id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
144971
<reponame>vdot/mdet<gh_stars>1-10 #!/usr/bin/env python3 import rospy import numpy as np from tf import TransformListener from std_msgs.msg import Empty from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import OccupancyGrid from geometry_msgs.msg import TransformStamped from tf2_sensor_msgs.tf2_sensor_msgs import do_transform_cloud from occupancy_grid import LocalOccupancyGridParams, LocalOccupancyGrid from common import publish_point_cloud import time request_publisher = None MAP_FRAME = '/map' STATIC_THRESHOLD = 0.03 class NumpyAccumulator(object): def __init__(self, columns): self._capacity = 32000000 self._columns = columns self._array = np.empty(shape=(self._capacity, self._columns)) self._rows = 0 def get_rows(self): return self._rows def get(self): return self._array[0:self._rows, :] def _grow(self, required_rows): if required_rows > self._capacity: target_capacity = self._capacity while target_capacity < required_rows: target_capacity *= 2 old_array = self._array self._array = np.empty(shape=(target_capacity, self._columns)) self._array[0: self._rows] = old_array[0: self._rows] self._capacity = target_capacity def append(self, array): rows = array.shape[0] required_rows = self._rows + rows self._grow(required_rows) self._array[self._rows: required_rows, :] = array self._rows = required_rows class PointCloudAccumulatorNode(object): def __init__(self): rospy.init_node('pcl_accumulator') self.obstacles_accumulator = NumpyAccumulator(3) self.ground_accumulator = NumpyAccumulator(3) self.tf_listener = TransformListener() rospy.Subscriber("point_cloud_ground", PointCloud2, lambda point_cloud: self.ground_cloud_handler(point_cloud)) rospy.Subscriber("point_cloud_obstacles", PointCloud2, lambda point_cloud: self.obstacle_cloud_handler(point_cloud)) rospy.Subscriber("map_static", OccupancyGrid, lambda grid: self.static_map_handler(grid)) self.ground_point_cloud_publisher = rospy.Publisher('acc_point_cloud_ground', PointCloud2, queue_size=1) self.obstacles_static_point_cloud_publisher = rospy.Publisher('acc_point_cloud_obstacles_static', PointCloud2, queue_size=1) self.obstacles_dynamic_point_cloud_publisher = rospy.Publisher('acc_point_cloud_obstacles_dynamic', PointCloud2, queue_size=1) self.static_map = None rospy.Subscriber("request_acc", Empty, lambda request: self.request_handler(request)) rospy.spin() def point_cloud_to_np_array(self, point_cloud): # assuming 4 float32-s for a point a = np.fromstring(point_cloud.data, dtype=np.float32).reshape((-1, 4)) a[:3] = 1.0 # use homogeneous coords for matrix transformation return a def transform_cloud(self, point_cloud, msg_header, target_frame): self.tf_listener.waitForTransform(msg_header.frame_id, target_frame, msg_header.stamp, rospy.Duration(4.0)) mat44 = self.tf_listener.asMatrix(target_frame, msg_header) # assuming point_cloud is a Nx4 matrix return np.dot(point_cloud, mat44.T) def obstacle_cloud_handler(self, point_cloud_msg): point_cloud = self.point_cloud_to_np_array(point_cloud_msg) point_cloud = self.transform_cloud(point_cloud, point_cloud_msg.header, MAP_FRAME) self.obstacles_accumulator.append(point_cloud[:, 0:3]) print("Obstacle cloud received, accumulated size: {0}".format(self.obstacles_accumulator.get_rows())) def ground_cloud_handler(self, point_cloud_msg): point_cloud = self.point_cloud_to_np_array(point_cloud_msg) point_cloud = self.transform_cloud(point_cloud, point_cloud_msg.header, MAP_FRAME) self.ground_accumulator.append(point_cloud[:, 0:3]) print("Ground cloud received, accumulated size: {0}".format(self.ground_accumulator.get_rows())) def static_map_handler(self, map): self.static_map = map print("Static map received") def request_handler(self, request): if self.static_map is None: print("No map received") return start_time = time.time() grid = LocalOccupancyGrid(self.static_map, LocalOccupancyGridParams(rospy, '~grid_')) obstacle_cloud = self.obstacles_accumulator.get() ground_cloud = self.ground_accumulator.get() cols = grid.get_col_i(obstacle_cloud) rows = grid.get_row_i(obstacle_cloud) valid_pos = np.logical_and( np.logical_and(cols >= 0, cols < grid.cols()), np.logical_and(rows >= 0, rows < grid.rows()), ) obstacle_cloud = obstacle_cloud[valid_pos] ground_cols = grid.get_col_i(ground_cloud) ground_rows = grid.get_row_i(ground_cloud) ground_valid_pos = np.logical_and( np.logical_and(ground_cols >= 0, ground_cols < grid.cols()), np.logical_and(ground_rows >= 0, ground_rows < grid.rows()), ) ground_cloud = ground_cloud[ground_valid_pos] cols = cols[valid_pos] rows = rows[valid_pos] threshold = STATIC_THRESHOLD obstacle_static_cloud = obstacle_cloud[grid.get_grid()[rows, cols] > threshold, :] obstacle_dynamic_cloud = obstacle_cloud[grid.get_grid()[rows, cols] < threshold, :] now = rospy.Time.now() publish_point_cloud(self.ground_point_cloud_publisher, ground_cloud, MAP_FRAME, now) publish_point_cloud(self.obstacles_static_point_cloud_publisher, obstacle_static_cloud, MAP_FRAME, now) publish_point_cloud(self.obstacles_dynamic_point_cloud_publisher, obstacle_dynamic_cloud, MAP_FRAME, now) print("Point clouds published, generation took {0}s".format(time.time() - start_time)) if __name__ == '__main__': try: PointCloudAccumulatorNode() except rospy.ROSInterruptException: print("Interrupted by ROS") pass
StarcoderdataPython
4801103
<filename>ManWeiHiro.py #!/usr/bin/python #coding: utf-8 from wordcloud import WordCloud,STOPWORDS import pandas as pd import jieba import sqlite3 import matplotlib.pyplot as plt #import seaborn as sns from pyecharts import Geo,Style,Line,Bar,Overlap,Map import io import requests import time import random import json import sys reload(sys) sys.setdefaultencoding( "utf-8" ) def getCommentCount(names): conn = conn = sqlite3.connect("end.db") conn.text_factory = str cursor = conn.cursor() likeStr = "" for i in range(0, len(names)): print names[i] likeStr = likeStr + "content like \"%" + names[i] + "%\" " if i + 1 < len(names): likeStr = likeStr + " or " cursor.execute("select COUNT(content) from convertData where " + likeStr) values = cursor.fetchall() return values[0][0] def getAlias(alias, name): if alias.has_key(name): return alias[name] else: return [name] if __name__ == '__main__': attr = ["灭霸","美国队长", "钢铁侠", "浩克", "奇异博士", "蜘蛛侠", "索尔" ,"黑寡妇", "鹰眼", "惊奇队长", "幻视", "猩红女巫","蚁人", "古一法师", "洛基"] alias = { "灭霸": ["灭霸", "Thanos"], "美国队长": ["美国队长", "美队"], "浩克": ["浩克", "绿巨人", "班纳", "HULK"], "奇异博士": ["奇异博士", "医生"], "钢铁侠": ["钢铁侠", "stark", "斯塔克", "托尼", "史塔克"], "蜘蛛侠": ["蜘蛛侠","蜘蛛","彼得", "荷兰弟"], "索尔":["索尔", "雷神", "托尔"], "黑寡妇": ["黑寡妇", "寡姐"], "鹰眼":["鹰眼","克林顿","巴顿","克林特"], "惊奇队长":["惊奇队长","卡罗尔", "惊奇"], "星云":["星云"], "猩红女巫": ["猩红女巫", "绯红女巫", "旺达"], "蚁人":["蚁人", "蚁侠", "Ant", "AntMan"], "古一法师": ["古一", "古一法师", "法师"], "洛基": ["洛基", "抖森"] } v1 = [getCommentCount(getAlias(alias, attr[i])) for i in range(0, len(attr))] bar = Bar("Hiro") bar.add("count",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2, xaxis_interval=0,is_splitline_show=True) bar.render("html/hiro_count.html")
StarcoderdataPython
3377989
<gh_stars>10-100 from rest_framework import serializers from orchestra.api import router from orchestra.utils.db import database_ready from .models import Resource, ResourceData class ResourceSerializer(serializers.ModelSerializer): name = serializers.SerializerMethodField() unit = serializers.ReadOnlyField() class Meta: model = ResourceData fields = ('name', 'used', 'allocated', 'unit') read_only_fields = ('used',) def to_internal_value(self, raw_data): data = super(ResourceSerializer, self).to_internal_value(raw_data) if not data.resource_id: data.resource = Resource.objects.get(name=raw_data['name']) return data def get_name(self, instance): return instance.resource.name def get_identity(self, data): return data.get('name') # Monkey-patching section def insert_resource_serializers(): # clean previous state for related in Resource._related: try: viewset = router.get_viewset(related) except KeyError: # API viewset not registered pass else: fields = list(viewset.serializer_class.Meta.fields) try: fields.remove('resources') except ValueError: pass viewset.serializer_class.Meta.fields = fields # Create nested serializers on target models for ct, resources in Resource.objects.group_by('content_type').items(): model = ct.model_class() try: router.insert(model, 'resources', ResourceSerializer, required=False, many=True, source='resource_set') except KeyError: continue # TODO this is a fucking workaround, reimplement this on the proper place def validate_resources(self, posted, _resources=resources): """ Creates missing resources """ result = [] resources = list(_resources) for data in posted: resource = data.resource if resource not in resources: msg = "Unknown or duplicated resource '%s'." % resource raise serializers.ValidationError(msg) resources.remove(resource) if not resource.on_demand and not data.allocated: data.allocated = resource.default_allocation result.append(data) for resource in resources: data = ResourceData(resource=resource) if not resource.on_demand: data.allocated = resource.default_allocation result.append(data) return result viewset = router.get_viewset(model) viewset.serializer_class.validate_resources = validate_resources old_options = viewset.options def options(self, request, resources=resources): """ Provides available resources description """ metadata = old_options(self, request) metadata.data['available_resources'] = [ { 'name': resource.name, 'on_demand': resource.on_demand, 'default_allocation': resource.default_allocation } for resource in resources ] return metadata viewset.options = options if database_ready(): insert_resource_serializers()
StarcoderdataPython
3266438
#!/usr/bin/env python import io import os import setuptools setuptools.setup( name='vxi11aio', version='0.0.1', python_requires='>=3.7', install_requires=['aioserial'], )
StarcoderdataPython
3333282
from app.models.models import Kongqishidu,Kongqiwendu,Turangshidu,Turangwendu,Guangzhao from app.tools.orm import ORM session = ORM.db() kw = session.query(Kongqiwendu).order_by(Kongqiwendu.create_dt.desc()).first() print(kw.percent)
StarcoderdataPython
3207539
<filename>tests/large_test.py #!/usr/bin/env python # Copyright 2016 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. import random import unittest # Mutates sys.path. import test_env from utils import large class LargeTest(unittest.TestCase): def test_1m_1(self): array = range(1000000) data = large.pack(array) self.assertGreater(1000, len(data)) self.assertEqual(array, large.unpack(data)) def test_1m_1000(self): array = [i*1000 for i in xrange(1000000)] data = large.pack(array) self.assertGreater(2000, len(data)) self.assertEqual(array, large.unpack(data)) def test_1m_pseudo(self): # Compresses a pseudo-random suite. Still compresses very well. random.seed(0) array = sorted(random.randint(0, 1000000) for _ in xrange(1000000)) data = large.pack(array) self.assertGreater(302000, len(data)) self.assertEqual(array, large.unpack(data)) def test_empty(self): self.assertEqual('', large.pack([])) self.assertEqual([], large.unpack('')) if __name__ == '__main__': test_env.main()
StarcoderdataPython
1662999
#!/usr/bin/env python3 """Convert JWK from/to PEM and other formats""" import argparse import json from binascii import hexlify from getpass import getpass from typing import Optional from cryptography.hazmat.primitives import serialization from cryptojwt.jwk import JWK from cryptojwt.jwk.ec import ECKey from cryptojwt.jwk.ec import import_private_ec_key_from_file from cryptojwt.jwk.ec import import_public_ec_key_from_file from cryptojwt.jwk.hmac import SYMKey from cryptojwt.jwk.rsa import RSAKey from cryptojwt.jwk.rsa import import_private_rsa_key_from_file from cryptojwt.jwk.rsa import import_public_rsa_key_from_file from cryptojwt.jwx import key_from_jwk_dict def jwk_from_file(filename: str, private: bool = True) -> JWK: """Read JWK from file""" with open(filename, mode="rt") as input_file: jwk_dict = json.loads(input_file.read()) return key_from_jwk_dict(jwk_dict, private=private) def pem2rsa( filename: str, kid: Optional[str] = None, private: bool = False, passphrase: Optional[str] = None, ) -> JWK: """Convert RSA key from PEM to JWK""" if private: key = import_private_rsa_key_from_file(filename, passphrase) else: key = import_public_rsa_key_from_file(filename) jwk = RSAKey(kid=kid) jwk.load_key(key) return jwk def pem2ec( filename: str, kid: Optional[str] = None, private: bool = False, passphrase: Optional[str] = None, ) -> JWK: """Convert EC key from PEM to JWK""" if private: key = import_private_ec_key_from_file(filename, passphrase) else: key = import_public_ec_key_from_file(filename) jwk = ECKey(kid=kid) jwk.load_key(key) return jwk def bin2jwk(filename: str, kid: str) -> JWK: """Read raw key from filename and return JWK""" with open(filename, "rb") as file: content = file.read() return SYMKey(kid=kid, key=content) def pem2jwk( filename: str, kid: Optional[str] = None, kty: Optional[str] = None, private: bool = False, passphrase: Optional[str] = None, ) -> JWK: """Read PEM from filename and return JWK""" with open(filename, "rt") as file: content = file.readlines() header = content[0] if private: if passphrase is None: passphrase = getpass("Private key passphrase: ") if len(passphrase) == 0: passphrase = None else: passphrase = None if "BEGIN PUBLIC KEY" in header: if kty is not None and kty == "EC": jwk = pem2ec(filename, kid, private=False) elif kty is not None and kty == "RSA": jwk = pem2rsa(filename, kid, private=False) else: raise ValueError("Unknown key type") elif "BEGIN PRIVATE KEY" in header: if kty is not None and kty == "EC": jwk = pem2ec(filename, kid, private=True, passphrase=passphrase) elif kty is not None and kty == "RSA": jwk = pem2rsa(filename, kid, private=True, passphrase=passphrase) else: raise ValueError("Unknown key type") elif "BEGIN EC PRIVATE KEY" in header: jwk = pem2ec(filename, kid, private=True, passphrase=passphrase) elif "BEGIN EC PUBLIC KEY" in header: jwk = pem2ec(filename, kid, private=False) elif "BEGIN RSA PRIVATE KEY" in header: jwk = pem2rsa(filename, kid, private=True, passphrase=passphrase) elif "BEGIN RSA PUBLIC KEY" in header: jwk = pem2rsa(filename, kid, private=False) else: raise ValueError("Unknown PEM format") return jwk def export_jwk( jwk: JWK, private: bool = False, encrypt: bool = False, passphrase: Optional[str] = None, ) -> bytes: """Export JWK as PEM/bin""" if jwk.kty == "oct": # jwk is in fact a SYMKey return jwk.key # All other key types have private and public keys if private: if encrypt: if passphrase is None: passphrase = getpass("Private key passphrase: ") else: passphrase = None if passphrase: enc = serialization.BestAvailableEncryption(passphrase.encode()) else: enc = serialization.NoEncryption() serialized = jwk.priv_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=enc, ) else: serialized = jwk.pub_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ) return serialized def output_jwk(jwk: JWK, private: bool = False, filename: Optional[str] = None) -> None: """Output JWK to file""" serialized = jwk.serialize(private=private) if filename is not None: with open(filename, mode="wt") as file: file.write(json.dumps(serialized)) else: print(json.dumps(serialized, indent=4)) def output_bytes(data: bytes, binary: bool = False, filename: Optional[str] = None) -> None: """Output data to file""" if filename is not None: with open(filename, mode="wb") as file: file.write(data) else: if binary: print(hexlify(data).decode()) else: print(data.decode()) def main(): """Main function""" parser = argparse.ArgumentParser(description="JWK Conversion Utility") parser.add_argument("--kid", dest="kid", metavar="key_id", help="Key ID") parser.add_argument("--kty", dest="kty", metavar="type", help="Key type") parser.add_argument("--private", dest="private", action="store_true", help="Output private key") parser.add_argument( "--encrypt", dest="encrypt", action="store_true", help="Encrypt private key" ) parser.add_argument("--output", dest="output", metavar="filename", help="Output file name") parser.add_argument("filename", metavar="filename", nargs=1, help="filename") args = parser.parse_args() f = args.filename[0] if f.endswith(".json"): jwk = jwk_from_file(f, args.private) serialized = export_jwk(jwk, private=args.private, encrypt=args.encrypt) output_bytes(data=serialized, binary=(jwk.kty == "oct"), filename=args.output) elif f.endswith(".bin"): jwk = bin2jwk(filename=f, kid=args.kid) output_jwk(jwk=jwk, private=True, filename=args.output) elif f.endswith(".pem"): jwk = pem2jwk(filename=f, kid=args.kid, private=args.private, kty=args.kty) output_jwk(jwk=jwk, private=args.private, filename=args.output) else: exit(-1) if __name__ == "__main__": main()
StarcoderdataPython
3237278
# coding: utf-8 """ Masking API Schema for the Masking Engine API # noqa: E501 OpenAPI spec version: 5.1.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from dxm.lib.masking_api.api_client import ApiClient class FileRulesetApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def bulk_file_update(self, file_ruleset_id, body, **kwargs): # noqa: E501 """Update the set of files and their attributes associated with a file ruleset in bulk # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.bulk_file_update(file_ruleset_id, body, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to update the file for (required) :param FileMetadataBulkInput body: The exact list of files to put in the ruleset. Note that existing files for this ruleset not in this list will be deleted (required) :return: AsyncTask If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.bulk_file_update_with_http_info(file_ruleset_id, body, **kwargs) # noqa: E501 else: (data) = self.bulk_file_update_with_http_info(file_ruleset_id, body, **kwargs) # noqa: E501 return data def bulk_file_update_with_http_info(self, file_ruleset_id, body, **kwargs): # noqa: E501 """Update the set of files and their attributes associated with a file ruleset in bulk # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.bulk_file_update_with_http_info(file_ruleset_id, body, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to update the file for (required) :param FileMetadataBulkInput body: The exact list of files to put in the ruleset. Note that existing files for this ruleset not in this list will be deleted (required) :return: AsyncTask If the method is called asynchronously, returns the request thread. """ all_params = ['file_ruleset_id', 'body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method bulk_file_update" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'file_ruleset_id' is set if self.api_client.client_side_validation and ('file_ruleset_id' not in params or params['file_ruleset_id'] is None): # noqa: E501 raise ValueError("Missing the required parameter `file_ruleset_id` when calling `bulk_file_update`") # noqa: E501 # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in params or params['body'] is None): # noqa: E501 raise ValueError("Missing the required parameter `body` when calling `bulk_file_update`") # noqa: E501 collection_formats = {} path_params = {} if 'file_ruleset_id' in params: path_params['fileRulesetId'] = params['file_ruleset_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/file-rulesets/{fileRulesetId}/bulk-file-update', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='AsyncTask', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def create_file_ruleset(self, body, **kwargs): # noqa: E501 """Create file ruleset # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_file_ruleset(body, async_req=True) >>> result = thread.get() :param async_req bool :param FileRuleset body: The file ruleset to create (required) :return: FileRuleset If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_file_ruleset_with_http_info(body, **kwargs) # noqa: E501 else: (data) = self.create_file_ruleset_with_http_info(body, **kwargs) # noqa: E501 return data def create_file_ruleset_with_http_info(self, body, **kwargs): # noqa: E501 """Create file ruleset # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_file_ruleset_with_http_info(body, async_req=True) >>> result = thread.get() :param async_req bool :param FileRuleset body: The file ruleset to create (required) :return: FileRuleset If the method is called asynchronously, returns the request thread. """ all_params = ['body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_file_ruleset" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if self.api_client.client_side_validation and ('body' not in params or params['body'] is None): # noqa: E501 raise ValueError("Missing the required parameter `body` when calling `create_file_ruleset`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/file-rulesets', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='FileRuleset', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_file_ruleset(self, file_ruleset_id, **kwargs): # noqa: E501 """Delete file ruleset by ID # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_file_ruleset(file_ruleset_id, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to delete (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_file_ruleset_with_http_info(file_ruleset_id, **kwargs) # noqa: E501 else: (data) = self.delete_file_ruleset_with_http_info(file_ruleset_id, **kwargs) # noqa: E501 return data def delete_file_ruleset_with_http_info(self, file_ruleset_id, **kwargs): # noqa: E501 """Delete file ruleset by ID # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_file_ruleset_with_http_info(file_ruleset_id, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to delete (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['file_ruleset_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_file_ruleset" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'file_ruleset_id' is set if self.api_client.client_side_validation and ('file_ruleset_id' not in params or params['file_ruleset_id'] is None): # noqa: E501 raise ValueError("Missing the required parameter `file_ruleset_id` when calling `delete_file_ruleset`") # noqa: E501 collection_formats = {} path_params = {} if 'file_ruleset_id' in params: path_params['fileRulesetId'] = params['file_ruleset_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/file-rulesets/{fileRulesetId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_all_file_rulesets(self, **kwargs): # noqa: E501 """Get all file rulesets # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_all_file_rulesets(async_req=True) >>> result = thread.get() :param async_req bool :param int environment_id: The ID of the environment to get all file rulesets from :param int page_number: The page number for which to get file rulesets. This will default to the first page if excluded :param int page_size: The maximum number of objects to return. This will default to the DEFAULT_API_PAGE_SIZE property if not provided :return: FileRulesetList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_all_file_rulesets_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_all_file_rulesets_with_http_info(**kwargs) # noqa: E501 return data def get_all_file_rulesets_with_http_info(self, **kwargs): # noqa: E501 """Get all file rulesets # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_all_file_rulesets_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param int environment_id: The ID of the environment to get all file rulesets from :param int page_number: The page number for which to get file rulesets. This will default to the first page if excluded :param int page_size: The maximum number of objects to return. This will default to the DEFAULT_API_PAGE_SIZE property if not provided :return: FileRulesetList If the method is called asynchronously, returns the request thread. """ all_params = ['environment_id', 'page_number', 'page_size'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_all_file_rulesets" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'environment_id' in params: query_params.append(('environment_id', params['environment_id'])) # noqa: E501 if 'page_number' in params: query_params.append(('page_number', params['page_number'])) # noqa: E501 if 'page_size' in params: query_params.append(('page_size', params['page_size'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/file-rulesets', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='FileRulesetList', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_file_ruleset_by_id(self, file_ruleset_id, **kwargs): # noqa: E501 """Get file ruleset by ID # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_file_ruleset_by_id(file_ruleset_id, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to get (required) :return: FileRuleset If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_file_ruleset_by_id_with_http_info(file_ruleset_id, **kwargs) # noqa: E501 else: (data) = self.get_file_ruleset_by_id_with_http_info(file_ruleset_id, **kwargs) # noqa: E501 return data def get_file_ruleset_by_id_with_http_info(self, file_ruleset_id, **kwargs): # noqa: E501 """Get file ruleset by ID # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_file_ruleset_by_id_with_http_info(file_ruleset_id, async_req=True) >>> result = thread.get() :param async_req bool :param int file_ruleset_id: The ID of the file ruleset to get (required) :return: FileRuleset If the method is called asynchronously, returns the request thread. """ all_params = ['file_ruleset_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_file_ruleset_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'file_ruleset_id' is set if self.api_client.client_side_validation and ('file_ruleset_id' not in params or params['file_ruleset_id'] is None): # noqa: E501 raise ValueError("Missing the required parameter `file_ruleset_id` when calling `get_file_ruleset_by_id`") # noqa: E501 collection_formats = {} path_params = {} if 'file_ruleset_id' in params: path_params['fileRulesetId'] = params['file_ruleset_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['api_key'] # noqa: E501 return self.api_client.call_api( '/file-rulesets/{fileRulesetId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='FileRuleset', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
StarcoderdataPython
1693937
# -*- coding: utf-8 -*- from pyramid.view import view_config @view_config(route_name='admin_index', request_method='GET', renderer='h:templates/admin/index.html.jinja2', permission='admin_index') def index(_): return {} def includeme(config): config.scan(__name__)
StarcoderdataPython
3295084
from django.urls import path from . import views urlpatterns = [ path('view-path/', views.my_view, name='view-name'), ]
StarcoderdataPython
1617453
import requests url = 'http://127.0.0.1:5000/cars/08%20C%201234' response = requests.delete(url) print (response.status_code) print (response.text)
StarcoderdataPython
3379383
<filename>.leetcode/68.text-justification.py # @lc app=leetcode id=68 lang=python3 # # [68] Text Justification # # https://leetcode.com/problems/text-justification/description/ # # algorithms # Hard (30.13%) # Likes: 995 # Dislikes: 1966 # Total Accepted: 168.2K # Total Submissions: 556.2K # Testcase Example: '["This", "is", "an", "example", "of", "text", "justification."]\n16' # # Given an array of words and a width maxWidth, format the text such that each # line has exactly maxWidth characters and is fully (left and right) # justified. # # You should pack your words in a greedy approach; that is, pack as many words # as you can in each line. Pad extra spaces ' ' when necessary so that each # line has exactly maxWidth characters. # # Extra spaces between words should be distributed as evenly as possible. If # the number of spaces on a line do not divide evenly between words, the empty # slots on the left will be assigned more spaces than the slots on the right. # # For the last line of text, it should be left justified and no extra space is # inserted between words. # # Note: # # # A word is defined as a character sequence consisting of non-space characters # only. # Each word's length is guaranteed to be greater than 0 and not exceed # maxWidth. # The input array words contains at least one word. # # # # Example 1: # # # Input: words = ["This", "is", "an", "example", "of", "text", # "justification."], maxWidth = 16 # Output: # [ # "This    is    an", # "example  of text", # "justification.  " # ] # # Example 2: # # # Input: words = ["What","must","be","acknowledgment","shall","be"], maxWidth = # 16 # Output: # [ # "What   must   be", # "acknowledgment  ", # "shall be        " # ] # Explanation: Note that the last line is "shall be " instead of "shall # be", because the last line must be left-justified instead of fully-justified. # Note that the second line is also left-justified becase it contains only one # word. # # Example 3: # # # Input: words = # ["Science","is","what","we","understand","well","enough","to","explain","to","a","computer.","Art","is","everything","else","we","do"], # maxWidth = 20 # Output: # [ # "Science  is  what we", # ⁠ "understand      well", # "enough to explain to", # "a  computer.  Art is", # "everything  else  we", # "do                  " # ] # # # Constraints: # # # 1 <= words.length <= 300 # 1 <= words[i].length <= 20 # words[i] consists of only English letters and symbols. # 1 <= maxWidth <= 100 # words[i].length <= maxWidth # # # # # # @lc tags=string # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 文本适配。给定一系列单词,使用平铺模式,即每一行尽可能插入最多的单词,当不能继续插入时,两单词间的间隔要平均,前比后多。 # # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def fullJustify(self, words: List[str], maxWidth: int) -> List[str]: result = [] now = [words[0]] length = len(words[0]) for word in words[1:]: if length + len(now) + len(word) > maxWidth: if len(now) == 1: result.append(now[0] + ' ' * (maxWidth - len(now[0]))) else: blankSpace = maxWidth - length base = blankSpace // (len(now) - 1) times = blankSpace % (len(now) - 1) t = (' ' * (base + 1)).join(now[:times + 1]) t = (' ' * (base)).join([t] + now[times + 1:]) result.append(t) pass now = [word] length = len(word) else: length += len(word) now.append(word) if len(now) != 0: t = ' '.join(now) result.append(t + ' ' * (maxWidth - len(t))) return result # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print( 'words = ["This", "is", "an", "example", "of", "text","justification."], maxWidth = 16' ) print('Output :') print( str(Solution().fullJustify( ["This", "is", "an", "example", "of", "text", "justification."], 16))) print('Exception :') print('["This    is    an","example  of text","justification.  "]') print() print('Example 2:') print('Input : ') print( 'words = ["What","must","be","acknowledgment","shall","be"], maxWidth =16' ) print('Output :') print( str(Solution().fullJustify( ["What", "must", "be", "acknowledgment", "shall", "be"], 16))) print('Exception :') print('["What   must   be","acknowledgment  ","shall be        "]') print() print('Example 3:') print('Input : ') print( 'words =["Science","is","what","we","understand","well","enough","to","explain","to","a","computer.","Art","is","everything","else","we","do"],maxWidth = 20' ) print('Output :') print( str(Solution().fullJustify([ "Science", "is", "what", "we", "understand", "well", "enough", "to", "explain", "to", "a", "computer.", "Art", "is", "everything", "else", "we", "do" ], 20))) print('Exception :') print( '["Science  is  what we",⁠ "understand      well","enough to explain to","a  computer.  Art is","everything  else  we","do                  "]' ) print() pass # @lc main=end
StarcoderdataPython
3266721
<gh_stars>0 # -------------- import numpy as np import pandas as pd import matplotlib.pyplot as plt # code starts here df = pd.read_csv(path) # probability of fico score greater than 700 p_a = df[df['fico'].astype(float) >700].shape[0]/df.shape[0] print(p_a) # probability of purpose == debt_consolidation p_b = df[df['purpose']== 'debt_consolidation'].shape[0]/df.shape[0] print(p_b) # Create new dataframe for condition ['purpose']== 'debt_consolidation' df1 = df[df['purpose']== 'debt_consolidation'] # Calculate the P(A|B) p_a_b = df1[df1['fico'].astype(float) >700].shape[0]/df1.shape[0] print(p_a_b) # Check whether the P(A) and P(B) are independent from each other result = (p_a == p_a_b) print(result) # code ends here # -------------- # code starts here prob_lp = df[df['paid.back.loan'] == 'Yes'].shape[0]/df.shape[0] prob_cs = df[df['credit.policy'] == 'Yes'].shape[0]/df.shape[0] new_df = df[df['paid.back.loan'] == 'Yes'] prob_pd_cs = new_df[new_df['credit.policy']=='Yes'].shape[0]/new_df.shape[0] bayes = (prob_pd_cs*prob_lp)/prob_cs # code ends here # -------------- # code starts here #df[df['purpose']].plot(kind='bar') #df[df['purpose']].plot.bar() plt.bar(df['purpose'].index,df['purpose']) df1 = df[df['paid.back.loan']=='No'] plt.bar(df1['purpose'].index,df1['purpose']) # code ends here # -------------- # code starts here inst_median = df['installment'].median() inst_mean = df['installment'].mean() df.hist('installment',bins=10) df.hist('log.annual.inc',bins=10) # code ends here
StarcoderdataPython
4817909
from dataclasses import dataclass from typing import Generator, Any from datek_jaipur.domain.compound_types.card import Card, CardSet from datek_jaipur.domain.compound_types.goods import GoodsType from datek_jaipur.domain.compound_types.player import Player @dataclass class Scenario: name: str player1: Player player2: Player expected: Any def generate_scenarios() -> Generator[Scenario, None, None]: camel = Card(GoodsType.CAMEL, 1) player1 = Player(name=_PLAYER1, score=1, goods=CardSet(), herd=CardSet([camel])) player2 = Player(name=_PLAYER2, score=0, goods=CardSet(), herd=CardSet()) yield Scenario(name=_PLAYER1, player1=player1, player2=player2, expected=player1) player1 = Player(name=_PLAYER1, score=0, goods=CardSet(), herd=CardSet()) player2 = Player(name=_PLAYER2, score=1, goods=CardSet(), herd=CardSet([camel])) yield Scenario(name=_PLAYER2, player1=player1, player2=player2, expected=player2) player1 = Player(name=_PLAYER1, score=1, goods=CardSet(), herd=CardSet([camel])) player2 = Player(name=_PLAYER2, score=1, goods=CardSet(), herd=CardSet([camel])) yield Scenario(name="None", player1=player1, player2=player2, expected=None) _PLAYER1 = "Player1" _PLAYER2 = "Player2"
StarcoderdataPython
1676180
<filename>tests/core/test_path_mapping.py # Copyright 2020 ScyllaDB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from core.operations import PathMapping @pytest.fixture def mapping(): return PathMapping("/") def test_get_from_empty(mapping): with pytest.raises(KeyError): return mapping[42] def test_set_one_path(mapping): mapping[42] = "/root" assert mapping[42] == "/root" assert mapping.inode_lookups[42] == 1 def test_set_many_paths(mapping): mapping[42] = "/root" mapping[42] = "/home" mapping[42] = "/lib" assert mapping[42] in ["/root", "/home", "/lib"] assert mapping.inode_lookups[42] == 3 assert dict.__getitem__(mapping, 42) == {"/root", "/home", "/lib"} def test_set_same_path_twice(mapping): mapping[42] = "/root" mapping[42] = "/root" assert mapping[42] == "/root" assert mapping.inode_lookups[42] == 2 assert dict.__getitem__(mapping, 42) == "/root" def test_forget_path(mapping): mapping[42] = "/root" mapping[42] = "/home" mapping[42] = "/lib" with pytest.raises(KeyError): mapping.forget_path(42, "/usr") assert dict.__getitem__(mapping, 42) == {"/root", "/home", "/lib"} assert mapping.inode_lookups[42] == 3 mapping.forget_path(100500, "/root") assert dict.__getitem__(mapping, 42) == {"/root", "/home", "/lib"} assert mapping.inode_lookups[42] == 3 mapping.forget_path(42, "/root") assert dict.__getitem__(mapping, 42) == {"/home", "/lib"} assert mapping.inode_lookups[42] == 3 mapping.forget_path(42, "/home") assert dict.__getitem__(mapping, 42) == "/lib" assert mapping.inode_lookups[42] == 3 with pytest.raises(KeyError): mapping.forget_path(42, "/usr") assert dict.__getitem__(mapping, 42) == "/lib" assert mapping.inode_lookups[42] == 3 mapping.forget_path(42, "/lib") assert 42 not in mapping assert mapping.inode_lookups[42] == 3 def test_forget_path_and_add_again(mapping): mapping[42] = "/root" mapping.forget_path(42, "/root") assert mapping.inode_lookups[42] == 1 mapping[42] = "/root" assert mapping.inode_lookups[42] == 2 # is it expected? def replace_path_for_inode_with_one_path(mapping): mapping[42] = "/root" mapping.replace_path(100500, "/root", "/usr") assert dict.__getitem__(mapping, 42) == "/root" assert mapping.inode_lookups[42] == 1 with pytest.raises(KeyError): mapping.replace_path(42, "/lib", "/usr") assert dict.__getitem__(mapping, 42) == "/root" assert mapping.inode_lookups[42] == 1 mapping.replace_path(42, "/root", "/usr") assert dict.__getitem__(mapping, 42) == "/usr" assert mapping.inode_lookups[42] == 1 def replace_path_for_inode_with_multiple_pathes(mapping): mapping[42] = "/root" mapping[42] = "/home" mapping.replace_path(100500, "/root", "/usr") assert dict.__getitem__(mapping, 42) == {"/root", "/home"} assert mapping.inode_lookups[42] == 2 with pytest.raises(KeyError): mapping.replace_path(42, "/lib", "/usr") assert dict.__getitem__(mapping, 42) == {"/root", "/home"} assert mapping.inode_lookups[42] == 2 mapping.replace_path(42, "/root", "/usr") assert dict.__getitem__(mapping, 42) == {"/usr", "/home"} assert mapping.inode_lookups[42] == 2 def test_forget_inode_lookups(mapping): mapping[42] = "/root" mapping[42] = "/root" mapping[42] = "/root" mapping.forget_inode_lookups(inode=42, nlookup=2) assert 42 in mapping assert mapping.inode_lookups[42] == 1 mapping.forget_inode_lookups(inode=42, nlookup=1) assert 42 not in mapping assert 42 not in mapping.inode_lookups mapping[13] = "/lib" mapping.forget_inode_lookups(inode=13, nlookup=666) assert 13 not in mapping assert 13 not in mapping.inode_lookups
StarcoderdataPython
3333964
#!/usr/bin/env python3 # encoding: utf-8 # By @LyricLy # Public Domain / CC-0 <https://creativecommons.org/publicdomain/zero/1.0/> import time from collections import defaultdict class Entity: def __init__(self, value): self.value = value self.pos = 0 self.vel = value def move(self): self.pos += self.vel if self.pos <= 0: return self.value self.vel -= 1 def print_entities(edct): print("\n" * 100) for i in range(max(edct.keys()))[::-1]: try: print(edct[i][0].value) except IndexError: print("-") time.sleep(1) def arrowsort(lst, output=None): rlst = [] edct = defaultdict(list, {0: list(map(Entity, lst))}) while True: if output is not None: output(edct) new_edct = defaultdict(list) for n in edct: for x in edct[n]: r = x.move() if r is not None: rlst.append(r) else: new_edct[x.pos].append(x) if not new_edct: return rlst edct = new_edct if __name__ == "__main__": xs = eval(input()) arrowsort(xs, print_entities) print(xs)
