prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from .base import AbstractStatistics from ..compat import pickle from ..price_parser import PriceParser import datetime import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns class SimpleStatistics(AbstractStatistics): """ Simple Statistics fornisce un semplice esempio di statistiche che possono essere raccolte tramite il trading. Le statistiche incluse sono Sharpe Ratio, Drawdown, Max Drawdown, Max Drawdown Duration. TODO prevedere Alpha/Beta, comparazione della strategia con il benchmark. TODO verificare la speed -- prevede l'esecusione per ogni tick o comunque per trade sotto il minuto TODO prevedere slippage, fill rate, ecc.. TODO costi di commissione? TODO prevedere qualche tipo di parametro trading-frequency parameter nel setup. Per il calcolo dello Sharpe bisogna conoscere se si riferisce a timeframe giornaliero, orario, un minuto, ecc. """ def __init__(self, config, portfolio_handler): """ Prevede un portfolio handler. """ self.config = config self.drawdowns = [0] self.equity = [] self.equity_returns = [0.0] # Inizializza il timeseries. Il corretto timestamp non รจ ancora disponibile. self.timeseries = ["0000-00-00 00:00:00"] # Inizializzazione in modo che il primo step dei calcoli sia corretto. current_equity = PriceParser.display(portfolio_handler.portfolio.equity) self.hwm = [current_equity] self.equity.append(current_equity) def update(self, timestamp, portfolio_handler): """ Aggiorna tutte le statistiche che devono essere tracciate nel tempo. """ if timestamp != self.timeseries[-1]: # Ricava il valore equity del Portfolio current_equity = PriceParser.display(portfolio_handler.portfolio.equity) self.equity.append(current_equity) self.timeseries.append(timestamp) # Calcula il rendimento percentuale tra l'attuale e il precedente valore dell'equity. pct = ((self.equity[-1] - self.equity[-2]) / self.equity[-1]) * 100 self.equity_returns.append(round(pct, 4)) # Calcola il drawdown. self.hwm.append(max(self.hwm[-1], self.equity[-1])) self.drawdowns.append(self.hwm[-1] - self.equity[-1]) def get_results(self): """ Restituisci un dizionario con tutti i risultati e le statistiche importanti. """ # Modifica le serie temporali solo nell'ambito locale. Inizializziamo # con 0-date, ma potrebbe mostrare una data di inizio realistica. timeseries = self.timeseries timeseries[0] = pd.to_datetime(timeseries[1]) - pd.Timedelta(days=1) statistics = {} statistics["sharpe"] = self.calculate_sharpe() statistics["drawdowns"] =
pd.Series(self.drawdowns, index=timeseries)
pandas.Series
import datetime import random import sys import time import unittest import matplotlib as mpl #from pandas import Series import pandas as pd import numpy as np from pandas_datareader import data as wb import matplotlib.pyplot as plt ''' ่ฟ™ไธชๆ–‡ไปถ็š„ไปฃ็  ้ƒฝๆ˜ฏ ๅฎž้ชŒๆ€ง่ดจ็š„ใ€‚ scribble code๏ผ ''' #from QUANTAXIS.QAFetch import (QATdx ); from QUANTAXIS.QAUtil import QADate, QADate_trade # ๅญฆไน  lru_cache class MyCache: ''' ''' def __init__(self): '''constructor''' self.cache = {} self.max_cache_size = 10 def __contains__(self, key): ''' ๆ นๆฎ่ฏฅ้”ฎๆ˜ฏๅฆๅญ˜ๅœจไบŽ็ผ“ๅญ˜ๅฝ“ไธญ่ฟ”ๅ›žTrueๆˆ–่€…False :param key: :return: ''' return key in self.cache def update(self, key, value): ''' ๆ›ดๆ–ฐ่ฏฅ็ผ“ๅญ˜ๅญ—ๅ…ธ๏ผŒๆ‚จๅฏ้€‰ๆ‹ฉๆ€งๅˆ ้™คๆœ€ๆ—ฉๆก็›ฎ :param key: :param value: :return: ''' if key not in self.cache and len(self.cache) >= self.max_cache_size: self.remove_oldest() self.cache[key] = { 'date_accessed': datetime.datetime.now(), 'value': value} def remove_oldest(self): """ ๅˆ ้™คๅ…ทๅค‡ๆœ€ๆ—ฉ่ฎฟ้—ฎๆ—ฅๆœŸ็š„่พ“ๅ…ฅๆ•ฐๆฎ """ oldest_entry = None for key in self.cache: if oldest_entry == None: oldest_entry = key print('assign oldest_entry key', oldest_entry) elif self.cache[key]['date_accessed'] < self.cache[oldest_entry]['date_accessed']: oldest_entry = key print('delete oles key', oldest_entry) self.cache.pop(oldest_entry) @property def size(self): """ ่ฟ”ๅ›ž็ผ“ๅญ˜ๅฎน้‡ๅคงๅฐ """ return len(self.cache) class Test_LRU(unittest.TestCase): def test_LRU(self): # ๆต‹่ฏ•็ผ“ๅญ˜ keys = ['test', 'red', 'fox', 'fence', 'junk', 'other7', 'alpha8', 'bravo9', 'cal10', 'devo11', 'ele12', 'other1', 'alpha2', 'bravo3', 'cal4', 'devo5', 'ele6', ] s = 'abcdefghijklmnop' cache = MyCache() for i, key in enumerate(keys): if key in cache: continue else: value = ''.join([random.choice(s) for i in range(20)]) cache.update(key, value) print("#%s iterations, #%s cached entries" % (i + 1, cache.size)) pass def fab(self, max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 def test_Generator(self): self.fab(10) def test_None(self): pass class Test_DataFrame_0(unittest.TestCase): def test_make_Series(self): pass def test_make_dataframe(self): ''' possible data inputs to dataframe constructor 2d ndarray dict of array, list, or tuples numpy stuctured / record array dict of series dict of dict list of dict or series list of list or tuples another DataFrame Numpy masked :return: ''' # demo the dict of dict self.pop = {'Nevada': {2001:2.4, 2002:2.9}, 'Ohio': {2000:1.5, 2001:1.7, 2002:6.6}} frame3 = pd.DataFrame(self.pop) print(frame3) frame3 = pd.DataFrame(self.pop, index=[2000, 2001, 2002]) print(frame3) frame3 = pd.DataFrame(self.pop, index = [2000,2001, 2002, 2003]) print(frame3) pass def test_assign_serial_to_data_frame(self): # when you assign list or arrays to columns, the value's length must match the length of the DataFrame. self.data = { 'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9] } frame2 = pd.DataFrame(self.data, columns=['year', 'state', 'pop', 'debt'], index = ['one', 'two', 'three', 'four','five']) val = pd.Series([-1.2,-1.5,-1.7,None], index=['two','four','five1','ss']) frame2['debt'] = val print(frame2) frame2['eastern'] = frame2.state == 'Ohio' print(frame2) del frame2['eastern'] print(frame2) pass def test_index_object(self): #pandas's index objects are responsible for holding the axis labels nd other metadata ( like the axis name or names) # index # Int64Index # MultiIndex # DatetimeIndex # PeriodIndex obj = pd.Series(range(3), index = ['a','b','c']) index = obj.index print(index) print(index[:1]) obj2 = pd.Series(range(6,9,1), index = ['d','e','f']) #index append index print(obj2) newIndex = obj.index.append( obj2.index ) print(newIndex) print(obj) pass def test_essential_functionality(self): obj = pd.Series([4.5, 7.22, -5.3, 3.88], index=['d','e','a','c']) print(obj) obj = obj.reindex(['a','b','c','d','e']) print(obj) obj3 = pd.Series(['blue','purple','yellow'], index = [0,2,4]) print(obj3) obj4 = obj3.reindex( range(6), method='ffill' ) print(obj4) frame2 = pd.DataFrame(np.arange(9).reshape((3,3)), index = ['a','c','d'], columns=['Ohio','Texas','California']) print(frame2) states = ['Texas', 'Utah', 'California'] frame2.ix[['a', 'b', 'c', 'd'], states] print(frame2) pass def test_dropping_entire(self): obj = pd.Series(np.arange(5.), index=['a','b','c','d','e']) # new_obj = obj.drop('c') # print(obj) # print(new_obj) # # new_obj2 = obj.drop(['d','c']) # print(new_obj2) # # new_obj3 = pd.Series(np.arange(5.), index=['a','b','c','d','es']) # print(new_obj3) # print(new_obj3['b']) data = pd.DataFrame(np.arange(16).reshape((4,4)), index=['Ohio','Colorado','Utha','New York'], columns=['one','two','three','four']) # d2=data.drop(['Colorado','Ohio']) # print(d2) # # d3=data.drop(['two','three'],axis=1) # print(d3) # # d4 = data.drop(['Ohio'], axis=0) # print(d4) # # pp = data.ix['Colorado', ['two', 'three']] # print(pp) ppp = data['two'] print(ppp) kkk = data[0:2] print(kkk) jjj = data.ix['Colorado'] print(jjj) jjjj = data.iloc[[0,1,2]] print(jjjj) cccc = data.loc[['Utha']] print(cccc) def test_Arithmetic_data_Alignment(self): s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e']) s2 =
pd.Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])
pandas.Series
import pandas as pd from dateutil.parser import parse from datetime import timedelta import requests def download_file(url, filename): """ Helper method handling downloading large files from `url` to `filename`. Returns a pointer to `filename`. """ chunkSize = 1024 ** 2 r = requests.get(url, stream=True) with open(filename, 'wb') as f: for chunk in r.iter_content(chunk_size=chunkSize): if chunk: # filter out keep-alive new chunks f.write(chunk) return filename def open_global_ts(path): """ Abre serie de tiempo y cambia el formato para un facil uso. Parametros ---------- path : str or pathlib's Path Direcciรณn del archivo csv Returns ------- ts: Pandas Dataframe """ ts = pd.read_csv(path) ini, end = parse(ts.columns[4]), parse(ts.columns[-1]) delta = end - ini dates = [ini + timedelta(days=i) for i in range(delta.days + 1)] ts_cols = [date.strftime('%-m/%-d/%y') for date in dates] ts = ts[ts_cols + ['Country']].set_index('Country').T ts.index = pd.to_datetime(ts.index) ts.sort_index(inplace=True) ts.columns.name = '' return ts def ts_since_two_per_country(df): """ Abre serie de tiempo global por pais y extrae series de tiempo para cada pais desde que el valor es superior a 2. Parametros ---------- df : Pandas Dataframe Dataframe que contiene una serie de tiempo por pais. Returns ------- countries: list of Dataframes per country """ df = df.loc[:,~df.columns.duplicated()] countries = [df[df[country] > 2][[country]] for country in df.columns[:]] return countries def compute_tasa_incidencia(df, pais): """ Calcula la Tasa de incidencia cada 100.000 habitantes para el paรญs dado. TI = \frac{\text{Total Confirmados Acumulados} \cdot 10^5}{\text{Poblacion}} Parametros ---------- df : Pandas Dataframe Serie de tiempo de confirmados. pais : str Nombre del pais, debe ser una columna. Returns ------- tasa_incidencia: float """ return df[pais].values[-1] * 1e5 / info_countries[info_countries['Country'] == pais]['Population (2020)'].values def compute_tasa_contagio(pais, inicio, fin, return_params=False): """ Calcula la Tasa de Contagio cada 100.000 habitantes para un periodo dado. \text{Tasa de Contagio} = \frac{\text{cantidad de casos activos} \cdot 10^5}{\text{poblaciรณn con riesgo de infectarse durante el periodo escogido}} Parametros ---------- pais : str Nombre del pais, debe ser una columna incio : datetime Inicio del periodo end : datetime Fin del periodo return_params : boolean, optional Devuelve parametros involucrados Returns ------- tasa_incidencia: float """ inicio = pd.to_datetime(inicio) fin =
pd.to_datetime(fin)
pandas.to_datetime
import os import sys import math from neuralprophet.df_utils import join_dataframes import numpy as np import pandas as pd import torch from collections import OrderedDict from neuralprophet import hdays as hdays_part2 import holidays as pyholidays import warnings import logging log = logging.getLogger("NP.utils") def reg_func_abs(weights): """Regularization of weights to induce sparcity Args: weights (torch tensor): Model weights to be regularized towards zero Returns: regularization loss, scalar """ return torch.mean(torch.abs(weights)).squeeze() def reg_func_trend(weights, threshold=None): """Regularization of weights to induce sparcity Args: weights (torch tensor): Model weights to be regularized towards zero threshold (float): value below which not to regularize weights Returns: regularization loss, scalar """ abs_weights = torch.abs(weights) if threshold is not None and not math.isclose(threshold, 0): abs_weights = torch.clamp(abs_weights - threshold, min=0.0) reg = torch.sum(abs_weights).squeeze() return reg def reg_func_season(weights): return reg_func_abs(weights) def reg_func_events(events_config, country_holidays_config, model): """ Regularization of events coefficients to induce sparcity Args: events_config (OrderedDict): Configurations (upper, lower windows, regularization) for user specified events country_holidays_config (OrderedDict): Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays model (TimeNet): The TimeNet model object Returns: regularization loss, scalar """ reg_events_loss = 0.0 if events_config is not None: for event, configs in events_config.items(): reg_lambda = configs.reg_lambda if reg_lambda is not None: weights = model.get_event_weights(event) for offset in weights.keys(): reg_events_loss += reg_lambda * reg_func_abs(weights[offset]) if country_holidays_config is not None: reg_lambda = country_holidays_config.reg_lambda if reg_lambda is not None: for holiday in country_holidays_config.holiday_names: weights = model.get_event_weights(holiday) for offset in weights.keys(): reg_events_loss += reg_lambda * reg_func_abs(weights[offset]) return reg_events_loss def reg_func_regressors(regressors_config, model): """ Regularization of regressors coefficients to induce sparcity Args: regressors_config (OrderedDict): Configurations for user specified regressors model (TimeNet): The TimeNet model object Returns: regularization loss, scalar """ reg_regressor_loss = 0.0 for regressor, configs in regressors_config.items(): reg_lambda = configs.reg_lambda if reg_lambda is not None: weight = model.get_reg_weights(regressor) reg_regressor_loss += reg_lambda * reg_func_abs(weight) return reg_regressor_loss def symmetric_total_percentage_error(values, estimates): """Compute STPE Args: values (np.array): estimates (np.array): Returns: scalar (float) """ sum_abs_diff = np.sum(np.abs(estimates - values)) sum_abs = np.sum(np.abs(estimates) + np.abs(values)) return 100 * sum_abs_diff / (10e-9 + sum_abs) def season_config_to_model_dims(season_config): """Convert the NeuralProphet seasonal model configuration to input dims for TimeNet model. Args: season_config (AllSeasonConfig): NeuralProphet seasonal model configuration Returns: seasonal_dims (dict(int)): input dims for TimeNet model """ if season_config is None or len(season_config.periods) < 1: return None seasonal_dims = OrderedDict({}) for name, period in season_config.periods.items(): resolution = period.resolution if season_config.computation == "fourier": resolution = 2 * resolution seasonal_dims[name] = resolution return seasonal_dims def get_holidays_from_country(country, df=None): """ Return all possible holiday names of given country Args: country (string): country name to retrieve country specific holidays df (Dataframe or list of dataframes): Dataframe or list of dataframes from which datestamps will be retrieved from Returns: A set of all possible holiday names of given country """ if df is None: dates = None else: if isinstance(df, list): df, _ = join_dataframes(df) dates = df["ds"].copy(deep=True) if dates is None: years = np.arange(1995, 2045) else: years = list({x.year for x in dates}) # manually defined holidays try: with warnings.catch_warnings(): warnings.simplefilter("ignore") holiday_names = getattr(hdays_part2, country)(years=years).values() except AttributeError: try: holiday_names = getattr(pyholidays, country)(years=years).values() except AttributeError: raise AttributeError("Holidays in {} are not currently supported!".format(country)) return set(holiday_names) def events_config_to_model_dims(events_config, country_holidays_config): """ Convert the NeuralProphet user specified events configurations along with country specific holidays to input dims for TimeNet model. Args: events_config (OrderedDict): Configurations (upper, lower windows, regularization) for user specified events country_holidays_config (configure.Holidays): Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays Returns: events_dims (OrderedDict): A dictionary with keys corresponding to individual holidays containing configs with properties such as the mode, list of event delims of the event corresponding to the offsets, and the indices in the input dataframe corresponding to each event. """ if events_config is None and country_holidays_config is None: return None additive_events_dims = pd.DataFrame(columns=["event", "event_delim"]) multiplicative_events_dims = pd.DataFrame(columns=["event", "event_delim"]) if events_config is not None: for event, configs in events_config.items(): mode = configs.mode for offset in range(configs.lower_window, configs.upper_window + 1): event_delim = create_event_names_for_offsets(event, offset) if mode == "additive": additive_events_dims = additive_events_dims.append( {"event": event, "event_delim": event_delim}, ignore_index=True ) else: multiplicative_events_dims = multiplicative_events_dims.append( {"event": event, "event_delim": event_delim}, ignore_index=True ) if country_holidays_config is not None: lower_window = country_holidays_config.lower_window upper_window = country_holidays_config.upper_window mode = country_holidays_config.mode for country_holiday in country_holidays_config.holiday_names: for offset in range(lower_window, upper_window + 1): holiday_delim = create_event_names_for_offsets(country_holiday, offset) if mode == "additive": additive_events_dims = additive_events_dims.append( {"event": country_holiday, "event_delim": holiday_delim}, ignore_index=True ) else: multiplicative_events_dims = multiplicative_events_dims.append( {"event": country_holiday, "event_delim": holiday_delim}, ignore_index=True ) # sort based on event_delim event_dims =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Polifact_Analysis # # ### @Author : <NAME> # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') import plotly.express as px from scipy import signal import warnings warnings.filterwarnings("ignore") #to make shell more intractive from IPython.display import display from IPython.display import Image # setting up the chart size and background plt.rcParams['figure.figsize'] = (16, 8) plt.style.use('fivethirtyeight') # In[2]: pwd # In[3]: path ='E:\\DataScience\\MachineLearning\\Polotifact_Data' # In[4]: import os from glob import glob os.listdir(path) # In[5]: df = pd.read_csv(path+"\\politifact.csv") df.head(5) # In[6]: pd.set_option('display.max_colwidth', 200) df.head(10) # In[7]: df.shape # In[8]: df.info() # In[9]: df.isnull().sum() # In[10]: df.nunique(axis=0) # In[11]: df['source'].unique() # In[12]: df['veracity'].unique() # In[13]: df['source'].value_counts() # In[14]: df['veracity'].value_counts() # In[15]: # Veracity means : conformity with truth or fact # Full Flop , Half Flip , No Flop does not give any clear meaning in sence of Veracity # Half - True it contains 50 % True and 50 % False df_new = df[~df.isin(['Half-True','Full Flop','No Flip','Half Flip']).any(axis=1)] # In[16]: df_new.head(5) # In[17]: df_new['veracity'].value_counts() # In[18]: #df_new = df_new.replace({'False': 0 ,'Mostly False' : 0 , 'Pants on Fire!' : 0, 'Mostly True' : 1 , 'True' : 1 }) # In[20]: df_new.head() # In[21]: df_new.shape # In[22]: Source_top_10 = df_new['source'].value_counts().nlargest(10) Source_top_10 # In[23]: df_10 = df_new[df_new.isin(['<NAME>','<NAME>','Bloggers','<NAME>','<NAME>','<NAME>', '<NAME>','<NAME>','<NAME>','<NAME>']).any(axis=1)] df_10.head() # In[24]: df_10['source'].value_counts() sns.histplot(data=df_10,x='source',kde=True, hue=df_10['veracity']) # In[25]: fig = px.pie(df_10 , values =Source_top_10 , names =['<NAME>','<NAME>','Bloggers','<NAME>','<NAME>','<NAME>', '<NAME>','<NAME>','<NAME>','<NAME>'], title = 'Top 10 Sources From where Statement is taken :', labels={'source'}) fig.show() # In[26]: # 0 - False statement , 1- True statement ..... fig = px.sunburst(df_10, names=None, values=None, parents=None, path=['source','veracity'], color='veracity', color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, color_discrete_sequence=None, labels={'source','veracity'}, title= "Detailed_Analysis Chart : 0 - False Statement & 1 - True Statement") fig.show() # In[27]: remove = "/web/20180705082623" len(remove) # In[28]: df_new['link'] =df_new['link'].apply(lambda x: x[len(remove):]) # In[29]: df_new.head() # In[30]: # extracting the date from the link column # r() = first group to extract; you can use multiple () # ?P<column_name> = column name for convenience # \d = digit # {n} = number of digits to include # . = wildcard # + = greedy search # ? = but not too greedy df_new["date"] = df_new.link.str.extract(r'(\d{4}/.+?\d{2})') # In[31]: df_new.head() # In[32]: # change the date column to a datetime column for convenience df_new.date =
pd.to_datetime(df_new.date,infer_datetime_format=True)
pandas.to_datetime
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f()
tm.assert_index_equal(result.columns, expected_columns_numeric)
pandas.util.testing.assert_index_equal
# -*- coding: utf-8 -*- """ Created on Fri Sep 4 15:34:25 2020 @author: diego """ import pandas as pd import os import sqlite3 from pandas_datareader import DataReader import numpy as np import seaborn as sns import matplotlib.pyplot as plt from fuzzywuzzy import process import update_db pd.set_option('display.width', 400) pd.set_option('display.max_columns', 10) conn = sqlite3.connect(os.path.join('data', 'fundos.db')) db = conn.cursor() update_db.update_pipeline() #%% functions def get_fund_id(): """ Use this function when you want to find the fund_id using the fund name. Returns ------- fund_id: string The CNPJ of the fund, that is the brazilian tax id and used in this script as fund_id. """ funds = pd.read_sql("SELECT DISTINCT denom_social FROM inf_cadastral", conn) funds['denom_social_query'] = funds['denom_social'].str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode('utf-8') funds_list = funds['denom_social_query'].to_list() x = 0 while x == 0: name = input("Mutual Fund name: ") result = process.extract(name.upper(), funds_list, limit=5) for i in range(1,6): print(str(i)+' '+result[i-1][0]) fund = -1 while fund not in range(0,6): query = input("Type fund number or 0 to query again: ") try: if int(query) in range(0,6): fund = int(query) if fund != 0: x = 1 except: print("Type a number from 1 to 5 to choose, or 0 to try again.") fund = result[fund-1][0] idx = funds[funds['denom_social_query'] == fund].index[0] fund = funds.loc[idx]['denom_social'] fund_id = pd.read_sql(f"SELECT cnpj FROM inf_cadastral WHERE denom_social = '{fund}'", conn) return fund_id.values[0][0] def get_returns(fund_id, start='all', end='all'): """ Returns a pandas dataframe with log returns and net asset value (nav) that starts at 1. Parameters ---------- fund_id : string Three options here: fund CNPJ, 'ibov', 'cdi'. start : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. end : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. Returns ------- log_returns: pandas dataframe Log returns and net asset value that starts at 1. """ if start == 'all': start = pd.to_datetime('1990-01-01') else: start = pd.to_datetime(start) if end == 'all': end = pd.to_datetime('2100-01-01') else: end = pd.to_datetime(end) if fund_id == 'ibov': returns = DataReader('^BVSP', 'yahoo', start=start+pd.DateOffset(-7), end=end )[['Adj Close']] returns['d_factor'] = returns['Adj Close'].pct_change().fillna(0) + 1 elif fund_id == 'cdi': returns = pd.read_sql(f"SELECT date, d_factor FROM cdi WHERE date >= '{start}' AND date <= '{end}' ORDER BY date", conn, index_col='date') else: returns = pd.read_sql(f"SELECT date, quota FROM quotas WHERE cnpj = '{fund_id}' AND date >= '{start+pd.DateOffset(-7)}' AND date <= '{end}' ORDER BY date", conn, index_col='date') returns['d_factor'] = (returns['quota'].pct_change().fillna(0)) + 1 returns = returns[['d_factor']] returns['log_return'] = np.log(returns['d_factor']) returns.index = pd.to_datetime(returns.index) returns = returns[returns.index >= start] returns['nav'] = np.exp(returns['log_return'].cumsum()) return returns[['log_return', 'nav']] def fund_performance(fund_id, start='all', end='all', benchmark='cdi', plot=True): """ Creates two dataframes, one with the accumulated returns and the second with the performance table of the fund. Parameters ---------- fund_id : string The CNPJ of the fund. start : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. end : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. benchmark : string, optional Benchmark used in the plot. Can be 'ibov' or 'cdi'. The default is 'cdi'. plot : boolean, optional Plot or not the results. The default is True. Returns ------- accumulated returns : pandas dataframe Accumulated % returns. performance_table : pandas dataframe Performance table of the fund. """ name = pd.read_sql(f"SELECT denom_social FROM inf_cadastral WHERE cnpj = '{fund_id}'", conn) name = name.values[0][0] name = name.split()[0] returns = get_returns(fund_id = fund_id, start=start, end=end) returns = returns[['log_return']] returns = returns.rename(columns={'log_return': name}) returns.index = pd.to_datetime(returns.index) ytd = (np.exp(returns.groupby(returns.index.year).sum())-1)*100 performance_table = returns.iloc[:,0].groupby([returns.index.year, returns.index.strftime('%m')], sort=False).sum().unstack() performance_table = (np.exp(performance_table)-1)*100 cols = performance_table.columns.tolist() performance_table = performance_table[sorted(cols)] performance_table = pd.concat([performance_table,ytd], axis=1) performance_table = performance_table.rename(columns={performance_table.columns[-1]: 'ytd'}) if plot: acc_returns = get_returns(fund_id=benchmark, start=start, end=end) acc_returns = acc_returns[['log_return']] acc_returns = acc_returns.rename({'log_return': benchmark.upper()}, axis=1) acc_returns = acc_returns.merge(returns, how='left', left_index=True, right_index=True) acc_returns = acc_returns.dropna() acc_returns = (np.exp(acc_returns.cumsum())-1)*100 fig, ax = plt.subplots(figsize=(16,9)) sns.heatmap(ax=ax, data=performance_table, center=0, vmin=-.01, vmax=.01, linewidths=.5, cbar=False, annot=True, annot_kws={'fontsize': 10, 'fontweight': 'bold'}, fmt='.1f', cmap=['#c92d1e', '#38c93b']) plt.title('Performance Table - % return', fontsize=25) ax.set_xlabel('Month', fontsize=15) ax.set_ylabel('Year', fontsize=15) plt.show() fig, ax = plt.subplots(figsize=(16,9)) ax.plot(acc_returns.iloc[:,0], label=acc_returns.columns[0], color='black', linestyle='--') ax.plot(acc_returns.iloc[:,1], label=acc_returns.columns[1]) ax.fill_between(acc_returns.index, acc_returns.iloc[:,0], acc_returns.iloc[:,1], alpha=.25, where=(acc_returns.iloc[:,1]>acc_returns.iloc[:,0]), color='Green', label='Above Benchmark') ax.fill_between(acc_returns.index, acc_returns.iloc[:,0], acc_returns.iloc[:,1], alpha=.25, where=(acc_returns.iloc[:,1]<=acc_returns.iloc[:,0]), color='Red', label='Below Benchmark') ax.grid() ax.legend(loc='upper left') ax.set_xlabel('Date') ax.set_ylabel('Return (%)') plt.show() returns = (np.exp(returns.cumsum())-1)*100 returns = returns.rename(columns={returns.columns[-1]: 'acc_return'}) return returns[['acc_return']], performance_table def compare(fund_ids, start='all', end='all', benchmark='cdi', best_start_date=False, plot=True): """ Compare the returns, volatility and sharpe ratio of the funds. Parameters ---------- fund_ids : list of stings list with the CNPJs of the funds to compare. start : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. end : string, optional Date formatted as '2019-12-31' or 'all'. The default is 'all'. benchmark : TYPE, optional Benchmark used in the plot. Can be 'ibov' or 'cdi'. The default is 'cdi'. best_start_date : boolean, optional Forces that the start date is set to a date when all funds have quotas available. The default is False. plot : boolean, optional Plot or not the results. The default is True. Returns ------- acc_returns : pandas dataframe Accumulated returns of the funds. details : pandas dataframe Volatility, Sharpe ratio, Annualized return and Total return. """ acc_returns = get_returns(fund_id=benchmark, start=start, end=end) acc_returns = acc_returns[['log_return']] acc_returns = acc_returns.rename({'log_return': benchmark.upper()}, axis=1) for fund in fund_ids: name = pd.read_sql(f"SELECT denom_social FROM inf_cadastral WHERE cnpj = '{fund}'", conn) name = name.values[0][0] name = name.split()[0] returns = get_returns(fund_id = fund, start=start, end=end) returns = returns[['log_return']] returns = returns.rename(columns={'log_return': name}) returns.index =
pd.to_datetime(returns.index)
pandas.to_datetime
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' # %% import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import dm6103 as dm #%% [markdown] # The dataset is obtained from # https://gssdataexplorer.norc.org # for you here. But if you are interested, you can try get it yourself. # create an account # create a project # select these eight variables: # ballot, id, year, hrs1 (hours worked last week), marital, # childs, income, happy, # (use the search function to find them if needed.) # add the variables to cart # extract data # name your extract # add all the 8 variables to the extract # Choose output option, select only years 2000 - 2018 # file format Excel Workbook (data + metadata) # create extract # It will take some time to process. # When it is ready, click on the download button. # you will get a .tar file # if your system cannot unzip it, google it. (Windows can use 7zip utility. Mac should have it (tar function) built-in.) # Open in excel (or other comparable software), then save it as csv # So now you have Happy table to work with # # When we import using pandas, we need to do pre-processing like what we did in class # So clean up the columns. You can use some of the functions we defined in class, like the total family income, and number of children. # Other ones like worked hour last week, etc, you'll need a new function. # Happy: change it to numeric codes (ordinal variable) # Ballot: just call it a, b, or c # Marital status, it's up to you whether you want to rename the values. # # # After the preprocessing, make these plots # Box plot for hours worked last week, for the different marital status. (So x is marital status, and y is hours worked.) # Violin plot for income vs happiness, # Use happiness as numeric, make scatterplot with jittering in both x and y between happiness and number of children. Choose what variable you want for hue/color. # If you have somewhat of a belief that happiness is caused/determined/affected by number of children, or the other # way around (having babies/children are caused/determined/affected by happiness), then put the dependent # variable in y, and briefly explain your choice. # # Answer:\ # Happiness was placed as the dependent variable in the y when comparing the variables happienss and number of children. # This was done because if it is expected that having happiness is caused by the number of children this make happiness dependent on the number of children an individual has. # If the number of children does determine happiness some kind of pattern or trend is expected to be observed in the data when plotted on a scatterplot. # # Additionally, another scatterplot was created to present the dat aif the variables flipped axes. # However, neither graph depicts a particularly strong linear trend nor does either graph indicate causality. dfhappy = dm.api_dsLand('Happy') #%% # checking the values of each column to create functions specific to process the current the data set # dfhappy.column_name.value_counts(dropna=False) # clean up ballet column name to ballot dfhappy.rename({'ballet': 'ballot'}, axis=1, inplace=True) # %% def clean_df_any(row, col): curr_row = row[col].strip() try: curr_row = int(curr_row) return curr_row except ValueError: pass if curr_row == "Eight or m": return min(8 + np.random.chisquare(2), 12) if curr_row == "Not applicable": return np.nan if curr_row == "Dk na": return np.nan if curr_row == "No answer": return np.nan return curr_row def clean_df_income(row): curr_row = row['income'].strip() if curr_row == "Don't know": return np.nan if curr_row == "No answer": return np.nan if curr_row == "Refused": return np.nan if curr_row == "Lt $1000": return np.random.uniform(0, 999) if curr_row == "$1000 to 2999": return np.random.uniform(1000, 2999) if curr_row == "$3000 to 3999": return np.random.uniform(3000, 3999) if curr_row == "$4000 to 4999": return np.random.uniform(4000, 4999) if curr_row == "$5000 to 5999": return np.random.uniform(5000, 5999) if curr_row == "$6000 to 6999": return np.random.uniform(6000, 6999) if curr_row == "$7000 to 7999": return np.random.uniform(7000, 7999) if curr_row == "$8000 to 9999": return np.random.uniform(8000, 9999) if curr_row == "$10000 - 14999": return np.random.uniform(10000, 14999) if curr_row == "$15000 - 19999": return np.random.uniform(15000, 19999) if curr_row == "$20000 - 24999": return np.random.uniform(20000, 24999) if curr_row == "$25000 or more": return 25000 + 10000 * np.random.chisquare(2) return np.nan def clean_df_happy(row): curr_row = row['happy'].strip() if curr_row == "Don't know": return np.nan if curr_row == "No answer": return np.nan if curr_row == "Not applicable": return np.nan if curr_row == "Not too happy": return 0 if curr_row == "Pretty happy": return 1 if curr_row == "Very happy": return 2 return np.nan def clean_df_ballot(row): curr_row = row['ballot'].strip()[-1:] return curr_row print("\nReady to continue.") #%% # preprocess data #hrs1 column should be numeric not object type dfhappy['hrs1'] = dfhappy.apply(clean_df_any, col='hrs1', axis=1) dfhappy['hrs1'] =
pd.to_numeric(dfhappy['hrs1'], errors='coerce')
pandas.to_numeric
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import open as io_open from builtins import str from future import standard_library standard_library.install_aliases() __all__ = [ 'generate_xref_descriptions', 'generate_files_for_reinsurance', 'ReinsuranceLayer', 'write_ri_input_files' ] import json import logging import math import os import shutil import subprocess32 as subprocess from collections import namedtuple from itertools import product import anytree import numbers import pandas as pd from ..utils.exceptions import OasisException from ..utils.log import oasis_log from . import oed from six import string_types # Metadata about an inuring layer InuringLayer = namedtuple( "InuringLayer", "inuring_priority reins_numbers is_valid validation_messages") def _get_location_tiv(location, coverage_type_id): switcher = { oed.BUILDING_COVERAGE_TYPE_ID: location.get('BuildingTIV', 0), oed.OTHER_BUILDING_COVERAGE_TYPE_ID: location.get('OtherTIV', 0), oed.CONTENTS_COVERAGE_TYPE_ID: location.get('ContentsTIV', 0), oed.TIME_COVERAGE_TYPE_ID: location.get('BITIV', 0) } return switcher.get(coverage_type_id, 0) def generate_xref_descriptions(accounts_fp, locations_fp): accounts = pd.read_csv(accounts_fp) locations = pd.read_csv(locations_fp) coverage_id = 0 item_id = 0 group_id = 0 policy_agg_id = 0 profile_id = 0 site_agg_id = 0 accounts_and_locations = pd.merge(accounts, locations, left_on='AccNumber', right_on='AccNumber') for acc_and_loc, coverage_type, peril in product((acc for _, acc in accounts_and_locations.iterrows()), oed.COVERAGE_TYPES, oed.PERILS): tiv = _get_location_tiv(acc_and_loc, coverage_type) if tiv > 0: policy_agg_id += 1 profile_id += 1 group_id += 1 site_agg_id += 1 profile_id += 1 coverage_id += 1 item_id += 1 yield oed.XrefDescription( xref_id = item_id, account_number = acc_and_loc.get('AccNumber'), location_number = acc_and_loc.get('LocNumber'), location_group = acc_and_loc.get('LocGroup'), cedant_name = acc_and_loc.get('CedantName'), producer_name = acc_and_loc.get('ProducerName'), lob = acc_and_loc.get('LOB'), country_code = acc_and_loc.get('CountryCode'), reins_tag = acc_and_loc.get('ReinsTag'), coverage_type_id = coverage_type, peril_id = peril, policy_number = acc_and_loc.get('PolNumber'), portfolio_number = acc_and_loc.get('PortNumber'), tiv = tiv ) @oasis_log def generate_files_for_reinsurance( items, coverages, fm_xrefs, xref_descriptions, ri_info_df, ri_scope_df, direct_oasis_files_dir, gulsummaryxref=pd.DataFrame(), fmsummaryxref=pd.DataFrame()): """ Generate files for reinsurance. """ inuring_metadata = {} previous_inuring_priority = None previous_risk_level = None reinsurance_index = 1 for inuring_priority in range(1, ri_info_df['InuringPriority'].max() + 1): # Filter the reinsNumbers by inuring_priority reins_numbers = ri_info_df[ri_info_df['InuringPriority'] == inuring_priority].ReinsNumber.tolist() risk_level_set = set(ri_scope_df[ri_scope_df['ReinsNumber'].isin(reins_numbers)].RiskLevel) for risk_level in oed.REINS_RISK_LEVELS: if risk_level not in risk_level_set: continue written_to_dir = _generate_files_for_reinsurance_risk_level( inuring_priority, items, coverages, fm_xrefs, xref_descriptions, gulsummaryxref, fmsummaryxref, ri_info_df, ri_scope_df, previous_inuring_priority, previous_risk_level, risk_level, reinsurance_index, direct_oasis_files_dir) inuring_metadata[reinsurance_index] = { 'inuring_priority': inuring_priority, 'risk_level': risk_level, 'directory': written_to_dir, } previous_inuring_priority = inuring_priority previous_risk_level = risk_level reinsurance_index = reinsurance_index + 1 return inuring_metadata def _generate_files_for_reinsurance_risk_level( inuring_priority, items, coverages, fm_xrefs, xref_descriptions, gulsummaryxref, fmsummaryxref, ri_info_df, ri_scope_df, previous_inuring_priority, previous_risk_level, risk_level, reinsurance_index, direct_oasis_files_dir): """ Generate files for a reinsurance risk level. """ reins_numbers_1 = ri_info_df[ ri_info_df['InuringPriority'] == inuring_priority].ReinsNumber if reins_numbers_1.empty: return None reins_numbers_2 = ri_scope_df[ ri_scope_df.isin({"ReinsNumber": reins_numbers_1.tolist()}).ReinsNumber & (ri_scope_df.RiskLevel == risk_level)].ReinsNumber if reins_numbers_2.empty: return None ri_info_inuring_priority_df = ri_info_df[ri_info_df.isin( {"ReinsNumber": reins_numbers_2.tolist()}).ReinsNumber] output_name = "ri_{}_{}".format(inuring_priority, risk_level) reinsurance_layer = ReinsuranceLayer( name=output_name, ri_info=ri_info_inuring_priority_df, ri_scope=ri_scope_df, items=items, coverages=coverages, fm_xrefs=fm_xrefs, xref_descriptions=xref_descriptions, gulsummaryxref=gulsummaryxref, fmsummaryxref=fmsummaryxref, risk_level=risk_level ) reinsurance_layer.generate_oasis_structures() output_dir = os.path.join(direct_oasis_files_dir, "RI_{}".format(reinsurance_index)) reinsurance_layer.write_oasis_files(output_dir) return output_dir @oasis_log def write_ri_input_files( exposure_fp, accounts_fp, items_fp, coverages_fp, gulsummaryxref_fp, fm_xref_fp, fmsummaryxref_fp, ri_info_fp, ri_scope_fp, target_dir ): xref_descriptions = pd.DataFrame(generate_xref_descriptions(accounts_fp, exposure_fp)) return generate_files_for_reinsurance( pd.read_csv(items_fp), pd.read_csv(coverages_fp), pd.read_csv(fm_xref_fp), xref_descriptions, pd.read_csv(ri_info_fp), pd.read_csv(ri_scope_fp), target_dir, gulsummaryxref=pd.read_csv(gulsummaryxref_fp), fmsummaryxref=pd.read_csv(fmsummaryxref_fp) ) class ReinsuranceLayer(object): """ Generates ktools inputs and runs financial module for a reinsurance structure. """ def __init__(self, name, ri_info, ri_scope, items, coverages, fm_xrefs, xref_descriptions, risk_level, fmsummaryxref=pd.DataFrame(), gulsummaryxref=pd.DataFrame(), logger=None): self.logger = logger or logging.getLogger() self.name = name self.coverages = coverages self.items = items self.fm_xrefs = fm_xrefs self.xref_descriptions = xref_descriptions self.fmsummaryxref = fmsummaryxref self.gulsummaryxref = gulsummaryxref self.item_ids = list() self.item_tivs = list() self.fmprogrammes = pd.DataFrame() self.fmprofiles = pd.DataFrame() self.fm_policytcs = pd.DataFrame() self.risk_level = risk_level self.ri_info = ri_info self.ri_scope = ri_scope self.add_profiles_args = namedtuple( "AddProfilesArgs", "program_node, ri_info_row, scope_rows, overlay_loop, layer_id, " "node_layer_profile_map, fmprofiles_list, nolossprofile_id, passthroughprofile_id") def _add_node(self, description, parent, level_id, agg_id, portfolio_number=oed.NOT_SET_ID, account_number=oed.NOT_SET_ID, policy_number=oed.NOT_SET_ID, location_number=oed.NOT_SET_ID, location_group=oed.NOT_SET_ID): node = anytree.Node( description, parent=parent, level_id=level_id, agg_id=agg_id, portfolio_number=portfolio_number, account_number=account_number, policy_number=policy_number, location_group=location_group, location_number=location_number) return node def _add_program_node(self, level_id): return self._add_node( "Treaty", parent=None, level_id=level_id, agg_id=1) def _add_item_node(self, xref_id, parent): return self._add_node( "Item_id:{}".format(xref_id), parent=parent, level_id=1, agg_id=xref_id) def _add_location_node( self, level_id, agg_id, xref_description, parent): return self._add_node( "Portfolio_number:{} Account_number:{} Policy_number:{} Location_number:{}".format( xref_description.portfolio_number, xref_description.account_number, xref_description.policy_number, xref_description.location_number), parent=parent, level_id=level_id, agg_id=agg_id, portfolio_number=xref_description.portfolio_number, account_number=xref_description.account_number, policy_number=xref_description.policy_number, location_group=xref_description.location_group, location_number=xref_description.location_number) def _add_location_group_node( self, level_id, agg_id, xref_description, parent): return self._add_node( "Location_group:{}".format(xref_description.location_group), parent=parent, level_id=level_id, agg_id=agg_id, location_group=xref_description.location_group) def _add_policy_node( self, level_id, agg_id, xref_description, parent): return self._add_node( "Portfolio number:{} Account_number:{} Policy_number:{}".format( xref_description.portfolio_number, xref_description.account_number, xref_description.policy_number), parent=parent, level_id=level_id, agg_id=agg_id, portfolio_number=xref_description.portfolio_number, account_number=xref_description.account_number, policy_number=xref_description.policy_number) def _add_account_node( self, agg_id, level_id, xref_description, parent): return self._add_node( "Portfolio number:{} Account_number:{}".format( xref_description.portfolio_number, xref_description.account_number), parent=parent, level_id=level_id, agg_id=agg_id, portfolio_number=xref_description.portfolio_number, account_number=xref_description.account_number) def _add_portfolio_node( self, agg_id, level_id, xref_description, parent): return self._add_node( "Portfolio number:{}".format(xref_description.portfolio_number), parent=parent, level_id=level_id, agg_id=agg_id, portfolio_number=xref_description.portfolio_number) def _is_valid_id(self, id_to_check): is_valid = self._is_defined(id_to_check) and \ ((isinstance(id_to_check, string_types) and id_to_check != "") or (isinstance(id_to_check, numbers.Number) and id_to_check > 0)) return is_valid def _match_portfolio(self, node, scope_row, exact=False): if self._is_valid_id(scope_row.PortNumber): return node.portfolio_number == scope_row.PortNumber else: return True def _match_account(self, node, scope_row, exact=False): match = False if exact: match = self._match_portfolio(node, scope_row) and node.account_number == scope_row.AccNumber else: if (self._is_valid_id(scope_row.PortNumber) and self._is_valid_id(scope_row.AccNumber)): match = self._match_portfolio(node, scope_row) and node.account_number == scope_row.AccNumber else: match = self._match_portfolio(node, scope_row) return match def _match_policy(self, node, scope_row, exact=False): match = False if exact: match = self._match_account(node, scope_row) and node.policy_number == scope_row.PolNumber else: if (self._is_valid_id(scope_row.PolNumber) and self._is_valid_id(scope_row.AccNumber) and self._is_valid_id(scope_row.PortNumber)): match = self._match_account(node, scope_row) and node.policy_number == scope_row.PolNumber else: match = self._match_account(node, scope_row) return match def _match_location(self, node, scope_row, exact=False): match = False if self._is_valid_id(scope_row.PolNumber): if exact: match = self._match_policy(node, scope_row) and node.location_number == scope_row.LocNumber else: if self._is_valid_id(scope_row.LocNumber) and self._is_valid_id(scope_row.AccNumber) and self._is_valid_id(scope_row.PortNumber): match = self._match_policy(node, scope_row) and node.location_number == scope_row.LocNumber else: match = self._match_policy(node, scope_row) else: if exact: match = self._match_account(node, scope_row) and node.location_number == scope_row.LocNumber else: if self._is_valid_id(scope_row.LocNumber) and self._is_valid_id(scope_row.AccNumber) and self._is_valid_id(scope_row.PortNumber): match = self._match_account(node, scope_row) and node.location_number == scope_row.LocNumber else: match = self._match_account(node, scope_row) return match def _match_location_group(self, node, scope_row, exact=False): match = False if self._is_valid_id(scope_row.LocGroup): match = node.location_group == scope_row.LocGroup return match def _is_valid_filter(self, value): return (value is not None and value != "" and value == value) def _match_row(self, node, scope_row): match = True if match and self._is_valid_filter(scope_row.PortNumber): match = node.portfolio_number == scope_row.PortNumber if match and self._is_valid_filter(scope_row.AccNumber): match = node.account_number == scope_row.AccNumber if match and self._is_valid_filter(scope_row.PolNumber): match = node.policy_number == scope_row.PolNumber if match and self._is_valid_filter(scope_row.LocGroup): match = node.location_group == scope_row.LocGroup if match and self._is_valid_filter(scope_row.LocNumber): match = node.location_number == scope_row.LocNumber # if match and self._is_valid_filter(scope_row.CedantName): # if match and self._is_valid_filter(scope_row.ProducerName): # if match and self._is_valid_filter(scope_row.LOB): # if match and self._is_valid_filter(scope_row.CountryCode): # if match and self._is_valid_filter(scope_row.ReinsTag): return match def _scope_filter(self, nodes_list, scope_row, exact=False): """ Return subset of `nodes_list` based on values of a row in `ri_scope.csv` """ filtered_nodes_list = list(filter( lambda n: self._match_row(n, scope_row), nodes_list)) return filtered_nodes_list def _risk_level_filter(self, nodes_list, scope_row, exact=False): """ Return subset of `nodes_list` based on values of a row in `ri_scope.csv` """ if (scope_row.RiskLevel == oed.REINS_RISK_LEVEL_PORTFOLIO): return list(filter( lambda n: self._match_portfolio(n, scope_row, exact), nodes_list)) elif (scope_row.RiskLevel == oed.REINS_RISK_LEVEL_ACCOUNT): return list(filter( lambda n: self._match_account(n, scope_row, exact), nodes_list)) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_POLICY: nodes_list = list(filter( lambda n: self._match_policy(n, scope_row, exact), nodes_list)) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_LOCATION: nodes_list = list(filter( lambda n: self._match_location(n, scope_row, exact), nodes_list)) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_LOCATION_GROUP: nodes_list = list(filter( lambda n: self._match_location_group(n, scope_row, exact), nodes_list)) else: raise OasisException("Unknown risk level: {}".format(scope_row.RiskLevel)) return nodes_list def _is_defined(self, num_to_check): # If the value = NaN it will return False return num_to_check == num_to_check def _check_scope_row(self, scope_row): # For some treaty types the scope filter much match exactly okay = True if (scope_row.RiskLevel == oed.REINS_RISK_LEVEL_ACCOUNT): okay = \ self._is_valid_id(scope_row.AccNumber) and \ not self._is_valid_id(scope_row.PolNumber) and \ not self._is_valid_id(scope_row.LocNumber) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_POLICY: okay = \ self._is_valid_id(scope_row.AccNumber) and \ self._is_valid_id(scope_row.PolNumber) and \ not self._is_valid_id(scope_row.LocNumber) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_LOCATION: okay = \ self._is_valid_id(scope_row.AccNumber) and \ self._is_valid_id(scope_row.LocNumber) elif scope_row.RiskLevel == oed.REINS_RISK_LEVEL_LOCATION_GROUP: okay = \ self._is_valid_id(scope_row.LocGroup) return okay LOCATION_RISK_LEVEL = 2 def _get_tree(self): current_location_number = 0 current_policy_number = 0 current_account_number = 0 current_portfolio_number = 0 current_location_group = 0 current_location_node = None current_node = None if self.risk_level == oed.REINS_RISK_LEVEL_LOCATION: risk_level_id = self.LOCATION_RISK_LEVEL else: risk_level_id = self.LOCATION_RISK_LEVEL + 1 program_node_level_id = risk_level_id + 1 program_node = self._add_program_node(program_node_level_id) if self.risk_level == oed.REINS_RISK_LEVEL_LOCATION_GROUP: xref_descriptions = self.xref_descriptions.sort_values( by=["location_group", "portfolio_number", "account_number", "policy_number", "location_number"]) else: xref_descriptions = self.xref_descriptions.sort_values( by=["portfolio_number", "account_number", "policy_number", "location_number"]) agg_id = 0 loc_agg_id = 0 for row in xref_descriptions.itertuples(): if self.risk_level == oed.REINS_RISK_LEVEL_PORTFOLIO: if current_portfolio_number != row.portfolio_number: agg_id = agg_id + 1 current_node = self._add_portfolio_node( agg_id, risk_level_id, row, program_node) elif self.risk_level == oed.REINS_RISK_LEVEL_ACCOUNT: if \ current_portfolio_number != row.portfolio_number or \ current_account_number != row.account_number: agg_id = agg_id + 1 current_node = self._add_account_node( agg_id, risk_level_id, row, program_node) elif self.risk_level == oed.REINS_RISK_LEVEL_POLICY: if \ current_portfolio_number != row.portfolio_number or \ current_account_number != row.account_number or \ current_policy_number != row.policy_number: agg_id = agg_id + 1 current_node = self._add_policy_node( risk_level_id, agg_id, row, program_node) elif self.risk_level == oed.REINS_RISK_LEVEL_LOCATION_GROUP: if current_location_group != row.location_group: agg_id = agg_id + 1 current_node = self._add_location_group_node( risk_level_id, agg_id, row, program_node) if \ current_portfolio_number != row.portfolio_number or \ current_account_number != row.account_number or \ current_policy_number != row.policy_number or \ current_location_number != row.location_number: loc_agg_id = loc_agg_id + 1 level_id = 2 if self.risk_level == oed.REINS_RISK_LEVEL_LOCATION: current_location_node = self._add_location_node( level_id, loc_agg_id, row, program_node) else: current_location_node = self._add_location_node( level_id, loc_agg_id, row, current_node) current_portfolio_number = row.portfolio_number current_account_number = row.account_number current_policy_number = row.policy_number current_location_number = row.location_number current_location_group = row.location_group self._add_item_node(row.xref_id, current_location_node) return program_node def _get_risk_level_id(self): if self.risk_level == oed.REINS_RISK_LEVEL_LOCATION: risk_level_id = 2 else: risk_level_id = 3 return risk_level_id def _get_filter_level_id(self): risk_level_id = 2 return risk_level_id def _get_next_profile_id(self, add_profiles_args): profile_id = max( x.profile_id for x in add_profiles_args.fmprofiles_list) return profile_id + 1 def _add_fac_profiles(self, add_profiles_args): self.logger.debug("Adding FAC profiles:") profile_id = self._get_next_profile_id(add_profiles_args) add_profiles_args.fmprofiles_list.append(oed.get_reinsurance_profile( profile_id, attachment=add_profiles_args.ri_info_row.RiskAttachment, limit=add_profiles_args.ri_info_row.RiskLimit, ceded=add_profiles_args.ri_info_row.CededPercent, placement=add_profiles_args.ri_info_row.PlacedPercent )) nodes_risk_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_risk_level_id()) if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: nodes_filter_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_filter_level_id()) for node in nodes_filter_level_all: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id for _, ri_scope_row in add_profiles_args.scope_rows.iterrows(): # Note that FAC profiles scope much match the filter exactly. if not self._check_scope_row(ri_scope_row): raise OasisException("Invalid scope row: {}".format(ri_scope_row)) nodes = self._risk_level_filter(nodes_risk_level_all, ri_scope_row, exact=True) for node in nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id def _add_per_risk_profiles(self, add_profiles_args): self.logger.debug("Adding PR profiles:") profile_id = self._get_next_profile_id(add_profiles_args) nodes_risk_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_risk_level_id()) if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: nodes_filter_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_filter_level_id()) add_profiles_args.fmprofiles_list.append(oed.get_reinsurance_profile( profile_id, attachment=add_profiles_args.ri_info_row.RiskAttachment, limit=add_profiles_args.ri_info_row.RiskLimit, ceded=add_profiles_args.ri_info_row.CededPercent, )) for _, ri_scope_row in add_profiles_args.scope_rows.iterrows(): if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: selected_nodes = self._scope_filter(nodes_filter_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id selected_nodes = self._risk_level_filter(nodes_risk_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id # add OccLimit / Placed Percent profile_id = profile_id + 1 add_profiles_args.fmprofiles_list.append( oed.get_occlim_profile( profile_id, limit=add_profiles_args.ri_info_row.OccLimit, placement=add_profiles_args.ri_info_row.PlacedPercent, )) add_profiles_args.node_layer_profile_map[ (add_profiles_args.program_node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id def _add_surplus_share_profiles(self, add_profiles_args): self.logger.debug("Adding SS profiles:") profile_id = self._get_next_profile_id(add_profiles_args) nodes_risk_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_risk_level_id()) if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: nodes_filter_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_filter_level_id()) for node in nodes_filter_level_all: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id for _, ri_scope_row in add_profiles_args.scope_rows.iterrows(): # Note that surplus share profiles scope much match the filter exactly. if not self._check_scope_row(ri_scope_row): raise OasisException("Invalid scope row: {}".format(ri_scope_row)) add_profiles_args.fmprofiles_list.append(oed.get_reinsurance_profile( profile_id, attachment=add_profiles_args.ri_info_row.RiskAttachment, limit=add_profiles_args.ri_info_row.RiskLimit, ceded=ri_scope_row.CededPercent, )) selected_nodes = self._risk_level_filter(nodes_risk_level_all, ri_scope_row, exact=True) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id profile_id = profile_id + 1 # add OccLimit / Placed Percent add_profiles_args.fmprofiles_list.append( oed.get_occlim_profile( profile_id, limit=add_profiles_args.ri_info_row.OccLimit, placement=add_profiles_args.ri_info_row.PlacedPercent, )) add_profiles_args.node_layer_profile_map[ (add_profiles_args.program_node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id def _add_quota_share_profiles(self, add_profiles_args): self.logger.debug("Adding QS profiles:") profile_id = self._get_next_profile_id(add_profiles_args) nodes_risk_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_risk_level_id()) if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: nodes_filter_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_filter_level_id()) add_profiles_args.fmprofiles_list.append( oed.get_reinsurance_profile( profile_id, limit=add_profiles_args.ri_info_row.RiskLimit, ceded=add_profiles_args.ri_info_row.CededPercent, )) for _, ri_scope_row in add_profiles_args.scope_rows.iterrows(): # Filter if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: selected_nodes = self._scope_filter(nodes_filter_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id selected_nodes = self._risk_level_filter(nodes_risk_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id # add OccLimit / Placed Percent profile_id = profile_id + 1 add_profiles_args.fmprofiles_list.append( oed.get_occlim_profile( profile_id, limit=add_profiles_args.ri_info_row.OccLimit, placement=add_profiles_args.ri_info_row.PlacedPercent, )) add_profiles_args.node_layer_profile_map[ (add_profiles_args.program_node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id def _add_cat_xl_profiles(self, add_profiles_args): self.logger.debug("Adding CAT XL profiles") profile_id = self._get_next_profile_id(add_profiles_args) nodes_risk_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_risk_level_id()) if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: nodes_filter_level_all = anytree.search.findall( add_profiles_args.program_node, filter_=lambda node: node.level_id == self._get_filter_level_id()) for _, ri_scope_row in add_profiles_args.scope_rows.iterrows(): # Filter if self.risk_level != oed.REINS_RISK_LEVEL_LOCATION: selected_nodes = self._scope_filter(nodes_filter_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id selected_nodes = self._risk_level_filter(nodes_risk_level_all, ri_scope_row, exact=False) for node in selected_nodes: add_profiles_args.node_layer_profile_map[( node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = add_profiles_args.passthroughprofile_id # Add OccLimit / Placed Percent add_profiles_args.fmprofiles_list.append( oed.get_reinsurance_profile( profile_id, attachment=add_profiles_args.ri_info_row.OccAttachment, ceded=add_profiles_args.ri_info_row.CededPercent, limit=add_profiles_args.ri_info_row.OccLimit, placement=add_profiles_args.ri_info_row.PlacedPercent, )) add_profiles_args.node_layer_profile_map[ (add_profiles_args.program_node.name, add_profiles_args.layer_id, add_profiles_args.overlay_loop)] = profile_id def _log_reinsurance_structure(self, add_profiles_args): if self.logger: self.logger.debug('policytc_map: "{}"'.format(self.name)) policytc_map = dict() for k in add_profiles_args.node_layer_profile_map.keys(): profile_id = add_profiles_args.node_layer_profile_map[k] policytc_map["(Name=%s, layer_id=%s, overlay_loop=%s)" % k] = profile_id self.logger.debug(json.dumps(policytc_map, indent=4)) self.logger.debug('fm_policytcs: "{}"'.format(self.name)) self.logger.debug(self.fm_policytcs) self.logger.debug('fm_profile: "{}"'.format(self.name)) self.logger.debug(self.fmprofiles) self.logger.debug('fm_programme: "{}"'.format(self.name)) self.logger.debug(self.fmprogrammes) def _log_tree(self, program_node): if self.logger: self.logger.debug('program_node tree: "{}"'.format(self.name)) self.logger.debug(anytree.RenderTree(program_node)) def _log_reinsurance_structure(self, add_profiles_args): if self.logger: self.logger.debug('policytc_map: "{}"'.format(self.name)) policytc_map = dict() for k in add_profiles_args.node_layer_profile_map.keys(): profile_id = add_profiles_args.node_layer_profile_map[k] policytc_map["(Name=%s, layer_id=%s, overlay_loop=%s)" % k] = profile_id self.logger.debug(json.dumps(policytc_map, indent=4)) self.logger.debug('fm_policytcs: "{}"'.format(self.name)) self.logger.debug(self.fm_policytcs) self.logger.debug('fm_profile: "{}"'.format(self.name)) self.logger.debug(self.fmprofiles) self.logger.debug('fm_programme: "{}"'.format(self.name)) self.logger.debug(self.fmprogrammes) def generate_oasis_structures(self): ''' Create the Oasis structures - FM Programmes, FM Profiles and FM Policy TCs - that represent the reinsurance structure. The algorithm to create the stucture has three steps: Step 1 - Build a tree representation of the insurance program, depending on the reinsurance risk level. Step 2 - Overlay the reinsurance structure. Each reinsurance contact is a seperate layer. Step 3 - Iterate over the tree and write out the Oasis structure. ''' fmprogrammes_list = list() fmprofiles_list = list() fm_policytcs_list = list() profile_id = 1 nolossprofile_id = profile_id fmprofiles_list.append( oed.get_no_loss_profile(nolossprofile_id)) profile_id = profile_id + 1 passthroughprofile_id = profile_id fmprofiles_list.append( oed.get_pass_through_profile(passthroughprofile_id)) node_layer_profile_map = {} self.logger.debug(fmprofiles_list) # # Step 1 - Build a tree representation of the insurance program, depening on the reinsurance risk level. # program_node = self._get_tree() self._log_tree(program_node) # # Step 2 - Overlay the reinsurance structure. Each reinsurance contact is a seperate layer. # layer_id = 1 # Current layer ID overlay_loop = 0 # Overlays multiple rules in same layer prev_reins_number = 1 for _, ri_info_row in self.ri_info.iterrows(): overlay_loop += 1 scope_rows = self.ri_scope[ (self.ri_scope.ReinsNumber == ri_info_row.ReinsNumber) & (self.ri_scope.RiskLevel == self.risk_level)] # If FAC, don't increment the layer number # Else, only increment inline with the reins_number if ri_info_row.ReinsType in ['FAC']: pass elif prev_reins_number < ri_info_row.ReinsNumber: layer_id += 1 prev_reins_number = ri_info_row.ReinsNumber if self.logger:
pd.set_option('display.width', 1000)
pandas.set_option
import pandas as pd import numpy as np import warnings; warnings.simplefilter('ignore') from ast import literal_eval df1 = pd.read_csv("merged_cleaned.csv") df2 =
pd.read_csv("ratings_combined.csv")
pandas.read_csv
import pandas as pd porfolio1 = pd.DataFrame({'Asset': ['FX', 'FX', 'IR'], 'Instrument': ['Option', 'Swap', 'Option'], 'Number': [1, 2, 3]}) porfolio2 = pd.DataFrame({'Asset': ['FX', 'FX', 'FX', 'IR'], 'Instrument': ['Option', 'Option', 'Swap', 'Swap'], 'Number': [4, 5, 6, 7]}) print(porfolio1) print(porfolio2) print(
pd.merge(porfolio1, porfolio2, on='Asset')
pandas.merge
import pandas as pd import numpy as np from load_data import load_csv import constants as cst import sys file_path = "./data/bitstampUSD_1-min_data_2012-01-01_to_2018-06-27.csv" def select_data(dataframe, start=None, stop=None): """ :param dataframe: df pandas :param start: str, min date to considerate, format: "YYYY/MM/DD", default value is the min date :param stop: str, max date to considerate :return: dataframe dans les dates :raise null dataframe exception if start and stop leaves a null dataframe """ if start is not None: dataframe = dataframe[dataframe[cst.DATE] >= pd.to_datetime(start, format="%Y-%m-%d")] if stop is not None: dataframe = dataframe[dataframe[cst.DATE] <=
pd.to_datetime(stop, format="%Y-%m-%d")
pandas.to_datetime
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
"""Represent SQL tokens as Pandas operations. """ from sqlalchemy.sql import operators from sqlalchemy import sql from sqlalchemy import util from sqlalchemy import types as sqltypes import functools import pandas as pd import numpy as np import collections from . import dbapi from sqlalchemy.sql.functions import GenericFunction from sqlalchemy.ext.compiler import compiles def aggregate_fn(package=None): """Mark a Python function as a SQL aggregate function. The function should typically receive a Pandas Series object as an argument and return a scalar result. E.g.:: from calchipan import aggregate_fn @aggregate_fn() def stddev(values): return values.std() The object is converted into a SQLAlchemy GenericFunction object, which can be used directly:: stmt = select([stddev(table.c.value)]) or via the SQLAlchemy ``func`` namespace:: from sqlalchemy import func stmt = select([func.stddev(table.c.value)]) Functions can be placed in ``func`` under particular "package" names using the ``package`` argument:: @aggregate_fn(package='numpy') def stddev(values): return values.std() Usage via ``func`` is then:: from sqlalchemy import func stmt = select([func.numpy.stddev(table.c.value)]) An aggregate function that is called with multiple expressions will be passed a single argument that is a list of Series objects. """ def mark_aggregate(fn): kwargs = {'name': fn.__name__} if package: kwargs['package'] = package custom_func = type("%sFunc" % fn.__name__, (GenericFunction,), kwargs) @compiles(custom_func, 'pandas') def _compile_fn(expr, compiler, **kw): return FunctionResolver(fn, compiler.process(expr.clauses, **kw), True) return custom_func return mark_aggregate def non_aggregate_fn(package=None): """Mark a Python function as a SQL non-aggregate function. The function should receive zero or more scalar Python objects as arguments and return a scalar result. E.g.:: from calchipan import non_aggregate_fn @non_aggregate_fn() def add_numbers(value1, value2): return value1 + value2 Usage and behavior is identical to that of :func:`.aggregate_fn`, except that the function is not treated as an aggregate. Function expressions are also expanded out to individual positional arguments, whereas an aggregate always receives a single structure as an argument. """ def mark_non_aggregate(fn): kwargs = {'name': fn.__name__} if package: kwargs['package'] = package custom_func = type("%sFunc" % fn.__name__, (GenericFunction,), kwargs) @compiles(custom_func, 'pandas') def _compile_fn(expr, compiler, **kw): return FunctionResolver(fn, compiler.process(expr.clauses, **kw), False) return custom_func return mark_non_aggregate ResolverContext = collections.namedtuple("ResolverContext", ["cursor", "namespace", "params"]) class Resolver(object): def __call__(self, cursor, namespace, params): """Resolve this expression. Resolvers are callables; this is called by the DBAPI.""" return self.resolve(ResolverContext(cursor, namespace, params)) def resolve(self, ctx): """Resolve this expression given a ResolverContext. Front end for resolution, linked to top-level __call__().""" raise NotImplementedError() class NullResolver(Resolver): def resolve(self, ctx): pass class ColumnElementResolver(Resolver): """Top level class for SQL expressions.""" def resolve_expression(self, ctx, product): """Resolve as a column expression. Return value here is typically a Series or a scalar value. """ raise NotImplementedError() class FromResolver(Resolver): """Top level class for 'from' objects, things you can select rows from.""" def resolve_dataframe(self, ctx, names=True): """Resolve as a dataframe. Return value here is a DataFrame object. """ raise NotImplementedError() class FunctionResolver(ColumnElementResolver): def __init__(self, fn, expr, aggregate): self.fn = fn self.expr = expr self.aggregate = aggregate def resolve_expression(self, ctx, product): if self.aggregate: q = self.fn(self.expr.resolve_expression( ctx, product)) q = pd.Series([q], name="aggregate") else: q = self.fn(*self.expr.resolve_expression( ctx, product)) return q class ConstantResolver(ColumnElementResolver): def __init__(self, value): self.value = value def resolve_expression(self, ctx, product): return self.value class LiteralResolver(ColumnElementResolver): def __init__(self, value): self.value = value self.name = str(id(self)) def resolve_expression(self, ctx, product): return self.value @property def df_index(self): return self.name class ColumnResolver(ColumnElementResolver): def __init__(self, name, tablename): self.name = name self.tablename = tablename def resolve_expression(self, ctx, product): if product is None: df = TableResolver(self.tablename).resolve_dataframe(ctx) else: df = product.resolve_dataframe(ctx) return df[self.df_index] @property def df_index(self): return "#T_%s_#C_%s" % (self.tablename, self.name) class UnaryResolver(ColumnElementResolver): def __init__(self, expression, operator, modifier): self.operator = operator self.modifier = modifier self.expression = expression def resolve_expression(self, ctx, product): return self.expression.resolve_expression( ctx, product) @property def df_index(self): return self.expression.df_index class LabelResolver(Resolver): def __init__(self, expression, name): self.expression = expression self.name = name def resolve_expression(self, ctx, product): return self.expression.resolve_expression(ctx, product) @property def df_index(self): return self.name class BinaryResolver(ColumnElementResolver): def __init__(self, left, right, operator): self.left = left self.right = right self.operator = operator def resolve_expression(self, ctx, product): return self.operator( self.left.resolve_expression(ctx, product), self.right.resolve_expression(ctx, product), ) class ClauseListResolver(ColumnElementResolver): def __init__(self, expressions, operator): self.expressions = expressions self.operator = operator def resolve_expression(self, ctx, product): exprs = [expr.resolve_expression(ctx, product) for expr in self.expressions] if self.operator is operators.comma_op: if len(exprs) == 1: return exprs[0] else: return exprs else: return functools.reduce(self.operator, exprs) class BindParamResolver(ColumnElementResolver): def __init__(self, name): self.name = name def resolve_expression(self, ctx, product): return ctx.params[self.name] class DerivedResolver(FromResolver): def __init__(self, dataframe): self.dataframe = dataframe def resolve_dataframe(self, ctx, names=True): return self.dataframe class TableResolver(FromResolver): def __init__(self, tablename, autoincrement_col=None): self.tablename = tablename self.autoincrement_col = autoincrement_col def resolve_dataframe(self, ctx, names=True): df = ctx.namespace[self.tablename] if names: # performance tests show that the rename() here is # not terribly expensive as long as copy=False. Adding the # index as a column is much more expensive, however, # though is not as common of a use case. # the renamed dataframe can be cached, though this means # that all mutation operations need to clear the cache also. # a quicker route to having the index accessible is to # add an explicit copy of the index to the DataFrame outside # of the SQL dialect - that way it won't be copied here # each time. renamed_df = df.rename( columns=dict( (k, "#T_%s_#C_%s" % (self.tablename, k)) for k in df.keys() ), copy=False ) if self.autoincrement_col and self.autoincrement_col not in df: renamed_df["#T_%s_#C_%s" % (self.tablename, self.autoincrement_col)] = df.index return renamed_df elif self.autoincrement_col and self.autoincrement_col not in df: renamed_df = df.copy() renamed_df[self.autoincrement_col] = df.index return renamed_df else: return df class AliasResolver(FromResolver): def __init__(self, table, aliasname): self.table = table self.aliasname = aliasname def resolve_dataframe(self, ctx, names=True): df = self.table.resolve_dataframe(ctx, names=False) if names: df = df.rename( columns=dict( (k, "#T_%s_#C_%s" % (self.aliasname, k)) for k in df.keys() ), copy=False ) return df class JoinResolver(FromResolver): def __init__(self, left, right, onclause, isouter): self.left = left self.right = right self.onclause = onclause self.isouter = isouter def resolve_dataframe(self, ctx, names=True): df1 = left = self.left.resolve_dataframe(ctx) df2 = self.right.resolve_dataframe(ctx) if self.isouter: left['_cp_left_index'] = left.index straight_binaries, remainder = self._produce_join_expressions(df1, df2) df1 = self._merge_straight_binaries(ctx, df1, df2, straight_binaries) df1 = self._merge_remainder(ctx, left, df1, df2, straight_binaries, remainder) return df1.where(pd.notnull(df1), None) def _produce_join_expressions(self, df1, df2): straight_binaries = [] remainder = [] if isinstance(self.onclause, ClauseListResolver) and \ self.onclause.operator is operators.and_: comparisons = self.onclause.expressions else: comparisons = [self.onclause] # extract comparisons like this: # col1 == col2 AND col3 == col4 AND ... # use pd.merge() for those for comp in comparisons: if isinstance(comp, BinaryResolver) and \ comp.operator is operators.eq and \ hasattr(comp.left, "df_index") and \ hasattr(comp.right, "df_index"): if comp.left.df_index in df1 and \ comp.right.df_index in df2: straight_binaries.append( (comp.left.df_index, comp.right.df_index) ) continue elif comp.right.df_index in df1 and \ comp.left.df_index in df2: straight_binaries.append( (comp.right.df_index, comp.left.df_index) ) continue remainder.append(comp) return straight_binaries, remainder def _merge_straight_binaries(self, ctx, df1, df2, straight_binaries): if straight_binaries: # use merge() for straight binaries. left_on, right_on = zip(*straight_binaries) df1 = df1.merge(df2, left_on=left_on, right_on=right_on, how='left' if self.isouter else 'inner') return df1 def _merge_remainder(self, ctx, left, df1, df2, straight_binaries, remainder): # for joins that aren't straight "col == col", # we use the ON criterion directly. # if we don't already have a dataframe with the full # left + right cols, we use a cartesian product first. # ideally, we'd limit the cartesian on only those columns we # need. if remainder: if len(remainder) > 1: remainder = ClauseListResolver(remainder, operators.and_) else: remainder = remainder[0] # TODO: performance optimization: do the cartesian product # here on a subset of the two dataframes, that only includes # those columns we need in the expression. Then reindex # back out to the original dataframes. if not straight_binaries: df1 = _cartesian_dataframe(ctx, df1, df2) expr = remainder.resolve_expression(ctx, DerivedResolver(df1)) joined = df1[expr] if self.isouter: # for outer join, grab remaining rows from "left" remaining_left_ids = set(df1['_cp_left_index']).\ difference(joined['_cp_left_index']) remaining = left.ix[remaining_left_ids] df1 = pd.concat([joined, remaining]).reset_index() else: df1 = joined return df1 class _ExprCol(ColumnElementResolver): def __init__(self, expr, name): self.expr = expr self.name = name def resolve_expression(self, ctx, product): return self.expr.resolve_expression(ctx, product) @property def df_index(self): return self.name class BaseSelectResolver(FromResolver): group_by = None order_by = None having = None limit = None offset = None @util.memoized_property def columns(self): return [] def _evaluate(self, ctx, correlate=None): raise NotImplementedError() def resolve(self, ctx, correlate=None): product = self._evaluate(ctx, correlate) if self.group_by is not None: df = product.resolve_dataframe(ctx) gp = self.group_by.resolve_expression(ctx, product) groups = [DerivedResolver(gdf[1]) for gdf in df.groupby(gp)] else: groups = [product] frame_columns = list(self.columns) if self.having is not None: if self.group_by is None: raise dbapi.Error("HAVING must also have GROUP BY") frame_columns.append(_ExprCol(self.having, '_having')) if self.order_by is not None: for idx, ob_expr in enumerate(self.order_by.expressions): frame_columns.append(_ExprCol(ob_expr, '_order_by_%d' % idx)) def process_aggregates(gprod): """detect aggregate functions in column clauses and flatten results if present """ cols = [ _coerce_to_series( ctx, c.resolve_expression(ctx, gprod) ).reset_index(drop=True) for c in frame_columns] for c in cols: if c.name == 'aggregate': break else: return cols return [ list(c)[0] if c.name != 'aggregate' else c for c in cols ] nu = _unique_name() names = [nu(c.name) for c in self.columns] group_results = [ pd.DataFrame.from_items( [ ( c.df_index, expr ) for c, expr in zip(frame_columns, process_aggregates(gprod)) ] ) for gprod in groups ] non_empty = [g for g in group_results if len(g)] if not non_empty: # empty result return pd.DataFrame(columns=names) else: results =
pd.concat(non_empty)
pandas.concat
from tensorflow.python.ops.functional_ops import While import tensorflow as tf import numpy as np import pandas as pd import waktu as wk import time from datetime import datetime from datetime import date import schedule import pyrebase import json import firebase_admin from firebase_admin import credentials from firebase_admin import firestore from tensorflow import keras from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow.python.eager.context import num_gpus from os import read, stat_result from re import T, X cred = credentials.Certificate("serviceAccountKey.json") firebase_admin.initialize_app(cred) dbStore = firestore.client() def cekHari(): cekNow = date.today().strftime("%A") if cekNow == 'Monday': now = 0 elif cekNow == 'Tuesday': now = 1 elif cekNow == 'Wednesday': now = 2 elif cekNow == 'Thursday': now = 3 elif cekNow == 'Friday': now = 4 elif cekNow == 'Saturday': now = 5 elif cekNow == 'Sunday': now = 6 return now config = { "apiKey": "<KEY>", "authDomain": "cloudta2021-fa4af.firebaseapp.com", "databaseURL": "https://cloudta2021-fa4af-default-rtdb.firebaseio.com", "storageBucket": "cloudta2021-fa4af.appspot.com" } DataHead = "Dataset Hasil Pengujian" firebase = pyrebase.initialize_app(config) db = firebase.database() timeNow = datetime.now() jam = timeNow.hour menit = timeNow.minute timestamp = timeNow.strftime("%H:%M") day = date.today().strftime("%A") idrelay = [0, 1, 2, 3] hari = cekHari() waktu = wk.cekWaktu(jam, menit) # waktu = 120 # hari = 0 data = pd.read_csv('FixDataBind.csv') data =
pd.DataFrame(data, columns=['waktu', 'hari', 'idrelay', 'status'])
pandas.DataFrame
from mlapp.managers import DataManager, pipeline from mlapp.utils.exceptions.base_exceptions import DataManagerException import pandas as pd import numpy as np class FlowRegressionDataManager(DataManager): @pipeline def load_train_data(self,*args): print(args) return @pipeline def clean_train_data(self, data): return data @pipeline def transform_train_data(self, data): return data @pipeline def load_forecast_data(self, *args): try: models_outputs = args[0] except Exception as e: raise DataManagerException("Error: No data input from flow") # read data for forecasting features = {} data = pd.DataFrame() df_name = self.data_settings.get('flow_return_data') for model_output in models_outputs: index = self.data_settings.get('data_index') res = model_output.get(df_name, pd.DataFrame(columns=index)) if len(res) > 0: df = res[0] # df.set_index(self.data_settings.get('data_index')) data = pd.concat([data, df]) else: continue for feature_name in self.data_settings.get('flow_return_features'): features[feature_name] = [] for model_output in models_outputs: feature_data = model_output.get(feature_name, pd.DataFrame(columns=index)) if len(feature_data)>0: if isinstance(feature_data, pd.DataFrame): if not isinstance(features[feature_name], pd.DataFrame): features[feature_name]=pd.DataFrame() features[feature_name] =
pd.concat([feature_data, features[feature_name]])
pandas.concat
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) error_mask = ( (oc2['4th_bday'] > collection_end) & oc2[['SDQ_SCORE', 'SDQ_REASON']].notna().any(axis=1) ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_190(): error = ErrorDefinition( code='190', description="Child has not been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been completed.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] , # AD1 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_blank = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] mask = ~oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_blank].notna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_191(): error = ErrorDefinition( code='191', description="Child has been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been left blank.", affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], # OC2 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_present = ['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'] mask = oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_present].isna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_607(): error = ErrorDefinition( code='607', description='Child ceased to be looked after in the year, but mother field has not been completed.', affected_fields=['DEC', 'REC', 'MOTHER', 'LS', 'SEX'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] code_list = ['V3', 'V4'] # convert to datetiime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # CEASED_TO_BE_LOOKED_AFTER = DEC is not null and REC is filled but not equal to X1 CEASED_TO_BE_LOOKED_AFTER = merged['DEC'].notna() & ((merged['REC'] != 'X1') & merged['REC'].notna()) # and <LS> not = โ€˜V3โ€™ or โ€˜V4โ€™ check_LS = ~(merged['LS'].isin(code_list)) # and <DEC> is in <CURRENT_COLLECTION_YEAR check_DEC = (collection_start <= merged['DEC']) & (merged['DEC'] <= collection_end) # Where <CEASED_TO_BE_LOOKED_AFTER> = โ€˜Yโ€™, and <LS> not = โ€˜V3โ€™ or โ€˜V4โ€™ and <DEC> is in <CURRENT_COLLECTION_YEAR> and <SEX> = โ€˜2โ€™ then <MOTHER> should be provided. mask = CEASED_TO_BE_LOOKED_AFTER & check_LS & check_DEC & (merged['SEX'] == '2') & (merged['MOTHER'].isna()) header_error_locs = merged.loc[mask, 'index_er'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_210(): error = ErrorDefinition( code='210', description='Children looked after for more than a week at 31 March should not have an unknown Unique Pupil Number (UPN) code of UN4.', affected_fields=['UPN', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_end = dfs['metadata']['collection_end'] # convert to datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') yr = collection_end.year reference_date = ref_date = pd.to_datetime('24/03/' + str(yr), format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) # the logical way is to merge left on UPN but that will be a one to many merge and may not go as well as a many to one merge that we've been doing. merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <UPN> = 'UN4' then no episode <DECOM> must be >` = 24/03/YYYY Note: YYYY refers to the current collection year. mask = (merged['UPN'] == 'UN4') & (merged['DECOM'] >= reference_date) # error locations error_locs_header = merged.loc[mask, 'index_er'] error_locs_eps = merged.loc[mask, 'index_eps'] return {'Episodes': error_locs_eps.tolist(), 'Header': error_locs_header.unique().tolist()} return error, _validate def validate_1010(): error = ErrorDefinition( code='1010', description='This child has no episodes loaded for current year even though there was an open episode of ' + 'care at the end of the previous year, and care leaver data has been entered.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] oc3 = dfs['OC3'] # convert DECOM to datetime, drop missing/invalid sort by CHILD then DECOM, episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = episodes_last.dropna(subset=['DECOM']).sort_values(['CHILD', 'DECOM'], ascending=True) # Keep only the final episode for each child (ie where the following row has a different CHILD value) episodes_last = episodes_last[ episodes_last['CHILD'].shift(-1) != episodes_last['CHILD'] ] # Keep only the final episodes that were still open episodes_last = episodes_last[episodes_last['DEC'].isna()] # The remaining children ought to have episode data in the current year if they are in OC3 has_current_episodes = oc3['CHILD'].isin(episodes['CHILD']) has_open_episode_last = oc3['CHILD'].isin(episodes_last['CHILD']) error_mask = ~has_current_episodes & has_open_episode_last validation_error_locations = oc3.index[error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_525(): error = ErrorDefinition( code='525', description='A child for whom the decision to be placed for adoption has been reversed cannot be adopted during the year.', affected_fields=['DATE_PLACED_CEASED', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs or 'AD1' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] ad1 = dfs['AD1'] # prepare to merge placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = placed_adoption.merge(ad1, on='CHILD', how='left', suffixes=['_placed', '_ad1']) # If <DATE_PLACED_CEASED> not Null, then <DATE_INT>; <DATE_MATCH>; <FOSTER_CARE>; <NB_ADOPTR>; <SEX_ADOPTR>; and <LS_ADOPTR> should not be provided mask = merged['DATE_PLACED_CEASED'].notna() & ( merged['DATE_INT'].notna() | merged['DATE_MATCH'].notna() | merged['FOSTER_CARE'].notna() | merged['NB_ADOPTR'].notna() | merged['SEX_ADOPTR'].notna() | merged['LS_ADOPTR'].notna()) # error locations pa_error_locs = merged.loc[mask, 'index_placed'] ad_error_locs = merged.loc[mask, 'index_ad1'] # return result return {'PlacedAdoption': pa_error_locs.tolist(), 'AD1': ad_error_locs.tolist()} return error, _validate def validate_335(): error = ErrorDefinition( code='335', description='The current foster value (0) suggests that child is not adopted by current foster carer, but last placement is A2, A3, or A5. Or the current foster value (1) suggests that child is adopted by current foster carer, but last placement is A1, A4 or A6.', affected_fields=['PLACE', 'FOSTER_CARE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'AD1' not in dfs: return {} else: episodes = dfs['Episodes'] ad1 = dfs['AD1'] # prepare to merge episodes.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = episodes.merge(ad1, on='CHILD', how='left', suffixes=['_eps', '_ad1']) # Where <PL> = 'A2', 'A3' or 'A5' and <DEC> = 'E1', 'E11', 'E12' <FOSTER_CARE> should not be '0'; Where <PL> = โ€˜A1โ€™, โ€˜A4โ€™ or โ€˜A6โ€™ and <REC> = โ€˜E1โ€™, โ€˜E11โ€™, โ€˜E12โ€™ <FOSTER_CARE> should not be โ€˜1โ€™. mask = ( merged['REC'].isin(['E1', 'E11', 'E12']) & ( (merged['PLACE'].isin(['A2', 'A3', 'A5']) & (merged['FOSTER_CARE'].astype(str) == '0')) | (merged['PLACE'].isin(['A1', 'A4', 'A6']) & (merged['FOSTER_CARE'].astype(str) == '1')) ) ) eps_error_locs = merged.loc[mask, 'index_eps'] ad1_error_locs = merged.loc[mask, 'index_ad1'] # use .unique since join is many to one return {'Episodes': eps_error_locs.tolist(), 'AD1': ad1_error_locs.unique().tolist()} return error, _validate def validate_215(): error = ErrorDefinition( code='215', description='Child has care leaver information but one or more data items relating to children looked after for 12 months have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] ) def _validate(dfs): if 'OC3' not in dfs or 'OC2' not in dfs: return {} else: oc3 = dfs['OC3'] oc2 = dfs['OC2'] # prepare to merge oc3.reset_index(inplace=True) oc2.reset_index(inplace=True) merged = oc3.merge(oc2, on='CHILD', how='left', suffixes=['_3', '_2']) # If any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided then <CONVICTED>; <HEALTH_CHECK>; <IMMUNISATIONS>; <TEETH_CHECK>; <HEALTH_ASSESSMENT>; <SUBSTANCE MISUSE>; <INTERVENTION_RECEIVED>; <INTERVENTION_OFFERED>; should not be provided mask = (merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) & ( merged['CONVICTED'].notna() | merged['HEALTH_CHECK'].notna() | merged['IMMUNISATIONS'].notna() | merged['TEETH_CHECK'].notna() | merged['HEALTH_ASSESSMENT'].notna() | merged[ 'SUBSTANCE_MISUSE'].notna() | merged['INTERVENTION_RECEIVED'].notna() | merged[ 'INTERVENTION_OFFERED'].notna()) # error locations oc3_error_locs = merged.loc[mask, 'index_3'] oc2_error_locs = merged.loc[mask, 'index_2'] return {'OC3': oc3_error_locs.tolist(), 'OC2': oc2_error_locs.tolist()} return error, _validate def validate_399(): error = ErrorDefinition( code='399', description='Mother field, review field or participation field are completed but ' + 'child is looked after under legal status V3 or V4.', affected_fields=['MOTHER', 'LS', 'REVIEW', 'REVIEW_CODE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'Reviews' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] reviews = dfs['Reviews'] code_list = ['V3', 'V4'] # prepare to merge episodes['index_eps'] = episodes.index header['index_hdr'] = header.index reviews['index_revs'] = reviews.index # merge merged = (episodes.merge(header, on='CHILD', how='left') .merge(reviews, on='CHILD', how='left')) # If <LS> = 'V3' or 'V4' then <MOTHER>, <REVIEW> and <REVIEW_CODE> should not be provided mask = merged['LS'].isin(code_list) & ( merged['MOTHER'].notna() | merged['REVIEW'].notna() | merged['REVIEW_CODE'].notna()) # Error locations eps_errors = merged.loc[mask, 'index_eps'] header_errors = merged.loc[mask, 'index_hdr'].unique() revs_errors = merged.loc[mask, 'index_revs'].unique() return {'Episodes': eps_errors.tolist(), 'Header': header_errors.tolist(), 'Reviews': revs_errors.tolist()} return error, _validate def validate_189(): error = ErrorDefinition( code='189', description='Child is aged 17 years or over at the beginning of the year, but an Strengths and Difficulties ' + '(SDQ) score or a reason for no Strengths and Difficulties (SDQ) score has been completed.', affected_fields=['DOB', 'SDQ_SCORE', 'SDQ_REASON'] ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] collection_start = dfs['metadata']['collection_start'] # datetime format allows appropriate comparison between dates oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # If <DOB> >17 years prior to <COLLECTION_START_DATE> then <SDQ_SCORE> and <SDQ_REASON> should not be provided mask = ((oc2['DOB'] + pd.offsets.DateOffset(years=17)) <= collection_start) & ( oc2['SDQ_REASON'].notna() | oc2['SDQ_SCORE'].notna()) # That is, raise error if collection_start > DOB + 17years oc_error_locs = oc2.index[mask] return {'OC2': oc_error_locs.tolist()} return error, _validate def validate_226(): error = ErrorDefinition( code='226', description='Reason for placement change is not required.', affected_fields=['REASON_PLACE_CHANGE', 'PLACE'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] code_list = ['T0', 'T1', 'T2', 'T3', 'T4'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # create column to see previous REASON_PLACE_CHANGE episodes = episodes.sort_values(['CHILD', 'DECOM']) episodes['PREVIOUS_REASON'] = episodes.groupby('CHILD')['REASON_PLACE_CHANGE'].shift(1) # If <PL> = 'T0'; 'T1'; 'T2'; 'T3' or 'T4' then <REASON_PLACE_CHANGE> should be null in current episode and current episode - 1 mask = episodes['PLACE'].isin(code_list) & ( episodes['REASON_PLACE_CHANGE'].notna() | episodes['PREVIOUS_REASON'].notna()) # error locations error_locs = episodes.index[mask] return {'Episodes': error_locs.tolist()} return error, _validate def validate_358(): error = ErrorDefinition( code='358', description='Child with this legal status should not be under 10.', affected_fields=['DECOM', 'DOB', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['J1', 'J2', 'J3'] # convert dates to datetime format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # Where <LS> = โ€˜J1โ€™ or โ€˜J2โ€™ or โ€˜J3โ€™ then <DOB> should <= to 10 years prior to <DECOM> mask = merged['LS'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=10) < merged['DECOM']) # That is, raise error if DECOM > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_407(): error = ErrorDefinition( code='407', description='Reason episode ceased is Special Guardianship Order, but child has reached age 18.', affected_fields=['DEC', 'DOB', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['E45', 'E46', 'E47', 'E48'] # convert dates to datetime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <REC> = โ€˜E45โ€™ or โ€˜E46โ€™ or โ€˜E47โ€™ or โ€˜E48โ€™ then <DOB> must be < 18 years prior to <DEC> mask = merged['REC'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=18) < merged['DEC']) # That is, raise error if DEC > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_1007(): error = ErrorDefinition( code='1007', description='Care leaver information is not required for 17- or 18-year olds who are still looked after.', affected_fields=['DEC', 'REC', 'DOB', 'IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_end = dfs['metadata']['collection_end'] # convert dates to datetime format oc3['DOB'] = pd.to_datetime(oc3['DOB'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) oc3.reset_index(inplace=True) merged = episodes.merge(oc3, on='CHILD', how='left', suffixes=['_eps', '_oc3']) # If <DOB> < 19 and >= to 17 years prior to <COLLECTION_END_DATE> and current episode <DEC> and or <REC> not provided then <IN_TOUCH>, <ACTIV> and <ACCOM> should not be provided check_age = (merged['DOB'] + pd.offsets.DateOffset(years=17) <= collection_end) & ( merged['DOB'] + pd.offsets.DateOffset(years=19) > collection_end) # That is, check that 17<=age<19 check_dec_rec = merged['REC'].isna() | merged['DEC'].isna() # if either DEC or REC are absent mask = check_age & check_dec_rec & ( merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) # Then raise an error if either IN_TOUCH, ACTIV, or ACCOM have been provided too # error locations oc3_error_locs = merged.loc[mask, 'index_oc3'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'OC3': oc3_error_locs.unique().tolist()} return error, _validate def validate_442(): error = ErrorDefinition( code='442', description='Unique Pupil Number (UPN) field is not completed.', affected_fields=['UPN', 'LS'] ) def _validate(dfs): if ('Episodes' not in dfs) or ('Header' not in dfs): return {} else: episodes = dfs['Episodes'] header = dfs['Header'] episodes.reset_index(inplace=True) header.reset_index(inplace=True) code_list = ['V3', 'V4'] # merge left on episodes to get all children for which episodes have been recorded even if they do not exist on the header. merged = episodes.merge(header, on=['CHILD'], how='left', suffixes=['_eps', '_er']) # Where any episode present, with an <LS> not = 'V3' or 'V4' then <UPN> must be provided mask = (~merged['LS'].isin(code_list)) & merged['UPN'].isna() episode_error_locs = merged.loc[mask, 'index_eps'] header_error_locs = merged.loc[mask, 'index_er'] return {'Episodes': episode_error_locs.tolist(), # Select unique values since many episodes are joined to one header # and multiple errors will be raised for the same index. 