IXage_0_to_IXage_5", C("I", {"age": "0"}), C("I", {"age": "5"}), 0.2 ), TransitionFlow( "ageing_RXage_0_to_RXage_5", C("R", {"age": "0"}), C("R", {"age": "5"}), 0.2 ), TransitionFlow( "ageing_SXage_5_to_SXage_15", C("S", {"age": "5"}), C("S", {"age": "15"}), 0.1 ), TransitionFlow( "ageing_IXage_5_to_IXage_15", C("I", {"age": "5"}), C("I", {"age": "15"}), 0.1 ), TransitionFlow( "ageing_RXage_5_to_RXage_15", C("R", {"age": "5"}), C("R", {"age": "15"}), 0.1 ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify__age__validate_ageing_flows_added_second(): """ Ensure that age stratification works when applied after a previous stratification. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 model.add_crude_birth_flow("births", 0.02, "S") assert len(model._flows) == 1 strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) strat = AgeStratification("age", ["0", "5", "15"], ["S", "I", "R"]) model.stratify_with(strat) # Expect ageing flows amongst age group and a birth flow that only goes to age 0. expected_flows = [ CrudeBirthFlow("births", C("S", {"location": "urban", "age": "0"}), 0.02, [Multiply(0.5)]), CrudeBirthFlow("births", C("S", {"location": "rural", "age": "0"}), 0.02, [Multiply(0.5)]), TransitionFlow( "ageing_SXlocation_urbanXage_0_to_SXlocation_urbanXage_5", C("S", {"location": "urban", "age": "0"}), C("S", {"location": "urban", "age": "5"}), 0.2, ), TransitionFlow( "ageing_SXlocation_ruralXage_0_to_SXlocation_ruralXage_5", C("S", {"location": "rural", "age": "0"}), C("S", {"location": "rural", "age": "5"}), 0.2, ), TransitionFlow( "ageing_IXlocation_urbanXage_0_to_IXlocation_urbanXage_5", C("I", {"location": "urban", "age": "0"}), C("I", {"location": "urban", "age": "5"}), 0.2, ), TransitionFlow( "ageing_IXlocation_ruralXage_0_to_IXlocation_ruralXage_5", C("I", {"location": "rural", "age": "0"}), C("I", {"location": "rural", "age": "5"}), 0.2, ), TransitionFlow( "ageing_RXlocation_urbanXage_0_to_RXlocation_urbanXage_5", C("R", {"location": "urban", "age": "0"}), C("R", {"location": "urban", "age": "5"}), 0.2, ), TransitionFlow( "ageing_RXlocation_ruralXage_0_to_RXlocation_ruralXage_5", C("R", {"location": "rural", "age": "0"}), C("R", {"location": "rural", "age": "5"}), 0.2, ), TransitionFlow( "ageing_SXlocation_urbanXage_5_to_SXlocation_urbanXage_15", C("S", {"location": "urban", "age": "5"}), C("S", {"location": "urban", "age": "15"}), 0.1, ), TransitionFlow( "ageing_SXlocation_ruralXage_5_to_SXlocation_ruralXage_15", C("S", {"location": "rural", "age": "5"}), C("S", {"location": "rural", "age": "15"}), 0.1, ), TransitionFlow( "ageing_IXlocation_urbanXage_5_to_IXlocation_urbanXage_15", C("I", {"location": "urban", "age": "5"}), C("I", {"location": "urban", "age": "15"}), 0.1, ), TransitionFlow( "ageing_IXlocation_ruralXage_5_to_IXlocation_ruralXage_15", C("I", {"location": "rural", "age": "5"}), C("I", {"location": "rural", "age": "15"}), 0.1, ), TransitionFlow( "ageing_RXlocation_urbanXage_5_to_RXlocation_urbanXage_15", C("R", {"location": "urban", "age": "5"}), C("R", {"location": "urban", "age": "15"}), 0.1, ), TransitionFlow( "ageing_RXlocation_ruralXage_5_to_RXlocation_ruralXage_15", C("R", {"location": "rural", "age": "5"}), C("R", {"location": "rural", "age": "15"}), 0.1, ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_exit_flows(): """ Ensure exit flows are stratified correctly. Death flows should remain the same after stratification, so that everyone in all of the stratified compartments continues to die at the same rate as before stratification. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_death_flow("d_S", 3, "S") model.add_death_flow("d_I", 5, "I") model.add_death_flow("d_R", 7, "R") expected_flows = [ DeathFlow("d_S", C("S"), 3), DeathFlow("d_I", C("I"), 5), DeathFlow("d_R", C("R"), 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply partial stratification strat = Stratification("location", ["urban", "rural"], ["S", "I"]) model.stratify_with(strat) expected_flows = [ DeathFlow("d_S", C("S", {"location": "urban"}), 3), DeathFlow("d_S", C("S", {"location": "rural"}), 3), DeathFlow("d_I", C("I", {"location": "urban"}), 5), DeathFlow("d_I", C("I", {"location": "rural"}), 5), DeathFlow("d_R", C("R"), 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply partial stratification with flow adjustments strat = Stratification("age", ["young", "old"], ["I", "R"]) strat.set_flow_adjustments("d_I", {"young": Multiply(0.5), "old": Multiply(2)}) strat.set_flow_adjustments("d_R", {"young": Multiply(0.5), "old": Multiply(2)}) model.stratify_with(strat) expected_flows = [ DeathFlow("d_S", C("S", {"location": "urban"}), 3), DeathFlow("d_S", C("S", {"location": "rural"}), 3), DeathFlow("d_I", C("I", {"location": "urban", "age": "young"}), 5, [Multiply(0.5)]), DeathFlow("d_I", C("I", {"location": "urban", "age": "old"}), 5, [Multiply(2)]), DeathFlow("d_I", C("I", {"location": "rural", "age": "young"}), 5, [Multiply(0.5)]), DeathFlow("d_I", C("I", {"location": "rural", "age": "old"}), 5, [Multiply(2)]), DeathFlow("d_R", C("R", {"age": "young"}), 7, [Multiply(0.5)]), DeathFlow("d_R", C("R", {"age": "old"}), 7, [Multiply(2)]), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_add_exit_flows_post_stratification(): """ Ensure user can add exit flows post stratification. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 # Apply partial stratification strat = Stratification("location", ["urban", "rural"], ["S", "I"]) model.stratify_with(strat) assert len(model._flows) == 0 model.add_death_flow("d_S", 3, "S") model.add_death_flow("d_I", 5, "I") model.add_death_flow("d_R", 7, "R") expected_flows = [ DeathFlow("d_S", C("S", {"location": "urban"}), 3), DeathFlow("d_S", C("S", {"location": "rural"}), 3), DeathFlow("d_I", C("I", {"location": "urban"}), 5), DeathFlow("d_I", C("I", {"location": "rural"}), 5), DeathFlow("d_R", C("R"), 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_add_exit_flows_post_stratification__with_filter(): """ Ensure user can add exit flows post stratification when a strata filter is applied """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) assert len(model._flows) == 0 # Apply partial stratification strat = Stratification("location", ["urban", "rural"], ["S", "I"]) model.stratify_with(strat) assert len(model._flows) == 0 model.add_death_flow("d_S", 3, "S", source_strata={"location": "rural"}, expected_flow_count=1) model.add_death_flow("d_I", 5, "I", source_strata={"location": "rural"}, expected_flow_count=1) # FIXME: Ask Matt, would it be better if this just crashed? model.add_death_flow("d_R", 7, "R", source_strata={"location": "rural"}, expected_flow_count=0) expected_flows = [ DeathFlow("d_S", C("S", {"location": "rural"}), 3), DeathFlow("d_I", C("I", {"location": "rural"}), 5), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_source_and_dest_stratified(): """ Ensure transition flows are stratified correctly when both the flow source and dest are stratified. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_infection_frequency_flow("infection", 0.03, "S", "I") model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ InfectionFrequencyFlow( "infection", C("S"), C("I"), 0.03, model._get_infection_frequency_multiplier ), TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) expected_flows = [ InfectionFrequencyFlow( "infection", C("S", {"location": "urban"}), C("I", {"location": "urban"}), 0.03, model._get_infection_frequency_multiplier, ), InfectionFrequencyFlow( "infection", C("S", {"location": "rural"}), C("I", {"location": "rural"}), 0.03, model._get_infection_frequency_multiplier, ), TransitionFlow( "recovery", C("I", {"location": "urban"}), C("R", {"location": "urban"}), 1 / 7 ), TransitionFlow( "recovery", C("I", {"location": "rural"}), C("R", {"location": "rural"}), 1 / 7 ), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_source_only_stratified(): """ Ensure transition flows are stratified correctly when only the flow source is stratified. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = Stratification("location", ["urban", "rural"], ["S", "I"]) model.stratify_with(strat) expected_flows = [ TransitionFlow("recovery", C("I", {"location": "urban"}), C("R"), 1 / 7), TransitionFlow("recovery", C("I", {"location": "rural"}), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_dest_only_stratified(): """ Ensure transition flows are stratified correctly when only the flow destination is stratified. Expect an person-conserving adjustment of 1/N to be applied to each flow - N being the number of new strata. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = Stratification("location", ["urban", "rural"], ["R"]) model.stratify_with(strat) expected_flows = [ TransitionFlow("recovery", C("I"), C("R", {"location": "urban"}), 1 / 7, [Multiply(0.5)]), TransitionFlow("recovery", C("I"), C("R", {"location": "rural"}), 1 / 7, [Multiply(0.5)]), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_dest_only_stratified__with_adjustments(): """ Ensure transition flows are stratified correctly when only the flow destination is stratified. Expect adjustments to override the automatic person-conserving adjustment. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = Stratification("location", ["urban", "rural"], ["R"]) strat.set_flow_adjustments("recovery", {"urban": Overwrite(0.7), "rural": Overwrite(0.1)}) model.stratify_with(strat) expected_flows = [ TransitionFlow("recovery", C("I"), C("R", {"location": "urban"}), 1 / 7, [Overwrite(0.7)]), TransitionFlow("recovery", C("I"), C("R", {"location": "rural"}), 1 / 7, [Overwrite(0.1)]), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_dest_only_stratified__with_strains(): """ Ensure transition flows are stratified correctly when only the flow destination is stratified. Expect the strain stratification to ignore the automatic person-conserving adjustment. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = StrainStratification("location", ["urban", "rural"], ["R"]) model.stratify_with(strat) # No adjustments added expected_flows = [ TransitionFlow("recovery", C("I"), C("R", {"location": "urban"}), 1 / 7), TransitionFlow("recovery", C("I"), C("R", {"location": "rural"}), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) def test_stratify_transition_flows__with_dest_only_stratified__with_adjustments_and_strains(): """ Ensure transition flows are stratified correctly when only the flow destination is stratified. Expect adjustments to override the automatic person-conserving adjustment when using a strain strat. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_transition_flow("recovery", 1 / 7, "I", "R") expected_flows = [ TransitionFlow("recovery", C("I"), C("R"), 1 / 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = StrainStratification("location", ["urban", "rural"], ["R"]) strat.set_flow_adjustments("recovery", {"urban": Overwrite(0.7), "rural": Overwrite(0.1)}) model.stratify_with(strat) expected_flows = [ TransitionFlow("recovery", C("I"), C("R", {"location": "urban"}), 1 / 7, [Overwrite(0.7)]), TransitionFlow("recovery", C("I"), C("R", {"location": "rural"}), 1 / 7, [Overwrite(0.1)]), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])
StarcoderdataPython
4833296
<gh_stars>0 # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. '''The model architecture used was first created by the user polomarco for a Kaggle competition: https://www.kaggle.com/polomarco/ecg-classification-cnn-lstm-attention-mechanism However, this example has been altered to fit the FLUTE architecture''' import torch from torch import nn from torch.nn import functional as F # ReLu alternative class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class ConvNormPool(nn.Module): """Conv Skip-connection module""" def __init__( self, input_size, hidden_size, kernel_size, norm_type='bachnorm' ): super().__init__() self.kernel_size = kernel_size self.conv_1 = nn.Conv1d( in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size ) self.conv_2 = nn.Conv1d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size ) self.conv_3 = nn.Conv1d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=kernel_size ) self.swish_1 = Swish() self.swish_2 = Swish() self.swish_3 = Swish() if norm_type == 'group': self.normalization_1 = nn.GroupNorm( num_groups=8, num_channels=hidden_size ) self.normalization_2 = nn.GroupNorm( num_groups=8, num_channels=hidden_size ) self.normalization_3 = nn.GroupNorm( num_groups=8, num_channels=hidden_size ) else: self.normalization_1 = nn.BatchNorm1d(num_features=hidden_size) self.normalization_2 = nn.BatchNorm1d(num_features=hidden_size) self.normalization_3 = nn.BatchNorm1d(num_features=hidden_size) self.pool = nn.MaxPool1d(kernel_size=2) def forward(self, input): conv1 = self.conv_1(input) x = self.normalization_1(conv1) x = self.swish_1(x) x = F.pad(x, pad=(self.kernel_size - 1, 0)) x = self.conv_2(x) x = self.normalization_2(x) x = self.swish_2(x) x = F.pad(x, pad=(self.kernel_size - 1, 0)) conv3 = self.conv_3(x) x = self.normalization_3(conv1+conv3) x = self.swish_3(x) x = F.pad(x, pad=(self.kernel_size - 1, 0)) x = self.pool(x) return x class RNN(nn.Module): """RNN module(cell type lstm or gru)""" def __init__( self, input_size, hid_size, num_rnn_layers=1, dropout_p = 0.2, ): super().__init__() self.rnn_layer = nn.LSTM( input_size=input_size, hidden_size=hid_size, num_layers=num_rnn_layers, dropout=dropout_p if num_rnn_layers>1 else 0, bidirectional=False, batch_first=True, ) def forward(self, input): outputs, hidden_states = self.rnn_layer(input) return outputs, hidden_states class Net(nn.Module): def __init__( self, input_size=1, hid_size=64, n_classes=5, kernel_size=5, ): super().__init__() self.rnn_layer = RNN( input_size=46, hid_size=hid_size, ) self.conv1 = ConvNormPool( input_size=input_size, hidden_size=hid_size, kernel_size=kernel_size, ) self.conv2 = ConvNormPool( input_size=hid_size, hidden_size=hid_size, kernel_size=kernel_size, ) self.avgpool = nn.AdaptiveMaxPool1d((1)) self.attn = nn.Linear(hid_size, hid_size, bias=False) self.fc = nn.Linear(in_features=hid_size, out_features=n_classes) def forward(self, input): x = self.conv1(input) x = self.conv2(x) x_out, hid_states = self.rnn_layer(x) x = torch.cat([hid_states[0], hid_states[1]], dim=0).transpose(0, 1) x_attn = torch.tanh(self.attn(x)) x = x_attn.bmm(x_out) x = x.transpose(2, 1) x = self.avgpool(x) x = x.view(-1, x.size(1) * x.size(2)) x = F.softmax(self.fc(x), dim=-1) return x class SuperNet(nn.Module): '''This is the parent of the net with some extra methods''' def __init__(self, model_config): super().__init__() self.net = Net() def loss(self, input: torch.Tensor): device = 'cuda' if torch.cuda.is_available() else 'cpu' features, labels = input['x'].to(device), input['y'].to(device) output = self.net.forward(features) return F.cross_entropy(output, labels.long()) def inference(self, input): device = 'cuda' if torch.cuda.is_available() else 'cpu' features, labels = input['x'].to(device), input['y'].to(device) output = self.net.forward(features) n_samples = features.shape[0] accuracy = torch.mean((torch.argmax(output, dim=1) == labels).float()).item() return output, accuracy, n_samples def set_eval(self): '''Bring the model into evaluation mode''' self.eval() def set_train(self): '''Bring the model into training mode''' self.train()
StarcoderdataPython
19815
from apscheduler.schedulers.background import BackgroundScheduler from des.ccd import start_pipeline def download_queue(): start_pipeline() scheduler = BackgroundScheduler() scheduler.add_job( download_queue, 'interval', # minutes=1 seconds=20, max_instances=1, id='des_download_ccd' ) scheduler.start()
StarcoderdataPython
4837499
""" BinarySearchTree Interface: ========== insert(value) remove(value) search(value): Return True if found and False otherwise. traverse(order): `order` can be one of `pre_order`, `post_order`, in_order`, `out_order`, or `breadth_first_order`. isEmpty() height clear() size Private helper methods: (DON'T use them in user code!) ================== [......] Methods prefixed with underscore are private helper methods. They are not intended for public exposure or usage out of its containing scope. Their implementation detail might be subject to change in the future. It's recommended to adhere to API explicitly provided. Complexity: =========== | Operation | Complexity | ---------------------- | insert() | O(H) | | search() | O(H) | | remove() | O(H) | | traverse() | O(N) | | clear() | O(1) | | size | O(1) | | height | O(N) | where N is number of nodes. where H denotes tree height, which is in average O(logN). Reference: https://www.sciencedirect.com/science/article/pii/0022000082900046 """ __all__ = ["BinarySearchTree", "BST"] import random from functools import wraps from ..utils import decorate_all_methods from .binary_tree import BinaryNode as Node from .binary_tree import BinaryTree def check_comparable(func): error_messages = {"'<' not supported", "'>' not supported", "'==' not supported", "'>=' not supported", "'<=' not supported"} @wraps(func) def wrapper(*args, **kw): try: return func(*args, **kw) except TypeError as e: for err in error_messages: if str(e).startswith(err): raise ValueError("Key should be comparable.") raise e return wrapper @decorate_all_methods(check_comparable) class BinarySearchTree(BinaryTree): """ Key should be comparable (and orderable)? """ # TODO: make height computation O(1) instead of O(N) def insert(self, data): self._root = self.recur_insert(self._root, data) return self def recur_insert(self, node, data): if node is None: self._size += 1 return Node(data) if data == node.data: return node elif data < node.data: node.left = self.recur_insert(node.left, data) return node else: node.right = self.recur_insert(node.right, data) return node def search(self, data): return self.recur_search(self._root, data) def recur_search(self, node, data): if node is None: return False if data == node.data: return True elif data > node.data: return self.recur_search(node.right, data) else: return self.recur_search(node.left, data) def remove(self, data): self._root = self.recur_remove(self._root, data) return self def recur_remove(self, node, data): if node is None: return None if data < node.data: node.left = self.recur_remove(node.left, data) return node elif data > node.data: node.right = self.recur_remove(node.right, data) return node else: return self._remove_node(node) def _remove_node(self, node): if node is None: return None self._size -= 1 # Randomly pick node to delete from two choices: # "max node in left sub tree", or "min node in right sub tree" if random.choice([0, 1]): if node.left is not None: itr = node.left prev = node while itr.right is not None: prev = itr itr = itr.right prev.right = itr.left node.data = itr.data return node else: return node.right else: if node.right is not None: itr = node.right prev = node while itr.left is not None: prev = itr itr = itr.left prev.left = itr.right node.data = itr.data return node else: return node.left default_traversal_order = "in_order" def in_order_traverse(self): """ `in_order` traversal retrieves nodes in sorted order """ return self.recur_in_order_traverse(self._root) def recur_in_order_traverse(self, node): if node is None: return yield from self.recur_in_order_traverse(node.left) yield node yield from self.recur_in_order_traverse(node.right) def out_order_traverse(self): return self.recur_out_order_traverse(self._root) def recur_out_order_traverse(self, node): if node is None: return yield from self.recur_out_order_traverse(node.right) yield node yield from self.recur_out_order_traverse(node.left) # Alias BST = BinarySearchTree if __name__ == '__main__': tree1 = BST() tree1.insert(2).insert(1).insert(4).insert(3).insert(5).delete(5) print(tree1)
StarcoderdataPython
3272148
__________________________________________________________________________________________________ class Solution: def calculateTime(self, keyboard: str, word: str) -> int: pos = 0 ans = 0 for ch in word: cur = keyboard.find(ch) ans += abs(cur - pos) pos = cur return ans __________________________________________________________________________________________________ __________________________________________________________________________________________________
StarcoderdataPython
198601
from simbatch.core import core from simbatch.core import settings import pytest import os @pytest.fixture(scope="module") def sib(): # TODO pytest-datadir pytest-datafiles vs ( path.dirname( path.realpath(sys.argv[0]) ) settings_file = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + os.sep + "config_tests.ini" return core.SimBatch("Stand-alone", ini_file=settings_file) def test_init_simbatch(sib): # sib.sts.debug_level = 0 sib.logger.console_level = 0 # assert sib.sts.runtime_env == "Stand-alone" lo = sib.load_data() assert lo[0] is True def test_set_prj_sch_tsk(sib): sib.sio.create_unit_tests_example_data(do_save=True) utest_proj_id = sib.prj.get_id_from_name("pytest proj") assert utest_proj_id is not None assert sib.prj.update_current_from_id(sib.prj.max_id) is True assert sib.prj.current_project.project_name == "pytest proj" sib.dfn.update_current_definition_by_name("Maya") sib.sch.update_current_from_id(sib.tsk.tasks_data[-1].schema_id) sib.tsk.update_current_from_id(sib.tsk.max_id) assert sib.tsk.current_task_id > 0 sib.que.remove_queue_items(only_done=True) def test_generate_template_queue_item(sib): print "\n\n___ template_queue_item ___" template_queue_item = sib.que.generate_template_queue_item(sib.tsk.current_task, sib.sch.current_schema) assert template_queue_item.shot == "ut01" template_queue_item.print_this() def test_generate_template_evo_script(sib): print "\n\n___ template script ___" for i, act in enumerate(sib.sch.current_schema.actions_array): act.actual_value = "test_user_input_" + str(i+1) template_script = sib.que.generate_template_evo_script(sib.sch.current_schema) print template_script def test_get_params_val_arr_from_string(sib): evos_var = sib.pat.get_params_val_arr_from_string("BND 1 2 3") assert evos_var[0] == 3 assert evos_var[1] == [['BND', '1.0', '2.0', '3.0']] evos_var = sib.pat.get_params_val_arr_from_string("bNd 7 14.5; stR 4.00 5 6") assert evos_var[0] == 6 assert evos_var[1][0] == ['BND', '7.0', '14.5'] assert evos_var[1][1] == ['STR', '4.0', '5.0', '6.0'] evos_var = sib.pat.get_params_val_arr_from_string("bNd 7 7 14.5 7 14.5; stR 4.00 5 6 ; MASS 123 4 5; MAS 1 2 3") assert evos_var[0] == 18 assert evos_var[1][0] == ['BND', '7.0', '14.5'] assert evos_var[1][1] == ['STR', '4.0', '5.0', '6.0'] assert evos_var[1][2] == ['MAS', '1.0', '2.0', '3.0'] # TODO # evos_var = sib.pat.get_params_val_arr_from_string("stR 4.00 5 6 ; ZZZ 123 4 5; MAS 1 2 3") # evos_var = sib.pat.get_params_val_arr_from_string("stR 4.00 5 6 ; ZZZZZ 123 4 5 MAS 1 2 3") def test_get_array_of_scripts_params_val_from_schema_actions(sib): print "\n\n___ scripts_params ___" arr_scripts_params = sib.que.get_array_of_scripts_params_val_from_schema_actions(sib.sch.current_schema) print "\n", arr_scripts_params evo_action_index = sib.sch.current_schema.get_first_evos_possible() if evo_action_index is not None: sib.sch.current_schema.actions_array[evo_action_index].actual_value = "Bnd 5 55" arr_scripts_params = sib.que.get_array_of_scripts_params_val_from_schema_actions(sib.sch.current_schema) print "\n", arr_scripts_params evo_action_index = sib.sch.current_schema.get_first_evos_possible() if evo_action_index is not None: sib.sch.current_schema.actions_array[evo_action_index].actual_value = "bND 5 55; MAS 1 2 3" arr_scripts_params = sib.que.get_array_of_scripts_params_val_from_schema_actions(sib.sch.current_schema) print "\n", arr_scripts_params evo_action_index = sib.sch.current_schema.get_first_evos_possible() if evo_action_index is not None: sib.sch.current_schema.actions_array[evo_action_index].actual_value = "bND 5 55; MAS 1 2 3; STI 300 303" arr_scripts_params = sib.que.get_array_of_scripts_params_val_from_schema_actions(sib.sch.current_schema) print "\n", arr_scripts_params def test_do_params_combinations(sib): print "\n\n___ params_combinations ___" arr_scripts_params = sib.que.get_array_of_scripts_params_val_from_schema_actions(sib.sch.current_schema) all_evo_combinations_array = sib.que.do_params_combinations(arr_scripts_params) print "\n", all_evo_combinations_array in_arr = [[[u'STR:7.0', u'i'], [u'STR:8.0', u'i']]] assert len(sib.que.do_params_combinations(in_arr)) == 2 # TODO check value !!! in_arr = [[[u'STR:7.0', u'i'], [u'STR:8.0', u'i']],[[u'LFT:1.0', u'i'], [u'LFT:2.0', u'i']]] assert len(sib.que.do_params_combinations(in_arr)) == 4 # TODO check value !!! def test_generate_queue_items(sib): print "\n\n___ queue_items ___" qi1 = sib.que.generate_queue_items(sib.tsk.current_task_id) # for qi in qi1: # print "___" # qi.print_this() # WIP def test_generate_queue_items_evo(sib): print "\n\n___ queue_items with evo ___" assert len(sib.tsk.tasks_data) > 0 sib.sch.update_current_from_id(sib.tsk.tasks_data[-1].schema_id) sib.tsk.update_current_from_id(sib.tsk.max_id) # sib.print_important_values() custom_action_inputs = [["ooppoo"], [["sim_clt"], "DMP 1 2 3"], ["simed_file"]] # TO DO !!! , action_inputs = custom_action_inputs qi1 = sib.que.generate_queue_items(sib.tsk.current_task_id) # for qi in qi1: # print "___" # qi.print_this() # WIP
StarcoderdataPython
1653718
<gh_stars>1-10 import os import numpy as np from math import log10, sqrt from numpy.fft import fft2, ifft2 from skimage import io from scipy.signal import gaussian # Get the peek signal to noise ratio for images def PSNR(original, compressed): mse = np.mean((original - compressed) ** 2) if(mse == 0): return 100 max_pixel = 255.0 psnr = 20 * log10(max_pixel / sqrt(mse)) return psnr # Function will add gaussian noise to the image def add_gaussian_noise(img, sigma): gauss = np.random.normal(0, sigma, np.shape(img)) noisy_img = img + gauss noisy_img[noisy_img < 0] = 0 noisy_img[noisy_img > 255] = 255 return noisy_img # Function will return patches of default size (11,11) def patchify(img, patch_shape): X, Y = img.shape x, y = patch_shape shape = (X - x + 1, Y - y + 1, x, y) X_str, Y_str = img.strides strides = (X_str, Y_str, X_str, Y_str) return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides) # Function to convert RGB image to grayscale def rgb2gray(rgb): return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140]) # Creates a gaussian kernel def gaussian_kernel(kernel_size = 3): h = gaussian(kernel_size, kernel_size / 3).reshape(kernel_size, 1) h = np.dot(h, h.transpose()) h /= np.sum(h) return h # Wiener filter def wiener_filter(img, kernel, K): kernel /= np.sum(kernel) dummy = np.copy(img) dummy = fft2(dummy) kernel = fft2(kernel, s = img.shape) kernel = np.conj(kernel) / (np.abs(kernel) ** 2 + K) dummy = dummy * kernel dummy = np.abs(ifft2(dummy)) return dummy if __name__ == '__main__': filename = os.path.join(os.getcwd(), './Noisy Image/photo.jpg') myPhoto = io.imread(filename) # Code to create a gaussian noisy image gaussian_noise_image = add_gaussian_noise(myPhoto, 50) kernel = gaussian_kernel(3) # Checking if image is colored or not if(len(gaussian_noise_image.shape) == 3): noisy_image = np.copy(gaussian_noise_image) red_noise = noisy_image[:, :, 0] green_noise = noisy_image[:, :, 1] blue_noise = noisy_image[:, :, 2] red_filtered = wiener_filter(red_noise, kernel, K=10) green_filtered = wiener_filter(green_noise, kernel, K=10) blue_filtered = wiener_filter(blue_noise, kernel, K=10) filtered_image = np.dstack((red_filtered, green_filtered, blue_filtered)) else: filtered_image = wiener_filter(gaussian_noise_image, kernel, K=10) # Calculating the PSNR value for the images print("PSNR for noisy image: {}".format(PSNR(myPhoto, gaussian_noise_image))) print("PSNR for filtered image: {}".format(PSNR(myPhoto, filtered_image))) # Saving the noisy and restored image io.imsave('./Noisy Image/gaussian_noise.jpg', gaussian_noise_image) io.imsave('./Restored Images/restored.jpg', filtered_image)
StarcoderdataPython
133012
from numpy import interp from os import listdir from PIL import Image, ImageStat # Directory for block textures extracted from version jar textures = 'assets/minecraft/textures/block' # Special case: animated blocks like crimson_stem are # taller than 64px: crop when compositing later? # List of blocks to allow loading # > Change this file for different lists with open('blocks_full.txt') as reader: allow_blocks = reader.read().splitlines() # Unused because redundant # # List of blocks to deny loading # with open('blocks_deny.txt') as reader: # deny_blocks = reader.read().splitlines() # Find png filenames in textures directory and remove .png extension # (Create list of all blocks) block_ids = [filename[:-4] for filename in listdir(textures) if filename.endswith('.png')] # Remove all blocks except those in allow list from block id list block_ids = [id for id in block_ids if id in allow_blocks] # Unused because redundant # # Remove blocks in deny list from block id list # block_ids = [id for id in block_ids if not id in deny_blocks] # Convert HSV into hsv(360°, 100%, 100%) color code string def hsv_string (h, s, v): hsv_string = f'hsv({round(h)}, {round(s)}%, {round(v)}%)' return (hsv_string) # Get average HSV color from image def avg_hsv(block_id): # Open Minecraft texture as RGBA image im = Image.open(f'{textures}/{block_id}.png') # Convert RGBA image into HSV (Hue, Saturation, Value) image im = im.convert('HSV') # Split HSV into separate channels hue_channel = im.getchannel('H') sat_channel = im.getchannel('S') val_channel = im.getchannel('V') # Get average of each channel h = ImageStat.Stat(hue_channel).mean s = ImageStat.Stat(sat_channel).mean v = ImageStat.Stat(val_channel).mean # Scale from 8-bit channel range (255, 255, 255) to hsv(360°, 100%, 100%) range # These are converted to floats h = interp(h, [0, 255], [0, 360])[0] s = interp(s, [0, 255], [0, 100])[0] v = interp(v, [0, 255], [0, 100])[0] # Collect this block's data in a dictionary return {'block_id': block_id, 'hue': h, 'sat': s, 'val': v, 'hsv_string': hsv_string(h, s, v)} # Make a list of blocks and their average colors blocks = map(avg_hsv, block_ids) # Sort blocks by hue, then saturation, then value blocks = sorted(blocks, key = lambda block: (block['hue'], block['sat'], block['val'])) # Print blocks and their color for block in blocks: print(f"{block['block_id']} : {block['hsv_string']}")
StarcoderdataPython
3240597
import logging import random import time import numpy import torch from .obs_ga import ObsGA from .policy_ga import PolicyGA from ..environment import Environment LOG = logging.getLogger(__name__) class TimeStat: def __init__(self): self._start_time = None def start(self): self._start_time = time.time() def used_time(self) -> float: now_time = time.time() result = now_time - self._start_time return round(result, 3) class EnvironmentGA(Environment): def __init__(self, limit, seed, time_limit): """_summary_ Args: limit (int): tx counts limit seed (int): seed for module like random, torch, numpy.random time_limit (int): time limit in seconds """ super().__init__(limit, seed) self.time_limit = time_limit self.time_stat = TimeStat() def fuzz_loop(self, policy: PolicyGA, obs: ObsGA): self.time_stat.start() obs.init() LOG.info(obs.stat) LOG.info('initial calls start') self.init_txs(policy, obs) LOG.info('initial calls end') random.seed(self.seed) torch.manual_seed(self.seed) numpy.random.seed(self.seed) for contract_name in policy.contract_manager.fuzz_contract_names: generation_counts = 1 suite = [] missed_block_chrom = dict() seeds = policy.initial_seeds(contract_name, obs) while self.time_stat.used_time() < self.time_limit: LOG.info('generation {}'.format(generation_counts)) LOG.info(obs.stat) generation_counts += 1 seeds = policy.selection(seeds, suite, missed_block_chrom, contract_name, obs) policy.crossover(seeds) policy.mutation(seeds, obs) policy.execute_seeds(seeds, obs)
StarcoderdataPython
107473
<gh_stars>0 def main(event, context): print(f'This is from Lambda 2nd function.')