StarcoderdataPython
1683626
<filename>backend/app/route/survey/provider.py from app.api.base.base_sql import Sql from app.api.base import base_name as names class Provider: """ Класс для работы с товарами """ @staticmethod def post_survey(args): """ Занести результаты теста :param args: :return: """ query = """ insert into survey (eat, dysphagia, wash, wash_teeth, dress, restroom, id_user) values ({eat}, {dysphagia}, {wash}, {wash_teeth}, {dress}, {restroom}, {id_user}) returning id_survey, eat, dysphagia, wash, wash_teeth, dress, restroom, id_user """ result = Sql.exec(query=query, args=args) return result
StarcoderdataPython
3202315
""" ======================================================== Filename: test_suite.py Author: <NAME> Description: The test suit constist of a test bench, a testharness and a set of design files. The test suite is used for compiling and running a set of simulations/tests. (c) 2019 <NAME> ======================================================== """ from compiler import Compiler class Test_suite: def __init__(self): self.tb_list = [] self.lib_list = [] self.testbench = None self.compiler = Compiler() self.organize_collection_list = [] def add_testbench(self, testbench): """ Set the testbench object for test suite. Args: testbench (str): testbench filename and path """ self.testbench = testbench def get_testbench(self): return self.testbench def set_collection(self, organize_collection_list): """ Add a collection to test suite Args: organize_collection_list (Collection object): a collection of VHDL object files. """ self.organize_collection_list = organize_collection_list def get_collection(self): return self.organize_collection_list def compile(self): #self.compiler.compile(self.organize_collection_list) pass def simulate(self): pass
StarcoderdataPython
1640977
from typing import Union from collections import OrderedDict from ..api.syntax import TaskDeclaration from ..api.syntax import GroupDeclaration from ..inputoutput import SystemIO STATUS_STARTED = 'started' STATUS_ERRORED = 'errored' STATUS_FAILURE = 'failure' STATUS_SUCCEED = 'succeed' class QueueItem(object): task: TaskDeclaration status: str def __init__(self, task: TaskDeclaration, status: str): self.task = task self.status = status class ProgressObserver(object): _io: SystemIO _tasks: OrderedDict # OrderedDict[str, QueueItem] _failed_count: int def __init__(self, io: SystemIO): self._io = io self._tasks = OrderedDict() self._failed_count = False @staticmethod def _format_parent_task(parent: Union[GroupDeclaration, None]) -> str: return ('[part of ' + parent.get_name() + ']') if parent else '' def task_started(self, declaration: TaskDeclaration, parent: Union[GroupDeclaration, None], args: list): """ When task is just started """ self._tasks[declaration.to_full_name()] = QueueItem(declaration, STATUS_STARTED) self._io.info_msg(' >> Executing %s %s %s' % ( declaration.to_full_name(), ' '.join(args), self._format_parent_task(parent) )) def task_errored(self, declaration: TaskDeclaration, exception: Exception): """ On exception catched in task execution """ self._tasks[declaration.to_full_name()] = QueueItem(declaration, STATUS_ERRORED) self._failed_count += 1 self._io.print_opt_line() self._io.error_msg('The task "%s" was interrupted with an %s' % ( declaration.to_full_name(), str(exception.__class__) )) self._io.print_separator() self._io.print_opt_line() def task_failed(self, declaration: TaskDeclaration, parent: Union[GroupDeclaration, None]): """ When task returns False """ self._set_status(declaration, STATUS_FAILURE) self._failed_count += 1 if not declaration.get_task_to_execute().is_silent_in_observer(): self._io.print_opt_line() self._io.error_msg('The task "%s" %s ended with a failure' % ( declaration.to_full_name(), self._format_parent_task(parent) )) self._io.print_separator() self._io.print_opt_line() def task_succeed(self, declaration: TaskDeclaration, parent: Union[GroupDeclaration, None]): """ When task success """ self._set_status(declaration, STATUS_SUCCEED) if not declaration.get_task_to_execute().is_silent_in_observer(): self._io.print_opt_line() self._io.success_msg('The task "%s" %s succeed.' % ( declaration.to_full_name(), self._format_parent_task(parent) )) self._io.print_separator() self._io.print_opt_line() def execution_finished(self): """ When all tasks were executed """ if self.has_at_least_one_failed_task(): self._io.error_msg('Execution failed with %i failed tasks of %i total tasks scheduled for execution' % ( self._failed_count, len(self._tasks) )) else: self._io.success_msg('Successfully executed %i tasks.' % len(self._tasks)) self._io.print_opt_line() def _set_status(self, declaration: TaskDeclaration, status: str): self._tasks[declaration.to_full_name()] = QueueItem(declaration, status) def has_at_least_one_failed_task(self) -> bool: return self._failed_count > 0
StarcoderdataPython
23298
from flask_wtf import Form from wtforms import TextField, PasswordField, validators, IntegerField, BooleanField, SelectField, SubmitField from wtforms.validators import Required, Length, Email, ValidationError, Regexp, EqualTo, NumberRange from wtforms.widgets import SubmitInput class SignUp(Form): username = TextField("Username", validators=[Required("Please provide a username without any spaces"), Length(min=4, max=20), Regexp(r'^[\w.@+-]+$', message="Please provide a username without any spaces")]) password = PasswordField("Password", validators=[Required("Please pick a secure password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces")]) email = TextField("Email", validators=[Required("Please provide a valid email address"), Length(min=6, max=35), Email(message="That is not a valid email address"), Regexp(r'^[\w.@+-]+$', message="Please provide an email without any spaces")]) firstname = TextField("First Name", validators=[Required("Please provide your first name"), Regexp(r'^[\w.@+-]+$', message="Please enter your first name without any spaces")]) lastname = TextField("Last Name", validators=[Required("Please provide your last name"), Regexp(r'^[\w.@+-]+$', message="Please enter your last name without any spaces")]) class Login(Form): username = TextField("Username", validators=[Required("Please provide a username without any spaces"), Length(min=4, max=20), Regexp(r'^[\w.@+-]+$', message="Please provide a username without any spaces")]) password = PasswordField("Password", validators=[Required("Please pick a secure password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces")]) class ForgotPassword(Form): email = TextField("Email", validators=[Required("Please provide a valid email address"), Length(min=6, max=35), Email(message="That is not a valid email address"), Regexp(r'^[\w.@+-]+$', message="Please provide an email without any spaces")]) class NewPassword(Form): password = PasswordField("Password", validators=[Required("Please pick a secure password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces")]) confirm_password = PasswordField("Confirm Password", validators=[Required("Required"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces"), EqualTo("password", message="Passwords must match")]) class ChangePassword(Form): current_password = PasswordField("Current Password", validators=[Required("Please type in your current password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces")]) password = PasswordField("<PASSWORD>", validators=[Required("Please pick a secure password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces")]) confirm_password = PasswordField("Confirm Password", validators=[Required("Password must match with new password"), Regexp(r'^[\w.@+-]+$', message="Please provide a password without any spaces"), EqualTo("password", message="Password must match with new password")]) class CamSettings(Form): brightness = IntegerField("Brightness", default=50, validators=[Required("Please choose a number between 0 and 100"), NumberRange(min=0, max=100, message="Please choose a number between 0 and 100")]) resolution = SelectField("Video/Image Resolution: ", choices=[("320x240", "320 x 240"), ("640x480", "640 x 480"), ("800x600", "800 x 600")], default="640x480", validators=[(Required("Required"))]) hflip = BooleanField("Horizontal Flip: ", default=False) vflip = BooleanField("Vertical Flip: ", default=False) class Recording(Form): start = SubmitField("Start Recording") stop = SubmitField("Stop Recording") class LicensePlate(Form): license = TextField("License Plate", validators=[Required("Please provide a license plate without any spaces"), Length(min=4, max=10), Regexp(r'^[\w.@+-]+$', message="Please provide a license plate without any spaces")]) class ForceLock(Form): forcelock = SubmitField("Force Lock") class GarageDoor(Form): opengarage = SubmitField("Open Garage")
StarcoderdataPython
3396265
<reponame>zeljkofilipin/how-to-code print("bok")
StarcoderdataPython
4834949
"""UniFi sensor platform tests.""" from collections import deque from copy import deepcopy from asynctest import patch from homeassistant import config_entries from homeassistant.components import unifi from homeassistant.components.unifi.const import ( CONF_CONTROLLER, CONF_SITE_ID, CONTROLLER_ID as CONF_CONTROLLER_ID, UNIFI_CONFIG, UNIFI_WIRELESS_CLIENTS, ) from homeassistant.setup import async_setup_component from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, CONF_VERIFY_SSL, ) import homeassistant.components.sensor as sensor CLIENTS = [ { "hostname": "Wired client hostname", "ip": "10.0.0.1", "is_wired": True, "last_seen": 1562600145, "mac": "00:00:00:00:00:01", "name": "Wired client name", "oui": "Producer", "sw_mac": "00:00:00:00:01:01", "sw_port": 1, "wired-rx_bytes": 1234000000, "wired-tx_bytes": 5678000000, }, { "hostname": "Wireless client hostname", "ip": "10.0.0.2", "is_wired": False, "last_seen": 1562600145, "mac": "00:00:00:00:00:02", "name": "Wireless client name", "oui": "Producer", "sw_mac": "00:00:00:00:01:01", "sw_port": 2, "rx_bytes": 1234000000, "tx_bytes": 5678000000, }, ] CONTROLLER_DATA = { CONF_HOST: "mock-host", CONF_USERNAME: "mock-user", CONF_PASSWORD: "<PASSWORD>", CONF_PORT: 1234, CONF_SITE_ID: "mock-site", CONF_VERIFY_SSL: False, } ENTRY_CONFIG = {CONF_CONTROLLER: CONTROLLER_DATA} CONTROLLER_ID = CONF_CONTROLLER_ID.format(host="mock-host", site="mock-site") SITES = {"Site name": {"desc": "Site name", "name": "mock-site", "role": "admin"}} async def setup_unifi_integration( hass, config, options, sites, clients_response, devices_response, clients_all_response, ): """Create the UniFi controller.""" hass.data[UNIFI_CONFIG] = [] hass.data[UNIFI_WIRELESS_CLIENTS] = unifi.UnifiWirelessClients(hass) config_entry = config_entries.ConfigEntry( version=1, domain=unifi.DOMAIN, title="Mock Title", data=config, source="test", connection_class=config_entries.CONN_CLASS_LOCAL_POLL, system_options={}, options=options, entry_id=1, ) mock_client_responses = deque() mock_client_responses.append(clients_response) mock_device_responses = deque() mock_device_responses.append(devices_response) mock_client_all_responses = deque() mock_client_all_responses.append(clients_all_response) mock_requests = [] async def mock_request(self, method, path, json=None): mock_requests.append({"method": method, "path": path, "json": json}) if path == "s/{site}/stat/sta" and mock_client_responses: return mock_client_responses.popleft() if path == "s/{site}/stat/device" and mock_device_responses: return mock_device_responses.popleft() if path == "s/{site}/rest/user" and mock_client_all_responses: return mock_client_all_responses.popleft() return {} with patch("aiounifi.Controller.login", return_value=True), patch( "aiounifi.Controller.sites", return_value=sites ), patch("aiounifi.Controller.request", new=mock_request): await unifi.async_setup_entry(hass, config_entry) await hass.async_block_till_done() hass.config_entries._entries.append(config_entry) controller_id = unifi.get_controller_id_from_config_entry(config_entry) controller = hass.data[unifi.DOMAIN][controller_id] controller.mock_client_responses = mock_client_responses controller.mock_device_responses = mock_device_responses controller.mock_client_all_responses = mock_client_all_responses controller.mock_requests = mock_requests return controller async def test_platform_manually_configured(hass): """Test that we do not discover anything or try to set up a controller.""" assert ( await async_setup_component( hass, sensor.DOMAIN, {sensor.DOMAIN: {"platform": "unifi"}} ) is True ) assert unifi.DOMAIN not in hass.data async def test_no_clients(hass): """Test the update_clients function when no clients are found.""" controller = await setup_unifi_integration( hass, ENTRY_CONFIG, options={unifi.const.CONF_ALLOW_BANDWIDTH_SENSORS: True}, sites=SITES, clients_response=[], devices_response=[], clients_all_response=[], ) assert len(controller.mock_requests) == 3 assert len(hass.states.async_all()) == 2 async def test_switches(hass): """Test the update_items function with some clients.""" controller = await setup_unifi_integration( hass, ENTRY_CONFIG, options={ unifi.const.CONF_ALLOW_BANDWIDTH_SENSORS: True, unifi.const.CONF_TRACK_CLIENTS: False, unifi.const.CONF_TRACK_DEVICES: False, }, sites=SITES, clients_response=CLIENTS, devices_response=[], clients_all_response=[], ) assert len(controller.mock_requests) == 3 assert len(hass.states.async_all()) == 6 wired_client_rx = hass.states.get("sensor.wired_client_name_rx") assert wired_client_rx.state == "1234.0" wired_client_tx = hass.states.get("sensor.wired_client_name_tx") assert wired_client_tx.state == "5678.0" wireless_client_rx = hass.states.get("sensor.wireless_client_name_rx") assert wireless_client_rx.state == "1234.0" wireless_client_tx = hass.states.get("sensor.wireless_client_name_tx") assert wireless_client_tx.state == "5678.0" clients = deepcopy(CLIENTS) clients[0]["is_wired"] = False clients[1]["rx_bytes"] = 2345000000 clients[1]["tx_bytes"] = 6789000000 controller.mock_client_responses.append(clients) await controller.async_update() await hass.async_block_till_done() wireless_client_rx = hass.states.get("sensor.wireless_client_name_rx") assert wireless_client_rx.state == "2345.0" wireless_client_tx = hass.states.get("sensor.wireless_client_name_tx") assert wireless_client_tx.state == "6789.0"
StarcoderdataPython
1665447
from mayan.apps.common.tests.base import GenericViewTestCase from mayan.apps.documents.tests.base import GenericDocumentViewTestCase from ..literals import WIDGET_CLASS_TEXTAREA from ..models import WorkflowTransition from ..permissions import ( permission_workflow_edit, permission_workflow_transition, permission_workflow_view ) from .literals import ( TEST_WORKFLOW_TRANSITION_FIELD_HELP_TEXT, TEST_WORKFLOW_TRANSITION_FIELD_LABEL, TEST_WORKFLOW_TRANSITION_FIELD_NAME, TEST_WORKFLOW_TRANSITION_FIELD_TYPE, TEST_WORKFLOW_TRANSITION_LABEL, TEST_WORKFLOW_TRANSITION_LABEL_EDITED ) from .mixins import ( WorkflowTestMixin, WorkflowTransitionEventViewTestMixin, WorkflowTransitionFieldViewTestMixin, WorkflowViewTestMixin, WorkflowTransitionViewTestMixin ) class WorkflowTransitionViewTestCase( WorkflowTestMixin, WorkflowViewTestMixin, WorkflowTransitionViewTestMixin, GenericViewTestCase ): def test_create_test_workflow_transition_no_access(self): self._create_test_workflow() self._create_test_workflow_states() response = self._request_test_workflow_transition_create_view() self.assertEqual(response.status_code, 404) self.assertEqual(WorkflowTransition.objects.count(), 0) def test_create_test_workflow_transition_with_access(self): self._create_test_workflow() self._create_test_workflow_states() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_test_workflow_transition_create_view() self.assertEqual(response.status_code, 302) self.assertEqual(WorkflowTransition.objects.count(), 1) self.assertEqual( WorkflowTransition.objects.all()[0].label, TEST_WORKFLOW_TRANSITION_LABEL ) self.assertEqual( WorkflowTransition.objects.all()[0].origin_state, self.test_workflow_state_1 ) self.assertEqual( WorkflowTransition.objects.all()[0].destination_state, self.test_workflow_state_2 ) def test_delete_workflow_transition_no_permissions(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() response = self._request_test_workflow_transition_delete_view() self.assertEqual(response.status_code, 404) self.assertTrue( self.test_workflow_transition in WorkflowTransition.objects.all() ) def test_delete_workflow_transition_with_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() self.grant_access(permission=permission_workflow_edit, obj=self.test_workflow) response = self._request_test_workflow_transition_delete_view() self.assertEqual(response.status_code, 302) self.assertFalse( self.test_workflow_transition in WorkflowTransition.objects.all() ) def test_edit_workflow_transition_no_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() response = self._request_test_workflow_transition_edit_view() self.assertEqual(response.status_code, 404) self.test_workflow_transition.refresh_from_db() self.assertEqual( self.test_workflow_transition.label, TEST_WORKFLOW_TRANSITION_LABEL ) def test_edit_workflow_transition_with_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_test_workflow_transition_edit_view() self.assertEqual(response.status_code, 302) self.test_workflow_transition.refresh_from_db() self.assertEqual( self.test_workflow_transition.label, TEST_WORKFLOW_TRANSITION_LABEL_EDITED ) def test_workflow_transition_list_no_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() response = self._request_test_workflow_transition_list_view() self.assertNotContains( response=response, text=self.test_workflow_transition.label, status_code=404 ) def test_workflow_transition_list_with_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() self.grant_access( obj=self.test_workflow, permission=permission_workflow_view ) response = self._request_test_workflow_transition_list_view() self.assertContains( response=response, text=self.test_workflow_transition.label, status_code=200 ) class WorkflowTransitionEventViewTestCase( WorkflowTestMixin, WorkflowTransitionEventViewTestMixin, GenericDocumentViewTestCase ): def test_workflow_transition_event_list_no_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() response = self._request_test_workflow_transition_event_list_view() self.assertEqual(response.status_code, 404) def test_workflow_transition_event_list_with_access(self): self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_test_workflow_transition_event_list_view() self.assertEqual(response.status_code, 200) class WorkflowTransitionFieldTestMixin: def _create_test_workflow_transition_field(self, extra_data=None): kwargs = { 'field_type': TEST_WORKFLOW_TRANSITION_FIELD_TYPE, 'name': TEST_WORKFLOW_TRANSITION_FIELD_NAME, 'label': TEST_WORKFLOW_TRANSITION_FIELD_LABEL, 'help_text': TEST_WORKFLOW_TRANSITION_FIELD_HELP_TEXT } kwargs.update(extra_data or {}) self.test_workflow_transition_field = self.test_workflow_transition.fields.create( **kwargs ) class WorkflowTransitionFieldViewTestCase( WorkflowTestMixin, WorkflowTransitionFieldTestMixin, WorkflowTransitionFieldViewTestMixin, WorkflowTransitionViewTestMixin, GenericViewTestCase ): def setUp(self): super(WorkflowTransitionFieldViewTestCase, self).setUp() self._create_test_workflow() self._create_test_workflow_states() self._create_test_workflow_transition() def test_workflow_transition_field_list_view_no_permission(self): self._create_test_workflow_transition_field() response = self._request_test_workflow_transition_field_list_view() self.assertNotContains( response=response, text=self.test_workflow_transition_field.label, status_code=404 ) def test_workflow_transition_field_list_view_with_access(self): self._create_test_workflow_transition_field() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_test_workflow_transition_field_list_view() self.assertContains( response=response, text=self.test_workflow_transition_field.label, status_code=200 ) def test_workflow_transition_field_create_view_no_permission(self): workflow_transition_field_count = self.test_workflow_transition.fields.count() response = self._request_workflow_transition_field_create_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_workflow_transition.fields.count(), workflow_transition_field_count ) def test_workflow_transition_field_create_view_with_access(self): workflow_transition_field_count = self.test_workflow_transition.fields.count() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_workflow_transition_field_create_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_workflow_transition.fields.count(), workflow_transition_field_count + 1 ) def test_workflow_transition_field_delete_view_no_permission(self): self._create_test_workflow_transition_field() workflow_transition_field_count = self.test_workflow_transition.fields.count() response = self._request_workflow_transition_field_delete_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_workflow_transition.fields.count(), workflow_transition_field_count ) def test_workflow_transition_field_delete_view_with_access(self): self._create_test_workflow_transition_field() workflow_transition_field_count = self.test_workflow_transition.fields.count() self.grant_access( obj=self.test_workflow, permission=permission_workflow_edit ) response = self._request_workflow_transition_field_delete_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_workflow_transition.fields.count(), workflow_transition_field_count - 1 ) class WorkflowInstanceTransitionFieldViewTestCase( WorkflowTestMixin, WorkflowTransitionFieldTestMixin, WorkflowTransitionFieldViewTestMixin, WorkflowTransitionViewTestMixin, GenericDocumentViewTestCase ): def setUp(self): super().setUp() self._create_test_workflow(add_document_type=True) self._create_test_workflow_states() self._create_test_workflow_transition() self._create_test_workflow_transition_field( extra_data={ 'widget': WIDGET_CLASS_TEXTAREA } ) self._upload_test_document() self.test_workflow_instance = self.test_document.workflows.first() def test_workflow_transition_text_area_widget_execute_view_with_transition_access(self): self.grant_access( obj=self.test_workflow_transition, permission=permission_workflow_transition ) response = self._request_test_workflow_transition_execute_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_workflow_instance.get_current_state(), self.test_workflow_state_2 )
StarcoderdataPython
75643
from django.contrib import admin from .models import Quiz, Question, Response # Register your models here. class InLineResponse(admin.StackedInline): model = Response extra = 0 class InLineQuestion(admin.StackedInline): model = Question extra = 0 class QuizAdmin(admin.ModelAdmin): inlines = [InLineQuestion] pass class QuestionAdmin(admin.ModelAdmin): inlines = [InLineResponse] pass admin.site.register(Quiz, QuizAdmin) admin.site.register(Question, QuestionAdmin)
StarcoderdataPython
4812253
# # Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) # # SPDX-License-Identifier: GPL-2.0-only # from typing import List from hardware.device import WrappedNode from hardware.fdt import FdtParser # documentation for CPU bindings: # https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/cpus.yaml def get_cpus(tree: FdtParser) -> List[WrappedNode]: ' Return a list of all the CPUs described in this device tree. ' cpus_node = tree.get_path('/cpus') found_cpus = [] for node in cpus_node: if node.has_prop('device_type') and node.get_prop('device_type').strings[0] == 'cpu': found_cpus.append(node) return found_cpus
StarcoderdataPython
3362516
#! /usr/bin/env python3 import sys import numpy as np import filtering as flt from time import time kappa_z_array = np.array([0.01,0.03,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2,3,4,5,6,7,8,9,10]) # choose a kappa_y according to system variable kappa_z = kappa_z_array[int(sys.argv[1])] # pass the number of iterations nIter = int(sys.argv[2]) # where to save filename = "data_raw/performance_kappaz="+str(kappa_z) # seeed the run with a value related to kappa_y np.random.seed(int(kappa_z*10)) # model parameters T = 10 # simulation time dt = 0.01 # step size t = np.arange(0,T,dt) alpha = flt.xi_fun_inv(kappa_z * dt) timesteps = int(T/dt) kappa_phi = 1 # inverse diffusion constant phi_0 = 0 # initial mean kappa_0 = 20 # initial certainty kappa_y = 1 # certainty of increment observations # run the simulations and read out first and second order statistics for each time step phi_final = np.zeros([nIter,timesteps]) vonMises = np.zeros([nIter,2,timesteps]) GaussADF = np.zeros([nIter,2,timesteps]) PF = np.zeros([nIter,2,timesteps]) start = time() for i in range(0, nIter): # run for nIter iterations # generate data phi, dy, z = flt.generateData(T,kappa_phi,kappa_y=kappa_y,dt=dt,phi_0=phi_0,kappa_0=kappa_0,alpha=alpha) # Gauss ADF mu_G, kappa_G = flt.GaussADF_run(T,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,alpha=alpha, phi_0=phi_0,kappa_0=kappa_0,dt=dt) # Particle Filter N = 1000 mu_PF, r_PF = flt.PF_run(T,N,kappa_phi,dy=dy,z=z,alpha=alpha, kappa_y=kappa_y,phi_0=phi_0,kappa_0=kappa_0,dt=dt) # von Mises projection filter mu_VM, kappa_VM = flt.vM_Projection_Run(T,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,alpha=alpha, phi_0=phi_0,kappa_0=kappa_0,dt=dt) # read out statistics phi_final[i] = phi vonMises[i] = np.array([mu_VM,kappa_VM]) GaussADF[i] = np.array([mu_G,kappa_G]) PF[i] = np.array([mu_PF,r_PF]) np.savez(filename,phi_final=phi_final,vonMises=vonMises,GaussADF=GaussADF,PF=PF, kappa_phi=kappa_phi,kappa_y=kappa_y,kappa_z=kappa_z,T=T,dt=dt) print('kappa_z = '+str(kappa_z)+' done \n') end = time() print(f'It took {end - start} seconds!')
StarcoderdataPython
3325540
<gh_stars>1-10 """Provides a formatter for AoE2 AI rule files.""" from .formatter import format_per
StarcoderdataPython
3341903
<gh_stars>0 """ Support for Haiku with SenseME ceiling fan and lights. For more details about this platform, please refer to the documentation at https://github.com/mikelawrence/homeassistant-custom-components """ import logging import voluptuous as vol from datetime import timedelta from homeassistant.const import (CONF_INCLUDE, CONF_NAME, CONF_FRIENDLY_NAME) from homeassistant.helpers import config_validation as cv from homeassistant.helpers.discovery import load_platform from homeassistant.helpers.event import track_time_interval from homeassistant.util import Throttle from homeassistant.components.fan import (DIRECTION_FORWARD, DIRECTION_REVERSE) # SenseMe Python library by <NAME> REQUIREMENTS = ['https://github.com/TomFaulkner/SenseMe/archive/d3ead08f0a5db1326abfdb678fbe3f6d170c42dd.zip#SenseMe==0.1.6'] # delay between SenseMe background updates (in seconds) SENSEME_UPDATE_DELAY = 30.0 # Fan has light default value HAS_LIGHT_DEFAULT = True # Component update rate MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) DOMAIN = 'senseme' DATA_HUBS = 'fans' CONF_HAS_LIGHT = 'has_light' CONF_IP_ADDRESS = 'ip_address' FAN_SCHEMA = vol.Schema({ vol.Required(CONF_NAME): cv.string, vol.Optional(CONF_FRIENDLY_NAME): cv.string, vol.Optional(CONF_IP_ADDRESS): cv.string, vol.Optional(CONF_HAS_LIGHT, default=HAS_LIGHT_DEFAULT): cv.boolean}) CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_INCLUDE, default=[]): vol.All( cv.ensure_list, [FAN_SCHEMA]), }) }, extra=vol.ALLOW_EXTRA) _LOGGER = logging.getLogger(__name__) def setup(hass, config): """Set up the Haiku SenseME platform.""" from senseme import SenseMe hubs = [] device_list = config[DOMAIN].get(CONF_INCLUDE) if len(device_list) > 0: for device in device_list: newDevice = SenseMe(ip=device.get('ip_address'), name=device.get('name'), monitor_frequency=SENSEME_UPDATE_DELAY, monitor=True) hubs.append(SenseMeHub(newDevice, device.get('friendly_name'), device['has_light'])) # SenseME fan and light platforms use hub to communicate with the fan hass.data[DATA_HUBS] = hubs # Add fan and light platform load_platform(hass, 'fan', DOMAIN, {}, config) load_platform(hass, 'light', DOMAIN, {}, config) return True def conv_bright_ha_to_lib(brightness) -> int: """Convert HA brightness scale 0-255 to library scale 0-16.""" if brightness == 255: # this will end up as 16 which is max brightness = 256 return int(brightness / 16) def conv_bright_lib_to_ha(brightness) -> int: """Convert library brightness scale 0-16 to HA scale 0-255.""" brightness = int(brightness) * 16 if brightness > 255: # force big numbers into 8-bit int range brightness = 255 return brightness class SenseMeHub(object): """Data object and access to Haiku with SenseME fan.""" def __init__(self, device, friendly_name, has_light): """Initialize the data object.""" self._device = device self._fan_on = None self._fan_speed = None self._whoosh_on = None self._fan_direction = None self._light_on = None self._light_brightness = None self._friendly_name = friendly_name self._light_exists = has_light @property def name(self) -> str: """Gets name of fan.""" return self._device.name @property def friendly_name(self) -> str: """Gets friendly name of fan.""" if self._friendly_name: # friendly name is defined return self._friendly_name else: # friendly name is not defined return self._device.name @property def ip(self) -> str: """Gets IP address of fan.""" return self._device.ip @property def light_exists(self) -> bool: """Gets light exists state.""" return self._light_exists @property def fan_on(self) -> bool: """Gets fan on state.""" return self._fan_on @fan_on.setter def fan_on(self, fan_on): """Sets fan on state.""" if fan_on: # fan was turned on self.fan_speed = '4' else: # fan was turned off self.fan_speed = 'off' @property def fan_speed(self) -> str: """Gets fan speed.""" return self._fan_speed @fan_speed.setter def fan_speed(self, fan_speed): """Sets fan speed.""" if fan_speed == None: # default fan speed when not specified fan_speed = '4' self._fan_speed = fan_speed if fan_speed == 'off': # fan speed set to off self._device.speed = 0 # turning fan off also affects whoosh state self._fan_on = False self._whoosh_on = False else: # fan speed set to a number self._device.speed = int(fan_speed) self._fan_on = True @property def fan_direction(self) -> str: """Gets fan direction state.""" return self._fan_direction @fan_direction.setter def fan_direction(self, fan_direction): """Sets fan direction state.""" self._fan_direction = fan_direction direction = 'FWD' if fan_direction != DIRECTION_FORWARD: direction = 'REV' self._device._send_command( '<%s;FAN;DIR;SET;%s>' % (self._device.name, direction)) self._device._update_cache('FAN;DIR', direction) @property def whoosh_on(self) -> bool: """Gets whoosh on state.""" return self._whoosh_on @whoosh_on.setter def whoosh_on(self, whoosh_on): """Sets whoosh on state.""" self._device.whoosh = whoosh_on self._whoosh_on = whoosh_on @property def light_on(self) -> bool: """Gets current light state.""" return self._light_on @light_on.setter def light_on(self, light_on): """Sets light state.""" # changing light on state using brightness if light_on: # light was turned on self.light_brightness = 255 else: # light was turned off self.light_brightness = 0 @property def light_brightness(self) -> int: """Gets light brightness.""" return self._light_brightness @light_brightness.setter def light_brightness(self, light_brightness): """Sets light brightness.""" self._device.brightness = conv_bright_ha_to_lib(light_brightness) self._light_brightness = light_brightness # changing brightness also affects light on state if light_brightness == 0: self._light_on = False else: self._light_on = True @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self) -> None: """Get the latest status from fan.""" self._fan_on = self._device.get_attribute("FAN;PWR") == 'ON' self._fan_speed = self._device.get_attribute("FAN;SPD;ACTUAL") if self._fan_speed == '0': self._fan_speed = 'off' if self._device.get_attribute("FAN;DIR") == 'FWD': self._fan_direction = DIRECTION_FORWARD else: self._fan_direction = DIRECTION_REVERSE self._whoosh_on = self._device.get_attribute( "FAN;WHOOSH;STATUS") == 'ON' if self._light_exists: self._light_on = self._device.get_attribute("LIGHT;PWR") == 'ON' self._light_brightness = conv_bright_lib_to_ha( self._device.get_attribute("LIGHT;LEVEL;ACTUAL")) _LOGGER.debug("SenseMe: Updated fan '%s'." % self._device.name) return True
StarcoderdataPython
3240882
from .contacts_helper import ContactsHelper from .controller import Controller from .permissions_helper import PermissionsHelper from forms import DataSourceForm class DataSourcesController(Controller): """Controller for DataSource GUI Manage data_source and related models from combined GUI. """ def __init__(self, app, config_models): """Constructor :param Flask app: Flask application :param ConfigModels config_models: Helper for ORM models """ super(DataSourcesController, self).__init__( "DataSource", 'data_sources', 'data_source', 'data_sources', app, config_models ) self.ContactsHelper = ContactsHelper(config_models, app.logger) self.PermissionsHelper = PermissionsHelper(config_models) self.DataSource = self.config_models.model('data_source') self.Person = self.config_models.model('person') def resource_pkey(self): """Return primary key column name.""" return 'gdi_oid' def resources_for_index(self, session): """Return data sources list. :param Session session: DB session """ return session.query(self.DataSource).order_by(self.DataSource.name) \ .all() def form_for_new(self): """Return form for new data source.""" return self.create_form() def form_for_create(self): """Return form for creating DataSource.""" return self.create_form() def create_resource(self, form, session): """Create new DataSource records in DB. :param FlaskForm form: Form for DataSource :param Session session: DB session """ self.create_or_update_resources(None, form, session) def find_resource(self, id, session): """Find DataSource by DataSource ID. :param int id: DataSource ID :param Session session: DB session """ return session.query(self.DataSource).filter_by(gdi_oid=id).first() def form_for_edit(self, resource): """Return form for editing DataSource. :param object resource: DataSource object """ return self.create_form(resource, True) def form_for_update(self, resource): """Return form for updating DataSource. :param object resource: data_source object """ return self.create_form(resource) def update_resource(self, resource, form, session): """Update existing DataSource records in DB. :param object resource: data_source object :param FlaskForm form: Form for DataSource :param Session session: DB session """ self.create_or_update_resources(resource, form, session) def create_form(self, resource=None, edit_form=False): """Return form with fields loaded from DB. :param object resource: Optional data_source object :param bool edit_form: Set if edit form """ form = DataSourceForm(self.config_models, obj=resource) if edit_form: # override form fields with resource values on edit form.responsible.data = self.ContactsHelper.resource_contact_id( resource.gdi_oid, self.ContactsHelper.ROLE_RESPONSIBLE ) # set choices for responsible select field form.responsible.choices = [(0, "")] + \ self.ContactsHelper.person_choices() return form def create_or_update_resources(self, resource, form, session): """Create or update DataSource records in DB. :param object resource: Optional data_source object (None for create) :param FlaskForm form: Form for DataSource :param Session session: DB session """ if resource is None: # create new data_source data_source = self.DataSource() session.add(data_source) else: # update existing data_source data_source = resource # update data_source data_source.connection_type = form.connection_type.data data_source.name = form.name.data data_source.description = form.description.data data_source.connection = form.connection.data # NOTE: flush object changes in session to update gdi_oid of a # new data_source session.flush() # update resource contact self.ContactsHelper.update_resource_contact( data_source.gdi_oid, self.ContactsHelper.ROLE_RESPONSIBLE, form.responsible.data, session ) # add default public permission role = self.PermissionsHelper.public_role() if role is not None: self.PermissionsHelper.update_resource_permission( data_source.gdi_oid, role.id, True, False, session ) def destroy_resource(self, resource, session): """Delete existing DataSource records in DB. :param object resource: data_source object :param Session session: DB session """ # remove data_source, resource contacts and permissions data_source = resource self.ContactsHelper.remove_resource_contacts( data_source.gdi_oid, session) self.PermissionsHelper.remove_resource_permissions( data_source.gdi_oid, session ) session.delete(data_source)
StarcoderdataPython
3316128
# import the necessary packages from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model import numpy as np import argparse import imutils import cv2 # construct argument parser and parse arguments ap = argparse.ArgumentParser() ap.add_argument("-c", "--cascade", required=True, help="path to where face cascade detector reside.") ap.add_argument("-m", "--model", required=True, help="path to pre-trained emotion classifier model") ap.add_argument("-v", "--video", default=None, type=str, help="path to optional video file") args = vars(ap.parse_args()) # load face detectore and pre-trained model detector = cv2.CascadeClassifier(args["cascade"]) model = load_model(args["model"]) EMOTIONS = ["happy", "angry"] # if video file not supplied, start the webcam if not args.get("video", False): camera = cv2.VideoCapture(0) # else load the video file else: camera = cv2.VideoCapture(args["video"]) while True: (grabbed, frame) = camera.read() if args.get("video", False) and grabbed is None: break frame = imutils.resize(frame, width=300) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) canvas = np.zeros((250, 300, 3), dtype="uint8") frameClone = frame.copy() rects = detector.detectMultiScale(gray, scaleFactor=1.1, miniNeighbors=5, minSize=( 30, 30), flags=cv2.CASCADE_SCALE_IMAGE) if len(rects) > 0: rect = sorted(rects, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]), reverse=True)[0] (fX, fY, fW, fH) = rect roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (48, 48)) roi = roi.astype("float")/255. roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = model.predict(roi)[0] label = EMOTIONS[preds.argmax()] for (i, (emotion, prob)) in zip(EMOTIONS, preds): text = "{}: {:.2f}".format(emotion, prob * 100) w = int(prob * 300) cv2.rectangle(canvas, (5, (i * 35) + 5), (w, (i * 35) + 35), (0, 0, 255), -1) cv2.putText(canvas, text, (10, (i * 35) + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255, 255, 255), 2) cv2.rectangle(frameClone, (fX, fY), (fX + w, fY + fH), (0, 0, 255), 2) cv2.putText(frameClone, label, (fX, fY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.imshow("Emotion", frameClone) cv2.imshow("Probabilities", canvas) camera.release() cv2.destroyAllWindows()
StarcoderdataPython