'Header': header_error_locs.dropna().unique().tolist()} return error, _validate def validate_344(): error = ErrorDefinition( code='344', description='The record shows the young person has died or returned home to live with parent(s) or someone with parental responsibility for a continuous period of 6 months or more, but activity and/or accommodation on leaving care have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'DIED' or 'RHOM' then <ACTIV> and <ACCOM> should not be provided mask = ((oc3['IN_TOUCH'] == 'DIED') | (oc3['IN_TOUCH'] == 'RHOM')) & ( oc3['ACTIV'].notna() | oc3['ACCOM'].notna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_345(): error = ErrorDefinition( code='345', description='The data collection record shows the local authority is in touch with this young person, but activity and/or accommodation data items are zero.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'Yes' then <ACTIV> and <ACCOM> must be provided mask = (oc3['IN_TOUCH'] == 'YES') & (oc3['ACTIV'].isna() | oc3['ACCOM'].isna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_384(): error = ErrorDefinition( code='384', description='A child receiving respite care cannot be in a long-term foster placement ', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # Where <LS> = 'V3' or 'V4' then <PL> must not be 'U1' or 'U4' mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( (episodes['PLACE'] == 'U1') | (episodes['PLACE'] == 'U4')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_390(): error = ErrorDefinition( code='390', description='Reason episode ceased is adopted but child has not been previously placed for adoption.', affected_fields=['PLACE', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # If <REC> = 'E11' or 'E12' then <PL> must be one of 'A3', 'A4', 'A5' or 'A6' mask = ((episodes['REC'] == 'E11') | (episodes['REC'] == 'E12')) & ~( (episodes['PLACE'] == 'A3') | (episodes['PLACE'] == 'A4') | (episodes['PLACE'] == 'A5') | ( episodes['PLACE'] == 'A6')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_378(): error = ErrorDefinition( code='378', description='A child who is placed with parent(s) cannot be looked after under a single period of accommodation under Section 20 of the Children Act 1989.', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # the & sign supercedes the ==, so brackets are necessary here mask = (episodes['PLACE'] == 'P1') & (episodes['LS'] == 'V2') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_398(): error = ErrorDefinition( code='398', description='Distance field completed but child looked after under legal status V3 or V4.', affected_fields=['LS', 'HOME_POST', 'PL_POST'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( episodes['HOME_POST'].notna() | episodes['PL_POST'].notna()) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_451(): error = ErrorDefinition( code='451', description='Child is still freed for adoption, but freeing orders could not be applied for since 30 December 2005.', affected_fields=['DEC', 'REC', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['DEC'].isna() & episodes['REC'].isna() & (episodes['LS'] == 'D1') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_519(): error = ErrorDefinition( code='519', description='Data entered on the legal status of adopters shows civil partnership couple, but data entered on genders of adopters does not show it as a couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = (ad1['LS_ADOPTR'] == 'L2') & ( (ad1['SEX_ADOPTR'] != 'MM') & (ad1['SEX_ADOPTR'] != 'FF') & (ad1['SEX_ADOPTR'] != 'MF')) error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_520(): error = ErrorDefinition( code='520', description='Data entry on the legal status of adopters shows different gender married couple but data entry on genders of adopters shows it as a same gender couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] # check condition mask = (ad1['LS_ADOPTR'] == 'L11') & (ad1['SEX_ADOPTR'] != 'MF') error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_522(): error = ErrorDefinition( code='522', description='Date of decision that the child should be placed for adoption must be on or before the date that a child should no longer be placed for adoption.', affected_fields=['DATE_PLACED', 'DATE_PLACED_CEASED'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] # Convert to datetimes placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # Boolean mask mask = placed_adoption['DATE_PLACED_CEASED'] > placed_adoption['DATE_PLACED'] error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_563(): error = ErrorDefinition( code='563', description='The child should no longer be placed for adoption but the date of the decision that the child should be placed for adoption is blank', affected_fields=['DATE_PLACED', 'REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] mask = placed_adoption['REASON_PLACED_CEASED'].notna() & placed_adoption['DATE_PLACED_CEASED'].notna() & \ placed_adoption['DATE_PLACED'].isna() error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_544(): error = ErrorDefinition( code='544', description="Any child who has conviction information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['CONVICTED', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] convict = oc2['CONVICTED'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = convict & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_634(): error = ErrorDefinition( code='634', description='There are entries for previous permanence options, but child has not started to be looked after from 1 April 2016 onwards.', affected_fields=['LA_PERM', 'PREV_PERM', 'DATE_PERM', 'DECOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'PrevPerm' not in dfs: return {} else: episodes = dfs['Episodes'] prevperm = dfs['PrevPerm'] collection_start = dfs['metadata']['collection_start'] # convert date field to appropriate format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # the maximum date has the highest possibility of satisfying the condition episodes['LAST_DECOM'] = episodes.groupby('CHILD')['DECOM'].transform('max') # prepare to merge episodes.reset_index(inplace=True) prevperm.reset_index(inplace=True) merged = prevperm.merge(episodes, on='CHILD', how='left', suffixes=['_prev', '_eps']) # If <PREV_PERM> or <LA_PERM> or <DATE_PERM> provided, then at least 1 episode must have a <DECOM> later than 01/04/2016 mask = (merged['PREV_PERM'].notna() | merged['DATE_PERM'].notna() | merged['LA_PERM'].notna()) & ( merged['LAST_DECOM'] < collection_start) eps_error_locs = merged.loc[mask, 'index_eps'] prevperm_error_locs = merged.loc[mask, 'index_prev'] # return {'PrevPerm':prevperm_error_locs} return {'Episodes': eps_error_locs.unique().tolist(), 'PrevPerm': prevperm_error_locs.unique().tolist()} return error, _validate def validate_158(): error = ErrorDefinition( code='158', description='If a child has been recorded as receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be left blank.', affected_fields=['INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] error_mask = oc2['INTERVENTION_RECEIVED'].astype(str).eq('1') & oc2['INTERVENTION_OFFERED'].notna() error_locations = oc2.index[error_mask] return {'OC2': error_locations.tolist()} return error, _validate def validate_133(): error = ErrorDefinition( code='133', description='Data entry for accommodation after leaving care is invalid. If reporting on a childs accommodation after leaving care the data entry must be valid', affected_fields=['ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] valid_codes = ['B1', 'B2', 'C1', 'C2', 'D1', 'D2', 'E1', 'E2', 'G1', 'G2', 'H1', 'H2', 'K1', 'K2', 'R1', 'R2', 'S2', 'T1', 'T2', 'U1', 'U2', 'V1', 'V2', 'W1', 'W2', 'X2', 'Y1', 'Y2', 'Z1', 'Z2', '0'] error_mask = ~oc3['ACCOM'].isna() & ~oc3['ACCOM'].isin(valid_codes) error_locations = oc3.index[error_mask] return {'OC3': error_locations.tolist()} return error, _validate def validate_565(): error = ErrorDefinition( code='565', description='The date that the child started to be missing or away from placement without authorisation has been completed but whether the child was missing or away from placement without authorisation has not been completed.', affected_fields=['MISSING', 'MIS_START'] ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] mask = missing['MIS_START'].notna() & missing['MISSING'].isna() error_locations = missing.index[mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_433(): error = ErrorDefinition( code='433', description='The reason for new episode suggests that this is a continuation episode, but the episode does not start on the same day as the last episode finished.', affected_fields=['RNE', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['original_index'] = episodes.index episodes.sort_values(['CHILD', 'DECOM', 'DEC'], inplace=True) episodes[['PREVIOUS_DEC', 'PREVIOUS_CHILD']] = episodes[['DEC', 'CHILD']].shift(1) rne_is_ongoing = episodes['RNE'].str.upper().astype(str).isin(['P', 'L', 'T', 'U', 'B']) date_mismatch = episodes['PREVIOUS_DEC'] != episodes['DECOM'] missing_date = episodes['PREVIOUS_DEC'].isna() | episodes['DECOM'].isna() same_child = episodes['PREVIOUS_CHILD'] == episodes['CHILD'] error_mask = rne_is_ongoing & (date_mismatch | missing_date) & same_child error_locations = episodes['original_index'].loc[error_mask].sort_values() return {'Episodes': error_locations.to_list()} return error, _validate def validate_437(): error = ErrorDefinition( code='437', description='Reason episode ceased is child has died or is aged 18 or over but there are further episodes.', affected_fields=['REC'], ) # !# potential false negatives, as this only operates on the current year's data def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes.sort_values(['CHILD', 'DECOM'], inplace=True) episodes[['NEXT_DECOM', 'NEXT_CHILD']] = episodes[['DECOM', 'CHILD']].shift(-1) # drop rows with missing DECOM as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) ceased_e2_e15 = episodes['REC'].str.upper().astype(str).isin(['E2', 'E15']) has_later_episode = episodes['CHILD'] == episodes['NEXT_CHILD'] error_mask = ceased_e2_e15 & has_later_episode error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_547(): error = ErrorDefinition( code='547', description="Any child who has health promotion information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] healthck = oc2['HEALTH_CHECK'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = healthck & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_635(): error = ErrorDefinition( code='635', description='There are entries for date of order and local authority code where previous permanence option was arranged but previous permanence code is Z1', affected_fields=['LA_PERM', 'DATE_PERM', 'PREV_PERM'] ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} else: prev_perm = dfs['PrevPerm'] # raise and error if either LA_PERM or DATE_PERM are present, yet PREV_PERM is absent. mask = ((prev_perm['LA_PERM'].notna() | prev_perm['DATE_PERM'].notna()) & prev_perm['PREV_PERM'].isna()) error_locations = prev_perm.index[mask] return {'PrevPerm': error_locations.to_list()} return error, _validate def validate_550(): error = ErrorDefinition( code='550', description='A placement provider code of PR0 can only be associated with placement P1.', affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = (episodes['PLACE'] != 'P1') & episodes['PLACE_PROVIDER'].eq('PR0') validation_error_locations = episodes.index[mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_217(): error = ErrorDefinition( code='217', description='Children who are placed for adoption with current foster carers (placement types A3 or A5) must have a reason for new episode of S, T or U.', affected_fields=['PLACE', 'DECOM', 'RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('01/04/2015', format='%d/%m/%Y', errors='coerce') reason_new_ep = ['S', 'T', 'U'] place_codes = ['A3', 'A5'] mask = (episodes['PLACE'].isin(place_codes) & (episodes['DECOM'] >= max_decom_allowed)) & ~episodes[ 'RNE'].isin(reason_new_ep) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_518(): error = ErrorDefinition( code='518', description='If reporting legal status of adopters is L4 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L4') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_517(): error = ErrorDefinition( code='517', description='If reporting legal status of adopters is L3 then the genders of adopters should be coded as MF. MF = the adopting couple are male and female.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L3') & ~AD1['SEX_ADOPTR'].isin(['MF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_558(): error = ErrorDefinition( code='558', description='If a child has been adopted, then the decision to place them for adoption has not been disrupted and the date of the decision that a child should no longer be placed for adoption should be left blank. if the REC code is either E11 or E12 then the DATE PLACED CEASED date should not be provided', affected_fields=['DATE_PLACED_CEASED', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() rec_codes = ['E11', 'E12'] placeEpisodes = episodes[episodes['REC'].isin(rec_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED_CEASED'].notna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_453(): error = ErrorDefinition( code='453', description='Contradiction between placement distance in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['PL_DISTANCE'] = pd.to_numeric(episodes['PL_DISTANCE'], errors='coerce') episodes_last['PL_DISTANCE'] = pd.to_numeric(episodes_last['PL_DISTANCE'], errors='coerce') # drop rows with missing DECOM before finding idxmin/max, as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) episodes_last = episodes_last.dropna(subset=['DECOM']) episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_dist = abs(episodes_merged['PL_DISTANCE'] - episodes_merged['PL_DISTANCE_last']) >= 0.2 error_mask = in_both_years & same_rne & last_year_open & different_pl_dist validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_516(): error = ErrorDefinition( code='516', description='The episode data submitted for this child does not show that he/she was with their former foster carer(s) during the year.If the code in the reason episode ceased is E45 or E46 the child must have a placement code of U1 to U6.', affected_fields=['REC', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] place_codes = ['U1', 'U2', 'U3', 'U4', 'U5', 'U6'] rec_codes = ['E45', 'E46'] error_mask = episodes['REC'].isin(rec_codes) & ~episodes['PLACE'].isin(place_codes) validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_511(): error = ErrorDefinition( code='511', description='If reporting that the number of person(s) adopting the looked after child is two adopters then the code should only be MM, FF or MF. MM = the adopting couple are both males; FF = the adopting couple are both females; MF = The adopting couple are male and female.', affected_fields=['NB_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] mask = AD1['NB_ADOPTR'].astype(str).eq('2') & AD1['SEX_ADOPTR'].isin(['M1', 'F1']) validation_error_mask = mask validation_error_locations = AD1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_524(): error = ErrorDefinition( code='524', description='If reporting legal status of adopters is L12 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L12') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_441(): error = ErrorDefinition( code='441', description='Participation method indicates child was 4 years old or over at the time of the review, but the date of birth and review date indicates the child was under 4 years old.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') reviews = reviews.dropna(subset=['REVIEW', 'DOB']) mask = reviews['REVIEW_CODE'].isin(['PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7']) & ( reviews['REVIEW'] < reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_184(): error = ErrorDefinition( code='184', description='Date of decision that a child should be placed for adoption is before the child was born.', affected_fields=['DATE_PLACED', # PlacedAdoptino 'DOB'], # Header ) def _validate(dfs): if 'Header' not in dfs or 'PlacedAdoption' not in dfs: return {} else: child_record = dfs['Header'] placed_for_adoption = dfs['PlacedAdoption'] all_data = (placed_for_adoption .reset_index() .merge(child_record, how='left', on='CHILD', suffixes=[None, '_P4A'])) all_data['DATE_PLACED'] = pd.to_datetime(all_data['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') all_data['DOB'] = pd.to_datetime(all_data['DOB'], format='%d/%m/%Y', errors='coerce') mask = (all_data['DATE_PLACED'] >= all_data['DOB']) | all_data['DATE_PLACED'].isna() validation_error = ~mask validation_error_locations = all_data[validation_error]['index'].unique() return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_612(): error = ErrorDefinition( code='612', description="Date of birth field has been completed but mother field indicates child is not a mother.", affected_fields=['SEX', 'MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] error_mask = ( ((header['MOTHER'].astype(str) == '0') | header['MOTHER'].isna()) & (header['SEX'].astype(str) == '2') & header['MC_DOB'].notna() ) validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_552(): """ This error checks that the first adoption episode is after the last decision ! If there are multiple of either there may be unexpected results ! """ error = ErrorDefinition( code="552", description="Date of Decision to place a child for adoption should be on or prior to the date that the child was placed for adoption.", # Field that defines date of decision to place a child for adoption is DATE_PLACED and the start of adoption is defined by DECOM with 'A' placement types. affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: # get the required datasets placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] # keep index values so that they stay the same when needed later on for error locations placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) adoption_eps = episodes[episodes['PLACE'].isin(['A3', 'A4', 'A5', 'A6'])].copy() # find most recent adoption decision placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # remove rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption['DATE_PLACED'].notna()] placed_adoption_inds = placed_adoption.groupby('CHILD')['DATE_PLACED'].idxmax(skipna=True) last_decision = placed_adoption.loc[placed_adoption_inds] # first time child started adoption adoption_eps["DECOM"] = pd.to_datetime(adoption_eps['DECOM'], format='%d/%m/%Y', errors='coerce') adoption_eps = adoption_eps[adoption_eps['DECOM'].notna()] adoption_eps_inds = adoption_eps.groupby('CHILD')['DECOM'].idxmin(skipna=True) # full information of first adoption first_adoption = adoption_eps.loc[adoption_eps_inds] # date of decision and date of start of adoption (DECOM) have to be put in one table merged = first_adoption.merge(last_decision, on=['CHILD'], how='left', suffixes=['_EP', '_PA']) # check to see if date of decision to place is less than or equal to date placed. decided_after_placed = merged["DECOM"] < merged["DATE_PLACED"] # find the corresponding location of error values per file. episode_error_locs = merged.loc[decided_after_placed, 'index_EP'] placedadoption_error_locs = merged.loc[decided_after_placed, 'index_PA'] return {"PlacedAdoption": placedadoption_error_locs.to_list(), "Episodes": episode_error_locs.to_list()} return error, _validate def validate_551(): error = ErrorDefinition( code='551', description='Child has been placed for adoption but there is no date of the decision that the child should be placed for adoption.', affected_fields=['DATE_PLACED', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() place_codes = ['A3', 'A4', 'A5', 'A6'] placeEpisodes = episodes[episodes['PLACE'].isin(place_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'].isna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_557(): error = ErrorDefinition( code='557', description="Child for whom the decision was made that they should be placed for adoption has left care " + "but was not adopted and information on the decision that they should no longer be placed for " + "adoption items has not been completed.", affected_fields=['DATE_PLACED_CEASED', 'REASON_PLACED_CEASED', # PlacedAdoption 'PLACE', 'LS', 'REC'], # Episodes ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'PlacedAdoption' not in dfs: return {} else: eps = dfs['Episodes'] placed = dfs['PlacedAdoption'] eps = eps.reset_index() placed = placed.reset_index() child_placed = eps['PLACE'].isin(['A3', 'A4', 'A5', 'A6']) order_granted = eps['LS'].isin(['D1', 'E1']) not_adopted = ~eps['REC'].isin(['E11', 'E12']) & eps['REC'].notna() placed['ceased_incomplete'] = ( placed['DATE_PLACED_CEASED'].isna() | placed['REASON_PLACED_CEASED'].isna() ) eps = eps[(child_placed | order_granted) & not_adopted] eps = eps.merge(placed, on='CHILD', how='left', suffixes=['_EP', '_PA'], indicator=True) eps = eps[(eps['_merge'] == 'left_only') | eps['ceased_incomplete']] EP_errors = eps['index_EP'] PA_errors = eps['index_PA'].dropna() return { 'Episodes': EP_errors.to_list(), 'PlacedAdoption': PA_errors.to_list(), } return error, _validate def validate_207(): error = ErrorDefinition( code='207', description='Mother status for the current year disagrees with the mother status already recorded for this child.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' mother_is_different = header_merged['MOTHER'].astype(str) != header_merged['MOTHER_last'].astype(str) mother_was_true = header_merged['MOTHER_last'].astype(str) == '1' error_mask = in_both_years & mother_is_different & mother_was_true error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_523(): error = ErrorDefinition( code='523', description="Date of decision that the child should be placed for adoption should be the same date as the decision that adoption is in the best interest (date should be placed).", affected_fields=['DATE_PLACED', 'DATE_INT'], ) def _validate(dfs): if ("AD1" not in dfs) or ("PlacedAdoption" not in dfs): return {} else: placed_adoption = dfs["PlacedAdoption"] ad1 = dfs["AD1"] # keep initial index values to be reused for locating errors later on. placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) # convert to datetime to enable comparison placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format="%d/%m/%Y", errors='coerce') ad1["DATE_INT"] = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce') # drop rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption["DATE_PLACED"].notna()] ad1 = ad1[ad1["DATE_INT"].notna()] # bring corresponding values together from both dataframes merged_df = placed_adoption.merge(ad1, on=['CHILD'], how='inner', suffixes=["_AD", "_PA"]) # find error values different_dates = merged_df['DATE_INT'] != merged_df['DATE_PLACED'] # map error locations to corresponding indices pa_error_locations = merged_df.loc[different_dates, 'index_PA'] ad1_error_locations = merged_df.loc[different_dates, 'index_AD'] return {"PlacedAdoption": pa_error_locations.to_list(), "AD1": ad1_error_locations.to_list()} return error, _validate def validate_3001(): error = ErrorDefinition( code='3001', description='Where care leavers information is being returned for a young person around their 17th birthday, the accommodation cannot be with their former foster carer(s).', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'OC3' not in dfs: return {} else: header = dfs['Header'] oc3 = dfs['OC3'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header['DOB17'] = header['DOB'] + pd.DateOffset(years=17) oc3_merged = oc3.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') accom_foster = oc3_merged['ACCOM'].str.upper().astype(str).isin(['Z1', 'Z2']) age_17_in_year = (oc3_merged['DOB17'] <= collection_end) & (oc3_merged['DOB17'] >= collection_start) error_mask = accom_foster & age_17_in_year error_locations = oc3.index[error_mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_389(): error = ErrorDefinition( code='389', description='Reason episode ceased is that child transferred to care of adult social care services, but child is aged under 16.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB16'] = header['DOB'] + pd.DateOffset(years=16) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_asc = episodes_merged['REC'].str.upper().astype(str).isin(['E7']) ceased_over_16 = episodes_merged['DOB16'] <= episodes_merged['DEC'] error_mask = ceased_asc & ~ceased_over_16 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_387(): error = ErrorDefinition( code='387', description='Reason episode ceased is child moved into independent living arrangement, but the child is aged under 14.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB14'] = header['DOB'] + pd.DateOffset(years=14) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_indep = episodes_merged['REC'].str.upper().astype(str).isin(['E5', 'E6']) ceased_over_14 = episodes_merged['DOB14'] <= episodes_merged['DEC'] dec_present = episodes_merged['DEC'].notna() error_mask = ceased_indep & ~ceased_over_14 & dec_present error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_452(): error = ErrorDefinition( code='452', description='Contradiction between local authority of placement code in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_la = episodes_merged['PL_LA'].astype(str) != episodes_merged['PL_LA_last'].astype(str) error_mask = in_both_years & same_rne & last_year_open & different_pl_la validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_386(): error = ErrorDefinition( code='386', description='Reason episode ceased is adopted but child has reached age 18.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = ( episodes .reset_index() .merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True) .set_index('index') .dropna(subset=['DOB18', 'DEC']) ) ceased_adopted = episodes_merged['REC'].str.upper().astype(str).isin(['E11', 'E12']) ceased_under_18 = episodes_merged['DOB18'] > episodes_merged['DEC'] error_mask = ceased_adopted & ~ceased_under_18 error_locations = episodes_merged.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_363(): error = ErrorDefinition( code='363', description='Child assessment order (CAO) lasted longer than 7 days allowed in the Children Act 1989.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] L2_eps = episodes[episodes['LS'] == 'L3'].copy() L2_eps['original_index'] = L2_eps.index L2_eps = L2_eps[L2_eps['DECOM'].notna()] L2_eps.loc[L2_eps['DEC'].isna(), 'DEC'] = collection_end_str L2_eps['DECOM'] = pd.to_datetime(L2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') L2_eps = L2_eps.dropna(subset=['DECOM']) L2_eps['DEC'] = pd.to_datetime(L2_eps['DEC'], format='%d/%m/%Y', errors='coerce') L2_eps.sort_values(['CHILD', 'DECOM']) L2_eps['index'] = pd.RangeIndex(0, len(L2_eps)) L2_eps['index+1'] = L2_eps['index'] + 1 L2_eps = L2_eps.merge(L2_eps, left_on='index', right_on='index+1', how='left', suffixes=[None, '_prev']) L2_eps = L2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] L2_eps['new_period'] = ( (L2_eps['DECOM'] > L2_eps['DEC_prev']) | (L2_eps['CHILD'] != L2_eps['CHILD_prev']) ) L2_eps['duration'] = (L2_eps['DEC'] - L2_eps['DECOM']).dt.days L2_eps['period_id'] = L2_eps['new_period'].astype(int).cumsum() L2_eps['period_duration'] = L2_eps.groupby('period_id')['duration'].transform(sum) error_mask = L2_eps['period_duration'] > 7 return {'Episodes': L2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_364(): error = ErrorDefinition( code='364', description='Sections 41-46 of Police and Criminal Evidence (PACE; 1984) severely limits ' + 'the time a child can be detained in custody in Local Authority (LA) accommodation.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] J2_eps = episodes[episodes['LS'] == 'J2'].copy() J2_eps['original_index'] = J2_eps.index J2_eps['DECOM'] = pd.to_datetime(J2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') J2_eps = J2_eps[J2_eps['DECOM'].notna()] J2_eps.loc[J2_eps['DEC'].isna(), 'DEC'] = collection_end_str J2_eps['DEC'] = pd.to_datetime(J2_eps['DEC'], format='%d/%m/%Y', errors='coerce') J2_eps.sort_values(['CHILD', 'DECOM']) J2_eps['index'] = pd.RangeIndex(0, len(J2_eps)) J2_eps['index_prev'] = J2_eps['index'] + 1 J2_eps = J2_eps.merge(J2_eps, left_on='index', right_on='index_prev', how='left', suffixes=[None, '_prev']) J2_eps = J2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] J2_eps['new_period'] = ( (J2_eps['DECOM'] > J2_eps['DEC_prev']) | (J2_eps['CHILD'] != J2_eps['CHILD_prev']) ) J2_eps['duration'] = (J2_eps['DEC'] - J2_eps['DECOM']).dt.days J2_eps['period_id'] = J2_eps['new_period'].astype(int).cumsum() J2_eps['period_duration'] = J2_eps.groupby('period_id')['duration'].transform(sum) error_mask = J2_eps['period_duration'] > 21 return {'Episodes': J2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_365(): error = ErrorDefinition( code='365', description='Any individual short- term respite placement must not exceed 17 days.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] episodes.loc[episodes['DEC'].isna(), 'DEC'] = collection_end_str episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') over_17_days = episodes['DEC'] > episodes['DECOM'] + pd.DateOffset(days=17) error_mask = (episodes['LS'] == 'V3') & over_17_days return {'Episodes': episodes.index[error_mask].to_list()} return error, _validate def validate_367(): error = ErrorDefinition( code='367', description='The maximum amount of respite care allowable is 75 days in any 12-month period.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] V3_eps = episodes[episodes['LS'] == 'V3'] V3_eps = V3_eps.dropna(subset=['DECOM']) # missing DECOM should get fixed before looking for this error collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') V3_eps['DECOM_dt'] = pd.to_datetime(V3_eps['DECOM'], format='%d/%m/%Y', errors='coerce') V3_eps['DEC_dt'] = pd.to_datetime(V3_eps['DEC'], format='%d/%m/%Y', errors='coerce') # truncate episode start/end dates to collection start/end respectively V3_eps.loc[V3_eps['DEC'].isna() | (V3_eps['DEC_dt'] > collection_end), 'DEC_dt'] = collection_end V3_eps.loc[V3_eps['DECOM_dt'] < collection_start, 'DECOM_dt'] = collection_start V3_eps['duration'] = (V3_eps['DEC_dt'] - V3_eps['DECOM_dt']).dt.days V3_eps = V3_eps[V3_eps['duration'] > 0] V3_eps['year_total_duration'] = V3_eps.groupby('CHILD')['duration'].transform(sum) error_mask = V3_eps['year_total_duration'] > 75 return {'Episodes': V3_eps.index[error_mask].to_list()} return error, _validate def validate_440(): error = ErrorDefinition( code='440', description='Participation method indicates child was under 4 years old at the time of the review, but date of birth and review date indicates the child was 4 years old or over.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') mask = reviews['REVIEW_CODE'].eq('PN0') & ( reviews['REVIEW'] > reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_445(): error = ErrorDefinition( code='445', description='D1 is not a valid code for episodes starting after December 2005.', affected_fields=['LS', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('31/12/2005', format='%d/%m/%Y', errors='coerce') mask = episodes['LS'].eq('D1') & (episodes['DECOM'] > max_decom_allowed) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_446(): error = ErrorDefinition( code='446', description='E1 is not a valid code for episodes starting before December 2005.', affected_fields=['LS', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') min_decom_allowed = pd.to_datetime('01/12/2005', format='%d/%m/%Y', errors='coerce') mask = episodes['LS'].eq('E1') & (episodes['DECOM'] < min_decom_allowed) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_208(): error = ErrorDefinition( code='208', description='Unique Pupil Number (UPN) for the current year disagrees with the Unique Pupil Number (UPN) already recorded for this child.', affected_fields=['UPN'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' upn_is_different = header_merged['UPN'].str.upper().astype(str) != header_merged[ 'UPN_last'].str.upper().astype(str) upn_not_recorded = header_merged['UPN'].str.upper().astype(str).isin(['UN2', 'UN3', 'UN4', 'UN5', 'UN6']) & \ header_merged['UPN_last'].str.upper().astype(str).isin(['UN1']) error_mask = in_both_years & upn_is_different & ~upn_not_recorded error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_204(): error = ErrorDefinition( code='204', description='Ethnic origin code disagrees with the ethnic origin already recorded for this child.', affected_fields=['ETHNIC'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' ethnic_is_different = header_merged['ETHNIC'].astype(str).str.upper() != header_merged[ 'ETHNIC_last'].astype(str).str.upper() error_mask = in_both_years & ethnic_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_203(): error = ErrorDefinition( code='203', description='Date of birth disagrees with the date of birth already recorded for this child.', affected_fields=['DOB'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header_last['DOB'] = pd.to_datetime(header_last['DOB'], format='%d/%m/%Y', errors='coerce') header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' dob_is_different = header_merged['DOB'].astype(str) != header_merged['DOB_last'].astype(str) error_mask = in_both_years & dob_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_530(): error = ErrorDefinition( code='530', description="A placement provider code of PR4 cannot be associated with placement P1.", affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['PLACE'].eq('P1') & episodes['PLACE_PROVIDER'].eq('PR4') validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_571(): error = ErrorDefinition( code='571', description='The date that the child ceased to be missing or away from placement without authorisation is before the start or after the end of the collection year.', affected_fields=['MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') missing['fMIS_END'] = pd.to_datetime(missing['MIS_END'], format='%d/%m/%Y', errors='coerce') end_date_before_year = missing['fMIS_END'] < collection_start end_date_after_year = missing['fMIS_END'] > collection_end error_mask = end_date_before_year | end_date_after_year error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_1005(): error = ErrorDefinition( code='1005', description='The end date of the missing episode or episode that the child was away from placement without authorisation is not a valid date.', affected_fields=['MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] missing['fMIS_END'] = pd.to_datetime(missing['MIS_END'], format='%d/%m/%Y', errors='coerce') missing_end_date = missing['MIS_END'].isna() invalid_end_date = missing['fMIS_END'].isna() error_mask = ~missing_end_date & invalid_end_date error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_1004(): error = ErrorDefinition( code='1004', description='The start date of the missing episode or episode that the child was away from placement without authorisation is not a valid date.', affected_fields=['MIS_START'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] missing['fMIS_START'] = pd.to_datetime(missing['MIS_START'], format='%d/%m/%Y', errors='coerce') missing_start_date = missing['MIS_START'].isna() invalid_start_date = missing['fMIS_START'].isna() error_mask = missing_start_date | invalid_start_date error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_202(): error = ErrorDefinition( code='202', description='The gender code conflicts with the gender already recorded for this child.', affected_fields=['SEX'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' sex_is_different = header_merged['SEX'].astype(str) != header_merged['SEX_last'].astype(str) error_mask = in_both_years & sex_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_621(): error = ErrorDefinition( code='621', description="Motherโ€™s field has been completed but date of birth shows that the mother is younger than her child.", affected_fields=['DOB', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] header['MC_DOB'] = pd.to_datetime(header['MC_DOB'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') mask = (header['MC_DOB'] > header['DOB']) | header['MC_DOB'].isna() validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_556(): error = ErrorDefinition( code='556', description='Date of decision that the child should be placed for adoption should be on or prior to the date that the freeing order was granted.', affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placedAdoptions['DATE_PLACED'] = pd.to_datetime(placedAdoptions['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') episodes = episodes.reset_index() D1Episodes = episodes[episodes['LS'] == 'D1'] merged = D1Episodes.reset_index().merge(placedAdoptions, how='left', on='CHILD', ).set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'] > merged['DECOM']] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_393(): error = ErrorDefinition( code='393', description='Child is looked after but mother field is not completed.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header_female = header[header['SEX'].astype(str) == '2'] applicable_episodes = episodes[~episodes['LS'].str.upper().isin(['V3', 'V4'])] error_mask = header_female['CHILD'].isin(applicable_episodes['CHILD']) & header_female['MOTHER'].isna() error_locations = header_female.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_NoE(): error = ErrorDefinition( code='NoE', description='This child has no episodes loaded for previous year even though child started to be looked after before this current year.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = dfs['Episodes_last'] episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') episodes_before_year = episodes[episodes['DECOM'] < collection_start] episodes_merged = episodes_before_year.reset_index().merge(episodes_last, how='left', on=['CHILD'], indicator=True).set_index('index') episodes_not_matched = episodes_merged[episodes_merged['_merge'] == 'left_only'] error_mask = episodes.index.isin(episodes_not_matched.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_356(): error = ErrorDefinition( code='356', description='The date the episode ceased is before the date the same episode started.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') error_mask = episodes['DEC'].notna() & (episodes['DEC'] < episodes['DECOM']) return {'Episodes': episodes.index[error_mask].to_list()} return error, _validate def validate_611(): error = ErrorDefinition( code='611', description="Date of birth field is blank, but child is a mother.", affected_fields=['MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] validation_error_mask = header['MOTHER'].astype(str).isin(['1']) & header['MC_DOB'].isna() validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_1009(): error = ErrorDefinition( code='1009', description='Reason for placement change is not a valid code.', affected_fields=['REASON_PLACE_CHANGE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'CARPL', 'CLOSE', 'ALLEG', 'STAND', 'APPRR', 'CREQB', 'CREQO', 'CHILD', 'LAREQ', 'PLACE', 'CUSTOD', 'OTHER' ] mask = episodes['REASON_PLACE_CHANGE'].isin(code_list) | episodes['REASON_PLACE_CHANGE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_1006(): error = ErrorDefinition( code='1006', description='Missing type invalid.', affected_fields=['MISSING'], ) def _validate(dfs): if 'Missing' not in dfs: return {} missing_from_care = dfs['Missing'] code_list = ['M', 'A'] mask = missing_from_care['MISSING'].isin(code_list) | missing_from_care['MISSING'].isna() validation_error_mask = ~mask validation_error_locations = missing_from_care.index[validation_error_mask] return {'Missing': validation_error_locations.tolist()} return error, _validate def validate_631(): error = ErrorDefinition( code='631', description='Previous permanence option not a valid value.', affected_fields=['PREV_PERM'], ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} previous_permanence = dfs['PrevPerm'] code_list = ['P1', 'P2', 'P3', 'P4', 'Z1'] mask = previous_permanence['PREV_PERM'].isin(code_list) | previous_permanence['PREV_PERM'].isna() validation_error_mask = ~mask validation_error_locations = previous_permanence.index[validation_error_mask] return {'PrevPerm': validation_error_locations.tolist()} return error, _validate def validate_196(): error = ErrorDefinition( code='196', description='Strengths and Difficulties (SDQ) reason is not a valid code.', affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] code_list = ['SDQ1', 'SDQ2', 'SDQ3', 'SDQ4', 'SDQ5'] mask = oc2['SDQ_REASON'].isin(code_list) | oc2['SDQ_REASON'].isna() validation_error_mask = ~mask validation_error_locations = oc2.index[validation_error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_177(): error = ErrorDefinition( code='177', description='The legal status of adopter(s) code is not a valid code.', affected_fields=['LS_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['L0', 'L11', 'L12', 'L2', 'L3', 'L4'] mask = adoptions['LS_ADOPTR'].isin(code_list) | adoptions['LS_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_176(): error = ErrorDefinition( code='176', description='The gender of adopter(s) at the date of adoption code is not a valid code.', affected_fields=['SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['M1', 'F1', 'MM', 'FF', 'MF'] mask = adoptions['SEX_ADOPTR'].isin(code_list) | adoptions['SEX_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_175(): error = ErrorDefinition( code='175', description='The number of adopter(s) code is not a valid code.', affected_fields=['NB_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['1', '2'] mask = adoptions['NB_ADOPTR'].astype(str).isin(code_list) | adoptions['NB_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_132(): error = ErrorDefinition( code='132', description='Data entry for activity after leaving care is invalid.', affected_fields=['ACTIV'], ) def _validate(dfs): if 'OC3' not in dfs: return {} care_leavers = dfs['OC3'] code_list = [ 'F1', 'P1', 'F2', 'P2', 'F4', 'P4', 'F5', 'P5', 'G4', 'G5', 'G6', '0' ] mask = care_leavers['ACTIV'].astype(str).isin(code_list) | care_leavers['ACTIV'].isna() validation_error_mask = ~mask validation_error_locations = care_leavers.index[validation_error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_131(): error = ErrorDefinition( code='131', description='Data entry for being in touch after leaving care is invalid.', affected_fields=['IN_TOUCH'], ) def _validate(dfs): if 'OC3' not in dfs: return {} care_leavers = dfs['OC3'] code_list = [ 'YES', 'NO', 'DIED', 'REFU', 'NREQ', 'RHOM' ] mask = care_leavers['IN_TOUCH'].isin(code_list) | care_leavers['IN_TOUCH'].isna() validation_error_mask = ~mask validation_error_locations = care_leavers.index[validation_error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_120(): error = ErrorDefinition( code='120', description='The reason for the reversal of the decision that the child should be placed for adoption code is not valid.', affected_fields=['REASON_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} placed_adoptions = dfs['PlacedAdoption'] code_list = ['RD1', 'RD2', 'RD3', 'RD4'] mask = placed_adoptions['REASON_PLACED_CEASED'].isin(code_list) | placed_adoptions[ 'REASON_PLACED_CEASED'].isna() validation_error_mask = ~mask validation_error_locations = placed_adoptions.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_114(): error = ErrorDefinition( code='114', description='Data entry to record the status of former carer(s) of an adopted child is invalid.', affected_fields=['FOSTER_CARE'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['0', '1'] mask = adoptions['FOSTER_CARE'].astype(str).isin(code_list) | adoptions['FOSTER_CARE'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_178(): error = ErrorDefinition( code='178', description='Placement provider code is not a valid code.', affected_fields=['PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list_placement_provider = ['PR0', 'PR1', 'PR2', 'PR3', 'PR4', 'PR5'] code_list_placement_with_no_provider = ['T0', 'T1', 'T2', 'T3', 'T4', 'Z1'] place_provider_needed_and_correct = episodes['PLACE_PROVIDER'].isin(code_list_placement_provider) & ~episodes[ 'PLACE'].isin(code_list_placement_with_no_provider) place_provider_not_provided = episodes['PLACE_PROVIDER'].isna() place_provider_not_needed = episodes['PLACE_PROVIDER'].isna() & episodes['PLACE'].isin( code_list_placement_with_no_provider) mask = place_provider_needed_and_correct | place_provider_not_provided | place_provider_not_needed validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_103(): error = ErrorDefinition( code='103', description='The ethnicity code is either not valid or has not been entered.', affected_fields=['ETHNIC'], ) def _validate(dfs): if 'Header' not in dfs: return {} header = dfs['Header'] code_list = [ 'WBRI', 'WIRI', 'WOTH', 'WIRT', 'WROM', 'MWBC', 'MWBA', 'MWAS', 'MOTH', 'AIND', 'APKN', 'ABAN', 'AOTH', 'BCRB', 'BAFR', 'BOTH', 'CHNE', 'OOTH', 'REFU', 'NOBT' ] mask = header['ETHNIC'].isin(code_list) validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_143(): error = ErrorDefinition( code='143', description='The reason for new episode code is not a valid code.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = ['S', 'P', 'L', 'T', 'U', 'B'] mask = episodes['RNE'].isin(code_list) | episodes['RNE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_144(): error = ErrorDefinition( code='144', description='The legal status code is not a valid code.', affected_fields=['LS'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'C1', 'C2', 'D1', 'E1', 'V2', 'V3', 'V4', 'J1', 'J2', 'J3', 'L1', 'L2', 'L3' ] mask = episodes['LS'].isin(code_list) | episodes['LS'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_145(): error = ErrorDefinition( code='145', description='Category of need code is not a valid code.', affected_fields=['CIN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'N1', 'N2', 'N3', 'N4', 'N5', 'N6', 'N7', 'N8', ] mask = episodes['CIN'].isin(code_list) | episodes['CIN'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_146(): error = ErrorDefinition( code='146', description='Placement type code is not a valid code.', affected_fields=['PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'A3', 'A4', 'A5', 'A6', 'H5', 'K1', 'K2', 'P1', 'P2', 'P3', 'R1', 'R2', 'R3', 'R5', 'S1', 'T0', 'T1', 'T2', 'T3', 'T4', 'U1', 'U2', 'U3', 'U4', 'U5', 'U6', 'Z1' ] mask = episodes['PLACE'].isin(code_list) | episodes['PLACE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_149(): error = ErrorDefinition( code='149', description='Reason episode ceased code is not valid. ', affected_fields=['REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'E11', 'E12', 'E2', 'E3', 'E4A', 'E4B', 'E13', 'E41', 'E45', 'E46', 'E47', 'E48', 'E5', 'E6', 'E7', 'E8', 'E9', 'E14', 'E15', 'E16', 'E17', 'X1' ] mask = episodes['REC'].isin(code_list) | episodes['REC'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_167(): error = ErrorDefinition( code='167', description='Data entry for participation is invalid or blank.', affected_fields=['REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} review = dfs['Reviews'] code_list = ['PN0', 'PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7'] mask = review['REVIEW'].notna() & review['REVIEW_CODE'].isin(code_list) | review['REVIEW'].isna() & review[ 'REVIEW_CODE'].isna() validation_error_mask = ~mask validation_error_locations = review.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_101(): error = ErrorDefinition( code='101', description='Gender code is not valid.', affected_fields=['SEX'], ) def _validate(dfs): if 'Header' not in dfs: return {} header = dfs['Header'] code_list = ['1', '2'] mask = header['SEX'].astype(str).isin(code_list) validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_141(): error = ErrorDefinition( code='141', description='Date episode began is not a valid date.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce').notna() na_location = episodes['DECOM'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_147(): error = ErrorDefinition( code='147', description='Date episode ceased is not a valid date.', affected_fields=['DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce').notna() na_location = episodes['DEC'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_171(): error = ErrorDefinition( code='171', description="Date of birth of mother's child is not a valid date.", affected_fields=['MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] mask = pd.to_datetime(header['MC_DOB'], format='%d/%m/%Y', errors='coerce').notna() na_location = header['MC_DOB'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_102(): error = ErrorDefinition( code='102', description='Date of birth is not a valid date.', affected_fields=['DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] mask = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce').notna() validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_112(): error = ErrorDefinition( code='112', description='Date should be placed for adoption is not a valid date.', affected_fields=['DATE_INT'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce').notna() na_location = ad1['DATE_INT'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = ad1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_115(): error = ErrorDefinition( code='115', description="Date of Local Authority's (LA) decision that a child should be placed for adoption is not a valid date.", affected_fields=['DATE_PLACED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] mask = pd.to_datetime(adopt['DATE_PLACED'], format='%d/%m/%Y', errors='coerce').notna() na_location = adopt['DATE_PLACED'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = adopt.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_116(): error = ErrorDefinition( code='116', description="Date of Local Authority's (LA) decision that a child should no longer be placed for adoption is not a valid date.", affected_fields=['DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] mask = pd.to_datetime(adopt['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce').notna() na_location = adopt['DATE_PLACED_CEASED'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = adopt.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_392c(): error = ErrorDefinition( code='392c', description='Postcode(s) provided are invalid.', affected_fields=['HOME_POST', 'PL_POST'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] home_provided = episodes['HOME_POST'].notna() home_details = merge_postcodes(episodes, "HOME_POST") home_valid = home_details['pcd'].notna() pl_provided = episodes['PL_POST'].notna() pl_details = merge_postcodes(episodes, "PL_POST") pl_valid = pl_details['pcd'].notna() error_mask = (home_provided & ~home_valid) | (pl_provided & ~pl_valid) return {'Episodes': episodes.index[error_mask].tolist()} return error, _validate def validate_213(): error = ErrorDefinition( code='213', description='Placement provider information not required.', affected_fields=['PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['PLACE'].isin(['T0', 'T1', 'T2', 'T3', 'T4', 'Z1']) & df['PLACE_PROVIDER'].notna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_168(): error = ErrorDefinition( code='168', description='Unique Pupil Number (UPN) is not valid. If unknown, default codes should be UN1, UN2, UN3, UN4 or UN5.', affected_fields=['UPN'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: df = dfs['Header'] mask = df['UPN'].str.match(r'(^((?![IOS])[A-Z]){1}(\d{12}|\d{11}[A-Z]{1})$)|^(UN[1-5])$', na=False) mask = ~mask return {'Header': df.index[mask].tolist()} return error, _validate def validate_388(): error = ErrorDefinition( code='388', description='Reason episode ceased is coded new episode begins, but there is no continuation episode.', affected_fields=['REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DECOM'] = pd.to_datetime(df['DECOM'], format='%d/%m/%Y', errors='coerce') df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') df['DECOM'] = df['DECOM'].fillna('01/01/1901') # Watch for potential future issues df = df.sort_values(['CHILD', 'DECOM']) df['DECOM_NEXT_EPISODE'] = df.groupby(['CHILD'])['DECOM'].shift(-1) # The max DECOM for each child is also the one with no next episode # And we also add the skipna option # grouped_decom_by_child = df.groupby(['CHILD'])['DECOM'].idxmax(skipna=True) no_next = df.DECOM_NEXT_EPISODE.isna() & df.CHILD.notna() # Dataframe with the maximum DECOM removed max_decom_removed = df[~no_next] # Dataframe with the maximum DECOM only max_decom_only = df[no_next] # Case 1: If reason episode ceased is coded X1 there must be a subsequent episode # starting on the same day. case1 = max_decom_removed[(max_decom_removed['REC'] == 'X1') & (max_decom_removed['DEC'].notna()) & (max_decom_removed['DECOM_NEXT_EPISODE'].notna()) & (max_decom_removed['DEC'] != max_decom_removed['DECOM_NEXT_EPISODE'])] # Case 2: If an episode ends but the child continues to be looked after, a new # episode should start on the same day.The reason episode ceased code of # the episode which ends must be X1. case2 = max_decom_removed[(max_decom_removed['REC'] != 'X1') & (max_decom_removed['REC'].notna()) & (max_decom_removed['DEC'].notna()) & (max_decom_removed['DECOM_NEXT_EPISODE'].notna()) & (max_decom_removed['DEC'] == max_decom_removed['DECOM_NEXT_EPISODE'])] # Case 3: If a child ceases to be looked after reason episode ceased code X1 must # not be used. case3 = max_decom_only[(max_decom_only['DEC'].notna()) & (max_decom_only['REC'] == 'X1')] mask_case1 = case1.index.tolist() mask_case2 = case2.index.tolist() mask_case3 = case3.index.tolist() mask = mask_case1 + mask_case2 + mask_case3 mask.sort() return {'Episodes': mask} return error, _validate def validate_113(): error = ErrorDefinition( code='113', description='Date matching child and adopter(s) is not a valid date.', affected_fields=['DATE_MATCH'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = pd.to_datetime(ad1['DATE_MATCH'], format='%d/%m/%Y', errors='coerce').notna() na_location = ad1['DATE_MATCH'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = ad1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_134(): error = ErrorDefinition( code='134', description='Data on adoption should not be entered for the OC3 cohort.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'], ) def _validate(dfs): if 'OC3' not in dfs or 'AD1' not in dfs: return {} else: oc3 = dfs['OC3'] ad1 = dfs['AD1'] ad1['ad1_index'] = ad1.index all_data = ad1.merge(oc3, how='left', on='CHILD') na_oc3_data = ( all_data['IN_TOUCH'].isna() & all_data['ACTIV'].isna() & all_data['ACCOM'].isna() ) na_ad1_data = ( all_data['DATE_INT'].isna() & all_data['DATE_MATCH'].isna() & all_data['FOSTER_CARE'].isna() & all_data['NB_ADOPTR'].isna() & all_data['SEX_ADOPTR'].isna() & all_data['LS_ADOPTR'].isna() ) validation_error = ~na_oc3_data & ~na_ad1_data validation_error_locations = all_data.loc[validation_error, 'ad1_index'].unique() return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_119(): error = ErrorDefinition( code='119', description='If the decision is made that a child should no longer be placed for adoption, then the date of this decision and the reason why this decision was made must be completed.', affected_fields=['REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] na_placed_ceased = adopt['DATE_PLACED_CEASED'].isna() na_reason_ceased = adopt['REASON_PLACED_CEASED'].isna() validation_error = (na_placed_ceased & ~na_reason_ceased) | (~na_placed_ceased & na_reason_ceased) validation_error_locations = adopt.index[validation_error] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_159(): error = ErrorDefinition( code='159', description='If a child has been recorded as not receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be completed as well.', affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] mask1 = oc2['SUBSTANCE_MISUSE'].astype(str) == '1' mask2 = oc2['INTERVENTION_RECEIVED'].astype(str) == '0' mask3 = oc2['INTERVENTION_OFFERED'].isna() validation_error = mask1 & mask2 & mask3 validation_error_locations = oc2.index[validation_error] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_142(): error = ErrorDefinition( code='142', description='A new episode has started, but the previous episode has not ended.', affected_fields=['DEC', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DECOM'] = pd.to_datetime(df['DECOM'], format='%d/%m/%Y', errors='coerce') df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') df['DECOM'] = df['DECOM'].fillna('01/01/1901') # Watch for potential future issues df['DECOM'] = df['DECOM'].replace('01/01/1901', pd.NA) last_episodes = df.sort_values('DECOM').reset_index().groupby(['CHILD'])['index'].last() ended_episodes_df = df.loc[~df.index.isin(last_episodes)] ended_episodes_df = ended_episodes_df[(ended_episodes_df['DEC'].isna() | ended_episodes_df['REC'].isna()) & ended_episodes_df['CHILD'].notna() & ended_episodes_df[ 'DECOM'].notna()] mask = ended_episodes_df.index.tolist() return {'Episodes': mask} return error, _validate def validate_148(): error = ErrorDefinition( code='148', description='Date episode ceased and reason episode ceased must both be coded, or both left blank.', affected_fields=['DEC', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') mask = ((df['DEC'].isna()) & (df['REC'].notna())) | ((df['DEC'].notna()) & (df['REC'].isna())) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_151(): error = ErrorDefinition( code='151', description='All data items relating to a childs adoption must be coded or left blank.', affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTER', 'SEX_ADOPTR', 'LS_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] na_date_int = ad1['DATE_INT'].isna() na_date_match = ad1['DATE_MATCH'].isna() na_foster_care = ad1['FOSTER_CARE'].isna() na_nb_adoptr = ad1['NB_ADOPTR'].isna() na_sex_adoptr = ad1['SEX_ADOPTR'].isna() na_lsadoptr = ad1['LS_ADOPTR'].isna() ad1_not_null = ( ~na_date_int & ~na_date_match & ~na_foster_care & ~na_nb_adoptr & ~na_sex_adoptr & ~na_lsadoptr) validation_error = ( ~na_date_int | ~na_date_match | ~na_foster_care | ~na_nb_adoptr | ~na_sex_adoptr | ~na_lsadoptr) & ~ad1_not_null validation_error_locations = ad1.index[validation_error] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_182(): error = ErrorDefinition( code='182', description='Data entries on immunisations, teeth checks, health assessments and substance misuse problem identified should be completed or all OC2 fields should be left blank.', affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'CONVICTED', 'HEALTH_CHECK', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] mask1 = ( oc2['IMMUNISATIONS'].isna() | oc2['TEETH_CHECK'].isna() | oc2['HEALTH_ASSESSMENT'].isna() | oc2['SUBSTANCE_MISUSE'].isna() ) mask2 = ( oc2['CONVICTED'].isna() & oc2['HEALTH_CHECK'].isna() & oc2['INTERVENTION_RECEIVED'].isna() & oc2['INTERVENTION_OFFERED'].isna() ) validation_error = mask1 & ~mask2 validation_error_locations = oc2.index[validation_error] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_214(): error = ErrorDefinition( code='214', description='Placement location information not required.', affected_fields=['PL_POST', 'URN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['LS'].isin(['V3', 'V4']) & ((df['PL_POST'].notna()) | (df['URN'].notna())) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_222(): error = ErrorDefinition( code='222', description='Ofsted Unique reference number (URN) should not be recorded for this placement type.', affected_fields=['URN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] place_code_list = ['H5', 'P1', 'P2', 'P3', 'R1', 'R2', 'R5', 'T0', 'T1', 'T2', 'T3', 'T4', 'Z1'] mask = (df['PLACE'].isin(place_code_list)) & (df['URN'].notna()) & (df['URN'] != 'XXXXXX') return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_366(): error = ErrorDefinition( code='366', description='A child cannot change placement during the course of an individual short-term respite break.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = (df['LS'] == 'V3') & (df['RNE'] != 'S') return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_628(): error = ErrorDefinition( code='628', description='Motherhood details are not required for care leavers who have not been looked after during the year.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'OC3' not in dfs: return {} else: hea = dfs['Header'] epi = dfs['Episodes'] oc3 = dfs['OC3'] hea = hea.reset_index() oc3_no_nulls = oc3[oc3[['IN_TOUCH', 'ACTIV', 'ACCOM']].notna().any(axis=1)] hea_merge_epi = hea.merge(epi, how='left', on='CHILD', indicator=True) hea_not_in_epi = hea_merge_epi[hea_merge_epi['_merge'] == 'left_only'] cohort_to_check = hea_not_in_epi.merge(oc3_no_nulls, how='inner', on='CHILD') error_cohort = cohort_to_check[cohort_to_check['MOTHER'].notna()] error_list = list(set(error_cohort['index'].to_list())) error_list.sort() return {'Header': error_list} return error, _validate def validate_164(): error = ErrorDefinition( code='164', description='Distance is not valid. Please check a valid postcode has been entered.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) distance = pd.to_numeric(df['PL_DISTANCE'], errors='coerce') # Use a bit of tolerance in these bounds distance_valid = distance.gt(-0.2) & distance.lt(1001.0) mask = ~is_short_term & ~distance_valid return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_169(): error = ErrorDefinition( code='169', description='Local Authority (LA) of placement is not valid or is missing. Please check a valid postcode has been entered.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) # Because PL_LA is derived, it will always be valid if present mask = ~is_short_term & df['PL_LA'].isna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_179(): error = ErrorDefinition( code='179', description='Placement location code is not a valid code.', affected_fields=['PL_LOCATION'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) # Because PL_LOCATION is derived, it will always be valid if present mask = ~is_short_term & df['PL_LOCATION'].isna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_1015(): error = ErrorDefinition( code='1015', description='Placement provider is own provision but child not placed in own LA.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] local_authority = dfs['metadata']['localAuthority'] placement_fostering_or_adoption = df['PLACE'].isin([ 'A3', 'A4', 'A5', 'A6', 'U1', 'U2', 'U3', 'U4', 'U5', 'U6', ]) own_provision = df['PLACE_PROVIDER'].eq('PR1') is_short_term = df['LS'].isin(['V3', 'V4']) is_pl_la = df['PL_LA'].eq(local_authority) checked_episodes = ~placement_fostering_or_adoption & ~is_short_term & own_provision checked_episodes = checked_episodes & df['LS'].notna() & df['PLACE'].notna() mask = checked_episodes & ~is_pl_la return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_411(): error = ErrorDefinition( code='411', description='Placement location code disagrees with LA of placement.', affected_fields=['PL_LOCATION'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] local_authority = dfs['metadata']['localAuthority'] mask = df['PL_LOCATION'].eq('IN') & df['PL_LA'].ne(local_authority) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_420(): error = ErrorDefinition( code='420', description='LA of placement completed but child is looked after under legal status V3 or V4.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) mask = is_short_term & df['PL_LA'].notna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_355(): error = ErrorDefinition( code='355', description='Episode appears to have lasted for less than 24 hours', affected_fields=['DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['DECOM'].astype(str) == df['DEC'].astype(str) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_586(): error = ErrorDefinition( code='586', description='Dates of missing periods are before childโ€™s date of birth.', affected_fields=['MIS_START'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: df = dfs['Missing'] df['DOB'] = pd.to_datetime(df['DOB'], format='%d/%m/%Y', errors='coerce') df['MIS_START'] = pd.to_datetime(df['MIS_START'], format='%d/%m/%Y', errors='coerce') error_mask = df['MIS_START'].notna() & (df['MIS_START'] <= df['DOB']) return {'Missing': df.index[error_mask].to_list()} return error, _validate def validate_630(): error = ErrorDefinition( code='630', description='Information on previous permanence option should be returned.', affected_fields=['RNE'], ) def _validate(dfs): if 'PrevPerm' not in dfs or 'Episodes' not in dfs: return {} else: epi = dfs['Episodes'] pre = dfs['PrevPerm'] epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') epi = epi.reset_index() # Form the episode dataframe which has an 'RNE' of 'S' in this financial year epi_has_rne_of_S_in_year = epi[(epi['RNE'] == 'S') & (epi['DECOM'] >= collection_start)] # Merge to see # 1) which CHILD ids are missing from the PrevPerm file # 2) which CHILD are in the prevPerm file, but don't have the LA_PERM/DATE_PERM field completed where they should be # 3) which CHILD are in the PrevPerm file, but don't have the PREV_PERM field completed. merged_epi_preperm = epi_has_rne_of_S_in_year.merge(pre, on='CHILD', how='left', indicator=True) error_not_in_preperm = merged_epi_preperm['_merge'] == 'left_only' error_wrong_values_in_preperm = (merged_epi_preperm['PREV_PERM'] != 'Z1') & ( merged_epi_preperm[['LA_PERM', 'DATE_PERM']].isna().any(axis=1)) error_null_prev_perm = (merged_epi_preperm['_merge'] == 'both') & (merged_epi_preperm['PREV_PERM'].isna()) error_mask = error_not_in_preperm | error_wrong_values_in_preperm | error_null_prev_perm error_list = merged_epi_preperm[error_mask]['index'].to_list() error_list = list(set(error_list)) error_list.sort() return {'Episodes': error_list} return error, _validate def validate_501(): error = ErrorDefinition( code='501', description='A new episode has started before the end date of the previous episode.', affected_fields=['DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: epi = dfs['Episodes'] epi = epi.reset_index() epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') epi['DEC'] = pd.to_datetime(epi['DEC'], format='%d/%m/%Y', errors='coerce') epi = epi.sort_values(['CHILD', 'DECOM']) epi_lead = epi.shift(1) epi_lead = epi_lead.reset_index() m_epi = epi.merge(epi_lead, left_on='index', right_on='level_0', suffixes=('', '_prev')) error_cohort = m_epi[(m_epi['CHILD'] == m_epi['CHILD_prev']) & (m_epi['DECOM'] < m_epi['DEC_prev'])] error_list = error_cohort['index'].to_list() error_list.sort() return {'Episodes': error_list} return error, _validate def validate_502(): error = ErrorDefinition( code='502', description='Last yearโ€™s record ended with an open episode. The date on which that episode started does not match the start date of the first episode on this yearโ€™s record.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs: return {} else: epi = dfs['Episodes'] epi_last = dfs['Episodes_last'] epi = epi.reset_index() epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') epi_last['DECOM'] = pd.to_datetime(epi_last['DECOM'], format='%d/%m/%Y', errors='coerce') epi_last_no_dec = epi_last[epi_last['DEC'].isna()] epi_min_decoms_index = epi[['CHILD', 'DECOM']].groupby(['CHILD'])['DECOM'].idxmin() epi_min_decom_df = epi.loc[epi_min_decoms_index, :] merged_episodes = epi_min_decom_df.merge(epi_last_no_dec, on='CHILD', how='inner') error_cohort = merged_episodes[merged_episodes['DECOM_x'] != merged_episodes['DECOM_y']] error_list = error_cohort['index'].to_list() error_list = list(set(error_list)) error_list.sort() return {'Episodes': error_list} return error, _validate def validate_153(): error = ErrorDefinition( code='153', description="All data items relating to a child's activity or accommodation after leaving care must be coded or left blank.", affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} oc3 = dfs['OC3'] oc3_not_na = ( oc3['IN_TOUCH'].notna() & oc3['ACTIV'].notna() & oc3['ACCOM'].notna() ) oc3_all_na = ( oc3['IN_TOUCH'].isna() & oc3['ACTIV'].isna() & oc3['ACCOM'].isna() ) validation_error = ~oc3_not_na & ~oc3_all_na validation_error_locations = oc3.index[validation_error] return {'OC3': validation_error_locations.to_list()} return error, _validate def validate_166(): error = ErrorDefinition( code='166', description="Date of review is invalid or blank.", affected_fields=['REVIEW'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: review = dfs['Reviews'] error_mask = pd.to_datetime(review['REVIEW'], format='%d/%m/%Y', errors='coerce').isna() validation_error_locations = review.index[error_mask] return {'Reviews': validation_error_locations.to_list()} return error, _validate def validate_174(): error = ErrorDefinition( code='174', description="Mother's child date of birth is recorded but gender shows that the child is a male.", affected_fields=['SEX', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] child_is_male = header['SEX'].astype(str) == '1' mc_dob_recorded = header['MC_DOB'].notna() error_mask = child_is_male & mc_dob_recorded validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.to_list()} return error, _validate def validate_180(): error = ErrorDefinition( code='180', description="Data entry for the strengths and difficulties questionnaire (SDQ) score is invalid.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] oc2['SDQ_SCORE'] = pd.to_numeric(oc2['SDQ_SCORE'], errors='coerce') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['SDQ_SCORE'].isin(range(41)) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_181(): error = ErrorDefinition( code='181', description="Data items relating to children looked after continuously for 12 months should be completed with a 0 or 1.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] code_list = ['0', '1'] fields_of_interest = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] error_mask = ( oc2[fields_of_interest].notna() & ~oc2[fields_of_interest].astype(str).isin(['0', '1']) ).any(axis=1) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_192(): error = ErrorDefinition( code='192', description="Child has been identified as having a substance misuse problem but the additional item on whether an intervention was received has been left blank.", affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] misuse = oc2['SUBSTANCE_MISUSE'].astype(str) == '1' intervention_blank = oc2['INTERVENTION_RECEIVED'].isna() error_mask = misuse & intervention_blank validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_193(): error = ErrorDefinition( code='193', description="Child not identified as having a substance misuse problem but at least one of the two additional items on whether an intervention were offered and received have been completed.", affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] no_substance_misuse = oc2['SUBSTANCE_MISUSE'].isna() | (oc2['SUBSTANCE_MISUSE'].astype(str) == '0') intervention_not_blank = oc2['INTERVENTION_RECEIVED'].notna() | oc2['INTERVENTION_OFFERED'].notna() error_mask = no_substance_misuse & intervention_not_blank validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_197a(): error = ErrorDefinition( code='197a', description="Reason for no Strengths and Difficulties (SDQ) score is not required if Strengths and Difficulties Questionnaire score is filled in.", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] sdq_filled_in = oc2['SDQ_SCORE'].notna() reason_filled_in = oc2['SDQ_REASON'].notna() error_mask = sdq_filled_in & reason_filled_in validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_567(): error = ErrorDefinition( code='567', description='The date that the missing episode or episode that the child was away from placement without authorisation ended is before the date that it started.', affected_fields=['MIS_START', 'MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: mis = dfs['Missing'] mis['MIS_START'] = pd.to_datetime(mis['MIS_START'], format='%d/%m/%Y', errors='coerce') mis['MIS_END'] = pd.to_datetime(mis['MIS_END'], format='%d/%m/%Y', errors='coerce') mis_error = mis[mis['MIS_START'] > mis['MIS_END']] return {'Missing': mis_error.index.to_list()} return error, _validate def validate_304(): error = ErrorDefinition( code='304', description='Date unaccompanied asylum-seeking child (UASC) status ceased must be on or before the 18th birthday of a child.', affected_fields=['DUC'], ) def _validate(dfs): if 'UASC' not in dfs: return {} else: uasc = dfs['UASC'] uasc['DOB'] = pd.to_datetime(uasc['DOB'], format='%d/%m/%Y', errors='coerce') uasc['DUC'] = pd.to_datetime(uasc['DUC'], format='%d/%m/%Y', errors='coerce') mask = uasc['DUC'].notna() & (uasc['DUC'] > uasc['DOB'] + pd.offsets.DateOffset(years=18)) return {'UASC': uasc.index[mask].to_list()} return error, _validate def validate_333(): error = ErrorDefinition( code='333', description='Date should be placed for adoption must be on or prior to the date of matching child with adopter(s).', affected_fields=['DATE_INT'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: adt = dfs['AD1'] adt['DATE_MATCH'] = pd.to_datetime(adt['DATE_MATCH'], format='%d/%m/%Y', errors='coerce') adt['DATE_INT'] = pd.to_datetime(adt['DATE_INT'], format='%d/%m/%Y', errors='coerce') # If <DATE_MATCH> provided, then <DATE_INT> must also be provided and be <= <DATE_MATCH> mask1 = adt['DATE_MATCH'].notna() & adt['DATE_INT'].isna() mask2 = adt['DATE_MATCH'].notna() & adt['DATE_INT'].notna() & (adt['DATE_INT'] > adt['DATE_MATCH']) mask = mask1 | mask2 return {'AD1': adt.index[mask].to_list()} return error, _validate def validate_1011(): error = ErrorDefinition( code='1011', description='This child is recorded as having his/her care transferred to another local authority for the final episode and therefore should not have the care leaver information completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs or 'Episodes' not in dfs: return {} else: epi = dfs['Episodes'] oc3 = dfs['OC3'] epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') # If final <REC> = 'E3' then <IN_TOUCH>; <ACTIV> and <ACCOM> should not be provided epi.sort_values(['CHILD', 'DECOM'], inplace=True) grouped_decom_by_child = epi.groupby(['CHILD'])['DECOM'].idxmax(skipna=True) max_decom_only = epi.loc[epi.index.isin(grouped_decom_by_child), :] E3_is_last = max_decom_only[max_decom_only['REC'] == 'E3'] oc3.reset_index(inplace=True) cohort_to_check = oc3.merge(E3_is_last, on='CHILD', how='inner') error_mask = cohort_to_check[['IN_TOUCH', 'ACTIV', 'ACCOM']].notna().any(axis=1) error_list = cohort_to_check['index'][error_mask].to_list() error_list = list(set(error_list)) error_list.sort() return {'OC3': error_list} return error, _validate def validate_574(): error = ErrorDefinition( code='574', description='A new missing/away from placement without authorisation period cannot start when the previous missing/away from placement without authorisation period is still open. Missing/away from placement without authorisation periods should also not overlap.', affected_fields=['MIS_START', 'MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: mis = dfs['Missing'] mis['MIS_START'] = pd.to_datetime(mis['MIS_START'], format='%d/%m/%Y', errors='coerce') mis['MIS_END'] =
pd.to_datetime(mis['MIS_END'], format='%d/%m/%Y', errors='coerce')
pandas.to_datetime
import kabuki import hddm import numpy as np import pandas as pd from numpy.random import rand from scipy.stats import uniform, norm from copy import copy def gen_single_params_set(include=()): """Returns a dict of DDM parameters with random values for a singel conditin the function is used by gen_rand_params. :Optional: include : tuple Which optional parameters include. Can be any combination of: * 'z' (bias, default=0.5) * 'sv' (inter-trial drift variability) * 'sz' (inter-trial bias variability) * 'st' (inter-trial non-decision time variability) Special arguments are: * 'all': include all of the above * 'all_inter': include all of the above except 'z' """ params = {} if include == 'all': include = ['z', 'sv', 'sz', 'st'] elif include == 'all_inter': include = ['sv', 'sz', 'st'] params['sv'] = 2.5 * rand() if 'sv' in include else 0 params['sz'] = rand() * 0.4 if 'sz' in include else 0 params['st'] = rand() * 0.35 if 'st' in include else 0 params['z'] = .4 + rand() * 0.2 if 'z' in include else 0.5 # Simple parameters params['v'] = (rand() - .5) * 8 params['t'] = 0.2 + rand() * 0.3 params['a'] = 0.5 + rand() * 1.5 if 'pi' in include or 'gamma' in include: params['pi'] = max(rand() * 0.1, 0.01) #params['gamma'] = rand() assert hddm.utils.check_params_valid(**params) return params def gen_rand_params(include=(), cond_dict=None, seed=None): """Returns a dict of DDM parameters with random values. :Optional: include : tuple Which optional parameters include. Can be any combination of: * 'z' (bias, default=0.5) * 'sv' (inter-trial drift variability) * 'sz' (inter-trial bias variability) * 'st' (inter-trial non-decision time variability) Special arguments are: * 'all': include all of the above * 'all_inter': include all of the above except 'z' cond_dict : dictionary cond_dict is used when multiple conditions are desired. the dictionary has the form of {param1: [value_1, ... , value_n], param2: [value_1, ... , value_n]} and the function will output n sets of parameters. each set with values from the appropriate place in the dictionary for instance if cond_dict={'v': [0, 0.5, 1]} then 3 parameters set will be created. the first with v=0 the second with v=0.5 and the third with v=1. seed: float random seed Output: if conditions is None: params: dictionary a dictionary holding the parameters values else: cond_params: a dictionary holding the parameters for each one of the conditions, that has the form {'c1': params1, 'c2': params2, ...} it can be used directly as an argument in gen_rand_data. merged_params: a dictionary of parameters that can be used to validate the optimization and learning algorithms. """ # set seed if seed is not None: np.random.seed(seed) # if there is only a single condition then we can use gen_single_params_set if cond_dict is None: return gen_single_params_set(include=include) # generate original parameter set org_params = gen_single_params_set(include) # create a merged set merged_params = org_params.copy() for name in cond_dict.keys(): del merged_params[name] cond_params = {} n_conds = len(list(cond_dict.values())[0]) for i in range(n_conds): # create a set of parameters for condition i # put them in i_params, and in cond_params[c#i] i_params = org_params.copy() for name in cond_dict.keys(): i_params[name] = cond_dict[name][i] cond_params['c%d' % i] = i_params # update merged_params merged_params['%s(c%d)' % (name, i)] = cond_dict[name][i] return cond_params, merged_params #################################################################### # Functions to generate RT distributions with specified parameters # #################################################################### def gen_rts(size=1000, range_=(-6, 6), dt=1e-3, intra_sv=1., structured=True, subj_idx=None, method='cdf', **params): """ A private function used by gen_rand_data Returns a DataFrame of randomly simulated RTs from the DDM. :Arguments: params : dict Parameter names and values to use for simulation. :Optional: size : int Number of RTs to simulate. range_ : tuple Minimum (negative) and maximum (positve) RTs. dt : float Number of steps/sec. intra_sv : float Intra-trial variability. structured : bool Return a structured array with fields 'RT' and 'response'. subj_idx : int If set, append column 'subj_idx' with value subj_idx. method : str Which method to use to simulate the RTs: * 'cdf': fast, uses the inverse of cumulative density function to sample, dt can be 1e-2. * 'drift': slow, simulates each complete drift process, dt should be 1e-4. """ if 'v_switch' in params and method != 'drift': print("Warning: Only drift method supports changes in drift-rate. v_switch will be ignored.") # Set optional default values if they are not provided for var_param in ('sv', 'sz', 'st'): if var_param not in params: params[var_param] = 0 if 'z' not in params: params['z'] = .5 if 'sv' not in params: params['sv'] = 0 if 'sz' not in params: params['sz'] = 0 # check sample if isinstance(size, tuple): # this line is because pymc stochastic use tuple for sample size if size == (): size = 1 else: size = size[0] if method == 'cdf_py': rts = _gen_rts_from_cdf(params, size, range_, dt) elif method == 'drift': rts = _gen_rts_from_simulated_drift(params, size, dt, intra_sv)[0] elif method == 'cdf': rts = hddm.wfpt.gen_rts_from_cdf(params['v'], params['sv'], params['a'], params['z'], params['sz'], params[ 't'], params['st'], size, range_[0], range_[1], dt) else: raise TypeError("Sampling method %s not found." % method) if not structured: return rts else: data = pd.DataFrame(rts, columns=['rt']) data['response'] = 1. data['response'][data['rt'] < 0] = 0. data['rt'] = np.abs(data['rt']) return data def _gen_rts_from_simulated_drift(params, samples=1000, dt=1e-4, intra_sv=1.): """Returns simulated RTs from simulating the whole drift-process. :Arguments: params : dict Parameter names and values. :Optional: samlpes : int How many samples to generate. dt : float How many steps/sec. intra_sv : float Intra-trial variability. :SeeAlso: gen_rts """ from numpy.random import rand if samples is None: samples = 1 nn = 1000 a = params['a'] v = params['v'] if 'v_switch' in params: switch = True t_switch = params['t_switch'] / dt # Hack so that we will always step into a switch nn = int(round(t_switch)) else: switch = False # create delay if 'st' in params: start_delay = (uniform.rvs(loc=params['t'], scale=params['st'], size=samples) - params['st'] / 2.) else: start_delay = np.ones(samples) * params['t'] # create starting_points if 'sz' in params: starting_points = (uniform.rvs(loc=params['z'], scale=params['sz'], size=samples) - params['sz'] / 2.) * a else: starting_points = np.ones(samples) * params['z'] * a rts = np.empty(samples) step_size = np.sqrt(dt) * intra_sv drifts = [] for i_sample in range(samples): drift = np.array([]) crossed = False iter = 0 y_0 = starting_points[i_sample] # drifting... if 'sv' in params and params['sv'] != 0: drift_rate = norm.rvs(v, params['sv']) else: drift_rate = v if 'v_switch' in params: if 'V_switch' in params and params['V_switch'] != 0: drift_rate_switch = norm.rvs( params['v_switch'], params['V_switch']) else: drift_rate_switch = params['v_switch'] prob_up = 0.5 * (1 + np.sqrt(dt) / intra_sv * drift_rate) while (not crossed): # Generate nn steps iter += 1 if iter == 2 and switch: prob_up = 0.5 * (1 + np.sqrt(dt) / intra_sv * drift_rate_switch) position = ((rand(nn) < prob_up) * 2 - 1) * step_size position[0] += y_0 position = np.cumsum(position) # Find boundary crossings cross_idx = np.where((position < 0) | (position > a))[0] drift = np.concatenate((drift, position)) if cross_idx.shape[0] > 0: crossed = True else: # If not crossed, set last position as starting point # for next nn steps to continue drift y_0 = position[-1] # find the boundary interception y2 = position[cross_idx[0]] if cross_idx[0] != 0: y1 = position[cross_idx[0] - 1] else: y1 = y_0 m = (y2 - y1) / dt # slope # y = m*x + b b = y2 - m * ((iter - 1) * nn + cross_idx[0]) * dt # intercept if y2 < 0: rt = ((0 - b) / m) else: rt = ((a - b) / m) rts[i_sample] = (rt + start_delay[i_sample]) * np.sign(y2) delay = start_delay[i_sample] / dt drifts.append(np.concatenate( (np.ones(int(delay)) * starting_points[i_sample], drift[:int(abs(rt) / dt)]))) return rts, drifts def pdf_with_params(rt, params): """Helper function that calls full_pdf and gets the parameters from the dict params. """ v = params['v'] V = params['sv'] z = params['z'] Z = params['sz'] t = params['t'] T = params['st'] a = params['a'] return hddm.wfpt.full_pdf(rt, v=v, V=V, a=a, z=z, Z=Z, t=t, T=T, err=1e-4, n_st=2, n_sz=2, use_adaptive=1, simps_err=1e-3) def _gen_rts_from_cdf(params, samples=1000): """Returns simulated RTs sampled from the inverse of the CDF. :Arguments: params : dict Parameter names and values. :Optional: samlpes : int How many samples to generate. :SeeAlso: gen_rts """ v = params['v'] V = params['sv'] z = params['z'] Z = params['sz'] t = params['t'] T = params['st'] a = params['a'] return hddm.likelihoods.wfpt.ppf(np.random.rand(samples), args=(v, V, a, z, Z, t, T)) def gen_rand_data(params=None, n_fast_outliers=0, n_slow_outliers=0, **kwargs): """Generate simulated RTs with random parameters. :Optional: params : dict <default=generate randomly> Either dictionary mapping param names to values. Or dictionary mapping condition name to parameter dictionary (see example below). If not supplied, takes random values. n_fast_outliers : int <default=0> How many fast outliers to add (outlier_RT < ter) n_slow_outliers : int <default=0> How many late outliers to add. The rest of the arguments are forwarded to kabuki.generate.gen_rand_data :Returns: data array with RTs parameter values :Example: # Generate random data set >>> data, params = hddm.generate.gen_rand_data({'v':0, 'a':2, 't':.3}, size=100, subjs=5) # Generate 2 conditions >>> data, params = hddm.generate.gen_rand_data({'cond1': {'v':0, 'a':2, 't':.3}, 'cond2': {'v':1, 'a':2, 't':.3}}) :Notes: Wrapper function for kabuki.generate.gen_rand_data. See the help doc of that function for more options. """ if params is None: params = gen_rand_params() from numpy import inf # set valid param ranges bounds = {'a': (0, inf), 'z': (0, 1), 't': (0, inf), 'st': (0, inf), 'sv': (0, inf), 'sz': (0, 1) } if 'share_noise' not in kwargs: kwargs['share_noise'] = set(['a', 'v', 't', 'st', 'sz', 'sv', 'z']) # Create RT data data, subj_params = kabuki.generate.gen_rand_data(gen_rts, params, check_valid_func=hddm.utils.check_params_valid, bounds=bounds, **kwargs) # add outliers seed = kwargs.get('seed', None) data = add_outliers(data, n_fast=n_fast_outliers, n_slow=n_slow_outliers, seed=seed) return data, subj_params def gen_rand_rlddm_data(a, t, scaler, alpha, size=1, p_upper=1, p_lower=0, z=0.5, q_init=0.5, pos_alpha=float('nan'), subjs=1, split_by=0, mu_upper=1, mu_lower=0, sd_upper=0.1, sd_lower=0.1, binary_outcome=True, uncertainty=False): all_data = [] tg = t ag = a alphag = alpha pos_alphag = pos_alpha scalerg = scaler for s in range(0, subjs): t = np.maximum(0.05, np.random.normal( loc=tg, scale=0.05, size=1)) if subjs > 1 else tg a = np.maximum(0.05, np.random.normal( loc=ag, scale=0.15, size=1)) if subjs > 1 else ag alpha = np.minimum(np.minimum(np.maximum(0.001, np.random.normal(loc=alphag, scale=0.05, size=1)), alphag+alphag),1) if subjs > 1 else alphag scaler = np.random.normal( loc=scalerg, scale=0.25, size=1) if subjs > 1 else scalerg if np.isnan(pos_alpha): pos_alfa = alpha else: pos_alfa = np.maximum(0.001,np.random.normal(loc=pos_alphag, scale=0.05, size=1)) if subjs > 1 else pos_alphag n = size q_up = np.tile([q_init], n) q_low = np.tile([q_init], n) response = np.tile([0.5], n) feedback = np.tile([0.5], n) rt = np.tile([0], n) if binary_outcome: rew_up = np.random.binomial(1, p_upper, n).astype(float) rew_low = np.random.binomial(1, p_lower, n).astype(float) else: rew_up = np.random.normal(mu_upper, sd_upper, n) rew_low = np.random.normal(mu_lower, sd_lower, n) sim_drift = np.tile([0], n) subj_idx = np.tile([s], n) d = {'q_up': q_up, 'q_low': q_low, 'sim_drift': sim_drift, 'rew_up': rew_up, 'rew_low': rew_low, 'response': response, 'rt': rt, 'feedback': feedback, 'subj_idx': subj_idx, 'split_by': split_by, 'trial': 1} df = pd.DataFrame(data=d) df = df[['q_up', 'q_low', 'sim_drift', 'rew_up', 'rew_low', 'response', 'rt', 'feedback', 'subj_idx', 'split_by', 'trial']] data, params = hddm.generate.gen_rand_data( {'a': a, 't': t, 'v': df.loc[0, 'sim_drift'], 'z': z}, subjs=1, size=1) df.loc[0, 'response'] = data.response[0] df.loc[0, 'rt'] = data.rt[0] if (data.response[0] == 1.0): df.loc[0, 'feedback'] = df.loc[0, 'rew_up'] if (df.loc[0, 'feedback'] > df.loc[0, 'q_up']): alfa = pos_alfa else: alfa = alpha else: df.loc[0, 'feedback'] = df.loc[0, 'rew_low'] if (df.loc[0, 'feedback'] > df.loc[0, 'q_low']): alfa = pos_alfa else: alfa = alpha for i in range(1, n): df.loc[i, 'trial'] = i + 1 df.loc[i, 'q_up'] = (df.loc[i - 1, 'q_up'] * (1 - df.loc[i - 1, 'response'])) + ((df.loc[i - 1, 'response']) * (df.loc[i - 1, 'q_up'] + (alfa * (df.loc[i - 1, 'rew_up'] - df.loc[i - 1, 'q_up'])))) df.loc[i, 'q_low'] = (df.loc[i - 1, 'q_low'] * (df.loc[i - 1, 'response'])) + ((1 - df.loc[i - 1, 'response']) * (df.loc[i - 1, 'q_low'] + (alfa * (df.loc[i - 1, 'rew_low'] - df.loc[i - 1, 'q_low'])))) df.loc[i, 'sim_drift'] = ( df.loc[i, 'q_up'] - df.loc[i, 'q_low']) * (scaler) data, params = hddm.generate.gen_rand_data( {'a': a, 't': t, 'v': df.loc[i, 'sim_drift'] , 'z': z}, subjs=1, size=1) df.loc[i, 'response'] = data.response[0] df.loc[i, 'rt'] = data.rt[0] if (data.response[0] == 1.0): df.loc[i, 'feedback'] = df.loc[i, 'rew_up'] if (df.loc[i, 'feedback'] > df.loc[i, 'q_up']): alfa = pos_alfa else: alfa = alpha else: df.loc[i, 'feedback'] = df.loc[i, 'rew_low'] if (df.loc[i, 'feedback'] > df.loc[i, 'q_low']): alfa = pos_alfa else: alfa = alpha all_data.append(df) all_data = pd.concat(all_data, axis=0) all_data = all_data[['q_up', 'q_low', 'sim_drift', 'response', 'rt', 'feedback', 'subj_idx', 'split_by', 'trial']] return all_data def gen_rand_rl_data(scaler, alpha, size=1, p_upper=1, p_lower=0, z=0.5, q_init=0.5, pos_alpha=float('nan'), subjs=1, split_by=0, mu_upper=1, mu_lower=0, sd_upper=0.1, sd_lower=0.1, binary_outcome=True): all_data = [] alphag = alpha pos_alphag = pos_alpha scalerg = scaler for s in range(0, subjs): alpha = np.minimum(np.minimum(np.maximum(0.001, np.random.normal(loc=alphag, scale=0.05, size=1)), alphag+alphag),1) if subjs > 1 else alphag scaler = np.random.normal( loc=scalerg, scale=0.25, size=1) if subjs > 1 else scalerg if np.isnan(pos_alpha): pos_alfa = alpha else: pos_alfa = np.maximum(0.001, np.random.normal(loc=pos_alphag, scale=0.05, size=1)) if subjs > 1 else pos_alphag n = size q_up = np.tile([q_init], n) # initialize q q_low = np.tile([q_init], n) # initialize q response = np.tile([0.5], n) feedback = np.tile([0.5], n) rt = np.tile([0], n) if binary_outcome: rew_up = np.random.binomial(1, p_upper, n).astype(float) rew_low = np.random.binomial(1, p_lower, n).astype(float) else: rew_up = np.random.normal(mu_upper, sd_upper, n) rew_low = np.random.normal(mu_lower, sd_lower, n) sim_drift = np.tile([0], n) p = np.tile([0.5], n) subj_idx = np.tile([s], n) d = {'q_up': q_up, 'q_low': q_low, 'p': p, 'sim_drift': sim_drift, 'rew_up': rew_up, 'rew_low': rew_low, 'response': response, 'feedback': feedback, 'subj_idx': subj_idx, 'split_by': split_by, 'trial': 1} df =
pd.DataFrame(data=d)
pandas.DataFrame