StarcoderdataPython
3362231
<filename>canteen/app.py from flask import ( Flask, render_template, ) app = Flask( __name__, static_folder='../static/dist', template_folder='../static', ) @app.route('/') def index(): return render_template('index.html')
StarcoderdataPython
3206585
<reponame>gregflynn/configs<filename>modules/pacman/__init__.py from sanity.initializer import BaseInitializer from sanity.settings import ExecWrapper class Initializer(BaseInitializer): @property def requirements(self): return ['pacman'] def install(self): self.bin('pac', self.base_path('pac.py'), bin_type=ExecWrapper.PYTHON) self.bin_autocomplete_click('pac')
StarcoderdataPython
199070
# -*- coding: utf-8 -*- """Generic requests handlers.""" import datetime from operator import itemgetter from google.appengine.ext import ndb from jinja2 import FileSystemLoader from webapp2 import cached_property from webapp2 import RequestHandler from webapp2 import uri_for from webapp2_extras import auth from webapp2_extras import i18n from webapp2_extras import jinja2 from webapp2_extras import sessions from webapp2_extras import sessions_memcache try: from appengine_config import template_loaders except ImportError: template_loaders = FileSystemLoader('') try: from appengine_config import available_languages except ImportError: available_languages = { 'en': 'en_US', 'fr': 'fr_FR' } try: from appengine_config import language_code except ImportError: language_code = 'en_US' EXTENSIONS = ['jinja2.ext.autoescape', 'jinja2.ext.with_', 'jinja2.ext.i18n'] def jinja2_factory(app, loaders=None): """Set configuration environment for Jinja2. Args: app -- (WSGIApplication) loaders -- (list) Jinja2 template loaders Return: (Jinja2) A Jinja2 instance. """ if loaders is None: loaders = template_loaders config = {'environment_args': {'extensions': EXTENSIONS, 'loader': loaders}, 'globals': {'uri_for': uri_for, 'datetime': datetime}, 'filters': {}} j = jinja2.Jinja2(app, config=config) return j class BaseRequestHandler(RequestHandler): """Base request handler with session support and Jinja2 templates.""" session_store = None @cached_property def auth(self): """Shortcut to access the auth instance as a property.""" return auth.get_auth() @cached_property def user_info(self): """Shortcut to access a subset of the user attributes. That subset is stored in session. The list of attributes to store in the session is specified in config['webapp2_extras.auth']['user_attributes']. Returns: A dictionary with most user information """ return self.auth.get_user_by_session() @cached_property def user(self): """Shortcut to access the current logged in user. Unlike user_info, it fetches information from the persistence layer and returns an instance of the underlying model. Returns: The instance of the user model associated to the logged in user. """ usr = self.user_info return self.user_model.get_by_id(usr['user_id'], namespace='') \ if usr else None @cached_property def user_model(self): """Return the implementation of the user model. If set, it's consistent with config['webapp2_extras.auth']['user_model'] """ return self.auth.store.user_model @cached_property def session(self): """Shortcut to access the current session.""" factory = sessions_memcache.MemcacheSessionFactory return self.session_store.get_session(factory=factory) @cached_property def jinja2(self): """Return a Jinja2 renderer cached in the app registry.""" return jinja2.get_jinja2(factory=jinja2_factory, app=self.app) def render_html(self, _template, **context): """Render a template and writes the result to the response.""" context.update({'user': self.user_info}) resp = self.jinja2.render_template(_template, **context) self.response.write(resp) @classmethod def _extract_locale_from_header(cls, locale_header): """Extract locale from HTTP Accept-Language header. We only support langage, not locale for now. Header with en-GB will be set as en_US, etc. Args: locale_header (str): HTTP Accept-Language header. Returns: (str) Locale. """ if locale_header is None: return language_code parts = (part.split(';q=') for part in locale_header.replace(' ', '').split(',')) languages = ((part[0].split('-')[0].lower(), float(part[1]) if len(part) > 1 else 1.0) for part in parts) languages = [language for language in languages if language[0].lower() in available_languages] languages.sort(key=itemgetter(1), reverse=True) locale = available_languages[languages[0][0]] if len( languages) > 0 else language_code return locale def request_language(self): """Return primary language from request.""" locale_header = self.request.headers.get('Accept-Language') if locale_header is None: return None parts = (part.split(';q=') for part in locale_header.replace(' ', '').split(',')) languages = [(part[0].split('-')[0].lower(), float(part[1]) if len(part) > 1 else 1.0) for part in parts] languages.sort(key=itemgetter(1), reverse=True) try: return languages[0][0] except IndexError: return None def __init__(self, request, response): """Override the initialiser in order to set the language.""" self.initialize(request, response) # Set language. locale_header = self.request.headers.get('Accept-Language') locale = self._extract_locale_from_header(locale_header) i18n.get_i18n().set_locale(locale) self.LANGUAGE = i18n.get_i18n().locale[0:2] def dispatch(self): """Override the dispatcher in order to set session.""" # Get a session store for this request. self.session_store = sessions.get_store() try: super(BaseRequestHandler, self).dispatch() finally: self.session_store.save_sessions(self.response) def get_geodata(self): """Return `Request` geo data dict.""" geopt = ndb.GeoPt(self.request.headers.get('X-AppEngine-CityLatLong'))\ if self.request.headers.get('X-AppEngine-CityLatLong') else None return {'language': self.request_language(), 'country': self.request.headers.get('X-AppEngine-Country'), 'region': self.request.headers.get('X-AppEngine-Region'), 'city': self.request.headers.get('X-AppEngine-City'), 'geopt': geopt} class RedirectHandler(BaseRequestHandler): """Redirect handler.""" redirect_url = None def get(self, *args, **kwargs): """Return redirection.""" self.redirect(self.get_redirect_url()) def get_redirect_url(self): """Return success URL.""" return self.uri_for(self.redirect_url) class ImproperlyConfigured(Exception): """App is somehow improperly configured.""" class TemplateRequestHandler(BaseRequestHandler): """Generic handler for template view.""" template_name = None def get(self, *args, **kwargs): """Render template.""" context = self.get_context_data(**kwargs) template = self.get_template_name() self.render_html(template, **context) def get_template_name(self): """Return a template name to be used for the request.""" if self.template_name is None: raise ImproperlyConfigured( "TemplateRequestHandler requires either a definition of " "'template_name' or an implementation of " "'get_template_names()'") else: return self.template_name def get_context_data(self, **kwargs): """Return kwargs as template context.""" if 'view' not in kwargs: kwargs['view'] = self return kwargs class ModelRequestHandler(TemplateRequestHandler): """To render an entity.""" model = None _entity = None def get(self, *args, **kwargs): """Render template with entity in context.""" if kwargs.get('object_id'): self._set_entity(kwargs.get('object_id')) if not self._entity: return self.response.set_status(404) super(ModelRequestHandler, self).get(*args, **kwargs) def get_context_data(self, **kwargs): """Add model entity to context.""" kwargs = super(ModelRequestHandler, self).get_context_data(**kwargs) if self._entity: kwargs['object'] = self._entity return kwargs def _set_entity(self, object_id): """Set model entity.""" try: object_id = int(object_id) except ValueError: pass if self.request.route_kwargs.get('parent_id'): parent_id = self.request.route_kwargs.get('parent_id') try: parent_id = int(parent_id) except ValueError: pass key = ndb.Key(self.model.parent_class, parent_id, self.model, object_id) self._entity = key.get() else: self._entity = self.model.get_by_id(object_id) class ChildsRequestHandler(TemplateRequestHandler): """To render list of an entity childrens.""" child_model = None parent_id_key = 'parent_id' limit = 20 def get_context_data(self, **kwargs): """Add list items to context.""" kwargs = super(ChildsRequestHandler, self).get_context_data(**kwargs) ancestor = ndb.Key(self.child_model.parent_class, kwargs[self.parent_id_key]) items = self.queryset(ancestor).fetch_async(self.limit) parent = ancestor.get_async() kwargs['parent'] = parent.get_result() kwargs['items'] = items.get_result() return kwargs def queryset(self, ancestor): """Return child query.""" return self.child_model.query(ancestor=ancestor) class FormRequestHandler(TemplateRequestHandler): """Render a form on GET and processes it on POST.""" form_class = None form_prefix = '' success_url = None template_name = None def get(self, *args, **kwargs): """Instantiate a blank version of the form.""" form_class = self.get_form_class() form = self.get_form(form_class) context = self.get_context_data(form=form) template = self.get_template_name() self.render_html(template, **context) def post(self, *args, **kwargs): """Check POT variables for validity and call response method.""" form_class = self.get_form_class() form = self.get_form(form_class) if form.validate(): self.form_valid(form) else: self.form_invalid(form) def form_valid(self, form): """If the form is valid, redirect to the supplied URL.""" self.redirect(self.get_succes_url()) def get_succes_url(self): """Return success URL.""" return self.uri_for(self.success_url) def form_invalid(self, form): """If the form is invalid. Re-render the context data with the data-filled form and errors. """ context = self.get_context_data(form=form) template = self.get_template_name() self.render_html(template, **context) def get_form_class(self): """Return the form class to use in this view.""" return self.form_class def get_form(self, form_class): """Return an instance of the form to be used in this view.""" return form_class(self.get_form_kwargs(), prefix=self.form_prefix) def get_form_kwargs(self): """Return the keyword arguments for instantiating the form.""" method_name = self.request.method.upper().replace('-', '_') if method_name == 'POST': return self.request.POST else: return self.request.GET class ModelFormRequestHandler(FormRequestHandler): """Render a model form on GET and processes it on POST.""" model = None form_prefix = '' _entity = None def get(self, *args, **kwargs): """Instantiate a blank version of the form.""" if kwargs.get('object_id'): self._set_entity(kwargs.get('object_id')) if not self._entity: return self.response.set_status(404) super(ModelFormRequestHandler, self).get(*args, **kwargs) def post(self, *args, **kwargs): # pylint: disable=W0613 """Check POT variables for validity and call response method.""" if kwargs.get('object_id'): self._set_entity(kwargs.get('object_id')) if not self._entity: return self.response.set_status(404) super(ModelFormRequestHandler, self).post(*args, **kwargs) def _set_entity(self, object_id): """Set model entity.""" try: object_id = int(object_id) except ValueError: pass if self.request.route_kwargs.get('parent_id'): parent_id = self.request.route_kwargs.get('parent_id') try: parent_id = int(parent_id) except ValueError: pass key = ndb.Key(self.model.parent_class, parent_id, self.model, object_id) self._entity = key.get() else: self._entity = self.model.get_by_id(object_id) def form_valid(self, form): """Create entity and redirect.""" # Create entity entity = self._entity or self.model() form.populate_obj(entity) entity.put() # Redirect super(ModelFormRequestHandler, self).form_valid(form) def get_form(self, form_class): """Return an instance of the form to be used in this view.""" return form_class(self.get_form_kwargs(), obj=self._entity, data=self.request.route_kwargs, prefix=self.form_prefix) def get_context_data(self, **kwargs): """Return kwargs as template context.""" kwargs = super(ModelFormRequestHandler, self).get_context_data(**kwargs) if self._entity: kwargs['object'] = self._entity return kwargs
StarcoderdataPython
3390285
import sys from collections import defaultdict MAX_SIZE = 400 INF = 999999 SAFE_DIST = 10000 def manhattan(p1, p2): return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1]) def get_manhattans(points, dest_point): return sum(map(lambda point: manhattan(point, dest_point), points)) def get_safe_points(points): for x in range(MAX_SIZE): for y in range(MAX_SIZE): if get_manhattans(points, (x, y)) < SAFE_DIST: yield x, y def get_neighbours(point): x, y = point return [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] def solve(lines): points = list(map(lambda line: tuple(map(int, line.split(', '))), lines)) safe_points = set(get_safe_points(points)) return len(safe_points) print(solve(sys.stdin))
StarcoderdataPython
1784764
<reponame>rainmanwy/robotframework-DatabaseLib # -*- coding: utf-8 -*- """ Create by <EMAIL> at 7/3/19 """ import os from sqlalchemy import create_engine from sqlalchemy.engine import Engine from sqlalchemy.orm import sessionmaker, scoped_session import sqlparse from robot.utils import ConnectionCache from robot.api import logger from .base import HybridCore from .base import keyword from .version import VERSION os.environ["NLS_LANG"] = ".UTF8" class DatabaseLib(HybridCore): """ DatabaseLib is created based on [https://www.sqlalchemy.org/|sqlalchemy]. It support below features: - Database operations(select/insert/update/delete...) - Multi database connections, user could use "Switch Connection" to change current connection - ORM extension support - Extension this libraries easily """ ROBOT_LIBRARY_SCOPE = 'GLOBAL' ROBOT_LIBRARY_VERSION = VERSION def __init__(self, libraryComponents=[]): """ DatabaseLib could be extened through parameter libraryComponents """ self._connections = ConnectionCache() self._sessions = {} super(DatabaseLib, self).__init__(libraryComponents) @property def current(self): return self._connections.current @property def session(self): if self.current not in self._sessions: raise RuntimeError('Session is not created!') return self._sessions[self.current] @keyword def connect_to_db(self, hostOrUrl, port=None, database=None, user=None, password=None, dbPrefix=None, alias=None, **kwargs): """ Connect to database [http://docs.sqlalchemy.org/en/latest/core/engines.html|sqlalchemy] :param hostOrUrl: database hostname or database connection string :param port: database port :param database: database name :param user: database user name :param password: <PASSWORD> :param dbPrefix: format is dialect+driver, dialect is optional :param alias: connection alias, could be used to switch connection :param kwargs: please check [http://docs.sqlalchemy.org/en/latest/core/engines.html|create_engine] to get more details :return: connection index Example: | Connect To Db | 127.0.0.1 | 3306 | test | user | password | mysql | | Connect To Db | mysql://user:[email protected]:3306/test?charset=utf8 | """ if '://' in hostOrUrl: connectStr = hostOrUrl elif 'mysql' in dbPrefix.lower(): connectStr = '%s://%s:%s@%s:%s/%s?charset=utf8' % (dbPrefix, user, password, hostOrUrl, port, database) else: connectStr = '%s://%s:%s@%s:%s/%s' % (dbPrefix, user, password, hostOrUrl, port, database) logger.debug('Connection String: {0}'.format(connectStr)) engine = create_engine(connectStr, **kwargs) connectionIndex = self._connections.register(engine, alias) return connectionIndex @keyword def switch_connection(self, indexOrAlias): """ Switch database connection :param indexOrAlias: connection alias or index :return: previous index Example: | Connect To Db | 127.0.0.1 | 3306 | test1 | user | password | mysql | connection_1 | | Connect To Db | 127.0.0.1 | 3306 | test2 | user | password | oracle | connection_2 | | Switch Connection | connection_1 | """ oldIndex = self._connections.current_index self._connections.switch(indexOrAlias) return oldIndex @keyword def create_session(self, autoflush=True, autocommit=False, expireOnCommit=True, info=None, **kwargs): """ Create session based on current connection(engine) if session is already for current connection, keyword will return created session directly. This keyword could be used to extend library with ORM :param autoflush: default value is True :param autocommit: default value is False :param expireOnCommit: default value is True :param info: default value is None :param kwargs: Please check Session in sqlalchemy :return: session """ if self.current in self._sessions: return self._sessions[self.current] elif self.current is not None: self.current.echo = 'debug' session = scoped_session(sessionmaker(bind=self.current, autoflush=autoflush, autocommit=autocommit, expire_on_commit=expireOnCommit, info=info, **kwargs)) self._sessions[self.current] = session return session raise RuntimeError('Current connection may closed, or not create connection yet!') @keyword def close_connection(self): """ Close current database connection :return: None """ if self.current in self._sessions: self._sessions.pop(self.current) self.current.dispose() self._connections.current = self._connections._no_current @keyword def close_all_connections(self): """ Close all database connections :return: None """ self._sessions.clear() self._connections.close_all('dispose') @keyword def execute(self, sql): """ Execute sql :param sql: sql :return: sqlalchemy ResultProxy """ return self.current.execute(sql) @keyword def query(self, sql, *args, **kwargs): """ Execute query :param sql: sql string :param args: if params in sql want to be replaced by index, use args :param kwargs: if params in sql want to be replaced by key, use kwargs :return: List of ResultProxy Examples: | ${results}= | Query | SELECT {0}, {1} FROM MY_TABLE | c1 | c2 | | ${results}= | Query | SELECT {col1}, {col2} FROM MY_TABLE | col1=c1 | col2=c2 | | ${results}= | Query | SELECT c1, c2 FROM MY_TABLE | | | """ if not args: args = [] if not kwargs: kwargs = {} sql = sql.format(*args, **kwargs) logger.debug('Execute: %s' % sql) resultProxy = self.execute(sql) results = [result for result in resultProxy] logger.debug('Results: %s' % results) return results @keyword def execute_sql_script(self, sqlFile): """ Execute sql script file :param sqlFile: Path to sql script file, not format should be utf-8 :return: None """ with open(sqlFile, 'r', encoding='utf-8') as f: content = f.read() content = content.replace('\ufeff', '') sqlStrList = sqlparse.split(sqlparse.format(content, strip_comments=True)) sqlStrList = [sqlparse.format(sqlStr.strip(';'), keyword_case='upper', reindent=True) for sqlStr in sqlStrList if sqlStr.strip()] for sqlStr in sqlStrList: self.execute(sqlStr) @keyword def call_stored_procedure(self, name, *params): """ Call stored procedure :param name: name of stored procedure :param params: parameters of stored procedure :return: results """ connection = self.current.raw_connection() try: cursor = connection.cursor() results = cursor.callproc(name, params) cursor.close() connection.commit() finally: connection.close() return results
StarcoderdataPython
1731531
import datetime import json import logging import shutil import subprocess logger = logging.getLogger(__name__) class ContCommandResult: """A representation engine command results.""" def __init__(self, exit_status=None, stdout=None, stderr=None, command=None): self.exit_status = exit_status self.stdout = stdout self.stderr = stderr self.command = command @classmethod def from_subprocess_out(cls, sub_out): stdout = sub_out.stdout.decode().strip() if sub_out.stdout else "" stderr = sub_out.stderr.decode().strip() if sub_out.stderr else "" command = " ".join(sub_out.args) if sub_out.returncode != 0 and stderr: logger.warning(f"Error: {command} >> {stdout} >> {stderr}") return cls(exit_status=sub_out.returncode, stdout=stdout, stderr=stderr, command=command,) def __repr__(self): return f"ContCommandResult(exit_status={self.exit_status})" class PodmanEngine: """Podman/Docker engine wrapper.""" def __init__(self, name=None, engine="auto", *args, **kwargs): if engine == "auto": self.engine = "podman" if shutil.which("podman") else "docker" else: self.engine = engine # check engine exist or not if shutil.which(self.engine) is None: raise ValueError( f"'{engine}' engine not found. Make sure it should installed on your system." ) self.name = name or f"rhel-{datetime.datetime.now().strftime('%y%m%d-%H%M%S')}" def _exec(self, command): """Internal use to execute subprocess cmd.""" out = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return ContCommandResult.from_subprocess_out(out) def run(self, image, hostname=None, envs=None, *args, **kwargs): """run container. Args: image: Image of rhel container hostname: Set container hostname env: List of environment variables to set in container """ cmd = [self.engine, "run", "--name", self.name, "--rm", "-d"] if hostname: cmd.extend(["--hostname", hostname]) if envs: cmd.extend(["--env", " ".join(envs)]) cmd.extend([image]) return self._exec(cmd) def kill(self): """Kill running container.""" return self._exec([self.engine, "kill", self.name]) def rm(self): """Remove container.""" return self._exec([self.engine, "rm", self.name]) def stop(self): """Stop container.""" return self._exec([self.engine, "stop", self.name]) def exec(self, cmd): """Execute command on contaienr. Args: cmd: command string """ command = [self.engine, "exec", self.name, "bash", "-c", cmd] logger.info(f"Executing '{cmd}'") return self._exec(command) def cp(self, source, dest): """Copy file from sorce to destination. Args: source: sorce path dest: destination path """ command = [self.engine, "cp", source, dest] return self._exec(command) def add_file(self, filename, content, overwrite=False): if overwrite: if self.exec(f"[ -f {filename} ]").exit_status == 0: self.exec(f"rm {filename}") return self.exec(f"cat >>{filename} <<EOF\n{content}\nEOF") @property def status(self): """Return status of container.""" command = [self.engine, "inspect", "--format", "{{.State.Status}}", self.name] out = self._exec(command=command) if out.exit_status != 0: return f"{self.name} unavailable." return out.stdout.title() class OpenshiftEngine: """Openshift/k8s engine wrapper.""" def __init__(self, name=None, engine="auto", *args, **kwargs): if engine == "auto": self.engine = "oc" if shutil.which("oc") else "kubectl" else: self.engine = engine # check engine exist or not if shutil.which(self.engine) is None: raise ValueError( f"'{engine}' engine not found. Make sure it should installed on your system." ) self.name = name or f"rhel-{datetime.datetime.now().strftime('%y%m%d-%H%M%S')}" def _exec(self, command): """Internal use to execute subprocess cmd.""" out = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return ContCommandResult.from_subprocess_out(out) def run(self, image, hostname=None, envs=None, *args, **kwargs): """run container. Args: hostname: Set container hostname env: dict of environment variables to set in container """ cmd = [self.engine, "run", self.name] if envs: cmd.extend([f"--env='{k}={v}'" for k, v in envs.items()]) cmd.extend([f"--image={image}"]) if hostname: cmd.extend([f"--overrides={{'spec': {{'hostname': '{hostname}'}}"]) return self._exec(cmd) def stop(self): """Delete container than stopping.""" return self._exec([self.engine, "delete", "pod", self.name]) def exec(self, cmd): """Execute command on contaienr. Args: cmd: command string """ command = [self.engine, "exec", self.name, "--", "bash", "-c", cmd] logger.info(f"Executing: '{cmd}'") return self._exec(command) def cp(self, source, dest): """Copy file from sorce to destination. Args: source: sorce path dest: destination path """ command = [self.engine, "cp", source, dest] return self._exec(command) def add_file(self, filename, content, overwrite=False): if overwrite: if self.exec(f"[ -f {filename} ]").exit_status == 0: self.exec(f"rm {filename}") return self.exec(f"cat >>{filename} <<EOF\n{content}\nEOF") def get_json(self, restype, name=None, label=None, namespace=None): """ Get json for resource type/name/label. If name is None all resources of this type are returned If label is not provided, then "oc get" will not be filtered on label """ command = [self.engine, "get", restype] if name: command.append(name) if label: command.extend(["-l", label]) if namespace: command.extend(["-n", namespace]) command.extend(["-o", "json"]) out = self._exec(command=command) if out.exit_status != 0: return {} try: return json.loads(out.stdout) except ValueError: return {} @property def status(self): """Return status of pod.""" out = self.get_json(restype="pods", name=self.name) if not out: return f"{self.name} unavailable." return out["status"]["phase"]
StarcoderdataPython
3386454
import logging import configparser from marshmallow import ValidationError from mongoengine import DoesNotExist, ValidationError as ValidationErr, NotUniqueError from pymongo.errors import DuplicateKeyError from utils.responses import bad_request, not_found def create_error_handlers(app): @app.errorhandler(ValidationError) def handle_marshmallow_validation_error(error): logging.error(error.messages) return bad_request(error.messages) @app.errorhandler(ValidationErr) def handle_mongoengine_validation_error(error): logging.error(error.message) return bad_request(error.message) @app.errorhandler(DoesNotExist) def handle_does_not_exist_error(error): logging.error(error.args[0]) return not_found(error.args[0]) @app.errorhandler(NotUniqueError) def handle_does_not_exist_error(error): logging.error(error.args[0]) return bad_request(error.args[0]) @app.errorhandler(DuplicateKeyError) def handle_duplicate_key_error(error): logging.error(error.args[0]) return bad_request(error.args[0]) @app.errorhandler(KeyError) def handle_key_error(error): logging.error(error.messages) return not_found(error.messages) @app.errorhandler(configparser.NoSectionError) def handle_no_section_error(error): logging.error(error.messages) return not_found(error.messages) @app.errorhandler(configparser.NoOptionError) def handle_no_option_error(error): logging.error(error.messages) return not_found(error.messages) @app.errorhandler(AttributeError) def handle_attribute_error(error): logging.error(error.args[0]) return bad_request(error.args[0])
StarcoderdataPython
8920
<reponame>noshluk2/Wifi-Signal-Robot-localization<filename>scripts/Interfacing/encoder_class.py import RPi.GPIO as GPIO import threading class Encoder(object): def __init__(self, r_en_a,r_en_b,l_en_a,l_en_b): GPIO.setmode(GPIO.BCM) GPIO.setup(r_en_a, GPIO.IN) GPIO.setup(r_en_b, GPIO.IN) GPIO.setup(l_en_a, GPIO.IN) GPIO.setup(l_en_b, GPIO.IN) self.l_en_a=l_en_a;self.l_en_b=l_en_b; self.r_en_a=r_en_a;self.r_en_b=r_en_b; GPIO.add_event_detect(r_en_a, GPIO.BOTH, callback=self.Update_encR) GPIO.add_event_detect(l_en_a, GPIO.BOTH, callback=self.Update_encL) self.count_R =0 self.count_L=0 def Update_encR(self,channel): if GPIO.input(self.r_en_a) == GPIO.input(self.r_en_b): self.count_R=self.count_R + 1 else : self.count_R = self.count_R - 1 def Update_encL(self,channel): if GPIO.input(self.l_en_a) == GPIO.input(self.l_en_b): self.count_L=self.count_L + 1 else : self.count_L = self.count_L - 1 return (self.count_L) def get_r_enc(self): return self.count_R def get_l_enc(self): return self.count_L def clear_encoders(self): self.count_R=0 self.count_L=0 # r_en_a = 27 # r_en_b = 10 # l_en_a = 5 # l_en_b = 6 # enc_obj = Encoder(27,10,5,6) # def update_encoders(): # threading.Timer(1,update_encoders).start() # print(" looping ") # update_encoders()
StarcoderdataPython
1614669
import sys import os.path import pprint sys.path.append(os.path.abspath(__file__ + "\..\..")) import windows from windows.generated_def.winstructs import * import windows.native_exec.simple_x86 as x86 class SingleSteppingDebugger(windows.debug.LocalDebugger): SINGLE_STEP_COUNT = 4 def on_exception(self, exc): code = self.get_exception_code() context = self.get_exception_context() print("EXCEPTION !!!! Got a {0} at 0x{1:x}".format(code, context.pc)) self.SINGLE_STEP_COUNT -= 1 if self.SINGLE_STEP_COUNT: return self.single_step() return EXCEPTION_CONTINUE_EXECUTION class RewriteBreakpoint(windows.debug.HXBreakpoint): def trigger(self, dbg, exc): context = dbg.get_exception_context() print("GOT AN HXBP at 0x{0:x}".format(context.pc)) # Rewrite the infinite loop with 2 nop windows.current_process.write_memory(self.addr, "\x90\x90") # Ask for a single stepping return dbg.single_step() d = SingleSteppingDebugger() # Infinite loop + nop + ret code = x86.assemble("label :begin; jmp :begin; nop; ret") func = windows.native_exec.create_function(code, [PVOID]) print("Code addr = 0x{0:x}".format(func.code_addr)) # Create a thread that will infinite loop t = windows.current_process.create_thread(func.code_addr, 0) # Add a breakpoint on the infitine loop d.add_bp(RewriteBreakpoint(func.code_addr)) t.wait() print("Done!")