1743977
import pandas as pd from unittest2 import TestCase # or `from unittest import ...` if on Python 3.4+ import category_encoders as encoders class TestBackwardsEncoder(TestCase): def test_backwards_difference_encoder_preserve_dimension_1(self): train = ['A', 'B', 'C'] test = ['A', 'D', 'E'] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) test_t = encoder.transform(test) expected = [[1, -2 / 3.0, -1 / 3.0], [1, 0, 0], [1, 0, 0]] self.assertEqual(test_t.values.tolist(), expected) def test_backwards_difference_encoder_preserve_dimension_2(self): train = ['A', 'B', 'C'] test = ['B', 'D', 'E'] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) test_t = encoder.transform(test) expected = [[1, 1 / 3.0, -1 / 3.0], [1, 0, 0], [1, 0, 0]] self.assertEqual(test_t.values.tolist(), expected) def test_backwards_difference_encoder_preserve_dimension_3(self): train = ['A', 'B', 'C'] test = ['A', 'B', 'C', None] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) test_t = encoder.transform(test) expected = [[1, -2 / 3.0, -1 / 3.0], [1, 1 / 3.0, -1 / 3.0], [1, 1 / 3.0, 2 / 3.0], [1, 0, 0]] self.assertEqual(test_t.values.tolist(), expected) def test_backwards_difference_encoder_preserve_dimension_4(self): train = ['A', 'B', 'C'] test = ['D', 'B', 'C', None] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) test_t = encoder.transform(test) expected = [[1, 0, 0], [1, 1 / 3.0, -1 / 3.0], [1, 1 / 3.0, 2 / 3.0], [1, 0, 0]] self.assertEqual(test_t.values.tolist(), expected) def test_backwards_difference_encoder_2cols(self): train = [['A', 'A'], ['B', 'B'], ['C', 'C']] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) obtained = encoder.transform(train) expected = [[1, -2 / 3.0, -1 / 3.0, -2 / 3.0, -1 / 3.0], [1, 1 / 3.0, -1 / 3.0, 1 / 3.0, -1 / 3.0], [1, 1 / 3.0, 2 / 3.0, 1 / 3.0, 2 / 3.0]] self.assertEqual(obtained.values.tolist(), expected) def test_backwards_difference_encoder_2StringCols_ExpectCorrectOrder(self): train = pd.DataFrame({'col1': [1, 2, 3, 4], 'col2': ['A', 'B', 'C', 'D'], 'col3': [1, 2, 3, 4], 'col4': ['A', 'B', 'C', 'A'] }, columns=['col1', 'col2', 'col3', 'col4']) expected_columns = ['intercept', 'col1', 'col2_0', 'col2_1', 'col2_2', 'col3', 'col4_0', 'col4_1'] encoder = encoders.BackwardDifferenceEncoder() encoder.fit(train) columns = encoder.transform(train).columns.values self.assertItemsEqual(expected_columns, columns)
StarcoderdataPython
45998
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import web.models class Migration(migrations.Migration): dependencies = [ ('web', '0006_auto_20150627_1942'), ] operations = [ migrations.AddField( model_name='product_web', name='price', field=models.IntegerField(max_length=11, null=True, verbose_name=b'\xe5\x8d\x95\xe5\x93\x81\xe4\xbb\xb7\xe6\xa0\xbc', blank=True), preserve_default=True, ), migrations.AlterField( model_name='brand_fabric', name='type', field=models.CharField(default=b'suit', max_length=10, verbose_name=b'\xe9\x9d\xa2\xe6\x96\x99\xe5\x93\x81\xe7\x89\x8c\xe7\xb1\xbb\xe5\x9e\x8b', choices=[(b'suit', b'\xe8\xa5\xbf\xe6\x9c\x8d'), (b'shirt', b'\xe8\xa1\xac\xe8\xa1\xab'), (b'item', b'\xe5\x8d\x95\xe5\x93\x81'), (b'accessorie', b'\xe9\x85\x8d\xe9\xa5\xb0')]), preserve_default=True, ), migrations.AlterField( model_name='fabric_web', name='brand_fabric', field=models.ForeignKey(verbose_name=b'\xe9\x9d\xa2\xe6\x96\x99\xe5\x93\x81\xe7\x89\x8c', blank=True, to='web.Brand_fabric', null=True), preserve_default=True, ), migrations.AlterField( model_name='fabric_web', name='desigh', field=models.CharField(max_length=64, null=True, verbose_name=b'Design', blank=True), preserve_default=True, ), migrations.AlterField( model_name='fabric_web', name='thumbnail_url', field=models.ImageField(upload_to=web.models.get_uploadto_path, null=True, verbose_name=b'\xe9\x9d\xa2\xe6\x96\x99\xe7\xbc\xa9\xe7\x95\xa5\xe5\x9b\xbe', blank=True), preserve_default=True, ), migrations.AlterField( model_name='product_web', name='type', field=models.CharField(default=b'shirt', max_length=10, verbose_name=b'\xe4\xba\xa7\xe5\x93\x81\xe7\xb1\xbb\xe5\x9e\x8b', choices=[(b'suit', b'\xe8\xa5\xbf\xe6\x9c\x8d'), (b'shirt', b'\xe8\xa1\xac\xe8\xa1\xab'), (b'item', b'\xe5\x8d\x95\xe5\x93\x81'), (b'accessorie', b'\xe9\x85\x8d\xe9\xa5\xb0')]), preserve_default=True, ), ]
StarcoderdataPython
41478
<reponame>Nabeel965/AgriTechies from django.http import HttpResponse from django.shortcuts import render import joblib import pandas as pd import numpy as np from .models import crop_data from .recommender import CropDataForm model = joblib.load('model.pkl') xl_file = pd.ExcelFile('Features - Rev02.xlsx') storage_df=xl_file.parse('Cold Storage Data') crop_df=xl_file.parse('Crop Data') # Create your views here. def crop_recommender(response): if response.method == "POST": form = CropDataForm(response.POST) if form.is_valid(): form=form.save(commit=False) return present_output(form) else: form = CropDataForm() return render(response, 'recommender/recommender.html', {"form":form}) def present_output(form): crop_name = form.crop_name quantity = form.quantity lat = form.lat lon = form.lon s = predict(crop_name, quantity, lat, lon) return HttpResponse(s) def predict(Crop_Name,quantity,lat,lon): crop_temperature=crop_df['Required Temperature'][crop_df['Crop Name']==Crop_Name] crop_humidity=crop_df['Required Relative Humidity'][crop_df['Crop Name']==Crop_Name] lat=storage_df['lat'] lon=storage_df['lon'] quantity=storage_df['Avaiable Capacity'] storage_temperature=storage_df['Room Temperature'] storage_humidity=storage_df['Relative Humidity'] temp_X=np.zeros((lat.shape[0],7)) temp_X[:,0]=crop_temperature temp_X[:,1]=crop_humidity temp_X[:,2]=quantity temp_X[:,3]=storage_temperature temp_X[:,4]=storage_humidity temp_X[:,5]=lat temp_X[:,6]=lon return model.predict(temp_X)
StarcoderdataPython
1783432
<reponame>scvannost/clustergrammer-py ''' The clustergrammer python module can be installed using pip: pip install clustergrammer or by getting the code from the repo: https://github.com/MaayanLab/clustergrammer-py ''' # from clustergrammer import Network from clustergrammer import Network net = Network() # load matrix tsv file net.load_stdin() # optional filtering and normalization ########################################## # net.filter_sum('row', threshold=20) # net.normalize(axis='col', norm_type='zscore', keep_orig=True) # net.filter_N_top('row', 250, rank_type='sum') # net.filter_threshold('row', threshold=3.0, num_occur=4) # net.swap_nan_for_zero() net.make_clust(dist_type='cos',views=['N_row_sum', 'N_row_var'] , dendro=True, sim_mat=True, filter_sim=0.1, calc_cat_pval=False) # output jsons for front-end visualizations print(net.export_net_json('viz', 'no-indent'))
StarcoderdataPython
1708336
#%% import os import sys import joblib from numpy.lib.function_base import select import sklearn import warnings import tarfile import urllib import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.image as mpimg from pandas.plotting import scatter_matrix from sklearn import impute warnings.filterwarnings('ignore') mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = ".." CHAPTER_ID = "end_to_end_project" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, ".images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/" HOUSING_PATH = os.path.join("../data", "housing") HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz" #%% from scipy import stats from scipy.stats import randint from scipy.stats import geom, expon from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, cross_val_score, GridSearchCV, RandomizedSearchCV from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, mean_absolute_error # %% def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id +'.'+fig_extension) print(f"Saving fig {fig_id}") if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH): if not os.path.isdir(housing_path): os.makedirs(housing_path) tgz_path = os.path.join(housing_path, "housing.tgz") urllib.request.urlretrieve(housing_url, tgz_path) housing_tgz = tarfile.open(tgz_path) housing_tgz.extractall(path=housing_path) housing_tgz.close() def load_housing_data(housing_path=HOUSING_PATH): csv_path = os.path.join(housing_path, "housing.csv") return pd.read_csv(csv_path) def download_background(): # Download the California image images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project") os.makedirs(images_path, exist_ok=True) DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/" filename = "california.png" print("Downloading", filename) url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename urllib.request.urlretrieve(url, os.path.join(images_path, filename)) return True def plot_housing_price_distribution(housing): california_img = mpimg.imread(os.path.join(IMAGES_PATH, "california.png")) params = { 's': housing['population'] / 100, 'label': 'population', 'figsize': (10,7), 'c': "median_house_value", 'cmap': plt.get_cmap('jet'), 'colorbar': False, 'sharex': False } ax = housing.plot(kind='scatter', x='longitude', y='latitude', alpha=.4, **params) plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=.5, cmap=plt.get_cmap("jet")) plt.ylabel("Latitude", fontsize=14) plt.xlabel("Longitude", fontsize=14) prices = housing["median_house_value"] tick_values = np.linspace(prices.min(), prices.max(), 11) cbar = plt.colorbar(ticks=tick_values/prices.max()) cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14) cbar.set_label('Median House Value', fontsize=16) plt.legend(fontsize=16) save_fig("california_housing_prices_plot") plt.show() return # %% if __name__ == '__main__': # fetch_housing_data() load_housing_data() # EDA housing = load_housing_data() housing.info() housing.ocean_proximity.value_counts() housing.describe() housing.hist(bins=50, figsize=(20, 15)) save_fig("attribute_histogram_plots") train_set, test_set = train_test_split(housing, test_size=.2, random_state=42) #%% # Data split housing['income_cat'] = pd.cut(housing['median_income'], bins=[0., 1.5, 3.0, 4.5, 6., np.inf], labels=[1, 2, 3, 4, 5]) housing['income_cat'].value_counts() split = StratifiedShuffleSplit(n_splits=1, test_size=.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] strat_train_set['income_cat'].value_counts() / len(strat_train_set) strat_test_set['income_cat'].value_counts() / len(strat_test_set) for set_ in (strat_train_set, strat_test_set): set_.drop("income_cat", axis=1, inplace=True) # %% # Discover and visualize the data to gain insights housing = train_set.copy() plot_housing_price_distribution(housing) # %% # correlation corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"] scatter_matrix(housing[attributes], figsize=(12, 8)) save_fig("scatter_matrix_plot") #%% housing.loc[:, 'rooms_per_household'] = housing.total_rooms / housing.households housing.loc[:, 'bedrooms_per_room'] = housing.total_bedrooms / housing.total_rooms housing.loc[:, 'population_per_household'] = housing.population / housing.households corr_matrix = housing.corr() corr_matrix["median_house_value"].sort_values(ascending=False) housing.plot(kind="scatter", x="rooms_per_household", y="median_house_value", alpha=0.2) plt.axis([0, 5, 0, 520000]) plt.show() housing.describe() # %% """Prepare the data for Machine Learning algorithms""" housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set housing_labels = strat_train_set["median_house_value"].copy() housing_nums = housing.drop("ocean_proximity", axis=1) imputer = SimpleImputer(strategy='median') imputer.fit(housing_nums) imputer.statistics_ X = imputer.transform(housing_nums) housing_tr = pd.DataFrame(X, columns=housing_nums.columns, index=housing_nums.index) housing_tr.head() #%% # preprocess the categorical input feature, `ocean_proximity` housing_cat = housing[["ocean_proximity"]] cat_encoder = OneHotEncoder(sparse=False) cat_encoder.categories housing_cat_1hot = cat_encoder.fit_transform(housing_cat) housing_cat_1hot # %% # create a custom transformer to add extra attributes: rooms_ix, bedrooms_ix, population_ix, households_ix = 3, 4, 5, 6 class CombinedAttributesAdder(BaseEstimator, TransformerMixin): def __init__(self, add_bedrooms_per_room=True): super().__init__() self.add_bedrooms_per_room = add_bedrooms_per_room def fit(self, X, y = None): return self def transform(self, X): rooms_per_household = X[:, rooms_ix] / X[:, households_ix] population_per_household = X[:, population_ix] / X[:, households_ix] if self.add_bedrooms_per_room: bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix] return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room] return np.c_[X, rooms_per_household, population_per_household] attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False) housing_extra_attribs = attr_adder.transform(housing.values) housing_extra_attribs = pd.DataFrame( housing_extra_attribs, columns=list(housing.columns) +["rooms_per_household", "population_per_household"], index = housing.index ) housing_extra_attribs.head() # %% # build a pipeline for preprocessing the numerical attributes num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('attribs_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler()) ]) housing_num_tr = num_pipeline.fit_transform(housing_nums) housing_num_tr num_attribs = list(housing_nums) cat_attribs = ['ocean_proximity'] full_pipeline = ColumnTransformer([ ('num', num_pipeline, num_attribs), ('cat', OneHotEncoder(), cat_attribs) ]) housing_prepared = full_pipeline.fit_transform(housing) housing_prepared.shape # %% """ Select and train a model """ lin_reg = LinearRegression() lin_reg.fit(housing_prepared, housing_labels) some_data = housing.iloc[:5] some_labels = housing_labels.iloc[:5] some_data_prepared = full_pipeline.transform(some_data) lin_reg.predict(some_data_prepared) housing_predictions = lin_reg.predict(housing_prepared) lin_mse = mean_squared_error(housing_predictions, housing_labels) lin_rmse = np.sqrt(lin_mse) lin_rmse lin_mae = mean_absolute_error(housing_labels, housing_predictions) lin_mae # %% tree_reg = DecisionTreeRegressor(random_state=42) tree_reg.fit(housing_prepared, housing_labels) housing_predictions = tree_reg.predict(housing_prepared) tree_mse = mean_squared_error(housing_labels, housing_predictions) tree_rmse = np.sqrt(tree_mse) tree_rmse scores = cross_val_score(tree_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) tree_rmse_scores = np.sqrt(-scores) def display_scores(scores): print("Scores:", scores) print("Mean:", scores.mean()) print("Standard deviation:", scores.std()) display_scores(tree_rmse_scores) lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) lin_rmse_scores = np.sqrt(-lin_scores) display_scores(lin_rmse_scores) #%% forest_reg = RandomForestRegressor(n_estimators=100, random_state=42, n_jobs=-1) forest_reg.fit(housing_prepared, housing_labels) housing_predictions = forest_reg.predict(housing_prepared) forest_mse = mean_squared_error(housing_labels, housing_predictions) forest_rmse = np.sqrt(forest_mse) forest_rmse forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) forest_rmse_scores = np.sqrt(-forest_scores) display_scores(forest_rmse_scores) # %% scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10) pd.Series(np.sqrt(-scores)).describe() # %% svm_reg = SVR(kernel='linear') svm_reg.fit(housing_prepared, housing_labels) housing_predictions = svm_reg.predict(housing_prepared) svm_mse = mean_squared_error(housing_labels, housing_predictions) svm_rmse = np.sqrt(svm_mse) svm_rmse # %% # GridSearch param_grid = [ {'n_estimators':[3, 10, 30], 'max_features':[2,4,6,8]}, {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]}, ] forest_reg = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(forest_reg, param_grid, cv=5, scoring='neg_mean_squared_error', return_train_score=True, n_jobs=-1) grid_search.fit(housing_prepared, housing_labels) grid_search.best_params_ grid_search.best_estimator_ # each hyperparameter combination tested during the grid search cvres = grid_search.cv_results_ for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]): print(np.sqrt(-mean_score), params) # %% # RandomizedSearchCV param_distribs = { 'n_estimators': randint(low=1, high=200), 'max_features': randint(low=1, high=8), } forest_reg = RandomForestRegressor(random_state=42) rnd_search = RandomizedSearchCV(forest_reg, param_distribs, n_iter=100, cv=5, scoring='neg_mean_squared_error', random_state=42, n_jobs=-1) rnd_search.fit(housing_prepared, housing_labels) # %% cvres = rnd_search.cv_results_ for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]): print(np.sqrt(-mean_score), params) # %% feature_importances = grid_search.best_estimator_.feature_importances_ feature_importances # %% extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"] #cat_encoder = cat_pipeline.named_steps["cat_encoder"] # old solution cat_encoder = full_pipeline.named_transformers_["cat"] cat_one_hot_attribs = list(cat_encoder.categories_[0]) attributes = num_attribs + extra_attribs + cat_one_hot_attribs sorted(zip(feature_importances, attributes), reverse=True) # %%
StarcoderdataPython
3323710
<gh_stars>1-10 import arrow import pandas as pd WARN_DURATION_VARIATION = 5 * 60 # seconds MAX_DURATION_VARIATION = 45 * 60 # seconds def get_expected_config_map_for_calibration(sd): expected_config_map = {} for ct in sd.curr_spec["calibration_tests"]: expected_config_map[ct["id"]] = ct["config"]["sensing_config"] return expected_config_map def get_expected_config_map_for_evaluation(sd): expected_config_map = { "android": { "fixed:ACCURACY_CONTROL": { "is_duty_cycling": False, "accuracy": ["PRIORITY_HIGH_ACCURACY","kCLLocationAccuracyBest"], "filter": 1, }, "fixed:POWER_CONTROL": { "is_duty_cycling": False, "accuracy": ["PRIORITY_NO_POWER","kCLLocationAccuracyThreeKilometers"], "filter": 1200, } } } # The control settings were the same for both OSes, since we do put both # control values into an array. expected_config_map["ios"] = expected_config_map["android"] for ct in sd.curr_spec["sensing_settings"]: for phoneOS, phone_map in ct.items(): for s in phone_map["sensing_configs"]: expected_config_map[phoneOS]["%s:%s" % (phone_map["name"], s["id"])] = s["sensing_config"] # print(expected_config_map) return expected_config_map # Current accuracy constants # Since we can't read these from the phone, we hardcoded them from the documentation # If there are validation failures, these need to be updated # In the future, we could upload the options from the phone (maybe the accuracy control) # but that seems like overkill here accuracy_options = { "android": { "PRIORITY_HIGH_ACCURACY": 100, "PRIORITY_BALANCED_POWER_ACCURACY": 102, "PRIORITY_LOW_POWER": 104, "PRIORITY_NO_POWER": 105 }, "ios": { "kCLLocationAccuracyBestForNavigation": -2, "kCLLocationAccuracyBest": -1, "kCLLocationAccuracyNearestTenMeters": 10, "kCLLocationAccuracyHundredMeters": 100, "kCLLocationAccuracyKilometer": 1000, "kCLLocationAccuracyThreeKilometers": 3000, } } opt_array_idx = lambda phoneOS: 0 if phoneOS == "android" else 1 """ Internal method to validate the filter settings """ def _validate_filter(phoneOS, config_during_test, expected_config): # filter checking is a bit tricky because the expected value has two possible values and the real config has two possible values expected_filter = expected_config["filter"] if type(expected_filter) == int: ev = expected_filter else: assert type(expected_filter) == list, "platform specific filters should be specified in array, not %s" % expected_filter ev = expected_filter[opt_array_idx(phoneOS)] if phoneOS == "android": cvf = "filter_time" ev = ev * 1000 # milliseconds in the config, specified in secs elif phoneOS == "ios": cvf = "filter_distance" assert config_during_test[cvf] == ev,\ "Field filter mismatch! %s (from %s) != %s (from %s)" %\ (config_during_test[cvf], config_during_test, ev, expected_config) """ Internal method to validate the filter settings """ def _validate_accuracy(phoneOS, config_during_test, expected_config): # expected config accuracy is an array of strings ["PRIORITY_BALANCED_POWER_ACCURACY", "kCLLocationAccuracyNearestTenMeters"] # so we find the string at the correct index and then map it to the value from the options ev = accuracy_options[phoneOS][expected_config["accuracy"][opt_array_idx(phoneOS)]] assert config_during_test["accuracy"] == ev, "Field accuracy mismatch! %s != %s" % (config_during_test[accuracy], ev) def validate_calibration_settings(phone_view): expected_config_map = get_expected_config_map_for_calibration(phone_view.spec_details) # print(expected_config_map) for phoneOS, phone_map in phone_view.map().items(): print("Processing data for %s phones" % phoneOS) for phone_label in phone_map: curr_calibration_ranges = phone_map[phone_label]["calibration_ranges"] all_test_ids = [r["trip_id"] for r in curr_calibration_ranges] unique_test_ids = sorted(list(set(all_test_ids))) spec_test_ids = sorted([ct["id"] for ct in phone_view.spec_details.curr_spec["calibration_tests"]]) # assert unique_test_ids == spec_test_ids, "Missing calibration test while comparing %s, %s" % (unique_test_ids, spec_test_ids) for r in curr_calibration_ranges: config_during_test_entries = phone_view.spec_details.retrieve_data_from_server(phone_label, ["config/sensor_config"], r["start_ts"], r["end_ts"]) print("%s -> %s" % (r["trip_id"], [c["data"]["accuracy"] for c in config_during_test_entries])) # assert len(config_during_test_entries) == 1, "Out of band configuration? Found %d config changes" % len(config_during_test_entries) config_during_test = config_during_test_entries[0]["data"] expected_config = expected_config_map[r["trip_id_base"]] # print(config_during_test, expected_config) _validate_filter(phoneOS, config_during_test, expected_config) _validate_accuracy(phoneOS, config_during_test, expected_config) for f in expected_config: if f != "accuracy" and f != "filter": assert config_during_test[f] == expected_config[f],\ "Field %s mismatch! %s != %s" % \ (f, config_during_test[f], expected_config[f]) def validate_evaluation_settings(phone_view): expected_config_map = get_expected_config_map_for_evaluation(phone_view.spec_details) for phoneOS, phone_map in phone_view.map().items(): # print("Processing data for %s phones, next level keys = %s" % (phoneOS, phone_map.keys())) for phone_label in phone_map: curr_evaluation_ranges = phone_map[phone_label]["evaluation_ranges"] unique_test_ids = set(filter(lambda id: id != "fixed", [r["trip_id"].split(":")[0] for r in curr_evaluation_ranges])) # This is a tricky check since, unlike in the calibration case, we will have different ids for the different evaluation # ranges. For now, let us just assert that the evaluation range is valid # print("Unique test ids = %s" % unique_test_ids) spec_test_ids = set( [ct["android"]["name"] for ct in phone_view.spec_details.curr_spec["sensing_settings"]] + [ct["ios"]["name"] for ct in phone_view.spec_details.curr_spec["sensing_settings"]]) # print(spec_test_ids) # <= represents subset for set objects assert unique_test_ids <= spec_test_ids, "Invalid evaluation test while comparing %s, %s" % (unique_test_ids, spec_test_ids) for r in curr_evaluation_ranges: config_during_test_entries = phone_view.spec_details.retrieve_data_from_server(phone_label, ["config/sensor_config"], r["start_ts"], r["end_ts"]) print("%s -> %s" % (r["trip_id"], [c["data"]["accuracy"] for c in config_during_test_entries])) # assert len(config_during_test_entries) == 1, "Out of band configuration? Found %d config changes" % len(config_during_test_entries) config_during_test = config_during_test_entries[0]["data"] expected_config = expected_config_map[phoneOS][r["trip_id_base"]] # print(config_during_test.keys(), expected_config.keys()) _validate_filter(phoneOS, config_during_test, expected_config) _validate_accuracy(phoneOS, config_during_test, expected_config) for f in expected_config: if f != "accuracy" and f != "filter": assert config_during_test[f] == expected_config[f], "Field %s mismatch! %s != %s" % (f, config_during_test[f], expected_config[f]) """ range_key: the key in each range that links the ranges for an experiment together "trip_id" for calibration and "eval_common_trip_id" for evaluation """ def validate_range_durations(phone_view, range_key, range_entry_id): duration_map = {} for phoneOS, phone_map in phone_view.map().items(): print("Processing data for %s phones" % phoneOS) for phone_label in phone_map: curr_phone_duration_map = {} curr_calibration_ranges = phone_map[phone_label]["{}_ranges".format(range_key)] for r in curr_calibration_ranges: curr_phone_duration_map[r[range_entry_id]] = r["duration"] duration_map[phoneOS+"_"+phone_label] = curr_phone_duration_map # print(duration_map) duration_df = pd.DataFrame(duration_map).transpose() print(duration_df) for col in duration_df: duration_variation = duration_df[col] - duration_df[col].median() print("For %s, duration_variation = %s" % (col, duration_variation.tolist())) if duration_variation.abs().max() > WARN_DURATION_VARIATION: "WARNING: for %s, duration_variation.abs().max() %d > threshold %d" % \ (col, duration_variation.abs().max(), WARN_DURATION_VARIATION) assert duration_variation.abs().max() < MAX_DURATION_VARIATION,\ "INVALID: for %s, duration_variation.abs().max() %d > threshold %d" % \ (col, duration_variation.abs().max(), MAX_DURATION_VARIATION) def validate_range_durations_for_calibration(phone_view): validate_range_durations(phone_view, "calibration", "trip_id") # This is slightly different from the calibration validation because the # matching durations don't have the same IDs def validate_range_durations_for_evaluation(phone_view): validate_range_durations(phone_view, "evaluation", "eval_common_trip_id")
StarcoderdataPython
62506
<gh_stars>0 #!/usr/bin/env,python3 #,-*-,coding:,utf-8,-*- ''' Problem 32 Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital. e.g. 39 × 186 = 7254 ''' import itertools def tuple_to_jointed_int(tp): return int(''.join(map(str,tp))) def product_of_multi_pandigit(pan, div): multiplicand = tuple_to_jointed_int(pan[0: div]) multiplier = tuple_to_jointed_int(pan[div: 5]) product = tuple_to_jointed_int(pan[5: 9]) if multiplicand * multiplier == product: return product return 0 # [Note] The products must be 4-digits. If we assume that # multiplicand < multiplier, their possible digits are (1,4) or (2,3). print(sum(set( [product_of_multi_pandigit(pan, div) for pan in itertools.permutations(range(1, 10)) for div in range(1, 3)])))
StarcoderdataPython
49624
<reponame>nleguillarme/snr_tools_and_methods import merpy merpy.create_lexicon_from_file("ncbi.txt", "ncbi") merpy.process_lexicon("ncbi")
StarcoderdataPython
3329575
def parse_spec(s): a, b = s.split("/") return int(a), int(b) def compose(*sharders): sharders = [x for x in sharders if x] if not sharders: return identity def f(stream): for sharder in sharders: stream = sharder(stream) return stream return f def from_spec(spec): if not spec: return identity a, b = parse_spec(spec) return sharder(a, b) def identity(x): return x def limiter(n): if not n: return identity def f(stream): ctr = 0 for x in stream: ctr += 1 if ctr > n: break yield x return f def sharder(a, b): assert b > 0 assert 0 <= a < b def f(stream): ctr = 0 for x in stream: if (ctr % b) == a: yield x ctr += 1 return f
StarcoderdataPython
4841514
import matplotlib.pyplot as plt import numpy as np from matplotlib_venn import venn2 def box_plot(pseudoCount, controlCount): x = np.arange(2) counts = [pseudoCount, controlCount] fig, ax = plt.subplots() plt.bar(x, counts) plt.xticks(x, ('Pseudouridine', 'control')) #save box plot plt.savefig("TotalCount.png") plt.close() def ven_diagram(pseudoCount, controlCount, totalUmers): v = venn2((pseudoCount, controlCount, totalUmers), alpha=1) plt.gca().set_axis_bgcolor('skyblue') plt.gca().set_axis_on() #save graph plt.savefig("CountVennDiagram.png") plt.close()
StarcoderdataPython
3291997
<filename>ceilometerclient/tests/unit/test_utils.py # Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools import mock import six from ceilometerclient.common import utils from ceilometerclient.tests.unit import utils as test_utils class UtilsTest(test_utils.BaseTestCase): def test_prettytable(self): class Struct(object): def __init__(self, **entries): self.__dict__.update(entries) # test that the prettytable output is wellformatted (left-aligned) with mock.patch('sys.stdout', new=six.StringIO()) as stdout: utils.print_dict({'K': 'k', 'Key': 'Value'}) self.assertEqual('''\ +----------+-------+ | Property | Value | +----------+-------+ | K | k | | Key | Value | +----------+-------+ ''', stdout.getvalue()) with mock.patch('sys.stdout', new=six.StringIO()) as stdout: utils.print_dict({'alarm_id': '262567fd-d79a-4bbb-a9d0-59d879b6', 'name': u'\u6d4b\u8bd5', 'description': u'\u6d4b\u8bd5', 'state': 'insufficient data', 'repeat_actions': 'False', 'type': 'threshold', 'threshold': '1.0', 'statistic': 'avg', 'alarm_actions': [u'http://something/alarm1', u'http://something/alarm2'], 'ok_actions': [{"get_attr1": [u"web_server_scaleup_policy1", u"alarm_url1"]}, {"get_attr2": [u"web_server_scaleup_policy2", u"alarm_url2"]}], 'time_constraints': '[{name: c1,' '\\n description: test,' '\\n start: 0 18 * * *,' '\\n duration: 1,' '\\n timezone: US}]'}, wrap=72) expected = u'''\ +------------------+-------------------------------------------------------\ --------+ | Property | Value \ | +------------------+-------------------------------------------------------\ --------+ | alarm_actions | ["http://something/alarm1", "http://something/alarm2"]\ | | alarm_id | 262567fd-d79a-4bbb-a9d0-59d879b6 \ | | description | \u6d4b\u8bd5 \ | | name | \u6d4b\u8bd5 \ | | ok_actions | [{"get_attr1": ["web_server_scaleup_policy1", "alarm_u\ rl1"]}, | | | {"get_attr2": ["web_server_scaleup_policy2", "alarm_ur\ l2"]}] | | repeat_actions | False \ | | state | insufficient data \ | | statistic | avg \ | | threshold | 1.0 \ | | time_constraints | [{name: c1, \ | | | description: test, \ | | | start: 0 18 * * *, \ | | | duration: 1, \ | | | timezone: US}] \ | | type | threshold \ | +------------------+-------------------------------------------------------\ --------+ ''' # py2 prints str type, py3 prints unicode type if six.PY2: expected = expected.encode('utf-8') self.assertEqual(expected, stdout.getvalue()) def test_print_list(self): class Foo(object): def __init__(self, one, two, three): self.one = one self.two = two self.three = three foo_list = [ Foo(10, 'a', 'B'), Foo(8, 'c', 'c'), Foo(12, '0', 'Z')] def do_print_list(sortby): with mock.patch('sys.stdout', new=six.StringIO()) as stdout: utils.print_list(foo_list, ['one', 'two', 'three'], ['1st', '2nd', '3rd'], {'one': lambda o: o.one * 10}, sortby) return stdout.getvalue() printed = do_print_list(None) self.assertEqual('''\ +-----+-----+-----+ | 1st | 2nd | 3rd | +-----+-----+-----+ | 100 | a | B | | 80 | c | c | | 120 | 0 | Z | +-----+-----+-----+ ''', printed) printed = do_print_list(0) self.assertEqual('''\ +-----+-----+-----+ | 1st | 2nd | 3rd | +-----+-----+-----+ | 80 | c | c | | 100 | a | B | | 120 | 0 | Z | +-----+-----+-----+ ''', printed) printed = do_print_list(1) self.assertEqual('''\ +-----+-----+-----+ | 1st | 2nd | 3rd | +-----+-----+-----+ | 120 | 0 | Z | | 100 | a | B | | 80 | c | c | +-----+-----+-----+ ''', printed) def test_args_array_to_dict(self): my_args = { 'matching_metadata': ['metadata.key=metadata_value'], 'other': 'value' } cleaned_dict = utils.args_array_to_dict(my_args, "matching_metadata") self.assertEqual({ 'matching_metadata': {'metadata.key': 'metadata_value'}, 'other': 'value' }, cleaned_dict) def test_args_array_to_list_of_dicts(self): starts = ['0 11 * * *', '"0 11 * * *"', '\'0 11 * * *\''] timezones = [None, 'US/Eastern', '"US/Eastern"', '\'US/Eastern\''] descs = [None, 'de sc', '"de sc"', '\'de sc\''] for start, tz, desc in itertools.product(starts, timezones, descs): my_args = { 'time_constraints': ['name=const1;start=%s;duration=1' % start], 'other': 'value' } expected = { 'time_constraints': [dict(name='const1', start='0 11 * * *', duration='1')], 'other': 'value' } if tz: my_args['time_constraints'][0] += ';timezone=%s' % tz expected['time_constraints'][0]['timezone'] = 'US/Eastern' if desc: my_args['time_constraints'][0] += ';description=%s' % desc expected['time_constraints'][0]['description'] = 'de sc' cleaned = utils.args_array_to_list_of_dicts(my_args, 'time_constraints') self.assertEqual(expected, cleaned) def test_key_with_slash_to_nested_dict(self): my_args = { 'combination_rule/alarm_ids': ['id1', 'id2'], 'combination_rule/operator': 'and', 'threshold_rule/threshold': 400, 'threshold_rule/statictic': 'avg', 'threshold_rule/comparison_operator': 'or', } nested_dict = utils.key_with_slash_to_nested_dict(my_args) self.assertEqual({ 'combination_rule': {'alarm_ids': ['id1', 'id2'], 'operator': 'and'}, 'threshold_rule': {'threshold': 400, 'statictic': 'avg', 'comparison_operator': 'or'}, }, nested_dict) def test_arg(self): @utils.arg(help="not_required_no_default.") def not_required_no_default(): pass _, args = not_required_no_default.__dict__['arguments'][0] self.assertEqual("not_required_no_default.", args['help']) @utils.arg(required=True, help="required_no_default.") def required_no_default(): pass _, args = required_no_default.__dict__['arguments'][0] self.assertEqual("required_no_default. Required.", args['help']) @utils.arg(default=42, help="not_required_default.") def not_required_default(): pass _, args = not_required_default.__dict__['arguments'][0] self.assertEqual("not_required_default. Defaults to 42.", args['help']) def test_merge_nested_dict(self): dest = {'key': 'value', 'nested': {'key2': 'value2', 'key3': 'value3', 'nested2': {'key': 'value', 'some': 'thing'}}} source = {'key': 'modified', 'nested': {'key3': 'modified3', 'nested2': {'key5': 'value5'}}} utils.merge_nested_dict(dest, source, depth=1) self.assertEqual({'key': 'modified', 'nested': {'key2': 'value2', 'key3': 'modified3', 'nested2': {'key5': 'value5'}}}, dest) def test_merge_nested_dict_no_depth(self): dest = {'key': 'value', 'nested': {'key2': 'value2', 'key3': 'value3', 'nested2': {'key': 'value', 'some': 'thing'}}} source = {'key': 'modified', 'nested': {'key3': 'modified3', 'nested2': {'key5': 'value5'}}} utils.merge_nested_dict(dest, source) self.assertEqual({'key': 'modified', 'nested': {'key3': 'modified3', 'nested2': {'key5': 'value5'}}}, dest) @mock.patch('prettytable.PrettyTable') def test_format_nested_list_of_dict(self, pt_mock): actual_rows = [] def mock_add_row(row): actual_rows.append(row) table = mock.Mock() table.add_row = mock_add_row table.get_string.return_value = "the table" test_data = [ {'column_1': 'value_c', 'column_2': 'value_23'}, {'column_1': 'value_b', 'column_2': 'value_22'}, {'column_1': 'value_a', 'column_2': 'value_21'} ] columns = ['column_1', 'column_2'] pt_mock.return_value = table rval = utils.format_nested_list_of_dict(test_data, columns) self.assertEqual("the table", rval) self.assertEqual([['value_a', 'value_21'], ['value_b', 'value_22'], ['value_c', 'value_23']], actual_rows)
StarcoderdataPython
51206
from moai.monads.human.pose.openpose import ( Split as OpenposeSplit, JointMap as OpenposeJointMap ) __all__ = [ 'OpenposeSplit', 'OpenposeJointMap', ]
StarcoderdataPython
1794664
<reponame>blakev/stencil<filename>stencil/objects.py #! /usr/bin/env python # -*- coding: utf-8 -*- # # >> # stencil-blog, 2020 # - blake # << import os from datetime import datetime from dataclasses import dataclass, field, asdict from typing import Any, Dict, List, NamedTuple import toml class Validation(NamedTuple): errors: List[str] @property def success(self): return not self.errors @dataclass class FileMetadata: raw: str config: Dict[Any, Any] = field(init=False) def __post_init__(self): self.config = toml.loads(self.raw) @dataclass class MarkdownFile: source_folder: str fullpath: str relative_path: str = field(init=False) extension: str = field(init=False) filename: str = field(init=False) created: datetime = field(init=False) modified: datetime = field(init=False) is_index: bool = field(init=False, default=False) metadata: FileMetadata = field(init=False) markdown: str = field(init=False, default="") def __post_init__(self): self.relative_path = self.fullpath.split(self.source_folder)[-1] self.filename = os.path.split(self.fullpath)[-1] self.extension = os.path.splitext(self.filename)[-1] self.created = datetime.fromtimestamp(os.stat(self.fullpath).st_ctime) self.modified = datetime.fromtimestamp(os.stat(self.fullpath).st_mtime) self.is_index = self.filename.startswith("index.") @property def size(self) -> int: return os.stat(self.fullpath).st_size def add_markdown(self, raw: str) -> None: self.markdown = raw def add_metadata(self, raw: str) -> FileMetadata: self.metadata = FileMetadata(raw=raw) return self.metadata
StarcoderdataPython
17494
<reponame>judge2020/crossover-viz from main import extract_data if __name__ == '__main__': top = {} out = extract_data('CrossoverWiki.xml') for name in out: for link in name['links']: w = link['with'] top[w] = top[w] + 1 if w in top else 1 top = dict(reversed(sorted(top.items(), key=lambda item: item[1]))) print(top)
StarcoderdataPython
1612228