################################################################################################ # NOTE: I started this code to get better matching results than matching by address, # but I never finished and thus this code hasn't actually been used yet. ################################################################################################ import pandas as pd import numpy as np import re valid_street_types = [ 'ST', 'AVE', 'CT', 'CIR', 'BLVD', 'WAY', 'DR', 'TER', 'HWY', 'HL', 'PL', 'LN', 'RD', 'PARK', 'ALY', 'PLZ', 'ROW', 'WALK', 'SQ', 'SW'] def clean_eviction_data(ev): if 'index' not in ev.columns: ev.reset_index(inplace=True) ev = ev[(~pd.isnull(ev['address'])) & (ev['address'] != 'UNKNOWN') & (ev['address'].str.contains('^[0-9]'))] ev.address = ev.address.str.upper() ev.loc[ev['address'].str.contains('APT\.'), 'apt'] = ev.loc[ ev['address'].str.contains('APT\.'), 'address'].str.split('\s#?APT\.?').str[1] ev.loc[ev['address'].str.contains('APT\.'), 'address'] = ev.loc[ ev['address'].str.contains('APT\.'), 'address'].str.split('\s#?APT\.?').str[0] ev.loc[ev['address'].str.contains('#'), 'apt'] = ev.loc[ ev['address'].str.contains('#'), 'address'].str.split('\s#').str[1] ev.loc[ev['address'].str.contains('#'), 'address'] = ev.loc[ ev['address'].str.contains('#'), 'address'].str.split('\s#').str[0] ev['address'] = ev['address'].str.replace( '|'.join(['STRETT', 'STRRET', 'STREET31', 'SREET', 'DTREET', 'STREEET']), 'ST') ev['address'] = ev['address'].str.replace( '|'.join(['STRET', 'STRRE', 'STREE$']), 'ST') ev['address'] = ev['address'].str.replace( '|'.join(['AVENEU', 'AVENE', 'AVENE', 'AVNEUE', 'AAVE']), 'AVE') ev['address'] = ev['address'].str.replace('BOUELVARD', 'BLVD') ev['address'] = ev['address'].str.replace('VAN VAN', 'VAN') ev['address'] = ev['address'].str.replace('ST ST', 'ST') ev['address'] = ev['address'].str.replace('AVE AVE', 'AVE') ev['address'] = ev['address'].str.replace('MERCED MERCED', 'MERCED') ev['address'] = ev['address'].str.replace('POSTREET', 'POST ST') ev['address'] = ev['address'].str.replace('21STREET', '21ST ST') ev['address'] = ev['address'].str.replace('JOOSTREET', 'JOOST AVE') ev['address'] = ev['address'].str.replace('LOCUSTREET', 'LOCUS ST') ev['address'] = ev['address'].str.replace('BUSTREET', 'BUSH ST') ev['address'] = ev['address'].str.replace('1STREET', '1ST ST') ev['address'] = ev['address'].str.replace('AMHERSTREET', 'AMHERST ST') ev['address'] = ev['address'].str.replace('TURKSTREET', 'TURK ST') ev['address'] = ev['address'].str.replace('HARRISOIN', 'HARRISON') ev['address'] = ev['address'].str.replace('BOARDWAY', 'BROADWAY') ev['address'] = ev['address'].str.replace("ๆช€่˜ๆถ›่™งๆช€่ฟฆ", "") ev['address'] = ev['address'].str.replace("ๆถ›ๅฎ•", "") ev['address'] = ev['address'].str.replace("'", "") ev.loc[ev['address'] == "20 FRANKLIN STREET", 'address'] = "1580-1598 MARKET ST" ev.loc[ev['address'] == "57 TAYLOR STREET", 'address'] = "101-105 TURK ST" ev.loc[ev['address'] == "455 EDDY STREET", 'address'] = "350 TURK ST" ev.loc[ev['address'] == "790 VALLEJO STREET", 'address'] = "1500-1506 POWELL ST" ev.loc[ev['address'] == "2 EMERY LANE", 'address'] = "734-752 VALLEJO ST" ev.loc[ev['address'] == "1091 BUSH STREET", 'address'] = "850 LEAVENWORTH ST" ev.loc[ev['address'] == "795 20TH AVENUE", 'address'] = "4400 FULTON ST" ev.loc[ev['address'] == "440 DAVIS COURT", 'address'] = "100 WASHINGTON ST" ev.loc[ev['address'] == "405 12TH AVENUE", 'address'] = "4801 GEARY BLVD" ev.loc[ev['address'] == "4 BECKETT STREET", 'address'] = "670 JACKSON ST" ev.loc[ev['address'] == "874 SACRAMENTO STREET", 'address'] = "800 STOCKTON ST" ev.loc[ev['address'] == "265 NORTH POINT STREET", 'address'] = "2310-2390 POWELL ST" ev.loc[ev['address'] == "20 12TH STREET", 'address'] = "1613 MARKET ST" ev.loc[ev['address'] == "609 ASHBURY STREET", 'address'] = "1501-1509 HAIGHT ST" ev.loc[ev['address'] == "22 VANDEWATER STREET", 'address'] = "333 BAY ST" ev.loc[ev['address'] == "160 BAY STREET", 'address'] = "2210-2290 STOCKTON ST" ev.loc[ev['address'] == "505 26TH AVENUE", 'address'] = "6201-6209 GEARY BLVD" ev.loc[ev['address'] == "3410 22ND STREET", 'address'] = "994-998 GUERRERO ST" ev.loc[ev['address'] == "1312 UTAH STREET", 'address'] = "2601-2611 24TH ST" ev.loc[ev['address'] == "1290 HAYES STREET", 'address'] = "600-604 DIVISADERO ST" ev.loc[ev['address'] == "130 COSO AVE", 'address'] = "1 LUNDY'S LN" ev.loc[ev['address'] == '3444 16TH STREET', 'address'] = "3440 16TH ST" ev.loc[ev['address'] == '603 NATOMA STREET', 'address'] = "170 7TH ST" ev.loc[ev['address'].str.contains('[0-9]02ND'), 'address'] = ev.loc[ ev['address'].str.contains('[0-9]02ND'), 'address'].str.replace('02ND', ' 2ND') ev.loc[ev['address'].str.contains('\s[0-9A-Z]$'), 'address'] = ev.loc[ ev['address'].str.contains('\s[0-9A-Z]$'), 'address'].str.split(' ').str[:-1].str.join(' ') ev.loc[ev['address'].str.contains('BROADWAY'), 'street_type'] = 'ST' # ev.loc[ev['address'].str.contains('CESAR CHAVEZ'), 'street_type'] = 'BLVD' ev.loc[ev['address'].str.contains('RUSSIA'), 'street_type'] = 'AVE' ev.loc[ev['petition'] == 'M101171', 'address'] = '531 GONZALEZ DRIVE' ev.loc[ev['petition'] == 'M111009', 'address'] = '55 CHUMASERO DRIVE' ev.loc[ev['petition'] == 'M112072', 'address'] = '125 CAMBON DRIVE' ev.loc[ev['petition'] == 'M131872', 'address'] = '1921 ELLIS STREET' ev.loc[ev['petition'] == 'M140347', 'address'] = '326 LONDON STREET' ev.loc[ev['petition'] == 'E980001', 'address'] = '1551A 20TH AVE' ev.loc[ev['petition'] == 'E991754', 'address'] = '1271 FILBERT ST' ev.loc[ev['petition'] == 'M2K0279', 'address'] = '2364 FULTON ST' ev.loc[ev['petition'] == 'S000521', 'address'] = '431 SOMERSET ST' ev.loc[ev['petition'] == 'S000417', 'address'] = '1201 GUERRERO ST' # parkmerced ev.loc[ev['address'].str.contains( 'GONZALEZ|FONT|SERRANO|CHUMASERO|ARBALLO|GARCES|CAMBON|VIDAL|GRIJALVA|TAPIA|BUCARELI|RIVAS|CRESPI|CARDENAS|HIGUERA'), 'address'] = '3711 19TH AVE' ev = ev[ev['address'] != 'NO ADDRESS PROVIDED'] # clean street types ev['street_type'] = ev['address'].str.split(' ').str[-1] st_typ_dict = {'STREET': 'ST', 'AVENUE': 'AVE', 'DRIVE': 'DR', 'BOULEVARD': 'BLVD', 'COURT': 'CT', 'TERRACE': 'TER', 'PLACE': 'PL', 'HIGHWAY': 'HWY', 'LANE': 'LN', 'ROAD': 'RD', 'ALLEY': 'ALY', 'CIRCLE': 'CIR', 'SQUARE': 'SQ', 'PLAZA': 'PLZ', 'HILLS': 'HL', 'HILL': 'HL' } ev = ev.replace({'street_type': st_typ_dict}) ev.loc[~ev['street_type'].isin(valid_street_types), 'street_type'] = None # clean street numbers ev['street_num'] = ev['address'].str.split(' ').str[0] ev['house_1'] = '' ev['house_2'] = ev['street_num'] ev.loc[ev['street_num'].str.contains('-'), 'house_1'] = ev.loc[ ev['street_num'].str.contains('-'), 'street_num'].str.split('-').str[0] ev.loc[ev['street_num'].str.contains('-'), 'house_2'] = ev.loc[ ev['street_num'].str.contains('-'), 'street_num'].str.split('-').str[1] ev['house_1'] = ev['house_1'].str.replace('\D', '') ev['house_2'] = ev['house_2'].str.replace('\D', '') # clean street names ev['street_name'] = None ev.loc[~
pd.isnull(ev['street_type'])
pandas.isnull
import pandas as pd from time import sleep from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.chrome.options import Options from selenium.webdriver.support.select import Select url = 'https://www.agmarknet.gov.in/SearchCmmMkt.aspx?Tx_Commodity=78&Tx_State=MH&Tx_District=14&Tx_Market=172&DateFrom=01-Jan-2021&DateTo=27-Sep-2021&Fr_Date=01-Jan-2021&To_Date=27-Sep-2021&Tx_Trend=0&Tx_CommodityHead=Tomato&Tx_StateHead=Maharashtra&Tx_DistrictHead=Pune&Tx_MarketHead=Pune' d = webdriver.Chrome(ChromeDriverManager().install()) d.get(url) commodity = Select(d.find_element_by_id('ddlCommodity')).options commodity = [(i.get_attribute('value'), i.text) for i in commodity[1:]] states = Select(d.find_element_by_id('ddlState')).options states = [(i.get_attribute('value'), i.text) for i in states[1:]] print(states) print(commodity) for i, j in states: if j=='Maharashtra': c, d = i, j break final_df = pd.DataFrame() for a, b in commodity: temp_df = pd.DataFrame() url = 'https://www.agmarknet.gov.in/SearchCmmMkt.aspx?Tx_Commodity='+a+'&Tx_State='+c+'&Tx_District=0&Tx_Market=0&DateFrom=01-Jan-2021&DateTo=10-Aug-2021&Fr_Date=01-Jan-2021&To_Date=10-Aug-2021&Tx_Trend=0&Tx_CommodityHead='+b+'&Tx_StateHead='+d+'&Tx_DistrictHead=--Select--&Tx_MarketHead=--Select--' # print(url) dr = webdriver.Chrome(ChromeDriverManager().install()) dr.get(url) while True: try: table = dr.find_element_by_id('cphBody_GridPriceData').get_attribute('outerHTML') data = pd.read_html(str(table))[0] data.dropna(axis=0, inplace=True) if len(data)>1: data.set_index('Sl no.', inplace=True) temp_df = pd.concat([temp_df, data], axis=0) next = dr.find_element_by_css_selector("input[alt='>']") next.click() sleep(6) except: print('Done') if len(temp_df)>0: new_cols = [(b, x) for x in temp_df.columns] temp_df.columns = pd.MultiIndex.from_tuples(new_cols) if len(final_df) > len(temp_df): final_df = pd.concat([final_df, temp_df], axis=1) else: final_df =
pd.concat([temp_df, final_df], axis=1)
pandas.concat
import ast import pandas as pd from pandas.api.types import CategoricalDtype import os import numpy as np import tensorflow as tf from PIL import Image import shutil from tqdm import tqdm from subprocess import Popen, PIPE, STDOUT root_path = os.path.join(os.path.dirname(__file__), os.path.pardir) def load(filepath): tracks =
pd.read_csv(filepath, index_col=0, header=[0, 1])
pandas.read_csv
""" Function related to the loading and processing of CPC instruments from TSI version: 0.0 date: 2016-09-09 """ import os import sys import pandas as pd import glob import pickle import numpy as np import re import matplotlib.pyplot as plt sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import atmoscripts def Load_to_HDF(input_path= None, input_filelist = None, output_path = None, output_h5_filename = 'CPC_sec', InputTZ = 0, OutputTZ = 0, resample_time = False, output_file_frequency = 'all', force_reload_from_source = False ): """ Load performed after data has been exported to CSV file with just raw concentrations and times. """ if output_path is None: os.chdir(input_path) else: os.chdir(output_path) if (output_h5_filename is None) or (output_h5_filename == ''): output_h5_filename = 'CPC' output_h5_filename = output_h5_filename + '_raw' if force_reload_from_source: remove_previous_output('h5',force_reload_from_source, input_filelist) if input_filelist is None: os.chdir(input_path) filelist = glob.glob('*.csv') # Check if previous data has been loaded, if so, don't load it again if os.path.isfile('files_loaded.txt'): with open('files_loaded.txt', 'rb') as f: files_already_loaded = pickle.load(f) # Get only the new files to be loaded: filelist=list(set(filelist).difference(set(files_already_loaded))) # Read where the import has gotten up to previously: if os.path.isfile('partial_files_loaded.txt'): with open('partial_files_loaded.txt','r') as f: last_loaded = f.readlines() last_loaded = [x.strip() for x in last_loaded] last_loaded_file = last_loaded[0] if type(last_loaded_file) is str: filelist.append(last_loaded_file) else: filelist = input_filelist filelist.sort() #Iterate through to load the raw files for file in filelist: # Read cpc csv file read_cpc_csv(file, output_h5_filename, output_file_frequency, InputTZ, OutputTZ) # Clean up if os.path.isfile('partial_files_loaded.txt'): os.remove('partial_files_loaded.txt') #Save the files that have already been loaded to file for next update with open('files_loaded.txt', 'wb') as f: try: files_already_loaded except NameError: filelist = filelist else: filelist = filelist + files_already_loaded pickle.dump(filelist, f) if resample_time: timebase_resampler(input_path, output_h5_filename, variable = output_h5_filename, time_int=['5S'], output_path = output_path) return output_h5_filename def Load_to_NonHDF(input_path= None, input_filelist = None, output_path = None, output_h5_filename = 'CPC_sec', InputTZ = 0, OutputTZ = 0, resample_time = False, output_file_frequency = 'all', force_reload_from_source = False, output_file_format = 'csv', gui_mode = True, gui_mainloop = None ): ''' Do all the processing in HDF, then save the final product as netcdf or csv ''' assert output_file_format in ['csv','netcdf','nc'],'Choose either netcdf \ or csv file format!' # Load the data quickly via hdf base_fname = Load_to_HDF( input_path= input_path, input_filelist = input_filelist, output_path = output_path, output_h5_filename = output_h5_filename, InputTZ = InputTZ, OutputTZ = OutputTZ, resample_time = resample_time, output_file_frequency = output_file_frequency, force_reload_from_source = force_reload_from_source ) os.chdir(output_path) # Get the list of recently created hdf files filelist = glob.glob('*'+base_fname+'*.h5') # Load each file then save it as the requested file formatr for f in filelist: d = pd.read_hdf(f,key = 'cn') if output_file_format.lower() == 'csv': fname = f.split('.')[0]+'.csv' d.to_csv(fname) else: fname = f.split('.')[0]+'.nc' atmoscripts.df_to_netcdf( d, nc_filename = fname, global_title = None, global_description = None, author = None, global_institution = None, global_comment = None, gui_mode=gui_mode, gui_mainloop = gui_mainloop ) os.chdir(output_path) if os.path.isfile('netcdf_global_attributes.temp'): os.remove('netcdf_global_attributes.temp') return def load_cn(data_path=None, filetype=None, fname=None): ''' Loads data from concatenated data file. ''' if fname is None: assert data_path is not None, 'specify data path!' assert filetype is not None, 'specify filetype!' os.chdir(data_path) # Get most recently updated file: filelist = glob.glob('*.'+filetype) fname = min(filelist, key=os.path.getctime) else: filetype = fname.split('.')[-1] if filetype in ['hdf','h5']: data = pd.read_hdf(fname, key='cn') elif filetype in ['netcdf','nc']: data = atmoscripts.read_netcdf(fname, data_path) elif filetype == 'csv': data = pd.read_csv(fname,skipinitialspace = True, index_col=0, parse_dates=True, infer_datetime_format=True) return data def remove_previous_output(filetype, reload_from_source, input_flist): ''' Checks if previous files have been created. If not, then return true and create the new files. If so, and you've been asked to reload_from_source, return true. Otherwise, return false and don't reload the files. ''' input_filelist = [f.split('/')[-1] for f in input_flist] filelist = glob.glob('*'+filetype) if len(filelist) > 0 and reload_from_source: # Delete files and return for file in filelist: if file not in input_filelist: os.remove(file) if os.path.isfile('files_loaded.txt'): os.remove('files_loaded.txt') return def save_to_hdf(data, output_h5_filename, output_file_frequency): import datetime ''' Determine the destination file for each datapoint in the dataframe''' year_str = [str(i.isocalendar()[0]) for i in data.index] mnth_str = ['0' + str(i.month) \ if i.month <10 \ else str(i.month) \ for i in data.index] if output_file_frequency.lower() == 'monthly': # print('Saving to monthly HDF files') # Identify the destination file of each data point data['destination_file'] = [output_h5_filename+'_'+x+y for x,y in zip(year_str,mnth_str)] # Get the unique filenames output_filelist = set(data['destination_file']) elif output_file_frequency.lower() == 'weekly': # print('Saving to weekly HDF files') wk_str = ['0'+str(i.isocalendar()[1]) \ if i.isocalendar()[1] < 10 \ else str(i.isocalendar()[1]) \ for i in data.index] # Identify the destination file of each data point data['destination_file'] = [output_h5_filename+'_'+x+'_wk'+y for x,y in zip(year_str,wk_str)] # Get the unique filenames output_filelist = set(data['destination_file']) elif output_file_frequency.lower() == 'all': # Continue as normal # print('Saving all data to a single HDF file') data['destination_file'] = output_h5_filename output_filelist = set(data['destination_file']) else: # if output_file_frequency.lower() == 'daily': # print('Saving to daily HDF files') # else: if output_file_frequency.lower() != 'daily': print("Cannot determine what frequency you want the output file, defaulting to saving to daily files.") day_str = [datetime.datetime.strftime(i, format = '%d') for i in data.index] # Identify the destination file of each data point data['destination_file'] = [output_h5_filename+'_'+x+y+z for x,y,z in zip(year_str,mnth_str,day_str)] # Get the unique filenames output_filelist = set(data['destination_file']) ''' Save the appropriate data to each destination file ''' for file in list(output_filelist): # Select data data_temp = data[data['destination_file']==file] # Delete extraneous columns del data_temp['destination_file'] # Check if file already exists, if so, append, otherwise, create a new file if os.path.isfile(file+'.h5'): data_saved = pd.read_hdf(file+'.h5', key = 'cn') data_temp = data_saved.append(data_temp) # Drop any duplicates which may be there, based only on the Timestamp data_temp = data_temp.reset_index().drop_duplicates(subset='Timestamp', keep='last') data_temp = data_temp.set_index('Timestamp') #os.remove(file+'.h5') # Save to file data_temp.to_hdf(file+'.h5', key = 'cn', mode='a') # Remove additional columns that were added to the dataframe in the processing del data['destination_file'] return file+'.h5' def check_cpc_file_format(filename): ''' Reformat the CPC output that is produced by AIM auto-export. This involves removing header information which is reprinted after each sample ''' # read the file with open(filename) as f: # Read the file content = f.readlines() content = [x.strip() for x in content] # keep the first header so the read_cpc_csv function still works first_header = True # Initialise new list content_reformatted = [] header_list = [] # Iterate through each line, each for validity for line in content: if first_header and (line.split(',')[0] in ['Sample File','Model','','Sample #']): append_to_list(content_reformatted,line) continue elif line.split(',')[0] in ['Sample #']: append_to_list(header_list,line) else: try: int(line.split(',')[0]) append_to_list(content_reformatted,line) first_header=False except: continue if 'Sample File' not in content[0]: return None if len(content) == len(content_reformatted): return filename else: # Make sure the header reflects the longest sample length in the file content_reformatted[3] = max(header_list,key=len) # Write new file filename_reformatted = filename.split('.')[0]+'_reformatted.'+filename.split('.')[1] if os.path.isfile(filename_reformatted): os.remove(filename_reformatted) with open(filename_reformatted,'wt') as fnew: fnew.write('\n'.join(line for line in content_reformatted)) print('Input CPC file reformatted') # Return new filename return filename_reformatted def append_to_list(lst, line): return lst.append(line) def read_cpc_csv(read_filename, output_filename_base, output_file_frequency, InputTZ=0, OutputTZ=0): ''' Reads CPC data exports from AIM 10 and higher as row based, with ONLY concentration data output ''' import numpy as np if output_file_frequency == 'all': print('Saving all data to a single HDF file') else: print('Saving to ' + output_file_frequency + ' HDF file') # Check format of file: read_filename = check_cpc_file_format(read_filename) if read_filename is None: return # Read each row of data, taking into account that each row can change length and parsing format (weird...) df = pd.read_csv(read_filename, skiprows = range(0,3), engine='python', skipinitialspace=True, iterator = True, chunksize = 1000) # Read the number of samples in the file with open(read_filename) as f: lastline = f.readlines()[-1] numsamples = lastline.split(",")[0] # Read where the import has gotten up to previously: first_load = True if os.path.isfile('partial_files_loaded.txt'): with open('partial_files_loaded.txt','r') as f: last_loaded = f.readlines() last_loaded = [x.strip() for x in last_loaded] last_loaded_file = last_loaded[0] last_loaded_sample = int(last_loaded[1]) first_load = False for chunk in df: # Extract initial timestamp for each sample (i.e. each row) try: chunk['sample_timestamp'] = pd.to_datetime(chunk['Start Date']+' '+chunk['Start Time'], format = '%m/%d/%y %H:%M:%S') chunk = chunk.reset_index() del chunk['index'] except KeyError: # The csv file that you've read isn't actually a TSI CPC file return data = pd.DataFrame(columns = {'Timestamp', 'Concentration'}) for rowidx in range(0,len(chunk)): if not first_load: if (chunk['Sample #'][rowidx] <= last_loaded_sample) and (read_filename == last_loaded_file): continue # Create timestamp and extract concentration for each sample in chunk timestamp = [chunk['sample_timestamp'][rowidx]+pd.Timedelta(seconds=x) for x in range(0,chunk['Sample Length'][rowidx])] conc = chunk.loc[rowidx][12:(12+chunk['Sample Length'][rowidx])] print('Formatting sample ' + str(chunk['Sample #'].loc[rowidx]) + ' of ' + numsamples + ' from file ' + read_filename) # Format data as dataframe data_temp = pd.DataFrame({'Timestamp': timestamp, 'Concentration': conc.values}) # Append new data to current data data =
pd.concat([data,data_temp])
pandas.concat
# !pip install git+https://github.com/huggingface/transformers # !pip install textacy import sys from custom_svo_extractor import find_svo experiment_data = 'squad' experiment_model = 'Bert' extractor = 'spacy' if len(sys.argv) > 1: experiment_data = str(sys.argv[1]) experiment_model = str(sys.argv[2]) extractor = 'spacy' if str(sys.argv) == 'spacy' else 'textacy' if str(sys.argv) == 'textacy' else 'custom' import urllib.request import zipfile from transformers import pipeline import json import pandas as pd import matplotlib.pyplot as plt import networkx as nx import spacy import textacy def preprocess_masks(df, experiment_data, experiment_model, unmasker): good_preds_ids = [] predicted_sentences = [] ground_truth_sentences = [] valid_examples = len(df) for i in range(len(df)): mask = df['masked_sentences'][i].replace('ร„', '').replace('ฤ ', '') if mask.count('[MASK]') > 1 or mask.count('[MASK]') == 0: valid_examples -= 1 continue if 're' in experiment_data: gold_label = df['obj'][i].replace('ร„', '').replace('ฤ ', '') else: gold_label = df['obj_label'][i].replace('ร„', '').replace('ฤ ', '') if 'Roberta' in experiment_model: mask = mask.replace('[MASK]', '<mask>') preds = pd.DataFrame(unmasker(mask))['token_str'] if any(preds.str.contains(gold_label)): good_preds_ids.append(i) top_pred = preds[0].replace('ร„', '').replace('ฤ ', '') if 'Roberta' in experiment_model: full_sentence = mask.replace('<mask>', top_pred) ground_truth_sentence = mask.replace('<mask>', gold_label) else: full_sentence = mask.replace('[MASK]', top_pred) ground_truth_sentence = mask.replace('[MASK]', gold_label) predicted_sentences.append(full_sentence) ground_truth_sentences.append(ground_truth_sentence) return good_preds_ids, predicted_sentences, ground_truth_sentences, valid_examples def generate_df(data_type='squad'): if data_type == 'squad': file = 'data/data/Squad/test.jsonl' elif data_type == 're-date-birth': file = 'data/data/Google_RE/date_of_birth_test.jsonl' elif data_type == 're-place-birth': file = 'data/data/Google_RE/place_of_birth_test.jsonl' elif data_type == 're-place-death': file = 'data/data/Google_RE/place_of_death_test.jsonl' else: raise NameError("Data file ", data_type, "not available.") with open(file, 'r') as json_file: json_list = list(json_file) df = pd.DataFrame() for json_str in json_list: result = json.loads(json_str) if 're' in data_type: dfItem = pd.DataFrame.from_dict({'masked_sentences': result['masked_sentences'], 'obj': str(result['obj'][:4])}) else: dfItem = pd.DataFrame.from_records(result) df = df.append(dfItem, ignore_index=True) return df def textacy_extract_relations(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text) return textacy.extract.subject_verb_object_triples(doc) def spacy_extract_relations(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text) triples = [] for ent in doc.ents: preps = [prep for prep in ent.root.head.children if prep.dep_ == "prep"] for prep in preps: for child in prep.children: triples.append((ent.text, "{} {}".format(ent.root.head, prep), child.text)) return triples def retrieve_data(): url = "https://dl.fbaipublicfiles.com/LAMA/data.zip" extract_dir = "data" zip_path, _ = urllib.request.urlretrieve(url) with zipfile.ZipFile(zip_path, "r") as f: f.extractall(extract_dir) def retrive_models(experiment_model): if experiment_model == 'DistilBert': from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") unmasker = pipeline('fill-mask', model='distilbert-base-uncased') elif experiment_model == 'Bert': from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") unmasker = pipeline('fill-mask', model='bert-base-uncased') elif experiment_model == 'Roberta': from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaModel.from_pretrained("roberta-base") unmasker = pipeline('fill-mask', model='roberta-base') else: raise NameError("Model has not been implemented yet.") return tokenizer, model, unmasker def generate_kg(predicted_sentences, extractor='spacy'): nlp = spacy.load("en_core_web_sm") label_dict = {} row_list = [] if extractor == 'spacy': extract_relations = spacy_extract_relations elif extractor == 'textacy': extract_relations = textacy_extract_relations elif extractor == 'custom': extract_relations = find_svo else: raise ValueError("Please provide a valid extraction option") for text in predicted_sentences: relations = extract_relations(text) for _source, _relation, _target in relations: row_list.append({'source': str(_source), 'target':str(_target), 'edge': str(_relation)}) label_dict[(str(_source), str(_target))] = str(_relation) return pd.DataFrame(row_list), label_dict def plot_kg(df, label_dict, node_color='skyblue', font_color='red', save_name='img.jpg'): G=nx.from_pandas_edgelist(df, "source", "target", edge_attr=True, create_using=nx.MultiDiGraph()) plt.figure(figsize=(12,12)) pos = nx.spring_layout(G) nx.draw(G, with_labels=True, node_color=node_color, edge_cmap=plt.cm.Blues, pos = pos) nx.draw_networkx_edge_labels(G,pos,edge_labels=label_dict,font_color=font_color) plt.savefig(save_name) def generate_merge_df(labels): n_df =
pd.DataFrame(labels, columns=['source', 'edge'])
pandas.DataFrame
# -------------- #Importing header files import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Code starts here data = pd.read_csv(path) data['Rating'].hist() data = data[data['Rating']<=5] data['Rating'].hist() #Code ends here # -------------- # code starts here total_null = data.isnull().sum() percent_null = (total_null/data.isnull().count())*100 missing_data = pd.concat([total_null,percent_null],keys=['Total','Percent'],axis=1) #print(missing_data) data = data.dropna() total_null_1 = data.isnull().sum() percent_null_1 = (total_null_1/data.isnull().count())*100 missing_data_1 =
pd.concat([total_null_1,percent_null_1],keys=['Total','Percent'],axis=1)
pandas.concat
# coding: utf-8 # CS FutureMobility Tool # See full license in LICENSE.txt. import numpy as np import pandas as pd #import openmatrix as omx from IPython.display import display from openpyxl import load_workbook,Workbook from time import strftime import os.path import mode_choice.model_defs as md import mode_choice.matrix_utils as mtx import config ''' Utilities to summarize the outputs of Mode Choice ''' def display_mode_share(mc_obj): ''' This displays a mode share summary by market segment (with / without vehicle, peak / off-peak) on the IPython notebook. :param mc_obj: mode choice module object as defined in the IPython notebook ''' # display mode share tables avg_trips_by_mode = pd.DataFrame(None) for purpose in ['HBW','HBO', 'NHB', 'HBSc1', 'HBSc2', 'HBSc3']: avg_trips_by_mode = avg_trips_by_mode.add(pd.DataFrame({pv:{mode:(mc_obj.table_container.get_table(purpose)[pv][mode].sum()) for mode in mc_obj.table_container.get_table(purpose)[pv]} for pv in ['0_PK','1_PK','0_OP','1_OP']}).T, fill_value = 0) avg_mode_share = avg_trips_by_mode.divide(avg_trips_by_mode.sum(1),axis = 0) display(avg_mode_share.style.format("{:.2%}")) def write_boston_neighbortown_mode_share_to_excel(mc_obj): ''' Writes mode share summary by purpose and market segment to an Excel workbook. Applies only to trips to/from Boston :param mc_obj: mode choice module object as defined in the IPython notebook :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' out_excel_fn = mc_obj.config.out_path + "mode_share_bosNB_{0}.xlsx".format(strftime("%Y%m%d")) # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: mode_share = pd.DataFrame(columns = md.peak_veh) trip_table = mc_obj.table_container.get_table(purp) for pv in md.peak_veh: for mode in trip_table[pv].keys(): #study area zones might not start at zone 0 and could have discontinous TAZ IDs trip_table_o = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOSTON'], D_slice = md.taz['BOS_AND_NEI']) trip_table_d = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOS_AND_NEI'], D_slice = md.taz['BOSTON']) trip_table_b = mtx.OD_slice(trip_table[pv][mode], O_slice = md.taz['BOSTON'], D_slice = md.taz['BOSTON']) trip_table_bos = trip_table_o + trip_table_d - trip_table_b mode_share.loc[mode,pv] = trip_table_bos.sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() def write_study_area_mode_share_to_excel(mc_obj, out_excel_fn = None): ''' Writes mode share summary by purpose and market segment to an Excel workbook. Applies only to trips to/from study area :param mc_obj: mode choice module object as defined in the IPython notebook :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' if out_excel_fn is None: out_excel_fn = mc_obj.config.out_path + "mode_share_study_area_{0}.xlsx".format(strftime("%Y%m%d")) # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: mode_share = pd.DataFrame(columns = md.peak_veh) trip_table = mc_obj.table_container.get_table(purp) for pv in md.peak_veh: for mode in trip_table[pv].keys(): trip_table_o = mtx.OD_slice(trip_table[pv][mode], O_slice = md.study_area) trip_table_d = mtx.OD_slice(trip_table[pv][mode], D_slice = md.study_area) trip_table_ii = mtx.OD_slice(trip_table[pv][mode], O_slice = md.study_area, D_slice = md.study_area) trip_table_sa = trip_table_o + trip_table_d - trip_table_ii mode_share.loc[mode,pv] = trip_table_sa.sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() def write_mode_share_to_excel(mc_obj,purpose, out_excel_fn = None): ''' Writes mode share summary by purpose and market segment to an Excel workbook. :param mc_obj: mode choice module object as defined in the IPython notebook :param purpose: can be a single purpose or 'all', in which case the Excel workbook has six sheets, one for each purpose. :param out_excel_fn: output Excel filename, by default in the output path defined in config.py ''' if out_excel_fn is None: out_excel_fn = mc_obj.config.out_path + "MC_mode_share_{0}_{1}.xlsx".format(purpose, strftime("%Y%m%d")) if purpose == 'all': # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book for purp in md.purposes: trip_table = mc_obj.table_container.get_table(purp) mode_share = pd.DataFrame(columns = md.peak_veh) for pv in md.peak_veh: for mode in trip_table[pv].keys(): mode_share.loc[mode,pv] = trip_table[pv][mode].sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purp in book.sheetnames: # if sheetname exists, delete book.remove(book[purp]) writer.save() mode_share.to_excel(writer, sheet_name = purp) writer.save() elif purpose in md.purposes: # check if file exists. if os.path.isfile(out_excel_fn): book = load_workbook(out_excel_fn) else: book = Workbook() book.save(out_excel_fn) writer = pd.ExcelWriter(out_excel_fn,engine = 'openpyxl') writer.book = book mode_share = pd.DataFrame(columns = md.peak_veh) for pv in md.peak_veh: for mode in mc_obj.trips_by_mode[pv].keys(): mode_share.loc[mode,pv] = mc_obj.trips_by_mode[pv][mode].sum() mode_share['Total'] = mode_share.sum(1) mode_share['Share'] = mode_share['Total'] / mode_share['Total'].sum() if purpose in book.sheetnames: # if sheetname exists, delete book.remove(book[purpose]) writer.save() mode_share.to_excel(writer, sheet_name = purpose) writer.save() def __mt_prod_attr_nhood(mc_obj, trip_table, skim): # miles traveled. For VMT and PMT, by neighborhood # sum prodct of trip_table - skims mt_total = trip_table * skim['Length (Skim)'] # calculate marginals prod = pd.DataFrame(np.sum(mt_total,axis = 1)/2, columns = ['Production']) attr = pd.DataFrame(np.sum(mt_total,axis = 0) / 2, columns = ['Attraction']) towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] mt_taz = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],prod,attr],axis = 1,join = 'inner') mt_taz.index.names=['Boston Neighborhood'] return mt_taz.groupby(['BOSTON_NB']).sum()[['Production','Attraction']].reset_index() def __trip_prod_attr_nhood(mc_obj, trip_table): mt_total = trip_table # calculate marginals prod = pd.DataFrame(np.sum(mt_total,axis = 1), columns = ['Production']) attr = pd.DataFrame(np.sum(mt_total,axis = 0), columns = ['Attraction']) towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] mt_taz = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],prod,attr],axis = 1,join = 'inner') mt_taz.index.names=['Boston Neighborhood'] return mt_taz.groupby(['BOSTON_NB']).sum()[['Production','Attraction']].reset_index() def sm_vmt_by_neighborhood(mc_obj, out_fn = None, by = None, sm_mode = 'SM_RA'): ''' Summarizes VMT production and attraction by the 26 Boston neighborhoods for Shared Mobility Modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + sm_mode + f'_vmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + sm_mode + f'_vmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports VMT by neighborhood, peak / vehicle ownership, purpose.') return else: vmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): auto_trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] / md.AO_dict[sm_mode] vmt_table = __mt_prod_attr_nhood(mc_obj,auto_trip_table,skim_dict[peak]) vmt_table['peak'] = peak vmt_table['veh_own'] = veh_own vmt_table['purpose'] = purpose vmt_master_table = vmt_master_table.append(vmt_table, sort = True) if by == None: vmt_summary = vmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': vmt_summary = pd.concat([ vmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': vmt_summary = pd.concat([ vmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': vmt_summary = pd.concat([ vmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in vmt_master_table.purpose.unique()],axis = 1, keys= vmt_master_table.purpose.unique()) vmt_summary.to_csv(out_fn) def vmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes VMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'vmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'vmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports VMT by neighborhood, peak / vehicle ownership, purpose.') return else: vmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() auto_trip_table = sum([ mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in ['DA','SR2','SR3+','SM_RA','SM_SH'] if mode in drive_modes]) vmt_table = __mt_prod_attr_nhood(mc_obj,auto_trip_table,skim_dict[peak]) vmt_table['peak'] = peak vmt_table['veh_own'] = veh_own vmt_table['purpose'] = purpose vmt_master_table = vmt_master_table.append(vmt_table, sort = True) if by == None: vmt_summary = vmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': vmt_summary = pd.concat([ vmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': vmt_summary = pd.concat([ vmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': vmt_summary = pd.concat([ vmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in vmt_master_table.purpose.unique()],axis = 1, keys= vmt_master_table.purpose.unique()) vmt_summary.to_csv(out_fn) def pmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'pmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'pmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports PMT by neighborhood, peak / vehicle ownership, purpose.') return else: pmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) pmt_table = __mt_prod_attr_nhood(mc_obj,person_trip_table,skim_dict[peak]) pmt_table['peak'] = peak pmt_table['veh_own'] = veh_own pmt_table['purpose'] = purpose pmt_master_table = pmt_master_table.append(pmt_table, sort = True) if by == None: pmt_summary = pmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': pmt_summary = pd.concat([ pmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': pmt_summary = pd.concat([ pmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': pmt_summary = pd.concat([ pmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in pmt_master_table.purpose.unique()],axis = 1, keys= pmt_master_table.purpose.unique()) pmt_summary.to_csv(out_fn) def act_pmt_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods for active modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'act_pmt_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'act_pmt_by_neighborhood_by_{by}.csv' skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} if by in ['peak','veh_own','purpose'] == False: print('Only supports PMT by neighborhood, peak / vehicle ownership, purpose.') return else: pmt_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in ['Walk','Bike'] if mode in drive_modes]) pmt_table = __mt_prod_attr_nhood(mc_obj,person_trip_table,skim_dict[peak]) pmt_table['peak'] = peak pmt_table['veh_own'] = veh_own pmt_table['purpose'] = purpose pmt_master_table = pmt_master_table.append(pmt_table, sort = True) if by == None: pmt_summary = pmt_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': pmt_summary = pd.concat([ pmt_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': pmt_summary = pd.concat([ pmt_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': pmt_summary = pd.concat([ pmt_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in pmt_master_table.purpose.unique()],axis = 1, keys= pmt_master_table.purpose.unique()) pmt_summary.to_csv(out_fn) def sm_trips_by_neighborhood(mc_obj, out_fn = None, by = None, sm_mode = 'SM_RA'): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods for Shared Mobility Modes. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. :param sm_mode: Smart Mobility Mode name ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + sm_mode + f'_trips_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + sm_mode + f'_trips_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports Trips by neighborhood, peak / vehicle ownership, purpose.') return else: trp_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): person_trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] trp_table = __trip_prod_attr_nhood(mc_obj,person_trip_table) trp_table['peak'] = peak trp_table['veh_own'] = veh_own trp_table['purpose'] = purpose trp_master_table = trp_master_table.append(trp_table, sort = True) if by == None: trp_summary = trp_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': trp_summary = pd.concat([ trp_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': trp_summary = pd.concat([ trp_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': trp_summary = pd.concat([ trp_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in trp_master_table.purpose.unique()],axis = 1, keys= trp_master_table.purpose.unique()) trp_summary.to_csv(out_fn) def trips_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes PMT production and attraction by the 26 Boston neighborhoods. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided. ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'trips_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'trips_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports Trips by neighborhood, peak / vehicle ownership, purpose.') return else: trp_master_table = pd.DataFrame(columns = ['Production','Attraction','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() person_trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) trp_table = __trip_prod_attr_nhood(mc_obj,person_trip_table) trp_table['peak'] = peak trp_table['veh_own'] = veh_own trp_table['purpose'] = purpose trp_master_table = trp_master_table.append(trp_table, sort = True) if by == None: trp_summary = trp_master_table.groupby('BOSTON_NB').sum() elif by == 'peak': trp_summary = pd.concat([ trp_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak] for peak in ['PK','OP']], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': trp_summary = pd.concat([ trp_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own] for veh_own in ['0','1']], axis = 1, keys = ['No car', 'With car'] ) elif by == 'purpose': trp_summary = pd.concat([ trp_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose] for purpose in trp_master_table.purpose.unique()],axis = 1, keys= trp_master_table.purpose.unique()) trp_summary.to_csv(out_fn) def mode_share_by_neighborhood(mc_obj, out_fn = None, by = None): ''' Summarizes mode share as the average of trips to/from the 26 Boston neighborhoods, in three categories - drive, non-motorized and transit. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'mode_share_by_neighborhood.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'mode_share_by_neighborhood_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports mode share by neighborhood, peak / vehicle ownership, purpose.') return else: share_master_table = pd.DataFrame(columns = ['drive','non-motorized','transit','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): share_table = pd.DataFrame(index = range(0,md.max_zone),columns = ['drive','non-motorized','transit','smart mobility']).fillna(0) for mode in mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}']: trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] category = md.mode_categories[mode] share_table[category] += (trip_table.sum(axis = 1)+trip_table.sum(axis = 0))/2 towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] trips = pd.concat([towns[[md.taz_ID_field,'BOSTON_NB']],share_table],axis = 1,join = 'inner').groupby(['BOSTON_NB']).sum().drop([md.taz_ID_field],axis = 1) trips['peak'] = peak trips['veh_own'] = veh_own trips['purpose'] = purpose share_master_table = share_master_table.append(trips.reset_index(), sort = True) if by == None: trip_summary = share_master_table.groupby('BOSTON_NB').sum() share_summary = trip_summary.divide(trip_summary.sum(axis = 1),axis = 0) elif by == 'peak': share_summary = pd.concat([ share_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak].divide( share_master_table.groupby(['peak','BOSTON_NB']).sum().loc[peak].sum(axis=1),axis = 0) for peak in ['PK','OP'] ], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': share_summary = pd.concat([ share_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own].divide( share_master_table.groupby(['veh_own','BOSTON_NB']).sum().loc[veh_own].sum(axis=1),axis = 0) for veh_own in ['0','1'] ], axis = 1, keys = ['No car', 'With car']) elif by == 'purpose': share_summary = pd.concat([ share_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose].divide( share_master_table.groupby(['purpose','BOSTON_NB']).sum().loc[purpose].sum(axis=1),axis = 0) for purpose in share_master_table.purpose.unique() ],axis = 1, keys= share_master_table.purpose.unique()) share_summary.to_csv(out_fn) # Seaport method def mode_share_by_subarea(mc_obj, out_fn = None, by = None): ''' Summarizes mode share as the average of trips to/from the 7 Seaport sub-areas, in three categories - drive, non-motorized and transit. :param mc_obj: mode choice module object as defined in the IPython notebook :param out_fn: output csv filename; if None specified, in the output path defined in config.py :param by: grouping used for the summary ''' if out_fn is None and by is None: out_fn = mc_obj.config.out_path + f'mode_share_by_subarea.csv' elif out_fn is None and by: out_fn = mc_obj.config.out_path + f'mode_share_by_subarea_by_{by}.csv' if by in ['peak','veh_own','purpose'] == False: print('Only supports mode share by subarea, peak / vehicle ownership, purpose.') return else: share_master_table = pd.DataFrame(columns = ['drive','non-motorized','transit','peak','veh_own','purpose']) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): share_table = pd.DataFrame(index = range(0,md.max_zone),columns = ['drive','non-motorized','transit','smart mobility']).fillna(0) for mode in mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}']: trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] category = md.mode_categories[mode] share_table[category] += (trip_table.sum(axis = 1)+trip_table.sum(axis = 0))/2 towns = mc_obj.taz.sort_values(md.taz_ID_field).iloc[0:md.max_zone] towns['REPORT_AREA'] = towns['REPORT_AREA'][towns['REPORT_AREA'].isin(['South Station', 'Seaport Blvd', 'Design Center', 'Southeast Seaport', 'BCEC', 'Fort Point', 'Broadway'])] trips = pd.concat([towns[[md.taz_ID_field,'REPORT_AREA']],share_table],axis = 1,join = 'inner').groupby(['REPORT_AREA']).sum().drop([md.taz_ID_field],axis = 1) trips['peak'] = peak trips['veh_own'] = veh_own trips['purpose'] = purpose share_master_table = share_master_table.append(trips.reset_index(), sort = True) if by == None: trip_summary = share_master_table.groupby('REPORT_AREA').sum() share_summary = trip_summary.divide(trip_summary.sum(axis = 1),axis = 0) elif by == 'peak': share_summary = pd.concat([ share_master_table.groupby(['peak','REPORT_AREA']).sum().loc[peak].divide( share_master_table.groupby(['peak','REPORT_AREA']).sum().loc[peak].sum(axis=1),axis = 0) for peak in ['PK','OP'] ], axis = 1, keys = ['PK','OP']) elif by == 'veh_own': share_summary = pd.concat([ share_master_table.groupby(['veh_own','REPORT_AREA']).sum().loc[veh_own].divide( share_master_table.groupby(['veh_own','REPORT_AREA']).sum().loc[veh_own].sum(axis=1),axis = 0) for veh_own in ['0','1'] ], axis = 1, keys = ['No car', 'With car']) elif by == 'purpose': share_summary = pd.concat([ share_master_table.groupby(['purpose','REPORT_AREA']).sum().loc[purpose].divide( share_master_table.groupby(['purpose','REPORT_AREA']).sum().loc[purpose].sum(axis=1),axis = 0) for purpose in share_master_table.purpose.unique() ],axis = 1, keys= share_master_table.purpose.unique()) share_summary.to_csv(out_fn) def __sm_compute_summary_by_subregion(mc_obj,metric = 'VMT',subregion = 'neighboring', sm_mode='SM_RA'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() not in ('vmt','pmt','mode share','trip', 'pmt_act'): print('Only supports trip, VMT, PMT and mode share calculations.') return if subregion.lower() not in ('boston','neighboring','i93','i495','region'): print('Only supports within boston, "neighboring" for towns neighboring Boston, I93, I495 or Region.') return subregion_dict = {'boston':'BOSTON','neighboring':'BOS_AND_NEI','i93':'in_i95i93','i495':'in_i495'} if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] / md.AO_dict[sm_mode] vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_auto_vmt = mtx.OD_slice(vmt_table,O_slice = md.taz['BOSTON'], D_slice = md.taz[field]== True) boston_d_auto_vmt = mtx.OD_slice(vmt_table,md.taz[field]== True,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_vmt = vmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_auto_vmt = mtx.OD_slice(vmt_table,O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] #boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=1)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=0)/2 ,columns=["VMT"]) town_vmt_o=pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner') town_vmt_d=pd.concat([town_definition,zone_vmt_daily_d],axis=1,join='inner') vmt_sum_o = town_vmt_o[town_vmt_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] vmt_sum_d = town_vmt_d[town_vmt_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] subregion_vmt = (vmt_sum_o + vmt_sum_d).values[0] return subregion_vmt elif metric.lower() == 'trip': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} tripsum_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): trip_table = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][sm_mode] tripsum_table += trip_table if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz['BOSTON'],D_slice = md.taz[field]== True) boston_d_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) #boston_o_trip = tripsum_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_trip = tripsum_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_trip = mtx.OD_slice(tripsum_table, O_slice = md.taz['BOSTON']) boston_d_trip = mtx.OD_slice(tripsum_table, D_slice = md.taz['BOSTON']) #boston_o_trip = tripsum_table[md.taz['BOSTON'],:] #boston_d_trip = tripsum_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_daily_o = pd.DataFrame(np.sum(boston_o_trip,axis=1) ,columns=["trips"]) zone_daily_d = pd.DataFrame(np.sum(boston_d_trip,axis=0) ,columns=["trips"]) town_o=pd.concat([town_definition,zone_daily_o],axis=1,join='inner') town_d=pd.concat([town_definition,zone_daily_d],axis=1,join='inner') sum_o = town_o[town_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['trips'] sum_d = town_d[town_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['trips'] subregion_trip = (sum_o + sum_d).values[0] return subregion_trip def __compute_metric_by_zone(mc_obj,metric = 'VMT'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in md.auto_modes if mode in drive_modes]) vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table,D_slice = md.taz['BOSTON']) #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] #boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=0)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=1)/2 ,columns=["VMT"]) town_vmt_o=pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner') town_vmt_d=pd.concat([town_definition,zone_vmt_daily_d],axis=1,join='inner') town_vmt = town_vmt_o.groupby(['TOWN']).sum()['VMT'] + town_vmt_d.groupby(['TOWN']).sum()['VMT'] return town_vmt elif metric.lower() == 'pmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=0)/2 ,columns=["VMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=1)/2 ,columns=["VMT"]) town_pmt_o=pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner') town_pmt_d=pd.concat([town_definition,zone_pmt_daily_d],axis=1,join='inner') town_pmt = town_pmt_o.groupby(['TOWN']).sum()['VMT'] + town_pmt_d.groupby(['TOWN']).sum()['VMT'] return town_pmt elif metric.lower() == 'pmt_act': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in ['Walk','Bike'] if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=0)/2 ,columns=["VMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=1)/2 ,columns=["VMT"]) town_pmt_o=pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner') town_pmt_d=pd.concat([town_definition,zone_pmt_daily_d],axis=1,join='inner') town_pmt = town_pmt_o.groupby(['TOWN']).sum()['VMT'] + town_pmt_d.groupby(['TOWN']).sum()['VMT'] return town_pmt def __compute_summary_by_subregion(mc_obj,metric = 'VMT',subregion = 'neighboring'): ''' Computing function used by write_summary_by_subregion(), does not produce outputs''' if metric.lower() not in ('vmt','pmt','mode share','trip', 'pmt_act'): print('Only supports trip, VMT, PMT and mode share calculations.') return if subregion.lower() not in ('boston','neighboring','i93','i495','region'): print('Only supports within boston, "neighboring" for towns neighboring Boston, I93, I495 or Region.') return subregion_dict = {'boston':'BOSTON','neighboring':'BOS_AND_NEI','i93':'in_i95i93','i495':'in_i495'} if metric.lower() == 'vmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} vmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] / md.AO_dict[mode] for mode in md.auto_modes if mode in modes]) vmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] #boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_vmt = vmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON'], D_slice = md.taz[field]== True) boston_d_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': # boston_o_auto_vmt = vmt_table[md.taz['BOSTON'],:] # boston_d_auto_vmt = vmt_table[:][:,md.taz['BOSTON']] boston_o_auto_vmt = mtx.OD_slice(vmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_vmt = mtx.OD_slice(vmt_table, D_slice = md.taz['BOSTON']) town_definition = md.taz zone_vmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_vmt,axis=1)/2 ,columns=["VMT"]) zone_vmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_vmt,axis=0)/2 ,columns=["VMT"]) town_vmt_o=pd.concat([town_definition,zone_vmt_daily_o],axis=1,join='inner') town_vmt_d=pd.concat([town_definition,zone_vmt_daily_d],axis=1,join='inner') vmt_sum_o = town_vmt_o[town_vmt_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] vmt_sum_d = town_vmt_d[town_vmt_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['VMT'] subregion_vmt = (vmt_sum_o + vmt_sum_d).values[0] return subregion_vmt elif metric.lower() == 'pmt': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in md.modes if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON'],D_slice = md.taz[field]== True) boston_d_auto_pmt = mtx.OD_slice(pmt_table ,O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_pmt = pmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=1)/2 ,columns=["PMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=0)/2 ,columns=["PMT"]) town_pmt_o=pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner') town_pmt_d=pd.concat([town_definition,zone_pmt_daily_d],axis=1,join='inner') pmt_sum_o = town_pmt_o[town_pmt_o['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['PMT'] pmt_sum_d = town_pmt_d[town_pmt_d['TOWN']=='BOSTON,MA'].groupby(['TOWN']).sum()['PMT'] boston_portion_pmt = (pmt_sum_o + pmt_sum_d).values[0] return boston_portion_pmt elif metric.lower() == 'pmt_act': skim_dict = {'PK': mc_obj.drive_skim_PK,'OP':mc_obj.drive_skim_OP} pmt_table = np.zeros((md.max_zone,md.max_zone)) for purpose in md.purposes: for peak in ['PK','OP']: for veh_own in ['0','1']: if mc_obj.table_container.get_table(purpose): drive_modes = mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'].keys() trip_table = sum([mc_obj.table_container.get_table(purpose)[f'{veh_own}_{peak}'][mode] for mode in ['Walk','Bike'] if mode in drive_modes]) pmt_table += trip_table * skim_dict[peak]['Length (Skim)'] if subregion.lower() in subregion_dict: field = subregion_dict[subregion.lower()] boston_o_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz['BOSTON'],D_slice = md.taz[field]== True) boston_d_auto_pmt = mtx.OD_slice(pmt_table, O_slice = md.taz[field]== True, D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:][:, md.taz[field]== True] #boston_d_auto_pmt = pmt_table[md.taz[field]== True,:][:,md.taz['BOSTON']] town_definition = md.taz[md.taz[field]== True] elif subregion.lower() == 'region': boston_o_auto_pmt = mtx.OD_slice(pmt_table,O_slice = md.taz['BOSTON']) boston_d_auto_pmt = mtx.OD_slice(pmt_table,D_slice = md.taz['BOSTON']) #boston_o_auto_pmt = pmt_table[md.taz['BOSTON'],:] #boston_d_auto_pmt = pmt_table[:][:,md.taz['BOSTON']] town_definition = md.taz zone_pmt_daily_o = pd.DataFrame(np.sum(boston_o_auto_pmt,axis=1)/2 ,columns=["PMT"]) zone_pmt_daily_d = pd.DataFrame(np.sum(boston_d_auto_pmt,axis=0)/2 ,columns=["PMT"]) town_pmt_o=
pd.concat([town_definition,zone_pmt_daily_o],axis=1,join='inner')
pandas.concat
import pandas as pd import numpy as np # import nltk # import re # from nltk.corpus import stopwords # from nltk.tokenize import word_tokenize import math class NaiveBayesModel: def WordGivenNoPI(self, tempNegDocVector, uniqueWords): data = np.zeros([1, len(uniqueWords)]) wordGivenNoPI = pd.DataFrame(data, columns=uniqueWords) columnSum = tempNegDocVector.sum(axis=1, skipna=True) numWordsInNoPI = columnSum.sum() for word in uniqueWords: nk_wordinNoPI = tempNegDocVector[word].sum() wordGivenNoPI.at[0, word] = (nk_wordinNoPI + 1) / (numWordsInNoPI + len(uniqueWords)) return (wordGivenNoPI, numWordsInNoPI) def TrainModel(self, Train_Vector, uniqueWords): yesCount = Train_Vector["PurchaseIntention"] == "yes" tempPosDocVector = Train_Vector[yesCount] totalPI = tempPosDocVector["PurchaseIntention"].count() print("total PI ", totalPI) noCount = Train_Vector["PurchaseIntention"] == "no" tempNegDocVector = Train_Vector[noCount] # print(tempNegDocVector["PurchaseIntention"]) totalNonPI = tempNegDocVector["PurchaseIntention"].count() print("total non PI ", totalNonPI) # print(totalPI+totalNonPI) # totalNonPI = docVector["PurchaseIntention"].count() - totalPI total = totalPI + totalNonPI Prob_PI = totalPI / total Prob_NoPI = totalNonPI / total data = np.zeros([1, len(uniqueWords)]) wordGivenPI = pd.DataFrame(data, columns=uniqueWords) columnSum = tempPosDocVector.sum(axis=1, skipna=True) numWordsInPI = columnSum.sum() for word in uniqueWords: nk_wordinPI = tempPosDocVector[word].sum() wordGivenPI.at[0, word] = (nk_wordinPI + 1) / (numWordsInPI + len(uniqueWords)) df_wordGivenNoPI, numWordsInNoPI = self.WordGivenNoPI(tempNegDocVector, uniqueWords) return wordGivenPI, df_wordGivenNoPI, Prob_PI, Prob_NoPI, numWordsInPI, numWordsInNoPI def predict(self,Prob_PI, Prob_NoPI, uniqueWords, df_WordGivenPI, df_WordGivenNoPi, numWordsInPI, numWordsInNoPI, df_test, clean): predict_df =
pd.DataFrame()
pandas.DataFrame
""" The :mod:`codeless.fs` module includes methods to select best features/most relevant fetures. """ # For univariate Selection from sklearn.feature_selection import SelectKBest as _skb# SelectKBest selects the k best features from sklearn.feature_selection import chi2 as _chi#This is used for applying the statistical analysis eg.Hypothesis testing, # null hypothesis, alternate hypothesis etc. # For Feature Importance from sklearn.ensemble import ExtraTreesClassifier as _etc # For Information Gain from sklearn.feature_selection import mutual_info_classif as _mic import pandas as _pd import numpy as _np def UVSelection(X, y, k=10): ''' SELECT K-BEST Select features according to the k highest scores. Greater the Score more important the feature is. Parameters ------------- X: Series/DataFrame Dataframe of all dependent feature. y: Series/DataFrame Independent Column k: Integer, optional based on Score, top k columns with highest Scores are selected. Returns ------------ DataFrame: rectangular dataset a dataframe with two columns (ie. Feature, Score) is returned. 'Feature' containing names of all the column names & 'Score' containing scores of each column arrange in deacreasing order of score. ''' # It'll take top k best feature ordered_rank_features = _skb(score_func=_chi,k=len(X.columns)) ordered_feature=ordered_rank_features.fit(X,y) # feature_rank = pd.DataFrame(ordered_feature.scores_) feature_rank = _pd.DataFrame(ordered_feature.scores_, index=X.columns, columns=['Score']) return feature_rank.nlargest(k, 'Score') def FeatureImportance(X, y): ''' FEATURE IMPORTANCE This technique gives you a score for each feature of the data, the higher the score more relevant it is. Parameters ------------- X: Series/DataFrame Dataframe of all dependent feature. y: Series/DataFrame Independent Column Returns ------------ DataFrame: rectangular dataset a dataframe with a columns (ie. Score) is returned. 'Score' containing scores of each column arrange in deacreasing order of score. Index column contains name of columns. To get top n features from the dataframe write list(ranked_features.nlargest(n, 'Score')['Feature']) ''' model = _etc() model.fit(X, y) ranked_features = _pd.DataFrame(model.feature_importances_, index=X.columns, columns=['Score']) return ranked_features.nlargest(len(X.columns), 'Score') def Corr(df, threshold=0.9, strategy=None): ''' CORRELATION Find columns with correlation more then threshold. Parameters ------------- df: rectangular dataset 2D dataset that can be coerced into an ndarray. If a Pandas DataFrame is provided, the index/column information will be used to label the columns and rows. threshold: float, optional All columns having more correlation value then threshold will be taken into cosideration. strategy: string, optional Only two value is accepted ie. None & 'drop' If None then set of all the columns having correlation more then threshold will be returned. If 'drop' then all the columns having correlation more then threshold will be droped from the dataset passed. Returns ------------ df: rectangular dataset df is modified dataset after all the steps are done. col_corr: set set of all the columns with correlation more than threshold. ''' col_corr = set() # Set of all the names of correlated columns corr_matrix = df.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if abs(corr_matrix.iloc[i, j] > threshold): #we are interest in absolute coeff value colname = corr_matrix.columns[i] #getting the name of the column col_corr.add(colname) if strategy=='drop': df = df.drop(col_corr, axis=1) return df, col_corr def InfoGain(X, y): ''' INFORMATION GAIN Estimate mutual information for a discrete target variable. Mutual information (MI) [1]_ between two random variables is a non-negative value, which measures the dependency between the variables. It is equal to zero if and only if two random variables are independent, and higher values mean higher dependency. The function relies on nonparametric methods based on entropy estimation from k-nearest neighbors distances as described in [2]_ and [3]_. Both methods are based on the idea originally proposed in [4]_. Parameters ------------- X: Series/DataFrame Dataframe of all dependent feature. y: Series/DataFrame Independent Column Returns ------------ DataFrame: rectangular dataset a dataframe with a columns (ie. Score) is returned. 'Score' containing scores of each column arrange in deacreasing order of score. Index column contains name of columns. To get top n features from the dataframe write list(ranked_features.nlargest(n, 'Score')['Feature']) ''' mutual_info = _mic(X, y) # mutual_info mutual_data =
_pd.DataFrame(mutual_info, index=X.columns, columns=['Score'])
pandas.DataFrame
"""File for saving and loading. Assumes an experiment_folder path in which can data can be freely written and modified. For specific processes it also requires a process_id. Nothing will be stored above the experiment_folder path. Every method should call one of these methods for any saving/loading tasks.""" import os import pickle import pandas as pd import torch import yaml from torch.utils.tensorboard import SummaryWriter from .training_utils import get_nets from .utils import get_time_stamp def get_exp_steps(experiment_folder): exp_steps = {} for exp_name, curr_path in exp_models_path_generator(experiment_folder): exp_steps[exp_name] = get_all_steps(curr_path) return exp_steps def get_all_steps(steps_dir): step_dict = {} for root, dirs, files in os.walk(steps_dir): for step_dir in dirs: name_split_underscore = step_dir.split("_") if len(name_split_underscore) == 1: continue step_dict[int(name_split_underscore[1])] = step_dir return step_dict def get_models(model_folder_path, step, device=None): if step == -1: all_steps = get_all_steps(model_folder_path) step = int(max(all_steps.keys(), key=lambda x: int(x))) model_path = os.path.join(model_folder_path, "step_{}".format(step)) if not os.path.exists(model_path): return None models_dict = {} for root, dirs, files in os.walk(model_path): for model_file_name in files: model_idx = model_file_name.split("_")[1].split(".")[0] model = load_model(os.path.join(root, model_file_name), device) models_dict[model_idx] = model return models_dict def get_all_models(experiment_folder, step): models_dict = {} # iterate through models for exp_name, curr_path in exp_models_path_generator(experiment_folder): try: models_dict[exp_name] = get_models(curr_path, step) except: continue return models_dict def cache_data( experiment_folder, name, data, meta_dict=None, step=None, time_stamp=False ): cache_folder = os.path.join(experiment_folder, "postprocessing", name) if step is not None: cache_folder = os.path.join(cache_folder, "step_{}".format(step)) if time_stamp: cache_folder = os.path.join(cache_folder, get_time_stamp()) if not os.path.exists(cache_folder): os.makedirs(cache_folder) with open(os.path.join(cache_folder, "data.pkl"), "wb") as f: pickle.dump(data, f) if meta_dict is not None: with open(os.path.join(cache_folder, "meta.yml"), "w") as f: yaml.dump(meta_dict, f) return cache_folder def load_cached_data(experiment_folder, name, step=None, time_stamp=None): cache_folder = os.path.join(experiment_folder, "postprocessing", name) if step is not None: cache_folder = os.path.join(cache_folder, "step_{}".format(step)) if time_stamp is not None: cache_folder = os.path.join(cache_folder, time_stamp) cached_data_path = os.path.join(cache_folder, "data.pkl") if os.path.isfile(cached_data_path): with open(cached_data_path, "rb") as f: cached_data = pickle.load(f) else: cached_data = None cached_meta_path = os.path.join(cache_folder, "meta.yml") if os.path.isfile(cached_meta_path): with open(cached_meta_path, "rb") as f: cached_meta_data = yaml.load(f) else: cached_meta_data = None return cached_data, cached_meta_data def exp_models_path_generator(experiment_folder): for curr_dir in os.listdir(os.path.join(experiment_folder, "models")): root = os.path.join(experiment_folder, "models", curr_dir) yield curr_dir, root def save_models(models, model_name, model_params, experiment_root, curr_exp_name, step): models_path = os.path.join( experiment_root, "models", curr_exp_name, "step_{}".format(step) ) if not os.path.exists(models_path): os.makedirs(models_path) for idx_model in range(len(models)): torch.save( { "model_name": model_name, "model_params": model_params, "model_state_dict": models[idx_model].state_dict(), }, os.path.join(models_path, "model_{}.pt".format(idx_model)), ) def load_model(PATH, device=None): if device is None: device = torch.device("cpu") meta_data = torch.load(PATH, map_location=device) model = get_nets( meta_data["model_name"], meta_data["model_params"], num_nets=1, device=device )[0] model.load_state_dict(meta_data["model_state_dict"]) return model def load_configs(experiment_folder): config_dir = {} for root, dirs, files in os.walk( os.path.join(experiment_folder, "runs"), topdown=False ): if len(files) != 2: continue curr_dir = os.path.basename(root) with open(os.path.join(root, "config.yml"), "rb") as f: config = yaml.load(f) config_dir[curr_dir] = config config_dir[curr_dir]["net_params"] = tuple(config_dir[curr_dir]["net_params"]) return
pd.DataFrame(config_dir)
pandas.DataFrame
import torch import numpy as np import matplotlib.pyplot as plt import pandas import os import seaborn as sns from argparse import ArgumentParser from models.utils.continual_model import ContinualModel from datasets.utils.continual_dataset import ContinualDataset from typing import Tuple from utils.conf import base_path from datasets import NAMES as DATASET_NAMES class MainVisual: def __init__(self): self.markers = ['*-', '*:', '^-', '^:', 'o-', 'o:', 'v-', 'v:', 'x-', 'x:', 'o--', '*--', 'v--', '^--'] self.ptms = ["albert", "bert", "gpt2", "roberta", "xlnet"] self.datasets = ["seq-clinc150", "seq-maven", "seq-webred"] self.settings = ["class", "task"] self.prob_types = ["proto", "final"] self.methods = ["vanilla", "ewc", "hat", "er", "derpp", "joint"] self.num_tasks = {"clinc150": 15, "maven": 16, "webred": 24} self.bsize = [200, 500, 1000] self.time = ["time"] self.ft = ["forward_transfer"] self.bt = ["backward_transfer"] self.fgt = ["forgetting"] self.selection = { "method": self.methods, "ptm": self.ptms, "time": self.time, "ft": self.ft, "bt": self.bt, "fgt": self.fgt } def visualize(self, xs, tags, results, x_label, y_label, out_file, title): for i, value in enumerate(results): plt.plot(xs, value, self.markers[i], label=tags[i]) plt.legend() plt.xlabel(x_label, fontsize=10) plt.ylabel(y_label, fontsize=10) plt.title(title.split(".")[0]) plt.savefig(out_file) plt.clf() pass def visualize_grouped_bar(self, x_label, y_label, hue, title, data, file_path): sns.set_theme(style="whitegrid") # Draw a nested barplot by species and sex g = sns.catplot( data=data, kind="bar", x=x_label, y=y_label, hue=hue, ci="sd", palette="viridis", alpha=.6, height=6 ) sns.set(rc={"figure.dpi": 300, 'savefig.dpi': 300}) g.despine(left=True) # plt.xlabel(x_label, fontsize=15) plt.ylabel(y_label, fontsize=15) g.legend.set_title(hue) # plt.title(title) if y_label == "accuracy": plt.ylim(0, 105) g.savefig(file_path) plt.clf() def merg_data(self, datasets, setting=None, merge_all=False): clumns = ["PLM", "Method", "forward transfer", "backward transfer", "forgetting", "time", "dataset", "task"] all_df = None if not merge_all: for ds in datasets: file_name = "{dataset}_{setting}".format(dataset=ds, setting=setting) in_file = "./data/detail_result/{file_name}.csv".format(file_name=file_name) last_task = "task{id}".format(id=self.num_tasks[ds]) clumns[-1] = last_task df = pandas.read_csv(in_file) sub_df = pandas.DataFrame(df[clumns]) sub_df = sub_df.rename(columns={last_task: "mean accuracy"}) length = len(sub_df) sub_df["setting"] = [setting] * length if all_df is None: all_df = sub_df else: all_df = pandas.concat([all_df, sub_df]) return all_df else: for ds in datasets: for set_ in self.settings: file_name = "{dataset}_{setting}".format(dataset=ds, setting=set_) in_file = "./data/detail_result/{file_name}.csv".format(file_name=file_name) last_task = "task{id}".format(id=self.num_tasks[ds]) clumns[-1] = last_task df = pandas.read_csv(in_file) sub_df = pandas.DataFrame(df[clumns]) sub_df = sub_df.rename(columns={last_task: "accuracy"}) length = len(sub_df) sub_df["setting"] = [set_ + "-il"] * length if all_df is None: all_df = sub_df else: all_df =
pandas.concat([all_df, sub_df])
pandas.concat
# -*- coding: UTF-8 -*- """ This module contains functions for calculating evaluation metrics for the generated service recommendations. """ import numpy import pandas runtime_metrics = ["Training time", "Overall testing time", "Individual testing time"] quality_metrics = ["Recall", "Precision", "F1", "# of recommendations"] def results_as_dataframe(user_actions, recommendations): """ Converts the recommendation results into a pandas dataframe for easier evaluation. @param user_actions: A list of the actually performed user actions. @param recommendations: For each of the performed actions the list of calculated service recommendations. @return: A pandas dataframe that has as index the performed user actions (there is one row per action). The first column contains for each action the highest scoring recommendation, the second column contains the second best recommendation etc. """ results = pandas.DataFrame(recommendations, index=pandas.Index(user_actions, name="Actual action")) results.columns = [(r+1) for r in range(len(results.columns))] return results class QualityMetricsCalculator(): """ This is a utility class that contains a number of methods for calculating overall quality metrics for the produced recommendations. In general these methods produce pandas dataframes with several rows, where each row corresponds to one "cutoff" point. For example, a cutoff "4" means that the system cuts the number of recommendations at four, i.e. the user is shown at most four recommendations. If some post-processing method was used (e.g. show fewer recommendations if the recommendation conflict is low), then it can happen that fewer than four recommendations are shown. For reference, the column "# of recommendations" lists the average of the number of recommendations that were actually shown to the user. """ def __init__(self, actual_actions, recommendations): """ Initialize the calculation of the quality metrics.. @param actual_actions: A list of strings, each representing one actual user action. @param recommendations: A list of lists of strings with the same length as actual_actions. Each list of strings contains the calculated recommendations for the corresponding actual user action. @return: """ self.results = results_as_dataframe(actual_actions, recommendations) def __unique_actions__(self): """ It can happen that one potential user action never happened, but that the corresponding service was recommended. To be able to count these false positives, we must calculate the list of all potential actions. """ occurring_actions = set(self.results.index.values) occurring_services = pandas.melt(self.results).dropna()["value"] occurring_services = set(occurring_services.unique()) return sorted(occurring_actions | occurring_services) def true_positives(self, action): """ Counts how often the given action was recommended correctly (true positives, TP). @param action: The name of the user action for which to count true positives. @return: A pandas dataset with column TP and several rows, first row lists #TP at cutoff "1", the second row at cutoff "2", etc. """ #get all rows where the actual action corresponds to the given action r = self.results[self.results.index == action] if len(r) == 0: #if there are no such rows, then we have zero true positives, fill result dataframe with zeroes true_positives = pandas.Series(0.0, index=self.results.columns) else: #if recommendation matches the action, set column to "1" (true positive), else set to "0" (false negative) r = r.applymap(lambda col: 1 if col == action else 0).fillna(0) #count how many true positives there are in each column r = r.sum() #if have a true positive for n-th recommendation, then also have true positive for n+1, n+2 etc #-> calculate cumulative sum true_positives = r.cumsum(axis=0).apply(float) true_positives =
pandas.DataFrame(true_positives, columns=["TP"])
pandas.DataFrame
""" Packages to use : tsfresh tsfel https://tsfel.readthedocs.io/en/latest/ sktime feature tools : https://docs.featuretools.com/en/stable/automated_feature_engineering/handling_time.html Cesium http://cesium-ml.org/docs/feature_table.html Feature Tools for advacned fewatures `https://github.com/Featuretools/predict-remaining-useful-life/blob/master/Advanced%20Featuretools%20RUL.ipynb """ import pandas as pd import tsfresh from tsfresh import extract_relevant_features, extract_features import numpy as np import pdb import re def features_time_basic(df, input_raw_path = None, dir_out = None, features_group_name = None, auxiliary_csv_path = None, drop_cols = None, index_cols = None, merge_cols_mapping = None, cat_cols = None, id_cols = None, dep_col = None, max_rows = 10): df['date_t'] = pd.to_datetime(df['date']) df['year'] = df['date_t'].dt.year df['month'] = df['date_t'].dt.month df['week'] = df['date_t'].dt.week df['day'] = df['date_t'].dt.day df['dayofweek'] = df['date_t'].dt.dayofweek cat_cols = [] return df[['year', 'month', 'week', 'day', 'dayofweek'] + id_cols], cat_cols def features_lag(df, fname): out_df = df[['item_id', 'dept_id', 'cat_id', 'store_id', 'state_id']] ############################################################################### # day lag 29~57 day and last year's day lag 1~28 day day_lag = df.iloc[:,-28:] day_year_lag = df.iloc[:,-393:-365] day_lag.columns = [str("lag_{}_day".format(i)) for i in range(29,57)] # Rename columns day_year_lag.columns = [str("lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # Rolling mean(3) and (7) and (28) and (84) 29~57 day and last year's day lag 1~28 day rolling_3 = df.iloc[:,-730:].T.rolling(3).mean().T.iloc[:,-28:] rolling_3.columns = [str("rolling3_lag_{}_day".format(i)) for i in range(29,57)] # Rename columns rolling_3_year = df.iloc[:,-730:].T.rolling(3).mean().T.iloc[:,-393:-365] rolling_3_year.columns = [str("rolling3_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_7 = df.iloc[:,-730:].T.rolling(7).mean().T.iloc[:,-28:] rolling_7.columns = [str("rolling7_lag_{}_day".format(i)) for i in range(29,57)] # Rename columns rolling_7_year = df.iloc[:,-730:].T.rolling(7).mean().T.iloc[:,-393:-365] rolling_7_year.columns = [str("rolling7_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_28 = df.iloc[:,-730:].T.rolling(28).mean().T.iloc[:,-28:] rolling_28.columns = [str("rolling28_lag_{}_day".format(i)) for i in range(29,57)] rolling_28_year = df.iloc[:,-730:].T.rolling(28).mean().T.iloc[:,-393:-365] rolling_28_year.columns = [str("rolling28_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_84 = df.iloc[:,-730:].T.rolling(84).mean().T.iloc[:,-28:] rolling_84.columns = [str("rolling84_lag_{}_day".format(i)) for i in range(29,57)] rolling_84_year = df.iloc[:,-730:].T.rolling(84).mean().T.iloc[:,-393:-365] rolling_84_year.columns = [str("rolling84_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly = df.iloc[:,-28*i:].T.sum().T month_lag["monthly_lag_{}_month".format(i)] = monthly else: monthly = df.iloc[:, -28*i:-28*(i-1)].T.sum().T month_lag["monthly_lag_{}_month".format(i)] = monthly # combine day lag and monthly lag out_df = pd.concat([out_df, day_lag], axis=1) out_df = pd.concat([out_df, day_year_lag], axis=1) out_df = pd.concat([out_df, rolling_3], axis=1) out_df = pd.concat([out_df, rolling_3_year], axis=1) out_df = pd.concat([out_df, rolling_7], axis=1) out_df = pd.concat([out_df, rolling_7_year], axis=1) out_df = pd.concat([out_df, rolling_28], axis=1) out_df = pd.concat([out_df, rolling_28_year], axis=1) out_df = pd.concat([out_df, rolling_84], axis=1) out_df = pd.concat([out_df, rolling_84_year], axis=1) out_df = pd.concat([out_df, month_lag], axis=1) ############################################################################### # dept_id group_dept = df.groupby("dept_id").sum() # day lag 29~57 day and last year's day lag 1~28 day dept_day_lag = group_dept.iloc[:,-28:] dept_day_year_lag = group_dept.iloc[:,-393:-365] dept_day_lag.columns = [str("dept_lag_{}_day".format(i)) for i in range(29,57)] dept_day_year_lag.columns = [str("dept_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_dept_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly_dept = group_dept.iloc[:,-28*i:].T.sum().T month_dept_lag["dept_monthly_lag_{}_month".format(i)] = monthly_dept elif i >= 7 and i < 13: continue else: monthly = group_dept.iloc[:, -28*i:-28*(i-1)].T.sum().T month_dept_lag["dept_monthly_lag_{}_month".format(i)] = monthly_dept # combine out df out_df = pd.merge(out_df, dept_day_lag, left_on="dept_id", right_index=True, how="left") out_df =
pd.merge(out_df, dept_day_year_lag, left_on="dept_id", right_index=True, how="left")
pandas.merge
import os import pandas as pd import mygene from util_path import get_path from util_dei import filter_dei res_dir = get_path("resource/Entrez") gene_dir = get_path("vertex/gene") mg = mygene.MyGeneInfo() def read_gene2ensembl(): global res_dir g2e_df = pd.read_csv(os.path.join(res_dir, "gene2ensembl_9606.tsv"), sep="\t", header=None, names=["Tax_ID", "Entrez_Gene_ID", "Ensembl_Gene_ID"]) unique_tax_ids = g2e_df.Tax_ID.unique() assert(len(unique_tax_ids) == 1) assert(unique_tax_ids[0] == 9606) g2e_df = g2e_df.drop("Tax_ID", axis=1).drop_duplicates().reindex() return g2e_df def read_biomart(GRCh): global res_dir if GRCh == "37": filename = "GRCh37_p13_mart_export.txt" elif GRCh == "38": filename = "GRCh38_p12_mart_export.txt" else: raise ValueError("Cannot recognize GRCh param. Got {}. Use string '37' or '38' instead.".format(GRCh)) biomart_df = pd.read_csv(os.path.join(res_dir, filename), sep="\t", dtype=str) biomart_df = biomart_df.rename(columns={"Gene stable ID": "Ensembl_Gene_ID", "HGNC ID": "HGNC_ID", "Transcript stable ID": "Ensembl_Tx_ID"}) if GRCh == "37": return biomart_df else: # GRCh == "38" # Note that in GRCh38 BioMart data, every HGNC ID starts with a prefix "HGNC:" # No such prefix in GRCh37 BioMart data if all(biomart_df.HGNC_ID.dropna().str.startswith("HGNC:")): biomart_df.loc[:, "HGNC_ID"] = biomart_df.loc[:, "HGNC_ID"].apply(lambda x: x.split(":")[1] if not
pd.isnull(x)
pandas.isnull
"""Parse Tecan files, group lists and fit titrations. (Titrations are described in list.pH or list.cl file. Builds 96 titrations and export them in txt files. In the case of 2 labelblocks performs a global fit saving a png and printing the fitting results.) :ref:`prtecan parse`: * Labelblock * Tecanfile :ref:`prtecan group`: * LabelblocksGroup * TecanfilesGroup * Titration * TitrationAnalysis Functions --------- .. autofunction:: fit_titration .. autofunction:: fz_Kd_singlesite .. autofunction:: fz_pK_singlesite .. autofunction:: extract_metadata .. autofunction:: strip_lines """ import copy import hashlib import itertools import os import warnings from typing import Any, Dict, List, Optional, Tuple, Union # , overload import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import scipy.stats import seaborn as sb from matplotlib.backends.backend_pdf import PdfPages list_of_lines = List[List] # bug xdoctest-3.7 #import numpy.typing as npt def strip_lines(lines: list_of_lines) -> list_of_lines: """Remove empty fields/cells from lines read from a csv file. ([a,,b,,,]-->[a,b]) Parameters ---------- lines Lines that are a list of fields, typically from a csv/xls file. Returns ------- Lines removed from blank cells. """ stripped_lines = [] for line in lines: sl = [line[i] for i in range(len(line)) if line[i] != ''] stripped_lines.append(sl) return stripped_lines # def extract_metadata(lines: list_of_lines) -> Dict[str, Union[str, float, List[Any]]]: def extract_metadata(lines: list_of_lines) -> Dict[str, Any]: """Extract metadata from a list of stripped lines. First field is the *key*, remaining fields goes into a list of values:: ['', 'key', '', '', 'value1', '', ..., 'valueN', ''] --> {key: [value1, ..., valueN]} *Label* and *Temperature* are two exceptions:: ['Label: labelXX', '', '', '', '', '', '', ''] ['', 'Temperature: XX ยฐC', '', '', '', '', '', ''] Parameters ---------- lines Lines that are a list of fields, typically from a csv/xls file. Returns ------- Metadata for Tecanfile or Labelblock. """ stripped_lines = strip_lines(lines) temp = { 'Temperature': float(line[0].split(':')[1].split('ยฐC')[0]) for line in stripped_lines if len(line) == 1 and 'Temperature' in line[0] } labl = { 'Label': line[0].split(':')[1].strip() for line in stripped_lines if len(line) == 1 and 'Label' in line[0] } m1 = { line[0]: line[0] for line in stripped_lines if len(line) == 1 and 'Label' not in line[0] and 'Temperature' not in line[0] } m2: Dict[str, Union[str, float, List[str]]] = { line[0]: line[1:] for line in stripped_lines if len(line) > 1 } m2.update(m1) m2.update(temp) m2.update(labl) return m2 def fz_Kd_singlesite(K: float, p: np.ndarray, x: np.ndarray) -> np.ndarray: """Fit function for Cl titration.""" return (p[0] + p[1] * x / K) / (1 + x / K) def fz_pK_singlesite(K: float, p: np.ndarray, x: np.ndarray) -> np.ndarray: """Fit function for pH titration.""" return (p[1] + p[0] * 10 ** (K - x)) / (1 + 10 ** (K - x)) def fit_titration( kind: str, x: np.ndarray, y: np.ndarray, y2: Optional[np.ndarray] = None, residue: Optional[np.ndarray] = None, residue2: Optional[np.ndarray] = None, tval_conf: float = 0.95, ) -> pd.DataFrame: """Fit pH or Cl titration using a single-site binding model. Returns confidence interval (default=0.95) for fitting params (cov*tval), rather than standard error of the fit. Use scipy leastsq. Determine 3 fitting parameters: - binding constant *K* - and 2 plateau *SA* and *SB*. Parameters ---------- kind Titration type {'pH'|'Cl'} x, y Main dataset. y2 Second dataset (share x with main dataset). residue Residues for main dataset. residue2 Residues for second dataset. tval_conf Confidence level (default 0.95) for parameter estimations. Returns ------- Fitting results. Raises ------ NameError When kind is different than "pH" or "Cl". Examples -------- >>> fit_titration("Cl", [1, 10, 30, 100, 200], [10, 8, 5, 1, 0.1])[["K", "sK"]] K sK 0 38.955406 30.201929 """ if kind == 'pH': fz = fz_pK_singlesite elif kind == 'Cl': fz = fz_Kd_singlesite else: raise NameError('kind= pH or Cl') def compute_p0(x: np.ndarray, y: np.ndarray) -> np.ndarray: df = pd.DataFrame({'x': x, 'y': y}) SA = df.y[df.x == min(df.x)].values[0] SB = df.y[df.x == max(df.x)].values[0] K = np.average([max(y), min(y)]) try: x1, y1 = df[df['y'] >= K].values[0] except IndexError: x1 = np.nan y1 = np.nan try: x2, y2 = df[df['y'] <= K].values[0] except IndexError: x2 = np.nan y2 = np.nan K = (x2 - x1) / (y2 - y1) * (K - y1) + x1 return np.r_[K, SA, SB] x = np.array(x) y = np.array(y) if y2 is None: def ssq1(p: np.ndarray, x: np.ndarray, y1: np.ndarray) -> np.ndarray: return np.r_[y1 - fz(p[0], p[1:3], x)] p0 = compute_p0(x, y) p, cov, info, msg, success = scipy.optimize.leastsq( ssq1, p0, args=(x, y), full_output=True, xtol=1e-11 ) else: def ssq2( p: np.ndarray, x: np.ndarray, y1: np.ndarray, y2: np.ndarray, rd1: np.ndarray, rd2: np.ndarray, ) -> np.ndarray: return np.r_[ (y1 - fz(p[0], p[1:3], x)) / rd1**2, (y2 - fz(p[0], p[3:5], x)) / rd2**2, ] p1 = compute_p0(x, y) p2 = compute_p0(x, y2) ave = np.average([p1[0], p2[0]]) p0 = np.r_[ave, p1[1], p1[2], p2[1], p2[2]] tmp = scipy.optimize.leastsq( ssq2, p0, full_output=True, xtol=1e-11, args=(x, y, y2, residue, residue2) ) p, cov, info, msg, success = tmp res = pd.DataFrame({'ss': [success]}) res['msg'] = msg if 1 <= success <= 4: try: tval = (tval_conf + 1) / 2 chisq = sum(info['fvec'] * info['fvec']) res['df'] = len(y) - len(p) res['tval'] = scipy.stats.distributions.t.ppf(tval, res.df) res['chisqr'] = chisq / res.df res['K'] = p[0] res['SA'] = p[1] res['SB'] = p[2] if y2 is not None: res['df'] += len(y2) res['tval'] = scipy.stats.distributions.t.ppf(tval, res.df) res['chisqr'] = chisq / res.df res['SA2'] = p[3] res['SB2'] = p[4] res['sSA2'] = np.sqrt(cov[3][3] * res.chisqr) * res.tval res['sSB2'] = np.sqrt(cov[4][4] * res.chisqr) * res.tval res['sK'] = np.sqrt(cov[0][0] * res.chisqr) * res.tval res['sSA'] = np.sqrt(cov[1][1] * res.chisqr) * res.tval res['sSB'] = np.sqrt(cov[2][2] * res.chisqr) * res.tval except TypeError: pass # if some params are not successfully determined. return res class Labelblock: """Parse a label block within a Tecan file. Parameters ---------- tecanfile : Object containing (has-a) this Labelblock. lines : Lines for this Labelblock. Attributes ---------- tecanfile metadata : dict Metadata specific for this Labelblock. data : Dict[str, float] The 96 data values as {'well_name': value}. Raises ------ Exception When data do not correspond to a complete 96-well plate. Warns ----- Warning When it replaces "OVER" with ``np.nan`` for any saturated value. """ def __init__( self, tecanfile: Optional['Tecanfile'], lines: list_of_lines, ) -> None: try: assert lines[14][0] == '<>' and lines[23] == lines[24] == [ '', '', '', '', '', '', '', '', '', '', '', '', '', ] except AssertionError as err: raise Exception('Cannot build Labelblock: not 96 wells?') from err stripped = strip_lines(lines) stripped[14:23] = [] self.tecanfile = tecanfile self.metadata = extract_metadata(stripped) self.data = self._extract_data(lines[15:23]) def _extract_data(self, lines: list_of_lines) -> Dict[str, float]: """Convert data into a dictionary. {'A01' : value} : {'H12' : value} Parameters ---------- lines xls file read into lines. Returns ------- dict Data from a label block. Raises ------ Exception When something went wrong. Possibly because not 96-well. Warns ----- When a cell contains saturated signal (converted into np.nan). """ rownames = tuple('ABCDEFGH') data = {} try: assert len(lines) == 8 for i, row in enumerate(rownames): assert lines[i][0] == row # e.g. "A" == "A" for col in range(1, 13): try: data[row + "{0:0>2}".format(col)] = float(lines[i][col]) except ValueError: data[row + "{0:0>2}".format(col)] = np.nan path = self.tecanfile.path if self.tecanfile else "" warnings.warn( "OVER value in {0}{1:0>2} well for {2} of tecanfile: {3}".format( row, col, self.metadata['Label'], path ) ) except AssertionError as err: raise Exception("Cannot extract data in Labelblock: not 96 wells?") from err return data KEYS = [ 'Emission Bandwidth', 'Emission Wavelength', 'Excitation Bandwidth', 'Excitation Wavelength', 'Integration Time', 'Mode', 'Number of Flashes', ] def __eq__(self, other: object) -> bool: """Two labelblocks are equal when metadata KEYS are identical.""" # Identical labelblocks can be grouped safely into the same titration; otherwise # some kind of normalization (# of flashes, gain, etc.) would be # necessary. if not isinstance(other, Labelblock): return NotImplemented eq: bool = True for k in Labelblock.KEYS: eq *= self.metadata[k] == other.metadata[k] # 'Gain': [81.0, 'Manual'] = 'Gain': [81.0, 'Optimal'] They are equal eq *= self.metadata['Gain'][0] == other.metadata['Gain'][0] # annotation error: Value of type "Union[str, float, List[str]]" is not indexable return eq class Tecanfile: """Parse a .xls file as exported from Tecan. Parameters ---------- path Name of the xls file. Attributes ---------- path metadata : dict General metadata for Tecanfile e.g. 'Date:' or 'Shaking Duration:'. labelblocks : List[Labelblock] All labelblocks contained in the file. Methods ------- read_xls(path) : Read xls file at path. lookup_csv_lines(csvl, pattern='Label: Label', col=0) : Return row index for pattern found at col. Raises ------ FileNotFoundError When path does not exist. Exception When no Labelblock is found. """ def __init__(self, path: str) -> None: csvl = Tecanfile.read_xls(path) idxs = Tecanfile.lookup_csv_lines(csvl, pattern='Label: Label', col=0) if len(idxs) == 0: raise Exception('No Labelblock found.') # path self.path = path # metadata self.metadata = extract_metadata(csvl[: idxs[0]]) # labelblocks labelblocks = [] n_labelblocks = len(idxs) idxs.append(len(csvl)) for i in range(n_labelblocks): labelblocks.append(Labelblock(self, csvl[idxs[i] : idxs[i + 1]])) self.labelblocks = labelblocks def __eq__(self, other: object) -> bool: """Two Tecanfile are equal if their attributes are.""" # never used thus far. # https://izziswift.com/compare-object-instances-for-equality-by-their-attributes/ return self.__dict__ == other.__dict__ def __hash__(self) -> int: """Define hash (related to __eq__) using self.path.""" return hash(self.path) @classmethod def read_xls(cls, path: str) -> list_of_lines: """Read first sheet of an xls file. Parameters ---------- path Path to .xls file. Returns ------- Lines. """ df =
pd.read_excel(path)
pandas.read_excel