StarcoderdataPython
3234757
<reponame>facebookresearch/worldsheet # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import os import skimage.io import numpy as np import torch from torch import nn import timm.models as models from mmf.neural_rendering.novel_view_projector import NovelViewProjector from mmf.neural_rendering.inpainting.models import MeshRGBGenerator from mmf.neural_rendering.inpainting.gan_loss import MeshGANLosses from mmf.neural_rendering.losses import ( ImageL1Loss, DepthL1Loss, MeshLaplacianLoss, GridOffsetLoss, ZGridL1Loss, VGG19PerceptualLoss ) from mmf.neural_rendering.metrics.metrics import Metrics from mmf.common.registry import registry from mmf.models.base_model import BaseModel from mmf.utils.distributed import get_world_size, byte_tensor_to_object logger = logging.getLogger(__name__) @registry.register_model("mesh_renderer") class MeshRenderer(BaseModel): def __init__(self, config): super().__init__(config) @classmethod def config_path(cls): return "configs/models/mesh_renderer/defaults.yaml" def build(self): self.batch_size = self.config.batch_size // get_world_size() self.image_size_H = self.config.image_size_H self.image_size_W = self.config.image_size_W if self.image_size_H != self.image_size_W: raise NotImplementedError() self.grid_stride = self.config.grid_stride if (self.image_size_H % self.grid_stride != 0 or self.image_size_W % self.grid_stride != 0): raise Exception("image sizes must be divisible by grid_stride") self.grid_H = self.image_size_H // self.grid_stride + 1 self.grid_W = self.image_size_W // self.grid_stride + 1 # Offset and depth prediction self.offset_and_depth_predictor = OffsetAndZGridPredictor( grid_stride=self.grid_stride, grid_H=self.grid_H, grid_W=self.grid_W, z_min=self.config.z_min, z_max=self.config.z_max, pred_inv_z=self.config.pred_inv_z, pred_inv_z_synsin=self.config.pred_inv_z_synsin, z_pred_scaling=self.config.z_pred_scaling, z_pred_offset=self.config.z_pred_offset, backbone_name=self.config.backbone_name, backbone_dim=self.config.backbone_dim ) if self.config.freeze_offset_and_depth_predictor: assert self.config.use_inpainting, \ "freeze_offset_and_depth_predictor is intended for inpainter " \ "training alone." for p in self.offset_and_depth_predictor.parameters(): p.requires_grad = False self.novel_view_projector = NovelViewProjector( batch_size=self.batch_size, image_size_H=self.image_size_H, image_size_W=self.image_size_W, grid_H=self.grid_H, grid_W=self.grid_W, blur_radius=self.config.rendering.blur_radius, faces_per_pixel=self.config.rendering.faces_per_pixel, clip_barycentric_coords=self.config.rendering.clip_barycentric_coords, sigma=self.config.rendering.sigma, gamma=self.config.rendering.gamma, background_color=self.config.rendering.background_color, hfov=self.config.rendering.hfov, z_background=self.config.rendering.z_background, gblur_kernel_size=self.config.rendering.gblur_kernel_size, gblur_sigma=self.config.rendering.gblur_sigma, gblur_weight_thresh=self.config.rendering.gblur_weight_thresh, directly_use_img_as_texture=self.config.directly_use_img_as_texture ) self.use_discriminator = False if self.config.use_inpainting: self.inpainting_net_G = MeshRGBGenerator(self.config.inpainting.net_G) if self.config.inpainting.use_discriminator: self.mesh_gan_losses = MeshGANLosses(self.config.inpainting.net_D) self.use_discriminator = True self.build_losses() self.build_metrics() if self.config.save_forward_results: os.makedirs(self.config.forward_results_dir, exist_ok=True) if self.config.save_for_external_inpainting: # save PNG image files for external inpainting training and eval self.inpainting_src_dir = os.path.join( self.config.forward_results_dir, 'inpainting_src' ) self.inpainting_tgt_dir = os.path.join( self.config.forward_results_dir, 'inpainting_tgt' ) os.makedirs(self.inpainting_src_dir, exist_ok=True) os.makedirs(self.inpainting_tgt_dir, exist_ok=True) def build_losses(self): self.loss_image_l1 = ImageL1Loss() self.loss_depth_l1 = DepthL1Loss() self.loss_mesh_laplacian = MeshLaplacianLoss( self.grid_H * self.grid_W, self.novel_view_projector.faces, use_l2_loss=self.config.mesh_laplacian_use_l2_loss ) self.loss_grid_offset = GridOffsetLoss(self.grid_H, self.grid_W) self.loss_z_grid_l1 = ZGridL1Loss(self.grid_H, self.grid_W) self.loss_vgg19_perceptual = VGG19PerceptualLoss() self.loss_weights = self.config.loss_weights def build_metrics(self): self.metrics = Metrics(self.config.metrics) def get_optimizer_parameters(self, config): # named_parameters contains ALL parameters, including those in discriminator named_parameters = [(n, p) for n, p in self.named_parameters()] param_groups = [] registered = set() # 1. backbone for ResNet-50 backbone_params = list(self.offset_and_depth_predictor.backbone.parameters()) param_groups.append({"params": backbone_params, "lr": self.config.backbone_lr}) registered.update(backbone_params) # 2. inpainting generator if self.config.use_inpainting: generator_params = list(self.inpainting_net_G.parameters()) param_groups.append({ "params": generator_params, "lr": self.config.inpainting.net_G.optimizer.lr, "betas": ( self.config.inpainting.net_G.optimizer.beta1, self.config.inpainting.net_G.optimizer.beta2 ), "weight_decay": self.config.inpainting.net_G.optimizer.weight_decay, }) registered.update(generator_params) # 3. inpainting discriminator if self.use_discriminator: discriminator_params = list(self.mesh_gan_losses.parameters()) param_groups.append({ "params": discriminator_params, "lr": self.config.inpainting.net_D.optimizer.lr, "betas": ( self.config.inpainting.net_D.optimizer.beta1, self.config.inpainting.net_D.optimizer.beta2 ), "weight_decay": self.config.inpainting.net_D.optimizer.weight_decay, }) registered.update(discriminator_params) # All remaining parameters remaining_params = [ p for _, p in named_parameters if p not in registered ] param_groups.insert(0, {"params": remaining_params}) return param_groups def get_offset_and_depth_from_gt(self, sample_list): batch_size = sample_list.trans_img_0.size(0) device = sample_list.trans_img_0.device xy_offset = torch.zeros(batch_size, self.grid_H * self.grid_W, 2, device=device) sampling_grid = torch.cat( [torch.linspace(1, -1, self.grid_W).view(1, self.grid_W, 1).expand(self.grid_H, -1, 1), # NoQA torch.linspace(1, -1, self.grid_H).view(self.grid_H, 1, 1).expand(-1, self.grid_W, 1)], # NoQA dim=-1 ).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device) # sample ground-truth z-grid from ground-truth depth z_grid = nn.functional.grid_sample( sample_list.depth_0.unsqueeze(1), sampling_grid, padding_mode="border", align_corners=True ).view(batch_size, self.grid_H * self.grid_W, 1) return xy_offset, z_grid def forward(self, sample_list): if not self.config.fill_z_with_gt: # use the transformed image (after mean subtraction and normalization) as # network input xy_offset, z_grid = self.offset_and_depth_predictor(sample_list.trans_img_0) else: xy_offset, z_grid = self.get_offset_and_depth_from_gt(sample_list) if self.config.force_zero_xy_offset: xy_offset = torch.zeros_like(xy_offset) rendering_results = {} if not self.config.train_z_grid_only: # use the original image (RGB value in 0~1) as rendering input rendering_results = self.novel_view_projector( xy_offset=xy_offset, z_grid=z_grid, rgb_in=sample_list.orig_img_0, R_in=sample_list.R_0, T_in=sample_list.T_0, R_out_list=[sample_list.R_0, sample_list.R_1], T_out_list=[sample_list.T_0, sample_list.T_1], render_mesh_shape=self.config.render_mesh_shape_for_vis, ) if self.config.use_inpainting: _, rgba_1_rec = rendering_results["rgba_out_rec_list"] if self.config.sanity_check_inpaint_with_gt: # as a sanity check, use the ground-truth image as input to make sure # the generator has enough capacity to perfectly reconstruct it. rgba_1_rec = torch.ones_like(rgba_1_rec) rgba_1_rec[..., :3] = sample_list.orig_img_1 rgb_1_inpaint = self.inpainting_net_G(rgba_1_rec) if self.config.inpainting.inpaint_missing_regions_only: alpha_mask = rgba_1_rec[..., -1].unsqueeze(-1).ge(1e-4).float() rgb_1_inpaint = rgb_1_inpaint * (1 - alpha_mask) rgb_1_inpaint = rgb_1_inpaint + rgba_1_rec[..., :3] * alpha_mask rendering_results["rgb_1_inpaint"] = rgb_1_inpaint rendering_results["rgb_1_out"] = rendering_results["rgb_1_inpaint"] else: _, rgba_1_rec = rendering_results["rgba_out_rec_list"] rendering_results["rgb_1_out"] = rgba_1_rec[..., :3] # return only the rendering results and skip loss computation, usually for # visualization on-the-fly by calling this model separately (instead of running # it within the MMF trainer on MMF datasets) if self.config.return_rendering_results_only: return rendering_results losses = self.forward_losses(sample_list, xy_offset, z_grid, rendering_results) # compute metrics if not self.training or not self.config.metrics.only_on_eval: metrics_dict = self.forward_metrics(sample_list, rendering_results) rendering_results.update(metrics_dict) # average over batch, and do not compute gradient over metrics losses.update({ f"{sample_list.dataset_type}/{sample_list.dataset_name}/no_grad_{k}": v.detach().mean() for k, v in metrics_dict.items() }) if self.config.save_forward_results: self.save_forward_results(sample_list, xy_offset, z_grid, rendering_results) return {"losses": losses} def save_forward_results(self, sample_list, xy_offset, z_grid, rendering_results): texture_image_rec = rendering_results["texture_image_rec"] rgba_0_rec, rgba_1_rec = rendering_results["rgba_out_rec_list"] rgba_0_rec = rgba_0_rec.clamp(min=0, max=1) rgba_1_rec = rgba_1_rec.clamp(min=0, max=1) depth_0_rec, depth_1_rec = rendering_results["depth_out_rec_list"] if self.config.render_mesh_shape_for_vis: mesh_shape_0, mesh_shape_1 = rendering_results["mesh_shape_out_list"] mesh_verts_world_coords = rendering_results["mesh_verts_world_coords"] for n_im in range(xy_offset.size(0)): image_id = byte_tensor_to_object(sample_list.image_id[n_im]) if self.config.save_for_realestate10k_eval: # save for RealEstate10K evaluation, to be used by # https://github.com/facebookresearch/synsin/blob/master/evaluation/evaluate_perceptualsim.py # see https://github.com/facebookresearch/synsin/blob/master/REALESTATE.md for details save_sub_dir = os.path.join( self.config.forward_results_dir, image_id.split("_")[0] ) os.makedirs(save_sub_dir, exist_ok=True) im_output = rendering_results["rgb_1_out"][n_im].clamp(min=0, max=1) im_input = sample_list.orig_img_0[n_im].clamp(min=0, max=1) im_tgt = sample_list.orig_img_1[n_im].clamp(min=0, max=1) im_output = skimage.img_as_ubyte(im_output.detach().cpu().numpy()) im_input = skimage.img_as_ubyte(im_input.detach().cpu().numpy()) im_tgt = skimage.img_as_ubyte(im_tgt.detach().cpu().numpy()) skimage.io.imsave(save_sub_dir + "/output_image_.png", im_output) skimage.io.imsave(save_sub_dir + "/input_image_.png", im_input) skimage.io.imsave(save_sub_dir + "/tgt_image_.png", im_tgt) continue if self.config.save_for_external_inpainting: # save PNG image files for external inpainting training and eval im_src = rgba_1_rec[n_im].clamp(min=0, max=1) im_src_alpha_mask = im_src[..., 3:4].ge(1e-4).float() # save source image into RGBA PNG file, where the last channel is # the visibility alpha_mask im_src = torch.cat([im_src[..., :3], im_src_alpha_mask], dim=-1) im_tgt = sample_list.orig_img_1[n_im].clamp(min=0, max=1) base_id = image_id.split("_")[0] im_src = skimage.img_as_ubyte(im_src.detach().cpu().numpy()) im_tgt = skimage.img_as_ubyte(im_tgt.detach().cpu().numpy()) skimage.io.imsave(self.inpainting_src_dir + f"/{base_id}.png", im_src) skimage.io.imsave(self.inpainting_tgt_dir + f"/{base_id}.png", im_tgt) continue save_file = os.path.join( self.config.forward_results_dir, '{}_outputs.npz'.format(image_id.replace("/", "-")) ) save_dict = { "orig_img_0": sample_list.orig_img_0[n_im], "orig_img_1": sample_list.orig_img_1[n_im], "xy_offset": xy_offset[n_im], "z_grid": z_grid[n_im], "texture_image_rec": texture_image_rec[n_im], "rgba_0_rec": rgba_0_rec[n_im], "rgba_1_rec": rgba_1_rec[n_im], "depth_0_rec": depth_0_rec[n_im], "depth_1_rec": depth_1_rec[n_im], } if self.config.render_mesh_shape_for_vis: save_dict.update({ "mesh_shape_0": mesh_shape_0[n_im], "mesh_shape_1": mesh_shape_1[n_im], "mesh_verts_world_coords": mesh_verts_world_coords[n_im], }) if sample_list.dataset_name in ["synsin_habitat", "replica"]: save_dict.update({ "depth_0": sample_list.depth_0[n_im], "depth_1": sample_list.depth_1[n_im], "depth_mask_0": sample_list.depth_mask_0[n_im], "depth_mask_1": sample_list.depth_mask_1[n_im], }) if self.config.use_inpainting: rgb_1_inpaint = rendering_results["rgb_1_inpaint"] rgb_1_inpaint = rgb_1_inpaint.clamp(min=0, max=1) save_dict.update({"rgb_1_inpaint": rgb_1_inpaint[n_im]}) save_dict = {k: v.detach().cpu().numpy() for k, v in save_dict.items()} np.savez(save_file, **save_dict) def forward_losses(self, sample_list, xy_offset, z_grid, rendering_results): z_grid_l1_0 = None if self.loss_weights["z_grid_l1_0"] != 0: z_grid_l1_0 = self.loss_z_grid_l1( z_grid_pred=z_grid, depth_gt=sample_list.depth_0, depth_loss_mask=sample_list.depth_mask_0.float() ) losses_unscaled = { "z_grid_l1_0": z_grid_l1_0, "grid_offset": self.loss_grid_offset(xy_offset), } use_vgg19_loss = self.training or not self.config.vgg19_loss_only_on_train if not self.config.train_z_grid_only: rgba_0_rec, rgba_1_rec = rendering_results["rgba_out_rec_list"] depth_0_rec, depth_1_rec = rendering_results["depth_out_rec_list"] scaled_verts = rendering_results["scaled_verts"] rgb_1_rec = rgba_1_rec[..., :3] depth_l1_0 = None if self.loss_weights["depth_l1_0"] != 0: depth_l1_0 = self.loss_depth_l1( depth_pred=depth_0_rec, depth_gt=sample_list.depth_0, loss_mask=sample_list.depth_mask_0.float() ) depth_l1_1 = None if self.loss_weights["depth_l1_1"] != 0: depth_l1_1 = self.loss_depth_l1( depth_pred=depth_1_rec, depth_gt=sample_list.depth_1, loss_mask=sample_list.depth_mask_1.float() ) image_l1_1 = self.loss_image_l1( rgb_pred=rgb_1_rec, rgb_gt=sample_list.orig_img_1, loss_mask=sample_list.depth_mask_1.float() ) if use_vgg19_loss and self.loss_weights["vgg19_perceptual_1"] != 0: vgg19_perceptual_1 = self.loss_vgg19_perceptual( rgb_pred=rgb_1_rec, rgb_gt=sample_list.orig_img_1, loss_mask=sample_list.depth_mask_1.float() ) else: vgg19_perceptual_1 = torch.tensor(0., device=rgb_1_rec.device) losses_unscaled.update({ "depth_l1_0": depth_l1_0, "depth_l1_1": depth_l1_1, "image_l1_1": image_l1_1, "vgg19_perceptual_1": vgg19_perceptual_1, "mesh_laplacian": self.loss_mesh_laplacian(scaled_verts), }) if self.config.use_inpainting: rgb_1_inpaint = rendering_results["rgb_1_inpaint"] image_l1_1_inpaint = self.loss_image_l1( rgb_pred=rgb_1_inpaint, rgb_gt=sample_list.orig_img_1, ) if use_vgg19_loss and self.loss_weights["vgg19_perceptual_1_inpaint"] != 0: vgg19_perceptual_1_inpaint = self.loss_vgg19_perceptual( rgb_pred=rgb_1_inpaint, rgb_gt=sample_list.orig_img_1, ) else: vgg19_perceptual_1_inpaint = torch.tensor(0., device=rgb_1_rec.device) losses_unscaled.update({ "image_l1_1_inpaint": image_l1_1_inpaint, "vgg19_perceptual_1_inpaint": vgg19_perceptual_1_inpaint, }) if self.use_discriminator: g_losses = self.mesh_gan_losses( fake_img=rgb_1_inpaint, real_img=sample_list.orig_img_1, alpha_mask=rgba_1_rec[..., 3:4].ge(1e-4).float(), update_discriminator=self.training ) losses_unscaled.update(g_losses) for k, v in losses_unscaled.items(): if (v is not None) and (not torch.all(torch.isfinite(v)).item()): raise Exception("loss {} becomes {}".format(k, v.mean().item())) losses = { f"{sample_list.dataset_type}/{sample_list.dataset_name}/{k}": (v * self.loss_weights[k]) for k, v in losses_unscaled.items() if self.loss_weights[k] != 0 } return losses def forward_metrics(self, sample_list, rendering_results): rgb_1_out = rendering_results["rgb_1_out"] rgb_1_gt = sample_list.orig_img_1 vis_mask = sample_list.vis_mask if hasattr(sample_list, "vis_mask") else None metrics_dict = self.metrics(rgb_1_out, rgb_1_gt, vis_mask) return metrics_dict class OffsetAndZGridPredictor(nn.Module): def __init__( self, grid_stride, grid_H, grid_W, z_min, z_max, pred_inv_z, pred_inv_z_synsin, z_pred_scaling, z_pred_offset, backbone_name, backbone_dim ): super().__init__() assert grid_stride % 2 == 0 self.grid_stride = grid_stride self.pad = grid_stride // 2 self.backbone_dim = backbone_dim self.grid_H = grid_H self.grid_W = grid_W self.z_min = z_min self.z_max = z_max self.pred_inv_z = pred_inv_z self.pred_inv_z_synsin = pred_inv_z_synsin self.z_pred_scaling = z_pred_scaling self.z_pred_offset = z_pred_offset network = getattr(models, backbone_name) # 1) the minimum output stride for resnet is 8 pixels # if we want lower output stride, add ConvTranspose2d at the end # 2) the maximum output stride for resnet is 32 pixels # if we want higher output stride, use downsample_stride in output conv resnet_grid_stride = min(max(grid_stride, 8), 32) self.backbone = network(pretrained=True, output_stride=resnet_grid_stride) assert ( resnet_grid_stride % grid_stride == 0 or grid_stride % resnet_grid_stride == 0 ) upsample_stride = resnet_grid_stride // grid_stride downsample_stride = grid_stride // resnet_grid_stride if upsample_stride <= 1: assert downsample_stride >= 1 self.slice_b = 0 self.slice_e = 0 # downsample by downsample_stride (usually 1) in the final prediction layer self.xy_offset_predictor = nn.Conv2d( backbone_dim, 2, kernel_size=1, stride=downsample_stride ) self.z_grid_predictor = nn.Conv2d( backbone_dim, 1, kernel_size=1, stride=downsample_stride ) else: self.slice_b = upsample_stride // 2 self.slice_e = upsample_stride - 1 - self.slice_b # upsample in the final prediction layer self.xy_offset_predictor = nn.ConvTranspose2d( backbone_dim, 2, kernel_size=upsample_stride, stride=upsample_stride ) self.z_grid_predictor = nn.ConvTranspose2d( backbone_dim, 1, kernel_size=upsample_stride, stride=upsample_stride ) # allow the vertices to move at most half grid length # the relative image width and height are 2 (i.e. -1 to 1) # so the grid length x is 2. / (self.grid_W - 1), and similary for y xy_offset_scale = torch.tensor( [1. / (self.grid_W - 1), 1. / (self.grid_H - 1)], dtype=torch.float32 ) self.register_buffer("xy_offset_scale", xy_offset_scale) def forward(self, img): assert img.size(1) == 3, 'The input image must be in NCHW format.' batch_size = img.size(0) img_pad = nn.functional.pad( img, (self.pad, self.pad, self.pad, self.pad), mode='replicate' ) features = self.backbone.forward_features(img_pad) # predict in NCHW and permute NCHW -> NHWC xy_offset = self.xy_offset_predictor(features).permute(0, 2, 3, 1) z_grid = self.z_grid_predictor(features).permute(0, 2, 3, 1) # strip boundaries xy_offset = slice_output(xy_offset, self.slice_b, self.slice_e) z_grid = slice_output(z_grid, self.slice_b, self.slice_e) # flip the coordinate axis directions from input image to PyTorch3D screen # - input image: x - right, y: down # - PyTorch3D screen: x - left, y: up, see https://pytorch3d.org/docs/renderer_getting_started # so we flip both horizontally and vertically xy_offset = xy_offset.flip([1, 2]) z_grid = z_grid.flip([1, 2]) xy_offset = torch.tanh(xy_offset) xy_offset = xy_offset * self.xy_offset_scale # convert z prediction to the range of (z_min, z_max) assert z_grid.size(-1) == 1 if self.pred_inv_z_synsin: z_grid = torch.sigmoid(z_grid - 2.8) z_grid = 1. / (z_grid * 10 + 0.01) - 0.1 z_grid = z_grid * self.z_pred_scaling + self.z_pred_offset z_grid = torch.clamp(z_grid, min=self.z_min, max=self.z_max) elif self.pred_inv_z: z_grid = torch.sigmoid(z_grid) z_grid = 1. / (z_grid * 0.75 + 0.01) - 1 z_grid = z_grid * self.z_pred_scaling + self.z_pred_offset z_grid = torch.clamp(z_grid, min=self.z_min, max=self.z_max) else: z_grid = torch.sigmoid(z_grid) z_grid = self.z_min + z_grid * (self.z_max - self.z_min) # flatten the prediction to match the mesh vertices xy_offset = xy_offset.view(batch_size, self.grid_H * self.grid_W, 2) z_grid = z_grid.view(batch_size, self.grid_H * self.grid_W, 1) assert torch.all(torch.isfinite(xy_offset)).item() assert torch.all(torch.isfinite(z_grid)).item() return xy_offset, z_grid def slice_output(nhwc_tensor, slice_b, slice_e): if slice_b == 0 and slice_e == 0: return nhwc_tensor b = slice_b e = -slice_e if slice_e > 0 else None return nhwc_tensor[:, b:e, b:e]
StarcoderdataPython
4828272
# -*- coding: utf-8 -*- """ ============================================================================== @author: <NAME> @date: Thu May 13 09:50:26 2021 @reference: Ojala, A Comparative Study of Texture Measures with Classification on Feature Distributions Ojala, Gray Scale and Roation Invariaant Texture Classification with Local Binary Patterns ============================================================================== """ import numpy as np from skimage import feature def _energy(x): return np.multiply(x,x).sum() def _entropy(x): return -np.multiply(x, np.log(x+1e-16)).sum() def lbp_features(f, mask, P=[8,16,24], R=[1,2,3]): ''' Parameters ---------- f : numpy ndarray Image of dimensions N1 x N2. mask : numpy ndarray Mask image N1 x N2 with 1 if pixels belongs to ROI, 0 else. Give None if you want to consider ROI the whole image. P : list, optional Number of points in neighborhood. The default is [8,16,24]. R : list, optional Radius/Radii. The default is [1,2,3]. Returns ------- features : numpy ndarray Energy and entropy of LBP image (2 x 1). labels : list Labels of features. ''' if mask is None: mask = np.ones(f.shape) P = np.array(P) R = np.array(R) n = P.shape[0] mask_ravel = mask.ravel() features = [] labels = [] for i in range(n): lbp = feature.local_binary_pattern(f, P[i], R[i], 'uniform') lbp_ravel = lbp.ravel() roi = lbp_ravel[mask_ravel.astype(bool)] feats = np.zeros(2, np.double) feats[0] = _energy(roi) / roi.sum() feats[1] = _entropy(roi) / roi.sum() features.append(feats) labels.append('LBP_R_'+str(R[i])+'_P_'+str(P[i])+'_energy') labels.append('LBP_R_'+str(R[i])+'_P_'+str(P[i])+'_entropy') features = np.array(features, np.double).ravel() return features, labels
StarcoderdataPython
1714969
<gh_stars>1-10 """ Import as: import helpers.hgit as hgit """ import collections import functools import logging import os import pprint import re from typing import Any, Dict, List, Match, Optional, Tuple import helpers.hdbg as hdbg import helpers.hio as hio import helpers.hprint as hprint import helpers.hsystem as hsysinte _LOG = logging.getLogger(__name__) # We refer to "Git" when we talk about the control system (e.g., "in a Git # repository") and `git` when we refer to implementation of Git as a program # installed in a computer. # TODO(gp): Check # https://git-scm.com/book/en/v2/Appendix-B%3A-Embedding-Git-in-your-Applications-Dulwich # TODO(gp): Avoid "stuttering": the module is already called "git", so no need # to make reference to git again. # TODO(gp): Add mem caching to some functions below. We assume that one doesn't # change dir (which is a horrible idea) and thus we can memoize. # TODO(gp): Spell super_module and sub_module always in the same way in both # comments and code. For simplicity (e.g., instead of `super_module` in code and # `super-module` in comment) we might want to spell `supermodule` everywhere. # ############################################################################# # Git branch functions # ############################################################################# @functools.lru_cache() def get_branch_name(dir_name: str = ".") -> str: """ Return the name of the Git branch including a certain dir. E.g., `master` or `AmpTask672_Add_script_to_check_and_merge_PR` """ hdbg.dassert_exists(dir_name) # > git rev-parse --abbrev-ref HEAD # master cmd = "cd %s && git rev-parse --abbrev-ref HEAD" % dir_name data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, output = data return output def get_branch_next_name(dir_name: str = ".") -> str: """ Return a name derived from the branch so that the branch doesn't exist. E.g., `AmpTask1903_Implemented_system_Portfolio` -> `AmpTask1903_Implemented_system_Portfolio_3` """ curr_branch_name = get_branch_name(dir_name=dir_name) hdbg.dassert_ne(curr_branch_name, "master") _LOG.debug("curr_branch_name=%s", curr_branch_name) # for i in range(1, 10): new_branch_name = f"{curr_branch_name}_{i}" exists = does_branch_exist(new_branch_name, dir_name=dir_name) _LOG.debug("'%s' -> exists=%s", new_branch_name, exists) if not exists: return new_branch_name raise ValueError(f"Can't find the next branch name for '{curr_branch_name}'") def get_branch_hash(dir_name: str = ".") -> str: """ Return the hash of the commit right before the branch in `dir_name` was created. """ curr_branch_name = get_branch_name(dir_name=dir_name) hdbg.dassert_ne(curr_branch_name, "master") _LOG.debug("curr_branch_name=%s", curr_branch_name) # cmd = f"cd {dir_name} && git merge-base master {curr_branch_name}" _, hash_ = hsysinte.system_to_string(cmd) hash_ = hash_.rstrip("\n").lstrip("\n") hdbg.dassert_eq(len(hash_.split("\n")), 1) return hash_ # ############################################################################# # Git submodule functions # ############################################################################# @functools.lru_cache() def get_client_root(super_module: bool) -> str: """ Return the full path of the root of the Git client. E.g., `/Users/saggese/src/.../amp`. :param super_module: if True use the root of the Git super_module, if we are in a submodule. Otherwise use the Git sub_module root """ if super_module and is_inside_submodule(): # https://stackoverflow.com/questions/957928 # > cd /Users/saggese/src/.../amp # > git rev-parse --show-superproject-working-tree # /Users/saggese/src/... cmd = "git rev-parse --show-superproject-working-tree" else: # > git rev-parse --show-toplevel # /Users/saggese/src/.../amp cmd = "git rev-parse --show-toplevel" # TODO(gp): Use system_to_one_line(). _, out = hsysinte.system_to_string(cmd) out = out.rstrip("\n") hdbg.dassert_eq(len(out.split("\n")), 1, msg="Invalid out='%s'" % out) client_root: str = os.path.realpath(out) return client_root def get_project_dirname(only_index: bool = False) -> str: """ Return the name of the project name (e.g., `/Users/saggese/src/amp1` -> `amp1`). NOTE: this works properly only outside Docker, e.g., when calling from `invoke`. Inside Docker the result might be incorrect since the Git client is mapped on `/app`. :param only_index: return only the index of the client if possible, e.g., E.g., for `/Users/saggese/src/amp1` it returns the string `1` """ git_dir = get_client_root(super_module=True) _LOG.debug("git_dir=%s", git_dir) ret = os.path.basename(git_dir) if only_index: last_char = ret[-1] hdbg.dassert( last_char.isdigit(), "The last char `%s` of the git dir `%s` is not a digit", last_char, git_dir, ) ret = last_char _LOG.debug("ret=%s", ret) return ret @functools.lru_cache() def is_inside_submodule(git_dir: str = ".") -> bool: """ Return whether a dir is inside a Git submodule or a Git supermodule. We determine this checking if the current Git repo is included inside another Git repo. """ cmd = [] # - Find the git root of the current directory # - Check if the dir one level up is a valid Git repo # Go to the dir. cmd.append("cd %s" % git_dir) # > cd im/ # > git rev-parse --show-toplevel # /Users/saggese/src/.../amp cmd.append('cd "$(git rev-parse --show-toplevel)/.."') # > git rev-parse --is-inside-work-tree # true cmd.append("(git rev-parse --is-inside-work-tree | grep -q true)") cmd_as_str = " && ".join(cmd) rc = hsysinte.system(cmd_as_str, abort_on_error=False) ret: bool = rc == 0 return ret def _is_repo(repo_short_name: str) -> bool: """ Return whether we are inside `amp` and `amp` is a submodule. """ repo_full_name = get_repo_full_name_from_dirname(".", include_host_name=False) return get_repo_name(repo_full_name, in_mode="full_name") == repo_short_name def is_amp() -> bool: """ Return whether we are inside `amp` repo. Either as super module, or a sub module depending on a current working directory. """ return _is_repo("amp") or _is_repo("cmamp") # TODO(gp): Be consistent with submodule and sub-module in the code. Same for # supermodule. def is_in_amp_as_submodule() -> bool: """ Return whether we are in the `amp` repo and it's a sub-module, e.g., of `lm`. """ return is_amp() and is_inside_submodule(".") def is_in_amp_as_supermodule() -> bool: """ Return whether we are in the `amp` repo and it's a super-module, i.e., `amp` by itself. """ return is_amp() and not is_inside_submodule(".") # Using these functions is the last resort to skip / change the tests depending # on the repo. We should control the tests through what functionalities they have, # e.g., # ``` # hgit.execute_repo_config_code("has_dind_support()"), # ``` # # rather than their name. def is_dev_tools() -> bool: """ Return whether we are inside `dev_tools` repo. """ return _is_repo("dev_tools") def is_cmamp() -> bool: """ Return whether we are inside `cmamp` repo. """ return _is_repo("cmamp") def is_lem() -> bool: """ Return whether we are inside `lem` repo. """ return _is_repo("lem") def is_lime() -> bool: """ Return whether we are inside `lime` repo. """ return _is_repo("lime") # ############################################################################# def _get_submodule_hash(dir_name: str) -> str: """ Report the Git hash that a submodule (e.g., amp) is at from the point of view of a supermodule. > git ls-tree master | grep <dir_name> """ hdbg.dassert_exists(dir_name) cmd = "git ls-tree master | grep %s" % dir_name data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, output = data # 160000 commit 0011776388b4c0582161eb2749b665fc45b87e7e amp _LOG.debug("output=%s", output) data: List[str] = output.split() _LOG.debug("data=%s", data) git_hash = data[2] return git_hash @functools.lru_cache() def get_path_from_supermodule() -> Tuple[str, str]: """ Return the path to the Git repo including the Git submodule for a submodule, and return empty for a supermodule. See AmpTask1017. E.g., - for amp included in another repo returns 'amp' - for amp without supermodule returns '' """ cmd = "git rev-parse --show-superproject-working-tree" # > cd /Users/saggese/src/.../lm/amp # > git rev-parse --show-superproject-working-tree # /Users/saggese/src/.../lm # # > cd /Users/saggese/src/.../lm # > git rev-parse --show-superproject-working-tree # (No result) superproject_path: str = hsysinte.system_to_one_line(cmd)[1] _LOG.debug("superproject_path='%s'", superproject_path) # cmd = ( f"git config --file {superproject_path}/.gitmodules --get-regexp path" '| grep $(basename "$(pwd)")' "| awk '{ print $2 }'" ) # > git config --file /Users/saggese/src/.../.gitmodules --get-regexp path # submodule.amp.path amp submodule_path: str = hsysinte.system_to_one_line(cmd)[1] _LOG.debug("submodule_path='%s'", submodule_path) return superproject_path, submodule_path @functools.lru_cache() def get_submodule_paths() -> List[str]: """ Return the path of the submodules in this repo, e.g., `["amp"]` or `[]`. """ # > git config --file .gitmodules --get-regexp path # submodule.amp.path amp cmd = "git config --file .gitmodules --get-regexp path | awk '{ print $2 }'" _, txt = hsysinte.system_to_string(cmd) _LOG.debug("txt=%s", txt) files: List[str] = hsysinte.text_to_list(txt) _LOG.debug("files=%s", files) return files def has_submodules() -> bool: return len(get_submodule_paths()) > 0 # ############################################################################# def _get_hash(git_hash: str, short_hash: bool, num_digits: int = 8) -> str: hdbg.dassert_lte(1, num_digits) if short_hash: ret = git_hash[:num_digits] else: ret = git_hash return ret def _group_hashes(head_hash: str, remh_hash: str, subm_hash: str) -> str: """ head_hash: a remh_hash: b subm_hash: c """ map_ = collections.OrderedDict() map_["head_hash"] = head_hash map_["remh_hash"] = remh_hash if subm_hash: map_["subm_hash"] = subm_hash # inv_map = collections.OrderedDict() for k, v in map_.items(): if v not in inv_map: inv_map[v] = [k] else: inv_map[v].append(k) # txt = [] for k, v in inv_map.items(): # Transform: # ('a2bfc704', ['head_hash', 'remh_hash']) # into # 'head_hash = remh_hash = a2bfc704' txt.append("%s = %s" % (" = ".join(v), k)) txt = "\n".join(txt) return txt def report_submodule_status(dir_names: List[str], short_hash: bool) -> str: """ Return a string representing the status of the repos in `dir_names`. """ txt = [] for dir_name in dir_names: txt.append("dir_name='%s'" % dir_name) txt.append(" is_inside_submodule: %s" % is_inside_submodule(dir_name)) # branch_name = get_branch_name(dir_name) if branch_name != "master": branch_name = "!!! %s !!!" % branch_name txt.append(" branch: %s" % branch_name) # head_hash = get_head_hash(dir_name) head_hash = _get_hash(head_hash, short_hash) txt.append(" head_hash: %s" % head_hash) # remh_hash = get_remote_head_hash(dir_name) remh_hash = _get_hash(remh_hash, short_hash) txt.append(" remh_hash: %s" % remh_hash) # if dir_name != ".": subm_hash = _get_submodule_hash(dir_name) subm_hash = _get_hash(subm_hash, short_hash) txt.append(" subm_hash: %s" % subm_hash) txt_as_str = "\n".join(txt) return txt_as_str # ############################################################################# # GitHub repository name # ############################################################################# # All functions should take as input `repo_short_name` and have a switch `mode` # to distinguish full vs short repo name. # TODO(gp): Maybe rename full -> long to keep it more symmetric "short vs long". def _parse_github_repo_name(repo_name: str) -> Tuple[str, str]: """ Parse a repo name from `git remote`. The supported formats are both SSH and HTTPS, e.g., - `[email protected]:alphamatic/amp` - `https://github.com/alphamatic/amp` For both of these strings the function returns ("github.com", "alphamatic/amp"). """ # Try to parse the SSH format, e.g., `[email