<gh_stars>0 # Copyright (C) 2011 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import webkitpy.thirdparty.unittest2 as unittest from webkitpy.common.checkout.baselineoptimizer import BaselineOptimizer from webkitpy.common.checkout.scm.scm_mock import MockSCM from webkitpy.common.host_mock import MockHost from webkitpy.common.webkit_finder import WebKitFinder class ExcludingMockSCM(MockSCM): def __init__(self, exclusion_list, filesystem=None, executive=None): MockSCM.__init__(self, filesystem, executive) self._exclusion_list = exclusion_list def exists(self, path): if path in self._exclusion_list: return False return MockSCM.exists(self, path) def delete(self, path): return self.delete_list([path]) def delete_list(self, paths): for path in paths: if path in self._exclusion_list: raise Exception("File is not SCM managed: " + path) return MockSCM.delete_list(self, paths) def move(self, origin, destination): if origin in self._exclusion_list: raise Exception("File is not SCM managed: " + origin) return MockSCM.move(self, origin, destination) class BaselineOptimizerTest(unittest.TestCase): def test_move_baselines(self): host = MockHost(scm=ExcludingMockSCM(['/mock-checkout/third_party/WebKit/LayoutTests/platform/mac/another/test-expected.txt'])) host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/platform/win/another/test-expected.txt', 'result A') host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/platform/mac/another/test-expected.txt', 'result A') host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/another/test-expected.txt', 'result B') baseline_optimizer = BaselineOptimizer(host, host.port_factory.all_port_names(), skip_scm_commands=False) baseline_optimizer._move_baselines('another/test-expected.txt', { '/mock-checkout/third_party/WebKit/LayoutTests/platform/win': 'aaa', '/mock-checkout/third_party/WebKit/LayoutTests/platform/mac': 'aaa', '/mock-checkout/third_party/WebKit/LayoutTests': 'bbb', }, { '/mock-checkout/third_party/WebKit/LayoutTests': 'aaa', }) self.assertEqual(host.filesystem.read_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/another/test-expected.txt'), 'result A') def test_move_baselines_skip_scm_commands(self): host = MockHost(scm=ExcludingMockSCM(['/mock-checkout/third_party/WebKit/LayoutTests/platform/mac/another/test-expected.txt'])) host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/platform/win/another/test-expected.txt', 'result A') host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/platform/mac/another/test-expected.txt', 'result A') host.filesystem.write_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/another/test-expected.txt', 'result B') baseline_optimizer = BaselineOptimizer(host, host.port_factory.all_port_names(), skip_scm_commands=True) baseline_optimizer._move_baselines('another/test-expected.txt', { '/mock-checkout/third_party/WebKit/LayoutTests/platform/win': 'aaa', '/mock-checkout/third_party/WebKit/LayoutTests/platform/mac': 'aaa', '/mock-checkout/third_party/WebKit/LayoutTests': 'bbb', }, { '/mock-checkout/third_party/WebKit/LayoutTests/platform/linux': 'bbb', '/mock-checkout/third_party/WebKit/LayoutTests': 'aaa', }) self.assertEqual(host.filesystem.read_binary_file('/mock-checkout/third_party/WebKit/LayoutTests/another/test-expected.txt'), 'result A') self.assertEqual(baseline_optimizer._files_to_delete, [ '/mock-checkout/third_party/WebKit/LayoutTests/platform/win/another/test-expected.txt', ]) self.assertEqual(baseline_optimizer._files_to_add, [ '/mock-checkout/third_party/WebKit/LayoutTests/another/test-expected.txt', '/mock-checkout/third_party/WebKit/LayoutTests/platform/linux/another/test-expected.txt', ]) def _assertOptimization(self, results_by_directory, expected_new_results_by_directory, baseline_dirname='', expected_files_to_delete=None): host = MockHost() fs = host.filesystem webkit_base = WebKitFinder(fs).webkit_base() baseline_name = 'mock-baseline-expected.txt' for dirname, contents in results_by_directory.items(): path = fs.join(webkit_base, 'LayoutTests', dirname, baseline_name) fs.write_binary_file(path, contents) baseline_optimizer = BaselineOptimizer(host, host.port_factory.all_port_names(), skip_scm_commands=expected_files_to_delete is not None) self.assertTrue(baseline_optimizer.optimize(fs.join(baseline_dirname, baseline_name))) for dirname, contents in expected_new_results_by_directory.items(): path = fs.join(webkit_base, 'LayoutTests', dirname, baseline_name) if contents is None: self.assertTrue(not fs.exists(path) or path in baseline_optimizer._files_to_delete) else: self.assertEqual(fs.read_binary_file(path), contents) # Check that the files that were in the original set have been deleted where necessary. for dirname in results_by_directory: path = fs.join(webkit_base, 'LayoutTests', dirname, baseline_name) if not dirname in expected_new_results_by_directory: self.assertTrue(not fs.exists(path) or path in baseline_optimizer._files_to_delete) if expected_files_to_delete: self.assertEqual(baseline_optimizer._files_to_delete, expected_files_to_delete) def test_linux_redundant_with_win(self): self._assertOptimization({ 'platform/win': '1', 'platform/linux': '1', }, { 'platform/win': '1', }) def test_covers_mac_win_linux(self): self._assertOptimization({ 'platform/mac': '1', 'platform/win': '1', 'platform/linux': '1', '': None, }, { '': '1', }) def test_overwrites_root(self): self._assertOptimization({ 'platform/mac': '1', 'platform/win': '1', 'platform/linux': '1', '': '2', }, { '': '1', }) def test_no_new_common_directory(self): self._assertOptimization({ 'platform/mac': '1', 'platform/linux': '1', '': '2', }, { 'platform/mac': '1', 'platform/linux': '1', '': '2', }) def test_local_optimization(self): self._assertOptimization({ 'platform/mac': '1', 'platform/linux': '1', 'platform/linux-x86': '1', }, { 'platform/mac': '1', 'platform/linux': '1', }) def test_local_optimization_skipping_a_port_in_the_middle(self): self._assertOptimization({ 'platform/mac-snowleopard': '1', 'platform/win': '1', 'platform/linux-x86': '1', }, { 'platform/mac-snowleopard': '1', 'platform/win': '1', }) def test_baseline_redundant_with_root(self): self._assertOptimization({ 'platform/mac': '1', 'platform/win': '2', '': '2', }, { 'platform/mac': '1', '': '2', }) def test_root_baseline_unused(self): self._assertOptimization({ 'platform/mac': '1', 'platform/win': '2', '': '3', }, { 'platform/mac': '1', 'platform/win': '2', }) def test_root_baseline_unused_and_non_existant(self): self._assertOptimization({ 'platform/mac': '1', 'platform/win': '2', }, { 'platform/mac': '1', 'platform/win': '2', }) def test_virtual_root_redundant_with_actual_root(self): self._assertOptimization({ 'virtual/softwarecompositing': '2', 'compositing': '2', }, { 'virtual/softwarecompositing': None, 'compositing': '2', }, baseline_dirname='virtual/softwarecompositing') def test_virtual_root_redundant_with_ancestors(self): self._assertOptimization({ 'virtual/softwarecompositing': '2', 'platform/mac/compositing': '2', 'platform/win/compositing': '2', }, { 'virtual/softwarecompositing': None, 'compositing': '2', }, baseline_dirname='virtual/softwarecompositing') def test_virtual_root_redundant_with_ancestors_skip_scm_commands(self): self._assertOptimization({ 'virtual/softwarecompositing': '2', 'platform/mac/compositing': '2', 'platform/win/compositing': '2', }, { 'virtual/softwarecompositing': None, 'compositing': '2', }, baseline_dirname='virtual/softwarecompositing', expected_files_to_delete=[ '/mock-checkout/third_party/WebKit/LayoutTests/virtual/softwarecompositing/mock-baseline-expected.txt', '/mock-checkout/third_party/WebKit/LayoutTests/platform/mac/compositing/mock-baseline-expected.txt', '/mock-checkout/third_party/WebKit/LayoutTests/platform/win/compositing/mock-baseline-expected.txt', ]) def test_virtual_root_not_redundant_with_ancestors(self): self._assertOptimization({ 'virtual/softwarecompositing': '2', 'platform/mac/compositing': '1', }, { 'virtual/softwarecompositing': '2', 'platform/mac/compositing': '1', }, baseline_dirname='virtual/softwarecompositing')
StarcoderdataPython
3380145
#Importing the required libraries import numpy as np import matplotlib.pyplot as plt #Creating a new figure plt.figure() #Initializing x and y values x_values = np.arange(-200, 250, 0.1) y_values = (x_values - 25)**2 + 20 #Plotting the values of x and y in the output plt.plot(x_values, y_values, '-m', lw = 2) #Annotating the graph plt.annotate('y=(x-25)^2 + 20', xy=(200, 30645), xytext=(-50, 40000), arrowprops = dict(facecolor='black', shrink=0.05)) plt.annotate('Vertex', xy=(25, 20), xytext=(25, 10000), arrowprops = dict(facecolor='black', shrink=0.05)) #Inserting proper labels and title plt.xlabel('X-Axis') plt.ylabel('Y-Axis') plt.title('Question-1(b)') #Displaying the graph in the output plt.show()
StarcoderdataPython
96633
<filename>src/utils/pythonSrc/watchFaceParser/models/elements/goalProgress/circularGoalProgressElement.py import logging from watchFaceParser.models.elements.common.circularProgressElement import CircularProgressElement class CircularGoalProgressElement(CircularProgressElement): def __init__(self, parameter, parent, name = None): super(CircularGoalProgressElement, self).__init__(parameter = parameter, parent = parent, name = name) def draw3(self, drawer, resources, state): assert(type(resources) == list) super(CircularGoalProgressElement, self).draw4(drawer, resources, state.getSteps(), state.getGoal())
StarcoderdataPython
41668
#!/usr/bin/env python3 import zipfile # The file to USE inside the zip, before compression filein = "index.php" print("[i] FileIn: %s\n" % filein) # How deep are we going? depth = "" # Loop 11 times (00-10) for i in range(11): # The .zip file to use zipname = "depth-%02d.zip" % i print("[i] ZipName: %s" % zipname) # Get the zip file out ready with zipfile.ZipFile(zipname , 'w') as zip: # The file INSIDDE the zip filezip = "%s%s" % (depth, filein) print("[i] ZipFile: %s" % filezip) # Write the zip file out zip.write(filein, filezip) # Increase depth for next loop depth += "../" print("\n[i] Done")
StarcoderdataPython
3285806
<filename>auxilearn/hypernet.py<gh_stars>10-100 from abc import abstractmethod from torch import nn from torch.nn.utils import weight_norm class HyperNet(nn.Module): """This module is responsible for taking the losses from all tasks and return a single loss term. We can think of this as our learnable loss criterion """ def __init__(self, main_task, input_dim): super().__init__() self.main_task = main_task self.input_dim = input_dim def forward(self, losses, outputs=None, labels=None, data=None): """ :param losses: losses form each task. This should be a tensor of size (batch_size, self.input_dim) :param outputs: Optional. Parameters model output. :param labels: Optional. Target. :param data: Optiona. Parameters model input. :return: """ pass def _init_weights(self): pass def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) class MonoHyperNet(HyperNet): """Monotonic Hypernets """ def __init__(self, main_task, input_dim, clamp_bias=False): super().__init__(main_task=main_task, input_dim=input_dim) self.clamp_bias = clamp_bias def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) @abstractmethod def clamp(self): pass class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x): return x class LinearHyperNet(HyperNet): """Linear weights, e.g. \sum_j \alpha_j * l_j """ def __init__(self, main_task, input_dim, skip_connection=False, init_value=1., weight_normalization=True): super().__init__(main_task=main_task, input_dim=main_task) self.init_value = init_value self.skip_connection = skip_connection self.linear = nn.Linear(input_dim, 1, bias=False) self.weight_normalization = weight_normalization self._init_weights() if self.weight_normalization: self.linear = weight_norm(self.linear) def _init_weights(self): # init to 1 # todo: maybe we want 1/num_tasks ? self.linear.weight = nn.init.constant_(self.linear.weight, self.init_value) def forward(self, losses, outputs=None, labels=None, data=None): loss = self.linear(losses).mean() if self.skip_connection: loss += losses[:, self.main_task].mean() return loss class MonoLinearHyperNet(MonoHyperNet): """Linear weights, e.g. \sum_j \alpha_j * l_j """ def __init__( self, main_task, input_dim, skip_connection=False, clamp_bias=False, init_value=1., weight_normalization=True ): super().__init__(main_task=main_task, input_dim=main_task, clamp_bias=clamp_bias) self.init_value = init_value self.skip_connection = skip_connection self.linear = nn.Linear(input_dim, 1, bias=False) self._init_weights() self.weight_normalization = weight_normalization if self.weight_normalization: self.linear = weight_norm(self.linear) def _init_weights(self): # init to 1 # todo: maybe we want 1/num_tasks ? self.linear.weight = nn.init.constant_(self.linear.weight, self.init_value) def forward(self, losses, outputs=None, labels=None, data=None): loss = self.linear(losses).mean() if self.skip_connection: loss += losses[:, self.main_task].mean() return loss def clamp(self): """make sure parameters are non-negative """ if self.weight_normalization: self.linear.weight_v.data.clamp_(0) self.linear.weight_g.data.clamp_(0) else: self.linear.weight.data.clamp_(0) if self.linear.bias is not None and self.clamp_bias: self.linear.bias.data.clamp_(0) class NonlinearHyperNet(HyperNet): def __init__( self, main_task, input_dim, hidden_sizes=1, nonlinearity=None, bias=True, dropout_rate=0., init_upper=None, init_lower=None, weight_normalization=True ): super().__init__(main_task=main_task, input_dim=input_dim) assert isinstance(hidden_sizes, (list, int)), "hidden sizes must be int or list" if isinstance(hidden_sizes, int): hidden_sizes = [hidden_sizes] self.nonlinearity = nonlinearity if nonlinearity is not None else nn.Softplus() self.dropout = nn.Dropout(dropout_rate) self.weight_normalization = weight_normalization self.bias = bias dims = [self.input_dim] + hidden_sizes + [1] self.layers = [] for j in range(len(dims) - 2): self.layers.append( self._get_layer(dims[j], dims[j + 1], init_upper=init_upper, init_lower=init_lower, bias=bias) ) self.layers.append(self.nonlinearity) self.layers.append(self.dropout) self.layers.append( self._get_layer(dims[-2], dims[-1], init_upper=init_upper, init_lower=init_lower, bias=False) ) self.net = nn.Sequential(*self.layers) def _get_layer(self, input_dim, output_dim, init_upper, init_lower, bias): """Create layer with weight normalization :param input_dim: :param output_dim: :param init_upper: :param init_lower: :param bias: :return: """ layer = nn.Linear(input_dim, output_dim, bias=bias) self._init_layer(layer, init_upper=init_upper, init_lower=init_lower) if self.weight_normalization: return weight_norm(layer) return layer @staticmethod def _init_layer(layer, init_lower, init_upper): b = init_upper if init_upper is not None else 1. a = init_lower if init_lower is not None else 0. if isinstance(layer, nn.Linear): layer.weight = nn.init.uniform_(layer.weight, b=b, a=a) if layer.bias is not None: layer.bias = nn.init.constant_(layer.bias, 0.) def forward(self, losses, outputs=None, labels=None, data=None): main_loss = losses[:, self.main_task].mean() return self.net(losses).mean() + main_loss class MonoNonlinearHyperNet(MonoHyperNet): def __init__( self, main_task, input_dim, hidden_sizes=1, nonlinearity=None, bias=True, dropout_rate=0., init_upper=None, init_lower=None, weight_normalization=True ): super().__init__(main_task=main_task, input_dim=input_dim) assert isinstance(hidden_sizes, (list, int)), "hidden sizes must be int or list" if isinstance(hidden_sizes, int): hidden_sizes = [hidden_sizes] self.nonlinearity = nonlinearity if nonlinearity is not None else nn.Softplus() self.dropout = nn.Dropout(dropout_rate) self.weight_normalization = weight_normalization if isinstance(self.nonlinearity, Identity): bias = False self.bias = bias dims = [self.input_dim] + hidden_sizes + [1] self.layers = [] for j in range(len(dims) - 2): self.layers.append( self._get_layer(dims[j], dims[j + 1], init_upper=init_upper, init_lower=init_lower, bias=bias) ) self.layers.append(self.nonlinearity) self.layers.append(self.dropout) self.layers.append( self._get_layer(dims[-2], dims[-1], init_upper=init_upper, init_lower=init_lower, bias=False) ) self.net = nn.Sequential(*self.layers) def _get_layer(self, input_dim, output_dim, init_upper, init_lower, bias): """Create layer with weight normalization :param input_dim: :param output_dim: :param init_upper: :param init_lower: :param bias: :return: """ layer = nn.Linear(input_dim, output_dim, bias=bias) self._init_layer(layer, init_upper=init_upper, init_lower=init_lower) if self.weight_normalization: return weight_norm(layer) return layer @staticmethod def _init_layer(layer, init_lower, init_upper): b = init_upper if init_upper is not None else 1. a = init_lower if init_lower is not None else 0. if isinstance(layer, nn.Linear): layer.weight = nn.init.uniform_(layer.weight, b=b, a=a) if layer.bias is not None: layer.bias = nn.init.constant_(layer.bias, 0.) def forward(self, losses, outputs=None, labels=None, data=None): main_loss = losses[:, self.main_task].mean() return self.net(losses).mean() + main_loss def clamp(self): for l in self.net: if isinstance(l, nn.Linear): if self.weight_normalization: l.weight_v.data.clamp_(0) l.weight_g.data.clamp_(0) else: l.weight.data.clamp_(0) if l.bias is not None and self.clamp_bias: l.bias.data.clamp_(0) class NoFCCNNHyperNet(HyperNet): # NYU Input shape is (3, 288, 384) def __init__( self, main_task, reduction='mean', input_channels=3, init_upper=.1, init_lower=0, weight_normalization=False ): super().__init__(input_dim=-1, main_task=main_task) self.main_task = main_task assert reduction in ['mean', 'sum'] self.reduction = reduction self.weight_normalization = weight_normalization self.conv = nn.Sequential( self._get_layer( input_channels, 8, kernel_size=3, stride=1, padding=1, init_lower=init_lower, init_upper=init_upper ), nn.Softplus(), nn.AvgPool2d(kernel_size=2, padding=0), self._get_layer(8, 16, kernel_size=3, stride=1, padding=1, init_lower=init_lower, init_upper=init_upper), nn.Softplus(), nn.AvgPool2d(kernel_size=2, padding=0), self._get_layer(16, 32, kernel_size=3, stride=1, padding=1, init_lower=init_lower, init_upper=init_upper), nn.Softplus(), nn.AvgPool2d(kernel_size=2, padding=0), self._get_layer(32, 1, kernel_size=1, bias=False), ) def _get_layer( self, input_channels, output_channel, init_upper=None, init_lower=None, bias=True, kernel_size=3, stride=1, padding=1, ): layer = nn.Conv2d( input_channels, output_channel, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias ) self._init_layer(layer, init_upper=init_upper, init_lower=init_lower) if self.weight_normalization: return weight_norm(layer) return layer @staticmethod def _init_layer(layer, init_lower, init_upper): b = init_upper if init_upper is not None else 1. a = init_lower if init_lower is not None else 0. if isinstance(layer, (nn.Linear, nn.Conv2d)): layer.weight = nn.init.uniform_(layer.weight, b=b, a=a) if layer.bias is not None: layer.bias = nn.init.constant_(layer.bias, 0.) def forward(self, losses, outputs=None, labels=None, data=None): main_loss = .0 if self.main_task is not None: # (bs, tasks, h, w) if self.reduction == 'mean': main_loss = losses[:, self.main_task, :, :].mean(dim=(1, 2)).mean(0) else: main_loss = losses[:, self.main_task, :, :].sum(dim=(1, 2)).mean(0) # self.conv(losses) is of shape (bs, 1, 36, 48) img_loss = self.conv(losses).mean((1, 2, 3)) return img_loss.mean() + main_loss class MonoNoFCCNNHyperNet(MonoHyperNet): # NYU Input shape is (3, 288, 384) def __init__( self, main_task, reduction='mean', init_upper=.1, init_lower=0., input_channels=3, weight_normalization=False ): super().__init__(input_dim=-1, main_task=main_task) self.main_task = main_task assert reduction in ['mean', 'sum'] self.reduction = reduction self.weight_normalization = weight_normalization self.conv = nn.Sequential( self._get_layer( input_channels, 8, kernel_size=3, stride=1, padding=1, init_lower=init_lower, init_upper=init_upper ), nn.Softplus(), nn.AvgPool2d(kernel_size=2, padding=0), self._get_layer(8, 16, kernel_size=3, stride=1, padding=1, init_lower=init_lower, init_upper=init_upper), nn.Softplus(), nn.AvgPool2d(kernel_size=2, padding=0), self._get_layer(16, 1, kernel_size=1, bias=False, init_lower=init_lower, init_upper=init_upper), ) def _get_layer( self, input_channels, output_channel, init_upper=None, init_lower=None, bias=True, kernel_size=3, stride=1, padding=1, ): layer = nn.Conv2d( input_channels, output_channel, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias ) self._init_layer(layer, init_upper=init_upper, init_lower=init_lower) if self.weight_normalization: return weight_norm(layer) return layer @staticmethod def _init_layer(layer, init_lower, init_upper): b = init_upper if init_upper is not None else 1. a = init_lower if init_lower is not None else 0. if isinstance(layer, (nn.Linear, nn.Conv2d)): layer.weight = nn.init.uniform_(layer.weight, b=b, a=a) if layer.bias is not None: layer.bias = nn.init.constant_(layer.bias, 0.) def forward(self, losses, outputs=None, labels=None, data=None): main_loss = .0 if self.main_task is not None: # (bs, tasks, h, w) if self.reduction == 'mean': main_loss = losses[:, self.main_task, :, :].mean(dim=(1, 2)).mean(0) else: main_loss = losses[:, self.main_task, :, :].sum(dim=(1, 2)).mean(0) # self.conv(losses) is of shape (bs, 1, 36, 48) img_loss = self.conv(losses).mean((1, 2, 3)).mean() return img_loss + main_loss def clamp(self): for l in self.conv: if isinstance(l, nn.Conv2d): if self.weight_normalization: l.weight_v.data.clamp_(0) l.weight_g.data.clamp_(0) else: l.weight.data.clamp_(0) if l.bias is not None and self.clamp_bias: l.bias.data.clamp_(0)
StarcoderdataPython
1645897
# -*- coding=utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Default lr_scheduler configs.""" from zeus.common import ConfigSerializable class LrSchedulerConfig(ConfigSerializable): """Default LrScheduler Config.""" _class_type = "trainer.lr_scheduler" _update_all_attrs = True _exclude_keys = ['type'] type = 'MultiStepLR' params = {"milestones": [75, 150], "gamma": 0.5} @classmethod def from_json(cls, data, skip_check=True): """Restore config from a dictionary or a file.""" cls = super(LrSchedulerConfig, cls).from_json(data, skip_check) if "params" not in data: cls.params = {} return cls @classmethod def rules(cls): """Return rules for checking.""" rules = {"type": {"type": str}, "params": {"type": dict}} return rules class LrSchedulerMappingDict(object): """Lr Scheduler Mapping Dictionary.""" type_mapping_dict = dict( ) params_mapping_dict = dict( )
StarcoderdataPython
113233
from .core import GetJob # program Design # get available meshroombot Job # search in scan directory for the first available folder # check with rename # folder name indicated status # available # [-] busy # [#] done # search in [#] scans for Meshroom/mesh.obj # (texture phase) # process Job # new scans # create meshroom room .mg file # run toNode MeshFiltering # Texturing # set mesh.obj as Texture inputMesh
StarcoderdataPython
34948
<filename>webtool/server/models/equipment.py # -*- coding: utf-8 -*- from django.db import models from .mixins import SeasonsMixin from .time_base import TimeMixin from . import fields class EquipmentManager(models.Manager): def get_by_natural_key(self, code): return self.get(code=code) class Equipment(SeasonsMixin, TimeMixin, models.Model): objects = EquipmentManager() code = models.CharField( 'Kurzzeichen', unique=True, max_length=10, help_text="Kurzzeichen für die Ausrüstung", ) name = fields.NameField( 'Bezeichnung', help_text="Bezeichnung der Ausrüstung", ) description = fields.DescriptionField( 'Beschreibung', help_text="Beschreibung der Ausrüstung", ) default = models.BooleanField( 'Die initiale Ausrüstung', blank=True, default=False ) def natural_key(self): return self.code, natural_key.dependencies = ['server.season'] def __str__(self): return "{} ({})".format(self.name, self.code) class Meta: get_latest_by = "updated" verbose_name = "Ausrüstung" verbose_name_plural = "Ausrüstungen" unique_together = ('code', 'name') ordering = ('code', )
StarcoderdataPython
3310938
# (C) Copyright (2018,2020) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from subprocess import CalledProcessError import shutil import subprocess import threading from redfish_object import RedfishObject from time import sleep import requests import os import json from datetime import datetime from datetime import timedelta from esxi_operations import * from ilo_operations import * from image_operations import * def image_deployment(server, config): """Primary function that triggers OS deployment for each of the server hardware. This function handles end to end operations and triggers functions necessary for OS deployment. Arguments: servers {dictionary} -- server details as per the input_file/server_details.json config {dictionary} -- Config details as per the input_file/config.json Returns: Boolean -- returns True on successful OS deployment, returns False on failure of OS deployment """ try: server_serial_number = server['Server_serial_number'] os_type = config["OS_type"] image_path = config["HTTP_server_base_url"]+config["OS_image_name"] # Check if iso image present or not in the given location iso_file_check = is_iso_file_present(image_path) if not iso_file_check: print("ISO image not preset in the specified location") return False # Create a REDFISH object redfish_obj = create_redfish_object(server) if not redfish_obj: print("Error occured while creating redfish object for server {}".format(server_serial_number)) return False # Get server model server_model = get_server_model(redfish_obj) if not server_model: print("Failed to get server model") return False if "Gen10" not in server_model: print("Server with serial number {} is not supported for this solution".format(server['Server_serial_number'])) return False # Create custom is image with the given kickstart file custom_iso_created = create_custom_iso_image_esxi(os_type, server, config, config['base_kickstart_filepath']) print("Starting OS installation for server: " + server_serial_number) # Get custom image path custom_image_path = get_custom_image_path(config["HTTP_file_path"], os_type, server_serial_number) # Get custom image url custom_image_url = get_custom_image_url(config["HTTP_server_base_url"], os_type, server_serial_number) # Get custom kickstart file path custom_kickstart_path = get_custom_kickstart_path(config["HTTP_file_path"], os_type, server_serial_number) custom_iso_present = is_iso_file_present(custom_image_url) if(custom_iso_created and custom_iso_present): # Unmount the previous ISO and mount the custom ISO image unmount_virtual_media_iso(redfish_obj) mount_virtual_media_iso(redfish_obj, custom_image_url, True) power_staus = get_post_state(redfish_obj) if power_staus == "PowerOff": change_server_power_state(redfish_obj, server_serial_number, power_state="On") else: change_server_power_state(redfish_obj, server_serial_number, power_state="ForceRestart") is_complete = wait_for_os_deployment_to_complete(redfish_obj, server['Server_serial_number']) #unmount ISO once OS deployment is complete unmount_virtual_media_iso(redfish_obj) # Moving custom ISO image and Kickstart files to files folder print("Moving custom image for server {}".format(server_serial_number)) move_file(custom_image_path) print("Moving custom kickstart file for server {}".format(server_serial_number)) move_file(custom_kickstart_path) # Logout of iLO print("Logging out of iLO for server {}".format(server_serial_number)) redfish_obj.redfish_client.logout() if is_complete: print("OS installation is complete for server {}".format(server_serial_number)) return True else: print("OS installation failed on server {}".format(server_serial_number)) return False else: print("Error in fetching custom image for server {}".format(server_serial_number)) return False except Exception as e: print("Failure: Error occurred while deploying image on server {}".format(e)) return False def unmount_virtual_media(server): """This function is to call unmount_virtual_media_iso function Arguments: servers {dict} -- server details """ try: # Creating redfish object redfish_obj = create_redfish_object(server) unmount_virtual_media_iso(redfish_obj) except Exception as e: print("Failure: Failed to unmount virtual media {}".format(e)) def wait_for_os_deployment(server): """This function is to call wait_for_os_deployment function Arguments: servers {dict} -- server details """ try: # Creating redfish object redfish_obj = create_redfish_object(server) wait_for_os_deployment_to_complete(redfish_obj, server['Server_serial_number']) except Exception as e: print("Failure: Image deployment failed {}".format(e))
StarcoderdataPython
3227453
<gh_stars>1-10 # Standard library # 3rd party packages import pytest # Local source from parametrization_clean.domain.cost.reax_error import ReaxError @pytest.mark.usefixtures('reax_energies', 'dft_energies', 'weights') def test_reax_error(reax_energies, dft_energies, weights): reax_energy = reax_energies[0][0] dft_energy = dft_energies[0] weight = weights[0] true_error = ((reax_energy - dft_energy) / weight) ** 2 assert ReaxError.error(reax_energy, dft_energy, weight) == true_error assert reax_energies[0][0] == reax_energy assert dft_energies[0] == dft_energy assert weights[0] == weight
StarcoderdataPython
1692572
#!/usr/bin/env python3 # Simple test for NeoPixels on Raspberry Pi import time import board import neopixel # Choose an open pin connected to the Data In of the NeoPixel strip, i.e. board.D18 # NeoPixels must be connected to D10, D12, D18 or D21 to work. pixel_pin = board.D18 global_brightness=0.2 # The number of NeoPixels num_pixels = 60 # For cylon / kitt width=6 start=10 length=40 delay=0.07 sidered=10 centrered=255 # The order of the pixel colors - RGB or GRB. Some NeoPixels have red and green reversed! # For RGBW NeoPixels, simply change the ORDER to RGBW or GRBW. ORDER = neopixel.GRB pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=global_brightness, auto_write=False, pixel_order=ORDER) def cylonup(side, center, delay, start, end, width): st = start end = start-width+end for i in range(st,end): # leading edge pixels[i+1]=(side,0,0) # main eye pixels[i]=(center,0,0) dim=0.5 #trailing tail for tail in range (i-1, i-(width-2),-1): if (tail>0): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 # clear the end of the tail pixels[i-(width-1)]=(0,0,0) pixels.show() time.sleep(delay) def cylondown(side, center, delay, start, end, width): st = start end = start-width+end for i in range(end, st, -1): # leading edge pixels[i-1]=(side,0,0) # main eye pixels[i]=(center,0,0) dim=0.5 #trailing tail for tail in range (i+1, i+(width+2)): if (tail>0): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 # clear the end of the tail pixels[i-(width+1)]=(0,0,0) pixels.show() time.sleep(delay) def white(start, length): for i in range(start,start+length): pixels[i]=(255,255,255) pixels.show() def clear(): pixels.fill((0,0,0)) def whitepulse(updown=3): if (updown==3): whitepulse(1) whitepulse(2) else: if (updown==1): start=0 end=255 step=2 if (updown==2): start=255 end=0 step=-2 for bright in range(start, end, step): pixels.fill((bright,bright,bright)) pixels.show() time.sleep(delay/2) def splitin(side, center, delay, start, length, pulsewidth): leftstart = start leftend = start+(length/2) rightstart = start+length rightend = leftend left = leftstart right = rightstart while left <= leftend+width: # print("left: ",left, "right: ", right) if (left<=leftend): # leading edge pixels[left+1]=(side,0,0) pixels[right-1]=(side,0,0) # main eye pixels[left]=(center,0,0) pixels[right]=(center,0,0) dim=0.5 #trailing tail for tail in range (left-1, left-(pulsewidth+2)): if (tail>leftstart and tail<rightend): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 for tail in range (right+1, right+(pulsewidth+2)): if (tail>leftstart and tail<rightend): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 # clear the end of the tail pixels[left-(pulsewidth-1)]=(0,0,0) pixels[right+(pulsewidth+1)]=(0,0,0) pixels.show() time.sleep(delay) left+=1 right-=1 def splitout(side, center, delay, start, length, pulsewidth): leftend = start leftstart = start+(length/2) rightend = start+length rightstart = leftend left = leftstart right = rightstart while left <= leftend: # print("left: ",left, "right: ", right) # leading edge pixels[left-1]=(side,0,0) pixels[right+1]=(side,0,0) # main eye pixels[left]=(center,0,0) pixels[right]=(center,0,0) dim=0.5 #trailing tail for tail in range (left+1, left+(pulsewidth+2)): if (tail>leftstart and tail<rightend): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 for tail in range (right-1, right-(pulsewidth+2)): if (tail>leftstart and tail<rightend): pixels[tail]=(int(side/(dim*2)),0,0) dim+=1 # clear the end of the tail pixels[left+(pulsewidth+1)]=(0,0,0) pixels[right-(pulsewidth-1)]=(0,0,0) pixels.show() time.sleep(delay) left-=1 right+=1 while True: whitepulse(3) time.sleep(0.5) cylonup(sidered,centrered,delay,start,length, width) time.sleep(delay) cylondown(sidered,centrered,delay,start,length, width) time.sleep(delay) splitin(sidered,centrered,delay,start,length, width) time.sleep(delay) # splitout(sidered,centrered,delay,start,length, width) # time.sleep(delay) # clear()
StarcoderdataPython
187203
<reponame>shagun30/djambala-2<gh_stars>0 from django.core import validators from django.core.exceptions import ImproperlyConfigured from django.db import backend, connection, models from django.contrib.contenttypes.models import ContentType from django.utils.translation import gettext_lazy as _ from django.utils.encoding import smart_str import datetime from django.utils.translation import ugettext as _ ############################################################################## # # Copyright (c) 2001 Zope Corporation and Contributors. All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.0 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # # <NAME> # <NAME>, 14.01.2007 # ############################################################################## import sha, binascii from binascii import b2a_base64, a2b_base64 from random import choice, randrange class SSHADigestScheme: ''' SSHA is a modification of the SHA digest scheme with a salt starting at byte 20 of the base64-encoded string. ''' # Source: http://developer.netscape.com/docs/technote/ldap/pass_sha.html def generate_salt(self): # Salt can be any length, but not more than about 37 characters # because of limitations of the binascii module. # 7 is what Netscape's example used and should be enough. # All 256 characters are available. salt = '' for n in range(7): salt += chr(randrange(256)) return salt def encrypt(self, pw): pw = str(pw) salt = self.generate_salt() return b2a_base64(sha.new(pw + salt).digest() + salt)[:-1] def validate(self, reference, attempt): try: ref = a2b_base64(reference) except binascii.Error: # Not valid base64. return 0 salt = smart_str(ref[20:]) compare = b2a_base64(sha.new(smart_str(attempt) + salt).digest() + salt)[:-1] return (compare == reference) def pw_validate(reference, attempt): """Validate the provided password string, which uses LDAP-style encoding notation. Reference is the correct password, attempt is clear text password attempt.""" lp = len('{SSHA}') return SSHADigestScheme().validate(reference[lp:], attempt) def pw_encrypt(pw): """Encrypt the provided plain text password using the encoding if provided and return it in an LDAP-style representation.""" return '{SSHA}' + SSHADigestScheme().encrypt(pw) def check_password(raw_password, enc_password): """ Returns a boolean of whether the raw_password was correct. Handles encryption formats behind the scenes. """ lp = len('{SSHA}') #return SSHADigestScheme().validate(reference[lp:], attempt) return SSHADigestScheme().validate(enc_password[lp:], raw_password) """ algo, salt, hsh = enc_password.split('$') if algo == 'md5': import md5 return hsh == md5.new(salt+raw_password).hexdigest() elif algo == 'sha1': import sha return hsh == sha.new(salt+raw_password).hexdigest() raise ValueError, "Got unknown password algorithm type in password." """ class SiteProfileNotAvailable(Exception): pass class UserManager(models.Manager): def create_user(self, username, email, password): "Creates and saves a User with the given username, e-mail and password." now = datetime.datetime.now() user = self.model(None, username, '', '', email.strip().lower(), 'placeholder', False, True, False, now, now) user.set_password(password) user.save() return user def make_random_password(self, length=10, allowed_chars='abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789'): "Generates a random password with the given length and given allowed_chars" # Note that default value of allowed_chars does not have "I" or letters # that look like it -- just to avoid confusion. from random import choice return ''.join([choice(allowed_chars) for i in range(length)]) class User(models.Model): """Users within the Django authentication system are represented by this model. Username and password are required. Other fields are optional. """ username = models.CharField(_(u'username'), max_length=60, unique=True, validator_list=[validators.isAlphaNumericURL], help_text=_(u"Required. 30 characters or fewer. Alphanumeric characters only (letters, digits and underscores).")) sex = models.CharField(_(u'sex'), max_length=10) title = models.CharField(_(u'title'), max_length=30, blank=True) first_name = models.CharField(_(u'first name'), max_length=30, blank=True) last_name = models.CharField(_(u'last name'), max_length=40, blank=True) email = models.EmailField(_(u'e-mail address'), blank=True) password = models.CharField(_(u'password'), max_length=80, help_text=_(u"Use '[algo]$[salt]$[hexdigest]' or use the <a href=\"password/\">change password form</a>.")) is_staff = models.BooleanField(_(u'staff status'), default=False, help_text=_(u"Designates whether the user can log into this admin site.")) is_active = models.BooleanField(_(u'active'), default=True, help_text=_(u"Designates whether this user can log into the Django admin. Unselect this instead of deleting accounts.")) is_superuser = models.BooleanField(_(u'superuser status'), default=False, help_text=_(u"Designates that this user has all permissions without explicitly assigning them.")) last_login = models.DateTimeField(_(u'last login'), default=datetime.datetime.now) date_joined = models.DateTimeField(_(u'date joined'), default=datetime.datetime.now) objects = UserManager() class Meta: verbose_name = _(u'user') verbose_name_plural = _(u'users') ordering = ('username',) class Admin: fields = ( (None, {'fields': ('username', 'password')}), (_(u'Personal info'), {'fields': ('sex', 'first_name', 'last_name', 'email')}), (_(u'Permissions'), {'fields': ('is_active', 'is_superuser')}), (_(u'Important dates'), {'fields': ('last_login', 'date_joined')}), ) list_display = ('username', 'email', 'sex', 'title', 'first_name', 'last_name') list_filter = ('is_superuser',) search_fields = ('username', 'first_name', 'last_name', 'email') def __unicode__(self): return self.username def get_absolute_url(self): return u"/users/%s/" % self.username def is_anonymous(self): "Always returns False. This is a way of comparing User objects to anonymous users." return False def is_authenticated(self): """Always return True. This is a way to tell if the user has been authenticated in templates. """ return True def get_full_name(self): "Returns the first_name plus the last_name, with a space in between." if self.title : full_name = u'%s %s %s' % (self.title, self.first_name, self.last_name) else : full_name = u'%s %s' % (self.first_name, self.last_name) return full_name.strip() def get_standard_name(self): "Returns the last_name, first_name" if self.title : full_name = u'%s, %s %s' % (self.last_name, self.title, self.first_name) else : full_name = u'%s, %s' % (self.last_name, self.first_name) return full_name.strip() def set_password(self, raw_password): #import sha, random #algo = 'sha1' #salt = sha.new(str(random.random())).hexdigest()[:5] #hsh = sha.new(salt+raw_password).hexdigest() #self.password = <PASSWORD>' % (algo, salt, hsh) self.password = pw_<PASSWORD>(raw_password) def check_password(self, raw_password): """ Returns a boolean of whether the raw_password was correct. Handles encryption formats behind the scenes. """ return check_password(raw_password, self.password) def has_perm(self, perm): "Returns True if the user has the specified permission." if not self.is_active: return False if self.is_superuser: return True return perm in self.get_all_permissions() def has_module_perms(self, app_label): "Returns True if the user has any permissions in the given app label." if not self.is_active: return False if self.is_superuser: return True return bool(len([p for p in self.get_all_permissions() if p[:p.index('.')] == app_label])) def get_and_delete_messages(self): messages = [] for m in self.message_set.all(): messages.append(m.message) m.delete() return messages def email_user(self, subject, message, from_email=None): "Sends an e-mail to this User." from django.core.mail import send_mail send_mail(subject, message, from_email, [self.email]) def get_profile(self): """ Returns site-specific profile for this user. Raises SiteProfileNotAvailable if this site does not allow profiles. """ if not hasattr(self, '_profile_cache'): from django.conf import settings if not settings.AUTH_PROFILE_MODULE: raise SiteProfileNotAvailable try: app_label, model_name = settings.AUTH_PROFILE_MODULE.split('.') model = models.get_model(app_label, model_name) self._profile_cache = model._default_manager.get(user__id__exact=self.id) except (ImportError, ImproperlyConfigured): raise SiteProfileNotAvailable return self._profile_cache class AnonymousUser(object): id = None username = '' def __init__(self): pass def __unicode__(self): return 'AnonymousUser' def __eq__(self, other): return isinstance(other, self.__class__) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return 1 # instances always return the same hash value def save(self): raise NotImplementedError def delete(self): raise NotImplementedError def set_password(self, raw_password): raise NotImplementedError def check_password(self, raw_password): raise NotImplementedError def get_and_delete_messages(self): return [] def is_anonymous(self): return True def is_authenticated(self): return False