from datetime import timedelta from operator import methodcaller import itertools import math import pytest sa = pytest.importorskip('sqlalchemy') pytest.importorskip('psycopg2') import os import numpy as np import pandas as pd import pandas.util.testing as tm from datashape import dshape from odo import odo, drop, discover from blaze import ( data, atan2, by, coalesce, compute, concat, cos, greatest, join, least, radians, sin, sqrt, symbol, transform, ) from blaze.interactive import iscorescalar from blaze.utils import example, normalize names = ('tbl%d' % i for i in itertools.count()) @pytest.fixture(scope='module') def pg_ip(): return os.environ.get('POSTGRES_IP', 'localhost') @pytest.fixture def url(pg_ip): return 'postgresql://postgres@{}/test::%s'.format(pg_ip) @pytest.yield_fixture def sql(url): ds = dshape('var * {A: string, B: int64}') try: t = data(url % next(names), dshape=ds) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: assert t.dshape == ds t = data(odo([('a', 1), ('b', 2)], t)) try: yield t finally: drop(t) @pytest.yield_fixture def sql_with_null(url): ds = dshape(""" var * {name: ?string, sex: ?string, amount: int, id: int, comment: ?string} """) rows = [('Alice', 'F', 100, 1, 'Alice comment'), (None, 'M', 300, 2, None), ('Drew', 'F', 100, 4, 'Drew comment'), ('Bob', 'M', 100, 5, 'Bob comment 2'), ('Drew', 'M', 200, 5, None), ('first', None, 300, 4, 'Missing info'), (None, None, 300, 6, None)] try: x = url % next(names) t = data(x, dshape=ds) print(x) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: assert t.dshape == ds t = data(odo(rows, t)) try: yield t finally: drop(t) @pytest.yield_fixture(scope='module') def nyc(pg_ip): # odoing csv -> pandas -> postgres is more robust, as it doesn't require # the postgres server to be on the same filesystem as the csv file. nyc_pd = odo(example('nyc.csv'), pd.DataFrame) try: t = odo(nyc_pd, 'postgresql://postgres@{}/test::nyc'.format(pg_ip)) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield t finally: drop(t) @pytest.yield_fixture def big_sql(url): try: t = data(url % next(names), dshape='var * {A: string, B: int64}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: t = odo(zip(list('a'*100), list(range(100))), t) try: yield t finally: drop(t) @pytest.yield_fixture def sqla(url): try: t = data(url % next(names), dshape='var * {A: ?string, B: ?int32}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: t = odo([('a', 1), (None, 1), ('c', None)], t) try: yield t finally: drop(t) @pytest.yield_fixture def sqlb(url): try: t = data(url % next(names), dshape='var * {A: string, B: int64}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: t = odo([('a', 1), ('b', 2)], t) try: yield t finally: drop(t) @pytest.yield_fixture def sql_with_dts(url): try: t = data(url % next(names), dshape='var * {A: datetime}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: t = odo([(d,) for d in pd.date_range('2014-01-01', '2014-02-01')], t) try: yield t finally: drop(t) @pytest.yield_fixture def sql_with_timedeltas(url): try: t = data(url % next(names), dshape='var * {N: timedelta}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: t = odo([(timedelta(seconds=n),) for n in range(10)], t) try: yield t finally: drop(t) @pytest.yield_fixture def sql_two_tables(url): dshape = 'var * {a: int32}' try: t = data(url % next(names), dshape=dshape) u = data(url % next(names), dshape=dshape) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield u, t finally: drop(t) drop(u) @pytest.yield_fixture def products(url): try: products = data(url % 'products', dshape="""var * { product_id: int64, color: ?string, price: float64}""", primary_key=['product_id']) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield products finally: drop(products) @pytest.yield_fixture def orders(url, products): try: orders = data(url % 'orders', dshape="""var * { order_id: int64, product_id: map[int64, T], quantity: int64}""", foreign_keys=dict(product_id=products.data.c.product_id), primary_key=['order_id']) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield orders finally: drop(orders) # TODO: scope these as module because I think pytest is caching sa.Table, which # doesn't work if remove it after every run @pytest.yield_fixture def main(url): try: main = odo([(i, int(np.random.randint(10))) for i in range(13)], url % 'main', dshape=dshape('var * {id: int64, data: int64}'), primary_key=['id']) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield main finally: drop(main) @pytest.yield_fixture def pkey(url, main): choices = [u'AAPL', u'HPQ', u'ORCL', u'IBM', u'DOW', u'SBUX', u'AMD', u'INTC', u'GOOG', u'PRU', u'MSFT', u'AIG', u'TXN', u'DELL', u'PEP'] n = 100 data = list(zip(range(n), np.random.choice(choices, size=n).tolist(), np.random.uniform(10000, 20000, size=n).tolist(), np.random.randint(main.count().scalar(), size=n).tolist())) try: pkey = odo(data, url % 'pkey', dshape=dshape('var * {id: int64, sym: string, price: float64, main: map[int64, T]}'), foreign_keys=dict(main=main.c.id), primary_key=['id']) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield pkey finally: drop(pkey) @pytest.yield_fixture def fkey(url, pkey): try: fkey = odo([(i, int(np.random.randint(pkey.count().scalar())), int(np.random.randint(10000))) for i in range(10)], url % 'fkey', dshape=dshape('var * {id: int64, sym_id: map[int64, T], size: int64}'), foreign_keys=dict(sym_id=pkey.c.id), primary_key=['id']) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield fkey finally: drop(fkey) @pytest.yield_fixture def sql_with_float(url): try: t = data(url % next(names), dshape='var * {c: float64}') except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield t finally: drop(t) @pytest.yield_fixture(scope='module') def nyc_csv(pg_ip): try: t = odo( example('nyc.csv'), 'postgresql://postgres@{}/test::nyc'.format(pg_ip), ) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield t finally: drop(t) def test_nyc_csv(nyc_csv): t = symbol('t', discover(nyc_csv)) assert compute(t.nrows, nyc_csv, return_type='core') > 0 def test_postgres_create(sql): assert odo(sql, list) == [('a', 1), ('b', 2)] def test_postgres_isnan(sql_with_float): dta = (1.0,), (float('nan'),) table = odo(dta, sql_with_float) sym = symbol('s', discover(dta)) assert compute(sym.isnan(), table, return_type=list) == [(False,), (True,)] def test_insert_from_subselect(sql_with_float): data = pd.DataFrame([{'c': 2.0}, {'c': 1.0}]) tbl = odo(data, sql_with_float) s = symbol('s', discover(data)) odo(compute(s[s.c.isin((1.0, 2.0))].sort(), tbl, return_type='native'), sql_with_float), tm.assert_frame_equal( odo(sql_with_float, pd.DataFrame).iloc[2:].reset_index(drop=True), pd.DataFrame([{'c': 1.0}, {'c': 2.0}]), ) def test_concat(sql_two_tables): t_table, u_table = sql_two_tables t_data = pd.DataFrame(np.arange(5), columns=['a']) u_data = pd.DataFrame(np.arange(5, 10), columns=['a']) odo(t_data, t_table) odo(u_data, u_table) t = symbol('t', discover(t_data)) u = symbol('u', discover(u_data)) tm.assert_frame_equal( compute(concat(t, u).sort('a'), {t: t_table, u: u_table}, return_type=pd.DataFrame), pd.DataFrame(np.arange(10), columns=['a']), ) def test_concat_invalid_axis(sql_two_tables): t_table, u_table = sql_two_tables t_data = pd.DataFrame(np.arange(5), columns=['a']) u_data = pd.DataFrame(np.arange(5, 10), columns=['a']) odo(t_data, t_table) odo(u_data, u_table) # We need to force the shape to not be a record here so we can # create the `Concat` node with an axis=1. t = symbol('t', '5 * 1 * int32') u = symbol('u', '5 * 1 * int32') with pytest.raises(ValueError) as e: compute(concat(t, u, axis=1), {t: t_table, u: u_table}, return_type='native') # Preserve the suggestion to use merge. assert "'merge'" in str(e.value) def test_timedelta_arith(sql_with_dts): delta = timedelta(days=1) dates = pd.Series(pd.date_range('2014-01-01', '2014-02-01')) sym = symbol('s', discover(dates)) assert ( compute(sym + delta, sql_with_dts, return_type=pd.Series) == dates + delta ).all() assert ( compute(sym - delta, sql_with_dts, return_type=pd.Series) == dates - delta ).all() assert ( compute(sym - (sym - delta), sql_with_dts, return_type=pd.Series) == dates - (dates - delta) ).all() @pytest.mark.parametrize('func', ('var', 'std')) def test_timedelta_stat_reduction(sql_with_timedeltas, func): sym = symbol('s', discover(sql_with_timedeltas)) expr = getattr(sym.N, func)() deltas = pd.Series([timedelta(seconds=n) for n in range(10)]) expected = timedelta( seconds=getattr(deltas.astype('int64') / 1e9, func)(ddof=expr.unbiased) ) assert compute(expr, sql_with_timedeltas, return_type=timedelta) == expected def test_coerce_bool_and_sum(sql): sql = sql.data n = sql.name t = symbol(n, discover(sql)) expr = (t.B > 1.0).coerce(to='int32').sum() result = compute(expr, sql).scalar() expected = compute(t.B, sql, return_type=pd.Series).gt(1).sum() assert result == expected def test_distinct_on(sql): sql = sql.data t = symbol('t', discover(sql)) computation = compute(t[['A', 'B']].sort('A').distinct('A'), sql, return_type='native') assert normalize(str(computation)) == normalize(""" SELECT DISTINCT ON (anon_1."A") anon_1."A", anon_1."B" FROM (SELECT {tbl}."A" AS "A", {tbl}."B" AS "B" FROM {tbl}) AS anon_1 ORDER BY anon_1."A" ASC """.format(tbl=sql.name)) assert odo(computation, tuple) == (('a', 1), ('b', 2)) def test_relabel_columns_over_selection(big_sql): t = symbol('t', discover(big_sql)) result = compute(t[t['B'] == 2].relabel(B=u'b'), big_sql, return_type=pd.DataFrame) expected = pd.DataFrame([['a', 2]], columns=[u'A', u'b']) tm.assert_frame_equal(result, expected) def test_auto_join_field(orders): t = symbol('t', discover(orders)) expr = t.product_id.color result = compute(expr, orders, return_type='native') expected = """SELECT products.color FROM products, orders WHERE orders.product_id = products.product_id """ assert normalize(str(result)) == normalize(expected) def test_auto_join_projection(orders): t = symbol('t', discover(orders)) expr = t.product_id[['color', 'price']] result = compute(expr, orders, return_type='native') expected = """SELECT products.color, products.price FROM products, orders WHERE orders.product_id = products.product_id """ assert normalize(str(result)) == normalize(expected) @pytest.mark.xfail @pytest.mark.parametrize('func', ['max', 'min', 'sum']) def test_foreign_key_reduction(orders, products, func): t = symbol('t', discover(orders)) expr = methodcaller(func)(t.product_id.price) result = compute(expr, orders, return_type='native') expected = """WITH alias as (select products.price as price from products, orders where orders.product_id = products.product_id) select {0}(alias.price) as price_{0} from alias """.format(func) assert normalize(str(result)) == normalize(expected) def test_foreign_key_chain(fkey): t = symbol('t', discover(fkey)) expr = t.sym_id.main.data result = compute(expr, fkey, return_type='native') expected = """SELECT main.data FROM main, fkey, pkey WHERE fkey.sym_id = pkey.id and pkey.main = main.id """ assert normalize(str(result)) == normalize(expected) @pytest.mark.xfail(raises=AssertionError, reason='CTE mucks up generation here') @pytest.mark.parametrize('grouper', ['sym', ['sym']]) def test_foreign_key_group_by(fkey, grouper): t = symbol('fkey', discover(fkey)) expr = by(t.sym_id[grouper], avg_price=t.sym_id.price.mean()) result = compute(expr, fkey, return_type='native') expected = """SELECT pkey.sym, avg(pkey.price) AS avg_price FROM pkey, fkey WHERE fkey.sym_id = pkey.id GROUP BY pkey.sym """ assert normalize(str(result)) == normalize(expected) @pytest.mark.parametrize('grouper', ['sym_id', ['sym_id']]) def test_group_by_map(fkey, grouper): t = symbol('fkey', discover(fkey)) expr = by(t[grouper], id_count=t.size.count()) result = compute(expr, fkey, return_type='native') expected = """SELECT fkey.sym_id, count(fkey.size) AS id_count FROM fkey GROUP BY fkey.sym_id """ assert normalize(str(result)) == normalize(expected) def test_foreign_key_isin(fkey): t = symbol('fkey', discover(fkey)) expr = t.sym_id.isin([1, 2]) result = compute(expr, fkey, return_type='native') expected = """SELECT fkey.sym_id IN (%(sym_id_1)s, %(sym_id_2)s) AS anon_1 FROM fkey """ assert normalize(str(result)) == normalize(expected) @pytest.mark.xfail(raises=AssertionError, reason='Not yet implemented') def test_foreign_key_merge_expression(fkey): from blaze import merge t = symbol('fkey', discover(fkey)) expr = merge(t.sym_id.sym, t.sym_id.main.data) expected = """ select pkey.sym, main.data from fkey, pkey, main where fkey.sym_id = pkey.id and pkey.main = main.id """ result = compute(expr, fkey, return_type='native') assert normalize(str(result)) == normalize(expected) def test_join_type_promotion(sqla, sqlb): t, s = symbol(sqla.name, discover(sqla)), symbol(sqlb.name, discover(sqlb)) expr = join(t, s, 'B', how='inner') result = set(map(tuple, compute(expr, {t: sqla, s: sqlb}, return_type='native').execute().fetchall())) expected = set([(1, 'a', 'a'), (1, None, 'a')]) assert result == expected @pytest.mark.parametrize(['n', 'column'], [(1, 'A'), (-1, 'A'), (1, 'B'), (-1, 'B'), (0, 'A'), (0, 'B')]) def test_shift_on_column(n, column, sql): sql = sql.data t = symbol('t', discover(sql)) expr = t[column].shift(n) result = compute(expr, sql, return_type=pd.Series) expected = odo(sql, pd.DataFrame)[column].shift(n)
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/1/12 14:55 Desc: ไธœๆ–น่ดขๅฏŒ็ฝ‘-ๆ•ฐๆฎไธญๅฟƒ-่‚กไธœๅˆ†ๆž https://data.eastmoney.com/gdfx/ """ import pandas as pd import requests from tqdm import tqdm def stock_gdfx_free_holding_statistics_em(date: str = "20210930") -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ๆ•ฐๆฎไธญๅฟƒ-่‚กไธœๅˆ†ๆž-่‚กไธœๆŒ่‚ก็ปŸ่ฎก-ๅๅคงๆต้€š่‚กไธœ https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคงๆต้€š่‚กไธœ :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "STATISTICS_TIMES,COOPERATION_HOLDER_MARK", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_COOPFREEHOLDERS_ANALYSISNEW", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"""(HOLDNUM_CHANGE_TYPE="001")(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')""", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = big_df.append(temp_df, ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "ๅบๅท", "-", "-", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "-", "็ปŸ่ฎกๆฌกๆ•ฐ", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๆŒๆœ‰ไธช่‚ก", ] big_df = big_df[ [ "ๅบๅท", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "็ปŸ่ฎกๆฌกๆ•ฐ", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๆŒๆœ‰ไธช่‚ก", ] ] big_df["็ปŸ่ฎกๆฌกๆ•ฐ"] = pd.to_numeric(big_df["็ปŸ่ฎกๆฌกๆ•ฐ"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) return big_df def stock_gdfx_holding_statistics_em(date: str = "20210930") -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ๆ•ฐๆฎไธญๅฟƒ-่‚กไธœๅˆ†ๆž-่‚กไธœๆŒ่‚ก็ปŸ่ฎก-ๅๅคง่‚กไธœ https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคง่‚กไธœ :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "STATISTICS_TIMES,COOPERATION_HOLDER_MARK", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_COOPHOLDERS_ANALYSIS", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"""(HOLDNUM_CHANGE_TYPE="001")(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')""", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = big_df.append(temp_df, ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "ๅบๅท", "-", "-", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "-", "็ปŸ่ฎกๆฌกๆ•ฐ", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๆŒๆœ‰ไธช่‚ก", ] big_df = big_df[ [ "ๅบๅท", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "็ปŸ่ฎกๆฌกๆ•ฐ", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…", "ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…", "ๆŒๆœ‰ไธช่‚ก", ] ] big_df["็ปŸ่ฎกๆฌกๆ•ฐ"] = pd.to_numeric(big_df["็ปŸ่ฎกๆฌกๆ•ฐ"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-10ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-30ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๅนณๅ‡ๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅคงๆถจๅน…"]) big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"] = pd.to_numeric(big_df["ๅ…ฌๅ‘Šๆ—ฅๅŽๆถจๅน…็ปŸ่ฎก-60ไธชไบคๆ˜“ๆ—ฅ-ๆœ€ๅฐๆถจๅน…"]) return big_df def stock_gdfx_free_holding_change_em(date: str = "20210930") -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ๆ•ฐๆฎไธญๅฟƒ-่‚กไธœๅˆ†ๆž-่‚กไธœๆŒ่‚กๅ˜ๅŠจ็ปŸ่ฎก-ๅๅคงๆต้€š่‚กไธœ https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคงๆต้€š่‚กไธœ :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "HOLDER_NUM,HOLDER_NEW", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_FREEHOLDERS_BASIC_INFONEW", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = big_df.append(temp_df, ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "ๅบๅท", "-", "-", "่‚กไธœๅ็งฐ", "-", "่‚กไธœ็ฑปๅž‹", "-", "-", "-", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ ", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜", "-", "ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก", "ๆŒๆœ‰ไธช่‚ก", "-", "-", ] big_df = big_df[ [ "ๅบๅท", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ ", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘", "ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก", "ๆŒๆœ‰ไธช่‚ก", ] ] big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ "] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ "]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘"]) big_df["ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก"] = pd.to_numeric(big_df["ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก"]) return big_df def stock_gdfx_holding_change_em(date: str = "20210930") -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ๆ•ฐๆฎไธญๅฟƒ-่‚กไธœๅˆ†ๆž-่‚กไธœๆŒ่‚กๅ˜ๅŠจ็ปŸ่ฎก-ๅๅคง่‚กไธœ https://data.eastmoney.com/gdfx/HoldingAnalyse.html :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคงๆต้€š่‚กไธœ :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "HOLDER_NUM,HOLDER_NEW", "sortTypes": "-1,-1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_HOLDERS_BASIC_INFO", "columns": "ALL", "source": "WEB", "client": "WEB", "filter": f"(END_DATE='{'-'.join([date[:4], date[4:6], date[6:]])}')", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1)): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = big_df.append(temp_df, ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "ๅบๅท", "-", "-", "่‚กไธœๅ็งฐ", "-", "่‚กไธœ็ฑปๅž‹", "-", "-", "-", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ ", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜", "-", "-", "ๆŒๆœ‰ไธช่‚ก", "ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก", ] big_df = big_df[ [ "ๅบๅท", "่‚กไธœๅ็งฐ", "่‚กไธœ็ฑปๅž‹", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ ", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜", "ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘", "ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก", "ๆŒๆœ‰ไธช่‚ก", ] ] big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ€ปๆŒๆœ‰"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๆ–ฐ่ฟ›"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ "] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅขžๅŠ "]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ไธๅ˜"]) big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘"] = pd.to_numeric(big_df["ๆœŸๆœซๆŒ่‚กๅชๆ•ฐ็ปŸ่ฎก-ๅ‡ๅฐ‘"]) big_df["ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก"] = pd.to_numeric(big_df["ๆต้€šๅธ‚ๅ€ผ็ปŸ่ฎก"]) return big_df def stock_gdfx_free_top_10_em( symbol: str = "sh688686", date: str = "20210630" ) -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ไธช่‚ก-ๅๅคงๆต้€š่‚กไธœ https://emweb.securities.eastmoney.com/PC_HSF10/ShareholderResearch/Index?type=web&code=SH688686#sdltgd-0 :param symbol: ๅธฆๅธ‚ๅœบๆ ‡่ฏ†็š„่‚ก็ฅจไปฃ็  :type symbol: str :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคง่‚กไธœ :rtype: pandas.DataFrame """ url = ( "https://emweb.securities.eastmoney.com/PC_HSF10/ShareholderResearch/PageSDLTGD" ) params = { "code": f"{symbol.upper()}", "date": f"{'-'.join([date[:4], date[4:6], date[6:]])}", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["sdltgd"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.columns = [ "ๅๆฌก", "-", "-", "-", "-", "่‚กไธœๅ็งฐ", "่‚กไธœๆ€ง่ดจ", "่‚กไปฝ็ฑปๅž‹", "ๆŒ่‚กๆ•ฐ", "ๅ ๆ€ปๆต้€š่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹", "ๅขžๅ‡", "ๅ˜ๅŠจๆฏ”็އ", ] temp_df = temp_df[ [ "ๅๆฌก", "่‚กไธœๅ็งฐ", "่‚กไธœๆ€ง่ดจ", "่‚กไปฝ็ฑปๅž‹", "ๆŒ่‚กๆ•ฐ", "ๅ ๆ€ปๆต้€š่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹", "ๅขžๅ‡", "ๅ˜ๅŠจๆฏ”็އ", ] ] temp_df["ๆŒ่‚กๆ•ฐ"] = pd.to_numeric(temp_df["ๆŒ่‚กๆ•ฐ"]) temp_df["ๅ ๆ€ปๆต้€š่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹"] = pd.to_numeric(temp_df["ๅ ๆ€ปๆต้€š่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹"]) temp_df["ๅ˜ๅŠจๆฏ”็އ"] = pd.to_numeric(temp_df["ๅ˜ๅŠจๆฏ”็އ"]) return temp_df def stock_gdfx_top_10_em( symbol: str = "sh688686", date: str = "20210630" ) -> pd.DataFrame: """ ไธœๆ–น่ดขๅฏŒ็ฝ‘-ไธช่‚ก-ๅๅคง่‚กไธœ https://emweb.securities.eastmoney.com/PC_HSF10/ShareholderResearch/Index?type=web&code=SH688686#sdgd-0 :param symbol: ๅธฆๅธ‚ๅœบๆ ‡่ฏ†็š„่‚ก็ฅจไปฃ็  :type symbol: str :param date: ๆŠฅๅ‘ŠๆœŸ :type date: str :return: ๅๅคง่‚กไธœ :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/ShareholderResearch/PageSDGD" params = { "code": f"{symbol.upper()}", "date": f"{'-'.join([date[:4], date[4:6], date[6:]])}", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["sdgd"]) temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.columns = [ "ๅๆฌก", "-", "-", "-", "-", "่‚กไธœๅ็งฐ", "่‚กไปฝ็ฑปๅž‹", "ๆŒ่‚กๆ•ฐ", "ๅ ๆ€ป่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹", "ๅขžๅ‡", "ๅ˜ๅŠจๆฏ”็އ", ] temp_df = temp_df[ [ "ๅๆฌก", "่‚กไธœๅ็งฐ", "่‚กไปฝ็ฑปๅž‹", "ๆŒ่‚กๆ•ฐ", "ๅ ๆ€ป่‚กๆœฌๆŒ่‚กๆฏ”ไพ‹", "ๅขžๅ‡", "ๅ˜ๅŠจๆฏ”็އ", ] ] temp_df["ๆŒ่‚กๆ•ฐ"] = pd.to_
numeric(temp_df["ๆŒ่‚กๆ•ฐ"])
pandas.to_numeric
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | :class:`pandas.Series` functions and operators implementations in SDC | Also, it contains Numba internal operators which are required for Series type handling """ import numba import numpy import operator import pandas import math import sys from numba.errors import TypingError from numba.extending import overload, overload_method, overload_attribute from numba.typing import signature from numba.extending import intrinsic from numba import (types, numpy_support, cgutils) from numba.typed import Dict from numba import prange import sdc import sdc.datatypes.common_functions as common_functions from sdc.datatypes.common_functions import (TypeChecker, check_index_is_numeric, find_common_dtype_from_numpy_dtypes, sdc_join_series_indexes) from sdc.datatypes.hpat_pandas_series_rolling_types import _hpat_pandas_series_rolling_init from sdc.datatypes.hpat_pandas_stringmethods_types import StringMethodsType from sdc.datatypes.hpat_pandas_getitem_types import SeriesGetitemAccessorType from sdc.hiframes.pd_series_type import SeriesType from sdc.str_arr_ext import (StringArrayType, string_array_type, str_arr_is_na, str_arr_set_na, num_total_chars, pre_alloc_string_array, cp_str_list_to_array) from sdc.utils import to_array, sdc_overload, sdc_overload_method, sdc_overload_attribute from sdc.datatypes import hpat_pandas_series_autogenerated @sdc_overload(operator.getitem) def hpat_pandas_series_accessor_getitem(self, idx): """ Pandas Series operator :attr:`pandas.Series.get` implementation **Algorithm**: result = series[idx] **Test**: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_static_getitem_series1 Parameters ---------- series: :obj:`pandas.Series` input series idx: :obj:`int`, :obj:`slice` or :obj:`pandas.Series` input index Returns ------- :class:`pandas.Series` or an element of the underneath type object of :class:`pandas.Series` """ _func_name = 'Operator getitem().' if not isinstance(self, SeriesGetitemAccessorType): return None accessor = self.accessor.literal_value if accessor == 'iloc': if isinstance(idx, (types.List, types.Array, types.SliceType)): def hpat_pandas_series_iloc_list_slice_impl(self, idx): result_data = self._series._data[idx] result_index = self._series.index[idx] return pandas.Series(result_data, result_index, self._series._name) return hpat_pandas_series_iloc_list_slice_impl if isinstance(idx, (int, types.Integer)): def hpat_pandas_series_iloc_impl(self, idx): return self._series._data[idx] return hpat_pandas_series_iloc_impl def hpat_pandas_series_iloc_callable_impl(self, idx): index = numpy.asarray(list(map(idx, self._series._data))) return pandas.Series(self._series._data[index], self._series.index[index], self._series._name) return hpat_pandas_series_iloc_callable_impl raise TypingError('{} The index must be an Integer, Slice or List of Integer or a callable.\ Given: {}'.format(_func_name, idx)) if accessor == 'iat': if isinstance(idx, (int, types.Integer)): def hpat_pandas_series_iat_impl(self, idx): return self._series._data[idx] return hpat_pandas_series_iat_impl raise TypingError('{} The index must be a Integer. Given: {}'.format(_func_name, idx)) if accessor == 'loc': # Note: Loc return Series # Note: Index 0 in slice not supported # Note: Loc slice and callable with String not implement index_is_none = (self.series.index is None or isinstance(self.series.index, numba.types.misc.NoneType)) if isinstance(idx, types.SliceType) and index_is_none: def hpat_pandas_series_loc_slice_noidx_impl(self, idx): max_slice = sys.maxsize start = idx.start stop = idx.stop if idx.stop == max_slice: stop = max_slice - 1 result_data = self._series._data[start:stop+1] result_index = numpy.arange(start, stop + 1) return pandas.Series(result_data, result_index, self._series._name) return hpat_pandas_series_loc_slice_noidx_impl if isinstance(idx, (int, types.Integer, types.UnicodeType, types.StringLiteral)): def hpat_pandas_series_loc_impl(self, idx): index = self._series.index mask = numpy.empty(len(self._series._data), numpy.bool_) for i in numba.prange(len(index)): mask[i] = index[i] == idx return pandas.Series(self._series._data[mask], index[mask], self._series._name) return hpat_pandas_series_loc_impl raise TypingError('{} The index must be an Number, Slice, String, List, Array or a callable.\ Given: {}'.format(_func_name, idx)) if accessor == 'at': if isinstance(idx, (int, types.Integer, types.UnicodeType, types.StringLiteral)): def hpat_pandas_series_at_impl(self, idx): index = self._series.index mask = numpy.empty(len(self._series._data), numpy.bool_) for i in numba.prange(len(index)): mask[i] = index[i] == idx return self._series._data[mask] return hpat_pandas_series_at_impl raise TypingError('{} The index must be a Number or String. Given: {}'.format(_func_name, idx)) raise TypingError('{} Unknown accessor. Only "loc", "iloc", "at", "iat" are supported.\ Given: {}'.format(_func_name, accessor)) @sdc_overload(operator.getitem) def hpat_pandas_series_getitem(self, idx): """ Intel Scalable Dataframe Compiler User Guide ******************************************** Pandas API: pandas.Series.get Limitations ----------- Supported ``key`` can be one of the following: - Integer scalar, e.g. :obj:`series[0]` - A slice, e.g. :obj:`series[2:5]` - Another series Examples -------- .. literalinclude:: ../../../examples/series_getitem.py :language: python :lines: 27- :caption: Getting Pandas Series elements :name: ex_series_getitem .. command-output:: python ./series_getitem.py :cwd: ../../../examples .. todo:: Fix SDC behavior and add the expected output of the > python ./series_getitem.py to the docstring Intel Scalable Dataframe Compiler Developer Guide ************************************************* Pandas Series operator :attr:`pandas.Series.get` implementation **Algorithm**: result = series[idx] **Test**: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_static_getitem_series1 Parameters ---------- series: :obj:`pandas.Series` input series idx: :obj:`int`, :obj:`slice` or :obj:`pandas.Series` input index Returns ------- :class:`pandas.Series` or an element of the underneath type object of :class:`pandas.Series` """ _func_name = 'Operator getitem().' if not isinstance(self, SeriesType): return None # Note: Getitem return Series index_is_none = isinstance(self.index, numba.types.misc.NoneType) index_is_none_or_numeric = index_is_none or (self.index and isinstance(self.index.dtype, types.Number)) index_is_string = not index_is_none and isinstance(self.index.dtype, (types.UnicodeType, types.StringLiteral)) if ( isinstance(idx, types.Number) and index_is_none_or_numeric or (isinstance(idx, (types.UnicodeType, types.StringLiteral)) and index_is_string) ): def hpat_pandas_series_getitem_index_impl(self, idx): index = self.index mask = numpy.empty(len(self._data), numpy.bool_) for i in numba.prange(len(index)): mask[i] = index[i] == idx return
pandas.Series(self._data[mask], index[mask], self._name)
pandas.Series
import pandas as pd import textacy import textblob import en_core_web_sm nlp = en_core_web_sm.load() # Multiprocessing Imports from dask import dataframe as dd from dask.multiprocessing import get from multiprocessing import cpu_count # Sentiment Imports from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Local Imports from src.utils.pandas_utils import pivot_df_to_row ## def text_vectorize_and_cluster(text, df=None, vectorizer=None, clusterer=None, vector_params=None, clusterer_params=None, outlier_scores=False, one_hot_labels=False, return_df=False, return_type='clusters'): """ Given processed text, vectorize and cluster it. Return cluster labels or cluster labels along with fitted vectorizer and clusterer. Parameters ---------- text : object Object which contains text that will be passed to the transformer's .fit_transform() method As such, text must already be processed and in correct format. df : Pandas DataFrame Optional dataframe attach clustering results to vectorizer: object Class for text vectorization. Must follow sklearn transformer convention and implement .fit_transform() method E.g. CountVectorizer from sklearn vector_params: dict[str:obj] Dictionary to pass to vectorizer as parameters clusterer: object Class for clustering. Must follow sklearn estimator convention and implement .fit_predict() method for implementing cluster assignment clusterer_params: dict[str:obj] Dictionary to pass to clusterer as parameters outlier_scores: boolean Flag to indicate outlier scores computed by clusterer. Accessed from clusterer.outlier_scores_ attribute one_hot_labels: boolean Flag to indicate if cluster labels should be one hot encoded instead of returns as a one dimensional array of ordinal integer labels return_df: boolean Flag to indicate if results should be returned concatenated with the dataframe passed to 'df' kword arg return_type: str in ['clusters', 'all', ] String indicating return type. Must be on of ['clusters', 'all', 'df'] clusters: Return the cluster results as a one dimensional array of ordinal integer labels or concatenated to dataframe if return_df=True all: Return the fitted vectorizer, clusterer and cluster label results Returns ------- clusters: pd.Series or pd.DataFrame Return the cluster results as a one dimensional array of ordinal integer labels or concatenated to dataframe if return_df=True clusters, vectorizer, clusterer: object, object, pd.Series or pd.DataFrame Return the fitted vectorizer, clusterer and cluster label results """ # Check vectorizer and clusterer for correct methods assert "fit_transform" in dir(vectorizer), "vectorizer has no 'fit_transform' method" assert "fit_predict" in dir(clusterer), "clusterer has no 'fit_predict' method" if return_df: assert isinstance(df, pd.DataFrame), "If specifying 'return_df', data must be passed to argument 'df'" # Instantiate vectorizer with params if specified if vector_params: vectorizer = vectorizer(**vector_params) # Else instantiate the vectorizer elif vectorizer: vectorizer = vectorizer() # Fit and trasnform text to vectors vectors = vectorizer.fit_transform(text) # Instantiate vectorizer with params if specified if clusterer_params: clusterer = clusterer(**clusterer_params) elif clusterer: clusterer = clusterer() # Fit and trasnform vectors to clusters cluster_labels = clusterer.fit_predict(vectors) if len(set(clusterer.labels_)) <= 1: return print('Clusterer could not find any meaningful labels. All data would fall under one cluster') # Create DataFrame of Cluster Labels results = pd.DataFrame(cluster_labels, columns=['Cluster_Label']) # Add Outlier Score if specified if outlier_scores: results['Outlier_Score'] = clusterer.outlier_scores_ # Add labels as dummy variables if one_hot_labels: one_hot_cols = pd.get_dummies(results['Cluster_Label'], prefix='Cluster_Label') one_hot_col_names = one_hot_cols.columns.values.tolist() results = pd.merge(results, one_hot_cols, left_index=True, right_index=True) # Attach to data if specified if return_df: results = pd.merge(df, results, left_index=True, right_index=True) # Return all or just cluster results if return_type == 'all': return results, vectorizer, clusterer elif return_type == 'clusters': return results def dask_df_textacy_apply(df, text_col, textacy_col_name='textacy_doc', ncores=None, inplace=False): """ Use dask to parallelize apply textacy Doc object creation from a dataframe Parameters ---------- df : DataFrame Dataframe which holds the text text_col : str The name of the text column in the df textacy_col_name : str The name to give to the column with the textacy doc objects ncores : int Number of cores to use for multiprocessing. Defaults to all cores in cpu minus one. inplace : bool Whether to return the entire df with the textacy doc series concatenated or only textacy doc series. Default is False Returns ------- DataFrame / Series Either the dataframe passed as arg with the textacy series as last column or just the textacy column """ # If no number of cores to work with, default to max if not ncores: nCores = cpu_count() - 1 nCores # Partition dask dataframe and map textacy doc apply # Sometimes this fails because it can't infer the dtypes correctly # meta=pd.Series(name=0, dtype='object') is a start # This is also a start https://stackoverflow.com/questions/40019905/how-to-map-a-column-with-dask?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa # Possibly both the inner lambda apply and outer lambda df both need metadata? textacy_series = dd.from_pandas(df, npartitions=nCores).map_partitions( lambda df : df[text_col].apply(lambda x : textacy.doc.Doc(x, lang=nlp))).compute(get=get) # Name the series textacy_series.name = textacy_col_name # If inplace return the dataframe and textacy Series if inplace: return pd.concat([df, textacy_series], axis=1) # Else return just the Textacy series else: return textacy_series def load_textacy_corpus(df, text_col, metadata=True, metadata_columns=None): # Fill text columns nulls with empty strings df[text_col] = df[text_col].fillna('') if metadata: # Default to metadata columns being every column except the text column metadata_cols = list(df.columns) # If list is provided use those if metadata_columns: metadata_cols = metadata_columns # Add text column to metadata columns # These will constitute all the information held in the textacy corpus metadata_columns.append(text_col) # Subset to these df = df[metadata_cols] # Convert to nested dict of records records = df.to_dict(orient='records') # Split into text and metadata stream text_stream, metadata_stream = textacy.io.split_records(records, text_col) # Create Corpus return textacy.corpus.Corpus(lang='en', texts=text_stream, metadatas=metadata_stream) # With no metadata else: text_stream = (text for text in df[text_col].values) return textacy.corpus.Corpus(lang='en', texts=text_stream) # Entity Extraction def corpus_entity_counts(corpus, include=None, exclude=None): """ Given a textacy corpus, return a dataframe of entities and their respective counts. Parameters ---------- corpus : int Description of arg1 include : str or Set[str] Remove named entities whose type IS NOT in this param; if โ€œNUMERICโ€, all numeric entity types (โ€œDATEโ€, โ€œMONEYโ€, โ€œORDINALโ€, etc.) are included exclude : str or Set[str] remove named entities whose type IS in this param; if โ€œNUMERICโ€, all numeric entity types (โ€œDATEโ€, โ€œMONEYโ€, โ€œORDINALโ€, etc.) are excluded Returns ------- Dataframe A pandas dataframe with entities and their respective counts, sorted by highest count """ from collections import Counter # Extract all entities entities = [list(textacy.extract.named_entities(doc, include_types=include, exclude_types=exclude)) for doc in corpus] # Pull all non-null entities to flattened list non_null_entities = [] for entity in entities: if entity: non_null_entities.extend(entity) # Change dtype to string so counter can distinguish non_null_entities = [str(x) for x in non_null_entities] # Count entities entity_counts = Counter(non_null_entities) # Entity Dataframe df = (pd.DataFrame.from_dict(entity_counts, orient='index') .reset_index() .rename(columns={'index':'Entity', 0:'Count'}) .sort_values(by='Count', ascending=False) .reset_index(drop=True)) return df def entity_statements(doc, entity, ignore_entity_case=True, min_n_words=1, max_n_words=300, return_entity=False): """ Extract sentences with a specified entity present in it Modified from source code of Textacy's textacy.extract.semistructured_statements() Args: doc (``textacy.Doc`` or ``spacy.Doc``) entity (str): a noun or noun phrase of some sort (e.g. "President Obama", "global warming", "Python") ignore_entity_case (bool): if True, entity matching is case-independent min_n_words (int): min number of tokens allowed in a matching fragment max_n_words (int): max number of tokens allowed in a matching fragment Yields: (``spacy.Span`` or ``spacy.Token``) or (``spacy.Span`` or ``spacy.Token``, ``spacy.Span`` or ``spacy.Token``): dependin on if return_entity is enabled or not Notes: Inspired by <NAME>, <NAME>, <NAME>. Visual Analytics of Media Frames in Online News and Blogs. IEEE InfoVis Workshop on Text Visualization. October, 2013. Which itself was inspired by by <NAME>.; <NAME>.; <NAME>.; and <NAME>. 2010. Portable Extraction of Partially Structured Facts from the Web. In Proc. ICETAL 2010, LNAI 6233, 345-356. Heidelberg, Springer. """ if ignore_entity_case is True: entity_toks = entity.lower().split(' ') get_tok_text = lambda x: x.lower_ else: entity_toks = entity.split(' ') get_tok_text = lambda x: x.text first_entity_tok = entity_toks[0] n_entity_toks = len(entity_toks) #cue = cue.lower() #cue_toks = cue.split(' ') #n_cue_toks = len(cue_toks) def is_good_last_tok(tok): if tok.is_punct: return False if tok.pos in {CONJ, DET}: return False return True for sent in doc.sents: for tok in sent: # filter by entity if get_tok_text(tok) != first_entity_tok: continue if n_entity_toks == 1: the_entity = tok the_entity_root = the_entity elif all(get_tok_text(tok.nbor(i=i + 1)) == et for i, et in enumerate(entity_toks[1:])): the_entity = doc[tok.i: tok.i + n_entity_toks] the_entity_root = the_entity.root else: continue if return_entity: yield (the_entity, sent.orth_) else: yield (sent.orth_) break def list_of_entity_statements(corpus, entity): """ Given an entity and a textacy corpus, return a list of all the sentences in which this entity occurs Parameters ---------- corpus : textacy Corpus object entity : str The entity for which to search all the sentences within the corpus Returns ------- entity_sentences A list of strings, each being a sentence which contains the entity search """ entity_sentences = [list(entity_statements(doc, entity=entity)) for doc in corpus if list(entity_statements(doc, entity=entity))] # If statement that removes null sentences entity_sentences = [item for sublist in entity_sentences for item in sublist] return entity_sentences # Entity Sentiment extractions def vader_entity_sentiment(df, textacy_col, entity, inplace=True, vader_sent_types=['neg', 'neu', 'pos', 'compound'], keep_stats=['count', 'mean', 'min', '25%', '50%', '75%', 'max']): """ Pull the descriptive sentiment stats of text sentence with a specified entity in it. Parameters ---------- df : DataFrame Dataframe which holds the text textacy_col : str The name to give to the column with the textacy doc objects entity : str The entity to search the textacy Doc object for inplace : bool Whether to return the entire df with the sentiment info or the sentiment info alone Default is False vader_sent_types : list The type of sentiment to extract. neg: negative, pos: positive, neu: neutral, compound is comination of all three types of all keep_stats : list A list of the summary statistics to keep. Default is all returned by pandas DataFrame.describe() method Returns ------- DataFrame Either the dataframe passed as arg with the sentiment info as trailing columns or the sentiment descriptive stats by itself """ vader_analyzer = SentimentIntensityAnalyzer() sentiment_rows = [] for text in df[textacy_col].values: text_entities = list(entity_statements(text, entity)) # Iterate through all sentences and get sentiment analysis entity_sentiment_info = [vader_analyzer.polarity_scores(sentence) for sentence in text_entities] # After taking sentiments, turn into a dataframe and describe try: # Indices and columns to keep keep_stats = keep_stats keep_cols = vader_sent_types # Describe those columns summary_stats = pd.DataFrame(entity_sentiment_info).describe().loc[keep_stats, keep_cols] # Add row to list sentiment_rows.append(pivot_df_to_row(summary_stats)) # If there's nothing to describe except ValueError as e: # Create a summary stats with nulls summary_stats = pd.DataFrame(index=keep_stats, columns=keep_cols) # Add to list of rows sentiment_rows.append(pivot_df_to_row(summary_stats)) # Concatenate All rows together into one dataframe sentiment_df = pd.concat(sentiment_rows).add_prefix(entity+'_') if not inplace: return sentiment_df.reset_index(drop=True) else: # Return original df with new sentiment attached return
pd.concat([df, sentiment_df], axis=1)
pandas.concat
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.9.1+dev # kernelspec: # display_name: Python [conda env:core_acc] * # language: python # name: conda-env-core_acc-py # --- # # Correlation analysis # # This notebook examines the correlation structure in the gene expression data generated in [1_create_compendia.ipynb](../processing/1_create_compendia.ipynb). # # When we performed clustering on the correlation matrices (using Pearson correlation) we found that pairs of genes had either very high correlation scores (>0.5) or very low correlation scores (<0.1). As a result gene pairs that were highly correlated clustered into a single large module. This finding is consistent with a [previous study](https://link.springer.com/article/10.1186/1471-2164-7-187), which found that KEGG (a database that containes genes or proteins annotated with specific biological processes as reported in the literature) is bias in some biological processes represented. Figure 1C demonstrates that a large fraction of gene pairs are ribosomal relationships - in the top 0.1% most co-expressed genes, 99% belong to the ribosome pathway. # Furthermore, protein function prediction based on co-expression drop dramatically after removing the ribisome pathway (Figure 1A, B). # # This notebook applies different corrections to try to remove this very dominant global signal in the data. This notebook follows from [1a_transformation_correlation_analysis.ipynb](1a_transformation_correlation_analysis.ipynb). Here we are applying dimensionality reduction techniques in addition to scaling the data. # %load_ext autoreload # %autoreload 2 import os import pandas as pd import plotnine as pn import seaborn as sns from sklearn import preprocessing import matplotlib.pyplot as plt import umap import random import numpy as np import scipy from sklearn.decomposition import PCA from core_acc_modules import paths # ## Set user parameters # # Here we set the number of PCs or singular vectors to use. We are starting with 300 since this is what [eADAGE](https://pubmed.ncbi.nlm.nih.gov/28711280/) used. # Params num_PCs = 300 num_PCs_log = 100 num_singular_values = 300 num_singular_values_log = 100 # Load expression data pao1_compendium_filename = paths.PAO1_COMPENDIUM pa14_compendium_filename = paths.PA14_COMPENDIUM pao1_compendium = pd.read_csv(pao1_compendium_filename, sep="\t", header=0, index_col=0) pa14_compendium =
pd.read_csv(pa14_compendium_filename, sep="\t", header=0, index_col=0)
pandas.read_csv
from __future__ import annotations from typing import Optional, Union, cast import numpy as np from numpy.linalg import inv, matrix_rank import pandas as pd from linearmodels.typing import ArraySequence, Float64Array def blocked_column_product(x: ArraySequence, s: Float64Array) -> Float64Array: """ Parameters ---------- x : list of ndarray k-element list of arrays to construct the inner product s : ndarray Weighting matrix (k by k) Returns ------- ndarray Blocked product. k x nobs rows and the number of columns is the same the number of columns as any member of x. """ k = len(x) out = [] for i in range(k): val = s[i, 0] * x[0] for j in range(1, k): val += s[i, j] * x[j] out.append(val) return np.vstack(out) def blocked_diag_product(x: ArraySequence, s: Float64Array) -> Float64Array: """ Parameters ---------- x : list of ndarray k-element list of arrays to construct the inner product s : ndarray Weighting matrix (k by k) Returns ------- ndarray Blocked product. k x nobs rows and the number of columns is the same as the total number of columns in x. """ k = len(x) out = [] for i in range(k): row = [] for j in range(k): row.append(s[i, j] * x[j]) row_arr = np.hstack(row) out.append(row_arr) return np.vstack(out) def blocked_inner_prod(x: ArraySequence, s: Float64Array) -> Float64Array: r""" Parameters ---------- x : list of ndarray k-element list of arrays to construct the inner product s : ndarray Weighting matrix (k by k) Returns ------- ndarray Weighted inner product constructed from x and s Notes ----- Memory efficient implementation of high-dimensional inner product .. math:: X'(S \otimes I_n)X where n is the number of observations in the sample """ k = len(x) widths = [m.shape[1] for m in x] s_is_diag = np.all(np.asarray((s - np.diag(np.diag(s))) == 0.0)) w0 = widths[0] homogeneous = all([w == w0 for w in widths]) if homogeneous and not s_is_diag: # Fast path when all x have same number of columns # Slower than diag case when k is large since many 0s xa = np.hstack(x) return xa.T @ xa * np.kron(s, np.ones((w0, w0))) cum_width = np.cumsum([0] + widths) total = sum(widths) out: np.ndarray = np.zeros((total, total)) for i in range(k): xi = x[i] sel_i = slice(cum_width[i], cum_width[i + 1]) s_ii = s[i, i] prod = s_ii * (xi.T @ xi) out[sel_i, sel_i] = prod # Short circuit if identity if s_is_diag: return out for i in range(k): xi = x[i] sel_i = slice(cum_width[i], cum_width[i + 1]) for j in range(i + 1, k): sel_j = slice(cum_width[j], cum_width[j + 1]) xj = x[j] s_ij = s[i, j] prod = s_ij * (xi.T @ xj) out[sel_i, sel_j] = prod out[sel_j, sel_i] = prod.T return cast(np.ndarray, out) def blocked_cross_prod( x: ArraySequence, z: ArraySequence, s: Float64Array ) -> Float64Array: r""" Parameters ---------- x : list of ndarray k-element list of arrays to use as the left side of the cross-product z : list of ndarray k-element list of arrays to use as the right side of the cross-product s : ndarray Weighting matrix (k by k) Returns ------- ndarray Weighted cross product constructed from x and s Notes ----- Memory efficient implementation of high-dimensional cross product .. math:: X'(S \otimes I_N)Z where n is the number of observations in the sample """ k = len(x) xp = [] for i in range(k): row = [] for j in range(k): s_ij = s[i, j] row.append(s_ij * (x[i].T @ z[j])) xp.append(np.concatenate(row, 1)) return np.concatenate(xp, 0) def blocked_full_inner_product(x: Float64Array, s: Float64Array) -> Float64Array: r""" Parameters ---------- x : ndarray Array of shape KT by KT s : ndarray Array of shape K by K Notes ----- Computes the quantity .. math :: x^\prime (S \otimes I_N)x """ k = s.shape[0] t = x.shape[0] // k sx = np.empty_like(x) for i in range(k): v = s[i, 0] * x[0:t] for j in range(1, k): v += s[i, j] * x[j * t : (j + 1) * t] sx[i * t : (i + 1) * t] = v return x.T @ sx def inv_matrix_sqrt(s: Float64Array) -> Float64Array: vecs, vals = np.linalg.eigh(s) vecs = 1.0 / np.sqrt(vecs) out = vals @ np.diag(vecs) @ vals.T return (out + out.T) / 2 class LinearConstraint(object): r""" Linear constraint for regression estimation Parameters ---------- r : {ndarray, DataFrame} Restriction loading matrix q : {ndarray, Series} Restriction value num_params : int Number of model parameter. Used to test for correctness require_pandas : bool Flag indicating whether r and q must be pandas Notes ----- Used to impose the constraints .. math :: r \beta = q """ def __init__( self, r: Union[pd.DataFrame, np.ndarray], q: Optional[Union[pd.Series, np.ndarray]] = None, num_params: Optional[int] = None, require_pandas: bool = True, ) -> None: if not isinstance(r, (pd.DataFrame, np.ndarray)): raise TypeError("r must be an array or DataFrame") elif require_pandas and not isinstance(r, pd.DataFrame): raise TypeError("r must be a DataFrame") if r.ndim != 2: raise ValueError("r must be 2-dimensional") r_pd = pd.DataFrame(r) ra = np.asarray(r, dtype=np.float64) self._r_pd = r_pd self._ra = ra if q is not None: if require_pandas and not isinstance(q, pd.Series): raise TypeError("q must be a Series") elif not isinstance(q, (pd.Series, np.ndarray)): raise TypeError("q must be a Series or an array") if r.shape[0] != q.shape[0]: raise ValueError("Constraint inputs are not shape compatible") q_pd =
pd.Series(q, index=r_pd.index)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import __doc__=""" ATLAS Higgs Machine Learning Challenge 2014 Read CERN Open Data Portal Dataset http://opendata.cern.ch/record/328 and manipulate it - Label is changd from charcter to integer 0 or 1 - DetailLabel is introduced indicating subpopulations - systematics effect are simulated - bkg_weight_norm : manipulates the background weight - tau_energy_scale : manipulates PRI_tau_pt and recompute other quantities accordingly Some WARNING : variable DER_mass_MMC is not properly manipulated (modification is linearised), and I advocate to NOT use DER_mass_MMC when doSystTauEnergyScale is enabled There is a threshold in the original HiggsML file at 20GeV on PRI_tau_energy. This threshold is moved when changing sysTauEnergyScale which is unphysicsal. So if you're going to play with sysTauEnergyScale (within 0.9-1.1), I suggest you remove events below say 22 GeV *after* the manipulation applying doSystTauEnergyScale with sysTauENergyScale=1. does NOT yield identical results as not applyield doSystTauEnergyScale, this is because of rounding error and zero mass approximation. doSysTauEnerbyScale impacts PRI_tau_pt as well as PRI_met and PRI_met_phi - so overall I suggest that when playing with doSystTauEnergyScale, the reference is - not using DER_mass_MMC - applying *after* this manipulation PRI_tau_pt>22 - run with sysTauENergyScale=1. to have the reference Author <NAME> LAL, Nov 2016 Modification Dec 2016 (<NAME>): - Wrap everything into separated functions. - V4 class now handle 1D-vector values (to improve computation efficiency). - Fix compatibility with both python 2 and 3. - Use pandas.DataFrame to ease computation along columns - Loading function for the base HiggsML dataset (fetch it on the internet if needed) Refactor March 2017 (V. Estrade): - Split load function (cleaner) """ __version__ = "0.1" __author__ = "<NAME>, and <NAME> " import sys import os import gzip import copy import pandas as pd import numpy as np from .download import maybe_download from .download import get_data_dir COLUMN_NAMES = { 0: 'PRI_lep_1_pt', 1: 'PRI_lep_1_eta', 2: 'PRI_lep_1_phi', 3: 'PRI_lep_2_pt', 4: 'PRI_lep_2_eta', 5: 'PRI_lep_2_phi', 6: 'PRI_met', 7: 'PRI_met_phi', 8: '8', 9: '9', 10: 'relative_MET', 11: 'axial_MET', 12: 'MMC', 13: 'delta_R', 14: 'delta_eta', 15: '15', 16: '16', 17: 'Pt/Pt', 18: 'invariant_mass_visible', 19: 'invariant_mass_ll', 20: 'delta_phi', 21: 'sphericity', 22: 'transverse_sphericity', 23: '23', 24: '24', } RESTRICTED_COLUMNS = [0,1,2,3,4,5,6,7] COLUMN_RENAME_FOR_SKEWING = { 'PRI_lep_1_pt': 'PRI_tau_pt', 'PRI_lep_1_eta': 'PRI_tau_eta', 'PRI_lep_1_phi': 'PRI_tau_phi', 'PRI_lep_2_pt': 'PRI_lep_pt', 'PRI_lep_2_eta': 'PRI_lep_eta', 'PRI_lep_2_phi': 'PRI_lep_phi', } def load_htautau(nrows=None, restricted_cols=True): url = "http://mlphysics.ics.uci.edu/data/htautau/htautau.txt.gz" filename = os.path.join(get_data_dir(), "htautau.txt.gz") maybe_download(filename, url) if restricted_cols : data =
pd.read_csv(filename, sep='\t', nrows=nrows, header=None, usecols=RESTRICTED_COLUMNS)
pandas.read_csv
import numpy as np import pandas as pd import pytest from src.policies.single_policy_functions import ( _identify_who_attends_because_of_a_b_schooling, ) from src.policies.single_policy_functions import mixed_educ_policy @pytest.fixture def fake_states(): states = pd.DataFrame(index=np.arange(10)) states["state"] = ["Bayern", "Berlin"] * 5 # date at which schools are open in Berlin but closed in Bavaria # date with uneven week number, i.e. where group a attends school states["date"] = pd.Timestamp("2020-04-23") states["educ_a_b_identifier"] = [False, True] * 5 states["occupation"] = pd.Categorical( ["school"] * 8 + ["preschool_teacher", "school_teacher"] ) states["school_group_id_0"] = [-1] + [22] * 9 states["educ_worker"] = [False] * 8 + [True] * 2 states["age"] = np.arange(10) return states @pytest.fixture def contacts(fake_states): return pd.Series(True, index=fake_states.index) def test_a_b_school_system_above_age_0(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school'", non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series([False, True] * 4 + [True, True]) pd.testing.assert_series_equal(calculated, expected) def test_a_b_school_system_above_age_5(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school' & age > 5", non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series([True] * 6 + [False] + [True] * 3) pd.testing.assert_series_equal(calculated, expected) def test_a_b_school_system_below_age_5(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school' & age < 5", non_a_b_attend=False, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series( [False, True, False, True, False, False, False, False, True, True] ) pd.testing.assert_series_equal(calculated, expected) def test_mixed_educ_policy_others_home_no_hygiene(): states = pd.DataFrame() states["county"] = [1, 1, 2, 2, 2, 2, 2, 2] states["educ_worker"] = [True, False, True, False, False, False, False, False] states["school_group_id_0"] = [11, 11, 22, 22, 22, 22, 22, -1] states["educ_a_b_identifier"] = [False, True, True, True, False, True, False, True] states["date"] = pd.Timestamp("2021-01-04") # week 1 contacts = pd.Series([True] * 6 + [False] * 2, index=states.index) seed = 333 res = mixed_educ_policy( states=states, contacts=contacts, seed=seed, group_id_column="school_group_id_0", a_b_query="county == 2", non_a_b_attend=False, hygiene_multiplier=1.0, always_attend_query="county == 55", # no one params=None, ) # zero class, closed county, teacher despite wrong week, # wrong week, right week, wrong week, right week but not attending, not in school expected = pd.Series([True, False, True, True, False, True, False, False]) pd.testing.assert_series_equal(res, expected) def test_mixed_educ_policy_no_contacts(): states = pd.DataFrame() states["educ_worker"] = [True, False, True, False, False, False, False] states["educ_a_b_identifier"] = [False, True, False, True, False, True, False] states["school_group_id_0"] = [11, 11, 22, 22, 22, 22, -1] states["date"] = pd.Timestamp("2021-01-04") # week 1 states["county"] = 33 contacts = pd.Series(False, index=states.index) seed = 333 res = mixed_educ_policy( states=states, contacts=contacts, seed=seed, group_id_column="school_group_id_0", a_b_query=True, non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="county == 55", # no one params=None, ) pd.testing.assert_series_equal(res, contacts) def test_identify_who_attends_because_of_a_b_schooling(): states = pd.DataFrame() states["county"] = [1, 1, 2, 2, 2] states["educ_a_b_identifier"] = [False, True, False, True, False] states["date"] = pd.Timestamp("2021-01-04") # week number 1 # wrong county, wrong county, wrong week, right week, wrong week expected =
pd.Series([False, False, False, True, False])
pandas.Series
#https://docs.google.com/document/d/1Y31Nt05peNIPwLo9O_TsTRAcy0GbDqGvRcHvJ4qtgzk/edit ###################### Indรญce ####################### #---- Instruรงรตes #---- Imports #---- Funรงรตes #---- Leitura de Ficheiros #---- Correcรงรตes ร  Base de Dados #---- Tabelas Descritivas # ---- Nrยบ Ciclistas por Paรญs # ---- Mรฉdia, Moda, Mediana, etc # ---- Nome dos Vencedores por Ediรงรฃo #---- Grรกficos # ---- Ciclistas por Continente # ---- Mรฉdia de Tempo por Ronda e Ediรงรฃo # ---- Mรฉdia de km/H por Ediรงรฃo # ---- Mรฉdia de Idade por Ediรงรฃo # ---- Mรฉdia de Tempo por Corrida #---- Testes # ---- Tempo para correr cรณdigo #=============================================================== #======================== Instruรงรตes =========================== #=============================================================== """ CORRER NA CONSOLA: pip install dataframe_image """ #================= Erros em versรตes antigas ===================== """# Garantir que se usa a รบltima versรตes do Pandas: # Pandas updated to 1.2.0 or above # Pandas <= 1.2.0, origina: # 'DataFrame' object has no attribute 'to_frame' # Corrigido com: # XYZ = XYZ.to_frame() # XYZ = XYZ.reset_index() #https://pandas.pydata.org/docs/whatsnew/v1.2.0.html""" #=============================================================== #========================= Imports ============================= #=============================================================== import matplotlib.pyplot as plt import dataframe_image as dfi import seaborn as sns import pandas as pd import numpy as np import unittest import time import os start = time.time() #=============================================================== #========================= Funรงรตes ============================= #=============================================================== #================= Validate Image Directory ===================== def directoryValidator(): if os.path.isdir("./images/") == False: #check if directory exists os.makedirs(os.path.dirname("./images/")) #create directory else: pass #if it exists, all good. #================= Image Saver ===================== image_counter = 0 def saveImages(category, graph_name, variable): global image_counter, table_counter directoryValidator() image_counter += 1 if (category) == "graph": (graph_name).savefig("./images/{}_{}.png".format(str(category),str(image_counter))) print("\n\t Graph image saved to 'images' folder as {}_{}.png".format(str(category),str(image_counter))) elif (category) == "table": (graph_name).export((variable), "./images/{}_{}.png".format(str(category),str(image_counter))) print("\n\t Table image saved to 'images' folder as {}_{}.png".format(str(category),str(image_counter))) else: print("\n No valid image Category found.") #================= Athlete Age ===================== def obterIdade(nome,pais_jogo): #pais_jogo->host_country athlete_id = 0 idade = None contain= False for i in athletes["Name"]: if i == nome: athlete_id = athletes[athletes["Name"]==nome]["Athlete_id"] athlete_id = int(athlete_id) contagem = sport_events["Host Country"].str.contains(pais_jogo).sum() if contagem > 0: contain = True if athlete_id != 0 and contain == True: data_nasc = athletes[athletes["Athlete_id"] == athlete_id]["Date of Birth"].values[0] ano_nasc = str(data_nasc[-4:]) ano_nasc = int(ano_nasc) data_jogo = int(sport_events.loc[(sport_events["Athlete_id"] == athlete_id) & (sport_events["Host Country"] == pais_jogo), ["Year"]].values[0]) ano_jogo = int (data_jogo) idade = ano_jogo-ano_nasc return idade #============================================================================= #=================== Respective Continents, from "nation" ==================== #---- Caribbean Countries have been put into south_america asia = ["China", "Japan", "Malaysia", "South Korea"] africa = ["South Africa"] europe = ["Czech Republic", "Estonia", "France", "Germany", "Great Britain", "Greece", "Italy", "Latvia", "Netherlands", "Poland", "Russia", "Slovakia", "Spain"] north_america = ["United States"] oceania = ["Australia", "New Zealand"] south_america = ["Barbados", "Colombia", "Cuba", "Trinidad and Tobago", "Venezuela"] #================= Assign Country to a Continent ===================== def getContinent(country): if country in asia: continent = "Asia" elif country in africa: continent = "Africa" elif country in europe: continent = "Europe" elif country in north_america: continent = "North America" elif country in oceania: continent = "Oceania" elif country in south_america: continent = "South America" else: continent = None return continent #=============================================================== #================== Leitura de Ficheiros ======================= #=============================================================== #================= athletes.csv ===================== athletes = pd.read_csv ("./csv_files/athletes.csv") #================= sport_events.csv ===================== sport_events = pd.read_csv ("./csv_files/sport_events.csv") sport_events.drop(sport_events.tail(1).index,inplace=True) #remover o ano de 1896 athletes.drop(athletes.tail(1).index,inplace=True) #=============================================================== #============ Correcรงรตes ร  Base de Dados ======================= #=============================================================== #---- Mudar tipo de dados e Renomear Colunas sport_events.columns = ["Year","Athlete_id","Race_id","Rounds","Heat","Time","Average Km/H", "Rank","Result","Record","Host Country","Venue"] athletes.columns = ["Athlete_id","Name","Date of Birth","Nation","Sex"] sport_events["Time"] = sport_events["Time"].str.replace(',', '.') sport_events["Time"] =
pd.to_numeric(sport_events["Time"],errors='coerce')
pandas.to_numeric
#' Download StatsCan Metadata from Product Cube #' #' This function allows you to download product metadata from #' Statistics Canada. #' @param productId The Statistics Canada Product ID. #' @keywords productId, product, metadata #' @importFrom httr POST content content_type #' @export #' @examples #' get_product_metadata('14100287') #' cansimId = '2820087' #' productId = '14100287' #' import requests import csv import zipfile import io import pandas as pd from datetime import datetime """@package docstring Download StatsCan Metadata from Product Cube This function allows you to download product metadata from Statistics Canada. """ """Documentation for a class. More details. """ class Product(object): def __init__(self, productId, lang='en'): self.productId = productId self.lang = lang self.camelLang = lang.capitalize() self.metadata = self.get_metadata() self.dimensions = self.get_dimensions() ## Documentation for a method. # @param self The object pointer. def get_metadata(self): """metadata Retrieve metadata for a given productId. """ url = 'https://www150.statcan.gc.ca/t1/wds/rest/getCubeMetadata' payload = [{'productId': int(self.productId)}] print('Retreiving metadata for Product ID: ' + self.productId) req = requests.post( url, json=payload ) response = req.json() if (response[0]['status'] == "SUCCESS"): return(response[0]['object']) else: self.errors = response print('ERROR: Metadata for Product ID ' + self.productId + ' could not be loaded.') print('ERROR: see Product.errors() for more info') def read_cansim_product_mapping(self, Id='all'): if (Id == 'all'): print("ERROR: Only one of cansimId or productId can be entered") else: response = requests.get( 'https://www.statcan.gc.ca/eng/developers-developpeurs/cansim_id-product_id-concordance.csv') reader = csv.DictReader(io.StringIO(response.text)) cansim_concordance = [row for row in reader] for row in cansim_concordance: if row['PRODUCT_ID'] == Id: returnFrame = row['CANSIM_ID'] return (returnFrame) def downloadProductCube(self): url = 'https://www150.statcan.gc.ca/t1/wds/rest/getFullTableDownloadCSV/' + self.productId + '/' + self.lang response = requests.get(url).json() if response['status'] == 'SUCCESS': print('Downloading zip file of product cube....') remote_zip = requests.get(response['object']) root = zipfile.ZipFile(io.BytesIO(remote_zip.content)) name = self.productId + '.csv' df = pd.read_csv(root.open(name)) return(df) else: print('ERROR - cannot find download url for productId: ' + self.productId) def read_metadata(self): d = self.dimensions dim_names = [dim['dimensionName' + self.camelLang] for dim in self.metadata['dimension']] # There are 6 dimensions. Some may have more or less? print('The product has ' + str(len(d)) + ' dimensions.') print('The dimensions are: ' + ', '.join(dim_names)) # This is the first dimension. for 14100287, this is geography # Member is a list of all the values the dimension can take # dimension 2 is labour force characterisitics d[0]['member'][0].keys() d[0]['member'][0].values() # One can use the dims to generate a coordinate, which is a better way to download data. # coordinate ID must have 10 digits. The last few are zeros if not defined. # Example: Coordinate ID 1.1.1.1.1.2.0.0.0.0 is for the following: # Canada, Population, Both sexes, 15 years and over, Estimate, Unadjusted coordinateId = '1.1.1.1.1.2.0.0.0.0' def get_series_info(self, coordinateId): # coordinateId = '1.1.1.1.1.2.0.0.0.0' self.coordinateId = coordinateId payload = [{'productId': int(self.productId), "coordinate": self.coordinateId}] req = requests.post( url = 'https://www150.statcan.gc.ca/t1/wds/rest/getSeriesInfoFromCubePidCoord', json=payload ) if req.json()[0]['status'] == 'SUCCESS': self.series_info = req.json()[0]['object'] self.vectorId = self.series_info['vectorId'] print('Series info stored in object.series_info') else: print('ERROR: Something went wrong with the API request') def get_coordinate_data(self, n=10): payload = [{'productId': int(self.productId), "coordinate": self.coordinateId, "latestN": n}] req = requests.post( url = 'https://www150.statcan.gc.ca/t1/wds/rest/getDataFromCubePidCoordAndLatestNPeriods', json=payload ) coord_data = req.json() status = coord_data[0]['status'] if status == 'SUCCESS': object_data =
pd.DataFrame(coord_data[0]['object'])
pandas.DataFrame
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import statsmodels from matplotlib import pyplot from scipy import stats import statsmodels.api as sm import warnings from itertools import product import datetime as dt from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss from pandas import DataFrame from pandas import concat from pandas import Series from math import sqrt from sklearn.metrics import mean_squared_error # convert series to supervised learning def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg data = pd.read_csv('Data/All_Merged.csv') # , parse_dates=[0], date_parser=dateparse data.isna().sum() # Inserting 0 for NA data.fillna(0, inplace=True) # plt.figure(figsize=[10,4]) # plt.title('BTC Price (USD) Daily') # plt.plot(data.price, '-', label='Daily') # Monthly data['date'] = pd.to_datetime(data['date']) data['date'] = data['date'].dt.tz_localize(None) data = data.groupby([pd.Grouper(key='date', freq='M')]).first().reset_index() data = data.set_index('date') data['price'].fillna(method='ffill', inplace=True) # Decomposition - only for price though! # decomposition = sm.tsa.seasonal_decompose(data.price) # # trend = decomposition.trend # seasonal = decomposition.seasonal # residual = decomposition.resid # # fig = plt.figure(figsize=(10,8)) # # plt.subplot(411) # plt.plot(data.price, label='Original') # plt.legend(loc='best') # plt.subplot(412) # plt.plot(trend, label='Trend') # plt.legend(loc='best') # plt.subplot(413) # plt.plot(seasonal,label='Seasonality') # plt.legend(loc='best') # plt.subplot(414) # plt.plot(residual, label='Residuals') # plt.legend(loc='best') # # fig.suptitle('Decomposition of Prices Data') # plt.show() # Setting the data structure reframed = series_to_supervised(data, 1, 1) # Also removing the lagged price, as this will be created in the ARIMA reframed.drop(reframed.columns[[0,8, 9, 10, 11, 12, 13]], axis=1, inplace=True) print(reframed.head()) # split data split_date = '2018-06-25' reframed_train = reframed.loc[reframed.index <= split_date].copy() reframed_test = reframed.loc[reframed.index > split_date].copy() # Prรธver lige ARIMA pรฅ original data # Det her er en seasonal ARIMA, SARIMA, sรฅ nok ekstra resultat efter en regulรฆr ARIMA # Hjรฆlp til kommentering findes her: https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/ # Den fitter fint hvis man ikke opdeler i train og test.. # Initial approximation of parameters Qs = range(0, 2) qs = range(0, 3) Ps = range(0, 3) ps = range(0, 3) D=1 d=1 parameters = product(ps, qs, Ps, Qs) parameters_list = list(parameters) len(parameters_list) x_train = reframed_train.iloc[:,:-1].values y_train = reframed_train.iloc[:,-1] x_test = reframed_test.iloc[:,:-1].values y_test = reframed_test.iloc[:,-1] # Model Selection results = [] best_aic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model=sm.tsa.statespace.SARIMAX(endog=y_train, exog=x_train, order=(param[0], d, param[1]), seasonal_order=(param[2], D, param[3], 12),enforce_stationarity=True, enforce_invertibility=True).fit(disp=-1) except ValueError: print('wrong parameters:', param) continue aic = model.aic if aic < best_aic: best_model = model best_aic = aic best_param = param results.append([param, model.aic]) # Best Models result_table = pd.DataFrame(results) result_table.columns = ['parameters', 'aic'] print(result_table.sort_values(by = 'aic', ascending=True).head()) print(best_model.summary()) # Residual plot of the best model fig = plt.figure(figsize=(10,4)) best_model.resid.plot() fig.suptitle('Residual Plot of the Best Model') print("Dickeyโ€“Fuller test:: p=%f" % sm.tsa.stattools.adfuller(best_model.resid)[1]) # Dickeyโ€“Fuller test:: p=0.xxx -> Residuals are stationary df_month2 = data[['price']] future =
pd.DataFrame()
pandas.DataFrame
""" Description : This file implements the Drain algorithm for log parsing Author : LogPAI team License : MIT """ import hashlib import os import re import pandas as pd from datetime import datetime from typing import List from .log_signature import calc_signature # ไธ€ไธชๅถๅญ่Š‚็‚นๅฐฑๆ˜ฏไธ€ไธชLogCluster class LogCluster: def __init__(self, template_token_list: List[str], log_id_list: List[int]): self.template_token_list = template_token_list self.log_id_list = log_id_list self.template_id = None # ๆ ‘่Š‚็‚น class Node: def __init__(self, childD=None, depth=0, digitOrToken=None): self.childD = {} if childD is None else childD self.depth = depth self.digitOrToken = digitOrToken self.template_count = 0 def get_template(seq1, seq2): assert len(seq1) == len(seq2) res = [] for t1, t2 in zip(seq1, seq2): if t1 == t2: res.append(t1) else: res.append('<*>') return res class LogParser: def __init__(self, log_format, indir='./', outdir='./result/', depth=4, st=0.4, maxChild=100, rex=None, keep_para=True): """ Attributes ---------- rex : regular expressions used in preprocessing (step1) path : the input path stores the input log file name depth : depth of all leaf nodes st : similarity threshold maxChild : max number of children of an internal node log_name : the name of the input file containing raw log messages save_path : the output path stores the file containing structured logs """ self.path = indir self.depth = depth - 2 self.st = st self.maxChild = maxChild self.log_name = None self.save_path = outdir self.df_log = None self.log_format = log_format self.rex = [] if rex is None else rex self.keep_para = keep_para def tree_search(self, root, token_list): seq_len = len(token_list) # ้•ฟๅบฆๅฑ‚๏ผŒๅˆคๆ–ญ้•ฟๅบฆ if seq_len not in root.childD: return 0, None len_node = root.childD[seq_len] # ้•ฟๅบฆๅฑ‚็š„่Š‚็‚น depth = 1 for token in token_list: if depth >= self.depth or depth > seq_len: break if token in len_node.childD: len_node = len_node.childD[token] elif '<*>' in len_node.childD: len_node = len_node.childD['<*>'] else: return 0, None depth += 1 return self.fastMatch(len_node.childD, token_list) def addSeqToPrefixTree(self, rn, logClust): def has_number(s): return any(char.isdigit() for char in s) logClust.template_id = rn.template_count # ๆจกๆฟid็ญ‰ไบŽๅบๅท rn.template_count += 1 # ่ฟ™ไธชๆ นไธŠ็š„ๆจกๆฟๆ€ปๆ•ฐๅŠ ไธ€ seqLen = len(logClust.template_token_list) if seqLen not in rn.childD: firtLayerNode = Node(depth=1, digitOrToken=seqLen) rn.childD[seqLen] = firtLayerNode else: firtLayerNode = rn.childD[seqLen] parentn = firtLayerNode currentDepth = 1 # ๅชๆœ‰ไธ€ไธชtokenๆ—ถ๏ผŒ็ป“ๆžœๆ˜ฏไธๅฏน็š„ for token in logClust.template_token_list: # Add current log cluster to the leaf node if currentDepth >= self.depth or currentDepth > seqLen: # if len(parentn.childD) == 0: # parentn.childD = [logClust] # else: # parentn.childD.append(logClust) break # If token not matched in this layer of existing tree. if token not in parentn.childD: if not has_number(token): if '<*>' in parentn.childD: if len(parentn.childD) < self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken=token) parentn.childD[token] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if len(parentn.childD) + 1 < self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken=token) parentn.childD[token] = newNode parentn = newNode elif len(parentn.childD) + 1 == self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrToken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if '<*>' not in parentn.childD: newNode = Node(depth=currentDepth + 1, digitOrToken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] # If the token is matched else: parentn = parentn.childD[token] currentDepth += 1 # ๆทปๅŠ ๅˆฐ logClusterList if len(parentn.childD) == 0: parentn.childD = [logClust] else: parentn.childD.append(logClust) # seq1 is template def seqDist(self, seq1, seq2): assert len(seq1) == len(seq2) simTokens = 0 numOfPar = 0 for token1, token2 in zip(seq1, seq2): if token1 == '<*>': numOfPar += 1 continue if token1 == token2: simTokens += 1 retVal = float(simTokens) / len(seq1) return retVal, numOfPar def fastMatch(self, logClustL, seq): retLogClust = None maxSim = -1 maxNumOfPara = -1 maxClust = None maxIdx = -1 # ๅŒน้…็š„็ฐ‡ๅฏนๅบ”็š„็ดขๅผ• for i, logClust in enumerate(logClustL): curSim, curNumOfPara = self.seqDist(logClust.template_token_list, seq) if curSim > maxSim or (curSim == maxSim and curNumOfPara > maxNumOfPara): maxSim = curSim maxNumOfPara = curNumOfPara maxClust = logClust maxIdx = i if maxSim < self.st: return len(logClustL), None else: return maxIdx, maxClust # if maxSim >= self.st: # retLogClust = maxClust # return retLogClust # ่พ“ๅ‡บ่‡ชๅฎšไน‰็ป“ๆžœ def outputEventId(self, event_id_list): if not os.path.exists(self.save_path): os.makedirs(self.save_path) self.df_log['EventId'] = event_id_list self.df_log.to_csv(os.path.join(self.save_path, self.log_name + '_structured.csv'), index=False) def outputResult(self, logClustL): if not os.path.exists(self.save_path): os.makedirs(self.save_path) log_templates = [0] * self.df_log.shape[0] log_templateids = [0] * self.df_log.shape[0] df_events = [] for logClust in logClustL: template_str = ' '.join(logClust.template_token_list) occurrence = len(logClust.log_id_list) # template_id = hashlib.md5(template_str.encode('utf-8')).hexdigest()[0:8] template_id = logClust.template_id for log_id in logClust.log_id_list: log_id -= 1 log_templates[log_id] = template_str log_templateids[log_id] = template_id df_events.append([template_id, template_str, occurrence]) # df_event = pd.DataFrame(df_events, columns=['EventId', 'EventTemplate', 'Occurrences']) self.df_log['EventId'] = log_templateids self.df_log['EventTemplate'] = log_templates if self.keep_para: self.df_log["ParameterList"] = self.df_log.apply(self.get_parameter_list, axis=1) self.df_log.to_csv(os.path.join(self.save_path, self.log_name + '_structured.csv'), index=False) occ_dict = dict(self.df_log['EventTemplate'].value_counts()) df_event = pd.DataFrame() df_event['EventTemplate'] = self.df_log['EventTemplate'].unique() df_event['EventId'] = df_event['EventTemplate'].map(lambda x: hashlib.md5(x.encode('utf-8')).hexdigest()[0:8]) # df_event['EventId'] = self.df_log['EventId'].unique() df_event['Occurrences'] = df_event['EventTemplate'].map(occ_dict) df_event.to_csv(os.path.join(self.save_path, self.log_name + '_templates.csv'), index=False, columns=["EventId", "EventTemplate", "Occurrences"]) def printTree(self, node, dep): pStr = '' for i in range(dep): pStr += '\t' if node.depth == 0: pStr += 'Root' elif node.depth == 1: pStr += '<' + str(node.digitOrToken) + '>' else: pStr += node.digitOrToken print(pStr) if node.depth == self.depth: return 1 for child in node.childD: self.printTree(node.childD[child], dep + 1) def parse(self, log_name: str): print('Parsing file: ' + os.path.join(self.path, log_name)) start_time = datetime.now() self.log_name = log_name # root_node = Node() all_cluster_list = [] # ๆ‰€ๆœ‰็š„logCluster sig_bin = {} # ไฟๅญ˜่งฃๆž็š„EventId event_id_list = [] self.load_data() # ้ๅކๆฏไธ€่กŒ for idx, line in self.df_log.iterrows(): log_content = line['Content'] log_id = line['LineId'] # ้ข„ๅค„็†๏ผŒtokenๅŒ– log_token_list = self.preprocess(log_content).strip().split() # ่ฎก็ฎ—็ญพๅ log_sig = calc_signature(log_token_list) # log_sig = 0 if log_sig not in sig_bin: sig_bin[log_sig] = Node() # ๆฏไธช็ญพๅๅฏนๅบ”ไธ€้ข—ๆ ‘ this_root = sig_bin[log_sig] # ๆœ็ดขๆ ‘๏ผŒๆ‰พๅˆฐๅŒน้…็š„Cluster # matched_cluster = self.tree_search(root_node, log_token_list) match_idx, matched_cluster = self.tree_search(this_root, log_token_list) # parsed_event_id = log_sig * 100 + matched_cluster.template_id # event_id_list.append(parsed_event_id) # cluster_template_id = matched_cluster.template_id if matched_cluster is None: # ๆฒกๆœ‰ๅŒน้…็š„ Cluster new_cluster = LogCluster(template_token_list=log_token_list, log_id_list=[log_id]) all_cluster_list.append(new_cluster) # self.addSeqToPrefixTree(root_node, new_cluster) self.addSeqToPrefixTree(this_root, new_cluster) cluster_template_id = new_cluster.template_id else: # ๆŠŠๆ—ฅๅฟ—ๆถˆๆฏๆทปๅŠ ๅˆฐๅทฒๆœ‰็š„ Cluster new_template_token_list = get_template(log_token_list, matched_cluster.template_token_list) matched_cluster.log_id_list.append(log_id) if ' '.join(new_template_token_list) != ' '.join(matched_cluster.template_token_list): matched_cluster.template_token_list = new_template_token_list cluster_template_id = matched_cluster.template_id event_id_list.append(log_sig * 1000 + cluster_template_id) count = idx + 1 if count % 1000 == 0 or count == len(self.df_log): print('Processed {0:.1f}% of log lines.'.format(count * 100.0 / len(self.df_log))) self.outputEventId(event_id_list) # self.outputResult(all_cluster_list) print('Parsing done. [Time taken: {!s}]'.format(datetime.now() - start_time)) def load_data(self): headers, regex = self.generate_logformat_regex(self.log_format) self.df_log = self.log_to_dataframe(os.path.join(self.path, self.log_name), regex, headers, self.log_format) def preprocess(self, line): for currentRex in self.rex: line = re.sub(currentRex, '<*>', line) return line def log_to_dataframe(self, log_file, regex, headers, logformat): """ Function to transform log file to dataframe """ log_messages = [] linecount = 0 with open(log_file, 'r') as fin: for line in fin.readlines(): try: match = regex.search(line.strip()) message = [match.group(header) for header in headers] log_messages.append(message) linecount += 1 except Exception as e: pass logdf =
pd.DataFrame(log_messages, columns=headers)
pandas.DataFrame
import requests import time import string import html5lib import re from bs4 import BeautifulSoup import numpy as np import pandas as pd def player_scrape(): start = time.time() abc = list(string.ascii_uppercase) players_df = pd.DataFrame() try: for z in abc: url = f"https://www.pro-football-reference.com/players/{z}/" r = requests.get(url) r = r.content soup = BeautifulSoup(r, "lxml") data = soup.find_all("p") players = [] for i in range(len(data[:-12])): try: player = {} player["player_url"] = data[i].find("a")["href"][9:-4] player["player_name"] = data[i].find("a").text player["player_lastyear"] = data[i].text[-4:] player["player_position"] = data[i].text[ data[i].text.find("(") + 1 : data[i].text.find(")") ] players.append(player) except: continue df = pd.DataFrame.from_dict(players) players_df = pd.concat([players_df, df]) time.sleep(1) players_df["player_lastyear"] = players_df["player_lastyear"].astype("int64") print("Done: players_df") print("Time: ", (time.time() - start) / 60, " min") return players_df except Exception as e: print("Error: " + e) def snap_scrape(y1, y2, players_df): start = time.time() weeks = pd.read_csv("../nfl-weeks.csv") try: if players_df.empty == True: print( "Error: Please insert players database from the return of fucntion player_scrape()" ) else: snaps_df = pd.DataFrame() players = players_df[players_df["player_lastyear"] >= y1] players_url = players["player_url"].tolist() for url in players_url: for year in range(y1, y2 + 1): p_url = f"https://www.pro-football-reference.com/players/{url}/gamelog/{year}/" try: r = requests.get(p_url) r = r.content soup = BeautifulSoup(r, "lxml") table = soup.find("table", attrs={"id": "stats"}) headers = table.find_all( "th", attrs={ "data-stat": [ "game_date", "team", "game_location", "opp", "offense", "defense", "special_teams", ] }, ) columns = [] for h in headers: columns.append(h.text) data = table.find_all("tr")[2:-1] rows = [] for row in data: r = [] td = row.find_all( "td", attrs={ "data-stat": [ "game_date", "team", "game_location", "opp", "offense", "defense", "special_teams", ] }, ) for d in td: r.append(d.text) rows.append(r) df = pd.DataFrame(rows, columns=columns) df.columns = [ "date", "team", "home.away", "opp", "off.snaps", "def.snaps", "st.snaps", ] df["player_url"] = url df["season"] = year snaps_df = pd.concat([df, snaps_df]) except: continue time.sleep(1) for row in weeks.iterrows(): mask = (snaps_df["date"] >= row[1]["Start_Date"]) & ( snaps_df["date"] <= row[1]["End_Date"] ) snaps_df.loc[mask, "week"] = row[1]["Week"] snaps_df = snaps_df.merge( players, how="left", left_on="player_url", right_on="player_url" ) snaps_df.drop("player_lastyear", axis=1, inplace=True) snaps_df["season"] = snaps_df["season"].astype(str) snaps_df["week"] = snaps_df["week"].astype(str) snaps_df = snaps_df.replace( { "team": { "GNB": "GB", "JAX": "JAC", "KAN": "KC", "LAR": "LA", "LVR": "LV", "NOR": "NO", "NWE": "NE", "SDG": "SD", "SFO": "SF", "TAM": "TB", }, "opp": { "GNB": "GB", "JAX": "JAC", "KAN": "KC", "LAR": "LA", "LVR": "LV", "NOR": "NO", "NWE": "NE", "SDG": "SD", "SFO": "SF", "TAM": "TB", }, } ) snaps_df["home.away"] = snaps_df["home.away"].replace( {"@": "away", "": "home", np.nan: "home"} ) snaps_df[["off.snaps", "def.snaps", "st.snaps"]] = snaps_df[ ["off.snaps", "def.snaps", "st.snaps"] ].fillna(0) snaps_df[["off.snaps", "def.snaps", "st.snaps"]] = snaps_df[ ["off.snaps", "def.snaps", "st.snaps"] ].replace("", 0) snaps_df[["off.snaps", "def.snaps", "st.snaps"]] = snaps_df[ ["off.snaps", "def.snaps", "st.snaps"] ].astype(int) snaps_df["season"] = snaps_df["season"].astype(str) replace = [" III", " II", " IV", " V", " Jr.", " Sr.", " Sr", " Jr"] snaps_df["player_name"] = snaps_df["player_name"].str.replace( "|".join([re.escape(s) for s in replace]), "", regex=True ) snaps_df = snaps_df.drop_duplicates() print("Done: Player snaps scraped.") print("Done: ", (time.time() - start) / 60, " min") return snaps_df except Exception as e: print("Error: " + e) def injury_scrape(season): start = time.time() teams = [ "crd", "atl", "rav", "buf", "car", "chi", "cin", "cle", "dal", "den", "det", "gnb", "htx", "clt", "jax", "kan", "rai", "sdg", "ram", "mia", "min", "nwe", "nor", "nyg", "nyj", "phi", "pit", "sfo", "sea", "tam", "oti", "was", ] injury_df = pd.DataFrame() for team in teams: url = ( f"https://www.pro-football-reference.com/teams/{team}/{season}_injuries.htm" ) r = requests.get(url) soup = BeautifulSoup(r.content, "lxml") table = soup.find("table", attrs={"id": "team_injuries"}) table_headers = table.find("thead").find_all("th") columns = [] for header in range(len(table_headers)): c1 = table_headers[header].text c2 = table_headers[header]["data-stat"] columns.append(c1 + ": " + c2) columns.insert(0, "player_address") table_rows = table.find("tbody").find_all("tr") rows = [] for tr in range(len(table_rows)): p = table_rows[tr].find("th").text padd = table_rows[tr].find("th").find("a")["href"][9:-4] td = table_rows[tr].find_all("td") row = [ td[d].get("data-tip") if td[d].has_attr("data-tip") else np.nan for d in range(len(td)) ] row.insert(0, p) row.insert(0, padd) rows.append(row) df =
pd.DataFrame(rows, columns=columns)
pandas.DataFrame
import os import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def redshift_url() -> str: conn = os.environ["REDSHIFT_URL"] return conn @pytest.mark.skipif(not os.environ.get("REDSHIFT_URL"), reason="Do not test Redshift unless `REDSHIFT_URL` is set") def test_redshift_without_partition(redshift_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(redshift_url, query, protocol="cursor") # result from redshift might have different order each time df.sort_values(by="test_int", inplace=True, ignore_index=True) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([0, 1, 2, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([5, 3, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["a", "str1", "str2", "b", "c", None], dtype="object" ), "test_float":
pd.Series([3.1, None, 2.2, 3, 7.8, -10], dtype="float64")
pandas.Series
# make a bootstrapped dataframe from the bootstrap index file import pandas as pd import os import glob np = pd.np cwd = os.getcwd() #os.chdir(read_path) path =r'/Users/dingwenna/AlpineOrigin/' # use your path allFiles = glob.glob(path + "/*events.csv.gz") frame =
pd.DataFrame()
pandas.DataFrame
import os from glob import glob import pandas as pd def get_options(): import argparse parser = argparse.ArgumentParser( description='takes a folder with ') parser.add_argument('--path', required=True, metavar="str", type=str, help='folder where the result files can be found') parser.add_argument('--variable_to_report', required=True, metavar="str", type=str, help='folder where the result files can be found') parser.add_argument('--name', required=True, metavar="str", type=str, help='name of the output') args = parser.parse_args() return args def remove_percentage(tab, perc): max_val = tab['val_auc_roc'].max() tab = tab[0.1 > max_val - tab['val_auc_roc']] return tab def main(): only_keep_10_highest = True options = get_options() files = glob(os.path.join(options.path, 'neural_networks_model_fold_number*.csv')) if options.variable_to_report == 'auc': valv = 'val_auc_roc' testv = 'test_auc_roc' tab_global = [] for f in files: table = pd.read_csv(f) tab_global.append(table) tab_best = [] for f in files: table = pd.read_csv(f) idx = table.groupby(['validation_fold'])['val_auc_roc'].transform(max) == table['val_auc_roc'] best_val_idx = table[idx] if only_keep_10_highest: best_val_idx = remove_percentage(best_val_idx, 10) tab_best.append(best_val_idx) table =
pd.concat(tab_global, axis=0)
pandas.concat
import pandas as pd from pandas.util.testing import assert_series_equal, assert_frame_equal from cellgrid.core import Schema, ModelBlueprint, DataMapper from cellgrid.ensemble.classifier import DataFrame, Series class ModeTestClass: def __init__(self, bp): self.name = bp.name self.parent = bp.parent class SchemaTestClass(Schema): @classmethod def create_model(cls, bp): return ModeTestClass(bp) class TestSchema: def test_add_node(self): schema = SchemaTestClass([]) bp = ModelBlueprint('test', 'markers', 'xgb', None) xgb = SchemaTestClass.create_model(bp) schema.add_model(xgb) assert xgb == schema._model_dict['test']['model'] bp2 = ModelBlueprint('test2', 'markers', 'xgb', 'test') xgb2 = SchemaTestClass.create_model(bp2) schema.add_model(xgb2) assert schema._model_dict['test']['children'] == ['test2'] def test_build_and_walk(self): bps = [ ModelBlueprint('test11', 'markers', 'xgb', 'test0'), ModelBlueprint('test0', 'markers', 'xgb', None), ModelBlueprint('test111', 'markers', 'xgb', 'test11'), ModelBlueprint('test12', 'markers', 'xgb', 'test0'), ModelBlueprint('test112', 'markers', 'xgb', 'test11'), ModelBlueprint('test121', 'markers', 'xgb', 'test12') ] schema = SchemaTestClass(bps) r = [(i.name, i.level) for i in schema.walk()] assert r == [('test0', 0), ('test11', 1), ('test12', 1), ('test111', 2), ('test112', 2), ('test121', 2), ] class TestDataFrameAndSeries: def test_get_col_series(self): df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=list('ab')) df = DataFrame(df) s = df.get_col_series('b') assert_series_equal(s.s, pd.Series([2, 4, 6], name='b')) assert isinstance(s, Series) s2 = df.get_col_series('a', index=[1]) assert_series_equal(s2.s, pd.Series([3], name='a', index=[1])) def test_loc(self): df_pd = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=list('ab')) df = DataFrame(df_pd) df_loc = df.loc(index=[0, 1]) assert_frame_equal(df_loc.df, pd.DataFrame([[1, 2], [3, 4]], columns=list('ab'))) assert isinstance(df_loc, DataFrame) df_loc2 = df.loc()
assert_frame_equal(df_loc2.df, df_pd)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python """ BSD 2-Clause License Copyright (c) 2021 (<EMAIL>) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import division import argparse import itertools import json import operator import os import re import sys import pickle import math from distutils.util import strtobool import numpy as np import pysam import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.backends.backend_pdf import PdfPages from polyleven import levenshtein from Bio import SeqIO import seaborn as sns import pandas as pd from scipy import stats ###### Usage #python plot_identity_error_alignment_normUnal.py -i basecaller1/norm_unaligned_assembly_polished basecaller2/norm_unaligned_assembly_polished basecaller3/norm_unaligned_assembly_polished -l basecaller1 basecaller2 basecaller3 -o outfolder -p appendix_outputname # def safe_div(x, y): if y == 0: return None return x / y plt.rcParams["patch.force_edgecolor"] = False def plot_error_identity(df, pdf=None): sns.set(font_scale=1) fig = plt.figure(figsize=(13,2)) fig.subplots_adjust(left=0, right=1, bottom=0, top=2, hspace=0.2, wspace=0.2) ax = fig.add_subplot(1, 2, 1) sns.barplot(x="basecaller", hue="genome", y="error", data=df, linewidth=0, ax=ax) plt.xlabel("Basecallers") plt.ylabel("Error") plt.title("Error rate of aligned reads to reference genome") ax.get_legend().remove() ax = fig.add_subplot(1, 2, 2) sns.barplot(x="basecaller", hue="genome", y="identity", data=df, linewidth=0, ax=ax) plt.xlabel("Basecallers") plt.ylabel("Identity") plt.title("Identity rate of aligned reads to reference genome") ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize=10) if pdf is not None: pdf.savefig(fig, bbox_inches="tight") plt.close("all") def plot_match_mismatch_indels(df, pdf=None, stacked=True): sns.set(font_scale=1) fig = plt.figure(figsize=(10,5)) fig.subplots_adjust(left=0, right=1, bottom=0, top=2, hspace=0.2, wspace=0.2) if stacked: ax = fig.add_subplot(2, 2, 1) ax2 = ax.twiny() #sns.barplot(x="basecaller", hue="genome", y="match", data=df, linewidth=0, ax=ax) #plt.xlabel("Basecallers") #plt.ylabel("%Matches") #plt.title("Matches") df0 = df[['basecaller', 'genome', 'mismatch', 'deletion', 'insertion', 'unaligned']] cols = df0.columns u, idx = np.unique(df.basecaller.tolist(), return_index=True) order = u[np.argsort(idx)] #[u[index] for index in sorted(idx)] df0['basecaller'] = pd.Categorical(df0.basecaller, categories=order, ordered=True) # ['f', 'a', 'w', 'h'] # prevent sorting df0.set_index(['basecaller', 'genome'], inplace=True) colors = plt.cm.Paired.colors df1 = df0.unstack(level=-1) # unstack the 'Context' column (df1['mismatch']+df1['deletion']+df1['insertion']+df1['unaligned']).plot(kind='bar', color=[colors[1], colors[0]], rot=0, ax=ax, linewidth=0) print(df1['mismatch']+df1['deletion']+df1['insertion']+df1['unaligned']) (df1['deletion']+df1['insertion']+df1['unaligned']).plot(kind='bar', color=[colors[3], colors[2]], rot=0, ax=ax, linewidth=0) (df1['insertion']+df1['unaligned']).plot(kind='bar', color=[colors[5], colors[4]], rot=0, ax=ax, linewidth=0) df1['unaligned'].plot(kind='bar', color=[colors[7], colors[6]], rot=0, ax=ax, linewidth=0) #legend_labels = [f'{val} ({context})' for val, context in df1.columns] ticks = [] for r in range(df.shape[0]//2): ticks.append(r - 0.25) ticks.append(r + 0.05) ax.set_xticks(ticks) ax.set_xticklabels(['lambda', 'ecoli'] * (df.shape[0]//2), rotation=45, fontsize=8) ax.grid(axis="x") legend_labels = [] labels = ["mismatch", "", "deletion", "", "insertion", "", "unaligned", ""] #for val in labels: # if val in legend_labels: # legend_labels.append("") # else: # legend_labels.append(val) #legend_labels = [f'{val} ({context})' for val, context in df1.columns]3 ax.legend(labels, bbox_to_anchor=(-0.08, 1.2), loc=2, borderaxespad=0., ncol=4, fontsize=10) #(1.05, 1) ax.set_ylabel("mean error in %") ax.set_xlabel("species") ax.set_yscale('log') #,base=20) #ax.text(0.02, -0.2, ' '.join(order), transform=ax.transAxes, fontsize=11) #horizontalalignment='center', verticalalignment='center' ax2.set_xlim(ax.get_xlim()) ax2.set_xticks([0.02, 1, 2, 3]) ax2.set_xticklabels(order, fontsize=10) ax.xaxis.set_ticks_position('none') #ax2.xaxis.set_ticks_position('none') ax2.grid(axis="x") #ax.legend(legend_labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.ylabel("Proportion of errors") else: ax = fig.add_subplot(2, 2, 1) sns.barplot(x="basecaller", hue="genome", y="mismatch", data=df, linewidth=0, ax=ax) plt.xlabel("Basecallers") plt.ylabel("Mismatches") plt.title("Mismatches") ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xticks(fontsize=8) #ax._legend.remove() ax = fig.add_subplot(2, 2, 3) sns.barplot(x="basecaller", hue="genome", y="deletion", data=df, linewidth=0, ax=ax) plt.xlabel("Basecallers") plt.ylabel("Deletion") plt.title("Deletion") ax.get_legend().remove() plt.xticks(fontsize=8) #ax._legend.remove() ax = fig.add_subplot(2, 2, 4) sns.barplot(x="basecaller", hue="genome", y="insertion", data=df, linewidth=0, ax=ax) plt.xlabel("Basecallers") plt.ylabel("Insertion") plt.title("Insertion") ax.get_legend().remove() plt.xticks(fontsize=8) #ax._legend.remove() if pdf is not None: pdf.savefig(fig, bbox_inches="tight") plt.close("all") def plot_boxplot(data, labels, pdf=None, title="relative read length", ylabel="read length / reference length in %", reference=None): sns.set(font_scale=1) fig = plt.figure(figsize=(6,2)) fig.subplots_adjust(left=0, right=1, bottom=0, top=2, hspace=0.2, wspace=0.2) ax = fig.add_subplot(1, 1, 1) box = plt.boxplot(data, patch_artist=True) ticks = np.arange(1, len(labels)+1) plt.xticks(ticks, labels, rotation=45, ha="right") plt.ylabel(ylabel) plt.xlabel("Basecaller") plt.title(title) #plt.yscale('log') #,base=20) if reference is not None: plt.axhline(reference, c='r') colors = len(labels[-3:]) * ['#EAEAF2'] + 3* ["#88888C"] #colors2 = len(labels[-3:]) * ['#DD8655'] + 3* ["#181819"] for patch, color in zip(box['boxes'], colors): patch.set_facecolor(color) #med.set_facecolor(color2) if pdf is not None: pdf.savefig(fig, bbox_inches="tight") plt.close("all") def make_argparser(): parser = argparse.ArgumentParser(description='Prints summary about alignment of basecalled reads.') parser.add_argument('-i', '--fastq', nargs="*", help='FASTA/Q files with basecalled reads.') parser.add_argument('-l', '--labels', nargs="*", help='list of labels. same order as list with fastq/a files') parser.add_argument('-o', '--out', help='out path.') parser.add_argument('-p', '--prefix', default="basecalled", help='out path.') parser.add_argument('--stacked', type=lambda x:bool(strtobool(x)), nargs='?', const=True, default=True, help='stack error rates in plot.') return parser def median_abs_dev(x): return(stats.median_absolute_deviation(x)) def report_errors(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) fastq = args.fastq basecallers = args.labels out = args.out prefix = args.prefix stacked = args.stacked with PdfPages(out + "/{}_error_alignment_rates.pdf".format(prefix)) as pdf: lambd = [] ecoli = [] df = pd.DataFrame(columns=['basecaller', 'genome', 'match', 'mismatch', 'deletion', 'insertion', 'unaligned', 'identity', 'error', 'mqual', 'relative read length', 'aligned \% of read']) df_std =