protected]:alphamatic/amp` m = re.match(r"^git@(\S+.com):(\S+)$", repo_name) if not m: # Try tp parse the HTTPS format, e.g., `https://github.com/alphamatic/amp` m = re.match(r"^https://(\S+.com)/(\S+)$", repo_name) hdbg.dassert(m, "Can't parse '%s'", repo_name) m: Match[str] host_name = m.group(1) repo_name = m.group(2) _LOG.debug("host_name=%s repo_name=%s", host_name, repo_name) # We expect something like "alphamatic/amp". m = re.match(r"^\S+/\S+$", repo_name) hdbg.dassert(m, "repo_name='%s'", repo_name) # origin [email protected]:.../ORG_....git (fetch) suffix_to_remove = ".git" if repo_name.endswith(suffix_to_remove): repo_name = repo_name[: -len(suffix_to_remove)] return host_name, repo_name def get_repo_full_name_from_dirname( dir_name: str, include_host_name: bool ) -> str: """ Return the full name of the repo in `git_dir`, e.g., "alphamatic/amp". This function relies on `git remote` to gather the required information. :param include_hostname: prepend also the GitHub hostname, e.g., returning "github.com/alphamatic/amp" :return: the full name of the repo in `git_dir`, e.g., "alphamatic/amp". """ hdbg.dassert_exists(dir_name) # cmd = "cd %s; (git remote -v | grep origin | grep fetch)" % dir_name _, output = hsysinte.system_to_string(cmd) # > git remote -v # origin <EMAIL>:alphamatic/amp (fetch) # origin <EMAIL>:alphamatic/amp (push) # TODO(gp): Make it more robust, by checking both fetch and push. # "origin <EMAIL>:alphamatic/amp (fetch)" data: List[str] = output.split() _LOG.debug("data=%s", data) hdbg.dassert_eq(len(data), 3, "data='%s'", str(data)) # Extract the middle string, e.g., "<EMAIL>:alphamatic/amp" repo_name = data[1] # Parse the string. host_name, repo_name = _parse_github_repo_name(repo_name) if include_host_name: res = f"{host_name}/{repo_name}" else: res = repo_name return res def get_repo_full_name_from_client(super_module: bool) -> str: """ Return the full name of the repo (e.g., "alphamatic/amp") from a Git client. :param super_module: like in get_client_root() """ # Get the Git remote in the dir containing the Git repo. git_dir = get_client_root(super_module) repo_name = get_repo_full_name_from_dirname(git_dir, include_host_name=False) return repo_name # ///////////////////////////////////////////////////////////////////////// # Execute code from the `repo_config.py` in the super module. def _get_repo_config_code(super_module: bool = True) -> str: """ Return the text of the code stored in `repo_config.py`. """ # TODO(gp): We should actually ask Git where the super-module is. client_root = get_client_root(super_module) file_name = os.path.join(client_root, "repo_config.py") hdbg.dassert_file_exists(file_name) code: str = hio.from_file(file_name) return code def execute_repo_config_code(code_to_execute: str) -> Any: """ Execute code in `repo_config.py`. E.g., ``` hgit.execute_repo_config_code("has_dind_support()") ``` """ # Read the info from the current repo. code = _get_repo_config_code() # TODO(gp): make the linter happy creating this symbol that comes from the # `exec()`. exec(code, globals()) # pylint: disable=exec-used ret = eval(code_to_execute) return ret # ///////////////////////////////////////////////////////////////////////// def _decorate_with_host_name( dict_: Dict[str, str], host_name: str ) -> Dict[str, str]: """ Prepend the host name to all the values of the passed dictionary. """ res = {k: f"{host_name}/{v}" for k, v in dict_.items()} return res @functools.lru_cache() def _get_repo_short_to_full_name(include_host_name: bool) -> Dict[str, str]: """ Return the map from short name (e.g., "amp") to full name (e.g., "alphamatic/amp") using the information in `repo_config.py` """ # From short name to long name. repo_map = { "amp": "alphamatic/amp", "dev_tools": "alphamatic/dev_tools", } if include_host_name: host_name = "github.com" repo_map = _decorate_with_host_name(repo_map, host_name) _LOG.debug( "include_host_name=%s, repo_map=\n%s", include_host_name, pprint.pformat(repo_map), ) # Read the info from the current repo. code = _get_repo_config_code() # TODO(gp): make the linter happy creating this symbol that comes from the # `exec()`. exec(code, globals()) # pylint: disable=exec-used current_repo_map = ( get_repo_map() # type: ignore[name-defined] # noqa: F821 # pylint: disable=undefined-variable ) if include_host_name: host_name = ( get_host_name() # type: ignore[name-defined] # noqa: F821 # pylint: disable=undefined-variable ) current_repo_map = _decorate_with_host_name(current_repo_map, host_name) _LOG.debug( "include_host_name=%s, current_repo_map=\n%s", include_host_name, pprint.pformat(current_repo_map), ) # Update the map. hdbg.dassert_not_intersection(repo_map.keys(), current_repo_map.keys()) repo_map.update( get_repo_map() # type: ignore[name-defined] # noqa: F821 # pylint: disable=undefined-variable ) hdbg.dassert_no_duplicates(repo_map.values()) _LOG.debug( "include_host_name=%s, repo_map=\n%s", include_host_name, pprint.pformat(repo_map), ) return repo_map # ///////////////////////////////////////////////////////////////////////// def get_complete_repo_map( in_mode: str, include_host_name: bool = False ) -> Dict[str, str]: """ Return the full / short name of a Git repo based on the alternative name. :param in_mode: the values `full_name` or `short_name` determine how to interpret `name` """ repo_map = _get_repo_short_to_full_name(include_host_name) if in_mode == "full_name": # Compute the reverse map. repo_map = {v: k for (k, v) in repo_map.items()} elif in_mode == "short_name": pass else: raise ValueError("Invalid in_mode='%s'" % in_mode) _LOG.debug( "For in_mode=%s, include_host_name=%s, repo_map=\n%s", in_mode, include_host_name, pprint.pformat(repo_map), ) return repo_map def get_repo_name( name: str, in_mode: str, include_host_name: bool = False ) -> str: """ Return the full/short name of a Git repo based on the other name. :param in_mode: the values `full_name` or `short_name` determine how to interpret `name` """ repo_map = get_complete_repo_map(in_mode, include_host_name) hdbg.dassert_in( name, repo_map, "Invalid name='%s' for in_mode='%s'", name, in_mode ) ret = repo_map[name] return ret def get_all_repo_names( in_mode: str, include_host_name: bool = False ) -> List[str]: """ Return the names (full or short depending on `mode`) of all the Git repos. :param in_mode: if "full_name" return the full names (e.g., "alphamatic/amp") if "short_name" return the short names (e.g., "amp") """ repo_map = get_complete_repo_map(in_mode, include_host_name) return sorted(list(repo_map.keys())) def get_task_prefix_from_repo_short_name(short_name: str) -> str: """ Return the task prefix for a repo (e.g., "amp" -> "AmpTask"). """ if short_name == "amp": prefix = "AmpTask" elif short_name == "dev_tools": prefix = "DevToolsTask" else: # We assume that we can build the prefix from the name (e.g., "lm" -> # "LmTask"). # TODO(gp): A more general approach is to save this information inside # `repo_config.py`. prefix = short_name.capitalize() + "Task" return prefix # ############################################################################# # Git path # ############################################################################# @functools.lru_cache() def find_file_in_git_tree(file_name: str, super_module: bool = True) -> str: """ Find the path of a file in a Git tree. We get the Git root and then search for the file from there. """ root_dir = get_client_root(super_module=super_module) # TODO(gp): Use -not -path '*/\.git/*' cmd = "find %s -name '%s' | grep -v .git" % (root_dir, file_name) _, file_name = hsysinte.system_to_one_line(cmd) _LOG.debug("file_name=%s", file_name) hdbg.dassert_ne( file_name, "", "Can't find file '%s' in dir '%s'", file_name, root_dir ) file_name: str = os.path.abspath(file_name) hdbg.dassert_exists(file_name) return file_name def get_path_from_git_root( file_name: str, super_module: bool, *, git_root: Optional[str] = None, ) -> str: """ Get the path of `file_name` from the root of the Git client. E.g., in Docker: - `super_module=True` -> git_root=/app - `super_module=False` -> git_root=/app/amp :param super_module: like get_client_root() """ # Get the root of the Git client. if git_root is None: git_root = get_client_root(super_module) # git_root = os.path.normpath(git_root) _LOG.debug("git_root=%s", git_root) file_name = os.path.normpath(file_name) _LOG.debug("file_name=%s", file_name) if file_name.startswith(git_root): # Remove the `git_root` from file_name. ret = os.path.relpath(file_name, git_root) else: # If the file is not under the root, we can't normalize it. raise ValueError( "Can't normalize file_name='%s' for git_root='%s'" % (file_name, git_root) ) _LOG.debug( "file_name=%s, git_root=%s (super_module=%s) -> ret=%s", file_name, git_root, super_module, ret, ) return ret @functools.lru_cache() def get_amp_abs_path() -> str: """ Return the absolute path of `amp` dir. """ repo_sym_name = get_repo_full_name_from_client(super_module=False) _LOG.debug("repo_sym_name=%s", repo_sym_name) repo_sym_names = ["alphamatic/amp"] code = "get_extra_amp_repo_sym_name()" try: repo_sym_names.append(execute_repo_config_code(code)) except NameError: _LOG.debug("Can't execute the code '%s'", code) if repo_sym_name in repo_sym_names: # If we are in the amp repo, then the git client root is the amp # directory. git_root = get_client_root(super_module=False) amp_dir = git_root else: # If we are not in the amp repo, then look for the amp dir. amp_dir = find_file_in_git_tree("amp", super_module=True) git_root = get_client_root(super_module=True) amp_dir = os.path.join(git_root, amp_dir) amp_dir = os.path.abspath(amp_dir) # Sanity check. hdbg.dassert_dir_exists(amp_dir) return amp_dir # TODO(gp): Is this needed? def get_repo_dirs() -> List[str]: """ Return the list of the repo repositories, e.g., `[".", "amp", "infra"]`. """ dir_names = ["."] dirs = ["amp"] for dir_name in dirs: if os.path.exists(dir_name): dir_names.append(dir_name) return dir_names def find_docker_file( file_name: str, *, root_dir: str = ".", dir_depth: int = -1, mode: str = "return_all_results", candidate_files: Optional[List[str]] = None, ) -> List[str]: """ Convert a file or dir that was generated inside Docker to a file in the current Git client. This operation is best effort since it might not be able to find the corresponding file in the current repo. E.g., - A file like '/app/amp/core/dataflow_model/utils.py', in a Docker container with Git root in '/app' becomes 'amp/core/dataflow_model/utils.py' - For a file like '/app/amp/core/dataflow_model/utils.py' outside Docker, we look for the file 'dataflow_model/utils.py' in the current client and then normalize with respect to the :param dir_depth: same meaning as in `find_file_with_dir()` :param mode: same as `system_interaction.select_result_file_from_list()` :param candidate_files: list of results from the `find` command for unit test mocking :return: the best guess for the file name corresponding to `file_name` """ _LOG.debug("# Processing file_name='%s'", file_name) hdbg.dassert_isinstance(file_name, str) # Clean up file name. file_name = os.path.normpath(file_name) _LOG.debug("file_name=%s", file_name) # Find the file in the dir. file_names = hsysinte.find_file_with_dir( file_name, root_dir=root_dir, dir_depth=dir_depth, mode=mode, candidate_files=candidate_files, ) # Purify. _LOG.debug("Purifying file_names=%s", file_names) file_names = [ os.path.relpath(file_name, root_dir) for file_name in file_names ] return file_names # ############################################################################# # Git hash # ############################################################################# def get_head_hash(dir_name: str = ".", short_hash: bool = False) -> str: """ Report the hash that a Git repo is synced at. ``` > git rev-parse HEAD 4759b3685f903e6c669096e960b248ec31c63b69 ``` """ hdbg.dassert_exists(dir_name) opts = "--short " if short_hash else " " cmd = f"cd {dir_name} && git rev-parse {opts}HEAD" data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, output = data return output # TODO(gp): Use get_head_hash() and remove this. def get_current_commit_hash(dir_name: str = ".") -> str: hdbg.dassert_exists(dir_name) cmd = f"cd {dir_name} && git rev-parse HEAD" data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, sha = data # 0011776388b4c0582161eb2749b665fc45b87e7e _LOG.debug("sha=%s", sha) return sha def get_remote_head_hash(dir_name: str) -> str: """ Report the hash that the remote Git repo is at. """ hdbg.dassert_exists(dir_name) sym_name = get_repo_full_name_from_dirname(dir_name, include_host_name=False) cmd = f"git ls-remote [email protected]:{sym_name} HEAD 2>/dev/null" data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, output = data # > git ls-remote [email protected]:alphamatic/amp HEAD 2>/dev/null # 921676624f6a5f3f36ab507baed1b886227ac2e6 HEAD return output # ############################################################################# # Modified files # ############################################################################# def get_modified_files( dir_name: str = ".", remove_files_non_present: bool = True ) -> List[str]: """ Return the files that are added and modified in the Git client. In other words the files that will be committed with a `git commit -am ...`. Equivalent to `dev_scripts/git_files.sh` :param dir_name: directory with Git client :param remove_files_non_present: remove the files that are not currently present in the client :return: list of files """ # If the client status is: # > git status -s # AM dev_scripts/infra/ssh_tunnels.py # M helpers/git.py # ?? linter_warnings.txt # # The result is: # > git diff --cached --name-only # dev_scripts/infra/ssh_tunnels.py # # > git ls-files -m # dev_scripts/infra/ssh_tunnels.py # helpers/git.py cmd = "(git diff --cached --name-only; git ls-files -m) | sort | uniq" files: List[str] = hsysinte.system_to_files( cmd, dir_name, remove_files_non_present ) return files # TODO(gp): -> ...previously... def get_previous_committed_files( dir_name: str = ".", num_commits: int = 1, remove_files_non_present: bool = True, ) -> List[str]: """ Return files changed in the Git client in the last `num_commits` commits. Equivalent to `dev_scripts/git_previous_commit_files.sh` :param dir_name: directory with Git client :param num_commits: how many commits in the past to consider :param remove_files_non_present: remove the files that are not currently present in the client :return: list of files """ cmd = [] cmd.append('git show --pretty="" --name-only') cmd.append("$(git log --author $(git config user.name) -%d" % num_commits) cmd.append(r"""| \grep "^commit " | perl -pe 's/commit (.*)/$1/')""") cmd_as_str = " ".join(cmd) files: List[str] = hsysinte.system_to_files( cmd_as_str, dir_name, remove_files_non_present ) return files def get_modified_files_in_branch( dst_branch: str, dir_name: str = ".", remove_files_non_present: bool = True ) -> List[str]: """ Return files modified in the current branch with respect to `dst_branch`. Equivalent to `git diff --name-only master...` Please remember that there is a difference between `master` and `origin/master`. See https://stackoverflow.com/questions/18137175 :param dir_name: directory with Git client :param dst_branch: branch to compare to, e.g., `master`, `HEAD` :param remove_files_non_present: remove the files that are not currently present in the client :return: list of files """ if dst_branch == "HEAD": target = dst_branch else: target = f"{dst_branch}..." cmd = f"git diff --name-only {target}" files: List[str] = hsysinte.system_to_files( cmd, dir_name, remove_files_non_present ) return files def get_summary_files_in_branch( dst_branch: str, *, dir_name: str = ".", ) -> str: """ Report summary of files in the current branch with respect to `dst_branch'. Same interface as `get_modified_files_in_branch`. """ # File types (from https://git-scm.com/docs/git-diff). file_types = [ ("added", "A"), ("copied", "C"), ("deleted", "D"), ("modified", "M"), ("renamed", "R"), ("type changed", "T"), ("unmerged", "U"), ("unknown", "X"), ("broken pairing", "B"), ] res = "" for tag, diff_type in file_types: cmd = f"git diff --diff-filter={diff_type} --name-only {dst_branch}..." files = hsysinte.system_to_files( cmd, dir_name, remove_files_non_present=False ) _LOG.debug("files=%s", "\n".join(files)) if files: res += f"# {tag}: {len(files)}\n" res += hprint.indent("\n".join(files)) + "\n" res = res.rstrip("\n") return res # ############################################################################# # Git commands. # ############################################################################# # TODO(gp): -> get_user_name() @functools.lru_cache() def get_git_name() -> str: """ Return the git user name. """ cmd = "git config --get user.name" # For some reason data is annotated as Any by mypy, instead of # Tuple[int, str] so we need to cast it to the right value. data: Tuple[int, str] = hsysinte.system_to_one_line(cmd) _, output = data return output def git_log(num_commits: int = 5, my_commits: bool = False) -> str: """ Return the output of a pimped version of git log. :param num_commits: number of commits to report :param my_commits: True to report only the current user commits :return: string """ cmd = [] cmd.append("git log --date=local --oneline --graph --date-order --decorate") cmd.append( "--pretty=format:" "'%h %<(8)%aN% %<(65)%s (%>(14)%ar) %ad %<(10)%d'" ) cmd.append("-%d" % num_commits) if my_commits: # This doesn't work in a container if the user relies on `~/.gitconfig` to # set the user name. # TODO(gp): We should use `get_git_name()`. cmd.append("--author $(git config user.name)") cmd = " ".join(cmd) data: Tuple[int, str] = hsysinte.system_to_string(cmd) _, txt = data return txt def git_stash_push( prefix: str, msg: Optional[str] = None, log_level: int = logging.DEBUG ) -> Tuple[str, bool]: import helpers.hdatetime as hdateti user_name = hsysinte.get_user_name() server_name = hsysinte.get_server_name() timestamp = hdateti.get_current_timestamp_as_string("naive_ET") tag = "%s-%s-%s" % (user_name, server_name, timestamp) tag = prefix + "." + tag _LOG.debug("tag='%s'", tag) cmd = "git stash push" _LOG.debug("msg='%s'", msg) push_msg = tag[:] if msg: push_msg += ": " + msg cmd += " -m '%s'" % push_msg hsysinte.system(cmd, suppress_output=False, log_level=log_level) # Check if we actually stashed anything. cmd = r"git stash list | \grep '%s' | wc -l" % tag _, output = hsysinte.system_to_string(cmd) was_stashed = int(output) > 0 if not was_stashed: msg = "Nothing was stashed" _LOG.warning(msg) # raise RuntimeError(msg) return tag, was_stashed def git_stash_apply(mode: str, log_level: int = logging.DEBUG) -> None: _LOG.debug("# Checking stash head ...") cmd = "git stash list | head -3" hsysinte.system(cmd, suppress_output=False, log_level=log_level) # _LOG.debug("# Restoring local changes...") if mode == "pop": cmd = "git stash pop --quiet" elif mode == "apply": cmd = "git stash apply --quiet" else: raise ValueError("mode='%s'" % mode) hsysinte.system(cmd, suppress_output=False, log_level=log_level) # TODO(gp): Consider using this everywhere. Maybe it can simplify handling issues # stemming from the super-module / sub-module repo. def _get_git_cmd(super_module: bool) -> str: """ Build the first part of a Git command line. """ cmd = [] cmd.append("git") client_root = get_client_root(super_module=super_module) # Set the path to the repository (".git" directory), avoiding Git to search for # it (from https://git-scm.com/docs/git) cmd.append(f"--git-dir='{client_root}/.git'") # Set the path to the working tree. cmd.append(f"--work-tree='{client_root}'") cmd = " ".join(cmd) return cmd def git_tag( tag_name: str, super_module: bool = True, log_level: int = logging.DEBUG ) -> None: """ Tag the Git tree with `tag_name` without pushing the tag to the remote. """ _LOG.debug("# Tagging current commit ...") git_cmd = _get_git_cmd(super_module) cmd = f"{git_cmd} tag -f {tag_name}" _ = hsysinte.system(cmd, suppress_output=False, log_level=log_level) def git_push_tag( tag_name: str, remote: str = "origin", super_module: bool = True, log_level: int = logging.DEBUG, ) -> None: """ Push the tag `tag_name` to the given remote. """ _LOG.debug("# Pushing current commit ...") git_cmd = _get_git_cmd(super_module) cmd = f"{git_cmd} push {remote} {tag_name}" _ = hsysinte.system(cmd, suppress_output=False, log_level=log_level) def git_describe( match: Optional[str] = None, log_level: int = logging.DEBUG ) -> str: """ Return the closest tag in the repo, e.g., 1.0.0. If there is no tag, this will return short commit hash. :param match: e.g., `dev_tools-*`, only consider tags matching the given glob pattern """ _LOG.debug("# Looking for version ...") cmd = "git describe --tags --always --abbrev=0" if match is not None: hdbg.dassert_isinstance(match, str) hdbg.dassert_ne(match, "") cmd = f"{cmd} --match '{match}'" num, tag = hsysinte.system_to_one_line(cmd, log_level=log_level) _ = num return tag def git_add_update( file_list: Optional[List[str]] = None, log_level: int = logging.DEBUG ) -> None: """ Add list of files to hgit. If `file_list` is not specified, it adds all modified files. :param file_list: list of files to `git add` """ _LOG.debug("# Adding all changed files to staging ...") cmd = "git add %s" % (" ".join(file_list) if file_list is not None else "-u") hsysinte.system(cmd, suppress_output=False, log_level=log_level) def fetch_origin_master_if_needed() -> None: """ If inside CI system, force fetching `master` branch from Git repo. When testing a branch, `master` is not always fetched, but it might be needed by tests. """ if hsysinte.is_inside_ci(): _LOG.warning("Running inside CI so fetching master") cmd = "git branch -a" _, txt = hsysinte.system_to_string(cmd) _LOG.debug("%s=%s", cmd, txt) cmd = r'git branch -a | egrep "\s+master\s*$" | wc -l' # * (HEAD detached at pull/1337/merge) # master # remotes/origin/master # remotes/pull/1337/merge _, num = hsysinte.system_to_one_line(cmd) num = int(num) _LOG.debug("num=%s", num) if num == 0: # See AmpTask1321 and AmpTask1338 for details. cmd = "git fetch origin master:refs/remotes/origin/master" hsysinte.system(cmd) cmd = "git branch --track master origin/master" hsysinte.system(cmd) def is_client_clean( dir_name: str = ".", abort_if_not_clean: bool = False ) -> bool: """ Return whether there are files modified, added, or removed in `dir_name`. :param abort_if_not_clean: if True and the client is not clean, abort reporting the files modified """ _LOG.debug(hprint.to_str("abort_if_not_clean")) files = get_modified_files(dir_name) # Remove "amp" from files. if "amp" in files: _LOG.warning("Skipping 'amp' in modified files") files = [f for f in files if "amp" != f] # A Git client is clean iff there are no files in the index. is_clean = len(files) == 0 if abort_if_not_clean: hdbg.dassert( is_clean, "The Git client is not clean:\n%s", "\n".join(files) ) return is_clean def does_branch_exist(branch_name: str, dir_name: str = ".") -> bool: # From https://stackoverflow.com/questions/35941566 cmd = f"cd {dir_name} && git fetch --prune" hsysinte.system(cmd, abort_on_error=False) # From https://stackoverflow.com/questions/5167957 # > git rev-parse --verify LimeTask197_Get_familiar_with_CF2 # f03bfa0b4577c2524afd6a1f24d06013f8aa9f1a # > git rev-parse --verify I_dont_exist # fatal: Needed a single revision cmd = f"cd {dir_name} && git rev-parse --verify {branch_name}" rc = hsysinte.system(cmd, abort_on_error=False) exists = rc == 0 return exists def delete_branches( dir_name: str, mode: str, branches: List[str], confirm_delete: bool, abort_on_error: bool = True, ) -> None: """ Delete local or remote branches. :param mode: local or remote :param branches: list of branches to delete :param confirm_delete: ask the user to confirm before deleting, or just do it """ hdbg.dassert_isinstance(branches, list) delete_cmd = f"cd {dir_name} && " if mode == "local": delete_cmd += "git branch -d" elif mode == "remote": delete_cmd += "git push origin --delete" else: raise ValueError(f"Invalid mode='{mode}'") # Ask whether to continue. if confirm_delete: branches_as_str = " ".join(branches) msg = ( hdbg.WARNING + f": Delete {len(branches)} {mode} branch(es) '{branches_as_str}'?" ) hsysinte.query_yes_no(msg, abort_on_no=True) for branch in branches: if mode == "remote": prefix = "origin/" hdbg.dassert( branch.startswith(prefix), "Remote branch '%s' needs to start with '%s'", branch, prefix, ) branch = branch[len(prefix) :] cmd = f"{delete_cmd} {branch}" hsysinte.system( cmd, suppress_output=False, log_level="echo", abort_on_error=abort_on_error, )
StarcoderdataPython
3225366
from django.core.mail import send_mail from django.urls import reverse_lazy from django.views.generic.edit import CreateView from users.forms import CreationForm class SignUp(CreateView): form_class = CreationForm success_url = reverse_lazy('login') template_name = 'reg.html' def form_valid(self, form): email = form.cleaned_data['email'] self.send_mail_ls(email) return super().form_valid(form) def send_mail_ls(self, email): send_mail( 'Регистрация', 'Добро пожаловать на сайт!', '<EMAIL> <<EMAIL>>', [email], fail_silently=False )
StarcoderdataPython
1782008
# Copyright (c) 2018 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. """The signac framework aids in the management of large and heterogeneous data spaces. It provides a simple and robust data model to create a well-defined indexable storage layout for data and metadata. This makes it easier to operate on large data spaces, streamlines post-processing and analysis and makes data collectively accessible.""" from __future__ import absolute_import from . import contrib from . import db from . import cite from . import errors from . import warnings from . import sync from .contrib import Project from .contrib import TemporaryProject from .contrib import get_project from .contrib import init_project from .contrib import get_job from .contrib import fetch from .contrib import export_one from .contrib import export from .contrib import export_to_mirror from .contrib import export_pymongo from .contrib import filesystems as fs from .contrib import Collection from .contrib import index_files from .contrib import index from .contrib import RegexFileCrawler from .contrib import MasterCrawler from .contrib import SignacProjectCrawler from .db import get_database from .core.jsondict import buffer_reads_writes as buffered from .core.jsondict import in_buffered_mode as is_buffered from .core.jsondict import flush_all as flush from .core.jsondict import get_buffer_size from .core.jsondict import get_buffer_load from .core.jsondict import JSONDict from .core.h5store import H5Store from .core.h5store import H5StoreManager __version__ = '1.1.0' __all__ = ['__version__', 'contrib', 'db', 'errors', 'warnings', 'sync', 'cite', 'Project', 'TemporaryProject', 'get_project', 'init_project', 'get_job', 'get_database', 'fetch', 'export_one', 'export', 'export_to_mirror', 'Collection', 'export_pymongo', 'fs', 'index_files', 'index', 'RegexFileCrawler', 'MasterCrawler', 'SignacProjectCrawler', 'buffered', 'is_buffered', 'flush', 'get_buffer_size', 'get_buffer_load', 'JSONDict', 'H5Store', 'H5StoreManager', ]
StarcoderdataPython
3337518
from .base import * DEBUG = False ALLOWED_HOSTS = [ # À changer avec le nom de domaine de votre site web "www.monsiteweb.fr" ]
StarcoderdataPython
126569
import re from ..exo_classes.exo_classes import BuiltInFunction, Number from ..exo_classes.exo_context import Context from ..exo_utils.exo_interpreter import Interpreter, SymbolTable from ..exo_utils.exo_lexer import Lexer from ..exo_utils.exo_parser import Parser global_symbol_table = SymbolTable() global_symbol_table.set('null', None, Number(0), None) global_symbol_table.set('false', None, Number(0), None) global_symbol_table.set('true', None, Number(1), None) global_symbol_table.set("print", None, BuiltInFunction('print'), None) global_symbol_table.set("input", None, BuiltInFunction('input'), None) global_symbol_table.set("input_int", None, BuiltInFunction('input_int'), None) global_symbol_table.set('mod', None, BuiltInFunction('mod'), None) def filter_comments(text): regexpr = r'[ ]*[#]+.*' text = re.sub(regexpr, '', text) return text def run(file_name, text): text = filter_comments(text) lexer = Lexer(file_name, text) tokens, error = lexer.make_tokens() if error: return None, error parser = Parser(tokens) ast = parser.parse() if ast[-1].error: return None, ast[-1].error interpreter = Interpreter() context = Context('<program>') context.symbol_table = global_symbol_table result = None for statement in ast: result = interpreter.visit(statement.node, context) if result.error: return result.value, result.error if result: return result.value, result.error else: return None
StarcoderdataPython
80152
<filename>backend_test/forms.py """Forms to upload the menu.""" #Django from django import forms #Models from .utils.models import Ingredients, Menu, User, Orders class MenuForm(forms.Form): """Form based on model Menu""" dish_name = forms.CharField( max_length=150, required=True ) description = forms.CharField( required=True ) new_ingredients = forms.CharField() ingredients = forms.ModelMultipleChoiceField( queryset=Ingredients.objects.all(), widget=forms.CheckboxSelectMultiple(), required=False ) image = forms.ImageField() class OrderForm(forms.Form): """Form based on model Order""" menu = forms.ModelChoiceField( queryset=Menu.objects.all(), required=False) ingredients = forms.ModelMultipleChoiceField( queryset=Ingredients.objects.all(), widget=forms.CheckboxSelectMultiple(), required=False ) quantity = forms.IntegerField( max_value=5, )
StarcoderdataPython
184020
from key_events import * import os os.nice(40) pos = position() for x in range(1000): #time.sleep(.25) mouseclick(*pos)
StarcoderdataPython
3244027
def home(self, room_name): return {'room_name': room_name} from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import authentication, permissions from django.contrib.auth import get_user_model from core.models import Thread, Message class ReturnThreads(APIView): authentication_classes = [authentication.TokenAuthentication] permission_classes = [permissions.IsAuthenticated] def get(self, request, format=None): threads = Thread.objects.filter(users=request.user) ths = [] users = [] avatar = '' for i in threads: for l in i.users.all(): users.append(l.username) if len(i.users.all()) < 3 and l.id != request.user.id: avatar = str(l.avatar) ths.append({ 'id': i.id, 'users': users, 'avatar': avatar }) users=[] return Response(ths) class CreateThreadAPIView(APIView): authentication_classes = [authentication.TokenAuthentication] permission_classes = [permissions.IsAuthenticated] def post(self, request, format=None): other_user = get_user_model().objects.get(id=request.data.get('id')) print('OT:', other_user) thread = Thread.objects.create() thread.users.add(other_user) thread.users.add(request.user) return Response({'id': thread.id})
StarcoderdataPython
122410