StarcoderdataPython
3300663
# """Demonstrate WeakValueDictionary. """ # end_pymotw_header import gc from pprint import pprint import weakref gc.set_debug(gc.DEBUG_UNCOLLECTABLE) class ExpensiveObject: def __init__(self, name): self.name = name def __repr__(self): return "ExpensiveObject({})".format(self.name) def __del__(self): print(" (Deleting {})".format(self)) def demo(cache_factory): # hold objects so any weak references # are not removed immediately all_refs = {} # create the cache using the factory print("CACHE TYPE:", cache_factory) cache = cache_factory() for name in ["one", "two", "three"]: o = ExpensiveObject(name) cache[name] = o all_refs[name] = o del o # decref print(" all_refs =", end=" ") pprint(all_refs) print("\n Before, cache contains:", list(cache.keys())) for name, value in cache.items(): print(" {} = {}".format(name, value)) del value # decref # remove all references to the objects except the cache print("\n Cleanup:") del all_refs gc.collect() print("\n After, cache contains:", list(cache.keys())) for name, value in cache.items(): print(" {} = {}".format(name, value)) print(" demo returning") return demo(dict) print() demo(weakref.WeakValueDictionary)
StarcoderdataPython
1611454
<reponame>davidkhala/oci-designer-toolk # Copyright (c) 2020, 2021, Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. """Provide Module Description """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# __author__ = ["<NAME> (Oracle Cloud Solutions A-Team)"] __version__ = "1.0.0" __module__ = "okitWebDesigner" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# import configparser import functools import oci import os import shutil import tempfile import time import urllib import giturlparse import glob import ast from git import Repo from flask import Blueprint from flask import current_app from flask import jsonify from flask import redirect from flask import render_template from flask import request from flask import send_from_directory from flask import session from flask import url_for import json from common.okitCommon import jsonToFormattedString from common.okitCommon import logJson from common.okitCommon import readJsonFile from common.okitCommon import standardiseIds from common.okitCommon import writeJsonFile from common.okitLogging import getLogger from model.okitValidation import OCIJsonValidator from generators.okitAnsibleGenerator import OCIAnsibleGenerator from generators.okitTerraform11Generator import OCITerraform11Generator from generators.okitTerraformGenerator import OCITerraformGenerator from generators.okitResourceManagerGenerator import OCIResourceManagerGenerator from generators.okitMarkdownGenerator import OkitMarkdownGenerator # Configure logging logger = getLogger() bp = Blueprint('okit', __name__, url_prefix='/okit', static_folder='static/okit') debug_mode = bool(str(os.getenv('DEBUG_MODE', 'False')).title()) template_root = '/okit/visualiser/templates' def standardiseJson(json_data={}, **kwargs): logJson(json_data) json_data = standardiseIds(json_data) logJson(json_data) return json_data def readConfigFileSections(config_file='~/.oci/config'): if os.getenv('OCI_CLI_AUTH', 'config') != 'instance_principal': logger.debug('Config File {0!s:s}'.format(config_file)) abs_config_file = os.path.expanduser(config_file) logger.debug('Config File {0!s:s}'.format(abs_config_file)) config = configparser.ConfigParser() config.read(abs_config_file) config_sections = [] if 'DEFAULT' in config: config_sections = ['DEFAULT'] config_sections.extend(config.sections()) logger.info('Config Sections {0!s:s}'.format(config_sections)) else: config_sections = ['Instance Principal'] return config_sections def readGitConfigFile(config_file='~/.oci/git_repositories'): logger.debug('Setting File {0!s:s}'.format(config_file)) abs_config_file = os.path.expanduser(config_file) logger.debug('Setting File {0!s:s}'.format(abs_config_file)) config = configparser.ConfigParser() config.read(abs_config_file) repo_list = [] for each_git_section in config.sections(): repo_list.append({'label': each_git_section, 'branch': config[each_git_section]['branch'], 'url': config[each_git_section]['url']}) logger.info(repo_list) return repo_list def getConfigFileValue(section, key, config_file='~/.oci/config'): value = '' if os.getenv('OCI_CLI_AUTH', 'config') != 'instance_principal': logger.debug('Config File {0!s:s}'.format(config_file)) abs_config_file = os.path.expanduser(config_file) logger.debug('Config File {0!s:s}'.format(abs_config_file)) config = configparser.ConfigParser() config.read(abs_config_file) value = config[section][key] return value def validateConfigFile(config_file='~/.oci/config'): results = [] if os.getenv('OCI_CLI_AUTH', 'config') != 'instance_principal': logger.debug('Config File {0!s:s}'.format(config_file)) abs_config_file = os.path.expanduser(config_file) logger.debug('Config File {0!s:s}'.format(abs_config_file)) config = configparser.ConfigParser() config.read(abs_config_file) if len(config.sections()) == 0 and 'DEFAULT' not in config: results.append('OCI Connect Config file is either missing or empty.') else: for section in config: key_file = config[section]['key_file'] if not os.path.exists(os.path.expanduser(key_file)): results.append('[{0!s:s}] Key File {1!s:s} does not exist.'.format(section, key_file)) logger.info(results) return results # # Define Error Handlers # @bp.errorhandler(Exception) def handle_exception(error): message = [str(x) for x in error.args] status_code = 500 success = False response = { 'success': success, 'error': { 'type': error.__class__.__name__, 'message': message } } logger.exception(error) logJson(response) return jsonify(response), status_code # # Define Endpoints # @bp.route('/designer', methods=(['GET'])) def designer(): local = current_app.config.get('LOCAL', False) if not local and session.get('username', None) is None: logger.info('<<<<<<<<<<<<<<<<<<<<<<<<< Redirect to Login >>>>>>>>>>>>>>>>>>>>>>>>>') return redirect(url_for('okit.login'), code=302) # Test if developer mode developer_mode = (request.args.get('developer', default='false') == 'true') if developer_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<< Developer Mode >>>>>>>>>>>>>>>>>>>>>>>>>>") # Test if experimental mode experimental_mode = (request.args.get('experimental', default='false') == 'true') if experimental_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<< Experimental Mode >>>>>>>>>>>>>>>>>>>>>>>>>>") # Test if cd3 mode cd3_mode = (request.args.get('cd3', default='false') == 'true') if cd3_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<< CD3 Mode >>>>>>>>>>>>>>>>>>>>>>>>>>") # Test if PCA mode pca_mode = (request.args.get('pca', default='false') == 'true') if pca_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<< PCA Mode >>>>>>>>>>>>>>>>>>>>>>>>>>") # Test if A2C mode a2c_mode = (request.args.get('a2c', default='false') == 'true') if a2c_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<<<< A2C Mode >>>>>>>>>>>>>>>>>>>>>>>>>>") # Test if Ansible mode ansible_mode = (request.args.get('ansible', default='false') == 'true') if ansible_mode: logger.info("<<<<<<<<<<<<<<<<<<<<<<<< Ansible Mode >>>>>>>>>>>>>>>>>>>>>>>>") # Read Artifact Model Specific JavaScript Files artefact_model_js_files = sorted(os.listdir(os.path.join(bp.static_folder, 'model', 'js', 'artefacts'))) # Read Artifact View Specific JavaScript Files if os.path.exists(os.path.join(bp.static_folder, 'view', 'js', 'artefacts')) and os.path.isdir(os.path.join(bp.static_folder, 'view', 'js', 'artefacts')): artefact_view_js_files = sorted(os.listdir(os.path.join(bp.static_folder, 'view', 'js', 'artefacts'))) else: artefact_view_js_files = [] artefact_view_js_files.extend(sorted(os.listdir(os.path.join(bp.static_folder, 'view', 'designer', 'js', 'artefacts')))) # Read Pallete Json palette_json = readJsonFile(os.path.join(bp.static_folder, 'palette', 'palette.json')) # # Get Palette Icon Groups / Icons # svg_files = [] # svg_icon_groups = {} # # Read Files # for (dirpath, dirnames, filenames) in os.walk(os.path.join(bp.static_folder, 'palette')): # logger.debug('dirpath : {0!s:s}'.format(dirpath)) # logger.debug('dirnames : {0!s:s}'.format(dirnames)) # logger.debug('filenames : {0!s:s}'.format(filenames)) # if os.path.basename(dirpath) != 'palette': # svg_files.extend([os.path.join(os.path.basename(dirpath), f) for f in filenames if f.endswith(".svg")]) # svg_icon_groups[os.path.basename(dirpath)] = [f for f in filenames if f.endswith(".svg")] # else: # svg_files.extend([f for f in filenames if f.endswith(".svg")]) # logger.debug('Files Walk : {0!s:s}'.format(svg_files)) # logger.debug('SVG Icon Groups {0!s:s}'.format(svg_icon_groups)) # palette_icon_groups = [] # for key in sorted(svg_icon_groups.keys()): # palette_icon_group = {'name': str(key).title(), 'icons': []} # for palette_svg in sorted(svg_icon_groups[key]): # palette_icon = {'svg': os.path.join(key, palette_svg), 'title': os.path.basename(palette_svg).split('.')[0].replace('_', ' ')} # palette_icon_group['icons'].append(palette_icon) # palette_icon_groups.append(palette_icon_group) # logger.debug('Palette Icon Groups : {0!s:s}'.format(palette_icon_groups)) # logJson(palette_icon_groups) config_sections = {"sections": readConfigFileSections()} #Render The Template return render_template('okit/okit_designer.html', artefact_model_js_files=artefact_model_js_files, artefact_view_js_files=artefact_view_js_files, palette_json=palette_json, # palette_icon_groups=palette_icon_groups, # fragment_icons=fragment_icons, # okit_templates_groups=template_groups, # okit_template_categories=template_categories, local_okit=local, developer_mode=developer_mode, experimental_mode=experimental_mode, cd3_mode=cd3_mode, a2c_mode=a2c_mode, pca_mode=pca_mode, ansible_mode=ansible_mode) # Template Processing @bp.route('/panel/templates', methods=(['GET'])) def templates_panel(): # ref_arch_root = os.path.join(bp.static_folder, 'templates', 'reference_architecture') ref_arch_root = os.path.join(current_app.instance_path, 'templates', 'reference_architecture') ref_arch_templates = dir_to_json(ref_arch_root, current_app.instance_path, 'children', 'templates') # ref_arch_templates = dir_to_json(ref_arch_root, ref_arch_root, 'children', 'templates') ref_arch_category = {'name': 'Reference Architectures', 'path': 'reference_architecture', 'children': [], 'templates': []} ref_arch_category = hierarchy_category(ref_arch_category, ref_arch_templates, current_app.instance_path) # user_root = os.path.join('okit', 'templates', 'user') user_root = os.path.join(current_app.instance_path, 'templates', 'user') user_templates = dir_to_json(user_root, current_app.instance_path, 'children', 'templates') # user_templates = dir_to_json(user_root, user_root, 'children', 'templates') user_category = {'name': 'User', 'path': 'user', 'children': [], 'templates': []} user_category = hierarchy_category(user_category, user_templates, current_app.instance_path) template_categories = [ref_arch_category, user_category] logger.debug(f'Template Categories : {jsonToFormattedString(template_categories)}') #Render The Template return render_template('okit/templates_panel.html', template_categories=template_categories) def dir_to_json(rootdir, reltodir=None, dkey='dirs', fkey='files'): # logger.info(f'Root Path: {rootdir}') # logger.info(f'Relative to Path: {reltodir}') # logger.info(f'Relative Path: {os.path.relpath(rootdir, reltodir)}') hierarchy = { 'id': os.path.relpath(rootdir, reltodir).replace('/','_'), 'name': os.path.basename(rootdir), 'path': rootdir } hierarchy[dkey] = [] hierarchy[fkey] = [] if reltodir is not None: hierarchy['path'] = os.path.relpath(rootdir, reltodir) with os.scandir(rootdir) as it: for entry in it: if not entry.name.startswith('.'): if entry.name.endswith('.json') and entry.is_file(): # hierarchy[fkey].append(entry.name) hierarchy[fkey].append({'id': entry.name.replace('.','_'), 'name': entry.name, 'json': entry.name, 'path': hierarchy['path']}) elif entry.is_dir(): hierarchy[dkey].append(dir_to_json(os.path.join(rootdir, entry.name), reltodir, dkey, fkey)) logger.debug(f'Directory Hierarchy : {jsonToFormattedString(hierarchy)}') return hierarchy def hierarchy_category(category, hierarchy, root=''): logger.debug(f'Category : {jsonToFormattedString(category)}') logger.debug(f'Hierarchy : {jsonToFormattedString(hierarchy)}') logger.debug(f'Root : {root}') for template in hierarchy['templates']: path = hierarchy['path'] if hierarchy['path'] != '.' else '' category['templates'].append(get_template_entry(root, path, template['json'])) for child in hierarchy['children']: category['children'].append(hierarchy_category({"name": os.path.basename(child["path"]).replace("_", " ").title(), "path": child["path"], "id": child["id"], "children": [], "templates": []}, child, root)) return category def get_template_entry(root, path, json_file): # json_file = os.path.join(path, template_file) okit_template = {'path': path, 'json': json_file, 'id': json_file.replace('.', '_').replace('/', '_')} try: filename = os.path.join(root, okit_template['path'], okit_template['json']) template_json = readJsonFile(filename) logger.debug('Template Json : {0!s:s}'.format(template_json)) okit_template['name'] = template_json['title'] okit_template['description'] = template_json.get('description', template_json['title']) okit_template['description'] = template_json['title'] except Exception as e: logger.debug(e) return okit_template @bp.route('/templates/load', methods=(['GET'])) def templates(): if request.method == 'GET': query_string = request.query_string parsed_query_string = urllib.parse.unquote(query_string.decode()) query_json = json.loads(parsed_query_string) templates_root = os.path.join(current_app.instance_path, query_json['root_dir'].strip('/')) templates = dir_to_json(templates_root, current_app.instance_path) logger.debug(f'Templates : {jsonToFormattedString(templates)}') return templates @bp.route('/template/load', methods=(['GET'])) def template_load(): if request.method == 'GET': query_string = request.query_string parsed_query_string = urllib.parse.unquote(query_string.decode()) query_json = json.loads(parsed_query_string) template_file = query_json['template_file'] return send_from_directory(current_app.instance_path, template_file, mimetype='application/json', as_attachment=False) @bp.route('/template/save', methods=(['POST'])) def template_save(): if request.method == 'POST': instance_path = current_app.instance_path root_dir = request.json["root_dir"].strip('/') template_filename = request.json["template_file"].strip('/') okit_json = request.json["okit_json"] git = request.json.get('git', False) git_commit_msg = request.json.get('git_commit_msg', '') logger.info(f'Save Template : {root_dir}') template_dir = os.path.dirname(template_filename) full_dir = os.path.join(instance_path, root_dir, template_dir) full_filename = os.path.join(full_dir, os.path.basename(template_filename)) full_filename = os.path.join(instance_path, root_dir, template_filename) if not os.path.exists(full_dir): os.makedirs(full_dir, exist_ok=True) writeJsonFile(okit_json, full_filename) if git: top_dir = os.path.normpath(os.path.dirname(template_filename)).split(os.sep) git_repo_dir = os.path.join(instance_path, root_dir, top_dir[0], top_dir[1]) # while top_dir != '': # git_repo_dir = os.path.join(instance_path, root_dir, top_dir) # logger.info(f'Top Dir : {top_dir}') # top_dir = os.path.dirname(top_dir) logger.info(f'Git Root Dir : {git_repo_dir}') repo = Repo(git_repo_dir) repo.index.add(full_filename) repo.index.commit("commit changes from okit:" + git_commit_msg) repo.remotes.origin.pull() repo.remotes.origin.push() return template_filename # Git Processing @bp.route('/panel/git', methods=(['GET'])) def git_panel(): if request.method == 'GET': repositories = readGitConfigFile() git_resources = {} for repo in repositories: logger.debug(f'Repo: {jsonToFormattedString(repo)}') label = repo['label'] branch = repo['branch'] url = repo['url'] parsed_url = giturlparse.parse(url) logger.debug(f'Parsed Url: {parsed_url}') git_resource_dir = os.path.join(current_app.instance_path, 'git', parsed_url.resource) git_repo_dir = os.path.join(git_resource_dir, parsed_url.name) try: if os.path.exists(git_repo_dir): repo = Repo(git_repo_dir) repo.remotes.origin.pull() else: repo = Repo.clone_from(url, git_repo_dir, branch=branch, no_single_branch=True) repo.remotes.origin.pull() except Exception as e: logger.exception(e) git_resources[parsed_url.resource] = git_resource_dir git_repositories = [] for git_resource, git_resource_dir in git_resources.items(): repo_templates = dir_to_json(git_resource_dir, current_app.instance_path, 'children', 'templates') repository = {'name': git_resource, 'path': git_resource_dir, 'children': [], 'templates': []} git_repositories.append(repo_templates) #Render The Template logger.debug(f'Repository: {jsonToFormattedString(git_repositories)}') return render_template('okit/git_repositories_panel.html', git_repositories=git_repositories) # Local Filesystem Processing @bp.route('/panel/local', methods=(['GET'])) def local_panel(): if request.method == 'GET': local_filesystem_dir = os.path.join(current_app.instance_path, 'local') local_filesystem = [dir_to_json(local_filesystem_dir, current_app.instance_path, 'children', 'templates')] #Render The Template logger.debug(f'Local Filesystem: {jsonToFormattedString(local_filesystem)}') return render_template('okit/local_panel.html', local_filesystem=local_filesystem) @bp.route('/propertysheets/<string:sheet>', methods=(['GET'])) def propertysheets(sheet): return render_template('okit/propertysheets/{0:s}'.format(sheet)) @bp.route('/valueproposition/<string:sheet>', methods=(['GET'])) def valueproposition(sheet): return render_template('okit/valueproposition/{0:s}'.format(sheet)) @bp.route('/generate/<string:language>/<string:destination>', methods=(['GET', 'POST'])) def generate(language, destination): logger.info('Language : {0:s} - {1:s}'.format(str(language), str(request.method))) logger.info('Destination : {0:s} - {1:s}'.format(str(destination), str(request.method))) logger.debug('JSON : {0:s}'.format(str(request.json))) if request.method == 'POST': use_vars = request.json.get("use_variables", True) try: if destination == 'git': git_url, git_branch = request.json['git_repository'].split('*') parsed_git_url = giturlparse.parse(git_url) generate_git_dir = os.path.abspath(os.path.join(bp.static_folder, 'git')) logger.info(generate_git_dir) if not os.path.exists(generate_git_dir): os.makedirs(generate_git_dir, exist_ok=True) git_repo_dir = os.path.abspath(os.path.join(generate_git_dir, parsed_git_url.name)) if os.path.exists(git_repo_dir): repo = Repo(git_repo_dir) repo.remotes.origin.pull() else: repo = Repo.clone_from(git_url, git_repo_dir, branch=git_branch, no_single_branch=True) repo.remotes.origin.pull() destination_dir = os.path.abspath(os.path.join(git_repo_dir, request.json['git_repository_filename'])) else: destination_dir = tempfile.mkdtemp(); if language == 'terraform': generator = OCITerraformGenerator(template_root, destination_dir, request.json, use_vars=use_vars) elif language == 'ansible': generator = OCIAnsibleGenerator(template_root, destination_dir, request.json, use_vars=use_vars) elif language == 'terraform11': generator = OCITerraform11Generator(template_root, destination_dir, request.json) elif language == 'resource-manager': generator = OCIResourceManagerGenerator(template_root, destination_dir, request.json) elif language == 'markdown': generator = OkitMarkdownGenerator(template_root, destination_dir, request.json) generator.generate() generator.writeFiles() if destination == 'git': git_commit_msg = request.json['git_repository_commitmsg'] repo.index.add(destination_dir) repo.index.commit("commit changes from okit:" + git_commit_msg) repo.remotes.origin.push(git_branch) return language.capitalize()+" files successfully uploaded to GIT Repository" else: zipname = generator.createZipArchive(os.path.join(destination_dir, language), "/tmp/okit-{0:s}".format(str(language))) logger.info('Zipfile : {0:s}'.format(str(zipname))) shutil.rmtree(destination_dir) filename = os.path.split(zipname) logger.info('Split Zipfile : {0:s}'.format(str(filename))) return zipname except Exception as e: logger.exception(e) return str(e), 500 else: return send_from_directory('/tmp', "okit-{0:s}.zip".format(str(language)), mimetype='application/zip', as_attachment=True) # TODO: Delete @bp.route('/saveas/<string:savetype>', methods=(['POST'])) def saveas(savetype): logger.info('Save Type : {0:s} - {1:s}'.format(str(savetype), str(request.method))) logger.debug('JSON : {0:s}'.format(str(request.json))) if request.method == 'POST': try: filename = '{0!s:s}.json'.format(request.json['title'].replace(' ', '_').lower()) if savetype == 'template': template_type = request.json['template_type'] if len(template_type.strip()) == 0: fullpath = os.path.abspath(os.path.join(bp.static_folder, 'templates', 'uncategorised', filename)) else: typedir = os.path.abspath(os.path.join(bp.static_folder, 'templates', template_type.strip().replace(' ', '_').lower())) if not os.path.exists(typedir): os.makedirs(typedir, exist_ok=True) fullpath = os.path.abspath(os.path.join(typedir, filename)) logger.info('Template File Name : {0!s:s}'.format(filename)) logger.info('>>>>>> Path to file {0!s:s}'.format(fullpath)) writeJsonFile(request.json, fullpath) return filename elif savetype == 'git': git_url, git_branch = request.json['git_repository'].split('*') git_commit_msg = request.json['git_repository_commitmsg'] if request.json['git_repository_filename'] != '': filename = request.json['git_repository_filename'].replace(' ', '_').lower() if not filename.endswith('.json'): filename = '{0!s:s}.json'.format(filename) if request.json['git_repository_directory'] != '': filename = os.path.join(request.json['git_repository_directory'], filename) parsed_git_url = giturlparse.parse(git_url) template_git_dir = os.path.abspath(os.path.join(bp.static_folder, 'templates', 'git')) if not os.path.exists(template_git_dir): os.makedirs(template_git_dir, exist_ok=True) git_repo_dir = os.path.abspath(os.path.join(template_git_dir, parsed_git_url.name)) if os.path.exists(git_repo_dir): repo = Repo(git_repo_dir) repo.remotes.origin.pull() else: repo = Repo.clone_from(git_url, git_repo_dir, branch=git_branch, no_single_branch=True) repo.remotes.origin.pull() fullpath = os.path.abspath(os.path.join(git_repo_dir, filename)) # Remove git info del request.json['git_repository'] del request.json['git_repository_directory'] del request.json['git_repository_filename'] del request.json['git_repository_commitmsg'] writeJsonFile(request.json, fullpath) repo.index.add(fullpath) repo.index.commit("commit changes from okit:" + git_commit_msg) repo.remotes.origin.push(git_branch) return filename except Exception as e: logger.exception(e) return str(e), 500 @bp.route('/dropdown/data/<string:profile>', methods=(['GET', 'POST'])) def dropdownData(profile): dropdown_dir = os.path.abspath(os.path.join(bp.static_folder, 'json', 'dropdown')) shipped_dropdown_file = os.path.abspath(os.path.join(dropdown_dir, 'dropdown.json')) # shipped_dropdown_file = os.path.abspath(os.path.join(bp.static_folder, 'json', 'dropdown', 'dropdown.json')) profile_dropdown_dir = os.path.abspath(os.path.join(dropdown_dir, 'profiles')) profile_dropdown_file = os.path.abspath(os.path.join(profile_dropdown_dir, f'{profile}.json')) # Check if profile specific dropdown file exists if not use the default if request.method == 'GET': if os.path.exists(profile_dropdown_file): dropdown_file = profile_dropdown_file logger.info(f'Loading Dropdown file {dropdown_file}') dropdown_json = readJsonFile(dropdown_file) else: dropdown_file = shipped_dropdown_file logger.info(f'Loading Dropdown file {dropdown_file}') dropdown_json = readJsonFile(dropdown_file) dropdown_json["shipped"] = True dropdown_json["default"] = True return dropdown_json elif request.method == 'POST': logger.info(f'Saving Dropdown file {profile_dropdown_file}') writeJsonFile(request.json, profile_dropdown_file) return request.json else: return 'Unknown Method', 500 @bp.route('config/sections', methods=(['GET'])) def configSections(): if request.method == 'GET': config_sections = {"sections": readConfigFileSections()} logger.info('Config Sections {0!s:s}'.format(config_sections)) return config_sections else: return 'Unknown Method', 500 @bp.route('config/appsettings', methods=(['GET'])) def appSettings(): if request.method == 'GET': config_settings = {"gitsections": readGitConfigFile()} logger.info('Config Settings {0!s:s}'.format(config_settings)) return config_settings else: return 'Unknown Method', 500 @bp.route('config/region/<string:section>', methods=(['GET'])) def configRegion(section): if request.method == 'GET': response = {"name": getConfigFileValue(section, 'region')} return response else: return 'Unknown Method', 500 @bp.route('config/validate', methods=(['GET'])) def configValidate(): if request.method == 'GET': response = {"results": validateConfigFile()} return response else: return 'Unknown Method', 500 @bp.route('validate', methods=(['POST'])) def validateJson(): logger.debug('JSON : {0:s}'.format(str(request.json))) if request.method == 'POST': logJson(request.json) # Validate input json validator = OCIJsonValidator(request.json) result = {"valid": validator.validate(), "results": validator.getResults()} return json.dumps(result, sort_keys=False, indent=2, separators=(',', ': ')) else: return '404' # TODO: Delete @bp.route('loadfromgit', methods=(['POST'])) def loadfromgit(): logger.debug('JSON : {0:s}'.format(str(request.json))) if request.method == 'POST': try: git_url, git_branch = request.json['git_repository'].split('*') parsed_git_url = giturlparse.parse(git_url) template_git_dir = os.path.abspath(os.path.join(bp.static_folder, 'templates', 'git')) if not os.path.exists(template_git_dir): os.makedirs(template_git_dir, exist_ok=True) git_repo_dir = os.path.abspath(os.path.join(template_git_dir, parsed_git_url.name)) if os.path.exists(git_repo_dir): repo = Repo(git_repo_dir) repo.remotes.origin.pull() else: repo = Repo.clone_from(git_url, git_repo_dir, branch=git_branch, no_single_branch=True) repo.remotes.origin.pull() files = list(glob.iglob(os.path.join(git_repo_dir, "*.json"))) logger.info(files) files_list = [f.replace("okit/okitweb/", "") for f in files] logger.debug('JSON : {0:s}'.format(str(request.json))) logger.debug('Files Walk : {0!s:s}'.format(files_list)) result = {"fileslist": files_list} logger.info(result) return json.dumps(result) except Exception as e: logger.exception(e) return str(e), 500
StarcoderdataPython
1707623
<reponame>tulth/diy-acura-bluetooth<filename>target_desktop/py_lib/mbus/__init__.py #!/bin/env python from __future__ import print_function import sys import os import ctypes from . import nibbles BIT_TIME = 3100 BIT_ZERO_LOW_TIME = 675 BIT_ONE_LOW_TIME = 1890 BIT_ONEVAL_THRESH_TIME = (BIT_ZERO_LOW_TIME + BIT_ONE_LOW_TIME) >> 1 BIT_LOW_TOO_LONG_TIME = (BIT_TIME + BIT_ONE_LOW_TIME) >> 1 NIBBLE_END_GAP_TIME = (BIT_TIME) INTERBIT_TIMEOUT_TIME = (BIT_TIME) def nibbleSeq2Str(nibbleSeq): return "0x" + "".join(["{:x}".format(nibble) for nibble in nibbleSeq]) class fifo(ctypes.Structure): _fields_ = [ ("buffer", ctypes.c_void_p), ("bufferEnd", ctypes.c_void_p), ("capacity", ctypes.c_size_t), ("count", ctypes.c_size_t), ("elementSize", ctypes.c_size_t), ("head", ctypes.c_void_p), ("tail", ctypes.c_void_p), ] def __str__(self): return "fifo: count {}".format(self.count) class MbusPhyTxRxStruct(ctypes.Structure): _fields_ = [ ("state", ctypes.c_uint8), ("bitShifter", ctypes.c_uint8), ("microSecTimeStamp", ctypes.c_ulong), ("byteFifo", fifo), ] def __str__(self): return "state{} bitshftr{} usecTS{} {}".format(self.state, self.bitShifter, self.microSecTimeStamp, self.byteFifo) class MbusPhyStruct(ctypes.Structure): _fields_ = [ ("tx", MbusPhyTxRxStruct), ("rx", MbusPhyTxRxStruct), ] def __str__(self): return "tx {} / rx {}".format(self.tx, self.rx) class MbusLinkStruct(ctypes.Structure): _fields_ = [ ("rxMsgFifo", fifo), ("txMsgFifo", fifo), ("nibbles", nibbles.MbusRawNibbleListStruct), ("rxNotTxMode", ctypes.c_bool), ("phyTxNibbleFifo", ctypes.POINTER(fifo)), ] def __str__(self): return "tx {} / rx {} / nibbles {}".format(self.txMsgFifo, self.rxMsgFifo, self.nibbles) # ERROR IDS ERR_ID_SIGNAL = 0x1 ERR_ID_LENGTH = 0x2 ERR_ID_CHECKSUM = 0x3 ERR_ID_DIRECTION = 0x4 ERR_ID_UNKNOWN_TYPE = 0x5 # MSG IDS MSGTYPE_ping = 0x10 MSGTYPE_setPlayState = 0x11 MSGTYPE_headPowerOn = 0x12 MSGTYPE_setDiskTrack = 0x13 MSGTYPE_setMode = 0x14 MSGTYPE_pong = 0x20 MSGTYPE_ackWait = 0x21 MSGTYPE_cdPowerOn = 0x22 MSGTYPE_changing = 0x23 MSGTYPE_playState = 0x24 MSGTYPE_diskInfo = 0x25 MSGTYPE_unknownStatus = 0x26 # HEAD2CD MSG BODY class MbusMsg_setPlayState_BodyStruct(ctypes.Structure): _fields_ = [ ("resume", ctypes.c_bool), ("stop", ctypes.c_bool), ("scanStop", ctypes.c_bool), ("fastReverse", ctypes.c_bool), ("fastForward", ctypes.c_bool), ("pause", ctypes.c_bool), ("play", ctypes.c_bool), ] def __str__(self): argTuple = (self.resume, self.stop, self.scanStop, self.fastReverse, self.fastForward, self.pause, self.play) fmtStr = "resume{:d} stop{:d} scanStop{:d} fastReverse{:d} fastForward{:d} pause{:d} play{:d}" return fmtStr.format(*argTuple) class MbusMsg_setDiskTrack_BodyStruct(ctypes.Structure): _fields_ = [ ("disk", ctypes.c_uint8), ("track", ctypes.c_uint8), ("pause", ctypes.c_bool), ("play", ctypes.c_bool), ("random", ctypes.c_bool), ] def __str__(self): argTuple = self.disk, self.track, self.pause, self.play, self.random fmtStr = "disk#{} track:{:02d} pause{:d} play{:d} random{:d}" return fmtStr.format(*argTuple) class MbusMsg_setMode_BodyStruct(ctypes.Structure): _fields_ = [ ("", ctypes.c_bool), ("repeatAll", ctypes.c_bool), ("repeatOne", ctypes.c_bool), ("introScan", ctypes.c_bool), ("random", ctypes.c_bool), ] def __str__(self): argTuple = (self.repeatAll, self.repeatOne, self.introScan, self.random, ) fmtStr = "repeatAll{:d} repeatOne{:d} introScan{:d} random{:d}" return fmtStr.format(*argTuple) # CD2HEAD MSG BODY class MbusMsg_changing_BodyStruct(ctypes.Structure): _fields_ = [ ("disk", ctypes.c_uint8), ("track", ctypes.c_uint8), ("eject", ctypes.c_bool), ("noshuttle", ctypes.c_bool), ("busy", ctypes.c_bool), ("repeatAll", ctypes.c_bool), ("repeatOne", ctypes.c_bool), ("random", ctypes.c_bool), ("done", ctypes.c_bool), ] def __str__(self): argTuple = (self.disk, self.track, self.eject, self.noshuttle, self.busy, self.repeatAll, self.repeatOne, self.random, self.done, ) fmtStr = "disk#{} Trk{:02d} eject{:d} noshuttle{:d} busy{:d} repeatAll{:d} repeatOne{:d} random{:d} done{:d}" return fmtStr.format(*argTuple) class MbusMsg_playState_BodyStruct(ctypes.Structure): _fields_ = [ ("track", ctypes.c_uint8), ("index", ctypes.c_uint8), ("minute", ctypes.c_uint8), ("second", ctypes.c_uint8), ("repeatAll", ctypes.c_bool), ("repeatOne", ctypes.c_bool), ("introScan", ctypes.c_bool), ("random", ctypes.c_bool), ("stopped", ctypes.c_bool), ("paused", ctypes.c_bool), ("play", ctypes.c_bool), ] def __str__(self): argTuple = (self.track, self.index, self.minute, self.second, self.repeatAll, self.repeatOne, self.introScan, self.random, self.stopped, self.paused, self.play, ) fmtStr = ("Trk:Idx {:02}:{:02} min:sec {:02}:{:02} repeatAll{:d} " + "repeatOne{:d} introScan{:d} random{:d} stop{:d} pause{:d} play{:d}") return fmtStr.format(*argTuple) class MbusMsg_diskInfo_BodyStruct(ctypes.Structure): _fields_ = [ ("disk", ctypes.c_uint8), ("tracks", ctypes.c_uint8), ("minutes", ctypes.c_uint8), ("seconds", ctypes.c_uint8), ("flags", ctypes.c_uint8), ] def __str__(self): argTuple = (self.disk, self.tracks, self.minutes, self.seconds, self.flags) fmtStr = "disk #{} tracks {:02d} min:sec {:02d}:{:02d} flags {:x}" return fmtStr.format(*argTuple) # class MbusMsgBodyUnion(ctypes.Union): _fields_ = [ ("setPlayState", MbusMsg_setPlayState_BodyStruct), ("setDiskTrack", MbusMsg_setDiskTrack_BodyStruct), ("setMode", MbusMsg_setMode_BodyStruct), ("changing", MbusMsg_changing_BodyStruct), ("playState", MbusMsg_playState_BodyStruct), ("diskInfo", MbusMsg_diskInfo_BodyStruct), ] class MbusMsgParsedStruct(ctypes.Structure): _fields_ = [ ("directionH2C", ctypes.c_bool), ("msgType", ctypes.c_uint8), # contains msg type or err type ("body", MbusMsgBodyUnion), ] def __str__(self): if self.directionH2C: dirStr = "H2C" else: dirStr = "C2H" bodyStr = "" if self.msgType == MSGTYPE_ping: # FUTURE: bodyStr = str(self.body.ping) msgTypeStr = "ping" elif self.msgType == MSGTYPE_setPlayState: bodyStr = str(self.body.setPlayState) msgTypeStr = "setPlayState" elif self.msgType == MSGTYPE_setDiskTrack: bodyStr = str(self.body.setDiskTrack) msgTypeStr = "setDiskTrack" elif self.msgType == MSGTYPE_setMode: bodyStr = str(self.body.setMode) msgTypeStr = "setMode" elif self.msgType == MSGTYPE_headPowerOn: # FUTURE: bodyStr = str(self.body.headPowerOn) msgTypeStr = "headPowerOn" elif self.msgType == MSGTYPE_pong: # FUTURE? bodyStr = str(self.body.pong) msgTypeStr = "pong" elif self.msgType == MSGTYPE_ackWait: # FUTURE: bodyStr = str(self.body.ackWait) msgTypeStr = "ackWait" elif self.msgType == MSGTYPE_cdPowerOn: # FUTURE: bodyStr = str(self.body.cdPowerOn) msgTypeStr = "cdPowerOn" elif self.msgType == MSGTYPE_changing: bodyStr = str(self.body.changing) msgTypeStr = "changing" elif self.msgType == MSGTYPE_playState: bodyStr = str(self.body.playState) msgTypeStr = "playState" elif self.msgType == MSGTYPE_diskInfo: bodyStr = str(self.body.diskInfo) msgTypeStr = "diskInfo" elif self.msgType == MSGTYPE_unknownStatus: # FUTURE: bodyStr = str(self.body.unknownStatus) msgTypeStr = "unknownStatus" else: msgTypeStr = "STRIFY ERR" return "{} {:15} {}".format(dirStr, msgTypeStr, bodyStr) class MbusTxMsgStruct(ctypes.Structure): _fields_ = [ ("nibbles", nibbles.MbusRawNibbleListStruct), ] def __str__(self): return str(self.nibbles) class MbusRxMsgStruct(ctypes.Structure): _fields_ = [ ("errId", ctypes.c_uint8), # 0 = no error ("parsed", MbusMsgParsedStruct), # if not an error, parsed contents here ("rawNibbles", nibbles.MbusRawNibbleListStruct), ] def __str__(self): if self.errId == ERR_ID_SIGNAL: content = "ERROR: Bad bus signaling" if self.errId == ERR_ID_LENGTH: content = "ERROR: Bad message length" elif self.errId == ERR_ID_CHECKSUM: content = "ERROR: CheckSum" elif self.errId == ERR_ID_DIRECTION: content = "ERROR: Unexpected Direction" elif self.errId == ERR_ID_UNKNOWN_TYPE: content = "ERROR: Unknown message type" else: content = str(self.parsed) return "{:18} {}".format(str(self.rawNibbles), content) if __name__ == '__main__': print("Library only.")
StarcoderdataPython
3357873
<filename>eternity_backend_server/blueprints/admin/admin.py # -*- coding: utf-8 -*- from flask import ( Blueprint, current_app, flash, redirect, render_template, request, url_for, abort ) from flask_login import login_required, login_user, logout_user, current_user from eternity_backend_server.utils import flash_errors, redirect_back from eternity_backend_server.extensions import db admin_bp = Blueprint("admin", __name__)
StarcoderdataPython
1624952
import numpy import matplotlib.pyplot as plot def relu(arr): return numpy.maximum(0, arr) x = numpy.arange(-10, 10, 0.1) y = relu(x) plot.plot(x, y, label="Sigmoid function") plot.xlabel('x') plot.ylabel('y') plot.show()
StarcoderdataPython
3381310
<filename>setup.py #!/usr/bin/env python from setuptools import setup, find_packages # Get version string with open('gdx2py/version.py') as f: exec(f.read()) with open("README.md", "r") as f: readme = f.read() setup( name='GDX2py', version=__version__, # pylint: disable=undefined-variable author='<NAME>', author_email='<EMAIL>', description='Read and write GAMS Data eXchange (GDX) files using Python', long_description=readme, long_description_content_type="text/markdown", python_requires='>=3.6', install_requires=['gdxcc>=7'], setup_requires=['pytest-runner'], tests_require=['pytest', 'pytest-datadir', 'pandas'], url='https://github.com/ererkka/GDX2py', packages=find_packages(exclude=['tests']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering", "Intended Audience :: Developers", "Development Status :: 5 - Production/Stable", ], license="MIT", )
StarcoderdataPython
1652612
from django.shortcuts import render from django.http import HttpResponse def index(request): return HttpResponse("Testing basic Http Response in form views.py") # Create your views here.