pd.DataFrame(columns=['basecaller', 'genome', 'match', 'mismatch', 'deletion', 'insertion', 'unaligned','identity', 'error', 'mqual', 'relative read length', 'aligned \% of read'])
pandas.DataFrame
import os import numpy as np import torch from torchvision import models from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset from sklearn.model_selection import train_test_split import pandas as pd from itertools import chain from sklearn import preprocessing import torch.nn as nn from PIL import Image from sklearn.metrics import fbeta_score # %%-------------------- EDA ----------------------------------------- import matplotlib.pyplot as plt classes = ['primary', 'clear', 'agriculture', 'road', 'water', 'partly_cloudy', 'cultivation', 'habitation', 'haze', 'cloudy', 'bare_ground', 'selective_logging', 'artisanal_mine', 'blooming', 'slash_burn', 'blow_down', 'conventional_mine'] count = [37513, 28431, 12315, 8071, 7411, 7261, 4547, 3660, 2697, 2089, 862, 340, 339, 332, 209, 101, 100] plt.barh(classes, count) plt.title("Labels in dataset") plt.show() # %%----------------------------------------------------------------- # Dictionary image labels label=pd.read_csv('/home/ubuntu/ML2/Final Project/Data/train_v2.csv') print(label.head()) imagestag=label['image_name'].values imageslabel=label['tags'].values dictionary = dict(zip(imagestag, imageslabel)) #Counting images labels_list = list(chain.from_iterable([tags.split(" ") for tags in imageslabel])) labels = sorted(set(labels_list)) countlabels =
pd.Series(labels_list)
pandas.Series
""" Module: Instagram Scrapper Author: <NAME> Version: 1.0.2 Last Modified: 28/11/2018 (Wednesday) """ from bs4 import BeautifulSoup from SeleniumHelper import SeleniumBrowserHelper from PostScrapper import PostScrapper from PostScrapper import PostDetails import pandas as pd import json import time import FileHandler as fh class InstaDetails: def __init__(self): self.username = None self.verified = None self.name = None self.bio = None self.website = None self.no_of_posts = None self.no_of_followers = None self.no_of_following = None self.posts = None self.data = None class InstaScrapper(InstaDetails): posts_count = 0 def __init__(self): self.html = None self.helper = None self.chrome_driver_path = None self.chrome_options = None self.soup = None self.instagram_url = "https://www.instagram.com" self.url_to_visit = "" self.search_value = "" self.selected = None self.internet_connected = False self.instagram_reachable = False self.scrappable = False self.details_extracted = False self.characteristics = {"profile": False, "location": False, "hashtag": False} self.posts_data = PostDetails() def insta_search(self): self.helper.open_url(self.instagram_url + "/instagram/") self.helper.wait_until(delay=5, type="-class", arg="_9eogI") self.load_page_content() insta_search = self.helper.get_element("-class", "XTCLo") self.search_value = input("Enter Something To Search On Instagram: ") insta_search.send_keys(self.search_value) self.helper.wait_until(delay=5, type="-class", arg="fuqBx") self.load_page_content() search_response = self.soup.find_all('a', {'class': 'yCE8d'}) choices = {} for i, s in enumerate(search_response): current_link = s['href'] current_value = s.find('span', {'class': 'Ap253'}).get_text() current_response = [current_value, current_link] choices[i] = current_response print("Following Are The Top Results Against Your Search: ") print("<---------Search Results-------->") for key, value in choices.items(): print("\t", key+1, ".", value[0]) print("<------------------------------->") option = int(input("Please Choose An Option From Search Results\nChoice: ")) self.selected = choices[option-1] self.url_to_visit = self.selected[1] self.check_n_set_url_characteristics(self.url_to_visit) def start_fetching(self): if self.characteristics["profile"]: print("Fetching Data From Instagram For Profile: " + self.selected[0] + " !!!") self.helper.open_url(self.instagram_url + self.url_to_visit) self.helper.wait_until(delay=10, type="-class", arg="_9eogI") self.load_page_content() self.extract_details(1) self.print_details(1) self.fetch_posts() self.save_details(1) self.save_as_csv(1) self.save_as_json(1) elif self.characteristics["location"]: print("Fetching Data From Instagram For Location: " + self.selected[0] + " !!!") self.helper.open_url(self.instagram_url + self.url_to_visit) self.helper.wait_until(delay=10, type="-class", arg="_9eogI") self.load_page_content() self.extract_details(3) self.print_details(3) self.fetch_posts() self.save_details(3) self.save_as_csv(3) self.save_as_json(3) elif self.characteristics["hashtag"]: print("Fetching Data From Instagram For Hashtag: " + self.selected[0] + " !!!") self.helper.open_url(self.instagram_url + self.url_to_visit) self.helper.wait_until(delay=10, type="-class", arg="_9eogI") self.load_page_content() self.extract_details(2) self.print_details(2) self.fetch_posts() self.save_details(2) self.save_as_csv(2) self.save_as_json(2) def extract_details(self, choice): if choice == 1: if self.scrappable: username = self.soup.find('h1', {'class': 'AC5d8'}) if username is None: self.username = "Not Available" else: self.username = username.get_text() name = self.soup.find('h1', {'class': 'rhpdm'}) if name is None: self.name = "Not Available" else: self.name = name.get_text() bio = self.soup.find('div', {'class': '-vDIg'}).span if bio is None: self.bio = "Not Available" else: self.bio = bio.get_text() verified = self.soup.find('span', {'class': 'mrEK_'}) if verified is not None and verified.get_text() == "Verified": self.verified = True else: self.verified = False profile_statistics = self.soup.find_all('span', {'class': 'g47SY'}) self.no_of_posts = profile_statistics[0].get_text() self.no_of_followers = profile_statistics[1].get_text() self.no_of_following = profile_statistics[2].get_text() website = self.soup.find('a', {'class': 'yLUwa'}) if website is None: self.website = "Not Available" else: self.website = website.get_text() self.details_extracted = True elif choice == 2: name = self.soup.find('a', {'class': 'F2iT8'}) if name is None: self.name = "Not Available" else: self.name = name.get_text() total_posts = self.soup.find('span', {'class': 'g47SY'}) if total_posts is None: self.no_of_posts = "0" else: self.no_of_posts = total_posts.get_text() self.details_extracted = True elif choice == 3: name = self.soup.find('h1', {'class': 'cgig_'}) if name is None: self.name = "Not Available" else: self.name = name.get_text() self.no_of_posts = "100" self.details_extracted = True else: print("Content Cannot Be Fetched At The Moment!") def check_n_set_url_characteristics(self, url): if "explore" in url: if "tags" in url: self.characteristics["hashtag"] = True elif "locations" in url: self.characteristics["location"] = True else: self.characteristics["profile"] = True def init_scrapper(self, c_path, c_args): # print("Initializing Scrapper!!!!!!") self.chrome_driver_path = c_path self.chrome_options = c_args self.helper = SeleniumBrowserHelper(self.chrome_driver_path, self.chrome_options) # print("Checking Internet Connectivity!!!!") self.internet_connected = self.helper.is_connected() # self.instagram_reachable = self.helper.is_reachable(self.instagram_url, 10) def start_scrapper(self): print("Starting Scrapper!!!!") if self.internet_connected: # if self.instagram_reachable: self.insta_search() self.scrappable = True self.init_posts_data() self.start_fetching() print("Fetching Completed!!!!") self.save_posts_data() time.sleep(3) # else: # print("Instagram Access Restricted By ISP/Network Administrator") else: print("No Internet!! Please Check Your Network Connectivity!!") def close_scrapper(self): print("Closing Scrapper In 3 Seconds! Have A Nice Day!!!") self.helper.close_browser() time.sleep(3) def load_page_content(self): self.html = self.helper.get_page_source() self.soup = BeautifulSoup(self.html, 'html.parser') def save_details(self, code): if code == 1: self.data = { "username": self.username, "is_verified": self.verified, "name": self.name, "bio": self.bio, "website": self.website, "posts_count": self.no_of_posts, "followers_count": self.no_of_followers, "following_count": self.no_of_following, "posts": [self.posts] } elif code == 2: self.data = { "hashtag": self.name, "posts_count": self.no_of_posts, "posts": [self.posts] } elif code == 3: self.data = { "location": self.name, "top_100_posts": [self.posts] } def fetch_posts(self): total_posts = int(self.no_of_posts.replace(',', '')) choice = int(input("Please Select An Option For Fetching " + self.name+"'s Posts: \n\t1. Fetch All " + str(total_posts) + " Posts\n\t2. Fetch Top Posts Upto A Certain Limit\nChoice: ")) if choice == 1: self.get_posts(total_posts) elif choice == 2: limit = int(input("How Many Posts Due To Want To Fetch Out Of "+str(total_posts)+": ")) self.get_posts(limit) else: print("Invalid Choice!! Please Select Again") time.sleep(1) self.fetch_posts() def get_posts(self, no_of_posts): self.posts = {} print("Posts: ") print("<--------------------------------------------------->") while InstaScrapper.posts_count < no_of_posts: self.helper.scroll_down() self.load_page_content() self.extract_posts(no_of_posts) time.sleep(1) print("<--------------------------------------------------->") print(str(no_of_posts)+" Posts Fetched!!!") self.posts = list(self.posts.values()) def extract_posts(self, nop): posts = self.soup.find_all('div', {'class': 'v1Nh3'}) for p in posts: p_link = p.a['href'] post_id = p_link[3:-1] post = self.instagram_url + p_link if InstaScrapper.posts_count < nop: self.add_post(post_id, post) else: break def is_post_present(self, post_id): if post_id in self.posts: return True else: return False def add_post(self, post_id, post): if not self.is_post_present(post_id): self.posts[post_id] = post InstaScrapper.posts_count += 1 print("Sr: "+str(InstaScrapper.posts_count)+", Id: "+post_id+", Url: "+post) posts_scrapper = PostScrapper(post) driver_args = ["--headless"] driver_path = "/home/hussainali/chromedriver" posts_scrapper.init_scrapper(driver_path, driver_args) post_data = posts_scrapper.start_scrapper() posts_scrapper.close_scrapper() self.add_posts_data(post_data) def init_posts_data(self): self.posts_data.source_url = [] self.posts_data.description = [] self.posts_data.hashtags = [] self.posts_data.mentions = [] self.posts_data.emojis = [] self.posts_data.comments = [] def add_posts_data(self, post_data): self.posts_data.source_url.append(post_data[0]) self.posts_data.description.append(post_data[1]) self.posts_data.hashtags.append(post_data[2]) self.posts_data.mentions.append(post_data[3]) self.posts_data.emojis.append(post_data[4]) self.posts_data.comments.append(post_data[5]) def save_posts_data(self): posts_data = { "post_url": self.posts_data.source_url, "description": self.posts_data.description, "hashtags": self.posts_data.hashtags, "mentions": self.posts_data.mentions, "emojis": self.posts_data.emojis, "comments": self.posts_data.comments } fh.save_as_csv("Posts/" + self.name + "_posts_data", posts_data) def print_details(self, code): if self.details_extracted: if code == 1: print("<------------------Profile Details------------------>") print("Username: @" + self.username) print("Verified: ", self.verified) print("Name: " + self.name) print("Bio: " + self.bio) print("Website: " + self.website) print("Total Posts: " + self.no_of_posts) print("Followers: " + self.no_of_followers) print("Following: " + self.no_of_following) print("<--------------------------------------------------->") elif code == 2: print("<------------------Hashtag Details------------------>") print("Hashtag: " + self.name) print("Total Posts: " + self.no_of_posts) print("<--------------------------------------------------->") elif code == 3: print("<------------------Location Details------------------>") print("Location: " + self.name) print("<--------------------------------------------------->") else: print("Details Not Extracted Yet!!") def save_as_csv(self, code): if code == 1: df = pd.DataFrame(self.data) df.to_csv("Profiles/" + self.name + "_data.csv") elif code == 2: df = pd.DataFrame(self.data) df.to_csv("Hashtags/" + self.name + "_data.csv") elif code == 3: df =
pd.DataFrame(self.data)
pandas.DataFrame
import pandas as pd import pytest from pandera import Column, DataFrameSchema, Check from pandera import dtypes from pandera.errors import SchemaError def test_numeric_dtypes(): for dtype in [ dtypes.Float, dtypes.Float16, dtypes.Float32, dtypes.Float64]: schema = DataFrameSchema({"col": Column(dtype, nullable=False)}) validated_df = schema.validate( pd.DataFrame( {"col": [-123.1, -7654.321, 1.0, 1.1, 1199.51, 5.1, 4.6]}, dtype=dtype.value)) assert isinstance(validated_df, pd.DataFrame) for dtype in [ dtypes.Int, dtypes.Int8, dtypes.Int16, dtypes.Int32, dtypes.Int64]: schema = DataFrameSchema({"col": Column(dtype, nullable=False)}) validated_df = schema.validate( pd.DataFrame( {"col": [-712, -4, -321, 0, 1, 777, 5, 123, 9000]}, dtype=dtype.value)) assert isinstance(validated_df, pd.DataFrame) for dtype in [ dtypes.UInt8, dtypes.UInt16, dtypes.UInt32, dtypes.UInt64]: schema = DataFrameSchema({"col": Column(dtype, nullable=False)}) validated_df = schema.validate( pd.DataFrame( {"col": [1, 777, 5, 123, 9000]}, dtype=dtype.value)) assert isinstance(validated_df, pd.DataFrame) def test_category_dtype(): schema = DataFrameSchema( columns={ "col": Column( dtypes.Category, checks=[ Check(lambda s: set(s) == {"A", "B", "C"}), Check(lambda s: s.cat.categories.tolist() == ["A", "B", "C"]), Check(lambda s: s.isin(["A", "B", "C"])) ], nullable=False ), }, coerce=False ) validated_df = schema.validate( pd.DataFrame( {"col": pd.Series(["A", "B", "A", "B", "C"], dtype="category")} ) ) assert isinstance(validated_df, pd.DataFrame) def test_category_dtype_coerce(): columns = { "col": Column( dtypes.Category, checks=Check(lambda s: set(s) == {"A", "B", "C"}), nullable=False ), } with pytest.raises(SchemaError): DataFrameSchema(columns=columns, coerce=False).validate( pd.DataFrame( {"col": pd.Series(["A", "B", "A", "B", "C"], dtype="object")} ) ) validated_df = DataFrameSchema(columns=columns, coerce=True).validate( pd.DataFrame( {"col": pd.Series(["A", "B", "A", "B", "C"], dtype="object")} ) ) assert isinstance(validated_df, pd.DataFrame) def test_datetime(): schema = DataFrameSchema( columns={ "col": Column( dtypes.DateTime, checks=Check(lambda s: s.min() > pd.Timestamp("2015")), ) } ) validated_df = schema.validate( pd.DataFrame( {"col": pd.to_datetime(["2019/01/01", "2018/05/21", "2016/03/10"])} ) ) assert isinstance(validated_df, pd.DataFrame) with pytest.raises(SchemaError): schema.validate( pd.DataFrame( {"col":
pd.to_datetime(["2010/01/01"])
pandas.to_datetime
import glob from astropy.io import fits import pandas as pd class HeaderSummary: ''' HeaderSummary does retrieving information from fits files' headers. path_list provides the search paths applied by glob.glob(). For each file, fits.open() is used to open the file. Header info is retrieved as specified in keywords. + Output: - self.table is pandas.DataFrame table. + Inputs: - path_list = a list of path to be searched for files with glob.glob > Ex. path_list = ['/Users/kb/15347/HST/*/*flt.fits','/Users/kb/15664/HST/*/*flt.fits'] - keywords = a dict of (key:value) = extension number : header keyword to be searched for. > if None, keywords will set to {0:['ROOTNAME','DATE-OBS','FILTER','EXPSTART','EXPTIME','SUBARRAY'],} - sort_by = a list of keywords to be sorted using pandas.DataFrame.sort_values(by=sort_by) > if None, this will set to ['EXPSTART'] > ascending and reseting indices - do_sort = True to sort self.table - colname = a list of column names, running parallel to keywords > pandas.DataFrame(df,columns=colname) - add_filepath = True to append the filepaths to the last column + Compute: - self.compute() to prepare the output self.table + Save: - self.table.to_csv() from pandas.DataFrame method. ''' def __init__(self,path_list,keywords=None,sort_by=None,do_sort=True,colname=None,add_filepath=True): self.path_list = path_list self.keywords = keywords self.sort_by = sort_by self.do_sort = do_sort self.colname = colname self.add_filepath = add_filepath if self.keywords is None: self.keywords = self._keywords() if self.sort_by is None: self.sort_by = ['EXPSTART'] if self.colname is None: self.colname = self._colname() def compute(self): out = [] for jj,j in enumerate(self.path_list): t = glob.glob(j) for ii,i in enumerate(t): filepath = i tt = fits.open(filepath) ttt = [] for extnum in self.keywords.keys(): for keyword in self.keywords[extnum]: ttt.append(tt[extnum].header[keyword]) if self.add_filepath: ttt.append(filepath) out.append(ttt) if self.add_filepath: self.colname.append('FILEPATH') self.table =
pd.DataFrame(out,columns=self.colname,)
pandas.DataFrame
import pandas as pd import numpy as np from matplotlib import pyplot as plt def read_file(filename): labels = ["futures", "title", "wait", "exec", "duration", "us_future", "queue", "numa_sensitive", "num_threads", "info_string", "libcds"] data =
pd.read_csv(filename, sep=',', header=None)
pandas.read_csv
from pathlib import Path import numpy as np import pandas as pd from functools import reduce from loguru import logger from datetime import datetime, timedelta from siuba import _, filter, gather, group_by, ungroup, mutate, summarize, arrange # plots import matplotlib.pyplot as plt import plotnine as p9 p9.theme_set(p9.theme_linedraw()) # default theme from mizani.breaks import date_breaks from mizani.formatters import date_format from adtk.data import validate_series from adtk.visualization import plot from adtk.detector import LevelShiftAD, PersistAD, GeneralizedESDTestAD, SeasonalAD, AutoregressionAD from tsmoothie.smoother import DecomposeSmoother from src import utils conn = utils.connect_athena(path='../configs/athena.yaml') # -------------- # ### INDEX: ### 1. Initialize functions ### 2. Outlier detection functions ### 3. Imputation functions ### 4. Level shift correction functions ### 5. Plot functions ### 6. Process functions ### 7. Run functions ### 8. Start process # -------------- # ### 1. Initialize functions def _validate_series(df, column_name): """ A function to validate series Parameters ---------- df : data frame Data frame with column to validare. The data frame requires columns region_slug and date to be sorted. Date is defined as the index. column_name : str Name of the column to validate """ logger.debug(f"... validating {column_name}...\n") y_df = df.sort_values(['date'])[['date', column_name]].set_index('date') s = validate_series(y_df) return s ### 2. Outlier detection functions def _outlier_persist_ad(s, target_column_name, c_param, window_param = 7): try : persist_ad = PersistAD(c=c_param, side='both', window = window_param) anomalies = persist_ad.fit_detect(s) except : logger.debug('!! No Persist !!') anomalies = s anomalies[target_column_name] = 0 finally : anomalies = anomalies \ .rename(columns={target_column_name:'anomaly_persist'}) \ .reset_index() return anomalies def _outlier_seasonal_ad(s, target_column_name, c_param): try : seasonal_ad = SeasonalAD(c=c_param, side="both") anomalies = seasonal_ad.fit_detect(s) except : logger.debug('!! No Seasonal !!') anomalies = s anomalies[target_column_name] = False finally : anomalies = anomalies \ .rename(columns={target_column_name:'anomaly_seasonal'}) \ .reset_index() return anomalies def _outlier_autregr_ad(s, target_column_name, c_param, n_steps_param = 1, step_size_param=7): try : autoregression_ad = AutoregressionAD(n_steps=n_steps_param, step_size=step_size_param, c=c_param) anomalies = autoregression_ad.fit_detect(s) except : logger.debug('!! No Seasonal !!') anomalies = s anomalies[target_column_name] = 0 finally : anomalies = anomalies \ .rename(columns={target_column_name:'anomaly_autor'}) \ .reset_index() return anomalies def _c_trun(c_param): if c_param <= 1.5: c_trun = 1.5 elif c_param >= 3: c_trun = 3 else: c_trun = c_param logger.debug('C truncated: ' + str(c_trun)) return c_trun def _anomalies_detector(s, target_column_name, c_param): """ The function runs three algorithms to detect outliers. Parameters ---------- s : adtk object Validated serie output of _validate_series() target_column_name : str Target column name to detect outliers Output ---------- s : data frame Number of times an observation is indentified as an outlier """ c_trunc = _c_trun(c_param) logger.debug(f'C_TRUNC {c_trunc}') # implementation of methodologies anomalies = _outlier_persist_ad(s, target_column_name, c_trunc) \ .merge(_outlier_seasonal_ad(s, target_column_name, c_trunc)) \ .merge(_outlier_autregr_ad( s, target_column_name, c_trunc)) \ .fillna(0) # sum of identification per observation anomalies['anomaly_sum'] = \ (anomalies['anomaly_persist']) + \ (anomalies['anomaly_seasonal'] == True) + \ (anomalies['anomaly_autor']) # excpetions for identification anomalies.anomaly_sum[anomalies.date <= '2020-03-31'] = 0 anomalies.anomaly_sum[((anomalies.date >= '2020-12-15') & (anomalies.date <= '2021-01-15'))] = 0 anomalies.head(2) return(anomalies[anomalies.anomaly_sum > 0]) # 2. Find anomalies def _find_anomalies(df, anomaly_vote_minimun, target_column_name, c_param, print_report=True): """ The function implements the process of identification. Parameters ---------- df : data frame Data with tci observations anomaly_vote_minimun : double Minimum value to accept and anomaly target_column_name : str Target column name to detect outliers print_report: bool Flag to print results plots Output ---------- df_anomaly : data frame Observations per date indetify at least once as an outlier by the method persis, seasonl or autoregressive identification anomalies_date: Description """ logger.debug("\n... finding outliers ...") # validate series s = _validate_series(df, target_column_name) # plot(s) # join anomialies detector df_anomaly = df.merge(_anomalies_detector(s, target_column_name, c_param), how = 'left') #print(df_anomaly.head()) anomalies_cnt = sum(df_anomaly.anomaly_sum >= anomaly_vote_minimun) anomalies_date = df_anomaly[df_anomaly.anomaly_sum >= anomaly_vote_minimun].date.to_list() logger.debug('Number of anomalies found: ' + str(anomalies_cnt) + '\n') logger.debug(anomalies_date) # print report flag if print_report: logger.debug('... printing anomalies report ...\n') print(_plot_anomalies(df_anomaly, observed_column = target_column_name, anomalies_cnt=anomalies_cnt)) return(df_anomaly, anomalies_date) ### 3. Imputation functions def _decompose_lowess(variable_smooth, missing_values, smooth_fraction): """ The function decompose the serie and smooths using local regression or lowess curve. Parameters ---------- variable_smooth : serie Data with tci observations missing_values : serie Minimum value to accept and anomaly smooth_fraction : double Target column name to detect outliers Output ---------- result : serie Observations per date indetify at least once as an outlier by the method persis, seasonl or autoregressive identification """ variable_smooth= np.log1p(variable_smooth) # operate smoothing smoother = DecomposeSmoother(smooth_type='lowess', periods=7, smooth_fraction=smooth_fraction) smoother.smooth(variable_smooth) result = variable_smooth smooth_result = smoother.smooth_data[0] result[missing_values] = smooth_result[missing_values] # removing negatives result = np.expm1(result) return result def _impute_anomalies(observed_column, date_column, anomaly_sum_column, anomaly_vote_minimun, smooth_fraction = 0.4, print_plot = False): """ The function runs the process to detect anomalies and impute them. Parameters ---------- observed_column : data frame Description date_column : str Description nomaly_sum_column : str Description anomaly_vote_minimun : str Description smooth_fraction : str Description Output ---------- df_impute: data frame Observations of tci imputed. """ logger.debug("\n... imputing outliers ...") # building data frame to impute df_impute = pd.DataFrame({ 'date': date_column, 'observed_column': observed_column, 'anomaly_sum': anomaly_sum_column, 'observed_missing': observed_column }) # create missing values df_impute.loc[df_impute.anomaly_sum >= anomaly_vote_minimun, 'observed_missing'] = None df_impute.loc[df_impute.observed_column < 0, 'observed_missing'] = None df_impute = df_impute.set_index('date') # algorithms to impute df_impute = df_impute \ .assign(RollingMean = df_impute.observed_missing \ .fillna(df_impute.observed_missing \ .rolling(30, min_periods=1,) \ .mean()) ) \ .assign(RollingMedian = df_impute.observed_missing \ .fillna(df_impute.observed_missing \ .rolling(30, min_periods=1,) \ .median()) ) \ .assign(Polinomial = df_impute.observed_missing \ .interpolate(method='polynomial', order = 5)) \ .assign(Loess = _decompose_lowess(df_impute.observed_column, df_impute.observed_missing.isna(), smooth_fraction = smooth_fraction)) if print_plot: print(_plot_imputation(df_impute)) return df_impute ### 4. Level shift correction functions def _c_param(region_slug, athena_path = '~/shared/spd-sdv-omitnik-waze/corona', c_metric = 'min', f_metric = 1): c_region = pd.read_csv(athena_path + '/cleaning/data/staging/cities_c_iqr.csv') if sum(c_region.region_slug == region_slug) > 0: if f_metric < 100: c_param = (c_region[c_region.region_slug == region_slug][f"c_{c_metric}"].to_list()[0])*f_metric elif f_metric == 100: c_param = f_metric else : if f_metric < 100: c_param = 3.0*f_metric #c_region[f"c_{c_metric}"].median()[0])*f_metric elif f_metric == 100: c_param = f_metric logger.debug(f'C {c_metric}: ' + str(c_param)) return c_param def _level_shift_detection(s, c_param = 3.0, window_param = 14, print_plot = False): """ Level shift or change point detection. This function uses the function LevelShiftAD from ADTK library. Parameters ---------- s : validated serie object Description c_param : dbl, default 6.0 Description window_param : int, default 14 Description print_plot: bool, default True Description """ #logger.debug(f"... detecting shift c{c_param}-w{window_param}...") level_shift_ad = LevelShiftAD(c=c_param, side='both', window=window_param) shifts = level_shift_ad.fit_detect(s) if print_plot: plot(s, anomaly=shifts, anomaly_color='red') return shifts def _run_shift_grid(s, observed_variable, c_param, low_grid = .20, upp_grid = .60): """ The function runs a grid for several c parameters to detect level shifts. Parameters ---------- s : serie object Validated serie object observed_variable : validated serie object Description c_param : dbl Description low_grid: dbl, default .20 Description upp_grid: dbl, default .60 Description """ logger.debug(f"... shift level running grid ...\n") logger.debug(f'C_LS {c_param}') shift_l = list() # grid for values list for cp in [round(c_param-c_param*(upp_grid), 4), round(c_param-c_param*(low_grid), 4), round(c_param, 4), round(c_param+c_param*(low_grid), 4), round(c_param+c_param*(upp_grid), 4) ]: for wdw in [14, 15, 16, 17, 18]: shift = _level_shift_detection(s, c_param = cp, window_param=wdw, print_plot = False) \ .rename(columns={observed_variable:f'shift_c{cp}_w{wdw}'}) shift_l.append(shift) #len(shift_l) df_grid = reduce(lambda df1, df2: df1.merge(df2, on='date'), shift_l) df_grid.shape logger.debug(f"Total combinations: {len(shift_l)}\n") return df_grid def _shifted_adtk_ts(s, column_name, agg="std", window=(3,3), diff="l2", print_plot=True): # shift ts level s_transformed = DoubleRollingAggregate( agg=agg, window=window, diff=diff).transform(s).rename(columns={column_name:'adtk_shift'}) if print_plot: plot(pd.concat([s, s_transformed], axis=1)) return s_transformed def _shift_sum(df_shift, ls_search_start_2020 = '2020-03-31', ls_search_end_2020 = '2020-12-15', ls_search_start_2021 = None, ls_search_end_2021 = None): logger.debug(f'LS 2020 Start {ls_search_start_2020} - {ls_search_end_2020}') logger.debug(f'LS 2021 Start {ls_search_start_2021} - {ls_search_end_2021}') df_shift_sum = (df_shift.reset_index() >> filter((_.date > ls_search_start_2020) & (_.date < ls_search_end_2020 )) >> gather('variable', 'value', -_.date) >> filter(_.variable.str.startswith('shift')) >> group_by('date') >> summarize(shift_sum = _.value.sum()) >> filter(_.shift_sum > 0) >> arrange('date') ) return df_shift_sum def _rolling_manual_sum(tab, days_before= 0, days_after = 7): rolling_sum = list() for dat in tab.date: date_init = dat + timedelta(days=days_before) date_end = dat + timedelta(days=days_after) #logger.debug( str(dat ) + ' to ' + str(dat + timedelta(days=7))) sum_sum = tab[(tab.date >= date_init) & (tab.date < date_end)].suma.sum() rolling_sum.append(sum_sum) return rolling_sum def _initial_shift_date(df_shift_sum): shift_init = df_shift_sum[df_shift_sum.shift_sum == df_shift_sum.shift_sum.max()].date.min() logger.debug(f'Shift found at {shift_init}') return shift_init def _linear_interpolate_ts(shifted_column, date_column): shifted_column[shifted_column < 0] = None df =
pd.DataFrame()
pandas.DataFrame
import pandas import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn import preprocessing from setlist import setlist import sys import os path=os.getcwd() path=path.strip('complete_model') sys.path.append(path) from helper import svm,misc_helper class train_test_generator: def generate(self): dataFrame = pandas.read_csv('../../CSV_Data/master_dataset.csv') feature_columns = list(dataFrame.columns.values)[0:-1] features,target = misc_helper.split_feature_target(dataFrame) train,test,train_target,test_target = train_test_split(features,target,test_size = 0.2,stratify=target) train,test = misc_helper.get_scaled_data(train,test) #Initial Datasets train = pandas.DataFrame(train,columns=feature_columns) train.to_csv('datasets/train.csv',index=False) train_target = pandas.DataFrame(train_target,columns=['label']) train_target.to_csv('datasets/train_target.csv',index=False) test = pandas.DataFrame(test,columns=feature_columns) test.to_csv('datasets/test.csv',index=False) test_target = pandas.DataFrame(test_target,columns=['label']) test_target.to_csv('datasets/test_target.csv',index=False) # train_target_sets = train_target.copy(deep=True) test_target_sets = test_target.copy(deep=True) for i in range(len(setlist)): train_target_sets['label'][train_target['label'].isin(setlist[i])] = str(i) train_target_sets.to_csv('datasets/train_target_sets.csv',index=False) for i in range(len(setlist)): test_target_sets['label'][test_target['label'].isin(setlist[i])] = str(i) test_target_sets.to_csv('datasets/test_target_sets.csv',index=False) #Diving into sets train_sets_features = [[] for i in range(len(setlist)) if len(setlist[i]) > 1] train_sets_targets = [[] for i in range(len(setlist)) if len(setlist[i]) > 1] test_sets_features = [[] for i in range(len(setlist)) if len(setlist[i]) > 1] test_sets_targets = [[] for i in range(len(setlist)) if len(setlist[i]) > 1] for index,row in train.iterrows(): setIndex = int(train_target_sets['label'][index]) if setIndex < len(train_sets_features): train_sets_features[setIndex].append(row) train_sets_targets[setIndex].append(train_target['label'][index]) for index,row in test.iterrows(): setIndex = int(test_target_sets['label'][index]) if setIndex < len(test_sets_features): test_sets_features[setIndex].append(row) test_sets_targets[setIndex].append(test_target['label'][index]) for i in range(len(train_sets_features)): df = pandas.DataFrame(train_sets_features[i],columns=feature_columns) df.to_csv('datasets/train_set_'+str(i),index=False) df = pandas.DataFrame(train_sets_targets[i],columns=['label']) df.to_csv('datasets/train_target_set_'+str(i),index=False) df = pandas.DataFrame(test_sets_features[i],columns=feature_columns) df.to_csv('datasets/test_set_'+str(i),index=False) df =
pandas.DataFrame(test_sets_targets[i],columns=['label'])
pandas.DataFrame
from matplotlib import colors import matplotlib.pyplot as plt import matplotlib.patches as patches import pandas as pd import numpy as np import matplotlib.gridspec as gridspec import matplotlib.offsetbox as offsetbox import palettable from collections import defaultdict class CoMut: '''A user-created :class: `CoMut` object. Params: ----------- Attributes: ----------- samples: list List of samples that defines the sample order. It is set by the first data set added. Samples from later data sets are checked and reordered against this attribute. axes: dict Container containing plotted axes objects after plot_comut() is called. Axes objects can be accessed and changed to change the CoMut. figure: matplotlib figure object Figure that the CoMut is plotted on _plots: dict Container for plot information, including data, visual params (ie color maps), plot type, and plot name. _side_plots: dict of dicts Container for side plot information. Values are side plot data, keys are the name of the central CoMut plot the side plot is paired with.''' def __init__(self): # user accessible attributes self.samples = None self.axes = {} self.figure = None # attributes for manipulation and storage self._plots = {} self._side_plots = defaultdict(dict) @classmethod def _get_default_categorical_cmap(cls, n_cats): '''Returns the default color map for n categories. If 10 or fewer, uses vivid_10 from palettable. If more than 10, uses a segmented rainbow colormap. Params: ------- n_cats: int The number of categories in the data. Returns: -------- cmap: list of colors''' if n_cats <= 10: cmap = palettable.cartocolors.qualitative.Vivid_10.mpl_colors else: hsv_cmap = plt.get_cmap('hsv') cmap = [hsv_cmap(i/n_cats) for i in range(n_cats)] return cmap @classmethod def _get_triangles(cls, x_base, y_base, tri_padding, height, width): '''Returns np arrays of triangle coordinates Params: ------- x_base, y_base: floats The x and y coordinates of the base of the triangle tri_padding: float The space between triangles height, width: float Height and width of the box enclosing the triangles. Returns: -------- (tri_1_coords, tri_2_coords): tuple of np arrays Tuple of triangle coordinates as np arrays.''' tri_1_coords = [[x_base, y_base + tri_padding], [x_base, y_base + height], [x_base + width - tri_padding, y_base + height]] tri_2_coords = [[x_base + tri_padding, y_base], [x_base + width, y_base], [x_base + width, y_base + height - tri_padding]] return (np.array(tri_1_coords), np.array(tri_2_coords)) @classmethod def _sort_list_by_list(cls, value_list, value_order): '''Sort an value list by a specified value order, otherwise sort alphabetically at end. Params: ------- value_list: list-like values to sort, eg ['nonsense', 'amp'] value_order: list-like List of values that specify sort order. Values not in this list will be sorted alphabetically and placed at the end of the list. Returns: -------- sorted_values: list Values sorted by the value order specified and alphabetically otherwise.''' # extract subset of alts that are specified in value_order subset = [value for value in value_list if value in value_order] other = [value for value in value_list if value not in value_order] # sort subset according to value order list, otherwise alphabetical sorted_subset = sorted(subset, key=lambda x: value_order.index(x)) sorted_other = sorted(other) # join the two subsets sorted_values = sorted_subset + sorted_other return sorted_values @classmethod def _parse_categorical_data(cls, data, category_order, sample_order, value_order, priority): '''Parses tidy dataframe into a gene x sample dataframe of tuples for plotting Params: ------- data: pandas dataframe Dataframe from add_categorical_data or add_continuous_data category_order: list-like category_order from add_categorical_data sample_order: list-like Order of samples, from left to right. value_order: list-like: value_order from add_categorical_data priority: list-like priority from add_categorical_data Returns: -------- parsed_data: pandas dataframe, shape (categories, samples) Dataframe of tuples depicting values for each sample in each category.''' # create parsed data storage parsed_data = pd.DataFrame(index=category_order, columns=sample_order) # subset data to categories and samples to avoid handling large dataframes data = data[(data['category'].isin(category_order)) & (data['sample'].isin(sample_order))] # fill in parsed dataframe for category in category_order: for sample in sample_order: sample_category_data = data[(data['category'] == category) & (data['sample'] == sample)] # if data is empty, the sample does not have a value in category if len(sample_category_data) == 0: parsed_data.loc[category, sample] = () # if length 1 just put the value elif len(sample_category_data) == 1: value = sample_category_data['value'].values[0] parsed_data.loc[category, sample] = (value,) # if length 2, sort by value order then convert to tuple elif len(sample_category_data) == 2: values = sample_category_data['value'].values sorted_values = cls._sort_list_by_list(values, value_order) parsed_data.loc[category, sample] = tuple(sorted_values) # if more than two, apply priority, sort, then convert to tuple. else: values = sample_category_data['value'].values present_priorities = [v for v in values if v in priority] # just put 'Multiple' if no priorities or more than two if len(present_priorities) == 0 or len(present_priorities) > 2: parsed_data.loc[category, sample] = ('Multiple',) # always plot a priority if present elif len(present_priorities) == 1: df_entry = present_priorities + ['Multiple'] sorted_df_entry = cls._sort_list_by_list(df_entry, value_order) parsed_data.loc[category, sample] = tuple(sorted_df_entry) # plot two priorities if present, ignoring others elif len(present_priorities) == 2: df_entry = cls._sort_list_by_list(present_priorities, value_order) parsed_data.loc[category, sample] = tuple(df_entry) return parsed_data def _check_samples(self, samples): '''Checks that samples are a subset of samples currently associated with the CoMut object. Params: ------- samples: list-like A list of sample names.''' if not set(samples).issubset(set(self.samples)): extra = set(samples) - set(self.samples) raise ValueError('Unknown samples {} given. All added samples' ' must be a subset of either first samples' ' added or samples specified with' ' comut.samples'.format(extra)) def add_categorical_data(self, data, name=None, category_order=None, value_order=None, mapping=None, borders=None, priority=None, tick_style='normal'): '''Add categorical data to the CoMut object. Params: ------- data: pandas dataframe A tidy dataframe containing data. Required columns are sample, category, and value. Other columns are ignored. Example: ------- sample | category | value ---------------------------- Sample_1 | TP53 | Missense Sample_1 | Gender | Male name: str The name of the dataset being added. Used to references axes. Example: -------- example_comut = comut.CoMut() example_comut.add_categorical_data(data, name = 'Mutation type') category_order: list-like Order of category to plot, from top to bottom. Only these categories are plotted. Example: -------- example_comut = comut.CoMut() example_comut.add_categorical_data(data, category_order = ['TP53', 'BRAF']) value_order: list-like Order of plotting of values in a single patch, from left triangle to right triangle. Example: -------- value_order = ['Amp', 'Missense'] If Amp and Missense exist in the same category and sample, Amp will be drawn as left triangle, Missense as right. mapping: dict Mapping of values to patch properties. The dict can either specify only the facecolor or other patches properties. Note: ----- Three additional values are required to fully specify mapping: 'Absent', which determines the color for samples without value for a name (default white). 'Multiple', which determines the color for samples with more than two values in that category (default brown). 'Not Available', which determines the patch properties when a sample's value is 'Not Available'. borders: list-like List of values that should be plotted as borders, not patches. Example: -------- example_comut = comut.CoMut() example_comut.add_categorical_data(data, borders = ['LOH']) priority: list-like Ordered list of priorities for values. The function will attempt to preserve values in this list, subverting the "Multiple" assignment. Example: -------- example_comut.add_categorical_data(data, priority = ['Amp']) If Amp exists alongside two other values, it will be drawn as Amp + Multiple (two triangles), instead of Multiple. tick_style: str, default='normal', 'italic', 'oblique' Tick style to be used for the y axis ticks (category names). Returns: -------- None''' # check that required columns exist req_cols = {'sample', 'category', 'value'} if not req_cols.issubset(data.columns): missing_cols = req_cols - set(data.columns) msg = ', '.join(list(missing_cols)) raise ValueError('Data missing required columns: {}'.format(msg)) # check that samples are a subset of current samples. samples = list(data['sample'].drop_duplicates()) if self.samples is None: self.samples = samples else: self._check_samples(samples) # set defaults if name is None: name = len(self._plots) if borders is None: borders = [] if priority is None: priority = [] if value_order is None: value_order = [] # default category order to all categories uniquely present in data # in the order they appear if category_order is None: category_order = list(data['category'].drop_duplicates()) # build default color map, uses vivid unique_values = set(data['value']) if mapping is None: mapping = {} # define default borders for value in borders: mapping[value] = {'facecolor': 'none', 'edgecolor': 'black', 'linewidth': 1} # assign colors to other unique values non_border = [val for val in unique_values if val not in borders] default_cmap = self._get_default_categorical_cmap(len(non_border)) for i, value in enumerate(unique_values): mapping[value] = {'facecolor': default_cmap[i]} mapping['Absent'] = {'facecolor': 'white'} mapping['Multiple'] = {'facecolor': palettable.colorbrewer.qualitative.Set1_7.mpl_colors[6]} mapping['Not Available'] = {'facecolor': 'none', 'edgecolor': 'black', 'linewidth': 1} elif isinstance(mapping, dict): # copy the user mapping to avoid overwriting their mapping variable mapping = mapping.copy() # update user color map with reserved values if not present if 'Not Available' not in mapping: mapping['Not Available'] = {'facecolor': 'none', 'edgecolor': 'black', 'linewidth': 1} if 'Absent' not in mapping: mapping['Absent'] = {'facecolor': 'white'} if 'Multiple' not in mapping: mapping['Multiple'] = {'facecolor': palettable.colorbrewer.qualitative.Set1_7.mpl_colors[6]} # check that all alt types present in data are in mapping if not unique_values.issubset(mapping.keys()): missing_cats = unique_values - set(mapping.keys()) raise ValueError('Categories present in dataframe {}' ' are missing from mapping'.format(missing_cats)) # if passed values aren't kwargs, convert to patches kwargs for key, value in mapping.items(): if not isinstance(value, dict): if key in borders: mapping[key] = {'facecolor': 'none', 'edgecolor': value} else: mapping[key] = {'facecolor': value} # check that borders have facecolor - None for border in borders: if mapping[border]['facecolor'] != 'none': raise ValueError('Border category {} must have facecolor' ' = \'none\''.format(border)) else: raise ValueError('Invalid mapping. Mapping must be a dict.') # parse data into dataframe of tuples as required for plotting parsed_data = self._parse_categorical_data(data, category_order, self.samples, value_order, priority) # store plot data plot_data = {'data': parsed_data, 'patches_options': mapping, 'tick_style': tick_style, 'borders': borders, 'type': 'categorical'} self._plots[name] = plot_data return None def add_continuous_data(self, data, mapping='binary', tick_style='normal', value_range=None, cat_mapping=None, name=None): '''Add a sample level continuous data to the CoMut object Params: ----------- data: pandas dataframe A tidy dataframe containing data. Required columns are sample, category, and value. Other columns are ignored. Currently, only one category is allowed. mapping: str, colors.LinearSegmentedColormap, default 'binary' A mapping of continuous value to color. Can be defined as matplotlib colormap (str) or a custom LinearSegmentedColormap Samples with missing information are colored according to 'Absent'. value_range: tuple or list min and max value of the data. Data will be normalized using this range to fit (0, 1). Defaults to the range of the data. cat_mapping: dict Mapping from a discrete category to patch color. Primarily used to override defaults for 'Absent' and 'Not Available' but can be used to mix categorical and continuous values in the same data. name: str The name of the dataset being added. Used to references axes. defaults to the integer index of the plot being added. tick_style: str, default='normal', 'italic', 'oblique' Tick style to be used for the y axis ticks (category names). Returns: -------- None''' # check that required columns exist req_cols = {'sample', 'category', 'value'} if not req_cols.issubset(data.columns): missing_cols = req_cols - set(data.columns) msg = ', '.join(list(missing_cols)) raise ValueError('Data missing required columns: {}'.format(msg)) # check that samples are a subset of object samples. samples = list(data['sample'].drop_duplicates()) if self.samples is None: self.samples = samples else: self._check_samples(samples) # check that only one category is in the dataframe if len(set(data['category'])) > 1: raise ValueError('Only one category is allowed for continuous data') # make default name if name is None: name = len(self._plots) if value_range is None: data_max = pd.to_numeric(data['value'], 'coerce').max() data_min =
pd.to_numeric(data['value'], 'coerce')
pandas.to_numeric
# # Copyright ยฉ 2021 Uncharted Software Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from os import path import math import pandas as pd from common_primitives.column_parser import ColumnParserPrimitive from d3m import exceptions from d3m.metadata import base as metadata_base from distil_primitives_contrib.time_series_binner import TimeSeriesBinnerPrimitive import utils as test_utils class TimeSeriesBinnerPrimitiveTestCase(unittest.TestCase): _dataset_path = path.abspath( path.join(path.dirname(__file__), "timeseries_resource_dataset_2") ) # _dataset_path = '/Users/vkorapaty/data/datasets/seed_datasets_current/LL1_736_population_spawn_MIN_METADATA/TRAIN/dataset_TRAIN' def test_hyperparams_integer_bin(self) -> None: timeseries_df = self._load_data( "singleGroupData", value_indices=[3], parsing_hyperparams={"exclude_columns": [1]}, ) hyperparams_class = TimeSeriesBinnerPrimitive.metadata.query()[ "primitive_code" ]["class_type_arguments"]["Hyperparams"] ts_binner = TimeSeriesBinnerPrimitive( hyperparams=hyperparams_class.defaults().replace( { "grouping_key_col": 1, "time_col": 2, "value_cols": [3], "binning_starting_value": "min", } ) ) result = ts_binner.produce(inputs=timeseries_df).value self._compare_dataframes( result, [3, 4], ["species", "day", "count"], [ ["cas9_VBBA", "cas9_VBBA", "cas9_VBBA"], [8, 11, 16], [85920, 85574, 88357], ], ) def test_no_hyperparams_integer_bin(self) -> None: timeseries_df = self._load_data( "singleGroupData", value_indices=[3], parsing_hyperparams={"exclude_columns": [1]}, ) hyperparams_class = TimeSeriesBinnerPrimitive.metadata.query()[ "primitive_code" ]["class_type_arguments"]["Hyperparams"] ts_binner = TimeSeriesBinnerPrimitive(hyperparams=hyperparams_class.defaults()) result = ts_binner.produce(inputs=timeseries_df).value self._compare_dataframes( result, [4, 4], ["species", "day", "count"], [ ["cas9_VBBA", "cas9_VBBA", "cas9_VBBA"], [4, 10, 15, 16], [28810, 113989, 86925, 30127], ], ) def test_timestamp_downsampling_bin(self) -> None: timeseries_df = self._load_data( "singleGroupDataTimestamp", value_indices=[3], date_time_index=2, parsing_hyperparams={ "exclude_columns": [1, 2], "parse_semantic_types": ( "http://schema.org/Integer", "http://schema.org/DateTime", ), }, ) hyperparams_class = TimeSeriesBinnerPrimitive.metadata.query()[ "primitive_code" ]["class_type_arguments"]["Hyperparams"] ts_binner = TimeSeriesBinnerPrimitive( hyperparams=hyperparams_class.defaults().replace({"granularity": "years"}) ) timeseries_df["day"] = pd.to_datetime(timeseries_df["day"]) result = ts_binner.produce(inputs=timeseries_df).value df = pd.DataFrame({"year": [2020, 2021], "month": [12, 12], "day": [31, 31]}) self._compare_dataframes( result, [2, 4], ["species", "day", "count"], [["cas9_VBBA", "cas9_VBBA"],
pd.to_datetime(df)
pandas.to_datetime
# -*- coding: utf-8 -*- # Copyright StateOfTheArt.quant. # # * Commercial Usage: please contact <EMAIL> # * Non-Commercial Usage: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pdb import torch import pandas as pd import featurizer.functions.time_series_functions as tsf def macd(tensor, fastperiod=12, slowperiod=26, signalperiod=9): #DIF = tsf.ema(tensor, fastperiod) - tsf.ema(tensor, slowperiod) #DEA = tsf.ema(DIF, signalperiod) #MACD = (DIF - DEA) * 1 # Here is 1 rather than trodational 2 import talib tensor_np = tensor.cpu().detach().numpy() tensor_df = pd.DataFrame(tensor_np) DIF = tensor_df.apply(lambda x: talib.MACD(x, fastperiod=fastperiod, slowperiod=slowperiod, signalperiod=signalperiod)[0]) DEA = tensor_df.apply(lambda x: talib.MACD(x, fastperiod=fastperiod, slowperiod=slowperiod, signalperiod=signalperiod)[1]) MACD = tensor_df.apply(lambda x: talib.MACD(x, fastperiod=fastperiod, slowperiod=slowperiod, signalperiod=signalperiod)[2]) DIF_ts = torch.tensor(DIF.values, dtype=tensor.dtype, device=tensor.device) DEA_ts = torch.tensor(DEA.values, dtype=tensor.dtype, device=tensor.device) MACD_ts = torch.tensor(MACD.values, dtype=tensor.dtype, device=tensor.device) # return DIF_ts, DEA_ts, MACD_ts return DIF, DEA, MACD def macdext(close_ts, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) DIF = close_df.apply(lambda x: talib.MACDEXT(x, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)[0]) DEA = close_df.apply(lambda x: talib.MACDEXT(x, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)[1]) MACD = close_df.apply(lambda x: talib.MACDEXT(x, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)[2]) DIF_ts = torch.tensor(DIF.values, dtype=close_ts.dtype, device=close_ts.device) DEA_ts = torch.tensor(DEA.values, dtype=close_ts.dtype, device=close_ts.device) MACD_ts = torch.tensor(MACD.values, dtype=close_ts.dtype, device=close_ts.device) return DIF_ts, DEA_ts, MACD_ts def macdfix(close_ts, signalperiod=9): # fixed fastperiod=12 and slowperiod=26 import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) DIF = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[0]) DEA = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[1]) MACD = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[2]) DIF_ts = torch.tensor(DIF.values, dtype=close_ts.dtype, device=close_ts.device) DEA_ts = torch.tensor(DEA.values, dtype=close_ts.dtype, device=close_ts.device) MACD_ts = torch.tensor(MACD.values, dtype=close_ts.dtype, device=close_ts.device) return DIF_ts, DEA_ts, MACD_ts def ppo(close_ts, fastperiod=12, slowperiod=26, matype=0): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) PPO = close_df.apply(lambda x: talib.PPO(x, fastperiod=12, slowperiod=26, matype=0)) PPO_ts = torch.tensor(PPO.values, dtype=close_ts.dtype, device=close_ts.device) return PPO_ts def rsi(tensor, timeperiod): import talib tensor_np = tensor.cpu().detach().numpy() tensor_df = pd.DataFrame(tensor_np) tensor_df = tensor_df.apply(lambda x: talib.RSI(x, timeperiod=timeperiod)) output_tensor = torch.tensor(tensor_df.values, dtype=tensor.dtype, device=tensor.device) return output_tensor def bbands(tensor, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0): import talib tensor_np = tensor.cpu().detach().numpy() tensor_df = pd.DataFrame(tensor_np) upperband = tensor_df.apply(lambda x: talib.BBANDS(x, timeperiod=timeperiod, nbdevup=nbdevup, nbdevdn=nbdevdn, matype=matype)[0]) middleband = tensor_df.apply(lambda x: talib.BBANDS(x, timeperiod=timeperiod, nbdevup=nbdevup, nbdevdn=nbdevdn, matype=matype)[1]) lowerband = tensor_df.apply(lambda x: talib.BBANDS(x, timeperiod=timeperiod, nbdevup=nbdevup, nbdevdn=nbdevdn, matype=matype)[2]) upperband_ts = torch.tensor(upperband.values, dtype=tensor.dtype, device=tensor.device) middleband_ts = torch.tensor(middleband.values, dtype=tensor.dtype, device=tensor.device) lowerband_ts = torch.tensor(lowerband.values, dtype=tensor.dtype, device=tensor.device) return upperband_ts, middleband_ts, lowerband_ts def kdj(high_ts, low_ts, close_ts, fastk_period=9, slowk_period=3, slowd_period=3): range_ts = tsf.rolling_max(high_ts, window=fastk_period) - tsf.rolling_min(low_ts, window=fastk_period) RSV = (close_ts - tsf.rolling_min(low_ts, fastk_period).squeeze(-1)) / torch.clamp(range_ts.squeeze(-1),min=1) K = tsf.ema(RSV, window=slowk_period).squeeze(-1) D = tsf.ema(K, slowd_period).squeeze(-1) J = 3*K - 2*D return RSV, K, D, J def candleup(open_ts, close_ts, high_ts): output = torch.max(open_ts, close_ts) output_ts = high_ts - output return output_ts def candledown(open_ts, close_ts, low_ts): output = torch.min(open_ts, close_ts) output_ts = output - low_ts return output_ts def atr(high_ts, low_ts, close_ts, timeperiod=14): true_range = torch.max(high_ts, tsf.shift(close_ts, window=1)) - torch.min(low_ts, tsf.shift(close_ts, window=1)) atr = tsf.rolling_mean_(true_range, window=timeperiod) return atr def natr(high_ts, low_ts, close_ts, timeperiod=14): true_range = torch.max(high_ts, tsf.shift(close_ts, window=1)) - torch.min(low_ts, tsf.shift(close_ts, window=1)) TRange_max = tsf.rolling_max(true_range, window=timeperiod) TRange_min = tsf.rolling_min(true_range, window=timeperiod) natr = tsf.rolling_mean_((true_range - TRange_min) / (TRange_max - TRange_min), window=timeperiod) return natr def dmi(high_ts, low_ts, close_ts, timeperiod=14): up = high_ts - tsf.shift(high_ts, window=1) down = tsf.shift(low_ts, window=1) - low_ts zero = torch.zeros_like(high_ts, dtype=high_ts.dtype, device=high_ts.device) PDM = torch.where(up>torch.max(down, zero), up, zero) MDM = torch.where(down>torch.max(up, zero), down, zero) TR14 = tsf.rolling_mean_(torch.max(high_ts, tsf.shift(close_ts, window=1)) - torch.min(low_ts, tsf.shift(close_ts, window=1)), window=14) PDI = PDM / TR14[-1] * 100 MDI = MDM / TR14[-1] * 100 DX = torch.abs(PDI - MDI) / torch.abs(PDI + MDI) ADX = tsf.ema(DX, window=timeperiod) ADXR = tsf.ema(ADX, window=timeperiod) return PDM, MDM, PDI, MDI, DX, ADX, ADXR def apo(close_ts, fastperiod=12, slowperiod=26, matype=0): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) apo = close_df.apply(lambda x: talib.APO(x, fastperiod=12, slowperiod=26, matype=0)) apo_ts = torch.tensor(apo.values, dtype=close_ts.dtype, device=close_ts.device) return apo_ts def cci(high_ts, low_ts, close_ts, timeperiod=14): TP = (high_ts + low_ts + close_ts) / 3 cci = (TP - tsf.rolling_mean_(TP, window=timeperiod)) / (0.015 * tsf.rolling_std(TP, window=timeperiod)) return cci def cmo(close_ts, timeperiod=14): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) cmo = close_df.apply(lambda x: talib.CMO(x, timeperiod=14)) CMO_ts = torch.tensor(cmo.values, dtype=close_ts.dtype, device=close_ts.device) return CMO_ts def mfi(high_ts, low_ts, close_ts, total_turnover_ts, timeperiod=14): TP = (high_ts + low_ts + close_ts) / 3 MF = TP * total_turnover_ts zero = torch.zeros_like(high_ts) PMF = torch.where(MF > tsf.shift(MF, window=1), MF, zero) NMF = torch.where(MF < tsf.shift(MF, window=1), MF, zero) MR = tsf.rolling_sum_(PMF, window=timeperiod) / tsf.rolling_sum_(NMF, window=timeperiod) MFI = 100 - (100 / (1 + MR)) return MFI def stochrsi(close_ts, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) fastk = close_df.apply(lambda x: talib.STOCHRSI(x, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)[0]) fastd = close_df.apply(lambda x: talib.STOCHRSI(x, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)[1]) fastk_ts = torch.tensor(fastk.values, dtype=close_ts.dtype, device=close_ts.device) fastd_ts = torch.tensor(fastd.values, dtype=close_ts.dtype, device=close_ts.device) return fastk_ts, fastd_ts def trix(close_ts, timeperiod=30): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) trix = close_df.apply(lambda x: talib.TRIX(x, timeperiod=30)) trix_ts = torch.tensor(trix.values, dtype=close_ts.dtype, device=close_ts.device) return trix_ts def uos(high_ts, low_ts, close_ts, timeperiod1=7, timeperiod2=14, timeperiod3=28, timeperiod4=6): TH = torch.max(high_ts, tsf.shift(close_ts, window=1)) TL = torch.min(low_ts, tsf.shift(close_ts, window=1)) ACC1 = tsf.rolling_sum_(close_ts-TL, window=timeperiod1) / tsf.rolling_sum_(TH-TL, window=timeperiod1) ACC2 = tsf.rolling_sum_(close_ts-TL, window=timeperiod2) / tsf.rolling_sum_(TH-TL, window=timeperiod2) ACC3 = tsf.rolling_sum_(close_ts-TL, window=timeperiod3) / tsf.rolling_sum_(TH-TL, window=timeperiod3) UOS = (ACC1*timeperiod2*timeperiod3 + ACC2*timeperiod1*timeperiod3 + ACC3*timeperiod1*timeperiod2) * 100 / (timeperiod1*timeperiod2 + timeperiod1*timeperiod3 + timeperiod2*timeperiod3) MAUOS = tsf.ema(UOS, window=timeperiod4) return UOS, MAUOS def wr(high_ts, low_ts, close_ts, timeperiod=14): HT = tsf.rolling_max(high_ts, window=timeperiod) LT = tsf.rolling_min(low_ts, window=timeperiod) WR = (HT - close_ts) / (HT - LT) * 100 return WR def dema(close_ts, timeperiod=30): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) dema = close_df.apply(lambda x: talib.DEMA(x, timeperiod=30)) dema_ts = torch.tensor(dema.values, dtype=close_ts.dtype, device=close_ts.device) return dema_ts def HT_trendline(close_ts): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) HT_trendline = close_df.apply(lambda x: talib.HT_TRENDLINE(x)) HT_trendline_ts = torch.tensor(HT_trendline.values, dtype=close_ts.dtype, device=close_ts.device) return HT_trendline_ts def kama(close_ts, timeperiod=30): import talib close_np = close_ts.cpu().detach().numpy() close_df =
pd.DataFrame(close_np)
pandas.DataFrame
import json from random import shuffle from pathlib import Path from tqdm import tqdm import numpy as np import pandas as pd import torch from torch_scatter import scatter from torch_geometric.data import Data, InMemoryDataset, Batch from sklearn.utils.class_weight import compute_class_weight from utils import one_of_k_encoding, get_residue_features try: import rdkit from rdkit import Chem, RDConfig from rdkit.Chem import ChemicalFeatures from rdkit.Chem.rdchem import HybridizationType as HT from rdkit.Chem.rdchem import BondType as BT from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') except: rdkit, Chem, RDConfig, ChemicalFeatures, HT, BT = 6 * [None] print('Please install rdkit for data processing') def get_mol_nodes_edges(mol): # Read node features N = mol.GetNumAtoms() atom_type = [] atomic_number = [] aromatic = [] hybridization = [] # num_hs = [] for atom in mol.GetAtoms(): atom_type.append(atom.GetSymbol()) atomic_number.append(atom.GetAtomicNum()) aromatic.append(1 if atom.GetIsAromatic() else 0) hybridization.append(atom.GetHybridization()) # Read edge features row, col, edge_type = [], [], [] for bond in mol.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() row += [start, end] col += [end, start] edge_type += 2 * [bond.GetBondType()] edge_index = torch.LongTensor([row, col]) edge_type = [one_of_k_encoding(t, [BT.SINGLE, BT.DOUBLE, BT.TRIPLE, BT.AROMATIC]) for t in edge_type] edge_attr = torch.FloatTensor(edge_type) perm = (edge_index[0] * N + edge_index[1]).argsort() edge_index = edge_index[:, perm] edge_attr = edge_attr[perm] row, col = edge_index # Concat node fetures hs = (torch.tensor(atomic_number, dtype=torch.long) == 1).to(torch.float) num_hs = scatter(hs[row], col, dim_size=N).tolist() x_atom_type = [one_of_k_encoding(t, ['H', 'C', 'N', 'O', 'F', 'S', 'Cl', 'Br', 'I']) for t in atom_type] x_hybridization = [one_of_k_encoding(h, [HT.SP, HT.SP2, HT.SP3]) for h in hybridization] x2 = torch.tensor([atomic_number, aromatic, num_hs], dtype=torch.float).t().contiguous() x = torch.cat([torch.FloatTensor(x_atom_type), torch.FloatTensor(x_hybridization), x2], dim=-1) return x, edge_index, edge_attr def get_pro_nodes_edges(protein_seq, contact_map): # add node information feat = [] for residue in protein_seq: residue_features = get_residue_features(residue) feat.append(residue_features) node_attr = torch.FloatTensor(feat) # add main_chain information m_index_row, m_index_col, m_edge_attr = [], [], [] for i in range(len(protein_seq) - 1): m_index_row += [i, i + 1] m_index_col += [i + 1, i] m_edge_attr.append([1, 1, 0, 0, 0, 0, 0, 1]) # read the code below about edge feature extract m_edge_attr.append([1, 1, 0, 0, 0, 0, 0, 1]) # read edge features from contactmap.txt edge_attr = [] index_row, index_col = np.where(contact_map > 0) index_row, index_col = index_row.tolist(), index_col.tolist() for i, j in zip(index_row, index_col): main_chain = 0 # int(np.abs(i - j) == 1) prob = contact_map[i, j] reversed_prob = 1 - prob # prob level range l1 = int(0 <= prob < 0.3) l2 = int(0.3 <= prob < 0.5) l3 = int(0.5 <= prob < 0.7) l4 = int(0.5 <= prob < 0.9) l5 = int(0.9 <= prob <= 1) edge_attr.append([main_chain, prob, reversed_prob, l1, l2, l3, l4, l5]) edge_index = torch.LongTensor([m_index_row + index_row, m_index_col + index_col]) edge_attr = torch.FloatTensor(m_edge_attr + edge_attr) # print(node_attr.shape, edge_index.shape, edge_attr.shape) # assert edge_index.shape[1] == edge_attr.shape[0] return node_attr, edge_index, edge_attr # for small interaction dataset do not need to consider storage space def proteinmol2graph(mol, protein_seq, contact_map): if mol is None: return None # Extrat molecular and protein's features node_attr, edge_index, edge_attr = get_mol_nodes_edges(mol) pro_node_attr, pro_edge_index, pro_edge_attr = get_pro_nodes_edges(protein_seq, contact_map) # Build pyg data data = Data( x=node_attr, edge_index=edge_index, edge_attr=edge_attr, # pos=pos, pro_x=pro_node_attr, pro_edge_index=pro_edge_index, pro_edge_attr=pro_edge_attr, y=None, # None as a placeholder # id=None, ) return data class BindingDBProMolInteactionDataset(InMemoryDataset): train_val_test_GLAMs = {'train': 0, 'val': 0, 'test': 0} def __init__(self, root, transform=None, pre_transform=None, pre_filter=None): super(BindingDBProMolInteactionDataset, self).__init__(root, transform, pre_transform, pre_filter) self.data, self.slices = torch.load(self.processed_paths[0]) self.train_val_test_GLAMs = torch.load(self.processed_paths[1]) self.mol_datas = torch.load(self.processed_paths[2]) self.pro_datas = torch.load(self.processed_paths[3]) n_trn, n_v, n_t = self.train_val_test_GLAMs.values() self.train, self.val, self.test = self[:n_trn], self[n_trn:n_trn + n_v], self[n_trn + n_v:n_trn + n_v + n_t] self.train = self.train.shuffle() # smi[0] for unpack smi from [['smi1'], ['smi2']...] self.mol_num_node_features = self.mol_datas[self[0].smi].x.shape[1] self.mol_num_edge_features = self.mol_datas[self[0].smi].edge_attr.shape[1] self.pro_num_node_features = self.pro_datas[self[0].pro].x.shape[1] self.pro_num_edge_features = self.pro_datas[self[0].pro].edge_attr.shape[1] @property def raw_file_names(self): return ['bindingdb/train.txt', 'bindingdb/dev.txt', 'bindingdb/test.txt', 'bindingdb/pro_contact_map/protein_maps_dict.ckpt'] @property def processed_file_names(self): return ['bindingdb_src_7.3/interaction_processed.pt', 'bindingdb_src_7.3/train_val_test_GLAMs.pt', 'bindingdb_src_7.3/mol_processed.pt', 'bindingdb_src_7.3/pro_processed.pt', ] def process(self): # mkdir processed/pdbbind Path.mkdir(Path(self.processed_paths[0]).parent, exist_ok=True) # load all unique mol and protein train = pd.read_csv(self.raw_paths[0], sep=' ') dev = pd.read_csv(self.raw_paths[1], sep=' ') test = pd.read_csv(self.raw_paths[2], sep=' ') unique_pros = set(pd.concat([train, dev, test])['target_sequence'].to_list()) unique_smis = set(pd.concat([train, dev, test])['compound_iso_smiles'].to_list()) unique_smis = [Chem.MolToSmiles(Chem.MolFromSmiles(smi), isomericSmiles=True) for smi in unique_smis] # mol preprocess and save mol_data_dict = {} for i, smi in tqdm(enumerate(unique_smis)): mol = Chem.MolFromSmiles(smi) node_attr, edge_index, edge_attr = get_mol_nodes_edges(mol) data = Data(x=node_attr, edge_index=edge_index, edge_attr=edge_attr) mol_data_dict[smi] = data torch.save(mol_data_dict, Path(self.processed_paths[2])) # pro preprocess and save protein_maps_dict_path = Path(self.raw_paths[3]) protein_maps_dict = torch.load(protein_maps_dict_path) # pro_data_dict = {} for i, pro in tqdm(enumerate(unique_pros)): if pro not in protein_maps_dict.keys(): continue # skipped some removed protein contact_map = protein_maps_dict[pro] pro_node_attr, pro_edge_index, pro_edge_attr = get_pro_nodes_edges(pro, contact_map) data = Data(x=pro_node_attr, edge_index=pro_edge_index, edge_attr=pro_edge_attr, ) pro_data_dict[pro] = data torch.save(pro_data_dict, Path(self.processed_paths[3])) # mol-pro inteaction save data_list = [] for i, dataset_type in enumerate(self.train_val_test_GLAMs): # 0, 1, 2 for train, val, test data_path = self.raw_paths[i] data_pd =
pd.read_csv(data_path, sep=' ')
pandas.read_csv
""" Preprocess sites scripts. Written by <NAME>. Winter 2020 """ import os import configparser import json import csv import math import glob import pandas as pd import geopandas as gpd import pyproj from shapely.geometry import Polygon, MultiPolygon, mapping, shape, MultiLineString, LineString from shapely.ops import transform, unary_union, nearest_points import fiona from fiona.crs import from_epsg import rasterio from rasterio.mask import mask from rasterstats import zonal_stats import networkx as nx from rtree import index import numpy as np import random CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_INTERMEDIATE = os.path.join(BASE_PATH, 'intermediate') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def find_country_list(continent_list): """ This function produces country information by continent. Parameters ---------- continent_list : list Contains the name of the desired continent, e.g. ['Africa'] Returns ------- countries : list of dicts Contains all desired country information for countries in the stated continent. """ glob_info_path = os.path.join(BASE_PATH, 'global_information.csv') countries = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") countries = countries[countries.exclude != 1] if len(continent_list) > 0: data = countries.loc[countries['continent'].isin(continent_list)] else: data = countries output = [] for index, country in data.iterrows(): output.append({ 'country_name': country['country'], 'iso3': country['ISO_3digit'], 'iso2': country['ISO_2digit'], 'regional_level': country['lowest'], 'region': country['region'] }) return output def process_coverage_shapes(country): """ Load in coverage maps, process and export for each country. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] iso2 = country['iso2'] technologies = [ 'GSM', '3G', '4G' ] for tech in technologies: folder_coverage = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') filename = 'coverage_{}.shp'.format(tech) path_output = os.path.join(folder_coverage, filename) if os.path.exists(path_output): continue print('----') print('Working on {} in {}'.format(tech, iso3)) filename = 'Inclusions_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') inclusions = gpd.read_file(os.path.join(folder, filename)) if iso2 in inclusions['CNTRY_ISO2']: filename = 'MCE_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] else: filename = 'OCI_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_OCI') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] if len(coverage) > 0: print('Dissolving polygons') coverage['dissolve'] = 1 coverage = coverage.dissolve(by='dissolve', aggfunc='sum') coverage = coverage.to_crs('epsg:3857') print('Excluding small shapes') coverage['geometry'] = coverage.apply(clean_coverage,axis=1) print('Removing empty and null geometries') coverage = coverage[~(coverage['geometry'].is_empty)] coverage = coverage[coverage['geometry'].notnull()] print('Simplifying geometries') coverage['geometry'] = coverage.simplify( tolerance = 0.005, preserve_topology=True).buffer(0.0001).simplify( tolerance = 0.005, preserve_topology=True ) coverage = coverage.to_crs('epsg:4326') if not os.path.exists(folder_coverage): os.makedirs(folder_coverage) coverage.to_file(path_output, driver='ESRI Shapefile') return #print('Processed coverage shapes') def process_regional_coverage(country): """ This functions estimates the area covered by each cellular technology. Parameters ---------- country : dict Contains specific country parameters. Returns ------- output : dict Results for cellular coverage by each technology for each region. """ level = country['regional_level'] iso3 = country['iso3'] gid_level = 'GID_{}'.format(level) filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) technologies = [ 'GSM', '3G', '4G' ] output = {} for tech in technologies: folder = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') path = os.path.join(folder, 'coverage_{}.shp'.format(tech)) if os.path.exists(path): coverage = gpd.read_file(path, encoding="utf-8") segments = gpd.overlay(regions, coverage, how='intersection') tech_coverage = {} for idx, region in segments.iterrows(): area_km2 = round(area_of_polygon(region['geometry']) / 1e6) tech_coverage[region[gid_level]] = area_km2 output[tech] = tech_coverage return output def get_regional_data(country): """ Extract regional data including luminosity and population. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] level = country['regional_level'] gid_level = 'GID_{}'.format(level) path_output = os.path.join(DATA_INTERMEDIATE, iso3, 'regional_coverage.csv') if os.path.exists(path_output): return #print('Regional data already exists') path_country = os.path.join(DATA_INTERMEDIATE, iso3, 'national_outline.shp') coverage = process_regional_coverage(country) single_country = gpd.read_file(path_country) # print('----') # print('working on {}'.format(iso3)) path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) results = [] for index, region in regions.iterrows(): with rasterio.open(path_settlements) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] area_km2 = round(area_of_polygon(region['geometry']) / 1e6) if 'GSM' in [c for c in coverage.keys()]: if region[gid_level] in coverage['GSM']: coverage_GSM_km2 = coverage['GSM'][region[gid_level]] else: coverage_GSM_km2 = 0 else: coverage_GSM_km2 = 0 if '3G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['3G']: coverage_3G_km2 = coverage['3G'][region[gid_level]] else: coverage_3G_km2 = 0 else: coverage_3G_km2 = 0 if '4G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['4G']: coverage_4G_km2 = coverage['4G'][region[gid_level]] else: coverage_4G_km2 = 0 else: coverage_4G_km2 = 0 results.append({ 'GID_0': region['GID_0'], 'GID_id': region[gid_level], 'GID_level': gid_level, # 'mean_luminosity_km2': luminosity_summation / area_km2 if luminosity_summation else 0, 'population': population_summation, # 'pop_under_10_pop': pop_under_10_pop, 'area_km2': area_km2, 'population_km2': population_summation / area_km2 if population_summation else 0, # 'pop_adults_km2': ((population_summation - pop_under_10_pop) / # area_km2 if pop_under_10_pop else 0), 'coverage_GSM_percent': round(coverage_GSM_km2 / area_km2 * 100 if coverage_GSM_km2 else 0, 1), 'coverage_3G_percent': round(coverage_3G_km2 / area_km2 * 100 if coverage_3G_km2 else 0, 1), 'coverage_4G_percent': round(coverage_4G_km2 / area_km2 * 100 if coverage_4G_km2 else 0, 1), }) # print('Working on backhaul') backhaul_lut = estimate_backhaul(iso3, country['region'], '2025') # print('Working on estimating sites') results = estimate_sites(results, iso3, backhaul_lut) results_df = pd.DataFrame(results) results_df.to_csv(path_output, index=False) # print('Completed {}'.format(single_country.NAME_0.values[0])) return #print('Completed night lights data querying') def find_pop_under_10(region, iso3): """ Find the estimated population under 10 years old. Parameters ---------- region : pandas series The region being modeled. iso3 : string ISO3 country code. Returns ------- population : int Population sum under 10 years of age. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'under_10') all_paths = glob.glob(path + '/*.tif') population = [] for path in all_paths: with rasterio.open(path) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] if population_summation is not None: population.append(population_summation) return sum(population) def estimate_sites(data, iso3, backhaul_lut): """ Estimate the sites by region. Parameters ---------- data : dataframe Pandas df with regional data. iso3 : string ISO3 country code. backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] existing_site_data_path = os.path.join(DATA_INTERMEDIATE, iso3, 'sites', 'sites.csv') existing_site_data = {} if os.path.exists(existing_site_data_path): site_data = pd.read_csv(existing_site_data_path) site_data = site_data.to_dict('records') for item in site_data: existing_site_data[item['GID_id']] = item['sites'] population = 0 for region in data: if region['population'] == None: continue population += int(region['population']) path = os.path.join(DATA_RAW, 'wb_mobile_coverage', 'wb_population_coverage_2G.csv') coverage = pd.read_csv(path, encoding='latin-1') coverage = coverage.loc[coverage['Country ISO3'] == iso3] if len(coverage) > 1: coverage = coverage['2020'].values[0] else: coverage = 0 population_covered = population * (coverage / 100) path = os.path.join(DATA_RAW, 'real_site_data', 'site_counts.csv') towers = pd.read_csv(path, encoding = "ISO-8859-1") towers = towers.loc[towers['iso3'] == iso3] towers = towers['sites'].values[0] if np.isnan(towers): towers = 0 towers_per_pop = 0 else: towers_per_pop = towers / population_covered tower_backhaul_lut = estimate_backhaul_type(backhaul_lut) data = sorted(data, key=lambda k: k['population_km2'], reverse=True) covered_pop_so_far = 0 for region in data: #first try to use actual data if len(existing_site_data) > 0: sites_estimated_total = existing_site_data[region['GID_id']] if region['area_km2'] > 0: sites_estimated_km2 = sites_estimated_total / region['area_km2'] else: sites_estimated_km2 = 0 #or if we don't have data estimates of sites per area else: if covered_pop_so_far < population_covered: sites_estimated_total = region['population'] * towers_per_pop sites_estimated_km2 = region['population_km2'] * towers_per_pop else: sites_estimated_total = 0 sites_estimated_km2 = 0 backhaul_fiber = 0 backhaul_copper = 0 backhaul_wireless = 0 backhaul_satellite = 0 for i in range(1, int(round(sites_estimated_total)) + 1): num = random.uniform(0, 1) if num <= tower_backhaul_lut['fiber']: backhaul_fiber += 1 elif tower_backhaul_lut['fiber'] < num <= tower_backhaul_lut['copper']: backhaul_copper += 1 elif tower_backhaul_lut['copper'] < num <= tower_backhaul_lut['microwave']: backhaul_wireless += 1 elif tower_backhaul_lut['microwave'] < num: backhaul_satellite += 1 output.append({ 'GID_0': region['GID_0'], 'GID_id': region['GID_id'], 'GID_level': region['GID_level'], # 'mean_luminosity_km2': region['mean_luminosity_km2'], 'population': region['population'], # 'pop_under_10_pop': region['pop_under_10_pop'], 'area_km2': region['area_km2'], 'population_km2': region['population_km2'], # 'pop_adults_km2': region['pop_adults_km2'], 'coverage_GSM_percent': region['coverage_GSM_percent'], 'coverage_3G_percent': region['coverage_3G_percent'], 'coverage_4G_percent': region['coverage_4G_percent'], 'total_estimated_sites': sites_estimated_total, 'total_estimated_sites_km2': sites_estimated_km2, 'sites_3G': sites_estimated_total * (region['coverage_3G_percent'] /100), 'sites_4G': sites_estimated_total * (region['coverage_4G_percent'] /100), 'backhaul_fiber': backhaul_fiber, 'backhaul_copper': backhaul_copper, 'backhaul_wireless': backhaul_wireless, 'backhaul_satellite': backhaul_satellite, }) if region['population'] == None: continue covered_pop_so_far += region['population'] return output def estimate_backhaul(iso3, region, year): """ Get the correct backhaul composition for the region. Parameters ---------- iso3 : string ISO3 country code. region : string The continent the country is part of. year : int The year of the backhaul composition desired. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] path = os.path.join(BASE_PATH, 'raw', 'gsma', 'backhaul.csv') backhaul_lut = pd.read_csv(path) backhaul_lut = backhaul_lut.to_dict('records') for item in backhaul_lut: if region == item['Region'] and int(item['Year']) == int(year): output.append({ 'tech': item['Technology'], 'percentage': int(item['Value']), }) return output def estimate_backhaul_type(backhaul_lut): """ Process the tower backhaul lut. Parameters ---------- backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : dict Tower backhaul lookup table. """ output = {} preference = [ 'fiber', 'copper', 'microwave', 'satellite' ] perc_so_far = 0 for tech in preference: for item in backhaul_lut: if tech == item['tech'].lower(): perc = item['percentage'] output[tech] = (perc + perc_so_far) / 100 perc_so_far += perc return output def area_of_polygon(geom): """ Returns the area of a polygon. Assume WGS84 before converting to projected crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- poly_area : int Area of polygon in square kilometers. """ geod = pyproj.Geod(ellps="WGS84") poly_area, poly_perimeter = geod.geometry_area_perimeter( geom ) return abs(int(poly_area)) def length_of_line(geom): """ Returns the length of a linestring. Assume WGS84 as crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- total_length : int Length of the linestring given in kilometers. """ geod = pyproj.Geod(ellps="WGS84") total_length = geod.line_length(*geom.xy) return abs(int(total_length)) def estimate_numers_of_sites(linear_regressor, x_value): """ Function to predict the y value from the stated x value. Parameters ---------- linear_regressor : object Linear regression object. x_value : float The stated x value we want to use to predict y. Returns ------- result : float The predicted y value. """ if not x_value == 0: result = linear_regressor.predict(x_value) result = result[0,0] else: result = 0 return result def exclude_small_shapes(x): """ Remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': return x.geometry # if its a multipolygon, we start trying to simplify # and remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': area1 = 0.01 area2 = 50 # dont remove shapes if total area is already very small if x.geometry.area < area1: return x.geometry # remove bigger shapes if country is really big if x['GID_0'] in ['CHL','IDN']: threshold = 0.01 elif x['GID_0'] in ['RUS','GRL','CAN','USA']: threshold = 0.01 elif x.geometry.area > area2: threshold = 0.1 else: threshold = 0.001 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def clean_coverage(x): """ Cleans the coverage polygons by remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': if x.geometry.area > 1e7: return x.geometry # if its a multipolygon, we start trying to simplify and # remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': threshold = 1e7 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def estimate_core_nodes(iso3, pop_density_km2, settlement_size): """ This function identifies settlements which exceed a desired settlement size. It is assumed fiber exists at settlements over, for example, 20,000 inhabitants. Parameters ---------- iso3 : string ISO 3 digit country code. pop_density_km2 : int Population density threshold for identifying built up areas. settlement_size : int Overall sittelement size assumption, e.g. 20,000 inhabitants. Returns ------- output : list of dicts Identified major settlements as Geojson objects. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') with rasterio.open(path) as src: data = src.read() threshold = pop_density_km2 data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') nodes = nodes[nodes['sum'] >= settlement_size] nodes['geometry'] = nodes['geometry'].centroid nodes = get_points_inside_country(nodes, iso3) output = [] for index, item in enumerate(nodes.to_dict('records')): output.append({ 'type': 'Feature', 'geometry': mapping(item['geometry']), 'properties': { 'network_layer': 'core', 'id': 'core_{}'.format(index), 'node_number': index, } }) return output def get_points_inside_country(nodes, iso3): """ Check settlement locations lie inside target country. Parameters ---------- nodes : dataframe A geopandas dataframe containing settlement nodes. iso3 : string ISO 3 digit country code. Returns ------- nodes : dataframe A geopandas dataframe containing settlement nodes. """ filename = 'national_outline.shp' path = os.path.join(DATA_INTERMEDIATE, iso3, filename) national_outline = gpd.read_file(path) bool_list = nodes.intersects(national_outline.unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) return nodes def generate_agglomeration_lut(country): """ Generate a lookup table of agglomerations. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') if not os.path.exists(folder): os.makedirs(folder) path_output = os.path.join(folder, 'agglomerations.shp') if os.path.exists(path_output): return print('Agglomeration processing has already completed') print('Working on {} agglomeration lookup table'.format(iso3)) filename = 'regions_{}_{}.shp'.format(regional_level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path, crs="epsg:4326") path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') settlements = rasterio.open(path_settlements, 'r+') settlements.nodata = 255 settlements.crs = {"epsg:4326"} folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') if not os.path.exists(folder_tifs): os.makedirs(folder_tifs) for idx, region in regions.iterrows(): bbox = region['geometry'].envelope geo = gpd.GeoDataFrame() geo = gpd.GeoDataFrame({'geometry': bbox}, index=[idx]) coords = [json.loads(geo.to_json())['features'][0]['geometry']] #chop on coords out_img, out_transform = mask(settlements, coords, crop=True) # Copy the metadata out_meta = settlements.meta.copy() out_meta.update({"driver": "GTiff", "height": out_img.shape[1], "width": out_img.shape[2], "transform": out_transform, "crs": 'epsg:4326'}) path_output = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path_output, "w", **out_meta) as dest: dest.write(out_img) print('Completed settlement.tif regional segmentation') nodes, missing_nodes = find_nodes(country, regions) missing_nodes = get_missing_nodes(country, regions, missing_nodes, 10, 10) nodes = nodes + missing_nodes nodes = gpd.GeoDataFrame.from_features(nodes, crs='epsg:4326') bool_list = nodes.intersects(regions['geometry'].unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) agglomerations = [] print('Identifying agglomerations') for idx1, region in regions.iterrows(): seen = set() for idx2, node in nodes.iterrows(): if node['geometry'].intersects(region['geometry']): agglomerations.append({ 'type': 'Feature', 'geometry': mapping(node['geometry']), 'properties': { 'id': idx1, 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': node['sum'], } }) seen.add(region[GID_level]) if len(seen) == 0: agglomerations.append({ 'type': 'Feature', 'geometry': mapping(region['geometry'].centroid), 'properties': { 'id': 'regional_node', 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': 1, } }) agglomerations = gpd.GeoDataFrame.from_features( [ { 'geometry': item['geometry'], 'properties': { 'id': item['properties']['id'], 'GID_0':item['properties']['GID_0'], GID_level: item['properties'][GID_level], 'population': item['properties']['population'], } } for item in agglomerations ], crs='epsg:4326' ) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') path_output = os.path.join(folder, 'agglomerations' + '.shp') agglomerations.to_file(path_output) agglomerations['lon'] = agglomerations['geometry'].x agglomerations['lat'] = agglomerations['geometry'].y agglomerations = agglomerations[['lon', 'lat', GID_level, 'population']] agglomerations.to_csv(os.path.join(folder, 'agglomerations.csv'), index=False) return print('Agglomerations layer complete') def process_existing_fiber(country): """ Load and process existing fiber data. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] iso2 = country['iso2'].lower() folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') if not os.path.exists(folder): os.makedirs(folder) filename = 'core_edges_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Existing fiber already processed') path = os.path.join(DATA_RAW, 'afterfiber', 'afterfiber.shp') shape = fiona.open(path) data = [] for item in shape: if item['properties']['iso2'].lower() == iso2.lower(): if item['geometry']['type'] == 'LineString': if int(item['properties']['live']) == 1: data.append({ 'type': 'Feature', 'geometry': { 'type': 'LineString', 'coordinates': item['geometry']['coordinates'], }, 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) if item['geometry']['type'] == 'MultiLineString': if int(item['properties']['live']) == 1: try: geom = MultiLineString(item['geometry']['coordinates']) for line in geom: data.append({ 'type': 'Feature', 'geometry': mapping(line), 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) except: # some geometries are incorrect from data source # exclude to avoid issues pass if len(data) == 0: return print('No existing infrastructure') data = gpd.GeoDataFrame.from_features(data) data.to_file(path_output, crs='epsg:4326') return print('Existing fiber processed') def find_nodes_on_existing_infrastructure(country): """ Find those agglomerations which are within a buffered zone of existing fiber links. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') filename = 'core_nodes_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Already found nodes on existing infrastructure') else: if not os.path.dirname(path_output): os.makedirs(os.path.dirname(path_output)) path = os.path.join(folder, 'core_edges_existing.shp') if not os.path.exists(path): return print('No existing infrastructure') existing_infra = gpd.read_file(path, crs='epsg:4326') existing_infra = existing_infra.to_crs(epsg=3857) existing_infra['geometry'] = existing_infra['geometry'].buffer(5000) existing_infra = existing_infra.to_crs(epsg=4326) # shape_output = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'core_edges_buffered.shp') # existing_infra.to_file(shape_output, crs='epsg:4326') path = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'agglomerations.shp') agglomerations = gpd.read_file(path, crs='epsg:4326') bool_list = agglomerations.intersects(existing_infra.unary_union) agglomerations = pd.concat([agglomerations, bool_list], axis=1) agglomerations = agglomerations[agglomerations[0] == True].drop(columns=0) agglomerations['source'] = 'existing' agglomerations.to_file(path_output, crs='epsg:4326') return print('Found nodes on existing infrastructure') def find_nodes(country, regions): """ Find key nodes. Parameters ---------- country : dict Contains all country specfic information. regions : dataframe All regions to be assessed. Returns ------- interim : list of dicts Contains geojson dicts for nodes. missing_nodes : list Contains the id of regions with missing nodes. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) threshold = country['pop_density_km2'] settlement_size = country['settlement_size'] folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') interim = [] missing_nodes = set() print('Working on gathering data from regional rasters') for idx, region in regions.iterrows(): path = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path) as src: data = src.read() data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) geojson_region = [ { 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level] } } ] gpd_region = gpd.GeoDataFrame.from_features( [ {'geometry': poly['geometry'], 'properties':{ GID_level: poly['properties'][GID_level] }} for poly in geojson_region ], crs='epsg:4326' ) if len(shapes_df) == 0: continue nodes = gpd.overlay(shapes_df, gpd_region, how='intersection') stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df =
pd.DataFrame(stats)
pandas.DataFrame