import os # from sklearn.metrics import log_loss, roc_auc_score import time from librerank.utils import * from librerank.reranker import * from librerank.rl_reranker import * def eval(model, data, l2_reg, batch_size, isrank, metric_scope, _print=False): preds = [] # labels = [] losses = [] data_size = len(data[0]) batch_num = data_size // batch_size print('eval', batch_size, batch_num) t = time.time() for batch_no in range(batch_num): data_batch = get_aggregated_batch(data, batch_size=batch_size, batch_no=batch_no) pred, loss = model.eval(data_batch, l2_reg) preds.extend(pred) # labels.extend(label) losses.append(loss) loss = sum(losses) / len(losses) # cates = np.reshape(np.array(data[1])[:, :, 1], [-1, max_time_len]).tolist() labels = data[4] # print(preds[0], labels[0]) # poss = data[-2] res = evaluate_multi(labels, preds, metric_scope, isrank, _print) print("EVAL TIME: %.4fs" % (time.time() - t)) # return loss, res_low, res_high return loss, res def train(train_file, test_file, feature_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, params): tf.reset_default_graph() # gpu settings gpu_options = tf.GPUOptions(allow_growth=True) perlist = False if params.model_type == 'PRM': model = PRM(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) elif params.model_type == 'SetRank': model = SetRank(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) elif params.model_type == 'DLCM': model = DLCM(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) elif params.model_type == 'GSF': model = GSF(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm, group_size=params.group_size) elif params.model_type == 'miDNN': model = miDNN(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) elif params.model_type == 'EGR_evaluator': model = EGR_evaluator(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) elif params.model_type == 'EGR_generator': model = PPOModel(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm, rep_num=params.rep_num) # discriminator = EGR_discriminator(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, # profile_num, max_norm=params.max_norm) evaluator = EGR_evaluator(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) with evaluator.graph.as_default() as g: sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options)) evaluator.set_sess(sess) sess.run(tf.global_variables_initializer()) evaluator.load(params.evaluator_path) # with discriminator.graph.as_default() as g: # sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options)) # discriminator.set_sess(sess) # sess.run(tf.global_variables_initializer()) elif params.model_type == 'Seq2Slate': # model = Seq2Slate(feature_size, eb_dim, hidden_size, max_time_len, max_seq_len, item_fnum, num_cat, mu) model = SLModel(feature_size, params.eb_dim, params.hidden_size, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_num, max_norm=params.max_norm) else: print('No Such Model', params.model_type) exit(0) with model.graph.as_default() as g: sess = tf.Session(graph=g, config=tf.ConfigProto(gpu_options=gpu_options)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) model.set_sess(sess) # training_monitor = { # 'train_loss': [], # 'vali_loss': [], # 'map_l': [], # 'ndcg_l': [], # 'clicks_l': [], # 'utility_l': [], # 'map_h':[], # 'ndcg_h': [], # 'clicks_h': [], # 'utility_h': [], # } training_monitor = { 'train_loss': [], 'vali_loss': [], 'map_l': [], 'ndcg_l': [], 'clicks_l': [], # 'utility_l': [], # 'de_ndcg_l': [], } model_name = '{}_{}_{}_{}_{}_{}_{}_{}_{}'.format(params.timestamp, initial_ranker, params.model_type, params.batch_size, params.lr, params.l2_reg, params.hidden_size, params.eb_dim, params.keep_prob) if not os.path.exists('{}/logs_{}/{}'.format(parse.save_dir, data_set_name, max_time_len)): os.makedirs('{}/logs_{}/{}'.format(parse.save_dir, data_set_name, max_time_len)) if not os.path.exists('{}/save_model_{}/{}/{}/'.format(parse.save_dir, data_set_name, max_time_len, model_name)): os.makedirs('{}/save_model_{}/{}/{}/'.format(parse.save_dir, data_set_name, max_time_len, model_name)) save_path = '{}/save_model_{}/{}/{}/ckpt'.format(parse.save_dir, data_set_name, max_time_len, model_name) log_save_path = '{}/logs_{}/{}/{}.metrics'.format(parse.save_dir, data_set_name, max_time_len, model_name) # training process # with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: # sess.run(tf.global_variables_initializer()) # sess.run(tf.local_variables_initializer()) train_losses_step = [] # before training process step = 0 vali_loss, res = eval(model, test_file, params.l2_reg, params.batch_size, False, params.metric_scope) training_monitor['train_loss'].append(None) training_monitor['vali_loss'].append(None) training_monitor['map_l'].append(res[0][0]) training_monitor['ndcg_l'].append(res[1][0]) # training_monitor['de_ndcg_l'].append(res[2][0]) training_monitor['clicks_l'].append(res[2][0]) # training_monitor['utility_l'].append(res[4][0]) print("STEP %d INTIAL RANKER | LOSS VALI: NULL" % step) for i, s in enumerate(params.metric_scope): print("@%d MAP: %.4f NDCG: %.4f CLICKS: %.4f " % (s, res[0][i], res[1][i], res[2][i])) early_stop = False data = train_file data_size = len(data[0]) batch_num = data_size // params.batch_size eval_iter_num = (data_size // 5) // params.batch_size print('train', data_size, batch_num) # begin training process for epoch in range(params.epoch_num): # if early_stop: # break for batch_no in range(batch_num): data_batch = get_aggregated_batch(data, batch_size=params.batch_size, batch_no=batch_no) # if early_stop: # break if params.model_type == 'EGR_generator': data_batch = repeat_data(data_batch, params.rep_num) act_idx_out, act_probs_one, rl_sp_outputs, rl_de_outputs, mask_arr, lp_sp_data, lp_de_data, _\ = model.predict(data_batch, params.l2_reg) pred = evaluator.predict(rl_sp_outputs, rl_de_outputs, data_batch[6]) # d_preds, d_rewards = discriminator.predict(rl_sp_outputs, rl_de_outputs, data_batch[6]) # rewards = pred + d_rewards.reshape((-1, max_time_len)) * c_rewards_d rewards = pred # rewards = pred # train rl-rerank # for _ in range(update_steps): loss, mean_return = model.train(data_batch, rl_sp_outputs, rl_de_outputs, act_probs_one, act_idx_out, rewards, mask_arr, params.c_entropy, params.lr, params.l2_reg, params.keep_prob) # train discriminator # if step % (update_rate_d * int(update_steps)) == 0: # d_label = np.array([1] * lp_sp_data.shape[0] + [0] * rl_sp_outputs.shape[0]) # spar_data = np.concatenate([lp_sp_data, rl_sp_outputs], axis=0) # dens_data = np.concatenate([lp_de_data, rl_de_outputs], axis=0) # seq_len = np.array(data_batch[6] + data_batch[6]) # d_total_loss = discriminator.train([spar_data, dens_data, d_label, seq_len], lr, l2_reg) # print('dis, step: %d' % (step), 'loss', d_total_loss) elif params.model_type == 'Seq2Slate': act_idx_out, act_probs_one, rl_sp_outputs, rl_de_outputs, mask_arr, lp_sp_data, lp_de_data, _ \ = model.predict(data_batch, params.l2_reg) loss = model.train(data_batch, rl_sp_outputs, rl_de_outputs, mask_arr, params.lr, params.l2_reg, params.keep_prob) else: loss = model.train(data_batch, params.lr, params.l2_reg, params.keep_prob) step += 1 train_losses_step.append(loss) if step % eval_iter_num == 0: train_loss = sum(train_losses_step) / len(train_losses_step) training_monitor['train_loss'].append(train_loss) train_losses_step = [] vali_loss, res = eval(model, test_file, params.l2_reg, params.batch_size, True, params.metric_scope, False) training_monitor['train_loss'].append(train_loss) training_monitor['vali_loss'].append(vali_loss) training_monitor['map_l'].append(res[0][0]) training_monitor['ndcg_l'].append(res[1][0]) # training_monitor['de_ndcg_l'].append(res[2][0]) training_monitor['clicks_l'].append(res[2][0]) # training_monitor['utility_l'].append(res[4][0]) print("EPOCH %d STEP %d LOSS TRAIN: %.4f | LOSS VALI: %.4f" % (epoch, step, train_loss, vali_loss)) for i, s in enumerate(params.metric_scope): print("@%d MAP: %.4f NDCG: %.4f CLICKS: %.4f " % (s, res[0][i], res[1][i], res[2][i])) if training_monitor['map_l'][-1] > max(training_monitor['map_l'][:-1]): # save model model.save(save_path) pkl.dump(res[-1], open(log_save_path, 'wb')) print('model saved') if len(training_monitor['map_l']) > 2 and epoch > 0: # if (training_monitor['vali_loss'][-1] > training_monitor['vali_loss'][-2] and # training_monitor['vali_loss'][-2] > training_monitor['vali_loss'][-3]): # early_stop = True if (training_monitor['map_l'][-2] - training_monitor['map_l'][-1]) <= 0.01 and ( training_monitor['map_l'][-3] - training_monitor['map_l'][-2]) <= 0.01: early_stop = True # generate log if not os.path.exists('{}/logs_{}/{}/'.format(parse.save_dir, data_set_name, max_time_len)): os.makedirs('{}/logs_{}/{}/'.format(parse.save_dir, data_set_name, max_time_len)) with open('{}/logs_{}/{}/{}.monitor.pkl'.format(parse.save_dir, data_set_name, max_time_len, model_name), 'wb') as f: pkl.dump(training_monitor, f) def reranker_parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--max_time_len', default=10, type=int, help='max time length') parser.add_argument('--save_dir', type=str, default='./', help='dir that saves logs and model') parser.add_argument('--data_dir', type=str, default='./data/toy/', help='data dir') parser.add_argument('--model_type', default='PRM', choices=['PRM', 'DLCM', 'SetRank', 'GSF', 'miDNN', 'Seq2Slate', 'EGR_evaluator', 'EGR_generator'], type=str, help='algorithm name, including PRM, DLCM, SetRank, GSF, miDNN, Seq2Slate, EGR_evaluator, EGR_generator') parser.add_argument('--data_set_name', default='ad', type=str, help='name of dataset, including ad and prm') parser.add_argument('--initial_ranker', default='lambdaMART', choices=['DNN', 'lambdaMART'], type=str, help='name of dataset, including DNN, lambdaMART') parser.add_argument('--epoch_num', default=30, type=int, help='epochs of each iteration.') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--rep_num', default=5, type=int, help='samples repeat number') parser.add_argument('--lr', default=1e-4, type=float, help='learning rate') parser.add_argument('--l2_reg', default=1e-4, type=float, help='l2 loss scale') parser.add_argument('--keep_prob', default=0.8, type=float, help='keep probability') parser.add_argument('--eb_dim', default=16, type=int, help='size of embedding') parser.add_argument('--hidden_size', default=64, type=int, help='hidden size') parser.add_argument('--group_size', default=1, type=int, help='group size for GSF') parser.add_argument('--metric_scope', default=[1, 3, 5, 10], type=list, help='the scope of metrics') parser.add_argument('--max_norm', default=0, type=float, help='max norm of gradient') parser.add_argument('--c_entropy', default=0.001, type=float, help='entropy coefficient in loss') # parser.add_argument('--decay_steps', default=3000, type=int, help='learning rate decay steps') # parser.add_argument('--decay_rate', default=1.0, type=float, help='learning rate decay rate') parser.add_argument('--timestamp', type=str, default=datetime.datetime.now().strftime("%Y%m%d%H%M")) parser.add_argument('--evaluator_path', type=str, default='', help='evaluator ckpt dir') parser.add_argument('--reload_path', type=str, default='', help='model ckpt dir') parser.add_argument('--setting_path', type=str, default='./config/prm_setting.json', help='setting dir') FLAGS, _ = parser.parse_known_args() return FLAGS if __name__ == '__main__': # parameters random.seed(1234) parse = reranker_parse_args() if parse.setting_path: parse = load_parse_from_json(parse, parse.setting_path) data_set_name = parse.data_set_name processed_dir = parse.data_dir stat_dir = os.path.join(processed_dir, 'data.stat') max_time_len = parse.max_time_len initial_ranker = parse.initial_ranker if data_set_name == 'prm' and parse.max_time_len > 30: max_time_len = 30 print(parse) with open(stat_dir, 'r') as f: stat = json.load(f) num_item, num_cate, num_ft, profile_fnum, itm_spar_fnum, itm_dens_fnum, = stat['item_num'], stat['cate_num'], \ stat['ft_num'], stat['profile_fnum'], stat['itm_spar_fnum'], stat['itm_dens_fnum'] print('num of item', num_item, 'num of list', stat['train_num'] + stat['val_num'] + stat['test_num'], 'profile num', profile_fnum, 'spar num', itm_spar_fnum, 'dens num', itm_dens_fnum) # train_file, val_file, test_file = pkl.load(open(os.path.join(processed_dir, 'data.data'), 'rb')) # props = pkl.load(open(os.path.join(processed_dir, 'prop'), 'rb')) # props[0] = [1e-6 for i in range(max_time_len)] # profile = pkl.load(open(os.path.join(processed_dir, 'user.profile'), 'rb')) # construct training files train_dir = os.path.join(processed_dir, initial_ranker + '.data.train') if os.path.isfile(train_dir): train_lists = pkl.load(open(train_dir, 'rb')) else: train_lists = construct_list(os.path.join(processed_dir, initial_ranker + '.rankings.train'), max_time_len) pkl.dump(train_lists, open(train_dir, 'wb')) # construct test files test_dir = os.path.join(processed_dir, initial_ranker + '.data.test') if os.path.isfile(test_dir): test_lists = pkl.load(open(test_dir, 'rb')) else: test_lists = construct_list(os.path.join(processed_dir, initial_ranker + '.rankings.test'), max_time_len) pkl.dump(test_lists, open(test_dir, 'wb')) train(train_lists, test_lists, num_ft, max_time_len, itm_spar_fnum, itm_dens_fnum, profile_fnum, parse)
StarcoderdataPython
3315014
from pytest import LogCaptureFixture from .util import get_main_output def test_content_types(caplog: LogCaptureFixture) -> None: for _ in ("js_output.cwl", "js_output_workflow.cwl"): commands = [ "https://raw.githubusercontent.com/common-workflow-language/common-workflow-language/main/v1.0/v1.0/test-cwl-out2.cwl", "https://github.com/common-workflow-language/common-workflow-language/blob/main/v1.0/v1.0/empty.json", ] error_code, _, stderr = get_main_output(commands) found = False for record in caplog.records: if ( record.name == "salad" and "got content-type of 'text/html'" in record.message ): found = True break assert found assert error_code == 1, stderr
StarcoderdataPython
128150
<reponame>NunoEdgarGFlowHub/katecheo """ python QuestionDetector_Test.py """ import unittest import json import os os.environ[ 'KATECHEO_NER'] = 'health=https://storage.googleapis.com/pachyderm-neuralbot/ner_models/health.zip,faith=https://storage.googleapis.com/pachyderm-neuralbot/ner_models/faith.zip' import TargetClassifier class TargetClassifier_Test(unittest.TestCase): def setUp(self): self.classifier = TargetClassifier.TargetClassifier() def test_get_topic(self): params = ['Does some food increase pollen allergy symptoms?'] response = self.classifier.predict(params, "features", {'tags': {'proceed': True}}) self.assertIsNotNone(response) if __name__ == '__main__': unittest.main()
StarcoderdataPython
170009
<gh_stars>0 import yaml import json from configparser import ConfigParser def to_flatdict(file_path): raw_file_path = file_path.replace("\t","\\t").replace("\n","\\n").replace("\b","\\b").replace("\f","\\f").replace("\r","\\r") if file_path.endswith(".yaml") or file_path.endswith(".yml"): return yaml_to_flatdict(raw_file_path) elif file_path.endswith(".cfg"): return cfg_to_flatdict(raw_file_path) # yaml to flatdict def yaml_to_flatdict(file_path): d1 = {} with open(file_path) as file: documents = yaml.safe_load(file) # value_yaml = flatdict.FlatDict(documents) return convert_flatdict(documents) # .cfg(.ini) to flatdict def cfg_to_flatdict(file_path): config = ConfigParser() config.read(file_path) sections = config._sections return convert_flatdict(sections) def convert_flatdict(file_obj): d1 = {} for x in file_obj: for y in file_obj[x]: k = x+"_"+y d1[k] = file_obj[x][y] return d1 """out = to_flatdict("D:\Aishwarya_Work\pythonProject5\examples\conf2.yml") print(out) out1 = to_flatdict("D:\Aishwarya_Work\pythonProject5\examples\conf1.cfg") print(out1)"""
StarcoderdataPython
4836665
__version__ = '1.1.0+smth' import numpy as np import pyrep pr_v = np.array(pyrep.__version__.split('.'), dtype=int) if pr_v.size < 4 or np.any(pr_v < np.array([4, 1, 0, 2])): raise ImportError( 'PyRep version must be greater than 4.1.0.2. Please update PyRep.') from rlbench.environment import Environment from rlbench.action_modes import ArmActionMode from rlbench.observation_config import ObservationConfig from rlbench.observation_config import CameraConfig from rlbench.sim2real.domain_randomization import RandomizeEvery from rlbench.sim2real.domain_randomization import VisualRandomizationConfig from rlbench.sim2real.domain_randomization_environment import DomainRandomizationEnvironment
StarcoderdataPython
3340148
<filename>FSJ_django20_project/FSJ/forms/forms_student.py """All ModelForms based on the Student model""" from ..models import Student from .forms_modelform import ModelForm from django.forms import TextInput class StudentForm(ModelForm): """Unrestricted student form available to coordinators creating a new student""" class Meta: model = Student fields = ('ccid', 'first_name', 'middle_name', 'last_name', 'email', 'lang_pref', 'program', 'year', 'student_id', 'gpa', 'credits') def __init__(self, *args, **kwargs): super(StudentForm, self).__init__(*args, **kwargs) class StudentEditForm(StudentForm): """Semi-restricted form available to coordinators who are editing students""" def __init__(self, *args, **kwargs): super(StudentEditForm, self).__init__(*args, **kwargs) self.fields['student_id'].disabled=True class StudentRestrictedForm(ModelForm): """Restricted form available to students who are editing their own profiles""" class Meta: model = Student fields = ('ccid', 'first_name', 'middle_name', 'last_name', 'email', 'lang_pref', 'program', 'year', 'student_id', 'gpa', 'credits') widgets = { "student_id": TextInput } def __init__(self, *args, **kwargs): super(StudentRestrictedForm, self).__init__(*args, **kwargs) self.fields['ccid'].disabled=True self.fields['email'].disabled=True self.fields['year'].disabled=True self.fields['student_id'].disabled=True self.fields['gpa'].disabled=True self.fields['credits'].disabled=True self.fields['first_name'].disabled=True self.fields['middle_name'].disabled=True self.fields['last_name'].disabled=True class StudentReadOnlyForm(StudentForm): """Read-only form available to coordinators and adjudicators who are viewing students""" def __init__(self, *args, **kwargs): super(StudentReadOnlyForm, self).__init__(*args, **kwargs) for field in self.fields: self.fields[field].disabled = True
StarcoderdataPython
166325
<filename>src/game/law_scope.py<gh_stars>1-10 from enum import Enum, auto class LawScope(Enum): state = auto() city = auto()
StarcoderdataPython
199682
import re from collections import deque from contextlib import closing from cStringIO import StringIO from flanker.mime.message.headers.parsing import parse_stream from flanker.mime.message.headers import MimeHeaders def detect(message): headers = collect(message) return Result( score=len(headers) / float(len(HEADERS)), status=get_status(headers), notification=get_notification(message), diagnostic_code=headers.get('Diagnostic-Code')) def collect(message): collected = deque() for p in message.walk(with_self=True): for h in HEADERS: if h in p.headers: collected.append((h, p.headers[h])) if p.content_type.is_delivery_status(): collected += collect_from_status(p.body) return MimeHeaders(collected) def collect_from_status(body): out = deque() with closing(StringIO(body)) as stream: for i in xrange(3): out += parse_stream(stream) return out def get_status(headers): for v in headers.getall('Status'): if RE_STATUS.match(v.strip()): return v def get_notification(message): for part in message.walk(): if part.headers.get('Content-Description', '').lower() == 'notification': return part.body HEADERS = ('Action', 'Content-Description', 'Diagnostic-Code', 'Final-Recipient', 'Received', 'Remote-Mta', 'Reporting-Mta', 'Status') RE_STATUS = re.compile(r'\d\.\d+\.\d+', re.IGNORECASE) class Result(object): def __init__(self, score, status, notification, diagnostic_code): self.score = score self.status = status self.notification = notification self.diagnostic_code = diagnostic_code def __repr__(self): return (u'bounce.Result(status={}, score={}, notification={},' u' diag_code={})'.format(self.status, self.score, self.notification, self.diagnostic_code))
StarcoderdataPython
3212542
<filename>airbyte-integrations/connectors/source-mailgun/source_mailgun/__init__.py # # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # from .source import SourceMailgun __all__ = ["SourceMailgun"]
StarcoderdataPython
3395541
from aiogram import types, Dispatcher from aiogram.dispatcher.storage import FSMContext from app.states import CheckState from app.db_worker import db_worker from asyncio import sleep # дает пользовтелю инструкции async def begining(message: types.Message, state: FSMContext): await state.finish() db_worker.add_user(message.from_user.id) # await message.answer('Привет! )))))', reply_markup= types.ReplyKeyboardRemove()) # await message.answer( # 'Начнем. Вначале я должен узнать, куда ты хочешь поступить. ' # 'Ты можешь посмотреть, какие ВУЗы есть в базе данных и указать их. ', # reply_markup= keyboard_inline # ) # await message.answer( # 'Если какого-то ВУЗа нет, то надо будет указать 3 ссылки на него. ' # 'С этих 3-х сайтов:\n' # 'https://tabiturient.ru\n' # 'https://vuzopedia.ru\n' # 'https://ucheba.ru/for-abiturients/vuz\n' # "<i>(Надо зайти на сайт, ввести название ВУЗа, зайти на страничку и скопировать ссылку, " # "потом просто отправить сюда. Некоторое не понимают, но <b>1 ВУЗ = 3 ссылки</b>, к сожалению для вас.)</i>\n\n" # "<i>Этим ты поможешь нам расширять базу данных.</i>", # disable_web_page_preview= True # ) # await sleep(0.2) # await message.answer('Когда закончишь указывать введи команду -> /finish1_0.') # await sleep(0.2) # await message.answer('А можешь вообще все ВУЗы указать, нажав сюда -> /finish1_1.') await message.answer( 'Привет! )))))\n' 'Для начала, давай я узнаю, куда ты хочешь поступить.', reply_markup= types.ReplyKeyboardRemove() ) await message.answer( 'Есть 3 способа указать ВУЗы.' ) await message.answer( '<b>Первый.</b>\nПросто посмотреть, какие ВУЗы есть в базе, и указать их.' ) await message.answer( '<b>Второй.</b>\nМожно указать ВУЗ по 3 ссылкам:\n' 'https://tabiturient.ru\n' 'https://vuzopedia.ru\n' 'https://ucheba.ru/for-abiturients/vuz\n' '<i>(Уточню, что 1 ВУЗ = 3 ссылки. Таким образом, ты поможешь пополнять базу.)</i>', disable_web_page_preview= True ) await message.answer( 'Для 1 и 2 способа надо нажать -> /finish1, когда закончишь вводить <i>ВСЕ</i> ВУЗы' ) keyboard_inline = types.InlineKeyboardMarkup() keyboard_inline.add( types.InlineKeyboardButton( text= 'Посмотреть ВУЗы в базе', switch_inline_query_current_chat='' ) ) await message.answer( '<b>Третий.</b>\nМожно выбрать <i>абсолютно</i> все ВУЗы из моей базы, нажав сюда -> /all.', reply_markup= keyboard_inline ) # запоминаение того, что ввел пользователь await state.update_data(chosen_vuzes_in_base = []) await state.update_data(chosen_vuzes_tabi = []) await state.update_data(chosen_vuzes_vuzo = []) await state.update_data(chosen_vuzes_uche = []) await CheckState.waiting_for_put_vuz_in_mem.set() await state.update_data(check1 = False) await state.update_data(check2 = False) await state.update_data(check3 = False) def register_introduction(dp: Dispatcher): dp.register_message_handler(begining, commands= 'start', state= '*')
StarcoderdataPython
29772
from logging import getLogger from typing import Dict, List, Optional from tmtrader.entity.order import FilledBasicOrder from tmtrader.entity.position import ClosedPosition, Position, Positions, \ PositionsRef from tmtrader.exchange_for_backtest.usecase.order_to_share import from_order logger = getLogger(__name__) PositionsDict = Dict[int, Positions] ClosedPositions = List[ClosedPosition] class PositionManager: def __init__(self): self.__positions_dic: PositionsDict = dict() def current_positions_of(self, product_id: int) -> Optional[PositionsRef]: if product_id in self.__positions_dic: return self.__positions_dic[product_id].to_ref() else: return None def current_positions(self) -> Dict[int, PositionsRef]: return {k: v.to_ref() for k, v in self.__positions_dic.items() if v.len} def update_position(self, order: FilledBasicOrder) -> ClosedPositions: logger.debug(f'Got filled order at PositionManager: {order}') pid = order.product_id if pid in self.__positions_dic: logger.debug(f'position size before update: {self.__positions_dic[pid].len}') else: logger.debug(f'position size before update: 0') new_shares = from_order(order) positions = None if pid in self.__positions_dic: positions = self.__positions_dic.pop(pid) closed_pos = [] if positions and positions.is_long: if order.is_buy: self.__add_positions(pid, positions, new_shares) else: closed_pos = self.__close_and_may_open(pid, positions, new_shares) elif positions: if order.is_buy: closed_pos = self.__close_and_may_open(pid, positions, new_shares) else: self.__add_positions(pid, positions, new_shares) else: self.__positions_dic[pid] = Positions(pid, new_shares, order.is_buy) if pid in self.__positions_dic: logger.debug( f'position size after update: {self.__positions_dic[pid].len}') else: logger.debug('position size after update: 0') return closed_pos def __add_positions(self, pid: int, positions: Positions, new_shares: List[Position]): positions.add_positions(new_shares) self.__positions_dic[pid] = positions def __close_and_may_open(self, pid: int, positions: Positions, new_shares: List[Position]) -> ClosedPositions: closed = positions.close_positions(new_shares) if closed.remaining_contracts: self.__positions_dic[pid] = Positions(pid, closed.remaining_contracts, is_long=not positions.is_long) else: if positions.len: self.__positions_dic[pid] = positions return closed.closed
StarcoderdataPython
1703347
<gh_stars>1000+ """Test getting __version__ for VTK package """ import vtkmodules from vtkmodules.vtkCommonCore import vtkVersion from vtkmodules.test import Testing class TestVersion(Testing.vtkTest): def testVersionAttribute(self): """Test the __version__ attribute """ x,y,z = vtkmodules.__version__.split(".") self.assertEqual(x, str(vtkVersion.GetVTKMajorVersion())) self.assertEqual(y, str(vtkVersion.GetVTKMinorVersion())) self.assertEqual(z, str(vtkVersion.GetVTKBuildVersion())) if __name__ == "__main__": Testing.main([(TestVersion, 'test')])
StarcoderdataPython
3320633
<reponame>ragibson/ModularityPruning from .shared_testing_functions import generate_connected_multilayer_ER, generate_random_partitions from modularitypruning.champ_utilities import partition_coefficients_3D from modularitypruning.louvain_utilities import multilayer_louvain_part_with_membership, \ check_multilayer_louvain_capabilities, louvain_part_with_membership from random import seed import unittest class TestCHAMPCoefficients3D(unittest.TestCase): def assert_partition_coefficient_correctness(self, G_intralayer, G_interlayer, layer_membership, partitions, coefficients): if not check_multilayer_louvain_capabilities(fatal=False): # just return since this version of louvain is unable to perform multilayer parameter estimation anyway return A_hats, P_hats, C_hats = coefficients for membership, A_hat, P_hat, C_hat in zip(partitions, A_hats, P_hats, C_hats): intralayer_part, interlayer_part = multilayer_louvain_part_with_membership(G_intralayer, G_interlayer, layer_membership, community_membership=membership) # Q_intralayer(gamma=0) = sum_{ij} A_{ij} delta(c_i, c_j) = A_hat louvain_A_hat = intralayer_part.quality(resolution_parameter=0) # Q_intralayer(gamma=0) - Q_intralayer(gamma=1) # = sum_{ij} (A_{ij} - gamma*P_{ij} - A_{ij}) delta(c_i, c_j) # = sum_{ij} P_{ij} delta(c_i, c_j) # = P_hat louvain_P_hat = louvain_A_hat - intralayer_part.quality(resolution_parameter=1) # Q_interlayer(omega=0) # = sum_{ij} (C_{ij} - omega*P{ij}) delta(c_i, c_j) # = sum_{ij} C_{ij} delta(c_i, c_j) # = C_hat louvain_C_hat = interlayer_part.quality(resolution_parameter=0) self.assertAlmostEqual(A_hat, louvain_A_hat, places=10) self.assertAlmostEqual(P_hat, louvain_P_hat, places=10) self.assertAlmostEqual(C_hat, louvain_C_hat, places=10) # Also test against an alternate, per-layer calculation of P_hat alternate_P_hat = 0 for layer in set(layer_membership): this_layer_indices = [i for i, l in enumerate(layer_membership) if layer == l] layer_subgraph = G_intralayer.subgraph(this_layer_indices) layer_community_membership = [community for i, community in enumerate(membership) if layer_membership[i] == layer] layer_part = louvain_part_with_membership(layer_subgraph, layer_community_membership) alternate_P_hat += (layer_part.quality(resolution_parameter=0.0) - layer_part.quality(resolution_parameter=1.0)) self.assertAlmostEqual(alternate_P_hat, P_hat, places=10) def assert_partition_coefficient_correctness_unweighted_ER(self, num_nodes_per_layer=100, m=25000, num_layers=10, directed=False, num_partitions=10, K_max=10): G_intralayer, G_interlayer, layer_membership = generate_connected_multilayer_ER( num_nodes_per_layer=num_nodes_per_layer, m=m, num_layers=num_layers, directed=directed) partitions = generate_random_partitions(num_nodes=G_intralayer.vcount(), num_partitions=num_partitions, K_max=K_max) coefficients = partition_coefficients_3D(G_intralayer, G_interlayer, layer_membership, partitions) self.assert_partition_coefficient_correctness(G_intralayer, G_interlayer, layer_membership, partitions, coefficients) def test_partition_coefficient_correctness_undirected_unweighted_varying_num_nodes_per_layer(self): for num_nodes_per_layer in [50, 100, 250, 500]: self.assert_partition_coefficient_correctness_unweighted_ER(num_nodes_per_layer=num_nodes_per_layer, m=50 * num_nodes_per_layer) def test_partition_coefficient_correctness_undirected_unweighted_varying_m(self): for m in [5000, 10000, 15000, 20000]: self.assert_partition_coefficient_correctness_unweighted_ER(m=m) def test_partition_coefficient_correctness_undirected_unweighted_varying_num_layers(self): for num_layers in [5, 10, 20, 30]: self.assert_partition_coefficient_correctness_unweighted_ER(num_layers=num_layers) def test_partition_coefficient_correctness_undirected_unweighted_varying_num_partitions(self): for num_partitions in [5, 10, 100, 250]: self.assert_partition_coefficient_correctness_unweighted_ER(num_partitions=num_partitions) def test_partition_coefficient_correctness_undirected_unweighted_varying_K_max(self): for K_max in [2, 5, 10, 25]: self.assert_partition_coefficient_correctness_unweighted_ER(K_max=K_max) def test_partition_coefficient_correctness_directed_unweighted_varying_num_nodes_per_layer(self): for num_nodes_per_layer in [50, 100, 250, 500]: self.assert_partition_coefficient_correctness_unweighted_ER(num_nodes_per_layer=num_nodes_per_layer, m=100 * num_nodes_per_layer, directed=True) def test_partition_coefficient_correctness_directed_unweighted_varying_m(self): for m in [10000, 20000, 30000, 40000]: self.assert_partition_coefficient_correctness_unweighted_ER(m=m, directed=True) def test_partition_coefficient_correctness_directed_unweighted_varying_num_layers(self): for num_layers in [5, 10, 20, 30]: self.assert_partition_coefficient_correctness_unweighted_ER(num_layers=num_layers, directed=True) def test_partition_coefficient_correctness_directed_unweighted_varying_num_partitions(self): for num_partitions in [5, 10, 100, 250]: self.assert_partition_coefficient_correctness_unweighted_ER(directed=True, num_partitions=num_partitions) def test_partition_coefficient_correctness_directed_unweighted_varying_K_max(self): for K_max in [2, 5, 10, 25]: self.assert_partition_coefficient_correctness_unweighted_ER(directed=True, K_max=K_max) def test_partition_coefficient_correctness_interleaved_directedness(self): """Test partition coefficient correctness when directedness of interlayer and intralayer edges do not match.""" if not check_multilayer_louvain_capabilities(fatal=False): # just return since this version of louvain is unable to perform multilayer parameter estimation anyway return # Intralayer directed edges, but interlayer undirected ones G_intralayer, G_interlayer, layer_membership = generate_connected_multilayer_ER(num_nodes_per_layer=100, m=5000, num_layers=10, directed=False) G_intralayer.to_directed() partitions = generate_random_partitions(num_nodes=G_intralayer.vcount(), num_partitions=10, K_max=10) coefficients = partition_coefficients_3D(G_intralayer, G_interlayer, layer_membership, partitions) self.assert_partition_coefficient_correctness(G_intralayer, G_interlayer, layer_membership, partitions, coefficients) # Interlayer directed edges, but intralayer undirected ones G_intralayer, G_interlayer, layer_membership = generate_connected_multilayer_ER(num_nodes_per_layer=100, m=5000, num_layers=10, directed=False) G_interlayer.to_directed() partitions = generate_random_partitions(num_nodes=G_intralayer.vcount(), num_partitions=10, K_max=10) coefficients = partition_coefficients_3D(G_intralayer, G_interlayer, layer_membership, partitions) self.assert_partition_coefficient_correctness(G_intralayer, G_interlayer, layer_membership, partitions, coefficients) if __name__ == "__main__": seed(0) unittest.main()
StarcoderdataPython
3356475
<gh_stars>0 from typing import Optional, Dict from id_definition.error_codes import VizErrorCode class VizException(Exception): status_code = 400 code = VizErrorCode.GENERAL_ERROR message = "Exception Occured" def __init__( self, message: Optional[str] = None, status_code: Optional[int] = None, code: Optional[int] = None, ): super().__init__() self.status_code = status_code or self.status_code self.code = code or self.code self.message = message or self.message def __str__(self) -> str: return f"error_code: {self.code}, message: {self.message}" def to_dict(self) -> Dict: return { "status_code": self.status_code, "code": self.code, "message": self.message, } class BranchNotExists(VizException): code = VizErrorCode.BRANCH_NOT_EXISTS message = "branch not found" class ModelNotExists(VizException): code = VizErrorCode.MODEL_NOT_EXISTS message = "model not found"
StarcoderdataPython
1693027