StarcoderdataPython
25142
#!/usr/bin/env python # Lint as: python3 """E2E tests for the timeline flow.""" import csv import io from typing import Sequence from typing import Text from absl.testing import absltest from grr_response_core.lib import rdfvalue from grr_response_core.lib.util import temp from grr_response_proto.api import timeline_pb2 from grr_response_test.end_to_end_tests import test_base class TestTimelineLinux(test_base.EndToEndTest): """A class with Linux-specific timeline tests.""" platforms = [test_base.EndToEndTest.Platform.LINUX] def testUsrBin(self): args = self.grr_api.types.CreateFlowArgs("TimelineFlow") args.root = "/bin/".encode("utf-8") flow = self.RunFlowAndWait("TimelineFlow", args=args) with temp.AutoTempFilePath(suffix=".body") as temp_filepath: timeline_format = timeline_pb2.ApiGetCollectedTimelineArgs.Format.BODY body = flow.GetCollectedTimeline(timeline_format) body.WriteToFile(temp_filepath) with io.open(temp_filepath, mode="r", encoding="utf-8") as temp_filedesc: entries = list(csv.reader(temp_filedesc, delimiter="|")) paths = [entry[1] for entry in entries] self.assertIn("/bin/bash", paths) self.assertIn("/bin/cat", paths) self.assertIn("/bin/chmod", paths) self.assertIn("/bin/cp", paths) self.assertIn("/bin/rm", paths) self.assertIn("/bin/sleep", paths) for entry in entries: assertBodyEntrySanity(self, entry) class TestTimelineWindows(test_base.EndToEndTest): """A class with Windows-specific timeline tests.""" platforms = [test_base.EndToEndTest.Platform.WINDOWS] def testWindows(self): args = self.grr_api.types.CreateFlowArgs("TimelineFlow") args.root = "C:\\Windows".encode("utf-8") flow = self.RunFlowAndWait("TimelineFlow", args=args) with temp.AutoTempFilePath(suffix=".body") as temp_filepath: timeline_format = timeline_pb2.ApiGetCollectedTimelineArgs.Format.BODY body = flow.GetCollectedTimeline(timeline_format) body.WriteToFile(temp_filepath) with io.open(temp_filepath, mode="r", encoding="utf-8") as temp_filedesc: entries = list(csv.reader(temp_filedesc, delimiter="|")) paths = [entry[1].lower() for entry in entries] self.assertIn("C:\\Windows\\explorer.exe".lower(), paths) self.assertIn("C:\\Windows\\notepad.exe".lower(), paths) self.assertIn("C:\\Windows\\regedit.exe".lower(), paths) self.assertIn("C:\\Windows\\System32\\dwm.exe".lower(), paths) for entry in entries: assertBodyEntrySanity(self, entry) def testWindowsBackslashEscape(self): args = self.grr_api.types.CreateFlowArgs("TimelineFlow") args.root = "C:\\Windows".encode("utf-8") flow = self.RunFlowAndWait("TimelineFlow", args=args) with temp.AutoTempFilePath(suffix=".body") as temp_filepath: body = flow.GetCollectedTimelineBody(backslash_escape=True) body.WriteToFile(temp_filepath) with io.open(temp_filepath, mode="r", encoding="utf-8") as temp_filedesc: content = temp_filedesc.read().lower() self.assertIn("|C:\\\\Windows\\\\explorer.exe|".lower(), content) self.assertIn("|C:\\\\Windows\\\\notepad.exe|".lower(), content) self.assertIn("|C:\\\\Windows\\\\regedit.exe|".lower(), content) self.assertIn("|C:\\\\Windows\\\\System32\\\\dwm.exe|".lower(), content) def assertBodyEntrySanity( # pylint: disable=invalid-name test: absltest.TestCase, entry: Sequence[Text], ) -> None: """Asserts that given row of a body file is sane.""" # Size should be non-negative (some files might be empty, though). test.assertGreaterEqual(int(entry[6]), 0) # All timestamps should be positive. test.assertGreater(int(entry[7]), 0) test.assertGreater(int(entry[8]), 0) test.assertGreater(int(entry[9]), 0) # All timestamps should be older than now. now = rdfvalue.RDFDatetime.Now() test.assertLessEqual(int(entry[7]), now.AsSecondsSinceEpoch()) test.assertLessEqual(int(entry[8]), now.AsSecondsSinceEpoch()) test.assertLessEqual(int(entry[9]), now.AsSecondsSinceEpoch())
StarcoderdataPython
1652371
from PIL import Image import os basepath = 'fashionshop\static\img\product\Fragrance' # os.chdir(basepath) def save_img(img): i = Image.open(os.path.join(basepath,img)) t, f_ext = os.path.splitext(i.filename) text = t.replace("-"," ") f = text + f_ext print('infor:',img, i.format, i.size, i.mode) if i.mode == 'RGBA': i = i.convert('RGB') output = (264,363) i.thumbnail(output, Image.ANTIALIAS) # i = i.resize(output, Image.ANTIALIAS) i.save(f, "JPEG") print('infor changed:',img, i.format, i.size, i.mode) pass for img in os.listdir(basepath): save_img(img)
StarcoderdataPython
162045
import os from subaligner.predictor import Predictor from subaligner.subtitle import Subtitle if __name__ == "__main__": examples_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(examples_dir, "tmp") os.makedirs(output_dir, exist_ok=True) video_file_path = os.path.join(examples_dir, "..", "tests/subaligner/resource/test.mp4") srt_file_path = os.path.join(examples_dir, "..", "tests/subaligner/resource/test.srt") predictor = Predictor() subs, audio_file_path, voice_probabilities, frame_rate = predictor.predict_single_pass(video_file_path, srt_file_path) aligned_subtitle_path = os.path.join(output_dir, "test_aligned_1.srt") Subtitle.export_subtitle(srt_file_path, subs, aligned_subtitle_path) print("Aligned subtitle saved to: {}".format(aligned_subtitle_path)) log_loss = predictor.get_log_loss(voice_probabilities, subs) print("Alignment finished with overall loss: {}".format(log_loss)) subs_list, subs, voice_probabilities, frame_rate = predictor.predict_dual_pass(video_file_path, srt_file_path, stretch=False) aligned_subtitle_path = os.path.join(output_dir, "test_aligned_2.srt") Subtitle.export_subtitle(srt_file_path, subs_list, aligned_subtitle_path) print("Aligned subtitle saved to: {}".format(aligned_subtitle_path)) log_loss = predictor.get_log_loss(voice_probabilities, subs) print("Alignment finished with overall loss: {}".format(log_loss))
StarcoderdataPython
3221604
<gh_stars>0 # Parameter: # config-file: path to cfg file # weight_path: path to the pretrained weight # dataset_path: path to a directory of images # This script predicts bboxes of every image in the dataset path, # write the ground truth into yolo format .txt filess import argparse import glob import multiprocessing as mp import os import time import cv2 import tqdm from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger from predictor import VisualizationDemo def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Detectron2 predict whole folder") parser.add_argument( "--config-file", default="configs/quick_schedules/e2e_mask_rcnn_R_50_FPN_inference_acc_test.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--dataset_folder", help="A folder of images to predict") parser.add_argument( "--output", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--confidence-threshold", type=float, default=0.5, help="Minimum score for instance predictions to be shown", ) parser.add_argument( "--opts", help="Modify model config options using the command-line", default=[], nargs=argparse.REMAINDER, ) return parser if __name__ == "__main__": mp.set_start_method("spawn", force=True) args = get_parser().parse_args() logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) demo = VisualizationDemo(cfg) while True: #for each_img in glob.glob(os.path.join(args.dataset_folder, "*.jpg")): # use PIL, to be consistent with evaluation each_img = "/home/cambricon/Cambricon-MLU100/datasets_old/Tsinghua_traffic_sign/test_imgs/41372.jpg" each_img = "/home/cambricon/Cambricon-MLU100/datasets_old/COCO/interested_val/000000011197.jpg" img = read_image(each_img, format="BGR") start_time = time.time() predictions, visualized_output = demo.run_on_image(img) logger.info( "{}: detected {} instances in {:.2f}s".format( each_img, len(predictions["instances"]), time.time() - start_time ) ) pred_classes = predictions["instances"].pred_classes.cpu().numpy() pred_boxes = predictions["instances"].pred_boxes.tensor.cpu().numpy() records = [] print(pred_boxes) for each_cls, each_box in zip(pred_classes, pred_boxes): if int(each_cls) in interested_cls: cls_id = interested_cls.index(int(each_cls)) [x1, y1, x2, y2] = each_box w, h = x2 - x1, y2 - y1 (img_h, img_w) = predictions["instances"].image_size x_center = (x1 + w/2)/img_w y_center = (y1 + h/2)/img_h w /= img_w h /= img_h records.append(" ".join([str(x) for x in [cls_id, x_center, y_center, w, h]])) break #each_txt = each_img.replace(".jpg", ".txt") #txt_writer = open(each_txt, "a+") #txt_writer.write("\n".join(records) + "\n")
StarcoderdataPython
1760424
#!/usr/bin/env python3 # Mikhail (myke) Kolodin # testing redis and redis-queue (rq) # from http://python-rq.org/ etc # 2016-02-04 2018-05-05 1.4 import redis import requests from redis import Redis from rq import Queue # test redis itfself r = redis.StrictRedis(host='localhost', port=6379, db=0) r.set('foo', 'bar') x = r.get('foo') print (x) q = Queue(connection=Redis()) from rq_my_module import count_words_at_url result = q.enqueue (count_words_at_url, 'http://nvie.com') print (result) # my_module.py is: #~ #!/usr/bin/env python3 #~ import requests #~ from redis import Redis #~ from rq import Queue #~ # test redis queue (rq)) #~ def count_words_at_url(url): #~ resp = requests.get(url) #~ return len(resp.text.split()) # in parallel, the worker runs: #~ $ rq worker #~ *** Listening for work on default #~ Got count_words_at_url('http://nvie.com') from default #~ Job result = 818 #~ *** Listening for work on default
StarcoderdataPython
3397105
import pandas as pd from sqlalchemy import rgb_db.py df = pd.read_csv('https://github.com/techthumb1/DS-Unit-3-Sprint-2-SQL-and-Databases/blob/master/module1-introduction-to-sql/buddymove_holidayiq.csv') df.to_sql('Buddy Move', con)
StarcoderdataPython
4836765
<gh_stars>0 # Copyright 2015 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API over the neutron LBaaS v2 service. """ from six.moves import _thread as thread from time import sleep from django.views import generic from horizon import conf from openstack_dashboard.api import neutron from openstack_dashboard.api.rest import urls from openstack_dashboard.api.rest import utils as rest_utils neutronclient = neutron.neutronclient def poll_loadbalancer_status(request, loadbalancer_id, callback, from_state='PENDING_UPDATE', to_state='ACTIVE', callback_kwargs=None): """Poll for the status of the load balancer. Polls for the status of the load balancer and calls a function when the status changes to a specified state. :param request: django request object :param loadbalancer_id: id of the load balancer to poll :param callback: function to call when polling is complete :param from_state: initial expected state of the load balancer :param to_state: state to check for :param callback_kwargs: kwargs to pass into the callback function """ interval = conf.HORIZON_CONFIG['ajax_poll_interval'] / 1000.0 status = from_state while status == from_state: sleep(interval) lb = neutronclient(request).show_loadbalancer( loadbalancer_id).get('loadbalancer') status = lb['provisioning_status'] if status == to_state: kwargs = {'loadbalancer_id': loadbalancer_id} if callback_kwargs: kwargs.update(callback_kwargs) callback(request, **kwargs) def create_loadbalancer(request): data = request.DATA spec = { 'vip_subnet_id': data['loadbalancer']['subnet'] } if data['loadbalancer'].get('name'): spec['name'] = data['loadbalancer']['name'] if data['loadbalancer'].get('description'): spec['description'] = data['loadbalancer']['description'] if data['loadbalancer'].get('ip'): spec['vip_address'] = data['loadbalancer']['ip'] loadbalancer = neutronclient(request).create_loadbalancer( {'loadbalancer': spec}).get('loadbalancer') if data.get('listener'): # There is work underway to add a new API to LBaaS v2 that will # allow us to pass in all information at once. Until that is # available we use a separate thread to poll for the load # balancer status and create the other resources when it becomes # active. args = (request, loadbalancer['id'], create_listener) kwargs = {'from_state': 'PENDING_CREATE'} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return loadbalancer def create_listener(request, **kwargs): """Create a new listener. """ data = request.DATA listenerSpec = { 'protocol': data['listener']['protocol'], 'protocol_port': data['listener']['port'], 'loadbalancer_id': kwargs['loadbalancer_id'] } if data['listener'].get('name'): listenerSpec['name'] = data['listener']['name'] if data['listener'].get('description'): listenerSpec['description'] = data['listener']['description'] if data.get('certificates'): listenerSpec['default_tls_container_ref'] = data['certificates'][0] listener = neutronclient(request).create_listener( {'listener': listenerSpec}).get('listener') if data.get('pool'): args = (request, kwargs['loadbalancer_id'], create_pool) kwargs = {'callback_kwargs': {'listener_id': listener['id']}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return listener def create_pool(request, **kwargs): """Create a new pool. """ data = request.DATA poolSpec = { 'protocol': data['pool']['protocol'], 'lb_algorithm': data['pool']['method'], 'listener_id': kwargs['listener_id'] } if data['pool'].get('name'): poolSpec['name'] = data['pool']['name'] if data['pool'].get('description'): poolSpec['description'] = data['pool']['description'] pool = neutronclient(request).create_lbaas_pool( {'pool': poolSpec}).get('pool') if data.get('members'): args = (request, kwargs['loadbalancer_id'], add_member) kwargs = {'callback_kwargs': {'pool_id': pool['id'], 'index': 0}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, kwargs['loadbalancer_id'], create_health_monitor) kwargs = {'callback_kwargs': {'pool_id': pool['id']}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return pool def create_health_monitor(request, **kwargs): """Create a new health monitor for a pool. """ data = request.DATA monitorSpec = { 'type': data['monitor']['type'], 'delay': data['monitor']['interval'], 'timeout': data['monitor']['timeout'], 'max_retries': data['monitor']['retry'], 'pool_id': kwargs['pool_id'] } if data['monitor'].get('method'): monitorSpec['http_method'] = data['monitor']['method'] if data['monitor'].get('path'): monitorSpec['url_path'] = data['monitor']['path'] if data['monitor'].get('status'): monitorSpec['expected_codes'] = data['monitor']['status'] return neutronclient(request).create_lbaas_healthmonitor( {'healthmonitor': monitorSpec}).get('healthmonitor') def add_member(request, **kwargs): """Add a member to a pool. """ data = request.DATA members = data.get('members') pool_id = kwargs.get('pool_id') if kwargs.get('members_to_add'): members_to_add = kwargs['members_to_add'] index = [members.index(member) for member in members if member['id'] == members_to_add[0]][0] loadbalancer_id = data.get('loadbalancer_id') else: index = kwargs.get('index') loadbalancer_id = kwargs.get('loadbalancer_id') member = members[index] memberSpec = { 'address': member['address'], 'protocol_port': member['port'], 'subnet_id': member['subnet'] } if member.get('weight'): memberSpec['weight'] = member['weight'] member = neutronclient(request).create_lbaas_member( pool_id, {'member': memberSpec}).get('member') index += 1 if kwargs.get('members_to_add'): args = (request, loadbalancer_id, update_member_list) members_to_add = kwargs['members_to_add'] members_to_add.pop(0) kwargs = {'callback_kwargs': { 'existing_members': kwargs.get('existing_members'), 'members_to_add': members_to_add, 'members_to_delete': kwargs.get('members_to_delete'), 'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif len(members) > index: args = (request, loadbalancer_id, add_member) kwargs = {'callback_kwargs': {'pool_id': pool_id, 'index': index}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, create_health_monitor) kwargs = {'callback_kwargs': {'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return member def remove_member(request, **kwargs): """Remove a member from the pool. """ data = request.DATA loadbalancer_id = data.get('loadbalancer_id') pool_id = kwargs.get('pool_id') if kwargs.get('members_to_delete'): members_to_delete = kwargs['members_to_delete'] member_id = members_to_delete.pop(0) neutronclient(request).delete_lbaas_member(member_id, pool_id) args = (request, loadbalancer_id, update_member_list) kwargs = {'callback_kwargs': { 'existing_members': kwargs.get('existing_members'), 'members_to_add': kwargs.get('members_to_add'), 'members_to_delete': members_to_delete}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) def update_loadbalancer(request, **kwargs): """Update a load balancer. """ data = request.DATA spec = {} loadbalancer_id = kwargs.get('loadbalancer_id') if data['loadbalancer'].get('name'): spec['name'] = data['loadbalancer']['name'] if data['loadbalancer'].get('description'): spec['description'] = data['loadbalancer']['description'] return neutronclient(request).update_loadbalancer( loadbalancer_id, {'loadbalancer': spec}).get('loadbalancer') def update_listener(request, **kwargs): """Update a listener. """ data = request.DATA listener_spec = {} listener_id = data['listener'].get('id') loadbalancer_id = data.get('loadbalancer_id') if data['listener'].get('name'): listener_spec['name'] = data['listener']['name'] if data['listener'].get('description'): listener_spec['description'] = data['listener']['description'] if data.get('certificates'): listener_spec['default_tls_container_ref'] = data['certificates'][0] listener = neutronclient(request).update_listener( listener_id, {'listener': listener_spec}).get('listener') if data.get('pool'): args = (request, loadbalancer_id, update_pool) thread.start_new_thread(poll_loadbalancer_status, args) return listener def update_pool(request, **kwargs): """Update a pool. """ data = request.DATA pool_spec = {} pool_id = data['pool'].get('id') loadbalancer_id = data.get('loadbalancer_id') if data['pool'].get('name'): pool_spec['name'] = data['pool']['name'] if data['pool'].get('description'): pool_spec['description'] = data['pool']['description'] pools = neutronclient(request).update_lbaas_pool( pool_id, {'pool': pool_spec}).get('pools') # Assemble the lists of member id's to add and remove, if any exist tenant_id = request.user.project_id request_member_data = data.get('members', []) existing_members = neutronclient(request).list_lbaas_members( pool_id, tenant_id=tenant_id).get('members') (members_to_add, members_to_delete) = get_members_to_add_remove( request_member_data, existing_members) if members_to_add or members_to_delete: args = (request, loadbalancer_id, update_member_list) kwargs = {'callback_kwargs': {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, update_monitor) thread.start_new_thread(poll_loadbalancer_status, args) return pools def update_monitor(request, **kwargs): """Update a health monitor. """ data = request.DATA monitor_spec = {} monitor_id = data['monitor']['id'] if data['monitor'].get('interval'): monitor_spec['delay'] = data['monitor']['interval'] if data['monitor'].get('timeout'): monitor_spec['timeout'] = data['monitor']['timeout'] if data['monitor'].get('retry'): monitor_spec['max_retries'] = data['monitor']['retry'] if data['monitor'].get('method'): monitor_spec['http_method'] = data['monitor']['method'] if data['monitor'].get('path'): monitor_spec['url_path'] = data['monitor']['path'] if data['monitor'].get('status'): monitor_spec['expected_codes'] = data['monitor']['status'] healthmonitor = neutronclient(request).update_lbaas_healthmonitor( monitor_id, {'healthmonitor': monitor_spec}).get('healthmonitor') return healthmonitor def update_member_list(request, **kwargs): """Update the list of members by adding or removing the necessary members. """ data = request.DATA loadbalancer_id = data.get('loadbalancer_id') pool_id = kwargs.get('pool_id') existing_members = kwargs.get('existing_members') members_to_add = kwargs.get('members_to_add') members_to_delete = kwargs.get('members_to_delete') if members_to_delete: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} remove_member(request, **kwargs) elif members_to_add: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} add_member(request, **kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, update_monitor) thread.start_new_thread(poll_loadbalancer_status, args) def get_members_to_add_remove(request_member_data, existing_members): new_member_ids = [member['id'] for member in request_member_data] existing_member_ids = [member['id'] for member in existing_members] members_to_add = [member_id for member_id in new_member_ids if member_id not in existing_member_ids] members_to_delete = [member_id for member_id in existing_member_ids if member_id not in new_member_ids] return members_to_add, members_to_delete def add_floating_ip_info(request, loadbalancers): """Add floating IP address info to each load balancer. """ floating_ips = neutron.tenant_floating_ip_list(request) for lb in loadbalancers: floating_ip = {} associated_ip = next((fip for fip in floating_ips if fip['fixed_ip'] == lb['vip_address']), None) if associated_ip is not None: floating_ip['id'] = associated_ip['id'] floating_ip['ip'] = associated_ip['ip'] lb['floating_ip'] = floating_ip @urls.register class LoadBalancers(generic.View): """API for load balancers. """ url_regex = r'lbaas/loadbalancers/$' @rest_utils.ajax() def get(self, request): """List load balancers for current project. The listing result is an object with property "items". """ tenant_id = request.user.project_id loadbalancers = neutronclient(request).list_loadbalancers( tenant_id=tenant_id).get('loadbalancers') if request.GET.get('full') and neutron.floating_ip_supported(request): add_floating_ip_info(request, loadbalancers) return {'items': loadbalancers} @rest_utils.ajax() def post(self, request): """Create a new load balancer. Creates a new load balancer as well as other optional resources such as a listener, pool, monitor, etc. """ return create_loadbalancer(request) @urls.register class LoadBalancerStatusTree(generic.View): """API for retrieving the resource status tree for a single load balancer. """ url_regex = r'lbaas/loadbalancers/(?P<loadbalancer_id>[^/]+)/statuses/$' @rest_utils.ajax() def get(self, request, loadbalancer_id): """Get the status tree for a specific load balancer. http://localhost/api/lbaas/loadbalancers/cc758c90-3d98-4ea1-af44-aab405c9c915/statuses """ return neutronclient(request).retrieve_loadbalancer_status( loadbalancer_id) @urls.register class LoadBalancer(generic.View): """API for retrieving, updating, and deleting a single load balancer. """ url_regex = r'lbaas/loadbalancers/(?P<loadbalancer_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, loadbalancer_id): """Get a specific load balancer. http://localhost/api/lbaas/loadbalancers/cc758c90-3d98-4ea1-af44-aab405c9c915 """ loadbalancer = neutronclient(request).show_loadbalancer( loadbalancer_id).get('loadbalancer') if request.GET.get('full') and neutron.floating_ip_supported(request): add_floating_ip_info(request, [loadbalancer]) return loadbalancer @rest_utils.ajax() def put(self, request, loadbalancer_id): """Edit a load balancer. """ kwargs = {'loadbalancer_id': loadbalancer_id} update_loadbalancer(request, **kwargs) @rest_utils.ajax() def delete(self, request, loadbalancer_id): """Delete a specific load balancer. http://localhost/api/lbaas/loadbalancers/cc758c90-3d98-4ea1-af44-aab405c9c915 """ neutronclient(request).delete_loadbalancer(loadbalancer_id) @urls.register class Listeners(generic.View): """API for load balancer listeners. """ url_regex = r'lbaas/listeners/$' @rest_utils.ajax() def get(self, request): """List of listeners for the current project. The listing result is an object with property "items". """ loadbalancer_id = request.GET.get('loadbalancerId') tenant_id = request.user.project_id result = neutronclient(request).list_listeners(tenant_id=tenant_id) listener_list = result.get('listeners') if loadbalancer_id: listener_list = self._filter_listeners(listener_list, loadbalancer_id) return {'items': listener_list} @rest_utils.ajax() def post(self, request): """Create a new listener. Creates a new listener as well as other optional resources such as a pool, members, and health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id')} return create_listener(request, **kwargs) def _filter_listeners(self, listener_list, loadbalancer_id): filtered_listeners = [] for listener in listener_list: if listener['loadbalancers'][0]['id'] == loadbalancer_id: filtered_listeners.append(listener) return filtered_listeners @urls.register class Listener(generic.View): """API for retrieving, updating, and deleting a single listener. """ url_regex = r'lbaas/listeners/(?P<listener_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, listener_id): """Get a specific listener. If the param 'includeChildResources' is passed in as a truthy value, the details of all resources that exist under the listener will be returned along with the listener details. http://localhost/api/lbaas/listeners/cc758c90-3d98-4ea1-af44-aab405c9c915 """ listener = neutronclient(request).show_listener( listener_id).get('listener') if request.GET.get('includeChildResources'): resources = {} resources['listener'] = listener if listener.get('default_pool_id'): pool_id = listener['default_pool_id'] pool = neutronclient(request).show_lbaas_pool( pool_id).get('pool') resources['pool'] = pool if pool.get('members'): tenant_id = request.user.project_id members = neutronclient(request).list_lbaas_members( pool_id, tenant_id=tenant_id).get('members') resources['members'] = members if pool.get('healthmonitor_id'): monitor_id = pool['healthmonitor_id'] monitor = neutronclient(request).show_lbaas_healthmonitor( monitor_id).get('healthmonitor') resources['monitor'] = monitor return resources else: return listener @rest_utils.ajax() def put(self, request, listener_id): """Edit a listener as well as any resources below it. """ kwargs = {'listener_id': listener_id} update_listener(request, **kwargs) @rest_utils.ajax() def delete(self, request, listener_id): """Delete a specific listener. http://localhost/api/lbaas/listeners/cc758c90-3d98-4ea1-af44-aab405c9c915 """ neutronclient(request).delete_listener(listener_id) @urls.register class Pools(generic.View): """API for load balancer pools. """ url_regex = r'lbaas/pools/$' @rest_utils.ajax() def post(self, request): """Create a new pool. Creates a new pool as well as other optional resources such as members and health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id'), 'listener_id': request.DATA.get('parentResourceId')} return create_pool(request, **kwargs) @urls.register class Pool(generic.View): """API for retrieving a single pool. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, pool_id): """Get a specific pool. If the param 'includeChildResources' is passed in as a truthy value, the details of all resources that exist under the pool will be returned along with the pool details. http://localhost/api/lbaas/pools/cc758c90-3d98-4ea1-af44-aab405c9c915 """ pool = neutronclient(request).show_lbaas_pool(pool_id).get('pool') if request.GET.get('includeChildResources'): resources = {} resources['pool'] = pool if pool.get('members'): tenant_id = request.user.project_id members = neutronclient(request).list_lbaas_members( pool_id, tenant_id=tenant_id).get('members') resources['members'] = members if pool.get('healthmonitor_id'): monitor_id = pool['healthmonitor_id'] monitor = neutronclient(request).show_lbaas_healthmonitor( monitor_id).get('healthmonitor') resources['monitor'] = monitor return resources else: return pool @rest_utils.ajax() def put(self, request, pool_id): """Edit a listener as well as any resources below it. """ kwargs = {'pool_id': pool_id} update_pool(request, **kwargs) @rest_utils.ajax() def delete(self, request, pool_id): """Delete a specific pool. http://localhost/api/lbaas/pools/cc758c90-3d98-4ea1-af44-aab405c9c915 """ neutronclient(request).delete_lbaas_pool(pool_id) @urls.register class Members(generic.View): """API for load balancer members. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)/members/$' @rest_utils.ajax() def get(self, request, pool_id): """List of members for the current project. The listing result is an object with property "items". """ tenant_id = request.user.project_id result = neutronclient(request).list_lbaas_members(pool_id, tenant_id=tenant_id) return {'items': result.get('members')} @rest_utils.ajax() def put(self, request, pool_id): """Update the list of members for the current project. """ # Assemble the lists of member id's to add and remove, if any exist tenant_id = request.user.project_id request_member_data = request.DATA.get('members', []) existing_members = neutronclient(request).list_lbaas_members( pool_id, tenant_id=tenant_id).get('members') (members_to_add, members_to_delete) = get_members_to_add_remove( request_member_data, existing_members) if members_to_add or members_to_delete: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} update_member_list(request, **kwargs) @urls.register class Member(generic.View): """API for retrieving a single member. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)' + \ '/members/(?P<member_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, member_id, pool_id): """Get a specific member belonging to a specific pool. """ return neutronclient(request).show_lbaas_member( member_id, pool_id).get('member') @rest_utils.ajax() def put(self, request, member_id, pool_id): """Edit a pool member. """ data = request.DATA spec = { 'weight': data['weight'] } return neutronclient(request).update_lbaas_member( member_id, pool_id, {'member': spec}) @urls.register class HealthMonitors(generic.View): """API for load balancer pool health monitors. """ url_regex = r'lbaas/healthmonitors/$' @rest_utils.ajax() def post(self, request): """Create a new health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id'), 'pool_id': request.DATA.get('parentResourceId')} return create_health_monitor(request, **kwargs) @urls.register class HealthMonitor(generic.View): """API for retrieving a single health monitor. """ url_regex = r'lbaas/healthmonitors/(?P<healthmonitor_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, healthmonitor_id): """Get a specific health monitor. """ return neutronclient(request).show_lbaas_healthmonitor( healthmonitor_id).get('healthmonitor') @rest_utils.ajax() def delete(self, request, healthmonitor_id): """Delete a specific health monitor. http://localhost/api/lbaas/healthmonitors/cc758c90-3d98-4ea1-af44-aab405c9c915 """ neutronclient(request).delete_lbaas_healthmonitor(healthmonitor_id) @rest_utils.ajax() def put(self, request, healthmonitor_id): """Edit a health monitor. """ update_monitor(request)
StarcoderdataPython
3203793
<reponame>IssacCyj/RepDistiller from __future__ import print_function import os import argparse import socket import time import tensorboard_logger as tb_logger import torch import torch.optim as optim import torch.nn as nn import torch.backends.cudnn as cudnn import numpy as np from models import model_dict from dataset.cifar100 import get_cifar100_dataloaders from dataset.cifar10 import get_cifar10_dataloaders from helper.util import adjust_learning_rate, accuracy, AverageMeter from helper.loops import train_vanilla as train, validate def parse_option(): hostname = socket.gethostname() parser = argparse.ArgumentParser("argument for training") parser.add_argument("--print_freq", type=int, default=100, help="print frequency") parser.add_argument("--tb_freq", type=int, default=500, help="tb frequency") parser.add_argument("--save_freq", type=int, default=40, help="save frequency") parser.add_argument("--batch_size", type=int, default=64, help="batch_size") parser.add_argument( "--num_workers", type=int, default=8, help="num of workers to use" ) parser.add_argument( "--epochs", type=int, default=240, help="number of training epochs" ) # optimization parser.add_argument( "--learning_rate", type=float, default=0.05, help="learning rate" ) parser.add_argument( "--lr_decay_epochs", type=str, default="150,180,210", help="where to decay lr, can be a list", ) parser.add_argument( "--lr_decay_rate", type=float, default=0.1, help="decay rate for learning rate" ) parser.add_argument("--weight_decay", type=float, default=5e-4, help="weight decay") parser.add_argument("--momentum", type=float, default=0.9, help="momentum") # dataset parser.add_argument( "--model", type=str, default="resnet110", choices=[ "resnet8", "resnet14", "resnet20", "resnet32", "resnet44", "resnet56", "resnet110", "resnet8x4", "resnet32x4", "wrn_16_1", "wrn_16_2", "wrn_40_1", "wrn_40_2", "vgg8", "vgg11", "vgg13", "vgg16", "vgg19", "MobileNetV2", "ShuffleV1", "ShuffleV2", ], ) parser.add_argument( "--dataset", type=str, default="cifar10", choices=["cifar100", "cifar10"], help="dataset", ) parser.add_argument( "-t", "--trial", type=str, default="first", help="the experiment id" ) parser.add_argument( "--train_rule", default="None", type=str, choices=["None", "Resample", "Reweight", "DRW"], ) opt = parser.parse_args() # set different learning rate from these 4 models if opt.model in ["MobileNetV2", "ShuffleV1", "ShuffleV2"]: opt.learning_rate = 0.01 # set the path according to the environment if hostname.startswith("visiongpu"): opt.model_path = "/path/to/my/model" opt.tb_path = "/path/to/my/tensorboard" else: opt.model_path = "./save/models" opt.tb_path = "./save/tensorboard" iterations = opt.lr_decay_epochs.split(",") opt.lr_decay_epochs = list([]) for it in iterations: opt.lr_decay_epochs.append(int(it)) opt.model_name = "{}_{}_lr_{}_decay_{}_trial_{}".format( opt.model, opt.dataset, opt.learning_rate, opt.weight_decay, opt.trial ) opt.tb_folder = os.path.join(opt.tb_path, opt.model_name) if not os.path.isdir(opt.tb_folder): os.makedirs(opt.tb_folder) opt.save_folder = os.path.join(opt.model_path, opt.model_name) if not os.path.isdir(opt.save_folder): os.makedirs(opt.save_folder) return opt def main(): best_acc = 0 best_cls_acc = [] opt = parse_option() # dataloader if opt.dataset == "cifar100": train_loader, val_loader = get_cifar100_dataloaders( batch_size=opt.batch_size, num_workers=opt.num_workers, train_rule=opt.train_rule, ) n_cls = 100 elif opt.dataset == "cifar10": train_loader, val_loader = get_cifar10_dataloaders( batch_size=opt.batch_size, num_workers=opt.num_workers, train_rule=opt.train_rule, ) n_cls = 10 else: raise NotImplementedError(opt.dataset) # model model = model_dict[opt.model](num_classes=n_cls) # optimizer optimizer = optim.SGD( model.parameters(), lr=opt.learning_rate, momentum=opt.momentum, weight_decay=opt.weight_decay, ) cls_num_list = train_loader.dataset.get_cls_num_list() if opt.train_rule == "Reweight": beta = 0.9999 effective_num = 1.0 - np.power(beta, cls_num_list) per_cls_weights = (1.0 - beta) / np.array(effective_num) per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list) ce_weight = torch.FloatTensor(per_cls_weights).cuda() print(f"Re-weighting {ce_weight}") criterion = nn.CrossEntropyLoss() if torch.cuda.is_available(): model = model.cuda() criterion = criterion.cuda() cudnn.benchmark = True # tensorboard logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2) # routine iteration = 0 for epoch in range(1, opt.epochs + 1): adjust_learning_rate(epoch, opt, optimizer) print("==> training...") time1 = time.time() train_acc, train_loss, iteration = train( epoch, train_loader, model, criterion, optimizer, opt, logger, iteration ) time2 = time.time() print("epoch {}, total time {:.2f}".format(epoch, time2 - time1)) logger.log_value("train_acc", train_acc, epoch) logger.log_value("train_loss", train_loss, epoch) test_acc, test_acc_top5, test_loss, cls_acc = validate( val_loader, model, criterion, opt, logger, epoch, cls_num_list ) # save the best model if test_acc > best_acc: best_acc = test_acc best_cls_acc = cls_acc state = { "epoch": epoch, "model": model.state_dict(), "best_acc": best_acc, "optimizer": optimizer.state_dict(), } save_file = os.path.join(opt.save_folder, "{}_best.pth".format(opt.model)) print("saving the best model!") torch.save(state, save_file) # regular saving if epoch % opt.save_freq == 0: print("==> Saving...") state = { "epoch": epoch, "model": model.state_dict(), "accuracy": test_acc, "optimizer": optimizer.state_dict(), } save_file = os.path.join( opt.save_folder, "ckpt_epoch_{epoch}.pth".format(epoch=epoch) ) torch.save(state, save_file) # This best accuracy is only for printing purpose. # The results reported in the paper/README is from the last epoch. print("best accuracy:", best_acc, best_cls_acc) # save model state = { "opt": opt, "model": model.state_dict(), "optimizer": optimizer.state_dict(), } save_file = os.path.join(opt.save_folder, "{}_last.pth".format(opt.model)) torch.save(state, save_file) if __name__ == "__main__": main()
StarcoderdataPython
1625655
# -*- coding: utf-8 -*- """ Created on Mon Apr 19 08:20:26 2021 @author: shane """ import dash import dash_bootstrap_components as dbc # Meta tags make the app mobile friendly app = dash.Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP], meta_tags=[{'name': 'viewport', 'content':'width=device-width, initial-scale=1.0'}]) server = app.server
StarcoderdataPython
23636
<gh_stars>0 # -*- coding: utf-8 -*- import argparse import logging import os import re from .. import __version__ from ..config import ALLOWED_IMAGE_REGEXPS from ..config import ALLOWED_PORT_MAPPINGS from ..config import CAPS_ADD from ..config import CAPS_DROP from ..config import ENV_VARS from ..config import ENV_VARS_EXT from ..config import NV_ALLOW_OWN_GPU_REUSE from ..config import NV_ALLOWED_GPUS from ..config import NV_DEFAULT_GPU_COUNT_RESERVATION from ..config import NV_MAX_GPU_COUNT_RESERVATION from ..config import PROBE_USED_MOUNTS from ..config import RUN_PULL from ..config import USER_IN_CONTAINER from ..config import VOLUME_MOUNTS_ALWAYS from ..config import VOLUME_MOUNTS_AVAILABLE from ..config import VOLUME_MOUNTS_DEFAULT from ..config import gid from ..config import gids from ..config import uid from ..config import user_name from ..helpers.cmd import init_cmd from ..helpers.exceptions import UserDockerException from ..helpers.execute import exec_cmd from ..helpers.execute import exit_exec_cmd from ..helpers.logger import logger from ..helpers.nvidia import nvidia_get_available_gpus from ..helpers.parser import init_subcommand_parser def parser_run(parser): sub_parser = init_subcommand_parser(parser, 'run') sub_parser.add_argument( "--no-default-mounts", help="does not automatically add default mounts", action="store_true", ) mounts_help = [] if VOLUME_MOUNTS_ALWAYS: mounts_help += ['Admin enforced: %s.' % ', '.join(VOLUME_MOUNTS_ALWAYS)] if VOLUME_MOUNTS_DEFAULT: mounts_help += ['Default: %s.' % ', '.join(VOLUME_MOUNTS_DEFAULT)] if VOLUME_MOUNTS_AVAILABLE: mounts_help += ['Available: %s.' % ', '.join(VOLUME_MOUNTS_AVAILABLE)] if mounts_help: sub_parser.add_argument( "-v", "--volume", help="user specified volume mounts (can be given multiple times). " "%s" % " ".join(mounts_help), action="append", dest="volumes", default=[], ) sub_parser.add_argument( "--entrypoint", help="Overwrite the default ENTRYPOINT of the image", ) sub_parser.add_argument( "-w", "--workdir", help="Working directory inside the container", ) if ALLOWED_PORT_MAPPINGS: sub_parser.add_argument( "-p", "--publish", help="Publish a container's ports to the host (see docker help). " "Allowed: " + ', '.join(ALLOWED_PORT_MAPPINGS), action="append", dest="port_mappings", default=[], ) sub_parser.add_argument( "image", help="the image to run. Allowed: " + ', '.join(ALLOWED_IMAGE_REGEXPS), ) sub_parser.add_argument( "image_args", help="arguments passed to the image", nargs=argparse.REMAINDER ) def prepare_nvidia_docker_run(args): # mainly handles GPU arbitration via ENV var for nvidia-docker # note that these are ENV vars for the command, not the container if os.getenv('NV_HOST'): raise UserDockerException('ERROR: NV_HOST env var not supported yet') # check if allowed if not NV_ALLOWED_GPUS: raise UserDockerException( "ERROR: No GPUs available due to admin setting." ) nv_gpus = os.getenv('NV_GPU', '') if nv_gpus: # the user has set NV_GPU, just check if it's ok nv_gpus = [g.strip() for g in nv_gpus.split(',')] try: nv_gpus = [int(gpu) for gpu in nv_gpus] except ValueError as e: raise UserDockerException( "ERROR: Can't parse NV_GPU, use index notation: %s" % e ) if not ( NV_ALLOWED_GPUS == 'ALL' or all(gpu in NV_ALLOWED_GPUS for gpu in nv_gpus)): raise UserDockerException( "ERROR: Access to at least one specified NV_GPU denied by " "admin. Available GPUs: %r" % (NV_ALLOWED_GPUS,) ) # check if in bounds (and MAX >= 0) if 0 <= NV_MAX_GPU_COUNT_RESERVATION < len(nv_gpus): raise UserDockerException( "ERROR: Number of requested GPUs > %d (admin limit)" % ( NV_MAX_GPU_COUNT_RESERVATION,) ) # check if available gpus_available, own_gpus = nvidia_get_available_gpus(args.executor_path) if NV_ALLOW_OWN_GPU_REUSE: gpus_available.extend(own_gpus) for g in nv_gpus: if g not in gpus_available: msg = ( 'ERROR: GPU %d is currently not available!\nUse:\n' '"sudo userdocker ps --gpu-free" to find available GPUs.\n' '"sudo userdocker ps --gpu-used" and "nvidia-smi" to see ' 'status.' % g ) if NV_ALLOW_OWN_GPU_REUSE and own_gpus: msg += '\n"sudo userdocker ps --gpu-used-mine to show own' \ '(reusable) GPUs.' raise UserDockerException(msg) else: # NV_GPU wasn't set, use admin defaults, tell user gpu_default = NV_DEFAULT_GPU_COUNT_RESERVATION logger.info( "NV_GPU environment variable not set, trying to acquire admin " "default of %d GPUs" % gpu_default ) gpus_available, own_gpus = nvidia_get_available_gpus(args.executor_path) gpus = gpus_available[:gpu_default] if len(gpus) < gpu_default: msg = ( 'Could not find %d available GPU(s)!\nUse:\n' '"sudo userdocker ps --gpu-used" and "nvidia-smi" to see ' 'status.' % gpu_default ) if NV_ALLOW_OWN_GPU_REUSE and own_gpus: msg += '\n You can set NV_GPU to reuse a GPU you have already' \ ' reserved.' raise UserDockerException(msg) gpu_env = ",".join([str(g) for g in gpus]) logger.info("Setting NV_GPU=%s" % gpu_env) os.environ['NV_GPU'] = gpu_env def exec_cmd_run(args): cmd = init_cmd(args) # check port mappings for pm in getattr(args, 'port_mappings', []): for pm_pattern in ALLOWED_PORT_MAPPINGS: if re.match(pm_pattern, pm): cmd += ['-p', pm] break else: raise UserDockerException( "ERROR: given port mapping not allowed: %s" % pm ) # check mounts mounts = [] mounts_available = \ VOLUME_MOUNTS_ALWAYS + VOLUME_MOUNTS_DEFAULT + VOLUME_MOUNTS_AVAILABLE mounts += VOLUME_MOUNTS_ALWAYS if not args.no_default_mounts: mounts += VOLUME_MOUNTS_DEFAULT for user_mount in getattr(args, 'volumes', []): if user_mount in mounts: continue if user_mount in mounts_available: mounts += [user_mount] continue # literal matches didn't work, check if the user appended a 'ro' flag if len(user_mount.split(':')) == 3: host_path, container_path, flag = user_mount.split(':') if flag == 'ro': st = ':'.join([host_path, container_path]) if st in mounts: # upgrade mount to include ro flag idx = mounts.index(st) mounts[idx] = user_mount continue if st in mounts_available: mounts += [user_mount] continue # allow potential unspecified container_path mounts host_path = user_mount.split(':')[0] + ':' if host_path in mounts_available: mounts += [user_mount] continue raise UserDockerException( "ERROR: given mount not allowed: %s" % user_mount ) mount_host_paths = [m.split(':')[0] for m in mounts] for ms in mount_host_paths: if not os.path.exists(ms): raise UserDockerException( "ERROR: mount can't be found: %s" % ms ) if PROBE_USED_MOUNTS and os.path.isdir(ms): os.listdir(ms) for mount in mounts: if ':' not in mount: raise UserDockerException( "ERROR: anonymous mounts currently not supported: %s" % mount ) cmd += ["-v", mount] if args.executor == 'nvidia-docker': prepare_nvidia_docker_run(args) env_vars = ENV_VARS + ENV_VARS_EXT.get(args.executor, []) env_vars += [ "USERDOCKER=%s" % __version__, "USERDOCKER_USER=%s" % user_name, "USERDOCKER_UID=%d" % uid, ] if args.executor == 'nvidia-docker': # remember which GPU was assigned to the container for ps --gpu-used env_vars += [ "USERDOCKER_NV_GPU=%s" % os.environ['NV_GPU'] ] for env_var in env_vars: cmd += ['-e', env_var] if USER_IN_CONTAINER: cmd += ["-u", "%d:%d" % (uid, gid)] for _g in gids: if _g < 1000 or _g == gid: continue cmd += ["--group-add", "%d" % (_g)] for cap_drop in CAPS_DROP: cmd += ["--cap-drop=%s" % cap_drop] for cap_add in CAPS_ADD: cmd += ["--cap-add=%s" % cap_add] if args.workdir: cmd += ["-w", args.workdir] if args.entrypoint: cmd += ["--entrypoint", args.entrypoint] # additional injection protection, deactivated for now due to nvidia-docker # unability to handle this # cmd.append("--") img = args.image if ":" not in img and "@" not in img: # user didn't explicitly set a tag or digest, append ":latest" img += ":latest" if ALLOWED_IMAGE_REGEXPS: for air in ALLOWED_IMAGE_REGEXPS: if re.match(air, img): break else: raise UserDockerException( "ERROR: image %s not in allowed image regexps: %s" % ( img, ALLOWED_IMAGE_REGEXPS)) # pull image? if RUN_PULL == "default": # just let `docker run` do its thing pass elif RUN_PULL == "always": # pull image exec_cmd( [args.executor_path, 'pull', img], dry_run=args.dry_run, loglvl=logging.DEBUG, ) elif RUN_PULL == "never": # check if image is available locally tmp = exec_cmd( [args.executor_path, 'images', '-q', img], return_status=False, loglvl=logging.DEBUG, ) if not tmp: raise UserDockerException( "ERROR: you can only use locally available images, but %s could" " not be found locally" % img ) else: raise UserDockerException( "ERROR: RUN_PULL config variable not expected range, contact admin" ) cmd.append(img) cmd.extend(args.image_args) exit_exec_cmd(cmd, dry_run=args.dry_run)
StarcoderdataPython
1730961
<gh_stars>1-10 # ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: <NAME> # License: BSD # ---------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.patches import Rectangle def pixelated_text(dpi=100): fig = Figure(figsize=(1, 1), dpi=dpi) canvas, ax = FigureCanvasAgg(fig), fig.gca() ax.text(0.5, 0.5, "a", fontsize=75, ha="center", va="center") ax.axis("off") canvas.draw() image = np.frombuffer(canvas.tostring_argb(), dtype="uint8") image = image.reshape(dpi, dpi, 4) image = np.roll(image, 3, axis=2) return image def square(position, size, edgecolor, facecolor, zorder): rect = Rectangle( position, size, size, transform=ax.transAxes, clip_on=False, zorder=zorder, linewidth=0.5, edgecolor=edgecolor, facecolor=facecolor, ) ax.add_artist(rect) image = pixelated_text(75) fig = plt.figure(figsize=(4.25, 2), dpi=100) # Left (raster) ax = plt.subplot( 1, 2, 1, frameon=False, aspect=1, xticks=[], yticks=[], xlim=[0, 1], ylim=[0, 1] ) ax.imshow(image, extent=[0.1, 1.0, 0.1, 1.0], zorder=10, interpolation="nearest") square((0.1, 0.1), 0.9, "black", "None", 20) square((0.0, 0.0), 0.2, "black", "white", 20) ax.imshow(image, extent=[0.0, 0.2, 0.0, 0.2], zorder=30, interpolation="nearest") square((0.0, 0.0), 0.2, "black", "None", 40) ax.text(0.55, 1.025, "Raster rendering", fontsize="small", ha="center", va="bottom") ax.text( 0.6, 0.1 - 0.025, ".PNG / .JPG / .TIFF", fontsize="x-small", ha="center", va="top" ) # Right (vector) ax = plt.subplot( 1, 2, 2, frameon=False, aspect=1, xticks=[], yticks=[], xlim=[0, 1], ylim=[0, 1] ) ax.text(0.55, 0.55, "a", fontsize=100, ha="center", va="center", color="#000099") square((0.1, 0.1), 0.9, "#000099", "None", 20) square((0.0, 0.0), 0.2, "#000099", "white", 20) ax.text( 0.1, 0.1, "a", fontsize=22, ha="center", va="center", clip_on=False, zorder=30, color="#000099", ) square((0.0, 0.0), 0.2, "#000099", "None", 40) ax.text( 0.55, 1.025, "Vector rendering", fontsize="small", ha="center", va="bottom", color="#000099", ) ax.text( 0.6, 0.1 - 0.025, ".PDF / .SVG / .PS", fontsize="x-small", ha="center", va="top", color="#000099", ) plt.savefig("../../figures/anatomy/raster-vector.pdf", dpi=600) plt.show()
StarcoderdataPython
3245368
# ============================================================================== # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== # CNTK models collection # Layers and building blocks that are not generic but represent more specific model types go here. from .attention import *
StarcoderdataPython