from typing import List, Union, Dict, Any, Tuple import os import json from glob import glob from dataclasses import dataclass import functools import argparse from sklearn import metrics import torch import pandas as pd import numpy as np from tqdm import tqdm from sklearn.metrics import precision_recall_fscore_support from datasets import ClassLabel, load_dataset, load_metric from utils import * from dataset_configs import * tqdm.pandas() # enable progress_apply def flatten_dataset_to_table(dataset) -> pd.DataFrame: """Convert the HF Dataset to a Pandas DataFrame""" results = [] for e_id, example in enumerate(tqdm(dataset)): cur_len = len(example["words"]) results.extend( [ [ e_id, i, example["words"][i], example["labels"][i], example["block_ids"][i], example["line_ids"][i], ] for i in range(cur_len) ] ) return pd.DataFrame( results, columns=["sample_id", "word_id", "word", "label", "block_id", "line_id"], ) def load_dataset_and_flatten(dataset_path) -> pd.DataFrame: if os.path.exists(dataset_path.replace(".json", ".cached.csv")): return pd.read_csv(dataset_path.replace(".json", ".cached.csv")) else: dataset = load_dataset("json", data_files=dataset_path, field="data") df = flatten_dataset_to_table(dataset["train"]) df.to_csv(dataset_path.replace(".json", ".cached.csv"), index=None) return df def _preprocess_prediction_table( test_df, pred_df, most_frequent_category=None, label_mapping: Dict = None ) -> pd.DataFrame: """Merge the prediction table with the original gt table to 1) fetch the gt and 2) insert some "un-tokenized" tokens """ merged_df = test_df.merge( pred_df.loc[:, ["sample_id", "word_id", "pred"]], how="outer", on=["sample_id", "word_id"], ) if label_mapping is not None: merged_df["pred"] = merged_df["pred"].map(label_mapping) if most_frequent_category is None: most_frequent_category = test_df["label"].value_counts().index[0] merged_df["pred"] = merged_df["pred"].fillna( most_frequent_category ) # fill in the most frequent category return merged_df @dataclass class ModelConfig: task_name: str = "" model_name: str = "" variant: str = "" def put_model_config_at_the_first(func): @functools.wraps(func) def wrap(self, *args, **kwargs): df = func(self, *args, **kwargs) columns = df.columns return df[["task_name", "model_name", "variant"] + list(columns[:-3])] return wrap class SingleModelPrediction: """Methods for processing the "test_predictions" tables for an individual model""" def __init__( self, df, label_space, model_config: ModelConfig, gt_name="label", pred_name="pred", used_metric="entropy", ): self.df = df self.label_space = label_space self.gt_name = gt_name self.pred_name = pred_name self.model_config = model_config self.used_metric = used_metric @classmethod def from_raw_prediction_table( cls, test_df, pred_df, label_space, model_config, most_frequent_category: int = None, label_mapping=None, used_metric="entropy", **kwargs, ): merged_df = _preprocess_prediction_table( test_df, pred_df, most_frequent_category, label_mapping=label_mapping, ) return cls( merged_df, label_space, model_config, used_metric=used_metric, **kwargs ) def groupby(self, level): assert level in ["block", "line"] return self.df.groupby(["sample_id", f"{level}_id"]) def calculate_per_category_scores(self): _scores = precision_recall_fscore_support( self.df[self.gt_name], self.df[self.pred_name], labels=self.label_space, zero_division=0, ) _scores = pd.DataFrame( _scores, columns=self.label_space, index=["precision", "recall", "f-score", "support"], ) return _scores def calculate_accuracy_for_group(self, gp, score_average="micro"): accuracy = (gp[self.gt_name] == gp[self.pred_name]).mean() precision, recall, fscore, _ = precision_recall_fscore_support( gp[self.gt_name], gp[self.pred_name], average=score_average, labels=self.label_space, zero_division=0, ) return { "accuracy": accuracy, "precision": precision, "recall": recall, "fscore": fscore, } def calculate_gini_score_for_group(self, gp): cts = gp[self.pred_name].value_counts() if len(cts) == 1: return 0 else: return 1 - ((cts / cts.sum()) ** 2).sum() def calculate_entropy_for_group(self, gp): cts = gp[self.pred_name].value_counts() if len(cts) == 1: return 0 else: prob = cts / cts.sum() entropy = -(prob * np.log2(prob)).sum() return entropy def create_page_level_accuracy_report(self) -> pd.DataFrame: return ( self.df.groupby("sample_id") .apply(self.calculate_accuracy_for_group) .apply(pd.Series) ) def create_page_level_gini_report(self, level="block") -> pd.Series: gini = self.groupby(level=level).apply(self.calculate_gini_score_for_group) gini = ( gini.to_frame() .rename(columns={0: "gini"}) .reset_index() .groupby("sample_id") .gini.mean() ) return gini def create_page_level_entropy_report(self, level="block") -> pd.Series: entropy = self.groupby(level=level).apply(self.calculate_entropy_for_group) entropy = ( entropy.to_frame() .rename(columns={0: "entropy"}) .reset_index() .groupby("sample_id") .entropy.mean() ) return entropy def create_page_level_ami_report(self) -> pd.DataFrame: ami = ( self.df.groupby("sample_id") .apply( lambda gp: metrics.adjusted_mutual_info_score( gp[self.gt_name], gp[self.pred_name] ) ) .to_frame() .rename(columns={0: "ami"}) ) return ami def create_page_level_overall_report(self) -> pd.DataFrame: report = self.create_page_level_accuracy_report() report["gini"] = self.create_page_level_gini_report() report["entropy"] = self.create_page_level_entropy_report() return report def create_all_page_accuracy_report(self) -> pd.Series: return pd.Series( self.calculate_accuracy_for_group(self.df, score_average="macro") ) def create_all_page_ami_report(self) -> pd.Series: return pd.Series(self.create_page_level_ami_report().mean()) def create_all_page_gini_report(self, level="block") -> pd.Series: gini = self.create_page_level_gini_report(level=level) report = pd.Series( { f"gini_{level}_average": gini.mean(), f"gini_{level}_std": gini.std(), f"gini_{level}_nonzero": gini[gini > 0].count(), } ) return report def create_all_page_entropy_report(self, level="block") -> pd.Series: entropy = self.create_page_level_entropy_report(level=level) report = pd.Series( { f"entropy_{level}_average": entropy.mean(), f"entropy_{level}_std": entropy.std(), f"entropy_{level}_nonzero": entropy[entropy > 0].count(), } ) return report def create_all_page_overall_report(self, add_line_level_gini=False) -> pd.Series: report = self.create_all_page_accuracy_report() if self.used_metric == "gini": gini = self.create_all_page_gini_report() if add_line_level_gini: gini = gini.append(self.create_all_page_gini_report(level="line")) report = report.append(gini) elif self.used_metric == "entropy": entropy = self.create_all_page_entropy_report() if add_line_level_gini: entropy = entropy.append( self.create_all_page_entropy_report(level="line") ) report = report.append(entropy) report = report.append(self.create_all_page_ami_report()) return report def majority_voting_postprocessing(self, level) -> "SingleModelPrediction": """This method attempts to use majority voting for model predictions within each group (level) to improve the accuracy. It will firstly use groupby the elements within each group, then find the most common class in the predicted categoires, and replace the others as the predicted category. """ # It might take a while df = ( self.groupby(level=level) .progress_apply( lambda gp: gp.assign(pred=gp[self.pred_name].value_counts().index[0]) ) .reset_index(drop=True) ) return self.__class__( df, **{key: getattr(self, key) for key in self.__dict__.keys() if key != "df"}, ) @dataclass class MultiModelPrediction: """Methods for processing the "test_predictions" tables for multiple models within a Experiment """ predictions: List[SingleModelPrediction] name: str def create_per_category_report(self) -> pd.DataFrame: reports = [] for prediction in self.predictions: report = prediction.calculate_per_category_scores() report["task_name"] = prediction.model_config.task_name report["model_name"] = prediction.model_config.model_name report["variant"] = prediction.model_config.variant reports.append(report) return
pd.concat(reports)
pandas.concat
from sklearn.metrics import mutual_info_score import matplotlib.pyplot as plt import networkx as nx from math import log import numpy as np import pandas as pd import os from helpers.timer import Timer def mim(size, bins, data): """ Calculates the mutual information matrix. Input: The number of genes, the number of bins and the matrix (genes, samples). Output: Matrix (np.array) with the mim. """ matrix = np.zeros((size, size), dtype = "float64") for i in np.arange(size): x = data[i].copy() for j in np.arange(i + 1, size): y = data[j].copy() matrix[i][j] = sum_mi(x, y, bins) return matrix def sum_mi(x, y, bins): """ Computes the mutual information score of the discrete probability variable of each pair of genes. Input: Data array of each gene and the number of bins for the discretization process. Output: Mutual information score variable (int). """ c_xy = np.histogram2d(x, y, bins)[0] mi = mutual_info_score(None, None, contingency=c_xy) return mi def threshold_calculation(matrix, bins): """ Computes the threshold to make a clearer mutual information matrix. Input: First MIM computation and the amount of bins to calculate the MIM of the permutation. Output: Threshold value (int). """ n_perm = 2 n_genes, n_cases = matrix.shape permutations = np.zeros((n_perm, n_genes, n_cases)) # Execution of the permutation for perm in np.arange(n_perm): # Shuffle the matrix perm_matrix = [matrix[i][np.random.permutation(n_genes)] for i in np.arange(n_cases)] perm_matrix = np.vstack((perm_matrix)) # Execution of the MIM computation dummy = mim(n_genes, bins, perm_matrix) # Save permutation permutations[perm] = dummy return np.amax(np.mean(permutations, axis = 0)) def lioness_algorithm(data): """ LIONESS algorithm. Input: data (pd.DataFrame): Numeric matrix with samples in columns. Output: Sample-specific matrix. """ with Timer('Reading data...'): columns = data.columns.to_numpy() rows = data.index.to_numpy() samples = len(columns) genes = len(rows) bins = round(1 + 3.22 * log(genes)) # sturge's rule data_np = data.to_numpy() with Timer("Computing agg..."): agg = mim(genes, bins, data_np) #threshold I_0 = threshold_calculation(agg, bins) id = np.where(agg < I_0) agg[id] = 0 agg = agg.flatten() reg = np.array([rows for i in np.arange(genes)]).flatten() tar = np.array([[x for i in np.arange(genes)] for x in rows]).flatten() output =
pd.DataFrame({"reg": reg, "tar": tar})
pandas.DataFrame
from IPython.core.error import UsageError from mock import MagicMock import numpy as np from nose.tools import assert_equals, assert_is import pandas as pd from pandas.testing import assert_frame_equal from sparkmagic.livyclientlib.exceptions import BadUserDataException from sparkmagic.utils.utils import parse_argstring_or_throw, records_to_dataframe from sparkmagic.utils.constants import SESSION_KIND_PYSPARK from sparkmagic.utils.dataframe_parser import ( DataframeHtmlParser, cell_contains_dataframe, CellComponentType, cell_components_iter, CellOutputHtmlParser, ) import unittest def test_parse_argstring_or_throw(): parse_argstring = MagicMock(side_effect=UsageError("OOGABOOGABOOGA")) try: parse_argstring_or_throw( MagicMock(), MagicMock(), parse_argstring=parse_argstring ) assert False except BadUserDataException as e: assert_equals(str(e), str(parse_argstring.side_effect)) parse_argstring = MagicMock(side_effect=ValueError("AN UNKNOWN ERROR HAPPENED")) try: parse_argstring_or_throw( MagicMock(), MagicMock(), parse_argstring=parse_argstring ) assert False except ValueError as e: assert_is(e, parse_argstring.side_effect) def test_records_to_dataframe_missing_value_first(): result = """{"z":100, "y":50} {"z":25, "nullv":1.0, "y":10}""" df = records_to_dataframe(result, SESSION_KIND_PYSPARK, True) expected = pd.DataFrame( [{"z": 100, "nullv": None, "y": 50}, {"z": 25, "nullv": 1, "y": 10}], columns=["z", "nullv", "y"], ) assert_frame_equal(expected, df) def test_records_to_dataframe_coercing(): result = """{"z":"100", "y":"2016-01-01"} {"z":"25", "y":"2016-01-01"}""" df = records_to_dataframe(result, SESSION_KIND_PYSPARK, True) expected = pd.DataFrame( [ {"z": 100, "y": np.datetime64("2016-01-01")}, {"z": 25, "y": np.datetime64("2016-01-01")}, ], columns=["z", "y"], ) assert_frame_equal(expected, df) def test_records_to_dataframe_no_coercing(): result = """{"z":"100", "y":"2016-01-01"} {"z":"25", "y":"2016-01-01"}""" df = records_to_dataframe(result, SESSION_KIND_PYSPARK, False) expected = pd.DataFrame( [{"z": "100", "y": "2016-01-01"}, {"z": "25", "y": "2016-01-01"}], columns=["z", "y"], ) assert_frame_equal(expected, df) def test_records_to_dataframe_missing_value_later(): result = """{"z":25, "nullv":1.0, "y":10} {"z":100, "y":50}""" df = records_to_dataframe(result, SESSION_KIND_PYSPARK, True) expected = pd.DataFrame( [{"z": 25, "nullv": 1, "y": 10}, {"z": 100, "nullv": None, "y": 50}], columns=["z", "nullv", "y"], )
assert_frame_equal(expected, df)
pandas.testing.assert_frame_equal
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp =
concat([a, b], keys=["key0", "key1"], names=["lvl0"])
pandas.concat
# -*- coding: utf-8 -*- import io import json import pandas as pd import ijson import codecs import warnings from commons import read_csv_with_encoding, read_json_with_encoding, distance TRANSMILENIO_FILENAME = "bogota/transmilenio" BOGOTA_INTEREST_POINTS = "bogota/bogota_interest_points.json" def nearestBusStop(point, transmilenio): d = 99999999 n = "" for i in trasmilenio: p = distance(point["latitude"], point["longitude"], transmilenio[i]["lat"], transmilenio[i]["lon"]) if p < d: d = p n = transmilenio[i]["name"] return n def read_transmilenios_as_df(): a = read_json_with_encoding(TRANSMILENIO_FILENAME) to_array = lambda e: [e["lat"], e["lon"], e["name"]] b = list(zip(*map(to_array, a.values()))) return pd.DataFrame({'name': b[2], 'lat': b[0], 'lon': b[1]}) """ Este enfoque no funciona con archivos grandes, el problema esta en commons.read_json_with_encoding cuando se usa el mรฉtodo ast.literal_eval. No funciona porque la cantidad de memoria usada es demasiado alta. USO: read_nodes_from_geojson("bogota/urb_sirena_interest_points.geojson") """ def read_nodes_from_geojson(filename): a = read_json_with_encoding(filename) r = [] for b in a["features"]: if "type" in b: if "Feature" in b["type"]: r.append(b) p = [] for b in r: if "properties" in b: if "amenity" in b["properties"]: p.append(b) c = [] for b in p: name = None lat = None lon = None if "name" in b["properties"]: name = b["properties"]["name"] if b["geometry"]["type"] == "Point": lat = b["geometry"]["coordinates"][1] lon = b["geometry"]["coordinates"][0] geo = None else: geo = b["geometry"] c.append([name, b["properties"]["amenity"], lat, lon, geo]) x = list(zip(*c)) z =
pd.DataFrame({'name': x[0], 'amenity': x[1], 'lat': x[2], "lon": x[3], "geometry": x[4]})
pandas.DataFrame
import datetime import itertools import json import logging import os import sqlite3 from sqlite3 import DatabaseError from typing import Optional, List, Dict, Tuple import networkx as nx import numpy as np import pandas as pd from ipyleaflet import Map, ScaleControl, FullScreenControl, Polyline, Icon, Marker, Circle, TileLayer, LayerGroup from ipywidgets import HTML from pandas.io.sql import DatabaseError as PandasDatabaseError from scipy.spatial import KDTree from scipy.stats import norm from pyridy import config from pyridy.osm import OSM from pyridy.osm.utils import is_point_within_line_projection, project_point_onto_line from pyridy.utils import Sensor, AccelerationSeries, LinearAccelerationSeries, MagnetometerSeries, OrientationSeries, \ GyroSeries, RotationSeries, GPSSeries, PressureSeries, HumiditySeries, TemperatureSeries, WzSeries, LightSeries, \ SubjectiveComfortSeries, AccelerationUncalibratedSeries, MagnetometerUncalibratedSeries, GyroUncalibratedSeries, \ GNSSClockMeasurementSeries, GNSSMeasurementSeries, NMEAMessageSeries from pyridy.utils.device import Device from pyridy.utils.tools import generate_random_color logger = logging.getLogger(__name__) class RDYFile: def __init__(self, path: str = "", sync_method: str = "timestamp", cutoff: bool = True, timedelta_unit: str = 'timedelta64[ns]', strip_timezone: bool = True, name=""): """ Parameters ---------- path: str Path to the Ridy File sync_method: str Sync method to be applied cutoff: bool, default: True If True, cutoffs the measurements precisely to the timestamp when the measurement was started, respectively stopped. By default Ridy measurement files can contain several seconds of measurements from before/after the button press timedelta_unit: str NumPy timedelta unit to applied strip_timezone: bool, default: True Strips timezone from timestamps as np.datetime64 does not support timezones name: str Name of the files, will be the filename if not provided """ self.path = path self.name: Optional[str] = name self.extension: Optional[str] = "" if sync_method is not None and sync_method not in ["timestamp", "device_time", "gps_time", "ntp_time"]: raise ValueError( "synchronize argument must 'timestamp', 'device_time', 'gps_time' or 'ntp_time' not %s" % sync_method) self.sync_method = sync_method self.cutoff = cutoff self.timedelta_unit = timedelta_unit self.strip_timezone = strip_timezone # Ridy App Info self.ridy_version: Optional[str] = None self.ridy_version_code: Optional[int] = None # RDY File Infos self.rdy_format_version: Optional[float] = None self.rdy_info_name: Optional[str] = None self.rdy_info_sex: Optional[str] = None self.rdy_info_age: Optional[int] = None self.rdy_info_height: Optional[float] = None self.rdy_info_weight: Optional[float] = None self.t0: Optional[np.datetime64] = None self.cs_matrix_string: Optional[str] = None self.cs_matrix: Optional[np.ndarray] = None # TODO self.timestamp_when_started: Optional[int] = None self.timestamp_when_stopped: Optional[int] = None self.ntp_timestamp: Optional[int] = None self.ntp_date_time: Optional[np.datetime64] = None self.device: Optional[Device] = None self.duration: Optional[float] = None # Sensors self.sensors: Optional[List[Sensor]] = [] # Measurement Series self.measurements = {AccelerationSeries: AccelerationSeries(), AccelerationUncalibratedSeries: AccelerationUncalibratedSeries(), LinearAccelerationSeries: LinearAccelerationSeries(), MagnetometerSeries: MagnetometerSeries(), MagnetometerUncalibratedSeries: MagnetometerUncalibratedSeries(), OrientationSeries: OrientationSeries(), GyroSeries: GyroSeries(), GyroUncalibratedSeries: GyroUncalibratedSeries(), RotationSeries: RotationSeries(), GPSSeries: GPSSeries(), GNSSClockMeasurementSeries: GNSSClockMeasurementSeries(), GNSSMeasurementSeries: GNSSMeasurementSeries(), NMEAMessageSeries: NMEAMessageSeries(), PressureSeries: PressureSeries(), TemperatureSeries: TemperatureSeries(), HumiditySeries: HumiditySeries(), LightSeries: LightSeries(), WzSeries: WzSeries(), SubjectiveComfortSeries: SubjectiveComfortSeries()} # OSM Data (set by Campaign) self.osm: Optional[OSM] = None self.matched_nodes = [] # Nodes from Map Matching self.matched_ways = [] # Ways from Map Matching if self.path: self.load_file(self.path) if self.timestamp_when_started and self.timestamp_when_stopped: self.duration = (self.timestamp_when_stopped - self.timestamp_when_started) * 1e-9 if self.sync_method: self._synchronize() else: logging.warning("RDYFile instantiated without a path") pass # def __getitem__(self, idx): # key = list(self.measurements.keys())[idx] # return self.measurements[key] def __iter__(self): """ Returns ------- FileIterator """ return FileIterator(self) def __repr__(self): return "Filename: %s, T0: %s, Duration: %s" % (self.name, str(self.t0), str(datetime.timedelta(seconds=self.duration))) def _do_candidate_search(self, osm_xy: np.ndarray, track_xy: np.ndarray, hor_acc: np.ndarray): """ Internal method to search for candidate edges for map matching """ # Find the closest coordinates using KDTrees kd_tree_osm = KDTree(osm_xy) kd_tree_track = KDTree(track_xy) # Indices of OSM nodes that are close to each respective GPS point within radius r indices = kd_tree_track.query_ball_tree(kd_tree_osm, r=100) c_dict = {} # Dict with node candidates for each GPS coord edges = [] # Candidate edges with emission probabilities # Perform search for node candidate on all GPS coords for i, idxs in enumerate(indices): # Get unique ways based on indices c_ways = list(set(list(itertools.chain(*[self.osm.nodes[idx].ways for idx in idxs])))) # Find candidate line segments c_segs = [] for w in c_ways: n = w.nodes segs = [] # List of suitable line segments for n1, n2 in zip(n, n[1:]): x1, y1 = n1.attributes["x"], n1.attributes["y"] x2, y2 = n2.attributes["x"], n2.attributes["y"] # Only take those line segment into consideration where the perpendicular projection # of the GPS coords lies inside the line segment b = is_point_within_line_projection(line=[[x1, y1], [x2, y2]], point=track_xy[i]) if b: # Point of orthogonal intersection p, d = project_point_onto_line(line=[[x1, y1], [x2, y2]], point=track_xy[i]) if d < hor_acc[i]: p_lon, p_lat = self.osm.utm_proj(p[0], p[1], inverse=True) segs.append([d, p_lon, p_lat, n1, n2, w.id, None, i]) if segs: segs = np.array(segs) i_min = np.argmin( segs[:, 0]) # Select candidate line segment based on smallest perpendicular distance n1, n2 = segs[i_min, 3], segs[i_min, 4] e1 = list(self.osm.G.edges(n1.id, keys=True)) e2 = list(self.osm.G.edges(n2.id, keys=True)) inter = list(set(e1).intersection(e2)) if len(inter) == 0: # TODO c_seg_e = e1[0] else: c_seg_e = inter[0] c_seg = segs[i_min] c_segs.append(c_seg) edges.append([c_seg_e, hor_acc[i], c_seg[0]]) c_dict[i] = {"c_ways": c_ways, "c_segs": c_segs} # Calculate emission probabilities for each edge candidate c_edges = {} if edges: edges = np.array(edges, dtype='object') e_probs = norm.pdf(edges[:, 2].astype(float), np.zeros(len(edges)), edges[:, 1].astype(float)) for i, e_prob in enumerate(e_probs): if edges[i][0] not in c_edges: c_edges[edges[i][0]] = {"e_prob": [e_prob]} else: c_edges[edges[i][0]]["e_prob"].append(e_prob) return c_dict, c_edges def _synchronize(self): """ Internal method that synchronizes the timestamps to a given sync timestamp """ if self.sync_method == "timestamp": for m in self.measurements.values(): m.synchronize("timestamp", self.timestamp_when_started, timedelta_unit=self.timedelta_unit) elif self.sync_method == "device_time": if self.t0: for m in self.measurements.values(): m.synchronize("device_time", self.timestamp_when_started, self.t0, timedelta_unit=self.timedelta_unit) else: logger.warning("(%s) t0 is None, falling back to timestamp synchronization" % self.name) self.sync_method = "timestamp" self._synchronize() elif self.sync_method == "gps_time": if len(self.measurements[GPSSeries]) > 0: sync_timestamp = self.measurements[GPSSeries].time[0] utc_sync_time = self.measurements[GPSSeries].utc_time[0] for i, t in enumerate(self.measurements[ GPSSeries].utc_time): # The first utc_time value ending with 000 is a real GPS measurement if str(t)[-3:] == "000": utc_sync_time = t sync_timestamp = self.measurements[GPSSeries].time[i] break sync_time = np.datetime64(int(utc_sync_time * 1e6), "ns") for m in self.measurements.values(): m.synchronize("gps_time", sync_timestamp, sync_time, timedelta_unit=self.timedelta_unit) else: logger.warning("(%s) No GPS time recording, falling back to device_time synchronization" % self.name) self.sync_method = "device_time" self._synchronize() elif self.sync_method == "ntp_time": if self.ntp_timestamp and self.ntp_date_time: for m in self.measurements.values(): m.synchronize("ntp_time", self.ntp_timestamp, self.ntp_date_time, timedelta_unit=self.timedelta_unit) else: logger.warning("(%s) No ntp timestamp and datetime, falling back to device_time synchronization" % self.name) self.sync_method = "device_time" self._synchronize() else: raise ValueError( "sync_method must 'timestamp', 'device_time', 'gps_time' or 'ntp_time' not %s" % self.sync_method) pass def create_map(self, t_lim: Tuple[np.datetime64, np.datetime64] = None, show_hor_acc: bool = False) -> Map: """ Creates an ipyleaflet Map using OpenStreetMap and OpenRailwayMap to show the GPS track of the measurement file Parameters ---------- t_lim: tuple, default: None Time limit as a tuple of np.datetime64 to show only parts of the GPS track that are within the specified time interval show_hor_acc : bool, default: False If true shows the horizontal accuracies for each measurement point using circles. The likelihood that that the real position is within the circle is defined as 68 % Returns ------- Map """ gps_series = self.measurements[GPSSeries] coords = gps_series.to_ipyleaflef() time = gps_series.time hor_acc = gps_series.hor_acc if coords == [[]]: logger.warning("(%s) Cant create map, GPSSeries is empty!" % self.name) else: if t_lim: if type(t_lim) != tuple: raise ValueError("t_lim must be a tuple of np.datetime64") if t_lim[0] > t_lim[1]: raise ValueError("The first datetime for t_lim must be smaller than the second!") mask = (gps_series.time >= t_lim[0]) & (gps_series.time <= t_lim[1]) coords = [c for i, c in enumerate(coords) if mask[i]] time = [t for i, t in enumerate(gps_series.time) if mask[i]] hor_acc = [h for i, h in enumerate(gps_series.hor_acc) if mask[i]] color = generate_random_color("HEX") m = Map(center=self.determine_track_center()[::-1], zoom=12, scroll_wheel_zoom=True, basemap=config.OPEN_STREET_MAP_DE) m.add_control(ScaleControl(position='bottomleft')) m.add_control(FullScreenControl()) # Add map m.add_layer(config.OPEN_RAILWAY_MAP) file_polyline = Polyline(locations=coords, color=color, fill=False, weight=4, dash_array='10, 10') m.add_layer(file_polyline) start_marker = Marker(location=tuple(coords[0]), draggable=False, icon=config.START_ICON) end_marker = Marker(location=tuple(coords[-1]), draggable=False, icon=config.END_ICON) start_message = HTML() end_message = HTML() start_message.value = "<p>Start:</p><p>" + self.name + "</p><p>" \ + str(time[0] or 'n/a') + "</p><p>" \ + str(getattr(self.device, "manufacturer", "n/a")) + "; " \ + str(getattr(self.device, "model", "n/a")) + "</p>" end_message.value = "<p>End:</p><p>" + self.name + "</p><p>" \ + str(time[-1] or 'n/a') + "</p><p>" \ + str(getattr(self.device, "manufacturer", "n/a")) + "; " \ + str(getattr(self.device, "model", "n/a")) + "</p>" start_marker.popup = start_message end_marker.popup = end_message m.add_layer(start_marker) m.add_layer(end_marker) if show_hor_acc: circles = [] for c, h in zip(coords, hor_acc): circle = Circle() circle.location = (c[0], c[1]) circle.radius = int(h) circle.color = "#00549F" circle.fill_color = "#00549F" circle.weight = 3 circle.fill_opacity = 0.1 circles.append(circle) l_circles = LayerGroup(layers=circles) m.add_layer(l_circles) return m def determine_track_center(self, gps_series: Optional[GPSSeries] = None) -> (float, float): """ Determines the geographical center of the GPSSeries, returns None if the GPSSeries is emtpy. Parameters ---------- gps_series: GPSSeries, default: None If not None, takes the given GPSSeries to determine the track center Returns ------- float, float """ if not gps_series: gps_series = self.measurements[GPSSeries] if gps_series.is_empty(): logger.warning("(%s) Cant determine track center, GPSSeries is empty!" % self.name) else: center_lon = (gps_series.lon.max() + gps_series.lon.min()) / 2 center_lat = (gps_series.lat.max() + gps_series.lat.min()) / 2 logging.info("Geographic center of track: Lon: %s, Lat: %s" % (str(center_lon), str(center_lat))) return center_lon, center_lat def do_map_matching(self, v_thres: float = 1, algorithm: str = "pyridy", alpha: int = 1.0, beta: int = 1.0): """ Performs map matching of the GPS track to closest OSM nodes/ways Parameters ---------- alpha: float, default: 1.0 Weighting Parameter for the Map Matching Algorithm. Alpha represents the default lange of an edge in the Graph beta: float, default: 1.0 Beta is a scaling factor for the emission probabilities. algorithm: str, default: pyridy Algorithm to be used, can be "pyridy" or "nx". The pyridy algorithm also incorporates how switches can be transited v_thres: float Speed threshold, GPS points measured with a velocity below v_thres [m/s] will not be considered Returns ------- """ if algorithm not in ["nx", "pyridy"]: raise ValueError("(%s) Algorithm must be either nx or pyridy, not %s" % (self.name, algorithm)) if self.osm: # Prepare data gps_coords = self.measurements[GPSSeries] lon = gps_coords.lon[gps_coords.speed > v_thres] lat = gps_coords.lat[gps_coords.speed > v_thres] hor_acc = gps_coords.hor_acc[gps_coords.speed > v_thres] n_gps = len(lon) x, y = self.osm.utm_proj(lon, lat) track_xy = np.vstack([x, y]).T osm_xy = self.osm.get_coords(frmt="xy") c_dict, c_edges = self._do_candidate_search(osm_xy, track_xy, hor_acc) # Initialize edge weights for e in self.osm.G.edges: self.osm.G.edges[e]["c_weight"] = 1*alpha for k in c_edges.keys(): self.osm.G.edges[k]["c_weight"] = 1 / (1 + beta*sum(c_edges[k]["e_prob"])) # Perform map matching s_n = None for i in range(n_gps): if len(c_dict[i]["c_segs"]) > 0: s_n = c_dict[i]["c_segs"][np.array(c_dict[i]["c_segs"])[:, 0].argmin()][3].id break e_n = None for i in reversed(range(n_gps)): if len(c_dict[i]["c_segs"]) > 0: e_n = c_dict[i]["c_segs"][np.array(c_dict[i]["c_segs"])[:, 0].argmin()][4].id break if not s_n or not e_n: logger.warning("(%s) Map matching failed, no start or end node found!" % self.name) else: # Use Dijkstra's shortest path to perform map matching, but use a weighting based on emission # probabilities instead of node distances if algorithm == 'pyridy': # Matched node ids _, _, m_n_ids = self.osm.get_shortest_path(source=s_n, target=e_n, weight="c_weight") else: m_n_ids = nx.shortest_path(self.osm.G, source=s_n, target=e_n, weight="c_weight") self.matched_nodes = [self.osm.node_dict[n] for n in m_n_ids] # Matched nodes m_w_ids = [self.osm.G[n1][n2][0]["way_id"] for n1, n2 in zip(m_n_ids, m_n_ids[1:])] self.matched_ways = list(set([self.osm.way_dict[w_id] for w_id in m_w_ids])) # Mapped Ways logger.info("(%s) Found %d nodes that match the files GPS track!" % (self.name, len(self.matched_nodes))) else: logger.warning("(%s) Can't do map matching since no file contains no OSM data" % self.name) pass def get_integrity_report(self): """ Returns a dict that contains information which measurement types are available in the file Returns ------- dict """ report = {} for k, v in self.measurements.items(): if len(v) > 0: report[k.__name__] = True else: report[k.__name__] = False attr = self.__dict__.copy() attr.update(attr["device"].__dict__.copy()) for a in ["db_con", "measurements", "device", "sensors"]: attr.pop(a) pass report.update(attr) return report def load_file(self, path: str): """ Loads a single Ridy file located at path Parameters ---------- path Path to the ridy file """ logger.info("Loading file: %s" % path) _, self.extension = os.path.splitext(path) _, self.name = os.path.split(path) if self.extension == ".rdy": with open(path, 'r') as file: rdy = json.load(file) if 'Ridy_Version' in rdy: self.ridy_version = rdy['Ridy_Version'] else: logger.info("No Ridy_Version in file: %s" % self.name) self.ridy_version = None if 'Ridy_Version_Code' in rdy: self.ridy_version_code = rdy['Ridy_Version_Code'] else: logger.info("No Ridy_Version_Code in file: %s" % self.name) self.ridy_version_code = None if 'RDY_Format_Version' in rdy: self.rdy_format_version = rdy['RDY_Format_Version'] else: logger.info("No RDY_Format_Version in file: %s" % self.name) self.rdy_format_version = None if 'RDY_Info_Name' in rdy: self.rdy_info_name = rdy['RDY_Info_Name'] else: logger.info("No RDY_Info_Name in file: %s" % self.name) self.rdy_info_name = None if 'RDY_Info_Sex' in rdy: self.rdy_info_sex = rdy['RDY_Info_Sex'] else: logger.info("No RDY_Info_Sex in file: %s" % self.name) self.rdy_info_sex = None if 'RDY_Info_Age' in rdy: self.rdy_info_age = rdy['RDY_Info_Age'] else: logger.info("No RDY_Info_Age in file: %s" % self.name) self.rdy_info_age = None if 'RDY_Info_Height' in rdy: self.rdy_info_height = rdy['RDY_Info_Height'] else: logger.info("No RDY_Info_Height in file: %s" % self.name) self.rdy_info_height = None if 'RDY_Info_Weight' in rdy: self.rdy_info_weight = rdy['RDY_Info_Weight'] else: logger.info("No RDY_Info_Weight in file: %s" % self.name) self.rdy_info_weight = None if 't0' in rdy: if self.strip_timezone: t0 = datetime.datetime.fromisoformat(rdy['t0']).replace(tzinfo=None) self.t0 = np.datetime64(t0) else: self.t0 = np.datetime64(rdy['t0']) else: self.t0 = None logger.info("No t0 in file: %s" % self.name) if 'cs_matrix_string' in rdy: self.cs_matrix_string = rdy['cs_matrix_string'] else: self.cs_matrix_string = None logger.info("No t0 in file: %s" % self.name) if 'timestamp_when_started' in rdy: self.timestamp_when_started = rdy['timestamp_when_started'] else: self.timestamp_when_started = None logger.info("No timestamp_when_started in file: %s" % self.name) if 'timestamp_when_stopped' in rdy: self.timestamp_when_stopped = rdy['timestamp_when_stopped'] else: self.timestamp_when_stopped = None logger.info("No timestamp_when_stopped in file: %s" % self.name) if 'ntp_timestamp' in rdy: self.ntp_timestamp = rdy['ntp_timestamp'] else: self.ntp_timestamp = None logger.info("No ntp_timestamp in file: %s" % self.name) if 'ntp_date_time' in rdy: if self.strip_timezone: ntp_datetime_str = rdy['ntp_date_time'] if ntp_datetime_str: ntp_date_time = datetime.datetime.fromisoformat(ntp_datetime_str).replace(tzinfo=None) self.ntp_date_time = np.datetime64(ntp_date_time) else: self.ntp_date_time = None else: self.ntp_date_time = np.datetime64(rdy['t0']) else: self.ntp_date_time = None logger.info("No ntp_date_time in file: %s" % self.name) if "device" in rdy: self.device = Device(**rdy['device_info']) else: logger.info("No device information in file: %s" % self.name) if "sensors" in rdy: for sensor in rdy['sensors']: self.sensors.append(Sensor(**sensor)) else: logger.info("No sensor descriptions in file: %s" % self.name) if "acc_series" in rdy: self.measurements[AccelerationSeries] = AccelerationSeries(rdy_format_version=self.rdy_format_version, **rdy['acc_series']) else: logger.info("No Acceleration Series in file: %s" % self.name) if "acc_uncal_series" in rdy: self.measurements[AccelerationUncalibratedSeries] = AccelerationUncalibratedSeries( rdy_format_version=self.rdy_format_version, **rdy['acc_uncal_series']) else: logger.info("No uncalibrated Acceleration Series in file: %s" % self.name) if "lin_acc_series" in rdy: self.measurements[LinearAccelerationSeries] = LinearAccelerationSeries( rdy_format_version=self.rdy_format_version, **rdy['lin_acc_series']) else: logger.info("No Linear Acceleration Series in file: %s" % self.name) if "mag_series" in rdy: self.measurements[MagnetometerSeries] = MagnetometerSeries(rdy_format_version=self.rdy_format_version, **rdy['mag_series']) else: logger.info("No Magnetometer Series in file: %s" % self.name) if "mag_uncal_series" in rdy: self.measurements[MagnetometerUncalibratedSeries] = MagnetometerUncalibratedSeries( rdy_format_version=self.rdy_format_version, **rdy['mag_uncal_series']) else: logger.info("No uncalibrated Magnetometer Series in file: %s" % self.name) if "orient_series" in rdy: self.measurements[OrientationSeries] = OrientationSeries(rdy_format_version=self.rdy_format_version, **rdy['orient_series']) else: logger.info("No Orientation Series in file: %s" % self.name) if "gyro_series" in rdy: self.measurements[GyroSeries] = GyroSeries(rdy_format_version=self.rdy_format_version, **rdy['gyro_series']) else: logger.info("No Gyro Series in file: %s" % self.name) if "gyro_uncal_series" in rdy: self.measurements[GyroUncalibratedSeries] = GyroUncalibratedSeries( rdy_format_version=self.rdy_format_version, **rdy['gyro_uncal_series']) else: logger.info("No uncalibrated Gyro Series in file: %s" % self.name) if "rot_series" in rdy: self.measurements[RotationSeries] = RotationSeries(rdy_format_version=self.rdy_format_version, **rdy['rot_series']) else: logger.info("No Rotation Series in file: %s" % self.name) if "gps_series" in rdy: self.measurements[GPSSeries] = GPSSeries(rdy_format_version=self.rdy_format_version, **rdy['gps_series']) else: logger.info("No GPS Series in file: %s" % self.name) if "gnss_series" in rdy: self.measurements[GNSSMeasurementSeries] = GNSSMeasurementSeries( rdy_format_version=self.rdy_format_version, **rdy['gnss_series']) else: logger.info("No GPS Series in file: %s" % self.name) if "gnss_clock_series" in rdy: self.measurements[GNSSClockMeasurementSeries] = GNSSClockMeasurementSeries( rdy_format_version=self.rdy_format_version, **rdy['gnss_clock_series']) else: logger.info("No GNSS Clock Series in file: %s" % self.name) if "nmea_series" in rdy: self.measurements[NMEAMessageSeries] = NMEAMessageSeries( rdy_format_version=self.rdy_format_version, **rdy['nmea_series']) else: logger.info("No GPS Series in file: %s" % self.name) if "pressure_series" in rdy: self.measurements[PressureSeries] = PressureSeries(rdy_format_version=self.rdy_format_version, **rdy['pressure_series']) else: logger.info("No Pressure Series in file: %s" % self.name) if "temperature_series" in rdy: self.measurements[TemperatureSeries] = TemperatureSeries(rdy_format_version=self.rdy_format_version, **rdy['temperature_series']) else: logger.info("No Temperature Series in file: %s" % self.name) if "humidity_series" in rdy: self.measurements[HumiditySeries] = HumiditySeries(rdy_format_version=self.rdy_format_version, **rdy['humidity_series']) else: logger.info("No Humidity Series in file: %s" % self.name) if "light_series" in rdy: self.measurements[LightSeries] = LightSeries(rdy_format_version=self.rdy_format_version, **rdy['light_series']) else: logger.info("No Light Series in file: %s" % self.name) if "wz_series" in rdy: self.measurements[WzSeries] = WzSeries(rdy_format_version=self.rdy_format_version, **rdy['wz_series']) else: logger.info("No Wz Series in file: %s" % self.name) if "subjective_comfort_series" in rdy: self.measurements[SubjectiveComfortSeries] = SubjectiveComfortSeries( rdy_format_version=self.rdy_format_version, **rdy['subjective_comfort_series']) else: logger.info("No Subjective Comfort Series in file: %s" % self.name) pass elif self.extension == ".sqlite": db_con = sqlite3.connect(path) try: info: Dict = dict(pd.read_sql_query("SELECT * from measurement_information_table", db_con)) except (DatabaseError, PandasDatabaseError) as e: logger.error(e) # Older files can contain wrong table name try: info = dict(pd.read_sql_query("SELECT * from measurment_information_table", db_con)) except (DatabaseError, PandasDatabaseError) as e: logger.error( "DatabaseError occurred when accessing measurement_information_table, file: %s" % self.name) logger.error(e) info = {} try: sensor_df = pd.read_sql_query("SELECT * from sensor_descriptions_table", db_con) for _, row in sensor_df.iterrows(): self.sensors.append(Sensor(**dict(row))) except (DatabaseError, PandasDatabaseError) as e: logger.error( "DatabaseError occurred when accessing sensor_descriptions_table, file: %s" % self.name) logger.error(e) try: device_df = pd.read_sql_query("SELECT * from device_information_table", db_con) self.device = Device(**dict(device_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing device_information_table, file: %s" % self.name) logger.error(e) self.device = Device() # Info if 'ridy_version' in info and len(info['ridy_version']) > 1: logger.info("Measurement information table contains more than 1 row!") if 'ridy_version' in info and len(info['ridy_version']) > 0: self.ridy_version = info['ridy_version'].iloc[-1] if 'ridy_version_code' in info and len(info['ridy_version_code']) > 0: self.ridy_version_code = info['ridy_version_code'].iloc[-1] if 'rdy_format_version' in info and len(info['rdy_format_version']) > 0: self.rdy_format_version = info['rdy_format_version'].iloc[-1] if 'rdy_info_name' in info and len(info['rdy_info_name']) > 0: self.rdy_info_name = info['rdy_info_name'].iloc[-1] if 'rdy_info_sex' in info and len(info['rdy_info_sex']) > 0: self.rdy_info_sex = info['rdy_info_sex'].iloc[-1] if 'rdy_info_age' in info and len(info['rdy_info_age']) > 0: self.rdy_info_age = info['rdy_info_age'].iloc[-1] if 'rdy_info_height' in info and len(info['rdy_info_height']) > 0: self.rdy_info_height = info['rdy_info_height'].iloc[-1] if 'rdy_info_weight' in info and len(info['rdy_info_weight']) > 0: self.rdy_info_weight = info['rdy_info_weight'].iloc[-1] if 't0' in info and len(info['t0']) > 0: if self.strip_timezone: t0 = datetime.datetime.fromisoformat(info['t0'].iloc[-1]).replace(tzinfo=None) self.t0 = np.datetime64(t0) else: self.t0 = np.datetime64(info['t0'].iloc[-1]) if 'cs_matrix_string' in info and len(info['cs_matrix_string']) > 0: self.cs_matrix_string = info['cs_matrix_string'].iloc[-1] if 'timestamp_when_started' and len(info['timestamp_when_started']) > 0: self.timestamp_when_started = info['timestamp_when_started'].iloc[-1] if 'timestamp_when_stopped' in info and len(info['timestamp_when_stopped']) > 0: self.timestamp_when_stopped = info['timestamp_when_stopped'].iloc[-1] if 'ntp_timestamp' in info and len(info['ntp_timestamp']) > 0: self.ntp_timestamp = info['ntp_timestamp'].iloc[-1] if 'ntp_date_time' in info and len(info['ntp_date_time']) > 0: if self.strip_timezone: ntp_datetime_str = info['ntp_date_time'].iloc[-1] if ntp_datetime_str: ntp_date_time = datetime.datetime.fromisoformat(ntp_datetime_str).replace(tzinfo=None) self.ntp_date_time = np.datetime64(ntp_date_time) else: self.ntp_date_time = None else: self.ntp_date_time = np.datetime64(info['ntp_date_time'].iloc[-1]) # Measurements try: acc_df = pd.read_sql_query("SELECT * from acc_measurements_table", db_con) self.measurements[AccelerationSeries] = AccelerationSeries(rdy_format_version=self.rdy_format_version, **dict(acc_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing acc_measurements_table, file: %s" % self.name) logger.error(e) try: acc_uncal_df = pd.read_sql_query("SELECT * from acc_uncal_measurements_table", db_con) self.measurements[AccelerationUncalibratedSeries] = AccelerationUncalibratedSeries( rdy_format_version=self.rdy_format_version, **dict(acc_uncal_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing acc_uncal_measurements_table, file: %s" % self.name) logger.error(e) try: lin_acc_df = pd.read_sql_query("SELECT * from lin_acc_measurements_table", db_con) self.measurements[LinearAccelerationSeries] = LinearAccelerationSeries( rdy_format_version=self.rdy_format_version, **dict(lin_acc_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error( "DatabaseError occurred when accessing lin_acc_measurements_table, file: %s" % self.name) logger.error(e) try: mag_df = pd.read_sql_query("SELECT * from mag_measurements_table", db_con) self.measurements[MagnetometerSeries] = MagnetometerSeries(rdy_format_version=self.rdy_format_version, **dict(mag_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing mag_measurements_table, file: %s" % self.name) logger.error(e) try: mag_uncal_df = pd.read_sql_query("SELECT * from mag_uncal_measurements_table", db_con) self.measurements[MagnetometerUncalibratedSeries] = MagnetometerUncalibratedSeries( rdy_format_version=self.rdy_format_version, **dict(mag_uncal_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing mag_uncal_measurements_table, file: %s" % self.name) logger.error(e) try: orient_df = pd.read_sql_query("SELECT * from orient_measurements_table", db_con) self.measurements[OrientationSeries] = OrientationSeries(rdy_format_version=self.rdy_format_version, **dict(orient_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error( "DatabaseError occurred when accessing orient_measurements_table, file: %s" % self.name) logger.error(e) try: gyro_df = pd.read_sql_query("SELECT * from gyro_measurements_table", db_con) self.measurements[GyroSeries] = GyroSeries(rdy_format_version=self.rdy_format_version, **dict(gyro_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing gyro_measurements_table, file: %s" % self.name) logger.error(e) try: gyro_uncal_df = pd.read_sql_query("SELECT * from gyro_uncal_measurements_table", db_con) self.measurements[GyroUncalibratedSeries] = GyroUncalibratedSeries( rdy_format_version=self.rdy_format_version, **dict(gyro_uncal_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error( "DatabaseError occurred when accessing gyro_uncal_measurements_table, file: %s" % self.name) logger.error(e) try: rot_df = pd.read_sql_query("SELECT * from rot_measurements_table", db_con) self.measurements[RotationSeries] = RotationSeries(rdy_format_version=self.rdy_format_version, **dict(rot_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing rot_measurements_table, file: %s" % self.name) logger.error(e) try: gps_df = pd.read_sql_query("SELECT * from gps_measurements_table", db_con) self.measurements[GPSSeries] = GPSSeries(rdy_format_version=self.rdy_format_version, **dict(gps_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing gps_measurements_table, file: %s" % self.name) logger.error(e) try: gnss_df = pd.read_sql_query("SELECT * from gnss_measurement_table", db_con) self.measurements[GNSSMeasurementSeries] = GNSSMeasurementSeries( rdy_format_version=self.rdy_format_version, **dict(gnss_df)) except (DatabaseError, PandasDatabaseError) as e: logger.error("DatabaseError occurred when accessing gnss_measurement_table, file: %s" % self.name) logger.error(e) try: gnss_clock_df =
pd.read_sql_query("SELECT * from gnss_clock_measurement_table", db_con)
pandas.read_sql_query
import json import math import numpy as np import os.path import pandas as pd import skimage.io import sys from xview3.utils.grid_index import GridIndex distance_thresh = 10 def merge(preds): for i, pred in enumerate(preds): if 'input_idx' in pred.columns: pred = pred.drop(columns=['input_idx']) pred.insert(len(pred.columns), 'input_idx', [i]*len(pred)) pred = pd.concat(preds).reset_index() new_scores = {} for scene_id in pred.scene_id.unique(): print(scene_id) cur = pred[pred.scene_id == scene_id] # Insert into grid index. grid_index = GridIndex(distance_thresh) for index, row in cur.iterrows(): grid_index.insert((row.detect_scene_row, row.detect_scene_column), index) # Set score of each point to the average over highest-scoring neighbors from each input_idx. for index, row in cur.iterrows(): rect = [ row.detect_scene_row - distance_thresh, row.detect_scene_column - distance_thresh, row.detect_scene_row + distance_thresh, row.detect_scene_column + distance_thresh, ] best = [0.0]*len(preds) for other_index in grid_index.search(rect): other = pred.loc[other_index] dx = other.detect_scene_column - row.detect_scene_column dy = other.detect_scene_row - row.detect_scene_row distance = math.sqrt(dx*dx+dy*dy) if distance > distance_thresh: continue best[other.input_idx] = max(best[other.input_idx], other.score) best[row.input_idx] = row.score new_scores[index] = np.mean(best) print('set scores') for index, score in new_scores.items(): pred.loc[index, 'score'] = score pred = pred.drop(columns=['index']) return pred if __name__ == "__main__": in_paths = sys.argv[1:-1] out_path = sys.argv[-1] preds = [] for i, in_path in enumerate(in_paths): pred =
pd.read_csv(in_path)
pandas.read_csv
# -*- coding: utf-8 -*- import sys, os import pandas as pd import openpyxl from openpyxl.styles import PatternFill import numpy as np from collections import defaultdict from scanner_map import searchKey, CertifiedManufacturerModelNameCTDict, CertifiedManufacturerCTDict, TrueManufacturerModelNameCTDict, TrueManufacturerCTDict from scanner_map import ScannerType, CertifiedManufacturerModelNameICADict, CertifiedManufacturerICADict, TrueManufacturerModelNameICADict, TrueManufacturerICADict from datetime import datetime from openpyxl.utils import get_column_letter from openpyxl.styles import Font, Color, Border, Side from openpyxl.styles.differential import DifferentialStyle from openpyxl.formatting import Rule def highlight_columns(sheet, columns=[], color='A5A5A5', offset=2): for col in columns: cell = sheet.cell(1, col+offset) cell.fill = PatternFill(start_color=color, end_color=color, fill_type = 'solid') return sheet def merge_defaultdicts(d,d1): for k,v in d1.items(): if (k in d): d[k].update(d1[k]) else: d[k] = d1[k] return d def covertDate(date_str): month_lookup = defaultdict(lambda: None, {'JAN':1, 'FEB':2, 'MAR':3, 'APR':4, 'MAY':5, 'JUN':6, 'JUL':7, 'AUG':8,'SEP':9, 'OCT':10,'NOV':11, 'DEC':12}) day = str(date_str[0:2]) month = str(month_lookup[date_str[2:5]]) year = date_str[5:9] s = year + month + day return datetime.strptime(s, '%Y%m%d') def checkModalities(modList0, modList1): for m0 in modList0: for m1 in modList1: if m0==m1: return True return False def splitScannerList(filepath_scanner): #filepath_scanner = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence_V05_manual.xlsx' df_scanner = pd.read_excel(filepath_scanner, 'linear', index_col=0) df_missing_CT = pd.DataFrame(columns=df_scanner.columns) df_missing_XA = pd.DataFrame(columns=df_scanner.columns) df_missing = df_scanner[(df_scanner['ECRF_MISSING']==True) & (df_scanner['ITT']!=2)] for index, row in df_missing.iterrows(): if 'DICOM XA' in row['ManualCheck']: df_missing_XA = df_missing_XA.append(row) if 'DICOM CT' in row['ManualCheck']: df_missing_CT = df_missing_CT.append(row) # Update CT sheet writer = pd.ExcelWriter(filepath_scanner, engine="openpyxl", mode="a") # Update CT sheet sheet_name = 'ECRF_MISSING_CT' workbook = writer.book df_missing_CT.to_excel(writer, sheet_name=sheet_name, index=False) sheet = workbook[sheet_name] # Update XA sheet sheet_name = 'ECRF_MISSING_XA' workbook = writer.book df_missing_XA.to_excel(writer, sheet_name=sheet_name, index=False) sheet = workbook[sheet_name] writer.save() # Read discharge data filepath_dicom = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/discharge_dicom_27082020_OT.xlsx' filepath_ecrf_study = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/ecrf_study_20200827.xlsx' filepath_scanner_old = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence_V04_manual.xlsx' filepath_scanner = 'H:/cloud/cloud_data/Projects/CACSFilter/data/scanner/scanner_correspondence.xlsx' df_dicom = pd.read_excel(filepath_dicom, 'linear', index_col=0) #df_dicom=df_dicom[0:1000] df_dicom.replace(to_replace=[np.nan], value='', inplace=True) df_ecrf = pd.read_excel(filepath_ecrf_study, 'Tabelle1') #df_ecrf=df_ecrf[0:1000] df_scanner_old = pd.read_excel(filepath_scanner_old, 'linear', index_col=0) df_scanner_old.replace(to_replace=[np.nan], value='', inplace=True) columns_scanner_rename=['PatientID', 'Site', 'ITT', 'RD_MB', '1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3', 'duplicate entry', 'FFR', 'MRI_visite', 'Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan', 'Date cec_ct', 'Date pet ct', 'Date ldct', 'ldct 3m', 'ldct 6m', 'ldct 12m', 'Date FU ICA scan'] columns_scanner=['PatientID', 'Site', 'ITT', 'RD_MB', '1. Date of CT', '1. Date of CT StudyInstanceUID', 'Date of ICA scan', 'Date of ICA scan StudyInstanceUID', 'Date of ICA scan 2', 'Date of ICA scan 2 StudyInstanceUID', 'Date of staged PCI 1', 'Date of staged PCI 1 StudyInstanceUID', 'Date of staged PCI 2', 'Date of staged PCI 2 StudyInstanceUID', 'Date of staged PCI 3', 'Date of staged PCI 3 StudyInstanceUID', 'duplicate entry', 'FFR', 'FFR StudyInstanceUID', 'MRI_visite', 'Date of Echo', 'Date of Echo StudyInstanceUID', 'Date of PET', 'Date of PET StudyInstanceUID', 'Date of SPECT:', 'Date of SPECT: StudyInstanceUID', 'Date of FU_CT-scan', 'Date of FU_CT-scan StudyInstanceUID', 'Date cec_ct', 'Date cec_ct StudyInstanceUID', 'Date pet ct', 'Date pet ct StudyInstanceUID', 'Date ldct', 'Date ldct StudyInstanceUID', 'ldct 3m', 'ldct 3m StudyInstanceUID', 'ldct 6m', 'ldct 6m StudyInstanceUID', 'ldct 12m', 'ldct 12m StudyInstanceUID', 'Date FU ICA scan', 'Date FU ICA scan StudyInstanceUID'] columns_scanner_missing = [x for x in columns_scanner if x not in columns_scanner_rename] #columns_result = ['OK', 'DICOM_MISSING', 'ECRF_MISSING', 'DICOM_ECRF_MISMATCH'] columns_result = ['DICOM_MISSING', 'ECRF_MISSING', 'ECRF_MISSING_SeriesInstanceUID'] columns_ecrf=['Patient identifier', 'Centre name (mnpctrname)', 'ITT', 'RD_MB', '1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3', 'duplicate entry ', 'FFR', 'MRI_visite', 'Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan:', 'Date cec_ct', 'Date pet ct', 'Date ldct:', 'ldct 3m', 'ldct 6m', 'ldct 12m', 'Date FU ICA scan:'] dates_required = ['1. Date of CT', 'Date of ICA scan', 'Date of ICA scan 2', 'Date of staged PCI 1', 'Date of staged PCI 2', 'Date of staged PCI 3'] modalities_required = defaultdict(lambda: None, {'1. Date of CT': ['CT'], 'Date of ICA scan': ['XA'], 'Date of ICA scan 2': ['XA'], 'Date of staged PCI 1': ['XA'], 'Date of staged PCI 2': ['XA'], 'Date of staged PCI 3': ['XA']}) dates_sidestudy = ['FFR','Date of Echo', 'Date of PET', 'Date of SPECT:', 'Date of FU_CT-scan', 'Date cec_ct', 'Date pet ct', 'Date ldct', 'ldct 3m', 'ldct 6m','ldct 12m', 'Date FU ICA scan'] modalities_sidestudy = defaultdict(lambda: None, {'FFR': ['XA'], 'Date of Echo': ['US'], 'Date of PET': ['CT','PT'], 'Date of SPECT:': ['CT','NM'], 'Date of FU_CT-scan': ['CT'], 'Date cec_ct': ['CT'], 'Date pet ct': ['PT'], 'Date ldct': ['CT'], 'ldct 3m': ['CT'], 'ldct 6m': ['CT'],'ldct 12m': ['CT'], 'Date FU ICA scan': ['XA']}) dates_all = dates_required + dates_sidestudy # f = 'H:/cloud/cloud_data/Projects/BIOQIC/08_Research/PACSServer/date.sas7bdat' # f = 'C:/Users/bernifoellmer/Downloads/SASVisualForecasting_sampledatasets/skinproduct_vfdemo.sas7bdat' # db = pd.read_sas(f) # Create dataframe with patient per line df_scanner = pd.DataFrame() df_dicom_study = df_dicom.drop_duplicates(subset=['StudyInstanceUID'], ignore_index=True) # Convert modalities into list of modalities df_dicom_study.reset_index(drop=True,inplace=True) for index, row in df_dicom_study.iterrows(): print(index) #sys.exit() df = df_dicom[df_dicom['StudyInstanceUID']==row['StudyInstanceUID']] modList=list(set(list(df['Modality']))) modList_str = ','.join(modList) df_dicom_study.loc[index, 'Modality'] = modList_str df_ecrf_study = df_ecrf.rename(columns = dict(zip(columns_ecrf, columns_scanner_rename))) df_ecrf_study = df_ecrf_study[columns_scanner_rename] # Convert date for ecrf_date in dates_all: for index, row in df_ecrf_study.iterrows(): date_str = df_ecrf_study.loc[index, ecrf_date] #print('ecrf_date', ecrf_date) #print('index', index) #print('date_str', date_str) if (type(date_str)==str) and (not date_str=='.'): df_ecrf_study.loc[index, ecrf_date] = covertDate(date_str) # date_str = df_ecrf_study.loc[277, 'FFR'] # d=covertDate(date_str) colmax=[] for index_ecrf, row_ecrf in df_ecrf_study.iterrows(): #sys.exit() df_patient = df_dicom_study[df_dicom_study['PatientID']==row_ecrf['PatientID']] df_patient.sort_values('StudyDate', inplace=True) df_patient.reset_index(inplace=True) print('index_ecrf:', index_ecrf) s = row_ecrf[columns_scanner_rename] for index, row in df_patient.iterrows(): # Filter wrong ManufacturerModelName and Manufacturer TrueManufacturerList = [row['Manufacturer']] TrueManufacturer_str = ','.join(list(set(TrueManufacturerList))) TrueManufacturer = searchKey(TrueManufacturerCTDict, TrueManufacturer_str) TrueManufacturerModelNameList = [row['ManufacturerModelName']] TrueManufacturerModelName_str = ','.join(list(set(TrueManufacturerModelNameList))) TrueManufacturerModelName = searchKey(TrueManufacturerModelNameCTDict, TrueManufacturerModelName_str) s['StudyDate' + '_' + str(index).zfill(2)] = datetime.strptime(str(row['StudyDate']), '%Y%m%d') s['StudyInstanceUID' + '_' + str(index).zfill(2)] = row['StudyInstanceUID'] s['Modality' + '_' + str(index).zfill(2)] = row['Modality'] s['TrueManufacturer' + '_' + str(index).zfill(2)] = TrueManufacturer s['TrueManufacturerModelName' + '_' + str(index).zfill(2)] = TrueManufacturerModelName s['EcrfFound' + '_' + str(index).zfill(2)] = '' if len(s.keys())>len(colmax): colmax = list(s.keys()) df_scanner = df_scanner.append(s, ignore_index=True, sort=True) # Add columns_scanner_missing # Reindex columns # df_scanner = df_scanner[colmax] # df_scanner['DICOM_MISSING']=False # df_scanner['ECRF_MISSING']=False #for x in columns_scanner_missing: df_scanner[x]='' colmax2=colmax.copy() for x in columns_scanner_missing: if ' StudyInstanceUID' in x: #sys.exit() k = x[0:-17] idx = colmax2.index(k) colmax2 = colmax2[0:idx+1] + [x] + colmax2[idx+1:] for x in columns_scanner_missing: df_scanner[x]='' df_scanner = df_scanner[colmax2] df_scanner['DICOM_MISSING']=False df_scanner['ECRF_MISSING']=False df_scanner['ManualCheck']='' df_scanner['Solved']='' df_scanner['EI']='' df_scanner['MB']='' df_scanner['BF']='' colmax2 = colmax2 + ['DICOM_MISSING', 'ECRF_MISSING', 'ManualCheck', 'Solved', 'EI', 'MB', 'BF'] # Create color dataframe df_scanner_color = df_scanner.copy() # Check dates from ecrf columns_study = [c for c in df_scanner.columns if 'StudyDate' in c] columns_study_mod = [c for c in df_scanner.columns if 'Modality' in c] columns_study_id = [c for c in df_scanner.columns if 'StudyInstanceUID_' in c] columns_study_found= [c for c in df_scanner.columns if 'Found in ecrf' in c] modalities_all = merge_defaultdicts(modalities_required , modalities_sidestudy) for index, row in df_scanner.iterrows(): print('index', index) #if index==103: # sys.exit() dates_dicom = list(row[columns_study]) mod_dicom = list(row[columns_study_mod]) for k in dates_all: if(not pd.isnull(row[k])) and (not row[k]=='.'): if not row[k] in dates_dicom and k in dates_required: df_scanner_color.loc[index, k] = 'RED' df_scanner.loc[index, 'DICOM_MISSING'] = True #print(index, 'ECRF_MISSING') #sys.exit() else: #if index==844: # sys.exit() idx = [i for i,x in enumerate(dates_dicom) if x == row[k]] #idx_mod = [i for i in idx if modalities_all[k] in mod_dicom[i]] idx_mod = [i for i in idx if checkModalities(modalities_all[k], mod_dicom[i].split(','))] for i in idx_mod: k_study = k + ' StudyInstanceUID' dicom_study = columns_study_id[i] if df_scanner.loc[index, k_study] == '': df_scanner.loc[index, k_study] = df_scanner.loc[index, k_study] + df_scanner.loc[index, dicom_study] else: # if index==103: # print('add') df_scanner_color.loc[index, k] = 'RED' df_scanner.loc[index, k_study] = df_scanner.loc[index, k_study] + ',' + df_scanner.loc[index, dicom_study] df_scanner = df_scanner[colmax2] # # Check dates from ecrf # columns_study = newlist = [c for c in df_scanner.columns if 'StudyDate' in c] # columns_study_mod = newlist = [c for c in df_scanner.columns if 'Modality' in c] # for index, row in df_scanner.iterrows(): # print('index', index) # #sys.exit() # dates_dicom = list(row[columns_study]) # mod_dicom = list(row[columns_study_mod]) # for k in dates_required: # if not pd.isnull(row[k]): # if not row[k] in dates_dicom: # df_scanner_color.loc[index, k] = 'RED' # df_scanner.loc[index, 'ECRF_MISSING'] = True # Check dates from dicom columns_study = [c for c in df_scanner.columns if 'StudyDate' in c] columns_study_mod = newlist = [c for c in df_scanner.columns if 'Modality' in c] for index, row in df_scanner.iterrows(): #if row['PatientID']=='09-BEL-0002': # sys.exit() #sys.exit() print('index', index) columns_date_ecrf = dates_required + dates_sidestudy dates_ecrf = list(row[columns_date_ecrf]) dates_index = [(not pd.isnull(x)) and (not x=='.') for x in dates_ecrf] mod_ecrf=[] for i,x in enumerate(columns_date_ecrf): if dates_index[i]: mod_ecrf.append(modalities_all[x]) else: mod_ecrf.append('') #mod_ecrf = [modalities_all[x] for i,x in enumerate(columns_date_ecrf) if dates_index[i]] #dates_ecrf = list(row[columns_date_ecrf]) for e, k in enumerate(columns_study): #if k=='StudyDate_00': # sys.exit() if not
pd.isnull(row[k])
pandas.isnull
from src.config import CENSUS_KEY import json import requests import pandas as pd from typing import Dict, List, Tuple, Optional, Collection from src import data def download_census_data(geo_ls=["zip", "county"]) -> data.Wrapper: ''' Top level function to run the queries ''' # Census tables detailed_table = 'https://api.census.gov/data/2018/acs/acs5?' subject_table = 'https://api.census.gov/data/2018/acs/acs5/subject?' # define race instance # Values name format: topic_property_subproperty... # B03002_003E: Does not include people of hispanic/latino origin race_variables = {'B03002_001E': 'race_total', 'B03002_005E': 'race_native', 'B03002_004E': 'race_black', 'B03002_003E': 'race_white', 'B03002_009E': 'race_twoplus_total', 'B03002_007E': 'race_pacific', 'B03002_008E': 'race_other', 'B03002_006E': 'race_asian', 'B03002_012E': 'race_hispaniclatino_total'} # race_functions = [processRaceData] # variable does not need to be defined, but it is for readability race = CensusRequest("race", detailed_table, race_variables) # define poverty instance poverty_variables = {'S1701_C01_001E': 'poverty_population_total', 'S1701_C02_001E': 'poverty_population_poverty', 'S1701_C02_002E': 'poverty_population_poverty_child'} # If additional subdivision are needed # 'S1701_C02_003E' = AGE!!Under 18 years!! Under 5 years!! # 'S1701_C02_004E' = AGE!!Under 18 years!! 5 to 17 years!! # poverty_functions = [processPovertyData] poverty = CensusRequest("poverty", subject_table, poverty_variables) return get_census_data_list([race, poverty], geo_ls) def get_census_response(table_url: str, get_ls: Collection[str], geo: str, mock_response: str = None) -> List[List[str]]: ''' Concatenates url string and returns response from census api query input: table_url (str): census api table url get_ls (ls): list of tables to get data from geo (str): geographic area and filter output: list of rows. first row is header: [NAME, <elements of get_ls>, state, county/zip header] ''' if geo == 'zip': geo_parameter = 'zip code tabulation area:*' elif geo == 'county': geo_parameter = 'county:*&in=state:17' else: raise ValueError('Unsupported geography type: ' + geo) get = 'NAME,' + ",".join(get_ls) url = f'{table_url}get={get}&for={geo_parameter}&key={CENSUS_KEY}' if mock_response: with open(mock_response, 'r') as mock_response_file: try: data_table = json.load(mock_response_file) except json.JSONDecodeError as e: print("Error reading json from mock data: {} (line {} col {})".format(e.msg, e.lineno, e.colno)) # noqa: E501 data_table = [] else: response = requests.get(url) try: data_table = response.json() except json.JSONDecodeError: print("Error reading json from census response. Make sure you have a valid census key. Census Response: " + response.text) # noqa: E501 data_table = [] return data_table def create_percentages(df: pd.DataFrame, total_col_str: str) -> pd.DataFrame: ''' Calculates percentages and removes NaN for dict conversion Returns calculated percent_df ''' # divides df by total column to calculate percentages divide_by_total = lambda x: x / df[total_col_str] # noqa: E731, E501 # Casts to type float64 for numpy interoperability percent_df: pd.DataFrame = df.apply(divide_by_total) \ .drop(total_col_str, axis=1) \ .astype('float64') # Rounds to save space percent_df = percent_df.round(6) return percent_df class CensusRequest: def __init__(self, metric: str, table_url: str, variables: Dict[str, str]) -> None: self.metric = metric self.table_url = table_url self.variables = variables def county_fips(reverse=False) -> Dict[str, str]: ''' Requests county fips from census API and returns list of IL county FIPS input: reverse (bool) reverses keys and values in output output: il_json (dict) {'county name': 'fip'} ''' url = 'https://api.census.gov/data/2010/dec/sf1?get=NAME&for=county:*' response = requests.get(url) # filter for IL def il_county_filter(x): return x[1] == '17' response_json = response.json() if reverse: il_json = {county[1] + county[2]: county[0] for county in response_json if il_county_filter(county)} else: il_json = {county[0]: county[1] + county[2] for county in response_json if il_county_filter(county)} return il_json def majority(series: pd.Series) -> Optional[str]: ''' Returns majority race demographic for each geo_area If no majority, returns 'majority_minority' ''' # indexes max value, returns NA for NA rows idx = series.idxmax() try: value = series[idx] except KeyError: # if NA row, idx = NA return None if value >= 0.5: return idx else: return 'majority_minority' def dataframe_and_bins_from_census_rows(all_rows: List[List[str]], geography_type: str, request: CensusRequest) -> Tuple[pd.DataFrame, Dict[str, Dict[str, List[float]]]]: # noqa: E501 # Translate the census variables into our descriptive names columns = [request.variables.get(column_name, column_name) for column_name in all_rows[0]] dataframe = pd.DataFrame(columns=columns, data=all_rows[1:]) # Without forcing the types, the numbers end up as strings dataframe = dataframe.astype('string') # without this, you get "TypeError: object cannot be converted to an IntegerDtype" during when we convert to integers # noqa: E501 conversion_dict = {v: "Int64" for v in request.variables.values()} dataframe = dataframe.astype(conversion_dict) bins = {} if geography_type == "county": fip_series = dataframe.loc[:, 'state'] + dataframe.loc[:, 'county'] fip_series.rename('FIPS', inplace=True) dataframe = pd.concat([dataframe, fip_series], axis=1) dataframe = dataframe.set_index('FIPS').drop(['state', 'county'], axis=1) # noqa: E501 elif geography_type == "zip": dataframe = dataframe.set_index('zip code tabulation area') \ .drop(['NAME', 'state'], axis=1) \ .filter(regex='^(6[0-2])[0-9]+', axis=0) else: raise ValueError("Unsupported geography type: " + geography_type) if request.metric == "race": numeric_columns = request.variables.values() bins = { 'quantiles': { 'race_data': data.calculate_quantiles_bins(dataframe, numeric_columns) # noqa: E501 }, 'natural_breaks': { 'race_data': data.calculate_natural_breaks_bins(dataframe, numeric_columns) # noqa: E501 } } race_df = dataframe.loc[:, numeric_columns] pct_df = create_percentages(race_df, 'race_total') bins['quantiles']['race_data']['race_percentages'] = \ data.calculate_quantiles_bins(pct_df, pct_df.columns) bins['natural_breaks']['race_data']['race_percentages'] = \ data.calculate_natural_breaks_bins(pct_df, pct_df.columns) # creates series of majority race demographics majority_series = pct_df.apply(majority, axis=1) majority_series.name = 'race_majority' # converts NAN to None, for proper JSON encoding working_df = pct_df.where(
pd.notnull(pct_df)
pandas.notnull
# IRS CA in-migration from other states (2012-2018) import pandas as pd import numpy as np import os import re inmig_12_18 = os.listdir('CA In 12_18') outmig_12_18 = os.listdir('CA Out 12_18') master_df = pd.DataFrame() years = [] folders = ['CA In 12_18/', 'CA Out 12_18/'] types = ['In', 'Out'] counter = 0 for folder in [inmig_12_18, outmig_12_18]: temp_df = pd.DataFrame() for file in folder: # Identifying year from different file names num = re.findall('\d+', file)[0][-2:] yr = int('20' + num) print(yr) df = pd.read_csv(folders[counter] + file, usecols=[0,1,3,5]) df.columns = ['Origin', 'State_FIPS', 'State', 'Exemptions'] df = df[df.Origin == 6].drop('Origin', axis=1) df = df[(df.State_FIPS != 6) & (df.State_FIPS < 57)] years += [yr]*len(df) print(yr, len(df)) temp_df = pd.concat([temp_df, df]) temp_df['Type'] = [types[counter]] * len(temp_df) master_df =
pd.concat([master_df, temp_df])
pandas.concat
""" __author__ = <NAME> """ import attr import numpy as np import pandas as pd from attr.validators import instance_of from pysight.nd_hist_generator.movie import Movie, FrameChunk from collections import deque, namedtuple from typing import Tuple, Union from numba import jit, uint8, int64 @attr.s(slots=True) class CensorCorrection(object): raw = attr.ib(validator=instance_of(dict)) data = attr.ib(validator=instance_of(pd.DataFrame)) movie = attr.ib(validator=instance_of(Movie)) all_laser_pulses = attr.ib() nano_flim_list = attr.ib(init=False) flim = attr.ib(default=False, validator=instance_of(bool)) reprate = attr.ib(default=80e6, validator=instance_of(float)) binwidth = attr.ib(default=800e-12, validator=instance_of(float)) laser_offset = attr.ib(default=3.5, validator=instance_of(float)) num_of_channels = attr.ib(default=1, validator=instance_of(int)) @property def bins_bet_pulses(self) -> int: return int(np.ceil(1 / (self.reprate * self.binwidth))) @property def offset(self): return int(np.floor(self.laser_offset * 10 ** -9 / self.binwidth)) def run(self): """ Main pipeline for the censor correction part. """ if self.flim: print("Starting the censor correction...") self.create_arr_of_hists_deque() else: print("FLIM deactivated, no censor correction performed.") def __gen_laser_pulses_deque(self) -> np.ndarray: """ If data has laser pulses - return them. Else - simulate them with an offset """ start_time = 0 step = self.bins_bet_pulses volumes_in_movie = self.movie.gen_of_volumes() if ( self.all_laser_pulses == 0 and self.flim == False ): # no 'Laser' data was recorded for vol in volumes_in_movie: yield np.arange( start=start_time + self.offset, stop=vol.end_time, step=step, dtype=np.uint64, ) elif self.all_laser_pulses == 0 and self.flim == True: pass else: for vol in volumes_in_movie: yield self.all_laser_pulses[ (self.all_laser_pulses >= vol.abs_start_time - step) & (self.all_laser_pulses <= vol.end_time + step) ] + self.offset def __get_bincount_deque(self): print("Movie object created. Generating the bincount deque...") bincount_deque = deque() laser_pulses_deque = self.__gen_laser_pulses_deque() volumes_in_movie = self.movie.gen_of_volumes() for idx, vol in enumerate(volumes_in_movie): censored = CensoredVolume( df=vol.data, vol=vol, offset=self.offset, laser_pulses=next(laser_pulses_deque), ) dig, bincount = censored.gen_bincount() pos_idx = np.where(dig >= 0)[0] dig = dig[pos_idx] pos_photons = censored.df.iloc[pos_idx, -1].values.T if len(pos_photons) == 0: data_dict = { "photon_hist": np.zeros((self.bins_bet_pulses, 1), dtype=np.uint8), "bincount": bincount, "num_empty_hists": bincount[0], } return data_dict photon_hist = np.zeros( (self.bins_bet_pulses, pos_photons.shape[0]), dtype=np.uint8 ) for laser_idx, photon in enumerate(np.nditer(pos_photons)): start_time = censored.laser_pulses[dig[laser_idx]] try: end_time = censored.laser_pulses[dig[laser_idx] + 1] except IndexError: # photons out of laser pulses continue else: photon_hist[:, laser_idx] = np.histogram( photon, bins=np.arange(start_time, end_time + 1, dtype="uint64") )[0] data_dict = { "photon_hist": photon_hist, "bincount": bincount, "num_empty_hists": bincount[0], } assert ( data_dict["num_empty_hists"] >= 0 ), "Sum of bincount: {}, number of photons: {}".format( sum(bincount), laser_idx ) bincount_deque.append(data_dict) return bincount_deque def find_temporal_structure_deque(self): temp_struct_deque = deque() laser_pulses_deque = self.__gen_laser_pulses_deque() volumes_in_movie = self.movie.gen_of_volumes() for idx, vol in enumerate(volumes_in_movie): censored = CensoredVolume( df=vol.data, vol=vol, offset=self.offset, laser_pulses=next(laser_pulses_deque), binwidth=self.binwidth, reprate=self.reprate, ) temp_struct_deque.append(censored.find_temp_structure()) return temp_struct_deque def __worker_arr_of_hists(self, vol): censored = CensoredVolume( df=vol.data, vol=vol, offset=self.offset, binwidth=self.binwidth, reprate=self.reprate, ) return censored.gen_arr_of_hists() def create_arr_of_hists_deque(self): """ For each volume generate a single matrix with the same size as the underlying volume, which contains a histogram of photons in their laser pulses for each pixel. :return: deque() that contains an array of histograms in each place """ self.nano_flim_list = [] # each cell contains a different data channel for chan in range(1, self.num_of_channels + 1): print("Starting channel number {}: ".format(chan)) volumes_in_movie = self.movie.gen_of_volumes(channel_num=chan) self.nano_flim_list.append( [self.__worker_arr_of_hists(vol) for vol in volumes_in_movie] ) def create_array_of_hists_deque(self): """ Go through each volume in the deque and find the laser pulses for each pixel, creating a summed histogram per pixel. :return: """ temp_struct_deque = deque() laser_pulses_deque = self.__gen_laser_pulses_deque() volumes_in_movie = self.movie.gen_of_volumes() for idx, vol in enumerate(volumes_in_movie): censored = CensoredVolume( df=vol.data, vol=vol, offset=self.offset, laser_pulses=next(laser_pulses_deque), binwidth=self.binwidth, reprate=self.reprate, ) temp_struct_deque.append(censored.gen_array_of_hists()) return temp_struct_deque def __gen_labels(self, size: int, label: Union[int, float]) -> np.ndarray: """ Create labels for the ML algorithm. Label value must be an integer. :size: Number of elements :return: np.ndarray """ if isinstance(label, int): # fixed power during the session return np.ones(size, dtype=np.uint8) * label elif isinstance( label, float ): # `label` contains the frequency of the triangular wave pass def learn_histograms( self, label: Union[int, float], power: int, folder_to_save: str ): """ Implement the machine learning algorithm on the data. :param label: Label of ML algorithm. :param power: How much power was injected to the Qubig. For saving the file. :return: data, labels """ from sklearn import svm, metrics import pathlib # Start by generating the data and arranging it properly for the machine bincount = self.__get_bincount_deque() print("Bincount done. Adding all data to a single matrix.") data = np.empty((self.bins_bet_pulses, 0)) for vol in bincount: data = np.concatenate( (data, vol["photon_hist"]), axis=1 ) # the histograms with photons in them data = np.concatenate( ( data, np.zeros( (self.bins_bet_pulses, vol["num_empty_hists"]), dtype=np.uint8 ), ), axis=1, ) # empty hists data = data.T n_samples = data.shape[0] labels = self.__gen_labels(n_samples, label) classifier = svm.SVC(gamma=0.001) labels[1] = 10 # toying around print("Fitting the data...") classifier.fit(data[: n_samples // 2], labels[: n_samples // 2]) # Predictions expected = labels[n_samples // 2 :] predicted = classifier.predict(data[n_samples // 2 :]) print("Number of samples is %s." % n_samples) print( "Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted)) ) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) # Save the data for future use folder_as_path = pathlib.Path(folder_to_save) filename = str(folder_as_path / "{}p_label_{}.npy".format(power, label)) self.__save_data(data=data, filename=filename) return data, labels def __save_data(self, data: np.ndarray, filename: str): """ Save the data array for future training. :param data: Data to be learnt. :param filename: Including dir :return: """ print("Saving to {}...".format(filename)) with open(filename, "wb") as f: np.save(f, data) def append_laser_line(self): """ Add a final laser line to the laser signal input. """ last_laser_row = pd.DataFrame( { "abs_time": self.raw["Laser"]["abs_time"].iat[-1] + self.bins_bet_pulses, "edge": 0, "sweep": self.raw["Laser"]["sweep"].iat[-1], "time_rel_sweep": self.raw["Laser"]["time_rel_sweep"].iat[-1] + self.bins_bet_pulses, }, index=[self.raw["Laser"].shape[0]], ) self.raw["Laser"] =
pd.concat([self.raw["Laser"], last_laser_row])
pandas.concat
import calendar import math import re from datetime import datetime, timedelta, date import pandas as pd import pytz from catalyst.exchange.exchange_errors import InvalidHistoryFrequencyError, \ InvalidHistoryFrequencyAlias def get_date_from_ms(ms): """ The date from the number of miliseconds from the epoch. Parameters ---------- ms: int Returns ------- datetime """ return datetime.fromtimestamp(ms / 1000.0) def get_seconds_from_date(date): """ The number of seconds from the epoch. Parameters ---------- date: datetime Returns ------- int """ epoch = datetime.utcfromtimestamp(0) epoch = epoch.replace(tzinfo=pytz.UTC) return int((date - epoch).total_seconds()) def get_delta(periods, data_frequency): """ Get a time delta based on the specified data frequency. Parameters ---------- periods: int data_frequency: str Returns ------- timedelta """ return timedelta(minutes=periods) \ if data_frequency == 'minute' else timedelta(days=periods) def get_periods_range(freq, start_dt=None, end_dt=None, periods=None): """ Get a date range for the specified parameters. Parameters ---------- start_dt: datetime end_dt: datetime freq: str Returns ------- DateTimeIndex """ if freq == 'minute': freq = 'T' elif freq == 'daily': freq = 'D' if start_dt is not None and end_dt is not None and periods is None: return pd.date_range(start_dt, end_dt, freq=freq) elif periods is not None and (start_dt is not None or end_dt is not None): _, unit_periods, unit, _ = get_frequency(freq) adj_periods = periods * unit_periods # TODO: standardize time aliases to avoid any mapping unit = 'd' if unit == 'D' else 'h' if unit == 'H' else 'm' delta = pd.Timedelta(adj_periods, unit) if start_dt is not None: return pd.date_range( start=start_dt, end=start_dt + delta, freq=freq, closed='left', ) else: return pd.date_range( start=end_dt - delta, end=end_dt, freq=freq, ) else: raise ValueError( 'Choose only two parameters between start_dt, end_dt ' 'and periods.' ) def get_periods(start_dt, end_dt, freq): """ The number of periods in the specified range. Parameters ---------- start_dt: datetime end_dt: datetime freq: str Returns ------- int """ return len(get_periods_range(start_dt=start_dt, end_dt=end_dt, freq=freq)) def get_start_dt(end_dt, bar_count, data_frequency, include_first=True): """ The start date based on specified end date and data frequency. Parameters ---------- end_dt: datetime bar_count: int data_frequency: str include_first Returns ------- datetime """ periods = bar_count if periods > 1: delta = get_delta(periods, data_frequency) start_dt = end_dt - delta if not include_first: start_dt += get_delta(1, data_frequency) else: start_dt = end_dt return start_dt def get_period_label(dt, data_frequency): """ The period label for the specified date and frequency. Parameters ---------- dt: datetime data_frequency: str Returns ------- str """ if data_frequency == 'minute': return '{}-{:02d}'.format(dt.year, dt.month) else: return '{}'.format(dt.year) def get_month_start_end(dt, first_day=None, last_day=None): """ The first and last day of the month for the specified date. Parameters ---------- dt: datetime first_day: datetime last_day: datetime Returns ------- datetime, datetime """ month_range = calendar.monthrange(dt.year, dt.month) if first_day: month_start = first_day else: month_start = pd.to_datetime(datetime( dt.year, dt.month, 1, 0, 0, 0, 0 ), utc=True) if last_day: month_end = last_day else: month_end = pd.to_datetime(datetime( dt.year, dt.month, month_range[1], 23, 59, 0, 0 ), utc=True) if month_end > pd.Timestamp.utcnow(): month_end = pd.Timestamp.utcnow().floor('1D') return month_start, month_end def get_year_start_end(dt, first_day=None, last_day=None): """ The first and last day of the year for the specified date. Parameters ---------- dt: datetime first_day: datetime last_day: datetime Returns ------- datetime, datetime """ year_start = first_day if first_day \ else pd.to_datetime(date(dt.year, 1, 1), utc=True) year_end = last_day if last_day \ else pd.to_datetime(date(dt.year, 12, 31), utc=True) if year_end > pd.Timestamp.utcnow(): year_end = pd.Timestamp.utcnow().floor('1D') return year_start, year_end def get_frequency(freq, data_frequency=None, supported_freqs=['D', 'H', 'T']): """ Takes an arbitrary candle size (e.g. 15T) and converts to the lowest common denominator supported by the data bundles (e.g. 1T). The data bundles only support 1T and 1D frequencies. If another frequency is requested, Catalyst must request the underlying data and resample. Notes ----- We're trying to use Pandas convention for frequency aliases. Parameters ---------- freq: str data_frequency: str Returns ------- str, int, str, str """ if data_frequency is None: data_frequency = 'daily' if freq.upper().endswith('D') else 'minute' if freq == 'minute': unit = 'T' candle_size = 1 elif freq == 'daily': unit = 'D' candle_size = 1 else: freq_match = re.match(r'([0-9].*)?(m|M|d|D|h|H|T)', freq, re.M | re.I) if freq_match: candle_size = int(freq_match.group(1)) if freq_match.group(1) \ else 1 unit = freq_match.group(2) else: raise InvalidHistoryFrequencyError(frequency=freq) # TODO: some exchanges support H and W frequencies but not bundles # Find a way to pass-through these parameters to exchanges # but resample from minute or daily in backtest mode # see catalyst/exchange/ccxt/ccxt_exchange.py:242 for mapping between # Pandas offet aliases (used by Catalyst) and the CCXT timeframes if unit.lower() == 'd': unit = 'D' alias = '{}D'.format(candle_size) if data_frequency == 'minute': data_frequency = 'daily' elif unit.lower() == 'm' or unit == 'T': unit = 'T' alias = '{}T'.format(candle_size) data_frequency = 'minute' elif unit.lower() == 'h': data_frequency = 'minute' if 'H' in supported_freqs: unit = 'H' alias = '{}H'.format(candle_size) else: candle_size = candle_size * 60 alias = '{}T'.format(candle_size) else: raise InvalidHistoryFrequencyAlias(freq=freq) return alias, candle_size, unit, data_frequency def from_ms_timestamp(ms): return pd.to_datetime(ms, unit='ms', utc=True) def get_epoch(): return
pd.to_datetime('1970-1-1', utc=True)
pandas.to_datetime
#!/usr/bin/env python # # parse multiple HDF5 files and print graph # import pandas as pd import matplotlib matplotlib.use('AGG') import matplotlib.pyplot as plt from pandas import ExcelWriter print('Import data from HDF5 files') store1 = pd.HDFStore("E:\\home\\2014\\07\\logfile_20140701.hdf5", mode='r') print(store1.root.series.tarom.Total_Charge_Current.data[0:10]) store2 = pd.HDFStore("E:\\home\\2014\\07\\logfile_20140702.hdf5", mode='r') print(store2.root.series.tarom.Total_Charge_Current.data[0:10]) store3 = pd.HDFStore("E:\\home\\2014\\07\\logfile_20140703.hdf5", mode='r') print(store3.root.series.tarom.Total_Charge_Current.data[0:10]) store4 = pd.HDFStore("E:\\home\\2014\\07\\logfile_20140704.hdf5", mode='r') print(store4.root.series.tarom.Total_Charge_Current.data[0:10]) # Example accessing HDF5 using MyRaspiHome framework # ------------------------------------------------------------- # from data_accessor.data_accessor_hdf5 import DataAccessorHDF5 # da = DataAccessorHDF5() # da.open("E:\\home\\2014\\07\\logfile_20140701.hdf5", 'r') # parameter = ('Total_Charge_Current',) # data = da.read('tarom', parameter) # print(data) # da.close() # convert to pandas dataframes s1 = pd.Series.from_array(store1.root.series.tarom.Total_Charge_Current.data) df1 = pd.DataFrame(s1) s2 = pd.Series.from_array(store2.root.series.tarom.Total_Charge_Current.data) df2 = pd.DataFrame(s2) s3 = pd.Series.from_array(store3.root.series.tarom.Total_Charge_Current.data) df3 = pd.DataFrame(s3) s4 = pd.Series.from_array(store4.root.series.tarom.Total_Charge_Current.data) df4 = pd.DataFrame(s3) print('Merge data') merged = pd.merge(df1, df2) print('Print graph') figure = plt.figure() #merged.plot(kind='area', stacked=False) df1.plot(kind='area', stacked=False) #df2.plot(kind='area', stacked=False) #df3.plot(kind='area', stacked=False) #df4.plot(kind='area', stacked=False) plt.grid(True) plt.savefig('test.png') plt.close(figure) print('To excel') with
ExcelWriter('output.xlsx')
pandas.ExcelWriter
import pandas as pd import matplotlib.pyplot as plt import numpy as np from distutils.version import LooseVersion from scipy.stats import norm from sklearn.neighbors import KernelDensity from datetime import datetime plt.rcParams['font.size'] = 6 import os root_path = os.path.dirname(os.path.abspath('__file__')) graphs_path = root_path+'/boundary_effect/graph/' if not os.path.exists(graphs_path): os.makedirs(graphs_path) time = pd.read_csv(root_path+'/time_series/MonthlyRunoffWeiRiver.csv')['Time'] time = time.values time = [datetime.strptime(t,'%Y/%m') for t in time] time = [t.strftime('%b %Y') for t in time] # print(time) # CHECK 1: is VMD shift-invariant? # If yes, any shifted copy of an IMF from a VMD decomposition, similar to a # shifted copy of the original time series, should be maintained. # For example, given the sunspot time series x (of length 792) we can # generate a 1-step advanced copy of the original time series as follows: # x0=(1:791) # x1=(2:792) this is a 1-step advanced version of x0 # Observiously, shift-invariancy is preserved between x0 and x1 since # x0(2:791)=x1(1:790) # For shift-invariancy to be preserved for VMD, we would observe, for # example, that the VMD IMF1 components for x0 (imf1 of x0) and x1 (imf1 of # x1) should be exact copies of one another, advanced by a single step. # i.e., x0_imf(2:791,1) should equal x1_imf(1:790,1) if shift-invariancy # is preserved. # As the case for VMD shown below, we can see the x0_imf(2:791,1) basically # equal to x1_imf(1:790,1) except for a few samples close to the begin and # end of x0 and x1. Interestingly, we see a low level of error close to the # begin of the time series and a high level of error close to the end of # the time series, of high importance in operational forecasting tasks. # The errors along the middle range are zeros indicating VMD is # shift-invariant. # We argue that the error close to the boundaries are # caused by boundary effect, which is the exact problem this study designed # to solve. # CHECK 2: The impact of appedning data points to a time series then # performing VMD, analogous the case in operational forecasting when new # data becomes available and an updated forecast is made using the newly # arrived data. # Ideally, for forecasting situations, when new data is appended to a time # series and some preprocessing is performed, it should not have an impact # on previous measurements of the pre-processed time series. # For example, if IMF1_1:N represents the IMF1, which has N total # measurements and was derived by applying VMD to x_1:N the we would expect # that when we perform VMD when x is appended with another measurement, # i.e., x_1:N+1, resulting in IMF1_1:N+1 that the first 1:N measurements in # IMF1_1:N+1 are equal to IMF1_1:N. In other words, # IMF1_1:N+1[1:N]=IMF1_1:N[1:N]. # We see than is not the case. Appending an additional observation to the # time series results in the updated VMD components to be entirely # different then the original (as of yet updated) VMD components. # Interesting, we see a high level of error at the boundaries of the time # seriesm, of high importance in operational forecasting tasks. x0_imf = pd.read_csv(root_path+'/boundary_effect/vmd-decompositions-huaxian/x0_imf.csv') x1_imf = pd.read_csv(root_path+'/boundary_effect/vmd-decompositions-huaxian/x1_imf.csv') x_1_552_imf = pd.read_csv(root_path+"/boundary_effect/vmd-decompositions-huaxian/x_1_552_imf.csv") x_1_791_imf =
pd.read_csv(root_path+'/boundary_effect/vmd-decompositions-huaxian/x_1_791_imf.csv')
pandas.read_csv
import argparse import logging import sys from typing import List import pandas as pd from analysis.src.python.data_analysis.model.column_name import IssuesColumns, SubmissionColumns from analysis.src.python.data_analysis.utils.df_utils import merge_dfs from analysis.src.python.data_analysis.utils.statistics_utils import get_statistics_by_group def calculate_issues_change_statistics(df_issues_statistics: pd.DataFrame, issues_classes: List[str]): """ Calculate issues count diff between previous and current attempt in one submissions series. """ df_issues_statistics = df_issues_statistics.sort_values([SubmissionColumns.ATTEMPT]) issues_change_statistics = { SubmissionColumns.ID: df_issues_statistics[SubmissionColumns.ID].values, } for issue_class in issues_classes: issues_change_statistics[issue_class] = [] previous_submission_issues_statistics = None for _, submission_issues_statistics in df_issues_statistics.iterrows(): for issue_class in issues_classes: if previous_submission_issues_statistics is None: diff = submission_issues_statistics[issue_class] else: diff = submission_issues_statistics[issue_class] - previous_submission_issues_statistics[issue_class] issues_change_statistics[issue_class].append(diff) previous_submission_issues_statistics = submission_issues_statistics return pd.DataFrame.from_dict(issues_change_statistics) def get_submissions_issues_change_statistics(submissions_path: str, issues_statistics_path: str, issues_change_statistics_path: str, issues_path: str, chunk_size=20000): """ Calculate issues count diff between previous and current attempt in all submissions series. """ df_submissions = pd.read_csv(submissions_path) df_issues_statistics = pd.read_csv(issues_statistics_path) df_issues =
pd.read_csv(issues_path)
pandas.read_csv