from CvPythonExtensions import * import CvUtil gc = CyGlobalContext() class CvPediaProject: def __init__(self, main): self.iProject = -1 self.top = main self.X_INFO_PANE = self.top.X_PEDIA_PAGE self.Y_INFO_PANE = self.top.Y_PEDIA_PAGE self.W_INFO_PANE = 380 #290 self.H_INFO_PANE = 120 self.W_ICON = 100 self.H_ICON = 100 self.X_ICON = self.X_INFO_PANE + 10 self.Y_ICON = self.Y_INFO_PANE + 10 self.ICON_SIZE = 64 self.X_INFO_TEXT = self.X_INFO_PANE + 110 self.Y_INFO_TEXT = self.Y_ICON + 15 self.W_INFO_TEXT = self.W_INFO_PANE - 70 self.H_INFO_TEXT = self.H_INFO_PANE - 20 self.X_REQUIRES = self.X_INFO_PANE + self.W_INFO_PANE + 10 self.W_REQUIRES = self.top.R_PEDIA_PAGE - self.X_REQUIRES self.H_REQUIRES = 110 self.Y_REQUIRES = self.Y_INFO_PANE + self.H_INFO_PANE - self.H_REQUIRES self.X_DETAILS = self.X_INFO_PANE self.Y_DETAILS = self.Y_INFO_PANE + self.H_INFO_PANE + 10 self.W_DETAILS = self.top.R_PEDIA_PAGE - self.X_DETAILS self.H_DETAILS = 210 self.X_HISTORY = self.X_DETAILS self.W_HISTORY = self.top.R_PEDIA_PAGE - self.X_HISTORY self.Y_HISTORY = self.Y_DETAILS + self.H_DETAILS + 10 self.H_HISTORY = self.top.B_PEDIA_PAGE - self.Y_HISTORY def interfaceScreen(self, iProject): self.iProject = iProject screen = self.top.getScreen() self.placeInfo() self.placeRequires() self.placeDetails() self.placeHistory() def placeInfo(self): screen = self.top.getScreen() panel = self.top.getNextWidgetName() info = gc.getProjectInfo(self.iProject) screen.addPanel(self.top.getNextWidgetName(), "", "", False, False, self.X_INFO_PANE, self.Y_INFO_PANE, self.W_INFO_PANE, self.H_INFO_PANE, PanelStyles.PANEL_STYLE_BLUE50) screen.addPanel(self.top.getNextWidgetName(), "", "", False, False, self.X_ICON, self.Y_ICON, self.W_ICON, self.H_ICON, PanelStyles.PANEL_STYLE_MAIN) screen.addDDSGFC(self.top.getNextWidgetName(), info.getButton(), self.X_ICON + self.W_ICON / 2 - self.ICON_SIZE / 2, self.Y_ICON + self.H_ICON / 2 - self.ICON_SIZE / 2, self.ICON_SIZE, self.ICON_SIZE, WidgetTypes.WIDGET_GENERAL, -1, -1) screen.addListBoxGFC(panel, "", self.X_INFO_TEXT, self.Y_INFO_TEXT, self.W_INFO_TEXT, self.H_INFO_TEXT, TableStyles.TABLE_STYLE_EMPTY) screen.enableSelect(panel, False) screen.appendListBoxString(panel, u"<font=4b>" + info.getDescription() + u"</font>", WidgetTypes.WIDGET_GENERAL, 0, 0, CvUtil.FONT_LEFT_JUSTIFY) screen.appendListBoxString(panel, u"<font=3>Project</font>", WidgetTypes.WIDGET_GENERAL, 0, 0, CvUtil.FONT_LEFT_JUSTIFY) if info.getProductionCost() >= 0: if self.top.iActivePlayer == -1: iCost = (info.getProductionCost() * gc.getDefineINT('PROJECT_PRODUCTION_PERCENT')) / 100 else: iCost = gc.getActivePlayer().getProjectProductionNeeded(self.iProject) szCost = u"Cost: %d%c" % (iCost, gc.getYieldInfo(YieldTypes.YIELD_PRODUCTION).getChar()) screen.appendListBoxString(panel, u"<font=3>" + szCost + u"</font>", WidgetTypes.WIDGET_GENERAL, 0, 0, CvUtil.FONT_LEFT_JUSTIFY) def placeRequires(self): screen = self.top.getScreen() panel = self.top.getNextWidgetName() info = gc.getProjectInfo(self.iProject) screen.addPanel(panel, CyTranslator().getText("TXT_KEY_PEDIA_REQUIRES", ()), "", False, True, self.X_REQUIRES, self.Y_REQUIRES, self.W_REQUIRES, self.H_REQUIRES, PanelStyles.PANEL_STYLE_BLUE50) screen.attachLabel(panel, "", " ") iTech = info.getTechPrereq() if iTech >= -1: screen.attachImageButton(panel, "", gc.getTechInfo(iTech).getButton(), GenericButtonSizes.BUTTON_SIZE_CUSTOM, WidgetTypes.WIDGET_PEDIA_JUMP_TO_TECH, iTech, 1, False) iAnyoneProjectPrereq = info.getAnyoneProjectPrereq() if iAnyoneProjectPrereq != -1: screen.attachImageButton(panel, "", gc.getProjectInfo(iAnyoneProjectPrereq).getButton(), GenericButtonSizes.BUTTON_SIZE_CUSTOM, WidgetTypes.WIDGET_PEDIA_JUMP_TO_PROJECT, iAnyoneProjectPrereq, 1, False) for iProject in range(gc.getNumProjectInfos()): if info.getProjectsNeeded(iProject) > 0: screen.attachImageButton(panel, "", gc.getProjectInfo(iProject).getButton(), GenericButtonSizes.BUTTON_SIZE_CUSTOM, WidgetTypes.WIDGET_PEDIA_JUMP_TO_PROJECT, iProject, 1, False) def placeDetails(self): screen = self.top.getScreen() panel = self.top.getNextWidgetName() text = self.top.getNextWidgetName() info = gc.getProjectInfo(self.iProject) screen.addPanel(panel, CyTranslator().getText("TXT_KEY_PEDIA_DETAILS", ()), "", True, False, self.X_DETAILS, self.Y_DETAILS, self.W_DETAILS, self.H_DETAILS, PanelStyles.PANEL_STYLE_BLUE50) szText = CyGameTextMgr().getProjectHelp(self.iProject, True, None)[1:] screen.addMultilineText(text, szText, self.X_DETAILS + 5, self.Y_DETAILS + 30, self.W_DETAILS - 10, self.H_DETAILS - 35, WidgetTypes.WIDGET_GENERAL, -1, -1, CvUtil.FONT_LEFT_JUSTIFY) def placeHistory(self): screen = self.top.getScreen() panel = self.top.getNextWidgetName() text = self.top.getNextWidgetName() info = gc.getProjectInfo(self.iProject) screen.addPanel(panel, CyTranslator().getText("TXT_KEY_CIVILOPEDIA_HISTORY", ()), "", True, True, self.X_HISTORY, self.Y_HISTORY, self.W_HISTORY, self.H_HISTORY, PanelStyles.PANEL_STYLE_BLUE50 ) szText = info.getCivilopedia() screen.addMultilineText(text, szText, self.X_HISTORY + 10, self.Y_HISTORY + 30, self.W_HISTORY - 20, self.H_HISTORY - 40, WidgetTypes.WIDGET_GENERAL, -1, -1, CvUtil.FONT_LEFT_JUSTIFY) def handleInput (self, inputClass): return 0
StarcoderdataPython
20079
<reponame>bateman-research/search-sifter import pytest import searchsifter.relationships.minhash as mh import searchsifter.relationships.jaccard as jc @pytest.mark.parametrize("a, b, result", [ ({1, 2}, {2}, 0.5), ({1, 2}, {2, 3}, 1/3), ({1}, {2}, 0), ({1}, {1}, 1) ]) def test_jaccard(a, b, result): assert jc.jaccard(a, b) == result assert jc.jaccard(b, a) == result @pytest.mark.parametrize("a, b, result", [ ({1, 2}, {2}, 0.5), ({1}, {1, 2}, 1), ({1, 2}, {2, 3}, 0.5), ({1}, {2}, 0), ({1}, {1}, 1), ]) def test_jaccard_containment(a, b, result): assert jc.jaccard_containment(a, b) == result @pytest.mark.parametrize("a, b, result", [ ({1, 2}, {2}, 0.5), ({1, 2}, {2, 3}, 1/3), ({1}, {2}, 0), ({1}, {1}, 1) ]) def test_minhash(a, b, result): s, t = mh.signature(a, 5), mh.signature(b, 5) assert mh.minhash(s, t, 5) == result assert mh.minhash(t, s, 5) == result @pytest.mark.parametrize("a, b, result", [ ({1, 2}, {2}, 0.5), ({1}, {1, 2}, 1), ({1, 2}, {2, 3}, 0.5), ({1}, {2}, 0), ({1}, {1}, 1), ]) def test_minhash_containment(a, b, result): s, t = mh.signature(a, 5), mh.signature(b, 5) assert mh.minhash_containment(s, t) == result @pytest.fixture def a(): return set(range(1, 100)) @pytest.fixture def b(): return set(range(50, 100)) @pytest.fixture def c(): return set(range(75, 100)) def test_intersection(a, b, c): assert mh.intersection_signature(a, b) == set(range(50, 100)) assert mh.intersection_signature(a, b, c) == set(range(75, 100)) def test_union(a, b): assert mh.union_signature(a, b, 100) == a assert len(mh.union_signature(a, b, 20)) == 20
StarcoderdataPython
3291864
from scipy.stats import scoreatpercentile import re import numpy as np import numpy.ma as ma import matplotlib.pyplot as plt try: from . import plotting except ImportError: print( 'WARNING: unable to import "plotting" in stats. some functions may be disabled' ) from . import reshape class BlockMath( reshape.BlockReshaper ): """ Child class of BlockReshaper that adds relevant mathematics capabilities to reshaping functionality. Routines herein will return an array of size ( data.shape[0]/roi_R, data.shape[1]/roi_C ) = ( numR, numC ) Note the blockR, blockC nomenclature change to roi_R, roi_C for the averaging block size, to avoid confusion with chip block[R,C] in chipinfo. goodpix is a boolean array of the same size as data where pixels to be averaged are True. By default all pixels are averaged raising finite sets all nans and infs to 0 For large data sets on computers with limited memory, it may help to set superR and superC to break the data into chunks This is especially true for masked reshapes where we now have 2x the data size needing to be in memory. """ def massage_output( self, output_obj ): """ Applies finite correction and also deals with whether the object is of type np.ma.core.MaskedArray """ if isinstance( output_obj, ma.core.MaskedArray ): output = output_obj.data else: output = output_obj if self.finite: output[ np.isnan(output) ] = 0 output[ np.isinf(output) ] = 0 return output def get_mean( self ): return self.massage_output( self.reshaped.mean(2) ) get_avg = get_mean get_average = get_mean def get_std( self ): return self.massage_output( self.reshaped.std(2) ) def get_sum( self ): return self.massage_output( self.reshaped.sum(2) ) def get_var( self ): return self.massage_output( self.reshaped.var(2) ) def get_vmr( self ): ''' Calculates variance-mean-ratio . . . sigma^2 / mean Note that here we are going to define superpixels with zero means to be 0 VMR, not np.nan. ''' means = self.get_mean() msk = (means == 0) means[msk] = 1 variance = self.get_var() vmr = variance / means vmr[msk] = 0 return self.massage_output( vmr ) def named_stats( data, name='', histDir='', metricType='', maxsize=None, histlims=None ): ''' This is a higher level version of percentiles Calculates data distribution properties and returns a dictionary of metrics, each labeled with "name". If name is unspecified, no flags will be applied. If you specify histDir, then a histogram is generated and saved. If you don't, then the mode will not be returned metricType is the type of metric (e.g. "buffering", not "W2_buffering") and is only used for making histograms. Defaults to name if unspecified For very large datasets, you may want to specify a maxsize to speed up the calculation ''' # Make sure the data is 1D flat = data.flatten() # Downsample large data sets if maxsize: scale = int(max( 1, np.ceil( len(flat)/maxsize ) )) flat = flat[::scale] # Append an underscore to the end of the name to separate from metrics if name: if name[-1] != '_': name += '_' # Calculate the metrics metrics = {} metrics[ '%smean' % name ] = flat[ ~np.isnan( flat ) ].mean() metrics[ '%sstd' % name ] = flat[ ~np.isnan( flat ) ].std() percs = percentiles( flat ) metrics[ '%sP10' % name ] = float( percs['p10'] ) metrics[ '%sP90' % name ] = float( percs['p90'] ) metrics[ '%sq1' % name ] = float( percs['q1'] ) metrics[ '%sq2' % name ] = float( percs['q2'] ) metrics[ '%sq3' % name ] = float( percs['q3'] ) metrics[ '%siqr' % name ] = float( percs['iqr'] ) # Plot the histogram if histDir: # Set limits for histogram if free limits were used if not metricType: metricType = name lims, units = plotting.plot_params( metricType, adjust=metrics[ '%smean' % name ] ) if histlims: lims = histlims if lims[0] is None: lims[0] = flat.min() if lims[1] is None: lims[1] = flat.max() if not len( flat ): flat = np.zeros(1) if re.search( r'phslopes$', name ): bins = 41 else: bins = 101 hn,hb,_ = plt.hist ( flat , bins = np.linspace( lims[0] , lims[1] , bins ) , align='mid' , hold=False ) metrics[ '%smode' % name ] = hist_mode( hn , hb ) plt.xlabel ( '%s (%s)' % (metricType, units) ) plt.xlim ( lims[0] , lims[1] ) try: if name[-1] == '_': plotname = name[:-1] else: plotname = name except IndexError: plotname = name plt.title ( '%s | (Mean, SD, P90) = (%.1f, %.1f, %.1f) %s\n(Q2, IQR, Mode) = (%.1f, %.1f, %.1f) %s' % ( plotname, metrics['%smean' % name], metrics['%sstd' % name], metrics['%sP90' % name], units , metrics['%sq2' % name], metrics['%siqr' % name], metrics['%smode' % name], units )) plt.savefig ( '%s/%shistogram.png' % ( histDir, name )) plt.close ( ) return metrics def hist_mode( n , bins ): """ Simple routine to get the mode of the distribution of a histogram. In the rare case that more than one modes are found, we take the average. If its a bimodal distribution, we wouldn't believe this value anyway. """ mode = bins[ np.where( n == n.max() ) ] # Non-ideal solution if len( mode ) > 1: return mode.mean() else: return mode[0] def percentiles( data , extras=[]): """ This used to be "ecc_tools.pp" This gains much faster speeds over running percentile functions in parallel, being able to do the sorting all at once rather than 6 times in a row for 6 different numbers... """ data.sort() percs = [ 10., 25., 50., 75., 90. ] for i in extras: percs.append( float( i ) ) names = ('q1','q2','q3','iqr','p10','p90','m80') output = dict.fromkeys(names,0) N = float( len( data ) ) #print ('N = %.0f' % N ) for i in range( len(percs) ): #print percs[i] r = percs[i] / 100. * N - 0.5 #print( 'r = %.2f' % r ) if r%1 == 0: p = data[int(r)] else: try: p = (data[int(np.ceil(r))] - data[int(np.floor(r))] ) * (r - np.floor(r)) + data[int(np.floor(r))] #print p except: p = np.nan #print p if not np.isnan(p): if percs[i] == 25: output['q1'] = p elif percs[i] == 50: output['q2'] = p elif percs[i] == 75: output['q3'] = p else: output['p%i' % percs[i]] = p output['iqr'] = output['q3'] - output['q1'] output['m80'] = output['p90'] - output['p10'] return output def calc_iqr( data ): """ Single function that will return the IQR of a given dataset. """ return percentiles(data)['iqr'] def calc_blocksize( data, nominal=(100,100) ): '''Returns block dimensions that are as close to log10(nominal) as possible''' X, Y = data.shape x_nom, y_nom = nominal x_low = None y_low = None x_high = None y_high = None x_fin = None y_fin = None def set_low_and_high( nominal, array_dim ): low = None high = None for v in range( nominal, 0, -1 ): if array_dim%v == 0: low = v break for v in range( nominal+1, array_dim, 1 ): if array_dim%v == 0: high = v break return (low,high,) def set_final( low, high, nominal ): final = None def compare_to_nominal( low, high, nominal ): dif_log_low = np.absolute( np.log10( nominal ) - np.log10( low ) ) dif_log_high = np.absolute( np.log10( nominal ) - np.log10( high ) ) if dif_log_low < dif_log_high: return low else: return high if ( low is not None) and ( high is not None): final = compare_to_nominal( low, high, nominal ) elif low is not None: final = low elif high is not None: final = high return final x_low, x_high = set_low_and_high( x_nom, X ) y_low, y_high = set_low_and_high( y_nom, Y ) x_fin = set_final( x_low, x_high, x_nom ) y_fin = set_final( y_low, y_high, y_nom ) return (x_fin, y_fin,) def uniformity( data, blocksize, exclude=None, only_values=False, iqr=True, std=False ): ''' Calculates the uniformity of the input data. block types are specified in chips.csv Usual values are ( 'mini', 'micro', chip' ) Returns a dictionary 'q2' : Median of full chip array 'iqr' : IQR of full chip array 'blocks_q2' : 2D array of local medians 'blocks_iqr' : 2D array of local IQRs 'blocks_var' : IQR of blocks_q2 'iqr_ratio' : blocks_var / iqr 'blocks_iqrvar' : IQR of blocks_iqr 'mean' : mean of full chip array 'std' : std of full chip array 'blocks_mean' : 2D array of local means 'blocks_std' : 2D array of local stds 'blocks_mvar' : std of blocks_mean 'std_ratio' : blocks_mvar / std 'blocks_stdmvar' : std of blocks_mean if stdonly is selcted, then q2 and iqr properties are not calculated. This may be faster ''' def block_reshape( data, blocksize ): rows, cols = data.shape numR = rows/blocksize[0] numC = cols/blocksize[1] return data.reshape(rows , numC , -1 ).transpose((1,0,2)).reshape(numC,numR,-1).transpose((1,0,2)) output = {} if exclude is not None: data = data.astype( np.float ) data[ exclude.astype( np.bool ) ] = np.nan data[ np.isinf(data) ] = np.nan # Divide into miniblocks blocks = block_reshape( data, blocksize ) newsize = ( data.shape[0] / blocksize[0] , data.shape[1] / blocksize[1] ) if iqr: percs = [ 25, 50, 75 ] # Calculate the full data properties flat = data[ ~np.isnan( data ) ].flatten() flat.sort() numwells = len( flat ) levels = {} for perc in percs: r = perc / 100. * numwells - 0.5 if r%1 == 0: p = flat[int(r)] else: try: p = (flat[np.ceil(r)] - flat[np.floor(r)] ) * (r - np.floor(r)) + flat[np.floor(r)] except: p = np.nan levels[perc] = p output[ 'q2' ] = levels[50] output[ 'iqr' ] = levels[75] - levels[25] # Calculate the local properties blocks.sort( axis=2 ) numwells = (~np.isnan( blocks )).sum( axis=2 ) regions = {} def get_inds( blocks, inds2d, inds ): selected_blocks = blocks[inds2d] selected_wells = inds.astype( np.int )[inds2d] rows = range( selected_wells.size ) output = selected_blocks[ rows, selected_wells ] return output for perc in percs: r = perc / 100. * numwells - 0.5 r[ r < 0 ] = 0 r[ r > numwells ] > numwells[ r > numwells ] inds = r%1 == 0 p = np.empty( r.shape ) p[:] = np.nan p[ inds ] = get_inds( blocks, inds, r ) ceil_vals = get_inds( blocks, ~inds, np.ceil(r) ) floor_vals = get_inds( blocks, ~inds, np.floor(r) ) deltas = r[~inds] - np.floor(r[~inds] ) p[ ~inds ] = ( ceil_vals - floor_vals ) * deltas + floor_vals p = p.reshape( newsize ) regions[perc] = p blocks_iqr = regions[75] - regions[25] if not only_values: output[ 'blocks_q2' ] = regions[50] output[ 'blocks_iqr' ] = blocks_iqr # Calculate the propertis of the regional averages flat = regions[50][ ~np.isnan( regions[50] ) ].flatten() flat.sort() numwells = len( flat ) levels = {} for perc in percs: r = perc / 100. * numwells - 0.5 if r%1 == 0: p = flat[int(r)] else: try: p = ( flat[np.ceil(r)] - flat[np.floor(r)] ) * (r - np.floor(r)) + flat[np.floor(r)] except: p = np.nan levels[perc] = p output[ 'blocks_var' ] = levels[75] - levels[25] output['iqr_ratio'] = output[ 'blocks_var' ] / output[ 'iqr' ] # Calculate the variability of the regional variability flat = blocks_iqr[ ~np.isnan( regions[50] ) ].flatten() flat.sort() numwells = len( flat ) levels = {} for perc in percs: r = perc / 100. * numwells - 0.5 if r%1 == 0: p = flat[int(r)] else: try: p = ( flat[np.ceil(r)] - flat[np.floor(r)] ) * (r - np.floor(r)) + flat[np.floor(r)] except: p = np.nan levels[perc] = p output[ 'blocks_iqrvar' ] = levels[75] - levels[25] if std: output[ 'mean' ] = np.nanmean( data ) output[ 'std' ] = np.nanstd( data ) block_mean = np.nanmean( blocks, axis=2 ).reshape( newsize ) block_std = np.nanstd( blocks, axis=2 ).reshape( newsize ) if not only_values: output[ 'blocks_mean' ] = block_mean output[ 'blocks_std' ] = block_std output[ 'blocks_mvar' ] = np.nanstd( block_mean ) output[ 'std_ratio' ] = output[ 'blocks_mvar' ] / output[ 'std' ] output[ 'blocks_stdmvar' ] = np.nanstd( block_std ) return output def chip_uniformity( data, chiptype, block='mini', exclude=None, only_values=False, iqr=True, std=False ): ''' A wrapper on uniformity, designed to take a chiptype as an input instead of a block size ''' blocksize = ( getattr( chiptype, '%sR' % block ), getattr( chiptype, '%sC' % block ) ) output = uniformity( data, blocksize, exclude=exclude, only_values=only_values, iqr=iqr, std=std ) return output ################################################################################ # Averaging functions, include those brought over from average.py ################################################################################ def block_avg( data , blockR, blockC, goodpix=None, finite=False, superR=None, superC=None ): """ Averages the specified data, averaging regions of blockR x blockC This returns a data of size ( data.shape[0]/blockR, data.shape[1]/blockC ) *****Note that blockR and blockC are not the same as blockR and blockC defaults by chiptype (fpga block rc shape)***** goodpix is a boolean array of same size as data where pixels to be averaged are True. By default all pixels are averaged raising finite sets all nans and infs to 0 For large data sets on computers with limited memory, it may help to set superR and superC to break the data into chunks """ bm = BlockMath( data , blockR, blockC, goodpix=goodpix, finite=finite, superR=superR, superC=superC ) return bm.get_mean() def block_std( data, blockR, blockC, goodpix=None, finite=False, superR=None, superC=None ): """ Analog of block_avg that spits back the std. *****Note that blockR and blockC are not the same as blockR and blockC defaults by chiptype (fpga block rc shape)***** goodpix is a boolean array of same size as data where pixels to be averaged are True. By default all pixels are averaged """ bm = BlockMath( data , blockR, blockC, goodpix=goodpix, finite=finite, superR=superR, superC=superC ) return bm.get_std() # This function works but needs some help def BlockAvg3D( data , blocksize , mask ): """ 3-D version of block averaging. Mainly applicable to making superpixel averages of datfile traces. Not sure non-averaging calcs makes sense? mask is a currently built for a 2d boolean array of same size as (data[0], data[1]) where pixels to be averaged are True. """ rows = data.shape[0] cols = data.shape[1] frames = data.shape[2] if np.mod(rows,blocksize[0]) == 0 and np.mod(cols,blocksize[1]) == 0: blockR = rows / blocksize[0] blockC = cols / blocksize[1] else: print( 'Error, blocksize not evenly divisible into data size.') return None output = np.zeros((blockR,blockC,frames)) # Previous algorithm was slow and used annoying looping # Improved algorithm that doeesn't need any looping. takes about 1.4 seconds instead of 60. msk = np.array( mask , float ) msk.resize(rows, cols , 1 ) masked = np.array( data , float ) * np.tile( msk , ( 1 , 1 , frames ) ) step1 = masked.reshape(rows , blockC , -1 , frames).sum(2) step2 = np.transpose(step1 , (1,0,2)).reshape(blockC , blockR , -1 , frames).sum(2) step3 = np.transpose(step2 , (1,0,2)) mask1 = mask.reshape(rows , blockC , -1 ).sum(2) count = mask1.transpose().reshape(blockC , blockR , -1).sum(2).transpose() #mask1 = mask.reshape(rows , blockC , -1 , frames).sum(2) #count = mask1.transpose().reshape(blockC , blockR , -1 , frames).sum(2).transpose() output = step3 / count[:,:,np.newaxis] output[ np.isnan(output) ] = 0 output[ np.isinf(output) ] = 0 return output # I think these should just go away into their only calling modules. Perhaps. - PW 9/18/2019 # Pulled in from the average.py module. Only called by datfile.py def masked_avg( image, pinned ): ''' Calculates average trace while excluding pinned pixels. If pinned = True, that pixel is excluded from the average. Note: This is opposite compared to matlab functionality. ''' avgtrace = np.mean ( image[ ~pinned ] , axis=0 ) return avgtrace # Pulled in from average.py. Only called by chip.py. def stripe_avg( data, ax ): """ Custom averaging algorithm to deal with pinned pixels """ # EDIT 10-11-13 # Utilize numpy.masked_array to do this much more quickly # Not so custom anymore! return ma.masked_array( data , (data == 0) ).mean( ax ).data def top_bottom_diff( data, mask=None, force_sum=False ): """ Function to calculate the difference of a given chip data array between top and bottom. Despite our conventions of plotting origin='lower' suggesting rows in [0,rows/2] as being the bottom, this is physically chip top by layout. As such, we tie this metric to the physical chip layout and design since when this different becomes very large, we would look to the design or FA to identify root cause. This function returns the top - bottom difference, meaning if the bottom is larger, the output is negative. We will by default treat the data as a float or int that should be averaged on each half before taking the difference.For booleans, like pinned pixels, this would mean that we would get a decimal percentage. To instead add up the values top and bottom (e.g. difference in absolute # of pinned pixels), set force_sum=True """ if force_sum: op = np.sum else: op = np.mean r,c = data.shape mid = int( r/2 ) if mask is None: top = op( data[:mid,:] ) bot = op( data[mid:,:] ) else: if mask.shape != (r,c): raise ValueError( "Input mask {} is not of the same shape as the data {}!".format( mask.shape, data.shape ) ) top = op( data[:mid,:][ mask[:mid,:] ] ) bot = op( data[mid:,:][ mask[mid:,:] ] ) return top - bot ########################################### # rename functions for historical reasons # ########################################### HistMode = hist_mode pp = percentiles
StarcoderdataPython
3313403
"""Create BayesCMD configuration file for PLOS simulated data.""" import pandas as pd import json from pathlib import Path import os.path as op p = Path(op.abspath(__file__)) from bayescmd.abc import priors_creator current_file = Path(op.abspath(__file__)) param_df = pd.read_csv(op.join(current_file.parents[2], 'pdist_files', 'pdists_BS_PLOS_wide.csv' ), header=None, names=['Parameter', 'Dist. Type', 'Min', 'Max', 'Default'], index_col=0) # chosen_params = ['sigma_coll', # 'R_auto', # 'n_h', # 'r_t', # 'mu_max', # 'n_m', # 'r_m', # 'P_v', # 'phi', # 'Xtot'] # experimental_params = [ # 'P_ic', # 'v_on', # 'n_m', # 'T_max0', # 'E_2', # 'h_0', # 'K_sigma', # 'v_un', # 'R_autc', # 'v_cn' # ] filtered_params = ['n_m', 'r_m', 'K_sigma', 'p_tot', 'k_aut', 'v_cn', 'sigma_e0', 'k2_n', 'Xtot', 'R_autc'] prior_dict = priors_creator(param_df.loc[filtered_params, 'Default'].to_dict(), 0.5) config_dict = {"model_name": "BS1-1", "inputs": ["SaO2sup", "P_a", "Pa_CO2"], "create_params": False, "priors": prior_dict, "targets": ["TOI", "CCO", "HbT", "HbD"], "zero_flag": { "TOI": False, "CCO": True, "HbD": True, "HbT": True }, "batch_debug": False, "store_simulations": False } with open(op.join(current_file.parents[2], 'configuration_files', 'filtered_hypoxia_config.json' ), 'w') as f: json.dump(config_dict, f)
StarcoderdataPython
1740763
from monolithe.generators.lib import TemplateFileWriter from monolithe.specifications import SpecificationAttribute from monolithe.lib import Printer import os import shutil import json class APIVersionWriter(TemplateFileWriter): """ This class is reponsible to write files for a particular api version. """ def __init__(self, monolithe_config, api_info): super(APIVersionWriter, self).__init__(package="monolithe.generators.lang.javascript") output = monolithe_config.get_option("output", "transformer") self.locale_on = monolithe_config.get_option("locale", "transformer", fallback=True) self.model_directory = "%s/javascript/%s/models" % (output, api_info["version"]) self.abstract_directory = "%s/abstract" % self.model_directory self.enum_directory = "%s/enums" % self.model_directory self.locale_directory = "%s/javascript/%s/locales/en" % (output, api_info["version"]) if os.path.exists(self.model_directory): shutil.rmtree(self.model_directory) if os.path.exists(self.locale_directory): shutil.rmtree(self.locale_directory) self.api_root = api_info["root"] self._class_prefix = monolithe_config.get_option("class_prefix", "transformer") self._read_config() def _read_config(self): """ This method reads provided json config file. """ this_dir = os.path.dirname(__file__) config_file = os.path.abspath(os.path.join(this_dir, "..", "config", "config.json")) self.generic_enum_attrs = [] self.base_attrs = [] self.generic_enums = [] self.named_entity_attrs = [] self.overide_generic_enums = [] self.enum_attrs_for_locale = {} self.generic_enum_attrs_for_locale = {} Printer.log("Configuration file: %s" % (config_file)) if (os.path.isfile(config_file)): with open(config_file, 'r') as input_json: json_config_data = json.load(input_json) self.base_attrs = json_config_data['base_attrs'] self.generic_enums = json_config_data['generic_enums'] self.named_entity_attrs = json_config_data['named_entity_attrs'] self.overide_generic_enums = json_config_data['overide_generic_enums'] for enum_name, values in self.generic_enums.iteritems(): enum_attr = SpecificationAttribute() enum_attr.name = enum_name enum_attr.allowed_choices = values self.generic_enum_attrs.append(enum_attr) else: Printer.log("Configuration file missing: %s" % (config_file)) def perform(self, specifications): """ This method is the entry point of javascript code writer. Monolithe will call it when the javascript plugin is to generate code. """ self.enum_list = [] self.model_list = [] self.job_commands = filter(lambda attr: attr.name == 'command', specifications.get("job").attributes)[0].allowed_choices #Printer.log("job_commands: %s" % (self.job_commands)) self._write_abstract_named_entity() for rest_name, specification in specifications.iteritems(): self._write_model(specification=specification) #self._write_generic_enums() self.write(destination = self.model_directory, filename="index.js", template_name="model_index.js.tpl", class_prefix = self._class_prefix, model_list = self.model_list) self.write(destination = self.enum_directory, filename="index.js", template_name="enum_index.js.tpl", class_prefix = self._class_prefix, enum_list = self.enum_list) self._write_locales(specifications) def _write_locales(self, specifications): if self.locale_on: for rest_name, specification in specifications.items(): #enum_attrs_for_locale_template = {} #enum_attrs = self.enum_attrs_for_locale[specification.entity_name] # #generic_enum_attrs = self.generic_enum_attrs_for_locale[specification.entity_name]; #if (generic_enum_attrs): # enum_attrs.extend(generic_enum_attrs) # #if (enum_attrs): # for attribute in enum_attrs: # enum_name = "%s%s%sEnum" % (self._class_prefix, specification.entity_name, attribute.name[0].upper() + attribute.name[1:]) # enum_attrs_for_locale_template[enum_name] = attribute.allowed_choices self._format_description_text(specification) filename = "%s.json" % (rest_name) self.write(destination = self.locale_directory, filename=filename, template_name="locale_entity.json.tpl", specification = specification, enum_attrs = {}) def _format_description_text(self, specification): if specification.description: specification.description = specification.description.replace('"', "'") for attribute in specification.attributes: if attribute.description: attribute.description = attribute.description.replace('"', "'") def _write_abstract_named_entity(self): """ This method generates AbstractNamedEntity class js file. """ filename = "%sAbstractNamedEntity.js" % (self._class_prefix) superclass_name = "%sEntity" % (self._class_prefix) # write will write a file using a template. # mandatory params: destination directory, destination file name, template file name # optional params: whatever that is needed from inside the Jinja template self.write(destination = self.abstract_directory, filename = filename, template_name = "abstract_named_entity.js.tpl", class_prefix = self._class_prefix, superclass_name = superclass_name) def _write_model(self, specification): """ This method writes the ouput for a particular specification. """ if specification.allowed_job_commands and not (set(specification.allowed_job_commands).issubset(self.job_commands)): raise Exception("Invalid allowed_job_commands %s specified in entity %s" % (specification.allowed_job_commands, specification.entity_name)) specification.supportsAlarms = len(filter(lambda child_api : child_api.rest_name == "alarm", specification.child_apis)) == 1 filename = "%s%s.js" % (self._class_prefix, specification.entity_name) self.model_list.append("%s%s" %(self._class_prefix, specification.entity_name)) isNamedEntity = self._isNamedEntity(attributes=specification.attributes) superclass_name = "RootEntity" if specification.rest_name == self.api_root else "AbstractNamedEntity" if isNamedEntity else "Entity" # write will write a file using a template. # mandatory params: destination directory, destination file name, template file name # optional params: whatever that is needed from inside the Jinja template specification.attributes_modified = [attribute for attribute in specification.attributes if (attribute.name not in self.base_attrs and (not isNamedEntity or attribute.name not in self.named_entity_attrs))] enum_attributes=[attribute for attribute in specification.attributes_modified if attribute.allowed_choices] enum_attrs_to_import = enum_attributes[:] generic_enum_attrs_in_entity = {} generic_enum_attributes_to_import = [] for attr in enum_attributes: if specification.rest_name in self.overide_generic_enums and attr.name in self.overide_generic_enums[specification.rest_name]: continue for generic_enum_attr in self.generic_enum_attrs: if set(attr.allowed_choices) & set(generic_enum_attr.allowed_choices): generic_enum_attrs_in_entity[attr.name] = generic_enum_attr enum_attrs_to_import.remove(attr) generic_enum_attributes_to_import.append(generic_enum_attr.name) self._write_enums(entity_name=specification.entity_name, attributes=enum_attrs_to_import) self.generic_enum_attrs_for_locale[specification.entity_name] = generic_enum_attrs_in_entity.values() self.write(destination = self.model_directory, filename = filename, template_name = "entity.js.tpl", class_prefix = self._class_prefix, specification = specification, superclass_name = superclass_name, enum_attrs_to_import = enum_attrs_to_import, generic_enum_attributes = generic_enum_attrs_in_entity, generic_enum_attributes_to_import = set(generic_enum_attributes_to_import)) def _isNamedEntity(self, attributes): attr_names = [attr.name for attr in attributes] return (len(self.named_entity_attrs) > 0 and set(self.named_entity_attrs).issubset(attr_names)) def _write_enums(self, entity_name, attributes): """ This method writes the ouput for a particular specification. """ self.enum_attrs_for_locale[entity_name] = attributes; for attribute in attributes: enum_name = "%s%sEnum" % (entity_name, attribute.name[0].upper() + attribute.name[1:]) self.enum_list.append(enum_name) filename = "%s%s.js" % (self._class_prefix, enum_name) self.write(destination = self.enum_directory, filename=filename, template_name="enum.js.tpl", class_prefix = self._class_prefix, enum_name = enum_name, allowed_choices = set(attribute.allowed_choices)) def _write_generic_enums(self): """ This method generates generic enum classes. """ self._write_enums(entity_name='', attributes=self.generic_enum_attrs)
StarcoderdataPython
1834
import os from datetime import timedelta basedir = os.path.abspath(os.path.dirname(__file__)) API_DATA_URL = "https://invest-public-api.tinkoff.ru/rest/tinkoff.public.invest.api.contract.v1.InstrumentsService/" API_LASTPRICES_URL = "https://invest-public-api.tinkoff.ru/rest/\ tinkoff.public.invest.api.contract.v1.MarketDataService/GetLastPrices" SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, '..', 'webapp.db') REMEMBER_COOKIE_DURATION = timedelta(days=1) SQLALCHEMY_TRACK_MODIFICATIONS = False SECRET_KEY = "" API_TOKEN = ""
StarcoderdataPython
4839779
from django.apps import AppConfig class NewswebsiteConfig(AppConfig): name = 'newsWebsite'
StarcoderdataPython
3342993
<reponame>IamMayankThakur/test-bigdata<filename>adminmgr/media/code/python/map1/BD_188_1000_1767_mapper.py<gh_stars>1-10 #!/usr/bin/python3 import sys import csv infile = sys.stdin #next(infile) #fuel column index 8 for line in infile: line = line.strip() my_list = line.split(',') isBall = my_list[0] if(isBall == 'ball'): batsman = my_list[4] bowler = my_list[6] runs = my_list[7] try: nod = my_list[9] bd = my_list[10] except ValueError: continue if( len(nod)==2 or nod == "run out" or nod == "retired hurt"): print('%s,%s\t%s' % (batsman,bowler,'0')) else: print('%s,%s\t%s' % (batsman,bowler,'1'))
StarcoderdataPython
1744306
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, unicode_literals, division, print_function) from ..representation import CartesianRepresentation from ..baseframe import BaseCoordinateFrame, TimeFrameAttribute, frame_transform_graph from ..transformations import FunctionTransform from .utils import DEFAULT_OBSTIME class ITRS(BaseCoordinateFrame): """ A coordinate or frame in the International Terrestrial Reference System (ITRS). This is approximately a geocentric system, although strictly it is defined by a series of reference locations near the surface of the Earth. For more background on the ITRS, see the references provided in the :ref:`astropy-coordinates-seealso` section of the documentation. """ default_representation = CartesianRepresentation obstime = TimeFrameAttribute(default=DEFAULT_OBSTIME) @property def earth_location(self): """ The data in this frame as an `~astropy.coordinates.EarthLocation` class. """ from ..earth import EarthLocation cart = self.represent_as(CartesianRepresentation) return EarthLocation(x=cart.x, y=cart.y, z=cart.z) # Self-transform is in intermediate_rotation_transforms.py with all the other # ITRS transforms
StarcoderdataPython
3259770