3372161
<gh_stars>1-10 import pytest import mock import pwd import grp import subprocess from collections import namedtuple from lib.user_management import UserManagement @mock.patch('pwd.getpwnam') @pytest.mark.parametrize("login", [("elaine")]) def test_user_exist(mock_pwd, login): UserManagement.user_exist(login) pwd.getpwnam.assert_called_with('elaine') @mock.patch('grp.getgrnam') @pytest.mark.parametrize("github_team", [("soup")]) def test_group_exist(mock_grp, github_team): um = UserManagement() um.group_exist(github_team) grp.getgrnam.assert_called_with('soup') @mock.patch('subprocess.run') @mock.patch('os.mkdir') @mock.patch('builtins.open') @mock.patch('lib.user_management.UserManagement.add_ssh_pub_key') @pytest.mark.parametrize("login, github_team, key", [("george", "soup", 'ssh-rsa key that is public')]) def test_add_user(mock_subprocess, mock_os, mock_open, mock_add_key, login, github_team, key): um = UserManagement() um.add_user(login, github_team, key) subprocess.run.assert_called_with(['useradd', '-m', '-G', 'soup', 'george'], check=True) um.add_ssh_pub_key.assert_called_with(login, key) @mock.patch('subprocess.run') @pytest.mark.parametrize("github_team", [("soup")]) def test_add_group(mock_subprocess, github_team): um = UserManagement() um.add_group(github_team) subprocess.run.assert_called_with(['groupadd', 'soup'], check=True) @mock.patch('subprocess.run') @mock.patch('os.mkdir') @pytest.mark.parametrize("login", [("george")]) def test_purge_user(mock_subprocess, mock_os, login): um = UserManagement() um.purge_user(login) subprocess.run.assert_called_with(['userdel', '-r', 'george'], check=True) @pytest.fixture def create_pwd(): data = [] struct_passwd = namedtuple('struct_passwd', 'pw_name pw_passwd pw_uid pw_gid pw_gecos pw_dir pw_shell') data.append(struct_passwd(pw_name='root', pw_passwd='x', pw_uid=0, pw_gid=0, pw_gecos='root', pw_dir='/root', pw_shell='/bin/bash')) data.append(struct_passwd(pw_name='daemon', pw_passwd='x', pw_uid=1, pw_gid=1, pw_gecos='daemon', pw_dir='/usr/sbin', pw_shell='/usr/sbin/nologin')) data.append(struct_passwd(pw_name='soupnazi', pw_passwd='x', pw_uid=1000, pw_gid=1000, pw_gecos='soupnazi', pw_dir='/home/soup', pw_shell='/bin/bash')) data.append(struct_passwd(pw_name='elaine', pw_passwd='x', pw_uid=3001, pw_gid=3000, pw_gecos='elaine', pw_dir='/home/elaine', pw_shell='/bin/bash')) data.append(struct_passwd(pw_name='george', pw_passwd='x', pw_uid=3021, pw_gid=3000, pw_gecos='george', pw_dir='/home/george', pw_shell='/bin/bash')) return data @mock.patch('pwd.getpwall') @pytest.mark.parametrize("uid", [(999)]) def test_get_ids(our_pwd, uid): our_pwd.return_value = create_pwd() um = UserManagement() for id in um.get_ids(uid): assert id.pw_uid >= 1000 @mock.patch('pwd.getpwall') @pytest.mark.parametrize("uid", [(0)]) def test_list_uids(our_pwd, uid): our_pwd.return_value = create_pwd() um = UserManagement() ids = [] for id in um.get_ids(uid): ids.append(id.pw_uid) assert len(ids) == 5 ids = [] for id in um.get_ids(1000): ids.append(id.pw_uid) assert len(ids) == 3 @mock.patch('pwd.getpwall') @pytest.mark.parametrize("uid", [(1000)]) def test_list_logins(our_pwd, uid): our_pwd.return_value = create_pwd() um = UserManagement() ids = [] for id in um.get_ids(uid): ids.append(id.pw_name) assert ids == ['soupnazi', 'elaine', 'george']
StarcoderdataPython
1600399
<gh_stars>10-100 import torch.nn as nn from utils import * from torch.nn.utils.rnn import pad_packed_sequence, pack_sequence, pack_padded_sequence import Constants try: from apex import amp APEX_AVAILABLE = True except ModuleNotFoundError: APEX_AVAILABLE = False class Trainer(object): def __init__(self, args, encoder, decoder, optimizer, criterion, device, disable_prog_bar): super(Trainer, self).__init__() self.args = args self.encoder = encoder self.decoder = decoder self.optimizer = optimizer self.device = device self.criterion = criterion self.epoch = 0 self.softmax = nn.Softmax(dim=1) self.disable_prog_bar = disable_prog_bar self.non_blocking = args.pin_memory self.use_attention = args.attention self.accum_grad = args.accum_grad self.use_amp = APEX_AVAILABLE @staticmethod def create_inputs(packed_encoded_path, packed_label, init_token, remove_eos=True): ''' :param packed_encoded_path: PackedSequence :param packed_label: PackedSequence :param init_token: of shape (1, h_dim) :param encoded_ctx: of shape (batch, h_dim) :param remove_eos: boolean :return: labels_list: PackedSequence ''' # encoded_path: (batch_size, length_of_longest_seq, h_dim) encoded_path, encoded_path_lengths = pad_packed_sequence(packed_encoded_path, batch_first=True) if init_token is not None: encoded_path = encoded_path.type(init_token.type()) batch_size, _, h_dim = encoded_path.size() labels_list = list() if packed_label is None: for i in range(batch_size): # (1 , h_dim) cur_labels = init_token labels_list.append(cur_labels) else: remove = 1 if remove_eos is True else 0 # labels: (batch_size, length_of_longest_seq, 1) labels, labels_lengths = pad_packed_sequence(packed_label, batch_first=True) for i in range(batch_size): # (labels, h_dim) cur_labels = encoded_path[i, labels[i][:labels_lengths[i]-remove]] # -1 is for removing EOS token from input if init_token is not None: # (1 + labels, h_dim) cur_labels = torch.cat([init_token, cur_labels], dim=0) labels_list.append(cur_labels) return pack_sequence(labels_list, enforce_sorted=False) def calculate_acc_and_loss(self, padded_label, padded_weights, res, batch_predictions=None): ''' :param padded_label: of shape (batch_size, output_len) :param padded_weights: of shape (batch_size, encoded_outputs_len, output_len) :param batch_predictions: of shape (batch_size, self.args.max_seq_len + 1) :return: ''' batch_size, output_len = padded_label.shape # (batch_size * output_len) padded_label_flat = padded_label.view(-1) # (batch_size, output_len, encoded_outputs_len) padded_weights = padded_weights.transpose(1, 2).contiguous() # (batch_size * output_len, encoded_outputs_len) padded_weights_flat = padded_weights.reshape(batch_size * output_len, -1).contiguous() # (batch_size * output_len) pad_mask = padded_label_flat != Constants.PAD if batch_predictions is None: # (batch_size * out_len, encoded_outputs_len) scores = self.softmax(padded_weights_flat).cpu() # with torch.backends.cudnn.benchmark = True, topk on cuda tensor gives indecies out of range when there is NaN # for example: tensor = [[0.0001],[0.0001],[nan]] # (batch_size * out_len, 1) _, predicted_labels = scores.topk(1, dim=1) predicted_labels = predicted_labels.to(self.device) full_predicted_labels = predicted_labels.reshape(batch_size, output_len) else: full_predicted_labels = batch_predictions # (batch_size, output_len) predicted_labels = torch.zeros(size=(batch_size, output_len), device=self.device).long() predicted_labels[:, :batch_predictions.shape[1]] = batch_predictions[:, :output_len] res['predictions'] += full_predicted_labels.tolist() res['targets'] += padded_label.tolist() # (batch_size * output_len) predicted_labels = predicted_labels.reshape((batch_size * output_len)) predicted_labels = predicted_labels[pad_mask] true_labels_masked = padded_label_flat[pad_mask] total_correct = (true_labels_masked == predicted_labels).sum().item() total_targets = len(true_labels_masked) loss = self.criterion(padded_weights_flat, padded_label_flat) return total_correct, total_targets, loss @staticmethod def calculate_metrics(res): predictions = res['predictions'] targets = res['targets'] path_ops = res['path_ops'] res['predicted_ops'] = list() total_samples = len(predictions) total_correct = 0 true_positive = 0 false_positive = 0 false_negative = 0 precision = 0 recall = 0 f1 = 0 for i in range(total_samples): num_of_paths = len(path_ops[i]) pred_tokens = list(filter(lambda t: t != Constants.PAD and t != Constants.EOS, predictions[i])) r = list() for t in pred_tokens: if t < num_of_paths + Constants.NUM_OF_CTRL_TOKENS: r.append(path_ops[i][t-2]) elif t < 2 * num_of_paths + Constants.NUM_OF_CTRL_TOKENS: r.append(path_ops[i][t - num_of_paths - Constants.NUM_OF_CTRL_TOKENS].replace("MOV", "UPD")) else: r.append(path_ops[i][t - 2 * num_of_paths - Constants.NUM_OF_CTRL_TOKENS].replace("MOV", "INS")) res['predicted_ops'].append(r) target_tokens = list(filter(lambda t: t != Constants.PAD and t != Constants.EOS, targets[i])) total_correct += 1 if pred_tokens == target_tokens else 0 for token in pred_tokens: if token in target_tokens: true_positive += 1 else: false_positive += 1 for token in target_tokens: if token not in pred_tokens: false_negative += 1 if true_positive + false_positive != 0: precision = true_positive / (true_positive + false_positive) if true_positive + false_negative != 0: recall = true_positive / (true_positive + false_negative) if (precision + recall) != 0: f1 = 2 * precision * recall / (precision + recall) res['precision'] = precision res['recall'] = recall res['f1'] = f1 res['acc'] = total_correct / total_samples del res['path_ops'] def packed_to_deivce(self, entry): entry['packed_paths'] = entry['packed_paths'].to(device=self.device, non_blocking=self.non_blocking) entry['packed_paths_positions'] = entry['packed_paths_positions'].to(device=self.device, non_blocking=self.non_blocking) entry['packed_srcs'] = entry['packed_srcs'].to(device=self.device, non_blocking=self.non_blocking) entry['packed_srcs_positions'] = entry['packed_srcs_positions'].to(device=self.device, non_blocking=self.non_blocking) entry['packed_tgts'] = entry['packed_tgts'].to(device=self.device, non_blocking=self.non_blocking) entry['packed_tgts_positions'] = entry['packed_tgts_positions'].to(device=self.device, non_blocking=self.non_blocking) if 'packed_ctx' in entry.keys(): entry['packed_ctx'] = entry['packed_ctx'].to(device=self.device, non_blocking=self.non_blocking) def train(self, data_generator): self.encoder.train() self.decoder.train() self.optimizer.zero_grad() total_loss = 0.0 num_of_batches = 0 total_targets = 0 total_correct = 0 res = {'predictions': list(), 'targets': list(), 'ids': list(), 'path_ops': list()} pbar = tqdm(data_generator, desc='Training epoch ' + str(self.epoch + 1) + '', disable=self.disable_prog_bar, dynamic_ncols=True) for i, (samples_dict, packed_label, path_ops, ids) in enumerate(pbar): self.packed_to_deivce(samples_dict) packed_label = packed_label.to(device=self.device, non_blocking=self.non_blocking) num_of_paths = samples_dict['focus_num_of_paths'] batch_size = len(num_of_paths) res['ids'] += ids res['path_ops'] += path_ops # encoded_path: (batch_1, h_dim) # encoded_ctx: (batch, num_of_paths, 2 * h_dim) packed_encoded_path, packed_encoded_ctx, h = self.encoder(**samples_dict) inputs = self.create_inputs(packed_encoded_path, packed_label, self.decoder.get_init_token()) c = self.decoder.create_h_or_c(batch_size) hc = (h, c) batch_size = len(num_of_paths) # attention_weights: PadSequence of shape (batch_size, output_len, query_len) packed_attention_scores, hc = self.decoder(packed_encoded_path, packed_encoded_ctx, batch_size, inputs, hc) # (batch_size, output_len) padded_label, labels_lengths = pad_packed_sequence(packed_label, batch_first=True) # (batch_size, encoded_outputs_len, output_len) padded_weights, weights_lengths = pad_packed_sequence(packed_attention_scores, batch_first=True, padding_value=Constants.NEG_INF) correct, total, loss = self.calculate_acc_and_loss(padded_label, padded_weights, res) total_correct += correct total_targets += total loss = loss / self.accum_grad if self.use_amp: if (i + 1) % self.accum_grad == 0: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), 5) self.optimizer.step() self.optimizer.zero_grad() else: with amp.scale_loss(loss, self.optimizer, delay_unscale=True) as scaled_loss: scaled_loss.backward() nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), 5) else: loss.backward() nn.utils.clip_grad_norm_(self.encoder.parameters(), 5) nn.utils.clip_grad_norm_(self.decoder.parameters(), 5) if (i + 1) % self.accum_grad == 0: self.optimizer.step() self.optimizer.zero_grad() total_loss += loss.item() num_of_batches += 1 pbar.set_postfix_str("Loss: {}".format(total_loss / num_of_batches)) self.optimizer.step() self.optimizer.zero_grad() self.calculate_metrics(res) loss = total_loss / num_of_batches self.epoch += 1 return loss, res def test(self, data_generator): self.encoder.eval() self.decoder.eval() with torch.no_grad(): total_loss = 0.0 num_of_batches = 0 total_targets = 0 total_correct = 0 res = {'predictions': list(), 'targets': list(), 'ids': list(), 'path_ops': list()} pbar = tqdm(data_generator, desc='Testing epoch ' + str(self.epoch) + '', disable=self.disable_prog_bar, dynamic_ncols=True) for samples_dict, packed_label, path_ops, ids in pbar: self.packed_to_deivce(samples_dict) packed_label = packed_label.to(device=self.device, non_blocking=self.non_blocking) num_of_paths = samples_dict['focus_num_of_paths'] batch_size = len(num_of_paths) res['ids'] += ids res['path_ops'] += path_ops # encoded_path: (batch_1, h_dim) # encoded_ctx: (batch, h_dim) packed_encoded_path, packed_encoded_ctx, h = self.encoder(**samples_dict) inputs = self.create_inputs(packed_encoded_path, None, self.decoder.get_init_token()) encoded_outputs_len = Constants.NUM_OF_CTRL_TOKENS + Constants.NUM_OF_OPS * max(num_of_paths) c = self.decoder.create_h_or_c(batch_size) hc = (h, c) batch_predictions = torch.zeros(size=(batch_size, self.args.max_seq_len + 1)).long() # (batch_size, output_len) padded_label, labels_lengths = pad_packed_sequence(packed_label, batch_first=True) # (batch_size, output_len, encoded_outputs_len) batch_scores = torch.zeros(size=(batch_size, padded_label.shape[1], encoded_outputs_len), device=self.device) # False (batch_size, 1) pad_mask = torch.zeros(size=(batch_size, 1), device=self.device) == 1 for t in range(self.args.max_seq_len + 1): # attention_weights: PadSequence of shape (batch_size, 1, query_len) packed_attention_scores, hc = self.decoder(packed_encoded_path, packed_encoded_ctx, batch_size, inputs, hc) # (batch_size, encoded_outputs_len, 1) padded_weights, weights_lengths = pad_packed_sequence(packed_attention_scores, batch_first=True, padding_value=Constants.NEG_INF) # (batch_size, 1, encoded_outputs_len) padded_weights = padded_weights.transpose(1, 2).contiguous() if t < batch_scores.shape[1]: batch_scores[:, t] = padded_weights.squeeze(dim=1) # (batch_size, 1) predicted_labels = self.calculate_predicted_labels(padded_weights, batch_predictions[:, :t], force_non_repetition=True) # (batch_size, 1) predicted_labels[pad_mask] = Constants.PAD batch_predictions[:, t] = predicted_labels.squeeze() # (batch_size, 1) ended = predicted_labels == Constants.EOS pad_mask |= ended predicted_labels_packed = pack_padded_sequence(predicted_labels, batch_size * [1], batch_first=True, enforce_sorted=False) inputs = self.create_inputs(packed_encoded_path, predicted_labels_packed, None, remove_eos=False) # (batch_size, encoded_outputs_len, output_len) batch_scores = batch_scores.transpose(1, 2).contiguous() correct, total, loss = self.calculate_acc_and_loss(padded_label, batch_scores, res, batch_predictions) total_correct += correct total_targets += total total_loss += loss.item() num_of_batches += 1 pbar.set_postfix_str("Loss: {}".format(total_loss / num_of_batches)) self.calculate_metrics(res) loss = total_loss / num_of_batches return loss, res def calculate_predicted_labels(self, padded_weights, batch_predictions, force_non_repetition=True): # (batch_size, encoded_outputs_len) scores = self.softmax(padded_weights.squeeze(dim=1)).cpu() if force_non_repetition is False: # (batch_size, 1) _, predicted_labels = scores.topk(1, dim=1) predicted_labels = predicted_labels.to(self.device) return predicted_labels # (batch_size, max_seq_len) _, predicted_labels = scores.topk(self.args.max_seq_len+1, dim=1, sorted=True) predicted_labels = predicted_labels.to(self.device) batch_size = predicted_labels.shape[0] calc_predicted_labels = torch.zeros(size=(batch_size, 1), device=self.device).long() for i in range(batch_size): already_predicted = batch_predictions[i].tolist() calc_predicted_labels[i] = list(filter(lambda x: x not in already_predicted, predicted_labels[i].tolist()))[0] return calc_predicted_labels
StarcoderdataPython
1763661
<gh_stars>0 from typing import List, Tuple import matplotlib.pyplot as plt import random from sys import stderr from parameters import * """ Represents an individual in our population (in our case, a path going through each city exactly once) """ class Individual: # used to assign an individual id for each individual __nb_individuals = 0 def __init__(self, route, generation_id): # list of city indexes, sorted by visit order self.route: List[int] = route self.generation_id = generation_id self.id = Individual.__nb_individuals self._fitness: float = 0 Individual.__nb_individuals += 1 # get or compute the individual's fitness def getFitness(self) -> float: if self._fitness > 0: # fitness already computed return self._fitness else: # fitness not computed yet raise Exception("Tried to get the fitness of an individual whose fitness has not been computed yet.") # computes the fitness value for the given individual # note: the higher its fitness, the better the individual is # -> fitness and path length must have opposite variations def computeFitness(self, dist_mat): length = 0 for i in range(nb_cities - 1): city1_index = self.route[i] city2_index = self.route[i + 1] length += dist_mat[city1_index][city2_index] # don't forget to come back to the starting point! (I did) length += dist_mat[self.route[nb_cities - 1]][self.route[0]] self._fitness = 1000000 / length # arbitrary factor to keep fitness readable return self._fitness # plots an individual on a 2D plot def plot(self, cities) -> None: x_values = [cities[point][0] for point in self.route] y_values = [cities[point][1] for point in self.route] # don't forget to come back to the starting point! (I did) x_values.append(cities[self.route[0]][0]) y_values.append(cities[self.route[0]][1]) plt.title(f"Gen. {self.generation_id} no {self.id}, fitness: {self.getFitness()}") plt.plot(x_values, y_values) plt.show() # applies the individual a random mutation according to the mutation rate def mutate(self) -> None: # swap two cities with a chance of mutation_rate if random.random() < mutation_rate: c1 = random.randrange(nb_cities) c2 = random.randrange(nb_cities) self.route[c1], self.route[c2] = self.route[c2], self.route[c1] # convenient for printing def __str__(self): return f"Individual no {self.id} (gen. {self.generation_id}), fitness: {self._fitness}" # printing stuff too def __repr__(self): return self.__str__()
StarcoderdataPython
1644118
import logging from botocore.exceptions import ClientError from library.aws.utility import convert_tags class EBSOperations: @staticmethod def snapshot_make_private(ec2_client, snapshot_id): """ Remove public permissions on EBS snapshot :param ec2_client: EC2 boto3 client :param snapshot_id: the ID of the snapshot :return: nothing """ ec2_client.modify_snapshot_attribute( Attribute="createVolumePermission", CreateVolumePermission={ "Remove": [ { "Group": "all" }, ] }, GroupNames=["all"], OperationType="remove", SnapshotId=snapshot_id ) class EBSVolume(object): """ Basic class for EBS volume. Encapsulates `VolumeId`/`State`/`Encrypted` and list of `Attachments`. """ def __init__(self, account, source): """ :param account: `Account` instance where EBS volume is present :param source: single `Volumes` element as AWS returns """ self.source = source self.account = account self.id = source["VolumeId"] self.state = source["State"] self.encrypted = source["Encrypted"] attachments = source.get('Attachments', []) self.attachments = { attach['InstanceId']: attach['State'] for attach in attachments } if attachments else {} self.tags = convert_tags(source.get('Tags', [])) @property def name(self): """ :return: EBS volume name from tags """ return self.tags.get("Name", None) if self.tags else None def __str__(self): name = "" if self.name is None else f"Name={self.name}, " return f"{self.__class__.__name__}({name}Id={self.id}, Encrypted={self.encrypted}, State={self.state}, Attachments={len(self.attachments)})" class EBSUnencryptedVolumesChecker(object): """ Basic class for checking EBS volumes in account/region. Encapsulates discovered EBS volumes. """ def __init__(self, account): """ :param account: `Account` instance with EBS volumes to check """ self.account = account self.volumes = [] def get_volume(self, id): """ :return: `EBSVolume` by id """ for volume in self.volumes: if volume.id == id: return volume return None def check(self, ids=None, tags=None): """ Walk through not encrypted EBS volumes in the account/region and put them to `self.volumes`. :param ids: list with EBS volume ids to check, if it is not supplied - all EBS volumes must be checked :return: boolean. True - if check was successful, False - otherwise """ args = {'DryRun': False} if ids: # if ids is set - check given ids regardless of encrypted status args['VolumeIds'] = ids else: # else get only unencrypted volumes args['Filters'] = [{ 'Name': 'encrypted', 'Values': ["false"] }] if tags: for key, value in tags.items(): args['Filters'].append( {'Name': f"tag:{key}", 'Values': value if isinstance(value, list) else [value]}, ) try: volume_details = self.account.client("ec2").describe_volumes(**args)["Volumes"] except ClientError as err: if err.response['Error']['Code'] in ["AccessDenied", "UnauthorizedOperation"]: logging.error(f"Access denied in {self.account} " f"(ec2:{err.operation_name})") else: logging.exception(f"Failed to describe volumes in {self.account}") return False for volume_detail in volume_details: volume = EBSVolume(self.account, volume_detail) self.volumes.append(volume) return True class EBSSnapshot(object): """ Basic class for EBS snapshot. Encapsulates `SnapshotId`/`VolumeId`/`Encrypted` and list of permissions. """ def __init__(self, account, source, permissions): """ :param account: `Account` instance where EBS snapshot is present :param source: single `Snapshots` element as AWS returns :param permissions: result of `describe_snapshot_attribute` API call for snapshot """ self.source = source self.permissions = permissions self.account = account self.id = source["SnapshotId"] self.volume_id = source["VolumeId"] self.tags = convert_tags(source.get('Tags', [])) def __str__(self): return f"{self.__class__.__name__}(Id={self.id}, VolumeId={self.volume_id}, Public={self.public})" @property def public(self): """ :return: boolean, True - if snapshot has `all` group permissions for `CreateVolumePermissions` False - otherwise """ for permission in self.permissions["CreateVolumePermissions"]: if "Group" in permission and permission["Group"] == "all": return True return False def make_private(self): """ Remove public permissions on snapshot :return: nothing """ EBSOperations.snapshot_make_private(self.account.client("ec2"), self.id) class EBSPublicSnapshotsChecker(object): """ Basic class for checking EBS snapshots in account/region. Encapsulates discovered EBS snapshots. """ def __init__(self, account): """ :param account: `Account` instance with EBS snapshots to check """ self.account = account self.snapshots = [] def get_snapshot(self, id): """ :return: `EBSSnapshot` by id """ for snapshot in self.snapshots: if snapshot.id == id: return snapshot return None def check(self, ids=None, tags=None): """ Walk through public EBS snapshots in the account/region and put them to `self.snapshots`. :param ids: list with EBS snapshot ids to check, if it is not supplied - all EBS snapshots must be checked :return: boolean. True - if check was successful, False - otherwise """ args = { 'DryRun': False, # You can specify AWS account IDs (if you own the snapshots), # 'self' for snapshots for which you own or have explicit permissions, # or 'all' for public snapshots. 'RestorableByUserIds': ['all'], # The results can include the AWS account IDs of the specified owners, # 'amazon' for snapshots owned by Amazon, # or 'self' for snapshots that you own. 'OwnerIds': ['self'] } if ids: # if ids is set - check given ids regardless of encrypted status args['SnapshotIds'] = ids del args['RestorableByUserIds'] if tags: args['Filters'] = [] for key, value in tags.items(): args['Filters'].append( {'Name': f"tag:{key}", 'Values': value if isinstance(value, list) else [value]}, ) try: snapshot_details = self.account.client("ec2").describe_snapshots(**args)["Snapshots"] except ClientError as err: if err.response['Error']['Code'] in ["AccessDenied", "UnauthorizedOperation"]: logging.error(f"Access denied in {self.account} " f"(ec2:{err.operation_name})") else: logging.exception(f"Failed to describe snapshots in {self.account}") return False for snapshot_detail in snapshot_details: try: # Need to check each snapshot attributes dispite of the fact # that we ask AWS to return only restorable by all snapshots as: # * if 'ids' set - we remove RestorableByUserIds and AWS return both public and private snapshots # * moto does not support RestorableByUserIds and returns all snapshots snapshot_permissions = self.account.client("ec2").describe_snapshot_attribute( Attribute="createVolumePermission", SnapshotId=snapshot_detail['SnapshotId'] ) except ClientError as err: if err.response['Error']['Code'] in ["AccessDenied", "UnauthorizedOperation"]: logging.error(f"Access denied in {self.account} " f"(ec2:{err.operation_name})") else: logging.exception(f"Failed to describe '{snapshot_detail['SnapshotId']}' snapshot attribute " f"in {self.account}") return False snapshot = EBSSnapshot(self.account, snapshot_detail, snapshot_permissions) self.snapshots.append(snapshot) return True
StarcoderdataPython
3343697
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Uniform sampling method. Samples in batches. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from .sampling_def import SamplingMethod class UniformSampling(SamplingMethod): def __init__(self, X, y, seed): self.X = X self.y = y self.name = 'uniform' np.random.seed(seed) def select_batch_(self, already_selected, N, **kwargs): """Returns batch of randomly sampled datapoints. Assumes that data has already been shuffled. Args: already_selected: index of datapoints already selected N: batch size Returns: indices of points selected to label """ # This is uniform given the remaining pool but biased wrt the entire pool. sample = [i for i in range(self.X.shape[0]) if i not in already_selected] return sample[0:N]
StarcoderdataPython
4803420
import re import json from collections import Counter from transition_amr_parser.amr import JAMR_CorpusReader import ast import xml.etree.ElementTree as ET def read_frame(xml_file): ''' Read probpank XML ''' root = ET.parse(xml_file).getroot() propbank = {} for predicate in root.findall('predicate'): lemma = predicate.attrib['lemma'] for roleset_data in predicate.findall('roleset'): # ID of the role e.g. run.01 pred_id = roleset_data.attrib['id'] # basic meta-data propbank[pred_id] = { 'lemma': lemma, 'description': roleset_data.attrib['name'] } # alias propbank[pred_id]['aliases'] = [] for aliases in roleset_data.findall('aliases'): for alias in aliases: propbank[pred_id]['aliases'].append(alias.text) # roles propbank[pred_id]['roles'] = {} for roles in roleset_data.findall('roles'): for role in roles: if role.tag == 'note': continue number = role.attrib['n'] propbank[pred_id]['roles'][f'ARG{number}'] = role.attrib # examples propbank[pred_id]['examples'] = [] for examples in roleset_data.findall('example'): sentence = examples.findall('text') assert len(sentence) == 1 sentence = sentence[0].text tokens = [x.text for x in examples.findall('rel')] args = [] for x in examples.findall('arg'): args.append(x.attrib) args[-1].update({'text': x.text}) propbank[pred_id]['examples'].append({ 'sentence': sentence, 'tokens': tokens, 'args': args }) return propbank def read_action_scores(file_path): """ Reads scores to judge the optimality of an action set, comprise sentence id (position in the original corpus) 1 int unormalized scores 3 int sequence normalized score e.g. smatch 1 float action sequence length 1 int saved because of {score, length, None (original)} 1 str action sequence (tab separated) 1 str (tab separated) TODO: Probability """ action_scores = [] with open(file_path) as fid: for line in fid: line = line.strip() items = list(map(int, line.split()[:4])) items.append(float(line.split()[4])) items.append(int(line.split()[5])) items.append( None if line.split()[6] == 'None' else line.split()[6] ) if line.split()[7][0] == '[': # backwards compatibility fix items.append(ast.literal_eval(" ".join(line.split()[7:]))) else: items.append(line.split()[7:]) action_scores.append(items) return action_scores def write_action_scores(file_path, action_scores): """ Writes scores to judge the optimality of an action set, comprise sentence id (position in the original corpus) 1 int unormalized scores 3 int sequence normalized score e.g. smatch 1 float action sequence length 1 int saved because of {score, length, None (original)} 1 str action sequence (tab separated) 1 str (tab separated) TODO: Probability """ with open(file_path, 'w') as fid: for items in action_scores: sid = items[0] score = items[1:4] smatch = items[4] length = items[5] reason = items [6] actions = items[7] if actions is not None: actions = '\t'.join(actions) fid.write( f'{sid} {score[0]} {score[1]} {score[2]} {smatch} {length} {reason} {actions}\n' ) def read_amr(in_amr, unicode_fixes=False): corpus = JAMR_CorpusReader() corpus.load_amrs(in_amr) if unicode_fixes: # Replacement rules for unicode chartacters replacement_rules = { 'ˈtʃærɪti': 'charity', '\x96': '_', '⊙': 'O' } # FIXME: normalization shold be more robust. Right now use the tokens # of the amr inside the oracle. This is why we need to normalize them. for idx, amr in enumerate(corpus.amrs): new_tokens = [] for token in amr.tokens: forbidden = [x for x in replacement_rules.keys() if x in token] if forbidden: token = token.replace( forbidden[0], replacement_rules[forbidden[0]] ) new_tokens.append(token) amr.tokens = new_tokens return corpus def read_rule_stats(rule_stats_json): with open(rule_stats_json) as fid: rule_stats = json.loads(fid.read()) # convert to counters rule_stats['possible_predicates'] = Counter(rule_stats['possible_predicates']) rule_stats['action_vocabulary'] = Counter(rule_stats['action_vocabulary']) return rule_stats def write_rule_stats(rule_stats_json, content): with open(rule_stats_json, 'w') as fid: fid.write(json.dumps(content)) def read_propbank(propbank_file): # Read frame argument description arguments_by_sense = {} with open(propbank_file) as fid: for line in fid: line = line.rstrip() sense = line.split()[0] arguments = [ re.match('^(ARG.+):$', x).groups()[0] for x in line.split()[1:] if re.match('^(ARG.+):$', x) ] arguments_by_sense[sense] = arguments return arguments_by_sense def writer(file_path, add_return=False): """ Returns a writer that writes to file_path if it is not None, does nothing otherwise calling the writed without arguments will close the file """ if file_path: # Erase file fid = open(file_path, 'w+') fid.close() # open for appending fid = open(file_path, 'a+', encoding='utf8') else: fid = None def append_data(content=None): """writes to open file""" if fid: if content is None: fid.close() else: if add_return: fid.write(content + '\n') else: fid.write(content) return append_data def tokenized_sentences_egenerator(file_path): with open(file_path) as fid: for line in fid: yield line.rstrip().split() def read_tokenized_sentences(file_path, separator=' '): sentences = [] with open(file_path) as fid: for line in fid: sentences.append(line.rstrip().split(separator)) return sentences def write_tokenized_sentences(file_path, content, separator=' '): with open(file_path, 'w') as fid: for line in content: line = [str(x) for x in line] fid.write(f'{separator.join(line)}\n') def read_sentences(file_path, add_root_token=False): sentences = [] with open(file_path) as fid: for line in fid: line = line.rstrip() if add_root_token: line = line + " <ROOT>" sentences.append(line) return sentences
StarcoderdataPython
163812
<reponame>PerimeterX/perimeterx-python-ws<filename>setup-gae.py #!/usr/bin/env python from setuptools import setup, find_packages version = 'v3.2.1' setup(name='perimeterx-python-wsgi-gae', version=version, license='MIT', description='PerimeterX WSGI middleware for Goolge App Engine', author='<NAME>', author_email='<EMAIL>', url='https://github.com/PerimeterX/perimeterx-python-wsgi', download_url='https://github.com/PerimeterX/perimeterx-python-wsgi/tarball/' + version, packages=find_packages(exclude=['dev', 'test*']), package_data={'perimeterx': ['templates/*']}, install_requires=['pystache>=0.5.1,<=0.5.4', 'requests>=2.18.4,<=2.20.1', 'requests-toolbelt'], classifiers=['Intended Audience :: Developers', 'Programming Language :: Python :: 2.7'])
StarcoderdataPython
3251446
<reponame>Zor-X-L/redis-cluster-manager #!/usr/bin/env python3 import subprocess exec(open('common.py').read()) args = ['./redis-trib.rb', 'create', '--replicas', str(config['replicas'])] for host in config['hosts']: for port in range(port_range_start, port_range_end): args.append(host + ':' + str(port)) subprocess.call(args) # vim: sw=4 et
StarcoderdataPython
1696193
<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .services.controller2 import Controller2Client from .services.controller2 import Controller2AsyncClient from .services.debugger2 import Debugger2Client from .services.debugger2 import Debugger2AsyncClient from .types.controller import ListActiveBreakpointsRequest from .types.controller import ListActiveBreakpointsResponse from .types.controller import RegisterDebuggeeRequest from .types.controller import RegisterDebuggeeResponse from .types.controller import UpdateActiveBreakpointRequest from .types.controller import UpdateActiveBreakpointResponse from .types.data import Breakpoint from .types.data import Debuggee from .types.data import FormatMessage from .types.data import SourceLocation from .types.data import StackFrame from .types.data import StatusMessage from .types.data import Variable from .types.debugger import DeleteBreakpointRequest from .types.debugger import GetBreakpointRequest from .types.debugger import GetBreakpointResponse from .types.debugger import ListBreakpointsRequest from .types.debugger import ListBreakpointsResponse from .types.debugger import ListDebuggeesRequest from .types.debugger import ListDebuggeesResponse from .types.debugger import SetBreakpointRequest from .types.debugger import SetBreakpointResponse __all__ = ( "Controller2AsyncClient", "Debugger2AsyncClient", "Breakpoint", "Controller2Client", "Debuggee", "Debugger2Client", "DeleteBreakpointRequest", "FormatMessage", "GetBreakpointRequest", "GetBreakpointResponse", "ListActiveBreakpointsRequest", "ListActiveBreakpointsResponse", "ListBreakpointsRequest", "ListBreakpointsResponse", "ListDebuggeesRequest", "ListDebuggeesResponse", "RegisterDebuggeeRequest", "RegisterDebuggeeResponse", "SetBreakpointRequest", "SetBreakpointResponse", "SourceLocation", "StackFrame", "StatusMessage", "UpdateActiveBreakpointRequest", "UpdateActiveBreakpointResponse", "Variable", )
StarcoderdataPython
1718525
<filename>My Own projects/Playing Songs/main.pyw import os from tkinter import * from tkinter import filedialog try: from mutagen.mp3 import MP3 except: os.system('pip install mutagen') from mutagen.mp3 import MP3 try: import pygame except: os.system('pip install pygame') import pygame import time file_dir = os.getcwd().replace('\\' , '/') assets = f'{file_dir}/assets' music_folder = assets.__add__('/music') global pause_button print(assets) #TODO Remove after relese print(music_folder) #TODO Remove after relese icon = f'{assets}/icon2.ico' root = Tk() root.title('Music Player') root.iconbitmap(icon) root.geometry('500x350') # Py gamie pygame.mixer.init() #Grab Song length time info def play_time(): current_time = pygame.mixer.music.get_pos() / 1000 converted_current_time = time.strftime("%M:%S" , time.gmtime(current_time)) status_bar.config(text=converted_current_time) status_bar.after(1000 , play_time) # Add one the current song number song = song_box.get(ACTIVE) song = f'{music_folder}/{song}.mp3' # Use mutagen #Load the song song_mut = MP3(song) # get song_lenght song_length = song_mut.info.length converted_song_length = time.strftime("%M:%S" , time.gmtime(song_length)) #output the result to the status bar status_bar.config(text=f'Time Elapsed {converted_current_time} of {converted_song_length} ') def add_song(): song = filedialog.askopenfilename(initialdir=music_folder , title="Choose a song" , filetypes=((".mp3 songs" , "*.mp3") , )) song = song.split(music_folder) # lst = song.split(music_folder) song_box.insert(END , song[1].replace('/','').replace('.mp3','')) def add_many_song(): songs = filedialog.askopenfilenames(initialdir=music_folder , title="Choose at least 2 songs" , filetypes=((".mp3 songs" , "*.mp3") , )) for song in songs: song = song.split(music_folder) # lst = song.split(music_folder) song_box.insert(END , song[1].replace('/','').replace('.mp3','')) #play selected song def play(): song = song_box.get(ACTIVE) print('Now playing:',song) root.title(f"Now Playing: {song}") song = f'{music_folder}/{song}.mp3' pygame.mixer.music.load(song) pygame.mixer.music.play(loops = 0) #Call the play_time function play_time() #stop all songs def stop(): pygame.mixer.music.stop() song_box.selection_clear(ACTIVE) status_bar.config(text="|"*10) #create global pause varible global paused paused = False #pause the current song def pause(is_paused): global paused paused = is_paused #pause if paused: pygame.mixer.music.unpause() paused = False pause_button = Button(controls_frame , image=pause_btn , borderwidth=0,command=lambda: pause(paused)) pause_button.grid(row=0,column=3 , padx=10) else: pygame.mixer.music.pause() paused = True pause_button = Button(controls_frame , image=pause_btn2 , borderwidth=0,command=lambda: pause(paused)) pause_button.grid(row=0,column=3 , padx=10) #Play the next song def next_song(): next_one = song_box.curselection() # print(next_one) # Add one the current song number next_one = next_one[0]+1 song = song_box.get(next_one) print('Now playing:',song) root.title(f"Now Playing: {song}") song = f'{music_folder}/{song}.mp3' pygame.mixer.music.load(song) pygame.mixer.music.play(loops = 0) #clear the startus bar song_box.selection_clear(0 ,END) #activate song bar song_box.activate(next_one) # Set the active bar to Next song song_box.selection_set(next_one , last=None) #play previeous song in playlist def prev_song(): next_one = song_box.curselection() # print(next_one) # Add one the current song number next_one = next_one[0]-1 song = song_box.get(next_one) print("Now playing:",song) root.title(f"Now Playing: {song}") song = f'{music_folder}/{song}.mp3' pygame.mixer.music.load(song) pygame.mixer.music.play(loops = 0) #clear the startus bar song_box.selection_clear(0 ,END) #activate song bar song_box.activate(next_one) # Set the active bar to Next song song_box.selection_set(next_one , last=None) def delete_song(): song_box.delete(ANCHOR) pygame.mixer.music.stop() def delete_all_song(): #Delete a song song_box.delete(0,END) #Stop music(if any) pygame.mixer.music.stop() #create playlist box song_box = Listbox(root , bg="black" , fg='green' , width = '70',selectbackground="#3d82d1" ,selectforeground='yellow') song_box.pack(padx=1,pady=6) #define player control button images back_btn = PhotoImage(file=f'{assets}/back.png') forward_btn = PhotoImage(file=f'{assets}/forward.png') play_btn = PhotoImage(file=f'{assets}/reload.png') pause_btn = PhotoImage(file=f'{assets}/pause2.png') pause_btn2 = PhotoImage(file=f'{assets}/play.png') stop_btn = PhotoImage(file=f'{assets}/stop.png') #Create player control frame controls_frame = Frame(root) controls_frame.pack() #create play control images back_button = Button(controls_frame , image=back_btn, borderwidth=0 , command=prev_song) forward_button = Button(controls_frame , image=forward_btn, borderwidth=0 ,command=next_song) play_button = Button(controls_frame , image=play_btn , borderwidth=0 ,command=play) pause_button = Button(controls_frame , image=pause_btn , borderwidth=0,command=lambda: pause(paused)) stop_button = Button(controls_frame , image=stop_btn , borderwidth=0 , command=stop) back_button.grid(row=0,column=0 , padx=10) forward_button.grid(row=0,column=1 , padx=10) play_button.grid(row=0,column=2 , padx=10) pause_button.grid(row=0,column=3 , padx=10) stop_button.grid(row=0,column=4 , padx=10) # Create menu my_menu = Menu(root) root.config(menu=my_menu) # Add 'Add Song' menu add_song_menu = Menu(my_menu) my_menu.add_cascade(label = "Add Songs" ,menu = add_song_menu) add_song_menu.add_command(label = "Add one song to play-list" , command= add_song) add_song_menu.add_command(label = "Add many songs to play-list" , command= add_many_song) #Add delete Song menu remove_song_menu = Menu(my_menu) my_menu.add_cascade(label="Remove Songs" , menu=remove_song_menu) remove_song_menu.add_command(label="Delete the selected song from playlist." , command=delete_song) remove_song_menu.add_command(label="Delete all songs from playlist.",command=delete_all_song ) #create a statusbar status_bar = Label(root , text= '' , bd=1 , relief=GROOVE , anchor=E) status_bar.pack(fill=X , side=BOTTOM, ipady=2) # my_slider = ttk.Scale(root , from_ = 0 , to_ = 100, orient = HORIZONTAL , value = 0 ,command = None).pack(pady = 20) root.mainloop()
StarcoderdataPython
49329
from flask_wtf import FlaskForm from wtforms import * from wtforms.validators import InputRequired class LoginForm(FlaskForm): username = TextField('username',validators=[InputRequired()]) password = PasswordField('password',validators=[InputRequired()])
StarcoderdataPython
1768178
<filename>pythons_app/views.py from django.forms.widgets import Media from django.shortcuts import render, redirect from .forms import PythonCreateForm from .models import Python # Create your views here. def index(request): pythons = Python.objects.all() return render(request, 'index.html', {'pythons': pythons}) def create(request): if request.method == 'GET': form = PythonCreateForm() return render(request, 'create.html', {'form': form}) else: form = PythonCreateForm(request.POST, request.FILES) print(form) if form.is_valid(): python = form.save() python.save() return redirect('index') return render(request, 'create.html', {'form': form}) def delete(request, pk): item = Python.objects.get(pk=pk) item.delete() return redirect('index')
StarcoderdataPython
96677
<filename>test/unit/test_jinja.py import unittest from dbt.clients.jinja import get_template class TestJinja(unittest.TestCase): def test_do(self): s = '{% set my_dict = {} %}\n{% do my_dict.update(a=1) %}' template = get_template(s, {}) mod = template.make_module() self.assertEqual(mod.my_dict, {'a': 1})
StarcoderdataPython
4815611
<gh_stars>1-10 import pytest import cv2 import numpy as np from plantcv.plantcv import roi_objects @pytest.mark.parametrize("mode,exp", [["largest", 221], ["cutto", 152], ["partial", 221]]) def test_roi_objects(mode, exp, test_data): """Test for PlantCV.""" # Read in test data img = cv2.imread(test_data.small_rgb_img) cnt, cnt_str = test_data.load_contours(test_data.small_contours_file) roi = [np.array([[[150, 150]], [[150, 174]], [[249, 174]], [[249, 150]]], dtype=np.int32)] roi_str = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) _, _, _, area = roi_objects(img=img, roi_contour=roi, roi_hierarchy=roi_str, object_contour=cnt, obj_hierarchy=cnt_str, roi_type=mode) # Assert that the contours were filtered as expected assert area == exp def test_roi_objects_bad_input(test_data): """Test for PlantCV.""" # Read in test data img = cv2.imread(test_data.small_rgb_img) cnt, cnt_str = test_data.load_contours(test_data.small_contours_file) roi = [np.array([[[150, 150]], [[150, 174]], [[249, 174]], [[249, 150]]], dtype=np.int32)] roi_str = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = roi_objects(img=img, roi_type="cut", roi_contour=roi, roi_hierarchy=roi_str, object_contour=cnt, obj_hierarchy=cnt_str) def test_roi_objects_grayscale_input(test_data): """Test for PlantCV.""" # Read in test data img = cv2.imread(test_data.small_gray_img, -1) cnt, cnt_str = test_data.load_contours(test_data.small_contours_file) roi = [np.array([[[150, 150]], [[150, 174]], [[249, 174]], [[249, 150]]], dtype=np.int32)] roi_str = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) _, _, _, area = roi_objects(img=img, roi_type="partial", roi_contour=roi, roi_hierarchy=roi_str, object_contour=cnt, obj_hierarchy=cnt_str) # Assert that the contours were filtered as expected assert area == 221 def test_roi_objects_no_overlap(test_data): """Test for PlantCV.""" # Read in test data img = cv2.imread(test_data.small_rgb_img) cnt, cnt_str = test_data.load_contours(test_data.small_contours_file) roi = [np.array([[[0, 0]], [[0, 24]], [[24, 24]], [[24, 0]]], dtype=np.int32)] roi_str = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) _, _, _, area = roi_objects(img=img, roi_contour=roi, roi_hierarchy=roi_str, object_contour=cnt, obj_hierarchy=cnt_str, roi_type="partial") # Assert that the contours were filtered as expected assert area == 0 def test_roi_objects_nested(): """Test for PlantCV.""" # Create test data img = np.zeros((100, 100), dtype=np.uint8) cnt = [np.array([[[25, 25]], [[25, 49]], [[49, 49]], [[49, 25]]], dtype=np.int32), np.array([[[34, 35]], [[35, 34]], [[39, 34]], [[40, 35]], [[40, 39]], [[39, 40]], [[35, 40]], [[34, 39]]], dtype=np.int32)] cnt_str = np.array([[[-1, -1, 1, -1], [-1, -1, -1, 0]]], dtype=np.int32) roi = [np.array([[[0, 0]], [[0, 99]], [[99, 99]], [[99, 0]]], dtype=np.int32)] roi_str = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) _, _, _, area = roi_objects(img=img, roi_contour=roi, roi_hierarchy=roi_str, object_contour=cnt, obj_hierarchy=cnt_str, roi_type="largest") assert area == 580
StarcoderdataPython
199359
"""Package setup entrypoint.""" from typing import IO, Sequence from setuptools import find_packages as __find_packages, setup as __compose_package from uurl import ( __author__ as __author, __doc__ as __full_doc, __email__ as __email, __license__ as __license, __name__ as __name, __version__ as __version, ) def __readme() -> str: """Returns project description.""" with open("README.md") as readme: # type: IO[str] return readme.read() def __requirements() -> Sequence[str]: """Returns requirements sequence.""" with open("requirements.txt") as requirements: # type: IO[str] return tuple(map(str.strip, requirements.readlines())) def __first_line(string: str, delimiter: str = "\n") -> str: """Returns only first line up to next delimiter item occurred. Args: string (str): given string item delimiter (str): separator string """ return string.split(delimiter)[0] if __name__ == "__main__": __compose_package( name=__name, version=__version, author=__author, author_email=__email, description=__first_line(__full_doc), long_description=__readme(), long_description_content_type="text/markdown", url=f"https://github.com/vyahello/{__name}", packages=__find_packages(exclude=("*.tests", "*.tests.*", "tests.*", "tests")), include_package_data=True, install_requires=__requirements(), classifiers=( "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", f"License :: OSI Approved :: {__license} License", "Operating System :: OS Independent", ), python_requires=">=3.6", )
StarcoderdataPython
1732749
<gh_stars>1-10 """OTE-API OPTIMADE-specific Python exceptions.""" class BaseOteapiOptimadeException(Exception): """Base OTE-API OPTIMADE exception.""" class ConfigurationError(BaseOteapiOptimadeException): """An error occurred when dealing with strategy configurations.""" class RequestError(BaseOteapiOptimadeException): """A general error occured when performing a URL request.""" class OPTIMADEResponseError(RequestError): """An OPTIMADE error was returned from a URL request.""" class OPTIMADEParseError(BaseOteapiOptimadeException): """Could not use OPTIMADE Python tools to parse an OPTIMADE API response."""