from results_2013_2014.state_legislature_scrape_2013_2014 import scrape_results as sr1314 from results_2015.state_legislature_scrape_2015 import scrape_results as sr15 from results_2016.state_legislature_scrape_2016 import scrape_results as sr16 from results_2016.state_legislature_scrape_2016_ny import scrape_results as sr16_ny from results_2017.state_legislature_scrape_2017 import scrape_results as sr17 import pandas as pd import json if __name__ == '__main__': #files containing web scraper outputs, used as inputs to create election information file outfile_2013_2014 = 'results_2013_2014/election_results_2013_2014.csv' outfile_2015 = 'results_2015/2015_election_results.csv' outfile_2016 = 'results_2016/2016_election_results.csv' outfile_2016_ny = 'results_2016/2016_election_results_ny.csv' outfile_2017_nj = 'results_2017/nj2017.csv' outfile_2017_va = 'results_2017/va2017.csv' #toggle to re-scrape the results from ballotpedia. If false, #intermediate data files (results of web-scraping) are used #to create election information file rescrape = False if rescrape: #scripts to run web scrapes for the various years. url_file_xxx contains #the webpage urls. See year directories for details url_file_2013_2014 = 'results_2013_2014/2013_2014_urls.csv' race_results_2013_2014 = sr1314(url_file_2013_2014, outfile_2013_2014) url_file_2015 = 'results_2015/2015_urls.csv' race_results_2015 = sr15(url_file_2015, outfile_2015) url_file_2016 = 'results_2016/2016_urls.csv' race_results_2016 = sr16(url_file_2016, outfile_2016) #new york 2016 was formatted differently than the other 2016 results years, #so has a seperate scraping script url_file_2016_ny = 'results_2016/2016_urls_ny.csv' race_results_2016_ny = sr16_ny(url_file_2016_ny, outfile_2016_ny) url_file_2017 = 'results_2017/2017_urls.csv' race_results_2017 = sr17(outfile_2017_nj, outfile_2017_va) #state name -> abbreviation dictionary file states = json.load(open('name_to_abbrev.json')) #file where the election info will be saved all_elections_outfile = 'post2013_state_legislative_elections.csv' #%% dfs_old_style = [pd.read_csv(x) for x in [outfile_2013_2014, outfile_2015, outfile_2016_ny]] + \ [pd.read_csv(outfile_2017_nj, header=None, names=['Year', 'State', 'District', 'Party', 'Name', 'Votes', 'Winner', 'Incumbent'])] dfs_new_style = [pd.read_csv(x) for x in [outfile_2016, outfile_2017_va]] all =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # HEREHEREHERE ############################################################################# # # /home/git/clones/external/SAS_3DSpectrographs/py/gratingequation.py # ; read-quoted-char-radix #emacs helpers # (insert (format "\n# " (buffer-file-name))) # # (set-input-method 'TeX' t) # (toggle-input-method) # (ediff-current-file) # (wg-python-fix-pdbrc) # (find-file-other-frame "./.pdbrc") # (wg-python-fix-pdbrc) # PDB DASH DEBUG end-comments # # (setq mypdbcmd (concat (buffer-file-name) "<args...>")) # (progn (wg-python-fix-pdbrc) (pdb mypdbcmd)) # # (wg-astroconda-pdb) # IRAF27 # (wg-astroconda3-pdb) # CONDA Python3 # # (set-background-color "light blue") # (wg-python-toc) # # conda install jupyterlab # conda install -c conda-forge voila # conda install nodejs # jupyter labextension install @jupyter-widgets/jupyterlab-manager # # M-x set-input-mode RET TeX (then toggle-input-mode ) # # (wg-python-toc) # # # __doc__ = """ # # __author__ = '<NAME>' # # __version__ = '0.1' # # class GratingException(Exception): # def __init__(self,message,errors=None): # @staticmethod # def __format__(e): # # class Grating: # Grating(object) if inherited # def __init__(self,alpha : "degrees", # Grating::__init__() # def setalpha(self,newalpha: "degrees"): # Grating::setalpha() # def setmode(self,newmode: "integer"): # Grating::setmode() # def setgrating(self,linesmm:float): # Grating::setgrating() # def setsize(self,length:float ,width:float): # Grating::setsize() # def setblaze(self,blaze: float): # Grating::setblaze() # def setlmm(self,lmm: float): # Grating::setlmm() # def difftable(self,df: pd.DataFrame, key: str): # Grating::difftable() # def debug(self,msg="",os=sys.stderr): # Grating::debug() # def grating_quation(self, waverange,step = 0) -> 'radians': # Grating::grating_quation() # def report(self): # Grating::report() # def csv(self,fname: 'string'): # Grating::csv() # def groovedepth(self): # Grating::groovedepth() # def startplot(self): # Grating::startplot # def plot(self,keys=[]): # Grating::plot # def littrow_equation(self,ฮฑ): # Grating.littrow_equation() # def peakAngle(self,ฮป: "angstroms" ): # Grating::peakAngle() # def phi(self,ฮป : "angstroms") -> 'degrees': # Grating::phi() # # if __name__ == "__main__": # # # # ############################################################################# import optparse import re import sys import numpy as np import pandas as pd from numpy import sin,cos,arcsin,arccos,radians,degrees import matplotlib.pyplot as plt # (wg-python-graphics) __doc__ = """ gratingequation.py [options] options: -p, --plot bool make a Matplotlib plot -r, --report bool make a 'report' to stdout -c, --csv <pathname> bool produce a CSV file to path/file name. -a --alpha float incidence angle -b --blaze float degrees blaze angle -m --mode int mode -l --lmm int lines per mm This is a basic stand-alone program that is a useful regression testbed for the Grating class. It permits playing with grating equations. The idea is to collect attributes of the grating and provide a set of equations and other functions to compute values for a grating design. It will produce plots and tables. Again, this is a regression test for the Grating class. It shows some of the features (OK I was lazy and did not fully regression test!). Use it as you will. <NAME>'s favorite grating web site: https://www.spectrogon.com/product-services/gratings/grating-design-tool/ handy notes about Pandas https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf The red dashed line is the angle of incidence. The green dotted line is the normal. the blue dotted line is the angle of diffraction. """ __copyright__ = """Copyright 2020 <NAME>. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Open Source Initiative Approved License: MIT """ __author__ = '<NAME>' __version__ = '0.1' _all__ = ['GratingException','Grating'] # expose these things ############################################################################## # GratingException # ############################################################################## class GratingException(Exception): """Special exception to allow differentiated capture of exceptions""" def __init__(self,message,errors=None): super(GratingException,self).__init__("Grating "+ message) self.errors = errors @staticmethod def __format__(e): return "Grating" % e # GratingException ############################################################################## # Grating # ############################################################################## class Grating: # Grating(object) if inherited """ Permit more than one instance per run. ALL units in centimeters. 5000 angstroms is 5e-5 cm. Gratings are lines per cm Mode is integer (signed) blaze is stated in degrees (per manufacture's data, we convert to radians) """ # https://en.jeulin.fr/simple-radial-slits-212076.html ovioslits_cm = np.array([10.0, 20.0, 30.0, 40.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0, 700.0])/10000.0 # in cm latex1 = """\\frac{m\\lambda}{d} &= sin(\\alpha) + sin(\\beta)""" print1 = "mฮป/d = sin(ฮฒ) + sin(ฮฑ)" # print a basic equation (unicode to rescue) specrange = np.arange(3300, 8000, 100) # units: angstroms every 10nm useful default range def __init__(self,alpha : "degrees", # Grating::__init__() m : "Mode [integer]", lmm : "lines per mm", blaze : "degrees", slit : "microns", length: "mm" = 25, width : "mm" = 25): """Describe the grating in conventional terms, we use CM and angstroms as our basis. Key traits of a Grating: alpha rotation of grating w.r.t. grating normal m mode d count of lines per mm blaze The blaze angle for this grating length length of the physical grating surface width width of the physical grating surface Developed internally to each instance wave the wavelength range per call, reflect the last one dispersion accumulate data for different settings df Pandas dataframe to accumulate/manage data. Key is alpha+mode+lmm """ #super(base,self).__init__() #self. self.alpha = alpha # rotation of grating w.r.t. grating normal self.m = m # mode self.lmm = float(lmm) # remember lines per mm self.d = 1.0/(self.lmm * 10) # inverse count of lines per mm self.blaze = blaze # The blaze angle for this grating self.length = length # length of the physical grating surface self.width = width # width of the physical grating surface self.wave = [] # the wavelength range per call, reflect the last one self.dispersion = {} # accumulate data for different settings self.df = None # manage data as a Pandas dataframe self.notes = [] # strings of user notes self._fig = None # plot figure. ### Grating.__init__() def setalpha(self,newalpha: "degrees"): # Grating::setalpha() """Update alpha for another go.""" self.alpha = newalpha return self ### Grating.setalpha() def setmode(self,newmode: "integer"): # Grating::setmode() """Set the new mode""" self.m = newmode return self ### Grating.setmode() def setgrating(self,linesmm:float): # Grating::setgrating() """Set the d = lines/mm""" self.d = float(linesmm) return self ### Grating.setgrating() def setsize(self,length:float ,width:float): # Grating::setsize() """Set the length/width of physical grating""" self.length = length self.width = width return self ### Grating.setsize() def setblaze(self,blaze: float): # Grating::setblaze() """Set the blaze width""" self.blaze = float(blaze) return self ### Grating.setblaze() def setlmm(self,lmm: float): # Grating::setlmm() """Set the lines/mm and remember to update d""" self.lmm = float(lmm) self.d = 1.0/(self.lmm * 10) # inverse count of lines per mm return self ### Grating.setlmm() def difftable(self,df: pd.DataFrame, key: str): # Grating::difftable() """Report forward differences on a column. The column is a 'key' comprised of alpha and mode""" col = degrees(df[key].values) # get the angles in radians fdiff = col[1:] - col[:-1] # first forward diff using np ratios = fdiff[1:]/fdiff[:-1] # reduce scale. tmp = pd.DataFrame({'Diff' : fdiff[1:], 'Ratio' : ratios}, index=self.wave[1:-1]*1e8) print(tmp) return self ### Grating.difftable() def debug(self,msg="",os=sys.stderr): # Grating::debug() """Help with momentary debugging, file to fit.""" print("Grating - %s " % msg, file=os) for key,value in self.__dict__.items(): if(key[0] != '_'): print("%20s = %s" % (key,value),file=os) return self ### Grating.debug() __Grating_debug = debug # preserve our debug name if we're inherited def grating_quation(self, waverange = None,step = 0) -> 'radians': # Grating::grating_quation() """Return ฮฒ from applying the grating equation to a numpy array of wavelengths (cm), given the conditions that are held constant of this class. """ np.seterr(invalid='ignore') # asking for a broad range, sin will blow up. if(waverange is None): waverange = self.specrange # provide a decent default visual span m = float(self.m) self.wave = waverange / 1.e8 # convert to cm sinalpha = sin(radians(self.alpha)) # constant sinb = m * (self.wave / self.d) + sinalpha # spread out to watch. ฮฒ = arcsin(sinb) # beta key = """ฮฑ={:5.2f}, m={:2d} lmm={:5.2f}""".format(self.alpha,self.m,int(self.lmm)) self.dispersion[key] = degrees(ฮฒ) # save 'last' result np.seterr(invalid=None) # reset for other parts of the code. return ฮฒ ### Grating.grating_quation() def report(self): # Grating::report() """Create a pandas df, make a report by wavelength.""" if(self.dispersion != []):
pd.set_option('display.max_rows', None)
pandas.set_option
# -*- coding: utf-8 -*- # Load All Packages import numpy as np, pandas as pd import xgboost as xgb import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from keras.models import Sequential from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from keras.layers import Input, Dense, Embedding, SpatialDropout1D from keras.layers import GRU, Bidirectional, GlobalAveragePooling1D from keras.preprocessing import text, sequence import warnings warnings.filterwarnings('ignore') import os os.environ['OMP_NUM_THREADS'] = '4' np.random.seed(2018) # Change the Root Path Here rootPath = '/Users/ValarMorghulis/Johnson_Johnson/FinalCode/' # read data class unspsc(): # Default Path, these paths can be replaced when initializating def __init__(self,SapPath = rootPath + 'defaultInput/csvFiles/UNSPSC Full Data Update 2.csv', PrhdaPath= rootPath + 'defaultInput/csvFiles/Prhda.csv', GmdnPath = rootPath + 'defaultInput/csvFiles/GMDN_desp.csv', embedPath = rootPath + 'defaultInput/wordEmbeddingMartix/crawl-300d-2M.vec', weightsPath = rootPath + 'defaultInput/preTrainedWeights/', wordEmPath = rootPath + 'defaultInput/wordEmbeddingMartix/'): self.SapPath,self.PrhdaPath = SapPath, PrhdaPath self.EMBEDDING_FILE,self.GmdnPath = embedPath, GmdnPath self.weightsPath,self.wordEmPath = weightsPath, wordEmPath def dataPre(self): """ Prepare all Data to be used. return: two files - Full data and Y train data Unit Test Passed """ # Load All data rawData = pd.read_csv(self.SapPath,error_bad_lines=False,encoding='latin1') rawPRDHA = pd.read_csv(self.PrhdaPath,error_bad_lines=False,delimiter='\t') # Only Select these fields columns = ['Breit','Brgew','Hoehe','Laeng','Volum','Zzwerks','Ntgew','Material Description', 'Material','Ean11','Gmdnptdefinition','Gmdnptname','Unspsc','Prdha'] filterData,filterPRDHA = rawData[columns],rawPRDHA[['Prdha','Minor_name','Major_name']] # 93 - UNSPSC 73 - UNSPSC filterData = filterData.dropna().reset_index(drop=True) filterPRDHA['Prdha'] = filterPRDHA['Prdha'].astype('O') def prdha_zero(x): x, num = str(x), len(str(x)) if num != 18: return '0' * (18 - num) + str(x) else: return str(x) # Fill 18 Digits and Extract First 3 char filterData['Prdha'] = filterData['Prdha'].apply(prdha_zero) filterPRDHA['Prdha'] = filterPRDHA['Prdha'].apply(prdha_zero) # Merge All data filterAll = pd.merge(filterData, filterPRDHA, right_on='Prdha', left_on='Prdha', how='inner') filterAll['Material_top3'] = filterAll['Material'].apply(lambda x: x[:3]) y_train = pd.factorize(filterAll['Unspsc']) print('Data Preparation Finished') return filterAll,y_train def Token(self,filterAll,Filed): ''' Word Embedding files here. :param Filed: support "material","gmdn","prdha" :return: Unit Test Passed ''' if Filed == 'material': pre_train = filterAll['Material Description'].apply(str).str.lower() pre_test = filterAll['Material Description'].apply(str).str.lower() max_features = 4000 # If you want to change, check the matrix length af first if Filed == 'gmdn': rawGMDN = pd.read_csv(self.GmdnPath, error_bad_lines=False, encoding='utf8') pre_train = rawGMDN['Short Desp'].apply(str).str.lower() pre_test = filterAll['Gmdnptname'].apply(str).str.lower() max_features = 700 if Filed == 'prdha': rawPRDHA = pd.read_csv(self.PrhdaPath, error_bad_lines=False, delimiter='\t') pre_train = rawPRDHA['Minor_name'].apply(str).str.lower() pre_test = filterAll['Minor_name'].apply(str).str.lower() max_features = 1000 tokenizer = text.Tokenizer(num_words=max_features) tokenizer.fit_on_texts(list(pre_train)) x_train = unspsc.tokenSide(self,tokenizer,pre_train) x_test = unspsc.tokenSide(self,tokenizer,pre_test) return x_train, x_test, tokenizer, max_features def TokenInput(self,dataset,Filed): ''' Word Embedding files here. :param Filed: support "material","gmdn","prdha" :return: Unit Test Passed ''' if Filed == 'material': pre_train = filterAll['Material Description'].apply(str).str.lower() pre_test = dataset['Material Description'].apply(str).str.lower() max_features = 4000 if Filed == 'gmdn': rawGMDN = pd.read_csv(self.GmdnPath, error_bad_lines=False, encoding='utf8') pre_train = rawGMDN['Short Desp'].apply(str).str.lower() pre_test = dataset['Gmdnptname'].apply(str).str.lower() max_features = 700 if Filed == 'prdha': rawPRDHA =
pd.read_csv(self.PrhdaPath, error_bad_lines=False, delimiter='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Zerodha Kite Connect - candlestick pattern scanner @author: <NAME> (http://rasuquant.com/wp/) """ from kiteconnect import KiteConnect import pandas as pd import datetime as dt import os import time import numpy as np from technicalta import * #cwd = os.chdir("D:\\Udemy\\Zerodha KiteConnect API\\1_account_authorization") apikey = '<KEY>' #generate trading session '''access_token = open("access_token.txt",'r').read() key_secret = open("api_key.txt",'r').read().split() kite = KiteConnect(api_key=key_secret[0]) kite.set_access_token(access_token) #get dump of all NSE instruments instrument_dump = kite.instruments("NSE") instrument_df = pd.DataFrame(instrument_dump) ''' def instrumentLookup(instrument_df,symbol): """Looks up instrument token for a given script from instrument dump""" try: return instrument_df[instrument_df.tradingsymbol==symbol].instrument_token.values[0] except: return -1 def fetchOHLC(ticker,interval,duration): """extracts historical data and outputs in the form of dataframe""" instrument = instrumentLookup(instrument_df,ticker) data = pd.DataFrame(kite.historical_data(instrument,dt.date.today()-dt.timedelta(duration), dt.date.today(),interval)) data.set_index("date",inplace=True) return data def doji(ohlc_df): """returns dataframe with doji candle column""" df = ohlc_df.copy() avg_candle_size = abs(df['close']-df['open']).median()#abs(df["close"]- df["open"]).median() df["doji"] = abs(df["close"] - df["open"]) <= (0.05 * avg_candle_size) return df def maru_bozu(ohlc_df): """returns dataframe with maru bozu candle column""" df = ohlc_df.copy() avg_candle_size = abs(df["close"] - df["open"]).median() df["h-c"] = df["high"]-df["close"] df["l-o"] = df["low"]-df["open"] df["h-o"] = df["high"]-df["open"] df["l-c"] = df["low"]-df["close"] df["maru_bozu"] = np.where((df["close"] - df["open"] > 2*avg_candle_size) & \ (df[["h-c","l-o"]].max(axis=1) < 0.005*avg_candle_size),"maru_bozu_green", np.where((df["open"] - df["close"] > 2*avg_candle_size) & \ (abs(df[["h-o","l-c"]]).max(axis=1) < 0.005*avg_candle_size),"maru_bozu_red",False)) df.drop(["h-c","l-o","h-o","l-c"],axis=1,inplace=True) return df def hammer(ohlc_df): """returns dataframe with hammer candle column""" df = ohlc_df.copy() df["hammer"] = (((df["high"] - df["low"])>3*(df["open"] - df["close"])) & \ ((df["close"] - df["low"])/(.001 + df["high"] - df["low"]) > 0.6) & \ ((df["open"] - df["low"])/(.001 + df["high"] - df["low"]) > 0.6)) & \ (abs(df["close"] - df["open"]) > 0.1* (df["high"] - df["low"])) return df def shooting_star(ohlc_df): """returns dataframe with shooting star candle column""" df = ohlc_df.copy() df["sstar"] = (((df["high"] - df["low"])>3*(df["open"] - df["close"])) & \ ((df["high"] - df["close"])/(.001 + df["high"] - df["low"]) > 0.6) & \ ((df["high"] - df["open"])/(.001 + df["high"] - df["low"]) > 0.6)) & \ (abs(df["close"] - df["open"]) > 0.1* (df["high"] - df["low"])) return df def levels(ohlc_day): """returns pivot point and support/resistance levels""" high = round(ohlc_day["high"][-1],2) low = round(ohlc_day["low"][-1],2) close = round(ohlc_day["close"][-1],2) pivot = round((high + low + close)/3,2) r1 = round((2*pivot - low),2) r2 = round((pivot + (high - low)),2) r3 = round((high + 2*(pivot - low)),2) s1 = round((2*pivot - high),2) s2 = round((pivot - (high - low)),2) s3 = round((low - 2*(high - pivot)),2) return (pivot,r1,r2,r3,s1,s2,s3) def trend(ohlc_df,n): "function to assess the trend by analyzing each candle" df = ohlc_df.copy() df["up"] = np.where(df["low"]>=df["low"].shift(1),1,0) df["dn"] = np.where(df["high"]<=df["high"].shift(1),1,0) if df["close"][-1] > df["open"][-1]: if df["up"][-1*n:].sum() >= 0.7*n: return "uptrend" elif df["open"][-1] > df["close"][-1]: if df["dn"][-1*n:].sum() >= 0.7*n: return "downtrend" else: return None def res_sup(ohlc_df,ohlc_day): """calculates closest resistance and support levels for a given candle""" level = ((ohlc_df["close"][-1] + ohlc_df["open"][-1])/2 + (ohlc_df["high"][-1] + ohlc_df["low"][-1])/2)/2 p,r1,r2,r3,s1,s2,s3 = levels(ohlc_day) l_r1=level-r1 l_r2=level-r2 l_r3=level-r3 l_p=level-p l_s1=level-s1 l_s2=level-s2 l_s3=level-s3 lev_ser = pd.Series([l_p,l_r1,l_r2,l_r3,l_s1,l_s2,l_s3],index=["p","r1","r2","r3","s1","s2","s3"]) sup = lev_ser[lev_ser>0].idxmin() res = lev_ser[lev_ser>0].idxmax() return (eval('{}'.format(res)), eval('{}'.format(sup))) def candle_type(ohlc_df): """returns the candle type of the last candle of an OHLC DF""" '''ohlc_df['open']=int(ohlc_df['open']) ohlc_df['close']=int(ohlc_df['close']) ohlc_df['high']=int(ohlc_df['high']) ohlc_df['low']=int(ohlc_df['low'])''' candle = None if doji(ohlc_df)["doji"][-1] == True: candle = "doji" if maru_bozu(ohlc_df)["maru_bozu"][-1] == "maru_bozu_green": candle = "maru_bozu_green" if maru_bozu(ohlc_df)["maru_bozu"][-1] == "maru_bozu_red": candle = "maru_bozu_red" if shooting_star(ohlc_df)["sstar"][-1] == True: candle = "shooting_star" if hammer(ohlc_df)["hammer"][-1] == True: candle = "hammer" return candle def candle_pattern(ohlc_df,ohlc_day): """returns the candle pattern identified""" pattern = None signi = "low" avg_candle_size = abs(ohlc_df["close"] - ohlc_df["open"]).median() sup, res = res_sup(ohlc_df,ohlc_day) if (sup - 1.5*avg_candle_size) < ohlc_df["close"][-1] < (sup + 1.5*avg_candle_size): signi = "HIGH" if (res - 1.5*avg_candle_size) < ohlc_df["close"][-1] < (res + 1.5*avg_candle_size): signi = "HIGH" if candle_type(ohlc_df) == 'doji' \ and ohlc_df["close"][-1] > ohlc_df["close"][-2] \ and ohlc_df["close"][-1] > ohlc_df["open"][-1]: pattern = "doji_bullish" if candle_type(ohlc_df) == 'doji' \ and ohlc_df["close"][-1] < ohlc_df["close"][-2] \ and ohlc_df["close"][-1] < ohlc_df["open"][-1]: pattern = "doji_bearish" if candle_type(ohlc_df) == "maru_bozu_green": pattern = "maru_bozu_bullish" if candle_type(ohlc_df) == "maru_bozu_red": pattern = "maru_bozu_bearish" if trend(ohlc_df.iloc[:-1,:],7) == "uptrend" and candle_type(ohlc_df) == "hammer": pattern = "hanging_man_bearish" if trend(ohlc_df.iloc[:-1,:],7) == "downtrend" and candle_type(ohlc_df) == "hammer": pattern = "hammer_bullish" if trend(ohlc_df.iloc[:-1,:],7) == "uptrend" and candle_type(ohlc_df) == "shooting_star": pattern = "shooting_star_bearish" if trend(ohlc_df.iloc[:-1,:],7) == "uptrend" \ and candle_type(ohlc_df) == "doji" \ and ohlc_df["high"][-1] < ohlc_df["close"][-2] \ and ohlc_df["low"][-1] > ohlc_df["open"][-2]: pattern = "harami_cross_bearish" if trend(ohlc_df.iloc[:-1,:],7) == "downtrend" \ and candle_type(ohlc_df) == "doji" \ and ohlc_df["high"][-1] < ohlc_df["open"][-2] \ and ohlc_df["low"][-1] > ohlc_df["close"][-2]: pattern = "harami_cross_bullish" if trend(ohlc_df.iloc[:-1,:],7) == "uptrend" \ and candle_type(ohlc_df) != "doji" \ and ohlc_df["open"][-1] > ohlc_df["high"][-2] \ and ohlc_df["close"][-1] < ohlc_df["low"][-2]: pattern = "engulfing_bearish" if trend(ohlc_df.iloc[:-1,:],7) == "downtrend" \ and candle_type(ohlc_df) != "doji" \ and ohlc_df["close"][-1] > ohlc_df["high"][-2] \ and ohlc_df["open"][-1] < ohlc_df["low"][-2]: pattern = "engulfing_bullish" return "Significance - {}, Pattern - {}".format(signi,pattern) ############################################################################################## tickers = ["ZEEL","WIPRO","VEDL","ULTRACEMCO","UPL","TITAN","TECHM","TATASTEEL", "TATAMOTORS","TCS","SUNPHARMA","SBIN","SHREECEM","RELIANCE","POWERGRID", "ONGC","NESTLEIND","NTPC","MARUTI","M&M","LT","KOTAKBANK","JSWSTEEL","INFY", "INDUSINDBK","IOC","ITC","ICICIBANK","HDFC","HINDUNILVR","HINDALCO", "HEROMOTOCO","HDFCBANK","HCLTECH","GRASIM","GAIL","EICHERMOT","DRREDDY", "COALINDIA","CIPLA","BRITANNIA","INFRATEL","BHARTIARTL","BPCL","BAJAJFINSV", "BAJFINANCE","BAJAJ-AUTO","AXISBANK","ASIANPAINT","ADANIPORTS","IDEA", "MCDOWELL-N","UBL","NIACL","SIEMENS","SRTRANSFIN","SBILIFE","PNB", "PGHH","PFC","PEL","PIDILITIND","PETRONET","PAGEIND","OFSS","NMDC","NHPC", "MOTHERSUMI","MARICO","LUPIN","L&TFH","INDIGO","IBULHSGFIN","ICICIPRULI", "ICICIGI","HINDZINC","HINDPETRO","HAVELLS","HDFCLIFE","HDFCAMC","GODREJCP", "GICRE","DIVISLAB","DABUR","DLF","CONCOR","COLPAL","CADILAHC","BOSCHLTD", "BIOCON","BERGEPAINT","BANKBARODA","BANDHANBNK","BAJAJHLDNG","DMART", "AUROPHARMA","ASHOKLEY","AMBUJACEM","ADANITRANS","ACC", "WHIRLPOOL","WABCOINDIA","VOLTAS","VINATIORGA","VBL","VARROC","VGUARD", "UNIONBANK","UCOBANK","TRENT","TORNTPOWER","TORNTPHARM","THERMAX","RAMCOCEM", "TATAPOWER","TATACONSUM","TVSMOTOR","TTKPRESTIG","SYNGENE","SYMPHONY", "SUPREMEIND","SUNDRMFAST","SUNDARMFIN","SUNTV","STRTECH","SAIL","SOLARINDS", "SHRIRAMCIT","SCHAEFFLER","SANOFI","SRF","SKFINDIA","SJVN","RELAXO", "RAJESHEXPO","RECLTD","RBLBANK","QUESS","PRESTIGE","POLYCAB","PHOENIXLTD", "PFIZER","PNBHOUSING","PIIND","OIL","OBEROIRLTY","NAM-INDIA","NATIONALUM", "NLCINDIA","NBCC","NATCOPHARM","MUTHOOTFIN","MPHASIS","MOTILALOFS","MINDTREE", "MFSL","MRPL","MANAPPURAM","MAHINDCIE","M&MFIN","MGL","MRF","LTI","LICHSGFIN", "LTTS","KANSAINER","KRBL","JUBILANT","JUBLFOOD","JINDALSTEL","JSWENERGY", "IPCALAB","NAUKRI","IGL","IOB","INDHOTEL","INDIANB","IBVENTURES","IDFCFIRSTB", "IDBI","ISEC","HUDCO","HONAUT","HAL","HEXAWARE","HATSUN","HEG","GSPL", "GUJGASLTD","GRAPHITE","GODREJPROP","GODREJIND","GODREJAGRO","GLENMARK", "GLAXO","GILLETTE","GMRINFRA","FRETAIL","FCONSUMER","FORTIS","FEDERALBNK", "EXIDEIND","ESCORTS","ERIS","ENGINERSIN","ENDURANCE","EMAMILTD","EDELWEISS", "EIHOTEL","LALPATHLAB","DALBHARAT","CUMMINSIND","CROMPTON","COROMANDEL","CUB", "CHOLAFIN","CHOLAHLDNG","CENTRALBK","CASTROLIND","CANBK","CRISIL","CESC", "BBTC","BLUEDART","BHEL","BHARATFORG","BEL","BAYERCROP","BATAINDIA", "BANKINDIA","BALKRISIND","ATUL","ASTRAL","APOLLOTYRE","APOLLOHOSP", "AMARAJABAT","ALKEM","APLLTD","AJANTPHARM","ABFRL","ABCAPITAL","ADANIPOWER", "ADANIGREEN","ADANIGAS","ABBOTINDIA","AAVAS","AARTIIND","AUBANK","AIAENG","3MINDIA"] def main(): for ticker in tickers: try: ohlc = fetchOHLC(ticker, '5minute',5) ohlc_day = fetchOHLC(ticker, 'day',30) ohlc_day = ohlc_day.iloc[:-1,:] cp = candle_pattern(ohlc,ohlc_day) print(ticker, ": ",cp) except: print("skipping for ",ticker) ''' # Continuous execution starttime=time.time() timeout = time.time() + 60*60*1 # 60 seconds times 60 meaning the script will run for 1 hr while time.time() <= timeout: try: print("passthrough at ",time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))) main() time.sleep(300 - ((time.time() - starttime) % 300.0)) # 300 second interval between each new execution except KeyboardInterrupt: print('\n\nKeyboard exception received. Exiting.') exit()''' from pprint import pprint def AlphaData_fxintraday(frombase,to,interval): import requests import json from pprint import pprint global apikey url="https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={}&to_symbol={}&interval={}min&apikey={}".format(frombase,to,interval,apikey) data=requests.get(url).json() #pprint(dict(data['Time Series FX ({}min)'.format(interval)]))#['2020-07-31 20:20:00'])#['4. close']) import pandas as pd try: if data: data=data['Time Series FX ({}min)'.format(interval)] df=pd.DataFrame(data).T df['open']=df['1. open'] df['high']=df['2. high'] df['low']=df['3. low'] df['close']=df['4. close'] df=df.drop(['1. open','2. high','3. low', '4. close'], axis=1) return df#data['Time Series FX ({}min)'.format(interval)] except: print("An exception occurred") frombase=['EUR','USD','GBP','AUD','EUR'] to=['USD','JPY','CAD','CNY','CHF','HKD','GBP','KRW'] ''' for j in frombase: for i in to: pprint('{}/{} in process'.format(i,j)) data=AlphaData_intraday(i,j,60) pprint('{}/{} Done'.format(i,j)) time.sleep(30) ''' def AlphaData_fxdaily(frombase,to): import requests import json from pprint import pprint global apikey url="https://www.alphavantage.co/query?function=FX_DAILY&from_symbol={}&to_symbol={}&apikey={}".format(frombase,to,apikey) #url="https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={}&to_symbol={}&interval={}min&apikey={}".format(frombase,to,interval,apikey) data=requests.get(url).json() #pprint(dict(data['Time Series FX ({}min)'.format(interval)]))#['2020-07-31 20:20:00'])#['4. close']) import pandas as pd try: if data: data=data['Time Series FX (Daily)'] df=pd.DataFrame(data).T df['open']=df['1. open'] df['high']=df['2. high'] df['low']=df['3. low'] df['close']=df['4. close'] df=df.drop(['1. open','2. high','3. low', '4. close'], axis=1) return df#data['Time Series FX ({}min)'.format(interval)] except: print("An exception occurred") ''' for j in frombase: for i in to: pprint('{}/{} in process'.format(i,j)) dataintra=AlphaData_intraday(i,j,5) datadaily=AlphaData_daily(i,j) pprint(dataintra) if len(dataintra) > 0: if len(datadaily) > 0 : pprint(candle_type(dataintra)) #cp = candle_pattern(dataintra,datadaily) pprint('{}/{} Done'.format(i,j)) time.sleep(5)''' ''' for j in frombase: for i in to: pprint('{}/{} in process'.format(i,j)) data=AlphaData_daily(i,j) pprint('{}/{} Done'.format(i,j)) time.sleep(5) ''' def AlphaData_intraday(symbol,interval): import requests import json from pprint import pprint global apikey url="https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={}&interval={}min&apikey={}".format(symbol,interval,apikey) data=requests.get(url).json() #pprint(dict(data['Time Series FX ({}min)'.format(interval)]))#['2020-07-31 20:20:00'])#['4. close']) import pandas as pd try: if data: data=data['Time Series ({}min)'.format(interval)] df=pd.DataFrame(data).T df['open']=df['1. open'] df['high']=df['2. high'] df['low']=df['3. low'] df['close']=df['4. close'] df['volume']=df['5. volume'] df['volume']=df['5. volume'] df=df.drop(['1. open','2. high','3. low', '4. close','5. volume'], axis=1) df['open']=pd.to_numeric(df['open']) df['high']=pd.to_numeric(df['high']) df['low']=pd.to_numeric(df['low']) df['close']=pd.to_numeric(df['close']) df['volume']=pd.to_numeric(df['volume']) return df#data['Time Series FX ({}min)'.format(interval)] except: print("An exception occurred") def AlphaData_daily(symbol): import requests import json from pprint import pprint global apikey url="https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={}&apikey={}".format(symbol,apikey) #url="https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={}&to_symbol={}&interval={}min&apikey={}".format(frombase,to,interval,apikey) data=requests.get(url).json() #pprint(dict(data['Time Series FX ({}min)'.format(interval)]))#['2020-07-31 20:20:00'])#['4. close']) import pandas as pd try: if data: data=data['Time Series (Daily)'] df=pd.DataFrame(data).T df['open']=df['1. open'] df['high']=df['2. high'] df['low']=df['3. low'] df['close']=df['4. close'] df['volume']=df['5. volume'] df=df.drop(['1. open','2. high','3. low', '4. close','5. volume'], axis=1) df['open']=pd.to_numeric(df['open']) df['high']=pd.to_numeric(df['high']) df['low']=pd.to_numeric(df['low']) df['close']=pd.to_numeric(df['close']) df['volume']=pd.to_numeric(df['volume']) return df#data['Time Series FX ({}min)'.format(interval)] except: print("An exception occurred") '''' for i in to: pprint('{}/{} in process'.format(i,j)) dataintra=AlphaData_intraday(i,5) datadaily=AlphaData_daily(i) pprint(dataintra) if len(dataintra) > 0: if len(datadaily) > 0 : pprint(candle_type(dataintra)) #cp = candle_pattern(dataintra,datadaily) pprint('{}/{} Done'.format(i,j)) time.sleep(5)''' def main(): for ticker in tickers: try: ohlc = fetchOHLC(ticker, '5minute',5) ohlc_day = fetchOHLC(ticker, 'day',30) ohlc_day = ohlc_day.iloc[:-1,:] cp = candle_pattern(ohlc,ohlc_day) print(ticker, ": ",cp) except: print("skipping for ",ticker) ticks=['atvi','adbe','amd','alxn','algn','goog','googl','amzn','amgn','adi','anss','aapl','amat','asml','adsk','adp','bidu','biib','bmrn','bkng','avgo','cdns','cdw','cern','chtr','chkp','ctas','csco','ctxs','ctsh','cmcsa','cprt','cost','csx','dxcm','docu','dltr','ebay','ea','exc','expe','fb','fast','fisv','fox','foxa','gild','idxx','ilmn','incy','intc','intu','isrg','jd','klac','lrcx','lbtya','lbtyk','lulu','mar','mxim','meli','mchp','mu','msft','mrna','mdlz','mnst','ntap','ntes','nflx','nvda','nxpi','orly','pcar','payx','pypl','pep','qcom','regn','rost','sgen','siri','swks','splk','sbux','snps','tmus','ttwo','tsla','txn','khc','tcom','ulta','vrsn','vrsk','vrtx','wba','wdc','wday','xel','xlnx','zm'] patterns=['Two Crows', 'Three Black Crows', 'Three Inside Up/Down', 'Three-Line Strike', 'Three Outside Up/Down', 'Three Stars In The South', 'Three Advancing White Soldiers', 'Abandoned Baby', 'Advance Block', 'Belt-hold', 'Breakaway', 'Closing Marubozu', 'Concealing Baby Swallow', 'Counterattack', 'Dark Cloud Cover', 'Doji', 'Doji Star', 'Dragonfly Doji', 'Engulfing Pattern', 'Evening Doji Star', 'Evening Star', 'Up/Down-gap side-by-side white lines', 'Gravestone Doji', 'Hammer', 'Hanging Man', 'Harami Pattern', 'Harami Cross Pattern', 'High-Wave Candle', 'Hikkake Pattern', 'Modified Hikkake Pattern', 'Homing Pigeon', 'Identical Three Crows', 'In-Neck Pattern', 'Inverted Hammer', 'Kicking', 'Kicking - bull/bear', 'Ladder Bottom', 'Long Legged Doji', 'Long Line Candle', 'Marubozu', 'Matching Low', 'Mat Hold', 'Morning Doji Star', 'Morning Star', 'On-Neck Pattern', 'Piercing Pattern', 'Rickshaw Man', 'Rising/Falling Three Methods', 'Separating Lines', 'Shooting Star', 'Short Line Candle', 'Spinning Top', 'Stalled Pattern', 'Stick Sandwich', 'Takuri', 'Tasuki Gap', 'Thrusting Pattern', 'Tristar Pattern', 'Unique 3 River', 'Upside Gap Two Crows', 'Upside/Downside Gap Three Methods'] def texterconversion(text): tex=text.replace('/','').replace('-','_').replace(' ','_').replace('(','').replace(')','') return tex def technical_lib(technical,df): open=df['open'] high=df['high'] low=df['low'] close=df['close'] if technical == 'Two_Crows': tech=Two_Crows(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Black_Crows': tech=Three_Black_Crows(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Inside_UpDown': tech=Three_Inside_UpDown(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Line_Strike': tech=Three_Line_Strike(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Outside_UpDown': tech=Three_Outside_UpDown(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Stars_In_The_South': tech=Three_Stars_In_The_South(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Three_Advancing_White_Soldiers': tech=Three_Advancing_White_Soldiers(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Abandoned_Baby': tech=Abandoned_Baby(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Advance_Block': tech=Advance_Block(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Belt_hold': tech=Belt_hold(open,high,low,close) tech=pd.DataFrame(tech) tech[0]=(np.where(tech[0] > 0,'{}_bullish'.format(technical),np.where(tech[0] < 0,'{}_bearish'.format(technical),0))) elif technical == 'Breakaway': tech=Breakaway(open,high,low,close) tech=
pd.DataFrame(tech)
pandas.DataFrame
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) error_mask = ( (oc2['4th_bday'] > collection_end) & oc2[['SDQ_SCORE', 'SDQ_REASON']].notna().any(axis=1) ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_190(): error = ErrorDefinition( code='190', description="Child has not been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been completed.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] , # AD1 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_blank = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] mask = ~oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_blank].notna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_191(): error = ErrorDefinition( code='191', description="Child has been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been left blank.", affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], # OC2 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_present = ['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'] mask = oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_present].isna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_607(): error = ErrorDefinition( code='607', description='Child ceased to be looked after in the year, but mother field has not been completed.', affected_fields=['DEC', 'REC', 'MOTHER', 'LS', 'SEX'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] code_list = ['V3', 'V4'] # convert to datetiime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # CEASED_TO_BE_LOOKED_AFTER = DEC is not null and REC is filled but not equal to X1 CEASED_TO_BE_LOOKED_AFTER = merged['DEC'].notna() & ((merged['REC'] != 'X1') & merged['REC'].notna()) # and <LS> not = โ€˜V3โ€™ or โ€˜V4โ€™ check_LS = ~(merged['LS'].isin(code_list)) # and <DEC> is in <CURRENT_COLLECTION_YEAR check_DEC = (collection_start <= merged['DEC']) & (merged['DEC'] <= collection_end) # Where <CEASED_TO_BE_LOOKED_AFTER> = โ€˜Yโ€™, and <LS> not = โ€˜V3โ€™ or โ€˜V4โ€™ and <DEC> is in <CURRENT_COLLECTION_YEAR> and <SEX> = โ€˜2โ€™ then <MOTHER> should be provided. mask = CEASED_TO_BE_LOOKED_AFTER & check_LS & check_DEC & (merged['SEX'] == '2') & (merged['MOTHER'].isna()) header_error_locs = merged.loc[mask, 'index_er'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_210(): error = ErrorDefinition( code='210', description='Children looked after for more than a week at 31 March should not have an unknown Unique Pupil Number (UPN) code of UN4.', affected_fields=['UPN', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_end = dfs['metadata']['collection_end'] # convert to datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') yr = collection_end.year reference_date = ref_date = pd.to_datetime('24/03/' + str(yr), format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) # the logical way is to merge left on UPN but that will be a one to many merge and may not go as well as a many to one merge that we've been doing. merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <UPN> = 'UN4' then no episode <DECOM> must be >` = 24/03/YYYY Note: YYYY refers to the current collection year. mask = (merged['UPN'] == 'UN4') & (merged['DECOM'] >= reference_date) # error locations error_locs_header = merged.loc[mask, 'index_er'] error_locs_eps = merged.loc[mask, 'index_eps'] return {'Episodes': error_locs_eps.tolist(), 'Header': error_locs_header.unique().tolist()} return error, _validate def validate_1010(): error = ErrorDefinition( code='1010', description='This child has no episodes loaded for current year even though there was an open episode of ' + 'care at the end of the previous year, and care leaver data has been entered.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] oc3 = dfs['OC3'] # convert DECOM to datetime, drop missing/invalid sort by CHILD then DECOM, episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = episodes_last.dropna(subset=['DECOM']).sort_values(['CHILD', 'DECOM'], ascending=True) # Keep only the final episode for each child (ie where the following row has a different CHILD value) episodes_last = episodes_last[ episodes_last['CHILD'].shift(-1) != episodes_last['CHILD'] ] # Keep only the final episodes that were still open episodes_last = episodes_last[episodes_last['DEC'].isna()] # The remaining children ought to have episode data in the current year if they are in OC3 has_current_episodes = oc3['CHILD'].isin(episodes['CHILD']) has_open_episode_last = oc3['CHILD'].isin(episodes_last['CHILD']) error_mask = ~has_current_episodes & has_open_episode_last validation_error_locations = oc3.index[error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_525(): error = ErrorDefinition( code='525', description='A child for whom the decision to be placed for adoption has been reversed cannot be adopted during the year.', affected_fields=['DATE_PLACED_CEASED', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs or 'AD1' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] ad1 = dfs['AD1'] # prepare to merge placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = placed_adoption.merge(ad1, on='CHILD', how='left', suffixes=['_placed', '_ad1']) # If <DATE_PLACED_CEASED> not Null, then <DATE_INT>; <DATE_MATCH>; <FOSTER_CARE>; <NB_ADOPTR>; <SEX_ADOPTR>; and <LS_ADOPTR> should not be provided mask = merged['DATE_PLACED_CEASED'].notna() & ( merged['DATE_INT'].notna() | merged['DATE_MATCH'].notna() | merged['FOSTER_CARE'].notna() | merged['NB_ADOPTR'].notna() | merged['SEX_ADOPTR'].notna() | merged['LS_ADOPTR'].notna()) # error locations pa_error_locs = merged.loc[mask, 'index_placed'] ad_error_locs = merged.loc[mask, 'index_ad1'] # return result return {'PlacedAdoption': pa_error_locs.tolist(), 'AD1': ad_error_locs.tolist()} return error, _validate def validate_335(): error = ErrorDefinition( code='335', description='The current foster value (0) suggests that child is not adopted by current foster carer, but last placement is A2, A3, or A5. Or the current foster value (1) suggests that child is adopted by current foster carer, but last placement is A1, A4 or A6.', affected_fields=['PLACE', 'FOSTER_CARE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'AD1' not in dfs: return {} else: episodes = dfs['Episodes'] ad1 = dfs['AD1'] # prepare to merge episodes.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = episodes.merge(ad1, on='CHILD', how='left', suffixes=['_eps', '_ad1']) # Where <PL> = 'A2', 'A3' or 'A5' and <DEC> = 'E1', 'E11', 'E12' <FOSTER_CARE> should not be '0'; Where <PL> = โ€˜A1โ€™, โ€˜A4โ€™ or โ€˜A6โ€™ and <REC> = โ€˜E1โ€™, โ€˜E11โ€™, โ€˜E12โ€™ <FOSTER_CARE> should not be โ€˜1โ€™. mask = ( merged['REC'].isin(['E1', 'E11', 'E12']) & ( (merged['PLACE'].isin(['A2', 'A3', 'A5']) & (merged['FOSTER_CARE'].astype(str) == '0')) | (merged['PLACE'].isin(['A1', 'A4', 'A6']) & (merged['FOSTER_CARE'].astype(str) == '1')) ) ) eps_error_locs = merged.loc[mask, 'index_eps'] ad1_error_locs = merged.loc[mask, 'index_ad1'] # use .unique since join is many to one return {'Episodes': eps_error_locs.tolist(), 'AD1': ad1_error_locs.unique().tolist()} return error, _validate def validate_215(): error = ErrorDefinition( code='215', description='Child has care leaver information but one or more data items relating to children looked after for 12 months have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] ) def _validate(dfs): if 'OC3' not in dfs or 'OC2' not in dfs: return {} else: oc3 = dfs['OC3'] oc2 = dfs['OC2'] # prepare to merge oc3.reset_index(inplace=True) oc2.reset_index(inplace=True) merged = oc3.merge(oc2, on='CHILD', how='left', suffixes=['_3', '_2']) # If any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided then <CONVICTED>; <HEALTH_CHECK>; <IMMUNISATIONS>; <TEETH_CHECK>; <HEALTH_ASSESSMENT>; <SUBSTANCE MISUSE>; <INTERVENTION_RECEIVED>; <INTERVENTION_OFFERED>; should not be provided mask = (merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) & ( merged['CONVICTED'].notna() | merged['HEALTH_CHECK'].notna() | merged['IMMUNISATIONS'].notna() | merged['TEETH_CHECK'].notna() | merged['HEALTH_ASSESSMENT'].notna() | merged[ 'SUBSTANCE_MISUSE'].notna() | merged['INTERVENTION_RECEIVED'].notna() | merged[ 'INTERVENTION_OFFERED'].notna()) # error locations oc3_error_locs = merged.loc[mask, 'index_3'] oc2_error_locs = merged.loc[mask, 'index_2'] return {'OC3': oc3_error_locs.tolist(), 'OC2': oc2_error_locs.tolist()} return error, _validate def validate_399(): error = ErrorDefinition( code='399', description='Mother field, review field or participation field are completed but ' + 'child is looked after under legal status V3 or V4.', affected_fields=['MOTHER', 'LS', 'REVIEW', 'REVIEW_CODE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'Reviews' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] reviews = dfs['Reviews'] code_list = ['V3', 'V4'] # prepare to merge episodes['index_eps'] = episodes.index header['index_hdr'] = header.index reviews['index_revs'] = reviews.index # merge merged = (episodes.merge(header, on='CHILD', how='left') .merge(reviews, on='CHILD', how='left')) # If <LS> = 'V3' or 'V4' then <MOTHER>, <REVIEW> and <REVIEW_CODE> should not be provided mask = merged['LS'].isin(code_list) & ( merged['MOTHER'].notna() | merged['REVIEW'].notna() | merged['REVIEW_CODE'].notna()) # Error locations eps_errors = merged.loc[mask, 'index_eps'] header_errors = merged.loc[mask, 'index_hdr'].unique() revs_errors = merged.loc[mask, 'index_revs'].unique() return {'Episodes': eps_errors.tolist(), 'Header': header_errors.tolist(), 'Reviews': revs_errors.tolist()} return error, _validate def validate_189(): error = ErrorDefinition( code='189', description='Child is aged 17 years or over at the beginning of the year, but an Strengths and Difficulties ' + '(SDQ) score or a reason for no Strengths and Difficulties (SDQ) score has been completed.', affected_fields=['DOB', 'SDQ_SCORE', 'SDQ_REASON'] ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] collection_start = dfs['metadata']['collection_start'] # datetime format allows appropriate comparison between dates oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # If <DOB> >17 years prior to <COLLECTION_START_DATE> then <SDQ_SCORE> and <SDQ_REASON> should not be provided mask = ((oc2['DOB'] + pd.offsets.DateOffset(years=17)) <= collection_start) & ( oc2['SDQ_REASON'].notna() | oc2['SDQ_SCORE'].notna()) # That is, raise error if collection_start > DOB + 17years oc_error_locs = oc2.index[mask] return {'OC2': oc_error_locs.tolist()} return error, _validate def validate_226(): error = ErrorDefinition( code='226', description='Reason for placement change is not required.', affected_fields=['REASON_PLACE_CHANGE', 'PLACE'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] code_list = ['T0', 'T1', 'T2', 'T3', 'T4'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # create column to see previous REASON_PLACE_CHANGE episodes = episodes.sort_values(['CHILD', 'DECOM']) episodes['PREVIOUS_REASON'] = episodes.groupby('CHILD')['REASON_PLACE_CHANGE'].shift(1) # If <PL> = 'T0'; 'T1'; 'T2'; 'T3' or 'T4' then <REASON_PLACE_CHANGE> should be null in current episode and current episode - 1 mask = episodes['PLACE'].isin(code_list) & ( episodes['REASON_PLACE_CHANGE'].notna() | episodes['PREVIOUS_REASON'].notna()) # error locations error_locs = episodes.index[mask] return {'Episodes': error_locs.tolist()} return error, _validate def validate_358(): error = ErrorDefinition( code='358', description='Child with this legal status should not be under 10.', affected_fields=['DECOM', 'DOB', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['J1', 'J2', 'J3'] # convert dates to datetime format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # Where <LS> = โ€˜J1โ€™ or โ€˜J2โ€™ or โ€˜J3โ€™ then <DOB> should <= to 10 years prior to <DECOM> mask = merged['LS'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=10) < merged['DECOM']) # That is, raise error if DECOM > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_407(): error = ErrorDefinition( code='407', description='Reason episode ceased is Special Guardianship Order, but child has reached age 18.', affected_fields=['DEC', 'DOB', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['E45', 'E46', 'E47', 'E48'] # convert dates to datetime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <REC> = โ€˜E45โ€™ or โ€˜E46โ€™ or โ€˜E47โ€™ or โ€˜E48โ€™ then <DOB> must be < 18 years prior to <DEC> mask = merged['REC'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=18) < merged['DEC']) # That is, raise error if DEC > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_1007(): error = ErrorDefinition( code='1007', description='Care leaver information is not required for 17- or 18-year olds who are still looked after.', affected_fields=['DEC', 'REC', 'DOB', 'IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_end = dfs['metadata']['collection_end'] # convert dates to datetime format oc3['DOB'] = pd.to_datetime(oc3['DOB'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) oc3.reset_index(inplace=True) merged = episodes.merge(oc3, on='CHILD', how='left', suffixes=['_eps', '_oc3']) # If <DOB> < 19 and >= to 17 years prior to <COLLECTION_END_DATE> and current episode <DEC> and or <REC> not provided then <IN_TOUCH>, <ACTIV> and <ACCOM> should not be provided check_age = (merged['DOB'] + pd.offsets.DateOffset(years=17) <= collection_end) & ( merged['DOB'] + pd.offsets.DateOffset(years=19) > collection_end) # That is, check that 17<=age<19 check_dec_rec = merged['REC'].isna() | merged['DEC'].isna() # if either DEC or REC are absent mask = check_age & check_dec_rec & ( merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) # Then raise an error if either IN_TOUCH, ACTIV, or ACCOM have been provided too # error locations oc3_error_locs = merged.loc[mask, 'index_oc3'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'OC3': oc3_error_locs.unique().tolist()} return error, _validate def validate_442(): error = ErrorDefinition( code='442', description='Unique Pupil Number (UPN) field is not completed.', affected_fields=['UPN', 'LS'] ) def _validate(dfs): if ('Episodes' not in dfs) or ('Header' not in dfs): return {} else: episodes = dfs['Episodes'] header = dfs['Header'] episodes.reset_index(inplace=True) header.reset_index(inplace=True) code_list = ['V3', 'V4'] # merge left on episodes to get all children for which episodes have been recorded even if they do not exist on the header. merged = episodes.merge(header, on=['CHILD'], how='left', suffixes=['_eps', '_er']) # Where any episode present, with an <LS> not = 'V3' or 'V4' then <UPN> must be provided mask = (~merged['LS'].isin(code_list)) & merged['UPN'].isna() episode_error_locs = merged.loc[mask, 'index_eps'] header_error_locs = merged.loc[mask, 'index_er'] return {'Episodes': episode_error_locs.tolist(), # Select unique values since many episodes are joined to one header # and multiple errors will be raised for the same index. 'Header': header_error_locs.dropna().unique().tolist()} return error, _validate def validate_344(): error = ErrorDefinition( code='344', description='The record shows the young person has died or returned home to live with parent(s) or someone with parental responsibility for a continuous period of 6 months or more, but activity and/or accommodation on leaving care have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'DIED' or 'RHOM' then <ACTIV> and <ACCOM> should not be provided mask = ((oc3['IN_TOUCH'] == 'DIED') | (oc3['IN_TOUCH'] == 'RHOM')) & ( oc3['ACTIV'].notna() | oc3['ACCOM'].notna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_345(): error = ErrorDefinition( code='345', description='The data collection record shows the local authority is in touch with this young person, but activity and/or accommodation data items are zero.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'Yes' then <ACTIV> and <ACCOM> must be provided mask = (oc3['IN_TOUCH'] == 'YES') & (oc3['ACTIV'].isna() | oc3['ACCOM'].isna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_384(): error = ErrorDefinition( code='384', description='A child receiving respite care cannot be in a long-term foster placement ', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # Where <LS> = 'V3' or 'V4' then <PL> must not be 'U1' or 'U4' mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( (episodes['PLACE'] == 'U1') | (episodes['PLACE'] == 'U4')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_390(): error = ErrorDefinition( code='390', description='Reason episode ceased is adopted but child has not been previously placed for adoption.', affected_fields=['PLACE', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # If <REC> = 'E11' or 'E12' then <PL> must be one of 'A3', 'A4', 'A5' or 'A6' mask = ((episodes['REC'] == 'E11') | (episodes['REC'] == 'E12')) & ~( (episodes['PLACE'] == 'A3') | (episodes['PLACE'] == 'A4') | (episodes['PLACE'] == 'A5') | ( episodes['PLACE'] == 'A6')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_378(): error = ErrorDefinition( code='378', description='A child who is placed with parent(s) cannot be looked after under a single period of accommodation under Section 20 of the Children Act 1989.', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # the & sign supercedes the ==, so brackets are necessary here mask = (episodes['PLACE'] == 'P1') & (episodes['LS'] == 'V2') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_398(): error = ErrorDefinition( code='398', description='Distance field completed but child looked after under legal status V3 or V4.', affected_fields=['LS', 'HOME_POST', 'PL_POST'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( episodes['HOME_POST'].notna() | episodes['PL_POST'].notna()) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_451(): error = ErrorDefinition( code='451', description='Child is still freed for adoption, but freeing orders could not be applied for since 30 December 2005.', affected_fields=['DEC', 'REC', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['DEC'].isna() & episodes['REC'].isna() & (episodes['LS'] == 'D1') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_519(): error = ErrorDefinition( code='519', description='Data entered on the legal status of adopters shows civil partnership couple, but data entered on genders of adopters does not show it as a couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = (ad1['LS_ADOPTR'] == 'L2') & ( (ad1['SEX_ADOPTR'] != 'MM') & (ad1['SEX_ADOPTR'] != 'FF') & (ad1['SEX_ADOPTR'] != 'MF')) error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_520(): error = ErrorDefinition( code='520', description='Data entry on the legal status of adopters shows different gender married couple but data entry on genders of adopters shows it as a same gender couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] # check condition mask = (ad1['LS_ADOPTR'] == 'L11') & (ad1['SEX_ADOPTR'] != 'MF') error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_522(): error = ErrorDefinition( code='522', description='Date of decision that the child should be placed for adoption must be on or before the date that a child should no longer be placed for adoption.', affected_fields=['DATE_PLACED', 'DATE_PLACED_CEASED'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] # Convert to datetimes placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # Boolean mask mask = placed_adoption['DATE_PLACED_CEASED'] > placed_adoption['DATE_PLACED'] error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_563(): error = ErrorDefinition( code='563', description='The child should no longer be placed for adoption but the date of the decision that the child should be placed for adoption is blank', affected_fields=['DATE_PLACED', 'REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] mask = placed_adoption['REASON_PLACED_CEASED'].notna() & placed_adoption['DATE_PLACED_CEASED'].notna() & \ placed_adoption['DATE_PLACED'].isna() error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_544(): error = ErrorDefinition( code='544', description="Any child who has conviction information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['CONVICTED', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] convict = oc2['CONVICTED'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = convict & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_634(): error = ErrorDefinition( code='634', description='There are entries for previous permanence options, but child has not started to be looked after from 1 April 2016 onwards.', affected_fields=['LA_PERM', 'PREV_PERM', 'DATE_PERM', 'DECOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'PrevPerm' not in dfs: return {} else: episodes = dfs['Episodes'] prevperm = dfs['PrevPerm'] collection_start = dfs['metadata']['collection_start'] # convert date field to appropriate format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # the maximum date has the highest possibility of satisfying the condition episodes['LAST_DECOM'] = episodes.groupby('CHILD')['DECOM'].transform('max') # prepare to merge episodes.reset_index(inplace=True) prevperm.reset_index(inplace=True) merged = prevperm.merge(episodes, on='CHILD', how='left', suffixes=['_prev', '_eps']) # If <PREV_PERM> or <LA_PERM> or <DATE_PERM> provided, then at least 1 episode must have a <DECOM> later than 01/04/2016 mask = (merged['PREV_PERM'].notna() | merged['DATE_PERM'].notna() | merged['LA_PERM'].notna()) & ( merged['LAST_DECOM'] < collection_start) eps_error_locs = merged.loc[mask, 'index_eps'] prevperm_error_locs = merged.loc[mask, 'index_prev'] # return {'PrevPerm':prevperm_error_locs} return {'Episodes': eps_error_locs.unique().tolist(), 'PrevPerm': prevperm_error_locs.unique().tolist()} return error, _validate def validate_158(): error = ErrorDefinition( code='158', description='If a child has been recorded as receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be left blank.', affected_fields=['INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] error_mask = oc2['INTERVENTION_RECEIVED'].astype(str).eq('1') & oc2['INTERVENTION_OFFERED'].notna() error_locations = oc2.index[error_mask] return {'OC2': error_locations.tolist()} return error, _validate def validate_133(): error = ErrorDefinition( code='133', description='Data entry for accommodation after leaving care is invalid. If reporting on a childs accommodation after leaving care the data entry must be valid', affected_fields=['ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] valid_codes = ['B1', 'B2', 'C1', 'C2', 'D1', 'D2', 'E1', 'E2', 'G1', 'G2', 'H1', 'H2', 'K1', 'K2', 'R1', 'R2', 'S2', 'T1', 'T2', 'U1', 'U2', 'V1', 'V2', 'W1', 'W2', 'X2', 'Y1', 'Y2', 'Z1', 'Z2', '0'] error_mask = ~oc3['ACCOM'].isna() & ~oc3['ACCOM'].isin(valid_codes) error_locations = oc3.index[error_mask] return {'OC3': error_locations.tolist()} return error, _validate def validate_565(): error = ErrorDefinition( code='565', description='The date that the child started to be missing or away from placement without authorisation has been completed but whether the child was missing or away from placement without authorisation has not been completed.', affected_fields=['MISSING', 'MIS_START'] ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] mask = missing['MIS_START'].notna() & missing['MISSING'].isna() error_locations = missing.index[mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_433(): error = ErrorDefinition( code='433', description='The reason for new episode suggests that this is a continuation episode, but the episode does not start on the same day as the last episode finished.', affected_fields=['RNE', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['original_index'] = episodes.index episodes.sort_values(['CHILD', 'DECOM', 'DEC'], inplace=True) episodes[['PREVIOUS_DEC', 'PREVIOUS_CHILD']] = episodes[['DEC', 'CHILD']].shift(1) rne_is_ongoing = episodes['RNE'].str.upper().astype(str).isin(['P', 'L', 'T', 'U', 'B']) date_mismatch = episodes['PREVIOUS_DEC'] != episodes['DECOM'] missing_date = episodes['PREVIOUS_DEC'].isna() | episodes['DECOM'].isna() same_child = episodes['PREVIOUS_CHILD'] == episodes['CHILD'] error_mask = rne_is_ongoing & (date_mismatch | missing_date) & same_child error_locations = episodes['original_index'].loc[error_mask].sort_values() return {'Episodes': error_locations.to_list()} return error, _validate def validate_437(): error = ErrorDefinition( code='437', description='Reason episode ceased is child has died or is aged 18 or over but there are further episodes.', affected_fields=['REC'], ) # !# potential false negatives, as this only operates on the current year's data def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes.sort_values(['CHILD', 'DECOM'], inplace=True) episodes[['NEXT_DECOM', 'NEXT_CHILD']] = episodes[['DECOM', 'CHILD']].shift(-1) # drop rows with missing DECOM as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) ceased_e2_e15 = episodes['REC'].str.upper().astype(str).isin(['E2', 'E15']) has_later_episode = episodes['CHILD'] == episodes['NEXT_CHILD'] error_mask = ceased_e2_e15 & has_later_episode error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_547(): error = ErrorDefinition( code='547', description="Any child who has health promotion information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] healthck = oc2['HEALTH_CHECK'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = healthck & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_635(): error = ErrorDefinition( code='635', description='There are entries for date of order and local authority code where previous permanence option was arranged but previous permanence code is Z1', affected_fields=['LA_PERM', 'DATE_PERM', 'PREV_PERM'] ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} else: prev_perm = dfs['PrevPerm'] # raise and error if either LA_PERM or DATE_PERM are present, yet PREV_PERM is absent. mask = ((prev_perm['LA_PERM'].notna() | prev_perm['DATE_PERM'].notna()) & prev_perm['PREV_PERM'].isna()) error_locations = prev_perm.index[mask] return {'PrevPerm': error_locations.to_list()} return error, _validate def validate_550(): error = ErrorDefinition( code='550', description='A placement provider code of PR0 can only be associated with placement P1.', affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = (episodes['PLACE'] != 'P1') & episodes['PLACE_PROVIDER'].eq('PR0') validation_error_locations = episodes.index[mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_217(): error = ErrorDefinition( code='217', description='Children who are placed for adoption with current foster carers (placement types A3 or A5) must have a reason for new episode of S, T or U.', affected_fields=['PLACE', 'DECOM', 'RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('01/04/2015', format='%d/%m/%Y', errors='coerce') reason_new_ep = ['S', 'T', 'U'] place_codes = ['A3', 'A5'] mask = (episodes['PLACE'].isin(place_codes) & (episodes['DECOM'] >= max_decom_allowed)) & ~episodes[ 'RNE'].isin(reason_new_ep) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_518(): error = ErrorDefinition( code='518', description='If reporting legal status of adopters is L4 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L4') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_517(): error = ErrorDefinition( code='517', description='If reporting legal status of adopters is L3 then the genders of adopters should be coded as MF. MF = the adopting couple are male and female.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L3') & ~AD1['SEX_ADOPTR'].isin(['MF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_558(): error = ErrorDefinition( code='558', description='If a child has been adopted, then the decision to place them for adoption has not been disrupted and the date of the decision that a child should no longer be placed for adoption should be left blank. if the REC code is either E11 or E12 then the DATE PLACED CEASED date should not be provided', affected_fields=['DATE_PLACED_CEASED', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() rec_codes = ['E11', 'E12'] placeEpisodes = episodes[episodes['REC'].isin(rec_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED_CEASED'].notna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_453(): error = ErrorDefinition( code='453', description='Contradiction between placement distance in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['PL_DISTANCE'] = pd.to_numeric(episodes['PL_DISTANCE'], errors='coerce') episodes_last['PL_DISTANCE'] = pd.to_numeric(episodes_last['PL_DISTANCE'], errors='coerce') # drop rows with missing DECOM before finding idxmin/max, as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) episodes_last = episodes_last.dropna(subset=['DECOM']) episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_dist = abs(episodes_merged['PL_DISTANCE'] - episodes_merged['PL_DISTANCE_last']) >= 0.2 error_mask = in_both_years & same_rne & last_year_open & different_pl_dist validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_516(): error = ErrorDefinition( code='516', description='The episode data submitted for this child does not show that he/she was with their former foster carer(s) during the year.If the code in the reason episode ceased is E45 or E46 the child must have a placement code of U1 to U6.', affected_fields=['REC', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] place_codes = ['U1', 'U2', 'U3', 'U4', 'U5', 'U6'] rec_codes = ['E45', 'E46'] error_mask = episodes['REC'].isin(rec_codes) & ~episodes['PLACE'].isin(place_codes) validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_511(): error = ErrorDefinition( code='511', description='If reporting that the number of person(s) adopting the looked after child is two adopters then the code should only be MM, FF or MF. MM = the adopting couple are both males; FF = the adopting couple are both females; MF = The adopting couple are male and female.', affected_fields=['NB_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] mask = AD1['NB_ADOPTR'].astype(str).eq('2') & AD1['SEX_ADOPTR'].isin(['M1', 'F1']) validation_error_mask = mask validation_error_locations = AD1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_524(): error = ErrorDefinition( code='524', description='If reporting legal status of adopters is L12 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L12') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_441(): error = ErrorDefinition( code='441', description='Participation method indicates child was 4 years old or over at the time of the review, but the date of birth and review date indicates the child was under 4 years old.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') reviews = reviews.dropna(subset=['REVIEW', 'DOB']) mask = reviews['REVIEW_CODE'].isin(['PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7']) & ( reviews['REVIEW'] < reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_184(): error = ErrorDefinition( code='184', description='Date of decision that a child should be placed for adoption is before the child was born.', affected_fields=['DATE_PLACED', # PlacedAdoptino 'DOB'], # Header ) def _validate(dfs): if 'Header' not in dfs or 'PlacedAdoption' not in dfs: return {} else: child_record = dfs['Header'] placed_for_adoption = dfs['PlacedAdoption'] all_data = (placed_for_adoption .reset_index() .merge(child_record, how='left', on='CHILD', suffixes=[None, '_P4A'])) all_data['DATE_PLACED'] = pd.to_datetime(all_data['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') all_data['DOB'] = pd.to_datetime(all_data['DOB'], format='%d/%m/%Y', errors='coerce') mask = (all_data['DATE_PLACED'] >= all_data['DOB']) | all_data['DATE_PLACED'].isna() validation_error = ~mask validation_error_locations = all_data[validation_error]['index'].unique() return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_612(): error = ErrorDefinition( code='612', description="Date of birth field has been completed but mother field indicates child is not a mother.", affected_fields=['SEX', 'MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] error_mask = ( ((header['MOTHER'].astype(str) == '0') | header['MOTHER'].isna()) & (header['SEX'].astype(str) == '2') & header['MC_DOB'].notna() ) validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_552(): """ This error checks that the first adoption episode is after the last decision ! If there are multiple of either there may be unexpected results ! """ error = ErrorDefinition( code="552", description="Date of Decision to place a child for adoption should be on or prior to the date that the child was placed for adoption.", # Field that defines date of decision to place a child for adoption is DATE_PLACED and the start of adoption is defined by DECOM with 'A' placement types. affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: # get the required datasets placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] # keep index values so that they stay the same when needed later on for error locations placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) adoption_eps = episodes[episodes['PLACE'].isin(['A3', 'A4', 'A5', 'A6'])].copy() # find most recent adoption decision placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # remove rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption['DATE_PLACED'].notna()] placed_adoption_inds = placed_adoption.groupby('CHILD')['DATE_PLACED'].idxmax(skipna=True) last_decision = placed_adoption.loc[placed_adoption_inds] # first time child started adoption adoption_eps["DECOM"] = pd.to_datetime(adoption_eps['DECOM'], format='%d/%m/%Y', errors='coerce') adoption_eps = adoption_eps[adoption_eps['DECOM'].notna()] adoption_eps_inds = adoption_eps.groupby('CHILD')['DECOM'].idxmin(skipna=True) # full information of first adoption first_adoption = adoption_eps.loc[adoption_eps_inds] # date of decision and date of start of adoption (DECOM) have to be put in one table merged = first_adoption.merge(last_decision, on=['CHILD'], how='left', suffixes=['_EP', '_PA']) # check to see if date of decision to place is less than or equal to date placed. decided_after_placed = merged["DECOM"] < merged["DATE_PLACED"] # find the corresponding location of error values per file. episode_error_locs = merged.loc[decided_after_placed, 'index_EP'] placedadoption_error_locs = merged.loc[decided_after_placed, 'index_PA'] return {"PlacedAdoption": placedadoption_error_locs.to_list(), "Episodes": episode_error_locs.to_list()} return error, _validate def validate_551(): error = ErrorDefinition( code='551', description='Child has been placed for adoption but there is no date of the decision that the child should be placed for adoption.', affected_fields=['DATE_PLACED', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() place_codes = ['A3', 'A4', 'A5', 'A6'] placeEpisodes = episodes[episodes['PLACE'].isin(place_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'].isna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_557(): error = ErrorDefinition( code='557', description="Child for whom the decision was made that they should be placed for adoption has left care " + "but was not adopted and information on the decision that they should no longer be placed for " + "adoption items has not been completed.", affected_fields=['DATE_PLACED_CEASED', 'REASON_PLACED_CEASED', # PlacedAdoption 'PLACE', 'LS', 'REC'], # Episodes ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'PlacedAdoption' not in dfs: return {} else: eps = dfs['Episodes'] placed = dfs['PlacedAdoption'] eps = eps.reset_index() placed = placed.reset_index() child_placed = eps['PLACE'].isin(['A3', 'A4', 'A5', 'A6']) order_granted = eps['LS'].isin(['D1', 'E1']) not_adopted = ~eps['REC'].isin(['E11', 'E12']) & eps['REC'].notna() placed['ceased_incomplete'] = ( placed['DATE_PLACED_CEASED'].isna() | placed['REASON_PLACED_CEASED'].isna() ) eps = eps[(child_placed | order_granted) & not_adopted] eps = eps.merge(placed, on='CHILD', how='left', suffixes=['_EP', '_PA'], indicator=True) eps = eps[(eps['_merge'] == 'left_only') | eps['ceased_incomplete']] EP_errors = eps['index_EP'] PA_errors = eps['index_PA'].dropna() return { 'Episodes': EP_errors.to_list(), 'PlacedAdoption': PA_errors.to_list(), } return error, _validate def validate_207(): error = ErrorDefinition( code='207', description='Mother status for the current year disagrees with the mother status already recorded for this child.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' mother_is_different = header_merged['MOTHER'].astype(str) != header_merged['MOTHER_last'].astype(str) mother_was_true = header_merged['MOTHER_last'].astype(str) == '1' error_mask = in_both_years & mother_is_different & mother_was_true error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_523(): error = ErrorDefinition( code='523', description="Date of decision that the child should be placed for adoption should be the same date as the decision that adoption is in the best interest (date should be placed).", affected_fields=['DATE_PLACED', 'DATE_INT'], ) def _validate(dfs): if ("AD1" not in dfs) or ("PlacedAdoption" not in dfs): return {} else: placed_adoption = dfs["PlacedAdoption"] ad1 = dfs["AD1"] # keep initial index values to be reused for locating errors later on. placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) # convert to datetime to enable comparison placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format="%d/%m/%Y", errors='coerce') ad1["DATE_INT"] = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce') # drop rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption["DATE_PLACED"].notna()] ad1 = ad1[ad1["DATE_INT"].notna()] # bring corresponding values together from both dataframes merged_df = placed_adoption.merge(ad1, on=['CHILD'], how='inner', suffixes=["_AD", "_PA"]) # find error values different_dates = merged_df['DATE_INT'] != merged_df['DATE_PLACED'] # map error locations to corresponding indices pa_error_locations = merged_df.loc[different_dates, 'index_PA'] ad1_error_locations = merged_df.loc[different_dates, 'index_AD'] return {"PlacedAdoption": pa_error_locations.to_list(), "AD1": ad1_error_locations.to_list()} return error, _validate def validate_3001(): error = ErrorDefinition( code='3001', description='Where care leavers information is being returned for a young person around their 17th birthday, the accommodation cannot be with their former foster carer(s).', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'OC3' not in dfs: return {} else: header = dfs['Header'] oc3 = dfs['OC3'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header['DOB17'] = header['DOB'] + pd.DateOffset(years=17) oc3_merged = oc3.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') accom_foster = oc3_merged['ACCOM'].str.upper().astype(str).isin(['Z1', 'Z2']) age_17_in_year = (oc3_merged['DOB17'] <= collection_end) & (oc3_merged['DOB17'] >= collection_start) error_mask = accom_foster & age_17_in_year error_locations = oc3.index[error_mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_389(): error = ErrorDefinition( code='389', description='Reason episode ceased is that child transferred to care of adult social care services, but child is aged under 16.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB16'] = header['DOB'] + pd.DateOffset(years=16) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_asc = episodes_merged['REC'].str.upper().astype(str).isin(['E7']) ceased_over_16 = episodes_merged['DOB16'] <= episodes_merged['DEC'] error_mask = ceased_asc & ~ceased_over_16 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_387(): error = ErrorDefinition( code='387', description='Reason episode ceased is child moved into independent living arrangement, but the child is aged under 14.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB14'] = header['DOB'] + pd.DateOffset(years=14) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_indep = episodes_merged['REC'].str.upper().astype(str).isin(['E5', 'E6']) ceased_over_14 = episodes_merged['DOB14'] <= episodes_merged['DEC'] dec_present = episodes_merged['DEC'].notna() error_mask = ceased_indep & ~ceased_over_14 & dec_present error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_452(): error = ErrorDefinition( code='452', description='Contradiction between local authority of placement code in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_la = episodes_merged['PL_LA'].astype(str) != episodes_merged['PL_LA_last'].astype(str) error_mask = in_both_years & same_rne & last_year_open & different_pl_la validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_386(): error = ErrorDefinition( code='386', description='Reason episode ceased is adopted but child has reached age 18.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = ( episodes .reset_index() .merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True) .set_index('index') .dropna(subset=['DOB18', 'DEC']) ) ceased_adopted = episodes_merged['REC'].str.upper().astype(str).isin(['E11', 'E12']) ceased_under_18 = episodes_merged['DOB18'] > episodes_merged['DEC'] error_mask = ceased_adopted & ~ceased_under_18 error_locations = episodes_merged.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_363(): error = ErrorDefinition( code='363', description='Child assessment order (CAO) lasted longer than 7 days allowed in the Children Act 1989.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] L2_eps = episodes[episodes['LS'] == 'L3'].copy() L2_eps['original_index'] = L2_eps.index L2_eps = L2_eps[L2_eps['DECOM'].notna()] L2_eps.loc[L2_eps['DEC'].isna(), 'DEC'] = collection_end_str L2_eps['DECOM'] = pd.to_datetime(L2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') L2_eps = L2_eps.dropna(subset=['DECOM']) L2_eps['DEC'] = pd.to_datetime(L2_eps['DEC'], format='%d/%m/%Y', errors='coerce') L2_eps.sort_values(['CHILD', 'DECOM']) L2_eps['index'] = pd.RangeIndex(0, len(L2_eps)) L2_eps['index+1'] = L2_eps['index'] + 1 L2_eps = L2_eps.merge(L2_eps, left_on='index', right_on='index+1', how='left', suffixes=[None, '_prev']) L2_eps = L2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] L2_eps['new_period'] = ( (L2_eps['DECOM'] > L2_eps['DEC_prev']) | (L2_eps['CHILD'] != L2_eps['CHILD_prev']) ) L2_eps['duration'] = (L2_eps['DEC'] - L2_eps['DECOM']).dt.days L2_eps['period_id'] = L2_eps['new_period'].astype(int).cumsum() L2_eps['period_duration'] = L2_eps.groupby('period_id')['duration'].transform(sum) error_mask = L2_eps['period_duration'] > 7 return {'Episodes': L2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_364(): error = ErrorDefinition( code='364', description='Sections 41-46 of Police and Criminal Evidence (PACE; 1984) severely limits ' + 'the time a child can be detained in custody in Local Authority (LA) accommodation.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] J2_eps = episodes[episodes['LS'] == 'J2'].copy() J2_eps['original_index'] = J2_eps.index J2_eps['DECOM'] = pd.to_datetime(J2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') J2_eps = J2_eps[J2_eps['DECOM'].notna()] J2_eps.loc[J2_eps['DEC'].isna(), 'DEC'] = collection_end_str J2_eps['DEC'] = pd.to_datetime(J2_eps['DEC'], format='%d/%m/%Y', errors='coerce') J2_eps.sort_values(['CHILD', 'DECOM']) J2_eps['index'] = pd.RangeIndex(0, len(J2_eps)) J2_eps['index_prev'] = J2_eps['index'] + 1 J2_eps = J2_eps.merge(J2_eps, left_on='index', right_on='index_prev', how='left', suffixes=[None, '_prev']) J2_eps = J2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] J2_eps['new_period'] = ( (J2_eps['DECOM'] > J2_eps['DEC_prev']) | (J2_eps['CHILD'] != J2_eps['CHILD_prev']) ) J2_eps['duration'] = (J2_eps['DEC'] - J2_eps['DECOM']).dt.days J2_eps['period_id'] = J2_eps['new_period'].astype(int).cumsum() J2_eps['period_duration'] = J2_eps.groupby('period_id')['duration'].transform(sum) error_mask = J2_eps['period_duration'] > 21 return {'Episodes': J2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_365(): error = ErrorDefinition( code='365', description='Any individual short- term respite placement must not exceed 17 days.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] episodes.loc[episodes['DEC'].isna(), 'DEC'] = collection_end_str episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') over_17_days = episodes['DEC'] > episodes['DECOM'] + pd.DateOffset(days=17) error_mask = (episodes['LS'] == 'V3') & over_17_days return {'Episodes': episodes.index[error_mask].to_list()} return error, _validate def validate_367(): error = ErrorDefinition( code='367', description='The maximum amount of respite care allowable is 75 days in any 12-month period.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] V3_eps = episodes[episodes['LS'] == 'V3'] V3_eps = V3_eps.dropna(subset=['DECOM']) # missing DECOM should get fixed before looking for this error collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') V3_eps['DECOM_dt'] = pd.to_datetime(V3_eps['DECOM'], format='%d/%m/%Y', errors='coerce') V3_eps['DEC_dt'] = pd.to_datetime(V3_eps['DEC'], format='%d/%m/%Y', errors='coerce') # truncate episode start/end dates to collection start/end respectively V3_eps.loc[V3_eps['DEC'].isna() | (V3_eps['DEC_dt'] > collection_end), 'DEC_dt'] = collection_end V3_eps.loc[V3_eps['DECOM_dt'] < collection_start, 'DECOM_dt'] = collection_start V3_eps['duration'] = (V3_eps['DEC_dt'] - V3_eps['DECOM_dt']).dt.days V3_eps = V3_eps[V3_eps['duration'] > 0] V3_eps['year_total_duration'] = V3_eps.groupby('CHILD')['duration'].transform(sum) error_mask = V3_eps['year_total_duration'] > 75 return {'Episodes': V3_eps.index[error_mask].to_list()} return error, _validate def validate_440(): error = ErrorDefinition( code='440', description='Participation method indicates child was under 4 years old at the time of the review, but date of birth and review date indicates the child was 4 years old or over.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') mask = reviews['REVIEW_CODE'].eq('PN0') & ( reviews['REVIEW'] > reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_445(): error = ErrorDefinition( code='445', description='D1 is not a valid code for episodes starting after December 2005.', affected_fields=['LS', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('31/12/2005', format='%d/%m/%Y', errors='coerce') mask = episodes['LS'].eq('D1') & (episodes['DECOM'] > max_decom_allowed) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_446(): error = ErrorDefinition( code='446', description='E1 is not a valid code for episodes starting before December 2005.', affected_fields=['LS', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') min_decom_allowed = pd.to_datetime('01/12/2005', format='%d/%m/%Y', errors='coerce') mask = episodes['LS'].eq('E1') & (episodes['DECOM'] < min_decom_allowed) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_208(): error = ErrorDefinition( code='208', description='Unique Pupil Number (UPN) for the current year disagrees with the Unique Pupil Number (UPN) already recorded for this child.', affected_fields=['UPN'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' upn_is_different = header_merged['UPN'].str.upper().astype(str) != header_merged[ 'UPN_last'].str.upper().astype(str) upn_not_recorded = header_merged['UPN'].str.upper().astype(str).isin(['UN2', 'UN3', 'UN4', 'UN5', 'UN6']) & \ header_merged['UPN_last'].str.upper().astype(str).isin(['UN1']) error_mask = in_both_years & upn_is_different & ~upn_not_recorded error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_204(): error = ErrorDefinition( code='204', description='Ethnic origin code disagrees with the ethnic origin already recorded for this child.', affected_fields=['ETHNIC'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' ethnic_is_different = header_merged['ETHNIC'].astype(str).str.upper() != header_merged[ 'ETHNIC_last'].astype(str).str.upper() error_mask = in_both_years & ethnic_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_203(): error = ErrorDefinition( code='203', description='Date of birth disagrees with the date of birth already recorded for this child.', affected_fields=['DOB'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header_last['DOB'] = pd.to_datetime(header_last['DOB'], format='%d/%m/%Y', errors='coerce') header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' dob_is_different = header_merged['DOB'].astype(str) != header_merged['DOB_last'].astype(str) error_mask = in_both_years & dob_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_530(): error = ErrorDefinition( code='530', description="A placement provider code of PR4 cannot be associated with placement P1.", affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['PLACE'].eq('P1') & episodes['PLACE_PROVIDER'].eq('PR4') validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_571(): error = ErrorDefinition( code='571', description='The date that the child ceased to be missing or away from placement without authorisation is before the start or after the end of the collection year.', affected_fields=['MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') missing['fMIS_END'] = pd.to_datetime(missing['MIS_END'], format='%d/%m/%Y', errors='coerce') end_date_before_year = missing['fMIS_END'] < collection_start end_date_after_year = missing['fMIS_END'] > collection_end error_mask = end_date_before_year | end_date_after_year error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_1005(): error = ErrorDefinition( code='1005', description='The end date of the missing episode or episode that the child was away from placement without authorisation is not a valid date.', affected_fields=['MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] missing['fMIS_END'] = pd.to_datetime(missing['MIS_END'], format='%d/%m/%Y', errors='coerce') missing_end_date = missing['MIS_END'].isna() invalid_end_date = missing['fMIS_END'].isna() error_mask = ~missing_end_date & invalid_end_date error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_1004(): error = ErrorDefinition( code='1004', description='The start date of the missing episode or episode that the child was away from placement without authorisation is not a valid date.', affected_fields=['MIS_START'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] missing['fMIS_START'] = pd.to_datetime(missing['MIS_START'], format='%d/%m/%Y', errors='coerce') missing_start_date = missing['MIS_START'].isna() invalid_start_date = missing['fMIS_START'].isna() error_mask = missing_start_date | invalid_start_date error_locations = missing.index[error_mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_202(): error = ErrorDefinition( code='202', description='The gender code conflicts with the gender already recorded for this child.', affected_fields=['SEX'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' sex_is_different = header_merged['SEX'].astype(str) != header_merged['SEX_last'].astype(str) error_mask = in_both_years & sex_is_different error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_621(): error = ErrorDefinition( code='621', description="Motherโ€™s field has been completed but date of birth shows that the mother is younger than her child.", affected_fields=['DOB', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] header['MC_DOB'] = pd.to_datetime(header['MC_DOB'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') mask = (header['MC_DOB'] > header['DOB']) | header['MC_DOB'].isna() validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_556(): error = ErrorDefinition( code='556', description='Date of decision that the child should be placed for adoption should be on or prior to the date that the freeing order was granted.', affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placedAdoptions['DATE_PLACED'] = pd.to_datetime(placedAdoptions['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') episodes = episodes.reset_index() D1Episodes = episodes[episodes['LS'] == 'D1'] merged = D1Episodes.reset_index().merge(placedAdoptions, how='left', on='CHILD', ).set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'] > merged['DECOM']] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_393(): error = ErrorDefinition( code='393', description='Child is looked after but mother field is not completed.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header_female = header[header['SEX'].astype(str) == '2'] applicable_episodes = episodes[~episodes['LS'].str.upper().isin(['V3', 'V4'])] error_mask = header_female['CHILD'].isin(applicable_episodes['CHILD']) & header_female['MOTHER'].isna() error_locations = header_female.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_NoE(): error = ErrorDefinition( code='NoE', description='This child has no episodes loaded for previous year even though child started to be looked after before this current year.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = dfs['Episodes_last'] episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') episodes_before_year = episodes[episodes['DECOM'] < collection_start] episodes_merged = episodes_before_year.reset_index().merge(episodes_last, how='left', on=['CHILD'], indicator=True).set_index('index') episodes_not_matched = episodes_merged[episodes_merged['_merge'] == 'left_only'] error_mask = episodes.index.isin(episodes_not_matched.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_356(): error = ErrorDefinition( code='356', description='The date the episode ceased is before the date the same episode started.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') error_mask = episodes['DEC'].notna() & (episodes['DEC'] < episodes['DECOM']) return {'Episodes': episodes.index[error_mask].to_list()} return error, _validate def validate_611(): error = ErrorDefinition( code='611', description="Date of birth field is blank, but child is a mother.", affected_fields=['MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] validation_error_mask = header['MOTHER'].astype(str).isin(['1']) & header['MC_DOB'].isna() validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_1009(): error = ErrorDefinition( code='1009', description='Reason for placement change is not a valid code.', affected_fields=['REASON_PLACE_CHANGE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'CARPL', 'CLOSE', 'ALLEG', 'STAND', 'APPRR', 'CREQB', 'CREQO', 'CHILD', 'LAREQ', 'PLACE', 'CUSTOD', 'OTHER' ] mask = episodes['REASON_PLACE_CHANGE'].isin(code_list) | episodes['REASON_PLACE_CHANGE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_1006(): error = ErrorDefinition( code='1006', description='Missing type invalid.', affected_fields=['MISSING'], ) def _validate(dfs): if 'Missing' not in dfs: return {} missing_from_care = dfs['Missing'] code_list = ['M', 'A'] mask = missing_from_care['MISSING'].isin(code_list) | missing_from_care['MISSING'].isna() validation_error_mask = ~mask validation_error_locations = missing_from_care.index[validation_error_mask] return {'Missing': validation_error_locations.tolist()} return error, _validate def validate_631(): error = ErrorDefinition( code='631', description='Previous permanence option not a valid value.', affected_fields=['PREV_PERM'], ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} previous_permanence = dfs['PrevPerm'] code_list = ['P1', 'P2', 'P3', 'P4', 'Z1'] mask = previous_permanence['PREV_PERM'].isin(code_list) | previous_permanence['PREV_PERM'].isna() validation_error_mask = ~mask validation_error_locations = previous_permanence.index[validation_error_mask] return {'PrevPerm': validation_error_locations.tolist()} return error, _validate def validate_196(): error = ErrorDefinition( code='196', description='Strengths and Difficulties (SDQ) reason is not a valid code.', affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] code_list = ['SDQ1', 'SDQ2', 'SDQ3', 'SDQ4', 'SDQ5'] mask = oc2['SDQ_REASON'].isin(code_list) | oc2['SDQ_REASON'].isna() validation_error_mask = ~mask validation_error_locations = oc2.index[validation_error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_177(): error = ErrorDefinition( code='177', description='The legal status of adopter(s) code is not a valid code.', affected_fields=['LS_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['L0', 'L11', 'L12', 'L2', 'L3', 'L4'] mask = adoptions['LS_ADOPTR'].isin(code_list) | adoptions['LS_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_176(): error = ErrorDefinition( code='176', description='The gender of adopter(s) at the date of adoption code is not a valid code.', affected_fields=['SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['M1', 'F1', 'MM', 'FF', 'MF'] mask = adoptions['SEX_ADOPTR'].isin(code_list) | adoptions['SEX_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_175(): error = ErrorDefinition( code='175', description='The number of adopter(s) code is not a valid code.', affected_fields=['NB_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['1', '2'] mask = adoptions['NB_ADOPTR'].astype(str).isin(code_list) | adoptions['NB_ADOPTR'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_132(): error = ErrorDefinition( code='132', description='Data entry for activity after leaving care is invalid.', affected_fields=['ACTIV'], ) def _validate(dfs): if 'OC3' not in dfs: return {} care_leavers = dfs['OC3'] code_list = [ 'F1', 'P1', 'F2', 'P2', 'F4', 'P4', 'F5', 'P5', 'G4', 'G5', 'G6', '0' ] mask = care_leavers['ACTIV'].astype(str).isin(code_list) | care_leavers['ACTIV'].isna() validation_error_mask = ~mask validation_error_locations = care_leavers.index[validation_error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_131(): error = ErrorDefinition( code='131', description='Data entry for being in touch after leaving care is invalid.', affected_fields=['IN_TOUCH'], ) def _validate(dfs): if 'OC3' not in dfs: return {} care_leavers = dfs['OC3'] code_list = [ 'YES', 'NO', 'DIED', 'REFU', 'NREQ', 'RHOM' ] mask = care_leavers['IN_TOUCH'].isin(code_list) | care_leavers['IN_TOUCH'].isna() validation_error_mask = ~mask validation_error_locations = care_leavers.index[validation_error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_120(): error = ErrorDefinition( code='120', description='The reason for the reversal of the decision that the child should be placed for adoption code is not valid.', affected_fields=['REASON_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} placed_adoptions = dfs['PlacedAdoption'] code_list = ['RD1', 'RD2', 'RD3', 'RD4'] mask = placed_adoptions['REASON_PLACED_CEASED'].isin(code_list) | placed_adoptions[ 'REASON_PLACED_CEASED'].isna() validation_error_mask = ~mask validation_error_locations = placed_adoptions.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_114(): error = ErrorDefinition( code='114', description='Data entry to record the status of former carer(s) of an adopted child is invalid.', affected_fields=['FOSTER_CARE'], ) def _validate(dfs): if 'AD1' not in dfs: return {} adoptions = dfs['AD1'] code_list = ['0', '1'] mask = adoptions['FOSTER_CARE'].astype(str).isin(code_list) | adoptions['FOSTER_CARE'].isna() validation_error_mask = ~mask validation_error_locations = adoptions.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_178(): error = ErrorDefinition( code='178', description='Placement provider code is not a valid code.', affected_fields=['PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list_placement_provider = ['PR0', 'PR1', 'PR2', 'PR3', 'PR4', 'PR5'] code_list_placement_with_no_provider = ['T0', 'T1', 'T2', 'T3', 'T4', 'Z1'] place_provider_needed_and_correct = episodes['PLACE_PROVIDER'].isin(code_list_placement_provider) & ~episodes[ 'PLACE'].isin(code_list_placement_with_no_provider) place_provider_not_provided = episodes['PLACE_PROVIDER'].isna() place_provider_not_needed = episodes['PLACE_PROVIDER'].isna() & episodes['PLACE'].isin( code_list_placement_with_no_provider) mask = place_provider_needed_and_correct | place_provider_not_provided | place_provider_not_needed validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_103(): error = ErrorDefinition( code='103', description='The ethnicity code is either not valid or has not been entered.', affected_fields=['ETHNIC'], ) def _validate(dfs): if 'Header' not in dfs: return {} header = dfs['Header'] code_list = [ 'WBRI', 'WIRI', 'WOTH', 'WIRT', 'WROM', 'MWBC', 'MWBA', 'MWAS', 'MOTH', 'AIND', 'APKN', 'ABAN', 'AOTH', 'BCRB', 'BAFR', 'BOTH', 'CHNE', 'OOTH', 'REFU', 'NOBT' ] mask = header['ETHNIC'].isin(code_list) validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_143(): error = ErrorDefinition( code='143', description='The reason for new episode code is not a valid code.