<filename>util/stock.py '''This module includes utility functions related to stock operation. ''' ''' Copyright (c) 2017, WinQuant Information and Technology Co. Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' # built-in modules import numpy as np # third-party modules # customized modules def adjustPrice( position, cash, dividend10=0.0, right10=0, rightIssue10=0, rightIssuePrice=0 ): '''Calculate the ex-dividend, ex-right price of a stock. If rationed shares are needed, cash should be able to cover the cost of the rationed shares. Otherwise, there will be net loss. Parameters ---------- position : int the position of a stock; cash : float cash left or available, in case we need to buy rationed shares; dividend10 : float dividend per 10 shares; right10 : float ex-right per 10 shares; rightIssue10 : float right issued shares per 10 shares; rightIssuePrice : float right issued price. Returns ------- ( newPosition, newCash ) : tuple of ( int, float ) The new position after the dividend and the cash left after. ''' if rightIssue10 > 0: x = 1 if right10 > 0: x = 1 unit = int( position / 10 ) newCash = cash + dividend10 * unit newPosition = position + int( unit * right10 ) rightIssueVolume = int( rightIssue10 * unit ) if cash > rightIssueVolume * rightIssuePrice: newCash -= rightIssueVolume * rightIssuePrice newPosition += rightIssueVolume return ( newPosition, newCash ) def roundVolume( volume, lotSize=100 ): '''Round the trading volume to lots. Parameters ---------- volume : int total volume to round; lotSize : int volume lot size, by default, 100 shares per lot. Returns ------- lotShares : int rounded volumes. ''' return int( volume / lotSize ) * lotSize def getWindExchId( secId ): '''Get exchange identifier for the given securities. Parameters ---------- secId : str Securities identifier in a normal string. Returns ------- exchId : str exchange identifier. The rules are as below * 6XXXXX - Shanghai Stock Exchange; * 0XXXXX - Shenzhen Stock Exchange; * 3XXXXX - Shenzhen Stock Exchange; * 2XXXXX - Shenzhen Stock Exchange. ''' prefix = secId[ 0 ] return 'SH' if prefix == '6' else 'SZ'
StarcoderdataPython
1755350
import os.path as osp from mmcv.runner import HOOKS, Hook, master_only from mmcv.runner.checkpoint import save_checkpoint, get_state_dict, weights_to_cpu from torch.optim.swa_utils import AveragedModel from mmdet.core import EvalHook, DistEvalHook import torch import mmcv @HOOKS.register_module() class SWAHook(Hook): r"""SWA Object Detection Hook. This hook works together with SWA training config files to train SWA object detectors <https://arxiv.org/abs/2012.12645>. Args: swa_eval (bool): Whether to evaluate the swa model. Defaults to True. eval_hook (Hook): Hook class that contains evaluation functions. Defaults to None. """ def __init__(self, swa_eval=True, eval_hook=None): if not isinstance(swa_eval, bool): raise TypeError('swa_eval must be a bool, but got' f'{type(swa_eval)}') if swa_eval: if not isinstance(eval_hook, EvalHook) or \ isinstance(eval_hook, DistEvalHook): raise TypeError('eval_hook must be either a EvalHook or a ' 'DistEvalHook when swa_eval = True, but got' f'{type(eval_hook)}') self.swa_eval = swa_eval self.eval_hook = eval_hook def before_run(self, runner): """Construct the averaged model which will keep track of the running averages of the parameters of the model.""" model = runner.model self.model = AveragedModel(model) self.meta = runner.meta if self.meta is None: self.meta = dict() self.meta.setdefault('hook_msgs', dict()) if not 'hook_msgs' in self.meta.keys(): self.meta.setdefault('hook_msgs', dict()) @master_only def _save_ckpt(self, model, filepath, meta, runner): save_checkpoint(model, filepath, runner.optimizer, meta) for i in range(20): try: ckpt = torch.load(filepath, map_location='cpu') runner.logger.info( f'Success Saving swa model at swa-training {runner.epoch + 1} epoch' ) break except Exception as e: save_checkpoint(model, filepath, runner.optimizer, meta) continue def after_train_epoch(self, runner): """Update the parameters of the averaged model, save and evaluate the updated averaged model.""" model = runner.model # update the parameters of the averaged model self.model.update_parameters(model) # save the swa model runner.logger.info( f'Saving swa model at swa-training {runner.epoch + 1} epoch') filename = 'swa_model_{}.pth'.format(runner.epoch + 1) filepath = osp.join(runner.work_dir, filename) optimizer = runner.optimizer self.meta['hook_msgs']['last_ckpt'] = filepath self._save_ckpt(self.model.module, filepath, self.meta, runner) # evaluate the swa model if self.swa_eval: self.work_dir = runner.work_dir self.rank = runner.rank self.epoch = runner.epoch self.logger = runner.logger self.log_buffer = runner.log_buffer self.meta['hook_msgs']['last_ckpt'] = filename self.eval_hook.after_train_epoch(self) def after_run(self, runner): # since BN layers in the backbone are frozen, # we do not need to update the BN for the swa model pass def before_epoch(self, runner): pass
StarcoderdataPython
35414
<reponame>osaizar/sand import random import numpy as np MATRIX = [(7, 6, 2, 1, 0, 3, 5, 4), (6, 5, 0, 1, 3, 2, 4, 7), (1, 0, 3, 7, 5, 4, 6, 2), (7, 5, 2, 6, 1, 3, 0, 4), (0, 4, 2, 3, 7, 1, 6, 5), (7, 1, 0, 2, 3, 5, 6, 4), (3, 4, 2, 6, 0, 7, 5, 1), (6, 1, 5, 2, 7, 4, 0, 3), (3, 1, 4, 5, 0, 7, 2, 6), (3, 2, 6, 5, 0, 4, 1, 7), (3, 0, 6, 1, 7, 5, 4, 2), (0, 6, 1, 7, 4, 2, 5, 3), (3, 5, 2, 0, 7, 4, 6, 1), (5, 4, 0, 3, 1, 7, 2, 6), (4, 1, 6, 3, 2, 7, 0, 5), (3, 7, 5, 1, 2, 0, 6, 4), (4, 5, 2, 7, 6, 0, 3, 1), (7, 2, 4, 6, 0, 3, 1, 5), (3, 7, 5, 6, 1, 0, 4, 2), (0, 5, 4, 3, 7, 2, 1, 6), (4, 0, 2, 3, 1, 6, 5, 7), (1, 7, 6, 3, 4, 0, 2, 5), (5, 7, 3, 2, 6, 1, 4, 0), (1, 3, 0, 5, 2, 7, 4, 6), (7, 4, 3, 5, 1, 6, 0, 2), (5, 1, 3, 0, 4, 2, 6, 7), (7, 0, 2, 3, 1, 5, 6, 4), (4, 0, 7, 6, 1, 5, 3, 2), (5, 3, 6, 1, 4, 7, 2, 0), (2, 4, 5, 1, 7, 0, 6, 3), (1, 2, 4, 3, 6, 5, 0, 7), (4, 7, 6, 5, 0, 2, 3, 1), (4, 5, 3, 0, 6, 2, 7, 1), (5, 7, 6, 3, 2, 1, 0, 4), (5, 6, 7, 0, 4, 2, 1, 3), (0, 7, 2, 6, 5, 4, 3, 1), (6, 0, 5, 1, 3, 4, 2, 7), (7, 1, 5, 2, 3, 4, 6, 0), (2, 5, 4, 7, 0, 1, 3, 6), (4, 5, 0, 6, 1, 2, 3, 7), (3, 2, 0, 6, 7, 4, 5, 1), (2, 6, 3, 1, 5, 0, 4, 7), (7, 4, 2, 1, 6, 3, 5, 0), (5, 3, 2, 6, 1, 0, 4, 7), (6, 5, 4, 0, 3, 7, 2, 1), (6, 2, 7, 3, 5, 1, 4, 0), (3, 4, 2, 7, 6, 0, 1, 5), (1, 6, 0, 3, 7, 2, 4, 5), (2, 7, 4, 1, 5, 3, 0, 6), (3, 1, 0, 5, 4, 2, 6, 7), (6, 1, 2, 7, 5, 4, 0, 3), (7, 5, 6, 2, 0, 4, 1, 3), (5, 3, 2, 7, 0, 4, 6, 1), (2, 6, 5, 0, 1, 3, 7, 4), (2, 4, 5, 3, 0, 1, 7, 6), (4, 0, 2, 1, 6, 3, 7, 5), (5, 0, 6, 2, 3, 4, 7, 1), (0, 2, 6, 7, 3, 5, 1, 4), (3, 4, 0, 7, 2, 1, 6, 5), (1, 2, 4, 3, 5, 7, 6, 0), (5, 2, 4, 7, 1, 3, 0, 6), (7, 5, 1, 3, 6, 0, 4, 2), (4, 6, 1, 3, 5, 2, 7, 0), (0, 5, 3, 1, 4, 2, 6, 7), (2, 3, 1, 4, 5, 6, 7, 0), (6, 1, 0, 7, 2, 5, 4, 3), (3, 6, 1, 7, 0, 4, 5, 2), (4, 7, 2, 3, 1, 0, 5, 6), (1, 2, 3, 4, 6, 5, 7, 0), (5, 4, 3, 1, 2, 0, 7, 6), (6, 0, 4, 7, 5, 2, 3, 1), (2, 6, 5, 4, 0, 1, 3, 7), (1, 3, 4, 5, 0, 2, 6, 7), (0, 5, 6, 7, 2, 1, 4, 3), (2, 1, 6, 0, 3, 7, 4, 5), (6, 7, 5, 3, 2, 0, 1, 4), (0, 7, 2, 5, 6, 1, 4, 3), (1, 6, 0, 5, 7, 2, 4, 3), (5, 1, 6, 4, 2, 7, 0, 3), (6, 3, 1, 0, 2, 4, 7, 5), (3, 1, 7, 4, 5, 0, 6, 2), (4, 6, 7, 5, 1, 2, 3, 0), (7, 1, 2, 6, 3, 4, 0, 5), (3, 6, 7, 2, 1, 4, 0, 5), (7, 6, 0, 5, 1, 4, 2, 3), (2, 5, 3, 1, 7, 4, 6, 0), (7, 5, 2, 6, 3, 1, 4, 0), (0, 3, 5, 2, 6, 7, 1, 4), (1, 6, 5, 2, 3, 7, 0, 4), (4, 0, 1, 3, 6, 7, 2, 5), (6, 4, 3, 5, 0, 7, 1, 2), (1, 0, 3, 7, 2, 5, 4, 6), (2, 5, 0, 1, 3, 7, 6, 4), (3, 2, 1, 5, 7, 4, 6, 0), (1, 3, 6, 7, 0, 4, 2, 5), (5, 0, 4, 3, 2, 1, 7, 6), (6, 0, 3, 7, 4, 5, 1, 2), (5, 1, 0, 3, 4, 2, 7, 6), (6, 4, 0, 2, 5, 3, 1, 7), (7, 2, 4, 5, 0, 1, 6, 3), (0, 1, 3, 4, 2, 6, 7, 5), (3, 6, 5, 7, 0, 2, 1, 4), (2, 1, 4, 6, 5, 7, 0, 3), (6, 4, 7, 0, 5, 3, 2, 1), (6, 3, 7, 4, 1, 2, 0, 5), (3, 4, 5, 6, 2, 7, 0, 1), (5, 3, 1, 6, 4, 0, 7, 2), (1, 4, 0, 3, 2, 5, 6, 7), (3, 1, 7, 6, 4, 5, 0, 2), (3, 4, 0, 5, 7, 6, 2, 1), (3, 4, 0, 6, 7, 2, 1, 5), (7, 2, 1, 3, 0, 5, 6, 4), (2, 1, 5, 7, 0, 3, 4, 6), (6, 3, 7, 5, 0, 1, 4, 2), (0, 1, 2, 6, 4, 5, 7, 3), (4, 7, 5, 6, 2, 1, 0, 3), (3, 4, 6, 7, 1, 2, 5, 0), (6, 0, 7, 2, 3, 4, 1, 5), (5, 4, 6, 3, 1, 2, 0, 7), (7, 1, 2, 4, 0, 6, 3, 5), (7, 4, 5, 1, 3, 0, 2, 6), (6, 2, 4, 5, 0, 7, 3, 1), (5, 6, 3, 2, 1, 7, 4, 0), (0, 1, 4, 7, 2, 5, 6, 3), (7, 6, 2, 5, 3, 4, 0, 1), (6, 5, 4, 7, 2, 1, 3, 0), (6, 2, 1, 3, 4, 0, 7, 5), (5, 0, 7, 3, 1, 4, 2, 6), (5, 6, 2, 0, 7, 4, 1, 3), (5, 7, 3, 0, 6, 2, 1, 4), (3, 1, 7, 4, 5, 0, 2, 6), (4, 0, 7, 6, 3, 5, 1, 2), (5, 4, 0, 3, 2, 7, 1, 6), (5, 3, 2, 1, 6, 0, 4, 7), (3, 1, 7, 6, 4, 2, 5, 0), (0, 3, 5, 1, 7, 6, 2, 4), (6, 4, 1, 7, 2, 5, 0, 3), (7, 2, 6, 4, 5, 3, 0, 1), (5, 1, 3, 4, 2, 6, 7, 0), (6, 1, 7, 0, 5, 3, 2, 4), (4, 6, 0, 1, 2, 3, 5, 7), (3, 4, 0, 2, 7, 1, 6, 5), (5, 1, 2, 0, 4, 3, 7, 6), (5, 1, 3, 0, 4, 7, 2, 6), (3, 7, 1, 2, 5, 0, 6, 4), (6, 5, 2, 1, 3, 4, 0, 7), (3, 4, 7, 6, 5, 0, 2, 1), (5, 1, 3, 7, 4, 2, 6, 0), (6, 4, 0, 7, 3, 2, 5, 1), (0, 2, 4, 3, 6, 7, 1, 5), (5, 0, 7, 6, 4, 1, 3, 2), (4, 6, 7, 2, 3, 5, 1, 0), (1, 0, 5, 3, 6, 7, 4, 2), (1, 4, 7, 6, 0, 3, 5, 2), (7, 3, 4, 6, 5, 1, 2, 0), (1, 3, 0, 6, 7, 4, 2, 5), (5, 4, 6, 1, 2, 0, 7, 3), (5, 3, 1, 0, 4, 2, 6, 7), (7, 1, 4, 0, 3, 2, 5, 6), (1, 2, 3, 7, 5, 6, 0, 4), (7, 6, 3, 4, 5, 0, 1, 2), (7, 0, 5, 6, 1, 4, 2, 3), (0, 3, 7, 1, 6, 4, 2, 5), (6, 0, 3, 1, 5, 2, 4, 7), (7, 1, 4, 6, 3, 2, 0, 5), (4, 5, 2, 7, 6, 0, 1, 3), (3, 4, 0, 5, 7, 2, 6, 1), (4, 3, 7, 6, 2, 5, 0, 1), (4, 2, 1, 3, 7, 6, 5, 0), (6, 0, 2, 5, 7, 3, 4, 1), (4, 1, 5, 6, 7, 0, 3, 2), (5, 6, 0, 2, 4, 3, 1, 7), (0, 1, 2, 4, 5, 3, 7, 6), (7, 0, 5, 1, 4, 6, 3, 2), (5, 6, 7, 4, 0, 1, 3, 2), (4, 6, 1, 5, 7, 3, 0, 2), (1, 2, 7, 4, 0, 3, 5, 6), (5, 6, 3, 0, 1, 2, 4, 7), (3, 4, 6, 2, 7, 5, 0, 1), (3, 4, 0, 6, 5, 2, 1, 7), (6, 5, 0, 7, 1, 3, 4, 2), (3, 0, 4, 6, 7, 2, 5, 1), (1, 0, 2, 3, 4, 5, 6, 7), (6, 7, 1, 0, 4, 3, 2, 5), (1, 5, 3, 6, 4, 0, 2, 7), (1, 0, 2, 3, 7, 4, 6, 5), (7, 3, 2, 6, 5, 1, 4, 0), (7, 5, 0, 6, 1, 2, 3, 4), (0, 5, 3, 7, 2, 6, 4, 1), (5, 7, 3, 4, 0, 2, 1, 6), (1, 0, 4, 5, 2, 7, 3, 6), (4, 5, 1, 3, 6, 0, 2, 7), (6, 3, 7, 0, 4, 2, 5, 1), (2, 4, 3, 6, 5, 1, 0, 7), (4, 0, 7, 3, 5, 1, 6, 2), (7, 3, 6, 4, 1, 2, 5, 0), (7, 6, 5, 3, 1, 0, 4, 2), (5, 4, 0, 6, 7, 2, 3, 1), (7, 4, 0, 3, 1, 5, 6, 2), (5, 6, 3, 0, 7, 2, 4, 1), (0, 2, 7, 5, 6, 4, 3, 1), (1, 6, 4, 2, 5, 3, 7, 0), (6, 2, 3, 7, 0, 4, 5, 1), (4, 7, 5, 2, 1, 6, 3, 0), (4, 3, 0, 5, 1, 6, 7, 2), (1, 6, 0, 7, 4, 3, 2, 5), (0, 2, 6, 5, 4, 3, 1, 7), (2, 5, 6, 7, 1, 0, 4, 3), (2, 3, 6, 4, 1, 5, 0, 7), (4, 7, 3, 6, 0, 1, 5, 2), (5, 2, 6, 3, 7, 4, 1, 0), (0, 3, 6, 5, 1, 7, 2, 4), (0, 7, 6, 1, 4, 5, 3, 2), (4, 3, 2, 1, 6, 7, 0, 5), (7, 1, 6, 3, 0, 5, 4, 2), (2, 6, 3, 7, 4, 0, 5, 1), (7, 1, 2, 5, 3, 0, 4, 6), (2, 5, 6, 7, 4, 1, 3, 0), (6, 0, 1, 2, 4, 5, 7, 3), (5, 3, 1, 2, 0, 7, 4, 6), (7, 5, 2, 3, 6, 0, 4, 1), (1, 7, 4, 3, 5, 6, 0, 2), (5, 0, 4, 2, 6, 3, 7, 1), (0, 5, 3, 7, 2, 4, 6, 1), (1, 4, 0, 7, 3, 5, 2, 6), (6, 1, 7, 3, 4, 0, 2, 5), (6, 0, 5, 2, 3, 4, 1, 7), (0, 3, 1, 4, 2, 6, 7, 5), (3, 4, 1, 5, 7, 0, 2, 6), (3, 7, 2, 4, 5, 6, 0, 1), (1, 2, 3, 4, 5, 7, 6, 0), (2, 4, 3, 7, 1, 0, 6, 5), (3, 7, 4, 2, 0, 5, 6, 1), (3, 1, 0, 6, 7, 2, 5, 4), (5, 7, 0, 6, 3, 4, 2, 1), (5, 1, 3, 0, 7, 2, 4, 6), (3, 2, 6, 7, 5, 4, 0, 1), (7, 2, 6, 3, 5, 0, 4, 1), (4, 3, 6, 5, 1, 0, 7, 2), (2, 4, 6, 1, 3, 5, 0, 7), (2, 0, 5, 3, 6, 4, 1, 7), (0, 3, 1, 2, 6, 4, 7, 5), (6, 2, 5, 3, 0, 4, 1, 7), (3, 7, 0, 4, 6, 1, 5, 2), (2, 7, 3, 6, 0, 5, 1, 4), (1, 4, 3, 5, 6, 2, 7, 0), (7, 2, 6, 0, 4, 1, 5, 3), (4, 2, 7, 5, 0, 6, 3, 1), (1, 2, 7, 0, 3, 4, 5, 6), (2, 4, 7, 6, 5, 1, 0, 3), (5, 7, 0, 2, 6, 3, 4, 1), (2, 5, 6, 4, 3, 1, 7, 0), (1, 6, 4, 0, 7, 3, 5, 2), (1, 4, 5, 7, 6, 3, 2, 0), (6, 0, 1, 2, 7, 4, 3, 5), (2, 4, 7, 1, 0, 5, 3, 6)] def generate_permatrix(): global MATRIX l = list(range(8)) perm_set = set() while len(perm_set) < 256: random.shuffle(l) perm_set.add(tuple(l)) MATRIX = list(perm_set) for i in MATRIX: print(str(i) + ",") def generate_server_permatrix(): global MATRIX for i in range(len(MATRIX)): elem = np.zeros((8,8), dtype=np.uint8) for j in range(8): elem[j, MATRIX[i].index(j)] = 1 MATRIX[i] = elem generate_server_permatrix()
StarcoderdataPython
1653857
from asyncio import iscoroutinefunction from functools import wraps from types import MethodType from typing import Callable from fastapi import Request from ..utils import run_sync from .backends.base import BaseCacheBackend from .helpers import get_cache_backend, get_request_object from .key import get_cache_key def auto_connect(method: MethodType): """ Decorator to ensure the backend cache is connected to the server. """ if iscoroutinefunction(method): @wraps(method) async def wrapper(*args, **kwargs): self: BaseCacheBackend = args[0] if not self.client: await self.connect() return await method(*args, **kwargs) else: @wraps(method) def wrapper(*args, **kwargs): self: BaseCacheBackend = args[0] if not self.client: self.connect() return method(*args, **kwargs) return wrapper def cached( timeout: int = 15, *, key: Callable[[Request], str] = get_cache_key, cache: str = "default" ) -> Callable: """ Decorator to cache the result of a function. Args: timeout: Timeout in seconds. key: Function to generate the cache key. cache: The cache name. """ assert callable(key), "key must be callable" def decorator(func: Callable) -> Callable: if iscoroutinefunction(func): @wraps(func) async def wrapper(*args, **kwargs): request = get_request_object(kwargs) if not request: return await func(*args, **kwargs) cache_backend = get_cache_backend(request, cache) cache_key = key(request) cache_get = cache_backend.get if iscoroutinefunction(cache_get): value = await cache_get(cache_key) else: value = cache_get(cache_key) if value is None: value = await func(*args, **kwargs) cache_set = cache_backend.set if iscoroutinefunction(cache_set): await cache_set(cache_key, value, timeout) else: cache_set(cache_key, value, timeout) return value else: @wraps(func) def wrapper(*args, **kwargs): request = get_request_object(kwargs) if not request: return func(*args, **kwargs) cache_backend = get_cache_backend(request, cache) cache_key = key(request) cache_get = cache_backend.get if iscoroutinefunction(cache_get): value = run_sync(cache_get, cache_key) else: value = cache_get(cache_key) if value is None: value = func(*args, **kwargs) cache_set = cache_backend.set if iscoroutinefunction(cache_set): run_sync(cache_set, cache_key, value, timeout) else: cache_set(cache_key, value, timeout) return value return wrapper return decorator
StarcoderdataPython
3272190
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ import json from os import path import jsonschema.exceptions from jsonschema import validate def getDeploymentConfig(file: str) -> dict: """ Load and validate the deployment configuration json file :param file: configuration json file :return: configuration as dict """ if not path.exists(file): raise FileNotFoundError("Missing config.json file") try: with open(file, "r") as f: config = json.load(f) except json.JSONDecodeError as err: raise IOError(err) schema = _get_schema() try: validate(instance=config, schema=schema) except jsonschema.exceptions.ValidationError as err: raise SyntaxError(err) return config def _get_schema(): """ The validation Schema provider :return: the schema validation as a dict """ return { "$schema": "http://json-schema.org/draft-07/schema#", "title": "Config", "description": "Stack deployment configuration", "type": "object", "properties": { "region": {"type": "string"}, "tags": { "type": "object", "maxItems": 10 }, "layers": { "type": "object", "properties": { "pillow": { "type": "object", "properties": { "always_refresh": {"type": "boolean"}, "url": {"type": "string"}, "hash": {"type": "string"} } } } } }, "required": [ "region" ], "additionalProperties": False }
StarcoderdataPython
1611478
<filename>genetic algorithm/conference building/hidden genes genetic algorithm/finlandia_talo_ga_stochastic.py<gh_stars>1-10 import numpy as np from shapely.geometry import Polygon, MultiPolygon, LineString, MultiLineString, Point, LinearRing from shapely.ops import polygonize, cascaded_union from scipy.spatial.qhull import Delaunay from crowddynamics.core.distance import distance_circle_line from crowddynamics.core.sampling import triangle_area_cumsum, random_sample_triangle from crowddynamics.core.vector2D import length from crowddynamics.core.geometry import geom_to_linear_obstacles from crowddynamics.simulation.agents import Circular, ThreeCircle, NO_TARGET, \ Agents, AgentGroup from crowddynamics.simulation.field import Field from crowddynamics.simulation.logic import Reset, InsideDomain, Integrator, \ Fluctuation, Adjusting, Navigation, ExitDetection, \ Orientation, AgentAgentInteractions, AgentObstacleInteractions, \ LeaderFollower, TargetReached from crowddynamics.simulation.multiagent import MultiAgentSimulation from shapely.geometry import Polygon from shapely.geometry.linestring import LineString from traitlets.traitlets import Enum, Int, default class FinlandiaTalo2ndFloorField(Field): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def f(value, scale=10 / 1.5): if value: return tuple(map(lambda x: scale * x, value)) else: return None A = list(map(f, [ None, (19.226, 4.194), (19.444, 3.887), (21.368, 1.179), (1.567, 1.179), (1.574, 2.682), (1.565, 4.603), (4.012, 5.296), (2.736, 2.689), ])) B = list(map(f, [ None, (4.421, 3.862), (3.881, 5.755), (4.998, 6.024), (5.209, 5.169), (4.677, 5.041), (4.787, 4.587), (5.394, 5.168), (4.858, 7.154), (6.048, 7.667), (5.993, 7.823), (6.71, 8.026), ])) C = list(map(f, [ None, (6.916, 8.038), (7.043, 8.08), (7.291, 7.926), (7.411, 7.45), (7.669, 7.408), (7.709, 7.224), (8.026, 7.317), (8.257, 6.494), (8.141, 6.472), None, (8.387, 4.775), (6.416, 4.501), (6.372, 4.631), (6.047, 4.587), (6.336, 4.992), (5.889, 4.955), (5.549, 6.147), ])) D = list(map(f, [ (), (8.198, 6.705), (10.513, 7.321), (10.598, 7.06), (10.705, 6.803), (10.441, 6.747), (10.806, 5.387), (12.112, 5.329), (8.915, 4.884), (8.518, 6.328), (9.929, 6.703), (10.304, 5.281), (11.936, 3.715), (12.488, 8.787), (15.002, 9.438), (18.288, 4.784), (18.634, 4.98), (18.906, 4.63), (19.6, 5.093), (21.673, 2.116), ])) E = list(map(f, [ (), (17.693, 4.928), (18.233, 4.09), (16.799, 2.954), (16.457, 3.582), (15.73, 3.979), (15.998, 3.024), (14.23, 2.634), (14.142, 3.571), (13.579, 3.582), (13.568, 3.064), (12.311, 3.34), (12.311, 3.88), (8.859, 2.682), (8.435, 2.625), (8.266, 3.685), (8.718, 3.741), (8.333, 3.265), (8.208, 3.21), (8.267, 2.861), (7.978, 2.827), (7.816, 2.708), (5.787, 5.313), (6.217, 2.716), (5.732, 2.734), (4.432, 2.722), (4.332, 2.923), (4.24, 3.134), (4.07, 3.656), (2.375, 3.656), (2.375, 3.233), (3.675, 3.247), (16.487, 1.687), (18.101, 1.682), (18.107, 1.179), (18.734, 1.652), (19.087, 3.491), (6.295, 3.232), (4.571, 3.225), (4.444, 3.696), ])) G = list(map(f, [ (), (12.327, 4.117), (12.356, 4.281), (12.374, 4.428), (12.4, 4.6), (12.428, 4.747), (12.456, 4.905), (12.484, 5.059), (12.509, 5.22), (12.537, 5.396), (12.558, 5.551), (12.588, 5.718), (12.616, 5.887), (12.644, 6.035), (12.66, 6.204), (12.702, 6.358), (12.715, 6.554), (12.748, 6.719), ])) H = list(map(f, [ (), (12.996, 3.897), (13.024, 4.053), (13.044, 4.209), (13.069, 4.362), (13.06, 4.526), (13.113, 4.679), (13.119, 4.843), (13.137, 4.995), (13.177, 5.169), (13.214, 5.308), (13.239, 5.461), (13.253, 5.62), (13.297, 5.78), (13.313, 5.936), (13.364, 6.088), (13.385, 6.241), (13.4, 6.4), ])) I = list(map(f, [ (), (13.572, 3.769), (13.595, 3.93), (13.608, 4.092), (13.613, 4.259), (13.631, 4.412), (13.626, 4.574), (13.64, 4.74), (13.649, 4.884), (13.671, 5.046), (13.676, 5.217), (13.689, 5.374), (13.703, 5.523), (13.698, 5.671), (13.716, 5.846), (13.73, 6.004), (13.743, 6.166), (13.748, 6.323), ])) J = list(map(f, [ (), (16.789, 4.838), (16.713, 4.98), (16.666, 5.117), (16.6, 5.282), (16.506, 5.428), (16.465, 5.592), (16.36, 5.72), (16.301, 5.89), (16.205, 6.039), (16.083, 6.12), (16.044, 6.314), (15.987, 6.454), (15.895, 6.624), (15.796, 6.734), (15.692, 6.866), (15.6, 7), (15.516, 7.161), ])) K = list(map(f, [ (), (17.339, 5.382), (17.263, 5.524), (17.16, 5.672), (17.067, 5.798), (16.99, 5.941), (16.888, 6.081), (16.8, 6.2), (16.703, 6.367), (16.59, 6.484), (16.495, 6.624), (16.396, 6.761), (16.31, 6.881), (16.217, 7.027), (16.113, 7.179), (16.005, 7.31), (15.898, 7.471), (15.793, 7.635), ])) O = list(map(f, [ (), (5.152, 6.067), (6.837, 7.333), (7.07, 6.03), (8.192, 6.119), (12.288, 6.949), (8.895, 1.179), (12.027, 1.179), (16.478, 1.179), (3.672, 3.656), (4.249, 4.467), (17.815, 5.455), (11.97, 4.027), (14.846, 6.717), (14.097, 6.472), (12.699, 6.912), (15.987, 8.042), ])) U = list(map(f, [ (), (14.169, 3.788), (14.153, 3.954), (14.159, 4.103), (14.167, 4.264), (14.162, 4.431), (14.176, 4.573), (14.177, 4.743), (14.179, 4.894), (14.176, 5.052), (14.187, 5.239), (14.2, 5.4), (14.19, 5.543), (14.192, 5.697), (14.195, 5.848), (14.195, 6.025), (14.2, 6.168), (14.2, 6.322), ])) V = list(map(f, [ (), (14.908, 3.879), (14.855, 4.029), (14.897, 4.216), (14.83, 4.347), (14.847, 4.523), (14.763, 4.649), (14.735, 4.807), (14.745, 4.969), (14.739, 5.133), (14.737, 5.301), (14.702, 5.456), (14.656, 5.618), (14.634, 5.769), (14.594, 5.907), (14.613, 6.079), (14.599, 6.246), (14.564, 6.397), ])) W = list(map(f, [ (), (15.676, 4.123), (15.644, 4.269), (15.588, 4.431), (15.549, 4.576), (15.496, 4.723), (15.449, 4.865), (15.399, 5.031), (15.359, 5.176), (15.297, 5.332), (15.259, 5.484), (15.203, 5.629), (15.151, 5.78), (15.119, 5.928), (15.063, 6.087), (15.009, 6.252), (14.963, 6.386), (14.914, 6.553), ])) X = list(map(f, [ (), (6.007, 7.828), (5.869, 8.313), (12.146, 9.886), (12.447, 8.775), (12.41, 8.381), (12.308, 7.364), (10.598, 7.06), (10.552, 7.294), (9.632, 7.087), (9.575, 7.309), (8.878, 7.138), (8.926, 6.899), (8.205, 6.707), (8.028, 7.31), (7.76, 7.316), (7.462, 7.42), (7.291, 7.926), (7.046, 8.071), (6.71, 8.026), ])) Y = list(map(f, [ (), (6.588, 8.493), ])) Z = list(map(f, [ (), (16.176, 4.36), (16.099, 4.502), (16.053, 4.639), (15.986, 4.804), (15.947, 4.949), (15.876, 5.106), (15.84, 5.303), (15.758, 5.436), (15.704, 5.573), (15.662, 5.743), (15.6, 5.876), (15.559, 6.06), (15.495, 6.244), (15.421, 6.379), (15.374, 6.527), (15.316, 6.659), (15.239, 6.822), ])) A[3] = (21.368 * 10 / 1.5, 1.55 * 10 / 1.5) A[4] = (1.567 * 10 / 1.5, 1.55 * 10 / 1.5) # E[32] = () # E[33] = () E[34] = (18.107 * 10 / 1.5, 1.55 * 10 / 1.5) E[35] = (18.734 * 10 / 1.5, 2.3 * 10 / 1.5) O[6] = (8.895 * 10 / 1.5, 1.55 * 10 / 1.5) O[7] = (12.027 * 10 / 1.5, 1.55 * 10 / 1.5) O[8] = (16.478 * 10 / 1.5, 1.55 * 10 / 1.5) rest_midpoint = (6 * 10 / 1.5, 1.55 * 10 / 1.5) # New points for "Traffic Jam Puzzle" rest1 = (4*10/1.5, 1.55*10/1.5) rest2 = (8*10/1.5, 1.55*10/1.5) obstacles = Polygon() obstacles |= LineString(A[1:5 + 1] + [A[8]]) obstacles |= LineString(A[5:7 + 1]) obstacles |= LineString(B[1:6 + 1]) obstacles |= LineString(B[7:11 + 1]) # obstacles |= LineString(C[1:10] + C[11:14 + 1]) obstacles |= LineString(C[1:6]) # INCLUDE obstacles |= LineString(C[7:10] + C[11:15]) # EXCLUDE? obstacles |= LineString(C[15:19]) # EXCLUDE? # obstacles |= LineString(D[1:7 + 1]) obstacles |= LineString(D[2:7 + 1]) # INCLUDE obstacles |= LineString(D[8:11 + 1]) # INCLUDE # obstacles |= LineString(D[12:19 + 1]) obstacles |= LineString([D[12]] + [X[5]]) # INCLUDE obstacles |= LineString(D[13:19 + 1]) # INCLUDE obstacles |= LineString(E[1:4 + 1]) obstacles |= LineString(E[5:8 + 1]) obstacles |= LineString(E[9:12 + 1]) obstacles |= LineString(E[13:16 + 1]) obstacles |= LineString(E[17:21 + 1] + [E[23]]) obstacles |= LineString(E[24:26 + 1]) obstacles |= LineString(E[27:31 + 1]) # obstacles |= LineString(E[32:34 + 1]) obstacles |= LineString(E[35:36 + 1]) obstacles |= LineString(E[35:36 + 1]) obstacles |= LineString(E[37:39 + 1]) obstacles |= LineString(X[1:4] + [D[13]]) # INCLUDE # obstacles |= LineString(X[6:19]) # EXCLUDE? obstacles |= LineString(D[1:3] + [X[6]]) # INCLUDE obstacles |= LineString(X[9:12]) # INCLUDE # New obstacles for "Traffic Jam Puzzle" obstacles |= LineString([C[11]] + [E[16]]) obstacles |= LineString([E[39]] + [B[1]]) # These are the obstacles for the agents that start outside the Finlandia hall obstacles_finlandia = Polygon() # changes start # obstacles |= LineString(C[1:10] + C[11:14 + 1]) obstacles_finlandia |= LineString(C[1:6]) # INCLUDE obstacles_finlandia |= LineString(C[7:10] + C[11:15]) # EXCLUDE? obstacles_finlandia |= LineString(C[15:19]) # EXCLUDE? # obstacles |= LineString(D[1:7 + 1]) obstacles_finlandia |= LineString(D[2:7 + 1]) # INCLUDE obstacles_finlandia |= LineString(D[8:11 + 1]) # INCLUDE # obstacles_finlandia |= LineString(D[12:19 + 1]) obstacles_finlandia |= LineString([D[12]] + [X[5]]) # INCLUDE obstacles_finlandia |= LineString(D[13:19 + 1]) # INCLUDE obstacles_finlandia |= LineString(X[1:4] + [D[13]]) # INCLUDE # obstacles |= LineString(X[6:19]) # EXCLUDE? obstacles_finlandia |= LineString(D[1:3] + [X[6]]) # INCLUDE obstacles_finlandia |= LineString(X[9:12]) # INCLUDE # changes end obstacles_finlandia |= LineString(A[1:5 + 1] + [A[8]]) obstacles_finlandia |= LineString(A[5:7 + 1]) obstacles_finlandia |= LineString(B[1:6 + 1]) obstacles_finlandia |= LineString(B[7:11 + 1]) # obstacles_finlandia |= LineString(D[1:7 + 1]) # obstacles_finlandia |= LineString(D[8:11 + 1]) # obstacles_finlandia |= LineString(D[12:19 + 1]) obstacles_finlandia |= LineString(E[1:4 + 1]) obstacles_finlandia |= LineString(E[5:8 + 1]) obstacles_finlandia |= LineString(E[9:12 + 1]) obstacles_finlandia |= LineString(E[13:16 + 1]) obstacles_finlandia |= LineString(E[17:21 + 1] + [E[23]]) obstacles_finlandia |= LineString(E[24:26 + 1]) obstacles_finlandia |= LineString(E[27:31 + 1]) obstacles_finlandia |= LineString(E[32:34 + 1]) obstacles_finlandia |= LineString(E[35:36 + 1]) obstacles_finlandia |= LineString(E[35:36 + 1]) obstacles_finlandia |= LineString(E[37:39 + 1]) obstacles_finlandia |= LineString([D[12]] + [E[11]] + [E[10]] + [E[7]] + [E[6]] + [E[3]] + [E[2]]) # Benchrows # for i in range(1, 18): # obstacles |= LineString([G[i], H[i], I[i]]) # obstacles |= LineString([U[i], V[i], W[i]]) # obstacles |= LineString([Z[i], J[i], K[i]]) finlandiahall = Polygon( [O[12], E[12], E[9], E[8], E[5], E[1], O[11], O[16], O[13], O[14], O[15], O[5]]) foyer = Polygon([B[6], C[12], E[15], E[21], E[23], E[38], E[39], B[1]]) helsinkihall = Polygon([O[4], C[11], C[12], C[13], C[15], C[16], C[17], O[1], B[8], B[9], C[3], C[4], O[2], O[3]]) piazza_1 = Polygon( [C[11], E[16], E[13], O[6], O[7], (77.5, 24.767), (77.5, 26.847), (79, 35.527), D[6], D[11], D[8]]) piazza_2 = Polygon( [O[7], O[8], E[32], E[3], E[6], E[7], E[10], E[11], D[12]]) piazza_3 = Polygon( [O[8], A[3], A[2], A[1], D[17], E[2], E[3]]) restaurant = Polygon( [A[4], A[5], A[8], E[25], E[24], rest_midpoint] ) outer_bubblegum_finlandia = Polygon( [D[12], (75, 15), E[3], E[2], D[15], D[14], D[13]] ) inner_bubblegum_finlandia = Polygon( [D[12], E[11], E[10], E[7], E[6], E[3], E[2], D[15], D[14], D[13]]) orchestra_foyer = Polygon([X[1], X[2], X[3], D[13], X[5], X[6], D[2], X[13], X[14], C[5], C[4], C[3], C[2], C[1], X[19]]) # New spawn areas for "Traffic jam puzzle" finlandia_spawn = Polygon([O[12], O[5], O[13], E[6], E[8], E[10], E[12]]) piazza_3_spawn = Polygon([D[17], E[2], E[3], E[32], E[33], E[36]]) piazza_1_spawn = Polygon([D[12], E[11], O[7], O[6], E[13]]) restaurant_spawn = Polygon([rest1, rest2, E[21], E[25]]) foyer_spawn = Polygon([E[15], C[11], C[12], B[1], E[38], E[37]]) helsinki_spawn = Polygon([C[4], C[6], C[9], C[11], C[15], C[17], B[9]]) orchestra_spawn = Polygon([X[3], X[4], X[5], X[6], X[8]]) exit1 = LineString([D[17], A[1]]) exit2 = LineString([D[8], D[11]]) exit3 = LineString([E[31], O[9]]) exit4 = LineString([O[10], B[6]]) exit5 = LineString([Y[1], X[19]]) exit6 = LineString([X[11], X[12]]) fex = np.array([ [11.936, 3.715], [12.311, 3.34], [13.568, 3.064], [14.23, 2.634], [15.998, 3.024], [16.799, 2.954], [18.288, 4.784], [18.233, 4.09]]) fex = fex * 10 / 1.5 slopes = np.array([ (fex[1][1] - fex[0][1]) / (fex[1][0] - fex[0][0]), (fex[3][1] - fex[2][1]) / (fex[3][0] - fex[2][0]), (fex[5][1] - fex[4][1]) / (fex[5][0] - fex[4][0]), (fex[7][1] - fex[6][1]) / (fex[7][0] - fex[6][0]) ]) gradient_vectors = np.array([ [-1, -slopes[0]], [-1, -slopes[1]], [-1, -slopes[2]], [-1, -slopes[3]] ]) norms = np.hypot([gradient_vectors[0][0], gradient_vectors[1][0], gradient_vectors[2][0], gradient_vectors[3][0]], [gradient_vectors[0][1], gradient_vectors[1][1], gradient_vectors[2][1], gradient_vectors[3][1]]) gradient_vectors = np.array([ [slopes[0] / norms[0], -1 / norms[0]], [slopes[1] / norms[1], -1 / norms[1]], [slopes[2] / norms[2], -1 / norms[2]], [slopes[3] / norms[3], 1 / norms[3]] ]) dx = 0.2 fex = np.array([ [11.936 + dx * gradient_vectors[0][0], 3.715 + dx * gradient_vectors[0][1]], [12.311 + dx * gradient_vectors[0][0], 3.34 + dx * gradient_vectors[0][1]], [13.568 + dx * gradient_vectors[1][0], 3.064 + dx * gradient_vectors[1][1]], [14.23 + dx * gradient_vectors[1][0], 2.634 + dx * gradient_vectors[1][1]], [15.998 + 0.3 * dx * gradient_vectors[2][0], 3.024 + 0.3 * dx * gradient_vectors[2][1]], [16.799 + 0.3 * dx * gradient_vectors[2][0], 2.954 + 0.3 * dx * gradient_vectors[2][1]], [18.288 + dx * gradient_vectors[3][0], 4.784 + dx * gradient_vectors[3][1]], [18.233 + dx * gradient_vectors[3][0], 4.09 + dx * gradient_vectors[3][1]]]) fex = fex * 10 / 1.5 fexit1 = LineString([fex[0], fex[1]]) fexit2 = LineString([fex[2], fex[3]]) fexit3 = LineString([fex[4], fex[5]]) fexit4 = LineString([fex[6], fex[7]]) # fexit1 = LineString([D[12], E[11]]) # fexit2 = LineString([E[10], E[7]]) # fexit3 = LineString([E[6], E[3]]) # fexit4 = LineString([D[15], E[2]]) # Spawns # Guides can be spawned anywhere (finlandiahall, foyer, helsinkihall, piazza_1, piazza_2, piazza_3, restaurant, # orchestra_foyer), and followers to the "spawn areas" (finlandia_spawn, piazza_3_spawn, piazza_1_spawn, # restaurant_spawn, foyer_spawn, helsinki_spawn, orchestra_spawn). spawns = [ finlandiahall, foyer, helsinkihall, piazza_1, piazza_2, piazza_3, restaurant, orchestra_foyer, finlandia_spawn, piazza_3_spawn, piazza_1_spawn, restaurant_spawn, foyer_spawn, helsinki_spawn, orchestra_spawn ] # Targets (exits) targets = [exit1, exit3, exit4, exit5, exit6] #targets = [exit1, exit2, exit3, exit4, exit5, fexit1, fexit2, fexit3, fexit4] #targets = [exit1, exit2, exit3, exit4, exit5, exit6, fexit1, fexit2, fexit3, fexit4] #targets = [exit1, exit2, exit3, exit4, exit5, exit6] self.obstacles = obstacles # obstacles self.obstacles_finlandia = obstacles_finlandia # obstacles_finlandia self.targets = targets self.spawns = spawns #self.domain_f = self.convex_hull() #self.domain = self.domain_f.difference(finlandiahall) self.domain = self.convex_hull() self.finlandiahall_extended = outer_bubblegum_finlandia # this should be made as small as possible self.finlandiahall = inner_bubblegum_finlandia self.helsinkihall = helsinkihall self.orchestra_foyer = orchestra_foyer self.piazza_2 = piazza_2 self.piazza_3 = piazza_3 class FinlandiaTalo2ndFloor(MultiAgentSimulation): agent_type = Enum( default_value=Circular, values=(Circular, ThreeCircle)) body_type = Enum( default_value='adult', values=('adult',)) def attributes(self, familiar, in_finlandia: bool = False, in_finlandia_extended: bool = False, has_target: bool = True, is_follower: bool = True): def wrapper(): target = familiar if has_target else NO_TARGET orientation = np.random.uniform(-np.pi, np.pi) d = dict( target=target, is_leader=not is_follower, is_follower=is_follower, body_type=self.body_type, orientation=orientation, velocity=np.zeros(2), angular_velocity=0.0, target_direction=np.zeros(2), target_orientation=orientation, familiar_exit=familiar, in_finlandia_extended=in_finlandia_extended, in_finlandia=in_finlandia, in_orchestra = False, in_helsinki = False, in_piazza_2 = False, in_piazza_3 = False ) return d return wrapper def attributes_leader(self, fin_ext_iter, fin_iter, target_iter, has_target: bool = True, is_follower: bool = False): def wrapper(): target = next(target_iter) in_finlandia_extended = next(fin_ext_iter) in_finlandia = next(fin_iter) orientation = np.random.uniform(-np.pi, np.pi) d = dict( target=target, is_leader=not is_follower, is_follower=is_follower, body_type=self.body_type, orientation=orientation, velocity=np.zeros(2), angular_velocity=0.0, target_direction=np.zeros(2), target_orientation=orientation, familiar_exit=4, in_finlandia_extended=in_finlandia_extended, in_finlandia=in_finlandia, in_orchestra = False, in_helsinki = False, in_piazza_2 = False, in_piazza_3 = False) return d return wrapper @default('logic') def _default_logic(self): return Reset(self) << \ TargetReached(self) << ( Integrator(self) << ( Fluctuation(self), Adjusting(self) << ( Navigation(self) << ExitDetection( self) << LeaderFollower(self), Orientation(self)), AgentAgentInteractions(self), AgentObstacleInteractions(self))) @default('field') def _default_field(self): return FinlandiaTalo2ndFloorField() @default('agents') def _default_agents(self): agents = Agents(agent_type=self.agent_type) return agents
StarcoderdataPython
3293378