StarcoderdataPython
3355520
import numpy as np import pandas as pd import matplotlib.pyplot as plt # --- Rot Motion freq1= 0.8 freq2= 0.4 tMax = 10 dt = 0.1 omega1 = 2*np.pi*freq1 T1 = 1/freq1 omega2 = 2*np.pi*freq2 T2 = 1/freq2 time = np.arange(0,tMax+dt/2,dt) pos = np.zeros((len(time), 6)) # positions: x,y,z, theta_x, theta_y, theta_z vel = np.zeros((len(time), 6)) # velocities: xdot, ydot, zdot, and omega acc = np.zeros((len(time), 6)) # accelerations: xddot, omegadot # -- First period we do a vertical motion I1 = time <= T1 pos[I1,2] = 2*np.sin(omega1*time[I1]) vel[I1,2] = omega1 *2*np.cos(omega1*time[I1]) acc[I1,2] =-omega1**2*2*np.sin(omega1*time[I1]) # -- Second period we do nothing I2 = time > T1 # -- Third period we do x rotations I3 = time > 2*T1 pos[I3,3] = 0.10 *np.sin(omega2*time[I3]) vel[I3,3] = omega2 * 0.10 *np.cos(omega2*time[I3]) acc[I3,3] =-omega2**2* 0.10 *np.sin(omega2*time[I3]) cols = ['time_[s]', 'x_[m]', 'y_[m]', 'z_[m]' , 'theta_x_[rad]', 'theta_y_[rad]', 'theta_z_[rad]'] cols +=['xdot_[m/s]', 'ydot_[m/s]', 'zdot_[m/s]', 'omega_x_g_[rad/s]', 'omega_y_g_[rad/s]', 'omega_z_g_[rad/s]'] cols +=['xddot_[m^2/s]', 'yddot_[m^2/s]' , 'zddot_[m^2/s]', 'alpha_x_g_[rad/s]', 'alpha_y_g_[rad/s]', 'alpha_z_g_[rad/s]'] data=np.column_stack((time, pos, vel, acc)) df = pd.DataFrame( data=data, columns=cols) df.to_csv('KiteMotionSimple.csv', index=False, sep=',', float_format='%10.6f') print(df.shape) # Time_[s] , x_[m], y_[m], z_[m] , theta_x_[rad], theta_y_[rad], theta_z_[rad-], xdot_[m/s], ydot_[m/s], zdot_[m/s], omega_x_g_[rad/s], omega_y_g_[rad/s], omega_z_g_[rad/s], xddot_[m^2/s], yddot_[m^2/s] , zddot_[m^2/s], alpha_x_g_[rad/s], alpha_y_g_[rad/s], alpha_z_g_[rad/s] if __name__ == '__main__': pass
StarcoderdataPython
52867
# Топ-3 + Выигрышные номера последнего тиража def test_top_3_winning_numbers_last_draw(app): app.ResultAndPrizes.open_page_results_and_prizes() app.ResultAndPrizes.click_game_top_3() app.ResultAndPrizes.button_get_report_winners() assert "ВЫИГРЫШНЫЕ НОМЕРА" in app.ResultAndPrizes.parser_report_text_winners() app.ResultAndPrizes.message_id_33_top_3_last_draw() app.ResultAndPrizes.message_id_33_top_3_winning_numbers_last_draw() app.ResultAndPrizes.comeback_main_page()
StarcoderdataPython
23501
#--- Exercício 2 - Variáveis #--- Crie um menu para um sistema de cadastro de funcionários #--- O menu deve ser impresso com a função format() #--- As opções devem ser variáveis do tipo inteiro #--- As descrições das opções serão: #--- Cadastrar funcionário #--- Listar funcionários #--- Editar funcionário #--- Deletar funcionário #--- Sair #--- Além das opções o menu deve conter um cabeçalho e um rodapé #--- Entre o cabeçalho e o menu e entre o menu e o rodapé deverá ter espaçamento de 3 linhas #--- Deve ser utilizado os caracteres especiais de quebra de linha e de tabulação opcao = int(input(""" SISTEMA DE CADASTRO DE FUNCIONARIO\n\n\n {} - Cadastrar Funcionário {} - Listar Funcinários {} - Editar Funcionário {} - Deletar Funcionário {} - Sair\n\n\n Escolha uma opção: """.format(1,2,3,4,5))) if opcao == 1: print("A opção escolhida foi 'Cadastrar funcionário'") elif opcao == 2: print("A opção escolhida foi 'Listar funcionários'") elif opcao == 3: print("A opção escolhida foi 'Editar funcionário'") elif opcao == 4: print("A opção escolhida foi 'Deletar funcionário'") elif opcao == 5: print("A opção escolhida foi 'Sair'") else: pass
StarcoderdataPython
3298557
<gh_stars>0 #!/usr/bin/env python # -*- coding: UTF-8 -*- # pylint: disable=invalid-name,too-few-public-methods """ EM Slack Tableflip module: slack_tableflip.storage. - Sets database schema for storing user data - Initializes database structure Copyright (c) 2015-2016 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. """ from datetime import datetime from slack_tableflip import APP from flask_sqlalchemy import SQLAlchemy from sqlalchemy.exc import SQLAlchemyError # Create database DB = SQLAlchemy(APP) class Users(DB.Model): """Table for storing authenticated user data.""" __tablename__ = 'flip_users' id = DB.Column(DB.String(16), primary_key=True) team = DB.Column(DB.String(16)) token = DB.Column(DB.String(255)) added = DB.Column(DB.DateTime, default=datetime.now) def __init__(self, user_id, team_id, token): """Initialize new User in db.""" self.id = user_id self.team = team_id self.token = token def __repr__(self): """Friendly representation of User for debugging.""" return '<User id={user} team={team}>'.format( user=self.id, team=self.team ) class Teams(DB.Model): """Table for storing authenticated user data.""" __tablename__ = 'flip_teams' id = DB.Column(DB.String(16), primary_key=True) token = DB.Column(DB.String(255)) added = DB.Column(DB.DateTime, default=datetime.now) def __init__(self, team_id, token): """Initialize new Team in db.""" self.id = team_id self.token = token def __repr__(self): """Friendly representation of Team for debugging.""" return '<Team id={team}>'.format(team=self.id) try: # Attempt to initialize database DB.create_all() except SQLAlchemyError: # Other wise, refresh the session DB.session.rollback()
StarcoderdataPython
61259
#!/usr/bin/env python3 from setuptools import find_packages, setup setup( name="lean_proof_recording", version="0.0.1", packages=find_packages(), package_data={}, install_requires=[ "mpmath", "pandas", "jsonlines", "tqdm", ], )
StarcoderdataPython
6040
import json from os import path from tweepy import OAuthHandler, Stream from tweepy.streaming import StreamListener from sqlalchemy.orm.exc import NoResultFound from database import session, Tweet, Hashtag, User consumer_key = "0qFf4T2xPWVIycLmAwk3rDQ55" consumer_secret = "<KEY>" access_token = "<KEY>" acces_token_secret = "<KEY>" auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, acces_token_secret) def save_tweets(): directory = _get_dir_absolute_path() filepath = path.join(directory, "tweets.json") listener = DatabaseListener(number_tweets_to_save = 1000, filepath=filepath) stream = Stream(auth, listener) languages = ("en",) try: stream.sample(languages = languages) except KeyboardInterrupt: listener.file.close() class DatabaseListener(StreamListener): def __init__(self, number_tweets_to_save, filepath = None): self._final_count = number_tweets_to_save self._current_count = 0 if filepath is None: filepath = "tweets.txt" self.file = open(filepath,"w") #Slightly dangerous due to circular references>> def __del__(self): self.file.close() def on_data(self, raw_data): data = json.loads(raw_data) json.dump(raw_data, self.file) self.file.write("\n") if "in_reply_to_status_id" in data: return self.on_status(data) def on_status(self, data): #this method is define in this file save_to_database(data) self._current_count += 1 print("status count: {}".format(self._current_count)) if self._current_count >= self._final_count: return False def create_user_helper(user_data): #alias to shorten calls u = user_data user = user(uid = u["id_str"], name = u["name"], screen_name = u["screen_name"], created_at = u["created_at"], description = u.get("description"), followers_count = u["followers_count"], statuses_count = u["statuses_count"], favourites_count = u["favourites_count"], listed_count = u["listed_count"], geo_enabled = u["geo_enabled"], lang = u.get("lang")) return user def create_tweet_helper(tweet_data, user): #alias for shorten calls t = tweet_data retweet = True if t["text"][:3] == "RT " else False coordinates = json.dumps(t["coordinates"]) tweet = Tweet(tid=t["id_str"], tweet=t["text"], user=user, coordinates=coordinates, created_at = t["created_at"], favorite_count = t["favorite_count"], in_reply_to_screen_name = t["in_reply_to_screen_name"], in_reply_to_status_id = t["in_reply_to_status_id"], in_reply_to_user_id = t["in_reply_to_user_id"], lang = t.get("lang"), quoted_status_id = t.get("quoted_status_id"), retweet_count = t["retweet_count"], source = t["source"], is_retweet = retweet) return tweet def save_to_database(data): try: user = session.query(User).filter_by(id=str(data["user"]["id"])).one() except NoResultFound: user = create_user_helper(data["user"]) session.add(user) hashtag_results = [] hashtags = data["entities"]["hashtags"] for hashtag in hashtags: hashtag = hashtag["text"].lower() try: hashtag_obj=session.query(Hashtag).filer_by(text = hashtag).one() except NoResutlFound: user = create_ hashtag_obj = Hashtag(text = hashtag) session.add(hashtag_obj) hashtag_results.append(hashtag_obj) tweet = create_tweet_helper(data, user) for hashtag in hashtag_results: tweet.hashtags.append(hashtag) session.add(tweet) session.commit()
StarcoderdataPython
53358
from django_datatables_view.base_datatable_view import BaseDatatableView from django.db.models import Q from django.contrib.postgres.aggregates.general import ArrayAgg from website.models import Genome class GenomeTableAjax(BaseDatatableView): # The model we're going to show model = Genome # set max limit of records returned, this is used to protect our site if someone tries to attack our site # and make it return huge amount of data max_display_length = 2000 def render_column(self, row: Genome, column: str): if column == 'genome_tags': html = [F'<span data-tag="{tag}">{tag}</span>' for tag in row.genome_tags if tag] return ' '.join(html) if column == 'organism_tags': html = [F'<span data-tag="{tag}">{tag}</span>' for tag in row.organism_tags if tag] return ' '.join(html) if column == 'representative': return 'True' if row.is_representative else 'False' if column == 'literature_references': return " ".join(row.literature_references) elif column.startswith("env_"): return " ".join(row.__getattribute__(column)) else: return super(GenomeTableAjax, self).render_column(row, column) def get_initial_queryset(self): if not self.model: raise NotImplementedError("Need to provide a model or implement get_initial_queryset!") qs = self.model.objects.annotate( genome_tags=ArrayAgg('tags__tag', distinct=True), organism_tags=ArrayAgg('organism__tags__tag', distinct=True) ) \ .all() \ .prefetch_related('organism') \ .prefetch_related('organism__taxid') return qs def filter_queryset(self, qs): """ If search['value'] is provided then filter all searchable columns using filter_method (istartswith by default). Automatic filtering only works for Datatables 1.10+. For older versions override this method """ columns = self._columns if not self.pre_camel_case_notation: # get global search value search = self._querydict.get('search[value]', None) q = Q() filter_method = self.get_filter_method() for col_no, col in enumerate(self.columns_data): # apply global search to all searchable columns if search and col['searchable']: # cannot search binary fields or tags if not columns[col_no] in ['representative', 'contaminated', 'organism.restricted']: q |= Q(**{F"{columns[col_no].replace('.', '__')}__{filter_method}": search}) # column specific filter if col['search.value']: colname = col['name'] ## CUSTOM FILTERS if colname == 'representative': if col['search.value'] == "True": qs = qs.filter(representative__isnull=False) else: qs = qs.filter(representative__isnull=True) elif colname == "genome_tags": qs = qs.filter(tags__tag__in=col['search.value'].split("|")) elif colname == "organism_tags": qs = qs.filter(organism__tags__tag__in=col['search.value'].split("|")) elif colname.endswith("_date"): if col['search.value'].startswith("-yadcf_delim"): range = ["0001-01-01", col['search.value'][-10:]] elif col['search.value'].endswith("yadcf_delim-"): range = [col['search.value'][:10], "9000-12-30"] else: range = [col['search.value'][:10], col['search.value'][-10:]] qs = qs.filter(**{'{0}__{1}'.format(columns[col_no].replace('.', '__'), 'range'): range}) else: # DEFAULT BEHAVIOUR qs = qs.filter(**{ '{0}__{1}'.format(columns[col_no].replace('.', '__'), filter_method): col['search.value']}) qs = qs.filter(q) return qs
StarcoderdataPython
1772798
<filename>100-200q/129.py ''' Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum of all root-to-leaf numbers. Note: A leaf is a node with no children. Example: Input: [1,2,3] 1 / \ 2 3 Output: 25 Explanation: The root-to-leaf path 1->2 represents the number 12. The root-to-leaf path 1->3 represents the number 13. Therefore, sum = 12 + 13 = 25. ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def sumNumbers(self, root): """ :type root: TreeNode :rtype: int """ if not root: return 0 def dfs(root, num, total): if not root: return total num = num*10 + root.val if not root.left and not root.right: total += num return total return dfs(root.left, num) + dfs(root.right, num) return dfs(root, 0, 0)
StarcoderdataPython
173816
"This module holds the mixer state of the X-Air device" # part of xair-remote.py # Copyright (c) 2018, 2021 <NAME> # Additions Copyright (c) 2021 <NAME> # Some rights reserved. See LICENSE. import time import subprocess import struct import json from collections import deque from lib.xair import XAirClient, find_mixer from lib.midicontroller import MidiController, TempoDetector class Channel: """ Represents a single channel or bus """ def __init__(self, addr): # LR then 6 aux bus followed by the 4 effects self.sends = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] self.enables = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] self.osc_base_addr = addr def get_m_addr(self, bus): if bus == 0: if self.osc_base_addr.startswith('/config'): return(self.osc_base_addr) else: return(self.osc_base_addr + "/on") else: return(self.osc_base_addr + '/{:0>2d}/level'.format(bus)) def get_l_addr(self, bus): if bus == 0: if self.osc_base_addr.startswith('/head'): return(self.osc_base_addr + "/gain") else: return(self.osc_base_addr + "/fader") else: return(self.osc_base_addr + '/{:0>2d}/level'.format(bus)) def toggle_mute(self, bus): """Toggle a mute on or off.""" # print("toggle mute of %s bus %s from %s" % (self.get_m_addr(bus), bus, self.enables[bus])) if self.enables[bus] == 1: self.enables[bus] = 0 param=0.0 else: self.enables[bus] = 1 param=self.sends[bus] if bus == 0: return(self.get_m_addr(bus), self.enables[bus], self.enables[bus]) else: return(self.get_m_addr(bus), param, self.enables[bus]) def set_mute(self, bus, value): """Set the state of the channel mute.""" self.enables[bus] = value return(self.get_m_addr(bus), self.enables[bus], self.enables[bus]) def get_mute(self, bus): return(self.enables[bus]) def change_level(self, bus, delta): """Change the level of a fader, mic pre, or bus send.""" # print("changing %s bus %s by %s" % (self.osc_base_addr, bus, delta)) if bus == "gain": bus = 0 self.sends[bus] = min(max(0.0, self.sends[bus] + (delta / 200)), 1.0) return(self.get_l_addr(bus), self.sends[bus], self.sends[bus]) def set_level(self, bus, value): """Set the level of a fader, mic pre, or bus send.""" if bus == "gain": bus = 0 self.sends[bus] = value return(self.get_l_addr(bus), self.sends[bus], self.sends[bus]) def get_level(self, bus): """Return the current level of a fader, mic pre, or bus send.""" if bus == "gain": bus = 0 return(self.sends[bus]) class SubProc: """ Manages a subprocess """ def __init__(self, call_type, proc_name, args) -> None: self.call_type = call_type self.proc_name = proc_name self.args = args self.max = len(args) self.current = 0 def toggle(self): if self.call_type == "subprocess": try: subprocess.call([self.proc_name, self.args[self.current]]) except OSError: pass self.current += (self.current + 1) % self.max # the config json file specifies a number of layers each idendified by a name # within the layer there are currently two sections: encoders and buttons # there are 8 encoders per section with three parts: channel, send/fader/gain, button # fader, channel, [button] # gain, channel # level, channel, bus, [button] # There are 18 buttons per section to types: lengths button_def = {'quit': 2, 'none': 2, 'layer': 4, 'clip': 2, 'mute': 2, 'tap': 2, "send": 2} button_types = set(button_def.keys()) class Layer: """ Represents a logical layer as defined by the config file """ encoders = [] buttons = [] faders = [] channels = {} proc_list = {} active_bus = 0 def __init__(self, layer_name, config_layer, channels, layer_names, proc_list) -> None: "Initialize a Layer" # first check for gross configurations errors number = len(config_layer.keys()) if number > 3: print("Warning: expected exactly three types of controls %d found" % number) # Process the encoders self.encoders = config_layer["encoders"] if len(self.encoders) != 8: print("Layer %s does not contain 8 'encoder' definitions." % layer_name) for encoder in self.encoders: if len(encoder) != 2: print("Error: Encoder %s of layer %s does not contain 2 elements, exiting." % \ (encoder[0], layer_name)) exit() if encoder[0] != "none" and encoder[0] not in channels.keys(): channels[encoder[0]] = Channel(encoder[0]) if encoder[1][0] == "mute" and encoder[1][1] not in channels.keys(): channels[encoder[1][1]] = Channel(encoder[1][1]) elif encoder[1][0] == "subprocess" and encoder[1][1] not in proc_list.keys(): proc_list[encoder[1][1]] = SubProc(encoder[1][0], encoder[1][1], encoder[1][2]) # Process the buttons self.buttons = config_layer["buttons"] if len(self.buttons) != 18: print("Layer %s does not contain 18 'button' definitions." % layer_name) for button in self.buttons: if button[0] not in button_types: print("Layer %s contains an unknown 'button' %s." % \ (layer_name, button[0])) exit() if len(button) != button_def[button[0]]: print("Error: Button %s of layer %s does not contain %d elements" % \ (button[0], layer_name, button_def[button[0]])) if button[0] == "layer" and button[1] not in layer_names: print("Error: Layer %s has a change to undefined layer %s." % \ (layer_name, button[1])) if button[0] == "mute" and button[1] not in channels.keys(): channels[button[1]] = Channel(button[1]) # Process the fader self.faders = config_layer["fader"] if len(self.faders) != 1: print("Layer %s does not contain 1 'fader' definitions." % layer_name) for fader in self.faders: if len(fader) != 2: print("Error: Fader %s of layer %s does not contain 2 elements, exiting." % \ (fader[0], layer_name)) exit() if fader[0] != "none" and fader[0] != "quit" and fader[0] not in channels.keys(): channels[fader[0]] = Channel(fader[0]) self.channels = channels self.proc_list = proc_list def encoder_turn(self, number, value): encoder = self.encoders[number] if encoder[0] == "none": return(None, None, 0.0) return(self.channels[encoder[0]].change_level(self.active_bus, value)) def encoder_press(self, number): encoder = self.encoders[number] if encoder[1][0] == "reset": return(self.channels[encoder[0]].set_level(self.active_bus, float(encoder[1][1]))) elif encoder[1][0] == "mute": (address, param, LED) = self.channels[encoder[1][1]].toggle_mute(int(encoder[1][2])) return(address, param, self.channels[encoder[0]].get_level(self.active_bus)) elif encoder[1][0] == "subprocess": self.proc_list[encoder[1][1]].toggle() return(None, None, self.channels[encoder[0]].get_level(self.active_bus)) if encoder[0] == "none": return(None, None, 0.0) return(None, None, self.channels[encoder[0]].get_level(self.active_bus)) def encoder_state(self, number): encoder = self.encoders[number] if encoder[0] == "none": return 0.0 return(self.channels[encoder[0]].get_level(self.active_bus)) def toggle_button(self, number): button = self.buttons[number] if button[0] == "mute": return (self.channels[button[1]].toggle_mute(self.active_bus)) if button[0] == "layer": max_bus = int(button[2]) return ("layer", button[1], max_bus if self.active_bus > max_bus else self.active_bus) if button[0] == "send": if self.active_bus == int(button[1]): self.active_bus = 0 return ("send", None, "Off") else: self.active_bus = int(button[1]) return ("send", None, "On") # return the relevant action for the non mixer based button return (button[0], button[1], button[-1]) def button_state(self, number): button = self.buttons[number] if button[0] == "mute": return(self.channels[button[1]].get_mute(self.active_bus)) elif button[0] == "send": return("On" if self.active_bus == int(button[1]) else "Off") else: return(button[-1]) def fader_move(self, value): if self.faders[0][0] == "quit": return("quit", "none", "none") if self.faders[0][0] == "none": return("none", "none", "none") else: return(self.channels[self.faders[0][0]].set_level(int(self.faders[0][1]), value)) def encoder_number(self, name): number = 0 for encoder in self.encoders: if name == encoder[0]: return number number += 1 return -1 def button_number(self, name): number = 0 for button in self.buttons: if len(button) > 1 and name == button[1]: return number number += 1 return -1 class Meter: """ Calculates the .2 second running average of the value of a channel meter """ values = 4 def __init__(self): self.levels = deque(maxlen=self.values) for _ in range(self.values): self.levels.append(-102400) self.mean = -102400 * self.values def insert_level(self, value): 'push a vlue into the fixed FIFO and update the mean' self.mean = self.mean - self.levels.popleft() + value self.levels.append(value) return self.mean class MixerState: """ This stores the mixer state in the application. It also keeps track of the current selected fader bank on the midi controller to decide whether state changes from the X-Air device need to be sent to the midi controller. """ quit_called = False layers = {} channels = {} proc_list = {} current_layer = None # ID numbers for all available delay effects _DELAY_FX_IDS = [10, 11, 12, 21, 24, 25, 26] fx_slots = [0, 0, 0, 0] lr = Channel('/lr/mix') mpd_playing = True midi_controller = None xair_client = None tempo_detector = None meters = [] for i in range(16): meters.append(Meter()) def __init__(self, args) -> None: # split the arguments out to useful values self.debug = args.debug self.xair_address = args.xair_address self.monitor = args.monitor self.clip = args.clip self.mac = False # args.mac self.levels = args.levels # initialize internal data structures config_json = "peterdikant.json" if args.config_file is not None: config_json = args.config_file[0] with open(config_json) as config_file: config = json.load(config_file) layer_names = config.keys() for layer_name in layer_names: if self.current_layer == None: self.current_layer = layer_name self.layers[layer_name] = Layer(layer_name, config[layer_name], self.channels, layer_names, self.proc_list) def initialize_state(self): self.quit_called = False # determine the mixer address if self.xair_address is None: self.xair_address = find_mixer() if self.xair_address is None: print('Error: Could not find any mixers in network.', 'Using default ip address.') self.xair_address = "192.168.50.146" # setup other modules self.midi_controller = MidiController(self) if self.quit_called: self.midi_controller = None return False self.xair_client = XAirClient(self.xair_address, self) self.xair_client.validate_connection() if self.quit_called: self.midi_controller = None self.xair_client = None return False self.tempo_detector = TempoDetector(self) self.read_initial_state() self.midi_controller.activate_bus() self.tempo_detector.number = self.layers[self.current_layer].button_number("tap") return True def shutdown(self): self.quit_called = True "safely shutdown all threads" if self.xair_client is not None: self.xair_client.stop_server() self.xair_client = None if self.midi_controller is not None: self.midi_controller.cleanup_controller() self.midi_controller = None # if self.screen_obj is not None: # self.screen_obj.quit() def button_press(self, number): """Handle a button press.""" if self.debug: print('Button %d pressed' % number) (address, param, LED) = self.layers[self.current_layer].toggle_button(number) if address == 'layer': self.current_layer = param self.layers[self.current_layer].active_bus = LED self.midi_controller.activate_bus() self.tempo_detector.number = self.layers[self.current_layer].button_number("tap") return self.get_button(number) elif address == 'send': self.midi_controller.activate_bus() return LED elif address == 'clip': self.clip = not self.clip return "On" if self.clip else "Off" elif address == 'quit': self.shutdown() exit() elif address == 'record': pass return "Off" elif address == 'tap': self.tempo_detector.tap() return "none" if address != None: if address.startswith('/config/mute'): param = 1 if param == 0 else 0 self.xair_client.send(address=address, param=param) return LED def get_button(self, number): if self.debug: print('Getting state of button number %d' % number) return(self.layers[self.current_layer].button_state(number)) # def mac_button(self, button): # "call a function for transport buttons on mac" # if button == 10: # os.system("""osascript -e 'tell application "music" to previous track'""") # elif button == 11: # os.system("""osascript -e 'tell application "music" to next track'""") # elif button == 12: # self.state.shutdown() # self.cleanup_controller() # exit() # elif button == 13: # os.system("""osascript -e 'tell application "music" to pause'""") # elif button == 14: # os.system("""osascript -e 'tell application "music" to play'""") def encoder_turn(self, number, delta): """Change the level of an encoder.""" (address, param, LED) = self.layers[self.current_layer].encoder_turn(number, delta) if address != None: self.xair_client.send(address=address, param=param) return LED def encoder_press(self, number): (address, param, LED) = self.layers[self.current_layer].encoder_press(number) if address != None: print("sending %s %s" % (address, param)) if address.startswith('/config/mute'): invert = 1 if param == 0 else 0 self.xair_client.send(address=address, param=invert) number = self.layers[self.current_layer].button_number(address) if number != -1: self.midi_controller.set_channel_mute(number, param) else: self.xair_client.send(address=address, param=param) return LED def get_encoder(self, number): if self.debug: print('Getting state of encoder number %d' % number) return(self.layers[self.current_layer].encoder_state(number)) def fader_move(self, msg): value = (msg.pitch + 8192) / 16384 if self.debug: print('Wheel set to {}'.format(msg)) (address, param, LED) = self.layers[self.current_layer].fader_move(value) if address == "quit": if value > .98: self.shutdown() exit() elif address != 'none': self.xair_client.send(address=address, param=param) def received_osc(self, addr, value): """Process an OSC input.""" prefix = None three_element = '/'.join(addr.split('/',4)[:-1]) # first three parts of the OSC path two_element = '/'.join(addr.split('/',3)[:-1]) # first two parts of the OSC path if self.debug: print('processing OSC message with %s and %s value.' % (addr, value)) if three_element in self.channels.keys(): prefix = three_element elif two_element in self.channels.keys(): prefix = two_element elif addr in self.channels.keys(): prefix = addr if prefix is not None: if addr.startswith('/config/mute'): invert = 1 if value == 0 else 0 if self.debug: print (" received mute channel %s" % prefix) self.channels[prefix].set_mute(0, invert) number = self.layers[self.current_layer].button_number(prefix) if number != -1: self.midi_controller.set_channel_mute(number, invert) elif addr.endswith('/fader'): # chanel fader level if self.debug: print(' Channel %s level %f' % (addr, value)) self.channels[prefix].set_level(0, value) number = self.layers[self.current_layer].encoder_number(prefix) if number != -1: self.midi_controller.set_ring(number, value) elif addr.endswith('/on'): # channel enable if self.debug: print(' %s unMute %d' % (addr, value)) self.channels[prefix].set_mute(0, value) number = self.layers[self.current_layer].button_number(prefix) if number != -1: self.midi_controller.set_channel_mute(number, value) elif addr.endswith('/level'): if self.debug: print(' %s level %f' % (addr, value)) bus = int(addr[-8:-6]) self.channels[prefix].set_level(bus, value) number = self.layers[self.current_layer].encoder_number(prefix) if number != -1: self.midi_controller.set_ring(number, value) elif addr.endswith('/gain'): if self.debug: print(' %s Gain level %f' % (addr, value)) self.channels[prefix].set_level("gain", value) number = self.layers[self.current_layer].encoder_number(prefix) if number != -1: self.midi_controller.set_ring(number, value) elif addr.startswith('/fx') and (addr.endswith('/par/01') or addr.endswith('/par/02')): if self.fx_slots[int(addr[4:5]) - 1] in self._DELAY_FX_IDS: self.tempo_detector.current_tempo = value * 3 elif addr.startswith('/fx/') and addr.endswith('/type'): self.fx_slots[int(addr[4:5]) - 1] = value if value in self._DELAY_FX_IDS: # slot contains a delay, get current time value param_id = '01' if value == 10: param_id = '02' self.xair_client.send(address = '/fx/%s/par/%s' % (addr[4:5], param_id)) elif self.debug: print('processing unknown OSC message with %s and %s value.' % (addr, value)) def read_initial_state(self): """ Refresh state for all faders and mutes.""" for channel in self.channels.values(): addr = channel.osc_base_addr if addr.startswith('/head'): self.xair_client.send(address=addr + '/gain') time.sleep(self.xair_client._WAIT_TIME) elif addr.startswith('/config'): self.xair_client.send(address=addr) time.sleep(self.xair_client._WAIT_TIME) else: self.xair_client.send(address=addr + '/fader') time.sleep(self.xair_client._WAIT_TIME) self.xair_client.send(address=addr + '/on') time.sleep(self.xair_client._WAIT_TIME) if channel.sends is not None: for k in range(len(channel.sends)): self.xair_client.send(address=addr + '/{:0>2d}/level'.format(k + 1)) time.sleep(self.xair_client._WAIT_TIME) # get all fx types for i in range(1, 5): self.xair_client.send(address = '/fx/%d/type' % i) time.sleep(self.xair_client._WAIT_TIME) def update_tempo(self, tempo): for i in range(0, 4): if self.fx_slots[i] in self._DELAY_FX_IDS: param_id = '01' if self.fx_slots[i] == 10: # only delay where time is set as parameter 02 param_id = '02' self.xair_client.send(address = '/fx/%d/par/%s' % (i + 1, param_id), param = tempo / 3) # the meter subscription is setup in the xair_client in the refresh method that runs every 5s # a subscription sends values every 50ms for 10s # # meters 1 provide data per channel and bus # meters 2, input levels, as these will match the headamps even if mapped to other channels # layout below assumes meters 2 def received_meters(self, addr, data): "receive an OSC Meters packet" data_size = struct.unpack("<L", data[0][0:4])[0] values = [] short = [] med = [] for i in range(data_size): if i > 15: break # get the current meter as a 16bit signed int mapped to -128db to 128db # 1/256 db resolution, aka .004 dB # realistic values max at 0db value = struct.unpack("<h", data[0][(4+(i*2)):4+((i+1)*2)])[0] # push the value into the fixed length fifo and get the smoothed value smooth = self.meters[i].insert_level(value)/1024 if self.debug: values.append("%0.2f" % smooth) short.append(value) med.append(value/256) if self.clip and smooth > -3 and (i < 8 or i > 11): # if clip protection is enabled and not a drum and above -3 db active_bank = self.active_bank fader = i if fader < 8: self.active_bank = 2 else: self.active_bank = 3 fader = fader - 8 self.change_level(fader, -1) ## needs FIXME if self.debug: print("Clipping Detected headamp changed to %s" % self.banks[self.active_bank][fader].fader) self.active_bank = active_bank if self.debug: print('Meters %s ch 8 %s %s %s' % (addr, values[7], short[7], med[7])) # if self.screen_obj is not None: # self.screen_obj.screen_loop()
StarcoderdataPython