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = ['S', 'P', 'L', 'T', 'U', 'B'] mask = episodes['RNE'].isin(code_list) | episodes['RNE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_144(): error = ErrorDefinition( code='144', description='The legal status code is not a valid code.', affected_fields=['LS'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'C1', 'C2', 'D1', 'E1', 'V2', 'V3', 'V4', 'J1', 'J2', 'J3', 'L1', 'L2', 'L3' ] mask = episodes['LS'].isin(code_list) | episodes['LS'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_145(): error = ErrorDefinition( code='145', description='Category of need code is not a valid code.', affected_fields=['CIN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'N1', 'N2', 'N3', 'N4', 'N5', 'N6', 'N7', 'N8', ] mask = episodes['CIN'].isin(code_list) | episodes['CIN'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_146(): error = ErrorDefinition( code='146', description='Placement type code is not a valid code.', affected_fields=['PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'A3', 'A4', 'A5', 'A6', 'H5', 'K1', 'K2', 'P1', 'P2', 'P3', 'R1', 'R2', 'R3', 'R5', 'S1', 'T0', 'T1', 'T2', 'T3', 'T4', 'U1', 'U2', 'U3', 'U4', 'U5', 'U6', 'Z1' ] mask = episodes['PLACE'].isin(code_list) | episodes['PLACE'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_149(): error = ErrorDefinition( code='149', description='Reason episode ceased code is not valid. ', affected_fields=['REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] code_list = [ 'E11', 'E12', 'E2', 'E3', 'E4A', 'E4B', 'E13', 'E41', 'E45', 'E46', 'E47', 'E48', 'E5', 'E6', 'E7', 'E8', 'E9', 'E14', 'E15', 'E16', 'E17', 'X1' ] mask = episodes['REC'].isin(code_list) | episodes['REC'].isna() validation_error_mask = ~mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_167(): error = ErrorDefinition( code='167', description='Data entry for participation is invalid or blank.', affected_fields=['REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} review = dfs['Reviews'] code_list = ['PN0', 'PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7'] mask = review['REVIEW'].notna() & review['REVIEW_CODE'].isin(code_list) | review['REVIEW'].isna() & review[ 'REVIEW_CODE'].isna() validation_error_mask = ~mask validation_error_locations = review.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_101(): error = ErrorDefinition( code='101', description='Gender code is not valid.', affected_fields=['SEX'], ) def _validate(dfs): if 'Header' not in dfs: return {} header = dfs['Header'] code_list = ['1', '2'] mask = header['SEX'].astype(str).isin(code_list) validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_141(): error = ErrorDefinition( code='141', description='Date episode began is not a valid date.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce').notna() na_location = episodes['DECOM'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_147(): error = ErrorDefinition( code='147', description='Date episode ceased is not a valid date.', affected_fields=['DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce').notna() na_location = episodes['DEC'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_171(): error = ErrorDefinition( code='171', description="Date of birth of mother's child is not a valid date.", affected_fields=['MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] mask = pd.to_datetime(header['MC_DOB'], format='%d/%m/%Y', errors='coerce').notna() na_location = header['MC_DOB'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_102(): error = ErrorDefinition( code='102', description='Date of birth is not a valid date.', affected_fields=['DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] mask = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce').notna() validation_error_mask = ~mask validation_error_locations = header.index[validation_error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_112(): error = ErrorDefinition( code='112', description='Date should be placed for adoption is not a valid date.', affected_fields=['DATE_INT'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce').notna() na_location = ad1['DATE_INT'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = ad1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_115(): error = ErrorDefinition( code='115', description="Date of Local Authority's (LA) decision that a child should be placed for adoption is not a valid date.", affected_fields=['DATE_PLACED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] mask = pd.to_datetime(adopt['DATE_PLACED'], format='%d/%m/%Y', errors='coerce').notna() na_location = adopt['DATE_PLACED'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = adopt.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_116(): error = ErrorDefinition( code='116', description="Date of Local Authority's (LA) decision that a child should no longer be placed for adoption is not a valid date.", affected_fields=['DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] mask = pd.to_datetime(adopt['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce').notna() na_location = adopt['DATE_PLACED_CEASED'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = adopt.index[validation_error_mask] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_392c(): error = ErrorDefinition( code='392c', description='Postcode(s) provided are invalid.', affected_fields=['HOME_POST', 'PL_POST'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] home_provided = episodes['HOME_POST'].notna() home_details = merge_postcodes(episodes, "HOME_POST") home_valid = home_details['pcd'].notna() pl_provided = episodes['PL_POST'].notna() pl_details = merge_postcodes(episodes, "PL_POST") pl_valid = pl_details['pcd'].notna() error_mask = (home_provided & ~home_valid) | (pl_provided & ~pl_valid) return {'Episodes': episodes.index[error_mask].tolist()} return error, _validate def validate_213(): error = ErrorDefinition( code='213', description='Placement provider information not required.', affected_fields=['PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['PLACE'].isin(['T0', 'T1', 'T2', 'T3', 'T4', 'Z1']) & df['PLACE_PROVIDER'].notna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_168(): error = ErrorDefinition( code='168', description='Unique Pupil Number (UPN) is not valid. If unknown, default codes should be UN1, UN2, UN3, UN4 or UN5.', affected_fields=['UPN'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: df = dfs['Header'] mask = df['UPN'].str.match(r'(^((?![IOS])[A-Z]){1}(\d{12}|\d{11}[A-Z]{1})$)|^(UN[1-5])$', na=False) mask = ~mask return {'Header': df.index[mask].tolist()} return error, _validate def validate_388(): error = ErrorDefinition( code='388', description='Reason episode ceased is coded new episode begins, but there is no continuation episode.', affected_fields=['REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DECOM'] = pd.to_datetime(df['DECOM'], format='%d/%m/%Y', errors='coerce') df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') df['DECOM'] = df['DECOM'].fillna('01/01/1901') # Watch for potential future issues df = df.sort_values(['CHILD', 'DECOM']) df['DECOM_NEXT_EPISODE'] = df.groupby(['CHILD'])['DECOM'].shift(-1) # The max DECOM for each child is also the one with no next episode # And we also add the skipna option # grouped_decom_by_child = df.groupby(['CHILD'])['DECOM'].idxmax(skipna=True) no_next = df.DECOM_NEXT_EPISODE.isna() & df.CHILD.notna() # Dataframe with the maximum DECOM removed max_decom_removed = df[~no_next] # Dataframe with the maximum DECOM only max_decom_only = df[no_next] # Case 1: If reason episode ceased is coded X1 there must be a subsequent episode # starting on the same day. case1 = max_decom_removed[(max_decom_removed['REC'] == 'X1') & (max_decom_removed['DEC'].notna()) & (max_decom_removed['DECOM_NEXT_EPISODE'].notna()) & (max_decom_removed['DEC'] != max_decom_removed['DECOM_NEXT_EPISODE'])] # Case 2: If an episode ends but the child continues to be looked after, a new # episode should start on the same day.The reason episode ceased code of # the episode which ends must be X1. case2 = max_decom_removed[(max_decom_removed['REC'] != 'X1') & (max_decom_removed['REC'].notna()) & (max_decom_removed['DEC'].notna()) & (max_decom_removed['DECOM_NEXT_EPISODE'].notna()) & (max_decom_removed['DEC'] == max_decom_removed['DECOM_NEXT_EPISODE'])] # Case 3: If a child ceases to be looked after reason episode ceased code X1 must # not be used. case3 = max_decom_only[(max_decom_only['DEC'].notna()) & (max_decom_only['REC'] == 'X1')] mask_case1 = case1.index.tolist() mask_case2 = case2.index.tolist() mask_case3 = case3.index.tolist() mask = mask_case1 + mask_case2 + mask_case3 mask.sort() return {'Episodes': mask} return error, _validate def validate_113(): error = ErrorDefinition( code='113', description='Date matching child and adopter(s) is not a valid date.', affected_fields=['DATE_MATCH'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = pd.to_datetime(ad1['DATE_MATCH'], format='%d/%m/%Y', errors='coerce').notna() na_location = ad1['DATE_MATCH'].isna() validation_error_mask = ~mask & ~na_location validation_error_locations = ad1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_134(): error = ErrorDefinition( code='134', description='Data on adoption should not be entered for the OC3 cohort.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'], ) def _validate(dfs): if 'OC3' not in dfs or 'AD1' not in dfs: return {} else: oc3 = dfs['OC3'] ad1 = dfs['AD1'] ad1['ad1_index'] = ad1.index all_data = ad1.merge(oc3, how='left', on='CHILD') na_oc3_data = ( all_data['IN_TOUCH'].isna() & all_data['ACTIV'].isna() & all_data['ACCOM'].isna() ) na_ad1_data = ( all_data['DATE_INT'].isna() & all_data['DATE_MATCH'].isna() & all_data['FOSTER_CARE'].isna() & all_data['NB_ADOPTR'].isna() & all_data['SEX_ADOPTR'].isna() & all_data['LS_ADOPTR'].isna() ) validation_error = ~na_oc3_data & ~na_ad1_data validation_error_locations = all_data.loc[validation_error, 'ad1_index'].unique() return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_119(): error = ErrorDefinition( code='119', description='If the decision is made that a child should no longer be placed for adoption, then the date of this decision and the reason why this decision was made must be completed.', affected_fields=['REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: adopt = dfs['PlacedAdoption'] na_placed_ceased = adopt['DATE_PLACED_CEASED'].isna() na_reason_ceased = adopt['REASON_PLACED_CEASED'].isna() validation_error = (na_placed_ceased & ~na_reason_ceased) | (~na_placed_ceased & na_reason_ceased) validation_error_locations = adopt.index[validation_error] return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_159(): error = ErrorDefinition( code='159', description='If a child has been recorded as not receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be completed as well.', affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] mask1 = oc2['SUBSTANCE_MISUSE'].astype(str) == '1' mask2 = oc2['INTERVENTION_RECEIVED'].astype(str) == '0' mask3 = oc2['INTERVENTION_OFFERED'].isna() validation_error = mask1 & mask2 & mask3 validation_error_locations = oc2.index[validation_error] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_142(): error = ErrorDefinition( code='142', description='A new episode has started, but the previous episode has not ended.', affected_fields=['DEC', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DECOM'] = pd.to_datetime(df['DECOM'], format='%d/%m/%Y', errors='coerce') df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') df['DECOM'] = df['DECOM'].fillna('01/01/1901') # Watch for potential future issues df['DECOM'] = df['DECOM'].replace('01/01/1901', pd.NA) last_episodes = df.sort_values('DECOM').reset_index().groupby(['CHILD'])['index'].last() ended_episodes_df = df.loc[~df.index.isin(last_episodes)] ended_episodes_df = ended_episodes_df[(ended_episodes_df['DEC'].isna() | ended_episodes_df['REC'].isna()) & ended_episodes_df['CHILD'].notna() & ended_episodes_df[ 'DECOM'].notna()] mask = ended_episodes_df.index.tolist() return {'Episodes': mask} return error, _validate def validate_148(): error = ErrorDefinition( code='148', description='Date episode ceased and reason episode ceased must both be coded, or both left blank.', affected_fields=['DEC', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] df['DEC'] = pd.to_datetime(df['DEC'], format='%d/%m/%Y', errors='coerce') mask = ((df['DEC'].isna()) & (df['REC'].notna())) | ((df['DEC'].notna()) & (df['REC'].isna())) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_151(): error = ErrorDefinition( code='151', description='All data items relating to a childs adoption must be coded or left blank.', affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTER', 'SEX_ADOPTR', 'LS_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] na_date_int = ad1['DATE_INT'].isna() na_date_match = ad1['DATE_MATCH'].isna() na_foster_care = ad1['FOSTER_CARE'].isna() na_nb_adoptr = ad1['NB_ADOPTR'].isna() na_sex_adoptr = ad1['SEX_ADOPTR'].isna() na_lsadoptr = ad1['LS_ADOPTR'].isna() ad1_not_null = ( ~na_date_int & ~na_date_match & ~na_foster_care & ~na_nb_adoptr & ~na_sex_adoptr & ~na_lsadoptr) validation_error = ( ~na_date_int | ~na_date_match | ~na_foster_care | ~na_nb_adoptr | ~na_sex_adoptr | ~na_lsadoptr) & ~ad1_not_null validation_error_locations = ad1.index[validation_error] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_182(): error = ErrorDefinition( code='182', description='Data entries on immunisations, teeth checks, health assessments and substance misuse problem identified should be completed or all OC2 fields should be left blank.', affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'CONVICTED', 'HEALTH_CHECK', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] mask1 = ( oc2['IMMUNISATIONS'].isna() | oc2['TEETH_CHECK'].isna() | oc2['HEALTH_ASSESSMENT'].isna() | oc2['SUBSTANCE_MISUSE'].isna() ) mask2 = ( oc2['CONVICTED'].isna() & oc2['HEALTH_CHECK'].isna() & oc2['INTERVENTION_RECEIVED'].isna() & oc2['INTERVENTION_OFFERED'].isna() ) validation_error = mask1 & ~mask2 validation_error_locations = oc2.index[validation_error] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_214(): error = ErrorDefinition( code='214', description='Placement location information not required.', affected_fields=['PL_POST', 'URN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['LS'].isin(['V3', 'V4']) & ((df['PL_POST'].notna()) | (df['URN'].notna())) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_222(): error = ErrorDefinition( code='222', description='Ofsted Unique reference number (URN) should not be recorded for this placement type.', affected_fields=['URN'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] place_code_list = ['H5', 'P1', 'P2', 'P3', 'R1', 'R2', 'R5', 'T0', 'T1', 'T2', 'T3', 'T4', 'Z1'] mask = (df['PLACE'].isin(place_code_list)) & (df['URN'].notna()) & (df['URN'] != 'XXXXXX') return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_366(): error = ErrorDefinition( code='366', description='A child cannot change placement during the course of an individual short-term respite break.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = (df['LS'] == 'V3') & (df['RNE'] != 'S') return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_628(): error = ErrorDefinition( code='628', description='Motherhood details are not required for care leavers who have not been looked after during the year.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'OC3' not in dfs: return {} else: hea = dfs['Header'] epi = dfs['Episodes'] oc3 = dfs['OC3'] hea = hea.reset_index() oc3_no_nulls = oc3[oc3[['IN_TOUCH', 'ACTIV', 'ACCOM']].notna().any(axis=1)] hea_merge_epi = hea.merge(epi, how='left', on='CHILD', indicator=True) hea_not_in_epi = hea_merge_epi[hea_merge_epi['_merge'] == 'left_only'] cohort_to_check = hea_not_in_epi.merge(oc3_no_nulls, how='inner', on='CHILD') error_cohort = cohort_to_check[cohort_to_check['MOTHER'].notna()] error_list = list(set(error_cohort['index'].to_list())) error_list.sort() return {'Header': error_list} return error, _validate def validate_164(): error = ErrorDefinition( code='164', description='Distance is not valid. Please check a valid postcode has been entered.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) distance = pd.to_numeric(df['PL_DISTANCE'], errors='coerce') # Use a bit of tolerance in these bounds distance_valid = distance.gt(-0.2) & distance.lt(1001.0) mask = ~is_short_term & ~distance_valid return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_169(): error = ErrorDefinition( code='169', description='Local Authority (LA) of placement is not valid or is missing. Please check a valid postcode has been entered.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) # Because PL_LA is derived, it will always be valid if present mask = ~is_short_term & df['PL_LA'].isna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_179(): error = ErrorDefinition( code='179', description='Placement location code is not a valid code.', affected_fields=['PL_LOCATION'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) # Because PL_LOCATION is derived, it will always be valid if present mask = ~is_short_term & df['PL_LOCATION'].isna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_1015(): error = ErrorDefinition( code='1015', description='Placement provider is own provision but child not placed in own LA.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] local_authority = dfs['metadata']['localAuthority'] placement_fostering_or_adoption = df['PLACE'].isin([ 'A3', 'A4', 'A5', 'A6', 'U1', 'U2', 'U3', 'U4', 'U5', 'U6', ]) own_provision = df['PLACE_PROVIDER'].eq('PR1') is_short_term = df['LS'].isin(['V3', 'V4']) is_pl_la = df['PL_LA'].eq(local_authority) checked_episodes = ~placement_fostering_or_adoption & ~is_short_term & own_provision checked_episodes = checked_episodes & df['LS'].notna() & df['PLACE'].notna() mask = checked_episodes & ~is_pl_la return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_411(): error = ErrorDefinition( code='411', description='Placement location code disagrees with LA of placement.', affected_fields=['PL_LOCATION'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] local_authority = dfs['metadata']['localAuthority'] mask = df['PL_LOCATION'].eq('IN') & df['PL_LA'].ne(local_authority) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_420(): error = ErrorDefinition( code='420', description='LA of placement completed but child is looked after under legal status V3 or V4.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] is_short_term = df['LS'].isin(['V3', 'V4']) mask = is_short_term & df['PL_LA'].notna() return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_355(): error = ErrorDefinition( code='355', description='Episode appears to have lasted for less than 24 hours', affected_fields=['DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: df = dfs['Episodes'] mask = df['DECOM'].astype(str) == df['DEC'].astype(str) return {'Episodes': df.index[mask].tolist()} return error, _validate def validate_586(): error = ErrorDefinition( code='586', description='Dates of missing periods are before childโ€™s date of birth.', affected_fields=['MIS_START'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: df = dfs['Missing'] df['DOB'] = pd.to_datetime(df['DOB'], format='%d/%m/%Y', errors='coerce') df['MIS_START'] = pd.to_datetime(df['MIS_START'], format='%d/%m/%Y', errors='coerce') error_mask = df['MIS_START'].notna() & (df['MIS_START'] <= df['DOB']) return {'Missing': df.index[error_mask].to_list()} return error, _validate def validate_630(): error = ErrorDefinition( code='630', description='Information on previous permanence option should be returned.', affected_fields=['RNE'], ) def _validate(dfs): if 'PrevPerm' not in dfs or 'Episodes' not in dfs: return {} else: epi = dfs['Episodes'] pre = dfs['PrevPerm'] epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') epi = epi.reset_index() # Form the episode dataframe which has an 'RNE' of 'S' in this financial year epi_has_rne_of_S_in_year = epi[(epi['RNE'] == 'S') & (epi['DECOM'] >= collection_start)] # Merge to see # 1) which CHILD ids are missing from the PrevPerm file # 2) which CHILD are in the prevPerm file, but don't have the LA_PERM/DATE_PERM field completed where they should be # 3) which CHILD are in the PrevPerm file, but don't have the PREV_PERM field completed. merged_epi_preperm = epi_has_rne_of_S_in_year.merge(pre, on='CHILD', how='left', indicator=True) error_not_in_preperm = merged_epi_preperm['_merge'] == 'left_only' error_wrong_values_in_preperm = (merged_epi_preperm['PREV_PERM'] != 'Z1') & ( merged_epi_preperm[['LA_PERM', 'DATE_PERM']].isna().any(axis=1)) error_null_prev_perm = (merged_epi_preperm['_merge'] == 'both') & (merged_epi_preperm['PREV_PERM'].isna()) error_mask = error_not_in_preperm | error_wrong_values_in_preperm | error_null_prev_perm error_list = merged_epi_preperm[error_mask]['index'].to_list() error_list = list(set(error_list)) error_list.sort() return {'Episodes': error_list} return error, _validate def validate_501(): error = ErrorDefinition( code='501', description='A new episode has started before the end date of the previous episode.', affected_fields=['DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: epi = dfs['Episodes'] epi = epi.reset_index() epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') epi['DEC'] = pd.to_datetime(epi['DEC'], format='%d/%m/%Y', errors='coerce') epi = epi.sort_values(['CHILD', 'DECOM']) epi_lead = epi.shift(1) epi_lead = epi_lead.reset_index() m_epi = epi.merge(epi_lead, left_on='index', right_on='level_0', suffixes=('', '_prev')) error_cohort = m_epi[(m_epi['CHILD'] == m_epi['CHILD_prev']) & (m_epi['DECOM'] < m_epi['DEC_prev'])] error_list = error_cohort['index'].to_list() error_list.sort() return {'Episodes': error_list} return error, _validate def validate_502(): error = ErrorDefinition( code='502', description='Last yearโ€™s record ended with an open episode. The date on which that episode started does not match the start date of the first episode on this yearโ€™s record.', affected_fields=['DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs: return {} else: epi = dfs['Episodes'] epi_last = dfs['Episodes_last'] epi = epi.reset_index() epi['DECOM'] = pd.to_datetime(epi['DECOM'], format='%d/%m/%Y', errors='coerce') epi_last['DECOM'] = pd.to_datetime(epi_last['DECOM'], format='%d/%m/%Y', errors='coerce') epi_last_no_dec = epi_last[epi_last['DEC'].isna()] epi_min_decoms_index = epi[['CHILD', 'DECOM']].groupby(['CHILD'])['DECOM'].idxmin() epi_min_decom_df = epi.loc[epi_min_decoms_index, :] merged_episodes = epi_min_decom_df.merge(epi_last_no_dec, on='CHILD', how='inner') error_cohort = merged_episodes[merged_episodes['DECOM_x'] != merged_episodes['DECOM_y']] error_list = error_cohort['index'].to_list() error_list = list(set(error_list)) error_list.sort() return {'Episodes': error_list} return error, _validate def validate_153(): error = ErrorDefinition( code='153', description="All data items relating to a child's activity or accommodation after leaving care must be coded or left blank.", affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} oc3 = dfs['OC3'] oc3_not_na = ( oc3['IN_TOUCH'].notna() & oc3['ACTIV'].notna() & oc3['ACCOM'].notna() ) oc3_all_na = ( oc3['IN_TOUCH'].isna() & oc3['ACTIV'].isna() & oc3['ACCOM'].isna() ) validation_error = ~oc3_not_na & ~oc3_all_na validation_error_locations = oc3.index[validation_error] return {'OC3': validation_error_locations.to_list()} return error, _validate def validate_166(): error = ErrorDefinition( code='166', description="Date of review is invalid or blank.", affected_fields=['REVIEW'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: review = dfs['Reviews'] error_mask = pd.to_datetime(review['REVIEW'], format='%d/%m/%Y', errors='coerce').isna() validation_error_locations = review.index[error_mask] return {'Reviews': validation_error_locations.to_list()} return error, _validate def validate_174(): error = ErrorDefinition( code='174', description="Mother's child date of birth is recorded but gender shows that the child is a male.", affected_fields=['SEX', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] child_is_male = header['SEX'].astype(str) == '1' mc_dob_recorded = header['MC_DOB'].notna() error_mask = child_is_male & mc_dob_recorded validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.to_list()} return error, _validate def validate_180(): error = ErrorDefinition( code='180', description="Data entry for the strengths and difficulties questionnaire (SDQ) score is invalid.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] oc2['SDQ_SCORE'] = pd.to_numeric(oc2['SDQ_SCORE'], errors='coerce') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['SDQ_SCORE'].isin(range(41)) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_181(): error = ErrorDefinition( code='181', description="Data items relating to children looked after continuously for 12 months should be completed with a 0 or 1.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] code_list = ['0', '1'] fields_of_interest = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] error_mask = ( oc2[fields_of_interest].notna() & ~oc2[fields_of_interest].astype(str).isin(['0', '1']) ).any(axis=1) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_192(): error = ErrorDefinition( code='192', description="Child has been identified as having a substance misuse problem but the additional item on whether an intervention was received has been left blank.", affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] misuse = oc2['SUBSTANCE_MISUSE'].astype(str) == '1' intervention_blank = oc2['INTERVENTION_RECEIVED'].isna() error_mask = misuse & intervention_blank validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_193(): error = ErrorDefinition( code='193', description="Child not identified as having a substance misuse problem but at least one of the two additional items on whether an intervention were offered and received have been completed.", affected_fields=['SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] no_substance_misuse = oc2['SUBSTANCE_MISUSE'].isna() | (oc2['SUBSTANCE_MISUSE'].astype(str) == '0') intervention_not_blank = oc2['INTERVENTION_RECEIVED'].notna() | oc2['INTERVENTION_OFFERED'].notna() error_mask = no_substance_misuse & intervention_not_blank validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_197a(): error = ErrorDefinition( code='197a', description="Reason for no Strengths and Difficulties (SDQ) score is not required if Strengths and Difficulties Questionnaire score is filled in.", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] sdq_filled_in = oc2['SDQ_SCORE'].notna() reason_filled_in = oc2['SDQ_REASON'].notna() error_mask = sdq_filled_in & reason_filled_in validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.tolist()} return error, _validate def validate_567(): error = ErrorDefinition( code='567', description='The date that the missing episode or episode that the child was away from placement without authorisation ended is before the date that it started.', affected_fields=['MIS_START', 'MIS_END'], ) def _validate(dfs): if 'Missing' not in dfs: return {} else: mis = dfs['Missing'] mis['MIS_START'] = pd.to_datetime(mis['MIS_START'], format='%d/%m/%Y', errors='coerce') mis['MIS_END'] = pd.to_datetime(mis['MIS_END'], format='%d/%m/%Y', errors='coerce') mis_error = mis[mis['MIS_START'] > mis['MIS_END']] return {'Missing': mis_error.index.to_list()} return error, _validate def validate_304(): error = ErrorDefinition( code='304', description='Date unaccompanied asylum-seeking child (UASC) status ceased must be on or before the 18th birthday of a child.', affected_fields=['DUC'], ) def _validate(dfs): if 'UASC' not in dfs: return {} else: uasc = dfs['UASC'] uasc['DOB'] = pd.to_datetime(uasc['DOB'], format='%d/%m/%Y', errors='coerce') uasc['DUC'] = pd.to_datetime(uasc['DUC'], format='%d/%m/%Y', errors='coerce') mask = uasc['DUC'].notna() & (uasc['DUC'] > uasc['DOB'] +
pd.offsets.DateOffset(years=18)
pandas.offsets.DateOffset
#!/usr/bin/env python # coding: utf-8 import simpy import datetime import pandas as pd import logging from enum import Enum import random from itertools import repeat from ruamel.yaml import YAML from datetime import timedelta log_filename = "logs-10.log" mainLogger = logging.getLogger() fhandler = logging.FileHandler(filename=log_filename, mode='w') formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fhandler.setFormatter(formatter) mainLogger.addHandler(fhandler) mainLogger.setLevel(logging.DEBUG) mainLogger.debug("test") class Metric(Enum): RW = "Requests Waiting" BS = "Busy Slots" AU = "Active Users" class User: def __init__(self, id, scenario, world): self.id = id self.scenario = scenario self._world = world self.taskid = 0 self.create() # Start the run process everytime an instance is created. # create itself as a processs self.action = self._world.env.process(self.run()) def create(self): self.enteringAt = self._world.env.now self.name = "User-%03d" % self.id mainLogger.info(f"user created {self.name}") self._world.user_monitor.report_new_user(self) def run_old(self): while True: self.taskid += 1 for task in self.scenario.tasks: taskname = task['Name'] task_duration = task['Duration'] mark = self._world.env.now mainLogger.debug(f"{self.name} starts task {taskname} at %d" % mark) if 'Res' in task: self._world.user_monitor.report_start( self.name, self.scenario, taskname, self.taskid) # We yield the process that process() returns # to wait for it to finish amount = task['Res'] yield self._world.env.process(self.process_task(task_duration, amount)) self._world.user_monitor.report_stop( self.name, self.scenario, taskname, self.taskid) else: # wait some time even if no tracked yield self._world.env.timeout(task_duration) mainLogger.debug(f"{self.name} ends task {taskname} at %d" % mark) def run(self): scenario = self.scenario mainLogger.debug(f"entering scenario: {scenario['name']}") mainLogger.debug(f"steps: {scenario['steps']}") if 'init' in scenario['steps']: mainLogger.debug("has init") mainLogger.debug("run_step_tasks init") process = self.run_step_tasks(scenario['steps']['init']['tasks']) yield self._world.env.process(process) if 'loop' in scenario['steps']: mainLogger.debug("has loop") step_loop = scenario['steps']['loop'] if 'repeat' in step_loop: counter = 0 while counter < step_loop['repeat']: mainLogger.debug("run_step_tasks loop") process = self.run_step_tasks(scenario['steps']['loop']['tasks']) yield self._world.env.process(process) counter += 1 else: mainLogger.debug("run_step_tasks loop infinite") process = self.run_step_tasks(scenario['steps']['loop']['tasks']) yield self._world.env.process(process) if 'finally' in scenario['steps']: mainLogger.debug("has finally") mainLogger.debug("run_step_tasks finally") process = self.run_step_tasks(scenario['steps']['finally']['tasks']) yield self._world.env.process(process) def run_step_tasks(self, tasks): mainLogger.debug(f"entering run_step_tasks {tasks}") for task in tasks: mainLogger.debug(f"run_step_tasks::task: {task}") yield self._world.env.process(self.run_task(task)) def run_task(self, task): mainLogger.debug(f"entering run_task {task} id:{self.taskid}") max_count = 1 if 'repeat' in task: max_count = task['repeat'] counter = 0 while counter < max_count: self.taskid += 1 mainLogger.debug(f"run task {task['name']} for {task['duration']}") if 'resources' in task: res_amount = task['resources'] if 'parallel' in task: mainLogger.debug("run_task in parallel") res_amount = res_amount * task['parallel'] mainLogger.debug(f"task resources amount {res_amount}") self._world.user_monitor.report_start( self.name, self.scenario['name'], task['name'], self.taskid) process = self.process_task(task['duration'], res_amount) yield self._world.env.process(process) self._world.user_monitor.report_stop( self.name, self.scenario['name'], task['name'], self.taskid) mainLogger.debug("task processing completed") else: mainLogger.debug(f"wait after task for {task['duration']}") yield self._world.env.timeout(task['duration']) mainLogger.debug("wait after task completed") if 'wait' in task: mainLogger.debug(f"manual task for {task['wait']}") yield self._world.env.timeout(task['wait']) mainLogger.debug("manual task completed") # increment counter counter += 1 def process_task(self, duration, amount): mainLogger.debug("entering process task at %d" % self._world.env.now) with Job(self._world.res, amount) as req: yield req yield self._world.env.timeout(duration) mainLogger.debug("exiting process task at %d" % self._world.env.now) class Clock: def __init__(self, tick_interval): self.tick_interval = tick_interval self.base_epoch = datetime.datetime.now().timestamp() mainLogger.info(f"Clock created - base {self.base_epoch}") def to_date(self, tick): delta = tick * self.tick_interval datetime_time = datetime.datetime.fromtimestamp(self.base_epoch) + delta return datetime_time class UsersMonitor: def __init__(self, world): self._world = world # init parameters are self reported # start and stop events self.start_data = [] self.stop_data = [] # list of users self.users = [] def report_new_user(self, user): self.users.append(user) def report_start(self, username, scenarioname, taskname, taskid): mark = self._world.env.now self.start_data.append( dict( StartMark=mark, Start=self._world.clock.to_date(mark), Username=username, Scenario=scenarioname, Task=taskname, TaskId=taskid ) ) def report_stop(self, username, scenarioname, taskname, taskid): mark = self._world.env.now self.stop_data.append( dict( FinishMark=mark, Finish=self._world.clock.to_date(mark), Username=username, Scenario=scenarioname, Task=taskname, TaskId=taskid ) ) def collect(self): df_start =
pd.DataFrame(self.start_data)
pandas.DataFrame
import pandas as pd from sklearn import metrics from sklearn.linear_model import LogisticRegression import time import multiprocessing as mp start_time=time.time() def svm(location1,location2): data=pd.read_csv(location1) data_columns=data.columns xtrain = data[data_columns[data_columns != 'typeoffraud']] ytrain=data['typeoffraud'] data1=pd.read_csv(location2) data1_columns=data1.columns xtest = data1[data1_columns[data1_columns != 'typeoffraud']] from sklearn import svm clf=svm.SVC(kernel='rbf') clf.fit(xtrain,ytrain) ypredict=clf.predict(xtest) rel=list(zip(ypredict)) pp=pd.DataFrame(data=rel,columns=['label']) pp.to_csv('label.csv',index=False) ########################################################################################################### def maketags(location2,location3): e=
pd.read_csv(location2)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sat Aug 14 19:01:45 2021 @author: David """ from pathlib import Path from datetime import datetime as dt import zipfile import os.path import numpy as np import scipy.signal as sig import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import matplotlib.dates as mdates from matplotlib.dates import DateFormatter from matplotlib import gridspec import seaborn as sea import fig_util from IPython.display import display, Image SLATE = (0.15, 0.15, 0.15) WD_ARR = { 1: 'Montag', 2: 'Dienstag', 3: 'Mittwoch', 4: 'Donnerstag', 5: 'Freitag', 6: 'Samstag', 7: 'Sonntag' } OUTPUT_DIR = '..\\output\\RNowcast\\anim\\' OUTPUT_DIR = 'D:\\COVID-19\\output\\RNowcast\\anim\\' ARCHIVE_FPATH = '..\\data\\RKI\\Nowcasting\\Nowcast_R_{:s}.csv' ARCHIVE_ZIP_URL = 'https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung/archive/refs/heads/main.zip' #'https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung/raw/main/Archiv/Nowcast_R_{:s}.csv' SPECIFIC_DAY = None #SPECIFIC_DAY = '2021-09-24' #SPECIFIC_DAY = '2021-10-08' #SPECIFIC_DAY = '2021-11-12' INPUT_DATA_RANGE = ['2021-03-16', dt.now().strftime('%Y-%m-%d')] PLOT_MAX_DATE = '2021-12-31' DO_EXTRAPOLATION = False if not SPECIFIC_DAY is None: INPUT_DATA_RANGE[1] = SPECIFIC_DAY dataset_date_range = pd.date_range(*INPUT_DATA_RANGE) r_idx_min = dataset_date_range[0] - pd.DateOffset(days=4) r_idx = pd.date_range(r_idx_min, dataset_date_range[-5].strftime('%Y-%m-%d')) r_cols = pd.Int64Index(range(4, 4+7*6, 1)) Path(OUTPUT_DIR).mkdir(parents=True, exist_ok=True) # %% rep_tri = pd.DataFrame( data=np.zeros((r_idx.size, r_cols.size)), index=r_idx, columns=r_cols) datasets = {} for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') print(dataset_date_str) #if os.path.isfile(ARCHIVE_FPATH.format(dataset_date_str)): try: data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), index_col = 'Datum', parse_dates = True ) except ValueError: # two steps: data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), parse_dates = True, sep=';', decimal=',', skip_blank_lines=False ) extra_rows = data.index.size - data.index[data.Datum.isna()][0] data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), index_col = 'Datum', parse_dates = True, sep=';', decimal=',', date_parser=lambda x: dt.strptime(x, '%d.%m.%Y'), skipfooter=extra_rows, encoding='UTF-8' ) data.rename(columns={'Schรคtzer_Neuerkrankungen': 'PS_COVID_Faelle'}, inplace=True) last_dataset = data.loc[:,['PS_COVID_Faelle']].copy() last_dataset['Iso Weekdays'] = last_dataset.index.map(lambda d: d.isoweekday()) last_dataset['Date Offset'] = (dataset_date - last_dataset.index).days datasets[dataset_date_str] = last_dataset comm_rows = r_idx.intersection(data.index) data = data.loc[comm_rows] d_cols = (dataset_date-data.index).days data['Offset'] = d_cols comm_cols = d_cols.intersection(r_cols) max_offset = comm_cols.max() data = data.loc[data['Offset'] <= max_offset, ['Offset', 'PS_COVID_Faelle']] data = data.pivot(columns='Offset', values='PS_COVID_Faelle') data.fillna(0, inplace=True) rep_tri.loc[data.index, comm_cols] += data.loc[:, comm_cols] (na_cols, na_rows) = np.tril_indices(rep_tri.shape[0], -1) if any(na_cols >= r_cols.size): max_cols = np.nonzero(na_cols >= r_cols.size)[0][0] na_cols = na_cols[:max_cols] na_rows = na_rows[:max_cols] rep_tri2 = rep_tri.to_numpy().copy() rep_tri2[r_idx.size-1-na_rows, na_cols] = np.nan rep_tri3 = rep_tri.copy() rep_tri3.loc[:,:] = rep_tri2 rep_tri4 = rep_tri3.iloc[:-14, :].div(rep_tri3.apply(lambda s: s[pd.Series.last_valid_index(s)], axis=1), axis=0) # %% q10_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) lq_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) med_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) uq_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) q90_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) max_days_offset = r_cols.max() for i in range(7): iwd = rep_tri4.index[i].isoweekday() rep_tri5 = rep_tri4.iloc[i::7] tri5_med = rep_tri5.median(axis=0) rep_tri5 = rep_tri5.loc[(((rep_tri5-tri5_med) > 1) | (rep_tri5-tri5_med < -1)).sum(axis=1)==0] rep_tri5 *= 100 test = rep_tri5.iloc[:,0:11].melt(var_name='Datenstand in "n Tage nach Datum des Nowcasts"', value_name='Nowcast Korrekturfaktor in %') test = test.loc[~test['Nowcast Korrekturfaktor in %'].isna()] fig = plt.figure(figsize=(16, 9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [7, 1], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) fig.suptitle('COVID-19 - Variation des RKI Nowcasts der Fallzahlen รผber Datenstand-Alter nach Wochentag: {:s}'.format(WD_ARR[iwd]), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) sea.violinplot(x='Datenstand in "n Tage nach Datum des Nowcasts"', y='Nowcast Korrekturfaktor in %', data=test, scale="count") ax.set_ylim([0, 160]) ax.yaxis.set_major_locator(MultipleLocator(20)) ax.yaxis.set_minor_locator(MultipleLocator(5)) ax.set_xlim([-1, 11]) ax.tick_params(which='minor', length=0, width=0, pad=10) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('Nowcast Korrekturfaktor in %', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Datenstand in "n Tage nach Datum des Nowcasts"', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + ';\n' + 'Datenlizenz CC-BY 4.0 International; eigene Berechnung/eigene Darstellung', fontsize=11.5) if True: exp_full_fname = '{:s}{:s}_{:d}_{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcast_Var', iwd, WD_ARR[iwd]) print('Saving ' + exp_full_fname) try: fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) except: fig_util.force_fig_size(fig, (1920.0, 1080.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() else: plt.show() q10_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.1, axis=0) lq_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.25, axis=0) med_dist.loc[:, iwd] = 0.01 * rep_tri5.median(axis=0) uq_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.75, axis=0) q90_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.9, axis=0) #input_matrix[np.tril_indices(input_matrix.shape[0], -1)] = np.nan # %% for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') print(dataset_date_str) last_dataset = datasets[dataset_date_str] last_dataset['Med NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / med_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) #last_dataset['Q1 NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / lq_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) #last_dataset['Q3 NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / uq_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) last_dataset['Med NowNowcast 7d MA'] = np.hstack(( np.full((3), np.nan), sig.correlate(last_dataset['Med NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), np.full((3), np.nan))) # last_dataset['Q1 NowNowcast 7d MA'] = np.hstack(( # np.full((3), np.nan), # sig.correlate(last_dataset['Q1 NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), # np.full((3), np.nan))) # last_dataset['Q3 NowNowcast 7d MA'] = np.hstack(( # np.full((3), np.nan), # sig.correlate(last_dataset['Q3 NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), # np.full((3), np.nan))) last_dataset['Nowcast 7d MA'] = np.hstack(( np.full((3), np.nan), sig.correlate(last_dataset['PS_COVID_Faelle'], np.full((7), 1.0/7), method='direct', mode='valid'), np.full((3), np.nan))) v = last_dataset['Med NowNowcast 7d MA'].to_numpy() v = v[4:] / v[:-4] v = np.hstack(( np.full((6), np.nan), v[:-2])) last_dataset['R (Med NowNowcast 7d MA)'] = v v = 2.0**(sig.correlate(np.log2(v), np.full((7), 1.0/7), method='direct', mode='valid')) v = np.hstack(( np.full((3), np.nan), v, np.full((3), np.nan))) last_dataset['Rgeom (Med NowNowcast 7d MA)'] = v # v1 = last_dataset['Q1 NowNowcast 7d MA'].to_numpy() # v3 = last_dataset['Q3 NowNowcast 7d MA'].to_numpy() # vmin = np.vstack((v1, v3)).max(axis=0) # vmax = np.vstack((v1, v3)).max(axis=0) # vlo = vmin[4:] / vmax[:-4] # vhi = vmax[4:] / vmin[:-4] # vlo = np.hstack(( # np.full((3), np.nan), # vlo, # np.full((1), np.nan))) # vhi = np.hstack(( # np.full((3), np.nan), # vhi, # np.full((1), np.nan))) # last_dataset['R (Q3 NowNowcast 7d MA)'] = vhi # last_dataset['R (Q1 NowNowcast 7d MA)'] = vlo # vlo = 2.0**(sig.correlate(np.log2(vlo), np.full((7), 1.0/7), method='direct', mode='valid')) # vhi = 2.0**(sig.correlate(np.log2(vhi), np.full((7), 1.0/7), method='direct', mode='valid')) # vlo = np.hstack(( # np.full((3), np.nan), # vlo, # np.full((3), np.nan))) # vhi = np.hstack(( # np.full((3), np.nan), # vhi, # np.full((3), np.nan))) # last_dataset['Rgeom (Q3 NowNowcast 7d MA)'] = vhi # last_dataset['Rgeom (Q1 NowNowcast 7d MA)'] = vlo v = last_dataset['Nowcast 7d MA'].to_numpy() v = v[4:] / v[:-4] v = np.hstack(( np.full((6), np.nan), v[:-2])) last_dataset['R (Nowcast 7d MA)'] = v v = 2.0**(sig.correlate(np.log2(v), np.full((7), 1.0/7), method='direct', mode='valid')) v = np.hstack(( np.full((3), np.nan), v, np.full((3), np.nan))) last_dataset['Rgeom (Nowcast 7d MA)'] = v datasets[dataset_date_str] = last_dataset # %% fidz = datasets[INPUT_DATA_RANGE[0]]['Rgeom (Med NowNowcast 7d MA)'].first_valid_index() total_idz = datasets[INPUT_DATA_RANGE[1]]['Rgeom (Med NowNowcast 7d MA)'].index[12:-4].copy() test = pd.DataFrame(index=total_idz, columns=dataset_date_range.copy()) for dataset_date in dataset_date_range: dataset_date_str = dataset_date.strftime('%Y-%m-%d') cur_dataset = datasets[dataset_date_str] comm_idz = total_idz.intersection(cur_dataset.index) test.loc[comm_idz, dataset_date] = cur_dataset.loc[comm_idz, 'Rgeom (Med NowNowcast 7d MA)'] test_s = test.subtract(test.iloc[:, -1], axis=0) # if np.isnan(test_s.iloc[0,0]): # first_nnz_idx = np.nonzero(~test_s.iloc[:,0].isna().to_numpy())[0][0] # test_s = test_s.iloc[first_nnz_idx:,:] first_nz_idx = np.nonzero(test_s.iloc[:,0].isna().to_numpy())[0][0]-1 test_s = test_s.iloc[first_nz_idx:,:-1] test_s['Datum'] = test_s.index.copy() test_s = test_s.melt(value_name='Error', var_name='Report Date', id_vars='Datum').dropna() test_s['Offset'] = (test_s['Report Date'] - test_s['Datum']).dt.days test_s.drop(columns=['Report Date'], inplace=True) test_s.loc[:, 'Error'] = pd.to_numeric(test_s.Error) test_s = -test_s.pivot(index='Datum', columns='Offset', values='Error') max_err = test_s.apply(lambda c: c.dropna().max(), axis=0) min_err = test_s.apply(lambda c: c.dropna().min(), axis=0) med_err = test_s.apply(lambda c: c.dropna().median(), axis=0) q25_err = test_s.apply(lambda c: c.dropna().quantile(0.25), axis=0) q75_err = test_s.apply(lambda c: c.dropna().quantile(0.75), axis=0) q025_err = test_s.apply(lambda c: c.dropna().quantile(0.025), axis=0) q975_err = test_s.apply(lambda c: c.dropna().quantile(0.975), axis=0) iq50_err = (q75_err - q25_err) iq95_err = (q975_err - q025_err) #test2 = test.div(test.iloc[:,-1], axis=0) #first_nz_idx = np.nonzero((test_s.iloc[:,0]!=1).to_numpy())[0][0] # test2 = test2.iloc[first_nz_idx:,:] # test2a = test2.iloc[:-(31+12), :] # test3 = pd.DataFrame(index = test2a.index, columns = range(12, 100)) # for d in test2a.index: # v = pd.DataFrame(data = test2a.loc[d, :].to_numpy().copy(), # index = (test2a.columns - d).days, # columns = ['data']) # com_cols = test3.columns.intersection(v.index) # test3.loc[d, com_cols] = v.loc[com_cols, 'data']-1 # error_band_md = test3.apply(lambda c: c.dropna().quantile(0.5) , axis=0) # error_band_q1 = test3.apply(lambda c: c.dropna().quantile(0.25) , axis=0) # error_band_q3 = test3.apply(lambda c: c.dropna().quantile(0.75) , axis=0) # error_band_max = test3.apply(lambda c: c.dropna().max(), axis=0) # error_band_min = test3.apply(lambda c: c.dropna().min(), axis=0) # error_band_lo = error_band_md - 1.5 * (error_band_q3 - error_band_q1) # error_band_hi = error_band_md + 1.5 * (error_band_q3 - error_band_q1) # %% band_data_med = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_min = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_max = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq95_lo = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq95_hi = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq50_lo = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq50_hi = pd.DataFrame(index = r_idx, columns=dataset_date_range) max_num_entries = (dataset_date_range[-1]-dataset_date_range[0]).days max_lut = max_err.index.max() min_lut = max_err.index.min() # max_err = test_s.apply(lambda c: c.dropna().max(), axis=0) # min_err = test_s.apply(lambda c: c.dropna().min(), axis=0) # med_err = test_s.apply(lambda c: c.dropna().median(), axis=0) # q25_err = test_s.apply(lambda c: c.dropna().quantile(0.25), axis=0) # q75_err = test_s.apply(lambda c: c.dropna().quantile(0.75), axis=0) # iq_err = 1.5 * (q75_err - q25_err) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') v = pd.DataFrame(datasets[dataset_date_str]['Rgeom (Med NowNowcast 7d MA)'].iloc[-max_num_entries:].dropna()) v.rename(columns={'Rgeom (Med NowNowcast 7d MA)': 'Data'}, inplace=True) cur_idx = v.index com_idx = r_idx.intersection(cur_idx) if com_idx.size == 0: continue v = v.loc[com_idx] cur_idx = v.index v['Offset'] = (dataset_date - cur_idx).days cur_idx = v.index com_idx = r_idx.intersection(cur_idx) # vmed = v['Data'] vmed = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else med_err[r['Offset']], axis=1) vmax = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else max_err[r['Offset']], axis=1) vmin = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else min_err[r['Offset']], axis=1) vq25 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q25_err[r['Offset']], axis=1) vq75 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q75_err[r['Offset']], axis=1) vq025 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q025_err[r['Offset']], axis=1) vq975 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q975_err[r['Offset']], axis=1) band_data_med.loc[com_idx, dataset_date] = vmed.loc[com_idx] band_data_min.loc[com_idx, dataset_date] = vmin.loc[com_idx] band_data_max.loc[com_idx, dataset_date] = vmax.loc[com_idx] band_data_iq50_lo.loc[com_idx, dataset_date] = vq25.loc[com_idx] band_data_iq50_hi.loc[com_idx, dataset_date] = vq75.loc[com_idx] band_data_iq95_lo.loc[com_idx, dataset_date] = vq025.loc[com_idx] band_data_iq95_hi.loc[com_idx, dataset_date] = vq975.loc[com_idx] # %% plt.rc('axes', axisbelow=True) if False: # testX = test.subtract(test.iloc[:,-1], axis=0) # band_max = testX.apply(lambda r: r.dropna().max(), axis=1).max() # band_min = testX.apply(lambda r: r.dropna().min(), axis=1).min() # band_q75 = testX.apply(lambda r: r.dropna().quantile(0.75), axis=1) # band_q25 = testX.apply(lambda r: r.dropna().quantile(0.25), axis=1) # band_iq = 1.5 * (band_q75 - band_q25).max() # band_pm = np.max([-band_min, band_max]) fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) fig.suptitle('COVID-19 - Original Punktschรคtzer des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['R (Nowcast 7d MA)'].iloc[-max_num_entries:] #y1 = v * (1 - IQmax) #y2 = v * (1 + IQmax) #y1 = datasets[dataset_date_str]['R (Q1 NowNowcast 7d MA)'].iloc[-56:] #y2 = datasets[dataset_date_str]['R (Q3 NowNowcast 7d MA)'].iloc[-56:] #plt.fill_between(xidz, y1, y2, facecolor=(0.3, 0.3, 0.3), alpha=0.5) plt.plot(v) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschรคtztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der <NAME> (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung; \n' + 'Datenlizenz CC-BY 4.0 International', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_orig') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() # testX = test.subtract(test.iloc[:,-1], axis=0) # band_max = testX.apply(lambda r: r.dropna().max(), axis=1).max() # band_min = testX.apply(lambda r: r.dropna().min(), axis=1).min() # band_q75 = testX.apply(lambda r: r.dropna().quantile(0.75), axis=1) # band_q25 = testX.apply(lambda r: r.dropna().quantile(0.25), axis=1) # band_iq = 1.5 * (band_q75 - band_q25).max() # band_pm = np.max([-band_min, band_max]) fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) fig.suptitle('COVID-19 - Punktschรคtzer$^{{*)}}$ des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['Rgeom (Nowcast 7d MA)'].iloc[-max_num_entries:] #y1 = v * (1 - IQmax) #y2 = v * (1 + IQmax) #y1 = datasets[dataset_date_str]['R (Q1 NowNowcast 7d MA)'].iloc[-56:] #y2 = datasets[dataset_date_str]['R (Q3 NowNowcast 7d MA)'].iloc[-56:] #plt.fill_between(xidz, y1, y2, facecolor=(0.3, 0.3, 0.3), alpha=0.5) plt.plot(v) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschรคtztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung; \n' + 'Datenlizenz CC-BY 4.0 International '+ '$^{*)}$ gleitender geometrischer Mittelwert (Wurzel der Produkte)', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_geom') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) fig.suptitle('COVID-19 - Wochentagkorrigierter Punktschรคtzer$^{{*)}}$ des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) # y1 = band_data_min.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_max.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(0.0, 0.0, 0.0), alpha=0.2) # y1 = band_data_iq_min.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_iq_max.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(1.0, 0.0, 0.0), alpha=0.8) # y1 = band_data_q25.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_q75.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(0.4, 0.4, 1.0), alpha=0.8) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['Rgeom (Med NowNowcast 7d MA)'].iloc[-max_num_entries:] plt.plot(v) #, 'k-') #, linewidth=0.5) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschรคtztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>och-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung;\n' + 'Datenlizenz CC-BY 4.0 International '+ '$^{*)}$ gleitender geometrischer Mittelwert (Wurzel der Produkte)', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_korr') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() # %% ext_r_idx = pd.date_range(r_idx[0], r_idx[-1]-pd.DateOffset(days=1)) old_boundaries = pd.DataFrame(index = ext_r_idx, columns=[ 'min', 'max', 'iq50_lo', 'iq50_hi', 'iq95_lo', 'iq95_hi', 'med']) for i in range(max_num_entries+1): # i = max_num_entries dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') if pd.to_numeric(band_data_min.iloc[:,i].dropna()).size == 0: continue y1 = pd.to_numeric(band_data_min.iloc[:,i].dropna()) y2 = pd.to_numeric(band_data_max.iloc[:,i].dropna()) old_boundaries.loc[y1.index[-1], 'min'] = y1.iloc[-1] old_boundaries.loc[y2.index[-1], 'max'] = y2.iloc[-1] y1 = pd.to_numeric(band_data_iq95_lo.iloc[:,i].dropna()) y2 = pd.to_numeric(band_data_iq95_hi.iloc[:,i].dropna()) old_boundaries.loc[y1.index[-1], 'iq95_lo'] = y1.iloc[-1] old_boundaries.loc[y2.index[-1], 'iq95_hi'] = y2.iloc[-1] y1 = pd.to_numeric(band_data_iq50_lo.iloc[:,i].dropna()) y2 = pd.to_numeric(band_data_iq50_hi.iloc[:,i].dropna()) old_boundaries.loc[y1.index[-1], 'iq50_lo'] = y1.iloc[-1] old_boundaries.loc[y2.index[-1], 'iq50_hi'] = y2.iloc[-1] y = pd.to_numeric(band_data_med.iloc[:,i].dropna()) old_boundaries.loc[y.index[-1], 'med'] = y.iloc[-1] # extrapolation of last 3 days # for i in range(max_num_entries-2, max_num_entries+1): # for j in range(-10,-4.shape[1]): # p = np.polyfit([*range(-9,-3)], pd.to_numeric(old_boundaries.iloc[-9:-3, j]).to_numpy(),2) # old_boundaries.iloc[-3:, j] = np.polyval(p, [-3,-2,-1]) # %% if DO_EXTRAPOLATION: p = np.polyfit([*range(-10,-4)],
pd.to_numeric(band_data_min.iloc[-10:-4, -1])
pandas.to_numeric
from datetime import timedelta import numpy as np import pytest from pandas import Categorical, DataFrame, NaT, Period, Series, Timedelta, Timestamp import pandas._testing as tm class TestSeriesFillNA: def test_fillna_pytimedelta(self): # GH#8209 ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"]) result = ser.fillna(timedelta(1)) expected = Series(Timedelta("1 days"), index=["A", "B"]) tm.assert_series_equal(result, expected) def test_fillna_period(self): # GH#13737 ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) res = ser.fillna(Period("2012-01", freq="M")) exp = Series([Period("2011-01", freq="M"), Period("2012-01", freq="M")]) tm.assert_series_equal(res, exp) assert res.dtype == "Period[M]" def test_fillna_dt64_timestamp(self): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan # reg fillna result = ser.fillna(Timestamp("20130104")) expected = Series( [
Timestamp("20130101")
pandas.Timestamp
"""dev_env_for_beta_app""" code='dev_env_for_beta_app' from elasticsearch import Elasticsearch es = Elasticsearch([{'host': 'elastic-helm-elasticsearch-coordinating-only'}]) sample_user_id='607077a405164b0001e72f69' log='https://apibeta.bighaat.com/crop/api/logerror/create-recommendation-error-log?message={}&api-version=1.0' """local_beta_app""" #code='local_app_beta' #from elasticsearch import Elasticsearch #es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) #sample_user_id='607077a405164b0001e72f69' #log='https://apibeta.bighaat.com/crop/api/logerror/create-recommendation-error-log?message={}&api-version=1.0' """local_prod_app""" #code='local_app_prod' #from elasticsearch import Elasticsearch #es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) #sample_user_id='5fb0ced5cd15bf00013f68d0' #log='https://api.bighaat.com/crop/api/logerror/create-recommendation-error-log?message={}&api-version=1.0' """beta_env_for_prod_app""" #code='beta_env_for_prod_app' #from elasticsearch import Elasticsearch #es = Elasticsearch([{'host': 'elastic-helm-elasticsearch-coordinating-only'}]) #sample_user_id='5fb0ced5cd15bf00013f68d0' #log='https://api.bighaat.com/crop/api/logerror/create-recommendation-error-log?message={}&api-version=1.0' """prod_env_for_prod_app""" #code='prod_env_for_prod_app' #from elasticsearch import Elasticsearch #es = Elasticsearch([{'host': 'elastic-helm-elasticsearch-coordinating-only'}]) #sample_user_id='5fb0ced5cd15bf00013f68d0' #log='https://api.bighaat.com/crop/api/logerror/create-recommendation-error-log?message={}&api-version=1.0' auth={'apiKey': '135BE3F9-B1D8-4A14-A999-303286C32275'} from flask import Flask app = Flask(__name__) from pandas.io.json import json_normalize #import numpy as np import pandas as pd from nltk.corpus import stopwords #import random import time #from datetime import datetime,timedelta STOP_WORDS=stopwords.words('english') #es = Elasticsearch('https://prodelastic.bighaat.cf/') #es = Elasticsearch([{'host': 'elastic-helm-elasticsearch-coordinating-only'}]) #es = Elasticsearch("https://elastic:[email protected]:9200/", verify_certs=False, connection_class=RequestsHttpConnection) from flask import request import warnings warnings.filterwarnings("ignore") from elasticsearch.helpers import scan import requests import datetime def logger(message): message_dict={ 'code':code, 'message':message} r=requests.post(log.format(str(message_dict)),headers=auth) return r.text def big_read(index): es_response = scan( es, index=index, doc_type='_doc', query={"query": { "match_all" : {}}} ) return es_response #global_user={} #res = es.search(index="users_sync", body={"size":10000,"query":{"match_all":{}}}) #users = json_normalize(res['hits']['hits']) def cropDocRecommend(u): try: logger("CropDoc started for user:"+u) userId=u b={ 'query':{ 'match':{"_id": userId} } } res = es.search(index="crop_doc_disease", body=b) q=res['hits']['hits'][0]['_source']['0'] if q==None: logger("Exit CropDoc for user:"+u+"with 0 results") return {'total_cd':[]} """3 latest disease searched by user in crop doc""" # q=",".join(q[-3:]) q=q.split(",") if ' ' in q: q.remove(' ') q=q[-3:] #q='Vkasetu' q1=[w for w in q if not w in STOP_WORDS] should1=[] for i in q1: should1.append({ "fuzzy":{"title": {"value":i,"fuzziness":10}} }) b1={ "query": { "bool": { "should": should1, "must":{'match':{'isDeleted':False }} } } } post_dict_list=[] res1= es.search(index='posts_search_sync',body=b1) print("Keyword Search:\n") for hit in res1['hits']['hits']: # print(str(hit['_score']) + "\t" + hit['_source']['title']) post_dict_list.append({'score_post':hit['_score'],'postId':hit['_id'],'postTitle_post':hit['_source']['title']}) q2=[w for w in q if not w in STOP_WORDS] should2=[] for i in q2: should2.append({ "fuzzy":{"comment": {"value":i,"fuzziness":10}} }) b2={ "query": { "bool": { "should": should2, "must":{'match':{'isDeleted':False }} } } } comment_dict_list=[]=[] res2= es.search(index='comments_sync',body=b2) for hit in res2['hits']['hits']: # print(str(hit['_score']) + "\t" + hit['_source']['postId']+"\t" + hit['_source']['comment'] ) b={ 'query':{ 'match':{"_id":hit['_source']['postId'] } } } try: p=es.search(index='posts_sync',body=b)['hits']['hits'][0]['_source']['title'] comment_dict_list.append({'score_comment':hit['_score'],'postId':hit['_source']['postId'],'postTitle_comment':p,'comment':hit['_source']['comment']}) except: print("Comment's post is deleted") q3=[w for w in q if not w in STOP_WORDS] should3=[] for i in q3: should3.append({ "fuzzy":{"description": {"value":i,"fuzziness":10}} }) b3={ "query": { "bool": { "should": should3, "must":{'match':{'isDeleted':False }} } } } description_dict_list=[] res3= es.search(index='posts_search_sync',body=b3) # print("Keyword Search:\n") for hit in res3['hits']['hits']: # print(str(hit['_score']) + "\t" + hit['_source']['title']) description_dict_list.append({'score_description':hit['_score'],'postId':hit['_id'],'postTitle_description':hit['_source']['title'],'description':hit['_source']['description']}) if len(post_dict_list)!=0: df1=pd.DataFrame(post_dict_list) else: df1=pd.DataFrame(columns=['score_post', 'postId', 'postTitle_post']) if len(description_dict_list)!=0: df2=pd.DataFrame(description_dict_list) else: df2=pd.DataFrame(columns=['score_description', 'postId', 'postTitle_description','description']) if len(comment_dict_list)!=0: df3=pd.DataFrame(comment_dict_list) else: df3=pd.DataFrame(columns=['score_comment', 'postId', 'postTitle_comment', 'comment']) combo_pcd=df1.merge(df2,how='inner',on='postId').merge(df3,how='inner',on='postId') combo_pd=df1.merge(df2,how='inner',on='postId') combo_pc=df1.merge(df3,how='inner',on='postId') combo_cd=df2.merge(df3,how='inner',on='postId') id_top=list(combo_pcd['postId'])+list(combo_pd['postId'])+list(combo_pc['postId'])+list(combo_cd['postId']) combo=pd.concat([combo_pcd,combo_pd,combo_pc,combo_cd]) df1=df1[df1['postId'].apply(lambda x: x not in id_top)] df2=df2[df2['postId'].apply(lambda x: x not in id_top)] df3=df3[df3['postId'].apply(lambda x: x not in id_top)] final=pd.concat([combo,df1,df2,df3]) # final=final[start:fraction_size] # print(final['postId'].tolist(),'cropdoc') logger("Exit CropDoc for user:"+u+"with"+str(len(final['postId']))+" "+str(final['postId'])) return {'total_cd':final['postId'].tolist()} except Exception as e: logger("Some error in corpdoc "+str(e)) def user_profile_activity(posts_vec,u): try: logger("Started Profile_activity recom for usser"+u) user_id=u # logger(str(total_cd)) b={ 'query':{ 'match':{"_id": user_id} } } vec_user=es.search(body=b,index='users_profile_vec')['hits']['hits'][0]['_source'] vec_user_activity=es.search(body=b,index='users_activity_vec')['hits']['hits'][0]['_source'] b={ 'query':{ 'match':{"_id": "aabab"} } } col_names=es.search(index="cols", body=b)['hits']['hits'][0]['_source'] language=col_names['language'].split(",") crop_names=col_names['crop_names'].split(",") for i in vec_user: pass vec_user[i]=[vec_user[i]] lan=pd.DataFrame.from_dict(vec_user)[language] if lan.sum().sum()!=0: lan=lan.div(lan.sum(axis=1),axis=0) crops=pd.DataFrame.from_dict(vec_user)[crop_names] if crops.sum().sum()!=0: crops=crops.div(crops.sum(axis=1),axis=0) vec_user=pd.concat([pd.DataFrame.from_dict(vec_user)[['x','y']],lan,crops],axis=1) for i in vec_user_activity: pass vec_user_activity[i]=[vec_user_activity[i]] lan=pd.DataFrame.from_dict(vec_user_activity)[language] if lan.sum().sum()!=0: lan=lan.div(lan.sum(axis=1),axis=0) crops=pd.DataFrame.from_dict(vec_user_activity)[crop_names] if crops.sum().sum()!=0: crops=crops.div(crops.sum(axis=1),axis=0) vec_user_activity=pd.concat([pd.DataFrame.from_dict(vec_user_activity)[['x','y']],lan,crops],axis=1) # res = es.search(index="posts_search_sync", body={"size":10000,"query":{"match_all":{}}}) # posts_vec = json_normalize(res['hits']['hits']) # posts_vec.columns=pd.Series(posts_vec.columns).apply(lambda x:x.split('.')[-1]) # posts_vec=posts_vec[posts_vec['isDeleted']==False] vec_user[language+crop_names]=vec_user[language+crop_names]+vec_user_activity[language+crop_names] # l=vec_user[language].sample(1,weights=vec_user[language].values[0],axis=1).columns[0] # c=vec_user[crop_names].sample(1,weights=vec_user[crop_names].values[0],axis=1).columns[0] crop_list=vec_user[crop_names].T.sort_values(by=0,ascending=False) crop_list=crop_list[crop_list!=0].dropna().index.tolist() language_list=vec_user[language].T.sort_values(by=0,ascending=False) language_list=language_list[language_list!=0].dropna().index.tolist() pv=posts_vec.copy() pv=pv[pv['userId']!=u] # l2_list=[] # for l in language_list: # l1_list=[] # for c in crop_list: # p=pv[(pv['language']==l) & (pv['cropName']==c)] # p=p.sort_values(by='actionUpdatedAt',ascending=False) # l1_list.append(p['_id'].tolist()) # l2_list.append(l1_list) # if len(p)!=0: # try: # post_list.extend(p['_id'].tolist()) # except: # pass # user_own_post=posts_vec.copy() # user_own_post=user_own_post[user_own_post['userId']==u] # user_own_post['actionUpdatedAt']=pd.to_datetime(user_own_post['actionUpdatedAt']) # user_own_post=user_own_post[user_own_post['actionUpdatedAt']-datetime.utcnow()<timedelta(days=3)] # user_own_post_list=user_own_post['_id'].tolist()[:5] p=pd.DataFrame() for l in language_list: for c in crop_list: pt=pv[(pv['language']==l) & (pv['cropName']==c)] p=pd.concat([p,pt]) p=p.sort_values(by='actionUpdatedAt',ascending=False) posts=p # for l1 in l2_list: # len_list=[] # for i in l1: # len_list.append(len(i)) # m=max(len_list) # for i in range(m): # for j in l1: # if i<len(j): # post_list.append(j[i]) if crop_list==[]: posts=pv[pv.language.isin(language_list)].sort_values(by='actionUpdatedAt',ascending=False) # print(total_cd) # post_list=[x for x in post_list if x not in total_cd+global_user[u]] # for post in post_list[start:]: # if post not in total_cd+global_user[u]: # final.append(post) # if len(final)==fraction_size-start: # break # print(final) # post_list=user_own_post_list+post_list posts_crop_doc_list=cropDocRecommend(u)['total_cd'] posts_crop_doc=pv[pv['_id'].isin(posts_crop_doc_list)] posts_act_doc=
pd.concat([posts,posts_crop_doc])
pandas.concat
import numpy as np import pandas as pd from keras import backend as K from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Activation, BatchNormalization, Dense, Input from keras.models import Model from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesRegressor from sklearn.linear_model import ARDRegression, Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold def root_mean_squared_error(y_true, y_pred): return K.sqrt(K.mean(K.square(y_true - y_pred))) if __name__ == "__main__": NUM_FOLDS = 50 SEED = 1000 shigeria_pred1 = np.load("shigeria_pred1.npy") shigeria_pred2 = np.load("shigeria_pred2.npy") shigeria_pred3 = np.load("shigeria_pred3.npy") shigeria_pred4 = np.load("shigeria_pred4.npy") shigeria_pred5 = np.load("shigeria_pred5.npy") shigeria_pred6 = np.load("shigeria_pred6.npy") shigeria_pred7 = np.load("shigeria_pred7.npy") shigeria_pred8 = np.load("shigeria_pred8.npy") shigeria_pred9 = np.load("shigeria_pred9.npy") shigeria_pred10 = np.load("shigeria_pred10.npy") upura_pred = np.load("upura_pred.npy") takuoko_exp085 = np.load("takuoko_exp085.npy") takuoko_exp096 = np.load("takuoko_exp096.npy") takuoko_exp105 = np.load("takuoko_exp105.npy") takuoko_exp108 = np.load("takuoko_exp108.npy") takuoko_exp184 = np.load("takuoko_exp184.npy") X_train_svd = np.load("X_train_all.npy") X_test_svd = np.load("X_test_all.npy") train_idx = np.load("train_idx.npy", allow_pickle=True) svd1 = TruncatedSVD(n_components=3, n_iter=10, random_state=42) svd1.fit(X_train_svd) X_train_svd = svd1.transform(X_train_svd) X_test_svd = svd1.transform(X_test_svd) X_test = pd.DataFrame( { "shigeria_pred1": shigeria_pred1.reshape(-1), "shigeria_pred2": shigeria_pred2.reshape(-1), "shigeria_pred3": shigeria_pred3.reshape(-1), "shigeria_pred4": shigeria_pred4.reshape(-1), "shigeria_pred5": shigeria_pred5.reshape(-1), "shigeria_pred6": shigeria_pred6.reshape(-1), "shigeria_pred7": shigeria_pred7.reshape(-1), "shigeria_pred8": shigeria_pred8.reshape(-1), "shigeria_pred9": shigeria_pred9.reshape(-1), "shigeria_pred10": shigeria_pred10.reshape(-1), "upura": upura_pred, "takuoko_exp085": takuoko_exp085, "takuoko_exp096": takuoko_exp096, "takuoko_exp105": takuoko_exp105, "takuoko_exp108": takuoko_exp108, "takuoko_exp184": takuoko_exp184, } ) X_test = pd.concat( [ X_test, pd.DataFrame( X_test_svd, columns=[f"svd_{c}" for c in range(X_test_svd.shape[1])] ), ], axis=1, ) # upura oof pred_val000 = pd.read_csv("../input/commonlit-oof/pred_val000.csv") # shigeria oof andrey_df = pd.read_csv("../input/commonlitstackingcsv/roberta_base_itpt.csv") andrey_df2 = pd.read_csv("../input/commonlitstackingcsv/attention_head_nopre.csv") andrey_df3 =
pd.read_csv("../input/commonlitstackingcsv/attention_head_itpt.csv")
pandas.read_csv
import pandas as pd import bioframe import pyranges as pr import numpy as np from io import StringIO def bioframe_to_pyranges(df): pydf = df.copy() pydf.rename( {"chrom": "Chromosome", "start": "Start", "end": "End"}, axis="columns", inplace=True, ) return pr.PyRanges(pydf) def pyranges_to_bioframe(pydf): df = pydf.df df.rename( {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, axis="columns", inplace=True, ) return df def pyranges_overlap_to_bioframe(pydf): ## convert the df output by pyranges join into a bioframe-compatible format df = pydf.df.copy() df.rename( { "Chromosome": "chrom_1", "Start": "start_1", "End": "end_1", "Start_b": "start_2", "End_b": "end_2", }, axis="columns", inplace=True, ) df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories df["chrom_2"] = df["chrom_1"].values return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) def test_expand(): fake_bioframe = pd.DataFrame( {"chrom": ["chr1", "chr1", "chr2"], "start": [1, 50, 100], "end": [5, 55, 200]} ) fake_chromsizes = {"chr1": 60, "chr2": 300} expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe.copy(), expand_bp, fake_chromsizes) print(fake_expanded) assert fake_expanded.iloc[0].start == 0 # don't expand below zero assert ( fake_expanded.iloc[1].end == fake_chromsizes["chr1"] ) # don't expand above chromsize assert ( fake_expanded.iloc[2].end == fake_bioframe.iloc[2].end + expand_bp ) # expand end normally assert ( fake_expanded.iloc[2].start == fake_bioframe.iloc[2].start - expand_bp ) # expand start normally def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False p1 = bioframe_to_pyranges(df1) p2 = bioframe_to_pyranges(df2) pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] ] bb = bioframe.overlap(df1, df2, how="inner")[ ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] ] pp = pp.sort_values( ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], ignore_index=True) bb = bb.sort_values( ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], ignore_index=True) pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_2"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_2"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_2"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 def test_cluster(): df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14],], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) assert ( (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() def test_merge(): df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14],], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # test consistency with pyranges pd.testing.assert_frame_equal( pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), bioframe.merge(df1), check_dtype=False, check_exact=False, ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) def test_complement(): df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14]], columns=["chrom", "start", "end"], ) df1_chromsizes = {"chr1": 100, "chrX": 100} df1_complement = pd.DataFrame( [["chr1", 0, 1], ["chr1", 10, 12], ["chr1", 14, 100], ['chrX', 0, 100]], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, chromsizes=df1_chromsizes), df1_complement ) ### test complement with two chromosomes ### df1.iloc[0, 0] = "chrX" df1_complement = pd.DataFrame( [ ["chr1", 0, 3], ["chr1", 10, 12], ["chr1", 14, 100], ["chrX", 0, 1], ["chrX", 5, 100], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, chromsizes=df1_chromsizes), df1_complement ) def test_closest(): df1 = pd.DataFrame([["chr1", 1, 5],], columns=["chrom", "start", "end"]) df2 = pd.DataFrame( [["chr1", 4, 8], ["chr1", 10, 11]], columns=["chrom", "start", "end"] ) ### closest(df1,df2,k=1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### closest(df1,df2, ignore_overlaps=True)) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, ignore_overlaps=True)) ### closest(df1,df2,k=2) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0 1 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=2)) ### closest(df2,df1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 4 8 chr1 1 5 0 1 chr1 10 11 chr1 1 5 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.closest(df2, df1)) ### change first interval to new chrom ### df2.iloc[0, 0] = "chrA" d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### test other return arguments ### df2.iloc[0, 0] = "chr1" d = """ index_1 index_2 have_overlap overlap_start overlap_end distance 0 0 0 True 4 5 0 1 0 1 False <NA> <NA> 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.closest( df1, df2, k=2, return_overlap=True, return_index=True, return_input=False, return_distance=True, ), check_dtype=False, ) def test_coverage(): #### coverage does not exceed length of original interval df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 =
pd.DataFrame([["chr1", 2, 10]], columns=["chrom", "start", "end"])
pandas.DataFrame
import pandas as pd import numpy as np import sqlite3 from retrobiocat_web.retro.generation.node_analysis import rdkit_smile def convert_to_rdkit(smi): try: new_smi = rdkit_smile(smi) return new_smi except: return None def load_data(path, cols, sep, smi_col): print(f'Load path: {path}') try: data =
pd.read_csv(path, sep=sep)
pandas.read_csv
import os import json from dotenv import load_dotenv import pandas as pd from web3 import Web3 from pathlib import Path class BlockheadMarketPlace: """ Attributes: nft_contract: string Contract's Application Binary Interface (ABI) represented in JSON format for the NFT contract. See Contracts/nft.sol marketplace_contract: string Contract's Application Binary Inteface (ABI) represented in JSON format for the NFT Marketplace contract. See Contracts/nftMarket.sol """ w3 = None nft_address = None nft_contract = None marketplace_address = None marketplace_contract = None def __init__(self, web3_provider_uri : str): load_dotenv() self.w3 = Web3(Web3.HTTPProvider(web3_provider_uri)) self.nft_contract_address = os.getenv("NFT_CONTRACT_ADDRESS") self.marketplace_address = os.getenv("NFT_MARKET_CONTRACT_ADDRESS") self.nft_contract = \ self.__load_contract("./blockhead/abi/nft_abi.json", self.nft_contract_address) self.marketplace_contract = \ self.__load_contract("./blockhead/abi/nft_marketplace_abi.json", self.marketplace_address) def mint_token(self, from_address : str, token_uri : str) -> str: """Mints a token on the blockhain Minting entails assigning a unique identifier to the nft located at the uri. This process is governed by an ERC-721 compliant contract. See Contracts/nft.sol. Args: w3: Web3 Provider Web3 Provider object enabling access to the blockchain from_address: string Blockchain address of the current user token_uri: Unique Resource Identifier that identifies the digital NFT Returns: A token id """ transaction = self.nft_contract.functions.createToken(token_uri) tx_hash = transaction.transact({"from": from_address, "gas": 1000000}) receipt = self.w3.eth.waitForTransactionReceipt(tx_hash) rich_logs = self.nft_contract.events.TokenCreated().processReceipt(receipt) token_id = rich_logs[0]['args']['itemId'] return token_id def create_market_item(self, from_address: str, token_id : int, price_wei : int, listing_price_wei : int) -> int: """ Establishes an NFT for sale on the Blockhead NFT MarketPlace Puts an NFT that has been tokenized using the NFT contract (Contracts/nft.sol) for sale on the Blockhead NFT Marketplace governed by the Marketplace Contract (Contracts/nftMarket.sol). The Blockhead NFT Marketplace has permissions to access tokens created on the NFT Contract. Putting up for sale requires submitting the listing price, which is the cost of putting the NFT up for sale. Args: from_address: string Blockchain address of the current user, or seller, of the NFT token_id: int Unique identifier of the minted NFT as governed by the NFT contract (Contracts/nft.sol) price_wei: int The NFT purchse price, in wei, set by the seller. listing_price_wei: int The amount being submitted to cover the listing price, which is the cost of listing an NFT. This value is established by the Blockhead NFT Marketplace. See Contracts/nftMarket.sol Returns: An item id which represents the unique index of the NFT on the Blockhead NFT Marketplace. """ transaction = self.marketplace_contract.functions.createMarketItem( self.nft_contract_address, int(token_id), int(price_wei)) tx_hash = transaction.transact( { "from": from_address, "gas": 1000000, "value": int(listing_price_wei) }) receipt = self.w3.eth.waitForTransactionReceipt(tx_hash) rich_logs = self.marketplace_contract.events.MarketItemCreated().processReceipt(receipt) item_id = rich_logs[0]['args']['itemId'] return item_id def get_listed_items_for_account(self, from_address : str, show_sold : bool = True) -> pd.DataFrame: """ Retrieves the current account's listed items. Args: from_address: string Blockchain address of the current user, or seller, of the NFT Returns: Unsold NFTs returned as an array of MarketItem as a DataFrame """ transaction = self.marketplace_contract.functions.fetchItemsCreated() items = transaction.call( { "from": from_address }) items_df = pd.DataFrame(items) if not items_df.empty: items_df.columns = ['Token Id', 'Contract', 'Blockhead Id', 'Minter', 'Owner', 'Cost', 'Sold'] items_df.drop(['Contract'], axis=1, inplace=True) if not show_sold: items_df = items_df[items_df["Sold"] == False] items_df['Minter'] = items_df.apply(lambda row : self.__simplify_address(row['Minter']), axis=1) items_df['Owner'] = items_df.apply(lambda row : self.__simplify_address(row['Owner']), axis=1) return items_df def get_bought_items_for_account(self, from_address : str) -> pd.DataFrame: """ Retrieves the current account's bought items. Args: from_address: string Blockchain address of the current user, or seller, of the NFT Returns: Bought NFTs returned as an array of MarketItem as a DataFrame """ transaction = self.marketplace_contract.functions.fetchMyNFTs() items = transaction.call( { "from": from_address }) items_df = pd.DataFrame(items) if not items_df.empty: items_df.columns = ['Token Id', 'Contract', 'Blockhead Id', 'Minter', 'Owner', 'Cost', 'Sold'] items_df.drop(['Contract'], axis=1, inplace=True) items_df['Minter'] = items_df.apply(lambda row : self.__simplify_address(row['Minter']), axis=1) items_df['Owner'] = items_df.apply(lambda row : self.__simplify_address(row['Owner']), axis=1) return items_df def get_nfts_for_sale(self) -> pd.DataFrame: """ Retrieves unsold NFTs on the Blockhead MarketPlace Returns: Unsold NFTs returned as an array of MarketItem in JSON format """ transaction = self.marketplace_contract.functions.fetchMarketItems() data = transaction.call() unsold_items_df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import os import csv import requests import pandas as pd import time import datetime from stockstats import StockDataFrame as Sdf from ta import add_all_ta_features from ta.utils import dropna from ta import add_all_ta_features from ta.utils import dropna from config import config def load_dataset(*, file_name: str) -> pd.DataFrame: """ load csv dataset from path :return: (df) pandas dataframe """ #_data = pd.read_csv(f"{config.DATASET_DIR}/{file_name}") _data = pd.read_csv(file_name) return _data def data_split(df,start,end): """ split the dataset into training or testing using date :param data: (df) pandas dataframe, start, end :return: (df) pandas dataframe """ data = df[(df.datadate >= start) & (df.datadate < end)] data=data.sort_values(['datadate','tic'],ignore_index=True) #data = data[final_columns] data.index = data.datadate.factorize()[0] return data def calcualte_price(df): """ calcualte adjusted close price, open-high-low price and volume :param data: (df) pandas dataframe :return: (df) pandas dataframe """ data = df.copy() data = data[['datadate', 'tic', 'prccd', 'ajexdi', 'prcod', 'prchd', 'prcld', 'cshtrd']] data['ajexdi'] = data['ajexdi'].apply(lambda x: 1 if x == 0 else x) data['adjcp'] = data['prccd'] / data['ajexdi'] data['open'] = data['prcod'] / data['ajexdi'] data['high'] = data['prchd'] / data['ajexdi'] data['low'] = data['prcld'] / data['ajexdi'] data['volume'] = data['cshtrd'] data = data[['datadate', 'tic', 'adjcp', 'open', 'high', 'low', 'volume']] data = data.sort_values(['tic', 'datadate'], ignore_index=True) return data def add_technical_indicator(df): """ calcualte technical indicators use stockstats package to add technical inidactors :param data: (df) pandas dataframe :return: (df) pandas dataframe """ stock = Sdf.retype(df.copy()) stock['close'] = stock['adjcp'] unique_ticker = stock.tic.unique() macd = pd.DataFrame() rsi = pd.DataFrame() cci = pd.DataFrame() dx =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from trading_calendars import get_calendar def get_benchmark_returns(symbol, first_date, last_date): cal = get_calendar('NYSE') dates = cal.sessions_in_range(first_date, last_date) data =
pd.DataFrame(0.0, index=dates, columns=['close'])
pandas.DataFrame
import os import h5py import matplotlib.pyplot as plt from pathlib import Path from time import time, strftime import pandas as pd import numpy as np import scipy.ndimage as ndi import argparse from rabbitccs.data.utilities import load, save, print_orthogonal from rabbitccs.inference.thickness_analysis import _local_thickness if __name__ == '__main__': # ******************************** 3D case ************************************ start = time() # base_path = Path('../../../Data/ยตCT') base_path = Path('/media/dios/dios2/RabbitSegmentation/ยตCT/Full dataset') filter_size = 12 parser = argparse.ArgumentParser() parser.add_argument('--masks', type=Path, default=base_path / 'Predictions_FPN_Resnet18_OA') parser.add_argument('--th_maps', type=Path, default=base_path / f'thickness_median{filter_size}_missing') parser.add_argument('--plot', type=bool, default=True) parser.add_argument('--save_h5', type=bool, default=True) parser.add_argument('--batch_id', type=int, default=None) parser.add_argument('--resolution', type=tuple, default=(3.2, 3.2, 3.2)) # in ยตm #parser.add_argument('--resolution', type=tuple, default=(12.8, 12.8, 12.8)) # in ยตm parser.add_argument('--mode', type=str, choices=['med2d_dist3d_lth3d', 'stacked_2d', 'med2d_dist2d_lth3d'], default='med2d_dist3d_lth3d') parser.add_argument('--max_th', type=float, default=None) # in ยตm parser.add_argument('--median', type=int, default=filter_size) parser.add_argument('--completed', type=int, default=0) args = parser.parse_args() # Sample list samples = os.listdir(args.masks) samples.sort() if args.batch_id is not None: samples = [samples[args.batch_id]] elif args.completed > 0: samples = samples[args.completed:] # Save paths args.th_maps.mkdir(exist_ok=True) (args.th_maps / 'visualization').mkdir(exist_ok=True) (args.th_maps / 'h5').mkdir(exist_ok=True) results = {'Sample': [], 'Mean thickness': [], 'Median thickness': [], 'Thickness STD': [],'Maximum thickness': []} t = strftime(f'%Y_%m_%d_%H_%M') # Loop for samples for sample in samples: time_sample = time() print(f'Processing sample {sample}') # Load prediction pred, files = load(str(args.masks / sample), axis=(1, 2, 0,)) # Downscale #pred = (ndi.zoom(pred, 0.25) > 126).astype(np.bool) if args.plot: print_orthogonal(pred, savepath=str(args.th_maps / 'visualization' / (sample + '_pred.png'))) # Median filter pred = ndi.median_filter(pred, size=args.median) if args.plot: print_orthogonal(pred, savepath=str(args.th_maps / 'visualization' / (sample + '_median.png'))) # Thickness analysis # Create array of correct size th_map = _local_thickness(pred, mode=args.mode, spacing_mm=args.resolution, stack_axis=1, thickness_max_mm=args.max_th) if args.plot: print_orthogonal(th_map, savepath=str(args.th_maps / 'visualization' / (sample + '_th_map.png')), cmap='hot') plt.hist(x=th_map[np.nonzero(th_map)].flatten(), bins='auto') plt.show() # Save resulting thickness map with bmp and h5py save(str(args.th_maps / sample), sample, th_map, dtype='.bmp') # H5PY save if args.save_h5: savepath = args.th_maps / 'h5' / (sample + '.h5') h5 = h5py.File(str(savepath), 'w') h5.create_dataset('data', data=th_map) h5.close() # Update results th_map = th_map[np.nonzero(th_map)].flatten() results['Sample'].append(sample) results['Mean thickness'].append(np.mean(th_map)) results['Median thickness'].append(np.median(th_map)) results['Maximum thickness'].append(np.max(th_map)) results['Thickness STD'].append(np.std(th_map)) # Save results to excel writer = pd.ExcelWriter(str(args.th_maps / ('Results_' + t)) + '.xlsx') df1 =
pd.DataFrame(results)
pandas.DataFrame
import requests from lxml import etree from urllib.parse import urljoin from pandas import DataFrame, read_html, concat from bs4 import BeautifulSoup import re from tqdm import tqdm def _getLinksFromPage(url, textcrib=None, hrefcrib=True): page = requests.get(url) #The file we have grabbed in this case is a web page - that is, an HTML file #We can get the content of the page and parse it soup=BeautifulSoup(page.content, "html5lib") #BeautifulSoup has a routine - find_all() - that will find all the HTML tags of a particular sort #Links are represented in HTML pages in the form <a href="http//example.com/page.html">link text</a> #Grab all the <a> (anchor) tags... if textcrib: souplinks=soup.find_all('a', text=re.compile(textcrib)) elif hrefcrib: souplinks=soup.find_all('a', href=re.compile(hrefcrib)) else: souplinks=soup.find_all('a') return souplinks def _get_most_recent_APPG_link(url=None): if url is None: url='http://www.parliament.uk/mps-lords-and-offices/standards-and-financial-interests/parliamentary-commissioner-for-standards/registers-of-interests/register-of-all-party-party-parliamentary-groups/' links = _getLinksFromPage(url,textcrib='Registers published') #get the most recent link recent = sorted([link.text for link in links])[-1] link = [link for link in links if link.text == recent][0] url='http://www.parliament.uk'+link['href'] links = _getLinksFromPage(url,hrefcrib='pa/cm/cmallparty.*htm') return links[0] def getDetails(dfs,gid): df=dfs[0][:] df.set_index(0,inplace=True) df=df.T df['gid']=gid return df.reset_index(drop=True) def getOfficers(dfs, gid): df=dfs[1][:] df.columns=['Property','Name', 'Party'] df.set_index('Property',inplace=True) df=df[2:] df['gid']=gid return df.reset_index(drop=True) def getContacts(dfs,gid): df=dfs[2][:] df.rename(columns=df[0], inplace=True) df['gid']=gid return df[1:].reset_index(drop=True) def getAGM(dfs,gid): df=dfs[3].loc[:] df['gid']=gid return df.pivot(index='gid',columns=0,values=1).reset_index() def getRegBenefits(dfs,gid): df=dfs[4][:] df.rename(columns=df.iloc[0], inplace=True) df['gid']=gid if len(df)>2: df.columns=['Source', 'Value', 'Received', 'Registered', 'gid'] return df[3:] def getInKindBenefits(dfs,gid): if len(dfs)>5: df=dfs[5][:] df.rename(columns=df.iloc[1], inplace=True) df=df[2:] df['gid']=gid else: return DataFrame() return df def scraper(url=None, conn=None, exists=None, to_csv=False): if not url: a = _get_most_recent_APPG_link() print('Using most recent file I can find: {}'.format(a.text)) url = a['href'] #url="https://www.publications.parliament.uk/pa/cm/cmallparty/170502/contents.htm" df_details=DataFrame() #getDetails(dfs,gid) df_officers=DataFrame() #getOfficers df_contacts=DataFrame() #getContacts(dfs,gid) df_AGM=DataFrame() #getAGM(dfs,gid) df_regBenefits=DataFrame() #getRegBenefits(dfs,gid) df_inKindBenefits=
DataFrame()
pandas.DataFrame
import os import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt import InterruptionAnalysis as ia readpath = './data/edgedir-sim' data = pd.read_csv('./data/timeseries.csv', index_col = 0) votedata = pd.read_csv('./data/vote-data.csv') votedata.set_index('pID', inplace = True) surveydata = pd.read_csv('./data/speakingTime-data.csv', index_col = 0) surveydata.set_index('pID', inplace = True) a = 0.99 gIDs =
pd.unique(data['gID'])
pandas.unique
# pylint: disable=W0201 from statsmodels.compat.python import iteritems, string_types, range import numpy as np from statsmodels.tools.decorators import cache_readonly import pandas as pd from . import var_model as _model from . import util from . import plotting FULL_SAMPLE = 0 ROLLING = 1 EXPANDING = 2 def _get_window_type(window_type): if window_type in (FULL_SAMPLE, ROLLING, EXPANDING): return window_type elif isinstance(window_type, string_types): window_type_up = window_type.upper() if window_type_up in ('FULL SAMPLE', 'FULL_SAMPLE'): return FULL_SAMPLE elif window_type_up == 'ROLLING': return ROLLING elif window_type_up == 'EXPANDING': return EXPANDING raise Exception('Unrecognized window type: %s' % window_type) class DynamicVAR(object): """ Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares Parameters ---------- data : pandas.DataFrame lag_order : int, default 1 window : int window_type : {'expanding', 'rolling'} min_periods : int or None Minimum number of observations to require in window, defaults to window size if None specified trend : {'c', 'nc', 'ct', 'ctt'} TODO Returns ------- **Attributes**: coefs : WidePanel items : coefficient names major_axis : dates minor_axis : VAR equation names """ def __init__(self, data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None): self.lag_order = lag_order self.names = list(data.columns) self.neqs = len(self.names) self._y_orig = data # TODO: deal with trend self._x_orig = _make_lag_matrix(data, lag_order) self._x_orig['intercept'] = 1 (self.y, self.x, self.x_filtered, self._index, self._time_has_obs) = _filter_data(self._y_orig, self._x_orig) self.lag_order = lag_order self.trendorder = util.get_trendorder(trend) self._set_window(window_type, window, min_periods) def _set_window(self, window_type, window, min_periods): self._window_type = _get_window_type(window_type) if self._is_rolling: if window is None: raise Exception('Must pass window when doing rolling ' 'regression') if min_periods is None: min_periods = window else: window = len(self.x) if min_periods is None: min_periods = 1 self._window = int(window) self._min_periods = min_periods @cache_readonly def T(self): """ Number of time periods in results """ return len(self.result_index) @property def nobs(self): # Stub, do I need this? data = dict((eq, r.nobs) for eq, r in iteritems(self.equations)) return pd.DataFrame(data) @cache_readonly def equations(self): eqs = {} for col, ts in iteritems(self.y): model = pd.ols(y=ts, x=self.x, window=self._window, window_type=self._window_type, min_periods=self._min_periods) eqs[col] = model return eqs @cache_readonly def coefs(self): """ Return dynamic regression coefficients as WidePanel """ data = {} for eq, result in iteritems(self.equations): data[eq] = result.beta panel = pd.WidePanel.fromDict(data) # Coefficient names become items return panel.swapaxes('items', 'minor') @property def result_index(self): return self.coefs.major_axis @cache_readonly def _coefs_raw(self): """ Reshape coefficients to be more amenable to dynamic calculations Returns ------- coefs : (time_periods x lag_order x neqs x neqs) """ coef_panel = self.coefs.copy() del coef_panel['intercept'] coef_values = coef_panel.swapaxes('items', 'major').values coef_values = coef_values.reshape((len(coef_values), self.lag_order, self.neqs, self.neqs)) return coef_values @cache_readonly def _intercepts_raw(self): """ Similar to _coefs_raw, return intercept values in easy-to-use matrix form Returns ------- intercepts : (T x K) """ return self.coefs['intercept'].values @cache_readonly def resid(self): data = {} for eq, result in iteritems(self.equations): data[eq] = result.resid return
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ใ‚ใ‚ใ‚ใ‚', u'ใ„ใ„ใ„ใ„ใ„', u'ใ†ใ†ใ†ใ†ใ†ใ†ใ†'] * 20) expected = u"""\ [ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†, ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ..., ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†, ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†] Length: 60 Categories (3, object): [ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ใ‚ใ‚ใ‚ใ‚', u'ใ„ใ„ใ„ใ„ใ„', u'ใ†ใ†ใ†ใ†ใ†ใ†ใ†'] * 20) expected = u"""[ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†, ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ..., ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†, ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†] Length: 60 Categories (3, object): [ใ‚ใ‚ใ‚ใ‚, ใ„ใ„ใ„ใ„ใ„, ใ†ใ†ใ†ใ†ใ†ใ†ใ†]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat =
Categorical(["a", "b", "c", "a"], ordered=True)
pandas.Categorical