<filename>nipy/core/image/image_spaces.py """ Utilities for working with Images and common neuroimaging spaces >>> from nipy.core.api import Image, vox2mni, img_rollaxis, xyz_affine, as_xyz_affable Make a standard 4D xyzt image in MNI space. First the data and affine: >>> data = np.arange(24).reshape((1,2,3,4)) >>> affine = np.diag([2,3,4,1]) We can add the TR (==2.0) to make the full 5x5 affine we need >>> img = Image(data, vox2mni(affine, 2.0)) >>> img.affine array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 2., 0.], [ 0., 0., 0., 0., 1.]]) In this case the neuroimaging 'xyz_affine' is just the 4x4 from the 5x5 in the image >>> xyz_affine(img) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) However, if we roll time first in the image array, we can't any longer get an xyz_affine that makes sense in relationship to the voxel data: >>> img_t0 = img_rollaxis(img, 't') >>> xyz_affine(img_t0) Traceback (most recent call last): ... AffineError: Dropped dimensions not orthogonal to xyz But we can fix this: >>> img_t0_affable = as_xyz_affable(img_t0) >>> xyz_affine(img_t0_affable) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) It also works with nibabel images, which can only have xyz_affines: >>> import nibabel as nib >>> nimg = nib.Nifti1Image(data, affine) >>> xyz_affine(nimg) array([[2, 0, 0, 0], [0, 3, 0, 0], [0, 0, 4, 0], [0, 0, 0, 1]]) """ import numpy as np from nibabel.orientations import io_orientation from ..reference import spaces as rsp def xyz_affine(img, name2xyz=None): """ Return xyz affine from image `img` if possible, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` or method ``get_affine`` name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- xyz_aff : (4,4) array voxel to X, Y, Z affine mapping Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates Examples -------- >>> from nipy.core.api import vox2mni, Image >>> arr = np.arange(24).reshape((2,3,4,1)) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='array', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x', 'mni-y', 'mni-z', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> xyz_affine(img) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> xyz_affine(nimg) array([[2, 0, 0, 0], [0, 3, 0, 0], [0, 0, 4, 0], [0, 0, 0, 1]]) """ try: return img.get_affine() except AttributeError: return rsp.xyz_affine(img.coordmap, name2xyz) def is_xyz_affable(img, name2xyz=None): """ Return True if the image `img` has an xyz affine Parameters ---------- img : ``Image`` or nibabel ``SpatialImage`` If ``Image`` test ``img.coordmap``. If a nibabel image, return True name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- tf : bool True if `img` has an xyz affine, False otherwise Examples -------- >>> from nipy.core.api import vox2mni, Image, img_rollaxis >>> arr = np.arange(24).reshape((2,3,4,1)) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='array', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x', 'mni-y', 'mni-z', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(img) True >>> time0_img = img_rollaxis(img, 't') >>> time0_img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('l', 'i', 'j', 'k'), name='array', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('t', 'mni-x', 'mni-y', 'mni-z'), name='mni', coord_dtype=float64), affine=array([[ 5., 0., 0., 0., 0.], [ 0., 2., 0., 0., 0.], [ 0., 0., 3., 0., 0.], [ 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(time0_img) False Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> is_xyz_affable(nimg) True """ try: xyz_affine(img, name2xyz) except rsp.SpaceError: return False return True def as_xyz_affable(img, name2xyz=None): """ Return version of `img` that has a valid xyz affine, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` attribute (``Image``) or a ``get_affine`` method (nibabel image object) name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- reo_img : ``Image`` instance or nibabel image Returns image of same type as `img` input. If necessary, `reo_img` has its data and coordmap changed to allow it to return an xyz affine. If `img` is already xyz affable we return the input unchanged (``img is reo_img``). Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates """ try: aff = xyz_affine(img, name2xyz) except rsp.AffineError: pass else: return img cmap = img.coordmap order = rsp.xyz_order(cmap.function_range, name2xyz) # Reorder reference to canonical order reo_img = img.reordered_reference(order) # Which input axes correspond? ornt = io_orientation(reo_img.coordmap.affine) desired_input_order = np.argsort(ornt[:,0]) reo_img = reo_img.reordered_axes(list(desired_input_order)) try: aff = xyz_affine(reo_img, name2xyz) except rsp.AffineError: raise rsp.AffineError("Could not reorder so xyz coordinates did not " "depend on the other axis coordinates") return reo_img
StarcoderdataPython
33355
from __future__ import absolute_import import unittest import sys from testutils import ADMIN_CLIENT from testutils import harbor_server from library.project import Project from library.user import User from library.repository import Repository from library.repository import push_image_to_project from library.registry import Registry from library.artifact import Artifact from library.tag_immutability import Tag_Immutability from library.repository import push_special_image_to_project class TestTagImmutability(unittest.TestCase): @classmethod def setUpClass(self): self.url = ADMIN_CLIENT["endpoint"] self.user_password = "<PASSWORD>" self.project= Project() self.user= User() self.repo= Repository() self.registry = Registry() self.artifact = Artifact() self.tag_immutability = Tag_Immutability() self.project_id, self.project_name, self.user_id, self.user_name = [None] * 4 self.user_id, self.user_name = self.user.create_user(user_password = self.user_password, **ADMIN_CLIENT) self.USER_CLIENT = dict(with_signature = True, with_immutable_status = True, endpoint = self.url, username = self.user_name, password = self.user_password) self.exsiting_rule = dict(selector_repository="rel*", selector_tag="v2.*") self.project_id, self.project_name = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) def check_tag_immutability(self, artifact, tag_name, status = True): for tag in artifact.tags: if tag.name == tag_name: self.assertTrue(tag.immutable == status) return raise Exception("No tag {} found in artifact {}".format(tag, artifact)) def test_disability_of_rules(self): """ Test case: Test Disability Of Rules Test step and expected result: 1. Create a new project; 2. Push image A to the project with 2 tags A and B; 3. Create a disabled rule matched image A with tag A; 4. Both tags of image A should not be immutable; 5. Enable this rule; 6. image A with tag A should be immutable. """ image_a = dict(name="image_disability_a", tag1="latest", tag2="6.2.2") #1. Create a new project; project_id, project_name = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) #2. Push image A to the project with 2 tags; push_special_image_to_project(project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) #3. Create a disabled rule matched image A; rule_id = self.tag_immutability.create_rule(project_id, disabled = True, selector_repository=image_a["name"], selector_tag=str(image_a["tag1"])[0:2] + "*", **self.USER_CLIENT) #4. Both tags of image A should not be immutable; artifact_a = self.artifact.get_reference_info(project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_disability_of_rules] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag1"], status = False) self.check_tag_immutability(artifact_a, image_a["tag2"], status = False) #5. Enable this rule; self.tag_immutability.update_tag_immutability_policy_rule(project_id, rule_id, disabled = False, **self.USER_CLIENT) #6. image A with tag A should be immutable. artifact_a = self.artifact.get_reference_info(project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_disability_of_rules] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag1"], status = True) self.check_tag_immutability(artifact_a, image_a["tag2"], status = False) def test_artifact_and_repo_is_undeletable(self): """ Test case: Test Artifact And Repo is Undeleteable Test step and expected result: 1. Create a new project; 2. Push image A to the project with 2 tags A and B; 3. Create a enabled rule matched image A with tag A; 4. Tag A should be immutable; 5. Artifact is undeletable; 6. Repository is undeletable. """ image_a = dict(name="image_repo_undeletable_a", tag1="latest", tag2="1.3.2") #1. Create a new project; project_id, project_name = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) #2. Push image A to the project with 2 tags A and B; push_special_image_to_project(project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) #3. Create a enabled rule matched image A with tag A; self.tag_immutability.create_rule(project_id, selector_repository=image_a["name"], selector_tag=str(image_a["tag1"])[0:2] + "*", **self.USER_CLIENT) #4. Tag A should be immutable; artifact_a = self.artifact.get_reference_info(project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_artifact_and_repo_is_undeletable] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag1"], status = True) self.check_tag_immutability(artifact_a, image_a["tag2"], status = False) #5. Artifact is undeletable; self.artifact.delete_artifact(project_name, image_a["name"], image_a["tag1"], expect_status_code = 412,expect_response_body = "configured as immutable, cannot be deleted", **self.USER_CLIENT) #6. Repository is undeletable. self.repo.delete_repoitory(project_name, image_a["name"], expect_status_code = 412, expect_response_body = "configured as immutable, cannot be deleted", **self.USER_CLIENT) def test_tag_is_undeletable(self): """ Test case: Test Tag is Undeleteable Test step and expected result: 1. Push image A to the project with 2 tags A and B; 2. Create a enabled rule matched image A with tag A; 3. Tag A should be immutable; 4. Tag A is undeletable; 5. Tag B is deletable. """ image_a = dict(name="image_undeletable_a", tag1="latest", tag2="9.3.2") #1. Push image A to the project with 2 tags A and B; push_special_image_to_project(self.project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) #2. Create a enabled rule matched image A with tag A; self.tag_immutability.create_rule(self.project_id, selector_repository=image_a["name"], selector_tag=str(image_a["tag2"])[0:2] + "*", **self.USER_CLIENT) #3. Tag A should be immutable; artifact_a = self.artifact.get_reference_info(self.project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_tag_is_undeletable] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag2"], status = True) #4. Tag A is undeletable; self.artifact.delete_tag(self.project_name, image_a["name"], image_a["tag1"], image_a["tag2"], expect_status_code = 412, **self.USER_CLIENT) #5. Tag B is deletable. self.artifact.delete_tag(self.project_name, image_a["name"], image_a["tag1"], image_a["tag1"], **self.USER_CLIENT) def test_image_is_unpushable(self): """ Test case: Test Image is Unpushable Test step and expected result: 1. Create a new project; 2. Push image A to the project with 2 tags A and B; 3. Create a enabled rule matched image A with tag A; 4. Tag A should be immutable; 5. Can not push image with the same image name and with the same tag name. """ image_a = dict(name="image_unpushable_a", tag1="latest", tag2="1.3.2") #1. Create a new project; project_id, project_name = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) #2. Push image A to the project with 2 tags A and B; push_special_image_to_project(project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) #3. Create a enabled rule matched image A with tag A; self.tag_immutability.create_rule(project_id, selector_repository=image_a["name"], selector_tag=str(image_a["tag1"])[0:2] + "*", **self.USER_CLIENT) #4. Tag A should be immutable; artifact_a = self.artifact.get_reference_info(project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_image_is_unpushable] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag1"], status = True) self.check_tag_immutability(artifact_a, image_a["tag2"], status = False) #5. Can not push image with the same image name and with the same tag name. push_image_to_project(project_name, harbor_server, self.user_name, self.user_password, "<PASSWORD>", image_a["tag1"], new_image = image_a["name"], expected_error_message = "configured as immutable") def test_copy_disability(self): """ Test case: Test Copy Disability Test step and expected result: 1. Create 2 projects; 2. Push image A with tag A and B to project A, push image B which has the same image name and tag name to project B; 3. Create a enabled rule matched image A with tag A; 4. Tag A should be immutable; 5. Can not copy artifact from project A to project B with the same repository name. """ image_a = dict(name="image_copy_disability_a", tag1="latest", tag2="1.3.2") #1. Create 2 projects; project_id, project_name = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) _, project_name_src = self.project.create_project(metadata = {"public": "false"}, **self.USER_CLIENT) #2. Push image A with tag A and B to project A, push image B which has the same image name and tag name to project B; push_special_image_to_project(project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) push_special_image_to_project(project_name_src, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"], image_a["tag2"]]) #3. Create a enabled rule matched image A with tag A; self.tag_immutability.create_rule(project_id, selector_repository=image_a["name"], selector_tag=str(image_a["tag1"])[0:2] + "*", **self.USER_CLIENT) #4. Tag A should be immutable; artifact_a = self.artifact.get_reference_info(project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_copy_disability] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag1"], status = True) self.check_tag_immutability(artifact_a, image_a["tag2"], status = False) #5. Can not copy artifact from project A to project B with the same repository name. artifact_a_src = self.artifact.get_reference_info(project_name_src, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_copy_disability] - artifact_a_src:{}".format(artifact_a_src)) self.artifact.copy_artifact(project_name, image_a["name"], project_name_src+"/"+ image_a["name"] + "@" + artifact_a_src.digest, expect_status_code=412, expect_response_body = "configured as immutable, cannot be updated", **self.USER_CLIENT) #def test_replication_disability(self): # pass def test_priority_of_rules(self): """ Test case: Test Priority Of Rules(excluding rule will not affect matching rule) Test step and expected result: 1. Push image A, B and C, image A has only 1 tag named tag1; 2. Create a matching rule that matches image A and tag named tag2 which is not exist; 3. Create a excluding rule to exlude image A and B; 4. Add a tag named tag2 to image A, tag2 should be immutable; 5. Tag2 should be immutable; 6. All tags in image B should be immutable; 7. All tags in image C should not be immutable; 8. Disable all rules. """ image_a = dict(name="image_priority_a", tag1="latest", tag2="6.3.2") image_b = dict(name="image_priority_b", tag1="latest", tag2="0.12.0") image_c = dict(name="image_priority_c", tag1="latest", tag2="3.12.0") #1. Push image A, B and C, image A has only 1 tag named tag1; push_special_image_to_project(self.project_name, harbor_server, self.user_name, self.user_password, image_a["name"], [image_a["tag1"]]) push_special_image_to_project(self.project_name, harbor_server, self.user_name, self.user_password, image_b["name"], [image_b["tag1"],image_b["tag2"]]) push_special_image_to_project(self.project_name, harbor_server, self.user_name, self.user_password, image_c["name"], [image_c["tag1"],image_c["tag2"]]) #2. Create a matching rule that matches image A and tag named tag2 which is not exist; rule_id_1 = self.tag_immutability.create_rule(self.project_id, selector_repository=image_a["name"], selector_tag=image_a["tag2"], **self.USER_CLIENT) #3. Create a excluding rule to exlude image A and B; rule_id_2 = self.tag_immutability.create_rule(self.project_id, selector_repository_decoration = "repoExcludes", selector_repository="{image_priority_a,image_priority_b}", selector_tag="**", **self.USER_CLIENT) #4. Add a tag named tag2 to image A, tag2 should be immutable; self.artifact.create_tag(self.project_name, image_a["name"], image_a["tag1"], image_a["tag2"], **self.USER_CLIENT) #5. Tag2 should be immutable; artifact_a = self.artifact.get_reference_info(self.project_name, image_a["name"], image_a["tag2"], **self.USER_CLIENT) print("[test_priority_of_rules] - artifact:{}".format(artifact_a)) self.assertTrue(artifact_a) self.check_tag_immutability(artifact_a, image_a["tag2"], status = True) self.check_tag_immutability(artifact_a, image_a["tag1"], status = False) #6. All tags in image B should be immutable; artifact_b = self.artifact.get_reference_info(self.project_name, image_b["name"], image_b["tag2"], **self.USER_CLIENT) print("[test_priority_of_rules] - artifact:{}".format(artifact_b)) self.assertTrue(artifact_b) self.check_tag_immutability(artifact_b, image_b["tag2"], status = False) self.check_tag_immutability(artifact_b, image_b["tag1"], status = False) #7. All tags in image C should not be immutable; artifact_c = self.artifact.get_reference_info(self.project_name, image_c["name"], image_c["tag2"], **self.USER_CLIENT) print("[test_priority_of_rules] - artifact:{}".format(artifact_c)) self.assertTrue(artifact_c) self.check_tag_immutability(artifact_c, image_c["tag2"], status = True) self.check_tag_immutability(artifact_c, image_c["tag1"], status = True) #8. Disable all rules. self.tag_immutability.update_tag_immutability_policy_rule(self.project_id, rule_id_1, disabled = True, **self.USER_CLIENT) self.tag_immutability.update_tag_immutability_policy_rule(self.project_id, rule_id_2, disabled = True, **self.USER_CLIENT) def test_add_exsiting_rule(self): """ Test case: Test Priority Of Rules(excluding rule will not affect matching rule) Test step and expected result: 1. Push image A and B with no tag; 2. Create a immutability policy rule A; 3. Fail to create rule B which has the same config as rule A; """ self.tag_immutability.create_tag_immutability_policy_rule(self.project_id, **self.exsiting_rule, **self.USER_CLIENT) self.tag_immutability.create_tag_immutability_policy_rule(self.project_id, **self.exsiting_rule, expect_status_code = 409, **self.USER_CLIENT) @classmethod def tearDownClass(self): print("Case completed") if __name__ == '__main__': suite = unittest.TestSuite(unittest.makeSuite(TestTagImmutability)) result = unittest.TextTestRunner(sys.stdout, verbosity=2, failfast=True).run(suite) if not result.wasSuccessful(): raise Exception(r"Tag immutability test failed: {}".format(result))
StarcoderdataPython
3295389
<reponame>TheDevAtlas/IRIS # <NAME> 2021 # # Create Or Load Bot For Use # # Imports For Data Display And Manipulation import datetime as dt # The Date And Time import numpy as np # Basic Functions import pandas as pd # Data Manipulation And Translations import matplotlib.pyplot as plt # Visualization # Imports From The Web import pandas_datareader as web # Yahoo Finance, World Bank, Ect # Imports For Machine Learning from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM def createNewBot(): print("New Bot") # Create Bot From Atrabutes Given From botMain # Save The Bot With A New Name To A File def trainBot(): print("Train Bot") # Load Bot Name Given From botMain # Setup The Training Numbers Given From botMain # Run The Training # Save The Bot def runBot(): print("Run Bot") # Load Bot Name Given From botMain # Setup The Training Numbers Given From botMain # Run The Prediction # Output Data To Text File # Output Data To A Graph
StarcoderdataPython
1654492
<filename>cdk-layer-factory/functions/start_layer_creation.py import boto3 import datetime import os import sys import hashlib ec2_client = boto3.client('ec2') iam_client = boto3.client('iam') ddb_client = boto3.client('dynamodb') #ami_id = 'ami-0a8b4cd432b1c3063' ami_id = 'ami-0ef2003049dd4c459' instance_type = 't3.small' key_name = 'key.pem' subnet_id = 'subnet-c06751cf' instance_profile_arn = os.environ['INSTANCE_PROFILE_ARN'] layer_dest_bucket = os.environ['LAYER_DEST_BUCKET'] def get_python_commands(runtimes, dependencies, layer_name, token, datetime_str): init_script = ['#!/bin/bash','cd ~\n'] for dependency in dependencies: init_script.append(f'echo "{dependency}" >> requirements.txt\n') #layer_publish_command = f'aws lambda publish-layer-version --layer-name {layer_name}-layer-factory --description "{layer_name} created by Layer Factory" --zip-file fileb://archive.zip --compatible-runtimes' esc_quote = r'\"' for runtime in runtimes: init_script.append(f'mkdir -p "python/lib/{runtime}/site-packages/"') init_script.append(f'docker run -v "$PWD":/var/task "public.ecr.aws/sam/build-{runtime}" /bin/sh -c "pip install -r requirements.txt -t python/lib/{runtime}/site-packages/; exit"') #layer_publish_command += f' "{runtime}"' #layer_publish_command += ' --region "us-east-1"' init_script_wrapup = [ 'zip -r archive.zip python > /dev/null', f'aws s3 cp archive.zip s3://{layer_dest_bucket}/{layer_name}-{datetime_str}.zip', f'aws s3 presign "s3://{layer_dest_bucket}/{layer_name}' + f'-' + f'{datetime_str}.zip" --region us-east-1 --expires-in 604800 >> presigned\n' 'export PRESIGNED_URL=$(cat presigned)', #layer_publish_command, # TODO: make region configurable f'aws stepfunctions send-task-success --task-token "{token}" --task-output "{{{esc_quote}result{esc_quote}: {esc_quote}Success!{esc_quote}, {esc_quote}presigned_url{esc_quote}: {esc_quote}$PRESIGNED_URL{esc_quote}, {esc_quote}layer_name{esc_quote}: {esc_quote}{layer_name}{esc_quote}, {esc_quote}s3_key{esc_quote}: {esc_quote}{layer_name}-{datetime_str}.zip{esc_quote}}}" --region us-east-1', 'shutdown -h now' ] init_script.extend(init_script_wrapup) init_script = '\n\n'.join(init_script) return init_script # init_script = [ # '#!/bin/bash', #'sleep 60\n' # 'cd ~\n' #'sudo yum update -y\n', #'sudo yum install ec2-instance-connect -y', #'sudo yum search docker', #'sudo yum install docker -y', #'sudo systemctl enable docker.service', #'sudo systemctl start docker.service', #'sudo systemctl status docker.service', # ] def lambda_handler(event, context): token = event['token'] my_input = event['input'] now = datetime.datetime.now() datetime_str = f'{now.year}-{now.month}-{now.day}-{now.hour}:{now.minute}:{now.second}' # e.g. 'ulid-py' dependencies = my_input['dependencies'].split(',') layer_name = my_input['layer_name'] #colloquial_name = event['colloquial_name'] # e.g. '1.1.0' runtimes = my_input['runtimes'] language = my_input['language'] #print(f'{language=}') if language == 'python': init_script = get_python_commands(runtimes, dependencies, layer_name, token, datetime_str) response = ec2_client.run_instances( BlockDeviceMappings=[ { 'DeviceName': '/dev/xvda', 'Ebs': { 'Encrypted': True, 'DeleteOnTermination': True, 'VolumeSize': 16, 'VolumeType': 'gp2' }, }, ], ImageId=ami_id, InstanceType=instance_type, IamInstanceProfile={ 'Arn': instance_profile_arn }, #KeyName=key_name, SubnetId=subnet_id, MaxCount=1, MinCount=1, InstanceInitiatedShutdownBehavior='terminate', UserData=init_script, TagSpecifications=[ { 'ResourceType': 'instance', 'Tags': [ { 'Key': 'APPLICATION', 'Value': 'CDK_LAMBDA_LAYER_FACTORY' }, ] }, ], ) instance = response['Instances'][0] instance_id = instance['InstanceId'] return {"result": "success creating EC2 instance", "instance_id": instance_id}
StarcoderdataPython
3282051
# coding:utf-8 from tasks.workers import app from page_get import user as user_get from db.seed_ids import get_seed_ids, get_seed_by_id, insert_seeds, set_seed_other_crawled @app.task(ignore_result=True) def crawl_follower_fans(uid): seed = get_seed_by_id(uid) if seed.other_crawled == 0: rs = user_get.get_fans_or_followers_ids(uid, 1) rs.extend(user_get.get_fans_or_followers_ids(uid, 2)) datas = set(rs) # If data already exits, just skip it if datas: insert_seeds(datas) set_seed_other_crawled(uid) @app.task(ignore_result=True) def crawl_person_infos(uid): """ Crawl user info and their fans and followers For the limit of weibo's backend, we can only crawl 5 pages of the fans and followers. We also have no permissions to view enterprise's followers and fans info :param uid: current user id :return: None """ if not uid: return user = user_get.get_profile(uid) # If it's enterprise user, just skip it if user.verify_type == 2: set_seed_other_crawled(uid) return # Crawl fans and followers app.send_task('tasks.user.crawl_follower_fans', args=(uid,), queue='fans_followers', routing_key='for_fans_followers') @app.task(ignore_result=True) def excute_user_task(): seeds = get_seed_ids() if seeds: for seed in seeds: app.send_task('tasks.user.crawl_person_infos', args=(seed.uid,), queue='user_crawler', routing_key='for_user_info')
StarcoderdataPython
1612359
<filename>PyPI/package_analysis.py #!/usr/bin/env python3 """Analysis of Python packages.""" import json import logging import os import re import shutil import sys import tarfile from os import walk import pymysql.cursors if sys.version_info[0] == 2: from urllib import urlretrieve else: from urllib.request import urlretrieve logging.basicConfig( format="%(asctime)s %(levelname)s %(message)s", level=logging.DEBUG, stream=sys.stdout, ) def main(package_name, package_url, release_id=None): """ Parameters ---------- package_name : str package_url : str Path to a Python package. package_id : int, optional """ pkg_name = package_name if release_id is None: raise NotImplementedError("Look up the release id.") filepaths, download_dir = download(package_url) if download_dir is None: return with open("secret.json") as f: mysql = json.load(f) package_id = get_pkg_id_by_name(pkg_name, mysql) if package_id is None: logging.info("Package id of '%s' could not be determined", pkg_name) sys.exit(1) required_packages = get_requirements(filepaths, pkg_name) imported_packages = get_imports(filepaths, pkg_name) setup_packages = get_setup_packages(filepaths, pkg_name) store_dependencies( mysql, package_id, required_packages, imported_packages, setup_packages, package_url, release_id, ) remove_unpacked(download_dir) def store_dependencies( mysql, package_id, required_packages, imported_packages, setup_packages, package_url, release_id, ): """ Parameters ---------- mysql : dict MySQL database connection information package_id : int required_packages : list imported_packages : list setup_packages : list package_url : str release_id : int """ connection = pymysql.connect( host=mysql["host"], user=mysql["user"], passwd=mysql["<PASSWORD>"], db=mysql["db"], cursorclass=pymysql.cursors.DictCursor, charset="utf8", ) insert_dependency_db(imported_packages, "imported", package_id, mysql, connection) insert_dependency_db( required_packages, "requirements.txt", package_id, mysql, connection ) insert_dependency_db(setup_packages, "setup.py", package_id, mysql, connection) # Store that the package was downloaded # and analyzed cursor = connection.cursor() sql = "UPDATE `releases` SET `downloaded_bytes` = %s WHERE `id` = %s;" pkg_name = os.path.basename(package_url) target_dir = "pypipackages" target = os.path.join(target_dir, pkg_name) downloaded_bytes = os.path.getsize(target) cursor.execute(sql, (downloaded_bytes, release_id)) connection.commit() cursor.close() connection.close() def insert_dependency_db(imported_packages, req_type, package_id, mysql, connection): """ Parameters ---------- imported_packages : list req_type : str 'setup.py', 'requirements.txt' or 'imported' package_id : int mysql : dict credentials for the connection connection : pymysql connection object """ cursor = connection.cursor() for pkg, times in imported_packages.items(): package_info = { "package": package_id, "needs_package": get_pkg_id_by_name(pkg, mysql), "times": times, "req_type": req_type, } if package_info["needs_package"] is not None: try: sql = ( "INSERT INTO `dependencies` " "(`package`, `needs_package`, `req_type`, `times`) " " VALUES " "('{package}', '{needs_package}', '{req_type}', " "'{times}');" ).format(**package_info) cursor.execute(sql) connection.commit() except pymysql.err.IntegrityError as e: if "Duplicate entry" not in str(e): logging.warning(e) else: # Packages which were imported, but not found on PyPI # TODO: This still needs work. 21737 imports were not found on PyPI # amongst them: # mysqlDB # mySQLdb # MySQLdb with open("not-found.csv", "a") as f: f.write("%s\n" % pkg) def get_pkg_id_by_name(pkg_name, mysql): """ Parameters ---------- pkg_name : str mysql : dict MySQL database connection information Returns ------- int or None """ connection = pymysql.connect( host=mysql["host"], user=mysql["user"], passwd=mysql["<PASSWORD>"], db=mysql["db"], cursorclass=pymysql.cursors.DictCursor, charset="utf8", ) cursor = connection.cursor() sql = "SELECT id FROM `packages` WHERE `name` = %s" cursor.execute(sql, (pkg_name,)) id_number = cursor.fetchone() if id_number is not None and "id" in id_number: return id_number["id"] else: return None def get_pkg_extension(package_url): """ Parameters ---------- package_url : str Returns ------- str File extension of the package given by url """ not_implemented_fileending = [".msi", ".rpm", ".deb", ".tgz", ".dmg"] if package_url.endswith(".tar.gz"): return ".tar.gz" elif package_url.endswith(".tar.bz"): return ".tar.bz" elif package_url.endswith(".tar.bz2"): return ".tar.bz2" elif package_url.endswith(".whl"): return ".whl" elif package_url.endswith(".zip"): return ".zip" elif package_url.endswith(".egg"): return ".egg" elif package_url.endswith(".exe"): logging.info("Skip '%s' for safty reasons.", package_url) return None elif any(package_url.endswith(x) for x in not_implemented_fileending): pass # TODO: Implement else: with open("todo-unknown-pkg-extension.csv", "a") as f: f.write("%s\n" % package_url) return None def download(package_url): """ Parameters ---------- package_url : str URL of a Python package Returns ------- tuple (List of paths to all unpackaged files, folder where it got extracted) """ extension = get_pkg_extension(package_url) if extension is None: return ([], None) file_ending_len = len(extension) target_dir = "pypipackages" if not os.path.exists(target_dir): os.makedirs(target_dir) pkg_name = os.path.basename(package_url) target = os.path.join(target_dir, pkg_name) if not os.path.exists(target): try: urlretrieve(package_url, target) logging.info("Package '%s' downloaded.", pkg_name) except: return ([], None) else: pass # logging.info("Package '%s' was already downloaded.", pkg_name) # Unpack it if not os.path.exists(target[:-file_ending_len]): is_tarfile = ( package_url.endswith(".tar.gz") or package_url.endswith(".tar.bz") or package_url.endswith(".tar.bz2") ) if is_tarfile: try: with tarfile.open(target) as tar: tar.extractall(target[:-file_ending_len]) except: # Something is wrong with the tar file return ([], None) elif ( package_url.endswith(".whl") or package_url.endswith(".zip") or package_url.endswith(".egg") ): import zipfile try: with zipfile.ZipFile(target) as tar: tar.extractall(target[:-file_ending_len]) except: # Something is wrong with the zip file return ([], None) else: raise NotImplementedError filepaths = [] for (dirpath, dirnames, filenames) in walk(target[:-file_ending_len]): filepaths.extend([os.path.join(dirpath, f) for f in filenames]) return (filepaths, target[:-file_ending_len]) def remove_unpacked(download_dir): """ Clean up the folders to prevent HDD of getting full. """ shutil.rmtree(download_dir) def get_requirements(filepaths, pkg_name): """ Get a list of all "officially" set requirements. Parameters ---------- filepaths : list Paths to files of a package pkg_name : str Name of the currently parsed package. Returns ------- list "Officially" set requirements """ imports = {} requirements_file = [f for f in filepaths if f.endswith("requirements.txt")] if len(requirements_file) > 0: requirements_file = requirements_file[0] # TODO: parse requirements.txt else: # logging.debug("Package '%s' has no requirements.txt.", # pkg_name) pass return imports def get_imports(filepaths, pkg_name): """ Get a list of all imported packages. Parameters ---------- filepaths : list Paths to files of a package pkg_name : str Name of the currently parsed package. Returns ------- dict Names of packages which got imported and how often """ # TODO: Not all python files end with .py. We loose some. filepaths = [f for f in filepaths if f.endswith(".py")] simple_pattern = re.compile(r"^\s*import\s+([a-zA-Z][a-zA-Z0-9_]*)", re.MULTILINE) from_pattern = re.compile( r"^\s*from\s+import\s+([a-zA-Z][a-zA-Z0-9_]*)", re.MULTILINE ) imports = {} for filep in filepaths: try: with open(filep) as f: content = f.read() except: # there is something wrong with a file encoding. Or the file cannot # be opened # Ignore it. return imports imported = simple_pattern.findall(content) + from_pattern.findall(content) for import_pkg_name in imported: if import_pkg_name in imports: imports[import_pkg_name] += 1 else: imports[import_pkg_name] = 1 return imports def get_setup_packages(filepaths, pkg_name): """ Get a list of all imported packages. Parameters ---------- filepaths : list Paths to files of a package pkg_name : str Name of the currently parsed package. Returns ------- dict Names of packages which got imported and how often """ setup_py_file = [f for f in filepaths if f.endswith("setup.py")] imports = {} if len(setup_py_file) > 0: setup_py_file = setup_py_file[0] # logging.info(setup_py_file) # TODO: parse setup.py # can be dangerous # look for 'install_requires' and 'dependency_links' # ... may the force be with you # RegEx is complicated: # setup\(.*?(install_requires\s*=\s*\[.*?").*?\) <--- doesn't work, # as you can have variables else: # logging.debug("Package '%s' has no setup.py.", # pkg_name) pass logging.debug return imports def get_parser(): """The parser object for this script.""" from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser parser = ArgumentParser( description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument( "--name", dest="name", help="name of the package", required=True ) parser.add_argument( "-p", "--package_url", dest="package_url", help="url where the package is", required=True, ) return parser if __name__ == "__main__": args = get_parser().parse_args() main(args.name, args.package_url)
StarcoderdataPython
4836520
#! usr/bin/python # coding: utf8 from tools import MsSQL connection = MsSQL() def get_color_dict(): """ key is color_code and value is color_name :return: """ color_dict = dict() sql = "select color_code,color from joom_color where color_code is not Null" with connection as con: cur = con.cursor() cur.execute(sql) ret = cur.fetchall() for row in ret: color_dict[row[0]] = row[1] return color_dict
StarcoderdataPython